Science.gov

Sample records for czochralski silicon crystals

  1. Mutiple Czochralski growth of silicon crystals from a single crucible

    NASA Technical Reports Server (NTRS)

    Lane, R. L.; Kachare, A. H.

    1980-01-01

    An apparatus for the Czochralski growth of silicon crystals is presented which is capable of producing multiple ingots from a single crucible. The growth chamber features a refillable crucible with a water-cooled, vacuum-tight isolation valve located between the pull chamber and the growth furnace tank which allows the melt crucible to always be at vacuum or low argon pressure when retrieving crystal or introducing recharge polysilicon feed stock. The grower can thus be recharged to obtain 100 kg of silicon crystal ingots from one crucible, and may accommodate crucibles up to 35 cm in diameter. Evaluation of the impurity contents and I-V characteristics of solar cells fabricated from seven ingots grown from two crucibles reveals a small but consistent decrease in cell efficiency from 10.4% to 9.6% from the first to the fourth ingot made in a single run, which is explained by impurity build-up in the residual melt. The crystal grower thus may offer economic benefits through the extension of crucible lifetime and the reduction of furnace downtime.

  2. Dislocation-Free Czochralski Silicon Crystal Growth without the Dislocation-Elimination-Necking Process

    NASA Astrophysics Data System (ADS)

    Hoshikawa, Keigo; Huang, Xinming; Taishi, Toshinori; Kajigaya, Tomio; Iino, Takayuki

    1999-12-01

    Dislocation-free silicon crystals have been grown successfully from heavily-boron-doped silicon melts by the Czochralski method without the dislocation-elimination-necking process (Dash neck). A dislocation-free silicon seed of <001> orientation with a boron concentration of about 4×1019 atoms/cm3 was used to grow a silicon crystal with the same boron concentration. No dislocation was generated in the seed during the dipping process, and no misfit dislocation occurred in the grown crystal. These results show that shoulder and body growth can be started immediately after the seeding process.

  3. Large area Czochralski silicon for solar cells

    NASA Technical Reports Server (NTRS)

    Rea, S. N.; Wakefield, G. F.

    1976-01-01

    A detailed model of a typical Czochralski silicon crystal puller is utilized to predict maximum crystal growth rate as a function of various furnace parameters. Results of this analysis, when combined with multiblade slurry sawing, indicate that the Czochralski process is highly attractive for achieving near-term cost reduction of solar cell silicon.

  4. Large area Czochralski silicon

    NASA Technical Reports Server (NTRS)

    Rea, S. N.; Gleim, P. S.

    1977-01-01

    The overall cost effectiveness of the Czochralski process for producing large-area silicon was determined. The feasibility of growing several 12 cm diameter crystals sequentially at 12 cm/h during a furnace run and the subsequent slicing of the ingot using a multiblade slurry saw were investigated. The goal of the wafering process was a slice thickness of 0.25 mm with minimal kerf. A slice + kerf of 0.56 mm was achieved on 12 cm crystal using both 400 grit B4C and SiC abrasive slurries. Crystal growth experiments were performed at 12 cm diameter in a commercially available puller with both 10 and 12 kg melts. Several modifications to the puller hoz zone were required to achieve stable crystal growth over the entire crystal length and to prevent crystallinity loss a few centimeters down the crystal. The maximum practical growth rate for 12 cm crystal in this puller design was 10 cm/h, with 12 to 14 cm/h being the absolute maximum range at which melt freeze occurred.

  5. Global simulation of coupled carbon and oxygen transport in a Czochralski furnace for silicon crystal growth

    NASA Astrophysics Data System (ADS)

    Gao, B.; Kakimoto, K.

    2010-10-01

    For accurate prediction of carbon and oxygen impurities in a single crystal produced by the Czochralski method, global simulation of coupled oxygen and carbon transport in the whole furnace was implemented. Both gas-phase transportation and liquid-phase transportation of oxygen and carbon were considered. With five chemical reactions considered, SiO and CO concentrations in gas and C and O atom concentrations in silicon melt were solved simultaneously. The simulation results show good agreement with experimental data.

  6. Electrically detected magnetic resonance signal from iron contaminated Czochralski silicon crystal

    NASA Astrophysics Data System (ADS)

    Mchedlidze, T.; Matsumoto, K.

    1998-04-01

    The electrical detection of magnetic resonance (EDMR) measurement, a detection method for the spin-dependent recombination, was applied to characterize iron contaminated silicon samples grown by the Czochralski method. The observed signal was different than previously reported electron paramagnetic resonance signals from defects in silicon. In addition, as the signal was not detected from similarly contaminated samples prepared from floating zone grown silicon crystal, we propose that the signal originates from defects containing iron and oxygen, namely, from iron decorated oxide precipitates. The dependency of EDMR signal on different experimental conditions (microwave power, illumination intensity, and temperature) were studied.

  7. The effect of growth rate, diameter and impurity concentration on structure in Czochralski silicon crystal growth

    NASA Technical Reports Server (NTRS)

    Digges, T. G., Jr.; Shima, R.

    1980-01-01

    It is demonstrated that maximum growth rates of up to 80% of the theoretical limit can be attained in Czochralski-grown silicon crystals while maintaining single crystal structure. Attaining the other 20% increase is dependent on design changes in the grower, to reduce the temperature gradient in the liquid while increasing the gradient in the solid. The conclusions of Hopkins et al. (1977) on the effect of diameter on the breakdown of structure at fast growth rates are substantiated. Copper was utilized as the test impurity. At large diameters (greater than 7.5 cm), concentrations of greater than 1 ppm copper were attained in the solid (45,000 ppm in the liquid) without breakdown at maximum growth speeds. For smaller diameter crystals, the sensitivity of impurities is much more apparent. For solar cell applications, impurities will limit cell performance before they cause crystal breakdown for fast growth rates of large diameter crystals.

  8. Shape estimation for online diameter calibration in Czochralski silicon crystal growth

    NASA Astrophysics Data System (ADS)

    Kimbel, Steven L.; O'Sullivan, Joseph A.

    2001-02-01

    The diameter setpoint of a growing crystal in the silicon Czochralski process is a key cost parameter, whose optimal choice depends in part upon the diameter calibration accuracy. Measurement of the crystal diameter during solidification is made remotely, due to high temperatures and vacuum vessel design. Vision systems for diameter control detect the diameter of the bright ring reflection from the silicon melt surface at the crystal meniscus, rather than the actual crystal diameter. Distortion due to the bright ring measurement would result in a destabilizing nonlinear diameter measurement even if the crystal diameter response were linear. Using a published model of the meniscus shape, two and three-dimensional modeling of the bright ring is performed, and simple approximations are made to predict the bright ring bias as a function of diameter slope. Tracking of a diameter maximum during vertical translation could provide a calibration measure, given accurate translation data. The use of deformable templates or snakes is suggested for tracking the diameter maximum, and is bench-tested to provide estimates of on-line calibration accuracy, a key parameter for selection of the optimum diameter setpoint. Implementation of the modified calibration strategy requires corrections for camera distortion, crystal thermal expansion and window diffraction.

  9. Global simulation of the Czochralski silicon crystal growth in ANSYS FLUENT

    NASA Astrophysics Data System (ADS)

    Kirpo, Maksims

    2013-05-01

    Silicon crystals for high efficiency solar cells are produced mainly by the Czochralski (CZ) crystal growth method. Computer simulations of the CZ process established themselves as a basic tool for optimization of the growth process which allows to reduce production costs keeping high quality of the crystalline material. The author shows the application of the general Computational Fluid Dynamics (CFD) code ANSYS FLUENT to solution of the static two-dimensional (2D) axisymmetric global model of the small industrial furnace for growing of silicon crystals with a diameter of 100 mm. The presented numerical model is self-sufficient and incorporates the most important physical phenomena of the CZ growth process including latent heat generation during crystallization, crystal-melt interface deflection, turbulent heat and mass transport, oxygen transport, etc. The demonstrated approach allows to find the heater power for the specified pulling rate of the crystal but the obtained power values are smaller than those found in the literature for the studied furnace. However, the described approach is successfully verified with the respect to the heater power by its application for the numerical simulations of the real CZ pullers by "Bosch Solar Energy AG".

  10. Combined global 2D-local 3D modeling of the industrial Czochralski silicon crystal growth process

    NASA Astrophysics Data System (ADS)

    Jung, T.; Seebeck, J.; Friedrich, J.

    2013-04-01

    A global, axisymmetric thermal model of a Czochralski furnace is coupled to an external, local, 3D, time-dependent flow model of the melt via the inclusion of turbulent heat fluxes, extracted from the 3D melt model, into the 2D furnace model. Boundary conditions of the 3D model are updated using results from the 2D model. In the 3D model the boundary layers are resolved by aggressive mesh refinement towards the walls, and the Large Eddy Simulation approach is used to model the turbulent flow in the melt volume on a relatively coarse mesh to minimize calculation times. It is shown that by using this approach it is possible to reproduce fairly good results from Direct Numerical Simulations obtained on much finer meshes, as well as experimental results for interface shape and oxygen concentration in the case of growth of silicon crystals with 210 mm diameter for photovoltaics by the Czochralski method.

  11. Czochralski crystal growth: Modeling study

    NASA Technical Reports Server (NTRS)

    Dudukovic, M. P.; Ramachandran, P. A.; Srivastava, R. K.; Dorsey, D.

    1986-01-01

    The modeling study of Czochralski (Cz) crystal growth is reported. The approach was to relate in a quantitative manner, using models based on first priniciples, crystal quality to operating conditions and geometric variables. The finite element method is used for all calculations.

  12. LSA Large Area Silicon Sheet Task Continuous Czochralski Process Development

    NASA Technical Reports Server (NTRS)

    Rea, S. N.

    1979-01-01

    A commercial Czochralski crystal growing furnace was converted to a continuous growth facility by installation of a small, in-situ premelter with attendant silicon storage and transport mechanisms. Using a vertical, cylindrical graphite heater containing a small fused quartz test tube linear from which the molten silicon flowed out the bottom, approximately 83 cm of nominal 5 cm diamter crystal was grown with continuous melt addition furnished by the test tube premelter. High perfection crystal was not obtained, however, due primarily to particulate contamination of the melt. A major contributor to the particulate problem was severe silicon oxide buildup on the premelter which would ultimately drop into the primary melt. Elimination of this oxide buildup will require extensive study and experimentation and the ultimate success of continuous Czochralski depends on a successful solution to this problem. Economically, the continuous Czochralski meets near-term cost goals for silicon sheet material.

  13. Application of turbulence modeling to the integrated hydrodynamic thermal-capillary model of Czochralski crystal growth of silicon

    NASA Astrophysics Data System (ADS)

    Kinney, T. A.; Brown, R. A.

    1993-09-01

    The integrated hydrodynamic thermal-capillary model (IHTCM) of Czochralski growth for large-diameter silicon crystals is extended to include a k-ɛ model for turbulence in the melt implemented in a form appropriate for capturing the transition to nearly laminar flow near solid boundaries. Calculations are presented for buoyancy-driven flow alone and for the flow driven by a combination of crystal and crucible rotation, buoyancy and surface tension gradients. These results predict the enhancement in the heat and mass transfer seen in experiments with increased crucible rotation rate, which is not predicted by laminar flow simulatons. The computed temperature fields and interface shapes compare well with measurements reported before (Kinney, Bornside, Brown and Kim, J. Crystal Growth 126 (1992) 413). The use of the k-ɛ/IHTCM for optimization of operating conditions is demonstrated by calculations for varying crystal and crucible rotation rates using an objective function that attempts to optimize oxygen concentration in the crystal, to minimize the radial variation of oxygen and to reduce the magnitude of the thermoelastic stress.

  14. LSSA large area silicon sheet task continuous Czochralski process development

    NASA Technical Reports Server (NTRS)

    Rea, S. N.

    1978-01-01

    A Czochralski crystal growing furnace was converted to a continuous growth facility by installation of a premelter to provide molten silicon flow into the primary crucible. The basic furnace is operational and several trial crystals were grown in the batch mode. Numerous premelter configurations were tested both in laboratory-scale equipment as well as in the actual furnace. The best arrangement tested to date is a vertical, cylindrical graphite heater containing small fused silicon test tube liner in which the incoming silicon is melted and flows into the primary crucible. Economic modeling of the continuous Czochralski process indicates that for 10 cm diameter crystal, 100 kg furnace runs of four or five crystals each are near-optimal. Costs tend to asymptote at the 100 kg level so little additional cost improvement occurs at larger runs. For these conditions, crystal cost in equivalent wafer area of around $20/sq m exclusive of polysilicon and slicing was obtained.

  15. Three-dimensional evaluation of gettering ability for oxygen atoms at small-angle tilt boundaries in Czochralski-grown silicon crystals

    SciTech Connect

    Ohno, Yutaka Inoue, Kaihei; Fujiwara, Kozo; Deura, Momoko; Kutsukake, Kentaro; Yonenaga, Ichiro; Shimizu, Yasuo; Inoue, Koji; Ebisawa, Naoki; Nagai, Yasuyoshi

    2015-06-22

    Three-dimensional distribution of oxygen atoms at small-angle tilt boundaries (SATBs) in Czochralski-grown p-type silicon ingots was investigated by atom probe tomography combined with transmission electron microscopy. Oxygen gettering along edge dislocations composing SATBs, post crystal growth, was observed. The gettering ability of SATBs would depend both on the dislocation strain and on the dislocation density. Oxygen atoms would agglomerate in the atomic sites under the tensile hydrostatic stress larger than about 2.0 GPa induced by the dislocations. It was suggested that the density of the atomic sites, depending on the tilt angle of SATBs, determined the gettering ability of SATBs.

  16. Modeling of Czochralski crystal growth

    SciTech Connect

    Ramachandran, P.A.; Dudukovic, M.P. . Chemical Reaction Engineering Lab.)

    1991-05-01

    The manufacture of high quality silicon crystals especially for power device applications requires the understanding and full quantification of the relationship between the process variables and the crystal properties. This cannot be achieved solely by experimental work and a systematic modeling study is needed. This document presents the results of such a study. A detailed finite element program was developed for the heat transfer in the crystal and the melt of the CZ process. A model was developed to predict the oxygen content of the CZ grown silicon as a function of the operating variables: crucible rotation rate, crystal rotation, crucible temperature and the heat flux to the melt. Preliminary work was also done to assess the effect of the magnetic field on the crystal oxygen content. A complete thermal stress a model was developed for the calculation of the resolved shear stresses in the crystal as a function of its growth history. Multivariable control theory was applied to CZ process and new control methods were suggested. 46 refs., 47 figs., 8 tabs.

  17. A multiple p-n junction structure obtained from as-grown Czochralski silicon crystals by heat treatment - Application to solar cells

    NASA Technical Reports Server (NTRS)

    Chi, J. Y.; Gatos, H. C.; Mao, B. Y.

    1980-01-01

    Multiple p-n junctions have been prepared in as-grown Czochralski p-type silicon through overcompensation near the oxygen periodic concentration maxima by oxygen thermal donors generated during heat treatment at 450 C. Application of the multiple p-n-junction configuration to photovoltaic energy conversion has been investigated. A new solar-cell structure based on multiple p-n-junctions was developed. Theoretical analysis showed that a significant increase in collection efficiency over the conventional solar cells can be achieved.

  18. LSA Large Area Silicon Sheet Task. Continuous Liquid Feed Czochralski Growth. [for solar cell fabrication

    NASA Technical Reports Server (NTRS)

    Fiegl, G.

    1979-01-01

    The design and development of equipment and processes to demonstrate continuous growth of crystals by the Czochralski method suitable for producing single silicon crystals for use in solar cells is presented. The growth of at least 150 kg of mono silicon crystal, 150 mm in diameter is continuous from one growth container. A furnace with continuous liquid replenishment of the growth crucible, accomplished by a meltdown system with a continuous solid silicon feed mechanism and a liquid transfer system, with associated automatic feedback controls is discussed. Due to the silicon monoxide build up in the furnace and its retarding effect on crystal growth the furnace conversion for operation in the low pressure range is described. Development of systems for continuous solid recharging of the meltdown chamber for various forms of poly silicon is described.

  19. Investigation of intrinsic gettering for germanium doped Czochralski silicon wafer

    NASA Astrophysics Data System (ADS)

    Chen, Jiahe; Yang, Deren; Ma, Xiangyang; Wang, Weiyan; Zeng, Yuheng; Que, Duanlin

    2007-06-01

    The intrinsic gettering (IG) effects in a germanium-doped Czochralski (GCz) silicon wafer have been investigated through a processing simulation of dynamic random access memory making and an evaluation on IG capability for copper contamination. It has been suggested that both the good quality defect-free denuded zones (DZs) and the high-density bulk microdefect (BMD) regions could be generated in GCz silicon wafer during device fabrication. Meanwhile, it was also indicated that the tiny oxygen precipitates were hardly presented in DZs of silicon wafer with the germanium doping. Furthermore, it was found in GCz silicon wafer that the BMDs were higher in density but smaller in size in contrast to that in conventional Cz silicon wafer. Promoted IG capability for metallic contamination was therefore induced in the germanium-doped Cz silicon wafer. A mechanism of the germanium doping on oxygen precipitation in Cz silicon was discussed, which was based on the hypothesis of germanium-related complexes.

  20. Modeling and control of the Czochralski crystal growth process

    NASA Astrophysics Data System (ADS)

    Martinez, Denise Marie

    The Czochralski process is a method of pulling crystal from the melt that is widely used by the semiconductor industry. The current breadth of this industry makes the method indespensible. The International Technology Roadmap for Semiconductors forecasts the use of 35 nm technology on 64 Gbit DRAM and 10 GHz processor speeds by the end of this decade. This implies the need for higher quality crystals, and therefore improved growth systems. Furthermore, industry has noted a problem with rapid pull rate variation contributing to structural defects in the grown crystals. It was proposed by industry to investigate elimination of the pull rate as a control input. The current state of the system as well as the predicted path of the industry served to motivate development of a new control scheme. The first objective of this work was to develop or enhance a first-principles based model of the process. This model must be kept at a manageable order to accommodate online simulation while still capturing the dominant process physics. The model must also be formulated as a time differential equation in order to apply the desired control theories. The second objective of this work was to answer industry's question regarding elimination of pull rate as a manipulated input. The final objective of this work was to use the model to design a new control algorithm. The control development includes consideration of the time delay between heater and the crystal. The work is based on silicon growth, but the developments are kept as generic as possible for future application to other materials. Data from industry crystal growths as well as experimental results reported in literature will be used to gauge the effectiveness of the new designs.

  1. Shallow melt apparatus for semicontinuous czochralski crystal growth

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2006-01-10

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  2. Application of porous interface on segregation in Czochralski crystal growth

    NASA Astrophysics Data System (ADS)

    Asadian, M.; Saeedi, H.

    2016-02-01

    The aim of this paper is to develop a model for the solute segregation in Czochralski crystal growth based on similarity solution. In this model, the effect of crystal growth rate for the wide range of Schmidt (Sc) numbers on boundary layer is considered. We utilize a variable R = V0 / √{ ν ω } which represents the ratio of growth velocity (V0) to stirring velocity (√{ ν ω }). Since both crystal rotation rate and growth velocity are almost varied in order to control the growth process, the parameter R can be used as a scale of optimization for the various growth conditions. The analyses show that the effective segregation coefficient (keff) is related to the parameter R. In the end, the results are utilized in the Czochralski configuration to determine the equilibrium segregation coefficient (k0) and Sc number evaluated and compared with experimental data.

  3. Telescoping low vibration pulling mechanism for Czochralski crystal growth

    NASA Astrophysics Data System (ADS)

    Iseler, G. W.

    1985-02-01

    A telescoping low vibration pulling mechanism is described for use in Czochralski crystal growth apparatus, comprising a broached brushing which defines an internal circumference of teeth on the circumference of a splined shaft. The brushing is coupled to the means for rotation via a hollow tube and the splined shaft, couplable to a seed shaft, and an elevation means telescopes through said brushing within said hollow tube.

  4. Czochralski growth and laser performance of alexandrite crystals

    SciTech Connect

    Guo, X.; Zhang, B.; Wu, L.; Chen, M.

    1986-08-15

    Alexandrite (BeAl/sub 2/O/sub 4/:Cr/sup 3 +/) crystals have been growing by the Czochralski technique and continually tunable laser output with energy of 304 mJ and slope efficiency of 0.46% in the wavelength range from 735 to 786 nm has been obtained using c-axis rods. Tunable Q-switch pulse output and LiIO/sub 3/ double-frequency have been also obtained.

  5. Silicon crystal growth in vacuum

    NASA Technical Reports Server (NTRS)

    Khattak, C. P.; Schmid, F.

    1982-01-01

    The most developed process for silicon crystal growth is the Czochralski (CZ) method which was in production for over two decades. In an effort to reduce cost of single crystal silicon for photovoltaic applications, a directional solidification technique, Heat Exchanger Method (HEM), was adapted. Materials used in HEM and CZ furnaces are quite similar (heaters, crucibles, insulation, etc.). To eliminate the cost of high purity argon, it was intended to use vacuum operation in HEM. Two of the major problems encountered in vacuum processing of silicon are crucible decomposition and silicon carbide formation in the melt.

  6. Czochralski silicon characterization by using thermoelectric power measurements at high pressure

    NASA Astrophysics Data System (ADS)

    Shchennikov, V. V.; Gudina, S. V.; Misiuk, A.; Shamin, S. N.

    2003-12-01

    The thermoelectric power of Czochralski silicon with various interstitial oxygen contents has been investigated at high pressure up to 16 GPa by using automated set up and synthetic diamond anvil cell. The values of semiconductor-metal transition pressure established from thermoelectric power on pressure dependencies are correlated with mechanical properties (microhardness) and oxygen content. The possibilities of application of the properties studied for Czochralski silicon testing are discussed.

  7. Shallow Melt Apparatus for Semicontinuous Czochralski Crystal Growth

    DOEpatents

    Wang, T.; Ciszek, T. F.

    2006-01-10

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  8. Growth of LGSO: Ce crystals by the Czochralski method

    SciTech Connect

    Sidletskiy, O. Ts.; Bondar, V. G. Grynyov, B. V.; Kurtsev, D. A.; Baumer, V. N.; Belikov, K. N.; Shtitelman, Z. V.; Tkachenko, S. A.; Zelenskaya, O. V.; Starzhinsky, N. G.; Tarasov, V. A.

    2009-12-15

    Single crystals of Lu{sub 2x}Gd{sub 2-2x}SiO{sub 5}: Ce (0 < x < 1) compounds with different atomic ratios Lu/(Lu + Gd) have been grown by the Czochralski method. It has been shown that a change in the spatial symmetry from P2{sub 1}/c to C2/c in the course of substitution of lutetium for gadolinium occurs at the ratio Lu/(Lu + Gd) = 0.1. The lattice thus formed with symmetry C2/c in the structure of Lu{sub 2x}Gd{sub 2-2x}SiO{sub 5}: Ce crystals favors the maximum possible incorporation of Ce{sup 3+} ions into the sevenfold-coordinated position with respect to oxygen. This explains the substantial improvement of the scintillation characteristics of the grown crystals.

  9. Czochralski growth of gallium indium antimonide alloy crystals

    SciTech Connect

    Tsaur, S.C.

    1998-02-01

    Attempts were made to grow alloy crystals of Ga{sub 1{minus}x}In{sub x}Sb by the conventional Czochralski process. A transparent furnace was used, with hydrogen purging through the chamber during crystal growth. Single crystal seeds up to about 2 to 5 mole% InSb were grown from seeds of 1 to 2 mole% InSb, which were grown from essentially pure GaSb seeds of the [111] direction. Single crystals were grown with InSb rising from about 2 to 6 mole% at the seed ends to about 14 to 23 mole% InSb at the finish ends. A floating-crucible technique that had been effective in reducing segregation in doped crystals, was used to reduce segregation in Czochralski growth of alloy crystals of Ga{sub 1{minus}x}In{sub x}Sb. Crystals close to the targeted composition of 1 mole% InSb were grown. However, difficulties were encountered in reaching higher targeted InSb concentrations. Crystals about 2 mole% were grown when 4 mole% was targeted. It was observed that mixing occurred between the melts rendering the compositions of the melts; and, hence, the resultant crystal unpredictable. The higher density of the growth melt than that of the replenishing melt could have triggered thermosolutal convection to cause such mixing. It was also observed that the floating crucible stuck to the outer crucible when the liquidus temperature of the replenishing melt was significantly higher than that of the growth melt. The homogeneous Ga{sub 1{minus}x}In{sub x}Sb single crystals were grown successfully by a pressure-differential technique. By separating a quartz tube into an upper chamber for crystal growth and a lower chamber for replenishing. The melts were connected by a capillary tube to suppress mixing between them. A constant pressure differential was maintained between the chambers to keep the growth melt up in the growth chamber. The method was first tested with a low temperature alloy Bi{sub 1{minus}x}Sb{sub x}. Single crystals of Ga{sub 1{minus}x}In{sub x}Sb were grown with uniform

  10. Nano-Scale Analysis of Precipitates in Nitrogen-Doped Czochralski SIlicon

    SciTech Connect

    Rozgonyi, G. A.; Karoui, A.; Kvit, A.; Duscher, Gerd J M

    2003-01-01

    Nitrogen-doped Czochralski (CZ) silicon wafers were heat treated with Lo-Hi annealing in argon. Nanoscale defects were then examined by high resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM) in the Z-contrast mode, and electron energy loss spectroscopy (EELS) analyses using a field emission JEOL 2010 with a resolution below 2 {angstrom}. The structures of precipitates, stacking faults and interstitial aggregates were found to depend on their location relative to the wafer surface. Precipitate composition, strain at the interface and interface roughness were obtained and are discussed in connection with the point defects generated during crystal growth and modified during wafer annealing. An excellent correlation was found between Z-contrast line scans across the precipitates and the N to O concentration ratio determined with EELS. In the precipitate central region that ratio is between 1 and 6%, whereas at precipitate boundaries it reaches 17%.

  11. The growth of Ho:YAG single crystals by Czochralski method and investigating the formed cores

    SciTech Connect

    Hasani Barbaran, J. Ghani Aragi, M. R.; Javaheri, I.; Baharvand, B.; Tabasi, M.; Layegh Ahan, R.; Jangjo, E.

    2015-12-15

    Ho:YAG single crystals were grown by Czochralski technique, and investigated by the X-ray diffraction (XRD) and optical methods. The crystals were cut and polished in order to observe and analyze their cores. It was found that the deviation of the cores formed in the Czochralski grown Ho:YAG single crystals are resulted from non-symmetrical status of thermal insulation around the Iridium crucible.

  12. Transport phenomena near the interface of a Czochralski-grown crystal

    SciTech Connect

    Balasubramaniam, R.; Ostrach, S.

    1987-01-01

    In the Czochralski method, crystals are grown by controlled withdrawal of a seed crystal that is initially touched to the free surface of the melt. Transport phenomena within the melt are important as they affect the quality of the crystal. Momentum, energy and mass transfer have been considered in the vicinity of the crystal, viz., in the meniscus below the crystal. Driving forces due to buoyancy, crystal rotation and thermocapillary effects have been included. Estimation of the non-dimensional parameters involved reveals that the surface-tension gradient and crystal rotation are important for the growth of silicon crystals. For pure thermocapillary flow with large Peclet number and small Prandtl number, an integral method has been used with the boundary-layer equations to determine the temperature, axial velocity, and concentration distributions in the meniscus region. The results show that in the ideal case when the energy transfer is one dimensional, the thermocapilliary flow causes the temperature and concentration distributions in the meniscus to be two-dimensional, which causes the interface to be curved and the solute to be segregated non-uniformly over the cross-section of the crystal. With the interface assumed to be initially flat, a corrected, curved shape which protrudes into the melt has been obtained for the interface.

  13. Analysis of Phase Separation in Czochralski Grown Single Crystal Ilmenite

    NASA Technical Reports Server (NTRS)

    Wilkins, R.; Powell, Kirk St. A.; Loregnard, Kieron R.; Lin, Sy-Chyi; Muthusami, Jayakumar; Zhou, Feng; Pandey, R. K.; Brown, Geoff; Hawley, M. E.

    1998-01-01

    Ilmenite (FeTiOs) is a wide bandgap semiconductor with an energy gap of 2.58 eV. Ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Single crystal ilmenite has been grown from the melt using the Czochralski method. Growth conditions have a profound effect on the microstructure of the samples. Here we present data from a variety of analytical techniques which indicate that some grown crystals exhibit distinct phase separation during growth. This phase separation is apparent for both post-growth annealed and unannealed samples. Under optical microscopy, there appear two distinct areas forming a matrix with an array of dots on order of 5 pm diameter. While appearing bright in the optical micrograph, atomic force microscope (AFM) shows the dots to be shallow pits on the surface. Magnetic force microscope (MFM) shows the dots to be magnetic. Phase identification via electron microprobe analysis (EMPA) indicates two major phases in the unannealed samples and four in the annealed samples, where the dots appear to be almost pure iron. This is consistent with micrographs taken with a scanning probe microscope used in the magnetic force mode. Samples that do not exhibit the phase separation have little or no discernible magnetic structure detectable by the MFM.

  14. Impact of heat shield structure in the growth process of Czochralski silicon derived from numerical simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Liu, Ding; Zhao, Yue; Jiao, Shangbin

    2014-05-01

    Further development of the photovoltaic industry is restricted by the productivity of mono-crystalline silicon technology due to its requirements of low cost and high efficient photocells. The heat shield is not only the important part of the thermal field in Czochralski(Cz) mono-crystalline silicon furnace, but also one of the most important factors influencing the silicon crystal growth. Large-diameter Cz-Si crystal growth process is taken as the study object. Based on FEM numerical simulation, different heat shield structures are analyzed to investigate the heater power, the melt-crystal interface shape, the argon flow field, and the oxygen concentration at the melt-crystal interface in the process of large Cz-Si crystal growth. The impact of these factors on the growth efficiency and crystal quality are analyzed. The results show that the oxygen concentration on the melt-crystal interface and the power consumption of the heater stay high due to the lack of a heat shield in the crystal growth system. Argon circumfluence is generated on the external side of the right angle heat shield. By the right-angle heat shield, the speed of gas flow is lowered on the melt free surface, and the temperature gradient of the free surface is increased around the melt-crystal interface. It is not conducive for the stable growth of crystal. The shape of the melt-crystal interface and the argon circulation above the melt free surface are improved by the inclined heat shield. Compared with the others, the system pulling rate is increased and the lowest oxygen concentration is achieved at the melt-crystal interface with the composite heat shield. By the adoption of the optimized composite heat shield in experiment, the real melt-crystal interface shapes and its deformation laws obtained by Quick Pull Separation Method at different pulling rates agree with the simulation results. The results show that the method of simulation is feasible. The proposed research provides the theoretical

  15. A preliminary review of organic materials single crystal growth by the Czochralski technique

    NASA Technical Reports Server (NTRS)

    Penn, B. G.; Shields, A. W.; Frazier, D. O.

    1988-01-01

    The growth of single crystals of organic compounds by the Czochralski method is reviewed. From the literature it is found that single crystals of benzil, a nonlinear optical material with a d sub 11 value of 11.2 + or - 1.5 x d sub 11 value of alpha quartz, has fewer dislocations than generally contained in Bridgman crystals. More perfect crystals were grown by repeated Czochralski growth. This consists of etching away the defect-containing portion of a Czochralski grown crystal and using it as a seed for further growth. Other compounds used to grow single crystals are benzophenone, 12-tricosanone (laurone), and salol. The physical properties, growth apparatus, and processing conditions presented in the literature are discussed. Moreover, some of the possible advantages of growing single crystals of organic compounds in microgravity to obtain more perfect crystals than on Earth are reviewed.

  16. Crack Growth in Single-Crystal Silicon

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Leipold, M. H.

    1986-01-01

    Report describes experiments on crack growth in single-crystal silicon at room temperature in air. Crack growth in (111) cleavage plane of wafers, 50 by 100 by 0.76 mm in dimension, cut from Czochralski singlecrystal silicon studied by double-torsion load-relaxation method and by acoustic-emission measurements. Scanning electron microscopy and X-ray topography also employed. Results aid in design and fabrication of silicon photovoltaic and microelectronic devices.

  17. Development of advanced Czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness. [crystal growth

    NASA Technical Reports Server (NTRS)

    Lane, R. L.

    1981-01-01

    Six growth runs used the Kayex-Hameo Automatic Games Logic (AGILE) computer based system for growth from larger melts in the Mod CG2000. The implementation of the melt pyrometer sensor allowed for dip temperature monitoring and usage by the operator/AGILE system. Use of AGILE during recharge operations was successfully evaluated. The tendency of crystals to lose cylindrical shape (spiraling) continued to be a problem. The hygrometer was added to the Furnace Gas Analysis System and used on several growth runs. The gas chromatograph, including the integrator, was also used for more accurate carbon monoxide concentration measurements. Efforts continued for completing the automation of the total Gas Analysis System. An economic analysis, based on revised achievable straight growth rate, is presented.

  18. LSA large area silicon sheet task continuous liquid feed Czochralski growth. Quarterly report, January-March 1980

    SciTech Connect

    Walters, D.

    1980-04-01

    The purpose of this specific phase of the continuous liquid feed program is the design and development of equipment and processes in order to demonstrate the continuous growth of crystals, by use of the Czochralski method, suitable for producing monocrystalline silicon for use in solar cells. This involves the growth of at least 150 kgs of monocrystalline silicon ingots, 150 mm in diameter, obtained from a single growth container. Our approach to meeting this goal is to develop a furnace with continuous liquid replenishment to the growth crucible. The most significant event occurring this quarter was the repeated demonstration of the polyrod feed mechanism, providing continuous melt replenishment to the meltdown chamber, subsequent transfer of this melt, and the simultaneous growth of silicon ingots in the growth chamber.

  19. Microhardness of Czochralski-grown single crystals of VB{sub 2}

    SciTech Connect

    Bulfon, C.; Sassik, H.; Leithe-Jasper, A.; Rogl, P.

    1997-10-01

    Single crystals of congruent melting hexagonal VB{sub 2} were grown used a triarc furnace applying the Czochralski technique. Orientation dependent microhardness measurements on a single crystal reveal quasi similar hardness in the crystallographic directions <00.1> and <10.0>, whereas the <10.1> shows slightly lower values.

  20. Suppression of boron-oxygen defects in Czochralski silicon by carbon co-doping

    SciTech Connect

    Wu, Yichao; Yu, Xuegong He, Hang; Chen, Peng; Yang, Deren

    2015-03-09

    We have investigated the influence of carbon co-doping on the formation of boron-oxygen defects in Czochralski silicon. It is found that carbon can effectively suppress the formation of boron-oxygen defects. Based on our experiments and first-principle theoretical calculations, it is believed that this effect is attributed to the formation of more energetically favorable carbon-oxygen complexes. Moreover, the diffusion of oxygen dimers in carbon co-doped silicon also becomes more difficult. All these phenomena should be associated with the tensile stress field induced by carbon doping in silicon.

  1. Effect of ramping on oxygen precipitates and Cu-vacancy complex in Czochralski silicon

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Lv, Yaochao; Guo, Weibin; Xie, Tingting

    2016-07-01

    The effect of ramping on oxygen precipitates and Cu-vacancy complex in Czochralski silicon has been investigated by means of Fourier transform infrared spectroscopy (FTIR) and photoluminescence (PL) measurements, respectively. It was found that ramping from low temperature could promote the formation of oxygen precipitates in copper-contaminated Czochralski silicon and the lower the start ramping temperature was, the more oxygen precipitates formed. Moreover, the amount of precipitated oxygen atoms increased with copper contamination temperature. Through the investigation of 0.97 eV PL line related with Cu-vacancy complex, it was revealed that a lower start ramping temperature led to a lower concentration of Cu-vacancy complex and the increase of the copper contamination temperature resulted in the decrease of concentration of Cu-vacancy complex.

  2. Growth of Crack-Free 3-Inch-Diameter Lithium Tetraborate Single Crystals by Czochralski Method

    NASA Astrophysics Data System (ADS)

    Komatsu, Ryuichi; Sugihara, Tadashi; Uda, Satoshi

    1994-09-01

    The growth of crack-free 3-inch-diameter lithium tetraborate ( Li2B4O7) single crystals by the Czochralski method has been studied. The relationships between crystal cracking rate during growth and the crystal rotation rate and the position of the work-coil have been examined. It is concluded that crystal cracking at a later stage of growth is related to the temperature fluctuation in melt.

  3. Advanced Czochralski silicon growth technology for photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Daud, T.; Kachare, A. H.

    1982-01-01

    Several economic analyses had indicated that large-diameter, multiple ingot growth using a single crucible with melt replenishment would be required for Cz growth to be economically viable. Based on the results of these analyses, two liquid and two solid feed melt replenishment approaches were initiated. The sequential solid feed melt replenishment approach, which demonstrated elements of technical feasibility is described in detail in this paper. Growth results of multiple ingots (10-cm-diameter, totaling 100 kg; and 15-cm-diameter, totaling 150 kg weight per crucible) are presented. Solar cells were fabricated and analyzed to evaluate the effects of structure and chemical purities as a result of multiple growth. The results indicate that, with semiconductor-grade silicon, feedstock impurity build-up does not seem to degrade cell performance. For polycrystalline cells, the average efficiencies are 15 to 25% lower than those of single crystalline cells. Concerns regarding single crystal yields, crucible quality and growth speed are indicated, and present status and future research thrusts are also discussed.

  4. Rapid thermal processing of Czochralski silicon substrates: Defects, denuded zones, and minority carrier lifetime

    NASA Technical Reports Server (NTRS)

    Rozgonyi, G. S.; Yang, D. K.; Cao, Y. H.; Radzimski, Z.

    1986-01-01

    Rapid thermal processing (RTP) of Czochralski (Cz) silicon substrates is discussed with its attendant effects on defects, denuded zones, and minority carrier lifetime. Preferential chemical etching and X-ray topography was used to delineate defects which were subsequently correlated with minority carrier lifetime; determined by a pulse metallo-organic decompositon (MOD) test device. The X-ray delineation of grown-in defects was enhanced by a lithium decoration procedure. Results, thus far, show excellent correlation between process-induced defects.

  5. Denuded Zone Formation in Germanium Codoped Heavily Phosphorus-Doped Czochralski Silicon

    NASA Astrophysics Data System (ADS)

    Lin, Li-Xia; Chen, Jia-He; Wu, Peng; Zeng, Yu-Heng; Ma, Xiang-Yang; Yang, De-Ren

    2011-03-01

    The formation of a denuded zone (DZ) by conventional furnace annealing (CFA) and rapid thermal annealing (RTA) based denudation processing is investigated and the gettering of copper (Cu) atoms in germanium co-doped heavily phosphorus-doped Czochralski (GHPCZ) silicon wafers is evaluated. It is suggested that both a good quality defect-free DZ with a suitable width in the sub-surface area and a high density bulk micro-defect (BMD) region could be formed in heavily phosphorus-doped Czochralski (HPCZ) silicon and GHPCZ silicon wafers. This is ascribed to the formation of phosphorus-vacancy (P-V) related complexes and germanium-vacancy (GeV) related complexes. Compared with HPCZ silicon, the DZ width is wider in the GHPCZ silicon sample with CFA-based denudation processing but narrower in the one with two-step RTA pretreatments. These phenomena are ascribed to the enhancing effect of germanium on oxygen out-diffusion movement and oxygen precipitate nucleation, respectively. Furthermore, fairly clean DZs near the surface remain in both the HPCZ and GHPCZ silicon wafers after Cu in-diffusion, except for the HPCZ silicon wafer which underwent denudation processing with a CFA pretreatment, suggesting that germanium doping could improve the gettering of Cu contamination.

  6. Suppression of hydrogen diffusion at the hydrogen-induced platelets in p-type Czochralski silicon

    SciTech Connect

    Huang, Y.L.; Ma, Y.; Job, R.; Fahrner, W.R.

    2005-03-28

    Hydrogen diffusion in p-type Czochralski silicon is investigated by combined Raman spectroscope, scanning electron microscope, and spreading resistance probe measurements. Exposure of silicon wafers to rf hydrogen plasma results in the formation of platelets. The increase of hydrogenation duration leads to the growth of the platelets and the reduction of the hydrogen diffusivity. The large platelets grow faster than the small ones. The growth of the platelets is based on the capture of hydrogen. The dependence of the hydrogen diffusivity upon the average size of the platelets suggests that the indiffusion of hydrogen is suppressed by the platelets.

  7. A versatile low-cost Czochralski crystal growth system for nonlinear optical organic materials

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D.; Wang, W. S.; Shields, Angela W.; Penn, Benjamin G.; Frazier, Donald O.

    1992-01-01

    A versatile low-cost Czochralski system for pulling crystals from melt has been described. It is designed for low melting, transparent, and nonlinear optical materials. One of the most important novel feature of this crystal growth system is that the entire growth process including the solid-liquid interface can be viewed from any direction. Another is the use of an after-heater to reduce excess heat loss from the surface of the melt.

  8. A DLTS study of hydrogen doped czochralski-grown silicon

    NASA Astrophysics Data System (ADS)

    Jelinek, M.; Laven, J. G.; Kirnstoetter, S.; Schustereder, W.; Schulze, H.-J.; Rommel, M.; Frey, L.

    2015-12-01

    In this study we examine proton implanted and subsequently annealed commercially available CZ wafers with the DLTS method. Depth-resolved spreading resistance measurements are shown, indicating an additional peak in the induced doping profile, not seen in the impurity-lean FZ reference samples. The additional peak lies about 10-15 μm deeper than the main peak near the projected range of the protons. A DLTS characterization in the depth of the additional peak indicates that it is most likely not caused by classical hydrogen-related donors known also from FZ silicon but by an additional donor complex whose formation is assisted by the presence of silicon self-interstitials.

  9. KNbO3 single crystal growth by the radio frequency heating Czochralski method

    NASA Technical Reports Server (NTRS)

    Wang, W.; Zou, Q.; Geng, Z.

    1985-01-01

    A radio frequency heating Czochralski technique to obtain single crystal KNbO3 is first presented. The technological parameters of KNbO3 crystal growth by the Czochralski technique and its pulling conditions were studied in detail. The experiments on second harmonic generation using 1.06 micrometer Nd:YAG laser in KNbO3 have been conducted. The second harmonic efficiency for upconversion of KNbO3 is found to be as high as that of NaBa2Nb5O15. An automatic scanning measurement for the optical homogeneity of KNbO crystal is also described. KNbO3 is revealed to be a potentially useful nonlinear material for optical device applications.

  10. Process research of non-Czochralski silicon material

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.

    1986-01-01

    Simultaneous diffusion of liquid precursors containing phosphorus and boron into dendritic web silicon to form solar cell structures was investigated. A simultaneous junction formation techniques was developed. It was determined that to produce high quality cells, an annealing cycle (nominal 800 C for 30 min) should follow the diffusion process to anneal quenched-in defects. Two ohm-cm n-base cells were fabricated with efficiencies greater than 15%. A cost analysis indicated that the simultansous diffusion process costs can be as low as 65% of the costs of the sequential diffusion process.

  11. Effect of rapid thermal annealing on recombination centres in boron-doped Czochralski-grown silicon

    SciTech Connect

    Walter, D. C. Lim, B.; Bothe, K.; Schmidt, J.; Voronkov, V. V.; Falster, R.

    2014-01-27

    Rapid thermal annealing in a belt furnace results in a dramatic change of the recombination properties of boron-doped Czochralski silicon: (1) the lifetime degraded by applying a prolonged illumination at room temperature was significantly improved, (2) after subsequent dark recovery, the lifetime has a remarkably high value, and (3) the permanent recovery, by annealing at 185 °C under illumination, is enormously accelerated, and the finally achieved stable lifetime acquires a record value of 1.5 ms, as compared to 110 μs after permanent recovery of not-annealed reference samples.

  12. Dopant, defects and oxygen interaction in MeV implanted Czochralski silicon

    NASA Astrophysics Data System (ADS)

    La Ferla, A.; Galvagno, G.; Raineri, V.; Priolo, F.; Carnera, A.; Gasparotto, A.; Rimini, E.

    1995-03-01

    An oxygen precipitation phenomenon was evidenced on high energy implanted Czochralski silicon samples. Al, Si, P, O and C ions with nergies in the 1-6.8 MeV range and doses in the 4 × 10 14-1 × 10 15 / cm 2 range were single or double implanted in CZSi. A strong interaction was evidenced between the implanted species, the damage and the oxygen present in the substrates after annealing at 1100 or 1200°C for 30 min. The oxygen precipitation is greatly enhanced by the presence of Al that interacting with O results almost completely electrically inactive.

  13. Experimental investigation on effects of crystal and crucible rotation on thermal convection in a model Czochralski configuration

    NASA Astrophysics Data System (ADS)

    Shen, Ting; Wu, Chun-Mei; Zhang, Li; Li, You-Rong

    2016-03-01

    A series of experiments are presented to understand the effects of crystal and crucible rotations on the thermal convection in a model Czochralski (Cz) configuration which consists of a crucible filled with the transparent 0.65 cSt silicone oil (Pr=6.7) and a model crystal. The thermal convection is induced by the temperature difference between the crucible sidewall and the crystal sidewall. The results show that the critical Rayleigh number for the onset of instability of thermal convection increases with the increase of the crystal rotation rate without the crucible rotation. When the crucible rotates, the critical Rayleigh number is higher than that with standing crucible at small crystal rotation rates. After the flow destabilizes, a three-dimensional oscillatory convection is characterized by traveling spoke patterns at small crystal rotation rates. With the increase of the crystal rotation rate, the azimuthal propagating velocity of the spoke pattern increases. Furthermore, the spoke pattern dims gradually and gives way to the wave pattern. The crystal rotation has a slight effect on the spoke number until the spoke pattern disappears. Compared with the shallow pool, the crystal rotation makes the flow more likely to be disturbed in the deeper pool. On the contrary, the crucible rotation is more conducive to suppressing the oscillatory flow in the deeper pool.

  14. Progress in unconventional crystallization of silicon

    NASA Astrophysics Data System (ADS)

    Sirtl, E.

    The development status of advanced crystallization methods applicable to the production of silicon photovoltaic cells is considered, with a view to their potential for industrial scaling and high material quality reproducibility. Emphasis is given to the factor of compatibility between refining and crystallization concepts. Economic improvements are reported for the Czochralski-pulling and vertical float-zoning bulk crystallization methods, and attention is given to material synthesis through bulk segregation, semiconductor ribbon growth through pulling and foil casting, and comparisons between the performance of ingot technology and sheet technology industrial processes for solar cell production.

  15. Electrical Activity of Defects Induced by Oxygen Precipitation in Czochralski-Grown Silicon Wafers

    NASA Astrophysics Data System (ADS)

    Mchedlidze, Teimouraz; Matsumoto, Kei; Asano, Eiichi

    1999-06-01

    Majority and minority carrier traps introduced in p-type Czochralski-grown silicon (CZ-Si) wafers during two-step low-high temperature annealing procedures were investigated using deep level transient spectroscopy (DLTS). It was determined that the platelike silicon oxide precipitate surface and the punch-out dislocations introduce majority carrier traps having deep energy levels (EV+0.43 eV and EV+0.26 eV, repectively) in the Si band gap in concentrations proportional to the relevant defect density. The minority carrier traps are positioned at EC-0.42 eV and EC-0.22 eV. The majority carrier trap density on the surface of the platelikeprecipitate was estimated as ˜3×109 cm-2 and thelinear trap density for the punch-out dislocations as ˜ 4×104 cm-1.

  16. Rapid-thermal-processing-based internal gettering for heavily boron-doped Czochralski silicon

    NASA Astrophysics Data System (ADS)

    Fu, Liming; Yang, Deren; Ma, Xiangyang; Tian, Daxi; Que, Duanlin

    2006-11-01

    The effect of rapid-thermal processing (RTP) ambients on the formation of oxygen precipitates and denuded zone (DZ) in heavily boron-doped (HB) Czochralski (Cz) silicon by a low-high (L-H) two-step annealing (800°C/4h+1000°C/16h) has been investigated. It was found that after the L-H two-step annealing, there was a high density of bulk microdefects (BMDs) and no observable DZ was formed near the surface in HB Cz silicon wafers preannealed by the RTP in Ar ambient, while the BMD density was quite low in HB Cz silicon wafers preannealed by the RTP in O2 ambient. However, applying the preannealing of RTP sequentially in Ar and O2 ambients allowed us to obtain a high density of BMDs in combination with a sufficient DZ by the subsequent L-H two-step annealing. This approach offers a pathway to optimize internal gettering for HB Cz silicon.

  17. TCT and test beam results of irradiated magnetic Czochralski silicon (MCz-Si) detectors

    SciTech Connect

    Luukka, P.; Harkonen, J.; Maenpaa, T.; Betchart, B.; Czellar, S.; Demina, R.; Furgeri, A.; Gotra, Y.; Frey, M.; Hartmann, F.; Korjenevski, S.; ,

    2009-01-01

    Pad and strip detectors processed on high resistivity n-type magnetic Czochralski silicon (MCz-Si) were irradiated to several different fluences with protons. The pad detectors were characterized with the transient current technique (TCT) and the full-size strip detectors with a reference beam telescope and a 225 GeV muon beam. The TCT measurements indicate a double junction structure and space charge sign inversion in MCz-Si detectors after 6x1014 1 MeV neq/cm2 fluence. In the beam test a signal-to-noise (S/N) ratio of 50 was measured for a non-irradiated MCz-Si sensor, and a S/N ratio of 20 for the sensors irradiated to the fluences of 1x1014 1 and 5x1014 1 MeV neq/cm2.

  18. X-ray diffraction on precipitates in Czochralski-grown silicon

    NASA Astrophysics Data System (ADS)

    Caha, O.; Meduňa, M.

    2009-12-01

    The results of a study of oxygen precipitates in Czochralski grown silicon are reported. High-resolution X-ray diffraction was used to measure reciprocal space maps on samples after various annealing treatment. The measurements were performed for several diffraction orders and systematic differences between reciprocal space maps around different diffractions were found. The diffuse X-ray scattering intensity was simulated, where the displacement field of precipitates was calculated using continuum elasticity theory. The simulations give correct asymptotic behavior and the interpretation of intermediate region between Huang and core scattering processes is found. The X-ray diffraction results are correlated to the infrared absorption spectroscopy measurement involving the interstitial oxygen concentration.

  19. Simulation of the temperature distribution in crystals grown by Czochralski method

    NASA Technical Reports Server (NTRS)

    Dudokovic, M. P.; Ramachandran, P. A.

    1985-01-01

    Production of perfect crystals, free of residual strain and dislocations and with prescribed dopant concentration, by the Czochralski method is possible only if the complex, interacting phenomena that affect crystal growth in a Cz-puller are fully understood and quantified. Natural and forced convection in the melt, thermocapillary effect and heat transfer in and around the crystal affect its growth rate, the shape of the crystal-melt interface and the temperature gradients in the crystal. The heat transfer problem in the crystal and between the crystal and all other surfaces present in the crystal pulling apparatus are discussed at length. A simulation and computer algorithm are used, based on the following assumptions: (1) only conduction occurs in the crystal (experimentally determined conductivity as a function of temperature is used), (2) melt temperature and the melt-crystal heat transfer coefficient are available (either as constant values or functions of radial position), (3) pseudo-steady state is achieved with respect to temperature gradients, (4) crystal radius is fixed, and (5) both direct and reflected radiation exchange occurs among all surfaces at various temperatures in the crystal puller enclosure.

  20. Grown-in precipitates in heavily phosphorus-doped Czochralski silicon

    NASA Astrophysics Data System (ADS)

    Zeng, Yuheng; Ma, Xiangyang; Chen, Jiahe; Song, Weijie; Wang, Weiyan; Gong, Longfei; Tian, Daxi; Yang, Deren

    2012-02-01

    Through comparing the oxygen precipitation in the heavily and lightly phosphorus (P)-doped Czochralski silicon (CZ Si) specimens subjected to the simulated cooling processes of silicon ingot, we researched the influences of heavily P doping on grown-in precipitates by preferential etching and transmission electron microscopy (TEM). It was found that grown-in precipitates were more significant in heavily P-doped CZ Si than in lightly one. Most grown-in precipitates in heavily P-doped CZ Si were generated at (800-600) °C. The significant grown-in oxygen precipitates in the heavily P-doped CZ Si would change the density and morphology of oxygen precipitation. TEM examination revealed that the grown-in precipitates in heavily P-doped CZ Si were amorphous oxygen precipitates composed of tiny precipitates in essential. Although more or less phosphorus may be incorporated in the grown-in precipitates, however, phosphorus cannot be detected so far. We further confirmed that extending annealing at 550 °C produced significant silicon phosphide (SiP) precipitation in heavily P-doped CZ Si. Summarily, enhancement of grown-in oxygen precipitates was attributed to SiP precipitation and high-concentration vacancy, tentatively. Nonetheless, further investigation on the essential of grown-in precipitates in heavily P-doped CZ Si is worthy.

  1. Float-Zone and Czochralski Crystal Growth and Diagnostic Solar Cell Evaluation of a New Solar-Grade Feedstock Source: Preprint

    SciTech Connect

    Ciszek, T. F.; Page, M. R.; Wang, T. H.; Casey, J. A.

    2002-05-01

    This conference paper describes the Czochralski (CZ) and float-zone (FZ) crystals were grown from experimental solar-grade silicon (SOG-Si) feedstock materials developed by Crystal Systems. The materials were metallurgical-grade Si and highly boron-doped p-type electronic-grade Si (EG-Si) reject material, both of which were gaseous melt-treated to remove boron. Crystal growth observations, lifetime and impurity characterization of the grown crystals, and device performance of wafers from them are presented. Devices made directly on treated high-B EG-Si feedstock have a little over half the efficiency of devices made from control CZ samples. However, devices on CZ and FZ crystals grown from the treated high-B EG-Si feedstock have comparable PV performance (14.0% and 13.8% efficiency, respectively) to that of CZ control samples (14.1%).

  2. Coupled convection, segregation, and thermal stress modeling of low and high pressure Czochralski crystal growth

    NASA Astrophysics Data System (ADS)

    Zou, Yunfeng

    Czochralski (Cz) method is a dominant single crystal growth technology for microelectronics applications. The demand for large diameter, low defect density, and uniform single crystals has motivated extensive research on Cz Si growth as well as high pressure liquid-encapsulated Czochralski (HPLEC) growth of III-V compound crystals, e.g., GaAs and InP. The transport phenomena of Cz growth is quite complex, particularly under the industrial growth conditions. The relationship between the process parameters and material properties is further complicated by convective flows of the gas if a high pressure condition is to be maintained for the growth. Two important factors that greatly influence the quality of the crystals, are: (a) impurity and dopant distributions and (b) thermal stresses in the crystal. A comprehensive model which incorporates all of the major physical mechanisms of HPLEC growth, has been developed. For numerical simulation, a novel scheme of combined finite volume (FVM) and finite element (FEM) methods has been devised for thermal-mechanical calculations, that uses multizone adaptive grid generation (MAGG) technique for both FVM and FEM modules. By combining the FVM for thermal transport modeling and FEM for solid stress calculations, valuable experiences in both fields have been employed, and a reliable and robust predictive tool for a large class of problems has been developed. This requires minimum effort and cost in both software development and computing environment and shows a great promise. It makes the investigation of coupled thermal convection and stress phenomena much easier to perform. A two time-scale, mass conserving scheme has also been developed to perform macro-segregation calculations. Both Cz and HPLEC (high pressure liquid-encapsulant Czochralski) processes have been investigated. It is found that both melt and gas convective flows have significant influence on stress distribution in the crystal. It is shown that pure conduction

  3. On the bulk β-Ga2O3 single crystals grown by the Czochralski method

    NASA Astrophysics Data System (ADS)

    Galazka, Zbigniew; Irmscher, Klaus; Uecker, Reinhard; Bertram, Rainer; Pietsch, Mike; Kwasniewski, Albert; Naumann, Martin; Schulz, Tobias; Schewski, Robert; Klimm, Detlef; Bickermann, Matthias

    2014-10-01

    The growth of bulkx β-Ga2O3 single crystals by the Czochralski method is reported and discussed in terms of crucial growth conditions and correlated with basic electrical and optical properties of the obtained crystals. β-Ga2O3 crystals have a tendency to a spiral formation due to free carrier absorption in the near infrared (NIR) wavelength range, which hampers radiative heat transfer through the growing crystal. Moderate or low free electron concentrations (<5×1017 cm-3) lead to cylindrical crystals with a high crystallized fraction (g≥0.5). The use of a CO2-containing growth atmosphere provides oxygen partial pressures between 0.8 and 4.4×10-2 bar that is sufficient to obtain cylindrical and semiconducting crystals. Doping with Sn increases the free electron concentration in the crystals to high values (~1019 cm-3) that lead to an immediate spiral formation, while doping with Mg (>6 wt ppm) provides insulating crystals with reduced probability of the spiral formation. The estimated Mg equilibrium segregation coefficient across the liquid-solid interface is 0.10-0.12. Annealing of undoped crystals in an oxidizing atmosphere at temperatures ≥1200 °C for 20 h decreases the bulk free electron concentration by about one order of magnitude, while the crystal surface becomes insulating. However, Mg:β-Ga2O3 crystals are insensitive to annealing in both oxygen- and hydrogen-containing atmospheres. The transmittance spectra showed a steep absorption edge at 260 nm and virtually full transparency in the visible and NIR wavelength range for low and moderate free electron concentrations. We also demonstrated the possibility of growing 2 in. diameter β-Ga2O3 single crystals by the Czochralski method. The good crystal quality is evidenced by rocking curve FWHM values of below 50". We noted that most dislocations propagate parallel to (100) plane. Further, we also provide thermal properties of the crystals as a function of temperature.

  4. Boron deactivation in heavily boron-doped Czochralski silicon during rapid thermal anneal: Atomic level understanding

    SciTech Connect

    Gao, Chao; Dong, Peng; Yi, Jun; Ma, Xiangyang E-mail: mxyoung@zju.edu.cn; Yang, Deren; Lu, Yunhao E-mail: mxyoung@zju.edu.cn

    2014-01-20

    The changes in hole concentration of heavily boron (B)-doped Czochralski silicon subjected to high temperature rapid thermal anneal (RTA) and following conventional furnace anneal (CFA) have been investigated. It is found that decrease in hole concentration, namely, B deactivation, is observed starting from 1050 °C and increases with RTA temperature. The following CFA at 300–500 °C leads to further B deactivation, while that at 600–800 °C results in B reactivation. It is supposed that the interaction between B atoms and silicon interstitials (I) thus forming BI pairs leads to the B deactivation during the high temperature RTA, and, moreover, the formation of extended B{sub 2}I complexes results in further B deactivation in the following CFA at 300–500 °C. On the contrary, the dissociation of BI pairs during the following CFA at 600–800 °C enables the B reactivation. Importantly, the first-principles calculation results can soundly account for the above-mentioned supposition.

  5. Single crystal growth of Ga3Ni2 by the Czochralski method

    NASA Astrophysics Data System (ADS)

    Wencka, Magdalena; Pillaca, Mirtha; Gille, Peter

    2016-09-01

    Intermetallic compounds have proved to be interesting alternatives to heterogeneous catalysts prepared from pure noble metals or their alloys. As to study their intrinsic properties, to determine the crystalline structures of specific surfaces and finally to understand elementary processes of heterogeneous catalysis, single crystals of these intermetallics are needed. Inspired by the recent discovery of Ga-Ni catalysts for carbon dioxide reduction to methanol, we have grown for the first time cm3-size single crystals of trigonal Ga3Ni2. We report in detail on the synthesis and Czochralski growth from high-temperature solution using Ga as native solvent. Inclusion formation of Ga-rich fluid proved to be the most severe problem that was minimized by using an extremely low pulling rate down to 25 μm/h.

  6. Coupled melt flow and thermal stress predictions for Czochralski crystal growth

    SciTech Connect

    Zou, Y.F.; Zhang, H.; Prasad, V.

    1995-12-31

    A coupled finite volume-finite element algorithm is developed to simulate the melt flows and predict the temperature distributions and thermal stresses in the Czochralski grown crystals. The computer model employs a multizone adaptive grid generation scheme together with curvilinear finite column discretization (MASTRAPP) to predict the transport phenomena associated with the crystal growth processes as well as the nonplanar melt/crystal interface shape and its dynamics (Zhang and Prasad, 1995a). The MASTRAPP has proven to be a robust and efficient scheme for the problems involving moving interfaces and free surfaces. Thermal stresses in the crystal are obtained by using a commercial finite element code, ALGOR, that uses the curvilinear mesh generated by the MASTRAPP. The numerical results show that the melt flows have a strong influence on thermal stresses in the crystal near the melt/crystal interface, and hence, melt convection must be included in the computer model for accurate stress predictions. The predicted stress phenomena agrees qualitatively with the report results.

  7. A TCT and annealing study on Magnetic Czochralski silicon detectors irradiated with neutrons and 24 GeV/ c protons

    NASA Astrophysics Data System (ADS)

    Pacifico, Nicola; Creanza, Donato; de Palma, Mauro; Manna, Norman; Kramberger, Gregor; Moll, Michael

    2010-01-01

    Silicon diodes (pad detectors) were irradiated with 24 GeV/ c protons at the CERN PS IRRAD1 facility and with neutrons at the TRIGA reactor in Ljubljana (Slovenia). The diodes were realized on Magnetic Czochralski (MCz) grown silicon, of both n- and p-type. After irradiation, an annealing study with CV measurements was performed on 24 GeV/ c proton irradiated detectors, looking for hints of type inversion after irradiation and during annealing. Other pad detectors were studied using the TCT (transient current technique), to gather information about the field profile in the detector bulk and thus about the effective space charge distribution within it.

