Science.gov

Sample records for dacs-sc dendreon buoyant

  1. Sipuleucel-T: APC 8015, APC-8015, prostate cancer vaccine--Dendreon.

    PubMed

    2006-01-01

    Sipuleucel-T [APC 8015, Provenge] is an autologous, dendritic cell-based vaccine under development with Dendreon Corporation for the treatment of androgen-independent and androgen-dependent prostate cancer. It was generated using the company's active immunotherapy platform to stimulate a patient's own immune system to specifically target and destroy cancer cells, while leaving healthy cells unharmed. This approach could provide patients with a meaningful survival benefit and an improved tolerability profile over existing anticancer therapies. Sipuleucel-T selectively targets the prostate-specific antigen (PSA) known as prostatic acid phosphatase (PAP) that is expressed in approximately 95% of prostate cancers. It is produced by ex vivo exposure of dendritic cell precursors to PA 2024, a recombinant fusion protein composed of the PAP target fused to granulocyte-macrophage colony-stimulating factor (GM-CSF) and incorporated into Dendreon's proprietary Antigen Delivery Cassette. Patients are typically administered three intravenous (IV)-infusions of the vaccine over a 1-month period as a complete course of therapy. It is undergoing late-stage clinical evaluation among patients with early and advanced prostate cancer. In November 2003, Kirin Brewery returned to Dendreon the full rights to Sipuleucel-T for Asia. In exchange, Dendreon licensed patent rights relating to the use of certain HLA-DR antibodies to Kirin for $US20 million. This amended agreement enables Dendreon to complete ongoing discussions for a worldwide marketing and sales partnership for Sipuleucel-T. Similarly, Kirin is able to develop its HLA-DR monoclonal antibodies free of potential infringement claims arising from Dendreon's patent rights to HLA-DR. The licensing agreement relates to patent rights owned by Dendreon relating to monoclonal antibodies against the HLA-DR antigen. In addition, Dendreon retains rights to develop and commercialise its two existing HLA-DR monoclonal antibodies, DN 1921 and DN 1924, as well as other HLA-DR antibodies not being developed by Kirin. Previously, in May 1999, Dendreon and Kirin established a collaboration for the development of dendritic cell-based immunotherapeutics for cancer, including Sipuleucel-T. Under the agreement, Kirin would provide financial support for Dendreon's research on dendritic cells focused on developing immunotherapies for cancers most prevalent in Asia. Dendreon would retain US rights to products arising from the collaboration while Kirin would hold the rights to such immuno-therapeutics in Asia and Oceania. In August 2005, Dendreon signed an agreement to lease a commercial manufacturing facility in Hanover, New Jersey, USA. The company intends to develop the facility to meet anticipated clinical and commercial demands of Sipuleucel-T as well as other active immunotherapy product candidates. Dendreon and Diosynth Biotechnology (Akzo Nobel) have an agreement for the commercial production of the PA 2024 antigen component of Sipuleucel-T. In November 2003, Dendreon announced that Diosynth successfully manufactured PA 2024 on a commercial scale. In October 2001, Dendreon announced that Gambro Healthcare Inc. would provide a network of centres for cell collection to support commercial production and clinical development of various Dendreon vaccines, including Sipuleucel-T. Dendreon has outsourced its cell processing operations in Mountain View, California, USA to Progenitor Cell Therapy under an amended agreement signed in August 2002. This agreement is an expansion of an existing agreement, under which Progenitor provided Dendreon with cell-processing services through its facility in Hackensack, New Jersey, USA. The pivotal, two-stage, phase III trial (D9902 study) has been initiated at clinical sites in the US. The first stage of the trial (D9902A study) is a double-blind, placebo-controlled phase III trial designed to evaluate Sipuleucel-T in men with asymptomatic, metastatic, androgen-independent prostate cancer. The trial was originally designed to be the companion study to a previously completed phase III trial, called D9901. However, the D9902A study with 98 patients recruited was halted in December 2002, when analysis of the D9901 study revealed no statistically significant benefit in time to disease progression in the overall group, although a benefit was seen in a subgroup of patients with Gleason scores of < or =7. In April 2002, the US FDA requested clarification regarding cellular composition of Sipuleucel-T and the suspension of additional patient enrollment for the D9902 study; the request was related solely to manufacturing issues without patient safety being an issue. Trial enrollment resumed in October 2002 following FDA authorisation. Dendreon amended the protocol for the D9902 study and is only recruiting patients with asymptomatic, metastatic, androgen-independent prostate cancer, regardless of their Gleason Score (D9902B study). The ongoing pivotal phase III trial underwent a Special Protocol Assessment (SPA) with the FDA in August 2003 and is enrolling approximately 500 patients. The primary endpoint is overall survival with time to objective disease progression being a secondary endpoint. Final 3-year survival analysis of the D9902A study has been completed and presented. Previously, Dendreon completed an earlier phase III trial (D9901 study) that assessed Sipuleucel-T among 127 patients with late-stage, metastatic, hormone-independent prostate cancer in the US. All subjects had undergone surgical resection of the prostate, but had rising levels of PSA. Final 3-year survival data have been reported. Dendreon also conducted a phase II trial, known as D9905, that investigated Sipuleucel-T monotherapy among patients with early-stage prostate cancer. Study findings have been reported. In September 2003, the FDA designated Sipuleucel-T as a fast-track development programme for the treatment of asymptomatic, metastatic, androgen-independent prostate cancer. Subsequently, the FDA granted fast-track status to the vaccine in November 2005. Dendreon announced in September 1999 that a phase I trial of Sipuleucel-T in patients with prostate cancer had commenced in Japan. This study was being conducted at a dendritic cell processing centre that was formed as part of Dendreon's collaboration with Kirin. In addition, the US NCI is conducting a phase II trial (P-16) of Sipuleucel-T in combination with bevacizumab among patients with hormone-dependent prostate cancer. Trial results have been announced. In April 2001, Dendreon was awarded a US patent (No. 6,210,662) covering the composition of Sipuleucel-T. Dendreon acquired an exclusive worldwide licence to dendritic cell therapy for cancers and other diseases from the Immune Response Corporation; Immune Response originally received the exclusive patent rights to the technology from the University of Brussels in Belgium. PMID:16752945

  2. Hydrostatic Modeling of Buoyant Plumes

    NASA Astrophysics Data System (ADS)

    Stroman, A.; Dewar, W. K.; Wienders, N.; Deremble, B.

    2014-12-01

    The Deepwater Horizon oil spill in the Gulf of Mexico has led to increased interest in understanding point source convection dynamics. Most of the existing oil plume models use a Lagrangian based approach, which computes integral measures such as plume centerline trajectory and plume radius. However, this approach doesn't account for feedbacks of the buoyant plume on the ambient environment. Instead, we employ an Eulerian based approach to acquire a better understanding of the dynamics of buoyant plumes. We have performed a series of hydrostatic modeling simulations using the MITgcm. Our results show that there is a dynamical response caused by the presence of the buoyant plume, in that there is a modification of the background flow. We find that the buoyant plume becomes baroclinically unstable and sheds eddies at the neutral buoyancy layer. We also explore different scenarios to determine the effect of the buoyancy source and the temperature stratification on the evolution of buoyant plumes.

  3. Buoyant plume calculations

    SciTech Connect

    Penner, J.E.; Haselman, L.C.; Edwards, L.L.

    1985-01-01

    Smoke from raging fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in surface temperatures. However, the extent of the decrease and even the sign of the temperature change, depend on how the smoke is distributed with altitude. We present a model capable of evaluating the initial distribution of lofted smoke above a massive fire. Calculations are shown for a two-dimensional slab version of the model and a full three-dimensional version. The model has been evaluated by simulating smoke heights for the Hamburg firestorm of 1943 and a smaller scale oil fire which occurred in Long Beach in 1958. Our plume heights for these fires are compared to those predicted by the classical Morton-Taylor-Turner theory for weakly buoyant plumes. We consider the effect of the added buoyancy caused by condensation of water-laden ground level air being carried to high altitude with the convection column as well as the effects of background wind on the calculated smoke plume heights for several fire intensities. We find that the rise height of the plume depends on the assumed background atmospheric conditions as well as the fire intensity. Little smoke is injected into the stratosphere unless the fire is unusually intense, or atmospheric conditions are more unstable than we have assumed. For intense fires significant amounts of water vapor are condensed raising the possibility of early scavenging of smoke particles by precipitation. 26 references, 11 figures.

  4. Drag of buoyant vortex rings

    NASA Astrophysics Data System (ADS)

    Vasel-Be-Hagh, Ahmadreza; Carriveau, Rupp; Ting, David S.-K.; Turner, John Stewart

    2015-10-01

    Extending from the model proposed by Vasel-Be-Hagh et al. [J. Fluid Mech. 769, 522 (2015), 10.1017/jfm.2015.126], a perturbation analysis is performed to modify Turner's radius by taking into account the viscous effect. The modified radius includes two terms; the zeroth-order solution representing the effect of buoyancy, and the first-order perturbation correction describing the influence of viscosity. The zeroth-order solution is explicit Turner's radius; the first-order perturbation modification, however, includes the drag coefficient, which is unknown and of interest. Fitting the photographically measured radius into the modified equation yields the time history of the drag coefficient of the corresponding buoyant vortex ring. To give further clarification, the proposed model is applied to calculate the drag coefficient of a buoyant vortex ring at a Bond number of approximately 85; a similar procedure can be applied at other Bond numbers.

  5. Drag of buoyant vortex rings.

    PubMed

    Vasel-Be-Hagh, Ahmadreza; Carriveau, Rupp; Ting, David S-K; Turner, John Stewart

    2015-10-01

    Extending from the model proposed by Vasel-Be-Hagh et al. [J. Fluid Mech. 769, 522 (2015)], a perturbation analysis is performed to modify Turner's radius by taking into account the viscous effect. The modified radius includes two terms; the zeroth-order solution representing the effect of buoyancy, and the first-order perturbation correction describing the influence of viscosity. The zeroth-order solution is explicit Turner's radius; the first-order perturbation modification, however, includes the drag coefficient, which is unknown and of interest. Fitting the photographically measured radius into the modified equation yields the time history of the drag coefficient of the corresponding buoyant vortex ring. To give further clarification, the proposed model is applied to calculate the drag coefficient of a buoyant vortex ring at a Bond number of approximately 85; a similar procedure can be applied at other Bond numbers. PMID:26565349

  6. Buoyant density constancy of Schizosaccharomyces pombe cells

    SciTech Connect

    Kubitschek, H.E.; Ward, R.A.

    1985-06-01

    Buoyant densities of cells from exponentially growing cultures of the fission yeast Schizosaccharomyces pombe 972h/sup -/ with division rates from 0.14 to 0.5 per h were determined by equilibrium centrifugation in Percoll gradients. Buoyant densities were independent of growth rate, with an average value (+/- standard error) of 1.0945 (+/- 0.00037) g/ml. When cells from these cultures were separated by size, mean cell volumes were independent of buoyant density, indicating that buoyant densities also were independent of cell age during the division cycle. These results support the suggestion that most or all kinds of cells that divide by equatorial fission may have similar, evolutionarily conserved mechanisms for regulation of buoyant density.

  7. MERGING BUOYANT JETS IN A STRATIFIED CROSSFLOW

    EPA Science Inventory

    Some of the results of an extensive series of experiments to study the characteristics of merging, horizontally discharged buoyant jets in a linearly density stratified current are summarized. The experiments were conducted in a towing tank to simulate conditions typical of ocean...

  8. 46 CFR 108.697 - Buoyant work vests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Buoyant work vests. 108.697 Section 108.697 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.697 Buoyant work vests. (a) Each buoyant work vest on a unit must...

  9. 46 CFR 108.697 - Buoyant work vests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Buoyant work vests. 108.697 Section 108.697 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.697 Buoyant work vests. (a) Each buoyant work vest on a unit must be approved under Subpart 160.053 or...

  10. 46 CFR 131.870 - Life floats and buoyant apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Life floats and buoyant apparatus. 131.870 Section 131... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.870 Life floats and buoyant apparatus. (a) The name of the vessel must be plainly marked or painted on each life float or buoyant...

  11. 46 CFR 131.870 - Life floats and buoyant apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Life floats and buoyant apparatus. 131.870 Section 131... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.870 Life floats and buoyant apparatus. (a) The name of the vessel must be plainly marked or painted on each life float or buoyant...

  12. 46 CFR 131.870 - Life floats and buoyant apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Life floats and buoyant apparatus. 131.870 Section 131... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.870 Life floats and buoyant apparatus. (a) The name of the vessel must be plainly marked or painted on each life float or buoyant...

  13. 46 CFR 108.697 - Buoyant work vests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Buoyant work vests. 108.697 Section 108.697 Shipping... EQUIPMENT Miscellaneous Equipment § 108.697 Buoyant work vests. (a) Each buoyant work vest on a unit must be... work vests must be— (1) Used, stowed, and maintained in accordance with the procedures set out in...

  14. 46 CFR 108.697 - Buoyant work vests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Buoyant work vests. 108.697 Section 108.697 Shipping... EQUIPMENT Miscellaneous Equipment § 108.697 Buoyant work vests. (a) Each buoyant work vest on a unit must be... work vests must be— (1) Used, stowed, and maintained in accordance with the procedures set out in...

  15. EXPERIMENTS ON BUOYANT PLUME DISPERSION IN A LABORATORY CONVENTION TANK

    EPA Science Inventory

    Buoyant plume dispersion in the convective boundary layer (CBL) is investigated experimentally in a laboratory convection tank. The focus is on highly-buoyant plumes that loft near the CBL capping inversion and resist downward mixing. Highly- buoyant plumes are those with dimen...

  16. 46 CFR 131.870 - Life floats and buoyant apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Life floats and buoyant apparatus. 131.870 Section 131... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.870 Life floats and buoyant apparatus. (a) The name of the vessel must be plainly marked or painted on each life float or buoyant...

  17. 46 CFR 131.870 - Life floats and buoyant apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Life floats and buoyant apparatus. 131.870 Section 131... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.870 Life floats and buoyant apparatus. (a) The name of the vessel must be plainly marked or painted on each life float or buoyant...

  18. Towards Understanding the Mixing Characteristics of Turbulent Buoyant Flows

    NASA Astrophysics Data System (ADS)

    Carroll, Phares L.

    This work proposes a new simulation methodology in which variable density turbulent flows can be studied in the context of a mixing layer with or without the presence of gravity. This methodology is developed to probe the nature of non-buoyantly-driven or buoyantly-driven mixing inside a mixing layer. Numerical forcing methods are incorporated into the velocity and scalar fields, extending the length of time over which mixing physics can be studied. The simulation framework is designed to allow for independent variation of four non-dimensional parameters, including the Reynolds, Richardson, Atwood, and Schmidt numbers. The governing equations are integrated in such a way to allow for the relative magnitude of buoyant energy production and non-buoyant energy production to be varied. The computational requirements needed to implement the proposed configuration are presented. Key features of turbulent buoyant flows are reproduced as validation of the proposed methodology. These features include the recovery of isotropic Kolmogorov scales under buoyant and non-buoyant conditions, the recovery of anisotropic one-dimensional energy spectra under buoyant conditions, and the preservation of known statistical distributions in the scalar field, as found in other DNS studies. This simulation method is used to perform a parametric study of turbulent buoyant flows to discern the effects of varying the Reynolds, Richardson, and Atwood numbers on mixing. The effects of the Reynolds and Atwood numbers are isolated by examining two energy dissipation rate conditions under non-buoyant (variable density) and constant density conditions. The effects of Richardson number are isolated by varying the ratio of buoyant energy production to total energy production from zero (non-buoyant) to one (entirely buoyant) under constant Atwood number, Schmidt number, and energy dissipation rate conditions. It is found that the primary differences between non-buoyant and buoyant turbulent flows are contained in the transfer spectrum and longitudinal structure functions, while all other metrics are largely similar. However, the scalar field dynamics are found to be similar whether the velocity field is subjected to buoyancy forces or not. Hence, the mixing dynamics in the scalar field are insensitive to the source of turbulent kinetic energy production (non-buoyant vs. buoyant).

  19. Turbulence attenuation by large neutrally buoyant particles

    NASA Astrophysics Data System (ADS)

    Cisse, M.; Saw, E.-W.; Gibert, M.; Bodenschatz, E.; Bec, J.

    2015-06-01

    Turbulence modulation by inertial-range-size, neutrally buoyant particles is investigated experimentally in a von Kármán flow. Increasing the particle volume fraction ?v, maintaining constant impellers Reynolds number attenuates the fluid turbulence. The inertial-range energy transfer rate decreases as ? ?v 2 / 3 , suggesting that only particles located on a surface affect the flow. Small-scale turbulent properties, such as structure functions or acceleration distribution, are unchanged. Finally, measurements hint at the existence of a transition between two different regimes occurring when the average distance between large particles is of the order of the thickness of their boundary layers.

  20. 46 CFR 160.010-3 - Inflatable buoyant apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Buoyant Apparatus for Merchant Vessels § 160.010... container accessible to the occupants, or otherwise secured to the apparatus. Duplicate equipment must be provided, for each side of a reversible inflatable buoyant apparatus, if the equipment is not...

  1. 46 CFR 160.010-6 - Capacity of buoyant apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Buoyant Apparatus for Merchant Vessels § 160.010... immersed or where facilities are provided for climbing on top of the apparatus. (2) Number of 300 mm (1 ft... 46 Shipping 6 2011-10-01 2011-10-01 false Capacity of buoyant apparatus. 160.010-6 Section...

  2. 46 CFR 160.010-6 - Capacity of buoyant apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Buoyant Apparatus for Merchant Vessels § 160.010... immersed or where facilities are provided for climbing on top of the apparatus. (2) Number of 300 mm (1 ft... 46 Shipping 6 2010-10-01 2010-10-01 false Capacity of buoyant apparatus. 160.010-6 Section...

  3. 46 CFR 160.010-3 - Inflatable buoyant apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Buoyant Apparatus for Merchant Vessels § 160.010... container accessible to the occupants, or otherwise secured to the apparatus. Duplicate equipment must be provided, for each side of a reversible inflatable buoyant apparatus, if the equipment is not...

  4. Experiments on a round turbulent buoyant plume

    NASA Technical Reports Server (NTRS)

    Shabbir, Aamir; George, William K.

    1992-01-01

    This paper reports a comprehensive set of hot-wire measurements of a round buoyant plume which was generated by forcing a jet of hot air vertically up into quiescent environment. The boundary conditions of the experiment were measured, and are documented in the present paper in an attempt to sort out the contradictory mean flow results from the earlier studies. The ambient temperature was monitored to insure that the facility was not stratified and that the experiment was conducted in a neutral environment. The axisymmetry of the flow was checked by using a planar array of sixteen thermocouples and the mean temperature measurements from these are used to supplement the hot-wire measurements. The source flow conditions were measured so as to ascertain the rate at which the buoyancy was added to the flow. The measurements conserve buoyancy within 10 percent. The results are used to carry out the balances of the mean energy and momentum differential equations. In the mean energy equation it is found that the vertical advection of the energy is primarily balanced by the radial turbulent transport. In the mean momentum equation the vertical advection of momentum and the buoyancy force balance the radial turbulent transport. The buoyancy force is the second largest term in this balance and is responsible for the wider (and higher) velocity profiles in plumes as compared to jets. Budgets of the temperature variance and turbulence kinetic energy are also carried out in which thermal and mechanical dissipation rates are obtained as the closing terms. Similarities and differences between the two balances are discussed. It is found that even though the direct affect of buoyancy on turbulence, as evidenced by the buoyancy production term, is substantial, most of the turbulence is produced by shear. This is in contrast to the mean velocity field where the affect of buoyancy force is quite strong. Therefore, it is concluded that in a buoyant plume the primary affect of buoyancy on turbulence is indirect, and enters through the mean velocity field (giving larger shear production).

  5. A turbulence model for buoyant flows based on vorticity generation.

    SciTech Connect

    Domino, Stefan Paul; Nicolette, Vernon F.; O'Hern, Timothy John; Tieszen, Sheldon R.; Black, Amalia Rebecca

    2005-10-01

    A turbulence model for buoyant flows has been developed in the context of a k-{var_epsilon} turbulence modeling approach. A production term is added to the turbulent kinetic energy equation based on dimensional reasoning using an appropriate time scale for buoyancy-induced turbulence taken from the vorticity conservation equation. The resulting turbulence model is calibrated against far field helium-air spread rate data, and validated with near source, strongly buoyant helium plume data sets. This model is more numerically stable and gives better predictions over a much broader range of mesh densities than the standard k-{var_epsilon} model for these strongly buoyant flows.

  6. Buoyant Currents West and East of Greenland

    NASA Astrophysics Data System (ADS)

    Aksenov, Y.; Bacon, S.; Nurser, G.; Coward, A.

    2014-12-01

    Low salinity buoyant polar waters exit the Arctic Ocean into the Nordic Seas and the North Atlantic, affecting deep convection in the Nordic and Labrador Seas with potential impacts on the meridional overturning circulation. The pathways of the polar water in Davis Strait, Fram Strait and then to the south are well documented by observations and model simulations. In contrast, measurements upstream of Fram Strait are too sparse to allow us to explain what causes the outflows to exit either west or east of Greenland or to attribute the variability in the Arctic outflows to atmospheric or oceanic mechanisms. Two high-resolution global ocean general circulation models (OGCM), NEMO-ORCA025, of ~12 km resolution, and NEMO-ORCA12, of ~4 km resolution, have been used to examine the dynamics and seasonal variability of the outflow west and east of Greenland. Montgomery potential analysis is used to investigate the dynamics of the currents in the area. The model results suggest wind as a driving mechanism for the seasonal variability of the ocean circulation in the area.

  7. A new framework for simulating forced homogeneous buoyant turbulent flows

    NASA Astrophysics Data System (ADS)

    Carroll, Phares L.; Blanquart, Guillaume

    2015-06-01

    This work proposes a new simulation methodology to study variable density turbulent buoyant flows. The mathematical framework, referred to as homogeneous buoyant turbulence, relies on a triply periodic domain and incorporates numerical forcing methods commonly used in simulation studies of homogeneous, isotropic flows. In order to separate the effects due to buoyancy from those due to large-scale gradients, the linear scalar forcing technique is used to maintain the scalar variance at a constant value. Two sources of kinetic energy production are considered in the momentum equation, namely shear via an isotropic forcing term and buoyancy via the gravity term. The simulation framework is designed such that the four dimensionless parameters of importance in buoyant mixing, namely the Reynolds, Richardson, Atwood, and Schmidt numbers, can be independently varied and controlled. The framework is used to interrogate fully non-buoyant, fully buoyant, and partially buoyant turbulent flows. The results show that the statistics of the scalar fields (mixture fraction and density) are not influenced by the energy production mechanism (shear vs. buoyancy). On the other hand, the velocity field exhibits anisotropy, namely a larger variance in the direction of gravity which is associated with a statistical dependence of the velocity component on the local fluid density.

  8. Arc Evolution in Response to the Subduction of Buoyant Features

    NASA Astrophysics Data System (ADS)

    Jenkins, Luke; Fourel, Loic; Goes, Saskia; Morra, Gabriele

    2015-04-01

    The subduction of buoyant features such as aseismic ridges or oceanic plateaux has been invoked to explain arc deformation, flat subduction and increase in seismic coupling. Other studies have challenged these ideas, attributing a larger role to the overriding plate. However, many open questions remain about the dynamics of the relative simple case of a single freely subducting plate. How big does a plateau need to be to change the arc shape? What is the control of plate's strength on the impact of buoyant features? How do the velocities adapt to the subduction of less dense material? In the present study, we propose a systematic approach in order to tackle these questions. We use a new 3-D coupled fluid-solid subduction model where the interaction between the slab and the isoviscous mantle is only calculated on the slab surface, significantly increasing computational efficiency. The oceanic plate rheology is visco-elasto-plastic and its top surface is free. We find that arc shape is significantly altered by the subduction of buoyant plateaux. Along the subduction plane through the plateau and depending on its size, the dip angle and the retreat velocity significantly decrease. Flat subduction is obtained in the case of large and strongly buoyant plateau/ridge. An interesting feature is that retreat velocity increases right after the plateau or ridge has finished subducting in order to catch up with the rest of the plate. The gradient in retreat velocity obtained along the trench may cause the slab to have a heterogeneous response to ridge push, eventually leading to slab advance where buoyant material is present. We apply our models to the Izu-Bonin-Marianas (IBM) trench and propose that subduction of the buoyant Caroline Island Ridge at the southern edge of the Mariana trench can explain both trench motion history and the current morphology of the IBM slab as imaged by seismic tomography.

  9. Hands-On Experiences with Buoyant-Less Water

    ERIC Educational Resources Information Center

    Slisko, Josip; Planinsic, Gorazd

    2010-01-01

    The phenomenon of weightlessness is known to students thanks to videos of amazing things astronauts do in spaceships orbiting the Earth. In this article we propose two hands-on activities which give students opportunities to infer by themselves the absence of buoyant force in a gravity accelerated system. The system is a free-falling or vertically…

  10. APPLICATION OF BUOYANT MASS TRANSFER MEDIA TO HAZARDOUS MATERIAL SPILLS

    EPA Science Inventory

    A prototype system was designed and developed to slurry buoyant activated carbon into a static body of water. The process was developed to remove spilled soluable hazardous compounds from a watercourse. In a simulated spill, up to 98% removal of Diazinon, an organophosphorus pest...

  11. 46 CFR 160.010-6 - Capacity of buoyant apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... must be the lowest number determined by the following methods: (1) Final buoyancy of the buoyant... 145 (divided by 32 if buoyancy is measured in pounds). The divisor must be changed to 180 (40 if buoyancy is measured in pounds) if the apparatus is designed so that persons supported are only...

  12. 46 CFR 160.010-6 - Capacity of buoyant apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... must be the lowest number determined by the following methods: (1) Final buoyancy of the buoyant... 145 (divided by 32 if buoyancy is measured in pounds). The divisor must be changed to 180 (40 if buoyancy is measured in pounds) if the apparatus is designed so that persons supported are only...

  13. 46 CFR 160.010-6 - Capacity of buoyant apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... must be the lowest number determined by the following methods: (1) Final buoyancy of the buoyant... 145 (divided by 32 if buoyancy is measured in pounds). The divisor must be changed to 180 (40 if buoyancy is measured in pounds) if the apparatus is designed so that persons supported are only...

  14. Hands-On Experiences with Buoyant-Less Water

    ERIC Educational Resources Information Center

    Slisko, Josip; Planinsic, Gorazd

    2010-01-01

    The phenomenon of weightlessness is known to students thanks to videos of amazing things astronauts do in spaceships orbiting the Earth. In this article we propose two hands-on activities which give students opportunities to infer by themselves the absence of buoyant force in a gravity accelerated system. The system is a free-falling or vertically


  15. 46 CFR 160.010-5 - Buoyant apparatus with plastic foam buoyancy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Buoyant apparatus with plastic foam buoyancy. 160.010-5... Vessels § 160.010-5 Buoyant apparatus with plastic foam buoyancy. (a) Buoyant apparatus with plastic foam buoyancy must have a plastic foam body with an external protective covering. The body may be reinforced...

  16. 46 CFR 160.010-5 - Buoyant apparatus with plastic foam buoyancy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Buoyant apparatus with plastic foam buoyancy. 160.010-5... Vessels § 160.010-5 Buoyant apparatus with plastic foam buoyancy. (a) Buoyant apparatus with plastic foam buoyancy must have a plastic foam body with an external protective covering. The body may be reinforced...

  17. 46 CFR 160.010-5 - Buoyant apparatus with plastic foam buoyancy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Buoyant apparatus with plastic foam buoyancy. 160.010-5... Vessels § 160.010-5 Buoyant apparatus with plastic foam buoyancy. (a) Buoyant apparatus with plastic foam buoyancy must have a plastic foam body with an external protective covering. The body may be reinforced...

  18. 46 CFR 160.010-5 - Buoyant apparatus with plastic foam buoyancy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Buoyant apparatus with plastic foam buoyancy. 160.010-5... Vessels § 160.010-5 Buoyant apparatus with plastic foam buoyancy. (a) Buoyant apparatus with plastic foam buoyancy must have a plastic foam body with an external protective covering. The body may be reinforced...

  19. 46 CFR 160.010-5 - Buoyant apparatus with plastic foam buoyancy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Buoyant apparatus with plastic foam buoyancy. 160.010-5... Vessels § 160.010-5 Buoyant apparatus with plastic foam buoyancy. (a) Buoyant apparatus with plastic foam buoyancy must have a plastic foam body with an external protective covering. The body may be reinforced...

  20. 46 CFR 131.580 - Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... lifejackets, inflatable buoyant apparatus, and inflated rescue boats. 131.580 Section 131.580 Shipping COAST... Inspections § 131.580 Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant apparatus must be...

  1. 46 CFR 131.580 - Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... lifejackets, inflatable buoyant apparatus, and inflated rescue boats. 131.580 Section 131.580 Shipping COAST... Inspections § 131.580 Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant apparatus must be...

  2. 46 CFR 180.137 - Stowage of life floats and buoyant apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Stowage of life floats and buoyant apparatus. 180.137... § 180.137 Stowage of life floats and buoyant apparatus. (a) In addition to meeting § 180.130, each life float and buoyant apparatus must be stowed as required under this section, (b) The float-free...

  3. 46 CFR 117.137 - Stowage of life floats and buoyant apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Stowage of life floats and buoyant apparatus. 117.137... EQUIPMENT AND ARRANGEMENTS Survival Craft Arrangements and Equipment § 117.137 Stowage of life floats and buoyant apparatus. (a) In addition to meeting § 117.130, each life float and buoyant apparatus must...

  4. Horizontal penetration of inclined thermal buoyant water jets

    SciTech Connect

    Pantokratoras, A.

    1998-05-01

    Submerged buoyant jets occur in the discharge from thermal power plants and in the operation of pumped storage hydroelectric plants. Accurate prediction of the jet trajectory and temperature dilution are necessary if discharge structures are to be designed to meet the appropriate standards. A modified version of the integral Fan-Brooks model has been used to calculate the horizontal penetration of inclined thermal buoyant water jets. The classical densimetric Froude number F{sub 0} is substituted by a Froude number F{sub a} based on the thermal expansion coefficient of water. Using the above model, a new equation is derived which can predict the horizontal penetration of the thermal jet at a given Froude number F{sub a} and discharge angle.

  5. Quantitative computational infrared imaging of buoyant diffusion flames

    NASA Astrophysics Data System (ADS)

    Newale, Ashish S.

    Studies of infrared radiation from turbulent buoyant diffusion flames impinging on structural elements have applications to the development of fire models. A numerical and experimental study of radiation from buoyant diffusion flames with and without impingement on a flat plate is reported. Quantitative images of the radiation intensity from the flames are acquired using a high speed infrared camera. Large eddy simulations are performed using fire dynamics simulator (FDS version 6). The species concentrations and temperature from the simulations are used in conjunction with a narrow-band radiation model (RADCAL) to solve the radiative transfer equation. The computed infrared radiation intensities rendered in the form of images and compared with the measurements. The measured and computed radiation intensities reveal necking and bulging with a characteristic frequency of 7.1 Hz which is in agreement with previous empirical correlations. The results demonstrate the effects of stagnation point boundary layer on the upstream buoyant shear layer. The coupling between these two shear layers presents a model problem for sub-grid scale modeling necessary for future large eddy simulations.

  6. Density Driven Removal of Sediment from a Buoyant Muddy Plume

    NASA Astrophysics Data System (ADS)

    Rouhnia, M.; Strom, K.