  8. Radiative heat transfer in curved specular surfaces in Czochralski crystal growth furnace

    SciTech Connect

    Guo, Z.; Maruyama, Shigenao; Tsukada, Takao

    1997-11-07

    A numerical investigation of radiative heat transfer constructed by curved surfaces with specular and diffuse reflection components is carried out. The ray tracing method is adopted for the calculation of view factors, in which a new ray emission model is proposed. The second-degree radiation ring elements are introduced, which are of engineering importance and numerical efficiency. The accuracy of the method is analyzed and verified using a simple configuration. The present computation using the proposed ray emission model is in good agreement with the analytical solution. As a numerical example and engineering application, the effects of the specular reflection and the meniscus of the melt surface in Czochralski (CZ) crystal growth are investigated. A marked temperature decrease in the melt surface is found by introducing specular reflection and the meniscus. The combined effects of the specular reflection and the meniscus should be considered in precision heat transfer control of a CZ apparatus.

  9. Growth and Ultraviolet Transparency of Nanosized-Scatterer-Free Lithium Tetraborate Single Crystals by the Czochralski Method

    NASA Astrophysics Data System (ADS)

    Komatsu, Ryuichi; Shiro, Yusuke; Fujiwara, Yukifumi; Fujino, Shigeru

    2008-11-01

    Scatterers observed in lithium tetraborate (Li2B4O7) crystals grown by the Czochralski (CZ) method, were examined. It was revealed that the scattering source may decrease transparency in the ultraviolet (UV) region, which is an important property for application in nonlinear devices in the UV region. Parameters necessary for the reproducible growth of scatterer-free Li2B4O7 crystals were also investigated and scatterer-free Li2B4O7 crystals were successfully grown in dry air flow. Particles forming the scattering source were evaluated and the H concentration of the crystals was also examined.

  10. Reversible phase transition and relaxor behavior in Te2V2O9 single crystals grown by Czochralski technique

    NASA Astrophysics Data System (ADS)

    Shet, Tukaram; Varma, K. B. R.

    2016-09-01

    Te2V2O9 single crystals were grown along the polar c-axis via the Czochralski crystal growth technique. Dielectric studies carried out along the polar axis in a wide temperature range at different frequencies confirmed the relaxor nature of the Te2V2O9 single crystals. Temperature dependent polarized light optical microscopy along a-axis established a reversible phase transition around 614 K. Relaxor nature of Te2V2O9 was attributed to the compositional heterogeneity at micro/nano scale within the grown crystal as vanadium was observed to be present in different oxidation states by X-ray photoelectron spectroscopic studies.

  11. Electrical property studies of oxygen in Czochralski-grown neutron-transmutation-doped silicon

    SciTech Connect

    Cleland, J.W.; Fukuoka, N.

    1980-10-01

    Electically active oxygen-related donors can be formed in Czochralski (Cz) Si either during crystal growth or during subsequent heat treatment; conventional n- or p-type dopant carrier concentrations are altered if these oxygen donors are present. Neutron transmutation doping (NTD) has been used to introduce a uniform concentration of /sup 31/P in Si. However, oxygen donors can also be formed in NTD Cz Si during the process of annealing to remove NTD radiation damage. In the present experiments, the carrier concentration of Cz and NTD Cz Si samples was determined as a function of the initial dopant, oxygen, and /sup 31/P concentration before and after isothermal or isochronal annealing. It is shown that low temperature (350 to 500/sup 0/C) heat treatment can introduce a significant oxygen donor concentration in Cz Si and in NTD Cz Si that contains radiation-induced lattice defects. Intermediate temperature (550 to 750/sup 0/C) heat treatment, which is intended to remove oxygen donors or lattice defects, can introduce other oxygen donors; annealing above 750/sup 0/C is required to remove any of these oxygen donors. Extended (20 h) high-temperature (1000 to 1200/sup 0/C) annealing can remove oxygen donors and lattice defects, but a significant concentration of oxygen donors can still be introduced by subsequent low temperature heat treatment. These results suggest that oxygen-related donor formation in NTD Cz Si at temperatures below 750/sup 0/C may serve to mask any annealing study of lattice defects. It is concluded that annealing for 30 min at 750/sup 0/C is sufficient to remove radiation damage in NTD Cz Si when the separate effects of oxygen donor formation are included.

  12. Photovoltaic Czochralski silicon manufacturing technology improvements. Annual subcontract report, 1 April 1993--31 March 1994

    SciTech Connect

    Jester, T.

    1995-03-01

    This report describes work performed under a 3-year, 3-phase, cost-share contract to demonstrate significant cost reductions and improvements in manufacturing technology. The objective of the program is to reduce costs in photovoltaic manufacturing by approximately 10% per year. The work was focused in three main areas: (1) silicon crystal growth and thin wafer technology; (2) silicon cell processing; and (3) silicon module fabrication and environmental, safety, and health issues. During this reporting period, several significant improvements were achieved. The crystal growing operation improved significantly with an increase in growth capacity due to larger crucibles, higher polysilicon packing density, and high pull speeds. Wafer processing with wire saws progressed rapidly, and the operation is completely converted to wire saw wafer processing. The wire saws yield almost 50% more wafers per inch in production, thus improving manufacturing volume by 50% without any additional expense in crystal growth. Cell processing improvements focused on better understanding the contact paste and firing processes. Module designs for lower material and labor costs began with the focus on a new junction box, larger modules with larger cells, and a less costly framing technique. In addition, chlorofluorocarbon (CFC) usage was completely eliminated in the Siemens manufacturing facility during this period, resulting in significant reductions in the cost of caustic waste treatment.

  13. Continuous replenishment of molten semiconductor in a Czochralski-process, single-crystal-growing furnace

    NASA Technical Reports Server (NTRS)

    Fiegl, George (Inventor); Torbet, Walter (Inventor)

    1981-01-01

    A replenishment crucible is mounted adjacent the usual drawing crucible, from which a monocrystalline boule is drawn according to the Czochralski method. A siphon tube for molten semiconductor transfer extends from the replenishment crucible to the drawing crucible. Each crucible is enclosed within its own hermetic shell and is provided with its own heater. The siphon tube is initially filled with molten semiconductor by raising the inert atmospheric pressure in the shell surrounding the replenishment crucible above that surrounding the drawing crucible. Thereafter, adjustment of the level of molten semiconductor in the drawing crucible may be achieved by adjusting the level in either crucible, since the siphon tube will establish the same level in both crucibles. For continuous processing, solid semiconductor may be added to and melted in the replenishment crucible during the process of drawing crystals from the drawing crucible. A constant liquid level of melted semiconductor is maintained in the system by an optical monitoring device and any of several electromechanical controls of the rate of replenishment or crucible height.

  14. Czochralski growth of single-crystal gehlenite (Ca 2Al 2SiO 7)

    NASA Astrophysics Data System (ADS)

    Finch, C. B.; Ball, F. L.; Bates, J. B.

    1981-09-01

    Single-crystal boules of gehlenite (Ca 2Al 2SiO 7) were grown from even- and off-stoichiometry melts under differing conditions of oxygen fugacity (ƒ O2). Growth was accomplished by the Czochralski method at 1600°C and 10 5 Pa (1 atm) total pressure, using inductively heated Ir or Pt-20%Rh crucibles. The supra melt gas ambients included air ( ƒ O2 = 0.2 × 10 4Pa), Ar (10 Pa), Ar-50%CO 2-2%H 2 (10 -2 Pa), and Ar-4%H 2-1.5%H 2O (10 -4 Pa). Colorless, transparent material up to 8 mm diam. by 15 mm long was obtained from the evenly stoichiometric melt composition under Ar at growth rates of 1.5 mm/h or less. Growth at rates exceeding 2 mm/h or growth at a high ƒ O2 (e.g., air), led to the formation of bubbles and elongated voids or inclusions, predominantly in the core regions of boules. Optical, X-ray diffraction, and electron-induced X-ray flourescence data are included.

  15. Effects of RF coil position on the transport processes during the stages of sapphire Czochralski crystal growth

    NASA Astrophysics Data System (ADS)

    Lu, Chung-Wei; Chen, Jyh-Chen; Chen, Chien-Hung; Chen, Chun-Hung; Hsu, Wen-Ching; Liu, Che-Ming

    2010-04-01

    The effect of the RF coil position during the stages of sapphire crystal growth process in an inductively heated Czochralski crystal growth furnace on the thermal and flow transport, the shape of the crystal-melt interface shape, and the power requirements is investigated numerically. The results show that although the maximum values of temperature and velocity decrease, the convexity of the crystal-melt interface increases as the crystal length grows. It is found that the least input power is required if the central position of the RF coil is maintained below the central position of the melt during the crystal growth process. Under such crystal growth conditions, the temperature gradients along the crystalline front are small.

  16. Processing experiments on non-Czochralski silicon sheet (MEPSDU support contract). Quarterly technical report No. 1, 14 October 1980-31 December 1980

    SciTech Connect

    Pryor, R.

    1980-01-01

    A program of six months duration has been initiated to support and promote the further development of processing techniques which may be successfully and cost-effectively applied to low-cost non-Czochralski silicon sheet for solar cell fabrication. Work is proceeding and results are reported in the areas of process technology, cell design, cell metallization, and production cost simulation.

  17. Development of advanced Czochralski Growth Process to produce low cost 150 KG silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The goals in this program for advanced czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness are outlined. To provide a modified CG2000 crystal power capable of pulling a minimum of five crystals, each of approximately 30 kg in weight, 150 mm diameter from a single crucible with periodic melt replenishment. Crystals to have: resistivity of 1 to 3 ohm cm, p-type; dislocation density below 1- to the 6th power per cm; orientation (100); after growth yield of greater than 90%. Growth throughput of greater than 2.5 kg per hour of machine operation using a radiation shield. Prototype equipment suitable for use as a production facility. The overall cost goal is $.70 per peak watt by 1986. To accomplish these goals, the modified CG2000 grower and development program includes: (1) increased automation with a microprocessor based control system; (2) sensors development which will increase the capability of the automatic controls system, and provide technology transfer of the developed systems.

  18. Investigation of the colour of KNbO 3 single crystals grown by the radio-frequency heating Czochralski technique

    NASA Astrophysics Data System (ADS)

    Wenshan, Wang; Qun, Zou; Zhaohua, Geng

    1987-05-01

    In this paper the influence of composition, temperature and impurities on the colour of KNbO 3 crystals during Czochralski growth has been systematically studied. X-ray scanning measurements, absorption spectra and chemical analysis of differently coloured KNbO 3 crystals have been carried out. In addition to accurate density measurements, measurements have been made of the colour centre concentration of KNbO 3 crystals by the positron annihilation technique. In order for colourless and optical quality KNbO 3 crystals to be obtained, we used as the starting materials Nb 2O 5 (super reagent grade) and K 2CO 3 (super reagent grade). Colourless KNbO 3 crystals can be grown with 51-53 mol% K 2CO 3 content under the condition of a sufficiently high soaking temperature and a shallow temperature gradient.

  19. Crystallization of Silicon Ribbons

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.

    1984-01-01

    Purity constraints for reasonable solar-cell efficiency require that silicon-ribbon growth for photovoltaics occur in a regime in which constitutional supercooling or other compositional effects on the crystallization front are not important. A major consideration in the fundamentals of crystallization is the removal of the latent heat of fusion. The direction of removal, compared with the growth direction, has a major influence on the crystallization rate and the development of localized stresses. The detailed shape of the crystallization front appears to have two forms: that required for dendritic-web growth, and that occurring in all others. After the removal of the latent heat of fusion, the thermal-mechanical behavior of all ribbons appears similar within the constraints of the exothermal gradient. The technological constraints in achieving the required thermal and mechanical conditions vary widely among the growth processes.

  20. Crystal growth by Bridgman and Czochralski method of the ferromagnetic quantum critical material YbNi4P2

    NASA Astrophysics Data System (ADS)

    Kliemt, K.; Krellner, C.

    2016-09-01

    The tetragonal YbNi4P2 is one of the rare examples of compounds that allow the investigation of a ferromagnetic quantum critical point. We report in detail on two different methods which have been used to grow YbNi4P2 single crystals from a self-flux. The first, a modified Bridgman method, using a closed crucible system yields needle-shaped single crystals oriented along the [001]-direction. The second method, the Czochralski growth from a levitating melt, yields large single crystals which can be cut in any desired orientation. With this crucible-free method, samples without flux inclusions and a resistivity ratio at 1.8 K of RR1.8K = 17 have been grown.

  1. Continuous Czochralski growth: Silicon sheet growth development of the large area silicon sheet task of the Low Cost Silicon Solar Array project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The primary objective of this contract is to develop equipment and methods for the economic production of single crystal ingot material by the continuous Czochralski (CZ) process. Continuous CZ is defined for the purpose of this work as the growth of at least 100 kilograms of ingot from only one melt container. During the reporting period (October, 1977 - September, 1978), a modified grower was made fully functional and several recharge runs were performed. The largest run lasted 44 hours and over 42 kg of ingot was produced. Little, if any, degradation in efficiency was observed as a result of pulling multiple crystals from one crucible. Solar efficiencies observed were between 9.3 and 10.4% AMO (13.0 and 14.6% AMI) compared to 10.5% (14.7% AMI) for optimum CZ material control samples. Using the SAMICS/IPEG format, economic analysis of continuous CZ suggests that 1986 DoE cost goals can only be met by the growth of large diameter, large mass crystals.

  2. Real time thermal imaging for analysis and control of crystal growth by the Czochralski technique

    NASA Technical Reports Server (NTRS)

    Wargo, M. J.; Witt, A. F.

    1992-01-01

    A real time thermal imaging system with temperature resolution better than +/- 0.5 C and spatial resolution of better than 0.5 mm has been developed. It has been applied to the analysis of melt surface thermal field distributions in both Czochralski and liquid encapsulated Czochralski growth configurations. The sensor can provide single/multiple point thermal information; a multi-pixel averaging algorithm has been developed which permits localized, low noise sensing and display of optical intensity variations at any location in the hot zone as a function of time. Temperature distributions are measured by extraction of data along a user selectable linear pixel array and are simultaneously displayed, as a graphic overlay, on the thermal image.

  3. Continuous Czochralski growth: Silicon sheet growth development of the large area sheet task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Johnson, C. M.

    1980-01-01

    The growth of 100 kg of silicon single crystal material, ten cm in diameter or greater, and 150 kg of silicon single crystal material 15 cm or greater utilizing one common silicon container material (one crucible) is investigated. A crystal grower that is recharged with a new supply of polysilicon material while still under vacuum and at temperatures above the melting point of silicon is developed. It accepts large polysilicon charges up to 30 kg, grows large crystal ingots (to 15 cm diameter and 25 kg in weight), and holds polysilicon material for recharging (rod or lump) while, at the same time, growing crystal ingots. Special equipment is designed to recharge polysilicon rods, recharge polysilicon lumps, and handle and store large, hot silicon crystal ingots. Many continuous crystal growth runs were performed lasting as long as 109 hours and producing as many as ten crystal ingots, 15 cm with weights progressing to 27 kg.

  4. Evidence for the role of hydrogen in the stabilization of minority carrier lifetime in boron-doped Czochralski silicon

    SciTech Connect

    Nampalli, N. Hallam, B.; Chan, C.; Abbott, M.; Wenham, S.

    2015-04-27

    This study demonstrates that the presence of a hydrogen source during fast-firing is critical to the regeneration of B-O defects and that is it not a pure thermally based mechanism or due to plasma exposure. Boron-doped p-type wafers were fired with and without hydrogen-rich silicon nitride (SiN{sub x}:H) films present during the fast-firing process. After an initial light-induced degradation step, only wafers fired with the SiN{sub x}:H films present were found to undergo permanent and complete recovery of lifetime during subsequent illuminated annealing. In comparison, wafers fired bare, i.e., without SiN{sub x}:H films present during firing, were found to demonstrate no permanent recovery in lifetime. Further, prior exposure to hydrogen-rich plasma processing was found to have no impact on permanent lifetime recovery in bare-fired wafers. This lends weight to a hydrogen-based model for B-O defect passivation and casts doubt on the role of non-hydrogen species in the permanent passivation of B-O defects in commercial-grade p-type Czochralski silicon wafers.

  5. Modified low temperature Czochralski growth of xylenol orange doped benzopheone single crystal for fabricating dual band patch antenna

    NASA Astrophysics Data System (ADS)

    Yadav, Harsh; Sinha, Nidhi; Kumar, Binay

    2016-09-01

    Organic non-linear optical pure and xylenol orange (XO) doped benzophenone (BP) single crystals have been grown by a modified Czochralski technique. A low cost CZ system was designed and fabricated that is suitable for the growth of single crystals of low melting point organic materials. Structural analysis was performed by powder and single crystal XRD. LC-HRMS spectra reveal that the dye molecules are present in the doped crystal. The linear optical characterization was carried out by UV-vis spectroscopy. In the case of the XO doped BP crystal, two absorption peaks were found at 504 nm and 620 nm. The enhancement of photoluminescence intensity of blue emission was observed in the dye doped crystal. Dielectric studies reveal that the XO doped BP has shown improved a dielectric constant with low dielectric loss. A dual band compact circular patch antenna was simulated and fabricated using the XO doped crystal. Resonant frequencies of the dual bands at 4.80 GHz and 9.22 GHz were achieved by introducing a defect ground state in the circular patch antenna. The piezoelectric coefficient (d33) value was increased from 1 to 4 pC/N by XO dye doping, which opens up the possibilities of simultaneous transducer applications.

  6. High-efficiency cell structures and processes applied to photovoltaic-grade Czochralski silicon

    SciTech Connect

    Gee, J.M.; King, R.R.; Mitchell, K.W.

    1996-12-01

    The authors performed a detailed study to examine the limiting performance available using photovoltaic-grade Cz silicon. Photovoltaic-grade silicon refers to silicon produced by the photovoltaic industry, which may differ from the silicon used in the semiconductor device industry in impurity and defect concentrations.The study included optimization of fabrication processes, development of advanced device structures, and detailed model calculations to project future performance improvements. Process and device optimization resulted in demonstration of 75-{micro}s bulk lifetimes and 17.6%-efficient large-area cells using photovoltaic-grade Cz silicon. Detailed calculations based on the material and device evaluation of the present work project efficiencies of 20% for photovoltaic-grade Cz silicon with properly optimized processing and device structures.

  7. A study on the crystal growth of select II-VI oxides by Czochralski and Bridgman techniques

    NASA Astrophysics Data System (ADS)

    Nawash, Jalal Mohammad

    The crystal growth of ZnO-TeO2 system was experimented by Czochralski and Bridgman techniques. The series of many runs and experimentations helped optimize the growth process, which was faced by a lot of difficulties. These difficulties include, but are not limited to, the evaporation of TeO 2 material above 700 °C, the formation of more than one phase during the growth, and the lack of a ZnO-TeO2 single crystal to start the growth. It was concluded that the main and most persisting problem is that there is no stable phase, in the system that forms a line component at which the crystal growth should be attempted. However, Zn 2Te3O8 and ZnTeO3 single crystals were grown using Czochralski and Bridgman techniques, respectively. It was possible to study some of their important optical and electrical properties for the first time. The phase diagram of this system was investigated using powder x-ray diffraction and scanning electron microprobe. CrystalDiffract 1.3 for Windows software was used to simulate x-ray patterns to find the percentages of the resulting phases. It was found that the type of forming phases might be affected by the process, whether if it was calcining, melting, or pulling. Moreover, the history of the material plays an important role in determining what phases form. The glass form of ZnO-TeO2 system was studied as well for this research. One important finding is that the cut-off band edge of this glass depends greatly on the thickness of the sample used. Dielectric constants and resistivities of several glasses were determined. Bridgman technique was used to grow CdTe2O5 single crystals. These crystals are transparent to visible light, and have a mica-like structure. Optical and electrical properties of these crystals, like the dielectric constant and resistivity, of these crystals, were investigated.

  8. Investigating the effect of carbon on oxygen behavior in n-type Czochralski silicon for PV application

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Juel, Mari; Øvrelid, Eivind Johannes; Tranell, Gabriella

    2015-02-01

    The objective of the current work was to understand the effect of carbon as an impurity in silicon in terms of the formation of as-grown oxygen defects and the subsequent behavior of these defects in n-type Czochralski (Cz) silicon during heat treatment. Three n-type Cz ingots with different carbon levels were used in the investigation. Copper decoration was used to quantify the number of as-grown defects, while a two-step oxidation process (4 h at 750 °C and 16h at 1050 °C) was used to study the evolution of as-grown defects, that is, the formation and morphology of oxygen precipitates (stacking faults and smaller precipitates) in the silicon during heat treatment. Carrier Density Imaging (CDI) revealed the defect distribution and distinguished their states. Results from the study show that substitutional carbon enhances the etch pit density on the copper decorated samples; indicating an enhanced concentration of defects when the carbon level in the material increases. The higher number density but smaller size as-grown oxygen defects is concluded to be induced by the presence of substitutional carbon, given the oxygen precipitate formation pattern and morphology. Vacancies introduced by carbon did not, however, affect the density of voids significantly and we hence conclude that vacancies were largely consumed by the formation of oxygen complexes, as illustrated by the presence of a higher number density of as-grown oxygen defects in samples with a high carbon concentration. The highest effective minority carrier lifetime of as-grown wafers after amorphous-Si (a-Si) passivation was found on the sample with the highest carbon concentration, and the lifetime in the all samples showed stronger dependence on the oxygen concentration than on the carbon content.

  9. High energy implants of aluminum in Czochralski and floating zone grown silicon substrates

    NASA Astrophysics Data System (ADS)

    La Ferla, A.; Torrisi, L.; Galvagno, G.; Rimini, E.; Ciavola, G.; Camera, A.; Gasparotto, A.

    1993-04-01

    Aluminum ions at 100 MeV were implanted into floating zone (FZ) and Czochralski (CZ) grown Si substrates. At this energy the implanted ions are located at a depth of about 40 μm so to minimize the influence of the surface on the subsequent thermal treatment. In FZ samples the electrically active dose, as measured by spreading resistance profilometry, is independent of the annealing time at 1200°C, but in the CZ samples it decreases considerably with time. Secondary ion mass spectrometry analysis in CZ samples has revealed the presence of a multipeak structure around the projected range region for both Al and O signals. In the FZ the structure is just detectable. The results imply that the Al-O complex formation is, of course, enhanced by the large content of oxygen but that it is catalyzed by the damage created during the implant. In contrast the carrier profiles coincide in both CZ and FZ substrates doped by predeposition of Al from a solid source and subsequent diffusion; i.e. in damage free samples.

  10. Electromigration process for the purification of molten silicon during crystal growth

    NASA Technical Reports Server (NTRS)

    Shlichta, P. J. (Inventor)

    1982-01-01

    A process for the purification of molten materials during crystal growth by electromigration of impurities to localized dirty zones. In the Czochralski crystal growing process, the impurities are electromigrated away from the crystallization interface by applying a direct electrical current to the molten silicon for electromigrating the charged impurities away from the crystal growth interface. The edge-defined film-fed crystal growth process, a direct electrical current is applied between the two faces which are used in forming the molten silicon into a ribbon. The impurities, migrated to one side only of the crystal ribbon, may be removed or left in place. If left in place, they will not adversely affect the ribbon when used in solar collectors. The migration of the impurity to one side only of the silicon ribbon is especially suitable for use with asymmetric dies which preferentially crystallize uncharged impurities along one side or face of the ribbon.

  11. Electromigration process for the purification of molten silicon during crystal growth

    DOEpatents

    Lovelace, Alan M. Administrator of the National Aeronautics and Space; Shlichta, Paul J.

    1982-01-01

    A process for the purification of molten materials during crystal growth by electromigration of impurities to localized dirty zones. The process has particular applications for silicon crystal growth according to Czochralski techniques and edge-defined film-fed growth (EFG) conditions. In the Czochralski crystal growing process, the impurities are electromigrated away from the crystallization interface by applying a direct electrical current to the molten silicon for electromigrating the charged impurities away from the crystal growth interface. In the EFG crystal growth process, a direct electrical current is applied between the two faces which are used in forming the molten silicon into a ribbon. The impurities are thereby migrated to one side only of the crystal ribbon. The impurities may be removed or left in place. If left in place, they will not adversely affect the ribbon when used in solar collectors. The migration of the impurity to one side only of the silicon ribbon is especially suitable for use with asymmetric dies which preferentially crystallize uncharged impurities along one side or face of the ribbon.

  12. Transformation of divacancies to divacancy-oxygen pairs in p-type Czochralski-silicon; mechanism of divacancy diffusion

    SciTech Connect

    Ganagona, N. Vines, L.; Monakhov, E. V.; Svensson, B. G.

    2014-01-21

    In this work, a comprehensive study on the transition of divacancy (V{sub 2}) to divacancy-oxygen (V{sub 2}O) pairs in p-type silicon has been performed with deep level transient spectroscopy (DLTS). Czochralski grown, boron doped p-type, silicon samples, with a doping concentration of 2 × 10{sup 15} cm{sup −3} and oxygen content of 7.0 ± 1.5 × 10{sup 17} cm{sup −3}, have been irradiated with 1.8 MeV protons. Isothermal annealing at temperatures in the range of 200 °C–300 °C shows a close to one-to-one correlation between the loss in the donor state of V{sub 2} and the formation of the donor state of V{sub 2}O, located at 0.23 eV above the valence band edge. A concurrent transition takes place between the single acceptor states of V{sub 2} and V{sub 2}O, as unveiled by injection of electrons through optical excitation during the trap filling sequence of the DLTS measurements. Applying the theory for diffusion limited reactions, the diffusivity of V{sub 2} in the studied p-type samples is determined to be (1.5 ± 0.7) × 10{sup −3}exp[−(1.31 ± 0.03) eV/kT] cm{sup 2}/s, and this represents the neutral charge state of V{sub 2}. Further, the data seem to favor a two-stage diffusion mechanism involving partial dissociation of V{sub 2}, although a one-stage process cannot be fully excluded.

  13. Czochralski growth techniques of germanium crystals grown from a melt covered partially or fully by liquid B2O3

    NASA Astrophysics Data System (ADS)

    Taishi, Toshinori; Hashimoto, Yoshio; Ise, Hideaki; Murao, Yu; Ohsawa, Takayuki; Yonenaga, Ichiro

    2012-12-01

    We propose two unique Czochralski (CZ) techniques for growing germanium (Ge) crystals with an extremely low dislocation density and high interstitial oxygen concentration ([Oi]) using boron oxide (B2O3) and a silica crucible. When a Ge melt is partially covered with liquid B2O3, but only on the outer region of the melt surface, germanium-oxide (GeO2)-related particles forming naturally in the melt are effectively dissolved by the liquid B2O3. The clean central portion of the melt produces dislocation-free undoped or Ga-doped Ge crystals. In addition, Ge crystals with [Oi] up to 6×1017 cm-3 can be grown from a melt fully covered by liquid B2O3 with added GeO2 powder. The reaction and transportation of oxygen atoms during the growth process using B2O3 was investigated, revealing that liquid B2O3 acts like a catalyst without heavy contamination of the growing Ge crystal by B and Si atoms.

  14. Oxygen precipitation retardation and recovery phenomena in Czochralski silicon: Experimental observations, nuclei dissolution model, and relevancy with nucleation issues

    NASA Astrophysics Data System (ADS)

    Tan, T. Y.; Kung, C. Y.

    1986-02-01

    We report experimental results of an oxygen precipitation study carried out using Czochralski silicon wafers. A two-step anneal scheme was employed: a lower-temperature step (at 650 or 750 °C for 0-128 h) for SiO2 precipitate nucleation and a higher temperature step (at 1050 °C for 0-64 h) for growth. The oxygen precipitation rate is monitored by measuring the interstitial oxygen (Oi) concentration in the silicon lattice. We have found that (i) a precipitation retardation phenomenon exists for wafers that received prolonged nucleation annealing treatment (from 2 to 16 h), and (ii) this retardation phenomenon gives way to a precipitation recovery phenomenon for wafers that received still longer nucleation annealing treatment (for 8-128 h). We also describe a nuclei dissolution model to explain the retardation/recovery phenomena. The dissolution proceeds against an Oi supersaturation which would normally drive the nuclei into growth. The most important aspects of the model are (i) the dissolution occurs at the onset of the high-temperature growth anneal step, (ii) the factor directly opposing the Oi supersaturation and leading to the nuclei dissolution process is attributed to a large supersaturation of silicon self-interstitials (I supersaturation), essentially also generated at the onset of the growth anneal step, (iii) the generation of the I supersaturation is associated with a nuclei/precipitate polymorph change again occurring at the onset of the growth anneal step. The fundamental physical cause leading to these phenomena is the exigent-accommodation volume (or exigent volume) associated with precipitate growth. This model can explain the present results and is consistent with many other experimental results. We then examine the relevance of the exigent-volume factor with nucleation issues such as its effect on ramping, the effect of carbon, the existence of multiple polymorphs of SiO2, multiple nucleation paths, and a nucleation incubation phenomenon. We

  15. Development of advanced methods for continuous Czochralski growth. Silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Wolfson, R. G.; Sibley, C. B.

    1978-01-01

    The three components required to modify the furnace for batch and continuous recharging with granular silicon were designed. The feasibility of extended growth cycles up to 40 hours long was demonstrated by a recharge simulation experiment; a 6 inch diameter crystal was pulled from a 20 kg charge, remelted, and pulled again for a total of four growth cycles, 59-1/8 inch of body length, and approximately 65 kg of calculated mass.

  16. Electrically active light-element complexes in silicon crystals grown by cast method

    NASA Astrophysics Data System (ADS)

    Sato, Kuniyuki; Ogura, Atsushi; Ono, Haruhiko

    2016-09-01

    Electrically active light-element complexes called thermal donors and shallow thermal donors in silicon crystals grown by the cast method were studied by low-temperature far-infrared absorption spectroscopy. The relationship between these complexes and either crystal defects or light-element impurities was investigated by comparing different types of silicon crystals, that is, conventional cast-grown multicrystalline Si, seed-cast monolike-Si, and Czochralski-grown Si. The dependence of thermal and the shallow thermal donors on the light-element impurity concentration and their annealing behaviors were examined to compare the crystals. It was found that crystal defects such as dislocations and grain boundaries did not affect the formation of thermal or shallow thermal donors. The formation of these complexes was dominantly affected by the concentration of light-element impurities, O and C, independent of the existence of crystal defects.

  17. On the shape of n-type Czochralski silicon top ingots

    NASA Astrophysics Data System (ADS)

    Gaspar, Guilherme; Juel, Mari; Søndenå, Rune; Pascoa, Soraia; Di Sabatino, Marisa; Arnberg, Lars; Øvrelid, Eivind J.

    2015-05-01

    Industrial scale n-type monocrystalline silicon ingots with different crown shape and shouldering area have been grown and characterized in terms of minority carrier lifetime, resistivity and concentration and distribution of interstitial oxygen (Oi), voids and thermal donors (TD). The properties have been correlated with the process parameters. The results indicate that there is a relationship between the top ingot shape and the corresponding minority carrier lifetime quality of the first part of the ingot body. Oxygen incorporation is directly correlated to the time that the melt free surface is in contact with the purged gas atmosphere as well as the temperature of the melt. The relative P-band position is dependent on the process parameters at the early part of the ingot and the corresponding oxide particles could be included on the first wafers obtained from the ingot. The results also show that the early body quality is not always improved after TD annealing. This suggests that not all types and sizes of TD are dissolved during standard annealing processes. Other types of oxygen-related defects are most likely present and contribute to the lowered minority carrier lifetime found at this region. Both higher oxygen and vacancy concentration contribute to the formation of these defects.

  18. Economic analysis of low cost silicon sheet produced from Czochralski grown material

    NASA Technical Reports Server (NTRS)

    Koliwad, K. M.; Leipold, M. H.; Cumming, G. D.; Digges, T. G., Jr.

    1976-01-01

    This study shows that the lower limits for manufacturing add-on costs to convert polysilicon to wafers is in the range of $22 to $26/sq m with the cost about equally divided between the crystal growth and wafering processes. However, the $22 to $26/sq m cost limit should be viewed as an asymptote since it is based on multicharge or continuous growth configurations, solidification rates in excess of 2 Kg/hr, multiblade wafering and a slice plus kerf of .045 cm. It should also be emphasized that the results of this study are based on as-sawn wafers, 100% yields (growth and slicing) and no profit. To the first approximation, the limiting cost factors are crucible material and furnace parts for growth and blade material and slurry for slicing.

  19. Low Thermal Gradient Czochralski growth of large CdWO4 crystals and electronic properties of (010) cleaved surface

    NASA Astrophysics Data System (ADS)

    Atuchin, V. V.; Galashov, E. N.; Khyzhun, O. Y.; Bekenev, V. L.; Pokrovsky, L. D.; Borovlev, Yu. A.; Zhdankov, V. N.

    2016-04-01

    The crystal growth of large high-quality inclusion-free CdWO4 crystals, 110 mm in diameter and mass up to 20 kg, has been carried out by the Low Thermal Gradient Czochralski (LTG Cz) technique. The high-purity CdWO4(010) surface has been prepared by cleavage and high structural quality of the surface has been verified by RHEED, revealing a system of Kikuchi lines. The chemical state and electronic structure of the surface have been studied using X-ray photoelectron spectroscopy (XPS) and X-ray emission spectroscopy (XES). The total and partial densities of states of the CdWO4 tungstate were calculated employing the first-principles full potential linearized augmented plane wave (FP-LAPW) method. The results indicate that the principal contributors to the valence band of CdWO4 are the Cd 4d, W 5d and O 2p states which contribute mainly at the bottom, in the central portion and at the top of the valence band, respectively, with also significant contributions of the mentioned states throughout the whole CdWO4 valence-band region. With respect to the occupation of the O 2p states, the results of the FP-LAPW calculations are confirmed by comparison on a common energy scale of the XPS valence-band spectrum and the XES band representing the energy distribution of the O 2p states in this compound. Additionally, the FP-LAPW data allow us to conclude that the CdWO4 tungstate is a non-direct semiconductor.

  20. Identification of silicon as the dominant hole trap in YVO4 crystals

    NASA Astrophysics Data System (ADS)

    Garces, N. Y.; Halliburton, L. E.; Stevens, K. T.; Shone, M.; Foundos, G. K.

    2002-02-01

    Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) have been used to characterize the dominant hole trap in undoped Czochralski-grown yttrium-orthovanadate (YVO4) crystals. A silicon impurity, present inadvertently, replaces a vanadium ion and allows a hole to be trapped on one of the four adjacent oxygen ions. The unpaired spin resides in an oxygen p orbital oriented perpendicular to the plane defined by the silicon ion, the electron-deficient oxygen, and the two yttrium ions nearest the oxygen. Principal values of the g matrix (2.0033, 2.0090, and 2.0771) were obtained from EPR data taken at 15 K. Direct verification of the participation of silicon was obtained from ENDOR data taken at 12 K. We have found that this trapped-hole center appeared in large concentrations in all of our Czochralski-grown YVO4 crystals that were exposed to ionizing radiation (i.e., x rays or an ultraviolet laser beam) while the crystal was at 77 K. Interestingly, a small concentration of this trapped-hole center was present in some as-grown YVO4 crystals before exposure to ionizing radiation.

  1. Continuous Czochralski growth. Development of advanced Czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The improvement of growth rates using radiation shielding and investigation of the crucible melt interaction for improved yields were emphasized. Growth runs were performed from both 15 and 16 inch diameter crucibles, producing 30 and 37 kg ingots respectively. Efforts to increase the growth rate of 150 mm diameter ingots were limited by temperature instabilities believed to be caused by undesirable thermal convections in the larger melts. The radiation shield improved the growth rate somewhat, but the thermal instability was still evident, leading to nonround ingots and loss of dislocation-free structure. A 38 kg crystal was grown to demonstrate the feasibility of producing 150 kg with four growth cycles. After the grower construction phase, the Hamco microprocessor control system was interfaced to the growth facility, including the sensor for automatic control of seeding temperature, and the sensor for automatic shouldering. Efforts focused upon optimization of the seeding, necking, and shoulder growth automation programs.

  2. Continuous Czochralski growth. Development of advanced Czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness

    NASA Astrophysics Data System (ADS)

    The improvement of growth rates using radiation shielding and investigation of the crucible melt interaction for improved yields were emphasized. Growth runs were performed from both 15 and 16 inch diameter crucibles, producing 30 and 37 kg ingots respectively. Efforts to increase the growth rate of 150 mm diameter ingots were limited by temperature instabilities believed to be caused by undesirable thermal convections in the larger melts. The radiation shield improved the growth rate somewhat, but the thermal instability was still evident, leading to nonround ingots and loss of dislocation-free structure. A 38 kg crystal was grown to demonstrate the feasibility of producing 150 kg with four growth cycles. After the grower construction phase, the Hamco microprocessor control system was interfaced to the growth facility, including the sensor for automatic control of seeding temperature, and the sensor for automatic shouldering. Efforts focused upon optimization of the seeding, necking, and shoulder growth automation programs.

  3. Development of a Sessile Drop Method Concerning Czochralski Si Crystal Growth

    NASA Astrophysics Data System (ADS)

    Sakai, Susumu; Huang, Xinming; Hoshikawa, Yasunori

    1999-04-01

    A sessile drop method for the measurement of the oxygen dissolution rate from silica glass to silicon melt proposed previously has been further developed. The main error in the measurement was the weight loss of the silica plate itself because of the reaction between the silica plate and the carbon crucible. A pyrolytic boron nitride (PBN) plate was placed between the silica plate and carbon crucible, and results showed that the error was reduced effectively using the protective PBN plate. As an application of the sessile drop method, the effect of OH content in different silica materials on the oxygen dissolution rate was also investigated. There was no evident difference in the dissolution rate from the different kinds of silica materials with different OH concentrations.

  4. Raman scattering study of Czochralski-grown yttrium flouride single crystals

    SciTech Connect

    Rotereau, K.; Gesland, J.Y.; Daniel, P.; Bulou, A. . Equipe de Physique de l'Etat Condense)

    1993-08-01

    Single crystals of yttrium fluoride YF[sub 3] have been grown by the Czokralski method and studied by Raman scattering in the temperature range 20 K - 730 K. The results are consistent with the prediction of the group theory analysis in the framework of the space group Pnma although two lines B2g are missing. There is no evidence for any structural phase transition in this temperature range. The structural relationship between the phase investigated and the high temperature phase (out of the temperature range studied) is discussed.

  5. Czochralski growth and scintillation properties of Li6LuxY1-x(BO3)3:Ce3+ single crystals

    NASA Astrophysics Data System (ADS)

    Fawad, U.; Kim, H. J.; Park, H.; Kim, Sunghwan; Khan, Sajid

    2016-01-01

    We report on Czochralski growth of Ce3+-doped mixed crystals of Li6Lu(BO3)3 (LLBO) and Li6Y(BO3)3 (LYBO) i.e. Li6LuxY1-x(BO3)3 (x=0.0, 0.5, 1.0) (LLYBO). Problems faced during the growth process and the techniques to overcome them are discussed. Single phase of the grown crystals is confirmed by powder X-ray diffraction (XRD) analysis. The grown crystals are characterized for their scintillation properties such as energy resolution, light yield, fluorescent decay time and α/β ratio under γ-rays and α-particles excitation. The X-ray induced luminescence is measured for the grown crystals.

  6. Processing of n+/p-/p+ strip detectors with atomic layer deposition (ALD) grown Al2O3 field insulator on magnetic Czochralski silicon (MCz-si) substrates

    NASA Astrophysics Data System (ADS)

    Härkönen, J.; Tuovinen, E.; Luukka, P.; Gädda, A.; Mäenpää, T.; Tuominen, E.; Arsenovich, T.; Junkes, A.; Wu, X.; Li, Z.

    2016-08-01

    Detectors manufactured on p-type silicon material are known to have significant advantages in very harsh radiation environment over n-type detectors, traditionally used in High Energy Physics experiments for particle tracking. In p-type (n+ segmentation on p substrate) position-sensitive strip detectors, however, the fixed oxide charge in the silicon dioxide is positive and, thus, causes electron accumulation at the Si/SiO2 interface. As a result, unless appropriate interstrip isolation is applied, the n-type strips are short-circuited. Widely adopted methods to terminate surface electron accumulation are segmented p-stop or p-spray field implantations. A different approach to overcome the near-surface electron accumulation at the interface of silicon dioxide and p-type silicon is to deposit a thin film field insulator with negative oxide charge. We have processed silicon strip detectors on p-type Magnetic Czochralski silicon (MCz-Si) substrates with aluminum oxide (Al2O3) thin film insulator, grown with Atomic Layer Deposition (ALD) method. The electrical characterization by current-voltage and capacitance-voltage measurement shows reliable performance of the aluminum oxide. The final proof of concept was obtained at the test beam with 200 GeV/c muons. For the non-irradiated detector the charge collection efficiency (CCE) was nearly 100% with a signal-to-noise ratio (S/N) of about 40, whereas for the 2×1015 neq/cm2 proton irradiated detector the CCE was 35%, when the sensor was biased at 500 V. These results are comparable with the results from p-type detectors with the p-spray and p-stop interstrip isolation techniques. In addition, interestingly, when the aluminum oxide was irradiated with Co-60 gamma-rays, an accumulation of negative fixed oxide charge in the oxide was observed.

  7. Refractories Keep Silicon Crystals Pure

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.

    1982-01-01

    Formation of carbon monoxide gas is prevented by a linear of refractory material free of elemental carbon. For pressures above about 4 torr, silicon carbide can be used as refractory liner. The problem of carbide contamination can arise in crystal growth of any material that forms a carbide more stable than carbon monoxide. Prevention in such cases is possible by using noncarbon refractories in place of graphite.

  8. Solar silicon via the Dow Corning process

    NASA Technical Reports Server (NTRS)

    Hunt, L. P.; Dosaj, V. D.

    1979-01-01

    Technical feasibility for high volume production of solar cell-grade silicon is investigated. The process consists of producing silicon from pure raw materials via the carbothermic reduction of quartz. This silicon was then purified to solar grade by impurity segregation during Czochralski crystal growth. Commercially available raw materials were used to produce 100 kg quantities of silicon during 60 hour periods in a direct arc reactor. This silicon produced single crystalline ingot, during a second Czochralski pull, that was fabricated into solar cells having efficiencies ranging from 8.2 percent to greater than 14 percent. An energy analysis of the entire process indicated a 5 month payback time.

  9. Ca10Li(VO4)7:Nd3+, a promising laser material: growth, structure and spectral characteristics of a Czochralski-grown single crystal

    NASA Astrophysics Data System (ADS)

    Kosmyna, M. B.; Nazarenko, B. P.; Puzikov, V. M.; Shekhovtsov, A. N.; Paszkowicz, W.; Behrooz, A.; Romanowski, P.; Yasukevich, A. S.; Kuleshov, N. V.; Demesh, M. P.; Wierzchowski, W.; Wieteska, K.; Paulmann, C.

    2016-07-01

    Pure and Nd-doped Ca10Li(VO4)7 single crystals were grown by the Czochralski method. The structure of Ca10Li(VO4)7 single crystal was refined starting from a model of Ca10K(VO4)7 using the powder diffraction data collected at a laboratory high-resolution diffractometer. The defect structure of the single crystal was studied with the use of both, high-resolution diffraction using a laboratory instrument and X-ray topographic techniques employing synchrotron radiation at the Hasylab laboratory (Hamburg). Polarized absorption and luminescence spectra of Nd-doped Ca10Li(VO4)7 crystal were investigated in details. The laser oscillation was obtained under flash lamp pumping and the slope efficiency of 0.87% was achieved in the free-running mode. Preliminary examination of lasing properties points that Ca10Li(VO4)7:Nd crystal can be a highly efficient solid state laser medium. Crystals of this kind are expected to be suitable for application as efficient non-linear optics materials.

  10. Light-induced degradation and metastable-state recovery with reaction kinetics modeling in boron-doped Czochralski silicon solar cells

    SciTech Connect

    Kim, Soo Min; Chun, Seungju; Bae, Suhyun; Park, Seungeun; Lee, Hae-seok Kim, Donghwan; Kang, Min Gu; Song, Hee-eun; Kang, Yoonmook

    2014-08-25

    Solar cells fabricated from boron-doped p-type Czochralski silicon suffer from light-induced degradation that can lower the conversion efficiency by up to 10% relative. When solar cells are exposed to temperatures between 100 °C and 200 °C under illumination, regeneration, in which the minority carrier lifetime is gradually recovered, occurs after the initial light-induced degradation. We studied the light-induced degradation and regeneration process using carrier injection within a design chamber and observed open-circuit voltage trends at various sample temperatures. We proposed a cyclic reaction kinetics model to more precisely analyze the degradation and recovery phenomenon. Our model incorporated the reaction paths that were not counted in the original model between the three states (annealed, degradation, and regeneration). We calculated a rate constant for each reaction path based on the proposed model, extracted an activation energy for each reaction using these rate constants at various temperatures, and calculated activation energies of redegradation and the stabilization reaction.

  11. Effect of Rapid Thermal Processing on Light-Induced Degradation of Carrier Lifetime in Czochralski p-Type Silicon Bare Wafers

    NASA Astrophysics Data System (ADS)

    Kouhlane, Y.; Bouhafs, D.; Khelifati, N.; Belhousse, S.; Menari, H.; Guenda, A.; Khelfane, A.

    2016-07-01

    The electrical properties of Czochralski silicon (Cz-Si) p-type boron-doped bare wafers have been investigated after rapid thermal processing (RTP) with different peak temperatures. Treated wafers were exposed to light for various illumination times, and the effective carrier lifetime (τ eff) measured using the quasi-steady-state photoconductance (QSSPC) technique. τ eff values dropped after prolonged illumination exposure due to light-induced degradation (LID) related to electrical activation of boron-oxygen (BO) complexes, except in the sample treated with peak temperature of 785°C, for which the τ eff degradation was less pronounced. Also, a reduction was observed when using the 830°C peak temperature, an effect that was enhanced by alteration of the wafer morphology (roughness). Furthermore, the electrical resistivity presented good stability under light exposure as a function of temperature compared with reference wafers. Additionally, the optical absorption edge shifted to higher wavelength, leading to increased free-carrier absorption by treated wafers. Moreover, a theoretical model is used to understand the lifetime degradation and regeneration behavior as a function of illumination time. We conclude that RTP plays an important role in carrier lifetime regeneration for Cz-Si wafers via modification of optoelectronic and structural properties. The balance between an optimized RTP cycle and the rest of the solar cell elaboration process can overcome the negative effect of LID and contribute to achievement of higher solar cell efficiency and module performance.

  12. Thermoelectric property of a new silicon crystal

    NASA Astrophysics Data System (ADS)

    Chae, Kisung; Choi, Seon-Myeong; Kim, Duck Young; Son, Young-Woo

    We present ab initio calculations on thermoelectric properties of a recently synthesised allotrope of silicon crystal. A new silicon crystal with 24 Si atoms per unit cell has open channels along the specific crystallographic direction and shows a quasidirect energy gap of 1.3 eV. Using various first-principles calculation techniques for electrical and thermal conductivity as well as Seebeck coefficient, we find large suppression of thermal conductivity and relatively large Seebeck coefficient in the new silicon crystal, thus demonstrating a competitive thermoelectric figure of merit.

  13. Growth and characterization of indium doped silicon single crystals at industrial scale

    NASA Astrophysics Data System (ADS)

    Haringer, Stephan; Giannattasio, Armando; Alt, Hans Christian; Scala, Roberto

    2016-03-01

    Indium is becoming one of the most important dopant species for silicon crystals used in photovoltaics. In this work we have investigated the behavior of indium in silicon crystals grown by the Czochralski pulling process. The experiments were performed by growing 200 mm crystals, which is a standard diameter for large volume production, thus the data reported here are of technological interest for the large scale production of indium doped p-type silicon. The indium segregation coefficient and the evaporation rate from the silicon melt have been calculated to be 5 × 10-4 ± 3% and 1.6 × 10-4 cm·s-1, respectively. In contrast to previous works the indium was introduced in liquid phase and the efficiency was compared with that deduced by other authors, using different methods. In addition, the percentage of electrically active indium at different dopant concentrations is calculated and compared with the carrier concentration at room temperature, measured by four-point bulk method.

  14. Growth of silicon carbide crystals on a seed while pulling silicon crystals from a melt

    NASA Technical Reports Server (NTRS)

    Ciszek, T. F.; Schwuttke, G. H. (Inventor)

    1979-01-01

    A saturated solution of silicon and an element such as carbon having a segregation coefficient less than unity is formed by placing a solid piece of carbon in a body of molten silicon having a temperature differential decreasing toward the surface. A silicon carbide seed crystal is disposed on a holder beneath the surface of the molten silicon. As a rod or ribbon of silicon is slowly pulled from the melt, a supersaturated solution of carbon in silicon is formed in the vicinity of the seed crystal. Excess carbon is emitted from the solution in the form of silicon carbide which crystallizes on the seed crystal held in the cool region of the melt.

  15. Numerical simulation of oxygen transport during the CZ silicon crystal growth process

    NASA Astrophysics Data System (ADS)

    Chen, Jyh-Chen; Teng, Ying-Yang; Wun, Wan-Ting; Lu, Chung-Wei; Chen, Hsueh-I.; Chen, Chi-Yung; Lan, Wen-Chieh

    2011-03-01

    In this study, the effect of the flow motion and heat transfer generated by the crystal and crucible rotation on the oxygen distribution inside the melt during Czochralski silicon crystal growth is investigated. When the crucible rotates in a direction opposite to the crystal rotation, Taylor-Proundman vortices appear in the region below the crystal. The diffusion of oxygen impurity from the crucible wall to the crystal-melt interface is suppressed by these Taylor-Proundman vortices, while heat transport from the crucible wall to the crystal-melt interface is blocked by the Taylor-Proundman vortices. With a higher crucible rotation rate, the size of the Taylor-Proundman vortices increases and the size of the buoyancy-thermocapillary vortices decreases. This causes the temperature at the crucible wall to rise and the evaporation of oxygen impurity on the free surface to decrease. Hence, the amount of oxygen impurity that diffuses into the melt towards the crystal-melt interface increases. The suppression from the Taylor-Proundman vortices is dominant for the smaller crucible rotation rate, while the enhancement from the oxygen impurity diffusion prevails for the higher crucible rotation rate. Therefore, there is an optimum combination of crucible and crystal rotation for obtaining the lowest oxygen concentration.

  16. Multiphonon infrared absorption in silicon

    NASA Astrophysics Data System (ADS)

    Pradhan, M. M.; Garg, R. K.; Arora, M.

    1987-01-01

    Investigations have been carried out on silicon crystals, grown by float zone (FZ) and Czochralski (CZ) methods, of infrared absorption bands using a Fourier transform infrared spectrophotometer. Multiphonon bands are identified in the light of recent theoretical calculations based on the total energy of silicon crystal lattice. Theoretical results of Ihm et al. (1) and Yin and Cohen (2,3) are found to be in good agreement with the experimental observations of multiphonon infrared bands.

  17. The impact of Ge codoping on grown-in O precipitates in Ga-doped Czochralski-silicon

    NASA Astrophysics Data System (ADS)

    Arivanandhan, Mukannan; Gotoh, Raira; Fujiwara, Kozo; Ozawa, Tetsuo; Hayakawa, Yasuhiro; Uda, Satoshi

    2011-04-01

    The intensity of the infrared absorption band at 1107 cm -1, related to interstitial oxygen (O i) concentration, decreased as the Ge concentration increased in Ga and Ge codoped CZ-Si crystals. In contrast, the number of precipitates observed on the etched surfaces of CZ-Si wafers increased as the Ge concentration increased. From an energy dispersive X-ray (EDX) analysis, O was observed to be one of the major components of the precipitates. Moreover, Ge was found as one of the components in the precipitate observed on the heavily Ge (>1×10 18 cm -3) codoped CZ-Si wafers. These results suggest that the grown-in O precipitates increase as the O i concentration decreases when the Ge concentration increases in the Si crystal. The Ge-vacancy ( V) complex in the Si lattice probably acted as a heterogeneous nucleation center and may enhanced the grown-in O precipitates thereby reducing the dissolved O i concentration in the Si lattice.

  18. Photonic Crystal Sensors Based on Porous Silicon

    PubMed Central

    Pacholski, Claudia

    2013-01-01

    Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential. PMID:23571671

  19. Photocarrier Radiometry Investigation of Light-Induced Degradation of Boron-Doped Czochralski-Grown Silicon Without Surface Passivation

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Li, Bincheng

    2016-04-01

    Light-induced degradation (LID) effects of boron-doped Cz silicon wafers without surface passivation are investigated in details by photocarrier radiometry (PCR). The resistivity of all samples is in the range of 0.006 Ω {\\cdot } {cm} to 38 Ω {\\cdot } {cm}. It is found that light-induced changes in surface state occupation have a great effect on LID under illumination. With the increasing contribution of light-induced changes in surface state occupation, the generation rate of the defect decreases. The light-induced changes in surface state occupation and light-induced degradation dominate the temporal behaviors of the excess carrier density of high- and low-resistivity Si wafers, respectively. Moreover, the temporal behaviors of PCR signals of these samples under laser illumination with different powers, energy of photons, and multiple illuminations were also analyzed to understand the light-induced change of material properties. Based on the nonlinear dependence of PCR signal on the excitation power, a theoretical model taking into account both light-induced changes in surface state occupation and LID processes was proposed to explain those temporal behaviors.

  20. National solar technology roadmap: Wafer-silicon PV

    SciTech Connect

    Sopori, Bhushan

    2007-06-01

    This report applies to all bulk-silicon-based PV technologies, including those based on Czochralski, multicrystalline, float-zone wafers, and melt-grown crystals that are 100 μm or thicker, such as ribbons, sheet, or spheral silicon.

  1. Optical and scintillation properties of ce-doped (Gd2Y1)Ga2.7Al2.3O12 single crystal grown by Czochralski method

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Wu, Yuntao; Ding, Dongzhou; Li, Huanying; Chen, Xiaofeng; Shi, Jian; Ren, Guohao

    2016-06-01

    Multicomponent garnets, due to their excellent light yield and energy resolution, become one of the most promising scintillators used for homeland security and nuclear non-proliferation applications. This work focuses on the optimization of Ce-doped (Gd,Y)3(Ga,Al)5O12 scintillators using a combination strategy of pre-screening and scale-up. Ce-doped GdxY1-xGayAl5-yO12 (x=1, 2 and y=2, 2.2, 2.5, 2.7, 3) polycrystalline powders were prepared by high-temperature solid state reaction method. The desired garnet phase in all the samples was confirmed using X-ray diffraction measurement. By comparing the radioluminescence intensity, the highest scintillation efficiency was achieved at a component of Gd2Y1Ga2.7Al2.3O12:Ce powders. A (Gd2Y1)Ga2.7Al2.3O12 doped with 1% Ce single crystal with dimensions of Ø35×40 mm was grown by Czochralski method using a <111> oriented seed. Luminescence and scintillation properties were measured. An optical transmittance of 84% was achieved in the concerned wavelength from 500 to 800 nm. Its 5d-4f emission of Ce3+ is at 530 nm. The light yield of a Ce1%: Gd2Y1Ga2.7Al2.3O12 single crystal slab at a size of 5×5×1 mm3 can reach about 65,000±3000 Ph/MeV along with two decay components of 94 and 615 ns under 137Cs source irradiation.

  2. Silicon carbide - Progress in crystal growth

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony

    1987-01-01

    Recent progress in the development of two processes for producing large-area high-quality single crystals of SiC is described: (1) a modified Lely process for the growth of the alpha polytypes (e.g., 6H SiC) initially developed by Tairov and Tsvetkov (1978, 1981) and Ziegler et al. (1983), and (2) a process for the epitaxial growth of the beta polytype on single-crystal silicon or other substrates. Growth of large-area cubic SiC on Si is described together with growth of defect-free beta-SiC films on alpha-6H SiC crystals and TiC lattice. Semiconducting qualities of silicon carbide crystals grown by various techniques are discussed.

  3. Single crystal functional oxides on silicon

    PubMed Central

    Bakaul, Saidur Rahman; Serrao, Claudy Rayan; Lee, Michelle; Yeung, Chun Wing; Sarker, Asis; Hsu, Shang-Lin; Yadav, Ajay Kumar; Dedon, Liv; You, Long; Khan, Asif Islam; Clarkson, James David; Hu, Chenming; Ramesh, Ramamoorthy; Salahuddin, Sayeef

    2016-01-01

    Single-crystalline thin films of complex oxides show a rich variety of functional properties such as ferroelectricity, piezoelectricity, ferro and antiferromagnetism and so on that have the potential for completely new electronic applications. Direct synthesis of such oxides on silicon remains challenging because of the fundamental crystal chemistry and mechanical incompatibility of dissimilar interfaces. Here we report integration of thin (down to one unit cell) single crystalline, complex oxide films onto silicon substrates, by epitaxial transfer at room temperature. In a field-effect transistor using a transferred lead zirconate titanate layer as the gate insulator, we demonstrate direct reversible control of the semiconductor channel charge with polarization state. These results represent the realization of long pursued but yet to be demonstrated single-crystal functional oxides on-demand on silicon. PMID:26853112

  4. Crack growth in single-crystal silicon

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Leipold, M. H.

    1986-01-01

    Crack growth in single-crystal silicon at room temperature in air was evaluated by double torsion (DT) load-relaxation method and monitored by acoustic emission (AE) technique. Both DT and AE methods indicated lack of subcritical crack growth in silicon. At the critical stress intensity factor, the crack front was found to be jumping several times in a 'mirror' region and then followed by fast crack growth in a 'hackle' region. Hackle marks were found to be associated with plastic deformation at the tip of the fast moving crack. No dislocation etch pits were found in the 'mirror' region, in which crack growth may result from interatomic bonds broken at the crack tip under stress without any plastic deformation. Acoustic emission appears to be spontaneously generated from both interatomic bonds broken and dislocation generation at the moving crack tip during the crack growth in single-crystal silicon.

  5. Configurable silicon photonic crystal waveguides

    SciTech Connect

    Prorok, Stefan; Petrov, Alexander; Eich, Manfred; Luo, Jingdong; Jen, Alex K.-Y.

    2013-12-23

    In this Letter, we demonstrate that the mode cut off of a photonic crystal waveguide can be trimmed with high accuracy by electron beam bleaching of a chromophore doped polymer cladding. Using this method, configurable waveguides are realized, which allow for spatially resolved changes of the photonic crystal's effective lattice constant as small as 7.6 pm. We show three different examples how to take advantage of configurable photonic crystal waveguides: Shifting of the complete transmission spectrum, definition of cavities with high quality factor, and tuning of existing cavities.

  6. Configurable silicon photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Prorok, Stefan; Petrov, Alexander; Eich, Manfred; Luo, Jingdong; Jen, Alex K.-Y.

    2013-12-01

    In this Letter, we demonstrate that the mode cut off of a photonic crystal waveguide can be trimmed with high accuracy by electron beam bleaching of a chromophore doped polymer cladding. Using this method, configurable waveguides are realized, which allow for spatially resolved changes of the photonic crystal's effective lattice constant as small as 7.6 pm. We show three different examples how to take advantage of configurable photonic crystal waveguides: Shifting of the complete transmission spectrum, definition of cavities with high quality factor, and tuning of existing cavities.

  7. Growth of InP single crystals by liquid encapsulated Czochralski (LEC) using glassy-carbon crucibles

    SciTech Connect

    Oliveira, C.E.M. de; Miskys, C.R.; Carvalho, M.M.G. de

    1996-12-31

    Using a high pressure puller and Glassy-Carbon crucibles, undoped InP single crystals weighing 100g and with 25 mm diameter were grown in the <100> direction. The residual carrier concentration of samples, measure by the Van der Pauw method at 300K, was about 5 {times} 10{sup 15}cm{sup {minus}3}, result as good as those obtained with Quartz crucibles with the advantage that Glassy-Carbon crucibles are fully reusable.

  8. High-purity silicon crystal growth investigations

    NASA Technical Reports Server (NTRS)

    Ciszek, T. F.; Schuyler, T.; Hurd, J. L.; Fearheiley, M.; Evans, C.; Elder, R.

    1986-01-01

    Information is given on evaporation and segregation contributions to impurity profiles of floating zone crystals (FZ); high-purity silicon float zoning (FZ); minority-carrier lifetime measurement of heavily doped silicon crystals; the effect of some crystal growth parameters on minority-carrier lifetime; and defect investigations by X-ray topography in graphical and tabular form. It was concluded that evaporation contributes substantially to impurity reduction when FZ or cold-crucible growth is conducted in a vacuum; boron and gallium may be more favorable dopants than indium or aluminum for obtaining high minority-carrier lifetimes; minority-carrier lifetimes greater than 100 microseconds are feasible at a 2 times 10 to the 17th power cm-3 doping level; minority-carrier lifetime decreases with increasing crystal cooling rate and also with the presence of dislocations; the method used to clean silicon feed rods affects lifetime; and microdefect densities in dislocation-free FZ crystals appear to be lower with Ga doping than with B doping.

  9. LYSO crystal calorimeter readout with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Berra, A.; Bonvicini, V.; Cecchi, C.; Germani, S.; Guffanti, D.; Lietti, D.; Lubrano, P.; Manoni, E.; Prest, M.; Rossi, A.; Vallazza, E.

    2014-11-01

    Large area Silicon PhotoMultipliers (SiPMs) are the new frontier of the development of readout systems for scintillating detectors. A SiPM consists of a matrix of parallel-connected silicon micropixels operating in limited Geiger-Muller avalanche mode, and thus working as independent photon counters with a very high gain (~106). This contribution presents the performance in terms of linearity and energy resolution of an electromagnetic homogeneous calorimeter composed of 9 ~ 18X0 LYSO crystals. The crystals were readout by 36 4×4 mm2 SiPMs (4 for each crystal) produced by FBK-irst. This calorimeter was tested at the Beam Test Facility at the INFN laboratories in Frascati with a single- and multi-particle electron beam in the 100-500 MeV energy range.

  10. Interface and facet control during Czochralski growth of (111) InSb crystals for cost reduction and yield improvement of IR focal plane array substrates

    NASA Astrophysics Data System (ADS)

    Gray, Nathan W.; Perez-Rubio, Victor; Bolke, Joseph G.; Alexander, W. B.

    2014-10-01

    Focal plane arrays (FPAs) made on InSb wafers are the key cost-driving component in IR imaging systems. The electronic and crystallographic properties of the wafer directly determine the imaging device performance. The "facet effect" describes the non-uniform electronic properties of crystals resulting from anisotropic dopant segregation during bulk growth. When the segregation coefficient of dopant impurities changes notably across the melt/solid interface of a growing crystal the result is non-uniform electronic properties across wafers made from these crystals. The effect is more pronounced in InSb crystals grown on the (111) axis compared with other orientations and crystal systems. FPA devices made on these wafers suffer costly yield hits due to inconsistent device response and performance. Historically, InSb crystal growers have grown approximately 9-19 degree off-axis from the (111) to avoid the facet effect and produced wafers with improved uniformity of electronic properties. It has been shown by researchers in the 1960s that control of the facet effect can produce uniform small diameter crystals. In this paper, we share results employing a process that controls the facet effect when growing large diameter crystals from which 4, 5, and 6" wafers can be manufactured. The process change resulted in an increase in wafers yielded per crystal by several times, all with high crystal quality and uniform electronic properties. Since the crystals are grown on the (111) axis, manufacturing (111) oriented wafers is straightforward with standard semiconductor equipment and processes common to the high-volume silicon wafer industry. These benefits result in significant manufacturing cost savings and increased value to our customers.

  11. Investigation of the variations in the crystallization front shape during growth of gadolinium gallium and terbium gallium crystals by the Czochralski method

    SciTech Connect

    Budenkova, O. N. Vasiliev, M. G.; Yuferev, V. S.; Ivanov, I. A.; Bul'kanov, A. M.; Kalaev, V. V.

    2008-12-15

    Numerical investigation of the variations in the crystallization front shape during growth of gadolinium gallium and terbium gallium garnet crystals in the same thermal zone and comparison of the obtained results with the experimental data have been performed. It is shown that the difference in the behavior of the crystallization front during growth of the crystals is related to their different transparency in the IR region. In gadolinium gallium garnet crystals, which are transparent to thermal radiation, a crystallization front, strongly convex toward the melt, is formed in the growth stage, which extremely rapidly melts under forced convection. Numerical analysis of this process has been performed within the quasistationary and nonstationary models. At the same time, in terbium gallium garnet crystals, which are characterized by strong absorption of thermal radiation, the phase boundary shape changes fairly smoothly and with a small amplitude. In this case, as the crystal is pulled, the crystallization front tends to become convex toward the crystal bulk.

  12. Silicon optomechanical crystal resonator at millikelvin temperatures

    NASA Astrophysics Data System (ADS)

    Meenehan, Seán M.; Cohen, Justin D.; Gröblacher, Simon; Hill, Jeff T.; Safavi-Naeini, Amir H.; Aspelmeyer, Markus; Painter, Oskar

    2014-07-01

    Optical measurements of a nanoscale silicon optomechanical crystal cavity with a mechanical resonance frequency of 3.6 GHz are performed at subkelvin temperatures. We infer optical-absorption-induced heating and damping of the mechanical resonator from measurements of phonon occupancy and motional sideband asymmetry. At the lowest probe power and lowest fridge temperature (Tf=10 mK), the localized mechanical resonance is found to couple at a rate of γi/2π=400 Hz (Qm=9×106) to a thermal bath of temperature Tb≈270 mK. These measurements indicate that silicon optomechanical crystals cooled to millikelvin temperatures should be suitable for a variety of experiments involving coherent coupling between photons and phonons at the single quanta level.

  13. Solar cell structure incorporating a novel single crystal silicon material

    DOEpatents

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  14. Electric molten zone crystallization of silicon wafers

    NASA Astrophysics Data System (ADS)

    Costa, I.; Brito, M. C.; Gaspar, G.; Serra, J. M.; Alves, J. Maia; Vallêra, A.

    2013-12-01

    A new method for molten zone crystallization is presented. The method is based on the formation of a molten capillary by applying an electric current. Since the power is delivered directly to the liquid, the technique has the potential for low energy budget. On the other hand, being a floating molten zone method, the liquid silicon never contacts foreign materials and therefore is essentially contamination free. Experimental results show that the crystallized samples feature relatively low minority carrier lifetimes which are correlated to relatively high dislocation densities, associated with the sample temperature profile.

  15. The historical trend in float zone crystal diameters and power requirements for float zoned silicon crystals

    NASA Technical Reports Server (NTRS)

    Kramer, H. G.

    1981-01-01

    The power needed to zone silicon crystals by radio frequency heating was analyzed. The heat loss mechanisms are examined. Curves are presented for power as a function of crystal diameter for commercial silicon zoning.

  16. Czochralski's creative mistake: a milestone on the way to the Gigabit Era.

    PubMed

    Evers, Jürgen; Klüfers, Peter; Staudigl, Rudolf; Stallhofer, Peter

    2003-12-01

    Much of the rapid change in industry, science, and society is brought about by the meteoric development of the microelectronics industry. Daily life is affected by this development; one has only to think of mobile telephones and the chips on modern credit cards. The raw material for microelectronics is the single crystal of silicon, with very high purity and almost perfect crystal structure. About 95% of the world's current production of silicon single crystals is achieved using the process that Jan Czochralski discovered in 1916. Today, single crystals of silicon can be grown that are up to 2 m long, 300 mm in diameter, and weigh up to 265 kg. The use of magnetic fields has led to significant advances in crystal-drawing technology. Intensive research and development reveals that in addition to the technology, which provides crystals of ever-increasing diameter, defect engineering, and the control of the numerous temperature-dependent reactions of crystal defects, are of paramount importance. PMID:14661199

  17. Czochralski growth of RE 3Ga 5SiO 14 (RE=La, Pr, Nd) single crystals for the analysis of the influence of rare earth substitution on piezoelectricity

    NASA Astrophysics Data System (ADS)

    Sato, J.; Takeda, H.; Morikoshi, H.; Shimamura, K.; Rudolph, P.; Fukuda, T.

    1998-08-01

    Pr 3Ga 5SiO 14 and Nd 3Ga 5SiO 14 single crystals with constant diameter of 22 mm and lengths up to 145 mm have been grown by the Czochralski method. The phase identification, site occupancy of cations and axial lattice parameter distribution were determined by X-ray analysis. The transmission spectra within the 340-3200 nm wavelength region were measured. The centre of interest are the piezoelectric properties of (2 1¯ 0) and (0 1 0) plates in comparison with former grown La 3Ga 5SiO 14 crystals in order to find out the influence of the rare earth substitution of La 3+ by Pr 3+ and Nd 3+ on the piezoelectric strain constant d11. A decrease of | d11| with increasing atomic number was found giving the hint to the substitution of lanthanum by further elements with larger atomic radii.

  18. Cutting fluid study for single crystal silicon

    SciTech Connect

    Chargin, D.

    1998-05-05

    An empirical study was conducted to evaluate cutting fluids for Single Point Diamond Turning (SPDT) of single crystal silicon. The pH of distilled waster was adjusted with various additives the examine the effect of pH on cutting operations. Fluids which seemed to promote ductile cutting appeared to increase tool wear as well, an undesirable tradeoff. High Ph sodium hydroxide solutions showed promise for further research, as they yielded the best combination of reduced tool wear and good surface finish in the ductile regime. Negative rake tools were verified to improve the surface finish, but the negative rake tools used in the experiments also showed much higher wear than conventional 0{degree} rake tools. Effects of crystallographic orientation on SPDT, such as star patterns of fracture damage forming near the center of the samples, were observed to decrease with lower feedrates. Silicon chips were observed and photographed, indicative of a ductile materials removal process.

  19. A virtual crystallization furnace for solar silicon

    SciTech Connect

    Steinbach, I.; Franke, D.; Krumbe, W.; Liebermann, J.

    1994-12-31

    Blocks of silicon for photovoltaic applications are economically crystallized in large casting furnaces. The quality of the material is determined by the velocity of the crystallization front, the flatness of the liquid-solid interface and the thermal gradients in the solid during cooling. The process cycle time, which is determined by the rate of crystallization and cooling, has a large effect on the process economic viability. Traditionally trial and error was used to determine the process control parameters, the success of which depended on the operator`s experience and intuition. This paper presents a numerical model, which when completed by a fitted data set, constitutes a virtual model of a real crystallization furnace, the Virtual Crystallization Furnace (VCF). The time-temperature distribution during the process cycle is the main output, which includes a display of actual liquid-solid front position. Moreover, solidification velocity, temperature gradients and thermal stresses can be deduced from this output. The time needed to run a simulation on a modern work-station is approximately 1/6 of real process time, thereby allowing the user to make many process variations at very reasonable costs. Therefore the VCF is a powerful tool for optimizing the process in order to reduce cycle time and to increase product quality.

  20. Method of controlling defect orientation in silicon crystal ribbon growth

    NASA Technical Reports Server (NTRS)

    Leipold, M. H. (Inventor)

    1978-01-01

    The orientation of twinning and other effects in silicon crystal ribbon growth is controlled by use of a starting seed crystal having a specific (110) crystallographic plane and (112) crystallographic growth direction.

  1. Light scattering from dislocations in silicon

    NASA Astrophysics Data System (ADS)

    Monier, Vanessa; Capello, Luciana; Kononchuk, Oleg; Pichaud, Bernard

    2010-11-01

    Nondecorated glide dislocations in Czochralski grown silicon have been studied by laser scattering tomography technique. Dependence of intensity of scattered light on polarization of the incident light has been measured for different orientations of the dislocation line and Burgers vector. Detailed theory of light scattering by dislocation in silicon crystals is presented. It is shown that by combination of polarization and tomography measurements it is possible to determine slip system of nondecorated mixed dislocation in Si.

  2. Czochralski growth of the mixed halides BaBrCl and BaBrCl:Eu

    NASA Astrophysics Data System (ADS)

    Yan, Z.; Shalapska, T.; Bourret, E. D.

    2016-02-01

    We present results from the growth of BaBrCl and BaBrCl:Eu single crystals, using the Czochralski method. Cubic inch crack-free crystals of both undoped and 5% Eu doped BaBrCl were obtained. The BaBr2-BaCl2 phase diagram was acquired by differential thermal analysis revealing that the system forms a solid solution at all concentrations with no significant separation between the solidus and liquidus curves. Details of the Czochralski process used to prevent cracking are presented. The scintillation performance of the Czochralski grown crystals is presented.

  3. Cost of Czochralski wafers as a function of diameter

    SciTech Connect

    Leipold, M.H.; Radics, C.; Kachare, A.

    1980-02-15

    The impact of diameter in the range of 10 to 15 cm on the cost of wafers sliced from Czochralski ingots is analyzed. Increasing silicon waste and decreasing ingot cost with increasing ingot size are estimated along with projected costs. Results indicate a small but continuous decrease in sheet cost with increasing ingot size in this size range. Sheet costs including silicon are projected to be $50 to $60/m/sup 2/ (1980 $) depending upon technique used.

  4. Silicon heterojunction solar cell and crystallization of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Lu, Meijun

    The rapid growth of photovoltaics in the past decade brings on the soaring price and demand for crystalline silicon. Hence it becomes necessary and also profitable to develop solar cells with over 20% efficiency, using thin (˜100mum) silicon wafers. In this respect, diffused junction cells are not the best choice, since the inescapable heating in the diffusion process not only makes it hard to handle thin wafers, but also reduces carriers' bulk lifetime and impairs the crystal quality of the substrate, which could lower cell efficiency. An alternative is the heterojunction cells, such as amorphous silicon/crystalline silicon heterojunction (SHJ) solar cell, where the emitter layer can be grown at low temperature (<200°C). In first part of this dissertation, I will introduce our work on front-junction SHJ solar cell, including the importance of intrinsic buffer layer; the discussion on the often observed anomalous "S"-shaped J-V curve (low fill factor) by using band diagram analysis; the surface passivation quality of intrinsic buffer and its relationship to the performance of front-junction SHJ cells. Although the a-Si:H is found to help to achieve high efficiency in c-Si heterojuntion solar cells, it also absorbs short wavelength (<600 nm) light, leading to non-ideal blue response and lower short circuit currents (JSC) in the front-junction SHJ cells. Considering this, heterojunction with both a-Si:H emitter and base contact on the back side in an interdigitated pattern, i.e. interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell, is developed. This dissertation will show our progress in developing IBC-SHJ solar cells, including the structure design; device fabrication and characterization; two dimensional simulation by using simulator Sentaurus Device; some special features of IBC-SHJ solar cells; and performance of IBC-SHJ cells without and with back surface buffer layers. Another trend for solar cell industry is thin film solar cells, since

  5. Tribological properties of sintered polycrystalline and single crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Srinivasan, M.

    1982-01-01

    Tribological studies and X-ray photoelectron spectroscopy analyses were conducted with sintered polycrystalline and single crystal silicon carbide surfaces in sliding contact with iron at various temperatures to 1500 C in a vacuum of 30 nPa. The results indicate that there is a significant temperature influence on both the friction properties and the surface chemistry of silicon carbide. The main contaminants on the as received sintered polycrystalline silicon carbide surfaces are adsorbed carbon, oxygen, graphite, and silicon dioxide. The surface revealed a low coefficient of friction. This is due to the presence of the graphite on the surface. At temperatures of 400 to 600 C graphite and copious amount of silicon dioxide were observed on the polycrystalline silicon carbide surface in addition to silicon carbide. At 800 C, the amount of the silicon dioxide decreased rapidly and the silicon carbide type silicon and carbon peaks were at a maximum intensity in the XPS spectra. The coefficients of friction were high in the temperature range 400 to 800 C. Small amounts of carbon and oxygen contaminants were observed on the as received single crystal silicon carbide surface below 250 C. Silicon carbide type silicon and carbon peaks were seen on the silicon carbide in addition to very small amount of graphite and silicon dioxide at temperatures of 450 to 800 C.

  6. Structural and photoluminescence studies on europium-doped lithium tetraborate (Eu:Li2B4O7) single crystal grown by microtube Czochralski (μT-Cz) technique

    NASA Astrophysics Data System (ADS)

    A, Kumaresh; R, Arun Kumar; N, Ravikumar; U, Madhusoodanan; B, S. Panigrahi; K, Marimuthu; M, Anuradha

    2016-05-01

    Rare earth europium (Eu3+)-doped lithium tetraborate (Eu:Li2B4O7) crystal is grown from its stoichiometric melt by microtube Czochralski pulling technique (μT-Cz) for the first time. The grown crystals are subjected to powder x-ray diffraction (PXRD) analysis which reveals the tetragonal crystal structure of the crystals. UV–vis–NIR spectral analysis is carried out to study the optical characteristics of the grown crystals. The crystal is transparent in the entire visible region, and the lower cutoff is observed to be at 304 nm. The existence of BO3 and BO4 bonding structure and the molecular associations are analyzed by Fourier transform infrared (FTIR) spectroscopy. The results of excitation and emission-photoluminescence spectra of europium ion incorporated in lithium tetraborate (LTB) single crystal reveal that the observations of peaks at 258, 297, and 318 nm in the excitation spectra and peaks at 579, 591, 597, 613, and 651 nm are observed in the emission spectra. The chromaticity coordinates are calculated from the emission spectra, and the emission intensity of the grown crystal is characterized through a CIE 1931 (Commission International d’Eclairage) color chromaticity diagram. Project supported by the Department of Science and Technology–Science and Engineering Research Board (Grant No. SR/S2/LOP-0012/2011), the Government of India for Awarding Major Research Project, the University Grants Commission–Department of Atomic Research–Consortium for Scientific Research (Grant No. CSR–KN/CSR–63/2014–2015/503), and the Kalpakkam and Indore, India.

  7. Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon

    PubMed Central

    2012-01-01

    Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications. PMID:22901341

  8. Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon.

    PubMed

    Ben Slama, Sonia; Hajji, Messaoud; Ezzaouia, Hatem

    2012-01-01

    Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications. PMID:22901341

  9. Studying post-etching silicon crystal defects on 300mm wafer by automatic defect review AFM

    NASA Astrophysics Data System (ADS)

    Zandiatashbar, Ardavan; Taylor, Patrick A.; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il

    2016-03-01

    Single crystal silicon wafers are the fundamental elements of semiconductor manufacturing industry. The wafers produced by Czochralski (CZ) process are very high quality single crystalline materials with known defects that are formed during the crystal growth or modified by further processing. While defects can be unfavorable for yield for some manufactured electrical devices, a group of defects like oxide precipitates can have both positive and negative impacts on the final device. The spatial distribution of these defects may be found by scattering techniques. However, due to limitations of scattering (i.e. light wavelength), many crystal defects are either poorly classified or not detected. Therefore a high throughput and accurate characterization of their shape and dimension is essential for reviewing the defects and proper classification. While scanning electron microscopy (SEM) can provide high resolution twodimensional images, atomic force microscopy (AFM) is essential for obtaining three-dimensional information of the defects of interest (DOI) as it is known to provide the highest vertical resolution among all techniques [1]. However AFM's low throughput, limited tip life, and laborious efforts for locating the DOI have been the limitations of this technique for defect review for 300 mm wafers. To address these limitations of AFM, automatic defect review AFM has been introduced recently [2], and is utilized in this work for studying DOI on 300 mm silicon wafer. In this work, we carefully etched a 300 mm silicon wafer with a gaseous acid in a reducing atmosphere at a temperature and for a sufficient duration to decorate and grow the crystal defects to a size capable of being detected as light scattering defects [3]. The etched defects form a shallow structure and their distribution and relative size are inspected by laser light scattering (LLS). However, several groups of defects couldn't be properly sized by the LLS due to the very shallow depth and low

  10. A silicon sheet casting experiment. [for solar cell water production

    NASA Technical Reports Server (NTRS)

    Bickler, D. B.; Sanchez, L. E.; Sampson, W. J.

    1980-01-01

    The casting of silicon blanks for solar cells directly without slicing is an exciting concept. An experiment was performed to investigate the feasibility of developing a machine that casts wafers directly. A Czochralski furnace was modified to accept a graphite ingot-simulating fixture. Silicon was melted in the middle of the ingot simulator in a boron nitride mold. Sample castings showed reasonable crystal size. Solar cells were made from the cast blanks. The performance is reported.

  11. Raman cooling in silicon photonic crystals

    NASA Astrophysics Data System (ADS)

    Chen, Yin-Chung; Bahl, Gaurav

    2016-03-01

    Laser cooling of solids can be achieved through various photon up-conversion processes including anti-Stokes photoluminescence and anti-Stokes light scattering. While it has been shown that cooling using photoluminescence-based methods can achieve efficiency comparable to that of thermoelectric cooling, the reliance on specific transitions of the rare-earth dopants limits material choice. Light scattering, on the other hand, occurs in all materials, and has the potential to enable cooling in most materials. We show that by engineering the photonic density of states of a material, one can suppress the Stokes process, and enhance the anti-Stokes radiation. We employ the well-known diamond-structured photonic crystal patterned in crystalline silicon to demonstrate theoretically that when operating within a high transparency regime, the net energy removal rate from phonon annihilation can overcome the optical absorption. The engineered photonic density of states can thus enable simultaneous cooling of all Raman-active phonon modes and the net cooling of the solid.

  12. Development of crystal supporting system for diameter of 400 mm silicon crystal growth

    NASA Astrophysics Data System (ADS)

    Iida, T.; Machida, N.; Takase, N.; Takano, K.; Matsubara, J.; Shiraishi, Y.; Kuramoto, M.; Yamagishi, H.

    2001-07-01

    The purpose of this project is the development of a crystal supporting system (CSS) for silicon crystals with large diameters of 400 mm. Amongst the many technical problems the one that the Super Silicon Crystal Research Institute Corp. (SSi) has directed its energies is to support a weight in excess of the ability of the Dash neck to support this weight. After considering various solutions, we developed a CSS that mechanically supports the silicon subsidiary cone formed between the Dash neck and crystal shoulder. Using this method, an approximately 400 kg ingot was successfully grown from 500 kg of molten silicon in a 36-in. quartz crucible. We confirmed that the CSS mechanism worked correctly through the entire crystal growth process. This paper presents some of the anticipated problems in the mechanical supporting method and the corresponding solutions. Finally, results from real crystal growth to test and verify machine operation are reported.

  13. Low Cost Solar Array Project: Task I, silicon material. Gaseous melt replenishment system, annual report, April 1979-April 1980

    SciTech Connect

    Jewett, D.N.; Bates, H.E.; Hill, D.M.

    1980-01-01

    This 18 month contract is intended to research and develop an innovative method of low cost silicon production from known technology, deposition of silicon from a hydrogen-chlorosilane mixture. The contract is divided into four major Tasks and a subcontract for evaluation of silicon produced. The goal of Task I is to produce 1/2 kg/h silicon for 24 hours with at least 18% conversion of trichlorosilane to silicon. The Task II goal is to improve the reactor to produce 1/2 kg/h at a minimum conversion of 18% for 96 hours. The goal of Task III is to deliver liquid silicon from the reactor through a tube to a Czochralski crystal puller. Task IV is to operate the production system simultaneously with the Czochralski unit continuously for one week. Silicon produced will be evaluated by solar cell fabrication by Applied Solar Energy Corporation. Progress is reported.

  14. Crystallized Silicon Nanostructures - Experimental Characterization and Atomistic Simulations

    SciTech Connect

    Agbo, Solomon; Sutta, Pavol; Calta, Pavel; Biswas, Rana; Pan, Bicai

    2014-07-01

    We have synthesized silicon nanocrystalline structures from thermal annealing of thin film amorphous silicon-based multilayers. The annealing procedure that was carried out in vacuum at temperatures up to 1100 °C is integrated in a X-ray diffraction (XRD) setup for real-time monitoring of the formation phases of the nanostructures. The microstructure of the crystallized films is investigated through experimental measurements combined with atomistic simulations of realistic nanocrystalline silicon (nc-Si) models. The multilayers consisting of uniformly alternating thicknesses of hydrogenated amorphous silicon and silicon oxide (SiO2) were deposited by plasma enhanced chemical vapor deposition on crystalline silicon and Corning glass substrates. The crystallized structure consisting of nc-Si structures embedded in an amorphous matrix were further characterized through XRD, Raman spectroscopy, and Fourier transform infrared measurements. We are able to show the different stages of nanostructure formation and how the sizes and the crystallized mass fraction can be controlled in our experimental synthesis. The crystallized silicon structures with large crystalline filling fractions exceeding 50% have been simulated with a robust classical molecular dynamics technique. The crystalline filling fractions and structural order of nc-Si obtained from this simulation are compared with our Raman and XRD measurements.

  15. Kinetics of thermal donor generation in silicon

    NASA Technical Reports Server (NTRS)

    Mao, B.-Y.; Lagowski, J.; Gatos, H. C.

    1984-01-01

    The generation kinetics of thermal donors at 450 C in Czochralski-grown silicon was found to be altered by high-temperature preannealing (e.g., 1100 C for 30 min). Thus, when compared with as-grown Si, high-temperature preannealed material exhibits a smaller concentration of generated thermal donors and a faster thermal donor saturation. A unified mechanism of nucleation and oxygen diffusion-controlled growth (based on solid-state plate transformation theory) is proposed to account for generation kinetics of thermal donors at 450 C, in as-grown and high-temperature preannealed Czochralski silicon crystals. This mechanism is consistent with the main features of the models which have been proposed to explain the formation of oxygen thermal donors in silicon.

  16. Fluidized-Bed Deposition Of Single-Crystal Silicon

    NASA Technical Reports Server (NTRS)

    Hsu, George C.; Rohatgi, Naresh K.

    1988-01-01

    Uniformly thin single-crystal films of silicon produced by modification of fluidized-bed-reactor technique producing polysilicon by chemical vapor deposition. Proposed for silicon wafers for flat-plate solar arrays and results in different structural and electronic properties in deposition layer desirable for specific microelectronic or solar-cell processing. In process deposition occurs on silicon wafers, kept individually at temperatures above 1,000 degree C. Heated wafers held in unheated and minimally-agitated-fluidized bed of silicon particles and in low concentration of silane.

  17. Study of the crystal structure of silicon nanoislands on sapphire

    SciTech Connect

    Krivulin, N. O. Pirogov, A. V.; Pavlov, D. A.; Bobrov, A. I.

    2015-02-15

    The results of studies of the crystal structure of silicon nanoislands on sapphire are reported. It is shown that the principal defects in silicon nanoislands on sapphire are twinning defects. As a result of the formation of such defects, different crystallographic orientations are formed in silicon nanoislands on sapphire. In the initial stages of the molecular-beam epitaxy of silicon on sapphire, there are two basic orientations: the (001) orientation parallel to the surface and the (001) orientation at an angle of 70° to the surface.

  18. Thermal imaging of synchrotron beams on silicon crystals

    SciTech Connect

    Smither, R.K.

    1992-06-01

    Advanced Photon source, a next generation synchrotron source, currently under construction at Argonne National Laboratory, will deliver large thermal loads of 1 to 10 kW to the first optical elements (usually a silicon crystal) in the synchrotron, x-ray beam lines. The first optical elements will distort and attenuate the x-ray beam if they are not extremely well cooled. An infrared camera is used to monitor the temperature distribution of the these first optical elements. This measurement is complicated because the silicon crystal is transparent to the infrared radiation and requires a special approach to the analysis of the data to get a meaningful temperature for the crystal.

  19. Growth conditions, structure, Raman characterization and optical properties of Sm-doped (Lu{sub x}Gd{sub 1-x}){sub 2}SiO{sub 5} single crystals grown by the Czochralski method

    SciTech Connect

    GLowacki, MichaL; Runka, Tomasz; Drozdowski, MirosLaw; Domukhovski, Viktor; Berkowski, Marek

    2012-02-15

    The (Lu{sub x}Gd{sub 0.995-x}Sm{sub 0.005}){sub 2}SiO{sub 5} single crystals with x=0.095, 0.11, 0.15, 0.17, 0.19 0.35 and 0.5 were grown by the Czochralski method. Structural properties were investigated by X-ray diffraction measurements. Unit cell parameters and cell volume were determined by the Rietveld refinement of the collected X-ray powder spectra. The segregation features between Gd and Lu were estimated and analyzed. Vibrational properties of the solid solutions were analyzed on the basis of polarized Raman spectra acquired at 300-875 K temperature range. Absorption and emission spectra of Sm{sup 3+} ion in the crystals with different composition were analyzed in the terms of dopant energy levels, oscillator strengths of transitions and spectral features of luminescence bands in the visible range. Both structural and optical investigations revealed that change of Lu{sup 3+} content in (Lu{sub x}Gd{sub 0.995-x}Sm{sub 0.005}){sub 2}SiO{sub 5} solid solution crystals induces the phase transition from C2/c (Lu{sub 2}SiO{sub 5}) to P2{sub 1}/c (Gd{sub 2}SiO{sub 5}) structure. It was found that the break of LSO to GSO-type structure occurs at 0.15crystals of Sm{sup 3+}-doped (Lu{sub x}Gd{sub 1-x}){sub 2}SiO{sub 5} solid solutions have been grown by Czochralski method and characterized by various techniques. Crystal structure changes from C2/c to P2{sub 1}/c for composition with 0.15crystal structure causes changes in emission spectra. Highlights: Black-Right-Pointing-Pointer The (Lu{sub x}Gd{sub 1-x}){sub 2}SiO{sub 5} crystals are an alternative to LSO and GSO hosts for applications. Black-Right-Pointing-Pointer The break of the P2{sub 1}/c to C2/c structure in (Lu{sub x}Gd{sub 1-x}){sub 2}SiO{sub 5}:Sm occurs for 0.15

  20. Liquid Crystal on Silicon Wavefront Corrector

    NASA Technical Reports Server (NTRS)

    Pouch, John; Miranda, Felix; Wang, Xinghua; Bos, Philip, J.

    2004-01-01

    A low cost, high resolution, liquid crystal on silicon, spatial light modulator has been developed for the correction of huge aberrations in an optical system where the polarization dependence and the chromatic nature are tolerated. However, the overall system performance suggests that this device is also suitable for real time correction of aberration in human eyes. This device has a resolution of 1024 x 768, and is driven by an XGA display driver. The effective stroke length of the device is 700 nm and 2000 nm for the visible and IR regions of the device, respectively. The response speeds are 50 Hz and 5 Hz, respectively, which are fast enough for real time adaptive optics for aberrations in human eyes. By modulating a wavefront of 2 pi, this device can correct for arbitrary high order wavefront aberrations since the 2-D pixel array is independently controlled by the driver. The high resolution and high accuracy of the device allow for diffraction limited correction of the tip and tilt or defocus without an additional correction loop. We have shown that for every wave of aberration, an 8 step blazed grating is required to achieve high diffraction efficiency around 80%. In light of this, up to 125 waves peak to valley of tip and tilt can be corrected if we choose the simplest aberration. Corrections of 34 waves of aberration, including high order Zernicke terms in a high magnification telescope, to diffraction limited performance (residual wavefront aberration less than 1/30 lambda at 632.8 nm) have been observed at high efficiency.

  1. Friction and deformation behavior of single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1977-01-01

    Friction and deformation studies were conducted with single-crystal silicon carbide in sliding contact with diamond. When the radius of curvature of the spherical diamond rider was large (0.3), deformation of silicon carbide was primarily elastic. Under these conditions the friction coefficient was low and did not show a dependence on the silicon carbide orientation. Further, there was no detectable cracking of the silicon carbide surfaces. When smaller radii of curvature of the spherical diamond riders (0.15 and 0.02 mm) or a conical diamond rider was used, plastic grooving occured and the silicon carbide exhibited anisotropic friction and deformation behavior. Under these conditions the friction coefficient depended on load. Anisotropic friction and deformation of the basal plane of silicon carbide was controlled by the slip system. 10101120and cleavage of1010.

  2. Investigation of Backside Textures for Genesis Solar Wind Silicon Collectors

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. P.; Burkett, P. J.; Rodriguez, M. C.; Allton, J. H.

    2014-01-01

    Genesis solar wind collectors were comprised of a suite of 15 types of ultrapure materials. The single crystal, pure silicon collectors were fabricated by two methods: float zone (FZ) and Czochralski (CZ). Because of slight differences in bulk purity and surface cleanliness among the fabrication processes and the specific vendor, it is desirable to know which variety of silicon and identity of vendor, so that appropriate reference materials can be used. The Czochralski method results in a bulk composition with slightly higher oxygen, for example. The CZ silicon array wafers that were Genesis-flown were purchased from MEMC Electronics. Most of the Genesis-flown FZ silicon was purchased from Unisil and cleaned by MEMC, although a few FZ wafers were acquired from International Wafer Service (IWS).

  3. Development of advanced Czochralski growth process to produce low-cost 150 kG silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The modified CG2000 crystal grower construction, installation, and machine check out was completed. The process development check out proceeded with several dry runs and one growth run. Several machine calibrations and functional problems were discovered and corrected. Exhaust gas analysis system alternatives were evaluated and an integrated system approved and ordered. Several growth runs on a development CG2000 RC grower show that complete neck, crown, and body automated growth can be achieved with only one operator input.

  4. Development of advanced Czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The process development continued, with a total of nine crystal growth runs. One of these was a 150 kg run of 5 crystals of approximately 30 kg each. Several machine and process problems were corrected and the 150 kg run was as successful as previous long runs on CG2000 RC's. The accelerated recharge and growth will be attempted when the development program resumes at full capacity in FY '82. The automation controls (Automatic Grower Light Computer System) were integrated to the seed dip temperature, shoulder, and diameter sensors on the CG2000 RC development grower. Test growths included four crystals, which were grown by the computer/sensor system from seed dip through tail off. This system will be integrated on the Mod CG2000 grower during the next quarter. The analytical task included the completion and preliminary testing of the gas chromatograph portion of the Furnace Atmosphere Analysis System. The system can detect CO concentrations and will be expanded to oxygen and water analysis in FY '82.

  5. Low cost Czochralski crystal growing technology. Near implementation of the flat plate photovoltaic cost reduction of the low cost solar array project

    NASA Technical Reports Server (NTRS)

    Roberts, E. G.

    1980-01-01

    Equipment developed for the manufacture of over 100 kg of silicon ingot from one crucible by rechanging from another crucible is described. Attempts were made to eliminate the cost of raising the furnace temperature to 250 C above the melting point of silicon by using an RF coil to melt polycrystalline silicon rod as a means of rechanging the crucible. Microprocessor control of the straight growth process was developed and domonstrated for both 4 inch and 6 inch diameter. Both meltdown and melt stabilization processes were achieved using operator prompting through the microprocessor. The use of the RF work coil in poly rod melting as a heat sink in the accelerated growth process was unsuccessful. The total design concept for fabrication and interfacing of the total cold crucible system was completed.

  6. Analysis of plastic deformation in silicon web crystals

    NASA Technical Reports Server (NTRS)

    Spitznagel, J. A.; Seidensticker, R. G.; Lien, S. Y.; Mchugh, J. P.; Hopkins, R. H.

    1987-01-01

    Numerical calculation of 111-plane 110-line slip activity in silicon web crystals generated by thermal stresses is in good agreement with etch pit patterns and X-ray topographic data. The data suggest that stress redistribution effects are small and that a model, similar to that proposed by Penning (1958) and Jordan (1981) but modified to account for dislocation annihilation and egress, can be used to describe plastic flow effects during silicon web growth.

  7. High-Q silicon carbide photonic-crystal cavities

    NASA Astrophysics Data System (ADS)

    Lee, Jonathan Y.; Lu, Xiyuan; Lin, Qiang

    2015-01-01

    We demonstrate one-dimensional photonic-crystal nanobeam cavities in amorphous silicon carbide. The fundamental mode exhibits intrinsic optical quality factor as high as 7.69 × 104 with mode volume ˜ 0.60 ( λ / n ) 3 at wavelength 1.5 μm. A corresponding Purcell factor value of ˜104 is the highest reported to date in silicon carbide optical cavities. The device exhibits great potential for integrated nonlinear photonics and cavity nano-optomechanics.

  8. Development of Advanced Czochralski Growth Process to produce low cost 150 KG silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The modified CG2000 crystal grower construction, installation, and machine check-out was completed. The process development check-out proceeded with several dry runs and one growth run. Several machine calibrations and functional problems were discovered and corrected. Several exhaust gas analysis system alternatives were evaluated and an integrated system approved and ordered. A contract presentation was made at the Project Integration Meeting at JPL, including cost-projections using contract projected throughput and machine parameters. Several growth runs on a development CG200 RC grower show that complete neck, crown, and body automated growth can be achieved with only one operator input. Work continued for melt level, melt temperature, and diameter sensor development.

  9. Mode of Occurrence and Cause of Cracking of Li2B4O7 Single Crystals during Growth by Czochralski Method

    NASA Astrophysics Data System (ADS)

    Komatsu, Ryuichi; Uda, Satoshi; Hikita, Kazuyasu

    1993-09-01

    The mode of occurrence and the origin of cracking of lithium tetraborate (Li2B4O7) single crystals during growth have been investigated. The melt temperature dependence and the origin of crystal cracking have been explained in terms of activation enthalpy change for viscous flow in Li2B4O7 melt associated with temperature distribution in the melt.

  10. Metal induced crystallization of amorphous silicon for photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Van Gestel, D.; Gordon, I.; Poortmans, J.

    A silicon thin-film technology could lead to less expensive modules by the use of less silicon material and by the implementation of monolithic module processes. A technology based on polycrystalline-silicon thin-films with a grain size between 1 μm and 1 mm (pc-Si), seems particularly promising since it combines the low-cost potential of a thin-film technology with the high efficiency potential of crystalline silicon. One of the possible approaches to fabricate pc-Si absorber layers is metal induced crystallization (MIC). For solar cell applications mainly aluminium is investigated as metal because 1) it forms a eutectic system with silicon instead of a silicide-metal system like e.g. Ni 2) only shallow level defects are formed in the forbidden bandgap of silicon and 3) a layer exchange process can be obtained in combination with a-Si. Aluminum induced crystallization (AIC) of a-Si on non-silicon substrates can results in grains with a preferential (100) orientation and a maximum grain sizes above 50 micrometer. These layers can act as seed layers for further epitaxial growth. Based on this two-step approach (AIC + epitaxial growth) we made solar cells with an energy conversion efficiency of 8%. Based on TEM, EBIC, SEM, defect etch and EBSD measurements we showed that the efficiency is nowadays mainly limited by the presence of electrical intragrain defects.

  11. Crystal Growth of Germanium-Silicon Alloys on the ISS

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Croell, A.

    2015-01-01

    A series of Ge(1-x)Si(x) crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. The experiments are part of the investigation "Influence of Containment on the Growth of Silicon-Germanium" (ICESAGE). The primary objective of the research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and "detached" Bridgman methods and the ground-based float zone technique. Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. Long duration reduced gravity is essential to test the proposed theory of detached growth. Detached growth requires the establishment of a meniscus between the crystal and the ampoule wall. This meniscus can exist over a much larger range of processing parameters in microgravity and the meniscus is more stable under microgravity conditions. The plans for the flight experiments will be described.

  12. Microwave Induced Direct Bonding of Single Crystal Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Budraa, N. K.; Jackson, H. W.; Barmatz, M.

    1999-01-01

    We have heated polished doped single-crystal silicon wafers in a single mode microwave cavity to temperatures where surface to surface bonding occurred. The absorption of microwaves and heating of the wafers is attributed to the inclusion of n-type or p-type impurities into these substrates. A cylindrical cavity TM (sub 010) standing wave mode was used to irradiate samples of various geometry's at positions of high magnetic field. This process was conducted in vacuum to exclude plasma effects. This initial study suggests that the inclusion of impurities in single crystal silicon significantly improved its microwave absorption (loss factor) to a point where heating silicon wafers directly can be accomplished in minimal time. Bonding of these substrates, however, occurs only at points of intimate surface to surface contact. The inclusion of a thin metallic layer on the surfaces enhances the bonding process.

  13. Distribution of radiative crystal imperfections through a silicon ingot

    SciTech Connect

    Flø, A. Burud, I.; Kvaal, K.; Olsen, E.; Søndenå, R.

    2013-11-15

    Crystal imperfections limit the efficiency of multicrystalline silicon solar cells. Recombination through traps is more prominent in areas with high density of crystal imperfections. A method to visualize the distribution of radiative emission from Shockley Read Hall recombination in silicon is demonstrated. We use hyperspectral photoluminescence, a fast non-destructive method, to image radiatively active recombination processes on a set of 50 wafers through a silicon block. The defect related emission lines D1 and D2 may be detected together or alone. The D3 and D4 seem to be correlated if we assume that an emission at the similar energy as D3 (VID3) is caused by a separate mechanism. The content of interstitial iron (Fe{sub i}) correlates with D4. This method yields a spectral map of the inter band gap transitions, which opens up for a new way to characterize mechanisms related to loss of efficiency for solar cells processed from the block.

  14. Demonstration of superprism effect in silicon pillar 2-D photonic crystal infiltrated with liquid crystals

    NASA Astrophysics Data System (ADS)

    Baroni, Pierre-Yves; Paeder, Vincent; Chang, Yu-Chi; Roussey, Matthieu; Herzig, Hans Peter; Nakagawa, Wataru

    2011-01-01

    Superprism-based deflection of an optical beam is observed in a photonic crystal composed of a triangular lattice of pillars infiltrated with a liquid crystal. The device is based on a Silicon-on-insulator substrate and operates in the telecommunications band. The experimental results show a wavelength shift of 0.76 μm/nm, in reasonable agreement with simulations. Temperature-based control of the liquid crystal properties is also shown to modulate the superprism characteristics.

  15. Stability limits for the horizontal ribbon growth of silicon crystals

    NASA Astrophysics Data System (ADS)

    Daggolu, Parthiv; Yeckel, Andrew; Bleil, Carl E.; Derby, Jeffrey J.

    2013-01-01

    A rigorous, thermal-capillary model, developed to couple heat transfer, melt convection and capillary physics, is employed to assess stability limits of the HRG system for growing silicon ribbons. Extending the prior understanding of this process put forth by Daggolu et al. [Thermal-capillary analysis of the horizontal ribbon growth of silicon crystals, Journal of Crystal Growth 355 (2012) 129-139], model results presented here identify additional failure mechanisms, including the bridging of crystal onto crucible, the spilling of melt from the crucible, and the undercooling of melt at the ribbon tip, that are consistent with prior experimental observations. Changes in pull rate, pull angle, melt height, and other parameters are shown to give rise to limits, indicating that only narrow operating windows exist in multi-dimensional parameter space for stable growth conditions that circumvent these failure mechanisms.

  16. Interstitial silicon ions in rutile Ti O2 crystals

    NASA Astrophysics Data System (ADS)

    Golden, E. M.; Giles, N. C.; Yang, Shan; Halliburton, L. E.

    2015-04-01

    Electron paramagnetic resonance (EPR) is used to identify a new and unique photoactive silicon-related point defect in single crystals of rutile Ti O2 . The importance of this defect lies in its assignment to interstitial silicon ions and the unexpected establishment of silicon impurities as a major hole trap in Ti O2 . Principal g values of this new S =1 /2 center are 1.9159, 1.9377, and 1.9668 with principal axes along the [1 ¯10 ],[001 ] , and [110 ] directions, respectively. Hyperfine structure in the EPR spectrum shows the unpaired spin interacting equally with two Ti nuclei and unequally with two Si nuclei. These silicon ions are present in the Ti O2 crystals as unintentional impurities. Principal values for the larger of the two Si hyperfine interactions are 91.4, 95.4, and 316.4 MHz with principal axes also along the [1 ¯10 ],[001 ] , and [110 ] directions. The model for the defect consists of two adjacent Si ions, one at a tetrahedral interstitial site and the other occupying a Ti site. Together, they form a neutral nonparamagnetic [Siint-S iTi] 0 complex. When a crystal is illuminated below 40 K with 442-nm laser light, holes are trapped by these silicon complexes and form paramagnetic [Siint-S iTi] + defects, while electrons are trapped at oxygen vacancies. Thermal anneal results show that the [Siint-S iTi] + EPR signal disappears in two steps, coinciding with the release of electrons from neutral oxygen vacancies and singly ionized oxygen vacancies. These released electrons recombine with the holes trapped at the silicon complexes.

  17. Industry needs for silicon crystals and standards

    NASA Technical Reports Server (NTRS)

    Benson, K. E.

    1981-01-01

    The trend of the device fabrication industry requirement for larger crystals is reviewed. The ranges of properties and uniformities measurement standards needed for resistivity (four-point probe and spreading resistance) and for the chemical composition of oxygen and carbon impurities are presented.

  18. High-Q silicon carbide photonic-crystal cavities

    SciTech Connect

    Lee, Jonathan Y.; Lu, Xiyuan; Lin, Qiang

    2015-01-26

    We demonstrate one-dimensional photonic-crystal nanobeam cavities in amorphous silicon carbide. The fundamental mode exhibits intrinsic optical quality factor as high as 7.69 × 10{sup 4} with mode volume ∼0.60(λ/n){sup 3} at wavelength 1.5 μm. A corresponding Purcell factor value of ∼10{sup 4} is the highest reported to date in silicon carbide optical cavities. The device exhibits great potential for integrated nonlinear photonics and cavity nano-optomechanics.

  19. Shock compression of [001] single crystal silicon

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Hahn, E. N.; Kad, B.; Remington, B. A.; Bringa, E. M.; Meyers, M. A.

    2016-05-01

    Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent with dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.

  20. Shock compression of [001] single crystal silicon

    DOE PAGESBeta

    Zhao, S.; Remington, B.; Hahn, E. N.; Kad, B.; Bringa, E. M.; Meyers, M. A.

    2016-03-14

    Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent withmore » dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Furthermore, application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.« less

  1. Nanostructures in silicon carbide crystals and films

    NASA Astrophysics Data System (ADS)

    Vlaskina, S. I.; Kruchinin, S. P.; Kuznetsova, E. Ya.; Rodionov, V. E.; Mishinova, G. N.; Svechnikov, G. S.

    2016-03-01

    Phase transformations of SiC crystals with grown original defects and thin films have been presented. The SiC crystals were grown by the Tairov method and the films were obtained by the “sandwich” and Chemical Vapor Deposition (CVD) methods. The analysis of absorption spectra, excitation spectra and low-temperature photoluminescence spectra testifies to the formation of a new microphase during the growth. The complex spectrum can be decomposed into similar structure-constituting spectra shifted on the energy scale relative to the former. Such spectra are indicators of the formation of new nanophases. The joint consideration of photoluminescence spectra, excitement photoluminescence spectra and absorption spectra testifies to the uniformity of different spectra and the autonomy of each of them. Structurally, the total complexity spectra correlate with the degree of disorder (imperfection) of the crystal and are related to the peculiarities of a defective performance such as a one-dimensional disorder. Three different types of spectra have three different principles of construction and behavior.

  2. Laser induced melting and crystallization of boron doped amorphous silicon

    SciTech Connect

    Nebel, C.E.; Schoeniger, S.; Dahlheimer, B.; Stutzmann, M.

    1997-07-01

    Transient reflectivity experiments have been performed to measure the dynamics of laser-induced melting of amorphous silicon (a-Si) and the crystallization to {micro}c-Si of films with different thicknesses on Corning 7059 glass. The laser-induced melting takes place with a velocity of 13 to 24 m/s, while the solidification is about a factor 10 slower. The crystallization starts at the Si/glass interface and at the surface. In the center of the films Si remains liquid for an extended period of time. The crystallization dynamics point towards an heterogeneous morphology of laser-crystallized Si, where the surface and the interface layers are composed of small grains and the bulk of larger grains.

  3. Silicon dioxide nanoporous structure with liquid crystal for optical sensors

    NASA Astrophysics Data System (ADS)

    Sushynskyi, Orest; Vistak, Maria; Gotra, Zenon; Fechan, Andriy; Mikityuk, Zinoviy

    2013-05-01

    It has been studied the spectral characteristics of the porous silicon dioxide and cholesteric liquid crystal. It has been shown that doping of the EE1 cholesteric liquid crystal with Fe3O4 magnetite nanoparticles doesn't shift significantly the position of the transmittance minimum of the material. It has been found that the deformation of chiral pitch of cholesteric liquid crystal with magnetite is observed in case of doping of porous nanocomposite host with following shifting of minimum of transmittance into short wavelength direction. It has been shown that influence of carbon monoxide on optical characteristics of the cholesteric liquid crystal with magnetite can be explained by the interaction of CARBON MONOXIDE molecules with magnetite nanodopants.

  4. Novel silicon crystals and method for their preparation

    NASA Technical Reports Server (NTRS)

    Authier, B.

    1977-01-01

    Plate shaped silicon crystals and their preparation by pouring a silicon melt into a suitable mold and then allowing it to solidify in a temperature gradient were investigated. The production of energy by direct conversion of solar energy into electrical energy by means of solar cells takes on increasing importance. While this type of energy production is already the prevailing form today in the realm of satellite technology, its terrestrial application has thus far encountered strict limitations owing to the high price of such solar cells. Of the greatest interest in this connection are silicon cells. A substantial reduction in the semiconductor material costs and the costs involved in the further processing to make solar cells are prerequisites for a rational market growth for solar energy.

  5. Studies of the Crystallization Process of Aluminum-Silicon Alloys Using a High Temperature Microscope. Thesis

    NASA Technical Reports Server (NTRS)

    Justi, S.

    1985-01-01

    It is shown that primary silicon crystals grow polyhedral in super-eutectic AlSi melts and that phosphorus additives to the melt confirm the strong seeding capacity. Primary silicon exhibits strong dendritic seeding effects in eutectic silicon phases of various silicon alloys, whereas primary aluminum does not possess this capacity. Sodium addition also produces a dendritic silicon network growth in the interior of the sample that is attributed to the slower silicon diffusion velocity during cooling.

  6. Model for dislocation locking by oxygen gettering in silicon crystals

    NASA Astrophysics Data System (ADS)

    Maroudas, Dimitris; Brown, Robert A.

    1991-04-01

    Oxygen gettering to dislocations slows and stops dislocation motion caused by applied stress in silicon crystals. A model is presented that quantitatively describes the inhibition of dislocation motion by accounting for the drag caused by the oxygen atmosphere in the crystal around the dislocation and for oxygen aggregates inside the dislocation core. The oxygen distribution is computed by analysis of diffusion and stress-assisted migration in the crystalline lattice. The predictions of the model agree quantitatively with the experimental data of Imai and Sumino. Hysteresis is predicted in the dependence of the dislocation velocity on applied stress and explains the difference in the unlocking and locking stresses for dislocation motion.

  7. Silicon single-crystal cryogenic optical resonator.

    PubMed

    Wiens, Eugen; Chen, Qun-Feng; Ernsting, Ingo; Luckmann, Heiko; Rosowski, Ulrich; Nevsky, Alexander; Schiller, Stephan

    2014-06-01

    We report on the demonstration and characterization of a silicon optical resonator for laser frequency stabilization, operating in the deep cryogenic regime at temperatures as low as 1.5 K. Robust operation was achieved, with absolute frequency drift less than 20 Hz over 1 h. This stability allowed sensitive measurements of the resonator thermal expansion coefficient (α). We found that α=4.6×10(-13)  K(-1) at 1.6 K. At 16.8 K α vanishes, with a derivative equal to -6×10(-10)  K(-2). The temperature of the resonator was stabilized to a level below 10 μK for averaging times longer than 20 s. The sensitivity of the resonator frequency to a variation of the laser power was also studied. The corresponding sensitivities and the expected Brownian noise indicate that this system should enable frequency stabilization of lasers at the low-10(-17) level. PMID:24876023

  8. Current status of silicon materials research for photovoltaic applications

    SciTech Connect

    Ciszek, T.F.

    1985-04-01

    The desire for high solar cell efficiencies has been a strong factor in determining the course of recent silicon crystal growth research efforts for photovoltaics. This review, therefore, focuses on single-crystal, dislocation-free ingot growth methods (Czochralski growth, float zoning, and cold crucible growth) and on sheet growth technologies, generally multicrystalline, that have achieved moderately high (>13.5%) laboratory-scale efficiencies. These include dendritic web growth, growth from capillary dies, edge-supported pulling, ribbon-against-drop growth, and a recent technique termed crucible-free horizontal growth. Silicon ribbon crystals provide a favorable geometry and require no wafering, but they contain defects that limit solar cell performance. Growth processes, their current status, and cell efficiencies are discussed. Silicon material process steps before and after crystal growth are described, and the advantages of silicon are presented.

  9. Postprocessing sequence for liquid-crystal-on-silicon microdisplays

    NASA Astrophysics Data System (ADS)

    Hermanns, Anno; Shirey, Loretta M.; Geer, Robert E.; Radler, Michael J.; Bian, Zailong; Ratna, Banahalli R.

    1999-03-01

    The backplanes of Liquid-Crystal-on-Silicon microdisplays are derived from a VLSI silicon chip that includes the active matrix as well as row and column drivers. One away to convert this silicon chip into a functional backplane is to planarize the silicon chip, then etch vias through the planarization layer and finally to pattern an array of flat, highly reflective electrodes, each of which is electrically connected to a corresponding cell of the active matrix underneath. Such a post-processing sequence can be carried out in different ways, using either Chemical-Mechanical Polishing or spin-on planarization. We have chosen spin-on planarization with Dow Chemical's Cyclotene resin followed by reactive ion etching of the vias. Finally, electrodes are patterned by aluminum sputtering and lift-off. This step also establishing the electrical connection to the underlying metalization. To demonstrate this sequence we have fabricated a two-level passive silicon backplane with aluminum stripe electrodes. We describe in detail the processing steps involved and report on the achieved degree of planarization, polymer and aluminum roughness.

  10. Analysis of tunable bandgaps in liquid crystal-infiltrated 2D silicon photonic crystals

    NASA Astrophysics Data System (ADS)

    Cos, J.; Ferré-Borrull, J.; Pallarès, J.; Marsal, L. F.

    2010-09-01

    We present a theoretical study on two-dimensional photonic crystals composed of silicon and the E7 liquid crystal. We analyze how the optical axis orientation of the liquid crystal influences the photonic bands and bandgaps, for the case when the Maxwell equations can be decoupled into the TE and TM modes. We consider two different structures, a triangular lattice of E7 liquid crystal cylinders in a silicon background and a triangular lattice of silicon cylinders in an E7 liquid crystal background. The effect of the liquid crystal anisotropy on the geometry of the irreducible Brillouin zone allows us to propose a simplified way to calculate the photonic bandgaps. Results show that the bandgap width and center frequency have a 60° periodicity for both structures. Using the plane-wave expansion method, we determined the maximum bandgap and the optimal radius of the cylinders for each structure. Finally, for the second structure, we propose an optical switch with a 50% duty cycle. These structures can be applied to design tunable photonic devices.

  11. Crystalline silicon germanium films grown on crystalline silicon substrates by solid phase crystallization

    NASA Astrophysics Data System (ADS)

    Kojima, Yuji; Isomura, Masao

    2015-08-01

    We researched on crystalline silicon-germanium films (c-SiGe) for bottom cells of silicon-based multijunction solar cells. We conducted the epitaxial crystal growth of SiGe with approximately 75% Ge fraction due to solid phase crystallization (SPC) from amorphous silicon-germanium (a-SiGe) precursors on n-type (100) Si substrates. We evaluated the preparation conditions of a-SiGe precursors for the SPC epitaxial growth. The epitaxial growth was successfully conducted and (100)-oriented c-SiGe films were formed. The epitaxial growth was effectively promoted in the a-SiGe precursors prepared at the substrate temperature from 250 to 300 °C, but is not sufficiently promoted in the a-SiGe precursors prepared below 250 °C. The density of a-SiGe precursors is relatively low at the substrate temperature below 250 °C, and the low-density structures cause the impurity incorporation from the air-exposed surface. The impurities are probably the main cause of disturbance of the epitaxial growth. On the other hand, the random crystallization occurred in the SPC of the a-SiGe precursors prepared at 350 °C. The precursors have the slightly crystallized structure and are not suitable for the SPC.

  12. Single crystal ternary oxide ferroelectric integration with Silicon

    NASA Astrophysics Data System (ADS)

    Bakaul, Saidur; Serrao, Claudy; Youun, Long; Khan, Asif; Salahuddin, Sayeef

    2015-03-01

    Integrating single crystal, ternary oxide ferroelectric thin film with Silicon or other arbitrary substrates has been a holy grail for the researchers since the inception of microelectronics industry. The key motivation is that adding ferroelectric materials to existing electronic devices could bring into new functionality, physics and performance improvement such as non-volatility of information, negative capacitance effect and lowering sub-threshold swing of field effect transistor (FET) below 60 mV/decade in FET [Salahuddin, S, Datta, S. Nano Lett. 8, 405(2008)]. However, fabrication of single crystal ferroelectric thin film demands stringent conditions such as lattice matched single crystal substrate and high processing temperature which are incompatible with Silicon. Here we report on successful integration of PbZr0.2Ti0.8O3 in single crystal form with by using a layer transfer method. The lattice structure, surface morphology, piezoelectric coefficient d33, dielectric constant, ferroelectric domain switching and spontaneous and remnant polarization of the transferred PZT are as good as these characteristics of the best PZT films grown by pulsed laser deposition on lattice matched oxide substrates. We also demonstrate Si based, FE gate controlled FET devices.

  13. Apparatus and method for the horizontal, crucible-free growth of silicon sheet crystals

    SciTech Connect

    Ciszek, T.F.

    1987-03-17

    This patent describes an apparatus for crucible-free growth of a sheet crystal of silicon, the apparatus comprising; means for providing a substantially enclosed space having an inert atmosphere; heating means for sequentially forming molten silicon from a source of substantially pure silicon within the space; means for vertically feeding a silicon source toward the heating means to form a molten layer of silicon at a top of the source; means for drawing a continuous silicon sheet crystal from the molten silicon layer within the space; wherein a meniscus of molten silicon is created by the drawing means. The apparatus includes means to control the shape of the meniscus, and the controlling means includes a repulsive RF generator for repulsive support of the meniscus as a molten silicon sheet crystal is drawn from the molten silicon. A crucible-free, non-dendritic growth method is described for continuously forming a silicon crystal sheet from a rod of substantially pure silicon, the method comprising: employing an RF heating means having first and second portions to provide a molten layer at an end of the silicon rod in an inert atmosphere by actively heating a first region at the end of the silicon rod while preventing an active heating of a second region of the end of the silicon rod.

  14. Detached Solidification of Germanium-Silicon Crystals on the ISS

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Croell, A.

    2016-01-01

    A series of Ge(sub 1-x) Si(sub x) crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. The primary objective of the research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and "detached" Bridgman methods and the ground-based float zone technique. Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. Long duration reduced gravity is essential to test the proposed theory of detached growth. Detached growth requires the establishment of a meniscus between the crystal and the ampoule wall. The existence of this meniscus depends on the ratio of the strength of gravity to capillary forces. On Earth, this ratio is large and stable detached growth can only be obtained over limited conditions. Crystals grown detached on the ground exhibited superior structural quality as evidenced by measurements of etch pit density, synchrotron white beam X-ray topography and double axis X-ray diffraction.

  15. Annealing to reduce scattering centers in Czochralski-grown beta-BaB2O4.

    PubMed

    Kouta, H; Kuwano, Y

    1999-02-20

    When a visible laser beam passes through beta-BaB(2)O(4) (BBO), scattered light can be observed along the beam within the crystal. Scattering centers caused by structural defects in Czochralski-grown BBO can be reduced by 95% by annealing at 920 degrees C. In the flux-grown BBO, centers actually increase by the same annealing because the process causes microcracks and/or secondary inclusions. It is shown that annealed Czochralski-grown BBO is superior to flux-grown BBO (annealed or as-grown) in terms of optical loss. PMID:18305712

  16. Thermally actuated resonant silicon crystal nanobalances

    NASA Astrophysics Data System (ADS)

    Hajjam, Arash

    As the potential emerging technology for next generation integrated resonant sensors and frequency references as well as electronic filters, micro-electro-mechanical resonators have attracted a lot of attention over the past decade. As a result, a wide variety of high frequency micro/nanoscale electromechanical resonators have recently been presented. MEMS resonators, as low-cost highly integrated and ultra-sensitive mass sensors, can potentially provide new opportunities and unprecedented capabilities in the area of mass sensing. Such devices can provide orders of magnitude higher mass sensitivity and resolution compared to Film Bulk Acoustic resonators (FBAR) or the conventional quartz and Surface Acoustic Wave (SAW) resonators due to their much smaller sizes and can be batch-fabricated and utilized in highly integrated large arrays at a very low cost. In this research, comprehensive experimental studies on the performance and durability of thermally actuated micromechanical resonant sensors with frequencies up to tens of MHz have been performed. The suitability and robustness of the devices have been demonstrated for mass sensing applications related to air-borne particles and organic gases. In addition, due to the internal thermo-electro-mechanical interactions, the active resonators can turn some of the consumed electronic power back into the mechanical structure and compensate for the mechanical losses. Therefore, such resonators can provide self-sustained-oscillation without the need for any electronic circuitry. This unique property has been deployed to demonstrate a prototype self-sustained sensor for air-borne particle monitoring. I have managed to overcome one of the obstacles for MEMS resonators, which is their relatively poor temperature stability. This is a major drawback when compared with the conventional quartz crystals. A significant decrease of the large negative TCF for the resonators has been attained by doping the devices with a high

  17. Tunable photonic structures based on silicon and liquid crystals

    NASA Astrophysics Data System (ADS)

    Perova, Tatiana S.; Tolmachev, Vladimir A.; Astrova, Ekaterina V.

    2008-01-01

    This paper is focused on the design, fabrication and characterization of the conventional and tunable photonic devices based on grooved silicon, serving as one-dimensional (1D) photonic crystal. The advantages of these photonic structures are as follows: the large refractive index contrast, in-plane moulding of the light flow, the possibility to fabricate a composite photonic structures by filling the grooves with a different compounds and compatibility with current semiconductor processing techniques. The optical properties of grooved Si structures were simulated using a transfer matrix method and gap map method and have been verified experimentally using FTIR microscopy. The air spaces in the basic silicon-air matrices were infiltrated with nematic liquid crystal E7. It is shown that the optical properties of the obtained composite 1D photonic crystals can be tuned by means of electro- and thermo-optical effects. Such a structures suit well for the various elements of the integrated optics and can serve as a building blocks for optical interconnects.