    2014-12-01

    Experiments were conducted to study the effect of settling driven instabilities on sediment removal from hypopycnal plumes. Traditional approaches scale removal rates with particle settling velocity however, it has been suggested that the removal from buoyant suspensions happens at higher rates. The enhancement of removal is likely due to gravitational instabilities, such as fingering, at two-fluid interface. Previous studies have all sought to suppress flocculation, and no simple model exists to predict the removal rates under the effect of such instabilities. This study examines whether or not flocculation hampers instability formation and presents a simple removal rate model accounting for gravitational instabilities. A buoyant suspension of flocculated Kaolinite overlying a base of clear saltwater was investigated in a laboratory tank. Concentration was continuously measured in both layers with a pair of OBS sensors, and interface was monitored with digital cameras. Snapshots from the video were used to measure finger velocity. Samples of flocculated particles at the interface were extracted to retrieve floc size data using a floc camera. Flocculation did not stop creation of settling-driven fingers. A simple cylinder-based force balance model was capable of predicting finger velocity. Analogy of fingering process of fine grained suspensions to thermal plume formation and the concept of Grashof number enabled us to model finger spacing as a function of initial concentration. Finally, from geometry, the effective cross-sectional area was correlated to finger spacing. Reformulating the outward flux expression was done by substitution of finger velocity, rather than particle settling velocity, and finger area instead of total area. A box model along with the proposed outward flux was used to predict the SSC in buoyant layer. The model quantifies removal flux based on the initial SSC and is in good agreement with the experimental data.

  7. Self-concentrating buoyant glass microbubbles for high sensitivity immunoassays.

    PubMed

    Juang, Duane S; Hsu, Chia-Hsien

    2016-01-26

    Here, we report the novel application of a material with self-concentrating properties for enhancing the sensitivity of immunoassays. Termed as glass microbubbles, they are antibody functionalized buoyant hollow glass microspheres that simultaneously float and concentrate into a dense monolayer when dispensed in a liquid droplet. This self-concentrating charactaristic of the microbubbles allow for autonomous signal localization, which translates to a higher sensitivity compared to other microparticle-based immunoassays. We then demonstrated a "microbubble array" platform consisting of the glass microbubbles floating in a microfluidic liquid hemisphere array for performing multiplex immunoassays. PMID:26620967

  8. Buoyant triacylglycerol-filled green algae and methods therefor

    DOEpatents

    Goodenough, Ursula; Goodson, Carrie

    2015-04-14

    Cultures of Chlamydomonas are disclosed comprising greater than 340 mg/l triacylglycerols (TAG). The cultures can include buoyant Chlamydomonas. Methods of forming the cultures are also disclosed. In some embodiments, these methods comprise providing Chlamydomonas growing in log phase in a first culture medium comprising a nitrogen source and acetate, replacing the first culture medium with a second medium comprising acetate but no nitrogen source, and subsequently supplementing the second medium with additional acetate. In some embodiments, a culture can comprise at least 1,300 mg/l triacyglycerols. In some embodiments, cultures can be used to produce a biofuel such as biodiesel.

  9. Characterization of Hog Cholera Virus I. Determination of Buoyant Density

    PubMed Central

    Horzinek, Marian

    1966-01-01

    Horzinek, Marian (Tierärztliche Hochschule, Hannover, West Germany). Characterization of hog cholera virus. I. Determination of buoyant density. J. Bacteriol. 92:1723–1726. 1966.—Hog cholera virus was subjected to cesium chloride density gradient centrifugation. Most of the infectious activity was detected in fractions with densities between 1.15 and 1.20 g/ml, with a peak at 1.16 g/ml. Infectivity was assayed by use of either the exaltation of Newcastle disease virus method or the hemagglutination exaltation and inhibition of cytopathic effect method. PMID:4959719

  10. The effects of Venus' thermal structure on buoyant magma ascent

    NASA Technical Reports Server (NTRS)

    Sakimoto, S. E. H.; Zuber, M. T.

    1992-01-01

    The recent Magellan images have revealed a broad spatial distribution of surface volcanism on Venus. Previous work in modeling the ascent of magma on both Venus and Earth has indicated that the planetary thermal structure significantly influences the magmatic cooling rates and thus the amount of magma that can be transported to the surface before solidification. In order to understand which aspects of the thermal structure have the greatest influence on the cooling of ascending magma, we have constructed magma cooling curves for both plutonic and crack buoyant ascent mechanisms, and evaluated the curves for variations in the planetary mantle temperature, thermal gradient curvature with depth, surface temperature gradient, and surface temperature. The planetary thermal structure is modeled as T/T(sub 0) = 1-tau(1-Z/Z(sub 0)(exp n), where T is the temperature, T(sub 0) is the source depth temperature, tau = 1-(T(sub s)/T(sub 0)) where T(sub s) is the planetary surface temperature, Z is the depth, Z(sub 0) is the source depth, and n is a constant that controls thermal gradient curvature with depth. The equation is used both for mathematical convenience and flexibility, as well as its fit to the thermal gradients predicted by the cooling half-space models. We assume a constant velocity buoyant ascent, body-averaged magma temperatures and properties, an initially crystal-free magma, and the same liquidus and solidus for both Venus and Earth.

  11. Phytoplankton productivity in a turbid buoyant coastal plume

    NASA Astrophysics Data System (ADS)

    Schofield, Oscar; Moline, Mark; Cahill, Brownyn; Frazer, Thomas; Kahl, Alex; Oliver, Matthew; Reinfelder, John; Glenn, Scott; Chant, Robert

    2013-07-01

    The complex dynamics associated with coastal buoyant plumes make it difficult to document the interactions between light availability, phytoplankton carbon fixation, and biomass accumulation. Using real-time data, provided by satellites and high frequency radar, we adaptively sampled a low salinity parcel of water that was exported from the Hudson river estuary in April 2005. The water was characterized by high nutrients and high chlorophyll concentrations. The majority of the low salinity water was re-circulated within a nearshore surface feature for 5 days during which nitrate concentrations dropped 7-fold, the maximum quantum yield for photosynthesis dropped 10-fold, and primary productivity rates decreased 5-fold. Associated with the decline in nitrate was an increase in phytoplankton biomass. The phytoplankton combined with the Colored Dissolved Organic Matter (CDOM) and non-algal particles attenuated the light so the 1% light level ranged between 3 and 10m depending on the age of the plume water. As the plume was 10-15m thick, the majority of the phytoplankton were light-limited. Vertical mixing within the plume was high as indicated by the dispersion of injected of rhodamine dye. The mixing within the buoyant plume was more rapid than phytoplankton photoacclimation processes. Mixing rates within the plume was the critical factor determining overall productivity rates within the turbid plume.

  12. Phytoplankton productivity in a turbid buoyant coastal plume

    NASA Astrophysics Data System (ADS)

    Schofield, Oscar; Moline, Mark; Cahill, Brownyn; Frazer, Thomas; Kahl, Alex; Oliver, Matthew; Reinfelder, John; Glenn, Scott; Chant, Robert

    2013-07-01

    The complex dynamics associated with coastal buoyant plumes make it difficult to document the interactions between light availability, phytoplankton carbon fixation, and biomass accumulation. Using real-time data, provided by satellites and high frequency radar, we adaptively sampled a low salinity parcel of water that was exported from the Hudson river estuary in April 2005. The water was characterized by high nutrients and high chlorophyll concentrations. The majority of the low salinity water was re-circulated within a nearshore surface feature for 5 days during which nitrate concentrations dropped 7-fold, the maximum quantum yield for photosynthesis dropped 10-fold, and primary productivity rates decreased 5-fold. Associated with the decline in nitrate was an increase in phytoplankton biomass. The phytoplankton combined with the Colored Dissolved Organic Matter (CDOM) and non-algal particles attenuated the light so the 1% light level ranged between 3 and 10 m depending on the age of the plume water. As the plume was 10-15 m thick, the majority of the phytoplankton were light-limited. Vertical mixing within the plume was high as indicated by the dispersion of injected of rhodamine dye. The mixing within the buoyant plume was more rapid than phytoplankton photoacclimation processes. Mixing rates within the plume was the critical factor determining overall productivity rates within the turbid plume.

  13. A Model for Temperature Fluctuations in a Buoyant Plume

    NASA Astrophysics Data System (ADS)

    Bisignano, A.; Devenish, B. J.

    2015-11-01

    We present a hybrid Lagrangian stochastic model for buoyant plume rise from an isolated source that includes the effects of temperature fluctuations. The model is based on that of Webster and Thomson (Atmos Environ 36:5031-5042, 2002) in that it is a coupling of a classical plume model in a crossflow with stochastic differential equations for the vertical velocity and temperature (which are themselves coupled). The novelty lies in the addition of the latter stochastic differential equation. Parametrizations of the plume turbulence are presented that are used as inputs to the model. The root-mean-square temperature is assumed to be proportional to the difference between the centreline temperature of the plume and the ambient temperature. The constant of proportionality is tuned by comparison with equivalent statistics from large-eddy simulations (LES) of buoyant plumes in a uniform crossflow and linear stratification. We compare plume trajectories for a wide range of crossflow velocities and find that the model generally compares well with the equivalent LES results particularly when added mass is included in the model. The exception occurs when the crossflow velocity component becomes very small. Comparison of the scalar concentration, both in terms of the height of the maximum concentration and its vertical spread, shows similar behaviour. The model is extended to allow for realistic profiles of ambient wind and temperature and the results are compared with LES of the plume that emanated from the explosion and fire at the Buncefield oil depot in 2005.

  14. 46 CFR 131.580 - Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) No later than the month and year on its servicing sticker affixed under 46 CFR 160.151-57(n), except... lifejackets, inflatable buoyant apparatus, and inflated rescue boats. 131.580 Section 131.580 Shipping COAST..., and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant apparatus must be...

  15. 46 CFR 131.580 - Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) No later than the month and year on its servicing sticker affixed under 46 CFR 160.151-57(n), except... lifejackets, inflatable buoyant apparatus, and inflated rescue boats. 131.580 Section 131.580 Shipping COAST..., and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant apparatus must be...

  16. 46 CFR 131.580 - Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) No later than the month and year on its servicing sticker affixed under 46 CFR 160.151-57(n), except... lifejackets, inflatable buoyant apparatus, and inflated rescue boats. 131.580 Section 131.580 Shipping COAST..., and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant apparatus must be...

  17. 46 CFR 131.865 - Inflatable liferafts and inflatable buoyant apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Inflatable liferafts and inflatable buoyant apparatus... SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.865 Inflatable liferafts and inflatable buoyant apparatus. The number of the inflatable liferaft or inflatable...

  18. 46 CFR 131.865 - Inflatable liferafts and inflatable buoyant apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Inflatable liferafts and inflatable buoyant apparatus... SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.865 Inflatable liferafts and inflatable buoyant apparatus. The number of the inflatable liferaft or inflatable...

  19. 46 CFR 160.010-4 - General requirements for buoyant apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., floating either side up. (d) Each buoyant apparatus must be of such size and strength that it can be... light twine. (h) Each peripheral body type buoyant apparatus without a net or platform on the inside.... For peripheral body apparatus, each strip must extend completely over the top and bottom surface...

  20. 46 CFR 160.010-4 - General requirements for buoyant apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., floating either side up. (d) Each buoyant apparatus must be of such size and strength that it can be... light twine. (h) Each peripheral body type buoyant apparatus without a net or platform on the inside.... For peripheral body apparatus, each strip must extend completely over the top and bottom surface...

  1. Theory of instantaneous sinuous structure in turbulent buoyant plumes

    NASA Astrophysics Data System (ADS)

    Bejan, A.

    1982-12-01

    A theory is presented which explains for the first time the instantaneous structure and the flickering nature of turbulent plumes. The concept of an elastic plume column is analyzed, and it is concluded that the column is analogous to an elastic column subjected to axial compression, so that if it is tall enough, the column will buckle like an elastic rod compressed between the ends. This buckling theory is developed, and it is found that the distance between two consecutive elbows is proportional to the local plume diameter. A buckled plume collapses periodically due to the interaction of its lateral elbows with the stagnant ambient. This interaction is responsible for the intermittent formation of large-scale buoyant eddies on the periphery of the turbulent plume. The theory's application to the transition from laminar to turbulent plume flow is demonstrated.

  2. Capillary trapping of buoyant particles within regions of emergent vegetation

    NASA Astrophysics Data System (ADS)

    Peruzzo, Paolo; Defina, Andrea; Nepf, Heidi

    2012-07-01

    The seeds of many aquatic plants are buoyant and thus transported at the water surface, where they are subject to surface tension that may enhance their retention within emergent vegetation. Specifically, seeds may be trapped by surface tension (i.e., by the Cheerios effect) at the surface-piercing interface of the vegetation. In this work we develop a physical model that predicts this mechanism of seed trapping, advancing the model proposed by Defina and Peruzzo (2010) that describes the propagation of floating particles through emergent vegetation. The emergent vegetation is simulated as an array of cylinders, randomly arranged, with the mean gap between cylinders far greater than the particle size, which prevents the trapping of particles between pairs of cylinders, referred to as net trapping. Laboratory experiments are used to guide and validate the model. The model also has good agreement with experimental data available in the literature for real seeds and more complex plant morphology.

  3. Buoyant surface jet analysis of the Yukon River

    NASA Technical Reports Server (NTRS)

    Gosink, J. P.

    1988-01-01

    Thermal infrared satellite imagery of the discharge from the Yukon River obtained on July 5, 1985 was compared with hydraulic theory for the dilution of buoyant surface jets. In a crossflow, the theory predicts that the plume will follow an x exp 1/3 trajectory where x is distance alongshore, and that the plume temperature will decay according to x exp - 1/6 due to mixing with the receiving water. Measurements of the Yukon River discharge indicate very good agreement with the predicted trajectory, and less, but acceptable, agreement with the predicted dilution. Large scale thermal fronts are also observable in the thermal imagery; the fronts may be associated with excursions of the plume due to tidal currents.

  4. Flow behaviour of negatively buoyant jets in immiscible ambient fluid

    NASA Astrophysics Data System (ADS)

    Geyer, A.; Phillips, J. C.; Mier-Torrecilla, M.; Idelsohn, S. R.; Oñate, E.

    2012-01-01

    In this paper we investigate experimentally the injection of a negatively buoyant jet into a homogenous immiscible ambient fluid. Experiments are carried out by injecting a jet of dyed fresh water through a nozzle in the base of a cylindrical tank containing rapeseed oil. The fountain inlet flow rate and nozzle diameter were varied to cover a wide range of Richardson Ri (8 × 10-4 < Ri < 1.98), Reynolds Re (467 < Re < 5,928) and Weber We (2.40 < We < 308.56) numbers. Based on the Re, Ri and We values for the experiments, we have determined a regime map to define how these values may control the occurrence of the observed flow types. Whereas Ri plays a stronger role when determining the maximum penetration height, the effect of the Reynolds number is stronger predicting the flow behaviour for a specific nozzle diameter and injection velocity.

  5. Predicting Buoyant Shear Flows Using Anisotropic Dissipation Rate Models

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Zhao, C. Y.; Gatski, T. B.

    1999-01-01

    This paper examines the modeling of two-dimensional homogeneous stratified turbulent shear flows using the Reynolds-stress and Reynolds-heat-flux equations. Several closure models have been investigated-, the emphasis is placed on assessing the effect of modeling the dissipation rate tensor in the Reynolds-stress equation. Three different approaches are considered: one is an isotropic approach while the other two are anisotropic approaches. The isotropic approach is based on Kolmogorov's hypothesis and a dissipation rate equation modified to account for vortex stretching. One of the anisotropic approaches is based on an algebraic representation of the dissipation rate tensor, while another relies on solving a modeled transport equation for this tensor. In addition, within the former anisotropic approach, two different algebraic representations are examined one is a function of the Reynolds-stress anisotropy tensor, and the other is a function of' the mean velocity gradients. The performance of these closure models is evaluated against experimental and direct numerical simulation data of pure shear flows. pure buoyant flows and buoyant shear flows. Calculations have been carried out over a range of Richardson numbers (Ri) and two different Prandtl numbers (Pr); thus the effect of Pr on the development of counter-gradient heat flux in a stratified shear flow can be assessed. At low Ri, the isotropic model performs well in the predictions of stratified shear flows; however, its performance deteriorates as Ri increases. At high Ri, the transport equation model for the dissipation rate tensor gives the best result. Furthermore, the results also lend credence to the algebraic dissipation rate model based on the Reynolds stress anisotropy tensor. Finally, it is found that Pr has an effect on the development of counter-gradient heat flux. The calculations show that, under the action of shear, counter-gradient heat flux does not occur even at Ri = 1 in an air flow.

  6. The investigation of internal waves excitation by turbulent buoyant jets

    NASA Astrophysics Data System (ADS)

    Ezhova, Ekaterina; Kandaurov, Alexander; Kazakov, Vasily; Sergeev, Daniil; Troitskaya, Yuliya

    2010-05-01

    Sewage disposal by coastal cities to the ocean is an example of man's impact on offshore zone. It produces sensible stress on coastal water areas, that's why investigation of hydrodynamic processes near submerged wastewater outfalls is important. We explored these processes basing on laboratory scale modeling. The experiments were carried out in Large Thermally Stratified Tank (overall sizes 20m*4m*2m) of IAP RAS. It was shown that internal waves were generated intensively in the Tank. A hypothesis was put forward that these waves were generated by buoyant jet oscillations in the thermocline region. In order to investigate the process of generation the additional series of experiments was set up in the LTST where we used a CCD videocamera for underwater survey. A string of 13 thermistors was placed vertically in 50 cm from the source to record the temperature oscillations. The data from the camera were processed out and the spectra of jet oscillations were compared to the spectra of the internal waves. Good agreement was obtained confirming that the waves were generated by buoyant jet. The mode structure of the jet was investigated. A theoretical model was developed explaining the origin of the peaks on the internal waves spectra. Basing on the jet velocity profiles obtained by PIV method the frequencies of unstable modes were estimated. The possibilities of the self-sustained waves generation were investigated. It was shown that different regimes with two modes were possible, where one prevailed on another or they existed together depending on the parameters of experiment.

  7. Sampling and analysis of particles from buoyant hydrothermal plumes

    NASA Astrophysics Data System (ADS)

    Mottl, Michael J.

    The objective of our studies has been to identify the chemical processes that occur in the buoyant part of hydrothermal plumes and to evaluate their role in determining the ultimate fate of the hydrothermal input to the oceans. Our first such effort is described by Mottl and McConachy [1990]. Because the buoyant plume is a small feature that contains very large physical and chemical gradients, we have sampled it from manned submersibles. We have used two different samplers, both manufactured by General Oceanics in Miami: the Go-Flo bottle and the Chopstick sampler. Four Go-Flo bottles of 1.7 L capacity can readily be mounted on most submersibles, vertically and in a forward position in sight of the pilot's viewport and video cameras, without interfering with other operations on a dive. On Alvin they have typically been mounted on the outside starboard edge of the basket. On Turtle they were mounted on the outside edge of the port manipulator. We chose Go-Flo rather than Niskin bottles because the latter are prone to spillage when the rods attached to the end caps are bumped against an object such as the seafloor, as often happens on a submersible dive. Go-Flo bottles are also more easily rigged for pressure filtration than are Niskins. The main disadvantage of Go-Flo bottles vs. Niskins for this application is the internal silicone rubber ring that holds the ball valves in place on each end of the Go-Flo. This ring tends to trap large particles that are then difficult to dislodge and collect. The rings are also difficult to clean between dives.

  8. Shapes of Buoyant and Nonbuoyant Methane Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, Peter B.; Yuan, Zeng-Guang; Urban, David L.

    1997-01-01

    Laminar gas jet diffusion flames represent a fundamental combustion configuration. Their study has contributed to numerous advances in combustion, including the development of analytical and computational combustion tools. Laminar jet flames are pertinent also to turbulent flames by use of the laminar flamelet concept. Investigations into the shapes of noncoflowing microgravity laminar jet diffusion flames have primarily been pursued in the NASA Lewis 2.2-second drop tower, by Cochran and coworkers and by Bahadori and coworkers. These studies were generally conducted at atmospheric pressure; they involved soot-containing flames and reported luminosity lengths and widths instead of the flame-sheet dimensions which are of Greater value to theory evaluation and development. The seminal model of laminar diffusion flames is that of Burke and Schumann, who solved the conservation of momentum equation for a jet flame in a coflowing ambient by assuming the velocity of fuel, oxidizer and products to be constant throughout. Roper and coworkers improved upon this model by allowing for axial variations of velocity and found flame shape to be independent of coflow velocity. Roper's suggestion that flame height should be independent of gravity level is not supported by past or present observations. Other models have been presented by Klajn and Oppenheim, Markstein and De Ris, Villermaux and Durox, and Li et al. The common result of all these models (except in the buoyant regime) is that flame height is proportional to fuel mass flowrate, with flame width proving much more difficult to predict. Most existing flame models have been compared with shapes of flames containing soot, which is known to obscure the weak blue emission of flame sheets. The present work involves measurements of laminar gas jet diffusion flame shapes. Flame images have been obtained for buoyant and nonbuoyant methane flames burning in quiescent air at various fuel flow-rates, burner diameters and ambient pressures. Soot concentrations were minimized by selecting conditions at low flowrates and low ambient pressures; this allows identification of actual flame sheets associated with blue emissions of CH and CO2. The present modeling effort follows that of Roper and is useful in explaining many of the trends observed.

  9. Trace Metals and Nutrients in the Hudson River Buoyant Plume

    NASA Astrophysics Data System (ADS)

    Wright, D. D.; Reinfelder, J. R.; Chant, R. J.; Glenn, S. M.; Schofield, O.; Wilkin, J. L.; Houghton, R. W.; Chen, R. F.; Moline, M. A.; Frazier, T. K.

    2004-12-01

    In order to determine the spatial distribution and biological impacts of contaminant metals and nutrients associated with the Hudson River buoyant plume, the transport and transformations of mercury, other trace metals, and major nutrients are being measured as part of the LaGrangian Transport and Transformation Experiment (LaTTE). Beginning in the spring of 2004, a series of dye patch experiments will be carried out that will include continuous underway chemical and biological sampling within the well-sampled framework of an operational ocean observatory. During the first experiment in May 2004, surface water samples for dissolved and suspended particle concentrations of mercury, monomethylmercury, and bioactive and non-essential trace metals were collected using a trace metal clean, underway sampling system. A semi-continuous (5 min resolution) record of dissolved gaseous mercury (elemental mercury) in surface waters revealed diurnal patterns of mercury reduction and volatilization. The results of this project will improve predictions of contaminant movements and ecosystem impacts within the Middle Atlantic Bight.

  10. Behaviour of buoyant moist plumes in turbulent atmospheres. Final report

    SciTech Connect

    Hamza, R.; Golay, M.W.

    1981-06-01

    A widely applicable computational model of buoyant moist plumes in turbulent atmospheres has been constructed. To achieve this a one dimensional Planetary Boundary Layer (P.B.L.) model has been developed to account for atmospheric turbulence while the two dimensional time dependent fluid mechanics equations which govern plume behavior are numerically integrated. A cloud microphysics model has been incorporated into the basic numerical code to account properly for the water content of the plume. The overall dynamics of the plume is quite general. The buoyancy source in the plume includes both the sensible heat and the latent heat absorbed or released in the plume. The turbulence of the plume accounts for buoyancy generated or destroyed turbulence and a universal k-epsilon model has been set up along with the k-sigma model. The model is validated against complex field cases to demonstrate its ability to reproduce solutions to problems that are known. Comparisons to visible plume data show that both the dynamics of the plume are calculated with an acceptable accuracy. Comparisons with 'conventional' entrainment model show that the model can simulate plumes better since it takes into account more physical phenomena.

  11. A piezoelectric, flexural-disk, neutrally buoyant, underwater accelerometer.

    PubMed

    Moffett, M B; Trivett, D H; Klippel, P J; Baird, P D

    1998-01-01

    A piezoelectric, flexural-disk accelerometer for underwater use is composed of two PZT-5A lead zirconate-titanate disks that are bonded to an aluminum substrate. The substrate is edge-supported inside an aluminum housing. The housing is enclosed in syntactic foam so that the sensor is neutrally buoyant. The overall height is 1.0 in. (26 mm), the overall diameter is 1.9 in. (49 mm), and the total mass is 0.054 kg. With 25 ft (7.6 m) of (230 pF/m) cable attached, the sensitivity is -42 dB re 1 V-s(2)/m (-22 dB re 1 V/g), the capacitance is 5.0 nF, and the resonance frequency is 11 kHz. When used in conjuction with a Micro Networks MN3210 preamplifier, the spectral noise-equivalent acceleration floor is approximately -171 dB re 1 m/s(2)- radicalHz (-151 dB re 1 g/ radicalHz) at 5 kHz. PMID:18244296

  12. The vertical distribution of buoyant plastics at sea

    NASA Astrophysics Data System (ADS)

    Reisser, J.; Slat, B.; Noble, K.; du Plessis, K.; Epp, M.; Proietti, M.; de Sonneville, J.; Becker, T.; Pattiaratchi, C.

    2014-11-01

    Millimeter-sized plastics are numerically abundant and widespread across the world's ocean surface. These buoyant macroscopic particles can be mixed within the upper water column due to turbulent transport. Models indicate that the largest decrease in their concentration occurs within the first few meters of water, where subsurface observations are very scarce. By using a new type of multi-level trawl at 12 sites within the North Atlantic accumulation zone, we measured concentrations and physical properties of plastics from the air-seawater interface to a depth of 5 m, at 0.5 m intervals. Our results show that plastic concentrations drop exponentially with water depth, but decay rates decrease with increasing Beaufort scale. Furthermore, smaller pieces presented lower rise velocities and were more susceptible to vertical transport. This resulted in higher depth decays of plastic mass concentration (mg m-3) than numerical concentration (pieces m-3). Further multi-level sampling of plastics will improve our ability to predict at-sea plastic load, size distribution, drifting pattern, and impact on marine species and habitats.

  13. Role of buoyant flame dynamics in wildfire spread.

    PubMed

    Finney, Mark A; Cohen, Jack D; Forthofer, Jason M; McAllister, Sara S; Gollner, Michael J; Gorham, Daniel J; Saito, Kozo; Akafuah, Nelson K; Adam, Brittany A; English, Justin D

    2015-08-11

    Large wildfires of increasing frequency and severity threaten local populations and natural resources and contribute carbon emissions into the earth-climate system. Although wildfires have been researched and modeled for decades, no verifiable physical theory of spread is available to form the basis for the precise predictions needed to manage fires more effectively and reduce their environmental, economic, ecological, and climate impacts. Here, we report new experiments conducted at multiple scales that appear to reveal how wildfire spread derives from the tight coupling between flame dynamics induced by buoyancy and fine-particle response to convection. Convective cooling of the fine-sized fuel particles in wildland vegetation is observed to efficiently offset heating by thermal radiation until convective heating by contact with flames and hot gasses occurs. The structure and intermittency of flames that ignite fuel particles were found to correlate with instabilities induced by the strong buoyancy of the flame zone itself. Discovery that ignition in wildfires is critically dependent on nonsteady flame convection governed by buoyant and inertial interaction advances both theory and the physical basis for practical modeling. PMID:26183227

  14. Role of buoyant flame dynamics in wildfire spread

    PubMed Central

    Finney, Mark A.; Cohen, Jack D.; Forthofer, Jason M.; McAllister, Sara S.; Gollner, Michael J.; Gorham, Daniel J.; Saito, Kozo; Akafuah, Nelson K.; Adam, Brittany A.; English, Justin D.

    2015-01-01

    Large wildfires of increasing frequency and severity threaten local populations and natural resources and contribute carbon emissions into the earth-climate system. Although wildfires have been researched and modeled for decades, no verifiable physical theory of spread is available to form the basis for the precise predictions needed to manage fires more effectively and reduce their environmental, economic, ecological, and climate impacts. Here, we report new experiments conducted at multiple scales that appear to reveal how wildfire spread derives from the tight coupling between flame dynamics induced by buoyancy and fine-particle response to convection. Convective cooling of the fine-sized fuel particles in wildland vegetation is observed to efficiently offset heating by thermal radiation until convective heating by contact with flames and hot gasses occurs. The structure and intermittency of flames that ignite fuel particles were found to correlate with instabilities induced by the strong buoyancy of the flame zone itself. Discovery that ignition in wildfires is critically dependent on nonsteady flame convection governed by buoyant and inertial interaction advances both theory and the physical basis for practical modeling. PMID:26183227

  15. Highly buoyant bent-over plumes in a boundary layer

    NASA Astrophysics Data System (ADS)

    Tohidi, Ali; Kaye, Nigel B.

    2016-04-01

    Highly buoyant plumes, such as wildfire plumes, in low to moderate wind speeds have initial trajectories that are steeper than many industrial waste plumes. They will rise further into the atmosphere before bending significantly. In such cases the plume's trajectory will be influenced by the vertical variation in horizontal velocity of the atmospheric boundary layer. This paper examined the behavior of a plume in an unstratified environment with a power-law ambient velocity profile. Examination of previously published experimental measurements of plume trajectory show that inclusion of the boundary layer velocity profile in the plume model often provides better predictions of the plume trajectory compared to algebraic expressions developed for uniform flow plumes. However, there are many cases in which uniform velocity profile algebraic expressions are as good as boundary layer models. It is shown that it is only important to model the role of the atmospheric boundary layer velocity profile in cases where either the momentum length (square root of source momentum flux divided by the reference wind speed) or buoyancy length (buoyancy flux divided by the reference wind speed cubed) is significantly greater than the plume release height within the boundary layer. This criteria is rarely met with industrial waste plumes, but it is important in modeling wildfire plumes.

  16. Tension buoyant tower for small fields in deepwaters

    SciTech Connect

    Perryman, S.R.; Horton, E.E.; Halkyard, J.E.; Beynet, P.A.

    1995-12-31

    The paper describes a concept for a deepwater platform capable of supporting surface wellheads and drilling or workover operations and/or production equipment for up to 18 wells. The fundamental principles are described along with the functions of the key components. The previous analytical studies and model tests which have contributed to the concept are shown to confirm and clarify the concept. The concept could be applicable to hydrocarbon reservoirs in water depths from 1,500 ft to several thousand feet worldwide. The concept can be engineered, fabricated and installed using existing methods and infrastructure. Drilling operations are similar to jack-up drilling technology. The results show that by restraining the buoyant hull against heave, while permitting some amount of pitch, an economical system can be configured. A key factor is the arrangement of well and structural tubular axial stiffnesses in relation to their distance from the center. The concept allows mean and axial tensions to be optimized to the extent that nonpremium threaded connectors may be utilized for the tendons and run by the rig. 4 refs., 16 figs., 1 tab.

  17. 46 CFR 160.010-4 - General requirements for buoyant apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... light twine. (h) Each peripheral body type buoyant apparatus without a net or platform on the inside... pigmented in a dark color. A typical method of securing lifelines and pendants to straps of webbing is...

  18. 46 CFR 117.137 - Stowage of life floats and buoyant apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: (2) Of proper strength for the size of the life float or buoyant apparatus as indicated on its... painter must be provided by a wire or line which: (1) Encircles the body of the device; (2) Will not...

  19. AN EXPERIMENTAL/ANALYTICAL INVESTIGATION OF DEEP SUBMERGED MULTIPLE BUOYANT JETS

    EPA Science Inventory

    The results of an experimental and analytical study of deep submerged multiple-port thermal discharges are presented. The experimental results include the measured downstream thermal dilution, width, and centerline trajectory of the buoyant thermal plume from multiple port discha...

  20. 46 CFR 160.010-4 - General requirements for buoyant apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... used unless it is of a type represented by its manufacturer as ultraviolet light resistant, or it is... light twine. (h) Each peripheral body type buoyant apparatus without a net or platform on the...

  1. 46 CFR 160.010-4 - General requirements for buoyant apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... used unless it is of a type represented by its manufacturer as ultraviolet light resistant, or it is... light twine. (h) Each peripheral body type buoyant apparatus without a net or platform on the...

  2. EVALUATION OF A CONVECTIVE SCALING PARAMETERIZATION FOR ESTIMATING THE DIFFUSION OF A BUOYANT PLUME

    EPA Science Inventory

    During limited-mixed convective conditions, high concentrations of air pollutants have been observed at ground-level from buoyant plumes. Routinely-applied Gaussian plume dispersion models have difficulty simulating diffusion for these conditions. However, advances in convective ...

  3. Vehicle concepts and technology requirements for buoyant heavy-lift systems

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1981-01-01

    Several buoyant-vehicle (airship) concepts proposed for short hauls of heavy payloads are described. Numerous studies identified operating cost and payload capacity advantages relative to existing or proposed heavy-lift helicopters for such vehicles. Applications involving payloads of from 15 tons up to 800 tons were identified. The buoyant quad-rotor concept is discussed in detail, including the history of its development, current estimates of performance and economics, currently perceived technology requirements, and recent research and technology development. It is concluded that the buoyant quad-rotor, and possibly other buoyant vehicle concepts, has the potential of satisfying the market for very heavy vertical lift but that additional research and technology development are necessary. Because of uncertainties in analytical prediction methods and small-scale experimental measurements, there is a strong need for large or full-scale experiments in ground test facilities and, ultimately, with a flight research vehicle.