  18. Silicon photonic crystal thermal emitter at near-infrared wavelengths

    PubMed Central

    O’Regan, Bryan J.; Wang, Yue; Krauss, Thomas F.

    2015-01-01

    Controlling thermal emission with resonant photonic nanostructures has recently attracted much attention. Most of the work has concentrated on the mid-infrared wavelength range and/or was based on metallic nanostructures. Here, we demonstrate the experimental operation of a resonant thermal emitter operating in the near-infrared (≈1.5 μm) wavelength range. The emitter is based on a doped silicon photonic crystal consisting of a two dimensional square array of holes and using silicon-on-insulator technology with a device-layer thickness of 220 nm. The device is resistively heated by passing current through the photonic crystal membrane. At a temperature of ≈1100 K, we observe relatively sharp emission peaks with a Q factor around 18. A support structure system is implemented in order to achieve a large area suspended photonic crystal thermal emitter and electrical injection. The device demonstrates that weak absorption together with photonic resonances can be used as a wavelength-selection mechanism for thermal emitters, both for the enhancement and the suppression of emission. PMID:26293111

  19. Silicon photonic crystal thermal emitter at near-infrared wavelengths.

    PubMed

    O'Regan, Bryan J; Wang, Yue; Krauss, Thomas F

    2015-01-01

    Controlling thermal emission with resonant photonic nanostructures has recently attracted much attention. Most of the work has concentrated on the mid-infrared wavelength range and/or was based on metallic nanostructures. Here, we demonstrate the experimental operation of a resonant thermal emitter operating in the near-infrared (≈1.5 μm) wavelength range. The emitter is based on a doped silicon photonic crystal consisting of a two dimensional square array of holes and using silicon-on-insulator technology with a device-layer thickness of 220 nm. The device is resistively heated by passing current through the photonic crystal membrane. At a temperature of ≈1100 K, we observe relatively sharp emission peaks with a Q factor around 18. A support structure system is implemented in order to achieve a large area suspended photonic crystal thermal emitter and electrical injection. The device demonstrates that weak absorption together with photonic resonances can be used as a wavelength-selection mechanism for thermal emitters, both for the enhancement and the suppression of emission. PMID:26293111

  20. Improved Silicon Carbide Crystals Grown From Atomically Flat Surfaces

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    2003-01-01

    The NASA Glenn Research Center is demonstrating that atomically flat (i.e., step-free) silicon carbide (SiC) surfaces are ideal for realizing greatly improved wide bandgap semiconductor films with lower crystal defect densities. Further development of these improved films could eventually enable harsh-environment electronics beneficial to jet engine and other aerospace and automotive applications, as well as much more efficient and compact power distribution and control. The technique demonstrated could also improve blue-light lasers and light-emitting-diode displays.

  1. Silicon photonic crystal resonators for label free biosensor

    NASA Astrophysics Data System (ADS)

    Sana, Amrita Kumar; Honzawa, Keita; Amemiya, Yoshiteru; Yokoyama, Shin

    2016-04-01

    We report the fabrication and characterization of a two-dimensional (2D) silicon photonic crystal biosensor consisting of waveguides and cavity-type and defect-type resonators for enhancing the interactions between light and biomaterials. Sensitivity was measured using sucrose solution and the sensor showed the highest sensitivity [1570 nm/RIU (refractive index unit)] ever reported. We also investigated cavity size effects on resonance wavelength shift, and we observed that a large cavity exhibits a greater resonance wavelength shift. The fabricated sensor has shown a high Q of ∼105 in water and a device figure of merit of 1.2 × 105, which represent the improvements of the device performance over other photonic-crystal-based sensors.

  2. Structure development in silicon sheet by shaped crystallization

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.; De Angelis, R. J.

    1978-01-01

    Models are presented for the development of a parallel twinned structure of the 110 plane type and the 112 line type in silicon ribbons. The models are believed to be mutually compatible and operable. The first model relates the requirements for super-cooling during crystallization. The existence of reentrant angles associated with the twin structure is proposed to provide a rough interface to reduce super-cooling. The spacing of the twins is proposed to be limited by the geometrical relationship between the thermal gradient in the liquid and the dimensions of the twinned crystallization front. The second model relates the thermal stress configuration to detail dislocation reactions which would be expected to develop twins. While a specific dislocation mechanism cannot yet be defined, a number of alternatives are presented. All of these various dislocation mechanisms would result in the observed crystalline configuration and the choice among them is not critical.

  3. Silicon crystal as a low work function collector

    NASA Technical Reports Server (NTRS)

    Chang, K. H.; Shimada, K.

    1975-01-01

    A test vehicle with a low work function collector which can be incorporated in a thermionic converter was constructed from standard vacuum components including an ultrahigh vacuum ion pump. The collector assembly was fabricated by diffusion bonding a (100) oriented silicon single crystal to a molybdenum block. The silicon surface was treated with cesium and oxygen to produce an NEA-type condition and the results were tested by photoemission and work function measurements. An n-type silicon collector was successfully activated to a work function of 1.0 eV, which was verified by photoemission spectral yield measurements. The stability test of an activated surface at elevated temperatures was conducted in the range from room temperature to 619 K, which was slightly lower than the designed collector temperature of 700 K. The work function measurements clearly demonstrated that the behavior of cesium replenishment on the activated Si surface was similar in nature to that of a metallic surface; that is, the loss of cesium by thermal desorption could be compensated by maintaining an adequate vapor pressure of cesium.

  4. Porous silicon photonic crystals for detection of infections

    NASA Astrophysics Data System (ADS)

    Gupta, B.; Guan, B.; Reece, P. J.; Gooding, J. J.

    2012-10-01

    In this paper we demonstrate the possibility of modifying porous silicon (PSi) particles with surface chemistry and immobilizing a biopolymer, gelatin for the detection of protease enzymes in solution. A rugate filter, a one-dimensional photonic crystal, is fabricated that exhibits a high-reflectivity optical resonance that is sensitive to small changes in the refractive index. To immobilize gelatin in the pores of the particles, the hydrogen-terminated silicon surface was first modified with an alkyne, 1,8-nonadiyne via hydrosilylation to protect the silicon surfaces from oxidation. This modification allows for further functionality to be added such as the coupling of gelatin. Exposure of the gelatin modified particles to the protease subtilisin in solution causes a change in the refractive index, resulting in a shift of the resonance to shorter wavelengths, indicating cleavage of organic material within the pores. The ability to monitor the spectroscopic properties of microparticles, and shifts in the optical signature due to changes in the refractive index of the material within the pore space, is demonstrated.

  5. Observation of soliton compression in silicon photonic crystals

    PubMed Central

    Blanco-Redondo, A.; Husko, C.; Eades, D.; Zhang, Y.; Li, J.; Krauss, T.F.; Eggleton, B.J.

    2014-01-01

    Solitons are nonlinear waves present in diverse physical systems including plasmas, water surfaces and optics. In silicon, the presence of two photon absorption and accompanying free carriers strongly perturb the canonical dynamics of optical solitons. Here we report the first experimental demonstration of soliton-effect pulse compression of picosecond pulses in silicon, despite two photon absorption and free carriers. Here we achieve compression of 3.7 ps pulses to 1.6 ps with <10 pJ energy. We demonstrate a ~1-ps free-carrier-induced pulse acceleration and show that picosecond input pulses are critical to these observations. These experiments are enabled by a dispersion-engineered slow-light photonic crystal waveguide and an ultra-sensitive frequency-resolved electrical gating technique to detect the ultralow energies in the nanostructured device. Strong agreement with a nonlinear Schrödinger model confirms the measurements. These results further our understanding of nonlinear waves in silicon and open the way to soliton-based functionalities in complementary metal-oxide-semiconductor-compatible platforms. PMID:24423977

  6. Process for making silicon

    NASA Technical Reports Server (NTRS)

    Levin, Harry (Inventor)

    1987-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  7. Self-assembled single-crystal silicon circuits on plastic

    PubMed Central

    Stauth, Sean A.; Parviz, Babak A.

    2006-01-01

    We demonstrate the use of self-assembly for the integration of freestanding micrometer-scale components, including single-crystal, silicon field-effect transistors (FETs) and diffusion resistors, onto flexible plastic substrates. Preferential self-assembly of multiple microcomponent types onto a common platform is achieved through complementary shape recognition and aided by capillary, fluidic, and gravitational forces. We outline a microfabrication process that yields single-crystal, silicon FETs in a freestanding, powder-like collection for use with self-assembly. Demonstrations of self-assembled FETs on plastic include logic inverters and measured electron mobility of 592 cm2/V-s. Finally, we extend the self-assembly process to substrates each containing 10,000 binding sites and realize 97% self-assembly yield within 25 min for 100-μm-sized elements. High-yield self-assembly of micrometer-scale functional devices as outlined here provides a powerful approach for production of macroelectronic systems. PMID:16968780

  8. Maximizing Photoluminescence Extraction in Silicon Photonic Crystal Slabs.

    PubMed

    Mahdavi, Ali; Sarau, George; Xavier, Jolly; Paraïso, Taofiq K; Christiansen, Silke; Vollmer, Frank

    2016-01-01

    Photonic crystal modes can be tailored for increasing light matter interactions and light extraction efficiencies. These PhC properties have been explored for improving the device performance of LEDs, solar cells and precision biosensors. Tuning the extended band structure of 2D PhC provides a means for increasing light extraction throughout a planar device. This requires careful design and fabrication of PhC with a desirable mode structure overlapping with the spectral region of emission. We show a method for predicting and maximizing light extraction from 2D photonic crystal slabs, exemplified by maximizing silicon photoluminescence (PL). Systematically varying the lattice constant and filling factor, we predict the increases in PL intensity from band structure calculations and confirm predictions in micro-PL experiments. With the near optimal design parameters of PhC, we demonstrate more than 500-fold increase in PL intensity, measured near band edge of silicon at room temperature, an enhancement by an order of magnitude more than what has been reported. PMID:27113674

  9. Maximizing Photoluminescence Extraction in Silicon Photonic Crystal Slabs

    PubMed Central

    Mahdavi, Ali; Sarau, George; Xavier, Jolly; Paraïso, Taofiq K.; Christiansen, Silke; Vollmer, Frank

    2016-01-01

    Photonic crystal modes can be tailored for increasing light matter interactions and light extraction efficiencies. These PhC properties have been explored for improving the device performance of LEDs, solar cells and precision biosensors. Tuning the extended band structure of 2D PhC provides a means for increasing light extraction throughout a planar device. This requires careful design and fabrication of PhC with a desirable mode structure overlapping with the spectral region of emission. We show a method for predicting and maximizing light extraction from 2D photonic crystal slabs, exemplified by maximizing silicon photoluminescence (PL). Systematically varying the lattice constant and filling factor, we predict the increases in PL intensity from band structure calculations and confirm predictions in micro-PL experiments. With the near optimal design parameters of PhC, we demonstrate more than 500-fold increase in PL intensity, measured near band edge of silicon at room temperature, an enhancement by an order of magnitude more than what has been reported. PMID:27113674

  10. Defects in silicon effect on device performance and relationship to crystal growth conditions

    NASA Technical Reports Server (NTRS)

    Jastrzebski, L.

    1985-01-01

    A relationship between material defects in silicon and the performance of electronic devices will be described. A role which oxygen and carbon in silicon play during the defects generation process will be discussed. The electronic properties of silicon are a strong function of the oxygen state in the silicon. This state controls mechanical properties of silicon efficiency for internal gettering and formation of defects in the device's active area. In addition, to temperature, time, ambience, and the cooling/heating rates of high temperature treatments, the oxygen state is a function of the crystal growth process. The incorporation of carbon and oxygen into silicon crystal is controlled by geometry and rotation rates applied to crystal and crucible during crystal growths. Also, formation of nucleation centers for oxygen precipitation is influenced by the growth process, although there is still a controversy which parameters play a major role. All these factors will be reviewed with special emphasis on areas which are still ambiguous and controversial.

  11. Isotropic behavior of an anisotropic material: single crystal silicon

    NASA Astrophysics Data System (ADS)

    McCarter, Douglas R.; Paquin, Roger A.

    2013-09-01

    Zero defect single crystal silicon (Single-Crystal Si), with its diamond cubic crystal structure, is completely isotropic in most properties important for advanced aerospace systems. This paper will identify behavior of the three most dominant planes of the Single-Crystal Si cube (110), (100) and (111). For example, thermal and optical properties are completely isotropic for any given plane. The elastic and mechanical properties however are direction dependent. But we show through finite element analysis that in spite of this, near-isotropic behavior can be achieved with component designs that utilize the optimum elastic modulus in directions with the highest loads. Using glass frit bonding to assemble these planes is the only bonding agent that doesn't degrade the performance of Single-Crystal Si. The most significant anisotropic property of Single-Crystal Si is the Young's modulus of elasticity. Literature values vary substantially around a value of 145 GPa. The truth is that while the maximum modulus is 185 GPa, the most useful <110< crystallographic direction has a high 169 GPa, still higher than that of many materials such as aluminum and invar. And since Poisson's ratio in this direction is an extremely low 0.064, distortion in the plane normal to the load is insignificant. While the minimum modulus is 130 GPa, a calculated average value is close to the optimum at approximately 160 GPa. The minimum modulus is therefore almost irrelevant. The (111) plane, referred to as the natural cleave plane survives impact that would overload the (110) and/or (100) plane due to its superior density. While mechanical properties vary from plane to plane each plane is uniform and response is predictable. Understanding the Single-Crystal Si diamond cube provides a design and manufacture path for building lightweight Single-Crystal Si systems with near-isotropic response to loads. It is clear then that near-isotropic elastic behavior is achievable in Single-Crystal Si

  12. Crystallization and activation of silicon by microwave rapid annealing

    NASA Astrophysics Data System (ADS)

    Kimura, Shunsuke; Ota, Kosuke; Hasumi, Masahiko; Suzuki, Ayuta; Ushijima, Mitsuru; Sameshima, Toshiyuki

    2016-07-01

    A combination of the carbon-powder absorber with microwave irradiation is proposed as a rapid heat method. 2-μm-diameter carbon powders with a packing density of 0.08 effectively absorbed 2.45 GHz 1000-W-microwave and heated themselves to 1163 °C for 26 s. The present heat treatment recrystallized n-type crystalline silicon surfaces implanted with 1.0 × 10^{15}hbox {-cm}^{-2}-boron and phosphorus atoms with crystalline volume ratios of 0.99 and 0.93, respectively, by microwave irradiation at 1000 W for 20 s. Activation and carrier generation were simultaneously achieved with a sheet resistivity of 62 Ω / hbox {sq}. A high photo-induced-carrier effective lifetime of 1.0 × 10^{-4} s was also achieved. Typical electrical current-rectified characteristic and solar cell characteristic with an efficiency of 12.1 % under 100-mW/cm2-air-mass-1.5 illumination were obtained. Moreover, heat treatment with microwave irradiation at 1000 W for 22 s successfully crystallized silicon thin films with thicknesses ranging from 2.4 to 50 nm formed on quartz substrates. Nano-crystalline cluster structure with a high volume ratio of 50 % was formed in the 1.8-nm (initial 2.4-nm)-thick silicon films. Photoluminescence around 1.77 eV was observed for the 1.8-nm-thick silicon films annealed at 260 °C in 1.3 × 106-Pa-H2O-vapor for 3 h after the microwave heating.

  13. Digital photofinishing system based on liquid crystal on silicon

    NASA Astrophysics Data System (ADS)

    Zheng, Minmin; Yan, Huimin; Zhang, Xiuda; Du, Yanli

    2006-01-01

    As the digital camera user base grows, so does the demand for digital imaging services. A new digital photo finishing system based on Liquid Crystal On Silicon (LCOS) is presented. The LCOS panel motherboard is made up of CMOS chip. Three individual streams of light (red, green, blue) are directed to corresponding Polarization Beam Spliter (PBS) to make the S polarization beam arrive at LCOS panel. When the Liquid appears light, the S polarization beam is changed to P polarization beam and reflected to pass through Polarization Beam Spliter. Compared with Thin Film Transistor-Liquid Crystal Display (TFT-LCD), LCOS has many merits including high resolution, high contrast, wide viewing angle, low cost and so on. In this work, we focus on the way in which the images will be displayed on LCOS. A liquid crystal on silicon microdisplay driver circuit for digital photo finishing system has been designed and fabricated using BRILLIAN microdisplay driver lite(MDD-LITE) ASIC and LCOS SXGA (1280×1024 pixel) with a 0.78"(20mm) diagonal active matrix reflective mode LCD. The driver includes a control circuit, which presents serial data, serial clock , write protect signals and control signals for LED, and a mixed circuit which implements RGB signal to input the LCOS. According to a minimum error sum of squares algorithm, we find a minimum offset and then shift RGB optical intensity vs voltage curves right and left to make these three curves almost coincide with each other. The design had great application in the digital photo finishing.

  14. Rapid thermal annealing and crystallization mechanisms study of silicon nanocrystal in silicon carbide matrix

    PubMed Central

    2011-01-01

    In this paper, a positive effect of rapid thermal annealing (RTA) technique has been researched and compared with conventional furnace annealing for Si nanocrystalline in silicon carbide (SiC) matrix system. Amorphous Si-rich SiC layer has been deposited by co-sputtering in different Si concentrations (50 to approximately 80 v%). Si nanocrystals (Si-NC) containing different grain sizes have been fabricated within the SiC matrix under two different annealing conditions: furnace annealing and RTA both at 1,100°C. HRTEM image clearly reveals both Si and SiC-NC formed in the films. Much better "degree of crystallization" of Si-NC can be achieved in RTA than furnace annealing from the research of GIXRD and Raman analysis, especially in high-Si-concentration situation. Differences from the two annealing procedures and the crystallization mechanism have been discussed based on the experimental results. PMID:21711625

  15. Rapid thermal annealing and crystallization mechanisms study of silicon nanocrystal in silicon carbide matrix.

    PubMed

    Wan, Zhenyu; Huang, Shujuan; Green, Martin A; Conibeer, Gavin

    2011-01-01

    In this paper, a positive effect of rapid thermal annealing (RTA) technique has been researched and compared with conventional furnace annealing for Si nanocrystalline in silicon carbide (SiC) matrix system. Amorphous Si-rich SiC layer has been deposited by co-sputtering in different Si concentrations (50 to approximately 80 v%). Si nanocrystals (Si-NC) containing different grain sizes have been fabricated within the SiC matrix under two different annealing conditions: furnace annealing and RTA both at 1,100°C. HRTEM image clearly reveals both Si and SiC-NC formed in the films. Much better "degree of crystallization" of Si-NC can be achieved in RTA than furnace annealing from the research of GIXRD and Raman analysis, especially in high-Si-concentration situation. Differences from the two annealing procedures and the crystallization mechanism have been discussed based on the experimental results. PMID:21711625

  16. Tailoring the optical constants in single-crystal silicon with embedded silver nanostructures for advanced silicon photonics applications

    SciTech Connect

    Akhter, Perveen; Huang, Mengbing Spratt, William; Kadakia, Nirag; Amir, Faisal

    2015-03-28

    Plasmonic effects associated with metal nanostructures are expected to hold the key to tailoring light emission/propagation and harvesting solar energy in materials including single crystal silicon which remains the backbone in the microelectronics and photovoltaics industries but unfortunately, lacks many functionalities needed for construction of advanced photonic and optoelectronics devices. Currently, silicon plasmonic structures are practically possible only in the configuration with metal nanoparticles or thin film arrays on a silicon surface. This does not enable one to exploit the full potential of plasmonics for optical engineering in silicon, because the plasmonic effects are dominant over a length of ∼50 nm, and the active device region typically lies below the surface much beyond this range. Here, we report on a novel method for the formation of silver nanoparticles embedded within a silicon crystal through metal gettering from a silver thin film deposited at the surface to nanocavities within the Si created by hydrogen ion implantation. The refractive index of the Ag-nanostructured layer is found to be 3–10% lower or higher than that of silicon for wavelengths below or beyond ∼815–900 nm, respectively. Around this wavelength range, the optical extinction values increase by a factor of 10–100 as opposed to the pure silicon case. Increasing the amount of gettered silver leads to an increased extinction as well as a redshift in wavelength position for the resonance. This resonance is attributed to the surface plasmon excitation of the resultant silver nanoparticles in silicon. Additionally, we show that the profiles for optical constants in silicon can be tailored by varying the position and number of nanocavity layers. Such silicon crystals with embedded metal nanostructures would offer novel functional base structures for applications in silicon photonics, optoelectronics, photovoltaics, and plasmonics.

  17. Tailoring the optical constants in single-crystal silicon with embedded silver nanostructures for advanced silicon photonics applications

    NASA Astrophysics Data System (ADS)

    Akhter, Perveen; Huang, Mengbing; Spratt, William; Kadakia, Nirag; Amir, Faisal

    2015-03-01

    Plasmonic effects associated with metal nanostructures are expected to hold the key to tailoring light emission/propagation and harvesting solar energy in materials including single crystal silicon which remains the backbone in the microelectronics and photovoltaics industries but unfortunately, lacks many functionalities needed for construction of advanced photonic and optoelectronics devices. Currently, silicon plasmonic structures are practically possible only in the configuration with metal nanoparticles or thin film arrays on a silicon surface. This does not enable one to exploit the full potential of plasmonics for optical engineering in silicon, because the plasmonic effects are dominant over a length of ˜50 nm, and the active device region typically lies below the surface much beyond this range. Here, we report on a novel method for the formation of silver nanoparticles embedded within a silicon crystal through metal gettering from a silver thin film deposited at the surface to nanocavities within the Si created by hydrogen ion implantation. The refractive index of the Ag-nanostructured layer is found to be 3-10% lower or higher than that of silicon for wavelengths below or beyond ˜815-900 nm, respectively. Around this wavelength range, the optical extinction values increase by a factor of 10-100 as opposed to the pure silicon case. Increasing the amount of gettered silver leads to an increased extinction as well as a redshift in wavelength position for the resonance. This resonance is attributed to the surface plasmon excitation of the resultant silver nanoparticles in silicon. Additionally, we show that the profiles for optical constants in silicon can be tailored by varying the position and number of nanocavity layers. Such silicon crystals with embedded metal nanostructures would offer novel functional base structures for applications in silicon photonics, optoelectronics, photovoltaics, and plasmonics.

  18. Perspectives on integrated modeling of transport processes in semiconductor crystal growth

    NASA Technical Reports Server (NTRS)

    Brown, Robert A.

    1992-01-01

    The wide range of length and time scales involved in industrial scale solidification processes is demonstrated here by considering the Czochralski process for the growth of large diameter silicon crystals that become the substrate material for modern microelectronic devices. The scales range in time from microseconds to thousands of seconds and in space from microns to meters. The physics and chemistry needed to model processes on these different length scales are reviewed.

  19. Friction and wear behavior of single-crystal silicon carbide in contact with titanium

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1977-01-01

    Sliding friction experiments were conducted with single crystal silicon carbide in sliding contact with titanium. Results indicate that the friction coefficient is greater in vacuum than in argon and that this is due to the greater adhesion or adhesive transfer in vacuum. Thin films of silicon carbide transferred to titanium also adhered to silicon carbide both in argon at atmospheric pressure and in high vacuum. Cohesive bonds fractured on both the silicon carbide and titanium surfaces. The wear debris of silicon carbide created by fracture plowed the silicon carbide surface in a plastic manner. The friction characteristics of titanium in contact with silicon carbide were sensitive to the surface roughness of silicon carbide, and the friction coefficients were higher for a rough surface of silicon carbide than for a smooth one. The difference in friction results was due to plastic deformation (plowing of titanium).

  20. Optical nonreciprocal transmission in an asymmetric silicon photonic crystal structure

    SciTech Connect

    Wu, Zheng; Chen, Juguang; Ji, Mengxi; Huang, Qingzhong; Xia, Jinsong; Wang, Yi E-mail: ywangwnlo@mail.hust.edu.cn; Wu, Ying E-mail: ywangwnlo@mail.hust.edu.cn

    2015-11-30

    An optical nonreciprocal transmission (ONT) is realized by employing the nonlinear effects in a compact asymmetric direct-coupled nanocavity-waveguide silicon photonic crystal structure with a high loaded quality factor (Q{sub L}) of 42 360 and large extinction ratio exceeding 30 dB. Applying a single step lithography and successive etching, the device can realize the ONT in an individual nanocavity, alleviating the requirement to accurately control the resonance of the cavities. A maximum nonreciprocal transmission ratio of 21.1 dB as well as a working bandwidth of 280 pm in the telecommunication band are obtained at a low input power of 76.7 μW. The calculated results by employing a nonlinear coupled-mode model are in good agreement with the experiment.

  1. Path to meter class single crystal silicon (SCSi) space optics

    NASA Astrophysics Data System (ADS)

    McCarter, Douglas R.

    2012-03-01

    With the global financial crisis affecting funding for space systems development, customers are calling for lower cost systems. Yet, at the same time, these lower cost systems must have increased thermal response to operational environments and load survivability. We submit that single crystal silicon (SCSi) meets both of these requirements. This paper will highlight some key SCSi material properties, discuss the opportunities that led to the development of McCarter processing methods, and present the latest steps in the manufacturing path of McCarter Mirrors using SCSi, GFB (glass frit bonding) and MSF (McCarter super finish), including the concept drawing of a one meter SCSi lightweight mirror, which together sets up the last step toward a lower cost, high performing one meter SCSi space optic.

  2. Lifetime analysis of laser crystallized silicon films on glass

    SciTech Connect

    Kühnapfel, Sven; Amkreutz, Daniel; Gall, Stefan; Huang, Jialiang; Teal, Anthony; Kampwerth, Henner; Varlamov, Sergey

    2015-08-07

    Only recently, the quality of liquid phase crystallized silicon directly on glass substrates made a huge leap towards the quality of multi-crystalline wafers with open circuit voltages well above 600 mV. In this paper, we investigate the material quality in order to identify the factors limiting further performance improvements. We employ photoluminescence imaging on a state of the art test structure with lifetime calibration by transient photoluminescence. The resulting lifetime map is converted into an effective diffusion length map and the origin of regions with short lifetimes is investigated with electron backscattering and transmission electron microscopy. High local dislocation densities in areas with dissociated coincidence site lattice boundaries were found to be responsible for the localised quenching of the photoluminescence signal.

  3. Material requirements for the adoption of unconventional silicon crystal and wafer growth techniques for high-efficiency solar cells

    DOE PAGESBeta

    Hofstetter, Jasmin; del Cañizo, Carlos; Wagner, Hannes; Castellanos, Sergio; Buonassisi, Tonio

    2015-10-15

    Silicon wafers comprise approximately 40% of crystalline silicon module cost and represent an area of great technological innovation potential. Paradoxically, unconventional wafer-growth techniques have thus far failed to displace multicrystalline and Czochralski silicon, despite four decades of innovation. One of the shortcomings of most unconventional materials has been a persistent carrier lifetime deficit in comparison to established wafer technologies, which limits the device efficiency potential. In this perspective article, we review a defect-management framework that has proven successful in enabling millisecond lifetimes in kerfless and cast materials. Control of dislocations and slowly diffusing metal point defects during growth, coupled tomore » effective control of fast-diffusing species during cell processing, is critical to enable high cell efficiencies. As a result, to accelerate the pace of novel wafer development, we discuss approaches to rapidly evaluate the device efficiency potential of unconventional wafers from injection-dependent lifetime measurements.« less

  4. Material requirements for the adoption of unconventional silicon crystal and wafer growth techniques for high-efficiency solar cells

    SciTech Connect

    Hofstetter, Jasmin; del Cañizo, Carlos; Wagner, Hannes; Castellanos, Sergio; Buonassisi, Tonio

    2015-10-15

    Silicon wafers comprise approximately 40% of crystalline silicon module cost and represent an area of great technological innovation potential. Paradoxically, unconventional wafer-growth techniques have thus far failed to displace multicrystalline and Czochralski silicon, despite four decades of innovation. One of the shortcomings of most unconventional materials has been a persistent carrier lifetime deficit in comparison to established wafer technologies, which limits the device efficiency potential. In this perspective article, we review a defect-management framework that has proven successful in enabling millisecond lifetimes in kerfless and cast materials. Control of dislocations and slowly diffusing metal point defects during growth, coupled to effective control of fast-diffusing species during cell processing, is critical to enable high cell efficiencies. As a result, to accelerate the pace of novel wafer development, we discuss approaches to rapidly evaluate the device efficiency potential of unconventional wafers from injection-dependent lifetime measurements.

  5. Photonic Crystal Cavities in Cubic (3C) Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Radulaski, Marina; Babinec, Thomas; Buckley, Sonia; Rundquist, Armand; Provine, J.; Alassaad, Kassem; Ferro, Gabriel; Vuckovic, Jelena

    2014-03-01

    Silicon carbide (SiC) combines many of the outstanding material properties of other well-known optical and quantum optical materials, including strong optical nonlinearity, high Young's modulus, and a host of optically-active crystalline defects, in a single CMOS-compatible platform. For many applications in classical and quantum information processing, the material properties of the cubic silicon carbide polytype (3C-SiC) in particular are advantageous. We therefore present the design, fabrication, and characterization of high quality factor and small mode volume planar photonic crystal cavities in cubic 3C-SiC thin films (200 nm). We demonstrate cavity resonances across the infrared telecommunications band, with wavelengths from 1.25 - 1.6 μm. Finally, we highlight our progress developing higher Q/V nanobeam cavities, as well as extending this optical cavity platform towards integration with SiC color centers. PECASE Grant ECCS-10 25811, NSF Grant ECS-9731293, Stanford Graduate Fellowship, National Science Graduate Fellowship.

  6. Crystallization and doping of amorphous silicon on low temperature plastic

    DOEpatents

    Kaschmitter, J.L.; Truher, J.B.; Weiner, K.H.; Sigmon, T.W.

    1994-09-13

    A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate is disclosed. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900 C), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180 C for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180 C) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide. 5 figs.

  7. Crystallization and doping of amorphous silicon on low temperature plastic

    DOEpatents

    Kaschmitter, James L.; Truher, Joel B.; Weiner, Kurt H.; Sigmon, Thomas W.

    1994-01-01

    A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900.degree. C.), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180.degree. C. for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180.degree. C.) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide.

  8. Biomolecular screening with encoded porous-silicon photonic crystals.

    PubMed

    Cunin, Frédérique; Schmedake, Thomas A; Link, Jamie R; Li, Yang Yang; Koh, Jennifer; Bhatia, Sangeeta N; Sailor, Michael J

    2002-09-01

    Strategies to encode or label small particles or beads for use in high-throughput screening and bioassay applications focus on either spatially differentiated, on-chip arrays or random distributions of encoded beads. Attempts to encode large numbers of polymeric, metallic or glass beads in random arrays or in fluid suspension have used a variety of entities to provide coded elements (bits)--fluorescent molecules, molecules with specific vibrational signatures, quantum dots, or discrete metallic layers. Here we report a method for optically encoding micrometre-sized nanostructured particles of porous silicon. We generate multilayered porous films in crystalline silicon using a periodic electrochemical etch. This results in photonic crystals with well-resolved and narrow optical reflectivity features, whose wavelengths are determined by the etching parameters. Millions of possible codes can be prepared this way. Micrometre-sized particles are then produced by ultrasonic fracture, mechanical grinding or by lithographic means. A simple antibody-based bioassay using fluorescently tagged proteins demonstrates the encoding strategy in biologically relevant media. PMID:12618846

  9. Process development for single-crystal silicon solar cells

    NASA Astrophysics Data System (ADS)

    Bohra, Mihir H.

    Solar energy is a viable, rapidly growing and an important renewable alternative to other sources of energy generation because of its abundant supply and low manufacturing cost. Silicon still remains the major contributor for manufacturing solar cells accounting for 80% of the market share. Of this, single-crystal solar cells account for half of the share. Laboratory cells have demonstrated 25% efficiency; however, commercial cells have efficiencies of 16% - 20% resulting from a focus on implementation processes geared to rapid throughput and low cost, thereby reducing the energy pay-back time. An example would be the use of metal pastes which dissolve the dielectric during the firing process as opposed to lithographically defined contacts. With current trends of single-crystal silicon photovoltaic (PV) module prices down to 0.60/W, almost all other PV technologies are challenged to remain cost competitive. This presents a unique opportunity in revisiting the PV cell fabrication process and incorporating moderately more expensive IC process practices into PV manufacturing. While they may drive the cost toward a 1/W benchmark, there is substantial room to "experiment", leading to higher efficiencies which will help maintain the overall system cost. This work entails a turn-key process designed to provide a platform for rapid evaluation of novel materials and processes. A two-step lithographic process yielding a baseline 11% - 13% efficient cell is described. Results of three studies have shown improvements in solar cell output parameters due to the inclusion of a back-surface field implant, a higher emitter doping and also an additional RCA Clean.

  10. Crystallization of the glassy grain boundary phase in silicon nitride ceramics

    NASA Technical Reports Server (NTRS)

    Drummond, Charles H., III

    1991-01-01

    The role was studied of the intergranular glassy phase in silicon nitride as-processed with yttria as a sintering aid. The microstructure, crystallization, and viscosity of the glassy phase were areas studied. Crystallization of the intergranular glassy phase to more refractory crystalline phases should improve the high temperature mechanical properties of the silicon nitride. The addition of a nucleating agent will increase the rate of crystallization. The measurement of the viscosity of the glassy phase will permit the estimation of the high temperature deformation of the silicon nitride.

  11. Electrical and Structural Characterization of Web Dendrite Crystals

    NASA Technical Reports Server (NTRS)

    Schwuttke, G. H.; Koliwad, K.; Dumas, K. A.

    1985-01-01

    Minority carrier lifetime distributions in silicon web dendrites are measured. Emphasis is placed on measuring areal homogeneity of lifetime, show its dependency on structural defects, and its unique change during hot processing. The internal gettering action of defect layers present in web crystals and their relation to minority carrier lifetime distributions is discussed. Minority carrier lifetime maps of web dendrites obtained before and after high temperature heat treatment are compared to similar maps obtained from 100 mm diameter Czochralski silicon wafers. Such maps indicate similar or superior areal homogeneity of minority carrier lifetime in webs.

  12. Epitaxial growth of germanium thin films on crystal silicon substrates by solid phase crystallization

    NASA Astrophysics Data System (ADS)

    Isomura, Masao; Kanai, Mikuri

    2015-04-01

    We have investigated the solid phase crystallization (SPC) of amorphous germanium (a-Ge) precursors on single crystalline silicon (c-Si) substrates as seed layers and successfully obtained the epitaxial growth of Ge. The n-type (100) Si substrate is most suitable for preferential growth following the substrate orientation, because the velocity of preferential growth is higher than those on the other substrates and preferential growth is completed before random nucleation. The impurity contamination in the a-Ge precursors probably enhances random nucleation. The epitaxial growth is disturbed by the impurity contamination at a relatively high SPC temperature in the intrinsic and p-type Si substrates with the (100) orientation and the n-type and intrinsic Si substrates with the (111) orientation, because the lower velocity of preferential growth allows random crystallization. Almost no epitaxial growth is observed on the p-type (111) Si substrates even when low-impurity a-Ge precursors are used.

  13. Czochralski growth of six Yb-doped double borate and silicate laser materials

    NASA Astrophysics Data System (ADS)

    Haumesser, Paul-Henri; Gaumé, Romain; Benitez, Jean-Marie; Viana, Bruno; Ferrand, Bernard; Aka, Gérard; Vivien, Daniel

    2001-11-01

    New Yb-doped oxides have been grown by the Czochralski method. They include borates such as Ca 3Y 2(BO 3) 4 (CYB), Ca 3Gd 2(BO 3) 4 (CaGB), Sr 3Y(BO 3) 3 (SrYBO) and Ba 3Lu(BO 3) 3 (BLuB) as well as the silicates Y 2SiO 5 (YSO), Ca 2Al 2SiO 7 (CAS) and SrY 4(SiO 4) 3O (SYS). Successful Czochralski growth is reported for the first time in the case of SrYBO. Scattering center free CAS single crystals were obtained as well. Spectroscopic evaluation reveals that all those materials should be suitable for diode pumping at 980 nm due to broad absorption lines, and operate in a quasi-3-level scheme with large crystal-field splitting of the Yb ground state manifold.

  14. Carbon-nanotube electron-beam (C-beam) crystallization technique for silicon TFTs

    NASA Astrophysics Data System (ADS)

    Lee, Su Woong; Kang, Jung Su; Park, Kyu Chang

    2016-02-01

    We introduced a carbon-nanotube (CNT) electron beam (C-beam) for thin film crystallization and thin film transistor (TFT) applications. As a source of electron emission, a CNT emitter which had been grown on a silicon wafer with a resist-assisted patterning (RAP) process was used. By using the C-beam exposure, we successfully crystallized a silicon thin film that had nano-sized crystalline grains. The distribution of crystalline grain size was about 10 ˜ 30 nm. This nanocrystalline silicon thin film definitely had three crystalline directions which are (111), (220) and (311), respectively. The silicon TFTs crystallized by using a C-beam exposure showed a field effect mobility of 20 cm2/Vs and an on/off ratio of more than 107. The C-beam exposure can modify the bonding network of amorphous silicon with its proper energy.

  15. Environmental Qualification of a Single-Crystal Silicon Mirror for Spaceflight Use

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Chambers, John; Rohrback. Scott; Bly, Vincent; Morell, Armando; Budinoff, Jason

    2013-01-01

    This innovation is the environmental qualification of a single-crystal silicon mirror for spaceflight use. The single-crystal silicon mirror technology is a previous innovation, but until now, a mirror of this type has not been qualified for spaceflight use. The qualification steps included mounting, gravity change measurements, vibration testing, vibration- induced change measurements, thermal cycling, and testing at the cold operational temperature of 225 K. Typical mirrors used for cold applications for spaceflight instruments include aluminum, beryllium, glasses, and glass-like ceramics. These materials show less than ideal behavior after cooldown. Single-crystal silicon has been demonstrated to have the smallest change due to temperature change, but has not been spaceflight-qualified for use. The advantage of using a silicon substrate is with temperature stability, since it is formed from a stress-free single crystal. This has been shown in previous testing. Mounting and environmental qualification have not been shown until this testing.

  16. Surface morphological instability of silicon (100) crystals under microwave ion physical etching

    NASA Astrophysics Data System (ADS)

    Yafarov, R. K.; Shanygin, V. Ya.

    2016-02-01

    This paper presents the results of studies of the dynamics of relaxation modification of the morphological characteristics of atomically clean surfaces of silicon (100) crystals with different types of conductivity after microwave ion physical etching in an argon atmosphere. For the first time, the effect of the electronic properties on the morphological characteristics and the surface free energy of silicon crystals is experimentally shown and proven by physicochemical methods.

  17. Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography.

    SciTech Connect

    Wiltzius, P.; Braun, P. V.; Liao, H.; Brzezinski, A.; Chen, Y. C.; Nelson, E.; Shir, D.; Rogers, J. A.; Bogart, Katherine Huderle Andersen

    2008-08-01

    We describe the fabrication of silicon three dimensional photonic crystals using polymer templates defined by a single step, two-photon exposure through a layer of photopolymer with relief molded on its surface. The resulting crystals exhibit high structural quality over large areas, displaying geometries consistent with calculation. Spectroscopic measurements of transmission and reflection through the silicon and polymer structures reveal excellent optical properties, approaching properties predicted by simulations that assume ideal layouts.

  18. Structural and energy properties of interstitial molecular hydrogen in single-crystal silicon

    NASA Astrophysics Data System (ADS)

    Melnikov, V. V.

    2015-06-01

    The structural and energy characteristics of interstitial molecular hydrogen in single-crystal silicon are theoretically studied. The dependence of the potential energy of the system on the position and orientation of the interstitial defect is investigated, and the mechanism of interaction of a hydrogen molecule with a silicon crystal is considered. A three-dimensional model is employed to calculate the energy spectrum of H2 in Si, and the obtained dispersion law is analyzed.

  19. Structural and energy properties of interstitial molecular hydrogen in single-crystal silicon

    SciTech Connect

    Melnikov, V. V.

    2015-06-15

    The structural and energy characteristics of interstitial molecular hydrogen in single-crystal silicon are theoretically studied. The dependence of the potential energy of the system on the position and orientation of the interstitial defect is investigated, and the mechanism of interaction of a hydrogen molecule with a silicon crystal is considered. A three-dimensional model is employed to calculate the energy spectrum of H{sub 2} in Si, and the obtained dispersion law is analyzed.

  20. Apparatus for making molten silicon

    NASA Technical Reports Server (NTRS)

    Levin, Harry (Inventor)

    1988-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  1. Silicon ingot casting: Heat exchanger method. Multi-wire slicing: Fixed abrasive slicing technique, phase 3

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.

    1979-01-01

    In the area of ingot casting the proof of concept of heat exchanger method (HEM) was established. It was also established that HEM cast silicon yielded solar cell performance comparable to Czochralski grown material. Solar cells with conversion efficiencies of up to 15% were fabricated. It was shown that square cross-section ingots can be cast. In the area of crystal slicing, it was established that silicon can be sliced efficiently with the fixed abrasive slicing technique approach. This concept was carried forward to 10 cm diameter workpiece.

  2. Microstructural analysis of the crystallization of silicon ribbons produced by the RGS process

    SciTech Connect

    Steinbach, I.; Hoefs, H.U.

    1997-12-31

    The microstructural evolution of multicrystalline silicon ribbons produced by the RGS process (Ribbon Growth on Substrate) is analyzed by numerical simulation. The crystallization model takes into account the faceted growth structure of silicon, thermal supercooling in front of the crystallization front and nucleation dependent on the thermal supercooling. The thermal conditions for the crystallization of the ribbon are taken from a macroscopic finite element simulation of the RGS process, as it is realized at Bayer AG, Germany. Different crystallization morphologies--single crystal, columnar multicrystal or dendritic--are discussed in their dependence on the process and nucleation conditions. The numerical results are compared to morphologies of silicon ribbons, grown on the pilot plant of Bayer AG, Germany.

  3. Silicon Materials Task of the Low Cost Solar Array Project, Phase 3. Effect of Impurities and Processing on Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.

    1979-01-01

    The effects of impurities, various thermochemical processes, and any impurity process interactions on the performance of terrestrial silicon solar cells are defined. Determinations of the segregation coefficients of tungsten, tantalum, and cobalt for the Czochralski pulling of silicon single crystals are reported. Sensitive neutron activation analysis was used to determine the metal impurity content of the silicon while atomic absorption was used to measure the metal content of the residual liquid from which the doped crystals were grown. Gettering of Ti doped silicon wafers improved cell performance by one to two percent for the highest temperatures and longest times. The HCl is more effective than POCl3 treatments for deactivating Ti but POCl3 and HCl produced essentially identical results for Mo or Fe.

  4. Apparatus and method for the horizontal, crucible-free growth of silicon sheet crystals

    DOEpatents

    Ciszek, Theodore F.

    1987-01-01

    Apparatus for continuously forming a silicon crystal sheet from a silicon rod in a noncrucible environment. The rod is rotated and fed toward an RF coil in an inert atmosphere so that the upper end of the rod becomes molten and the silicon sheet crystal is pulled therefrom substantially horizontally in a continuous strip. A shorting ring may be provided around the rod to limit the heating to the upper end only. Argon gas can be used to create the inert atmosphere within a suitable closed chamber. By use of this apparatus and method, a substantially defect-free silicon crystal sheet is formed that can be used for microcircuitry chips or solar cells.

  5. Apparatus and method for the horizontal, crucible-free growth of silicon sheet crystals

    DOEpatents

    Ciszek, T.F.

    1984-09-12

    Apparatus is provided for continuously forming a silicon crystal sheet from a silicon rod in a non-crucible environment. The rod is rotated and fed toward an RF coil in an inert atmosphere so that the upper end of the rod becomes molten and the silicon sheet crystal is pulled therefrom substantially horizontally in a continuous strip. A shorting ring may be provided around the rod to limit the heating to the upper end only. Argon gas can be used to create the inert atmosphere within a suitable closed chamber. By use of this apparatus and method, a substantially defect-free silicon crystal sheet is formed which can be used for micro-circuitry chips or solar cells.

  6. High-Q silicon-on-insulator slot photonic crystal cavity infiltrated by a liquid

    SciTech Connect

    Caër, Charles; Le Roux, Xavier; Cassan, Eric

    2013-12-16

    We report the experimental realization of a high-Q slot photonic crystal cavity in Silicon-On-Insulator (SOI) configuration infiltrated by a liquid. Loaded Q-factor of 23 000 is measured at telecom wavelength. The intrinsic quality factor inferred from the transmission spectrum is higher than 200 000, which represents a record value for slot photonic crystal cavities on SOI, whereas the maximum of intensity of the cavity is roughly equal to 20% of the light transmitted in the waveguide. This result makes filled slot photonic crystal cavities very promising for silicon-based light emission and ultrafast nonlinear optics.

  7. High-Q silicon-on-insulator slot photonic crystal cavity infiltrated by a liquid

    NASA Astrophysics Data System (ADS)

    Caër, Charles; Le Roux, Xavier; Cassan, Eric

    2013-12-01

    We report the experimental realization of a high-Q slot photonic crystal cavity in Silicon-On-Insulator (SOI) configuration infiltrated by a liquid. Loaded Q-factor of 23 000 is measured at telecom wavelength. The intrinsic quality factor inferred from the transmission spectrum is higher than 200 000, which represents a record value for slot photonic crystal cavities on SOI, whereas the maximum of intensity of the cavity is roughly equal to 20% of the light transmitted in the waveguide. This result makes filled slot photonic crystal cavities very promising for silicon-based light emission and ultrafast nonlinear optics.

  8. Devitrification and delayed crazing of SiO2 on single-crystal silicon and chemically vapor-deposited silicon nitride

    NASA Technical Reports Server (NTRS)

    Choi, Doo Jin; Scott, William D.

    1987-01-01

    The linear growth rate of cristobalite was measured in thin SiO2 films on silicon and chemically vapor-deposited silicon nitride. The presence of trace impurities from alumina furnace tubes greatly increased the crystal growth rate. Under clean conditions, the growth rate was still 1 order-of-magnitude greater than that for internally nucleated crystals in bulk silica. Crystallized films cracked and lifted from the surface after exposure to atmospheric water vapor. The crystallization and subsequent crazing and lifting of protective SiO2 films on silicon nitride should be considered in long-term applications.

  9. Thermal oxidation of 3C silicon carbide single-crystal layers on silicon

    NASA Technical Reports Server (NTRS)

    Fung, C. D.; Kopanski, J. J.

    1984-01-01

    Thermal oxidation of thick single-crystal 3C SiC layers on silicon substrates was studied. The oxidations were conducted in a wet O2 atmosphere at temperatures from 1000 to 1250 C for times from 0.1 to 50 h. Ellipsometry was used to determine the thickness and index of refraction of the oxide films. Auger analysis showed them to be homogeneous with near stoichiometric composition. The oxide growth followed a linear parabolic relationship with time. Activation energy of the parabolic rate constant was found to be 50 kcal/mole, while the linear rate constant was 74 kcal/mole. The latter value corresponds approximately to the energy required to break a Si-C bond. Electrical measurements show an effective density of 4-6 x 10 to the 11th per sq cm for fixed oxide charges at the oxide-carbide interface, and the dielectric strength of the oxide film is aproximately 6 x 10 to the 6th V/cm.

  10. Thin Single Crystal Silicon Solar Cells on Ceramic Substrates: November 2009 - November 2010

    SciTech Connect

    Kumar, A.; Ravi, K. V.

    2011-06-01

    In this program we have been developing a technology for fabricating thin (< 50 micrometres) single crystal silicon wafers on foreign substrates. We reverse the conventional approach of depositing or forming silicon on foreign substrates by depositing or forming thick (200 to 400 micrometres) ceramic materials on high quality single crystal silicon films ~ 50 micrometres thick. Our key innovation is the fabrication of thin, refractory, and self-adhering 'handling layers or substrates' on thin epitaxial silicon films in-situ, from powder precursors obtained from low cost raw materials. This 'handling layer' has sufficient strength for device and module processing and fabrication. Successful production of full sized (125 mm X 125 mm) silicon on ceramic wafers with 50 micrometre thick single crystal silicon has been achieved and device process flow developed for solar cell fabrication. Impurity transfer from the ceramic to the silicon during the elevated temperature consolidation process has resulted in very low minority carrier lifetimes and resulting low cell efficiencies. Detailed analysis of minority carrier lifetime, metals analysis and device characterization have been done. A full sized solar cell efficiency of 8% has been demonstrated.

  11. Czochralski growth and optical properties of magnesium-aluminium spinel doped with nickel

    NASA Astrophysics Data System (ADS)

    Wyon, C.; Aubert, J. J.; Auzel, F.

    1986-12-01

    Blue single crystals of magnesium aluminium spinel doped with nickel have been pulled from the melt, by the Czochralski technique. The transmission spectrum of doped samples show three broad absorption bands. According to the absorption map and the chemical analysis of these crystals, the effective segregation coefficient of Ni 2+ in MgAl 20 4 seems to be roughly 1. At T= 80 K. the expected tuning range of the stimulated emission lies from 1.2 to 1.4 μm.

  12. Advances in large-diameter liquid encapsulated Czochralski GaAs

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Holmes, D. E.; Kirkpatrick, C. G.

    1982-01-01

    The purity, crystalline perfection, and electrical properties of n- and p-type GaAs crystals grown by the liquid encapsulated Czochralski (LEC) technique are evaluated. The determination of the dislocation density, incidence of twinning, microstructure, background purity, mobility, and minority carrier diffusion length is included. The properties of the LEC GaAs crystals are generally comparable to, if not superior to those of small-diameter GaAs material grown by conventional bulk growth techniques. As a result, LEC GaAs is suitable for application to minority carrier devices requiring high-quality and large-area substrates.

  13. Channeling, Volume Reection and Gamma Emission Using 14GeV Electrons in Bent Silicon Crystals

    SciTech Connect

    Benson, Brandon

    2015-08-14

    High energy electrons can be deflected with very tight bending radius using a bent silicon crystal. This produces gamma radiation. As these crystals can be thin, a series of bent silicon crystals with alternating direction has the potential to produce coherent gamma radiation with reasonable energy of the driving electron beam. Such an electron crystal undulator offers the prospect for higher energy radiation at lower cost than current methods. Permanent magnetic undulators like LCLS at SLAC National Accelerator Laboratory are expensive and very large (about 100 m in case of the LCLS undulator). Silicon crystals are inexpensive and compact when compared to the large magnetic undulators. Additionally, such a high energy coherent light source could be used for probing through materials currently impenetrable by x-rays. In this work we present the experimental data and analysis of experiment T523 conducted at SLAC National Accelerator Laboratory. We collected the spectrum of gamma ray emission from 14 GeV electrons on a bent silicon crystal counting single photons. We also investigated the dynamics of electron motion in the crystal i.e. processes of channeling and volume reflection at 14 GeV, extending and building off previous work. Our single photon spectrum for the amorphous crystal orientation is consistent with bremsstrahlung radiation and the volume reflection crystal orientation shows a trend consistent with synchrotron radiation at a critical energy of 740 MeV. We observe that in these two cases the data are consistent, but we make no further claims because of statistical limitations. We also extended the known energy range of electron crystal dechanneling length and channeling efficiency to 14 GeV.

  14. Impurities in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.

    1985-01-01

    Metallic impurities, both singly and in combinations, affect the performance of silicon solar cells. Czochralski silicon web crystals were grown with controlled additions of secondary impurities. The primary electrical dopants were boron and phosphorus. The silicon test ingots were grown under controlled and carefully monitored conditions from high-purity charge and dopant material to minimize unintentional contamination. Following growth, each crystal was characterized by chemical, microstructural, electrical, and solar cell tests to provide a detailed and internally consistent description of the relationships between silicon impurity concentration and solar cell performance. Deep-level spectroscopy measurements were used to measure impurity concentrations at levels below the detectability of other techniques and to study thermally-induced changes in impurity activity. For the majority of contaminants, impurity-induced performance loss is due to a reduction of the base diffusion length. From these observations, a semi-empirical model which predicts cell performance as a function of metal impurity concentration was formulated. The model was then used successfully to predict the behavior of solar cells bearing as many as 11 different impurities.

  15. Surface property modification of silicon

    NASA Technical Reports Server (NTRS)

    Danyluk, S.

    1984-01-01

    The main emphasis of this work has been to determine the wear rate of silicon in fluid environments and the parameters that influence wear. Three tests were carried out on single crystal Czochralski silicon wafers: circular and linear multiple-scratch tests in fluids by a pyramidal diamond simulated fixed-particle abrasion; microhardness and three-point bend tests were used to determine the hardness and fracture toughness of abraded silicon and the extent of damage induced by abrasion. The wear rate of (100) and (111) n and p-type single crystal Cz silicon abraded by a pyramidal diamond in ethanol, methanol, acetone and de-ionized water was determined by measuring the cross-sectional areas of grooves of the circular and linear multiple-scratch tests. The wear rate depends on the loads on the diamond and is highest for ethanol and lowest for de-ionized water. The surface morphology of the grooves showed lateral and median cracks as well as a plastically deformed region. The hardness and fracture toughness are critical parameters that influence the wear rate. Microhardness tests were conducted to determine the hardness as influenced by fluids. Median cracks and the damage zone surrounding the indentations were also related to the fluid properties.

  16. Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths.

    PubMed

    Staude, I; Thiel, M; Essig, S; Wolff, C; Busch, K; von Freymann, G; Wegener, M

    2010-04-01

    By using direct laser writing into a novel commercially available photoresist and a silicon-double-inversion procedure followed by tempering of the silicon structures, we realize high-quality centered-tetragonal woodpile photonic crystals with complete photonic bandgaps near 1.55 microm wavelength. The 6.9% gap-to-midgap ratio bandgap is evidenced by the comparison of measured transmittance and reflectance spectra with band-structure and scattering-matrix calculations. PMID:20364228

  17. Development of low-cost silicon crystal growth techniques for terrestrial photovoltaic solar energy conversion

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.

    1976-01-01

    Because of the growing need for new sources of electrical energy, photovoltaic solar energy conversion is being developed. Photovoltaic devices are now being produced mainly from silicon wafers obtained from the slicing and polishing of cylindrically shaped single crystal ingots. Inherently high-cost processes now being used must either be eliminated or modified to provide low-cost crystalline silicon. Basic to this pursuit is the development of new or modified methods of crystal growth and, if necessary, crystal cutting. If silicon could be grown in a form requiring no cutting, a significant cost saving would potentially be realized. Therefore, several techniques for growth in the form of ribbons or sheets are being explored. In addition, novel techniques for low-cost ingot growth and cutting are under investigation.

  18. Wear of single-crystal silicon carbide in contact with various metals in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted in vacuum with single crystal silicon carbide (0001) surface in contact with transition metals (tungsten, iron, rhodium, nickel, titanium, and cobalt), copper, and aluminum. The hexagon shaped cracking and fracturing of silicon carbide that occurred is believed to be due to cleavages of both the prismatic and basal planes. The silicon carbide wear debris, which was produced by brittle fracture, slides or rolls on both the metal and silicon carbide and produces grooves and indentations on these surfaces. The wear scars of aluminum and titanium, which have much stronger chemical affinity for silicon and carbon, are generally rougher than those of the other metals. Fracturing and cracking along the grain boundary of rhodium and tungsten were observed. These may be primarily due to the greater shear moduli of the metals.

  19. Crystal growth for high-efficiency silicon solar cells workshop: Summary

    NASA Technical Reports Server (NTRS)

    Dumas, K. A.

    1985-01-01

    The state of the art in the growth of silicon crystals for high-efficiency solar cells are reviewed, sheet requirements are defined, and furture areas of research are identified. Silicon sheet material characteristics that limit cell efficiencies and yields were described as well as the criteria for the ideal sheet-growth method. The device engineers wish list to the material engineer included: silicon sheet with long minority carrier lifetime that is uniform throughout the sheet, and which doesn't change during processing; and sheet material that stays flat throughout device processing, has uniform good mechanical strength, and is low cost. Impurities in silicon solar cells depreciate cell performance by reducing diffusion length and degrading junctions. The impurity behavior, degradation mechanisms, and variations in degradation threshold with diffusion length for silicon solar cells were described.

  20. Design of nanobeam photonic crystal resonators for a silicon-on-lithium-niobate platform.

    PubMed

    Witmer, Jeremy D; Hill, Jeff T; Safavi-Naeini, Amir H

    2016-03-21

    We outline the design for a photonic crystal resonator made in a hybrid Silicon/Lithium Niobate material system. Using the index contrast between silicon and lithium niobate, it is possible to guide and confine photonic resonances in a thin film of silicon bonded on top of lithium niobate. Quality factors greater than 106 at optical wavelength scale mode volumes are achievable. We show that patterning electrodes on such a system can yield an electro-optic coupling rate of 0.6 GHz/V (4 pm/V). PMID:27136784

  1. Design of nanobeam photonic crystal resonators for a silicon-on-lithium-niobate platform

    NASA Astrophysics Data System (ADS)

    Witmer, Jeremy D.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2016-03-01

    We outline the design for a photonic crystal resonator made in a hybrid Silicon/Lithium Niobate material system. Using the index contrast between silicon and lithium niobate, it is possible to guide and confine photonic resonances in a thin film of silicon bonded on top of lithium niobate. Quality factors greater than $10^6$ at optical wavelength scale mode volumes are achievable. We show that patterning electrodes on such a system can yield an electro-optic coupling rate of 0.6 GHz/V (4 pm/V).

  2. Silicon ribbon study program. [dendritic crystals for use in solar cells

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.; Duncan, C. S.

    1975-01-01

    The feasibility is studied of growing wide, thin silicon dendritic web for solar cell fabrication and conceptual designs are developed for the apparatus required. An analysis of the mechanisms of dendritic web growth indicated that there were no apparent fundamental limitations to the process. The analysis yielded quantitative guidelines for the thermal conditions required for this mode of crystal growth. Crucible designs were then investigated: the usual quartz crucible configurations and configurations in which silicon itself is used for the crucible. The quartz crucible design is feasible and is incorporated into a conceptual design for a laboratory scale crystal growth facility capable of semi-automated quasi-continuous operation.

  3. Absolute Measurement of Lattice Spacing d(220) in Floating Zone Silicon Crystal

    NASA Astrophysics Data System (ADS)

    Fujimoto, Hiroyuki; Nakayama, Kan; Tanaka, Mitsuru; Misawa, Guento

    1995-09-01

    The lattice spacing d220 of a silicon crystal of National Research Laboratory of Metrology has been measured with a new combined X-ray and optical interferometer, with relative uncertainty of 0.16 ppm. This value is in good agreement with other reported values, whereas the ratio of molar mass M to density ρ measured for this crystal shows discrepancy of around 3 ppm from previously reported ratios. It seems that the conventional route to determining the Avogadro constant from M, ρ and d220 will require a new characterization technique to estimate the number of silicon atoms in a unit cell volume.

  4. Polycrystalline silicon thin-film solar cell prepared by the solid phase crystallization (SPC) method

    SciTech Connect

    Baba, T.; Matsuyama, T.; Sawada, T.; Takahama, T.; Wakisaka, K.; Tsuda, S.; Nakano, S.

    1994-12-31

    A solid phase crystallization (SPC) method was applied to the fabrication of thin-film polycrystalline silicon (poly-Si) for solar cells for the first time. Among crystalline silicon solar cells crystallized at a low temperature of less than 600 C, the world`s highest conversion efficiency of 8.5% was achieved in a solar cell using thin-film poly-Si with only 10 {micro}m thickness prepared by the SPC method. This solar cell showed high photosensitivity in the long-wavelength region of more than 800 nm and also exhibited no light-induced degradation after light exposure.

  5. Comment on "Investigations of interstitial generations near growth interface depending on crystal pulling rates during CZ silicon growth by detaching from the melt" by T. Abe et al. [J. Cryst. Growth 434 (2016) 128-137] and on "Observations of secondary defects and vacancies in CZ silicon crystals detached from melt using four different types of characterization technique" by T. Abe et al. [J. Cryst. Growth 436 (2016) 23-33

    NASA Astrophysics Data System (ADS)

    Vanhellemont, Jan; Kamiyama, Eiji; Nakamura, Kozo; Sueoka, Koji

    2016-09-01

    In the papers mentioned above, Abe et al. published beautiful experimental data on intrinsic point defect related defect distributions in detached growing Czochralski Si crystals with and without additional thermal anneals [1,2]. The new fact compared to the results published before [3] is that the crystals are pulled with decreasing speed before detaching, resulting in crystals that vary along the axis from initially vacancy-rich to interstitial-rich for the slowest pulling speed before detaching.

  6. Study of silicon strip waveguides with diffraction gratings and photonic crystals tuned to a wavelength of 1.5 µm

    SciTech Connect

    Barabanenkov, M. Yu. Vyatkin, A. F.; Volkov, V. T.; Gruzintsev, A. N.; Il’in, A. I.; Trofimov, O. V.

    2015-12-15

    Single-mode submicrometer-thick strip waveguides on silicon-on-insulator substrates, fabricated by silicon-planar-technology methods are considered. To solve the problem of 1.5-µm wavelength radiation input-output and its frequency filtering, strip diffraction gratings and two-dimensional photonic crystals are integrated into waveguides. The reflection and transmission spectra of gratings and photonic crystals are calculated. The waveguide-mode-attenuation coefficient for a polycrystalline silicon waveguide is experimentally estimated.

  7. Liquid encapsulated Czochralski growth of low dislocation GaAs

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, C. G.; Chen, R. T.; Holmes, D. E.

    1982-01-01

    The availability of high-quality, large-diameter GaAs substrates is key to the successful development and production of high-speed GaAs devices and high-efficiency GaAs solar cells. The liquid encapsulated Czochralski (LEC) technique has provided a means for producing large-diameter GaAs. Progress in improving the LEC growth process which has resulted in 3-inch GaAs crystals with exceptionally low dislocation densities and reduced propensity for twinning is reported. Undoped, semi-insulating GaAs ingots were grown in a Melbourn high-pressure LEC system. The effects of seed perfection, seed necking, cone angle, melt stoichiometry, ambient pressure, thickness of the B2O3 encapsulating layer, and diameter control on the dislocation density were investigated. The material was characterized by preferential etching and X-ray topography. It is shown that 3-inch diameter substrates can be produced with dislocation densities as low as 6000 per sq cm through proper selection and control of growth parameters. Also, the incidence of twinning can be reduced significantly by growing from slightly As-rich melts.

  8. Experimental Analysis of the Elastic Plastic Transition During Nanoindentation of Single Crystal a-Silicon Nitride

    SciTech Connect

    Jang, Jae-il; Bei, Hongbin; Becher, Paul F; Pharr, George M

    2012-01-01

    The elastic-to-plastic transition in single crystal a-silicon nitride was experimentally characterized through a series of nanoindentation experiments using a spherical indenter. The experimental results provide a quantitative description of the critical shear strengths for the transition, as well as estimates of the shear modulus and nanohardness of the material.

  9. Study of silicon crystal surface formation based on molecular dynamics simulation results

    NASA Astrophysics Data System (ADS)

    Barinovs, G.; Sabanskis, A.; Muiznieks, A.

    2014-04-01

    The equilibrium shape of <110>-oriented single crystal silicon nanowire, 8 nm in cross-section, was found from molecular dynamics simulations using LAMMPS molecular dynamics package. The calculated shape agrees well to the shape predicted from experimental observations of nanocavities in silicon crystals. By parametrization of the shape and scaling to a known value of {111} surface energy, Wulff form for solid-vapor interface was obtained. The Wulff form for solid-liquid interface was constructed using the same model of the shape as for the solid-vapor interface. The parameters describing solid-liquid interface shape were found using values of surface energies in low-index directions known from published molecular dynamics simulations. Using an experimental value of the liquid-vapor interface energy for silicon and graphical solution of Herring's equation, we constructed angular diagram showing relative equilibrium orientation of solid-liquid, liquid-vapor and solid-vapor interfaces at the triple phase line. The diagram gives quantitative predictions about growth angles for different growth directions and formation of facets on the solid-liquid and solid-vapor interfaces. The diagram can be used to describe growth ridges appearing on the crystal surface grown from a melt. Qualitative comparison to the ridges of a Float zone silicon crystal cone is given.

  10. Anisotropy and crystal orientation of silicon--application to the modeling of a bent mirror

    SciTech Connect

    Zhang Lin

    2010-06-23

    Matrix formula and MATLAB algorithm are proposed to calculate the stiffness coefficient matrix C, the Young's modulus, shear modulus and Poisson ratio for the silicon crystal in any orientation. Results for Si(110) and Si(311) are given as an example. The anisotropic material properties of the silicon have been used in the mirror width profile optimization for the nano-imaging end-station ID22NI at the ESRF. As the Si(110) is used as the substrate of this multilayer coated KB mirror, the silicon crystal axis [0 0 1] is proposed to orient to the mirror axis. This is the case to have low stress in the mirror and low bending forces from actuators.

  11. Autonomous control system for Czochralski growth of LEC GaAs

    NASA Astrophysics Data System (ADS)

    Luger, B.; White, R. C.

    The consolidation of the Czochralski Growth Control System (CGCS) is a revision of the hardware and software within the constraints of the first generation. The consolidation consists of: a cabinet that is physically more compatible with the Cambridge console; a more modular hardware arrangement that facilitates calibration, servicing, and expansion; increased accuracy and stability of the system variable measurements; and many software enhancements, including increased controller flexibility and improved diameter estimation and control. The hardware and software installation was completed and crystal growth with complete digital control was demonstrated.

  12. Friction and wear behavior of single-crystal silicon carbide in sliding contact with various metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted with single-crystal silicon carbide in contact with various metals. Results indicate the coefficient of friction is related to the relative chemical activity of the metals. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to silicon carbide. The chemical activity of the metal and its shear modulus may play important roles in metal transfer, the form of the wear debris and the surface roughness of the metal wear scar. The more active the metal, and the less resistance to shear, the greater the transfer to silicon carbide and the rougher the wear scar on the surface of the metal. Hexagon shaped cracking and fracturing formed by cleavage of both prismatic and basal planes is observed on the silicon carbide surface.

  13. Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Roland, I.; Checoury, X.; Han, Z.; El Kurdi, M.; Sauvage, S.; Gayral, B.; Brimont, C.; Guillet, T.; Mexis, M.; Semond, F.; Boucaud, P.

    2015-02-01

    We demonstrate second harmonic generation in a gallium nitride photonic crystal cavity embedded in a two-dimensional free-standing photonic crystal platform on silicon. The photonic crystal nanocavity is optically pumped with a continuous-wave laser at telecom wavelengths in the transparency window of the nitride material. The harmonic generation is evidenced by the spectral range of the emitted signal, the quadratic power dependence vs. input power, and the spectral dependence of second harmonic signal. The harmonic emission pattern is correlated to the harmonic polarization generated by the second-order nonlinear susceptibilities χzxx (2 ), χzyy (2 ) and the electric fields of the fundamental cavity mode.

  14. A silicon photonic quasi-crystal structure obtained by interference lithography

    NASA Astrophysics Data System (ADS)

    Lis, S.; Zakrzewski, A.; Gryglewicz, J.; Oleszkiewicz, W.; Patela, S.

    2012-06-01

    Photonic quasi-crystal structures have been prepared and investigated. Symmetrical patterns were fabricated by interference lithography in negative tone photoresist and transferred to silicon by reactive ion etching. Theoretical influences of pattern detail (radius of hole) on the photonic band gap have been studied. Three types of 2D photonic quasi-crystals have been prepared: 8-fold, 10-fold and 12-fold pattern. Finally, finite-difference time-domain method was used for theoretically prediction of transmission spectrum for fabricated 12-fold quasi-crystal.

  15. Surprises in the NMR of Silicon: Achieving High Resolution with Single Crystals

    NASA Astrophysics Data System (ADS)

    Ramos, Rona; Dementyev, Anatoly; Li, Dale; Maclean, Kenneth; Dong, Yanqun; Barrett, Sean

    2004-03-01

    Recent NMR measurements in a dilute dipolar solid (Si29 powders) show the appearance of an unexpected long tail and even-odd asymmetry in mulitple pulse experiments [A.E. Dementyev, D. Li, K. MacLean, S.E. Barrett, Phys. Rev. B 68, 153302 (2003).]. In order to probe the causes of these anomalies, similar NMR experiments on precisely cut, small single crystals were conducted. By varying the crystal size and orientation, the bulk susceptibility line broadening was greatly lowered, thus narrowing the spectral peak. The Silicon NMR puzzle remains, even in single crystals with extremely narrow lines.

  16. High-performance conformal sensors employing single-crystal silicon nanomembranes

    NASA Astrophysics Data System (ADS)

    Xu, Xiaochuan; Subbaraman, Harish; Chakravarty, Swapnajit; Chen, Ray T.

    2014-03-01

    We demonstrate light-weight, conformal, and high-performance flexible sensors fabricated on a large area (>2 cm × 2 cm) silicon nanomembrane transferred onto a flexible substrate. Linear L13 photonic crystal microcavities are designed to provide high quality factors on the flexible platform. Subwavelength grating (SWG) couplers are employed in order to enable efficient light coupling to the device using a single mode fiber. Photonic crystal tapers are implemented at the strip-photonic crystal waveguide interfaces to minimize loss. Preliminary chemical sensing data suggests a sensitivity of 75nm/RIU. Bending tests are further performed in order to demonstrate sensitivityindependent operation.

  17. Friction, deformation and fracture of single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1977-01-01

    Friction experiments were conducted with hemispherical and conical diamond riders sliding on the basal plane of silicon carbide. The results indicate that, when deformation is primarily elastic, the friction does not depend on crystallographic orientation and there is no detectable fracture or cracking. When, however, plastic deformation occurs, silicon carbide exhibits anisotropic friction and deformation behavior. Surface fracture crack patterns surrounding wear tracks are observed to be of three types. The crack-geometries of two types are generally independent of orientation, the third crack, however, depends on the orientation. All surface cracks extend into subsurface. Anisotropic friction, deformation and fracture on the basal plane are primarily controlled by the slip system and cleavage.

  18. Deactivation of metastable single-crystal silicon hyperdoped with sulfur

    SciTech Connect

    Simmons, C. B.; Akey, Austin J.; Sullivan, Joseph T.; Buonassisi, Tonio; Krich, Jacob J.; Recht, Daniel; Aziz, Michael J.

    2013-12-28

    Silicon supersaturated with sulfur by ion implantation and pulsed laser melting exhibits broadband optical absorption of photons with energies less than silicon's band gap. However, this metastable, hyperdoped material loses its ability to absorb sub-band gap light after subsequent thermal treatment. We explore this deactivation process through optical absorption and electronic transport measurements of sulfur-hyperdoped silicon subject to anneals at a range of durations and temperatures. The deactivation process is well described by the Johnson-Mehl-Avrami-Kolmogorov framework for the diffusion-mediated transformation of a metastable supersaturated solid solution, and we find that this transformation is characterized by an apparent activation energy of E{sub A}=1.7 ± 0.1 eV. Using this activation energy, the evolution of the optical and electronic properties for all anneal duration-temperature combinations collapse onto distinct curves as a function of the extent of reaction. We provide a mechanistic interpretation of this deactivation based on short-range thermally activated atomic movements of the dopants to form sulfur complexes.

  19. Comparison of ordered and disordered silicon nanowire arrays: experimental evidence of photonic crystal modes.

    PubMed

    Dhindsa, Navneet; Saini, Simarjeet S

    2016-05-01

    We experimentally compared the reflectance between ordered and disordered silicon nanowires to observe the evidence of photonic crystal modes. For similar diameters, the resonance peaks for the ordered nanowires at a spacing of 400 nm was at a shorter wavelength than the disordered nanowires, consistent to the excitation of photonic crystal modes. Furthermore, the resonant wavelength didn't shift while changing the density of the disordered nanowires, whereas there was a significant shift observed in the ordered ones. At an ordered spacing of 800 nm, the resonance wavelength approached that of the disordered structures, indicating that the ordered structures were starting to behave like individual waveguides. To our knowledge, this is the first direct experimental observation of photonic crystal modes in vertical periodic silicon nanowire arrays. PMID:27128070

  20. Crystal-amorphous-silicon interface kinetics under ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Priolo, F.; La Ferla, A.; Spinella, C.; Rimini, E.; Campisano, S. U.; Ferla, G.

    1990-01-01

    Our recent work on ion-beam-assisted epitaxial growth of amorphous Si layers on single crystal substrates is reviewed. The crystallization was induced by a 600 keV Kr2+ beam at a dose rate of 1×1012/cm2 · s. During irradiations the samples were mounted on a resistively heated copper block whose temperature was maintained constant in the range 250-450°C. The planar motion of the crystal-amorphous interface was monitored in situ by dynamic reflectivity measurements. This technique allows the ion-induced growth rate to be measured with a very high precision. We have observed that this growth rate scales linearly with the energy deposited into elastic collisions at the crystal-amorphous interface by the impinging ions. Moreover, the rate shows an Arrhenius temperature dependence with a well defined activation energy of 0.32±0.05 eV. The dependence of this process on substrate orientation and on impurities either dissolved in the amorphous layer or present at very high concentration at the crystal-amorphous interface is also discussed.

  1. Crystal-amorphous-silicon interface kinetics under ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Priolo, F.; La Ferla, A.; Spinella, C.; Rimini, E.; Campisano, S. U.; Ferla, G.

    1989-11-01

    Our recent work on ion-beam-assisted epitaxial growth of amorphous Si layers on single crystal substrates is reviewed. The crystallization was induced by a 600 keV Kr 2+ beam at a dose rate of 1×10 12/cm 2 · s. During irradiations the samples were mounted on a resistively heated copper block whose temperature was maintained constant in the range 250-450°C. The planar motion of the crystal-amorphous interface was monitored in situ by dynamic reflectivity measurements. This technique allows the ion-induced growth rate to be measured with a very high precision. We have observed that this growth rate scales linearly with the energy deposited into elastic collisions at the crystal-amorphous interface by the impinging ions. Moreover, the rate shows an Arrhenius temperature dependence with a well defined activation energy of 0.32±0.05 eV. The dependence of this process on substrate orientation and on impurities either dissolved in the amorphous layer or present at very high concentration at the crystal-amorphous interface is also discussed.

  2. Multilayer structures of silicon-suboxide embedded in single crystal silicon

    NASA Astrophysics Data System (ADS)

    Pohl, Christoph; Raab, Nicolas; Mitterer, Martin; Tarakina, Nadezda; Breuer, Uwe; Brunner, Karl

    2014-03-01

    Si/SiOx multilayer structures with ultra-thin silicon-suboxide layers are fabricated with molecular beam epitaxy. The silicon surface is oxidized during growth interruptions at an oxygen pressure between 1.0×10-7 mbar and 8.0×10-7 mbar. Overgrowth with Si of the oxidized surface is possible for coverages of a few monolayers of O and improves with increasing substrate temperature. X-ray diffraction shows that the silicon layers are single crystalline. Transmission electron microscopy measurements show that the suboxide layers are ~1 nm thick, pseudomorph, and exhibit crystalline order throughout the layer. In addition, transmission electron microscopy shows that the oxygen concentration is laterally inhomogeneous. The multilayer structures are thermally very stable, as rapid thermal annealing up to 1000 °C shows no influence on the X-ray diffraction patterns.

  3. Nematic and blue phase liquid crystals for temperature stabilization and active optical tuning of silicon photonic devices (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ptasinski, Joanna N.; Khoo, Iam Choon; Fainman, Yeshaiahu

    2015-10-01

    We describe the underlying theories and experimental demonstrations of passive temperature stabilization of silicon photonic devices clad in nematic liquid crystal mixtures, and active optical tuning of silicon photonic resonant structures combined with dye-doped nematic and blue phase liquid crystals. We show how modifications to the resonator device geometry allow for not only enhanced tuning of the resonator response, but also aid in achieving complete athermal operations of silicon photonic circuits. [Ref.: I.C. Khoo, "DC-field-assisted grating formation and nonlinear diffractions in methyl-red dye-doped blue phase liquid crystals," Opt. Lett. 40, 60-63 (2015); J. Ptasinski, I.C. Khoo, and Y. Fainman, "Enhanced optical tuning of modified-geometry resonators clad in blue phase liquid crystals," Opt. Lett. 39, 5435-5438 (2014); J. Ptasinski, I.C. Khoo, and Y. Fainman, "Passive Temperature Stabilization of Silicon Photonic Devices Using Liquid Crystals," Materials 7(3), 2229-2241 (2014)].

  4. Formation of Novel Silicon Nitride with Face-Centered Cubic Crystal Structure in a TaN/Ta/Si(100) Thin Film System

    NASA Astrophysics Data System (ADS)

    Cheng, Wei-Chun; Jou, Shyan-Kay; Chiu, Chuei-Fu

    2005-07-01

    We discovered a new silicon nitride with cubic symmetry formed in the silicon at the Ta/Si interface of the TaN/Ta/Si(100) thin film system when the silicon wafer was annealed at 500 or 600°C. The cubic silicon nitride grew into the silicon crystal in the shape of an inverse pyramid after the annealing process. The boundary planes of the inverse pyramid were the \\{111\\} planes of the silicon crystal. The orientation relationship between the silicon nitride and silicon crystal is cubic to cubic. The lattice constant of the new silicon nitride is a=0.5548 nm and is about 2.2% larger than that of the silicon crystal.

  5. Structural and physicomechanical properties of directionally crystallized aluminum-silicon alloys

    NASA Astrophysics Data System (ADS)

    Nikanorov, S. P.; Derkachenko, L. I.; Kardashev, B. K.; Korchunov, B. N.; Osipov, V. N.; Shpeizman, V. V.

    2013-06-01

    Aluminum-silicon alloys (from 8 to 25 wt % Si) have been prepared by directional crystallization of shaped samples by the Stepanov growth at a solidification rate of 103 μm s-1. The dependences of the microhardness, Young's modulus, internal friction, yield stress, and ultimate tensile stress of the alloys on the silicon content have been studied. It has been shown that the ultimate tensile stress has a maximum, and the yield stress has a kink at 15 wt % Si; the composition corresponds to the eutectic composition at the solidification rate used. The silicon content in the eutectics increases with an increase in the solidification rate. The increase in the ultimate tensile stress is explained by an increase in the volume fraction of the more strength fine-crystalline structure of the eutectics as a result of the decrease in the volume fraction of more plastic dendrites of the primary crystals of the α-Al solid solution. The decrease in the ultimate tensile stress of the hypereutectic alloy is determined by the increase in the volume fraction of brittle primary silicon crystals of various shapes.

  6. Liquid gallium cooling of silicon crystals in high intensity photon beams (invited)

    NASA Astrophysics Data System (ADS)

    Smither, R. K.; Forster, G. A.; Bilderback, D. H.; Bedzyk, M.; Finkelstein, K.; Henderson, C.; White, J.; Berman, L. E.; Stefan, P.; Oversluizen, T.

    1989-07-01

    The high-brilliance, insertion-device-based photon beams of the next generation of synchrotron sources (Argonne's APS and Grenoble's ESRF) will deliver large thermal loads (1-10 kW) to the first optical elements. Considering the problems that present synchrotron users are experiencing with beams from recently installed insertion devices, new and improved methods of cooling these first optical elements, particularly when they are diffraction crystals, are clearly needed. A series of finite element calculations were performed to test the efficiency of new cooling geometries and various cooling fluids. The best results were obtained with liquid Ga metal flowing in channels just below the surface of the crystal. Ga was selected because of its good thermal conductivity and thermal capacity, low melting point, high boiling point, low kinetic viscosity, and very low vapor pressure. Its very low vapor pressure, even at elevated temperatures, makes it especially attractive in UHV conditions. A series of experiments were conducted at CHESS in February of 1988 that compared liquid gallium-cooled silicon diffraction crystals with water-cooled crystals. A six-pole wiggler beam was used to perform these tests on three different Si crystals, two with new cooling geometries and the one presently in use. A special high-pressure electromagnetic induction pump, recently developed at Argonne, was used to circulate the liquid gallium through the silicon crystals. In all experiments, the specially cooled crystal was used as the first crystal in a two crystal monochromator. An infrared camera was used to monitor the thermal profiles and correlated them with rocking curve measurements. A second set of cooling experiments were conducted in June of 1988 that used the intense, highly collimated beam from the newly installed ANL/CHESS undulator. Tests were performed on two new Ga-cooled Si crystals and compared with the standard water-cooled Si crystal. One of the crystals had cooling

  7. Solar-Grade Silicon from Metallurgical-Grade Silicon Via Iodine Chemical Vapor Transport Purification: Preprint

    SciTech Connect

    Ciszek, T. F.; Wang, T. H.; Page, M. R.; Bauer, R. E.; Landry, M. D.

    2002-05-01

    This conference paper describes the atmospheric-pressure in an ''open'' reactor, SiI2 transfers from a hot (>1100C) Si source to a cooler (>750C) Si substrate and decomposes easily via 2SiI2 Si+ SiI4 with up to 5?m/min deposition rate. SiI4 returns to cyclically transport more Si. When the source is metallurgical-grade Si, impurities can be effectively removed by three mechanisms: (1) differing free energies of formation in forming silicon and impurity iodides; (2) distillation; and (3) differing standard free energies of formation during deposition. Distillation has been previously reported. Here, we focused on mechanisms (1) and (3). We made feedstock, analyzed the impurity levels, grew Czochralski single crystals, and evaluated crystal and photovoltaic properties. Cell efficiencies of 9.5% were obtained. Incorporating distillation (step 2) should increase this to a viable level.

  8. Growth and characterization of Czochralski-grown n and p-type GaAs for space solar cell substrates

    NASA Technical Reports Server (NTRS)

    Chen, R. T.

    1983-01-01

    Progress in LEC (liquid encapsulated Czochralski) crystal growth techniques for producing high-quality, 3-inch-diameter, n- and p-type GaAs crystals suitable for solar cell applications is described. The LEC crystals with low dislocation densities and background impurities, high electrical mobilities, good dopant uniformity, and long diffusion lengths were reproducibly grown through control of the material synthesis, growth and doping conditions. The capability for producing these large-area, high-quality substrates should positively impact the manufacturability of highly efficiency, low cost, radiation-hard GaAs solar cells.

  9. Investigating the existence of coherent phonon scattering in silicon using phononic crystals

    NASA Astrophysics Data System (ADS)

    Goettler, Drew

    In silicon the majority of heat energy is transported by phonons, which are discrete lattice vibrations. Phonon scattering due to the presence of voids in silicon can further alter the material's thermal conductivity. There is a question about the possibility of some of this scattering being coherent rather than purely incoherent. Coherent phonon scattering is defined as constructive interference of phonons scattered from the inclusions in the phononic crystal. The intent of this work is to investigate the existence of coherent scattering in Si via phononic crystals. A phononic crystal is a periodic array of inclusions inside a host material. The inclusions could be a second material or a void. In this work five different supercell phononic crystals comprised of holes in silicon will be used to investigate the existence of coherent phonon scattering. Each of the supercells had nearly identical critical lengths in order to keep the amount of incoherent scattering equal among all of the PnCs. Porosity differences among the supercells were also minimized. All of the PnCs were fabricated with a focused ion beam (FIB). During fabrication a protective layer of Ti was used to protect the Si from unintentional Ga doping from the FIB. The Ti layer also helped generate voids with more vertical sidewalls. A set of experiments was performed to measure the thermal conductivity of each PnC. Thermal conductivity measurements were carried out on a silicon nitride suspended island platform with platinum resistance temperature detectors and coated with aluminum nitride. A silicon slab was concurrently measured with each PnC, and relative thermal conductivity values were determined. The addition of the PnC decreased Si's thermal conductivity to less than 22% of its original value. An analysis of the results shows there is a reduction in thermal conductivity beyond the effects of porosity and incoherent scattering. This enhanced reduction in thermal conductivity is due to coherent

  10. Photoluminescence properties and crystallization of silicon quantum dots in hydrogenated amorphous Si-rich silicon carbide films

    SciTech Connect

    Wen, Guozhi; Zeng, Xiangbin Wen, Xixin; Liao, Wugang

    2014-04-28

    Silicon quantum dots (QDs) embedded in hydrogenated amorphous Si-rich silicon carbide (α-SiC:H) thin films were realized by plasma-enhanced chemical vapor deposition process and post-annealing. Fluorescence spectroscopy was used to characterize the room-temperature photoluminescence properties. X-ray photoelectron spectroscopy was used to analyze the element compositions and bonding configurations. Ultraviolet visible spectroscopy, Raman scattering, and high-resolution transmission electron microscopy were used to display the microstructural properties. Photoluminescence measurements reveal that there are six emission sub-bands, which behave in different ways. The peak wavelengths of sub-bands P1, P2, P3, and P6 are pinned at about 425.0, 437.3, 465.0, and 591.0 nm, respectively. Other two sub-bands, P4 is red-shifted from 494.6 to 512.4 nm and P5 from 570.2 to 587.8 nm with temperature increasing from 600 to 900 °C. But then are both blue-shifted, P4 to 500.2 nm and P5 to 573.8 nm from 900 to 1200 °C. The X-ray photoelectron spectroscopy analysis shows that the samples are in Si-rich nature, Si-O and Si-N bonds consumed some silicon atoms. The structure characterization displays that a separation between silicon phase and SiC phase happened; amorphous and crystalline silicon QDs synthesized with increasing the annealing temperature. P1, P2, P3, and P6 sub-bands are explained in terms of defect-related emission, while P4 and P5 sub-bands are explained in terms of quantum confinement effect. A correlation between the peak wavelength shift, as well as the integral intensity of the spectrum and crystallization of silicon QDs is supposed. These results help clarify the probable luminescence mechanisms and provide the possibility to optimize the optical properties of silicon QDs in Si-rich α-SiC: H materials.

  11. Photoluminescence properties and crystallization of silicon quantum dots in hydrogenated amorphous Si-rich silicon carbide films

    NASA Astrophysics Data System (ADS)

    Wen, Guozhi; Zeng, Xiangbin; Wen, Xixin; Liao, Wugang

    2014-04-01

    Silicon quantum dots (QDs) embedded in hydrogenated amorphous Si-rich silicon carbide (α-SiC:H) thin films were realized by plasma-enhanced chemical vapor deposition process and post-annealing. Fluorescence spectroscopy was used to characterize the room-temperature photoluminescence properties. X-ray photoelectron spectroscopy was used to analyze the element compositions and bonding configurations. Ultraviolet visible spectroscopy, Raman scattering, and high-resolution transmission electron microscopy were used to display the microstructural properties. Photoluminescence measurements reveal that there are six emission sub-bands, which behave in different ways. The peak wavelengths of sub-bands P1, P2, P3, and P6 are pinned at about 425.0, 437.3, 465.0, and 591.0 nm, respectively. Other two sub-bands, P4 is red-shifted from 494.6 to 512.4 nm and P5 from 570.2 to 587.8 nm with temperature increasing from 600 to 900 °C. But then are both blue-shifted, P4 to 500.2 nm and P5 to 573.8 nm from 900 to 1200 °C. The X-ray photoelectron spectroscopy analysis shows that the samples are in Si-rich nature, Si-O and Si-N bonds consumed some silicon atoms. The structure characterization displays that a separation between silicon phase and SiC phase happened; amorphous and crystalline silicon QDs synthesized with increasing the annealing temperature. P1, P2, P3, and P6 sub-bands are explained in terms of defect-related emission, while P4 and P5 sub-bands are explained in terms of quantum confinement effect. A correlation between the peak wavelength shift, as well as the integral intensity of the spectrum and crystallization of silicon QDs is supposed. These results help clarify the probable luminescence mechanisms and provide the possibility to optimize the optical properties of silicon QDs in Si-rich α-SiC: H materials.

  12. Modeling and design of PVT growth of silicon carbide crystals

    NASA Astrophysics Data System (ADS)

    Ma, Ronghui

    2003-10-01

    Physical vapor transport method (PVT) is an important technique for growing SiC bulk crystals, which is a promising semiconductor material for electrical and optoelectronic applications in the areas of high power, high temperature, high frequency and strong radiation. The ever-increasing demand for SiC substrates of high quality and large diameter has motivated extensive research effort on the growth of SiC boule using PVT method. The PVT growth process involves highly complex physics and elaborate system that significantly affect the rate of growth, growth area and defect density. This dissertation is aimed at developing a fundamental understanding of the growth process and identifying the foremost process conditions and parameters that affect crystal productivity and quality. To achieve this goal, we have developed a comprehensive model that involves major physical mechanisms of PVT growth, i.e. , transport of energy and vapor species, chemical reaction, growth kinetics, and anisotropic thermal stresses. Moreover, the multiplication of dislocation is integrated into this model to correlate thermal stresses to dislocation distribution. Through this work a relationship is established between the transport phenomena at the macroscale and defect development at the microscale. Finite volume method with adaptive non-orthogonal grid has been used for the thermal and mechanical calculations in the complex geometry. Using this integrated model, we have carried out numerical simulation of SiC growth process to predict the global temperature distribution in the furnace, the rate of growth and the shape of the as-grown crystals. In addition, the thermal stresses in the growing crystal and the dislocation distribution are also calculated. It is found that the temperature distribution in the induction-heated growth chamber is quite non-uniform. Under the growth temperatures, thermal radiation is the dominant heat transfer mode and accurate modeling is essential. The rate of

  13. Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides

    SciTech Connect

    Zhou, Hao E-mail: tg2342@columbia.edu; Gu, Tingyi E-mail: tg2342@columbia.edu McMillan, James F.; Wong, Chee Wei E-mail: tg2342@columbia.edu; Petrone, Nicholas; Zande, Arend van der; Hone, James C.; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Feng, Guoying; Zhou, Shouhuan

    2014-09-01

    We demonstrate the enhanced four-wave mixing of monolayer graphene on slow-light silicon photonic crystal waveguides. 200-μm interaction length, a four-wave mixing conversion efficiency of −23 dB is achieved in the graphene-silicon slow-light hybrid, with an enhanced 3-dB conversion bandwidth of about 17 nm. Our measurements match well with nonlinear coupled-mode theory simulations based on the measured waveguide dispersion, and provide an effective way for all-optical signal processing in chip-scale integrated optics.

  14. Influence of intermediate layers on the surface condition of laser crystallized silicon thin films and solar cell performance

    NASA Astrophysics Data System (ADS)

    Höger, Ingmar; Himmerlich, Marcel; Gawlik, Annett; Brückner, Uwe; Krischok, Stefan; Andrä, Gudrun

    2016-01-01

    The intermediate layer (IL) between glass substrate and silicon plays a significant role in the optimization of multicrystalline liquid phase crystallized silicon thin film solar cells on glass. This study deals with the influence of the IL on the surface condition and the required chemical surface treatment of the crystallized silicon (mc-Si), which is of particular interest for a-Si:H heterojunction thin film solar cells. Two types of IL were investigated: sputtered silicon nitride (SiN) and a layer stack consisting of silicon nitride and silicon oxide (SiN/SiO). X-ray photoelectron spectroscopy measurements revealed the formation of silicon oxynitride (SiOxNy) or silicon oxide (SiO2) layers at the surface of the mc-Si after liquid phase crystallization on SiN or SiN/SiO, respectively. We propose that SiOxNy formation is governed by dissolving nitrogen from the SiN layer in the silicon melt, which segregates at the crystallization front during crystallization. This process is successfully hindered, when additional SiO layers are introduced into the IL. In order to achieve solar cell open circuit voltages above 500 mV, a removal of the formed SiOxNy top layer is required using sophisticated cleaning of the crystallized silicon prior to a-Si:H deposition. However, solar cells crystallized on SiN/SiO yield high open circuit voltage even when a simple wet chemical surface treatment is applied. The implementation of SiN/SiO intermediate layers facilitates the production of mesa type solar cells with open circuit voltages above 600 mV and a power conversion efficiency of 10%.

  15. Electrotunable band gaps of one- and two-dimensional photonic crystal structures based on silicon and liquid crystals

    NASA Astrophysics Data System (ADS)

    Arriaga, J.; Dobrzynski, L.; Djafari-Rouhani, B.

    2008-09-01

    One- and two-dimensional photonic crystals based on silicon with infiltrated liquid crystals are investigated in this paper. We show that the photonic band gap can be continuously tuned changing the orientation of the director of the liquid crystal. For the one-dimensional case, we considered arbitrary direction of propagation of the electromagnetic waves, and we show that it is possible to tune the photonic band gap by an adequate orientation of the liquid crystal. For the two-dimensional case and propagation in the plane of periodicity, we show that there exists no complete photonic band gap in the system for both polarizations. We consider two different configurations, square array of solid Si cylinders in liquid crystal background and a triangular array of liquid crystal cylinders surrounded by Si. We show that for the triangular array it is possible to tune the photonic band gap only for the transversal electric modes. We used the plane wave expansion method to solve the Maxwell equations for anisotropic systems.

  16. Polycrystalline silicon thin-film transistors fabricated by Joule-heating-induced crystallization

    NASA Astrophysics Data System (ADS)

    Hong, Won-Eui; Ro, Jae-Sang

    2015-01-01

    Joule-heating-induced crystallization (JIC) of amorphous silicon (a-Si) films is carried out by applying an electric pulse to a conductive layer located beneath or above the films. Crystallization occurs across the whole substrate surface within few tens of microseconds. Arc instability, however, is observed during crystallization, and is attributed to dielectric breakdown in the conductor/insulator/transformed polycrystalline silicon (poly-Si) sandwich structures at high temperatures during electrical pulsing for crystallization. In this study, we devised a method for the crystallization of a-Si films while preventing arc generation; this method consisted of pre-patterning an a-Si active layer into islands and then depositing a gate oxide and gate electrode. Electric pulsing was then applied to the gate electrode formed using a Mo layer. The Mo layer was used as a Joule-heat source for the crystallization of pre-patterned active islands of a-Si films. JIC-processed poly-Si thin-film transistors (TFTs) were fabricated successfully, and the proposed method was found to be compatible with the standard processing of coplanar top-gate poly-Si TFTs.

  17. CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform

    PubMed Central

    Ooka, Yuta; Tetsumoto, Tomohiro; Fushimi, Akihiro; Yoshiki, Wataru; Tanabe, Takasumi

    2015-01-01

    Progress on the fabrication of ultrahigh-Q photonic-crystal nanocavities (PhC-NCs) has revealed the prospect for new applications including silicon Raman lasers that require a strong confinement of light. Among various PhC-NCs, the highest Q has been recorded with silicon. On the other hand, microcavity is one of the basic building blocks in silicon photonics. However, the fusion between PhC-NCs and silicon photonics has yet to be exploited, since PhC-NCs are usually fabricated with electron-beam lithography and require an air-bridge structure. Here we show that a 2D-PhC-NC fabricated with deep-UV photolithography on a silica-clad silicon-on-insulator (SOI) structure will exhibit a high-Q of 2.2 × 105 with a mode-volume of ~1.7(λ/n)3. This is the highest Q demonstrated with photolithography. We also show that this device exhibits an efficient thermal diffusion and enables high-speed switching. The demonstration of the photolithographic fabrication of high-Q silica-clad PhC-NCs will open possibility for mass-manufacturing and boost the fusion between silicon photonics and CMOS devices. PMID:26086849

  18. CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform.

    PubMed

    Ooka, Yuta; Tetsumoto, Tomohiro; Fushimi, Akihiro; Yoshiki, Wataru; Tanabe, Takasumi

    2015-01-01

    Progress on the fabrication of ultrahigh-Q photonic-crystal nanocavities (PhC-NCs) has revealed the prospect for new applications including silicon Raman lasers that require a strong confinement of light. Among various PhC-NCs, the highest Q has been recorded with silicon. On the other hand, microcavity is one of the basic building blocks in silicon photonics. However, the fusion between PhC-NCs and silicon photonics has yet to be exploited, since PhC-NCs are usually fabricated with electron-beam lithography and require an air-bridge structure. Here we show that a 2D-PhC-NC fabricated with deep-UV photolithography on a silica-clad silicon-on-insulator (SOI) structure will exhibit a high-Q of 2.2 × 10(5) with a mode-volume of ~ 1.7(λ/n)(3). This is the highest Q demonstrated with photolithography. We also show that this device exhibits an efficient thermal diffusion and enables high-speed switching. The demonstration of the photolithographic fabrication of high-Q silica-clad PhC-NCs will open possibility for mass-manufacturing and boost the fusion between silicon photonics and CMOS devices. PMID:26086849

  19. Characterization of dislocation structures in silicon carbide single crystals

    NASA Astrophysics Data System (ADS)

    Vetter, William M.

    1999-07-01

    Two types of defects in PVT-grown 6H and 4H-SiC crystals were studied: screw dislocations that follow the axial direction of the crystal and dislocations that follow directions in the crystal's basal plane. The screw dislocations possessed a range of Burgers vector magnitudes, multiples of the axial parameter c, that could be determined by x-ray topographic image analysis. Hollow cores termed "micropipes" were observed when Burgers, vectors were larger than 3c. The micropipes were studied by a variety of methods: optical microscopy, laser scanning confocal microscopy, scanning electron microscopy, transmission electron microscopy and atomic force microscopy. The micropipes were tubes 0.1 to 10mum in diameter. They were faceted, primarily along the {101¯0} planes, but also had {112¯0} facets. When encountering the growth surface of a crystal, they flared out into a trumpet-shape. Growth spirals sometimes occurred, originating from the trumpets' rims. The screw dislocations are visible in back-reflection synchrotron white beam x-ray topographs of basal-cut SiC wafers in striking contrast as black rings surrounding white circles, though such topographs are contaminated by a series of harmonic reflections, g = (0006n), where n = 3 to 16. By calculating and considering their intensities, and comparison with a g = 00018 Lang topograph taken with CuKalpha1 radiation, the g = 00024 harmonic was shown to be the most important contributor. Basal plane dislocations were seen in x-ray topographs of SiC looping from the points where screw dislocations occurred. Their extinction behavior showed they belonged to the set b = 13 <112¯0>. In some transmission electron micrographs, perfect dislocations with similar extinction behavior, along with partial dislocations with b = 13 <101¯0>, were seen originating from the micropipes' walls, curving out into the crystal a distance of 1 to 3mum, then back to terminate at the micropipe. Others led out of the field of view. Contrast is

  20. Liquid gallium cooling of silicon crystals in high intensity photon beams

    SciTech Connect

    Smither, R. K.; Forster, G. A.; Bilderback, D. H.; Bedzyk, M.; Finkelstein, K.; Henderson, C.; White, J.; Berman, L. E.; Stefan, P.; Oversluizen, T.; and others

    1989-07-01

    The high-brilliance, insertion-device-based photon beams of the next generation of synchrotron sources (Argonne's APS and Grenoble's ESRF) will deliver large thermal loads (1--10 kW) to the first optical elements. Considering the problems that present synchrotron users are experiencing with beams from recently installed insertion devices, new and improved methods of cooling these first optical elements, particularly when they are diffraction crystals, are clearly needed. A series of finite element calculations were performed to test the efficiency of new cooling geometries and various cooling fluids. The best results were obtained with liquid Ga metal flowing in channels just below the surface of the crystal. Ga was selected because of its good thermal conductivity and thermal capacity, low melting point, high boiling point, low kinetic viscosity, and very low vapor pressure. Its very low vapor pressure, even at elevated temperatures, makes it especially attractive in UHV conditions. A series of experiments were conducted at CHESS in February of 1988 that compared liquid gallium-cooled silicon diffraction crystals with water-cooled crystals. A six-pole wiggler beam was used to perform these tests on three different Si crystals, two with new cooling geometries and the one presently in use. A special high-pressure electromagnetic induction pump, recently developed at Argonne, was used to circulate the liquid gallium through the silicon crystals. In all experiments, the specially cooled crystal was used as the first crystal in a two crystal monochromator. An infrared camera was used to monitor the thermal profiles and correlated them with rocking curve measurements. A second set of cooling experiments were conducted in June of 1988 that used the intense, highly collimated beam from the newly installed ANL/CHESS undulator.

  1. Processing experiments on non-Czochralski silicon sheet

    NASA Technical Reports Server (NTRS)

    Pryor, R. A.; Grenon, L. A.; Sakiotis, N. G.; Pastirik, E. M.; Sparks, T. O.; Legge, R. N.

    1981-01-01

    A program is described which supports and promotes the development of processing techniques which may be successfully and cost-effectively applied to low-cost sheets for solar cell fabrication. Results are reported in the areas of process technology, cell design, cell metallization, and production cost simulation.

  2. Integrating photonic crystals in thin film silicon photovoltaics

    NASA Astrophysics Data System (ADS)

    O'Brien, P. G.; Chutinan, A.; Ozin, G. A.; Kherani, N. P.; Zukotynski, S.

    2010-06-01

    Wave-optics analysis is performed to investigate the benefits of integrating photonic crystals into micromorph cells. Specifically, we theoretically investigate two novel micromorph cells which integrate photonic crystals and compare their optical performance with that of conventional micromorph cells. In the first innovative micromorph cell configuration the intermediate reflector is a selectively transparent and conducting photonic crystal (STCPC). In the second micromorph cell its bottom μc-Si:H cell is structured in the form of an inverted opal. Our results show that with the AM1.5 solar spectrum at normal incidence the current generated in a conventional micromorph cell is increased from 12.1 mA/cm2 to 13.0 mA/cm2 when the bottom μc-Si:H cell is structured in the form of an inverted opal. However, the current generated in the micromorph cell can be increased to as much as 13.7 mA/cm2 when an STCPC is utilized as the intermediate reflector. Furthermore, the thickness of the μc-Si:H opal must be relatively large in order to absorb a sufficient amount of the solar irradiance, which is expected to degrade the electrical performance of the device. In contrast, our results suggest that STCPC intermediate reflectors are a viable technology that could potentially enhance the performance of micromorph cells.

  3. Theory of High Frequency Rectification by Silicon Crystals

    DOE R&D Accomplishments Database

    Bethe, H. A.

    1942-10-29

    The excellent performance of British "red dot" crystals is explained as due to the knife edge contact against a polished surface. High frequency rectification depends critically on the capacity of the rectifying boundary layer of the crystal, C. For high conversion efficiency, the product of this capacity and of the "forward" (bulk) resistance R {sub b} of the crystal must be small. For a knife edge, this product depends primarily on the breadth of the knife edge and very little upon its length. The contact can therefore have a rather large area which prevents burn-out. For a wavelength of 10 cm. the computations show that the breadth of the knife edge should be less than about 10 {sup -3} cm. For a point contact the radius must be less than 1.5 x 10 {sup -3} cm. and the resulting small area is conducive to burn-out. The effect of "tapping" is probably to reduce the area of contact. (auth)

  4. Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching

    NASA Astrophysics Data System (ADS)

    Li, Zhiqin; Chen, Yiqin; Zhu, Xupeng; Zheng, Mengjie; Dong, Fengliang; Chen, Peipei; Xu, Lihua; Chu, Weiguo; Duan, Huigao

    2016-09-01

    Single-crystal silicon nanostructures have attracted much attention in recent years due in part to their unique optical properties. In this work, we demonstrate direct fabrication of single-crystal silicon nanotubes with sub-10 nm walls which show low reflectivity. The fabrication was based on a cryogenic inductively coupled plasma reactive ion etching process using high-resolution hydrogen silsesquioxane nanostructures as the hard mask. Two main etching parameters including substrate low-frequency power and SF6/O2 flow rate ratio were investigated to determine the etching mechanism in the process. With optimized etching parameters, high-aspect-ratio silicon nanotubes with smooth and vertical sub-10 nm walls were fabricated. Compared to commonly-used antireflection silicon nanopillars with the same feature size, the densely packed silicon nanotubes possessed a lower reflectivity, implying possible potential applications of silicon nanotubes in photovoltaics.

  5. Synthesis of epitaxial silicon carbide films through the substitution of atoms in the silicon crystal lattice: A review

    NASA Astrophysics Data System (ADS)

    Kukushkin, S. A.; Osipov, A. V.; Feoktistov, N. A.

    2014-08-01

    A review of recent advances in the field of epitaxial growth of SiC films on Si by means of a new method of epitaxial substitution of film atoms for substrate atoms has been presented. The basic statements of the theory of the new method used for synthesizing SiC on Si have been considered and extensive experimental data have been reported. The elastic energy relaxation mechanism implemented during the growth of epitaxial SiC films on Si by means of the new method of substitution of atoms has been described. This method consists in substituting a part of carbon atoms for silicon matrix atoms with the formation of silicon carbide molecules. It has been found experimentally that the substitution for matrix atoms occurs gradually without destroying the crystalline structure of the matrix. The orientation of the film is determined by the "old" crystalline structure of the initial silicon matrix rather than by the silicon substrate surface only, as is the case where conventional methods are used for growing the films. The new growth method has been compared with the classical mechanisms of thin film growth. The structure and composition of the grown SiC layers have been described in detail. A new mechanism of first-order phase transformations in solids with a chemical reaction through an intermediate state promoting the formation of a new-phase nuclei has been discussed. The mechanism providing the occurrence of a wide class of heterogeneous chemical reactions between the gas phase and a solid has been elucidated using the example of the chemical interaction of the CO gas with the single-crystal Si matrix. It has been shown that this mechanism makes it possible to grow a new type of templates, i.e., substrates with buffer transition layers for growing wide-band-gap semiconductor films on silicon. A number of heteroepitaxial films of wide-band-gap semiconductors, such as SiC, AlN, GaN, and AlGaN on silicon, whose quality is sufficient for the fabrication of a wide class

  6. Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks

    SciTech Connect

    Bayn, I.; Mouradian, S.; Li, L.; Goldstein, J. A.; Schröder, T.; Zheng, J.; Chen, E. H.; Gaathon, O.; Englund, Dirk; Lu, M.; Stein, A.; Ruggiero, C. A.; Salzman, J.; Kalish, R.

    2014-11-24

    A scalable approach for integrated photonic networks in single-crystal diamond using triangular etching of bulk samples is presented. We describe designs of high quality factor (Q = 2.51 × 10{sup 6}) photonic crystal cavities with low mode volume (V{sub m} = 1.062 × (λ/n){sup 3}), which are connected via waveguides supported by suspension structures with predicted transmission loss of only 0.05 dB. We demonstrate the fabrication of these structures using transferred single-crystal silicon hard masks and angular dry etching, yielding photonic crystal cavities in the visible spectrum with measured quality factors in excess of Q = 3 × 10{sup 3}.

  7. Micromorph silicon tandem solar cells with fully integrated 3D photonic crystal intermediate reflectors

    NASA Astrophysics Data System (ADS)

    Üpping, J.; Bielawny, A.; Fahr, S.; Rockstuhl, C.; Lederer, F.; Steidl, L.; Zentel, R.; Beckers, T.; Lambertz, A.; Carius, R.; Wehrspohn, R. B.

    2010-05-01

    A 3D photonic intermediate reflector for textured micromorph silicon tandem solar cells has been investigated. In thin-film silicon tandem solar cells consisting of amorphous and microcrystalline silicon with two junctions of a-Si/c-Si, efficiency enhancements can be achieved by increasing the current density in the a-Si top cell providing an optimized current matching at high current densities. For an ideal photon-management between top and bottom cell, a spectrally-selective intermediate reflective layer (IRL) is necessary. We present the first fully-integrated 3D photonic thin-film IRL device incorporated on a planar substrate. Using a ZnO inverted opal structure the external quantum efficiency of the top cell in the spectral region of interest could be enhanced. As an outlook we present the design and the preparation of a 3D self organized photonic crystal structure in a textured micromorph tandem solar cell.

  8. Thermoreflectance-based in-depth stress distribution measurement technique for single-crystal silicon structures

    NASA Astrophysics Data System (ADS)

    Miyake, Shugo; Kato, Takaaki; Taguchi, Hideyuki; Namazu, Takahiro

    2016-06-01

    In this paper, we suggest a new stress measurement technique based on the thermoreflectance method for the estimation of the in-depth stress distribution of fabricated silicon devices. Changing the modulated intensity of a heating laser beam of the frequency-domain thermoreflectance method (FD-TRM) can vary the estimation depth optionally. We developed a measurement system on the basis of the FD-TRM and demonstrated in-depth stress measurement for a single-crystal silicon (SCS) sample. The result measured at a modulation frequency of 3 MHz showed the phase distribution of the TR signal corresponding to the stress distribution determined by 632-nm-excited Raman spectroscopy. In addition, it was found that the phase distribution changed depending on the modulation frequency. The FD-TRM can be a powerful technique for estimating the in-depth stress distribution of silicon materials.

  9. Performance of a PET detector module utilizing an array of silicon photodiodes to identify the crystal of interaction

    SciTech Connect

    Moses, W.W.; Derenzo, S.E. ); Nutt, R.; Digby, W.M.; Williams, C.W.; Andreaco, M. )

    1992-11-01

    We present initial performance results for a new multi-layer PET detector module consisting of an array of 3 mm square by 30 mm deep BGO crystals coupled on one end to a single photomultiplier tube and on the opposite end to an array of 3 mm square silicon photodiodes. The photomultiplier tube provides an accurate timing pulse and energy discrimination for the all the crystals in the module, while the silicon photodiodes identify the crystal of interaction. When a single BGO crystal at +25[degree]C is excited with 511 key photons, we measure a photodiode signal centered at 700 electrons (e[sup [minus

  10. Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon

    PubMed Central

    Chakravarty, Swapnajit; Zou, Yi; Lai, Wei-Cheng; Chen, Ray T.

    2012-01-01

    Current trends in photonic crystal microcavity biosensors in silicon-on-insulator (SOI), that focus on small and smaller sensors have faced a bottleneck trying to balance two contradictory requirements of resonance quality factor and sensitivity. By simultaneous control of the radiation loss and optical mode volumes, we show that both requirements can be satisfied simultaneously. Microcavity sensors are designed in which resonances show highest Q ~9,300 in the bio-ambient phosphate buffered saline (PBS) as well as highest sensitivity among photonic crystal biosensors. We experimentally demonstrated mass sensitivity 8.8 atto-grams with sensitivity per unit area of 0.8 picograms/mm2 Highest sensitivity, irrespective of the dissociation constant Kd, is demonstrated among all existing label-free optical biosensors in silicon at the concentration of 0.1μg/ml. PMID:22748964

  11. Optically tunable microcavity in a planar photonic crystal silicon waveguide buried in oxide.

    PubMed

    Märki, Iwan; Salt, Martin; Herzig, Hans Peter; Stanley, Ross; El Melhaoui, L; Lyan, P; Fedeli, J M

    2006-02-15

    We present all-optical tuning and switching of a microcavity inside a two-dimensional photonic crystal waveguide. The photonic crystal structure is fabricated in silicon-on-insulator using complementary metal-oxide semiconductor processing techniques based on deep ultraviolet lithography and is completely buried in a silicon dioxide cladding that provides protection from the environment. By focusing a laser onto the microcavity region, both a thermal and a plasma dispersion effect are generated, allowing tuning and fast modulation of the in-plane transmission. By means of the temporal characteristics of the in-plane transmission, we experimentally identify a slower thermal and a fast plasma dispersion effect with modulation bandwidths of the order of several 100 kHz and up to the gigahertz level, respectively. PMID:16496904

  12. Near-infrared femtosecond laser-induced crystallization of amorphous silicon

    SciTech Connect

    Shieh, J.-M.; Chen, Z.-H.; Dai, B.-T.; Wang, Y.-C.; Zaitsev, Alexei; Pan, C.-L.

    2004-08-16

    Amorphous silicon (a-Si) was crystallized by femtosecond laser annealing (FLA) using a near-infrared ({lambda}{approx_equal}800 nm) ultrafast Ti:sapphire laser system. The intense ultrashort laser pulses lead to efficient nonlinear photoenergy absorption and the generation of very dense photoexcited plasma in irradiated materials, enabling nonlinear melting on transparent silicon materials. We studied the structural characteristics of recrystallized films and found that FLA assisted by spatial scanning of laser strip spot constitutes superlateral epitaxy that can crystallize a-Si films with largest grains of {approx}800 nm, requiring laser fluence as low as {approx}45 mJ/cm{sup 2}, and low laser shots. Moreover, the optimal annealing conditions are observed with a significant laser-fluence window ({approx}30%)

  13. Elemental characterization of the Avogadro silicon crystal WASO 04 by neutron activation analysis

    NASA Astrophysics Data System (ADS)

    D'Agostino, G.; Bergamaschi, L.; Giordani, L.; Mana, G.; Massa, E.; Oddone, M.

    2012-12-01

    Impurity measurements of the 28Si crystal used for the determination of the Avogadro constant are essential to prevent biased results or underestimated uncertainties. A review of the existing data confirmed the high purity of silicon with respect to a large number of elements. In order to obtain direct evidence of purity, we developed a relative analytical method based on neutron activation. As a preliminary test, this method was applied to a sample of the Avogadro natural silicon crystal WASO 04. The investigation concerned 29 elements. The mass fraction of Au was quantified to be (1.03 ± 0.18) × 10-12. For the remaining 28 elements, the mass fractions were below the detection limits, which ranged between 1 × 10-12 and 1 × 10-5.

  14. Formation of hydrogen complexes in proton implanted silicon and their influence on the crystal damage

    SciTech Connect

    Hochbauer, T. F.; Misra, A.; Shao, L.; Nastasi, Michael Anthony,; Mayer, J. W.; Ensinger, W.

    2004-01-01

    We studied the rearrangement of ion-implanted hydrogen in <100> oriented n-type silicon wafers upon annealing and its effect on the crystal damage. The silicon samples were implanted with 42 keV protons to a dose of 2 x 10{sup 16} H/cm{sup 2} and subsequently vacuum annealed at temperatures ranging from 200 C to 500 C. The evolution of the H-concentration and the crystal damage depth profiles during the heat treatments were investigated through the combined use of elastic recoil detection (ERD) analysis, secondary ion mass spectroscopy (SIMS), and Rutherford backscattering spectroscopy (RBS) in channeling mode. The obtained results reveal information about the damage accumulation caused by the thermally induced rearrangement of the implanted Hydrogen. The gained knowledge was correlated to the depth dist ributions and orientations of H-platelets, which formed during annealing and were examined by cross-section transmission electron microscopy (XTEM) analysis.

  15. Doping of germanium and silicon crystals with non-hydrogenic acceptors for far infrared lasers

    DOEpatents

    Haller, Eugene E.; Brundermann, Erik

    2000-01-01

    A method for doping semiconductors used for far infrared lasers with non-hydrogenic acceptors having binding energies larger than the energy of the laser photons. Doping of germanium or silicon crystals with beryllium, zinc or copper. A far infrared laser comprising germanium crystals doped with double or triple acceptor dopants permitting the doped laser to be tuned continuously from 1 to 4 terahertz and to operate in continuous mode. A method for operating semiconductor hole population inversion lasers with a closed cycle refrigerator.

  16. High-Efficiency Volume Reflection of an Ultrarelativistic Proton Beam with a Bent Silicon Crystal

    SciTech Connect

    Scandale, Walter; Still, Dean A.; Baricordi, Stefano; Dalpiaz, Pietro; Fiorini, Massimiliano; Guidi, Vincenzo; Martinelli, Giuliano; Mazzolari, Andrea; Milan, Emiliano; Ambrosi, Giovanni; Azzarello, Philipp; Battiston, Roberto; Bertucci, Bruna; Burger, William J.; Ionica, Maria; Zuccon, Paolo; Cavoto, Gianluca; Santacesaria, Roberta; Valente, Paolo; Vallazza, Erik

    2007-04-13

    The volume reflection phenomenon was detected while investigating 400 GeV proton interactions with bent silicon crystals in the external beam H8 of the CERN Super Proton Synchrotron. Such a process was observed for a wide interval of crystal orientations relative to the beam axis, and its efficiency exceeds 95%, thereby surpassing any previously observed value. These observations suggest new perspectives for the manipulation of high-energy beams, e.g., for collimation and extraction in new-generation hadron colliders, such as the CERN Large Hadron Collider.

  17. Deposition and field emission properties of highly crystallized silicon films on aluminum-coated polyethylene napthalate

    NASA Astrophysics Data System (ADS)

    Li, Junshuai; Wang, Jinxiao; Yin, Min; Gao, Pingqi; He, Deyan; Chen, Qiang; Shirai, Hajime

    2007-08-01

    Highly crystallized silicon films were deposited on aluminum-coated polyethylene napthalate (PEN) substrates by inductively coupled plasma (ICP-) chemical vapor deposition (CVD) at room temperature. The films with uniform grains about 50 nm have the (1 1 1) preferred orientation. By studying the relation of the silicon film crystallinity to the flow ratio of SiH 4 to H 2, it was found that the interaction between precursors and aluminum layers plays an important role in the crystallization process. The surface roughness of the resultant films was analyzed by atomic force microscopy (AFM). The results reveal that the roughness of the silicon films on aluminum-coated PEN substrates, compared to the films on bare PEN substrates, is dependent on the film phase rather than the substrate morphology. The measurement of field electron emission of the crystalline silicon film indicates that the threshold field is about 8.3 V/μm and the emission is reproducible in the emission region.

  18. Single-crystal silicon beams formed by merged epitaxial lateral overgrowth (MELO) for optical reflectors

    NASA Astrophysics Data System (ADS)

    Neudeck, Gerold W.; Kabir, Abul E.

    1995-05-01

    Single crystalline silicon has very well known and predictable mechanical, optical, and electrical properties and is easily manufactured with consistent results. It is also integrated circuit compatible and leads to incorporation of circuits and high quality piezoresistors which are available to monitor motion for self-testing. We present for the first time a novel surface micro-machining process using merged epitaxial lateral overgrowth (MELO) silicon to demonstrate the fabrication of single crystal silicon, free standing cantilever beams 1 mm long and 5 micrometers X 10 micrometers in cross section. These beams had no evidence of stress related bending and were free from the substrate, returning to its original position after numerous electrostatic deflections. MELO has also shown great potential for advanced BJT and MOSFET device applications, hence active devices can be incorporated into the deflecting beam arrays. Diodes fabricated in the beams show excellent characteristics with average ideality factors of 1.01. Note that the technology permits adding of single crystal silicon to selected areas, hence it is an additive process as compared to traditional subtractive methods that deposit films over the entire wafer.

  19. Optomechanical and crystallization phenomena visualized with 4D electron microscopy: interfacial carbon nanotubes on silicon nitride.

    PubMed

    Flannigan, David J; Zewail, Ahmed H

    2010-05-12

    With ultrafast electron microscopy (UEM), we report observation of the nanoscopic crystallization of amorphous silicon nitride, and the ultrashort optomechanical motion of the crystalline silicon nitride at the interface of an adhering carbon nanotube network. The in situ static crystallization of the silicon nitride occurs only in the presence of an adhering nanotube network, thus indicating their mediating role in reaching temperatures close to 1000 degrees C when exposed to a train of laser pulses. Under such condition, 4D visualization of the optomechanical motion of the specimen was followed by quantifying the change in diffraction contrast of crystalline silicon nitride, to which the nanotube network is bonded. The direction of the motion was established from a tilt series correlating the change in displacement with both the tilt angle and the response time. Correlation of nanoscopic motion with the picosecond atomic-scale dynamics suggests that electronic processes initiated in the nanotubes are responsible for the initial ultrafast optomechanical motion. The time scales accessible to UEM are 12 orders of magnitude shorter than those traditionally used to study the optomechanical motion of carbon nanotube networks, thus allowing for distinctions between the different electronic and thermal mechanisms to be made. PMID:20377202

  20. Silver- and Gold-Ordered Structures on Single-Crystal Silicon Surface After Thermal Deposition

    NASA Astrophysics Data System (ADS)

    Karbivskyy, Vladimir; Karbivska, Love; Artemyuk, Viktor

    2016-02-01

    The formation mechanisms of Ag- and Au-ordered structures on single-crystal silicon (Si) (111) and Si (110) surfaces were researched using high-resolution scanning tunneling microscopy method. It was shown that different patterns of self-assembled nanostructures with very precise and regular geometric shapes can be produced by controlling process parameters of thermal metal spraying on the substrate. The surfaces of nanorelieves at each stage of deposition were researched, and the main stages of morphological transformation were fixed.

  1. Nanostructuring of single-crystal silicon carbide by picosecond UV laser radiation

    SciTech Connect

    Barmina, E V; Serkov, A A; Shafeev, G A

    2013-12-31

    Surface nanostructures are produced on single-crystal 4H-SiC by laser ablation in water using a Nd : YAG laser (355-nm wavelength, 10-ps pulse duration) as a radiation source. The morphology of the nanostructured surface and the nanostructure size distribution are examined in relation to the energy density of the incident laser beam. The potential of the described process for improving the luminosity of light-emitting diodes on silicon carbide substrates is discussed. (letters)

  2. Crystallization of the glassy phase of grain boundaries in silicon nitride

    NASA Technical Reports Server (NTRS)

    Jefferson, D. A.; Thomas, J. M.; Wen, S.

    1984-01-01

    Three types of hot-pressed silicon nitride specimens (containing 5wt% Y2O3 and 2wt% Al2O3 additives) which were subjected to different temperature heat treatments were studied by X-ray diffraction, X-ray microanalysis and high resolution electron microscopy. The results indicated that there were phase changes in the grain boundaries after heat treatment and the glassy phase at the grain boundaries was crystallized by heat treatment.

  3. Study the performance of LYSO and CeBr3 crystals using Silicon Photomultipliers

    NASA Astrophysics Data System (ADS)

    Kryemadhi, Abaz

    2016-03-01

    The Silicon Photomultipliers (SiPMs) are novel photon-detectors which have been progressively found their use in particle physics. Their small size, good single photon resolution, simple readout, and immunity to magnetic fields offers advantages compared to traditional photomultipliers. LYSO and CeBr3 crystals are relatively new scintillators with high light yield and fast decay time. The response of these detectors to low energy gamma rays and cosmic ray muons will be presented. Messiah College Workload Reallocation Program.

  4. Investigating reliability attributes of silicon photovoltaic cells - An overview

    NASA Technical Reports Server (NTRS)

    Royal, E. L.

    1982-01-01

    Reliability attributes are being developed on a wide variety of advanced single-crystal silicon solar cells. Two separate investigations: cell-contact integrity (metal-to-silicon adherence), and cracked cells identified with fracture-strength-reducing flaws are discussed. In the cell-contact-integrity investigation, analysis of contact pull-strength data shows that cell types made with different metallization technologies, i.e., vacuum, plated, screen-printed and soldered, have appreciably different reliability attributes. In the second investigation, fracture strength was measured using Czochralski wafers and cells taken at various stages of processing and differences were noted. Fracture strength, which is believed to be governed by flaws introduced during wafer sawing, was observed to improve (increase) after chemical polishing and other process steps that tend to remove surface and edge flaws.