  4. Physical and Numerical Modeling of Buoyant Groundwater Plumes

    NASA Astrophysics Data System (ADS)

    Brakefield, L. K.; Abarca, E.; Langevin, C. D.; Clement, T. P.

    2007-12-01

    In coastal states, the injection of treated wastewater into deep saline aquifers offers a disposal alternative to ocean outfalls and discharge directly into local waterways. The density of treated wastewater is similar to that of freshwater but is often much lower than the ambient density of deep aquifers. This significant density contrast can cause upward buoyant movement of the wastewater plume during and after injection. Since some wastewater treatment plants inject more than 100 MGD of this treated wastewater, it is of the utmost importance to be able to not only determine the fate and transport rates of the plume, but to be able to best determine locations for monitoring wells for early detection of possible problems. In this study, both physical and numerical modeling were undertaken to investigate and understand buoyant plume behavior and transport. Physical models using a 2D cross-sectional Plexiglas tank filled with glass beads were carried out under different ambient density scenarios. The experiments consisted of injection of a freshwater pulse-source bubble into a fully saline tank. The injection occurred in an initially static system with no ambient flow. In the scenarios, the freshwater plume migrated vertically upward until reaching the top of the tank. Fingers developed because of the heterogeneity of the density dependent flow field. The vertical velocities and transport patterns of these plumes were compared to one another to investigate variances due to different ambient water densities. Using the finite-difference numerical code SEAWAT to simulate variable density flow, the experiments were numerically modeled and compared with the physical model results. Due to the sensitivity of this problem to numerical resolution, results from three different grids were compared to determine a reasonable compromise between computer runtimes and numerical accuracy. Furthermore, a comparison of advection solvers was undertaken to identify the best solver to use for this specific problem. This involved a comparison between finite- difference, total variation diminishing and mixed Eulerian-Langrangian methods. From these scenarios, the Method of Characteristics (MOC) advection solver with the fine resolution grid (0.1 cm x 0.1 cm x 2.7 cm cells) resulted in a simulation that was in good agreement with the physical experiments. This model was determined to be the base-case problem for further sensitivity analysis. To further verify both the physical and numerical model, SUTRA_MS was also used for comparison. Dimensionless analysis of the flow and transport governing equations was undertaken to determine important physical problem parameters. From these derived dimensionless numbers, it was hypothesized that density, hydraulic conductivity and dispersivity should all play important roles in this problem. A parameter sensitivity analysis was performed using the numerical model base-case. The parameters investigated were hydraulic conductivity, ambient groundwater density, longitudinal dispersivity and injection volume. It was determined that the problem was most sensitive to ambient density, hydraulic conductivity and dispersivity changes as hypothesized, with all three affecting both vertical mass transfer rates, plume fingering and mixing between the fresh and saline waters. The sensitivity to injection volume was not seen to be an important parameter, except for the obvious effect of change in size of the plume.

  5. Buoyant subduction on Venus: Implications for subduction around coronae

    NASA Technical Reports Server (NTRS)

    Burt, J. D.; Head, J. W.

    1993-01-01

    Potentially low lithospheric densities, caused by high Venus surface and perhaps mantle temperatures, could inhibit the development of negative buoyancy-driven subduction and a global system of plate tectonics/crustal recycling on that planet. No evidence for a global plate tectonic system was found so far, however, specific features strongly resembling terrestrial subduction zones in planform and topographic cross-section were described, including trenches around large coronae and chasmata in eastern Aphrodite Terra. The cause for the absence, or an altered expression, of plate tectonics on Venus remains to be found. Slab buoyancy may play a role in this difference, with higher lithospheric temperatures and a tendency toward positive buoyancy acting to oppose the descent of slabs and favoring under thrusting instead. The effect of slab buoyancy on subduction was explored and the conditions which would lead to under thrusting versus those allowing the formation of trenches and self-perpetuating subduction were defined. Applying a finite element code to assess the effects of buoyant forces on slabs subducting into a viscous mantle, it was found that mantle flow induced by horizontal motion of the convergent lithosphere greatly influences subduction angle, while buoyancy forces produce a lesser effect. Induced mantle flow tends to decrease subduction angle to near an under thrusting position when the subducting lithosphere converges on a stationary overriding lithosphere. When the overriding lithosphere is in motion, as in the case of an expanding corona, subduction angles are expected to increase. An initial stage involved estimating the changes in slab buoyancy due to slab healing and pressurization over the course of subduction. Modeling a slab, descending at a fixed angle and heated by conduction, radioactivity, and the heat released in phase changes, slab material density changes due to changing temperature, phase, and pressure were derived.

  6. Wave induced transport and mixing of buoyant particles

    NASA Astrophysics Data System (ADS)

    Drivdal, Magnus; Broström, Göran; Christensen, Kai H.

    2014-05-01

    The modeling of wave-current and wave-turbulence interactions have received much attention during recent years. Both the breaking of surface waves and the inclusion of the Stokes shear production have been shown to increase the upper ocean turbulence. Furthermore the Coriolis force acting on the Stokes drift redistributes the momentum in the upper ocean, leading to a deflection of the currents. An important application affected by these processes that still needs to be studied is the mixing and drift of particles. Using an ocean column model, modified to take surface wave effects into account, we investigate how the increased mixing by wave breaking and Stokes shear production as well as the stronger veering by the Coriolis-Stokes force effects the drift of suspended particles. Here the suspended particles are buoyant tracers that can represent oil droplets or plankton, for example fish eggs and larvae. The energy and momentum fluxes as well as the Stokes drift depend on the directional wave spectrum that can be obtained from a wave model or from observations. Comparing with classical Ekman theory some physical effects on the system are studied, and as a realistic test case we use the model to study the oil drift after an offshore oil spill that took place outside the western coast of Norway in 2007. During this accident the average net drift of oil was observed to be approximately 0.1% of the wind speed at an angle of about 90-120 degrees to the right, far slower and more deflected away from the wind direction than predicted by both numerical and empirical models. With wind and wave forcing from ECMWF reanalysis data, it is shown that the wave effects are important for the resultant drift in this case, and has the potential to improve drift forecasting.

  7. Surface buoyant plumes from melting icebergs in the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Yankovsky, Alexander E.; Yashayaev, Igor

    2014-09-01

    Canada's Department of Fisheries and Oceans (DFO) conducts annual surveys in the Labrador Sea along the repeat hydrography line AR7W. The occupation of the AR7W line in May 2013 was followed by the experiment aimed at resolving the imprint of melting drifting icebergs on the upper layer thermohaline characteristics in the Labrador Sea. We present high-resolution observations around two icebergs conducted with the towed undulating platform Moving Vessel Profiler (MVP). The first iceberg drifted in relatively warm water of Atlantic origin (~2.5-3.1 °C) off Greenland, while the second iceberg was on the Labrador shelf in cold water below 0 °C. Both icebergs had a lengthscale of O(100 m). In both cases surface buoyant plumes fed by melt water and attached to the iceberg were observed. The plumes were evident in the anomalous thermohaline characteristics of the seawater. Their density anomalies were sufficiently strong to produce visible frontal structures, which imply a development of the intrinsic dynamics associated with a plume. The first plume formed over a time interval of ~10 h, while the second plume formed over several days and extended for more than 1 km (tenfold the iceberg's size). Strong vertical displacements of the pycnocline were observed near the second iceberg. They are interpreted as the internal wave wake. This interpretation is based on the temporal scale of these oscillations (local buoyancy frequency), as well as on the spatial orientation of these waves with respect to the iceberg drift relative to the pycnocline. The observed internal waves partially overlapped with the plume and affected its structure. The saline seawater splashing by swell contributed to the surface melting of the icebergs. Scaling analysis of the second plume suggests that it could be in the “rotational” dynamic regime with recirculating anticyclonic flow.

  8. Buoyant subduction on Venus: Implications for subduction around coronae

    NASA Astrophysics Data System (ADS)

    Burt, J. D.; Head, J. W.

    1993-03-01

    Potentially low lithospheric densities, caused by high Venus surface and perhaps mantle temperatures, could inhibit the development of negative buoyancy-driven subduction and a global system of plate tectonics/crustal recycling on that planet. No evidence for a global plate tectonic system was found so far, however, specific features strongly resembling terrestrial subduction zones in planform and topographic cross-section were described, including trenches around large coronae and chasmata in eastern Aphrodite Terra. The cause for the absence, or an altered expression, of plate tectonics on Venus remains to be found. Slab buoyancy may play a role in this difference, with higher lithospheric temperatures and a tendency toward positive buoyancy acting to oppose the descent of slabs and favoring under thrusting instead. The effect of slab buoyancy on subduction was explored and the conditions which would lead to under thrusting versus those allowing the formation of trenches and self-perpetuating subduction were defined. Applying a finite element code to assess the effects of buoyant forces on slabs subducting into a viscous mantle, it was found that mantle flow induced by horizontal motion of the convergent lithosphere greatly influences subduction angle, while buoyancy forces produce a lesser effect. Induced mantle flow tends to decrease subduction angle to near an under thrusting position when the subducting lithosphere converges on a stationary overriding lithosphere. When the overriding lithosphere is in motion, as in the case of an expanding corona, subduction angles are expected to increase. An initial stage involved estimating the changes in slab buoyancy due to slab healing and pressurization over the course of subduction. Modeling a slab, descending at a fixed angle and heated by conduction, radioactivity, and the heat released in phase changes, slab material density changes due to changing temperature, phase, and pressure were derived.

  9. Surface Buoyant Plumes from Melting Icebergs in the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Yankovsky, Alexander; Yashayaev, Igor

    2014-05-01

    Canada's Department of Fisheries and Oceans (DFO) conducts annual surveys in the Labrador Sea along the repeat hydrography line AR7W. Since 2012, these shipboard surveys have been supplemented by underway CTD and optical measurements in the upper 200 m layer conducted with the towed undulating platform Moving Vessel Profiler (MVP). The MVP hydrographic data reveal rich variability of the upper layer salinity field on different spatial scales. The occupation of the AR7W line in May 2013 was followed by the experiment aimed at resolving the imprint of melting drifting icebergs on the upper layer thermohaline characteristics in the Labrador Sea. Here we present observations around two icebergs: the first iceberg drifted in relatively warm water of Atlantic origin (~2.5-3.1°C) off Greenland, while the second iceberg was on the Labrador shelf in cold water below 0°C. Both icebergs had a lengthscale of O(100 m). In both cases surface buoyant plumes fed by melt water and attached to the iceberg were observed. The plumes were evident in the anomalous thermohaline characteristics of the seawater. Their density anomalies were sufficiently strong to produce visible frontal structures, which imply a development of the intrinsic dynamics associated with a plume. The first plume formed over a time interval of ~10 hr, while the second plume formed over several days and extended for more than 1 km (tenfold the iceberg's size). Strong vertical displacements of the pycnocline were observed near the second iceberg. They are interpreted as the internal wave wake. This interpretation is based on the temporal scale of these oscillations (local buoyancy frequency), as well as on the spatial orientation of these waves with respect to the iceberg drift relative to the pycnocline. The observed internal waves partially overlapped with the plume and affected its structure. The saline seawater splashing by swell contributed to the surface melting of the icebergs. Scaling analysis of the observed plume suggests that it could be in the "rotational" dynamic regime with recirculating anticyclonic flow. In this case the melt water is trapped in the plume and affects the iceberg's thermodynamics and the rate of melt. These effects are likely to be more pronounced near bigger icebergs or ice islands, and will be a focus of our future observational campaign.

  10. An experimental study of gravity-driven thin-film flow with buoyant particles

    NASA Astrophysics Data System (ADS)

    Rosenthal, Wylie; Latterman, Paul; Hill, Spencer; David, Paul; Mata, Matthew; Mavromoustaki, Aliki; Bertozzi, Andrea

    2011-11-01

    Our experimental study involves silicone oil with buoyant foamed glass spheres, flowing under the action of gravity. We perform an extensive parametric study varying the angle of inclination, particle size, density and concentration. In the case of heavy particles, three regimes arise involving settling of particles to the substrate versus settling to the front of the flow. In contrast, only one regime is observed with buoyant particles, however the dynamics depart significantly from that of a clear fluid. We discuss results for front position versus time as well as changes in the fingering instability as a function of experimental parameters.

  11. Preliminary study of ground handling characteristics of Buoyant Quad Rotor (BQR) vehicles

    NASA Technical Reports Server (NTRS)

    Browning, R. G. E.

    1980-01-01

    A preliminary investigation of mooring concepts appropriate for heavy lift buoyant quad rotor (BQR) vehicles was performed. A review of the evolution of ground handling systems and procedures for all airship types is presented to ensure that appropriate consideration is given to past experiences. Two buoyant quad rotor designs are identified and described. An analysis of wind loads on a moored airship and the effects of these loads on vehicle design is provided. Four mooring concepts are assessed with respect to the airship design, wind loads and mooring site considerations. Basing requirements and applicability of expeditionary mooring at various operational scenarios are addressed.

  12. A chemical model of the buoyant and neutrally buoyant plume above the TAG vent field, 26 degrees N, Mid-Atlantic Ridge

    SciTech Connect

    Rudnicki, M.D.; Elderfield, H. )

    1993-07-01

    The kinetics of iron particle formation in the neutrally buoyant plume above the TAG vent field have been calculated from submersible-collected CTD data within the initial 150 m of plume rise. Results show that particles form by a two-stage process: about half the iron in the high temperature vent fluid is removed as sulfides within a few seconds of venting, and the remainder is removed by Fe[sup 2+] oxidation. The pseudo-first-order rate constant for the second process has been calculated (k[sub 1] = 0.329 min[sup [minus]1], similar to literature values for seawater) and gives a half-life time for Fe[sup 2+] in solution of 2.1 minutes. The kinetics of iron particle formation have been used in a conceptual model of the chemistry of the TAG plume. The average dilution at which iron oxyhydroxide particles form, [bar E][sub Fe], is [approximately]570 from which element/Fe ratios of particles at the top of the buoyant plume have been predicted. Oxyanion/Fe ratios can be chiefly accounted for by coprecipitation for Cr (71%), V (67%), As (45%), and P (42%) but Mo (0.1%) and U (0.02%) show anomalously low coprecipitation. Th/Fe and REE/Fe ratios are greater than can be accounted for by coprecipitation, demonstrating that scavenging occurs in the buoyant plume for these elements. A scavenging model has been fitted to trace metal data previously reported for neutrally buoyant hydrothermal plume particulate samples collected above the TAG vent field. Quantitative removal of vent fluid derived REE, with the possible exception of Eu, during buoyant plume rise means that hydrothermal activity has no direct impact on the seawater chemistry of the REE. If coprecipitation and scavenging within the TAG hydrothermal plume are typical, such processes during plume rise and dispersion play a significant role in the removal of reactive trace metals and oxyanions from seawater, at rates of the same order as those of river input to the oceans. 51 refs., 11 figs., 7 tabs.

  13. 46 CFR 185.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... servicing sticker affixed under 46 CFR 160.151-57(n), except that servicing may be delayed until the next... apparatus, inflatable life jackets, and inflated rescue boats. 185.730 Section 185.730 Shipping COAST GUARD... liferafts, inflatable buoyant apparatus, inflatable life jackets, and inflated rescue boats. (a)...

  14. 46 CFR 185.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... servicing sticker affixed under 46 CFR 160.151-57(n), except that servicing may be delayed until the next... apparatus, inflatable life jackets, and inflated rescue boats. 185.730 Section 185.730 Shipping COAST GUARD... liferafts, inflatable buoyant apparatus, inflatable life jackets, and inflated rescue boats. (a)...

  15. 46 CFR 185.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... servicing sticker affixed under 46 CFR 160.151-57(n), except that servicing may be delayed until the next... apparatus, inflatable life jackets, and inflated rescue boats. 185.730 Section 185.730 Shipping COAST GUARD... liferafts, inflatable buoyant apparatus, inflatable life jackets, and inflated rescue boats. (a)...

  16. A study of the accuracy of neutrally buoyant bubbles used as flow tracers in air

    NASA Technical Reports Server (NTRS)

    Kerho, Michael F.

    1993-01-01

    Research has been performed to determine the accuracy of neutrally buoyant and near neutrally buoyant bubbles used as flow tracers in air. Theoretical, computational, and experimental results are presented to evaluate the dynamics of bubble trajectories and factors affecting their ability to trace flow-field streamlines. The equation of motion for a single bubble was obtained and evaluated using a computational scheme to determine the factors which affect a bubble's trajectory. A two-dimensional experiment was also conducted to experimentally determine bubble trajectories in the stagnation region of NACA 0012 airfoil at 0 deg angle of attack using a commercially available helium bubble generation system. Physical properties of the experimental bubble trajectories were estimated using the computational scheme. These properties included the density ratio and diameter of the individual bubbles. the helium bubble system was then used to visualize and document the flow field about a 30 deg swept semispan wing with simulated glaze ice. Results were compared to Navier-Stokes calculations and surface oil flow visualization. The theoretical and computational analysis have shown that neutrally buoyant bubbles will trace even the most complex flow patterns. Experimental analysis revealed that the use of bubbles to trace flow patterns should be limited to qualitative measurements unless care is taken to ensure neutral buoyancy. This is due to the difficulty in the production of neutrally buoyant bubbles.

  17. Applying a Predict-Observe-Explain Sequence in Teaching of Buoyant Force

    ERIC Educational Resources Information Center

    Radovanovic, Jelena; Slisko, Josip

    2013-01-01

    An active learning sequence based on the predict-observe-explain teaching strategy is applied to a lesson on buoyant force. The results obtained clearly justify the use of this teaching method and suggest devising a series of activities to enable more effective removal of students' commonly held alternative conceptions regarding floating and


  18. 46 CFR 122.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Inspection of Lifesaving Equipment § 122.730 Servicing of inflatable liferafts, inflatable buoyant apparatus... apparatus must be serviced at a facility specifically approved by the Commandant for the particular brand... apparatus, inflatable life jackets, and inflated rescue boats. 122.730 Section 122.730 Shipping COAST...

  19. 46 CFR 122.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Inspection of Lifesaving Equipment § 122.730 Servicing of inflatable liferafts, inflatable buoyant apparatus... apparatus must be serviced at a facility specifically approved by the Commandant for the particular brand... apparatus, inflatable life jackets, and inflated rescue boats. 122.730 Section 122.730 Shipping COAST...

  20. 46 CFR 185.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... inflatable liferaft or inflatable buoyant apparatus must be serviced at a facility specifically approved by... apparatus, inflatable life jackets, and inflated rescue boats. 185.730 Section 185.730 Shipping COAST GUARD... Operational Readiness, Maintenance, and Inspection of Lifesaving Equipment § 185.730 Servicing of...

  1. 46 CFR 185.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... inflatable liferaft or inflatable buoyant apparatus must be serviced at a facility specifically approved by... apparatus, inflatable life jackets, and inflated rescue boats. 185.730 Section 185.730 Shipping COAST GUARD... Operational Readiness, Maintenance, and Inspection of Lifesaving Equipment § 185.730 Servicing of...

  2. Effect of Technology Enhanced Conceptual Change Texts on Students' Understanding of Buoyant Force

    ERIC Educational Resources Information Center

    Ozkan, Gulbin; Selcuk, Gamze Sezgin

    2015-01-01

    In this study, the effect of technology enhanced conceptual change texts on elementary school students' understanding of buoyant force was investigated. The conceptual change texts (written forms) used in this study are proven for effectiveness and are enriched by using technology support in this study. These texts were tried out on two groups. A


  3. The Effect of an Externally Attached Neutrally Buoyant Transmitter on Mortal Injury during Simulated Hydroturbine Passage

    SciTech Connect

    Brown, Richard S.; Pflugrath, Brett D.; Carlson, Thomas J.; Deng, Zhiqun

    2012-02-03

    On their seaward migration, juvenile salmonids commonly pass hydroelectric dams. Fish passing through hydroturbines experience a rapid decrease in pressure as they pass by the turbine blade and the severity of this decompression can be highly variable. This rapid decrease in pressure can result in injuries such as swim bladder rupture, exophthalmia, and emboli and hemorrhaging in the fins and tissues. However, recent research indicates that the presence of a telemetry tag (acoustic, radio, inductive) implanted inside the coelom of a juvenile salmon increases the likelihood that the fish will be injured or die during turbine passage. Thus, previous research conducted using telemetry tags implanted into the coelom of fish may have been inaccurate. Thus, a new technique is needed to provide unbiased estimates of survival through turbines. This research provides an evaluation of the effectiveness of a neutrally buoyant externally attached acoustic transmitter. Both nontagged fish and fish tagged with a neutrally buoyant external transmitter were exposed to a range of rapid decompressions simulating turbine passage. Juvenile Chinook salmon tagged with a neutrally buoyant externally attached acoustic transmitter did not receive a higher degree of barotrauma than their nontagged counterparts. We suggest that future research include field-based comparisons of survival and behavior among fish tagged with a neutrally buoyant external transmitter and those internally implanted with transmitters.

  4. Applying a Predict-Observe-Explain Sequence in Teaching of Buoyant Force

    ERIC Educational Resources Information Center

    Radovanovic, Jelena; Slisko, Josip

    2013-01-01

    An active learning sequence based on the predict-observe-explain teaching strategy is applied to a lesson on buoyant force. The results obtained clearly justify the use of this teaching method and suggest devising a series of activities to enable more effective removal of students' commonly held alternative conceptions regarding floating and…

  5. Applying a predict-observe-explain sequence in teaching of buoyant force

    NASA Astrophysics Data System (ADS)

    Radovanovi?, Jelena; Sliško, Josip

    2013-01-01

    An active learning sequence based on the predict-observe-explain teaching strategy is applied to a lesson on buoyant force. The results obtained clearly justify the use of this teaching method and suggest devising a series of activities to enable more effective removal of students’ commonly held alternative conceptions regarding floating and sinking.

  6. BUOYANT PLUME DISPERSAL IN THE CONVECTIVE BOUNDARY LAYER: ANALYSIS OF EXPERIMENTAL DATA AND LAGRANGIAN MODELING

    EPA Science Inventory

    The aim of this research program is to improve our knowledge and predictive capability of buoyant plume dispersion in the convective boundary layer (CBL) with emphasis on the mean (C) and root-mean-square (?c) concentration fields. The CBL turbulence leads to large random fluc...

  7. 3D Numerical Simulation of Turbulent Buoyant Flow and Heat Transport in a Curved Open Channel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A three-dimensional buoyancy-extended version of kappa-epsilon turbulence model was developed for simulating the turbulent flow and heat transport in a curved open channel. The density- induced buoyant force was included in the model, and the influence of temperature stratification on flow field was...

  8. The influence of shelfbreak forcing on the alongshelf penetration of the Danube buoyant water, Black sea

    NASA Astrophysics Data System (ADS)

    Yankovsky, Alexander E.; Lemeshko, Evgeny M.; Ilyin, Yuriy P.

    2004-06-01

    The buoyancy-driven coastal current propagating along the western coast in the Black Sea is forced by the discharge of several major European rivers including the Danube, Dnepr and South Bug. In this study, we present observational evidence that the buoyant water alongshelf penetration is strongly affected by shelfbreak mesoscale features associated with the Rim Current dynamics. The Rim Current is a major element of the Black Sea general circulation, typically following isobaths over the upper-to-middle slope. Two hydrographic surveys conducted in 1992 and 1994 have been chosen among available archive data for the detailed analysis. In both years, though Danube buoyant discharge was similar prior to the beginning of shipboard observations (varying around 7000 m 3 s -1), the buoyant water exhibited very different downstream (that is, in the direction of Kelvin wave) penetration. In 1992, it spread all the way around the southwestern corner of the Black Sea basin and then further eastward past the Bosporus Strait. In contrast, its downstream penetration was blocked in 1994 and buoyant water did not even reach Cape Kaliakra on the Bulgarian coast. This difference was related to the shelfbreak processes. In 1992, the cyclonic meander of the Rim Current merged with the coastal buoyant water thus promoting its advection from Cape Kaliakra downstream. In 1994, a strong anticyclone in the southwestern corner of the Black Sea completely blocked the propagation of a buoyancy-driven current past Cape Kaliakra. In addition, another anticyclone in the northwestern part of the sea advected buoyant water offshore to the central area of the northwestern shelf. The positions of anticyclonic eddies during a period of observations was confirmed by remote sensing data. As these and other examples indicate, coastal buoyancy driven currents can be effectively blocked and dispersed offshore by the shelfbreak anticyclones if the shelf width allows their interaction with buoyant water. Previous observational studies suggested an upwelling-favorable wind as the principal forcing agent that arrested downstream penetration of buoyancy-driven coastal currents.

  9. Smoke-Point Properties of Non-Buoyant Round Laminar Jet Diffusion Flames. Appendix J

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.

    2000-01-01

    The laminar smoke-point properties of non-buoyant round laminar jet diffusion flames were studied emphasizing results from long-duration (100-230 s) experiments at microgravity carried out in orbit aboard the space shuttle Columbia. Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, pressures of 35-130 kPa, jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-690 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. Contrary to the normal-gravity laminar smoke point, in microgravity, the onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with soot emissions along the flame axis and open-tip flames with soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip: nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and non-buoyant flames emitted soot more readily than non-buoyant flames in earlier tests using ground-based microgravity facilities and than buoyant flames at normal gravity, as a result of reduced effects of unsteadiness, flame disturbances, and buoyant motion. For example, present measurements of laminar smoke-point flame lengths at comparable conditions were up to 2.3 times shorter than ground-based microgravity measurements and up to 6.4 times shorter than buoyant flame measurements. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure to a degree that is a somewhat smaller than observed during earlier tests both at microgravity (using ground-based facilities) and at normal gravity.

  10. Wake-Driven Dynamics of Finite-Sized Buoyant Spheres in Turbulence.

    PubMed

    Mathai, Varghese; Prakash, Vivek N; Brons, Jon; Sun, Chao; Lohse, Detlef

    2015-09-18

    Particles suspended in turbulent flows are affected by the turbulence and at the same time act back on the flow. The resulting coupling can give rise to rich variability in their dynamics. Here we report experimental results from an investigation of finite-sized buoyant spheres in turbulence. We find that even a marginal reduction in the particle's density from that of the fluid can result in strong modification of its dynamics. In contrast to classical spatial filtering arguments and predictions of particle models, we find that the particle acceleration variance increases with size. We trace this reversed trend back to the growing contribution from wake-induced forces, unaccounted for in current particle models in turbulence. Our findings highlight the need for improved multiphysics based models that account for particle wake effects for a faithful representation of buoyant-sphere dynamics in turbulence. PMID:26430995

  11. A buoyant plume adjacent to a headland-Observations of the Elwha River plume

    USGS Publications Warehouse

    Warrick, J.A.; Stevens, A.W.

    2011-01-01

    Small rivers commonly discharge into coastal settings with topographic complexities - such as headlands and islands - but these settings are underrepresented in river plume studies compared to more simplified, straight coasts. The Elwha River provides a unique opportunity to study the effects of coastal topography on a buoyant plume, because it discharges into the Strait of Juan de Fuca on the western side of its deltaic headland. Here we show that this headland induces flow separation and transient eddies in the tidally dominated currents (O(100. cm/s)), consistent with other headlands in oscillatory flow. These flow conditions are observed to strongly influence the buoyant river plume, as predicted by the "small-scale" or "narrow" dynamical classification using Garvine's (1995) system. Because of the transient eddies and the location of the river mouth on the headland, flow immediately offshore of the river mouth is directed eastward twice as frequently as it is westward. This results in a buoyant plume that is much more frequently "bent over" toward the east than the west. During bent over plume conditions, the plume was attached to the eastern shoreline while having a distinct, cuspate front along its westernmost boundary. The location of the front was found to be related to the magnitude and direction of local flow during the preceding O(1. h), and increases in alongshore flow resulted in deeper freshwater mixing, stronger baroclinic anomalies, and stronger hugging of the coast. During bent over plume conditions, we observed significant convergence of river plume water toward the frontal boundary within 1. km of the river mouth. These results show how coastal topography can strongly influence buoyant plume behavior, and they should assist with understanding of initial coastal sediment dispersal pathways from the Elwha River during a pending dam removal project. ?? 2010.

  12. Differing alpha-tocopherol oxidative lability and ascorbic acid sparing effects in buoyant and dense LDL.

    PubMed

    Tribble, D L; Thiel, P M; van den Berg, J J; Krauss, R M

    1995-11-01

    The enhanced oxidizability of smaller, more dense LDL is explained in part by a lower content of antioxidants, including ubiquinol-10 and alpha-tocopherol. In the present studies, we also observed greater rates of depletion of alpha-tocopherol (mole per mole LDL per minute) in dense (d = 1,040 to 1,054 g/mL) compared with buoyant (d = 1,026 to 1,032 g/mL) LDL in the presence of either Cu2+ or the radical-generating agent 2-2'-azobis (2-amidinopropane)dihydrochloride. Differences were particularly pronounced at the lowest Cu2+ concentration tested (0.25 mumol/L), with a fivefold greater rate in dense LDL. At higher concentrations (1.0 and 2.5 mumol/L Cu2+), there was a greater dependence of depletion rate on initial amount of alpha-tocopherol, which was reduced in dense LDL, thus resulting in smaller subfraction-dependent differences in depletion rates. Inclusion of ascorbic acid (15 mumol/L), an aqueous antioxidant capable of recycling alpha-tocopherol by hydrogen donation, was found to extend the course of Cu(2+)-induced alpha-tocopherol depletion in both buoyant and dense LDL, but this effect was more pronounced in dense LDL (time to half-maximal alpha-tocopherol depletion was extended 15.6-fold and 21.2-fold in buoyant and dense LDL, respectively, at 2.5 mumol/L Cu2+; P< .05). Thus, dense LDL exhibits more rapid alpha-tocopherol depletion and conjugated diene formation than buoyant LDL when oxidation is performed in the absence of ascorbic acid, but these differences are reversed in the presence of ascorbic acid.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7583585

  13. Buoyant force and sinking conditions of a hydrophobic thin rod floating on water

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Lin; Feng, Xi-Qiao; Wang, Gang-Feng

    2007-12-01

    Owing to the superhydrophobicity of their legs, such creatures as water striders and fisher spiders can stand effortlessly, walk and jump quickly on water. Directed toward understanding their superior repellency ability, we consider hydrophobic thin rods of several representative cross sections pressing a water surface. First, the shape function of the meniscus surrounding a circular rod is solved analytically, and thereby the maximal buoyant force is derived as a function of the Young’s contact angle and the rod radius. Then we discuss the critical conditions for a rod to sink into water, including the maximal volume condition and the meniscus-contact condition. Furthermore, we study the sinking conditions and the maximal buoyant forces of hydrophobic long rods with elliptical, triangular, or hexagonal cross-section shapes. The theoretical solutions are quantitatively consistent with existing experimental and numerical results. Finally, the optimized structures of water strider legs are analyzed to elucidate why they can achieve a very big buoyant force on water.