  5. Electron-irradiation-induced crystallization at metallic amorphous/silicon oxide interfaces caused by electronic excitation

    NASA Astrophysics Data System (ADS)

    Nagase, Takeshi; Yamashita, Ryo; Lee, Jung-Goo

    2016-04-01

    Irradiation-induced crystallization of an amorphous phase was stimulated at a Pd-Si amorphous/silicon oxide (a(Pd-Si)/SiOx) interface at 298 K by electron irradiation at acceleration voltages ranging between 25 kV and 200 kV. Under irradiation, a Pd-Si amorphous phase was initially formed at the crystalline face-centered cubic palladium/silicon oxide (Pd/SiOx) interface, followed by the formation of a Pd2Si intermetallic compound through irradiation-induced crystallization. The irradiation-induced crystallization can be considered to be stimulated not by defect introduction through the electron knock-on effects and electron-beam heating, but by the electronic excitation mechanism. The observed irradiation-induced structural change at the a(Pd-Si)/SiOx and Pd/SiOx interfaces indicates multiple structural modifications at the metal/silicon oxide interfaces through electronic excitation induced by the electron-beam processes.

  6. Extreme electronic bandgap modification in laser-crystallized silicon optical fibres.

    PubMed

    Healy, Noel; Mailis, Sakellaris; Bulgakova, Nadezhda M; Sazio, Pier J A; Day, Todd D; Sparks, Justin R; Cheng, Hiu Y; Badding, John V; Peacock, Anna C

    2014-12-01

    For decades now, silicon has been the workhorse of the microelectronics revolution and a key enabler of the information age. Owing to its excellent optical properties in the near- and mid-infrared, silicon is now promising to have a similar impact on photonics. The ability to incorporate both optical and electronic functionality in a single material offers the tantalizing prospect of amplifying, modulating and detecting light within a monolithic platform. However, a direct consequence of silicon's transparency is that it cannot be used to detect light at telecommunications wavelengths. Here, we report on a laser processing technique developed for our silicon fibre technology through which we can modify the electronic band structure of the semiconductor material as it is crystallized. The unique fibre geometry in which the silicon core is confined within a silica cladding allows large anisotropic stresses to be set into the crystalline material so that the size of the bandgap can be engineered. We demonstrate extreme bandgap reductions from 1.11 eV down to 0.59 eV, enabling optical detection out to 2,100 nm. PMID:25262096

  7. Ultra-thin single crystal perovskite ferroelectric on Silicon

    NASA Astrophysics Data System (ADS)

    Bakaul, Saidur; Serrao, Claudy; Ramamoorthy, Ramesh; Salahuddin, Sayeef

    Single crystalline ultra-thin films (sub-10 nm) of ferroelectric complex oxides are important for tunnelling memory devices. Commercially viable realization of such devices requires their integration with the peripheral Si-based input-output electronics. Integration of single crystalline films of such oxides using direct synthesis remains challenging due to the fundamental crystal chemistry and mechanical incompatibility of dissimilar interfaces. In this work we report epitaxial transfer of ultra-thin single crystalline, oxide films (down to 1 unit cell) onto Si substrates, at room temperature. The thickness of the transferred films has been confirmed by atomic force microscopy. Piezoelectric force microscopy shows ferroelectric property is retained in the transferred film. Electrical transport studies on these transferred ultra-thin films are ongoing.

  8. Process for making silicon from halosilanes and halosilicons

    NASA Technical Reports Server (NTRS)

    Levin, Harry (Inventor)

    1988-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  9. Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors

    PubMed Central

    Sinibaldi, Alberto; Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Ballarini, Mirko; Mandracci, Pietro; Danz, Norbert; Michelotti, Francesco

    2012-01-01

    We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with any desirable design and operating in a wide wavelength range, from the visible to the near infrared. We prepared sensors based on photonic crystals sustaining either guided modes or surface electromagnetic waves, also known as Bloch surface waves. We carried out for the first time a direct experimental comparison of their sensitivity and figure of merit with surface plasmon polaritons on metal layers, by making use of a commercial surface plasmon resonance instrument that was slightly adapted for the experiments. Our measurements demonstrate that the Bloch surface waves on silicon nitride photonic crystals outperform surface plasmon polaritons by a factor 1.3 in terms of figure of merit. PMID:23082282

  10. Compensation mechanism in liquid encapsulated Czochralski GaAs Importance of melt stoichiometry

    NASA Technical Reports Server (NTRS)

    Holmes, D. E.; Chen, R. T.; Elliott, K. R.; Kirkpatrick, C. G.; Yu, P. W.

    1982-01-01

    It is shown that the key to reproducible growth of undoped semi-insulating GaAs by the liquid encapsulated Czochralski (LEC) technique is the control over the melt stoichiometry. Twelve crystals were grown from stoichiometric and nonstoichiometric melts. The material was characterized by secondary ion mass spectrometry, localized vibrational mode far infrared spectroscopy, Hall-effect measurements, optical absorption, and photoluminescence. A quantitative model for the compensation mechanism in the semi-insulating material was developed based on these measurements. The free carrier concentration is controlled by the balance between EL2 deep donors and carbon acceptors; furthermore, the incorporation of EL2 is controlled by the melt stoichiometry, increasing as the As atom fraction in the melt increases. As a result, semi-insulating material can be grown only from melts above a critical As composition. The practical significance of these results is discussed in terms of achieving high yield and reproducibility in the crystal growth process.

  11. Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon

    SciTech Connect

    Zeng, Y.; Roland, I.; Checoury, X.; Han, Z.; El Kurdi, M.; Sauvage, S.; Boucaud, P.; Gayral, B.; Brimont, C.; Guillet, T.; Mexis, M.; Semond, F.

    2015-02-23

    We demonstrate second harmonic generation in a gallium nitride photonic crystal cavity embedded in a two-dimensional free-standing photonic crystal platform on silicon. The photonic crystal nanocavity is optically pumped with a continuous-wave laser at telecom wavelengths in the transparency window of the nitride material. The harmonic generation is evidenced by the spectral range of the emitted signal, the quadratic power dependence vs. input power, and the spectral dependence of second harmonic signal. The harmonic emission pattern is correlated to the harmonic polarization generated by the second-order nonlinear susceptibilities χ{sub zxx}{sup (2)}, χ{sub zyy}{sup (2)} and the electric fields of the fundamental cavity mode.

  12. Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab.

    PubMed

    Tsuruda, Kazuisao; Fujita, Masayuki; Nagatsuma, Tadao

    2015-12-14

    We pursued the extremely low loss of photonic-crystal waveguides composed of a silicon slab with high resistivity (20 kΩ-cm) in the terahertz region. Propagation and bending losses as small as <0.1 dB/cm (0.326-0.331 THz) and 0.2 dB/bend (0.323-0.331 THz), respectively, were achieved in the 0.3-THz band. We also developed 1.5-Gbit/s terahertz links and demonstrated an error-free uncompressed high-definition video transmission by using a photonic-crystal waveguide with a length of as long as 50 cm and up to 28 bends thanks to the low-loss properties. Our results show the potential of photonic crystals for application as terahertz integration platforms. PMID:26698989

  13. Effect of surface morphology on laser-induced crystallization of amorphous silicon thin films

    NASA Astrophysics Data System (ADS)

    Huang, Lu; Jin, Jing; Wang, Guohua; Shi, Weimin; Yang, Weiguang; Yuan, Zhijun; Cao, Zechun; Zhou, Jun; Lou, Qihong; Liu, Jin; Wei, Guangpu

    2013-12-01

    The effect of surface morphology on laser-induced crystallization of hydrogenated intrinsic amorphous silicon (a-Si:H) thin films deposited by PECVD is studied in this paper. The thin films are irritated by a frequency-doubled (λ=532 nm) Nd:YAG pulsed nanosecond laser. An effective melting model is built to identify the variation of melting regime influenced by laser crystallization. Based on the experimental results, the established correlation between the grain growth characterized by AFM and the crystalline fraction (Xc) obtained from Raman spectroscopy suggests that the crystallized process form amorphous phase to polycrystalline phase. Therefore, the highest crystalline fraction (Xc) is obtained by a optimized laser energy density.

  14. Volumetric and timescale analysis of phase transformation in single-crystal silicon during nanoindentation

    NASA Astrophysics Data System (ADS)

    Huang, Hu; Yan, Jiwang

    2016-06-01

    Clarifying the phase transformation process and mechanism of single-crystal silicon induced by high pressure is essential for preparation of new silicon phases. Although many previous researches have focused in this area, the volume of high-pressure phases and the duration of phase transformation are still unclear. In this paper, the volume change and the duration of phase transformation from Si-II phase into Si-XII/Si-III phases were investigated quantitatively by introducing a holding process in the unloading stage of a nanoindentation test. Experimental results indicate that the high-pressure phase volume is dependent strongly on the maximum indentation load and independent of the loading/unloading rate and the holding time at the maximum indentation load, while phase transformation duration is independent of the aforementioned experimental parameters. By analyzing the results, a critical volume of Si-XII/Si-III phases was identified which determines the occurrence of sudden phase transformation, and a modified nucleation and growth mechanism of high-pressure phases was proposed. These results provide new insights into high-pressure phase transformations in single-crystal silicon.

  15. Extreme electronic bandgap modification in laser-crystallized silicon optical fibres

    NASA Astrophysics Data System (ADS)

    Healy, Noel; Mailis, Sakellaris; Bulgakova, Nadezhda M.; Sazio, Pier J. A.; Day, Todd D.; Sparks, Justin R.; Cheng, Hiu Y.; Badding, John V.; Peacock, Anna C.

    2014-12-01

    For decades now, silicon has been the workhorse of the microelectronics revolution and a key enabler of the information age. Owing to its excellent optical properties in the near- and mid-infrared, silicon is now promising to have a similar impact on photonics. The ability to incorporate both optical and electronic functionality in a single material offers the tantalizing prospect of amplifying, modulating and detecting light within a monolithic platform. However, a direct consequence of silicon’s transparency is that it cannot be used to detect light at telecommunications wavelengths. Here, we report on a laser processing technique developed for our silicon fibre technology through which we can modify the electronic band structure of the semiconductor material as it is crystallized. The unique fibre geometry in which the silicon core is confined within a silica cladding allows large anisotropic stresses to be set into the crystalline material so that the size of the bandgap can be engineered. We demonstrate extreme bandgap reductions from 1.11 eV down to 0.59 eV, enabling optical detection out to 2,100 nm.

  16. Method for fabricating silicon cells

    DOEpatents

    Ruby, Douglas S.; Basore, Paul A.; Schubert, W. Kent

    1998-08-11

    A process for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon.

  17. Method for fabricating silicon cells

    DOEpatents

    Ruby, D.S.; Basore, P.A.; Schubert, W.K.

    1998-08-11

    A process is described for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon. 9 figs.

  18. Oxidation of chemically-vapor-deposited silicon nitride and single-crystal silicon

    NASA Technical Reports Server (NTRS)

    Choi, Doo J.; Fischbach, David B.; Scott, William D.

    1989-01-01

    The present 1000 C and 1300 C oxidation tests on 111-oriented single-crystal Si and dense CVD Si3N4 notes the oxidation rates of the latter in wet O2, dry O2, wet inert gas, and steam atmosphere conditions to be several orders of magnitude lower than the rates for the former in identical atmospheric conditions. Although the parabolic rate constant for Si increased linearly as the water vapor pressure increased, the parabolic rate constant for Si3N4 exhibited a nonlinear dependency on water vapor pressure in the presence of O2. NO and NH3 formation at the reaction interface of Si3N4, and the counterpermeation of these reaction products, are noted to dominate reaction kinetics.

  19. High-Q silicon photonic crystal cavity for enhanced optical nonlinearities

    SciTech Connect

    Dharanipathy, Ulagalandha Perumal; Tonin, Mario; Houdré, Romuald; Minkov, Momchil Savona, Vincenzo

    2014-09-08

    We fabricate and experimentally characterize an H0 photonic crystal slab nanocavity with a design optimized for maximal quality factor, Q = 1.7 × 10{sup 6}. The cavity, fabricated from a silicon slab, has a resonant mode at λ = 1.59 μm and a measured Q-factor of 400 000. It displays nonlinear effects, including high-contrast optical bistability, at a threshold power among the lowest ever reported for a silicon device. With a theoretical modal volume as small as V = 0.34(λ/n){sup 3}, this cavity ranks among those with the highest Q/V ratios ever demonstrated, while having a small footprint suited for integration in photonic circuits.

  20. Raman scattering analysis of silicon dioxide single crystal treated by direct current plasma discharge

    SciTech Connect

    Popovic, D. M.; Zekic, A.; Milosavljevic, V.; Romcevic, N.; Daniels, S.

    2011-01-31

    Low-k materials such as silicon dioxide (SiO{sub 2}) play an important role in the semiconductor industry. Plasma has become indispensable for advanced materials processing. In this work a treatment of SiO{sub 2} single crystal by direct current plasma discharge is studied in detail. Offline metrology is conducted for silicon dioxide wafers by Raman scattering, energy-dispersive x-ray spectroscopy, and ellipsometry. Broad Raman peak at around 2800 cm{sup -1} is observed for the treated SiO{sub 2} wafers. Effects of plasma treatment on position of this peak are reported in the paper. An analysis of this correlation could be a framework for creating virtual etch rate sensors, which might be of importance in managing plasma etching processes.

  1. Optical and structural characterization of silicon microstructures fabricated by laser interference crystallization

    SciTech Connect

    Toet, D.; Aichmayr, G.; Mulato, M.; Santos, P.V.; Spangenberg, A.; Bergmann, R.B.

    1997-07-01

    Uniform gratings of sharply defined polycrystalline silicon lines with micrometer-sized periods were created by laser interference crystallization of amorphous silicon. Atomic force microscopy (AFM) reveals that lines fabricated with high pulse energies (380 mJ/cm{sup 2}) contain large grains (dimensions up to 1.5 {micro}m), growing in a direction perpendicular to the lines. The authors assign this strong lateral growth to the melting of the material in the center of the lines combined with the presence of small grains, which act as nuclei, at the interfaces with the amorphous regions. Spatially resolved Raman spectroscopy shows that size effects dominate the Raman line shape at the edge of the line, confirming the AFM results, while stress increases towards the center of the line. The spectra measured in the middle of lines created with high energies show doping effects caused by the diffusion of boron atoms from the substrate upon exposure.

  2. The adhesion, friction, and wear of binary alloys in contact with single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Sliding friction experiments were conducted with various iron-base alloys (alloying elements were Ti, Cr, Ni, Rh, and W) in contact with a single-crystal silicon carbide (0001) surface in vacuum. Results indicate atomic size misfit and concentration of alloying elements play a dominant role in controlling adhesion, friction, and wear properties of iron-base binary alloys. The controlling mechanism of the alloy properties is an intrinsic effect involving the resistance to shear fracture of cohesive bonding in the alloy. The coefficient of friction generally increases with an increase in solute concentration. The coefficient of friction increases as the solute-to-iron atomic radius ratio increases or decreases from unity. Alloys having higher solute concentration produce more transfer to silicon carbide than do alloys having low solute concentrations. The chemical activity of the alloying element is also an important parameter in controlling adhesion and friction of alloys.

  3. Adhesion, friction, and wear of binary alloys in contact with single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Sliding friction experiments, conducted with various iron base alloys (alloying elements are Ti, Cr, Mn, Ni, Rh and W) in contact with a single crystal silicon carbide /0001/ surface in vacuum are discussed. Results indicate atomic size misfit and concentration of alloying elements play a dominant role in controlling adhesion, friction, and wear properties of iron-base binary alloys. The controlling mechanism of the alloy properties is as an intrinsic effect involving the resistance to shear fracture of cohesive bonding in the alloy. The coefficient of friction generally increases with an increase in solute concentration. The coefficient of friction increases as the solute-to-iron atomic radius ratio increases or decreases from unity. Alloys having higher solute concentration produce more transfer to silicon carbide than do alloys having low solute concentrations. The chemical activity of the alloying element is also an important parameter in controlling adhesion and friction of alloys.

  4. Rear surface spallation on single-crystal silicon in nanosecond laser micromachining

    NASA Astrophysics Data System (ADS)

    Ren, Jun; Orlov, Sergei S.; Hesselink, Lambertus

    2005-05-01

    Rear surface spallation of single-crystal silicon under 5-ns laser pulse ablation at intensities of 0.6-60GW/cm2 is studied through postablation examination of the ablated samples. The spallation threshold energy and the spallation depth's dependences on the energy and target thickness are measured. From the linear relation between the spallation threshold energy and the target thickness, an estimation of the material spall strength around 1.4GPa is obtained, in reasonable agreement with the spall strength estimation of 0.8-1.2GPa at a strain rate of 107s-1 using Grady's model for brittle materials. The experiment reveals the internal fracturing process over an extended zone in silicon, which is controlled by the competition between the shock pressure load and the laser ablation rate. The qualities of the laser microstructuring and micromachining results are greatly improved by using an acoustic impedance matching approach.

  5. Proposal for achieving in-plane magnetic mirrors by silicon photonic crystals.

    PubMed

    Zhou, You; He, Xin-Tao; Zhao, Fu-Li; Dong, Jian-Wen

    2016-05-15

    Magnetic mirrors exhibit predominant physical characteristics such as high surface impedance and strong near-field enhancement. However, there is no way to implement these materials on a silicon lab chip. Here, we propose a scheme for an in-plane magnetic mirror in a silicon-based photonic crystal with a high-impedance surface, in contrast to the previous electric mirrors with low surface impedance. A tortuous bending waveguide with zero-index core and magnetic mirror walls is designed that exhibits high transmission and zero phase change at the waveguide exit. This type of magnetic mirror opens the door to exploring the physics of high-impedance surfaces and applications in integrated photonics. PMID:27176964

  6. Effects of material non-linearity on the residual stresses in a dendritic silicon crystal ribbon

    NASA Technical Reports Server (NTRS)

    Ray, Sujit K.; Utku, Senol

    1990-01-01

    Thermal stresses developed in a dendritic silicon crystal ribbon have been shown to cause plastic deformation and residual stresses in the ribbon. This paper presents an implementation of a numerical model proposed for thermoelastoplastic behavior of a material. The model has been used to study the effects of plasticity of silicon on the residual stresses. The material properties required to implement this model are all assumed, and the response of the material to the variations in these assumed parameters of the constitutive law and in the finite element mesh is investigated. The steady state growth process is observed to be periodic with nonzero residual stresses. Numerical difficulties are also encountered in the computer solution process, resulting in sharp jumps and large oscillations in the stress responses.

  7. Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon

    DOEpatents

    Kaschmitter, James L.; Sigmon, Thomas W.

    1995-01-01

    A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby to amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenization can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.

  8. Tunable narrow-photon-energy x-ray source using a silicon single crystal

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Inoue, Takashi; Ogawa, Akira; Izumisawa, Mitsuru; Shozushima, Masanori; Takahashi, Kiyomi; Sato, Shigehiro; Ichimaru, Toshio; Takayama, Kazuyoshi

    2007-09-01

    A preliminary experiment for producing narrow-photon-energy cone-beam x-rays using a silicon single crystal is described. In order to produce low-photon-energy x-rays, a 100-µm-focus x-ray generator in conjunction with a (111) plane silicon crystal is employed. The x-ray beams from the source are confined by an x-y diaphragm, and monochromatic cone beams are formed by the crystal and three lead plates. The x-ray generator consists of a main controller and a unit with a high-voltage circuit and a 100-µm-focus x-ray tube. In this experiment, the maximum tube voltage and current were 35 kV and 0.50 mA, respectively, and the x-ray intensity of the microfocus generator was 343 μGy/s at 1.0 m from the source with a tube voltage of 30 kV and a current of 0.50 mA. The effective photon energy is determined by Bragg's angle, and the photon-energy width is regulated by the angle delta. Using this generator in conjunction with a computed radiography system, quasi-monochromatic radiography was performed using a cone beam with an effective energy of approximately 15.5 keV.

  9. Modified Photoluminescence by Silicon-Based One-Dimensional Photonic Crystal Microcavities

    NASA Astrophysics Data System (ADS)

    Chen, San; Qian, Bo; Wei, Jun-Wei; Chen, Kun-Ji; Xu, Jun; Li, Wei; Huang, Xin-Fan

    2005-01-01

    Photoluminescence (PL) from one-dimensional photonic band structures is investigated. The doped photonic crystal with microcavities are fabricated by using alternating hydrogenated amorphous silicon nitride (a-SiNx:H/a-SiNy:H) layers in a plasma enhanced chemical vapour deposition (PECVD) chamber. It is observed that microcavities strongly modify the PL spectra from active hydrogenated amorphous silicon nitride (a-SiNz:H) thin film. By comparison, the wide emission band width 208 nm is strongly narrowed to 11 nm, and the resonant enhancement of the peak PL intensity is about two orders of magnitude with respect to the emission of the λ/2-thick layer of a-SiNz:H. A linewidth of Δλ = 11 nm and a quality factor of Q = 69 are achieved in our one-dimensional a-SiNz photonic crystal microcavities. Measurements of transmittance spectra of the as-grown samples show that the transmittance resonant peak of a cavity mode at 710 nm is introduced into the band gap of one-dimensional photonic crystal distributed Bragg reflector (DBR), which further verifies the microcavity effects.

  10. Silicon doping of HVPE GaN bulk-crystals avoiding tensile strain generation

    NASA Astrophysics Data System (ADS)

    Hofmann, Patrick; Röder, Christian; Habel, Frank; Leibiger, Gunnar; Beyer, Franziska C.; Gärtner, Günter; Eichler, Stefan; Mikolajick, Thomas

    2016-02-01

    Doped GaN:Si crystals were grown in a commercially available vertical HVPE reactor. The templates used for the HVPE heteroepitaxy were so-called FACELO seeds, with a starting GaN layer thickness of 3-4 μm. The FWHM of the 0002 and the 30\\bar{3}2 reflection of the HVPE-grown GaN:Si crystals with a thickness of 3 mm are {{31}\\prime\\prime} and {{78}\\prime\\prime} , respectively, indicating excellent crystal quality. Hall measurements resulted in a charge carrier concentration of 1.5× {{10}18} cm-3, while exhibiting a mobility of 250 cm-2V-1 s-1. These values coincide with the values extracted from FTIR measurements and the lineshape fitting of the A1(LO)/plasmon coupled phonon mode of the confocal Raman measurements. SIMS investigations yielded a silicon atom concentration of 1.8× {{10}18} cm-3. This indicates an activation of the dopant atoms of approximately 90%. The TDD determined by CL dark spot counting was 2× {{10}6} cm-2. Within the measurement accuracy, the confocal Raman measurements did not show a tensile strain generation due to the silicon doping with resulting charge carrier concentrations of 1.5× {{10}18} cm-3.

  11. Liquid phase crystallized silicon on glass: Technology, material quality and back contacted heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Haschke, Jan; Amkreutz, Daniel; Rech, Bernd

    2016-04-01

    Liquid phase crystallization has emerged as a novel approach to grow large grained polycrystalline silicon films on glass with high electronic quality. In recent years a lot of effort was conducted by different groups to determine and optimize suitable interlayer materials, enhance the crystallographic quality or to improve post crystallization treatments. In this paper, we give an overview on liquid phase crystallization and describe the necessary process steps and discuss their influence on the absorber properties. Available line sources are compared and different interlayer configurations are presented. Furthermore, we present one-dimensional numerical simulations of a rear junction device, considering silicon absorber thicknesses between 1 and 500 µm. We vary the front surface recombination velocity as well as doping density and minority carrier lifetime in the absorber. The simulations suggest that a higher absorber doping density is beneficial for layer thicknesses below 20 µm or when the minority carrier lifetime is short. Finally, we discuss possible routes for device optimization and propose a hybride cell structure to circumvent current limitations in device design.

  12. Label-free optical detection of bacteria on a 1-D photonic crystal of porous silicon

    NASA Astrophysics Data System (ADS)

    Wu, Chia-Chen; Alvarez, Sara D.; Rang, Camilla U.; Chao, Lin; Sailor, Michael J.

    2009-02-01

    The construction of a specific, label-free, bacteria biosensor using porous silicon 1-D photonic crystals will be described. Bacteria resident on the surface of porous silicon act as scattering centers for light resonant with the photonic crystal; the diffusely scattered light possesses the optical spectrum of the underlying photonic crystal. Using a spectrometer fitted to a light microscope, the bacteria are imaged without using exogenous dyes or labels and are quantified by measuring the intensity of scattered light. In order to selectively bind and identify bacteria using porous Si, we use surface modifications to reduce nonspecific binding to the surface and to engineer bacteria specificity onto the surface. Bovine serum albumin (BSA) was adsorbed to the porous Si surface to reduce nonspecific binding of bacteria. The coatings were then chemically activated to immobilize polyclonal antibodies specific to Escherichia coli. Two E. coli strains were used in our study, E. coli DH5α and non-pathogenic enterohemorrhagic Escherichia coli (EHEC) strain. The nonpathogenic Vibrio cholerae O1 strain was used to test for antibody specificity. Successful attachment of antibodies was measured using fluorescence microscopy and the scattering method was used to test for bacteria binding specificity.

  13. Synthesis of Poly-Silicon Thin Films on Glass Substrate Using Laser Initiated Metal Induced Crystallization of Amorphous Silicon for Space Power Application

    NASA Technical Reports Server (NTRS)

    Abu-Safe, Husam H.; Naseem, Hameed A.; Brown, William D.

    2007-01-01

    Poly-silicon thin films on glass substrates are synthesized using laser initiated metal induced crystallization of hydrogenated amorphous silicon films. These films can be used to fabricate solar cells on low cost glass and flexible substrates. The process starts by depositing 200 nm amorphous silicon films on the glass substrates. Following this, 200 nm of sputtered aluminum films were deposited on top of the silicon layers. The samples are irradiated with an argon ion cw laser beam for annealing. Laser power densities ranging from 4 to 9 W/cm2 were used in the annealing process. Each area on the sample is irradiated for a different exposure time. Optical microscopy was used to examine any cracks in the films and loss of adhesion to the substrates. X-Ray diffraction patterns from the initial results indicated the crystallization in the films. Scanning electron microscopy shows dendritic growth. The composition analysis of the crystallized films was conducted using Energy Dispersive x-ray Spectroscopy. The results of poly-silicon films synthesis on space qualified flexible substrates such as Kapton are also presented.

  14. Characterization studies of silicon photomultipliers and crystals matrices for a novel time of flight PET detector

    NASA Astrophysics Data System (ADS)

    Auffray, E.; Ben Mimoun Bel Hadj, F.; Cortinovis, D.; Doroud, K.; Garutti, E.; Lecoq, P.; Liu, Z.; Martinez, R.; Paganoni, M.; Pizzichemi, M.; Silenzi, A.; Xu, C.; Zvolský, M.

    2015-06-01

    This paper describes the characterization of crystal matrices and silicon photomultiplier arrays for a novel Positron Emission Tomography (PET) detector, namely the external plate of the EndoTOFPET-US system. The EndoTOFPET-US collaboration aims to integrate Time-Of-Flight PET with ultrasound endoscopy in a novel multimodal device, capable to support the development of new biomarkers for prostate and pancreatic tumors. The detector consists in two parts: a PET head mounted on an ultrasound probe and an external PET plate. The challenging goal of 1 mm spatial resolution for the PET image requires a detector with small crystal size, and therefore high channel density: 4096 LYSO crystals individually readout by Silicon Photomultipliers (SiPM) make up the external plate. The quality and properties of these components must be assessed before the assembly. The dark count rate, gain, breakdown voltage and correlated noise of the SiPMs are measured, while the LYSO crystals are evaluated in terms of light yield and energy resolution. In order to effectively reduce the noise in the PET image, high time resolution for the gamma detection is mandatory. The Coincidence Time Resolution (CTR) of all the SiPMs assembled with crystals is measured, and results show a value close to the demanding goal of 200 ps FWHM. The light output is evaluated for every channel for a preliminary detector calibration, showing an average of about 1800 pixels fired on the SiPM for a 511 keV interaction. Finally, the average energy resolution at 511 keV is about 13 %, enough for effective Compton rejection.

  15. Measurement of Silicone Rubber Using Impedance Change of a Quartz-Crystal Tuning-Fork Tactile Sensor

    NASA Astrophysics Data System (ADS)

    Itoh, Hideaki; Yamada, Yuuki

    2006-05-01

    Silicone rubber has been investigated experimentally using the impedance change (Δ R) of a quartz-crystal tuning-fork tactile sensor when its base is in contact with the surface of many kinds of rectangular silicone rubber plates in order to discover how viscosity and elasticity of silicone rubber may be separately determined. Eleven silicone rubber plates (the values of the rubber hardness are JIS85, 80, 70, 65, 60, 50, 45, 40, 35, 30, and 20) are investigated in this experiment. Δ R increases linearly according to acoustic impedance ρ C (ρ: density of silicone rubber, C: sound velocity of a longitudinal acoustic wave in silicone rubber). We compare Δ R with ρ C when C is calculated in three cases: in first, C is calculated using Young’s modulus of silicone rubber measured by a tensiometer; in second, using Young’s modulus which is converted by the shear modulus measured by a rotating viscometer using the Poisson ratio of silicone rubber, 0.49; in third, using a complex Young’s modulus which is converted by the complex shear modulus measured by a rotating viscometer. We investigated which case in the three described showed good linearity between Δ R and ρ C. In order to clarify how the longitudinal plane wave generated in the sensor’s base travels into the silicone rubber plate, Δ R is measured when the tactile sensor is in contact with the surface of the rectangular silicone rubber plates of varying thickness and a size.

  16. Thermal system design and modeling of meniscus controlled silicon growth process for solar applications

    NASA Astrophysics Data System (ADS)

    Wang, Chenlei

    The direct conversion of solar radiation to electricity by photovoltaics has a number of significant advantages as an electricity generator. That is, solar photovoltaic conversion systems tap an inexhaustible resource which is free of charge and available anywhere in the world. Roofing tile photovoltaic generation, for example, saves excess thermal heat and preserves the local heat balance. This means that a considerable reduction of thermal pollution in densely populated city areas can be attained. A semiconductor can only convert photons with the energy of the band gap with good efficiency. It is known that silicon is not at the maximum efficiency but relatively close to it. There are several main parts for the photovoltaic materials, which include, single- and poly-crystalline silicon, ribbon silicon, crystalline thin-film silicon, amorphous silicon, copper indium diselenide and related compounds, cadmium telluride, et al. In this dissertation, we focus on melt growth of the single- and poly-crystalline silicon manufactured by Czochralski (Cz) crystal growth process, and ribbon silicon produced by the edge-defined film-fed growth (EFG) process. These two methods are the most commonly used techniques for growing photovoltaic semiconductors. For each crystal growth process, we introduce the growth mechanism, growth system design, general application, and progress in the numerical simulation. Simulation results are shown for both Czochralski and EFG systems including temperature distribution of the growth system, velocity field inside the silicon melt and electromagnetic field for the EFG growth system. Magnetic field is applied on Cz system to reduce the melt convection inside crucible and this has been simulated in our numerical model. Parametric studies are performed through numerical and analytical models to investigate the relationship between heater power levels and solidification interface movement and shape. An inverse problem control scheme is developed to

  17. Molecular dynamic simulations of the intergranular films between alumina and silicon nitride crystal grains

    NASA Astrophysics Data System (ADS)

    Zhang, Shenghong

    The intergranular films (IGFs) between the ceramics grains have very important effects on the structure and mechanical properties on the whole ceramics and have been studied for many decades. In the thesis, molecular dynamic (MD) computer simulations were applied to study the IGFs between the alumina and silicon nitride ceramic grains. Preferential adsorption of specific ions from the IGFs to the contacting surfaces of the alumina crystals was observed in the study of calcium-alumino-silicate glassy (CAS) IGFs formed between the combined basal and prism orientations of alpha-Al2O3 crystals. This segregation of specific ions to the interface enables formation of localized, ordered structures between the IGF and the crystals. However, the segregation behavior of the ions is anisotropic, depending on the orientation of the alpha-Al2O 3 crystals. Self-diffusion of calcium ions between these CAS IGFs was also carried out by MD simulations. The results show that the diffusion coefficients adjacent to the interfaces are smaller and the activation energies are much higher than those in the interior of the IGF and in bulk glasses. It was also suggested that Ca transport is mainly though the interior of the IGF and implies that diffusion would be significantly inhibited by sufficiently thin IGFs. The growth of the alumina ceramic grains was simulated in the contacting with IGFs containing high concentrations of aluminum ions. Five different compositions in the IGFs were studied. Results show preferential growth along the [1120] of the (1120) surface in comparison to growth along the [0001] direction on the (0001) surface for compositions near a Ca/Al ratio of 0.5. The simulations also show the mechanism by which Ca ions in the IGF inhibit growth on the basal surface. The simulations provide an atomistic view of attachment onto crystal surfaces, affecting grain growth in alumina. The dissolution of the alumina crystal grains in the silicate melts is another important issue in

  18. Wavelength-controlled external-cavity laser with a silicon photonic crystal resonant reflector

    NASA Astrophysics Data System (ADS)

    Gonzalez-Fernandez, A. A.; Liles, Alexandros A.; Persheyev, Saydulla; Debnath, Kapil; O'Faolain, Liam

    2016-03-01

    We report the experimental demonstration of an alternative design of external-cavity hybrid lasers consisting of a III-V Semiconductor Optical Amplifier with fiber reflector and a Photonic Crystal (PhC) based resonant reflector on SOI. The Silicon reflector comprises a polymer (SU8) bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and sidemode suppression ratio of more than 25 dB.

  19. Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon

    NASA Astrophysics Data System (ADS)

    Roland, I.; Zeng, Y.; Han, Z.; Checoury, X.; Blin, C.; El Kurdi, M.; Ghrib, A.; Sauvage, S.; Gayral, B.; Brimont, C.; Guillet, T.; Semond, F.; Boucaud, P.

    2014-07-01

    We demonstrate a two-dimensional free-standing gallium nitride photonic crystal platform operating around 1550 nm and fabricated on a silicon substrate. Width-modulated waveguide cavities are integrated and exhibit loaded quality factors up to 34 000 at 1575 nm. We show the resonance tunability by varying the ratio of air hole radius to periodicity, and cavity hole displacement. We deduce a ˜7.9 dB/cm linear absorption loss for the suspended nitride structure from the power dependence of the cavity in-plane transmission.

  20. Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon

    SciTech Connect

    Roland, I.; Zeng, Y.; Han, Z.; Checoury, X.; Blin, C.; El Kurdi, M.; Ghrib, A.; Sauvage, S.; Boucaud, P.; Gayral, B.; Brimont, C.; Guillet, T.; Semond, F.

    2014-07-07

    We demonstrate a two-dimensional free-standing gallium nitride photonic crystal platform operating around 1550 nm and fabricated on a silicon substrate. Width-modulated waveguide cavities are integrated and exhibit loaded quality factors up to 34 000 at 1575 nm. We show the resonance tunability by varying the ratio of air hole radius to periodicity, and cavity hole displacement. We deduce a ∼7.9 dB/cm linear absorption loss for the suspended nitride structure from the power dependence of the cavity in-plane transmission.

  1. Modeling the deflection of relativistic electrons in a bent silicon crystal

    NASA Astrophysics Data System (ADS)

    Koshcheev, V. P.; Shtanov, Yu. N.; Morgun, D. A.; Panina, T. A.

    2015-10-01

    The deflection of electrons with energies 855 MeV and 6.3 GeV in planar (111) channels of a bent silicon crystal has been numerically simulated using a TROPICS computer code with atomic diffusion coefficient constructed in the Doyle-Turner approximation of the isolated atom potential. It is established that the atomic diffusion coefficient tends to a minimum value in the region of maximum nuclear density of atomic chain, where the Kitagawa-Ohtsuki diffusion coefficient reaches a maximum value.

  2. Enhancement of photoluminescence and raman scattering in one-dimensional photonic crystals based on porous silicon

    SciTech Connect

    Gonchar, K. A.; Musabek, G. K.; Taurbayev, T. I.; Timoshenko, V. Yu.

    2011-05-15

    In porous-silicon-based multilayered structures that exhibit the properties of one-dimensional photonic crystals, an increase in the photoluminescence and Raman scattering intensities is observed upon optical excitation at the wavelength 1.064 {mu}m. When the excitation wavelength falls within the edge of the photonic band gap of the structures, a multiple increase (by a factor larger than 400) in the efficiency of Raman scattering is detected. The effect is attributed to partial localization of excitation light and, correspondingly, to the much longer time of interaction of light with the material in the structures.

  3. Investigations of structural, dielectric and optical properties on silicon ion irradiated glycine monophosphate single crystals

    NASA Astrophysics Data System (ADS)

    Kanagasekaran, T.; Mythili, P.; Bhagavannarayana, G.; Kanjilal, D.; Gopalakrishnan, R.

    2009-08-01

    The 50 MeV silicon ion irradiation induced modifications on structural, optical and dielectric properties of solution grown glycine monophosphate (GMP) crystals were studied. The high-resolution X-ray diffraction study shows the unaltered value of integrated intensity on irradiation. The dielectric constant as a function of frequency and temperature was studied. UV-visible studies reveal the decrease in bandgap values on irradiation and presence of F-centers. The fluorescence spectrum shows the existence of some energy levels, which remains unaffected after irradiation. The scanning electron micrographs reveal the defects formed on irradiation.

  4. Determination of surface recombination velocity and bulk lifetime in detector grade silicon and germanium crystals

    SciTech Connect

    Derhacobian, N.; Fine, P.; Walton, J.T.; Wong, Y.K.; Rossington, C.S.; Luke, P.N.

    1993-10-01

    Utility of a noncontact photoconductive decay (PCD) technique is demonstrated in measuring bulk lifetime, {tau}{sub B}, and surface recombination velocity, S, in detector grade silicon and germanium crystals. We show that the simple analytical equations which relate the observed effective lifetimes in PCD transients to {tau}{sub B} and S have a limited range of applicability. The noncontact PCD technique is used to determine the effect of several surface treatments on the observed effective lifetimes in Si and Ge. A degradation of the effective lifetime in Si is reported as result of the growth of a thin layer of native oxide at room temperature under atmospheric conditions.

  5. Planar polar liquid crystalline alignment in nanostructured porous silicon one-dimensional photonic crystals

    NASA Astrophysics Data System (ADS)

    Mor, Shahar; Torres-Costa, Vicente; Martín-Palma, Raúl J.; Abdulhalim, I.

    2010-09-01

    The ability of liquid crystals (LCs) to flow and fill nanopores assists in using them for infiltration into porous nanophotonic structures such as nanostructured porous silicon (nanoPS). The reflectivity spectra at normal incidence from periodic nanostructured nanoPS filters infiltrated with nematic LC is found to exhibit polarization dependence. This is experimental evidence that the LC molecules in the nanoPS matrix are aligned such that an effective anisotropy exists parallel to the substrate plane. From the theoretical fit the preferred configuration was found to be the planar-polar geometry which is shown to be biaxial.

  6. Microdistribution of oxygen in silicon and its effects on electronic properties

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Mao, B. Y.; Nauka, K.; Lagowski, J.

    1982-01-01

    The effects of interstitial oxygen on the electrical characteristics of Czochralski-grown silicon crystals were investigated for the first time on a microscale. It was found that the generation of thermal donors is not a direct function of the oxygen concentration. It was further found that the minority carrier life-time decreases with increasing oxygen concentration, on a microscale in as-grown crystals. It was thus shown, again for the first time, that oxygen in as grown crystals is not electronically inert as generally believed. Preannealing at 1200 C commonly employed in device fabrication, was found to suppress the donor generation at 450 C and to decrease the deep level concentrations.

  7. Manufacturing and characterization of bent silicon crystals for studies of coherent interactions with negatively charged particles beams

    NASA Astrophysics Data System (ADS)

    Germogli, G.; Mazzolari, A.; Bandiera, L.; Bagli, E.; Guidi, V.

    2015-07-01

    Efficient steering of GeV-energy negatively charged particle beams was demonstrated to be possible with a new generation of thin bent silicon crystals. Suitable crystals were produced at the Sensor Semiconductor Laboratory of Ferrara starting from Silicon On Insulator wafers, adopting proper revisitation of silicon micromachining techniques such as Low Pressure Chemical Vapor Deposition, photolithography and anisotropic chemical etching. Mechanical holders, which allow to properly bend the crystal and to reduce unwanted torsions, were employed. Crystallographic directions and crystal holder design were optimized in order to excite quasi-mosaic effect along (1 1 1) planes. Prior to exposing the crystal to particle beams, a full set of characterizations were performed. Infrared interferometry was used to measure crystal thickness with high accuracy. White-light interferometry was employed to characterize surface deformational state and its torsion. High-resolution X-rays diffraction was used to precisely measure crystal bending angle along the beam. Manufactured crystals were installed and tested at the MAMI MAinz MIcrotron to steer sub-GeV electrons, and at SLAC to deflect an electron beam in the 1 to 10 GeV energy range.

  8. Heteroepitaxial film crystal silicon on Al2O3 for solar cells on cube-textured metal foil

    SciTech Connect

    Teplin, Charles W; Paranthaman, Mariappan Parans; Fanning, Thomas R; Alberi, Kirstin; Heatherly Jr, Lee; Wee, Sung Hun; Kim, Hyun Jung; List III, Frederick Alyious; Pineau, Jerry; Bornstein, Jon; Bowers, Karen; Lee, Dominic F; Cantoni, Claudia; Hane, Steve; Schroeter, Paul A; Young, David L.; Iwaniczko, Eugene; Jones, Kim M; Branz, Howard M

    2011-01-01

    Crystal silicon is an excellent photovoltaic (PV) semiconductor: silicon is abundant, environmentally benign, capable of high solar conversion efficiencies, and profits from an unparalleled scientific knowledge base. However, the energy-intensive, inefficient and expensive processes that turn sand into a crystal silicon (c-Si) wafer account for more than half of today s Si PV module costs. Because the peak flux of solar energy on Earth is only about 1 kW/m2, large areas must be covered with inexpensive PV to provide for TW-scale electrical power needs. To circumvent the costly wafer fabrication step, it would be ideal to grow 2-20 micron thick PV-quality silicon absorber layers directly from silane gas onto inexpensive substrates at temperatures below 800 C.

  9. Optical pendulum effect in one-dimensional diffraction-thick porous silicon based photonic crystals

    SciTech Connect

    Novikov, V. B. Svyakhovskiy, S. E.; Maydykovskiy, A. I.; Murzina, T. V.; Mantsyzov, B. I.

    2015-11-21

    We present the realization of the multiperiodic optical pendulum effect in 1D porous silicon photonic crystals (PhCs) under dynamical Bragg diffraction in the Laue scheme. The diffraction-thick PhC contained 360 spatial periods with a large variation of the refractive index of adjacent layers of 0.4. The experiments reveal switching of the light leaving the PhC between the two spatial directions, which correspond to Laue diffraction maxima, as the fundamental wavelength or polarization of the incident light is varied. A similar effect can be achieved when the temperature of the sample or the intensity of the additional laser beam illuminating the crystal are changed. We show that in our PhC structures, the spectral period of the pendulum effect is down to 5 nm, while the thermal period is about 10 °C.

  10. Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities

    SciTech Connect

    Zou, Yi E-mail: swapnajit.chakravarty@omegaoptics.com Chen, Ray T. E-mail: swapnajit.chakravarty@omegaoptics.com; Chakravarty, Swapnajit E-mail: swapnajit.chakravarty@omegaoptics.com

    2015-08-24

    We experimentally demonstrate a photonic crystal (PC) microcavity side coupled to a W1.05 photonic crystal waveguide fabricated in silicon-on-sapphire working in mid-IR regime at 3.43 μm. Using a fixed wavelength laser source, propagation characteristics of PC waveguides without microcavity are characterized as a function of lattice constant to determine the light line position, stop gap, and guided mode transmission behavior. The resonance of an L21 PC microcavity coupled to the W1.05 PCW in the guided mode transmission region is then measured by thermal tuning of the cavity resonance across the source wavelength. Resonance quality factor ∼3500 is measured from the temperature dependency curve.

  11. A photonic crystal waveguide with silicon on insulator in the near-infrared band

    NASA Astrophysics Data System (ADS)

    Tang, Hai-Xia; Zuo, Yu-Hua; Yu, Jin-Zhong; Wang, Qi-Ming

    2007-07-01

    A two-dimensional (2D) photonic crystal waveguide in the Γ-K direction with triangular lattice on a silicon-on-insulator (SOI) substrate in the near-infrared band is fabricated by the combination of electron beam lithography and inductively coupled plasma etching. Its transmission characteristics are analysed from the stimulated band diagram by the effective index and the 2D plane wave expansion (PWE) methods. In the experiment, the transmission band edge in a longer wavelength of the photonic crystal waveguide is about 1590 nm, which is in good qualitative agreement with the simulated value. However, there is a disagreement between the experimental and the simulated results when the wavelength ranges from 1607 to 1630 nm, which can be considered as due to the unpolarized source used in the transmission measurement.

  12. Channeling, volume reflection, and volume capture study of electrons in a bent silicon crystal

    NASA Astrophysics Data System (ADS)

    Wistisen, T. N.; Uggerhøj, U. I.; Wienands, U.; Markiewicz, T. W.; Noble, R. J.; Benson, B. C.; Smith, T.; Bagli, E.; Bandiera, L.; Germogli, G.; Guidi, V.; Mazzolari, A.; Holtzapple, R.; Tucker, S.

    2016-07-01

    We present the experimental data and analysis of experiments conducted at SLAC National Accelerator Laboratory investigating the processes of channeling, volume-reflection and volume-capture along the (111) plane in a strongly bent quasimosaic silicon crystal. These phenomena were investigated at 5 energies: 3.35, 4.2, 6.3, 10.5, and 14.0 GeV with a crystal with bending radius of 0.15 m, corresponding to curvatures of 0.053, 0.066, 0.099, 0.16, and 0.22 times the critical curvature, respectively. Based on the parameters of fitting functions we have extracted important parameters describing the channeling process such as the dechanneling length, the angle of volume reflection, the surface transmission, and the widths of the distribution of channeled particles parallel and orthogonal to the plane.

  13. Silicon-nanomembrane-based photonic crystal nanostructures for chip-integrated open sensor systems

    NASA Astrophysics Data System (ADS)

    Chakravarty, Swapnajit; Lai, Wei-Cheng; Zou, Yi; Lin, Cheyun; Wang, Xiaolong; Chen, Ray T.

    2011-11-01

    We experimentally demonstrate two devices on the photonic crystal platform for chip-integrated optical absorption spectroscopy and chip-integrated biomolecular microarray assays. Infrared optical absorption spectroscopy and biomolecular assays based on conjugate-specific binding principles represent two dominant sensing mechanisms for a wide spectrum of applications in environmental pollution sensing in air and water, chem-bio agents and explosives detection for national security, microbial contamination sensing in food and beverages to name a few. The easy scalability of photonic crystal devices to any wavelength ensures that the sensing principles hold across a wide electromagnetic spectrum. Silicon, the workhorse of the electronics industry, is an ideal platform for the above optical sensing applications.

  14. Limitation of Liquid Crystal on Silicon Spatial Light Modular for Holographic Three-dimensional Displays

    NASA Technical Reports Server (NTRS)

    Wang, Xinghua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Kujawinska, Malgorzata; Pouch, John; Miranda, Feliz

    2004-01-01

    In a 3-D display system based on an opto-electronic reconstruction of a digitally recorded hologram, the field of view of such a system is limited by the spatial resolution of the liquid crystal on silicon (LCOS) spatial light modular (SLM) used to perform the opto-electronic reconstruction. In this article, the special resolution limitation of LCOS SLM associated with the fringe field effect and interpixel coupling is determined by the liquid crystal detector simulation and the Finite Difference Time Domain (FDTD) simulation. The diffraction efficiency loss associated with the imperfection in the phase profile is studied with an example of opto-electronic reconstruction of an amplitude object. A high spatial resolution LCOS SLM with a wide reconstruction angle is proposed.

  15. Density-wave-modulated crystallization in nanoscale silicon films and droplets

    NASA Astrophysics Data System (ADS)

    Lü, Yongjun; Bi, Qingling; Yan, Xinqing

    2016-06-01

    Free surfaces have been known to significantly influence the crystallization of tetrahedral liquids. However, a comprehensive understanding of the influence mechanism is still lacking at present. By employing molecular dynamics simulations, we find that the nucleation probability in nanoscale silicon films and droplets exhibits a ripple-like distribution spatially. This phenomenon is closely related to the structural order wave, which is induced by the density fluctuations arisen from the volume expansion in a confinement environment defined by free surfaces. By the aid of the intrinsic relation between the tetrahedral order and the density, the analytic results based on the density wave equation well account for the nucleation probability distributions in both films and droplets. Our findings reveal the underlying mechanism of the surface-assisted nucleation in tetrahedral liquids and provide an overall description of crystallization in liquid films and droplets.

  16. Optical pendulum effect in one-dimensional diffraction-thick porous silicon based photonic crystals

    NASA Astrophysics Data System (ADS)

    Novikov, V. B.; Svyakhovskiy, S. E.; Maydykovskiy, A. I.; Murzina, T. V.; Mantsyzov, B. I.

    2015-11-01

    We present the realization of the multiperiodic optical pendulum effect in 1D porous silicon photonic crystals (PhCs) under dynamical Bragg diffraction in the Laue scheme. The diffraction-thick PhC contained 360 spatial periods with a large variation of the refractive index of adjacent layers of 0.4. The experiments reveal switching of the light leaving the PhC between the two spatial directions, which correspond to Laue diffraction maxima, as the fundamental wavelength or polarization of the incident light is varied. A similar effect can be achieved when the temperature of the sample or the intensity of the additional laser beam illuminating the crystal are changed. We show that in our PhC structures, the spectral period of the pendulum effect is down to 5 nm, while the thermal period is about 10 °C.

  17. Channeling, volume reflection and gamma emission using 14GeV electrons in bent silicon crystals - Oral presentation

    SciTech Connect

    Benson, Brandon

    2015-08-23

    High energy electrons can be deflected with very tight bending radius using a bent silicon crystal. This produces gamma radiation. As these crystals can be thin, a series of bent silicon crystals with alternating direction has the potential to produce coherent gamma radiation with reasonable energy of the driving electron beam. Such an electron crystal undulator offers the prospect for higher energy radiation at lower cost than current methods. Permanent magnetic undulators like LCLS at SLAC National Accelerator Laboratory are expensive and very large (about 100 m in case of the LCLS undulator). Silicon crystals are inexpensive and compact when compared to the large magnetic undulators. Additionally, such a high energy coherent light source could be used for probing through materials currently impenetrable by x-rays. In this work we present the experimental data and analysis of experiment T523 conducted at SLAC National Accelerator Laboratory. We collected the spectrum of gamma ray emission from 14 GeV electrons on a bent silicon crystal counting single photons. We also investigated the dynamics of electron motion in the crystal i.e. processes of channeling and volume reflection at 14 GeV, extending and building off previous work. Our single photon spectrum for the amorphous crystal orientation is consistent with bremsstrahlung radiation and the volume reflection crystal orientation shows a trend consistent with synchrotron radiation at a critical energy of 740 MeV. We observe that in these two cases the data are consistent, but we make no further claims because of statistical limitations. We also extended the known energy range of electron crystal dechanneling length and channeling efficiency to 14 GeV.

  18. Regularities of Changes in the Properties of Silicon Single Crystals under Low-Dose Beta-Irradiation

    NASA Astrophysics Data System (ADS)

    Dmitrievskiy, A. A.

    2013-12-01

    Regularities of changes in the mechanical properties (micro- or nanohardness, fracture toughness at indentation, and steady-state creep rate) and electrical characteristics (Hall constant, conductivity, and concentration of electrically active defects) of silicon single crystals under low-dose ( F < 1012 cm-2) low-intensity ( I ~ 106 cm-2•s-1) beta-irradiation are described. The mechanism of nonmonotonic beta-induced softening of silicon is discussed.

  19. Crystal spectroscopy of silicon aero-gel end-caps driven by a dynamic hohlraum on Z.

    SciTech Connect

    Bailey, James E.; Gilliland, Terrance Leo; Chandler, Gordon Andrew; Sanford, Thomas W. L.; Lake, Patrick Wayne; Nash, Thomas J.; Idzorek, George C.; Apruzese, John P.; Moore, Tracy Croft; McKenney, John Lee; Torres, Jose A.; Schroen, Diana Grace; Jobe, Daniel Olarry; Chrien, Robert E.; Nielsen, Daniel Scott; Mock, Raymond Cecil; MacFarlane, Joseph John; Leeper, Ramon Joe; McGurn, John Stephen; Peterson, Darrell L.; Mehlhorn, Thomas Alan; Lucas, Joshua M.; Watt, Robert G.; Russell, Christopher Owen; Seamen, Johann Franz

    2003-07-01

    We present results from crystal spectroscopic analysis of silicon aero-gel foams heated by dynamic hohlraums on Z. The dynamic hohlraum on Z creates a radiation source with a 230-eV average temperature over a 2.4-mm diameter. In these experiments silicon aero-gel foams with 10-mg/cm{sup 3} densities and 1.7-mm lengths were placed on both ends of the dynamic hohlraum. Several crystal spectrometers were placed both above and below the z-pinch to diagnose the temperature of the silicon aero-gel foam using the K-shell lines of silicon. The crystal spectrometers were (1) temporally integrated and spatially resolved, (2) temporally resolved and spatially integrated, and (3) both temporally and spatially resolved. The results indicate that the dynamic hohlraum heats the silicon aero-gel to approximately 150-eV at peak power. As the dynamic hohlraum source cools after peak power the silicon aero-gel continues to heat and jets axially at an average velocity of approximately 50-cm/{micro}s. The spectroscopy has also shown that the reason for the up/down asymmetry in radiated power on Z is that tungsten enters the line-of-sight on the bottom of the machine much more than on the top.

  20. Directional growth and crystallization of silicon thin films prepared by electron-beam evaporation on oblique and textured surfaces

    NASA Astrophysics Data System (ADS)

    Merkel, J. J.; Sontheimer, T.; Rech, B.; Becker, C.

    2013-03-01

    Electron-beam evaporation (EBE) of silicon permits the high-rate deposition of photovoltaic thin-film devices at low costs. The directional, non-conformal growth characteristic of EBE is systematically investigated by varying the silicon flux angle of incidence γ on the substrate surface between 0° and 49°. After solid phase crystallization the micro-structural properties of these silicon films are investigated and correlated with the electronic quality of n+/p-/p+-type solar cell stacks. As γ exceeds 30°, the porosity and oxygen content of the silicon films increase significantly coming along with the break-down of the electronic material quality. At γ>40° the silicon crystallization process is even found to be suppressed resulting from a columnar film morphology infiltrated by oxygen-rich pores. The knowledge of this critical angle is essential when textured substrates, consisting of many tilted micro-areas, are used for enhanced light absorption in the silicon film simultaneously ensuring the growth of high-quality material. Furthermore, the inclination angle γ can serve as design parameter for tailored substrate templates for the fabrication of advanced light-harvesting structures by self-organized solid phase crystallization.

  1. Liquid gallium cooling of silicon crystals in high intensity photon beam

    SciTech Connect

    Smither, R.K.; Forster, G.A.; Bilderback, D.H.; Bedzyk, M.; Finkelstein, K.; Henderson, C.; White, J.; Berman, L.E.; Stefan, P.; Oversluizen, T.

    1988-11-01

    The high-brilliance, insertion-device-based, photon beams of the next generation of synchrotron sources will deliver large thermal loads (1 kW to 10 kW) to the first optical elements. Considering the problems that present synchrotron users are experiencing with beams from recently installed insertion devices, new and improved methods of cooling these first optical elements, particularly when they are diffraction crystals, are clearly needed. A series of finite element calculations were performed to test the efficiency of new cooling geometries and new cooling fluids. The best results were obtained with liquid Ga metal flowing in channels just below the surface of the crystal. Ga was selected because of its good thermal conductivity and thermal capacity, low melting point, high boiling point, low kinetic viscosity, and very low vapor pressure. Its very low vapor pressure, even at elevated temperatures, makes it especially attractive in uhv conditions. A series of experiments were conducted at CHESS in February of 1988 that compared liquid gallium cooled silicon diffraction crystals with water cooled crystals. 2 refs., 16 figs., 1 tab.

  2. Friction and metal transfer for single-crystal silicon carbide in contact with various metals in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted with single-crystal silicon carbide in contact with transition metals (tungsten, iron, rhodium, nickel, titanium, and cobalt), copper, and aluminum. Results indicate the coefficient of friction for a silicon carbide-metal system is related to the d bond character and relative chemical activity of the metal. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to the surface of silicon carbide in sliding. The chemical activity of metal to silicon and carbon and shear modulus of the metal may play important roles in metal transfer and the form of the wear debris. The less active and greater resistance to shear the metal has, with the exception of rhodium and tungsten, the less transfer to silicon carbide.

  3. Study and optimization of gas flow and temperature distribution in a Czochralski configuration

    NASA Astrophysics Data System (ADS)

    Fang, H. S.; Jin, Z. L.; Huang, X. M.

    2012-12-01

    The Czochralski (Cz) method has virtually dominated the entire production of bulk single crystals with high productivity. Since the Cz-grown crystals are cylindrical, axisymmetric hot zone arrangement is required for an ideally high-quality crystal growth. However, due to three-dimensional effects the flow pattern and temperature field are inevitably non-axisymmetric. The grown crystal suffers from many defects, among which macro-cracks and micro-dislocation are mainly related to inhomogeneous temperature distribution during the growth and cooling processes. The task of the paper is to investigate gas partition and temperature distribution in a Cz configuration, and to optimize the furnace design for the reduction of the three-dimensional effects. The general design is found to be unfavorable to obtain the desired temperature conditions. Several different types of the furnace designs, modified at the top part of the side insulation, are proposed for a comparative analysis. The optimized one is chosen for further study, and the results display the excellence of the proposed design in suppression of three-dimensional effects to achieve relatively axisymmetric flow pattern and temperature distribution for the possible minimization of thermal stress related crystal defects.

  4. Thin, High Lifetime Silicon Wafers with No Sawing; Re-crystallization in a Thin Film Capsule

    SciTech Connect

    Emanuel Sachs Tonio Buonassisi

    2013-01-16

    The project fits within the area of renewable energy called photovoltaics (PV), or the generation of electricity directly from sunlight using semiconductor devices. PV has the greatest potential of any renewable energy technology. The vast majority of photovoltaic modules are made on crystalline silicon wafers and these wafers accounts for the largest fraction of the cost of a photovoltaic module. Thus, a method of making high quality, low cost wafers would be extremely beneficial to the PV industry The industry standard technology creates wafers by casting an ingot and then sawing wafers from the ingot. Sawing rendered half of the highly refined silicon feedstock as un-reclaimable dust. Being a brittle material, the sawing is actually a type of grinding operation which is costly both in terms of capital equipment and in terms of consumables costs. The consumables costs associated with the wire sawing technology are particularly burdensome and include the cost of the wire itself (continuously fed, one time use), the abrasive particles, and, waste disposal. The goal of this project was to make wafers directly from molten silicon with no sawing required. The fundamental concept was to create a very low cost (but low quality) wafer of the desired shape and size and then to improve the quality of the wafer by a specialized thermal treatment (called re-crystallization). Others have attempted to create silicon sheet by recrystallization with varying degrees of success. Key among the difficulties encountered by others were: a) difficulty in maintaining the physical shape of the sheet during the recrystallization process and b) difficulty in maintaining the cleanliness of the sheet during recrystallization. Our method solved both of these challenges by encapsulating the preform wafer in a protective capsule prior to recrystallization (see below). The recrystallization method developed in this work was extremely effective at maintaining the shape and the cleanliness of the

  5. Fabrication of single crystal silicon mirror substrates for X-ray astronomical missions

    NASA Astrophysics Data System (ADS)

    Riveros, Raul E.; Bly, Vincent T.; Kolos, Linette D.; McKeon, Kevin P.; Mazzarella, James R.; Miller, Timothy M.; Zhang, William W.

    2014-07-01

    The advancement of X-ray astronomy largely depends on technological advances in the manufacturing of X-ray optics. Future X-ray astronomy missions will require thousands of nearly perfect mirror segments to produce an X-ray optical assembly with < 5 arcsecond resolving capability. Present-day optical manufacturing technologies are not capable of producing thousands of such mirrors within typical mission time and budget allotments. Therefore, efforts towards the establishment of a process capable of producing sufficiently precise X-ray mirrors in a time-efficient and cost-effective manner are needed. Single-crystal silicon is preferred as a mirror substrate material over glass since it is stronger and free of internal stress, allowing it to retain its precision when cut into very thin mirror substrates. This paper details our early pursuits of suitable fabrication technologies for the mass production of sub-arcsecond angular resolution single-crystal silicon mirror substrates for X-ray telescopes.

  6. Precision control of thermal transport in cryogenic single-crystal silicon devices

    NASA Astrophysics Data System (ADS)

    Rostem, K.; Chuss, D. T.; Colazo, F. A.; Crowe, E. J.; Denis, K. L.; Lourie, N. P.; Moseley, S. H.; Stevenson, T. R.; Wollack, E. J.

    2014-03-01

    We report on the diffusive-ballistic thermal conductance of multi-moded single-crystal silicon beams measured below 1 K. It is shown that the phonon mean-free-path ℓ is a strong function of the surface roughness characteristics of the beams. This effect is enhanced in diffuse beams with lengths much larger than ℓ, even when the surface is fairly smooth, 5-10 nm rms, and the peak thermal wavelength is 0.6 μm. Resonant phonon scattering has been observed in beams with a pitted surface morphology and characteristic pit depth of 30 nm. Hence, if the surface roughness is not adequately controlled, the thermal conductance can vary significantly for diffuse beams fabricated across a wafer. In contrast, when the beam length is of order ℓ, the conductance is dominated by ballistic transport and is effectively set by the beam cross-sectional area. We have demonstrated a uniformity of ±8% in fractional deviation for ballistic beams, and this deviation is largely set by the thermal conductance of diffuse beams that support the micro-electro-mechanical device and electrical leads. In addition, we have found no evidence for excess specific heat in single-crystal silicon membranes. This allows for the precise control of the device heat capacity with normal metal films. We discuss the results in the context of the design and fabrication of large-format arrays of far-infrared and millimeter wavelength cryogenic detectors.

  7. Precision control of thermal transport in cryogenic single-crystal silicon devices

    SciTech Connect

    Rostem, K.; Chuss, D. T.; Colazo, F. A.; Crowe, E. J.; Denis, K. L.; Lourie, N. P.; Moseley, S. H.; Stevenson, T. R.; Wollack, E. J.

    2014-03-28

    We report on the diffusive-ballistic thermal conductance of multi-moded single-crystal silicon beams measured below 1 K. It is shown that the phonon mean-free-path ℓ is a strong function of the surface roughness characteristics of the beams. This effect is enhanced in diffuse beams with lengths much larger than ℓ, even when the surface is fairly smooth, 5–10 nm rms, and the peak thermal wavelength is 0.6 μm. Resonant phonon scattering has been observed in beams with a pitted surface morphology and characteristic pit depth of 30 nm. Hence, if the surface roughness is not adequately controlled, the thermal conductance can vary significantly for diffuse beams fabricated across a wafer. In contrast, when the beam length is of order ℓ, the conductance is dominated by ballistic transport and is effectively set by the beam cross-sectional area. We have demonstrated a uniformity of ±8% in fractional deviation for ballistic beams, and this deviation is largely set by the thermal conductance of diffuse beams that support the micro-electro-mechanical device and electrical leads. In addition, we have found no evidence for excess specific heat in single-crystal silicon membranes. This allows for the precise control of the device heat capacity with normal metal films. We discuss the results in the context of the design and fabrication of large-format arrays of far-infrared and millimeter wavelength cryogenic detectors.

  8. Crystallization of amorphous silicon thin films using nanoenergetic intermolecular materials with buffer layers

    NASA Astrophysics Data System (ADS)

    Lee, Choong Hee; Jeong, Tae Hoon; Kim, Do Kyung; Jeong, Woong Hee; Kang, Myung-Koo; Hwang, Tae Hyung; Kim, Hyun Jae

    2009-02-01

    Optimization of the crystallization of amorphous silicon (a-Si) using a mixture of nanoenergetic materials of iron oxide/aluminum (Fe 2O 3/Al) was studied. To achieve high-quality polycrystalline Si (poly-Si) thin films, silicon oxide (SiO 2) and silver (Ag) layer were deposited on the a-Si as buffer layers to prevent the metal diffusion in a-Si during thermite reaction and to transport the thermal energy released from nanoenergetic materials, respectively. Raman measurement was used to define the crystallinity of poly-Si. For molar ratio of Al and Fe of 2 with 100-nm-thick-SiO 2, Raman measurement showed the 519.59 cm -1 of peak position and the 5.08 cm -1 of full width at half maximum with 353 MPa of low tensile stress indicating high quality poly-Si thin film. These results showed that optimized thermite reaction could be used successfully in crystallization of a-Si to high -quality poly-Si thin films.

  9. Tracing the definition of the kilogram to the Avogadro constant using a silicon single crystal

    NASA Astrophysics Data System (ADS)

    Becker, Peter

    2003-12-01

    This paper describes attempts to replace the present definition of the SI unit mass, the kilogram, by a new one, based on the atomic mass unit; the kilogram then becomes the mass of a certain number of silicon atoms. The related research is planned and is to be performed within the scope of a worldwide collaboration coordinated by the Working Group on the Avogadro Constant of the CIPM Consultative Committee for Mass and Related Quantities. This requires determination of the Avogadro constant, NA, with a relative uncertainty close to 1 × 10-8. At present, the most important limiting factor is the uncertainty arising from observed differences between some primary density standards as well as the measurement of the molar mass of silicon, e.g. the determination of the natural isotopic composition. Improvements in crystal characterization and density determination are described that allow us to reach a relative uncertainty of about 10-7. A further reduction in the uncertainty is envisaged by measurements performed on a 99.99% enriched 28Si single crystal.

  10. Precision Control of Thermal Transport in Cryogenic Single-Crystal Silicon Devices

    NASA Technical Reports Server (NTRS)

    Rostem, K.; Chuss, D. T.; Colazo, F. A.; Crowe, E. J.; Denis, K. L.; Lourie, N. P.; Moseley, S. H.; Stevenson, T. R.; Wollack, E. J.

    2014-01-01

    We report on the diffusive-ballistic thermal conductance of multi-moded single-crystal silicon beams measured below 1 K. It is shown that the phonon mean-free-path is a strong function of the surface roughness characteristics of the beams. This effect is enhanced in diffuse beams with lengths much larger than, even when the surface is fairly smooth, 510 nm rms, and the peak thermal wavelength is 0.6 microns. Resonant phonon scattering has been observed in beams with a pitted surface morphology and characteristic pit depth of 30 nm. Hence, if the surface roughness is not adequately controlled, the thermal conductance can vary significantly for diffuse beams fabricated across a wafer. In contrast, when the beam length is of order, the conductance is dominated by ballistic transport and is effectively set by the beam cross-sectional area. We have demonstrated a uniformity of +/-8% in fractional deviation for ballistic beams, and this deviation is largely set by the thermal conductance of diffuse beams that support the micro-electro-mechanical device and electrical leads. In addition, we have found no evidence for excess specific heat in single-crystal silicon membranes. This allows for the precise control of the device heat capacity with normal metal films. We discuss the results in the context of the design and fabrication of large-format arrays of far-infrared and millimeter wavelength cryogenic detectors.

  11. Inductive Measurement of Optically Hyperpolarized Phosphorous Donor Nuclei in an Isotopically Enriched Silicon-28 Crystal

    NASA Astrophysics Data System (ADS)

    Gumann, P.; Patange, O.; Ramanathan, C.; Haas, H.; Moussa, O.; Thewalt, M. L. W.; Riemann, H.; Abrosimov, N. V.; Becker, P.; Pohl, H.-J.; Itoh, K. M.; Cory, D. G.

    2014-12-01

    We experimentally demonstrate the first inductive readout of optically hyperpolarized phosphorus-31 donor nuclear spins in an isotopically enriched silicon-28 crystal. The concentration of phosphorus donors in the crystal was 1.5 ×1 015 cm-3 , 3 orders of magnitude lower than has previously been detected via direct inductive detection. The signal-to-noise ratio measured in a single free induction decay from a 1 cm3 sample (≈1015 spins) was 113. By transferring the sample to an X -band ESR spectrometer, we were able to obtain a lower bound for the nuclear spin polarization at 1.7 K of ˜64 % . The 31P -T2 measured with a Hahn echo sequence was 420 ms at 1.7 K, which was extended to 1.2 s with a Carr Purcell cycle. The T1 of the 31P nuclear spins at 1.7 K is extremely long and could not be determined, as no decay was observed even on a time scale of 4.5 h. Optical excitation was performed with a 1047 nm laser, which provided above-band-gap excitation of the silicon. The buildup of the hyperpolarization at 4.2 K followed a single exponential with a characteristic time of 577 s, while the buildup at 1.7 K showed biexponential behavior with characteristic time constants of 578 and 5670 s.

  12. Kinetics of structuring of submonolayer carbon coatings on silicon (100) crystals during microwave vacuum-plasma deposition

    NASA Astrophysics Data System (ADS)

    Yafarov, R. K.; Shanygin, V. Ya.

    2015-06-01

    The kinetics of self-organization of nanodomains during the deposition of submonolayer carbon coatings on (100) silicon in the microwave plasma of low-pressure ethanol vapors is studied by atomic force microscopy and scanning electron microscopy. The laws of influence of the substrate temperature and the kinetic energy of carbon-containing ions on the mechanisms of formation and structuring of the forming silicon-carbon surface phases are established. It is shown that the deposited carbon-containing nanodomains can be used as nonlithographic mask coatings for the formation of spatial low-dimensional systems on single-crystal silicon upon selective highly anisotropic plasma-chemical etching.

  13. Experimental study of cold plume instability in large Prandtl number Czochralski melt: Parametric dependences and scaling laws

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, E.; Kit, E.; Gelfgat, A. Yu.

    2016-03-01

    A parametric experimental study of the cold plume instability that appears in the large-Prandtl-number Czochralski melt flows is reported. The critical temperature difference (the critical Grashof number) and the frequency of appearing oscillations were measured for varying Prandtl numbers, aspect ratios of the melt, and crystal/crucible radii ratio. The measurements were carried out by two independent and fully non-intrusive experimental techniques. The results are reported as dimensional and dimensionless parametric dependences, and then are joined into relatively simple empirical relations showing how the critical Grashof number and the frequency of emerging oscillations depend on other parameters.

  14. Characterization and laser performance of a new material: 2 at. % Nd:YAG grown by the Czochralski method.

    PubMed

    L'huillier, Johannes A; Bitz, Gunter; Wesemann, Volker; von Loewis of Menar, Patric; Wallenstein, Richard; Borsutzky, Annette; Ackermann, Lothar; Dupré, Klaus; Rytz, Daniel; Vernay, Sophie

    2002-07-20

    We report on the optical quality and laser performance of Czochralski-grown 2-at. %-doped Nd:YAG. Using a diode pumped laser in an end pumped configuration, we compare the laser performance of this material with the performance of 1-at. %-doped Nd:YAG and 0.7-at. %-doped Nd:YVO4 crystals. Experimental results show the superior performance of 2-at. % Nd:YAG over Nd:YVO4. With a pump power of 25.7 W, a maximum output power of 12.3 W with a slope efficiency of 57% and an optical-to-optical efficiency of 48% were achieved. PMID:12148768

  15. High-efficiency deflection of high energy protons due to channeling along the <110> axis of a bent silicon crystal

    NASA Astrophysics Data System (ADS)

    Scandale, W.; Arduini, G.; Butcher, M.; Cerutti, F.; Garattini, M.; Gilardoni, S.; Lechner, A.; Masi, A.; Mirarchi, D.; Montesano, S.; Redaelli, S.; Rossi, R.; Smirnov, G.; Breton, D.; Burmistrov, L.; Chaumat, V.; Dubos, S.; Maalmi, J.; Puill, V.; Stocchi, A.; Bagli, E.; Bandiera, L.; Germogli, G.; Guidi, V.; Mazzolari, A.; Dabagov, S.; Murtas, F.; Addesa, F.; Cavoto, G.; Iacoangeli, F.; Galluccio, F.; Afonin, A. G.; Chesnokov, Yu. A.; Durum, A. A.; Maisheev, V. A.; Sandomirskiy, Yu. E.; Yanovich, A. A.; Kovalenko, A. D.; Taratin, A. M.; Denisov, A. S.; Gavrikov, Yu. A.; Ivanov, Yu. M.; Lapina, L. P.; Malyarenko, L. G.; Skorobogatov, V. V.; James, T.; Hall, G.; Pesaresi, M.; Raymond, M.

    2016-09-01

    A deflection efficiency of about 61% was observed for 400 GeV/c protons due to channeling, most strongly along the <110> axis of a bent silicon crystal. It is comparable with the deflection efficiency in planar channeling and considerably larger than in the case of the <111> axis. The measured probability of inelastic nuclear interactions of protons in channeling along the <110> axis is only about 10% of its amorphous level whereas in channeling along the (110) planes it is about 25%. High efficiency deflection and small beam losses make this axial orientation of a silicon crystal a useful tool for the beam steering of high energy charged particles.

  16. High-heat-load synchrotron tests of room-temperature, silicon crystal monochromators at the CHESS F-2 wiggler station

    SciTech Connect

    Lee, W.K.; Fernandez, P.B.; Graber, T.; Assoufid, L.

    1995-09-08

    This note summarizes the results of the single crystal monochromator high-heat-load tests performed at the CHESS F-2 wiggler station. The results from two different cooling geometries are presented: (1) the ``pin-post`` crystal and (2) the ``criss-cross`` crystal. The data presented were taken in August 1993 (water-cooled pin-post) and in April 1995 (water- and gallium-cooled pin-post crystal and gallium-cooled criss-cross crystal). The motivation for trying these cooling (or heat exchanger) geometries is to improve the heat transfer efficiency over that of the conventional slotted crystals. Calculations suggest that the pin-post or the microchannel design can significantly improve the thermal performance of the crystal. The pin-post crystal used here was fabricated by Rocketdyne Albuquerque Operations. From the performance of the conventional slotted crystals, it was thought that increased turbulence in the flow pattern may also enhance the heat transfer. The criss-cross crystal was a simple attempt to achieve the increased flow turbulence. The criss-cross crystal was partly fabricated in-house (cutting, etching and polishing) and bonded by RAO. Finally, a performance comparison among all the different room temperature silicon monochromators that have been tested by the APS is presented. The data includes measurements with the slotted crystal and the core-drilled crystals. Altogether, the data presented here were taken at the CHESS F-2 wiggler station between 1991 and 1995.

  17. Numerical simulation of molten silicon flow; comparison with experiment

    NASA Astrophysics Data System (ADS)

    Kakimoto, Koichi; Nicodème, Pierre; Lecomte, Michael; Dupret, François; Crochet, Marcel J.

    1991-12-01

    Numerical simulation containing fluid flow, heat conduction and heat exchange by radiation has been performed using the geometry of a real Czochralski furnace for silicon single crystal growth. The flow velocity fields of molten silicon are obtained from extrapolation of the stream function, which has been newly developed using the velocity boundary layer theory. The calculated flow velocity and particle path are semi-quantitatively identical to the results obtained from X-ray radiography experiment. The calculated value of the characteristic velocity is about 10 -2 m/s. The same order of flow velocity which is obtained from the experiment has been already reported. It has also become clear from a comparison of flow velocities between experimental and calculated results that the order of the volume expansion coefficient of the molten silicon (β) is 10 -4 K -1. The flow was almost axisymmetric and steady for a specific case with low crystal and crucible rotation rates and with a shallow melt. We also found that a flow with larger azimuthal velocity component exists just beneath a crystal, while that with opposite flow direction exists near the crucible wall.

  18. On the energy spectra of secondary ions emitted from silicon and graphite single crystals

    NASA Astrophysics Data System (ADS)

    Khvostov, V. V.; Khrustachev, I. K.; Minnebaev, K. F.; Zykova, E. Yu.; Ivanenko, I. P.; Yurasova, V. E.

    2014-03-01

    Secondary ion emission from silicon and graphite single crystals bombarded by argon ions with energies E 0 varied from 1 to 10 keV at various angles of incidence α has been studied. The evolution of the energy spectra of C+ and Si+ secondary ions has been traced in which the positions of maxima ( E max) shift toward higher secondary-ion energies E 1 with increasing polar emission angle θ (measured from the normal to the sample surface). The opposite trend has been observed for ions emitted from single crystals heated to several hundred degrees Centigrade; the E max values initially remain unchanged and then shift toward lower energies E 1 with increasing angle θ. It is established that the magnitude and position of a peak in the energy spectrum of secondary C+ ions is virtually independent of E 0, angle α, and the surface relief of the sample (in the E 0 and α intervals studied). Unusual oscillating energy distributions are discussed, which have been observed for secondary ions emitted from silicon (111) and layered graphite (0001) faces. Numerical simulations of secondary ion sputtering and charge exchange have been performed. A comparison of the measured and calculated data for graphite crystals has shown that C+ ions are formed as a result of charge exchange between secondary ions and bombarding Ar+ ions, which takes place both outside and inside the target. This substantially differs from the ion sputtering process in metals and must be taken into account when analyzing secondary ion emission mechanisms and in practical applications of secondary-ion mass spectrometry.

  19. Excimer laser annealing: A gold process for CZ silicon junction formation

    NASA Technical Reports Server (NTRS)

    Wong, David C.; Bottenberg, William R.; Byron, Stanley; Alexander, Paul

    1987-01-01

    A cold process using an excimer laser for junction formation in silicon has been evaluated as a way to avoid problems associated with thermal diffusion. Conventional thermal diffusion can cause bulk precipitation of SiOx and SiC or fail to completely activate the dopant, leaving a degenerate layer at the surface. Experiments were conducted to determine the feasibility of fabricating high quality p-n junctions using a pulsed excimer laser for junction formation at remelt temperature with ion-implanted surfaces. Solar-cell efficiency exceeding 16 percent was obtained using Czochralski single-crystal silicon without benefit of back surface field or surface passivation. Characterization shows that the formation of uniform, shallow junctions (approximately 0.25 micron) by excimer laser scanning preserves the minority carrier lifetime that leads to high current collection. However, the process is sensitive to initial surface conditions and handling parameters that drive the cost up.

  20. A candidate low-cost processing sequence for terrestrial silicon solar cell panel

    NASA Technical Reports Server (NTRS)

    Bickler, D. B.; Gallagher, B. D.; Sanchez, L. E.

    1978-01-01

    Manufacturing sequence for silicon solar cells using Czochralsky crystal growing techniques in order to produce at a rate of 20 MW per year on a 24-hour per day basis is discussed. Cost analysis of the manufacturing is presented and consideration is given to the following processing decision categories of the manufacturing of an unencapsulated solar cell from a silicon wafer: (1) treatment of the optical surface; (2) formation of the junction(s); and (3) metallization of electrical collectors. The manufacturing of encapsulated solar modules from solar cells, using two glass plates, a low iron front surface, and a standard float glass back plate, is described. Totaling the three major activities of wafer making, cell manufacturing, and module fabrication, the resulting contribution to module price will be 1.945 $/watt.

  1. Fabrication technology of heterojunctions in the lattice of a 2D photonic crystal based on macroporous silicon

    SciTech Connect

    Zharova, Yu. A. Fedulova, G. V.; Astrova, E. V.; Baldycheva, A. V.; Tolmachev, V. A.; Perova, T. S.

    2011-08-15

    Design and fabrication technology of a microcavity structure based on a double heterojunction in macroporous silicon is suggested. The fabrication process of a strip of a 2D photonic crystal constituted by a finite number of lattice periods and the technique for defect formation by local opening of macropores on the substrate side, followed by filling of these macropores with a nematic liquid crystal, are considered.

  2. Effects of vacancy cluster defects on electrical and thermodynamic properties of silicon crystals.

    PubMed

    Huang, Pei-Hsing; Lu, Chi-Ming

    2014-01-01

    A first-principle plane-wave pseudopotential method based on the density function theory (DFT) was employed to investigate the effects of vacancy cluster (VC) defects on the band structure and thermoelectric properties of silicon (Si) crystals. Simulation results showed that various VC defects changed the energy band and localized electron density distribution of Si crystals and caused the band gap to decrease with increasing VC size. The results can be ascribed to the formation of a defect level produced by the dangling bonds, floating bonds, or high-strain atoms surrounding the VC defects. The appearance of imaginary frequencies in the phonon spectrum of defective Si crystals indicates that the defect-region structure is dynamically unstable and demonstrates phase changes. The phonon dispersion relation and phonon density of state were also investigated using density functional perturbation theory. The obtained Debye temperature ( θ D ) for a perfect Si crystal had a minimum value of 448 K at T = 42 K and a maximum value of 671 K at the high-temperature limit, which is consistent with the experimental results reported by Flubacher. Moreover, the Debye temperature decreased with increases in the VC size. VC defects had minimal effects on the heat capacity (C v ) value when temperatures were below 150 K. As the temperature was higher than 150 K, the heat capacity gradually increased with increasing temperature until it achieved a constant value of 11.8 cal/cell · K. The heat capacity significantly decreased as the VC size increased. For a 2 × 2 × 2 superlattice Si crystal containing a hexagonal ring VC (HRVC10), the heat capacity decreased by approximately 17%. PMID:24526923

  3. Performance study of Philips digital silicon photomultiplier coupled to scintillating crystals

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Pizzichemi, M.; Auffray, E.; Lecoq, P.; Paganoni, M.

    2016-01-01

    Silicon photomultipliers (SiPMs) and scintillators are often arranged in the shape of arrays in Positron Emission Tomography (PET) systems. Digital SiPMs provide signal readout in single photon avalanche diode (SPAD) level. From the photon count rate measurement of each SPAD cell of digital SiPM, we found that the output scintillating photons distribute in an area larger than the scintillator physical coupling area. Taking advantage of the possibility to enable/disable individual cells of the digital SiPM, a group of Lutetium-yttrium oxyorthosilicate (LYSO) crystals with different dimensions coupled to a digital SiPM was used to study the influence of using different SiPM active area on the number of photons detected, energy resolution and coincidence time resolution (CTR). For the same crystal coupled to the digital SiPM, the larger the active area of digital SiPM, the higher the number of photons detected. The larger active area of the digital SiPM also results in a better energy resolution after saturation correction. The best energy resolution full width half maximum (FWHM) obtained for the 2 × 2 × 5 mm3, 2 × 2 × 10 mm3, 2 × 2 × 15 mm3, 2 × 2 × 20 mm3 LYSO crystals was 10.7%, 11.6%, 12.1%, 12.5%, respectively. For crystals with different cross sections coupled to the digital SiPM, we found that the larger the cross section of coupling area, the more photons were detected and thus a better energy resolution was obtained. The CTR of crystals fully wrapped with Teflon or without wrapping was measured by positioning two identical crystals facing each other. A larger area of digital SiPM improves the CTR and the CTR reaches the plateau when the active area is larger than 2.2 × 2.2 mm2 with both two configurations of wrapping. The best CTR value for the 2 × 2 × 5 mm3, 2 × 2 × 10 mm3, 2 × 2 × 15 mm3, 2 × 2 × 20 mm3 LYSO crystals was 128.9 ps, 148.4 ps, 171.6 ps, 177.9 ps, respectively. The measurements performed lead us to conclude that optimising the

  4. Porous silicon photonic crystals as hosts for polymers, biopolymers, and magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Yang Yang

    This thesis describes the construction of one-dimensional photonic crystals of porous silicon by electrochemically etching and the use of these materials as hosts for polymers, biopolymers, and magnetic nanoparticles. The spectral features of the photonic crystals derive from a porosity gradient that is determined by the electrochemical etching parameters. Since the photonic crystals are constructed of a porous material, they can serve as hosts for other materials. The first chapter of the thesis provides an introduction to porous Si, templating techniques and the use of porous materials for controlled release of drugs. This latter section is added because much of the thesis work addresses the application of porous Si hosts for controlled release of drugs. In the second chapter, it is shown that the spectral properties of the porous Si photonic crystal template can be transferred to a variety of organic and biopolymers. It is demonstrated that these castings can be used as vapor sensors and as self-reporting, bioresorbable materials. If the template is not removed, porous Si polymer composites are formed. The third chapter discussed that by spray-coating a fine mist of polymer solution onto the porous Si film, robust and smooth micron-sized cylindrical photonic crystals suitable for bioassays can be prepared. The fourth chapter focuses on using porous Si photonic crystals as a host for magnetic nanoparticles. The magnetic nanoparticles in this work are found to adhere to the surface of the porous Si film as well to infiltrate the pore structure. In a demonstration of optical switching that may be useful for information display applications, flipping between the colored to dark sides by application of a magnetic field is found to occur at rates of as large as 175 Hz. As the host for soluble molecular species, porous Si photonic crystals can be impregnated from solution. The aggregates that form upon evaporation of solvent are found to scatter light from the resonant

  5. Silver- and Gold-Ordered Structures on Single-Crystal Silicon Surface After Thermal Deposition.

    PubMed

    Karbivskyy, Vladimir; Karbivska, Love; Artemyuk, Viktor

    2016-12-01

    The formation mechanisms of Ag- and Au-ordered structures on single-crystal silicon (Si) (111) and Si (110) surfaces were researched using high-resolution scanning tunneling microscopy method. It was shown that different patterns of self-assembled nanostructures with very precise and regular geometric shapes can be produced by controlling process parameters of thermal metal spraying on the substrate. The surfaces of nanorelieves at each stage of deposition were researched, and the main stages of morphological transformation were fixed.Self-ordered hexagonal pyramid-shaped nanostructures were formed at thermal deposition of gold on the Si (111), whereas only monolayer hexagonal formation could be observed on the plane Si (110). Gold monolayer flake nanostructures were obtained under certain technological parameters.Atomically smooth Ag film cannot be obtained on the Si (111) surface by means of thermal spraying at room temperature. The formation of two-dimensional (2D) clusters takes place; heating of these clusters at several hundred degrees Celsius leads to their transformation into atomically smooth covering.The weak interaction between Ag multilayer coatings and substrate was established that allows to clear crystal surface from metal with reproduction of the reconstructed Si (111) 7 × 7 surface by slight warming. The offered method can be used for single-crystal surface protection from destruction. PMID:26847695

  6. Polycrystalline Silicon Sheets for Solar Cells by the Improved Spinning Method

    NASA Technical Reports Server (NTRS)

    Maeda, Y.; Yokoyama, T.; Hide, I.

    1984-01-01

    Cost reduction of silicon materials in the photovoltaic program of materials was examined. The current process of producing silicon sheets is based entirely on the conventional Czochralski ingot growth and wafering used in the semiconductor industry. The current technology cannot meet the cost reduction demands for producing low cost silicon sheets. Alternative sheet production processes such as unconventional crystallization are needed. The production of polycrystalline silicon sheets by unconventional ingot technology is the casting technique. Though large grain sheets were obtained by this technique, silicon ribbon growth overcomes deficiencies of the casting process by obtaining the sheet directly from the melt. The need to solve difficulties of growth stability and impurity effects are examined. The direct formation process of polycrystalline silicon sheets with large grain size, smooth surface, and sharp edges from the melt with a high growth rate which will yield low cost silicon sheets for solar cells and the photovoltaic characteristics associated with this type of sheet to include an EBIC study of the grain boundaries are described.

  7. Materials requirements for high-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Wolf, M.

    1985-01-01

    To achieve higher Si solar cell efficiencies (greater than 20%), better single-crystal Si must be produced. It is believed possible to bring Cz (Czochralski) Si up to the same low recombination level as FZ (Float Zone) Si. It is also desirable that solar cell Si meet the following requirements: long minority carrier lifetime (0.2 ohm-cm p-type with tau less than 500 microsec); repeatedly uniform lifetime (not spread from 50 to 1000 microsec); a lifetime that does not decrease during normal device processing; a silicon wafer sheet that is flat and stays throughout normal device processing; uniform and reasonable mechanical strength; and, manufacture at low cost (less than $50/sq m).

  8. Light-trapping optimization in wet-etched silicon photonic crystal solar cells

    SciTech Connect

    Eyderman, Sergey; John, Sajeev; Hafez, M.; Al-Ameer, S. S.; Al-Harby, T. S.; Al-Hadeethi, Y.; Bouwes, D. M.

    2015-07-14

    We demonstrate, by numerical solution of Maxwell's equations, near-perfect solar light-trapping and absorption over the 300–1100 nm wavelength band in silicon photonic crystal (PhC) architectures, amenable to fabrication by wet-etching and requiring less than 10 μm (equivalent bulk thickness) of crystalline silicon. These PhC's consist of square lattices of inverted pyramids with sides comprised of various (111) silicon facets and pyramid center-to-center spacing in the range of 1.3–2.5 μm. For a wet-etched slab with overall height H = 10 μm and lattice constant a = 2.5 μm, we find a maximum achievable photo-current density (MAPD) of 42.5 mA/cm{sup 2}, falling not far from 43.5 mA/cm{sup 2}, corresponding to 100% solar absorption in the range of 300–1100 nm. We also demonstrate a MAPD of 37.8 mA/cm{sup 2} for a thinner silicon PhC slab of overall height H = 5 μm and lattice constant a = 1.9 μm. When H is further reduced to 3 μm, the optimal lattice constant for inverted pyramids reduces to a = 1.3 μm and provides the MAPD of 35.5 mA/cm{sup 2}. These wet-etched structures require more than double the volume of silicon, in comparison to the overall mathematically optimum PhC structure (consisting of slanted conical pores), to achieve the same degree of solar absorption. It is suggested these 3–10 μm thick structures are valuable alternatives to currently utilized 300 μm-thick textured solar cells and are suitable for large-scale fabrication by wet-etching.

  9. Time-Resolved Third Order Harmonic Generation on Shocked Silicon Crystals

    NASA Astrophysics Data System (ADS)

    Dalton, D. A.; Grigsby, W.; Quevedo, H.; Bernstein, A. C.; Ditmire, T.

    2008-04-01

    We are using nonlinear optical diagnostics to probe the shock-induced melt transition in silicon. Pump-probe shock experiments on [100] Si crystals were carried out using the Ti:Sapphire THOR laser (800 nm, 1 J, 600 ps-chirped, 40 fs-compressed). Two dimensional interferometry was used to map rear surface displacement at discrete times to infer a peak shock pressure. Third order harmonic generation (THG) is used to probe the bulk material's long range order, while a reflectivity diagnostic is used in conjuction with the THG diagnostic to determine it's validity. Preliminary evidence shows the anomalous response that at shock pressures <100 kbar (˜elastic limit) the THG signal does not decrease; however, at higher pressures of ˜300-400 kbar the THG signal falls dramatically indicating fast crystalline disordering.

  10. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    SciTech Connect

    Yan, Hai Zou, Yi; Yang, Chun-Ju; Chakravarty, Swapnajit; Wang, Zheng; Tang, Naimei; Chen, Ray T.; Fan, Donglei

    2015-03-23

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed.

  11. Optoelectronic optimization of mode selective converter based on liquid crystal on silicon

    NASA Astrophysics Data System (ADS)

    Wang, Yongjiao; Liang, Lei; Yu, Dawei; Fu, Songnian

    2016-03-01

    We carry out comprehensive optoelectronic optimization of mode selective converter used for the mode division multiplexing, based on liquid crystal on silicon (LCOS) in binary mode. The conversion error of digital-to-analog (DAC) is investigated quantitatively for the purpose of driving the LCOS in the application of mode selective conversion. Results indicate the DAC must have a resolution of 8-bit, in order to achieve high mode extinction ratio (MER) of 28 dB. On the other hand, both the fast axis position error of half-wave-plate (HWP) and rotation angle error of Faraday rotator (FR) have negative influence on the performance of mode selective conversion. However, the commercial products provide enough angle error tolerance for the LCOS-based mode selective converter, taking both of insertion loss (IL) and MER into account.

  12. Crystallization to polycrystalline silicon thin film and simultaneous inactivation of electrical defects by underwater laser annealing

    SciTech Connect

    Machida, Emi; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ikenoue, Hiroshi

    2012-12-17

    We propose a low-temperature laser annealing method of a underwater laser annealing (WLA) for polycrystalline silicon (poly-Si) films. We performed crystallization to poly-Si films by laser irradiation in flowing deionized-water where KrF excimer laser was used for annealing. We demonstrated that the maximum value of maximum grain size of WLA samples was 1.5 {mu}m, and that of the average grain size was 2.8 times larger than that of conventional laser annealing in air (LA) samples. Moreover, WLA forms poly-Si films which show lower conductivity and larger carrier life time attributed to fewer electrical defects as compared to LA poly-Si films.

  13. Highly sensitive silicon crystal torque sensor operating at the thermal noise limit

    NASA Astrophysics Data System (ADS)

    Haiberger, L.; Weingran, M.; Schiller, S.

    2007-02-01

    We describe a sensitive torque detector, based on a silicon single-crystal double-paddle oscillator (DPO). The high Q-factor (˜105 at room temperature and in vacuum) makes DPOs well suited for the detection of weak forces. The limiting sensitivity of a sensor is given by Brownian (thermal) noise if all external disturbances are eliminated. In this case, the minimum detectable force can be decreased by measuring over a time significantly longer than the oscillator's relaxation time. We demonstrate operation in this regime, with integration times of up to 14 h. A resulting torque sensitivity of 2×10-18 N m is reached. Tests are performed to show that the sensor is only affected by thermal noise. The present sensor is well suited for measurements of extremely weak forces, e.g., of gravitational attraction between laboratory masses.

  14. Highly sensitive silicon crystal torque sensor operating at the thermal noise limit

    SciTech Connect

    Haiberger, L.; Weingran, M.; Schiller, S.

    2007-02-15

    We describe a sensitive torque detector, based on a silicon single-crystal double-paddle oscillator (DPO). The high Q-factor ({approx}10{sup 5} at room temperature and in vacuum) makes DPOs well suited for the detection of weak forces. The limiting sensitivity of a sensor is given by Brownian (thermal) noise if all external disturbances are eliminated. In this case, the minimum detectable force can be decreased by measuring over a time significantly longer than the oscillator's relaxation time. We demonstrate operation in this regime, with integration times of up to 14 h. A resulting torque sensitivity of 2x10{sup -18} N m is reached. Tests are performed to show that the sensor is only affected by thermal noise. The present sensor is well suited for measurements of extremely weak forces, e.g., of gravitational attraction between laboratory masses.

  15. Highly sensitive silicon crystal torque sensor operating at the thermal noise limit.

    PubMed

    Haiberger, L; Weingran, M; Schiller, S

    2007-02-01

    We describe a sensitive torque detector, based on a silicon single-crystal double-paddle oscillator (DPO). The high Q-factor (approximately 10(5) at room temperature and in vacuum) makes DPOs well suited for the detection of weak forces. The limiting sensitivity of a sensor is given by Brownian (thermal) noise if all external disturbances are eliminated. In this case, the minimum detectable force can be decreased by measuring over a time significantly longer than the oscillator's relaxation time. We demonstrate operation in this regime, with integration times of up to 14 h. A resulting torque sensitivity of 2 x 10(-18) N m is reached. Tests are performed to show that the sensor is only affected by thermal noise. The present sensor is well suited for measurements of extremely weak forces, e.g., of gravitational attraction between laboratory masses. PMID:17578142

  16. Properties of localization in silicon-based lattice periodicity breaking photonic crystal waveguides

    SciTech Connect

    Wu, Yuquan; Wang, Xiaofei; Wang, Yufang; Zhang, Guoquan; Fan, Wande; Cao, Xuewei; Wu, Yuanbin

    2013-11-15

    The light localization effects in silicon photonic crystal cavities at different disorder degrees have been studied using the finite difference time domain (FDTD) method in this paper. Numerical results showed that localization occurs and enhancement can be gained in the region of the cavity under certain conditions. The stabilities of the localization effects due to the structural perturbations have been investigated too. Detailed studies showed that when the degree of structural disorder is small(about 10%), the localization effects are stable, the maximum enhancement factor can reach 16.5 for incident wavelength of 785 nm and 23 for 850 nm in the cavity, with the degree of disorder about 8%. The equivalent diameter of the localized spot is almost constant at different disorder degrees, approximating to λ/7, which turned out to be independent on the structural perturbation.

  17. Performance Prediction for a Hockey-Puck Silicon Crystal Monochromator at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Liu, Zunping; Rosenbaum, Gerd; Navrotski, Gary

    2014-03-01

    One of the Key Performance Parameters of the upgrade of the Advanced Photon Source (APS) is the increase of the storage ring current from 100 to 150 mA. In order to anticipate the impact of this increased heat load on the X-ray optics of the beamlines, the APS has implemented a systematic review, by means of finite element analysis and computational fluid dynamics, of the thermal performance of the different types of monochromators installed at the highest-heat-load insertion device beamlines. We present here simulations of the performance of a directly liquid nitrogen-cooled silicon crystal, the hockey-puck design. Calculations of the temperature and slope error at multiple ring currents under multiple operational conditions, including the influence of power, cooling, and diffraction surface thickness are included.

  18. A numerical simulation to verify the stress-free growth of silicon crystal ribbon

    NASA Technical Reports Server (NTRS)

    Ray, Sujit K.; Utku, Senol; Wada, Ben K.

    1987-01-01

    Thermal stresses developed during the growth of silicon crystal ribbon have been shown to be negligible, thus eliminating residual stresses and dislocations, if the temperature profile satisfies a second-order partial differential equation inside the ribbon. This has been numerically verified through a finite element model, an outline of which is presented here. This model shows that, for homogeneous isotropic material with temperature independent thermal expansion coefficients, thermal stresses will vanish if the temperature profile satisfies the Laplacian. A comparison of stresses due to uniform and nonuniform temperature gradients in the plane of the ribbon is also presented. The strategies employed to control the round-off error and to validate the computer model are discussed.

  19. Evidence of anisotropic quenched disorder effects on a smectic liquid crystal confined in porous silicon

    SciTech Connect

    Guegan, Regis; Morineau, Denis; Loverdo, Claude; Beziel, Wilfried; Guendouz, Mohammed

    2006-01-15

    We present a neutron scattering analysis of the structure of the smectic liquid crystal octylcyanobiphenyl (8CB) confined in one-dimensional nanopores of porous silicon films (PS). The smectic transition is completely suppressed, leading to the extension of a short-range ordered smectic phase aligned along the pore axis. It evolves reversibly over an extended temperature range, down to 50 K below the N-SmA transition in pure 8CB. This behavior strongly differs from previous observations of smectics in different one-dimensional porous materials. A coherent picture of this striking behavior requires that quenched disorder effects are invoked. The strongly disordered nature of the inner surface of PS acts as random fields coupling to the smectic order. The one-dimensionality of PS nanochannels offers perspectives on quenched disorder effects, of which observation has been restricted to homogeneous random porous materials so far.

  20. Enhanced electron-hole droplet emission from surface-oxidized silicon photonic crystal nanocavities.

    PubMed

    Sumikura, Hisashi; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2016-01-25

    We have observed electron-hole droplet (EHD) emission enhanced by silicon photonic crystal (Si PhC) nanocavities with a surface oxide. The EHD is employed as a massive emitter that remains inside the nanocavity to achieve efficient cavity-emitter coupling. Time-resolved emission measurements demonstrate that the surface oxide greatly reduces the nonradiative annihilation of the EHDs and maintains them in the PhC nanocavities. It is found that the surface-oxidized Si PhC nanocavity enhances EHD emission in addition to the Purcell enhancement of the resonant cavity, which will contribute to works on Si light emission and the cavity quantum electrodynamics of electron-hole condensates. PMID:26832491

  1. Proton-silicon interaction potential extracted from high-resolution measurements of crystal rainbows

    NASA Astrophysics Data System (ADS)

    Petrović, S.; Nešković, N.; Ćosić, M.; Motapothula, M.; Breese, M. B. H.

    2015-10-01

    This study provides a way to produce very accurate ion-atom interaction potentials. We present the high-resolution measurements of angular distributions of protons of energies between 2.0 and 0.7 MeV channeled in a 55 nm thick (0 0 1) silicon membrane. Analysis is performed using the theory of crystal rainbows in which the Molière's interaction potential is modified to make it accurate both close to the channel axis and close to the atomic strings defining the channel. This modification is based on adjusting the shapes of the rainbow lines appearing in the transmission angle plane, with the resulting theoretical angular distributions of transmitted protons being in excellent agreement with the corresponding experimental distributions.

  2. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    PubMed Central

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos

    2016-01-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives. PMID:27297565

  3. Direct band gap silicon crystals predicted by an inverse design method

    NASA Astrophysics Data System (ADS)

    Oh, Young Jun; Lee, In-Ho; Lee, Jooyoung; Kim, Sunghyun; Chang, Kee Joo

    2015-03-01

    Cubic diamond silicon has an indirect band gap and does not absorb or emit light as efficiently as other semiconductors with direct band gaps. Thus, searching for Si crystals with direct band gaps around 1.3 eV is important to realize efficient thin-film solar cells. In this work, we report various crystalline silicon allotropes with direct and quasi-direct band gaps, which are predicted by the inverse design method which combines a conformation space annealing algorithm for global optimization and first-principles density functional calculations. The predicted allotropes exhibit energies less than 0.3 eV per atom and good lattice matches, compared with the diamond structure. The structural stability is examined by performing finite-temperature ab initio molecular dynamics simulations and calculating the phonon spectra. The absorption spectra are obtained by solving the Bethe-Salpeter equation together with the quasiparticle G0W0 approximation. For several allotropes with the band gaps around 1 eV, photovoltaic efficiencies are comparable to those of best-known photovoltaic absorbers such as CuInSe2. This work is supported by the National Research Foundation of Korea (2005-0093845 and 2008-0061987), Samsung Science and Technology Foundation (SSTF-BA1401-08), KIAS Center for Advanced Computation, and KISTI (KSC-2013-C2-040).

  4. Preparation of dendritic-like Ag crystals using monocrystalline silicon as template

    SciTech Connect

    Wei, Yanlin; Chen, Yashao; Ye, Linjing; Chang, Pengmei

    2011-06-15

    Research highlights: {yields} Template-assisted method for synthesis of dendritic silver. {yields} Unique dendritic silver structure with stems, branches, and leaves. {yields} The morphology of silver depends on silicon surface roughness. {yields} Both diffusion and oriented attachment dominating the dendritic structure formation. -- Abstract: Symmetric dendritic silver structures with controlled morphology were successfully synthesized by a solvothermal method with the assistance of monocrystalline silicon. The morphology and structure of the dendritic silver were characterized by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and scanning electron microscopy (SEM). It was found that the architecture of silver crystals could be controlled via simply adjusting the experiment parameters: AgNO{sub 3} concentration, reaction time and temperature. Moreover, structural characterizations suggested that the dendritic silver structures preferentially grew along (1 1 1) and (2 0 0) directions, leading to the formation of dendritic structures with 1-2 {mu}m in stem diameter and 10-50 {mu}m in length. Additionally, the formation process of the dendritic silver structures was studied, and a possible formation mechanism was proposed based on the experimental results.

  5. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos

    2016-06-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.

  6. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries.

    PubMed

    Shi, Feifei; Song, Zhichao; Ross, Philip N; Somorjai, Gabor A; Ritchie, Robert O; Komvopoulos, Kyriakos

    2016-01-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives. PMID:27297565

  7. Characterization of oxide scales thermally formed on single-crystal silicon carbide.

    PubMed

    Chayasombat, B; Kato, T; Hirayama, T; Tokunaga, T; Sasaki, K; Kuroda, K

    2010-08-01

    Microstructures of oxide scales thermally formed on single-crystal silicon carbide were investigated using transmission electron microscopy. The oxide scales were formed on the Si-face of 6H-SiC at 1273-1473 K in dry oxygen. Spherical patterns were observed on the surfaces of the oxidized samples by an optical microscope in some regions. In these regions, cross-sectional transmission electron microscopy (TEM) observations show that the oxide scale was divided into two layers; the upper layer (surface side) was composed of crystalline silica, and the lower layer on the silicon carbide substrate was amorphous silica, while the oxide scales in the surroundings of the patterns were composed of only amorphous silica. The oxidation activation energy in the amorphous silica layer of the Si-face of 6H-SiC was found to be 408 kJ/mol by the evolution of thickness directly measured from the cross-sectional scanning electron microscopy and TEM images. PMID:20554755

  8. A super narrow band filter based on silicon 2D photonic crystal resonator and reflectors

    NASA Astrophysics Data System (ADS)

    Wang, Yuanyuan; Chen, Deyuan; Zhang, Gang; Wang, Juebin; Tao, Shangbin

    2016-03-01

    In this paper, a novel structure of super narrow band filter based on two-dimensional square lattice photonic crystals of silicon rods in air for 1.5 um communication is proposed and studied. COMSOL Multiphysics4.3b software is used to simulate the optical behavior of the filter. The filter consists of one point-defect-based resonator and two line-defect-based reflectors. The resonance frequency, transmission coefficient and quality factor are investigated by varying the parameters of the structure. In design, a silicon rod is removed to form the resonator; for the rows of rods above and below the resonator, a part of the rods are removed to form the reflectors. By optimizing the parameters of the filter, the quality factor and transmission coefficient of the filter at the resonance frequency of 2e14 Hz can reach 1330 and 0.953, respectively. The super narrow band filter can be integrated into optical circuit for its micron size. Also, it can be used for wavelength selection and noise filtering of optical amplifier in future communication application.

  9. Chemical etching method assisted double-pulse LIBS for the analysis of silicon crystals

    NASA Astrophysics Data System (ADS)

    Khalil, A. A. I.

    2015-06-01

    Two Nd:YAG lasers working in pulsed modes are combined in the same direction (collinear arrangement) to focus on silicon (Si) crystals in reduced oxygen atmosphere (0.1 mbar) for double-pulse laser-induced breakdown spectroscopy (DP-LIBS) system. Silicon crystals of (100) and (111) orientations were investigated, and Si samples were measured either without prior treatment ("untreated") or after fabrication of nano-pores ("treated"). Nano-pores are produced by metal coating and by chemical etching. DP-LIBS spectra were compared for different Si samples (untreated, treated, (100) and (111) orientations), for double-pulse (DP) (with 266 nm pulse followed by 1064 nm pulse) excitation and for different delay times (times between the excitation laser pulse and the detection ICCD gate); treatment by chemical etching has been studied as well. The intensity of the atomic line Si I at 288.16 nm was enhanced by a factor of about three by using the DP-LIBS signals as compared to the single-pulse (SP) signal which could increase the sensitivity of the LIBS technique. This study proved that an optimized value of the etching time of Si during etching by chemical processes and short delay times are required. Plasma parameters [the electron temperature ( T e) and the electron number density ( N e)] were calculated from measured SP- and DP-LIBS spectra. The most important result of this study is the much higher DP-LIBS intensity observed on Si (100) as compared to Si (111) for measurements under the same experimental conditions. This study could provide important reference data for the design and optimization of DP-LIBS systems involved in plasma-facing components diagnostics.

  10. A phononic crystal strip based on silicon for support tether applications in silicon-based MEMS resonators and effects of temperature and dopant on its band gap characteristics

    NASA Astrophysics Data System (ADS)

    Ha, Thi Dep; Bao, JingFu

    2016-04-01

    Phononic crystals (PnCs) and n-type doped silicon technique have been widely employed in silicon-based MEMS resonators to obtain high quality factor (Q) as well as temperature-induced frequency stability. For the PnCs, their band gaps play an important role in the acoustic wave propagation. Also, the temperature and dopant doped into silicon can cause the change in its material properties such as elastic constants, Young's modulus. Therefore, in order to design the simultaneous high Q and frequency stability silicon-based MEMS resonators by two these techniques, a careful design should study effects of temperature and dopant on the band gap characteristics to examine the acoustic wave propagation in the PnC. Based on these, this paper presents (1) a proposed silicon-based PnC strip structure for support tether applications in low frequency silicon-based MEMS resonators, (2) influences of temperature and dopant on band gap characteristics of the PnC strips. The simulation results show that the largest band gap can achieve up to 33.56 at 57.59 MHz and increase 1280.13 % (also increase 131.89 % for ratio of the widest gaps) compared with the counterpart without hole. The band gap properties of the PnC strips is insignificantly effected by temperature and electron doping concentration. Also, the quality factor of two designed length extensional mode MEMS resonators with proposed PnC strip based support tethers is up to 1084.59% and 43846.36% over the same resonators with PnC strip without hole and circled corners, respectively. This theoretical study uses the finite element analysis in COMSOL Multiphysics and MATLAB softwares as simulation tools. This findings provides a background in combination of PnC and dopant techniques for high performance silicon-based MEMS resonators as well as PnC-based MEMS devices.

  11. Characterization of a PET detector head based on continuous LYSO crystals and monolithic, 64-pixel silicon photomultiplier matrices.

    PubMed

    Llosá, G; Barrio, J; Lacasta, C; Bisogni, M G; Del Guerra, A; Marcatili, S; Barrillon, P; Bondil-Blin, S; de la Taille, C; Piemonte, C

    2010-12-01

    The characterization of a PET detector head based on continuous LYSO crystals and silicon photomultiplier (SiPM) arrays as photodetectors has been carried out for its use in the development of a small animal PET prototype. The detector heads are composed of a continuous crystal and a SiPM matrix with 64 pixels in a common substrate, fabricated specifically for this project. Three crystals of 12 mm × 12 mm × 5 mm size with different types of painting have been tested: white, black and black on the sides but white on the back of the crystal. The best energy resolution, obtained with the white crystal, is 16% FWHM. The detector response is linear up to 1275 keV. Tests with different position determination algorithms have been carried out with the three crystals. The spatial resolution obtained with the center of gravity algorithm is around 0.9 mm FWHM for the three crystals. As expected, the use of this algorithm results in the displacement of the reconstructed position toward the center of the crystal, more pronounced in the case of the white crystal. A maximum likelihood algorithm has been tested that can reconstruct correctly the interaction position of the photons also in the case of the white crystal. PMID:21081823

  12. Air-mode photonic crystal ring resonator on silicon-on-insulator.

    PubMed

    Gao, Ge; Zhang, Yong; Zhang, He; Wang, Yi; Huang, Qingzhong; Xia, Jinsong

    2016-01-01

    In this report, we propose and demonstrate an air-mode photonic crystal ring resonator (PhCRR) on silicon-on-insulator platform. Air mode is utilized to confine the optical field into photonic crystal (PhC) air holes, which is confirmed by the three-dimensional finite-difference time-domain simulation. PhCRR structure is employed to enhance the light-matter interaction through combining the whispering-gallery mode resonance of ring resonator with the slow-light effect in PhC waveguide. In the simulated and measured transmission spectra of air-mode PhCRR, nonuniform free spectral ranges are observed near the Brillouin zone edge of PhC, indicating the presence of the slow-light effect. A maximum group index of 27.3 and a highest quality factor of 14600 are experimentally obtained near the band edge. Benefiting from the strong optical confinement in the PhC holes and enhanced light-matter interaction in the resonator, the demonstrated air-mode PhCRR is expected to have potential applications in refractive index sensing, on-chip light emitting and nonlinear optics by integration with functional materials. PMID:26818430

  13. Air-mode photonic crystal ring resonator on silicon-on-insulator

    PubMed Central

    Gao, Ge; Zhang, Yong; Zhang, He; Wang, Yi; Huang, Qingzhong; Xia, Jinsong

    2016-01-01

    In this report, we propose and demonstrate an air-mode photonic crystal ring resonator (PhCRR) on silicon-on-insulator platform. Air mode is utilized to confine the optical field into photonic crystal (PhC) air holes, which is confirmed by the three-dimensional finite-difference time-domain simulation. PhCRR structure is employed to enhance the light-matter interaction through combining the whispering-gallery mode resonance of ring resonator with the slow-light effect in PhC waveguide. In the simulated and measured transmission spectra of air-mode PhCRR, nonuniform free spectral ranges are observed near the Brillouin zone edge of PhC, indicating the presence of the slow-light effect. A maximum group index of 27.3 and a highest quality factor of 14600 are experimentally obtained near the band edge. Benefiting from the strong optical confinement in the PhC holes and enhanced light-matter interaction in the resonator, the demonstrated air-mode PhCRR is expected to have potential applications in refractive index sensing, on-chip light emitting and nonlinear optics by integration with functional materials. PMID:26818430

  14. Channeling experiments with sub-GeV electrons in flat silicon single crystals

    NASA Astrophysics Data System (ADS)

    Backe, H.; Lauth, W.

    2015-07-01

    Various planar channeling experiments, performed at the Mainz Microtron MAMI with electrons at silicon single crystals, have been reanalyzed. Two types of signals have been employed. The low energy loss signal originates from emission of channeling radiation in the energy domain between 0.4 and 9 MeV while the high energy loss signal from electrons which have lost about 50% of their primary energy by emission of bremsstrahlung photons. The (1 1 0) planar channeling data, taken at a beam energy of 855 MeV with the former signal, can well be described on the basis of the solution of the classical Fokker-Planck equation. The measurements with the latter signal at beam energies between 195 and 855 MeV indicate quantum state phenomena. For (1 1 1) planar channeling calculations with the Fokker-Planck equation have also been performed at a beam energy of 6.3 GeV. The results indicate that data taken with a crystal of 60 μm thickness [U. Wienands et al., Phys. Rev. Lett. 114, 074801 (2015)] are probably not suited to determine the predicted "asymptotic" dechanneling length of 265 μm which applies for about 48% of all electrons.

  15. Ultra-thin distributed Bragg reflectors via stacked single-crystal silicon nanomembranes

    SciTech Connect

    Cho, Minkyu; Seo, Jung-Hun; Lee, Jaeseong; Mi, Hongyi; Kim, Munho; Ma, Zhenqiang; Zhao, Deyin; Zhou, Weidong; Yin, Xin; Wang, Xudong

    2015-05-04

    In this paper, we report ultra-thin distributed Bragg reflectors (DBRs) via stacked single-crystal silicon (Si) nanomembranes (NMs). Mesh hole-free single-crystal Si NMs were released from a Si-on-insulator substrate and transferred to quartz and Si substrates. Thermal oxidation was applied to the transferred Si NM to form high-quality SiO{sub 2} and thus a Si/SiO{sub 2} pair with uniform and precisely controlled thicknesses. The Si/SiO{sub 2} layers, as smooth as epitaxial grown layers, minimize scattering loss at the interface and in between the layers. As a result, a reflection of 99.8% at the wavelength range from 1350 nm to 1650 nm can be measured from a 2.5-pair DBR on a quartz substrate and 3-pair DBR on a Si substrate with thickness of 0.87 μm and 1.14 μm, respectively. The high reflection, ultra-thin DBRs developed here, which can be applied to almost any devices and materials, holds potential for application in high performance optoelectronic devices and photonics applications.

  16. Ultra-thin distributed Bragg reflectors via stacked single-crystal silicon nanomembranes

    NASA Astrophysics Data System (ADS)

    Cho, Minkyu; Seo, Jung-Hun; Lee, Jaeseong; Zhao, Deyin; Mi, Hongyi; Yin, Xin; Kim, Munho; Wang, Xudong; Zhou, Weidong; Ma, Zhenqiang

    2015-05-01

    In this paper, we report ultra-thin distributed Bragg reflectors (DBRs) via stacked single-crystal silicon (Si) nanomembranes (NMs). Mesh hole-free single-crystal Si NMs were released from a Si-on-insulator substrate and transferred to quartz and Si substrates. Thermal oxidation was applied to the transferred Si NM to form high-quality SiO2 and thus a Si/SiO2 pair with uniform and precisely controlled thicknesses. The Si/SiO2 layers, as smooth as epitaxial grown layers, minimize scattering loss at the interface and in between the layers. As a result, a reflection of 99.8% at the wavelength range from 1350 nm to 1650 nm can be measured from a 2.5-pair DBR on a quartz substrate and 3-pair DBR on a Si substrate with thickness of 0.87 μm and 1.14 μm, respectively. The high reflection, ultra-thin DBRs developed here, which can be applied to almost any devices and materials, holds potential for application in high performance optoelectronic devices and photonics applications.

  17. Air-mode photonic crystal ring resonator on silicon-on-insulator

    NASA Astrophysics Data System (ADS)

    Gao, Ge; Zhang, Yong; Zhang, He; Wang, Yi; Huang, Qingzhong; Xia, Jinsong

    2016-01-01

    In this report, we propose and demonstrate an air-mode photonic crystal ring resonator (PhCRR) on silicon-on-insulator platform. Air mode is utilized to confine the optical field into photonic crystal (PhC) air holes, which is confirmed by the three-dimensional finite-difference time-domain simulation. PhCRR structure is employed to enhance the light-matter interaction through combining the whispering-gallery mode resonance of ring resonator with the slow-light effect in PhC waveguide. In the simulated and measured transmission spectra of air-mode PhCRR, nonuniform free spectral ranges are observed near the Brillouin zone edge of PhC, indicating the presence of the slow-light effect. A maximum group index of 27.3 and a highest quality factor of 14600 are experimentally obtained near the band edge. Benefiting from the strong optical confinement in the PhC holes and enhanced light-matter interaction in the resonator, the demonstrated air-mode PhCRR is expected to have potential applications in refractive index sensing, on-chip light emitting and nonlinear optics by integration with functional materials.

  18. Opto-structural studies of well-dispersed silicon nano-crystals grown by atom beam sputtering.

    PubMed

    Saxena, Nupur; Kumar, Pragati; Kabiraj, Debulal; Kanjilal, Dinakar

    2012-01-01

    Synthesis and characterization of nano-crystalline silicon grown by atom beam sputtering technique are reported. Rapid thermal annealing of the deposited films is carried out in Ar + 5% H2 atmosphere for 5 min at different temperatures for precipitation of silicon nano-crystals. The samples are characterized for their optical and structural properties using various techniques. Structural studies are carried out by micro-Raman spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy, and selected area electron diffraction. The optical properties are studied by photoluminescence and UV-vis absorption spectroscopy, and bandgaps are evaluated. The bandgaps are found to decrease after rapid thermal treatment. The micro-Raman studies show the formation of nano-crystalline silicon in as-deposited as well as annealed films. The shifting and broadening in Raman peak suggest formation of nano-phase in the samples. Results of micro-Raman, photoluminescence, and TEM studies suggest the presence of a bimodal crystallite size distribution for the films annealed at higher temperatures. The results show that atom beam sputtering is a suitable technique to synthesize nearly mono-dispersed silicon nano-crystals. The size of the nano-crystals may be controlled by varying annealing parameters. PMID:23031449

  19. Opto-structural studies of well-dispersed silicon nano-crystals grown by atom beam sputtering

    NASA Astrophysics Data System (ADS)

    Saxena, Nupur; Kumar, Pragati; Kabiraj, Debulal; Kanjilal, Dinakar

    2012-10-01

    Synthesis and characterization of nano-crystalline silicon grown by atom beam sputtering technique are reported. Rapid thermal annealing of the deposited films is carried out in Ar + 5% H2 atmosphere for 5 min at different temperatures for precipitation of silicon nano-crystals. The samples are characterized for their optical and structural properties using various techniques. Structural studies are carried out by micro-Raman spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy, and selected area electron diffraction. The optical properties are studied by photoluminescence and UV-vis absorption spectroscopy, and bandgaps are evaluated. The bandgaps are found to decrease after rapid thermal treatment. The micro-Raman studies show the formation of nano-crystalline silicon in as-deposited as well as annealed films. The shifting and broadening in Raman peak suggest formation of nano-phase in the samples. Results of micro-Raman, photoluminescence, and TEM studies suggest the presence of a bimodal crystallite size distribution for the films annealed at higher temperatures. The results show that atom beam sputtering is a suitable technique to synthesize nearly mono-dispersed silicon nano-crystals. The size of the nano-crystals may be controlled by varying annealing parameters.

  20. Cross two photon absorption in a silicon photonic crystal waveguide fiber taper coupler with a physical junction

    SciTech Connect

    Sarkissian, Raymond O'Brien, John

    2015-01-21

    Cross two photon absorption in silicon is characterized using a tapered fiber photonic crystal silicon waveguide coupler. There is a physical junction between the tapered fiber and the waveguide constituting a stand-alone device. This device is used to obtain the spectrum for cross two photon absorption coefficient per unit volume of interaction between photons of nondegenerate energy. The corresponding Kerr coefficient per unit volume of interaction is also experimentally extracted. The thermal resistance of the device is also experimentally determined and the response time of the device is estimated for on-chip all-optical signal processing and data transfer between optical signals of different photon energies.

  1. Effects of compressional waves on the response of quartz crystal microbalance in contact with silicone oil droplets

    SciTech Connect

    Zhuang Han; Lim, Siak Piang; Lee, Heow Pueh

    2009-06-01

    Droplet quartz crystal microbalance has been demonstrated to be a promising tool for accessing material properties of fluids as well as the diverse solid-fluid interface phenomena. However, a microliter droplet localized on the surface of the electrodes of finite lateral size may cause a nonuniform distribution of the plane velocity, which may lead to surface normal fluid flow and generate the compressional waves above the crystal surface. In the present article, we report systematical investigation on both resonance frequency and dissipation measurements with reference to the small droplets of silicone oils spreading on the surface of the quartz crystal microbalance. Significant cyclical variations in the resonant frequency and resistance of the crystal have been observed as the characteristic sizes of the silicone oil droplets are close to specific values known to favor compressional wave generation. The experimental results have been compared with the theoretical values predicted by the finite element computation associated with a simple hydrodynamic model. Good agreement between theory and experiment has been obtained. The finding indicates that the small droplets on the crystal surface can act as resonant cavities for the compressional wave generation and that the greatest propensity to exhibit periodical resonance behavior in the frequency and dissipation measurements is at droplet height of lambda{sub c}/2 above the crystal surface.

  2. INSTRUMENTS AND METHODS OF INVESTIGATION: Impurity ion implantation into silicon single crystals: efficiency and radiation damage

    NASA Astrophysics Data System (ADS)

    Vavilov, V. S.; Chelyadinskii, Aleksei R.

    1995-03-01

    The ion implantation method is analysed from the point of view of its efficiency as a technique for doping silicon with donor and acceptor impurities, for synthesising silicon-based compounds and for producing gettering layers and optoelectronic structures. The introduction, agglomeration, and annealing of radiation-produced defects in ion-implanted silicon are considered. The role of interstitial defects in radiation-related defect formation is estimated. Mechanisms of athermal migration of silicon atoms in the silicon lattice are analysed.