  14. Buoyant force and sinking conditions of a hydrophobic thin rod floating on water.

    PubMed

    Liu, Jian-Lin; Feng, Xi-Qiao; Wang, Gang-Feng

    2007-12-01

    Owing to the superhydrophobicity of their legs, such creatures as water striders and fisher spiders can stand effortlessly, walk and jump quickly on water. Directed toward understanding their superior repellency ability, we consider hydrophobic thin rods of several representative cross sections pressing a water surface. First, the shape function of the meniscus surrounding a circular rod is solved analytically, and thereby the maximal buoyant force is derived as a function of the Young's contact angle and the rod radius. Then we discuss the critical conditions for a rod to sink into water, including the maximal volume condition and the meniscus-contact condition. Furthermore, we study the sinking conditions and the maximal buoyant forces of hydrophobic long rods with elliptical, triangular, or hexagonal cross-section shapes. The theoretical solutions are quantitatively consistent with existing experimental and numerical results. Finally, the optimized structures of water strider legs are analyzed to elucidate why they can achieve a very big buoyant force on water. PMID:18233894

  15. BUOYANT MAGNETIC LOOPS IN A GLOBAL DYNAMO SIMULATION OF A YOUNG SUN

    SciTech Connect

    Nelson, Nicholas J.; Toomre, Juri; Brown, Benjamin P.; Brun, Allan Sacha

    2011-10-01

    The current dynamo paradigm for the Sun and Sun-like stars places the generation site for strong toroidal magnetic structures deep in the solar interior. Sunspots and starspots on Sun-like stars are believed to arise when sections of these magnetic structures become buoyantly unstable and rise from the deep interior to the photosphere. Here, we present the first three-dimensional global magnetohydrodynamic (MHD) simulation in which turbulent convection, stratification, and rotation combine to yield a dynamo that self-consistently generates buoyant magnetic loops. We simulate stellar convection and dynamo action in a spherical shell with solar stratification, but rotating three times faster than the current solar rate. Strong wreaths of toroidal magnetic field are realized by dynamo action in the convection zone. By turning to a dynamic Smagorinsky model for subgrid-scale turbulence, we here attain considerably reduced diffusion in our simulation. This permits the regions of strongest magnetic field in these wreaths to rise toward the top of the convection zone via a combination of magnetic buoyancy instabilities and advection by convective giant cells. Such a global simulation yielding buoyant loops represents a significant step forward in combining numerical models of dynamo action and flux emergence.

  16. On the Alignment of Strain, Vorticity and Scalar Gradient in Turbulent, Buoyant, Nonpremixed Flames

    NASA Technical Reports Server (NTRS)

    Boratav, O. N.; Elghobashi, S. E.; Zhong, R.

    1999-01-01

    The alignment of vorticity and scalar gradient with the eigendirections of the rate of strain tensor is investigated in turbulent buoyant nonpremixed horizontal and vertical flames. The uniqueness of a buoyant nonpremixed flame is that it contains regions with distinct alignment characteristics. The strain-enstrophy angle Psi is used to identify these regions. Examination of the vorticity field and the vorticity production in these different regions indicates that Psi and consequently the alignment properties near the flame surface identified by the mixture fraction band F approximately equals F(sub st) differ from those in the fuel region, F > F(sub st) and the oxidizer region, F < F(sub st). The F approximately equals F(sub st) band shows strain-dominance resulting in vorticity/alpha alignment while F > F(sub st) (and F < F(sub st) for the vertical flame) band(s) show(s) vorticity/beta alignment. The implication of this result is that the scalar dissipation, epsilon(sub F), attains its maximum value always near F approximately equals F(sub st). These results are also discussed within the framework of recent dynamical results [Galanti et al., Nonlinearity 10, 1675 (1997)] suggesting that the Navier-Stokes equations evolved towards an attracting solution. It is shown that the properties of such an attracting solution are also consistent with our results of buoyant turbulent nonpremixed flames.

  17. Buoyant density and molecular weight calculations on an Apple II microcomputer from equilibrium banding experiment on analytical ultracentrifuge.

    PubMed

    Thanaraj, T A; Pandit, M W

    1987-06-01

    Buoyant density is one of the non-destructive measurements of viruses, nucleic acids etc. which help in characterizing these entities in terms of their chemical composition and physical conformation. In recent years equilibrium sedimentation in CsCl buoyant density gradient has been proved to be a powerful tool for genome characterization. The method enables one to obtain information such as the absolute and the relative buoyant density of the material and its molecular weight. This communication describes a program in BASIC which calculates these parameters from the raw data obtained directly from the experiment. The program is fully interactive, user-oriented, and written keeping in view biologists and biochemists as the main users. The program has a built-in option to calculate either the absolute or the relative buoyant density and the molecular weight. PMID:3608444

  18. An improved genetic system for bioengineering buoyant gas vesicle nanoparticles from Haloarchaea

    PubMed Central

    2013-01-01

    Background Gas vesicles are hollow, buoyant organelles bounded by a thin and extremely stable protein membrane. They are coded by a cluster of gvp genes in the halophilic archaeon, Halobacterium sp. NRC-1. Using an expression vector containing the entire gvp gene cluster, gas vesicle nanoparticles (GVNPs) have been successfully bioengineered for antigen display by constructing gene fusions between the gvpC gene and coding sequences from bacterial and viral pathogens. Results To improve and streamline the genetic system for bioengineering of GVNPs, we first constructed a strain of Halobacterium sp. NRC-1 deleted solely for the gvpC gene. The deleted strain contained smaller, more spindle-shaped nanoparticles observable by transmission electron microscopy, confirming a shape-determining role for GvpC in gas vesicle biogenesis. Next, we constructed expression plasmids containing N-terminal coding portions or the complete gvpC gene. After introducing the expression plasmids into the Halobacterium sp. NRC-1 ΔgvpC strain, GvpC protein and variants were localized to the GVNPs by Western blotting analysis and their effects on increasing the size and shape of nanoparticles established by electron microscopy. Finally, a synthetic gene coding for Gaussia princeps luciferase was fused to the gvpC gene fragments on expression plasmids, resulting in an enzymatically active GvpC-luciferase fusion protein bound to the buoyant nanoparticles from Halobacterium. Conclusion GvpC protein and its N-terminal fragments expressed from plasmid constructs complemented a Halobacterium sp. NRC-1 ΔgvpC strain and bound to buoyant GVNPs. Fusion of the luciferase reporter gene from Gaussia princeps to the gvpC gene derivatives in expression plasmids produced GVNPs with enzymatically active luciferase bound. These results establish a significantly improved genetic system for displaying foreign proteins on Halobacterium gas vesicles and extend the bioengineering potential of these novel nanoparticles to catalytically active enzymes. PMID:24359319

  19. Numerical simulations of negatively buoyant jets in an immiscible fluid using the Particle Finite Element Method

    NASA Astrophysics Data System (ADS)

    Mier-Torrecilla, Monica; Geyer, Adelina; Phillips, Jeremy C.; Idelsohn, Sergio R.; Ońate, Eugenio

    2010-05-01

    In this work we investigate numerically the injection of a negatively buoyant jet into a homogenous immiscible ambient fluid using the Particle Finite Element Method (PFEM), a newly developed tool that combines the flexibility of particle-based methods with the accuracy of the finite element discretization. In order to test the applicability of PFEM to the study of negatively buoyant jets, we have compared the two-dimensional numerical results with experiments investigating the injection of a jet of dyed water through a nozzle in the base of a cylindrical tank containing rapeseed oil. In both simulations and experiments, the fountain inlet flow velocity and nozzle diameter were varied to cover a wide range of Reynolds Re and Froude numbers Fr, such that 0.1 < Fr < 30, reproducing both weak and strong fountains in a laminar regime (8 < Re < 1350). Numerical results, together with the experimental observations, allow us to describe three different fountain behaviors that have not been previously reported. Based on the Re and Fr values for the numerical and experimental simulations, we have built a regime map to define how these values may control the occurrence of each of the observed flow types. Whereas the Fr number itself provides a prediction of the maximum penetration height of the jet, its combination with the Re number provides a prediction of the flow behavior for a specific nozzle diameter and injection velocity. Conclusive remarks concerning the dynamics of negatively buoyant jets may be applied later on to several geological situations, e.g. the flow structure of a fully submerged subaqueous eruptive vent discharging magma or the replenishment of magma chambers in the Earth's crust.

  20. Simultaneous Measurement of Temperature and Velocity in Turbulent Buoyant Plume by Combined LIF and PIV Technique

    SciTech Connect

    Yoshie Watanabe; Yuji Hashizume; Nobuyuki Fujisawa

    2006-07-01

    An experimental technique for simultaneous measurement of temperature and velocity in a thermal flow is described. This technique is based on the two-color laser-induced fluorescence technique combined with the particle image velocimetry. Illumination is provided from Nd: YAG laser and the fluorescent dyes are chosen as Rhodamine B and Fluorescent Sodium, which combination allows the accurate velocity measurement in a wide range of flow velocity and high temperature sensitivity in temperature measurement. The measurement of temperature and velocity in turbulent buoyant plume is carried out by this method, and the structure of the plume is studied in connection with the entrainment of surrounding fluid at the interface. (authors)

  1. Dynamic stability of a buoyant quad-rotor aircraft. [for airlifting payloads externally on a sling

    NASA Technical Reports Server (NTRS)

    Nagabhushan, B. L.; Tomlinson, N. P.

    1982-01-01

    Stability characteristics of a buoyant quad-rotor aircraft (BQRA) in hover and forward flight are examined by considering linear, state-variable, and nonlinear flight simulation models of such a configuration. The effects of carrying a sling load on the vehicle dynamics is predicted by considering a coupled model of the two bodies. Inherent stability characteristics of the vehicle are analyzed and compared with those of a helicopter and an airship in free flight. Typical operational conditions that could lead to vehicle instability are described in the flight envelope of interest.

  2. Large Eddy Simulation of a Forced Round Turbulent Buoyant Plume in Neutral Surroundings

    NASA Technical Reports Server (NTRS)

    Basu, A. J.; Mansour, N. N.; Koga, Dennis (Technical Monitor)

    1999-01-01

    Buoyant flows play an important role in various technological and environmental issues. For example, dispersal of pollutants, smoke, or volcano exhaust in the atmosphere, vertical motion of air, formation of clouds and other weather systems, and flows in cooling towers and fires are all determined primarily by buoyancy effects. The buoyancy force in such flows can originate from either a heat source or due to different densities between a fluid and its surroundings. Whatever the cause, the flow can be understood by studying the effects of the tight coupling between the thermal and the velocity fields since density differences can be characterized as temperature differences.

  3. A simple technique for measuring buoyant weight increment of entire, transplanted coral colonies in the field

    PubMed Central

    Herler, Jürgen; Dirnwöber, Markus

    2011-01-01

    Estimating the impacts of global and local threats on coral reefs requires monitoring reef health and measuring coral growth and calcification rates at different time scales. This has traditionally been mostly performed in short-term experimental studies in which coral fragments were grown in the laboratory or in the field but measured ex situ. Practical techniques in which growth and measurements are performed over the long term in situ are rare. Apart from photographic approaches, weight increment measurements have also been applied. Past buoyant weight measurements under water involved a complicated and little-used apparatus. We introduce a new method that combines previous field and laboratory techniques to measure the buoyant weight of entire, transplanted corals under water. This method uses an electronic balance fitted into an acrylic glass underwater housing and placed atop of an acrylic glass cube. Within this cube, corals transplanted onto artificial bases can be attached to the balance and weighed at predetermined intervals while they continue growth in the field. We also provide a set of simple equations for the volume and weight determinations required to calculate net growth rates. The new technique is highly accurate: low error of weight determinations due to variation of coral density (< 0.08%) and low standard error (< 0.01%) for repeated measurements of the same corals. We outline a transplantation technique for properly preparing corals for such long-term in situ experiments and measurements. PMID:22049248

  4. Detection of a buoyant coastal wastewater discharge using airborne hyperspectral and infrared imagery

    NASA Astrophysics Data System (ADS)

    Marmorino, George O.; Smith, Geoffrey B.; Miller, W. D.; Bowles, Jeffrey H.

    2010-01-01

    Municipal wastewater discharged into the ocean through a submerged pipe, or outfall, can rise buoyantly to the sea surface, resulting in a near-field mixing zone and, in the presence of an ambient ocean current, an extended surface plume. In this paper, data from a CASI (Compact Airborne Spectrographic Imager) and an airborne infrared (IR) camera are shown to detect a municipal wastewater discharge off the southeast coast of Florida, U.S.A., through its elevated levels of chromophoric dissolved organic matter plus detrital material (CDOM) and cooler sea surface temperatures. CDOM levels within a ~15-m-diameter surface 'boil' are found to be about twice those in the ambient shelf water, and surface temperatures near the boil are lower by ~0.4°C, comparable to the vertical temperature difference across the ambient water column. The CASI and IR imagery show a nearly identically shaped buoyant plume, consistent with a fully surfacing discharge, but the IR data more accurately delineate the area of most rapid dilution as compared with previous in-situ measurements. The imagery also allows identification of ambient oceanographic processes that affect dispersion and transport in the far field. This includes an alongshore front, which limits offshore dispersion of the discharge, and shoreward-propagating nonlinear internal waves, which may be responsible for an enhanced onshore transport of the discharge.

  5. Characterization of Buoyant Fluorescent Particles for Field Observations of Water Flows

    PubMed Central

    Tauro, Flavia; Aureli, Matteo; Porfiri, Maurizio; Grimaldi, Salvatore

    2010-01-01

    In this paper, the feasibility of off-the-shelf buoyant fluorescent microspheres as particle tracers in turbid water flows is investigated. Microspheres’ fluorescence intensity is experimentally measured and detected in placid aqueous suspensions of increasing concentrations of clay to simulate typical conditions occurring in natural drainage networks. Experiments are conducted in a broad range of clay concentrations and particle immersion depths by using photoconductive cells and image-based sensing technologies. Results obtained with both methodologies exhibit comparable trends and show that the considered particles are fairly detectable in critically turbid water flows. Further information on performance and integration of the studied microspheres in low-cost measurement instrumentation for field observations is obtained through experiments conducted in a custom built miniature water channel. This experimental characterization provides a first assessment of the feasibility of commercially available buoyant fluorescent beads in the analysis of high turbidity surface water flows. The proposed technology may serve as a minimally invasive sensing system for hazardous events, such as pollutant diffusion in natural streams and flash flooding due to extreme rainfall. PMID:22163540

  6. Estimating the neutrally buoyant energy density of a Rankine-cycle/fuel-cell underwater propulsion system

    NASA Astrophysics Data System (ADS)

    Waters, Daniel F.; Cadou, Christopher P.

    2014-02-01

    A unique requirement of underwater vehicles' power/energy systems is that they remain neutrally buoyant over the course of a mission. Previous work published in the Journal of Power Sources reported gross as opposed to neutrally-buoyant energy densities of an integrated solid oxide fuel cell/Rankine-cycle based power system based on the exothermic reaction of aluminum with seawater. This paper corrects this shortcoming by presenting a model for estimating system mass and using it to update the key findings of the original paper in the context of the neutral buoyancy requirement. It also presents an expanded sensitivity analysis to illustrate the influence of various design and modeling assumptions. While energy density is very sensitive to turbine efficiency (sensitivity coefficient in excess of 0.60), it is relatively insensitive to all other major design parameters (sensitivity coefficients < 0.15) like compressor efficiency, inlet water temperature, scaling methodology, etc. The neutral buoyancy requirement introduces a significant (˜15%) energy density penalty but overall the system still appears to offer factors of five to eight improvements in energy density (i.e., vehicle range/endurance) over present battery-based technologies.

  7. Submarine melting at tidewater glaciers: comparison of numerical modelling, buoyant plume theory and hydrographic data.

    NASA Astrophysics Data System (ADS)

    Slater, D. A.; Nienow, P. W.; Goldberg, D. N.; Cowton, T. R.; Sole, A. J.

    2014-12-01

    Observations of the mass balance of the Greenland ice sheet in recent decades have shown significant losses at the coastal margins through the thinning, speed-up and retreat of tidewater glaciers. Ocean forcing, via melting of submerged ice at the calving fronts of tidewater glaciers, has been identified as a possible driver of this behaviour. Such submarine melting may provide a significant direct contribution to the negative mass balance of the glacier and could also amplify calving rates. Quantification of submarine melting remains uncertain however since modelling of fjord circulation and submarine melting is challenging, hydrographic data from pro-glacial fjords are sparse and direct observation of submarine melting at a tidewater glacier has so far proved impossible. Here, we compare submarine melt rates obtained using buoyant plume theory to those from a numerical model (MITgcm), finding reasonable agreement between the two methods. We then use buoyant plume theory, due to its faster computational speed, to investigate the dependence of melt rate on subglacial discharge, subglacial channel size (and thus emerging flow velocity) and fjord-water temperature. Finally we apply the theory to real tidewater glaciers, finding significant gaps between modelled melt rates and those estimated from hydrographic data. We discuss possible reasons for such disagreements and their implications for constraining the importance of submarine melting to tidewater glacier mass balance.

  8. Inertial migration of neutrally buoyant particles in Poiseuille flow: An investigation of multiple equilibrium positions.

    NASA Astrophysics Data System (ADS)

    Chun, Byoungjin; Ladd, Tony

    2006-11-01

    In Poiseuille flow, a neutrally-buoyant particle migrates to a position that is determined by the balance of forces generated by the gradient of the shear rate and interactions of a particle with the container wall. In a cylindrical geometry, uniformly distributed particles migrate to form a stable ring located at approximately 0.6R, where R is radius of the cylinder. However, a recent experiment shows two interesting observations. First, the suspended particles tend to align near the walls to make linear chains of more or less equally-spaced particles. Second, at high Reynolds numbers (Reynolds number is about 1000), an additional inner ring of particles was observed, when the ratio of particle diameter to cylinder diameter was of the order of 1:10. We have therefore investigated inertial migration of the neutrally buoyant particles by the lattice Boltzmann method in the range of Reynolds numbers from 100 to 1000. Our numerical results show linear trains of particles along the axis of the flow, near the equilibrium positions of single particles. At Reynolds number greater than 700, particles were also seen near the center of the duct. We will present a new mechanism to explain these results by comparing the migration of single particles and rigid dumbbells, Reynolds numbers in the range of 100 to 1000.

  9. The vertical distribution of buoyant plastics at sea: an observational study in the North Atlantic Gyre

    NASA Astrophysics Data System (ADS)

    Reisser, J.; Slat, B.; Noble, K.; du Plessis, K.; Epp, M.; Proietti, M.; de Sonneville, J.; Becker, T.; Pattiaratchi, C.

    2015-02-01

    Millimetre-sized plastics are numerically abundant and widespread across the world's ocean surface. These buoyant macroscopic particles can be mixed within the upper water column by turbulent transport. Models indicate that the largest decrease in their concentration occurs within the first few metres of water, where in situ observations are very scarce. In order to investigate the depth profile and physical properties of buoyant plastic debris, we used a new type of multi-level trawl at 12 sites within the North Atlantic subtropical gyre to sample from the air-seawater interface to a depth of 5 m, at 0.5 m intervals. Our results show that plastic concentrations drop exponentially with water depth, and decay rates decrease with increasing Beaufort number. Furthermore, smaller pieces presented lower rise velocities and were more susceptible to vertical transport. This resulted in higher depth decays of plastic mass concentration (milligrams m-3) than numerical concentration (pieces m-3). Further multi-level sampling of plastics will improve our ability to predict at-sea plastic load, size distribution, drifting pattern, and impact on marine species and habitats.

  10. Beauty of lotus is more than skin deep: highly buoyant superhydrophobic films.

    PubMed

    Choi, Yuri; Brugarolas, Teresa; Kang, Sung-Min; Park, Bum Jun; Kim, Byeong-Su; Lee, Chang-Soo; Lee, Daeyeon

    2014-05-28

    We develop highly buoyant superhydrophobic films that mimic the three-dimensional structure of lotus leaves. The high buoyancy of these structure stems from mechanically robust bubbles that significantly reduce the density of the superhydrophobic films. These highly buoyant superhydrophobic films stay afloat on water surface while carrying a load that is more than 200 times their own weight. In addition to imparting high buoyancy, the incorporation of robust hydrophilic bubbles enables the formation of free-standing structures that mimic the water-collection properties of Namib Desert beetle. We believe the incorporation of robust bubbles is a general method that opens up numerous possibilities in imparting high buoyancy to different structures that needs to stay afloat on water surfaces and can potentially be used for the fabrication of lightweight materials. (Image on the upper left reproduced with permission from Yong, J.; Yang, Q.; Chen, F.; Zhang, D.; Du, G.; Si, J.; Yun, F.; Hou, X. A Bioinspired Planar Superhydrophobic Microboat. J. Micromech. Microeng. 2014, 24, 035006). PMID:24801001

  11. Cross-shelf penetrating fronts: A response of buoyant coastal water to ambient pycnocline undulation

    NASA Astrophysics Data System (ADS)

    Wu, Hui

    2015-07-01

    Offshore-penetrating tongues of coastal water have been frequently observed during the downwelling-favorable monsoon season at specific locations in waters off the Min-Zhe Coast, a region influenced by a buoyant coastal current originating from the Changjiang River. This process plays an important role in cross-shelf material exchange in the East China Sea (ECS), but the underlying mechanisms are not fully understood. This study suggests that the penetrating fronts are the response of buoyant coastal water to along-isobath undulation of the ambient pycnocline that is controlled by the temperature stratification in seawater. When the ambient pycnocline descends sharply in the downshelf direction, coastal water is transported offshore due to the joint effect of baroclinicity and relief (JEBAR), and thus generates a penetrating front. Along-isobath pycnocline undulation in the ECS can arise from nonuniform tidal mixing due to tidal wave divergence off the Min-Zhe Coast. Onshelf intrusion of cold and dense Kuroshio subsurface water prevents thorough mixing of the pycnocline. Different from the common cross-shelf transport phenomena induced by winds or frontal instabilities, such a tidal mechanism should produce penetrating fronts at specific locations, in agreement with observations.

  12. Particle-size distributions and their effect on entrainment in turbulent buoyant plumes

    NASA Astrophysics Data System (ADS)

    Jessop, D.; Jellinek, M.

    2014-12-01

    Explosive volcanic eruptions produce turbulent, buoyant jets that contain entrained particles. In these flows, turbulent entrainment of ambient air controls the ultimate rise height and spread of the jet. Volcanic jets are a natural example of these dilute particle-gas systems and the particles they contain can strongly control the dynamics of the bulk flow through the coupling between themselves and the surrounding fluid. The metric for the type of particle-fluid coupling is the Stokes number, St, which measures the timescale for the particles inertia against the timescale for the flow field, typically the overturn time of an eddy. We show that particles that are critically coupled to the flow (St=O(1)) change the turbulent structure of the flow by eddy stretching leading to energy cascades which are anisotropic in the horizontal and vertical directions. Crucially, flows laden with such particles carry considerably more energy in the stream-wise direction than particle-free flows which leads to a decrease in entrainment. This behaviour suggests that turbulent entrainment can effectively be shut down under critical St, giving rise to collapsing fountains whereas particle-free flows under the same source conditions would produce buoyant plumes. Changes in entrainment rates in volcanic jets are also manifested in readily observable features such as the rise height. We may therefore infer entrainment rates and their evolution over the course of an eruption from the maximum height and neutral buoyancy level.

  13. Formation of lower continental crust by relamination of buoyant arc lavas and plutons

    NASA Astrophysics Data System (ADS)

    Kelemen, Peter B.; Behn, Mark D.

    2016-03-01

    The formation of the Earth's continents is enigmatic. Volcanic arc magmas generated above subduction zones have geochemical compositions that are similar to continental crust, implying that arc magmatic processes played a central role in generating continental crust. Yet the deep crust within volcanic arcs has a very different composition from crust at similar depths beneath the continents. It is therefore unclear how arc crust is transformed into continental crust. The densest parts of arc lower crust may delaminate and become recycled into the underlying mantle. Here we show, however, that even after delamination, arc lower crust still has significantly different trace element contents from continental lower crust. We suggest that it is not delamination that determines the composition of continental crust, but relamination. In our conceptual model, buoyant magmatic rocks generated at arcs are subducted. Then, upon heating at depth, they ascend and are relaminated at the base of the overlying crust. A review of the average compositions of buoyant magmatic rocks -- lavas and plutons -- sampled from the Aleutians, Izu-Bonin-Marianas, Kohistan and Talkeetna arcs reveals that they fall within the range of estimated major and trace elements in lower continental crust. Relamination may thus provide an efficient process for generating lower continental crust.

  14. Buoyant Response of the Tank 241-SY-101 Crust to Transfer and Back-Dilution

    SciTech Connect

    CW Stewart

    1999-11-08

    The mixer pump installed in Hanford Tank 241-SY-101 (SY-101) in July 1993 has prevented the large buoyant displacement gas release events (BD GRE) it has historically exhibited. But the absence of periodic disruption from GREs and the action of mixing have allowed the crust to grow. The accelerated gas retention has resulted in over 30 inches of waste level growth and the flammable gas volume stored in the crust has become a hazard. To remediate gas retention in the crust and the potential for buoyant displacement gas releases from below the crust, SY-101 will be diluted in the fall of 1999 to dissolve a large fraction of the solids in the tank. The plan is to transfer waste out and back-dilute with water in several steps of about 100,000 gallons each. Back-dilution water may be added at the transfer pump inlet, the base of the mixer pump, and on top of the crust. The mixer pump will continue to be required to prevent formation of a deep nonconnective layer and resumption of BD GREs. Therefore, it is vital to ensure that the transfer and back-dilution processes do not significantly degrade the pump's effectiveness. Part of the strategy to avoid mixer pump degradation is to keep the base of the crust layer well above the pump inlet, which is 236 inches above the tank bottom. The maximum transfer for which an equal back-dilution is possible without sinking the crust is 90 kgal if water is injected at the 96-inch transfer pump inlet and 120 kgal for injection at the 9-inch mixer pump burrowing ring. To keep the crust base above the lowest observed elevation of 295 inches, transfer and back-dilution must be limited to 143 kgal and 80 kgal, respectively, for the 96-inch back-dilution and 175 kgal with a 112 kgal back-dilution using the 9-inch back-dilution elevation. These limits can be avoided by adding water to the top of the crust to dissolve the negatively buoyant layers. If 20 kgal of water is placed on top of the crust and the rest of the back-dilution is placed under the crust, back-dilution becomes limited by crust sinking at a 128 kgal transfer using the 96-inch injection point and at 160 kgal at 9 inches. The crust base remains well above the 295-inch minimum, and crust base elevation does not limit transfer volume. This result shows that top dilution is very beneficial in providing operational flexibility to the transfer and back-dilution process.

  15. Video Image Analysis of Turbulent Buoyant Jets Using a Novel Laboratory Apparatus

    NASA Astrophysics Data System (ADS)

    Crone, T. J.; Colgan, R. E.; Ferencevych, P. G.

    2012-12-01

    Turbulent buoyant jets play an important role in the transport of heat and mass in a variety of environmental settings on Earth. Naturally occurring examples include the discharges from high-temperature seafloor hydrothermal vents and from some types of subaerial volcanic eruptions. Anthropogenic examples include flows from industrial smokestacks and the flow from the damaged well after the Deepwater Horizon oil leak of 2010. Motivated by a desire to find non-invasive methods for measuring the volumetric flow rates of turbulent buoyant jets, we have constructed a laboratory apparatus that can generate these types of flows with easily adjustable nozzle velocities and fluid densities. The jet fluid comprises a variable mixture of nitrogen and carbon dioxide gas, which can be injected at any angle with respect to the vertical into the quiescent surrounding air. To make the flow visible we seed the jet fluid with a water fog generated by an array of piezoelectric diaphragms oscillating at ultrasonic frequencies. The system can generate jets that have initial densities ranging from approximately 2-48% greater than the ambient air. We obtain independent estimates of the volumetric flow rates using well-calibrated rotameters, and collect video image sequences for analysis at frame rates up to 120 frames per second using a machine vision camera. We are using this apparatus to investigate several outstanding problems related to the physics of these flows and their analysis using video imagery. First, we are working to better constrain several theoretical parameters that describe the trajectory of these flows when their initial velocities are not parallel to the buoyancy force. The ultimate goal of this effort is to develop well-calibrated methods for establishing volumetric flow rates using trajectory analysis. Second, we are working to refine optical plume velocimetry (OPV), a non-invasive technique for estimating flow rates using temporal cross-correlation of image sequence data. Third, we are working to develop a computational algorithm that can quickly and automatically identify turbulent buoyant jets within video imagery so that autonomous instruments or vehicles can locate and investigate these flows in remote environments without human intervention.

  16. Three-Dimensional Upward Flame Spreading in Partial-Gravity Buoyant Flows

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt R.; Feier, Ioan I.; Shih, Hsin-Yi; T'ien, James S.

    2001-01-01

    Reduced-gravity environments have been used to establish low-speed, purely forced flows for both opposed- and concurrent-flow flame spread studies. Altenkirch's group obtained spacebased experimental results and developed unsteady, two-dimensional numerical simulations of opposed-flow flame spread including gas-phase radiation, primarily away from the flammability limit for thin fuels, but including observations of thick fuel quenching in quiescent environments. T'ien's group contributed some early flame spreading results for thin fuels both in opposed flow and concurrent flow regimes, with more focus on near-limit conditions. T'ien's group also developed two- and three-dimensional numerical simulations of concurrent-flow flame spread incorporating gas-phase radiative models, including predictions of a radiatively-induced quenching limit reached in very low-speed air flows. Radiative quenching has been subsequently observed in other studies of combustion in very low-speed flows including other flame spread investigations, droplet combustion and homogeneous diffusion flames, and is the subject of several contemporary studies reported in this workshop. Using NASA aircraft flying partial-gravity "parabolic" trajectories, flame spreading in purely buoyant, opposed-flow (downward burning) has been studied. These results indicated increases in flame spread rates and enhanced flammability (lower limiting atmospheric oxygen content) as gravity levels were reduced from normal Earth gravity, and were consistent with earlier data obtained by Altenkirch using a centrifuge. In this work, experimental results and a three-dimensional numerical simulation of upward flame spreading in variable partial-gravity environments were obtained including some effects of reduced pressure and variable sample width. The simulation provides physical insight for interpreting the experimental results and shows the intrinsic 3-D nature of buoyant, upward flame spreading. This study is intended to link the evolving understanding of flame spreading in purely-forced flows to the purely-buoyant flow environment, particularly in the concurrent flow regime; provide additional insight into the existence of steady flame spread in concurrent flows; and stimulate direct comparisons between opposed- and concurrent-flow flame spread. Additionally, this effort is intended to provide direct practical understanding applicable to fire protection planning for the habitable facilities in partial gravity environments of anticipated Lunar and Martian explorations.

  17. Further studies on the relationship between platelet buoyant density and platelet age

    SciTech Connect

    Boneu, B.; Vigoni, F.; Boneu, A.; Caranobe, C.; Sie, P.

    1982-01-01

    The relationship between platelet buoyant density and platelet age was investigated in eight human subjects submitted to an autologous chromium labeled platelet survival study. Platelets were isolated after isopycnic centrifugation using eight discontinuous isoosmotic stractan gradients (five subjects), or various continuous and linear isoosmolar gradients (three subjects). A paradoxical radioactivity enrichment of the dense platelets and a premature loss of radioactivity in the light platelets were observed. These results are explained by a shift of the radioactivity distribution curve toward higher densities during the 3-4 days after platelet injection, while the standard deviation of the distribution was conserved throughout the platelet life span. These results suggest that young platelets are heterogeneous and slightly less dense than the total platelet population.

  18. Wind and tidal forcing of a buoyant plume, Mobile Bay, Alabama

    USGS Publications Warehouse

    Stumpf, R.P.; Gelfenbaum, G.; Pennock, J.R.

    1993-01-01

    AVHRR satellite imagery and in situ observations were combined to study the motion of a buoyant plume at the mouth of Mobile Bay, Alabama. The plume extended up to 30 km from shore, with a thickness of about 1 m. The inner plume, which was 3-8 m thick, moved between the Bay and inner shelf in response to tidal forcing. The tidal prism could be identified through the movement of plume waters between satellite images. The plume responded rapidly to alongshore wind, with sections of the plume moving at speeds of more than 70 cm s-1, about 11% of the wind speed. The plume moved predominantly in the direction of the wind with a weak Ekman drift. The enhanced speed of the plume relative to normal surface drift is probably due to the strong stratification in the plume, which limits the transfer of momentum into the underlying ambient waters. ?? 1993.

  19. Modification of the PPSP (Power Plant Research Program) dispersion model for highly buoyant plumes

    SciTech Connect

    Weil, J.C.; Corio, L.A.

    1988-06-01

    The report describes a modification of the PPSP dispersion model for tall stack plumes. The modification accounts for the dispersion of highly buoyant plumes that loft or remain near the top of the convective boundary layer and resist downward mixing. The main idea is that plume segments are mixed to the ground only by downdrafts with sufficient kinetic energy to overcome the potential energy difference between the plume and the ambient air. Simple analytical expressions are derived for the crosswind-integrated concentration and the ground-level concentration (GLC). They are based on the conservation of plume buoyancy, the probability distribution of the ambient vertical velocities, and the lateral plume spread. Evaluation of the modified model with GLCs around power plant stacks shows that it performs better than the original model.

  20. Remote Under-Ice Roving in Alaska with the Buoyant Rover for Under-Ice Exploration

    NASA Astrophysics Data System (ADS)

    Berisford, D. F.; Leichty, J.; Klesh, A.; Hand, K. P.

    2013-12-01

    The Buoyant Rover for Under-Ice Exploration (BRUIE) is two-wheeled robot capable of roving in two-dimensional space in the under-ice environment. The rover has positive buoyancy, allowing it to stick to the ice underside and operate using similar control principles as those used for traditional above-ground rovers. Recently added capability allows the rover to operate without a tether, communicating with a nearby above-ice ground station, which can relay data to a remote command center for remote operation. Additional upgrades include a dissolved methane sensor and improved capability for escape from entrapment in soft ice pockets. The system has been tested in thermokarst lakes near Barrow, Alaska, and data from onboard video and methane sensors gives scientific insight to the formation and distribution of trapped methane pockets in the lake ice. Here we present the updated design and preliminary data from deployments in the fall seasons of 2012 and 2013.

  1. Inertial migration of neutrally buoyant particles in a square duct: An investigation of multiple equilibrium positions

    NASA Astrophysics Data System (ADS)

    Chun, B.; Ladd, A. J. C.

    2006-03-01

    Inertial migration of neutrally buoyant particles in a square duct has been investigated by numerical simulation in the range of Reynolds numbers from 100 to 1000. Particles migrate to one of a small number of equilibrium positions in the cross-sectional plane, located near a corner or at the center of an edge. In dilute suspensions, trains of particles are formed along the axis of the flow, near the planar equilibrium positions of single particles. At high Reynolds numbers (Re?750), we observe particles in an inner region near the center of the duct. We present numerical evidence that closely spaced pairs of particles can migrate to the center at high Reynolds number.

  2. Experimental insights on the development of buoyant plumes injected into a porous media

    NASA Astrophysics Data System (ADS)

    Lyu, Xiaoying; Woods, Andrew W.

    2016-01-01

    We describe a series of new laboratory experiments which examine the rise of a two-dimensional buoyancy-driven plume of freshwater through a porous layer initially saturated with aqueous saline solution. Measurements show that the plume head accounts for a constant fraction of about 0.7 of the buoyancy supplied at the source and that it grows as it rises through the porous layer. However, the morphology of the plume head becomes increasingly complex as the ratio of the injection speed to the buoyancy rise speed increases, with the fluid spreading laterally and developing localized buoyant fingers which intermingle with the ambient fluid. Behind the plume head, a tail of nearly constant width develops providing a pathway from the source to the plume head. These starting plume dynamics may be relevant for buoyancy-driven contaminant dispersal and also for the convection which develops during CO2 sequestration as CO2 dissolves into aquifer water.

  3. Buoyant thermal plumes from planetary landers and rovers: Application to sizing of meteorological masts

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Sotzen, Kristin S.

    2014-01-01

    Objective. Landers on Mars and Titan may have warm surfaces as a result of solar heating or the carriage of radioisotope power sources. This warmth can perturb downwind meteorological measurements, but cannot be modeled as a simple aerodynamic wake because buoyant forces can be significant. Methods. We use an analytic model from the industrial aerodynamics literature on smoke dispersion from fires and smokestacks to evaluate the plume trajectories. Computational Fluid Dynamics (CFD) simulations are also performed for a Titan lander. Results. CFD yields results similar to the analytic model. (Albeit with a possibly weaker dependence on windspeed than the classic model.) We apply the models to evaluate the probability of immersion of instrumentation in plumes from the Mars Science Laboratory (MSL) Curiosity and for a Titan lander under various wind scenarios. Conclusions. Lander perturbations can be easily calculated. Practice implications. None.

  4. A numerical study of the motion of a neutrally buoyant cylinder in two dimensional shear flow

    NASA Astrophysics Data System (ADS)

    Pan, Tsorng-Whay; Huang, Shih-Lin; Chen, Shih-Di; Chu, Chin-Chou; Chang, Chien-Cheng

    2012-11-01

    We have investigated the motion of a neutrally buoyant cylinder of circular or elliptic shape in two dimensional shear flow of a Newtonian fluid by direct numerical simulation. The numerical results are validated by comparisons with existing theoretical, experimental and numerical results, including a power law of the normalized angular speed versus the particle Reynolds number. The centerline between two walls is an expected equilibrium position of the cylinder mass center in shear flow. When placing the particle away from the centerline initially, it migrates toward another equilibrium position for higher Reynolds numbers due to the interplay between the slip velocity, the Magnus force, and the wall repulsion force. T-W Pan acknowledges the support by the US NSF and S-L Huang, S-D Chen, C-C Chu, C-C Chang acknowledge the support by the National Science Council of Taiwan, ROC.

  5. Laminar Smoke Point Based Subgrid Soot Radiation Modeling Applied to LES of Buoyant Turbulent Diffusion Flames

    NASA Astrophysics Data System (ADS)

    Chatterjee, Prateep; de Ris, John L.; Wang, Yi; Krishnamoorthy, Niveditha; Dorofeev, Sergey B.

    2012-06-01

    Large eddy simulations (LES) of gaseous buoyant turbulent flames have been conducted with the application of a flamelet based soot-radiation model. The subgrid model applies a turbulent eddy description of soot formation, oxidation and radiation and is based on the laminar smoke point concept. Two parameters, a local turbulent strain rate and prior enthalpy loss/gain fraction influence the soot formation and radiation. Radiation heat transfer is simulated by solving the finite volume discretized form of the radiative transfer equation (RTE) with the subgrid soot-radiation model implemented. The radiant heating of surfaces in close proximity of the flames is computed and predicted heat fluxes and surface temperatures are compared against experimental data. Fire growth in a rack storage arrangement is simulated with the application of a pyrolysis model. Computed heat release rate (HRR) is compared against experimental data.

  6. Buoyant convection during the growth of compound semiconductors by the liquid-encapsulated Czochralski process with an axial magnetic field and with a non-axisymmetric temperature

    SciTech Connect

    Ma, N.; Walker, J.S.

    1995-12-31

    This paper treats the buoyant convection of a molten semiconductor in a cylindrical crucible with a vertical axis, with a uniform vertical magnetic field, and with a non-axisymmetric temperature. Most previous treatments of melt motions with vertical magnetic fields have assumed that the temperature and buoyant convection were axisymmetric. In reality, the temperature and resultant buoyant convection often deviate significantly from axisymmetry. For a given non-axisymmetric temperature, the electromagnetic suppression of the axisymmetric part of the buoyant convection is stronger than that of the non-axisymmetric part, so that the deviation from an axisymmetric melt motion increases as the magnetic field strength is increased. The non-axisymmetric part of the buoyant convection includes relatively strong azimuthal velocities adjacent to the electrically insulating vertical crucible wall, because this wall blocks the radial electric currents needed to suppress azimuthal velocities.

  7. Buoyant Effects on the Flammability of Silicone Samples Planned for the Spacecraft Fire Experiment (Saffire)

    NASA Technical Reports Server (NTRS)

    Niehaus, Justin E.; Ferkul, Paul V.; Gokoglu, Suleyman A.; Ruff, Gary A.

    2015-01-01

    Flammability experiments on silicone samples were conducted in anticipation of the Spacecraft Fire Experiment (Saffire). The sample geometry was chosen to match the NASA 6001 Test 1 specification, namely 5 cm wide by 30 cm tall. Four thicknesses of silicone (0.25, 0.36, 0.61 and 1.00 mm) were examined. Tests included traditional upward buoyant flame spread using Test 1 procedures, downward opposed-flow flame spread, horizontal and angled flame spread, and forced-flow upward and downward flame spread. In addition to these configurations, upward and downward tests were conducted in a chamber with varying oxygen concentrations. In the upward buoyant flame spread tests, the flame generally did not burn the entire sample. As thickness was increased, the flame spread distance decreased before flame extinguishment. For the thickest sample, ignition could not be achieved. In the downward tests, the two thinnest samples permitted the flame to burn the entire sample, but the spread rate was lower compared to the corresponding upward values. The other two thicknesses could not be ignited in the downward configuration. The increased flammability for downward spreading flames relative to upward ones is uncommon. The two thinnest samples also burned completely in the horizontal configuration, as well as at angles up to 75 degrees from the horizontal. Upward tests in air with an added forced flow were more flammable. The upward and downward flammability behavior was compared in atmospheres of varying oxygen concentration to determine a maximum oxygen concentration for each configuration. Complementary analyses using EDS, TGA, and SEM techniques suggest the importance of the silica layer deposited downstream onto the unburned sample surface.

  8. Flow-Field Characteristics of High-Temperature Annular Buoyant Jets and Their Development Laws Influenced by Ventilation System

    PubMed Central

    Liu, Jiaping; Wang, Hai; Liu, Qiuhan

    2013-01-01

    The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0?Pa to ?5?Pa. PMID:24000278

  9. Buoyant Effects on the Flammability of Silicone Samples Planned for the Spacecraft Fire Experiment (Saffire)

    NASA Technical Reports Server (NTRS)

    Niehaus, Justin; Ferkul, Paul V.; Gokoglu, Suleyman; Ruff, Gary

    2015-01-01

    Flammability experiments on silicone samples were conducted in anticipation of the Spacecraft Fire Experiment (Saffire). The sample geometry was chosen to match the NASA 6001 Test 1 specification, namely 5 cm wide by 30 cm tall. Four thicknesses of silicone (0.25, 0.36, 0.61 and 1.00 mm) were examined. Tests included traditional upward buoyant flame spread using Test 1 procedures, downward opposed flow flame spread, horizontal and angled flame spread, forced flow upward and downward flame spread. In addition to these configurations, upward and downward tests were also conducted in a chamber with varying oxygen concentrations. In the upward buoyant flame spread tests, the flame generally did not burn the entire sample. As thickness was increased, the flame spread distance decreased before flame extinguishment. For the thickest sample, ignition could not be achieved. In the downward tests, the two thinnest samples permitted the flame to burn the entire sample, but the spread rate was lower compared to the corresponding upward values. The other two thicknesses could not be ignited in the downward configuration. The increased flammability for downward spreading flames relative to upward ones is uncommon. The two thinnest samples also burned completely in the horizontal configuration, as well as at angles up to 75 degrees from the horizontal. The upward and downward flammability behavior was compared in atmospheres of varying oxygen concentration to determine a maximum oxygen concentration for each configuration. Upward tests in air with an added forced flow were more flammable. Complementary analyses using SEM and TGA techniques suggest the importance of the silica layer formed on the burned sample surface. As silicone burns upward, silica deposits downstream ‱If the silicone is ignited in the downward configuration, it burns the entire length of the sample ‱Burning upward at an angle increases the burn length in some cases possibly due to less silica deposition ‱Forced flow in the upward burning case increases flammability, likely due to an increase in convective flow preventing silica from depositing ‱Samples in upward configuration burning under forced flow self extinguish after forced flow is removed

  10. The effects of possibly buoyant flat slab segments on Nazca and South American plate motions

    NASA Astrophysics Data System (ADS)

    Lithgow-Bertelloni, C. R.; Shea, R.; Crameri, F.

    2014-12-01

    Flat slabs are ubiquitous today and in Earth's past, present in at least 10% of present-day subduction zones. The Nazca slab is a classic example with large dip variations along strike, including two prominent flat segments in Peru and Argentina that coincide with the subduction of aseismic ridges. The origin of flat segments remain enigmatic though much work has examined the consequences for upper plate deformation and continued subduction. In the case of the Argentinian flat segment, detailed seismic imaging has shown significantly increased crustal thickness in the flat part of the slab. Our present understanding of oceanic crust formation suggests that incrased crustal thickness forms in response to larger degrees of partial melt, which in turn decrease the water content of the formed crust. The residuum from this process is depleted. The resulting combined lithospheric column is buoyant with respect to the underlying mantle, and likely cold from its contact with the overlying plate and unlikely to undergo the basalt-eclogite transition due to kinetic hindrances. This has consequences for mantle flow and the shear stresses it exerts at the base of the lithosphere and hence to plate motions. Interestingly, the motion of the Nazca-South America pair is difficult to reproduce even in the most sophisticated models (Stadler et al. 2010) without invoking special coupling, rheology or forces. We examine the effects of the subduction of neutral and buoyant flat segments on mantle flow and plate motions, globally and locally for Nazca and South America. We construct high-resolution models of the morphology and density structure of the Nazca slab and embed them in an existing global slab model. We compute the global viscous flow induced and predict plate motions consistent with the density heterogeneity and plate geometry. As an end member we also examine a Nazca slab that dips uniformly with a 30 degree dip. We find, perhaps unsurprisingly, that the most important factor in matching plate velocities today is not the density structure of the slab but its geometry. A slab that dips at 30 degrees reproduces the Nazca plate motions almost exactly, with minor improvements when the real morphology is added. The lower mantle buoyancy remains important for the South American motions. Changes in plate or plate boundary rheology are not needed.

  11. The Melt Segregation During Ascent of Buoyant Diapirs in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Behn, M. D.; Parmentier, E. M.; Kincaid, C. R.

    2014-12-01

    Cold, low-density diapirs arising from hydrated mantle and/or subducted sediments on the top of subducting slabs may transport key chemical signatures from the slab to the shallow source region for arc magmas. These chemical signatures are strongly influenced by melting of this buoyant material during its ascent. However, to date there have been relatively few quantitative models to constrain melting and melt segregation in an ascending diapir, as well as the induced geochemical signature. Here, we use a two-phase Darcy-Stokes-energy model to investigate thermal evolution, melting, and melt segregation in buoyant diapirs as they ascend through the mantle wedge. Using a simplified 2-D axi-symmetric circular geometry we investigate diapir evolution in three scenarios with increasing complexity. First, we consider a case without melting in which the thermal evolution of the diapir is controlled solely by thermal diffusion during ascent. Our results show that for most cases (e.g., diapir radius ≀ 3.7 km and diapir generation depths of ~ 75 km) thermal diffusion times are smaller than the ascent time—implying that the diapir will thermal equilibrate with the mantle wedge. Secondly, we parameterize melting within the diapir, but without melt segregation, and add the effect of latent heat to the thermal evolution of the diapir. Latent heat significantly buffers heating of the diapir. For the diapir with radius ~3.7 km, the heating from the outside is slowed down ~30%. Finally, we include melt segregation within the diapir in the model. Melting initiates at the boundaries of the diapir as the cold interior warms in response to thermal equilibration with the hot mantle wedge. This forms a high porosity, high permeability rim around the margin of the diapir. As the diapir continues to warm and ascend, new melts migrate into this rim and are focused upward, accumulating at the top of the diapir. The rim thus acts like an annulus melt channel isolating the central part of diapir from the hot exterior and leading to even slower heating rates compared to cases without melt segregation. These model results suggest that the melting and melt migration in an ascending diapir will segregate the interior from the outer rim, and may generate strong chemical gradients across the diapir.

  12. Evolution of localized blobs of swirling or buoyant fluid with and without an ambient magnetic field

    SciTech Connect

    Davidson, P. A.; Sreenivasan, Binod; Aspden, A. J.

    2007-02-15

    We investigate the evolution of localized blobs of swirling or buoyant fluid in an infinite, inviscid, electrically conducting fluid. We consider the three cases of a strong imposed magnetic field, a weak imposed magnetic field, and no magnetic field. For a swirling blob in the absence of a magnetic field, we find, in line with others, that the blob bursts radially outward under the action of the centrifugal force, forming a thin annular vortex sheet. A simple model of this process predicts that the vortex sheet thins exponentially fast and that it moves radially outward with constant velocity. These predictions are verified by high-resolution numerical simulations. When an intense magnetic field is applied, this phenomenon is suppressed, with the energy and angular momentum of the blob now diffusing axially along the magnetic field lines, converting the blob into a columnar structure. For modest or weak magnetic fields, there are elements of both types of behavior, with the radial bursting dominating over axial diffusion for weak fields. However, even when the magnetic field is very weak, the flow structure is quite distinct to that of the nonmagnetic case. In particular, a small but finite magnetic field places a lower bound on the thickness of the annular vortex sheet and produces an annulus of counter-rotating fluid that surrounds the vortex core. The behavior of the buoyant blob is similar. In the absence of a magnetic field, it rapidly develops the mushroomlike shape of a thermal, with a thin vortex sheet at the top and sides of the mushroom. Again, a simple model of this process predicts that the vortex sheet at the top of the thermal thins exponentially fast and rises with constant velocity. These predictions are consistent with earlier numerical simulations. Curiously, however, it is shown that the net vertical momentum associated with the blob increases linearly in time, despite the fact that the vertical velocity at the front of the thermal is constant. As with the swirling blob, an imposed magnetic field inhibits the formation of a vortex sheet. A strong magnetic field completely suppresses the phenomenon, replacing it with an axial diffusion of momentum, while a weak magnetic field allows the sheet to form, but places a lower bound on its thickness. The magnetic field does not, however, change the net vertical momentum of the blob, which always increases linearly with time.

  13. The spatial distribution and speciation of iron in buoyant hydrothermal plumes of the Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Cron, B. R.; Toner, B. M.; Bennett, S. A.; German, C. R.; Dick, G.; Breier, J. A.

    2012-12-01

    Biogeochemical cycling of elements, such as iron and sulfur, at mid-ocean ridge spreading centers may modulate hydrothermal fluxes to the ocean. To better understand the nature and scale of these processes, the geochemical gradients in buoyant plumes were examined at the Mid-Cayman Rise, a short (~110 km) ultra-slow spreading center in the Caribbean Sea that hosts the deepest known high temperature venting. Changes in particulate iron and sulfur speciation were measured in the first 40-50 m of buoyant plumes at two vent fields, Von Damm (2,300m) and Piccard (5,000m). These data will be used to identify products of precipitation reactions and define particulate energy sources available for microbial metabolism. A series of samples were collected by in situ filtration at 0.5 m and 50 m above the Beebe Vents, Piccard hydrothermal field and at 1 m, 8 m, and 40 m above the central spire of the Von Damm vent field using the ROV Jason and CTD-casts. Samples were packaged under dinitrogen and frozen shipboard to preserve oxidation-reduction sensitive species for microprobe Fe 1s and S 1s X-ray absorption near edge structure (XANES) spectroscopy (Advanced Light Source, Lawrence Berkeley National Laboratory, beamline 10.3.2). The Von Damm vent is characterized by shimmering vent fluids with dilute particulates in the buoyant plume. Within the particulate phase, the Von Damm buoyant plume was comprised of 38 mol % Fe-sulfides, 40 mol % Fe(II), and 21 mol % Fe(III) at 1 m. At 8 m it is comprised of 32 mol % Fe-sulfides, 7 % Fe(II), and 59 mol % Fe(III). When the plume reaches 40 m, it is 6 mol % Fe-sulfides, 8 mol % Fe(II), 72 mol % Fe(III), and 14 mol % Fe(0). The Beebe vents are characterized by very dense particle formation in their buoyant plumes. The Beebe vent plume sampled comprised 65 mol % sulfides, 3 % mol Fe(II) & 32 mol % Fe(III)ŹŹŹŹ at 0.5 m. As the plume reached 50 m above the vent, the fluids were 43 mol % sulfide and 56 mol % Fe(III). Both buoyant plume samples were dominated by reduced iron species that rapidly become more oxidized as they reacted with deep-sea water entrained into the plume. The next steps for this study are to quantify iron and sulfur species in the plumes, and identify the microbial communities that are closely associated with particulate iron and sulfur using fluorescent in situ hybridization (FISH).

  14. Poiseuille flow of a mixture of neutrally buoyant particles in a fluid

    SciTech Connect

    Reinerrsman, P.N.

    1988-01-01

    Constitutive equations are given for the stress, couple stress, and interphase momentum transfer in a mixture consisting of neutrally buoyant particles in a fluid. The interphase momentum transfer terms include objective expressions quantifying Stokes; drag, Faxen force, shear life, Magnus lift, and rotational drag. Coefficients of the drag and lift terms are deduced from macroscopic theory. The viscosity of the solid phase and the cross viscosities are estimated to coincide with previous work in micropolar flow theory. The resulting equations of motion are solved numerically for this general model and for the subset of this model which complies with the principle of phase separation. These solutions are compared with the flows predicted by micropolar theory. Although the micropolar theory may provide a good approximation for multiphase flow in some regimes, micropolar theory cannot model the phase velocity differences and volume fraction gradients that occur in high pressure, small channel flow. The effect of controlling the boundary values of particle and fluid spin is investigated, including the effect of back spin and symmetric spin.

  15. Laminar-turbulent transition of channel flows: the effect of neutrally buoyant finite-size particles

    NASA Astrophysics Data System (ADS)

    Abbas, Micheline; Loisel, Vincent; Masbernat, Olivier; Climent, Eric

    2013-11-01

    Numerical simulations were performed on channel flows laden with resolved finite-size neutrally buoyant particles at moderate volumetric concentration. In the case of fluctuating flows close to laminar-turbulent transition, the particle volume fraction is homogeneously distributed in the channel except an accumulation layer in the near-wall region (particle migration is driven by inertia). Particles increase the level of perturbations close to the wall leading to significant enhancement of both the velocity fluctuations and the wall friction coefficient. Additionally, particles break down the large-scale flow structures into smaller, more numerous and sustained eddies. When the flow Reynolds number is decreased, flow relaminarization occurs at critical Reynolds number RecS (based on the effective suspension viscosity) significantly below the critical Reynolds number Rec of single-phase flow transition. In the case of laminar flows, the suspension segregates into pure fluid and particle laden wall layers due to cross-stream migration. An instability is observed characterized by the formation of dune-like patterns at the separation between pure fluid and concentrated suspension. Increasing the Reynolds number yields transition to turbulence at a threshold above RecS . This work was granted access to the HPC resources of CALMIP and GENCI under the allocations 2012-P1002 and x20132a6942 respectively.

  16. FPluMe: An integral eruption column model based on the Buoyant Plume Theory

    NASA Astrophysics Data System (ADS)

    Folch, Arnau; Costa, Antonio; Macedonio, Giovanni

    2015-04-01

    Estimates of mass flow rate from volcanic eruption columns are crucial for ash dispersion models, used to assess hazard on population and civil aviation. We present a practical model of eruption column model based on the Buoyant Plume Theory (BPT) that accounts for the effect of the atmospheric wind that results in the bending over of the plume trajectory and increases the entrainment of ambient air. The model solves the equations for the conservation of mass, momentum and energy in terms of averaged variables, accounting for fallout and re-entrainment of tephra from and into the column and particle aggregation. For some given atmospheric conditions and a wind profile, the model can be used to determine the height at which volcanic plumes spread in the atmosphere if mass flow rate at the vent is known, or to estimate mass flow rate when the eruption column height is known. For a given column height, if wind effects are not properly accounted for, the values of the mass flow rate can be significantly underestimated. Our model calculations are compared with proposed semi-empirical relationships between the plume height and the source mass flux that account for the atmospheric wind effect.

  17. Wave-induced mixing and transport of buoyant particles: application to the Statfjord A oil spill

    NASA Astrophysics Data System (ADS)

    Drivdal, M.; Broström, G.; Christensen, K. H.

    2014-12-01

    This study focuses on how wave-current and wave-turbulence interactions modify the transport of buoyant particles in the ocean. Here the particles can represent oil droplets, plastic particles, or plankton such as fish eggs and larvae. Using the General Ocean Turbulence Model (GOTM), modified to take surface wave effects into account, we investigate how the increased mixing by wave breaking and Stokes shear production, as well as the stronger veering by the Coriolis-Stokes force, affects the drift of the particles. The energy and momentum fluxes, as well as the Stokes drift, depend on the directional wave spectrum obtained from a wave model. As a first test, the depth and velocity scales from the model are compared with analytical solutions based on a constant eddy viscosity (i.e., classical Ekman theory). Secondly, the model is applied to a case in which we investigate the oil drift after an oil spill off the west coast of Norway in 2007. During this accident the average net drift of oil was observed to be both slower and more deflected away from the wind direction than predicted by oil-drift models. In this case, using wind and wave forcing from the ERA Interim archive it is shown that the wave effects are important for the resultant drift and have the potential to improve drift forecasting.

  18. Wave induced mixing and transport of buoyant particles: application to the Statfjord A oil spill

    NASA Astrophysics Data System (ADS)

    Drivdal, M.; Broström, G.; Christensen, K. H.

    2014-05-01

    The modelling of wave-current and wave-turbulence interactions have received much attention in recent years. In this study the focus is on how these wave effects modify the transport of particles in the ocean. Here the particles are buoyant tracers that can represent oil droplets, plastic particles or plankton, for example fish eggs and larvae. Using the General Ocean Turbulence Model (GOTM), modified to take surface wave effects into account, we investigate how the increased mixing by wave breaking and Stokes shear production as well as the stronger veering by the Coriolis-Stokes force affect the drift of the particles. The energy and momentum fluxes as well as the Stokes drift depend on the directional wave spectrum that can be obtained from a wave model or from observations. As a first test the depth and velocity scales from the model are compared with analytical solutions based on a constant eddy viscosity (e.g. classical Ekman theory). Secondly the model is applied to a case where we investigate the oil drift after an offshore oil spill outside the western coast of Norway in 2007. During this accident the average net drift of oil was observed to be both slower and more deflected away from the wind direction than predicted by empirical models. With wind and wave forcing from the ERA Interim archive, it is shown that the wave effects are important for the resultant drift in this case, and has the potential to improve drift forecasting.

  19. Experiments in vision-based control of a neutrally buoyant free-flyer

    NASA Astrophysics Data System (ADS)

    Alexander, Harold L.; Eberly, Kurt; Weigl, Harald J.

    1992-02-01

    The Laboratory for Space Teleoperation and Robotics is developing a neutrally-buoyant robot for research into the automatic and teleoperated (remote human) control of unmanned robotic vehicles for use in space. The goal of this project is to develop a remote robot with maneuverability and dexterity comparable to that of a space-suited astronaut with a manned maneuvering unit, able to assume many of the tasks currently planned for astronauts during extravehicular activity (EVA). Such a robot would be able to spare the great expense and hazards associated with human EVA, and make possible much less expensive scientific and industrialization exploitation of orbit. Both autonomous and teleoperated control experiments will require the vehicle to be able to automatically control its position and orientation. The laboratory is developing vision-based vehicle navigation system that works by tracking features in video images from cameras mounted on the vehicle and trained at a special target fixed in the environment. The methods are adaptable to a variety of video-based tracking systems, and are based on a linearized vision model, receiving as inputs image feature coordinates at each time step This paper includes a description of the underwater vehicle and the vision system.

  20. Buoyant instabilities in downward flow in a symmetrically heated vertical channel

    SciTech Connect

    Evans, G.; Greif, R.

    1996-07-01

    This study of the downward flow of nitrogen in a tall, partially heated vertical channel (upstream isothermal at T{sub in}*, heated region isothermal at T{sub s}* downstream adiabatic) shows the strong effects of buoyancy even for small temperature differences. Time-dependent oscillations including periodic flow reversals occur along the channel walls. Although the flow and heat transfer are asymmetric, the temperature and axial component of velocity show symmetric reflections at two times that are half a period apart and the lateral component of velocity shows antisymmetric reflections at the two times. There is strong interaction between the downward flow in the central region of the channel and the upward flow along the heated channel walls. At the top of the heated region, the upward buoyant flow turns toward the center of the channel and is incorporated into the downward flow. Along the channel centerline there are nonmonotonic variations of the axial component of velocity and temperature and a large lateral component of velocity that reverses direction periodically. Results are presented for Re = 219.7 and Gr/Re{sup 2} = 1.83, 8.0, and 13.7. The heat transfer and the frequency of the oscillations increases and the flow and temperature fields become more complex as Gr/Re{sup 2} increases. The results have applications to fiber drying, food processing, crystal growth, solar energy collection, cooling of electronic circuits, ventilation, etc.

  1. Flame Shapes of Luminous NonBuoyant Laminar Coflowing Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.

    1999-01-01

    Laminar diffusion flames are of interest as model flame systems that are more tractable for analysis and experiments than practical turbulent diffusion flames. Certainly understanding laminar flames must precede understanding more complex turbulent flames while man'y laminar diffusion flame properties are directly relevant to turbulent diffusion flames using laminar flamelet concepts. Laminar diffusion flame shapes have been of interest since the classical study of Burke and Schumann because they involve a simple nonintrusive measurement that is convenient for evaluating flame structure predictions. Motivated by these observations, the shapes of laminar flames were considered during the present investigation. The present study was limited to nonbuoyant flames because most practical flames are not buoyant. Effects of buoyancy were minimized by observing flames having large flow velocities at small pressures. Present methods were based on the study of the shapes of nonbu,3yant round laminar jet diffusion flames of Lin et al. where it was found that a simple analysis due to Spalding yielded good predictions of the flame shapes reported by Urban et al. and Sunderland et al.

  2. Uniformity of the Microsymbiont Population from Soybean Nodules with Respect to Buoyant Density 1

    PubMed Central

    Karr, Dale B.; Emerich, David W.

    1988-01-01

    The microsymbiont population in soybean root nodules (Glycine max L. cv Williams 82 inoculated with Bradyrhizobium japonicum 2143) was characterized during symbiotic development to determine the extent of heterogeneity in this population. The microsymbiont population was isolated by centrifugation through a continuous sucrose gradient (44 to 57% weight to weight ratio) and appeared homogeneous at each age examined up to 26 days after planting based on the symmetrical distribution of the population, enzyme activities, poly-?-hydroxybutyrate contents, protein contents, and viabilities. Some differences in viability, protein content, and acetylene reduction activity were observed at later ages. The population migrated to progressively lighter buoyant densities with increasing age until a density equivalent to 48% sucrose was reached. The changing density correlated directly with the increasing poly-?-hydroxybutyrate to protein ratio. The acetylene reduction activity, based on microsymbiont concentration, followed the same developmental pattern as whole nodules. On a protein basis, the decline of acetylene reduction activity was later and reflected the decrease in protein content per cell. These results suggested that the microsymbiont population, which resulted from inoculation of B. japonicum 2143 onto Williams 82 cultivar of soybeans, developed as a homogeneous population. PMID:16665972

  3. Turbulence Modeling Effects on the Prediction of Equilibrium States of Buoyant Shear Flows

    NASA Technical Reports Server (NTRS)

    Zhao, C. Y.; So, R. M. C.; Gatski, T. B.

    2001-01-01

    The effects of turbulence modeling on the prediction of equilibrium states of turbulent buoyant shear flows were investigated. The velocity field models used include a two-equation closure, a Reynolds-stress closure assuming two different pressure-strain models and three different dissipation rate tensor models. As for the thermal field closure models, two different pressure-scrambling models and nine different temperature variance dissipation rate, Epsilon(0) equations were considered. The emphasis of this paper is focused on the effects of the Epsilon(0)-equation, of the dissipation rate models, of the pressure-strain models and of the pressure-scrambling models on the prediction of the approach to equilibrium turbulence. Equilibrium turbulence is defined by the time rate (if change of the scaled Reynolds stress anisotropic tensor and heat flux vector becoming zero. These conditions lead to the equilibrium state parameters. Calculations show that the Epsilon(0)-equation has a significant effect on the prediction of the approach to equilibrium turbulence. For a particular Epsilon(0)-equation, all velocity closure models considered give an equilibrium state if anisotropic dissipation is accounted for in one form or another in the dissipation rate tensor or in the Epsilon(0)-equation. It is further found that the models considered for the pressure-strain tensor and the pressure-scrambling vector have little or no effect on the prediction of the approach to equilibrium turbulence.

  4. Magnetic Cycles and Buoyant Magnetic Structures in a Rapidly Rotating Sun

    NASA Astrophysics Data System (ADS)

    Nelson, Nicholas J.; Brown, B. P.; Brun, S.; Miesch, M. S.; Toomre, J.