  3. Monitoring of degradation of porous silicon photonic crystals using digital photography

    PubMed Central

    2014-01-01

    We report the monitoring of porous silicon (pSi) degradation in aqueous solutions using a consumer-grade digital camera. To facilitate optical monitoring, the pSi samples were prepared as one-dimensional photonic crystals (rugate filters) by electrochemical etching of highly doped p-type Si wafers using a periodic etch waveform. Two pSi formulations, representing chemistries relevant for self-reporting drug delivery applications, were tested: freshly etched pSi (fpSi) and fpSi coated with the biodegradable polymer chitosan (pSi-ch). Accelerated degradation of the samples in an ethanol-containing pH 10 aqueous basic buffer was monitored in situ by digital imaging with a consumer-grade digital camera with simultaneous optical reflectance spectrophotometric point measurements. As the nanostructured porous silicon matrix dissolved, a hypsochromic shift in the wavelength of the rugate reflectance peak resulted in visible color changes from red to green. While the H coordinate in the hue, saturation, and value (HSV) color space calculated using the as-acquired photographs was a good monitor of degradation at short times (t < 100 min), it was not a useful monitor of sample degradation at longer times since it was influenced by reflections of the broad spectral output of the lamp as well as from the narrow rugate reflectance band. A monotonic relationship was observed between the wavelength of the rugate reflectance peak and an H parameter value calculated from the average red-green-blue (RGB) values of each image by first independently normalizing each channel (R, G, and B) using their maximum and minimum value over the time course of the degradation process. Spectrophotometric measurements and digital image analysis using this H parameter gave consistent relative stabilities of the samples as fpSi > pSi-ch. PMID:25242902

  4. Monitoring of degradation of porous silicon photonic crystals using digital photography

    NASA Astrophysics Data System (ADS)

    Ariza-Avidad, Maria; Nieto, Alejandra; Salinas-Castillo, Alfonso; Capitan-Vallvey, Luis F.; Miskelly, Gordon M.; Sailor, Michael J.

    2014-08-01

    We report the monitoring of porous silicon (pSi) degradation in aqueous solutions using a consumer-grade digital camera. To facilitate optical monitoring, the pSi samples were prepared as one-dimensional photonic crystals (rugate filters) by electrochemical etching of highly doped p-type Si wafers using a periodic etch waveform. Two pSi formulations, representing chemistries relevant for self-reporting drug delivery applications, were tested: freshly etched pSi (fpSi) and fpSi coated with the biodegradable polymer chitosan (pSi-ch). Accelerated degradation of the samples in an ethanol-containing pH 10 aqueous basic buffer was monitored in situ by digital imaging with a consumer-grade digital camera with simultaneous optical reflectance spectrophotometric point measurements. As the nanostructured porous silicon matrix dissolved, a hypsochromic shift in the wavelength of the rugate reflectance peak resulted in visible color changes from red to green. While the H coordinate in the hue, saturation, and value (HSV) color space calculated using the as-acquired photographs was a good monitor of degradation at short times ( t < 100 min), it was not a useful monitor of sample degradation at longer times since it was influenced by reflections of the broad spectral output of the lamp as well as from the narrow rugate reflectance band. A monotonic relationship was observed between the wavelength of the rugate reflectance peak and an H parameter value calculated from the average red-green-blue (RGB) values of each image by first independently normalizing each channel ( R, G, and B) using their maximum and minimum value over the time course of the degradation process. Spectrophotometric measurements and digital image analysis using this H parameter gave consistent relative stabilities of the samples as fpSi > pSi-ch.

  5. Detached Bridgman Growth of Germanium and Germanium-Silicon Alloy Crystals

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Volz, M. P.; Schweizer, M.; Cobb, S. D.; Motakef, S.; Croell, A.; Dold, P.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Earth based experiments on the science of detached crystal growth are being conducted on germanium and germanium-silicon alloys (2 at% Si average composition) in preparation for a series of experiments aboard the International Space Station (ISS). The purpose of the microgravity experiments includes differentiating among proposed mechanisms contributing to detachment, and confirming or refining our understanding of the detachment mechanism. Because large contact angle are critical to detachment, sessile drop measurements were used to determine the contact angles as a function of temperature and composition for a large number of substrates made of potential ampoule materials. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. The contact angles were 173 deg (Ge) and 165 deg (GeSi) for pBN. For fused silica, the contact angle decreases from 150 deg to an equilibrium value of 117 deg (Ge) or from 129 deg to an equilibrium value of 100 deg (GeSi) over the duration of the experiment. The nature and extent of detachment is determined by using profilometry in conjunction with optical and electron microscopy. The stability of detachment has been analyzed, and an empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed. Results in this presentation will show that we have established the effects on detachment of ampoule material, pressure difference above and below the melt, and silicon concentration; samples that are nearly completely detached can be grown repeatedly in pBN.

  6. An all-silicon optical platform based on linear array of vertical high-aspect-ratio silicon/air photonic crystals

    NASA Astrophysics Data System (ADS)

    Surdo, Salvatore; Carpignano, Francesca; Silva, Gloria; Merlo, Sabina; Barillaro, Giuseppe

    2013-10-01

    An all-silicon optical platform (SiOP) that integrates a linear array of vertical (100-μm-deep) one-dimensional photonic crystals (1D-PhCs), with a different number of elementary silicon/air cells (from 2.5 to 11.5) and featuring a transmission peak around 1.55 μm, together with U-grooves (125-μm-wide) and end-stop-spacers for coupling/positioning/alignment of readout optical fibers in front of 1D-PhCs is reported. The SiOP is fabricated by electrochemical micromachining and characterized by measuring both reflection and transmission spectra of 1D-PhCs. An experimental/theoretical analysis of 1D-PhC features (transmissivity, quality factor, full-width-half-maximum) in transmission, around 1.55 μm, as a function of the number of elementary cells is reported.

  7. Growth of Oriented C11(b) MoSi(2) Bicrystals Using a Modified Czochralski Technique

    SciTech Connect

    Chu, F.; Garrett, J.D.; McClellan, K.J.; Michael J.R.; Mitchell, T.E.; Peralta, P.

    1999-06-02

    Oriented bicrystals of pure C11b MoSi2 have been grown in a tri-arc furnace using the Czochralski technique. Two single crystal seeds were used to initiate the growth. Each seed had the orientation intended for one of the grains of the bicrystals, which resulted in a 60° twist boundary on the (110) plane. Seeds were attached to a water-cooled seed rod, which was pulled at 120 mm/h with the seed rod rotating at 45 rpm. The water- cooled copper hearth was counter-rotated at 160 rpm. Asymmetric growth ridges associated with each seed crystal were observed during growth and confirmed the existence of a bicrystal. It was also found that careful alignment of the seeds was needed to keep the grain boundary from growing out of the boule. The resulting boundary was characterized by imaging and crystallographic techniques in a scanning electron microscope. The boundary was found to be fairly sharp and the misorientation between the grains remained within 2° from the disorientation between the seeds.

  8. Antenna-coupled silicon-organic hybrid integrated photonic crystal modulator for broadband electromagnetic wave detection

    NASA Astrophysics Data System (ADS)

    Zhang, Xingyu; Hosseini, Amir; Subbaraman, Harish; Wang, Shiyi; Zhan, Qiwen; Luo, Jingdong; Jen, Alex K.; Chung, Chi-jui; Yan, Hai; Pan, Zeyu; Nelson, Robert L.; Lee, Charles Y.; Chen, Ray T.

    2015-03-01

    The detection and measurement of electromagnetic fields have attracted significant amounts of attention in recent years. Traditional electronic electromagnetic field sensors use large active conductive probes which perturb the field to be measured and also make the devices bulky. In order to address these problems, integrated photonic electromagnetic field sensors have been developed, in which an optical signal is modulated by an RF signal collected by a miniaturized antenna. In this work, we design, fabricate and characterize a compact, broadband and highly sensitive integrated photonic electromagnetic field sensor based on a silicon-organic hybrid modulator driven by a bowtie antenna. The large electro-optic (EO) coefficient of organic polymer, the slow-light effects in the silicon slot photonic crystal waveguide (PCW), and the broadband field enhancement provided by the bowtie antenna, are all combined to enhance the interaction of microwaves and optical waves, enabling a high EO modulation efficiency and thus a high sensitivity. The modulator is experimentally demonstrated with a record-high effective in-device EO modulation efficiency of r33=1230pm/V. Modulation response up to 40GHz is measured, with a 3-dB bandwidth of 11GHz. The slot PCW has an interaction length of 300μm, and the bowtie antenna has an area smaller than 1cm2. The bowtie antenna in the device is experimentally demonstrated to have a broadband characteristics with a central resonance frequency of 10GHz, as well as a large beam width which enables the detection of electromagnetic waves from a large range of incident angles. The sensor is experimentally demonstrated with a minimum detectable electromagnetic power density of 8.4mW/m2 at 8.4GHz, corresponding to a minimum detectable electric field of 2.5V/m and an ultra-high sensitivity of 0.000027V/m Hz-1/2 ever demonstrated. To the best of our knowledge, this is the first silicon-organic hybrid device and also the first PCW device used for the

  9. Observation of Fluorine-Vacancy Complexes in Silicon

    SciTech Connect

    Jenei, Z; Simpson, P; Robison, R; Asoka-Kumar, P; Law, M

    2004-02-19

    We show direct evidence, obtained by positron annihilation spectroscopy, for the complexing of fluorine with vacancies in silicon. Both float zone and Czochralski silicon wafers were implanted with 30 keV fluorine ions to a fluence of 2x10{sup 14} ions/cm{sup 2}, and studied in the as-implanted condition, and after annealing to 650o C for 10 and for 30 minutes. The ''2-detector'' background reduction technique for positron annihilation was applied. The spectra reveal a significant concentration of fluorine-vacancy complexes after annealing, for both Czochralski and float zone material, supporting the results of computer simulations of the implantation and annealing process.

  10. Electron irradiated solar cells: cold crucible (Ga), float zone (Ga,B) and Czochralski (Ga,B)

    SciTech Connect

    Minahan, J.A.; Trumble, T.M.

    1984-05-01

    Silicon materials grown by cold crucible, float zone or Czochralski methods, containing gallium or boron dopants, have undergone bulk and electrical analyses and have been fabricated into solar cells. Solar cell characteristics have been measured as a function of 1 MeV electron fluence to 10/sup 16/ e/cm/sup 2/. Comparisons of radiation effects on cell characteristics are made between the material groups in the study and with published results of other workers. Although some differences in performance with radiation exposure between the various groups were observed, only in the case of 0.1 ..cap omega..-cm gallium-doped multipass float zone and boron-doped multipass float zone were the differences found to be significant.

  11. Detached Bridgman Growth of Germanium and Germanium-Silicon Alloy Crystals

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Volz, M. P.; Schweizer, M.; Kaiser, N.; Cobb, S. D.; Motakef, S.; Vujisic, L. J.; Croell, A.; Dold, P.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Earth based experiments on the science of detached crystal growth are being conducted on germanium and germanium-silicon alloys (2at% Si average composition) in preparation for a series of experiments aboard the International Space Station (ISS) to differentiate among proposed mechanisms contributing to detachment. Sessile drop measurements were first carried out for a large number of substrates made of potential ampoule materials to determine the contact angles and the surface tension as a function of temperature and composition. The process atmosphere and duration of the experiment (for some cases) were also found to have significant influence on the wetting angle. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. The contact angles were 173 deg (Ge) and 165 deg (GeSi) for pBN. For fused silica, the contact angle decreases to an equilibrium value with duration of measurement ranging from 150 to 117 deg (Ge), 129 to 100 deg (GeSi). Forming gas (Ar + 2% H2) and vacuum have been used in the growth ampoules. With gas in the ampoule, a variation of the temperature profile during growth has been used to control the pressure difference between the top of the melt and the volume below the melt caused by detachment of the growing crystal. The stability of detachment has been modeled and substantial insight has been gained into the reasons that detachment has most often been observed in reduced gravity but nonetheless has occurred randomly even there. An empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed and will be presented. Methods for determining the nature and extent of detachment include profilometry and optical and electron microscopy. This surface study is the subject of another presentation at this Congress. Results in this presentation will show that we have

  12. Numerical study of transient behaviour of molten zone during industrial FZ process for large silicon crystal growth

    NASA Astrophysics Data System (ADS)

    Rudevičs, A.; Muižnieks, A.; Ratnieks, G.; Mühlbauer, A.; Wetzel, Th.

    2004-05-01

    The fully transient axisymmetric model has been developed for calculation of phase boundaries in large (up to 200 mm diameter) industrial floating zone (FZ) silicon single crystal growth with the needle-eye technique. The transient model is implemented in a specialized computer program. The model and program are based on a previously developed model and program for steady-state FZ process calculations. This transient approach allows studying of such substantially time-dependent process phases as the growth of the starting and ending cones of the crystal rod, which are particularly important for growth of large crystals in practice. Numerous calculations are carried out and the results for reducing crystal diameter during growth process are presented.

  13. Simulation of the influence of gas flow on melt convection and phase boundaries in FZ silicon single crystal growth

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2015-05-01

    Axisymmetric calculations of inert gas flow in a floating zone puller are carried out using an open source software package OpenFOAM. Transient axisymmetric melt flow in liquid silicon and quasi-stationary shape of silicon phase boundaries are calculated using a specialized program FZone. Additional heat losses at silicon surfaces caused by the gas flow are taken into account for argon and helium, while maintaining the height of molten zone by adjusting inductor current. Cooling causes an increase of electromagnetic force, heat sources and more intense melt flow, while crystallization interface deflection decreases. The shear stress of gas flow is found to be an order of magnitude weaker than electromagnetic and Marangoni forces.

  14. A tension stress loading unit designed for characterizing indentation response of single crystal silicon under tension stress

    NASA Astrophysics Data System (ADS)

    Huang, Hu; Zhao, Hongwei; Shi, Chengli; Hu, Xiaoli; Cui, Tao; Tian, Ye

    2013-09-01

    In this paper, a tension stress loading unit is designed to provide tension stress for brittle materials by combining the piezo actuator and the flexible hinge. The structure of the tension stress loading unit is analyzed and discussed via the theoretical method and finite element simulations. Effects of holding time, the installed specimen and hysteresis of the piezo actuator on output performances of the tension stress loading unit are studied in detail. An experiment system is established by combing the indentation testing unit and the developed tension stress loading unit to characterize indentation response of single crystal silicon under tension stress. Experiment results indicate that tension stress leads to increasing of indentation displacement for the same inden-tation load of single crystal silicon. This paper provides a new tool for studying indentation response of brittle materials under tension stress.

  15. Application of ITO/Al reflectors for increasing the efficiency of single-crystal silicon solar cells

    SciTech Connect

    Kopach, V. R.; Kirichenko, M. V. Khrypunov, G. S.; Zaitsev, R. V.

    2010-06-15

    It is shown that an increase in the efficiency and manufacturability of single-junction single-crystal silicon photoelectric converters of solar energy requires the use of a back-surface reflector based on conductive transparent indium-tin oxide (ITO) 0.25-2 {mu}m thick. To increase the efficiency and reduce the sensitivity to the angle of light incidence on the photoreceiving surface of multijunction photoelectric converters with vertical diode cells based on single-crystal silicon, ITO/Al reflectors with an ITO layer >1 {mu}m thick along vertical boundaries of diode cells should be fabricated. The experimental study of multijunction photoelectric converters with ITO/Al reflectors at diode cell boundaries shows the necessity of modernizing the used technology of ITO layers to achieve their theoretically calculated thickness.

  16. Proceedings of the Flat-Plate Solar Array Project Workshop on Crystal Gowth for High-Efficiency Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Dumas, K. A. (Editor)

    1985-01-01

    A Workshop on Crystal Growth for High-Efficiency Silicon Solar Cells was held December 3 and 4, 1984, in San Diego, California. The Workshop offered a day and a half of technical presentations and discussions and an afternoon session that involved a panel discussion and general discussion of areas of research that are necessary to the development of materials for high-efficiency solar cells. Topics included the theoretical and experimental aspects of growing high-quality silicon crystals, the effects of growth-process-related defects on photovoltaic devices, and the suitability of various growth technologies as cost-effective processes. Fifteen invited papers were presented, with a discussion period following each presentation. The meeting was organized by the Flat-Plate Solar Array Project of the Jet Propulsion Laboratory. These Proceedings are a record of the presentations and discussions, edited for clarity and continuity.

  17. Method for sputtering a PIN amorphous silicon semi-conductor device having partially crystallized P and N-layers

    DOEpatents

    Moustakas, Theodore D.; Maruska, H. Paul

    1985-07-09

    A high efficiency amorphous silicon PIN semiconductor device having partially crystallized (microcrystalline) P and N layers is constructed by the sequential sputtering of N, I and P layers and at least one semi-transparent ohmic electrode. The method of construction produces a PIN device, exhibiting enhanced electrical and optical properties, improved physical integrity, and facilitates the preparation in a singular vacuum system and vacuum pump down procedure.

  18. Efficient poling of electro-optic polymers in thin films and silicon slot waveguides by detachable pyroelectric crystals.

    PubMed

    Huang, Su; Luo, Jingdong; Yip, Hin-Lap; Ayazi, Ali; Zhou, Xing-Hua; Gould, Michael; Chen, Antao; Baehr-Jones, Tom; Hochberg, Michael; Jen, Alex K-Y

    2012-03-01

    Pyroelectric crystals are used as a conformal and detachable electric field source to efficiently pole electro-optic (E-O) polymers in both parallel-plate (transverse) and in-plane (quasi-longitudinal) configurations. Large Pockels coefficients in poled thin films and high tunability of resonance wavelength shift in hybrid polymer silicon slot waveguide ring-resonator modulators have been achieved using this method. PMID:22213467

  19. Polarization diversity circuit for a silicon optical switch using silica waveguides integrated with photonic crystal thin film waveplates

    NASA Astrophysics Data System (ADS)

    Sugiyama, Koki; Chiba, Takafumi; Kawashima, Takayuki; Kawakami, Shojiro; Takahashi, Hiroshi; Tsuda, Hiroyuki

    2016-03-01

    We propose a compact polarization diversity optical circuit using silica waveguides and photonic crystal waveplates. By setting these circuits at the front and rear of the silicon optical devices, the polarization dependence of the silicon devices can be suppressed. Photonic crystals can be produced artificially using nanolithography, so that the retardation and orientation of the photonic crystal waveplate can be locally varied on a single chip. This enables to dramatically reduce the size of the polarization diversity circuit, which consists of a 1x2 multimode interference (MMI) coupler, two arm waveguides with quarter-waveplates (QWPs), a 2x2 MMI coupler, and output waveguides with half-waveplates (HWPs). The input light, including the transverse electric (TE) and transverse magnetic (TM) modes, is split by the 1x2 MMI coupler. The optical axes of the two QWPs, spaced 125 μm apart, are set to be orthogonal to each other, so that the phases of the TE modes in the two arm waveguides differ by 90 degrees, and those of the TM modes differ by -90 degrees. The TE mode and the TM mode are separated at the outputs of the 2x2 MMI coupler, and the polarization of the light at one of the outputs is aligned to that at the other output by the HWP. In this paper, we designed a 4x8 polarization diversity circuit for a 4x4 silicon optical switch.

  20. Theory of pulsed four-wave mixing in one-dimensional silicon photonic crystal slab waveguides

    NASA Astrophysics Data System (ADS)

    Lavdas, Spyros; Panoiu, Nicolae C.

    2016-03-01

    We present a comprehensive theoretical analysis and computational study of four-wave mixing (FWM) of optical pulses co-propagating in one-dimensional silicon photonic crystal waveguides (Si-PhCWGs). Our theoretical analysis describes a very general setup of the interacting optical pulses, namely we consider nondegenerate FWM in a configuration in which at each frequency there exists a superposition of guiding modes. We incorporate in our theoretical model all relevant linear optical effects, including waveguide loss, free-carrier (FC) dispersion and FC absorption, nonlinear optical effects such as self- and cross-phase modulation (SPM, XPM), two-photon absorption (TPA), and cross-absorption modulation (XAM), as well as the coupled dynamics of free-carriers FCs and optical field. In particular, our theoretical analysis based on the coupled-mode theory provides rigorously derived formulas for linear dispersion coefficients of the guiding modes, linear coupling coefficients between these modes, as well as the nonlinear waveguide coefficients describing SPM, XPM, TPA, XAM, and FWM. In addition, our theoretical analysis and numerical simulations reveal key differences between the characteristics of FWM in the slow- and fast-light regimes, which could potentially have important implications to the design of ultracompact active photonic devices.

  1. Extraction of flow properties of single crystal silicon carbide by nanoindentation and finite element simulation

    SciTech Connect

    Shim, Sang Hoon; Jang, Jae-il; Pharr, George Mathews

    2008-01-01

    A method is presented for estimating the plastic flow behavior of single crystal silicon carbide by nanoindentation experiments using a series of triangular pyramidal indenters with different centerline-to-face angles (35.3?to 75?in this work) in combination with 2-dimensional axisymmetric finite element (FE) simulations. The method is based on Tabor's concepts of characteristic strain, e_char, and constraint factor, C_q, which allow indentation hardness values obtained with indenters of different angles to be related to the flow properties of the indented material. The procedure utilizes FE simulations applied in an iterative manner in order to establish the yield strength and work hardening exponent from the experimentally measured dependence of the hardness on indenter angle. The methodology is applied to a hard, brittle ceramic material, 6H SiC, whose flow behavior cannot be determined by conventional tension or compression testing. It is shown that the friction between the indenter and the material plays a significant role, especially for very sharp indenters.

  2. Phenomenological description of ion-beam-induced epitaxial crystallization of amorphous silicon

    SciTech Connect

    Priolo, F. ); Spinella, C. ); Rimini, E. )

    1990-03-15

    In this paper we report detailed experimental measurements on the dependence of the ion-beam-induced epitaxial crystallization (IBIEC) of amorphous silicon on dopant concentration. The results show that the presence of B, P, and As dopants enhances IBIEC. In particular a logarithmic relationship between the ion-induced growth rate and dopant concentration is found for all of the impurities. In order to explain this behavior a phenomenological model of IBIEC will also be presented. The model postulates that the same defect is responsible for both thermal and ion-beam annealing. It combines the structural and electronic features of the description proposed by Williams and Elliman for conventional thermal epitaxial growth, with the intracascade approach of Jackson to the ion-assisted regrowth. Defects responsible for IBIEC are identified in kinklike steps formed onto (110) ledges at the crystalline-amorphous interface. These kinks are assumed to be generated thermally within the thermal-spike regime of each collision cascade. After defect generation, then, our approach follows Jackson's as far as the temporal evolution of defects is concerned. The model can account for all of the experimental results previously explained by the Jackson model and, moreover, can account for the doping and orientation dependences of IBIEC. This description is discussed and quantitatively compared with the experimental data.

  3. Analysis of multiple internal reflections in a parallel aligned liquid crystal on silicon SLM.

    PubMed

    Martínez, José Luis; Moreno, Ignacio; del Mar Sánchez-López, María; Vargas, Asticio; García-Martínez, Pascuala

    2014-10-20

    Multiple internal reflection effects on the optical modulation of a commercial reflective parallel-aligned liquid-crystal on silicon (PAL-LCoS) spatial light modulator (SLM) are analyzed. The display is illuminated with different wavelengths and different angles of incidence. Non-negligible Fabry-Perot (FP) effect is observed due to the sandwiched LC layer structure. A simplified physical model that quantitatively accounts for the observed phenomena is proposed. It is shown how the expected pure phase modulation response is substantially modified in the following aspects: 1) a coupled amplitude modulation, 2) a non-linear behavior of the phase modulation, 3) some amount of unmodulated light, and 4) a reduction of the effective phase modulation as the angle of incidence increases. Finally, it is shown that multiple reflections can be useful since the effect of a displayed diffraction grating is doubled on a beam that is reflected twice through the LC layer, thus rendering gratings with doubled phase modulation depth. PMID:25401619

  4. Thermal-capillary analysis of the horizontal ribbon growth of silicon crystals

    NASA Astrophysics Data System (ADS)

    Daggolu, Parthiv; Yeckel, Andrew; Bleil, Carl E.; Derby, Jeffrey J.

    2012-09-01

    A thermal-capillary, finite-element model is developed for the Horizontal Ribbon Growth (HRG) system to study the characteristics of the process and to assess its feasibility to grow silicon sheets. The mathematical model formulation rigorously accounts for mass, energy, and momentum conservation while simultaneously representing capillary physics of the menisci, tracking of the solidification front, and self-consistent determination of ribbon thickness. Model results show the potential, with suitable heat transfer design, for the HRG process to achieve the formation of an extended, wedge-shaped interface with latent heat dissipation primarily in a direction perpendicular to the pulling direction. These attributes allow the HRG system to achieve higher pull rates under lower thermal gradients than vertical ribbon growth systems. Crystal thickness is predicted to decrease with increasing pull rate; however, contrary to prior analyses, pull rate limits are identified as limit-point bifurcations to quasi-steady solutions. Multiple solution branches correspond to stable and unstable operating states, exhibiting dramatically different interfacial shapes that identify possible failure mechanisms.

  5. Crystallization of grain boundary phases in silicon nitride with low additive contents by microwave annealing

    SciTech Connect

    Tiegs, T.N.; Ploetz, K.L.; Kiggans, J.O.; Yeckley, R.L.

    1993-06-01

    Microwave annealing of dense Si{sub 3}N{sub 4}-4% Y{sub 2}O{sub 3} materials showed improvements over conventional heating. Increases in fracture toughness were observed for annealing between 1200--1650C. The high temperature strength was related to the residual {alpha}-Si{sub 3}N{sub 4} content which is indicative of a finer average grain size in the specimens. The high temperature dynamic fatigue showed increased stress to failure for specimens microwave annealed between 1400--1550C for periods >5 h. Silicon nitrides with different sintering additives would require different conditions for optimum crystallization. While there were some observed property improvements, they were not so dramatic to justify abandoning conventional over microwave heating. The Si{sub 3}N{sub 4}-4% Y{sub 2}O{sub 3} materials used in the study were developed for elevated temperature use and already posses excellent good high temperature strength, fatigue resistance and creep properties. This is due to the very refractory nature of the grain boundary phases and the small quantity of secondary phase present. However, microwave annealing of these materials may be necessary in applications where the maximum in fracture toughness and fatigue resistance are required and thus justifies its use.

  6. Young's Modulus, Residual Stress, and Crystal Orientation of Doubly Clamped Silicon Nanowire Beams.

    PubMed

    Calahorra, Y; Shtempluck, O; Kotchetkov, V; Yaish, Y E

    2015-05-13

    Initial or residual stress plays an important role in nanoelectronics. Valley degeneracy in silicon nanowires (SiNWs) is partially lifted due to built-in stresses, and consequently, electron-phonon scattering rate is reduced and device mobility and performance are improved. In this study we use a nonlinear model describing the force-deflection relationship to extract the Young's modulus, the residual stress, and the crystallographic growth orientation of SiNW beams. Measurements were performed on suspended doubly clamped SiNWs subjected to atomic force microscopy (AFM) three-point bending constraints. The nanowires comprised different growth directions and two SiO2 sheath thicknesses, and underwent different rapid thermal annealing processes. Analysis showed that rapid thermal annealing introduces compressive strains into the SiNWs and may result in buckling of the SiNWs. Furthermore, the core-shell model together with the residual stress analysis accurately describe the Young's modulus of oxide covered SiNWs and the crystal orientation of the measured nanowires. PMID:25826449

  7. Synthesis and characterization of large-grain solid-phase crystallized polycrystalline silicon thin films

    SciTech Connect

    Kumar, Avishek E-mail: dalapatig@imre.a-star.edu.sg; Law, Felix; Widenborg, Per I.; Dalapati, Goutam K. E-mail: dalapatig@imre.a-star.edu.sg; Subramanian, Gomathy S.; Tan, Hui R.; Aberle, Armin G.

    2014-11-01

    n-type polycrystalline silicon (poly-Si) films with very large grains, exceeding 30 μm in width, and with high Hall mobility of about 71.5 cm{sup 2}/V s are successfully prepared by the solid-phase crystallization technique on glass through the control of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The effect of this gas flow ratio on the electronic and structural quality of the n-type poly-Si thin film is systematically investigated using Hall effect measurements, Raman microscopy, and electron backscatter diffraction (EBSD), respectively. The poly-Si grains are found to be randomly oriented, whereby the average area weighted grain size is found to increase from 4.3 to 18 μm with increase of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The stress in the poly-Si thin films is found to increase above 900 MPa when the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio is increased from 0.025 to 0.45. Finally, high-resolution transmission electron microscopy, high angle annular dark field-scanning tunneling microscopy, and EBSD are used to identify the defects and dislocations caused by the stress in the fabricated poly-Si films.

  8. Computer simulations of X-ray six-beam diffraction in a perfect silicon crystal. I.

    PubMed

    Kohn, V G; Khikhlukha, D R

    2016-05-01

    This paper reports computer simulations of the transmitted-beam intensity distribution for the case of six-beam (000, 220, 242, 044, -224, -202) diffraction of X-rays in a perfect silicon crystal of thickness 1 mm. Both the plane-wave angular dependence and the six-beam section topographs, which are usually obtained in experiments with a restricted beam (two-dimensional slit), are calculated. The angular dependence is calculated in accordance with Ewald's theory. The section topographs are calculated from the angular dependence by means of the fast Fourier transformation procedure. This approach allows one to consider, for the first time, the transformation of the topograph's structure due to the two-dimensional slit sizes and the distance between the slit and the detector. The results are in good agreement with the results of other works and with the experimental data. This method of calculation does not require a supercomputer and it was performed on a standard laptop. A detailed explanation of the main features of the diffraction patterns at different distances between the slit and the detector is presented. PMID:27126111

  9. Silicon Photonic Crystal Nanocavity-Coupled Waveguides for Error-Corrected Optical Biosensing

    PubMed Central

    Pal, Sudeshna; Guillermain, Elisa; Sriram, Rashmi; Miller, Benjamin L.; Fauchet, Philippe M.

    2011-01-01

    A photonic crystal (PhC) waveguide based optical biosensor capable of label-free and error-corrected sensing was investigated in this study. The detection principle of the biosensor involved shifts in the resonant mode wavelength of nanocavities coupled to the silicon PhC waveguide due to changes in ambient refractive index. The optical characteristics of the nanocavity structure were predicted by FDTD theoretical methods. The device was fabricated using standard nanolithography and reactive-ion-etching techniques. Experimental results showed that the structure had a refractive index sensitivity of 10−2 RIU. The biosensing capability of the nanocavity sensor was tested by detecting human IgG molecules. The device sensitivity was found to be 2.3 ± 0.24 × 105 nm/M with an achievable lowest detection limit of 1.5 fg for human IgG molecules. Additionally, experimental results demonstrated that the PhC devices were specific in IgG detection and provided concentration-dependent responses consistent with Langmuir behavior. The PhC devices manifest outstanding potential as microscale label-free error-correcting sensors, and may have future utility as ultrasensitive multiplex devices. PMID:21524903

  10. Single-crystal-silicon-based microinstrument to study friction and wear at MEMS sidewall interfaces

    NASA Astrophysics Data System (ADS)

    Ansari, N.; Ashurst, W. R.

    2012-02-01

    Since the advent of microelectromechanical systems (MEMS) technology, friction and wear are considered as key factors that determine the lifetime and reliability of MEMS devices that contain contacting interfaces. However, to date, our knowledge of the mechanisms that govern friction and wear in MEMS is insufficient. Therefore, systematically investigating friction and wear at MEMS scale is critical for the commercial success of many potential MEMS devices. Specifically, since many emerging MEMS devices contain more sidewall interfaces, which are topographically and chemically different from in-plane interfaces, studying the friction and wear characteristics of MEMS sidewall surfaces is important. The microinstruments that have been used to date to investigate the friction and wear characteristics of MEMS sidewall surfaces possess several limitations induced either by their design or the structural film used to fabricate them. Therefore, in this paper, we report on a single-crystal-silicon-based microinstrument to study the frictional and wear behavior of MEMS sidewalls, which not only addresses some of the limitations of other microinstruments but is also easy to fabricate. The design, modeling and fabrication of the microinstrument are described in this paper. Additionally, the coefficients of static and dynamic friction of octadecyltrichlorosilane-coated sidewall surfaces as well as sidewall surfaces with only native oxide on them are also reported in this paper.

  11. Piezoresistive pressure sensor using low-temperature aluminium induced crystallization of sputter-deposited amorphous silicon film

    NASA Astrophysics Data System (ADS)

    Tiwari, Ruchi; Chandra, Sudhir

    2013-09-01

    In the present work, we have investigated the piezoresistive properties of silicon films prepared by the radio frequency magnetron sputtering technique, followed by the aluminium induced crystallization (AIC) process. Orientation and grain size of the polysilicon films were studied by x-ray diffraction analysis and found to be in the range 30-50 nm. Annealing of the Al-Si stack on an oxidized silicon substrate was performed in air ambient at 300-550 °C, resulting in layer exchange and transformation from amorphous to polysilicon phase. Van der Pauw and Hall measurement techniques were used to investigate the sheet resistance and carrier mobility of the resulting polycrystalline silicon film. The effect of Al thickness on the sheet resistance and mobility was also studied in the present work. A piezoresistive pressure sensor was fabricated on an oxidized silicon substrate in a Wheatstone bridge configuration, comprising of four piezoresistors made of polysilicon film obtained by the AIC process. The diaphragm was formed by the bulk-micromachining of silicon substrate. The response of the pressure sensor with applied negative pressure in 10-95 kPa range was studied. The gauge factor was estimated to be 5 and 18 for differently located piezoresistors on the diaphragm. The sensitivity of the pressure sensor was measured to be ˜ 30 mV MPa-1, when the Wheatstone bridge was biased at 1 V input voltage.

  12. In situ study of the growth and degradation processes in tetragonal lysozyme crystals on a silicon substrate by high-resolution X-ray diffractometry

    NASA Astrophysics Data System (ADS)

    Kovalchuk, M. V.; Prosekov, P. A.; Marchenkova, M. A.; Blagov, A. E.; D'yakova, Yu. A.; Tereshchenko, E. Yu.; Pisarevskii, Yu. V.; Kondratev, O. A.

    2014-09-01

    The results of an in situ study of the growth of tetragonal lysozyme crystals by high-resolution X-ray diffractometry are considered. The crystals are grown by the sitting-drop method on crystalline silicon substrates of different types: both on smooth substrates and substrates with artificial surface-relief structures using graphoepitaxy. The crystals are grown in a special hermetically closed crystallization cell, which enables one to obtain images with an optical microscope and perform in situ X-ray diffraction studies in the course of crystal growth. Measurements for lysozyme crystals were carried out in different stages of the crystallization process, including crystal nucleation and growth, developed crystals, the degradation of the crystal structure, and complete destruction.

  13. In situ nanoscale refinement by highly controllable etching of the (111) silicon crystal plane and its influence on the enhanced electrical property of a silicon nanowire

    NASA Astrophysics Data System (ADS)

    Yibin, Gong; Pengfei, Dai; Anran, Gao; Tie, Li; Ping, Zhou; Yuelin, Wang

    2011-12-01

    Nanoscale refinement on a (100) oriented silicon-on-insulator (SOI) wafer was introduced by using tetra-methyl-ammonium hydroxide (TMAH, 25 wt%) anisotropic silicon etchant, with temperature kept at 50 °C to achieve precise etching of the (111) crystal plane. Specifically for a silicon nanowire (SiNW) with oxide sidewall protection, the in situ TMAH process enabled effective size reduction in both lateral (2.3 nm/min) and vertical (1.7 nm/min) dimensions. A sub-50 nm SiNW with a length of microns with uniform triangular cross-section was achieved accordingly, yielding enhanced field effect transistor (FET) characteristics in comparison with its 100 nm-wide pre-refining counterpart, which demonstrated the feasibility of this highly controllable refinement process. Detailed examination revealed that the high surface quality of the (111) plane, as well as the bulk depletion property should be the causes of this electrical enhancement, which implies the great potential of the as-made cost-effective SiNW FET device in many fields.

  14. Transmission electron microscopic identification of silicon-containing particles in synovial fluid: potential confusion with calcium pyrophosphate dihydrate and apatite crystals.

    PubMed Central

    Bardin, T; Schumacher, H R; Lansaman, J; Rothfuss, S; Dryll, A

    1984-01-01

    Silicon-containing particles were identified by transmission electron microscopy (TEM) in thin sections of two synovial fluids, which also contained calcium pyrophosphate dihydrate (CPPD) crystals, aspirated during acute attacks of pseudogout. Such particles, which are interpreted as probably being artefacts from glassware, were electron dense and similar in appearance to some CPPD or hydroxyapatite crystals. Images PMID:6476921

  15. The effects of copper and titanium on silicon solar cells

    NASA Technical Reports Server (NTRS)

    Salama, A. M.

    1978-01-01

    Copper-doped N/P silicon solar cells fabricated from the Czochralski grown single-crystal wafers were found to have good electrical characteristics, but the titanium-doped N/P silicon solar cells has considerably lower conversion efficiency. However, in the copper/titanium-doped solar cells, copper seems to mitigate the unfavorable effects of titanium. To explain this behavior, microstructural tests were performed on silicon wafers and solar cells doped with copper, titanium and copper/titanium. Dark forward and reverse I-V measurements were performed on the solar cells to correlate the microstructural defects with the p-n junction properties. It was found that copper precipitates were formed in the copper-doped and copper/titanium-doped wafers and cells. There was a significant voltage drop in the dark reverse I-V measurements of the titanium solar cells. Also, there were some electronically active defects in the depletion region of some titanium-doped cells. Reasons that lead to the above results are given in detail.

  16. Design, fabrication and test of prototype furnace for continuous growth of wide silicon ribbon

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.

    1976-01-01

    A program having the overall objective of growing wide, thin silicon dendritic web crystals quasi-continuously from a semi-automated facility is discussed. The design considerations and fabrication of the facility as well as the test and operation phase are covered; detailed engineering drawings are included as an appendix. During the test and operation phase of the program, more than eighty growth runs and numerous thermal test runs were performed. At the conclusion of the program, 2.4 cm wide web was being grown at thicknesses of 100 to 300 micrometers. As expected, the thickness and growth rate are closely related. Solar cells made from this material were tested at NASA-Lewis and found to have conversion efficiencies comparable to devices fabricated from Czochralski material.

  17. Stoichiometry-controlled compensation in liquid encapsulated Czochralski GaAs

    NASA Technical Reports Server (NTRS)

    Holmes, D. E.; Chen, R. T.; Elliott, K. R.; Kirkpatrick, C. G.

    1982-01-01

    It is shown that the electrical compensation of undoped GaAs grown by the liquid encapsulated Czochralski technique is controlled by the melt stoichiometry. The concentration of the deep donor EL2 in the crystal depends on the As concentration in the melt, increasing from about 5 x 10 to the 15th per cu cm to 1.7 x 10 to the 16th per cu cm as the As atom fraction increases from 0.48 to 0.51. Furthermore, it is shown that the free-carrier concentration of semi-insulating GaAs is determined by the relative concentrations of EL2 and carbon acceptors. As a result, semi-insulating material can be obtained only above a critical As concentration (0.475-atom fraction in the material here) where the concentration of EL2 is sufficient to compensate residual acceptors. Below the critical As concentration the material is p type due to excess acceptors.

  18. Improved Czochralski growth and activator efficiency of cerium doped yttrium aluminum garnet by defect engineering

    NASA Astrophysics Data System (ADS)

    Haven, Drew Thomas

    The past several decades have seen a genuine surge in development of scintillator materials for use in a multitude of applications ranging from high energy physics to medical imaging. Despite the rapid materials discovery that has been undertaken in the search for better scintillators, a host of defects still limit scintillator performance in many promising materials. Thus the key to tapping into a scintillators full potential lies in understanding and modifying their defect structure through a process known as defect engineering. One such promising visible light scintillator is cerium doped yttrium aluminum garnet (Ce:YAG). Despite characteristics that make Ce:YAG an excellent yellow phosphor that see it commonly used in fluorescent lights and while light LEDs, performance hindering defects severely limited its potential as a bulk scintillator, a critical defect being that of UV defect luminescence. By successfully building a new Czochralski (CZ) furnace, samples could be grown with careful control over growth conditions to study and reduce these defects. All samples were grown in similar conditions by the CZ method with a (111) oriented undoped YAG seed. Several original approaches were developed in this study to reduce defects or mitigate their influence. The first method of solving the problem relied on recognizing that what many in the past identified as visible scintillation light was in fact UV defect luminescence. By using multiple photodetectors it was demonstrated that when higher cerium doping levels are involved in Ce:YAG, luminescence is not decreased due to self-absorption as previously thought, but rather UV defect emission is quenched in favor of visible emission. Once established, new avenues of research became available. Another study demonstrates Ce:YAG grown by the Czochralski method in alumina rich conditions is an effective method for reducing the number of UV producing yttrium antisite defects. This culminated in record energy resolution of

  19. Oxygen and carbon impurities and related defects in silicon

    NASA Technical Reports Server (NTRS)

    Pearce, C. W.

    1985-01-01

    Oxygen and carbon are the predominant impurities in Czochralski-grown silicon. The incorporation of oxygen and carbon during crystal growth is reviewed and device effects are discussed. Methods for controlling oxygen and carbon incorporation during crystal growth are discussed and results supporting a segregation coefficient of k=0.5 for oxygen are presented. The nucleation and precipitation behavior of oxygen is complex. Temperature and doping level effects which add insight into the role of point defects in the nucleation process are highlighted. In general, precipitation is found to be retarded in N+ and P+ silicon. The types and quantities of defects resulting from the oxygen precipitates is of interest as they are technologically useful in the process called intrinsic gettering. A comparison is made between the available defect sites and the quantities of metallic impurities present in a typical wafer which need to be gettered. Finally, a discussion of the denuded-zone, intrinsic-gettered (DZ-IG) structure on device properties is presented.

  20. Defect studies in 4H- Silicon Carbide PVT grown bulk crystals, CVD grown epilayers and devices

    NASA Astrophysics Data System (ADS)

    Byrappa, Shayan M.

    Silicon Carbide [SiC] which exists as more than 200 different polytypes is known for superior high temperature and high power applications in comparison to conventional semiconductor materials like Silicon and Germanium. The material finds plethora of applications in a diverse fields due to its unique properties like large energy bandgap, high thermal conductivity and high electric breakdown field. Though inundated with superior properties the potential of this material has not been utilized fully due to impeding factors such as defects especially the crystalline ones which limit their performance greatly. Lots of research has been going on for decades to reduce these defects and there has been subsequent improvement in the quality as the diameter of SiC commercial wafers has reached 150mm from 25mm since its inception. The main focus of this thesis has been to study yield limiting defect structures in conjunction with several leading companies and national labs using advanced characterization tools especially the Synchrotron source. The in depth analysis of SiC has led to development of strategies to reduce or eliminate the density of defects by studying how the defects nucleate, replicate and interact in the material. The strategies discussed to reduce defects were proposed after careful deliberation and analysis of PVT grown bulk crystals and CVD grown epilayers. Following are some of the results of the study: [1] Macrostep overgrowth mechanism in SiC was used to study the deflection of threading defects onto the basal plane resulting in stacking faults. Four types of stacking faults associated with deflection of c/c+a threading defects have been observed to be present in 76mm, 100mm and 150mm diameter wafers. The PVT grown bulk crystals and CVD grown epilayers in study were subjected to contrast studies using synchrotron white beam X-ray topography [SWBXT]. The SWBXT image contrast studies of these stacking faults with comparison of calculated phase shifts for

  1. Investigation of the surface of implanted silicon crystal by the contact angle

    SciTech Connect

    Lebedeva, N.N.; Bakovets, V.V.; Sedymova, E.A.; Pridachin, N.B.

    1987-03-01

    The authors study the dependence of the critical contact angle of silicon upon the dose of its irradiation by argon and boron ions. It is established that the system of immiscible liquids ether-water can be successfully used to study the influence of ion implantation of silicon on its wettability by water. The change in the wettability of implanted silicon is related to the increase in the level of the defect state of the layer surface. Wetting of implanted silicon by melts at high temperatures can be used for studying the kinetics and the annealing mechanism of defects.

  2. Si-C linked oligo(ethylene glycol) layers in silicon-based photonic crystals: optimization for implantable optical materials.

    PubMed

    Kilian, Kristopher A; Böcking, Till; Gaus, Katharina; Gal, Michael; Gooding, J Justin

    2007-07-01

    Porous silicon has shown potential for various applications in biology and medicine, which require that the material (1) remain stable for the length of the intended application and (2) resist non-specific adsorption of proteins. Here we explore the efficacy of short oligo(ethylene glycol) moieties incorporated into organic layers via two separate strategies in achieving these aims. In the first strategy the porous silicon structure was modified in a single step via hydrosilylation of alpha-oligo(ethylene glycol)-omega-alkenes containing three or six ethylene glycol units. The second strategy employs two steps: (1) hydrosilylation of succinimidyl-10-undecenoate and (2) coupling of an amino hexa(ethylene glycol) species. The porous silicon photonic crystals modified by the two-step strategy displayed greater stability relative to the single step procedure when exposed to conditions of physiological temperature and pH. Both strategies produced layers that resist non-specific adsorption of proteins as determined with fluorescently labelled bovine serum albumin. The antifouling behaviour and greater stability to physiological conditions provided by this chemistry enhances the suitability of porous silicon for biomaterials applications. PMID:17428533

  3. Liquid sensor based on high-Q slot photonic crystal cavity in silicon-on-insulator configuration.

    PubMed

    Caër, Charles; Serna-Otálvaro, Samuel F; Zhang, Weiwei; Le Roux, Xavier; Cassan, Eric

    2014-10-15

    We present the realization of an optical sensor based on an infiltrated high-Q slot photonic crystal cavity in a nonfreestanding membrane configuration. Successive infiltrations by liquids with refractive indices ranging from 1.345 to 1.545 yield a sensitivity S of 235 nm/RIU (refractive index unit), while the Q-factor is comprised between 8000 and 25,000, giving a sensor figure of merit up to 3700. This sensor has a detection limit of 1.25×10⁻⁵. The operation of this device on a silicon-on-insulator (SOI) substrate allows a straightforward integration in the silicon photonics platform, while providing a compliant mechanical stability. PMID:25361086

  4. Evaluation of defects generation in crystalline silicon ingot grown by cast technique with seed crystal for solar cells.

    PubMed

    Tachibana, Tomihisa; Sameshima, Takashi; Kojima, Takuto; Arafune, Koji; Kakimoto, Koichi; Miyamura, Yoshiji; Harada, Hirofumi; Sekiguchi, Takashi; Ohshita, Yoshio; Ogura, Atsushi

    2012-04-01

    Although crystalline silicon is widely used as substrate material for solar cell, many defects occur during crystal growth. In this study, the generation of crystalline defects in silicon substrates was evaluated. The distributions of small-angle grain boundaries were observed in substrates sliced parallel to the growth direction. Many precipitates consisting of light elemental impurities and small-angle grain boundaries were confirmed to propagate. The precipitates mainly consisted of Si, C, and N atoms. The small-angle grain boundaries were distributed after the precipitation density increased. Then, precipitates appeared at the small-angle grain boundaries. We consider that the origin of the small-angle grain boundaries was lattice mismatch and/or strain caused by the high-density precipitation. PMID:22536006

  5. Leakage Current Suppression on Metal-Induced Laterally Crystallized Polycrystalline Silicon Thin-Film Transistors by Asymmetrically Deposited Nickel

    NASA Astrophysics Data System (ADS)

    Byun, Chang Woo; Son, Se Wan; Lee, Yong Woo; Hyo Park, Jae; Vakilipour Takaloo, Ashkan; Joo, Seung Ki

    2013-10-01

    The electrical performance of low-temperature polycrystalline silicon (LTPS) thin-film transistors (TFTs) fabricated by metal-induced lateral crystallization (MILC) is greatly affected by metal catalyst contaminations, such as Ni and Ni silicide trapped in the channel, since they concentrate in front of laterally grown crystallites. In the present work, the effect of the MILC/MILC boundary (MMB) on MILC polycrystalline silicon (poly-Si) TFTs is investigated by the comparison of MILC poly-Si TFTs with MMB at the center of the channel, and equivalent TFTs with MMB at a position ejected from the channel. The MMB location was controlled by the Ni catalyst position. Both a low off-state leakage current and a free from short channel effect (kink effect) were observed in high electric-field conditions. Furthermore, the field-effect mobility and drain current noise were drastically improved by ejecting the MILC boundary in the source direction.

  6. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities

    SciTech Connect

    Zhang, Xingyu E-mail: swapnajit.chakravarty@omegaoptics.com Chung, Chi-Jui; Pan, Zeyu; Yan, Hai; Chakravarty, Swapnajit E-mail: swapnajit.chakravarty@omegaoptics.com; Chen, Ray T. E-mail: swapnajit.chakravarty@omegaoptics.com

    2015-11-30

    We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 μm-long coupled L0-type photonic crystal microcavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystal microcavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystal microcavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 μs, and a fall time of 18.5 μs. The measured on-chip loss on the transmission band is as low as 1 dB.

  7. Investigation of iron contamination of seed crystals and its impact on lifetime distribution in Quasimono silicon ingots

    NASA Astrophysics Data System (ADS)

    Trempa, M.; Reimann, C.; Friedrich, J.; Müller, G.; Sylla, L.; Krause, A.; Richter, T.

    2015-11-01

    The use of seed plates during directional solidification (DS) of Quasimono silicon ingots causes additional yield losses compared to standard multi-crystalline ingots due to an increased area of low minority carrier lifetime ("red-zone") in the bottom region. This effect is attributed in literature mainly to iron impurities which are contaminating the seed crystal during heat up and afterwards the as-grown ingot during solidification. However, the contamination mechanisms itself are still not completely understood. Therefore, in this work the seed contamination mechanisms by iron and their effect on the lifetime distribution in the bottom region of Quasimono silicon ingots were investigated. For this purpose special crystal growth experiments in a laboratory-scale DS furnace were carried out by using diffusion barriers at the crucible/seed and seed/melt interfaces in order to separate the different contamination paths. The results show that the iron diffusion path from the crucible into the seed plates plays an important role. But in addition to this it will be demonstrated that an even more important iron contamination path is by gas phase transport from furnace parts via the furnace atmosphere to the seed crystals.

  8. Crack growth phenomena in micro-machined single crystal silicon and design implications for micro electro mechanical systems (MEMS)

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Alissa Mirella

    The creation of micron-sized mechanisms using semiconductor processing technology is known collectively as MEMS, or Micro Electro Mechanical Systems. Many MEMS devices, such as accelerometers and switches, have mechanical structures fabricated from single crystal silicon, a brittle material. The reliability and longevity of these devices depends on minimizing the probability of fracture, and therefore requires a thorough understanding of crack growth phenomena in silicon. In this study, a special micro-machined fracture specimen, the compression-loaded double cantilever beam, was developed to study fracture phenomena in single crystal silicon on a size scale relevant to MEMS. The decreasing stress intensity geometry of this sample provided stable, controllable crack propagation in test sections as thin as 100 mum. Several common MEMS fabrication methods (plasma and chemical etch) were used to achieve a range of surface finishes. A 650 A thick titanium crack gage was used to directly measure crack extension as a function of time using the potential drop technique. High speed (100 MHz) data acquisition techniques were employed to capture fracture events on the sub-microsecond time scale. The stability of the sample design and the micron-scale resolution of the crack gage facilitated investigation into the existence of a stress corrosion effect in silicon. No evidence of sub-critical crack growth due to exposure to humid air was found in carefully controlled tests lasting up to 24 hours. Rapid crack propagation velocities (>1 km/s) during quasi-static loading were recorded using high speed data acquisition techniques. Unique evidence was found of reflected stress waves causing multiple, momentary arrests during rapid fracture events. These measurements, along with atomic force microscope scans of the fracture surfaces, offer new insight into the kinetics of the fracture process in silicon. Over 100 micro-machined samples were fractured in this research. Weibull

  9. Nanoimprinted Diffraction Gratings for Light Trapping in Crystal-Silicon Film Photovoltaics

    SciTech Connect

    Dirk Weiss

    2010-11-29

    Crystal-silicon (c-Si) film photovoltaics hold the promise of combining the advantages of state-of-the-art wafer-silicon technology with the scalability and the inherently much lower cost of thin-film solar technologies. In the thickness range of 2-20 μm very effective light trapping is essential to absorb sufficient red and near-infrared (NIR) light and reach targeted efficiencies of 16%–18%, as defined by the U.S. National Solar Technology Roadmap. One proposed method is diffractive light trapping, which, at least in certain wavelength ranges, can theoretically outperform light trapping through random scattering at a rough surface or interface. The goals of this project were (1) to develop a nanoimprinting process for a high-refractive-index dielectric material, (2) to fabricate diffraction gratings as back-reflectors using this material, and (3) to demonstrate for a 2 μm c-Si film an improvement in AM1.5 photon absorption of at least 80% relative to single-pass absorption. We achieved goals (1) and (2). We developed a soft-imprint method for sol-based titanium dioxide precursor films (index range 2.3-2.4) and integrated imprinted films in thin-film silicon devices. We did not fully reach goal (3): depending on the model used for interpretation of the optical experimental data, AM1.5 photon absorption was improved by only 53% (coherent electromagnetic model) to 66% (non-coherent ray-tracing model). When compared to a metallized flat reference film (double-pass absorption), the improvement due to the grating is only 6%, if the (more conservative) electromagnetic model is used. Other important achievements from this project were: -We perfected an imprinting method for another ceramic material, aluminum oxide phosphate, which is index-matched with glass. -We tested diffractive light trapping at different incidence angles and found positive evidence for light trapping for angles up to 50°, although the light-trapping efficiency

  10. Design and analysis of polarization independent all-optical logic gates in silicon-on-insulator photonic crystal

    NASA Astrophysics Data System (ADS)

    Rani, Preeti; Kalra, Yogita; Sinha, R. K.

    2016-09-01

    In this paper, we have reported design and analysis of polarization independent all optical logic gates in silicon-on-insulator photonic crystal consisting of two dimensional honeycomb lattices with two different air holes exhibiting photonic band gap for both TE and TM mode in the optical communication window. The proposed structures perform as an AND optical logic gate and all the optical logic gates based on the phenomenon of interference. The response period and bit rate for TE and TM polarizations at a wavelength of 1.55 μm show improved results as reported earlier.

  11. Applying gray-scaled detour phase hologram on liquid crystal on silicon spatial light modulator (LCoS-SLM)

    NASA Astrophysics Data System (ADS)

    Sayem El-Daher, Moustafa

    2016-03-01

    In order to solve the representation problem of computer-generated holograms, multiple algorithms have been devised. One of which is the well-known detour phase method. This method has recently been modified to be optimized to display the generated hologram on twisted nematic spatial light modulators. In this paper, we apply the modified gray-scaled detour phase holograms on another type of spatial light modulators, which is of utmost importance in the field, namely the reflective liquid crystal on silicon spatial light modulator.

  12. Adaptive Optics with a Liquid-Crystal-on-Silicon Spatial Light Modulator and Its Behavior in Retinal Imaging

    NASA Astrophysics Data System (ADS)

    Shirai, Tomohiro; Takeno, Kohei; Arimoto, Hidenobu; Furukawa, Hiromitsu

    2009-07-01

    An adaptive optics system with a brand-new device of a liquid-crystal-on-silicon (LCOS) spatial light modulator (SLM) and its behavior in in vivo imaging of the human retina are described. We confirmed by experiments that closed-loop correction of ocular aberrations of the subject's eye was successfully achieved at the rate of 16.7 Hz in our system to obtain a clear retinal image in real time. The result suggests that an LCOS SLM is one of the promising candidates for a wavefront corrector in a prospective commercial ophthalmic instrument with adaptive optics.

  13. Design and Performance Evaluation of Optical Ethernet Switching Architecture with Liquid Crystal on Silicon-Based Beam-Steering Technology

    NASA Astrophysics Data System (ADS)

    Cheng, Yuh-Jiuh; Chou, H.-H.; Shiau, Yhi; Cheng, Shu-Ying

    2016-07-01

    A non-blocking optical Ethernet switching architecture with liquid crystal on a silicon-based beam-steering switch and optical output buffer strategies are proposed. For preserving service packet sequencing and fairness of routing sequence, priority and round-robin algorithms are adopted at the optical output buffer in this research. Four methods were used to implement tunable fiber delay modules for the optical output buffers to handle Ethernet packets with variable bit-rates. The results reported are based on the simulations performed to evaluate the proposed switching architecture with traffic analysis under a traffic model captured from a real-core network.

  14. Kinetic model of growth and coalescence of oxygen and carbon precipitates during cooling of As-grown silicon crystals

    NASA Astrophysics Data System (ADS)

    Talanin, V. I.; Talanin, I. E.

    2011-01-01

    A kinetic model of growth and coalescence of oxygen and carbon precipitates has been proposed. This model in combination with the kinetic model of the formation of oxygen and carbon precipitates represents a unified model of precipitation in as-grown dislocation-free silicon single crystals during their cooling in the temperature range from 1683 to 300 K. It has been demonstrated that the results of the calculations are in good agreement with the experimental data obtained from investigations of grown-in microdefects.

  15. Lithographic wavelength control of an external cavity laser with a silicon photonic crystal cavity-based resonant reflector.

    PubMed

    Liles, Alexandros A; Debnath, Kapil; O'Faolain, Liam

    2016-03-01

    We report the experimental demonstration of a new design for external cavity hybrid lasers consisting of a III-V semiconductor optical amplifier (SOA) with fiber reflector and a photonic crystal (PhC)-based resonant reflector on SOI. The silicon reflector is composed of an SU8 polymer bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and side-mode suppression ratios of more than 25 dB. PMID:26974073

  16. Modelling of phase boundaries for large industrial FZ silicon crystal growth with the needle-eye technique

    NASA Astrophysics Data System (ADS)

    Ratnieks, G.; Muižnieks, A.; Mühlbauer, A.

    2003-08-01

    In order to facilitate the numerical calculations of the phase boundaries in large industrial floating zone silicon crystal growth with the needle-eye technique, the chain of improved mathematical models is developed. The phase boundaries are solved in a partly transient way and the modelling improvements cover the open melting front, the inner triple point and the free melt surface. The view factors model is applied for the radiative heat transfer. The electromagnetic field is calculated with account of a multiple-slit inductor.

  17. Precise calculations of the influence of HF EM forces on the melt hydrodynamics for FZ silicon single crystal growth

    NASA Astrophysics Data System (ADS)

    Dadzis, K.; Muiznieks, A.; Rudevics, A.; Ratnieks, G.

    2005-06-01

    During the floating zone silicon single crystal growth by the needle-eye technique, the melting of the polycrystalline feed rod is ensured by a high-frequency inductor. It gives rise to electromagnetic (EM) forces in the skin layer at the free surface of the molten zone, which may influence the melt flow very distinctly. In the present paper two approaches to the numerical modelling of the EM forces in the case of a very distinct skin-effect are compared and applied to hydrodynamic calculations for a specific 2'' floating zone growth system. Figs 22, Refs 3.

  18. Silicon solar cell process development, fabrication and analysis. Fourth quarterly report, July 1, 1979-September 30, 1979

    SciTech Connect

    Yoo, H.I.; Iles, P.A.; Ho, F.F.

    1980-01-01

    Evaluation was performed for three sheet silicon forms: (a) continuous Czochralski growth (Varian), (b) EFG multi-ribbon (Resistance-heated), and (c) dendritic web silicon. AMO efficiencies (average) obtained were as follows: (efficiencies of control cells made from Czochralski silicon, processed alongside are in parentheses) (a) continuous Czochralski cells - 10.7% (10.9%); (b) EFG Cells: (i) Standard Process - 6.5% (approx. 12%), (ii) High Efficiency Process - 8.0% (>12%), and (c) Dendritic Web (Standard Process) - 10.1% (11.2%). In addition to the illuminated performance, the usual backup measurements were made of diffusion length, spectral response, dark diode characteristics, and fine light spot scanning. Early attempts to include BSF processes to low resistivity silicon led to excessive cell shunting; work proceeds to identify the reasons.

  19. Process for the controlled growth of single-crystal films of silicon carbide polytypes on silicon carbide wafers

    NASA Technical Reports Server (NTRS)

    Larkin, David J. (Inventor); Powell, J. Anthony (Inventor)

    1992-01-01

    A method for the controlled growth of single-crystal semiconductor-device-quality films of SiC polytypes on vicinal (0001) SiC wafers with low tilt angles is presented. Both homoepitaxial and heteroepitaxial SiC films can be produced on the same wafer. In particular, 3C-SiC and 6H-SiC films can be produced within selected areas of the same 6H-SiC wafer.

  20. Process for the controlled growth of single-crystal films of silicon carbide polytypes on silicon carbide wafers

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony (Inventor)

    1991-01-01

    This invention is a method for the controlled growth of single-crystal semiconductor device quality films of SiC polytypes on vicinal (0001) SiC wafers with low tilt angles. Both homoepitaxial and heteroepitaxial SiC films can be produced on the same wafer. In particular, 3C-SiC and 6H-SiC films can be produced within selected areas of the same 6H-SiC wafer.