    2011-01-01

    Observations of sun-like stars rotating faster than our current sun show that they exhibit solar-like magnetic cycles and features, such as star spots. Using global 3-D simulations to study the coupling of large-scale convection, rotation, and magnetism in a younger sun, we have probed the effects of more rapid rotation on stellar dynamos and the nature of magnetic cycles. Our anelastic spherical harmonics (ASH) code allows study of the convective envelope, occupying the outer 30% by radius of a sun-like star. Major MHD simulations carried out at three times the current solar rotation rate reveal magnetic dynamo action that can produce wreaths of strong toroidal magnetic field at low latitudes, often with opposite polarity in the two hemispheres. The presence of the wreaths is quite surprising, for they arise as quite persistent global structures amidst the vigorous and turbulent convection. We have recently explored behavior in systems with considerably lower diffusivities, achieved with a dynamic Smagorinsky treatment of unresolved turbulence. The lower levels of diffusion create magnetic wreaths that undergo prominent variations in field strength, even exhibiting global magnetic cycles that involve polarity reversals. Additionally, during the cycle maximum, when magnetic energies and mean magnetic fields peak, the wreaths possess buoyant magnetic structures that rise coherently through much of the convective envelope via a combination of advection by convective upflows and magnetic buoyancy. We explore aspects of these rising magnetic structures and the evolving global dynamo action which produces them.

  5. Near Surface Vapor Bubble Layers in Buoyant Low Stretch Burning of Polymethylmethacrylate

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Tien, J. S.

    1999-01-01

    Large-scale buoyant low stretch stagnation point diffusion flames over solid fuel (polymethylmethacrylate) were studied for a range of aerodynamic stretch rates of 2-12/ sec which are of the same order as spacecraft ventilation-induced stretch in a microgravity environment. An extensive layer of polymer material above the glass transition temperature is observed. Unique phenomena associated with this extensive glass layer included substantial swelling of the burning surface, in-depth bubble formation, and migration and/or elongation of the bubbles normal to the hot surface. The bubble layer acted to insulate the polymer surface by reducing the effective conductivity of the solid. The reduced in-depth conduction stabilized the flame for longer than expected from theory neglecting the bubble layer. While buoyancy acts to move the bubbles deeper into the molten polymer, thermocapillary forces and surface regression both act to bring the bubbles to the burning surface. Bubble layers may thus be very important in low gravity (low stretch) burning of materials. As bubbles reached the burning surface, monomer fuel vapors jetted from the surface, enhancing burning by entraining ambient air flow. Popping of these bubbles at the surface can expel burning droplets of the molten material, which may increase the fire propagation hazards at low stretch rates.

  6. Buoyant flexure and basal crevassing in dynamic mass loss at Helheim Glacier

    NASA Astrophysics Data System (ADS)

    James, Timothy D.; Murray, Tavi; Selmes, Nick; Scharrer, Kilian; O'Leary, Martin

    2014-08-01

    Iceberg calving accounts for a significant proportion of annual mass loss from marine-terminating glaciers and may have been a factor in the rapid demise of ancient ice sheets. The largest contributions from the main outlet glaciers of the Greenland ice sheet to sea-level rise over the next two centuries have been projected to be dynamic in origin, that is, driven by glacier flow and calving. However, present physical models remain a coarse approximation of real calving mechanisms because models are poorly constrained by sparse glacier geometry observations. Here we present a record of daily digital elevation models from the calving margin of Greenland’s Helheim Glacier at a high spatial resolution. Our digital elevation models are derived from stereo terrestrial photography taken over the summers of 2010 and 2011. We find that during these two summers dynamic mass loss at Helheim Glacier was dominated by calving events exceeding 1 km3 that were the result of buoyant flexure and the propagation of basal crevasses. We suggest that this buoyancy-driven mechanism for calving may be common elsewhere in Greenland and could be a first-order control on the ice sheet’s future contribution to sea-level rise.

  7. Formulation and evaluation of domperidone loaded mineral oil entrapped emulsion gel (MOEG) buoyant beads.

    PubMed

    Singh, Inderbir; Kumar, Pradeep; Singh, Harinderjit; Goyal, Malvika; Rana, Vikas

    2011-01-01

    Alginate based mineral oil entrapped emulsion gel (MOEG) buoyant beads of domperidone were prepared by emulsion gelation technique. The prepared beads were evaluated for particle size, surface morphology, buoyancy, actual drug content and entrapment efficiency. Effect of different oils (castor oil, olive oil and linseed oil) and oil concentrations (10%, 15% and 20%, w/w) on uniformity, homogeneity and integrity of the beads was also studied. Density of the formulated beads was found to be ranging between 0.101 and 0.182 g/cm3. The results of the in vitro drug release indicated that linseed oil showed to be good release retardant compared to castor oil and olive oil. Moreover, the beads formulated using 15%, w/w linseed oil were more uniform in shape, exhibited maximum buoyancy and minimal oil leakage. Diffusion exponent (n) value varied from 0.4855 to 0.7710 indicating anomalous drug release behavior involving swelling, diffusion and/or erosion of the polymer matrix. PMID:21485710

  8. Passive buoyant tracers in the ocean surface boundary layer: 2. Observations and simulations of microplastic marine debris

    NASA Astrophysics Data System (ADS)

    Brunner, K.; Kukulka, T.; Proskurowski, G.; Law, K. L.

    2015-11-01

    This paper is the second of a two-part series that investigates passive buoyant tracers in the ocean surface boundary layer (OSBL). The first part examines the influence of equilibrium wind-waves on vertical tracer distributions, based on large eddy simulations (LESs) of the wave-averaged Navier-Stokes equation. Motivated by observations of buoyant microplastic marine debris (MPMD), this study applies the LES model and the parametric one-dimensional column model from part one to examine the vertical distributions of MPMD. MPMD is widely distributed in vast regions of the subtropical gyres and has emerged as a major open ocean pollutant whose distribution is subject to upper ocean turbulence. The models capture shear-driven turbulence, Langmuir turbulence (LT), and enhanced turbulent kinetic energy input due to breaking waves (BWs). Model results are only consistent with observations of MPMD profiles and the relationship between surface concentrations and wind speed if LT effects are included. Neither BW nor shear-driven turbulence is capable of deeply submerging MPMD, suggesting that the observed vertical MPMD distributions are a characteristic signature of wave-driven LT. Thus, this study demonstrates that LT substantially increases turbulent transport in the OSBL, resulting in deep submergence of buoyant tracers. The parametric model is applied to 11 years of observations in the North Atlantic and North Pacific subtropical gyres to show that surface measurements substantially underestimate MPMD concentrations by a factor of 3-13.

  9. The Effects of Neutrally Buoyant, Externally Attached Transmitters on Swimming Performance and Predator Avoidance of Juvenile Chinook Salmon

    SciTech Connect

    Janak, Jill M.; Brown, Richard S.; Colotelo, Alison HA; Pflugrath, Brett D.; Stephenson, John R.; Deng, Zhiqun; Carlson, Thomas J.; Seaburg, Adam

    2012-08-01

    The presence of an externally attached telemetry tag is often associated with the potential for impaired swimming performance (i.e., snags and drag) as well as increased susceptibility to predation, specifically for smaller fish. The effects on swimming performance due to the presence of a neutrally buoyant externally attached acoustic transmitter were examined by comparing critical swimming speeds (Ucrit) for juvenile Chinook salmon tagged with two different neutrally buoyant external transmitters (Type A and B), nontagged individuals, and those surgically implanted with the current JSATS acoustic transmitter. Fish tagged with the Type A and B designs had lower Ucrit when compared to nontagged individuals. However, there was no difference in Ucrit among fish tagged with Type A or B designs compared to those with surgically implanted tags. Further testing was then conducted to determine if predator avoidance ability was affected due to the presence of Type A tags when compared to nontagged fish. No difference was detected in the number of tagged and nontagged fish consumed by rainbow trout throughout the predation trials. The results of this study support the further testing on the efficacy of a neutrally buoyant externally attached telemetry tag for survival studies involving juvenile salmonids passing through hydro turbines.

  10. Genetic Affinities between Trans-Oceanic Populations of Non-Buoyant Macroalgae in the High Latitudes of the Southern Hemisphere

    PubMed Central

    Fraser, Ceridwen I.; Zuccarello, Giuseppe C.; Spencer, Hamish G.; Salvatore, Laura C.; Garcia, Gabriella R.; Waters, Jonathan M.

    2013-01-01

    Marine biologists and biogeographers have long been puzzled by apparently non-dispersive coastal taxa that nonetheless have extensive transoceanic distributions. We here carried out a broad-scale phylogeographic study to test whether two widespread Southern Hemisphere species of non-buoyant littoral macroalgae are capable of long-distance dispersal. Samples were collected from along the coasts of southern Chile, New Zealand and several subAntarctic islands, with the focus on high latitude populations in the path of the Antarctic Circumpolar Current or West Wind Drift. We targeted two widespread littoral macroalgal species: the brown alga Adenocystisutricularis (Ectocarpales, Heterokontophyta) and the red alga Bostrychiaintricata (Ceramiales, Rhodophyta). Phylogenetic analyses were performed using partial mitochondrial (COI), chloroplast (rbcL) and ribosomal nuclear (LSU / 28S) DNA sequence data. Numerous deeply-divergent clades were resolved across all markers in each of the target species, but close phylogenetic relationships – even shared haplotypes – were observed among some populations separated by large oceanic distances. Despite not being particularly buoyant, both Adenocystisutricularis and Bostrychiaintricata thus show genetic signatures of recent dispersal across vast oceanic distances, presumably by attachment to floating substrata such as wood or buoyant macroalgae. PMID:23894421

  11. Experimental evidence of a buoyant mass difference between bovine spermatozoa bearing X- and Y-chromosomes using a micromechanical resonator.

    PubMed

    Mauro, Marco; Battaglia, Raffaele; Ferrini, Gianluca; Puglisi, Roberto; Balduzzi, Donatella; Galli, Andrea

    2014-03-01

    Flow cytometry is to date the only commercially viable technique for sex preselection of mammalian spermatozoa, measuring the different DNA content in X- and Y-chromosome bearing spermatozoa. Here we present experimental evidence of a measurable difference between bovine spermatozoa bearing X- and Y-chromosomes based on their buoyant mass. Single cells of two populations of flow-cytometrically sorted spermatozoa were analyzed by means of a micromechanical resonator, consisting of a suspended doubly-clamped microcapillary. Spermatozoa buoyant mass is related to the transitory variation in vibration phase lag, caused by the passage through the sensitive area of a single sperm cell suspended in a fluid. Data analysis shows two well-separated distributions and provides evidence of the sensor capabilities to detect the buoyant mass of single cells with such accuracy to distinguish X- and Y-chromosome bearing spermatozoa. These preliminary results suggest the possibility to develop an intriguing technique alternative to flow cytometry in the field of sperm sorting. PMID:24419052

  12. Rise of Buoyant Emissions from Low-Level Sources in the Presence of Upstream and Downstream Obstacles

    NASA Astrophysics Data System (ADS)

    Pournazeri, Sam; Princevac, Marko; Venkatram, Akula

    2012-08-01

    Field and laboratory studies have been conducted to investigate the effect of surrounding buildings on the plume rise from low-level buoyant sources, such as distributed power generators. The field experiments were conducted in Palm Springs, California, USA in November 2010 and plume rise from a 9.3 m stack was measured. In addition to the field study, a laboratory study was conducted in a water channel to investigate the effects of surrounding buildings on plume rise under relatively high wind-speed conditions. Different building geometries and source conditions were tested. The experiments revealed that plume rise from low-level buoyant sources is highly affected by the complex flows induced by buildings stationed upstream and downstream of the source. The laboratory results were compared with predictions from a newly developed numerical plume-rise model. Using the flow measurements associated with each building configuration, the numerical model accurately predicted plume rise from low-level buoyant sources that are influenced by buildings. This numerical plume rise model can be used as a part of a computational fluid dynamics model.

  13. 46 CFR 160.060-3a - Materials-Dee ring and snap hook assemblies and other instruments of closure for buoyant vests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... closure for buoyant vests must— (1) Be tested for weathering. The Coast Guard will determine which one or...) for 24 hours; and (2) Within 5 minutes of completion of the weathering test required by paragraph...

  14. 46 CFR 160.060-3a - Materials-Dee ring and snap hook assemblies and other instruments of closure for buoyant vests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... closure for buoyant vests must— (1) Be tested for weathering. The Coast Guard will determine which one or...) for 24 hours; and (2) Within 5 minutes of completion of the weathering test required by paragraph...

  15. 46 CFR 160.060-3a - Materials-Dee ring and snap hook assemblies and other instruments of closure for buoyant vests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... closure for buoyant vests must— (1) Be tested for weathering. The Coast Guard will determine which one or...) for 24 hours; and (2) Within 5 minutes of completion of the weathering test required by paragraph...

  16. 46 CFR 160.060-3a - Materials-Dee ring and snap hook assemblies and other instruments of closure for buoyant vests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... closure for buoyant vests must— (1) Be tested for weathering. The Coast Guard will determine which one or...) for 24 hours; and (2) Within 5 minutes of completion of the weathering test required by paragraph...

  17. 46 CFR 160.060-3a - Materials-Dee ring and snap hook assemblies and other instruments of closure for buoyant vests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... closure for buoyant vests must— (1) Be tested for weathering. The Coast Guard will determine which one or...) for 24 hours; and (2) Within 5 minutes of completion of the weathering test required by paragraph...

  18. Dynamics of the Active Altiplano Puna Magmatic Body: Large-Scale Melt Transport and Buoyant Upwelling

    NASA Astrophysics Data System (ADS)

    Diez, M.; Del Potro, R.

    2014-12-01

    A wide range of geophysical observations suggest that an active partially molten region (Altiplano Puna Magmatic Body or APMB) lies in the mid-upper crust of the Altiplano Puna Plateau, in the Central Andes, with its upper contact at around 20 km depth. In particular, gravity, magnetotellurics and seismics have helped delineating the overall geometry of this intrusive body, which is approximately 200 km in diameter and could be many kilometers thick. The average melt fraction is poorly constrained, although it has been suggested that it could be rather high, around ~15% or higher. In addition to constraining the general shape of the APMB, its dynamics can in principle be partially accessed through geodetic measurements at the surface. In fact, recent InSAR-related studies have shown a ground deformation rate in the order of centimeter per year, with a central uplifting region, centered roughly around a lava-dome complex type of system, Uturuncu volcano, surrounded by an extensive peripheral zone of subsidence. This wealth of observations has leaded us to propose two different hypotheses to partially explain the inner workings of the APMB: (i) the dynamic deformation of the uplift-subsidence of the surface is explained by the impingement of a buoyant melt-rich blob on the more brittle upper levels of the crust, and; (ii) such surface deformation could be associated to the poroviscous compaction induced by lateral melt transport toward a central region of ascent. Both scenarios are modeled numerically. In principle the two hypotheses could explain the rate and geometry of subsidence under some simplifications. We discuss the consequences of both hypotheses, and entertain the possibility of both processes operating together.

  19. Extinction and Scattering Properties of Soot Emitted from Buoyant Turbulent Diffusion Flames. Appendix F

    NASA Technical Reports Server (NTRS)

    Krishnan, S. S.; Lin, K.-C.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Extinction and scattering properties at wavelengths of 250-5200 nm were studied for soot emitted from buoyant turbulent diffusion flames in the long residence time regime where soot properties are independent of position in the overfire region and characteristic flame residence times. Flames burning in still air and fueled with gas (acetylene, ethylene, propane, and propylene) and liquid (benzene, toluene, cyclohexane, and n-heptane) hydrocarbon fuels were considered. Measured scattering patterns and ratios of total scattering/absorption cross sections were in good agreement with predictions based on the Rayleigh-Debye-Gans (RDG) scattering approximation in the visible. Measured depolarization ratios were roughly correlated by primary particle size parameter, suggesting potential for completing RDG methodology needed to make soot scattering predictions as well as providing a nonintrusive way to measure primary soot particle diameters. Measurements of dimensionless extinction coefficients were in good agreement with earlier measurements for similar soot populations and were independent of fuel type and wavelength except for reduced values as the near ultraviolet was approached. The ratios of the scattering/absorption refractive index functions were independent of fuel type within experimental uncertainties and were in good agreement with earlier measurements. The refractive index junction for absorption was similarly independent of fuel type but was larger than earlier reflectometry measurements in the infrared. Ratios of total scattering/absorption cross sections were relatively large in the visible and near infrared, with maximum values as large as 0.9 and with values as large as 0.2 at 2000 nm, suggesting greater potential for scattering from soot particles to affect flame radiation properties than previously thought.

  20. Extinction and Scattering Properties of Soot Emitted from Buoyant Turbulent Diffusion Flames. Appendix D

    NASA Technical Reports Server (NTRS)

    Krishnan, S. S.; Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Extinction and scattering properties at wavelengths of 250-5200 nm were studied for soot emitted from buoyant turbulent diffusion flames in the long residence time regime where soot properties are independent of position in the overfire region and characteristic flame residence times. Flames burning in still air and fueled with gas (acetylene, ethylene, propane, and propylene) and liquid (benzene, toluene, cyclohexane, and n-heptane) hydrocarbon fuels were considered Measured scattering patterns and ratios of total scattering/absorption cross sections were in good agreement with predictions based on the Rayleigh-Debye-Gans (RDG) scattering approximation in the visible. Measured depolarization ratios were roughly correlated by primary particle size parameter, suggesting potential for completing RDG methodology needed to make soot scattering predictions as well as providing a nonintrusive way to measure primary soot particle diameters. Measurements of dimensionless extinction coefficients were in good agreement with earlier measurements for similar soot populations and were independent of fuel type and wavelength except for reduced values as the near ultraviolet was approached. The ratios of the scattering/absorption refractive index functions were independent of fuel type within experimental uncertainties and were in good agreement with earlier measurements. The refractive index function for absorption was similarly independent of fuel type but was larger than earlier reflectometry measurements in the infrared. Ratios of total scattering/absorption cross sections were relatively large in the visible and near infrared, with maximum values as large as 0.9 and with values as large as 0.2 at 2000 nm, suggesting greater potential for scattering from soot particles to affect flame radiation properties than previously thought.

  1. Northern Monterey Bay upwelling shadow front: Observations of a coastally and surface-trapped buoyant plume

    USGS Publications Warehouse

    Woodson, C.B.; Washburn, L.; Barth, J.A.; Hoover, D.J.; Kirincich, A.R.; McManus, M.A.; Ryan, J.P.; Tyburczy, J.

    2009-01-01

    During the upwelling season in central California, northwesterly winds along the coast produce a strong upwelling jet that originates at Point A??o Nuevo and flows southward across the mouth of Monterey Bay. A convergent front with a mean temperature change of 3.77 ?? 0.29??C develops between the warm interior waters and the cold offshore upwelling jet. To examine the forcing mechanisms driving the location and movement of the upwelling shadow front and its effects on biological communities in northern Monterey Bay, oceanographic conditions were monitored using cross-shelf mooring arrays, drifters, and hydrographic surveys along a 20 km stretch of coast extending northwestward from Santa Cruz, California, during the upwelling season of 2007 (May-September). The alongshore location of the upwelling shadow front at the northern edge of the bay was driven by: regional wind forcing, through an alongshore pressure gradient; buoyancy forces due to the temperature change across the front; and local wind forcing (the diurnal sea breeze). The upwelling shadow front behaved as a surface-trapped buoyant current, which is superimposed on a poleward barotropic current, moving up and down the coast up to several kilometers each day. We surmise that the front is advected poleward by a preexisting northward barotropic current of 0.10 m s-1 that arises due to an alongshore pressure gradient caused by focused upwelling at Point A??o Nuevo. The frontal circulation (onshore surface currents) breaks the typical two-dimensional wind-driven, cross-shelf circulation (offshore surface currents) and introduces another way for water, and the material it contains (e.g., pollutants, larvae), to go across the shelf toward shore.Copyright 2009 by the American Geophysical Union.

  2. Trench Advance By the Subduction of Buoyant Features - Application to the Izu-Bonin-Marianas Arc

    NASA Astrophysics Data System (ADS)

    Goes, S. D. B.; Fourel, L.; Morra, G.

    2014-12-01

    Most subduction trenches retreat, not only today but throughout the Cenozoic. However, a few trenches clearly advance during part of the evolution, including Izu-Bonin Marianas (IBM) and Kermadec. Trench retreat is well understood as a basic consequence of slab pull, but it is debated what causes trench advance. The IBM trench underwent a complex evolution: right after its initiation, it rotated clockwise, leading to very fast retreat in the north and slow retreat in the south. But since 10-15 Ma, IBM trench motions have switched to advance at the southern end, and since 5 Ma also the northern end is advancing. Based on 2-D subduction models, it has been proposed proposed that the change in age of the subducting plate at the IBM trench (from 40-70 m.y. at the initiation of the trench 45 m.y. ago to 100-140 m.y. lithosphere subducting at the trench today) and its effect on plate strength could explain the transition from trench retreat to trench advance, and that the age gradient (younger in the north and older in the south) could explain the rotation of the trench. However, with new 3-D coupled fluid-solid subduction model where we can include such lateral age gradients, we find that this does not yield the observed behaviour. Instead, we propose an alternative mechanism, involving the subduction of the buoyant Caroline Island Ridge at the southern edge of the Mariana trench and show that it can explain both trench motion history and the current morphology of the IBM slab as imaged by seismic tomography.

  3. Filament formation and evolution in buoyant coastal waters: Observation and modelling

    NASA Astrophysics Data System (ADS)

    Iermano, Ilaria; Liguori, Giovanni; Iudicone, Daniele; Buongiorno Nardelli, Bruno; Colella, Simone; Zingone, Adriana; Saggiomo, Vincenzo; Ribera d'AlcalĂ , Maurizio

    2012-11-01

    This paper presents a detailed analysis of the formation and subsequent evolution of filament-like structures observed in a relatively small area of the mid-Tyrrhenian Sea (Mediterranean Sea). The filament dynamics and potential impact on the cross-shelf exchange budget are investigated based on a combined use of remote sensing imagery, in situ data and numerical modelling. The complexity of these phenomena is shown by focusing on four distinct events that led to cross-shelf transport, each representative of a different dynamic process and a distinct expected impact on the coastal area. A systematic analysis of available observations for the years 1998-2006 underlines the role of the interplay of atmospheric freshwater fluxes, river loads and wind stress variations, which may create favourable conditions for the convergence of shelf waters (particularly at coastal capes) and the subsequent formation of short-lived filaments along the coast. The response of the buoyant coastal waters to periods of wind reversal and fluctuating freshwater discharge rates is examined through idealised Regional Ocean Modeling System (ROMS) simulations. The filaments observed in remote sensing imagery were well reproduced by the numerical exercise, where the filaments appear as organised submesoscale structures that possess high relative vorticity and develop at the river mouths or adjacent capes. In both scenarios, the filaments appear largely determined by (i) the presence of a buoyancy anomaly, (ii) the angle between the wind pulse direction and the coast and (iii) irregularities in the coastal profile. The ensemble of results suggests that the occurrence of such transient, intense structures may contribute considerably to the biological variability and cross-shelf exchange in coastal areas with similar traits.

  4. Trace Metal and Sulfur Dynamics in the First Meter of Buoyant Hydrothermal Vent Plumes

    NASA Astrophysics Data System (ADS)

    Findlay, A.; Gartman, A.; Shaw, T. J.; Luther, G. W., III

    2014-12-01

    The speciation and reactivity of metals and metal sulfides within the buoyant plume is critical to determining the ultimate fate of metals emitted from hydrothermal vents. The concentration, size fractionation, and partitioning of trace metals (Fe, Mn, Cu, Co, Zn, Cd, Pb) were determined within the first meter of the rising plume at three vent fields (TAG, Snakepit, and Rainbow) along the Mid-Atlantic Ridge. At Rainbow, total Fe concentrations exceed total sulfide concentrations by an order of magnitude, whereas at the other two sites, total Fe and total sulfide concentrations are nearly equal. At all three sites, Mn and Fe are primarily in the filtered (< 0.2 ÎŒm) fraction and Cu, Co, Zn, Cd, and Pb are mainly in the unfiltered fraction. At TAG and Snakepit, unfiltered copper is correlated with unfiltered cobalt, and unfiltered zinc is correlated with unfiltered cadmium and lead. At Rainbow, unfiltered zinc, cadmium and lead are correlated, but unfiltered copper and cobalt are not, indicating precipitation dynamics at Rainbow are different than those at TAG and Snakepit due to bulk geochemical differences, including a higher iron to sulfide ratio. A sequential HCl/HNO3 leaching method was used to distinguish metals present in pyrite and chalcopyrite in both unfiltered and filtered samples. Significant portions of unfiltered Cu and Co were extracted in HNO3, whereas unfiltered Zn, Cd, and Pb were extracted in HCl. Up to 95 % of filtered Cu, Co, and Zn, up to 80% Cd, and up to 60 % Pb are only extractable in HNO3, indicating that a significant portion of metals < 0.2 ÎŒm are incorporated into a recalcitrant fraction such as nanoparticulate pyrite or chalcopyrite.

  5. Toward the Understanding and Optimization of Chimneys for Buoyantly Driven Biomass Stoves

    NASA Astrophysics Data System (ADS)

    Prapas, Jason

    The vast majority of indoor combustion devices in the developed world make use of stacks (flues, vents, chimneys, smokestacks) to channel flue gases out of the operator space. In the developing world, where indoor air pollution kills several million people every year, the use of chimneys with biomass cooking and heating stoves has been met with limited success and a high level of controversy. Due to a lack of theoretical understanding, design criteria, poorly executed installation practices, and/or insufficient maintenance routines, many chimney stoves have exhibited inadequate indoor emissions reductions in addition to low thermal efficiencies. This work aims (a) shed light on the physical phenomenon of the "stack effect" as it pertains to dynamic, non-adiabatic, buoyancy-driven stoves (b) apply new understanding toward the optimization of two types of biomass chimney stoves: plancha or griddle type stoves popular in Central America and two-pot stoves common in South America. A numerical heat and fluid flow model was developed that takes into account the highly-coupled variables and dynamic nature of such systems. With a comprehensive physical model, parameter studies were conducted to determine how several field-relevant variables influence the performance of stack-outfitted systems. These parameters include, but are not limited to: power/wood consumption rate, chimney geometry, stove geometry, material properties, heat transfer, and ambient conditions. An instrumented experimental chimney was built to monitor relationships between air flow, differential pressure, gas temperatures, emissions, and thermal efficiency. The draft provided by chimneys was found to have a strong influence over the bulk air-to-fuel ratio of buoyantly-driven cookstoves, greatly affecting the stove's overall performance by affecting gas temperatures, emissions, and efficiency. Armed with new information from the modeling and experimental work, two new stoves were designed and optimized to have significant reductions in fuel use and emissions.

  6. Nonlinear analysis of high-Reynolds-number flows over a buoyant axisymmetric body

    SciTech Connect

    Abarbanel, H.D.I. ); Katz, R.A. ); Galib, T.; Cembrola, J. ); Frison, T.W. )

    1994-05-01

    Data from experiments on the turbulent boundary layer around an axisymmetric vehicle rising under its own buoyancy are described in detail and analyzed using tools developed in nonlinear dynamics. Arguments are given that in this experiment the size of the wall mounted pressure sensors would make the data sensitive to the dynamics of about ten or so coherent structures in the turbulent boundary layer. Analysis of a substantial number of large, well sampled data sets indicates that the (integer) dimension of the embedding space required to capture the dynamics of the observed flows in the laminar regime is very large. This is consistent with there being no pressure fluctuations expected here and the signal being dominated by instrumental noise.'' In a consistency check we find that data from the ambient state of the vehicle before buoyant rise occurs and data from an accelerometer mounted in the prow are also consistent with this large dimension. The time scales in those data are also unrelated to fluid dynamic phenomena. In the transition and turbulent regions of the flow we find the pressure fluctuation time scales to be consistent with those of the fluid flow (about 250 [mu]sec) and determine the dimension required for embedding the data to be about 7--8 for the transitional region and about 8--9 for the turbulent regime. These results are examined in detail using both global and local false nearest-neighbor methods as well as mutual information aspects of the data. The results indicate that the pressure fluctuations are determined in these regimes by the coherent structures in the turbulent boundary layer. Applications and further investigations suggested by these results are discussed.

  7. Aerobic respiratory costs of swimming in the negatively buoyant brief squid Lolliguncula brevis.

    PubMed

    Bartol, I K; Mann, R; Patterson, M R

    2001-11-01

    Because of the inherent inefficiency of jet propulsion, squid are considered to be at a competitive disadvantage compared with fishes, which generally depend on forms of undulatory/oscillatory locomotion. Some squid, such as the brief squid Lolliguncula brevis, swim at low speeds in shallow-water complex environments, relying heavily on fin activity. Consequently, their swimming costs may be lower than those of the faster, more pelagic squid studied previously and competitive with those of ecologically relevant fishes. To examine aerobic respiratory swimming costs, O(2) consumption rates were measured for L. brevis of various sizes (2-9 cm dorsal mantle length, DML) swimming over a range of speeds (3-30 cm s(-1)) in swim tunnel respirometers, while their behavior was videotaped. Using kinematic data from swimming squid and force data from models, power curves were also generated. Many squid demonstrated partial (J-shaped) or full (U-shaped) parabolic patterns of O(2) consumption rate as a function of swimming speed, with O(2) consumption minima at 0.5-1.5 DML s(-1). Power curves derived from hydrodynamic data plotted as a function of swimming speed were also parabolic, with power minima at 1.2-1.7 DML s(-1). The parabolic relationship between O(2) consumption rate/power and speed, which is also found in aerial flyers such as birds, bats and insects but rarely in aquatic swimmers because of the difficulties associated with low-speed respirometry, is the result of the high cost of generating lift and maintaining stability at low speeds and overcoming drag at high speeds. L. brevis has a lower rate of O(2) consumption than the squid Illex illecebrosus and Loligo opalescens studied in swim tunnel respirometers and is energetically competitive (especially at O(2) consumption minima) with fishes, such as striped bass, mullet and flounder. Therefore, the results of this study indicate that, like aerial flyers, some negatively buoyant nekton have parabolic patterns of O(2) consumption rate/power as a function of speed and that certain shallow-water squid using considerable fin activity have swimming costs that are competitive with those of ecologically relevant fishes. PMID:11719530

  8. Experimental study of heat and mass transfer in a buoyant countercurrent exchange flow

    NASA Astrophysics Data System (ADS)

    Conover, Timothy Allan

    Buoyant Countercurrent Exchange Flow occurs in a vertical vent through which two miscible fluids communicate, the higher-density fluid, residing above the lower-density fluid, separated by the vented partition. The buoyancy- driven zero net volumetric flow through the vent transports any passive scalars, such as heat and toxic fumes, between the two compartments as the fluids seek thermodynamic and gravitational equilibrium. The plume rising from the vent into the top compartment resembles a pool fire plume. In some circumstances both countercurrent flows and pool fires can ``puff'' periodically, with distinct frequencies. One experimental test section containing fresh water in the top compartment and brine (NaCl solution) in the bottom compartment provided a convenient, idealized flow for study. This brine flow decayed in time as the concentrations approached equilibrium. A second test section contained fresh water that was cooled by heat exchangers above and heated by electrical elements below and operated steadily, allowing more time for data acquisition. Brine transport was reduced to a buoyancy- scaled flow coefficient, Q*, and heat transfer was reduced to an analogous coefficient, H*. Results for vent diameter D = 5.08 cm were consistent between test sections and with the literature. Some results for D = 2.54 cm were inconsistent, suggesting viscosity and/or molecular diffusion of heat become important at smaller scales. Laser Doppler Velocimetry was used to measure velocity fields in both test sections, and in thermal flow a small thermocouple measured temperature simultaneously with velocity. Measurement fields were restricted to the plume base region, above the vent proper. In baseline periodic flow, instantaneous velocity and temperature were ensemble averaged, producing a movie of the average variation of each measure during a puffing flow cycle. The temperature movie revealed the previously unknown cold core of the puff during its early development. The renewal-length model for puffing frequency of pool fire plumes was extended to puffing countercurrent flows by estimating inflow dilution. Puffing frequencies at several conditions were reduced to Strouhal number based on dilute plume density. Results for D = 5.08 cm compared favorably to published measurements of puffing pool fires, suggesting that the two different flows obey the same periodic dynamic process.

  9. Two-phase convective mixing under a buoyant plume of CO2 in deep saline aquifers

    NASA Astrophysics Data System (ADS)

    Emami-Meybodi, Hamid; Hassanzadeh, Hassan

    2015-02-01

    The storage of carbon dioxide (CO2) in deep saline aquifers has been suggested as a promising method for stabilizing the atmospheric concentration of CO2. An accurate evaluation of the CO2 trapping mechanisms, such as convective mixing, is crucial for estimates of storage capacity and security. We recently investigated the gravitational stability of the diffusive boundary layer underneath a capillary transition zone by performing a linear stability analysis, which provides a quantitative description of the onset of convection for the two-phase, buoyancy-driven flow in the presence of the capillary transition zone (Emami-Meybodi and Hassanzadeh, 2013). In this paper, we further examine the effect of the capillary transition zone on the onset of convection and subsequent convective mixing using direct numerical simulations. We describe key features of the two-phase convective mixing for systems with low Rayleigh numbers (Ra ? 1000) and the measurement of several global quantities, such as the total CO2 dissolution, Sherwood number, swelling factor, and interface velocity. We show that the commonly used assumption of a sharp CO2-brine interface with constant CO2 concentration at the top of an aquifer (i.e. single-phase system) may lead to erroneous estimates of not only the onset of convection, but also of the rate and magnitude of CO2 dissolution. The significant effect of the capillary transition zone on the dissolution of CO2 under a buoyant plume in saline aquifers is explained; and, the link between the capillary transition zone and the volume change, due to CO2 dissolution and the interface velocity over the mixing process, is demonstrated. Compared to the single-phase system, a crossflow through the interface of the diffusive boundary layer with the capillary transition zone, as well as the upward advance of the interface motion, may enhance the convective mixing early in the period of natural convection. The decrease in the onset time and stronger mass flux may be more profound in the two-phase system than in the previously reported single-phase models. Furthermore, we report several scaling relationships that characterize the mixing process in the presence of the capillary transition zone. Our findings provide further insight into the understanding of the two-phase mixing features and the long-term fate of the injected CO2 in deep saline aquifers.

  10. Nuclear and mitochondrial DNA from wild-type and petite yeast: circularity, length, and buoyant density.

    PubMed

    Billheimer, F E; Avers, C J

    1969-10-01

    Purified mitochondrial and nuclear DNA from diploid isogenic wild-type and vegetative-petite baker's yeast were analyzed by electron microscopy and by analytical ultracentrifugation in CsCl gradients. The buoyant densities in CsCl of nuclear DNA were identical for the two strains (rho = 1.700), but there was a difference between mitochondrial DNA from the wild type (rho = 1.684) and the petite (rho = 1.680). Electron microscopy revealed both circular and linear filaments for nuclear and for mitochondrial DNA of both strains. Nuclear DNA molecules included 6.5 per cent cyclic filaments principally measuring 2 mu or less in contour length, and linear filaments showing a unimodal, disperse length-distribution centered at about 2 to 3 mu, for both strains. Mitochondrial DNA for wild type varied depending upon the method used to extract and purify the molecules; showing only 7.5 per cent circular molecules from CsCl-subfractionated samples, as compared with 15 per cent circles from chloroform-extracted DNA not subjected to CsCl and up to 50 per cent circles from osmotically-lysed mitochondira, as reported in an earlier study. Modal lengths of circles occurred at about 2, 5, and 10 mu Increasing shear degradation also was evident in comparisons of the length-distribution patterns of linear molecules using the three preparative methods. Petite mitochondrial DNA contained 36-38 per cent circular molecules which measured 0.3-5.3 mu, but principally in the range of 0.3 to 2.0 mu whether from chloroform-extracted populations or from ones subfractionated in CsCl. A previous study of osmotically lysed mitochondria had shown a maximum of 8 per cent circles, which we now attribute to a failure, at that time, to detect circles measuring less than 1 mu, a substantial component encountered in the purified DNA samples in the present study. Linear filaments presented a unimodal length distribution in every case. Despite the variation in molecule populations derived from the three different preparative methods, there were consistent differences between mitochondrial DNA from wild-type and petite yeast in frequencies and size of circular molecules, as well as in length distribution patterns. PMID:5261045

  11. NUCLEAR AND MITOCHONDRIAL DNA FROM WILD-TYPE AND PETITE YEAST: CIRCULARITY, LENGTH, AND BUOYANT DENSITY*

    PubMed Central

    Billheimer, Foster E.; Avers, Charlotte J.

    1969-01-01

    Purified mitochondrial and nuclear DNA from diploid isogenic wild-type and vegetative-petite baker's yeast were analyzed by electron microscopy and by analytical ultracentrifugation in CsCl gradients. The buoyant densities in CsCl of nuclear DNA were identical for the two strains (? = 1.700), but there was a difference between mitochondrial DNA from the wild type (? = 1.684) and the petite (? = 1.680). Electron microscopy revealed both circular and linear filaments for nuclear and for mitochondrial DNA of both strains. Nuclear DNA molecules included 6.5 per cent cyclic filaments principally measuring 2 ? or less in contour length, and linear filaments showing a unimodal, disperse length-distribution centered at about 2 to 3 ?, for both strains. Mitochondrial DNA for wild type varied depending upon the method used to extract and purify the molecules; showing only 7.5 per cent circular molecules from CsCl-subfractionated samples, as compared with 15 per cent circles from chloroform-extracted DNA not subjected to CsCl and up to 50 per cent circles from osmotically-lysed mitochondira, as reported in an earlier study. Modal lengths of circles occurred at about 2, 5, and 10 ? Increasing shear degradation also was evident in comparisons of the length-distribution patterns of linear molecules using the three preparative methods. Petite mitochondrial DNA contained 36-38 per cent circular molecules which measured 0.3-5.3 ?, but principally in the range of 0.3 to 2.0 ? whether from chloroform-extracted populations or from ones subfractionated in CsCl. A previous study of osmotically lysed mitochondria had shown a maximum of 8 per cent circles, which we now attribute to a failure, at that time, to detect circles measuring less than 1 ?, a substantial component encountered in the purified DNA samples in the present study. Linear filaments presented a unimodal length distribution in every case. Despite the variation in molecule populations derived from the three different preparative methods, there were consistent differences between mitochondrial DNA from wild-type and petite yeast in frequencies and size of circular molecules, as well as in length distribution patterns. Images PMID:5261045

  12. Passive buoyant tracers in the ocean surface boundary layer: 1. Influence of equilibrium wind-waves on vertical distributions

    NASA Astrophysics Data System (ADS)

    Kukulka, T.; Brunner, K.

    2015-05-01

    This paper is the first of a two part series that investigates passive buoyant tracers in the ocean surface boundary layer. The first part examines the influence of equilibrium wind-waves on vertical tracer distributions, based on large eddy simulations (LES) of the wave-averaged Navier-Stokes equation. The second part applies the model to investigate observations of buoyant microplastic marine debris, which has emerged as a major ocean pollutant. The LES model captures both Langmuir turbulence (LT) and enhanced turbulent kinetic energy input due to breaking waves (BW) by imposing equilibrium wind-wave statistics for a range of wind and wave conditions. Concentration profiles of LES agree well with analytic solutions obtained for an eddy diffusivity profile that is constant near the surface and transitions into the K-Profile Parameterization (KPP) profile shape at greater depth. For a range of wind and wave conditions, the eddy diffusivity normalized by the product of water-side friction velocity and mixed layer depth, h, mainly depends on a single nondimensional parameter, the peak wavelength (which is related to Stokes drift decay depth) normalized by h. For smaller wave ages, BW critically enhances near-surface mixing, while LT effects are relatively small. For greater wave ages, both BW and LT contribute to elevated near-surface mixing, and LT significantly increases turbulent transport at greater depth. We identify a range of realistic wind and wave conditions for which only Langmuir (and not BW or shear driven) turbulence is capable of deeply submerging buoyant tracers.

  13. The impact of buoyant gas-phase flow and heterogeneity on thermo-hydrological behavior at Yucca Mountain

    SciTech Connect

    Buscheck, T.A.; Nitao, J.J.

    1994-01-01

    To safety and permanently store high-level nuclear waste, the potential Yucca Mountain repository system must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact a waste package, accelerate its failure rate, and eventually transport radionuclides to the water table. Our analyses have demonstrated that the only significant source of liquid water is fracture flow from: (1) natural infiltration, (2) condensate drainage generated under boiling conditions, and (3) condensate drainage generated under sub-boiling conditions. The first source of liquid water arises from the ambient system; the second and third sources are generated by repository heat. Buoyant, gas-phase flow, occurring either on a sub-repository scale or on a mountain scale, may play an important role in generating the second and third sources of liquid water. By considering a wide range in bulk permeability of the fractured rock, we identify a threshold bulk permeability at which buoyant, gas-phase convection begins to dominate hydrological behavior. At 10 times this threshold, convection begins to dominate thermal behavior. These effects can dominate moisture movement in the unsaturated zone on the order of 100,000 yr. We find that the development of a large above-boiling zone suppresses the effects of buoyant vapor flow. Zones of sharply contrasting bulk permeability also influence condensate generation and drainage. Of particular concern are conditions that focus vapor flow and condensate drainage, which could result in persistent refluxing at the repository, causing water to drip onto waste packages. These effects can occur under both sub-boiling and boiling conditions Long-term in situ heater tests are required to diagnose the potential for major repository-heat- driven sources of fractures flow.

  14. The influence of buoyant convection on the nucleation of n-propanol in thermal diffusion cloud chambers.

    PubMed

    Ferguson, Frank T; Heist, Richard H; Nuth, Joseph A

    2010-05-28

    A two-dimensional numerical model has been applied to three thermal diffusion cloud chamber (TDCC) investigations of n-propanol in helium taken by two different research groups to provide a quantitative example of how the results in these chambers can be affected by buoyant convection. In the first set of TDCC data, corrections for buoyancy resolve an apparent discontinuity in critical supersaturation data and also yield nucleation rate data that tend to agree better with higher rate, expansion-based studies at the same temperature. In the second TDCC study, the nucleation of propanol was studied over an extended pressure range. When the model was applied to these data, the possible variation in supersaturation values due to convection induced by conditions at the chamber sidewall was found to be comparable in magnitude to the experimentally observed range and may be responsible for some of this observed pressure dependence. In the third TDCC study, the combination of an error in a transport property and buoyant convection appear responsible for a perceived pressure effect in the experimental data. After correcting for this transport property and for buoyancy, the results at higher temperatures agree quite closely with the predictions of classical nucleation theory. PMID:20515103

  15. Numerical study of a buoyant plume from a multi-flue stack into a variable temperature gradient atmosphere.

    PubMed

    Velamati, Ratna Kishore; Vivek, M; Goutham, K; Sreekanth, G R; Dharmarajan, Santosh; Goel, Mukesh

    2015-11-01

    Air pollution is one of the major global hazards and industries have been one of its major contributors. This paper primarily focuses on analyzing the dispersion characteristics of buoyant plumes of the pollutant released from a multi-flue vertical stack into a variable temperature gradient atmosphere (α) in a constant-velocity cross wind using two stack configurations-inline and parallel. The study is conducted for different Froude numbers, Fr = 12.64, 9.55, and 8.27. The atmospheric temperature gradients considered for the study are 0, +1, +1.5, and +2 K/100 m. The numerical study is done using the commercial computational fluid dynamics (CFD) code FLUENT. The effects of stack configuration, α, and Fr on the plume characteristics are presented. It is observed that the plume rises higher and disperses over a larger area with the inline configuration due to better mixing and shielding effect. With higher α, it is seen that the plume rises initially and then descends due to variation of the buoyant force. The plume rise initially is strongly influenced by the momentum of the jet, and as it moves downstream, it is influenced by the cooling rate of the plume. Furthermore, the plume rises higher and disperses over a larger area with a decrease in Fr. PMID:26099599

  16. The effect of shearing on the buoyant migration of melt in compacting-dissolution channels

    NASA Astrophysics Data System (ADS)

    Baltzell, C.; Parmentier, E.; Liang, Y.; Tirupathi, S.

    2013-12-01

    Melt migration in the mantle by porous flow through compacting, high porosity dissolution channels may occur in a variety of settings including both the upwelling mantle beneath spreading centers and the flowing mantle wedge at convergent plate boundaries. Such channels may form by a positive feedback between dissolution and melt percolation. Previous studies [1, 2] have considered the compacting-dissolution channels in the presence of a uniform upwelling mantle flow. In this study the analysis of mantle flow beneath the plate boundaries was extended by introducing a horizontal shearing component. A numerical experiment was formulated using the finite element software deal.II [3] applying a high order Discontinuous Galerkin (DG) method to examine melt flow in a deforming, porous matrix. The conditions are similar to those in [2] except the addition of a prescribed horizontal shear component in the solid matrix. Melt migration occurs within a rectangular domain subject to horizontal periodic boundary conditions. Initially a Gaussian perturbation in the porosity at the base extends vertically through the domain defining a melt channel. By varying the shear and upwelling rates, the porosity and matrix dissolution were examined to determine the behavior of the channel and melt flow. Models of buoyant melt transport through dissolution channels in upwelling mantle sheared on horizontal planes show that shearing deformation introduces several effects that could have important consequences for melt migration. Shearing tends to rotate dissolution channels away from the vertical thus reducing the component of buoyancy acting along the channels and decreasing the stability of the channel. The channels remain more vertical than would be expected if they followed the matrix flow, as determined by the dissolution. Channels thus migrate horizontally relative to the mantle matrix and melt flows horizontally through dissolution channels. Evolution of the channels depends on the ratio of upwelling to shearing rates. A compacting region of reduced porosity develops on the downstream side of a channel. This region advects with the velocity of the matrix. Melt collecting beneath the compacting region generates new tilted melt channels. In the absence of horizontal shear melt rising vertically in the melt channel remains within mantle matrix in the channel. However, horizontal shearing destroys this isolation by causing melt to flow horizontally relative to the matrix. As upwelling rate decreases, and hence the compaction, there is less relative motion between the melt and matrix and the channel behavior agrees more with the theoretical relationship. This behavior may have important geochemical implications for the transport of chemically heterogeneous melts in the deforming mantle. Melt rising in sheared mantle columns may not retain the high pressure signature frequently invoked to explain mid-ocean ridge basalt chemistry if local chemical equilibrium is maintained. [1]. Spiegelman et al. (2001) JGR, 106, 2061-2077. [2]. Schiemenz et al. (2011) Geophys. J. Int. 186, 641-664. [3]. Bangerth et al. (2007) ACM Trans. Math. Software 33, doi: 10.1145/1268776.1268779.

  17. Is the 'Fast Halo' around Hawaii as imaged in the PLUME experiment direct evidence for buoyant plume-fed asthenosphere?

    NASA Astrophysics Data System (ADS)

    Morgan, J. P.; Shi, C.; Hasenclever, J.

    2010-12-01

    An intriguing spatial pattern of variations in shear-wave arrival times has been mapped in the PLUME ocean bottom experiment (Wolfe et al., 2009) around Hawaii. The pattern consists of a halo of fast travel times surrounding a disk of slow arrivals from waves traveling up though the plume. We think it is directly sensing the pattern of dynamic uplift of the base of a buoyant asthenosphere - the buoyancy of the plume conduit lifting a 'rim' of the cooler, denser mantle that the plume rises through. The PLUME analysis inverted for lateral shear velocity variations beneath the lithosphere, after removing the assumed 1-D model velocity structure IASP91. They found that a slow plume-conduit extends to at least 1200 km below the Hawaiian hotspot. In this inversion the slow plume conduit is — quite surprisingly - surrounded by a fast wavespeed halo. A fast halo is impossible to explain as a thermal halo around the plume; this should lead to a slow wavespeed halo, not a fast one. Plume-related shearwave anisotropy also cannot simply explain this pattern — simple vertical strain around the plume conduit would result in an anisotropic slow shear-wavespeed halo, not a fast one. (Note the PLUME experiment’s uniform ‘fast-halo’ structure from 50-400km is likely to have strong vertical streaking in the seismic image; Pacific Plate-driven shear across a low-viscosity asthenosphere would be expected to disrupt and distort any cold sheet of vertical downwelling structure between 50-400km depths so that it would no longer be vertical as it is in the 2009 PLUME image with its extremely poor vertical depth control.) If the asthenosphere is plume-fed, hence more buoyant than underlying mantle, then there can be a simple explanation for this pattern. The anomaly would be due to faster traveltimes resulting from dynamic relief at the asthenosphere-mesosphere interface; uplift of the denser mesosphere by the buoyancy of the rising plume increases the distance a wave travels through faster mantle and reduces the distance though the slower asthenosphere. With this interpretation, the inference of a radially symmetric ~40-70 km high-~250 km-radius ‘bump’ of uplift of the base of buoyant plume-fed asthenosphere (PFA) can be directly estimated from PLUME results and the measured ~6-10% reduction in shear velocity between the PFA and underlying mantle. The inferred dynamic relief at the base of the PFA due to buoyancy within the underlying plume conduit is strikingly similar to the relief we find in recent axisymmetric 2D and Cartesian 3-D numerical experiments that explore the dynamics of mantle convection with a PFA. The width and height of the bump scale directly with the total buoyancy anomaly in the upper ~500km of the plume conduit, we discuss numerical experiments that quantify this relationship, show that it is, to first order, independent of the viscosity of material in the plume conduit or asthenosphere, and which also quantify the ~400km-radius geoid anomaly produced by these subasthenospheric mantle density anomalies. This effect can only happen if the asthenosphere is more buoyant than underlying mantle — and is therefore direct evidence that a buoyant plume-fed asthenosphere exists around Hawaii.

  18. Mixing of a chemically buoyant layer at the top of a thermally convecting fluid: Implications for mantle dynamics with application to Venus

    NASA Technical Reports Server (NTRS)

    Parmentier, E. M.; Hess, P. C.; Sotin, C.

    1993-01-01

    Partial melting to generate the crust of a planet can create a buoyant residual layer at the top of the mantle which may have important implications for episodic planetary evolution. However, the rate of mixing of such a chemically buoyant layer with a thermally convecting mantle is an important unresolved question. Except for a few laboratory and numerical studies designed to address questions related to convection in the Earth's mantle, previous studies have generally treated on the mixing of passive tracers. The inhibiting role of chemical buoyancy on mixing is intuitively obvious but not fully understood quantitatively. In this study, we examine the dynamics of an intrinsically buoyant fluid layer at the top of a deeper, thermally convecting, infinite Prandtl number fluid that is heated from below.

  19. Robust spatially resolved pressure measurements using MRI with novel buoyant advection-free preparations of stable microbubbles in polysaccharide gels

    NASA Astrophysics Data System (ADS)

    Morris, Robert H.; Bencsik, Martin; Nestle, Nikolaus; Galvosas, Petrik; Fairhurst, David; Vangala, Anil; Perrie, Yvonne; McHale, Glen

    2008-08-01

    MRI of fluids containing lipid coated microbubbles has been shown to be an effective tool for measuring the local fluid pressure. However, the intrinsically buoyant nature of these microbubbles precludes lengthy measurements due to their vertical migration under gravity and pressure-induced coalescence. A novel preparation is presented which is shown to minimize both these effects for at least 25 min. By using a 2% polysaccharide gel base with a small concentration of glycerol and 1,2-distearoyl- sn-glycero-3-phosphocholine coated gas microbubbles, MR measurements are made for pressures between 0.95 and 1.44 bar. The signal drifts due to migration and amalgamation are shown to be minimized for such an experiment whilst yielding very high NMR sensitivities up to 38% signal change per bar.

  20. A Field Evaluation of an External and Neutrally Buoyant Acoustic Transmitter for Juvenile Salmon: Implications for Estimating Hydroturbine Passage Survival

    PubMed Central

    Brown, Richard S.; Deng, Z. Daniel; Cook, Katrina V.; Pflugrath, Brett D.; Li, Xinya; Fu, Tao; Martinez, Jayson J.; Li, Huidong; Trumbo, Bradly A.; Ahmann, Martin L.; Seaburg, Adam G.

    2013-01-01

    Turbine-passed fish are exposed to rapid decreases in pressure which can cause barotrauma. The presence of an implanted telemetry tag increases the likelihood of injury or death from exposure to pressure changes, thus potentially biasing studies evaluating survival of turbine-passed fish. Therefore, a neutrally buoyant externally attached tag was developed to eliminate this bias in turbine passage studies. This new tag was designed not to add excess mass in water or take up space in the coelom, having an effective tag burden of zero with the goal of reducing pressure related biases to turbine survival studies. To determine if this new tag affects fish performance or susceptibility to predation, it was evaluated in the field relative to internally implanted acoustic transmitters (JSATS; Juvenile Salmon Acoustic Telemetry System) used widely for survival studies of juvenile salmonids. Survival and travel time through the study reach was compared between fish with either tag type in an area of high predation in the Snake and Columbia rivers, Washington. An additional group of fish affixed with neutrally-buoyant dummy external tags were implanted with passive integrated transponder (PIT) tags and recovered further downstream to assess external tag retention and injury. There were no significant differences in survival to the first detection site, 12 river kilometers (rkm) downstream of release. Travel times were also similar between groups. Conversely, externally-tagged fish had reduced survival (or elevated tag loss) to the second detection site, 65 rkm downstream. In addition, the retention study revealed that tag loss was first observed in fish recaptured approximately 9 days after release. Results suggest that this new tag may be viable for short term (<8 days) single-dam turbine-passage studies and under these situations, may alleviate the turbine passage-related bias encountered when using internal tags, however further research is needed to confirm this. PMID:24204947

  1. A field evaluation of an external and neutrally buoyant acoustic transmitter for juvenile salmon: implications for estimating hydroturbine passage survival.

    PubMed

    Brown, Richard S; Deng, Z Daniel; Cook, Katrina V; Pflugrath, Brett D; Li, Xinya; Fu, Tao; Martinez, Jayson J; Li, Huidong; Trumbo, Bradly A; Ahmann, Martin L; Seaburg, Adam G

    2013-01-01

    Turbine-passed fish are exposed to rapid decreases in pressure which can cause barotrauma. The presence of an implanted telemetry tag increases the likelihood of injury or death from exposure to pressure changes, thus potentially biasing studies evaluating survival of turbine-passed fish. Therefore, a neutrally buoyant externally attached tag was developed to eliminate this bias in turbine passage studies. This new tag was designed not to add excess mass in water or take up space in the coelom, having an effective tag burden of zero with the goal of reducing pressure related biases to turbine survival studies. To determine if this new tag affects fish performance or susceptibility to predation, it was evaluated in the field relative to internally implanted acoustic transmitters (JSATS; Juvenile Salmon Acoustic Telemetry System) used widely for survival studies of juvenile salmonids. Survival and travel time through the study reach was compared between fish with either tag type in an area of high predation in the Snake and Columbia rivers, Washington. An additional group of fish affixed with neutrally-buoyant dummy external tags were implanted with passive integrated transponder (PIT) tags and recovered further downstream to assess external tag retention and injury. There were no significant differences in survival to the first detection site, 12 river kilometers (rkm) downstream of release. Travel times were also similar between groups. Conversely, externally-tagged fish had reduced survival (or elevated tag loss) to the second detection site, 65 rkm downstream. In addition, the retention study revealed that tag loss was first observed in fish recaptured approximately 9 days after release. Results suggest that this new tag may be viable for short term (<8 days) single-dam turbine-passage studies and under these situations, may alleviate the turbine passage-related bias encountered when using internal tags, however further research is needed to confirm this. PMID:24204947

  2. The Buoyant Filter Bioreactor: a high-rate anaerobic reactor for complex wastewater--process dynamics with dairy effluent.

    PubMed

    Haridas, Ajit; Suresh, S; Chitra, K R; Manilal, V B

    2005-03-01

    A novel high-rate anaerobic reactor, called "Buoyant Filter Bioreactor" (BFBR), has been developed for treating lipid-rich complex wastewater. The BFBR is able to decouple the biomass and insoluble COD retention time from the hydraulic retention time by means of a granular filter bed made of buoyant polystyrene beads. Filter clogging is prevented by an automatic backwash driven by biogas release, which fluidizes the granular filter bed in a downward direction. During filter backwash, the solids captured in the filter are reintroduced into the reaction zone of the reactor. The reaction zone is provided with a mixing system, which is independent of the hydraulic retention time. The performance of a laboratory-scale BFBR was studied for the treatment of dairy effluent, chosen as a model complex wastewater. The dairy effluent was not pre-treated for fat removal. The BFBR was operated over 400 d and showed greater than 85% COD removal at 10 kg COD/(m3/d). The COD conversion to methane in the BFBR was essentially complete. The BFBR performance improved with age, and with feed containing 3200 mg COD/l, the treated effluent had 120 mg COD/l and no turbidity. The hold-up of degradable biosolids, including scum, inside the BFBR was estimated using starvation tests. When load is increased, scum accumulates inside the BFBR and then decays after undergoing change from hydrophobic to hydrophilic. This is explained as the accumulation of fat solids, its conversion to insoluble long chain fatty acids and its further solubilization and degradation. PMID:15766954

  3. Physiological considerations in applying laboratory-determined buoyant densities to predictions of bacterial and protozoan transport in groundwater: Results of in-situ and laboratory tests

    USGS Publications Warehouse

    Harvey, R.W.; Metge, D.W.; Kinner, N.; Mayberry, N.

    1997-01-01

    Buoyant densities were determined for groundwater bacteria and microflagellates (protozoa) from a sandy aquifer (Cape Cod, MA) using two methods: (1) density-gradient centrifugation (DGC) and (2) Stoke's law approximations using sedimentation rates observed during natural-gradient injection and recovery tests. The dwarf (average cell size, 0.3 ??m), unattached bacteria inhabiting a pristine zone just beneath the water table and a majority (~80%) of the morphologically diverse community of free- living bacteria inhabiting a 5-km-long plume of organically-contaminated groundwater had DGC-determined buoyant densities <1.019 g/cm3 before culturing. In the aquifer, sinking rates for the uncultured 2-??m size class of contaminant plume bacteria were comparable to that of the bromide tracer (1.9 x 10-3 M), also suggesting a low buoyant density. Culturing groundwater bacteria resulted in larger (0.8-1.3 ??m), less neutrally- buoyant (1.043-1.081 g/cm3) cells with potential sedimentation rates up to 64-fold higher than those predicted for the uncultured populations. Although sedimentation generally could be neglected in predicting subsurface transport for the community of free-living groundwater bacteria, it appeared to be important for the cultured isolates, at least until they readapt to aquifer conditions. Culturing-induced alterations in size of the contaminant-plume microflagellates (2-3 ??m) were ameliorated by using a lower nutrient, acidic (pH 5) porous growth medium. Buoyant densities of the cultured microflagellates were low, i.e., 1.024-1.034 g/cm3 (using the DGC assay) and 1.017-1.039 g/cm3 (estimated from in-situ sedimentation rates), suggesting good potential for subsurface transport under favorable conditions.

  4. Laboratory and numerical model studies of a negatively-buoyant jet discharged horizontally into a homogeneous rotating fluid

    NASA Astrophysics Data System (ADS)

    Davies, Peter A.; KĂ€se, Rolf H.; Ahmed, Iftikhar

    The results of laboratory experiments and numerical model simulations are described in which the motion of a round, negatively-buoyant, turbulent jet discharged horizontally above a slope into a rotating homogeneous fluid has been investigated. For the laboratory study, flow visualisation data are presented to show the complex three-dimensional flow fields generated by the discharge. Analysis of the experimental data indicates that the spatial and temporal developments of the flow field are controlled primarily by the lateral and vertical discharge position of the jet (with respect to the bounding surfaces of the container of width W) and the specific momentum (M0) and buoyancy (B0) fluxes driving the jet. The flow is seen to be characterised by the formation of (i) a primary anticyclonic eddy (PCC) close to the source, (ii) an associated secondary cyclonic eddy (SCE) and (iii) a buoyancy-driven bottom boundary current along the right side boundary wall. For the parameter ranges studied, the size Lp, s and spatial location xp, s of the PCC and SCE (and the nose velocity uN of the boundary current) are shown to be only weakly-dependent upon the value of the mixed parameter M0Ω/B0, where Ω is the background rotation rate. Both Lp and xp are shown to scale with the separation distance y*/W of the right side wall (y = 0) from the source (y = y*), both Ls and xs scale satisfactorily with the length scale lM (= M03/4/B0œ) and uN is determined by the appropriate gravity current speed [(g']0H]œ and the separation distance y*/W. Numerical model results show good qualitative agreement with the laboratory data with regard to the generation of the PCC, SCE and boundary current as characteristic features of the flow in question. In addition, extension of the numerical model to diagnose potential vorticity and plume thickness distributions for the laboratory cases allow the differences in momentum-and buoyancy-dominated flows to be clearly delineated. Specifically, the characteristic features of the SCE are shown to be strongly dependent upon the value of Ω/B0 for the buoyant jet flow; not least, the numerical model data are able to confirm the controlling role played by the boundary walls in the laboratory experiments. Quantitative agreement between the numerical and laboratory model data is fair; most significantly, the success of the former model in simulating the dominant flow features from the latter enables the reliable extension of the numerical model to be made to cases of direct oceanic interest.

  5. Sink and swim: kinematic evidence for lifting-body mechanisms in negatively buoyant electric rays Narcine brasiliensis.

    PubMed

    Rosenblum, Hannah G; Long, John H; Porter, Marianne E

    2011-09-01

    Unlike most batoid fishes, electric rays neither oscillate nor undulate their body disc to generate thrust. Instead they use body-caudal-fin (BCF) locomotion. In addition, these negatively buoyant rays perform unpowered glides as they sink in the water column. In combination, BCF swimming and unpowered gliding are opposite ends on a spectrum of swimming, and electric rays provide an appropriate study system for understanding how the performance of each mode is controlled hydrodynamically. We predicted that the dorso-ventrally flattened body disc generates lift during both BCF swimming and gliding. To test this prediction, we examined 10 neonate lesser electric rays, Narcine brasiliensis, as they swam and glided. From video, we tracked the motion of the body, disc, pelvic fins and tail. By correlating changes in the motions of those structures with swimming performance, we have kinematic evidence that supports the hypothesis that the body disc is generating lift. Most importantly, both the pitch of the body disc and the tail, along with undulatory frequency, interact to control horizontal swimming speed and Strouhal number during BCF swimming. During gliding, the pitch of the body disc and the tail also interact to control the speed on the glide path and the glide angle. PMID:21832137

  6. Large Scale Gas Mixing and Stratification Triggered by a Buoyant Plume With and Without Occurrence of Condensation

    SciTech Connect

    Paladino, Domenico; Auban, Olivier; Zboray, Robert

    2006-07-01

    The benefits of using codes with 3-D capabilities to address safety issues of LWRs will be applicable to both the current generation of nuclear reactors as well to future ALWRs. The phenomena governing the containment response in case of some postulated severe accident scenarios include gas (air, hydrogen, steam) stratification in the containment, gas distribution between containment compartments, wall condensation, etc. These phenomena are driven by buoyant high momentum injection (jets) and/or low momentum injection (plumes). For instance, mixing in the immediate vicinity of the postulated line break is mainly dominated by very high velocity efflux, while low-momentum flows are responsible for most of the transport processes within the containment. A project named SETH is currently in progress under the auspices of 15 OECD countries, with the aim of creating an experimental database suitable to assess the 3-D code capabilities in analyzing key-physical phenomena relevant for LWR safety analysis. This paper describes some results of two SETH tests, performed in the PANDA facility (located at PSI in Switzerland), focusing on plumes flowing near a containment wall. The plumes are generated by injecting a constant amount of steam in one of two interconnected vessels initially filled with air. In one of the two tests the temperature of the injected steam and the initial containment wall and fluid temperatures allowed for condensation during the test. (authors)

  7. In-situ optical and acoustical measurements of the buoyant cyanobacterium p. Rubescens: spatial and temporal distribution patterns.

    PubMed

    Hofmann, Hilmar; Peeters, Frank

    2013-01-01

    Optical (fluorescence) and acoustic in-situ techniques were tested in their ability to measure the spatial and temporal distribution of plankton in freshwater ecosystems with special emphasis on the harmful and buoyant cyanobacterium P. rubescens. Fluorescence was measured with the multi-spectral FluoroProbe (Moldaenke FluoroProbe, MFP) and a Seapoint Chlorophyll Fluorometer (SCF). In-situ measurements of the acoustic backscatter strength (ABS) were conducted with three different acoustic devices covering multiple acoustic frequencies (614 kHz ADCP, 2 MHz ADP, and 6 MHz ADV). The MFP provides a fast and reliable technique to measure fluorescence at different wavelengths in situ, which allows discriminating between P. rubescens and other phytoplankton species. All three acoustic devices are sensitive to P. rubescens even if other scatterers, e.g., zooplankton or suspended sediment, are present in the water column, because P. rubescens containing gas vesicles has a strong density difference and hence acoustic contrast to the ambient water and other scatterers. After calibration, the combination of optical and acoustical measurements not only allows qualitative and quantitative observation of P. rubescens, but also distinction between P. rubescens, other phytoplankton, and zooplankton. As the measuring devices can sample in situ at high rates they enable assessment of plankton distributions at high temporal (minutes) and spatial (decimeters) resolution or covering large temporal (seasonal) and spatial (basin scale) scales. PMID:24303028

  8. Multi-parametric Study of Rising 3D Buoyant Flux Tubes in an Adiabatic Stratification Using AMR

    NASA Astrophysics Data System (ADS)

    MartĂ­nez-Sykora, Juan; Moreno-Insertis, Fernando; Cheung, Mark C. M.

    2015-11-01

    We study the buoyant rise of magnetic flux tubes embedded in an adiabatic stratification using two-and three-dimensional, magnetohydrodynamic simulations. We analyze the dependence of the tube evolution on the field line twist and on the curvature of the tube axis in different diffusion regimes. To be able to achieve a comparatively high spatial resolution we use the FLASH code, which has a built-in Adaptive Mesh Refinement (AMR) capability. Our 3D experiments reach Reynolds numbers that permit a reasonable comparison of the results with those of previous 2D simulations. When the experiments are run without AMR, hence with a comparatively large diffusivity, the amount of longitudinal magnetic flux retained inside the tube increases with the curvature of the tube axis. However, when a low-diffusion regime is reached by using the AMR algorithms, the magnetic twist is able to prevent the splitting of the magnetic loop into vortex tubes and the loop curvature does not play any significant role. We detect the generation of vorticity in the main body of the tube of opposite sign on the opposite sides of the apex. This is a consequence of the inhomogeneity of the azimuthal component of the field on the flux surfaces. The lift force associated with this global vorticity makes the flanks of the tube move away from their initial vertical plane in an antisymmetric fashion. The trajectories have an oscillatory motion superimposed, due to the shedding of vortex rolls to the wake, which creates a Von Karman street.

  9. Aligned buoyant highs, across-trench deformation, clustered volcanoes, and deep earthquakes are not aligned with plate-tectonic theory

    NASA Astrophysics Data System (ADS)

    Smoot, N. Christian

    1997-03-01

    Bathymetry shows the regional interaction of aseismic, buoyant highs in northern Pacific subduction zones. Seamounts, ridges, and fractures on the seaward side of the trench are associated with events that do not support the accepted plate-tectonics paradigm, including an altered slab dip angle (Benioff zone) and the clustered volcanoes and earthquakes within the convergent margin. Most of the examples in this study show a reduction in the number of total earthquakes but an increase in the deeper earthquakes, an abnormal amount of across-trench deformation, and a larger amount of volcanism on the active arc than if no bouyant highs existed in the subduction zone. The connections between the seaward highs and the landward clustered highs are the transverse faults, which widen by turbidite scour as they age. Forearc canyons are the modern-day bathymetdc expression of these faults. All of the parameters introduced disagree with the plate-tectonic hypothesis, making an alternate explanation for the genesis necessary. That explanation falls into the realm of the surge-tectonic hypothesis, which can explain by fluid mechanics and eastward flow each of the introduced parameters.

  10. Lab-on-a-bubble: synthesis, characterization, and evaluation of buoyant gold nanoparticle-coated silica spheres.

    PubMed

    Schmit, Virginia L; Martoglio, Richard; Scott, Brandon; Strickland, Aaron D; Carron, Keith T

    2012-01-11

    This paper describes the development and preparation of a new class of materials for surface-enhanced Raman scattering (SERS) consisting of gold nanoparticles coated onto hollow, buoyant silica microspheres. These materials allow for a new type of molecular assay designated as a lab-on-a-bubble (LoB). LoB materials serve as a convenient platform for the detection of analytes in solution and offer several advantages over traditional colloidal gold and planar SERS substrates, such as the ability to localize and concentrate analytes for detection. An example assay is presented using the LoB method and cyanide detection. Cyanide binds to SERS-active, gold-coated LoBs and is detected directly from the corresponding SERS signal. The abilities of LoBs and a gold colloid to detect cyanide are compared, and in both cases, a detection limit of ~170 ppt was determined. Differences in measurement error using LoBs versus gold colloid are also described, as well as an assay for 5,5'-dithiobis(2-nitrobenzoic acid) that shows the benefit of using LoBs over SERS analyses in colloids, which are often plagued by particle aggregation. PMID:22077992

  11. Numerical analysis of the angular motion of a neutrally buoyant spheroid in shear flow at small Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Rosén, T.; Einarsson, J.; Nordmark, A.; Aidun, C. K.; Lundell, F.; Mehlig, B.

    2015-12-01

    We numerically analyze the rotation of a neutrally buoyant spheroid in a shear flow at small shear Reynolds number. Using direct numerical stability analysis of the coupled nonlinear particle-flow problem, we compute the linear stability of the log-rolling orbit at small shear Reynolds number Rea. As Rea?0 and as the box size of the system tends to infinity, we find good agreement between the numerical results and earlier analytical predictions valid to linear order in Rea for the case of an unbounded shear. The numerical stability analysis indicates that there are substantial finite-size corrections to the analytical results obtained for the unbounded system. We also compare the analytical results to results of lattice Boltzmann simulations to analyze the stability of the tumbling orbit at shear Reynolds numbers of order unity. Theory for an unbounded system at infinitesimal shear Reynolds number predicts a bifurcation of the tumbling orbit at aspect ratio ?c?0.137 below which tumbling is stable (as well as log rolling). The simulation results show a bifurcation line in the ? -Rea plane that reaches ? ?0.1275 at the smallest shear Reynolds number (Rea=1 ) at which we could simulate with the lattice Boltzmann code, in qualitative agreement with the analytical results.

  12. In-Situ Optical and Acoustical Measurements of the Buoyant Cyanobacterium P. Rubescens: Spatial and Temporal Distribution Patterns

    PubMed Central

    Hofmann, Hilmar; Peeters, Frank

    2013-01-01

    Optical (fluorescence) and acoustic in-situ techniques were tested in their ability to measure the spatial and temporal distribution of plankton in freshwater ecosystems with special emphasis on the harmful and buoyant cyanobacterium P. rubescens. Fluorescence was measured with the multi-spectral FluoroProbe (Moldaenke FluoroProbe, MFP) and a Seapoint Chlorophyll Fluorometer (SCF). In-situ measurements of the acoustic backscatter strength (ABS) were conducted with three different acoustic devices covering multiple acoustic frequencies (614 kHz ADCP, 2 MHz ADP, and 6 MHz ADV). The MFP provides a fast and reliable technique to measure fluorescence at different wavelengths in situ, which allows discriminating between P. rubescens and other phytoplankton species. All three acoustic devices are sensitive to P. rubescens even if other scatterers, e.g., zooplankton or suspended sediment, are present in the water column, because P. rubescens containing gas vesicles has a strong density difference and hence acoustic contrast to the ambient water and other scatterers. After calibration, the combination of optical and acoustical measurements not only allows qualitative and quantitative observation of P. rubescens, but also distinction between P. rubescens, other phytoplankton, and zooplankton. As the measuring devices can sample in situ at high rates they enable assessment of plankton distributions at high temporal (minutes) and spatial (decimeters) resolution or covering large temporal (seasonal) and spatial (basin scale) scales. PMID:24303028

  13. Axial allometry in a neutrally buoyant environment: effects of the terrestrial-aquatic transition on vertebral scaling.

    PubMed

    Jones, K E; Pierce, S E

    2016-03-01

    Ecological diversification into new environments presents new mechanical challenges for locomotion. An extreme example of this is the transition from a terrestrial to an aquatic lifestyle. Here, we examine the implications of life in a neutrally buoyant environment on adaptations of the axial skeleton to evolutionary increases in body size. On land, mammals must use their thoracolumbar vertebral column for body support against gravity and thus exhibit increasing stabilization of the trunk as body size increases. Conversely, in water, the role of the axial skeleton in body support is reduced, and, in aquatic mammals, the vertebral column functions primarily in locomotion. Therefore, we hypothesize that the allometric stabilization associated with increasing body size in terrestrial mammals will be minimized in secondarily aquatic mammals. We test this by comparing the scaling exponent (slope) of vertebral measures from 57 terrestrial species (23 felids, 34 bovids) to 23 semi-aquatic species (pinnipeds), using phylogenetically corrected regressions. Terrestrial taxa meet predictions of allometric stabilization, with posterior vertebral column (lumbar region) shortening, increased vertebral height compared to width, and shorter, more disc-shaped centra. In contrast, pinniped vertebral proportions (e.g. length, width, height) scale with isometry, and in some cases, centra even become more spool-shaped with increasing size, suggesting increased flexibility. Our results demonstrate that evolution of a secondarily aquatic lifestyle has modified the mechanical constraints associated with evolutionary increases in body size, relative to terrestrial taxa. PMID:26679743

  14. Changes in pH of seawater in the neighborhood of a buoyant CO{sub 2} droplet in the ocean

    SciTech Connect

    Teng, H.; Yamasaki, Akihiro

    1997-12-31

    Changes in pH around a buoyant CO{sub 2} droplet in the ocean are studied. Based on a convection-diffusion model, mass transfer from the CO{sub 2} droplet into seawater is analyzed. Chemical reactions that occur in the carbonate system are considered assuming local chemical equilibrium. A relationship between pH and the CO{sub 2} concentration (in a total-carbonate sense) is obtained. Based on this relationship, changes in pH around the droplet can be predicted. It is found in this study that the pH distribution around a buoyant CO{sub 2} droplet in the ocean is highly asymmetric; at the front of the droplet, changes in pH are restricted to a thin surface layer, however, a low-pH wake forms at the rear of the droplet and this wake can extend for a distance of several times the droplet radius.

  15. Reactive multiphase flow at the pore-scale: the melting of a crystalline framework during the injection of buoyant hot volatiles

    NASA Astrophysics Data System (ADS)

    Andrea, P.; Huber, C.; Bachmann, O.; Chopard, B.

    2010-12-01

    Multiphase reactive flows occur naturally in various environments in the shallow subsurface, e.g. CO2 injections in saturated reservoirs, exsolved methane flux in shallow sediments and H20-CO2 volatiles in magmatic systems. Because of their multiphase nature together with the nonlinear feedbacks between reactions (dissolution/melting or precipitation) and the flow field at the pore-scale, the study of these dynamical processes remains a great challenge. In this study we focus on the injection of buoyant hot volatiles exsolved from a magmatic intrusion underplating a crystal-rich magma (porous medium). We use some simple theoretical models and a pore-scale multiphase reactive lattice Boltzmann model to investigate how the heat carried by the volatile phase affects the evolution of the porous medium spatially and temporally. We find that when the reaction rate is relatively slow and when the injection rate of volatiles is large (high injection Capillary number), the dissolution of the porous medium can be described by a local Peclet number (ratio of advective to diffusive flux of heat/reactant in the main gas channel). When the injection rate of volatile is reduced, or when the reaction rate is large, the dynamics transition to more complex regimes, where subvertical gas channels are no longer stable and can break into disconnected gas slugs. For the case of the injection of hot volatiles in crystal-rich magmatic systems, we find that the excess enthalpy advected by buoyant volatiles penetrates the porous medium over distances ~r Pe, where r is the average radius of the volatile channel (~pore size). The transport of heat by buoyant gases through a crystal mush is therefore in most cases limited to distances < meters. Our results also suggest that buoyant volatiles can carry chemical species (Li,F, Cl) far into a mush as their corresponding local Peclet number is several orders of magnitude greater than that for heat, owing to their low diffusion coefficients.

  16. The motion of a neutrally buoyant particle of an elliptic shape in two dimensional shear flow: A numerical study

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Lin; Chen, Shih-Di; Pan, Tsorng-Whay; Chang, Chien-Cheng; Chu, Chin-Chou

    2015-08-01

    In this article, we investigate the motion of a neutrally buoyant particle of an elliptic shape freely moving in two dimensional shear flow by direct numerical simulation. An elliptic shape particle in shear flow, when initially being placed at the middle between two walls, either keeps rotating or has a stationary inclination angle depending on the particle Reynolds number R e = G r ra 2 / ? , where Gr is the shear rate, ra is the semi-long axis of the elliptic particle, and ? is the kinetic viscosity of the fluid. The critical particle Reynolds number Recr for the transition from a rotating motion to a stationary orientation depends on the aspect ratio AR = rb/ra and the confined ratio K = 2ra/H, where rb is the semi-short axis of the elliptic particle and H is the distance between two walls. Although the increasing of either parameters makes an increase in Recr, the dynamic mechanism is distinct. The AR variation causes the change of geometry shape; however, the K variation influences the wall effect. The stationary inclination angle of non-rotating slender elliptic particle with smaller confined ratio seems to depend only on the value of Re - Recr. An expected equilibrium position of the particle mass center in shear flow is the centerline between two walls. When placing the particle away from the centerline initially, it migrates either toward an equilibrium height away from the middle between two walls or back to the middle depending on the confined ratio and particle Reynolds number; but for higher particle Reynolds numbers, besides the previous two positions, the elliptic particle placed close to the middle just moves parallel to the wall with a stationary orientation.

  17. The relative importance of local retention and inter-reef dispersal of neutrally buoyant material on coral reefs

    NASA Astrophysics Data System (ADS)

    Black, Kerry P.

    1993-03-01

    Reef-scale, eddy-resolving numerical models are applied to discriminate between local trapping of neutrally buoyant passive material coming from a natal reef versus trapping of this material on reefs downstream. A hydrodynamic model is coupled with a Lagrangian (nongridded) dispersal simulation to map the movement of material such as passive larvae within and between natural reefs. To simplify the interpretation, a number of schematic reef shapes, sizes and spacings were devised to represent the most common cases typifying Australia's Great Barrier Reef. Prior investigations have shown that coral reefs on the Great Barrier Reef may retain material for times equivalent to the pelagic dispersal period of many species. This paper explores whether larvae are more likely to settle on the natal reef, settle downstream or fail to settle at all. The modelling neglects active larval behaviour and treats the vertically well-mixed case of notionally weightless particles only. The crown-of-thorns starfish larvae with a pelagic dispersal period of at least 10 days are one example of this case. Larvae are most likely to be found near the natal reef rather than its downstream neighbour, mostly because the currents take the vertically well-mixed material around, rather than onto, the downstream reef. Of all the simulations, the highest numbers were found on natal reefs (e.g. 8% after 10 days) while downstream numbers mostly varied between 0 and 1% after 10 days. Particle numbers equalised only when spacing between the two reefs was less than the reef length (6 km), or when the downstream reef was in the direct path of the larval stream.

  18. Buoyant despite Downturn

    ERIC Educational Resources Information Center

    Berry, John N., III; Fialkoff, Francine; Fox, Bette-Lee; Hadro, Josh; Horrocks, Norman; Kuzyk, Raya; Oder, Norman

    2009-01-01

    Even as libraries face the economic downturn, a record-setting number of people attended the American Library Association (ALA) annual conference in Chicago, July 9-15. The tough economy, however, was felt in the number of exhibitors, which declined from the previous record set in 2007 in Washington, DC, and in anecdotal evidence that suggested…

  19. JBFA - buoyant flight

    NASA Technical Reports Server (NTRS)

    Ohari, T.

    1982-01-01

    A method was developed whereby a balloon was used to carry lumber out of a forest in order to continue lumber production without destroying the natural environment and view of the forest. Emphasis was on the best shape for a logging balloon, development of a balloon logging system suitable for cutting lumber and safety plans, tests on balloon construction and development of netting, and weather of mountainous areas, especially solutions to problems caused by winds.

  20. Turbulent dispersion of slightly buoyant oil droplets and turbulent breakup of crude oil droplets mixed with dispersants

    NASA Astrophysics Data System (ADS)

    Gopalan, Balaji

    In part I, high speed in-line digital holographic cinematography is used for studying turbulent diffusion of slightly buoyant 0.5-1.2 mm diameter diesel droplets (specific gravity of 0.85) and 50 mum diameter neutral density particles. Experiments are performed in a 50x50x70 mm3 sample volume in a controlled, nearly isotropic turbulence facility, which is characterized by 2-D PIV. An automated tracking program has been used for measuring velocity time history of more than 17000 droplets and 15000 particles. The PDF's of droplet velocity fluctuations are close to Gaussian for all turbulent intensities ( u'i ). The mean rise velocity of droplets is enhanced or suppressed, compared to quiescent rise velocity (Uq), depending on Stokes number at lower turbulence levels, but becomes unconditionally enhanced at higher turbulence levels. The horizontal droplet velocity rms exceeds the fluid velocity rms for most of the data, while the vertical ones are higher than the fluid only at the highest turbulence level. The scaled droplet horizontal diffusion coefficient is higher than the vertical one, for 1 < u'i /Uq < 5, consistent with trends of the droplet velocity fluctuations. Conversely, the scaled droplet horizontal diffusion timescale is smaller than the vertical one due to crossing trajectories effect. The droplet diffusion coefficients scaled by the product of turbulence intensity and an integral length scale is a monotonically increasing function of u'i /Uq. Part II of this work explains the formation of micron sized droplets in turbulent flows from crude oil droplets pre-mixed with dispersants. Experimental visualization shows that this breakup starts with the formation of very long and quite stable, single or multiple micro threads that trail behind millimeter sized droplets. These threads form in regions with localized increase in concentration of surfactant, which in turn depends on the flow around the droplet. The resulting reduction of local surface tension, aided by high oil viscosity and stretching by the flow, suppresses capillary breakup and explains the stability of these threads. Due to increasing surface area and diffusion of dispersants into the continuous phase, the threads eventually breakup into ˜3 mum droplets.

  1. Near-field mixing of a vertical buoyant jet in a shallow crossflow: Implications on adsorption and flocculation

    NASA Astrophysics Data System (ADS)

    Gomm, Leslie Sharon

    1999-10-01

    The behaviour and movement of pulpmill pollutants discharged into the Northern Fraser River is of significant concern due to their potential impact on this valuable aquatic ecosystem. The shallow receiving water can influence the mixing and subsequent dilution of these discharges. The association of contaminants with suspended sediment, either by direct adsorption or flocculation of contaminated solids discharged with the effluent (biosolids), also affects pollutant fate. This study examined the effects of a shallow crossflow in the near field mixing of a vertical buoyant jet, specifically dilution and trajectory. Physical mixing experiments were carried out in a shallow ambient current over a range of conditions similar to those seen in the Fraser River, specifically peak and low flow conditions. The dilution and trajectory results were then compared to those predicted by CORMIX1. The mechanism of association of contaminants with suspended sediment under these near field conditions was also investigated. A jet classification scheme was developed based on the behaviour of the jets in the shallow crossflow. Jets were classified to be Bottom, Intermediate or Surface Jets. Bottom Jets were influenced primarily by interaction of the jet with the bottom boundary layer, resulting in significantly higher levels of dilution and possible bottom attachment. The mixing of Intermediate Jets was more complicated due to interaction with both the top and bottom boundaries: the free surface inhibited mixing while interactions with the boundary layer enhanced mixing. Surface Jets were drastically affected by the free surface, with a reduction in dilution due to impingement on the free surface. The CORMIX1 model was found to be unsuitable for predicting the dilution in this application since it does not consider the effects of either the free surface or the bottom boundary layer on jet mixing. Adsorption was found to play a limited role in the near field region. Of greater importance, is the potential for flocculation of biosolids with suspended sediment. The most important parameter in predicting where the conditions for this increased flocculation will occur was the ratio of the number of biosolid, particles to the number of suspended sediment particles.

  2. Some factors affecting the use of lighter than air systems. [economic and performance estimates for dirigibles and semi-buoyant hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Havill, C. D.

    1974-01-01

    The uses of lighter-than-air vehicles are examined in the present day transportation environment. Conventional dirigibles were found to indicate an undesirable economic risk due to their low speeds and to uncertainties concerning their operational use. Semi-buoyant hybrid vehicles are suggested as an alternative which does not have many of the inferior characteristics of conventional dirigibles. Economic and performance estimates for hybrid vehicles indicate that they are competitive with other transportation systems in many applications, and unique in their ability to perform some highly desirable emergency missions.

  3. HGSYSTEM/UF{sub 6} model enhancements for plume rise and dispersion around buildings, lift-off of buoyant plumes, and robustness of numerical solver

    SciTech Connect

    Hanna, S.R.; Chang, J.C.

    1997-01-01

    The HGSYSTEM/UF{sub 6} model was developed for use in preparing Safety Analysis Reports (SARs) by estimating the consequences of possible accidental releases of UF{sub 6} to the atmosphere at the gaseous diffusion plants (GDPs) located in Portsmouth, Ohio, and Paducah, Kentucky. Although the latter report carries a 1996 date, the work that is described was completed in late 1994. When that report was written, the primary release scenarios of interest were thought to be gas pipeline and liquid tank ruptures over open terrain away from the influence of buildings. However, upon further analysis of possible release scenarios, the developers of the SARs decided it was necessary to also consider accidental releases within buildings. Consequently, during the fall and winter of 1995-96, modules were added to HGSYSTEM/UF{sub 6} to account for flow and dispersion around buildings. The original HGSYSTEM/UF{sub 6} model also contained a preliminary method for accounting for the possible lift-off of ground-based buoyant plumes. An improved model and a new set of wind tunnel data for buoyant plumes trapped in building recirculation cavities have become available that appear to be useful for revising the lift-off algorithm and modifying it for use in recirculation cavities. This improved lift-off model has been incorporated in the updated modules for dispersion around buildings.

  4. 1/12-Scale mixing interface visualization and buoyant particle release tests in support of Tank 241-SY-101 hydrogen mitigation

    SciTech Connect

    Eschbach, E.J.; Enderlin, C.W.

    1993-10-01

    In support of tank waste safety programs, visualization tests were performed in the 1/12-scale tank facility, using a low-viscosity simulant. The primary objective of the tests was to obtain video records of the transient jet-sludge interaction. The intent is that these videos will provide useful qualitative data for comparison with model predictions. Two tests were initially planned: mixing interface visualization (MIV) and buoyant particle release (BPR). Completion of the buoyant particle release test was set aside in order to complete additional MIV tests. Rheological measurements were made on simulant samples before testing, and the simulant was found to exhibit thixotropic behavior. Shear vane measurements were also made on an in-situ analog of the 1/12-scale tank simulant. Simulant shear strength has been observed to be time dependent. The primary objective of obtaining video records of jet-sludge interaction was satisfied, and the records yielded jet location information which may be of use in completing model comparisons. The modeling effort is not part of this task, but this report also discusses test specific instrumentation, visualization techniques, and shear vane instrumentation which would enable improved characterization of jet-sludge interaction and simulant characteristics.

  5. Dynamics of the flammable plumes resulting from the convective dispersion of a fixed mass of the buoyant gaseous fuel, methane, into air.

    PubMed

    Fardisi, S; Karim, Ghazi A

    2009-08-15

    The dynamics of the dispersion of a fixed mass of the buoyant fuel, methane, when exposed with a negligible pressure difference to overlaying air within vertical cylindrical enclosures open to the atmosphere is investigated. Features of the formation and dispersion of flammable mixtures created by the gas dissipation were examined using a 3D CFD model. For the cases considered, the lean-flammable mixture boundary appears to travel mainly at a near constant rate while the rich limit front shows a more chaotic behaviour. The corresponding simulation using an axis-symmetrical 2D model tended to under-predict the dynamics of the lean and rich boundaries, for the cases considered. PMID:19237243

  6. Modeling possible spreadings of a buoyant surface plume with lagrangian and eulerian approaches at different resolutions using flow syntheses from 1992-2007 - a Gulf of Mexico study

    NASA Astrophysics Data System (ADS)

    Tulloch, R.; Hill, C. N.; Jahn, O.

    2010-12-01

    We present results from an ensemble of BP oil spill simulations. The oil spill slick is modeled as a buoyant surface plume that is transported by ocean currents modulated, in some experiments, by surface winds. Ocean currents are taken from ECCO2 project (see http://ecco2.org ) observationally constrained state estimates spanning 1992-2007. In this work we (i) explore the role of increased resolution of ocean eddies, (ii) compare inferences from particle based, lagrangian, approaches with eulerian, field based, approaches and (ii) examine the impact of differential response of oil particles and water to normal and extreme, hurricane derived, wind stress. We focus on three main questions. Is the simulated response to an oil spill markedly different for different years, depending on ocean circulation and wind forcing? Does the simulated response depend heavily on resolution and are lagrangian and eulerian estimates comparable? We start from two regional configurations of the MIT General Circulation Model (MITgcm - see http://mitgcm.org ) at 16km and 4km resolutions respectively, both covering the Gulf of Mexico and western North Atlantic regions. The simulations are driven at open boundaries with momentum and hydrographic fields from ECCO2 observationally constrained global circulation estimates. The time dependent surface flow fields from these simulations are used to transport a dye that can optionally decay over time (approximating biological breakdown) and to transport lagrangian particles. Using these experiments we examine the robustness of conclusions regarding the fate of a buoyant slick, injected at a single point. In conclusion we discuss how future drilling operations could use similar approaches to better anticipate outcomes of accidents both in this region and elsewhere.

  7. The potential for buoyant displacement gas release events in Tank 241-SY-102 after waste transfer from Tank 241-SY-101

    SciTech Connect

    BE Wells; PE Meyer; G Chen

    2000-05-10

    Tank 241-SY-101 (SY-101) is a double-shell, radioactive waste storage tank with waste that, before the recent transfer and water back-dilution operations, was capable of retaining gas and producing buoyant displacement (BD) gas release events (GREs). Some BD GREs caused gas concentrations in the tank headspace to exceed the lower flammability limit (LFL). A BD GRE occurs when a portion of the nonconvective layer retains enough gas to become buoyant, rises to the waste surface, breaks up, and releases some of its stored gas. The installation of a mixer pump in 1993 successfully mitigated gas retention in the settled solids layer in SY-101 and has since prevented BD GREs. However, operation of the mixer pump over the years caused gas retention in the floating crust layer and a corresponding accelerated waste level growth. The accelerating crust growth trend observed in 1997--98 led to initiation of sequences of waste removal and water back-dilutions in December 1999. Waste is removed from the mixed slurry layer in Tank SY-101 and transferred into Tank 241-Sy-102 (SY-102). Water is then added back to dissolve soluble solids that retain gas. The initial transfer of 89,500 gallons of SY-101 waste, diluted in-line at 0.94:1 by volume with water, to SY-102 was conducted in December 1999. The second transfer of 230,000 gallons of original SY-101 waste, diluted approximately 0.9:1, was completed in January 2000, and the third transfer of 205,500 gallons of original SY-101 waste diluted at 0.9:1 was completed in March 2000.

  8. Numerical studies of the effects of neutrally buoyant large particles on turbulent channel flow at the friction Reynolds number up to 395

    NASA Astrophysics Data System (ADS)

    Yu, Zhaosheng; Wang, Yu; Shao, Xueming

    2012-11-01

    A direct-forcing fictitious domain method was employed to perform fully-resolved numerical simulations of turbulent channel flow laden with large neutrally buoyant particles at constant pressure gradients. The effects of the particles on the turbulence (including the fluid-phase average velocity, the root-mean-square (rms) of the velocity fluctuation, the probability density function of the velocity and the vortex structures) at the friction Reynolds number of 180 and 395 were investigated. The results show that the drag-reduction effect caused by the spherical particle at low particle volumes is very small. The presence of particles decreases the maximum rms of streamwise velocity fluctuation near wall via weakening the large-scale streamwise vortices, and on the other hand increases the rms of transverse and spanwise fluctuating velocities in vicinity of the wall via inducing smaller-scale vortices. The effects of the particles on the fluid velocity PDF (probability density function) normalized with the rms velocity are small, irrespective of the particle size, particle volume fraction and Reynolds number. The work was supported by the National Natural Science Foundation of China (Nos. 11072217 and 11132008), the Fundamental Research Funds for the Central Universities, and the Program for New Century Excellent Talents in University.

  9. Direct Measurements of Particulate Organic Carbon Flux Through the Twilight Zone During the North Atlantic Bloom Using Neutrally Buoyant Sediment Traps

    NASA Astrophysics Data System (ADS)

    Martin, P.; Lampitt, R.; Perry, M.

    2008-12-01

    The spring phytoplankton bloom in the North Atlantic is thought to contribute a significant proportion of the global export of particulate organic carbon (POC) out of the euphotic zone and through the mesopelagic zone. Primary production in this region has been previously estimated at 200 g C m-2 year-1 and higher. POC fluxes were measured between 150 m and 700 m from four deployments of neutrally buoyant sediment traps (PELAGRA) made during the initial development of the North Atlantic spring bloom in May 2008. In addition, fluxes of particulate organic nitrogen, inorganic carbon, and biogenic silica were measured. These data show that the sinking of the bloom is characterised by sedimentation of discrete pulses of material such that at certain times deeper traps collect several-fold more material than shallower traps, reflecting the passage of particle pulses through the water column. During the time period of maximal flux, increasing concentrations of suspended particles at depth were observed in CTD and Seaglider profiles of chlorophyll fluorescence and optical backscatter. We have applied a range of depth-normalisations, from published b-values of the 'Martin-curve', to estimate the export flux at 100 m depth. Daily fluxes during these pulsed events contributed between 1 and 8 % of the annual export reported in the literature using very different approaches (36 g C m-2 year-1). Data from concomitant ship-board measurements of total 234Th disequilibrium during the cruise provide a further constraint on the magnitude of export production.

  10. Horizontal evolution of tidally modulated buoyant plumes and the subsequent genesis of non linear internal waves as observed with an AUV based microstructure profiler.

    NASA Astrophysics Data System (ADS)

    toberman, matthew; Inall, Mark; Boyd, Tim

    2013-04-01

    The tidally modulated outflow of brackish water from a sea loch forms a thin stable surface layer that propagates into the coastal ocean as a buoyant gravity current, transporting nutrients and sediments, as well as fresh water, heat and momentum. The fresh intrusion propagates as an undular bore, and the introduced stratification supports trains of non-linear internal waves (NLIWs). In February 2011 an Autonomous Underwater Vehicle (AUV) was used on repeated reciprocal transects to make simultaneous CTD, ADCP and shear microstructure measurements of the evolution of these phenomena in conjunction with conventional mooring measurements. AUV-based temperature and salinity signals of NLIWs of depression were observed together with increased turbulent kinetic energy dissipation rates of over two orders of magnitude within and in the wake of the NLIWs. Repeated measurements over several tidal cycles allow a unique opportunity to investigate the horizontal structure of these phenomena, the interaction of each tidally driven pulse with ambient stratification and the remnants of previous plumes, as well as the genesis of and subsequent mixing induced by the NLIWs.

  11. Microbial Diversity of Hydrothermal Vent Neutrally-Buoyant Plume Particles From 9 North, East Pacific Rise, After a Major Tectonic Event in 2005-2006

    NASA Astrophysics Data System (ADS)

    Pyenson, B. C.; Sylvan, J. B.; Toner, B. M.; Rouxel, O. J.; German, C. R.; Edwards, K. J.

    2008-12-01

    Bacterial communities associated with descending, non-buoyant plume particles were collected in two sediment traps at 9°N on the East Pacific Rise over a 126 day period after a major tectonic event at the mid-oceanic ridge in 2005-2006. The communities from 15 trap samples were compared using Automated Ribosomal Intergenic Spacer Analysis (ARISA) analyzed using Bray-Curtis similarity on Primer6 software. Mean average values for OTUs of the samples and their replicates reveal spatial variation between sampling sites to be less significant than temporal variation: samples from both sites showed at least 50 - 60% similarity to each other, but temporal results suggest a distinctly different microbial community arising at the latest sampling times (i.e. 120-126 days). To draw more absolute measurements of spatial and temporal variation in the microbial communities within plume particles, samples from both vent sites and time regimes were selected for targeted sequencing of the 16S rRNA gene based on the ARISA results. Results from these sequencing efforts will be discussed and put in context with other diversity data from the geochemical endpoints of vent plumes: bottom water ambient seawater and hydrothermal fluids. In the future, we will use 454/V6-TAG sequencing to complement ARISA fingerprints and targeted sequencing and to assess total community diversity. These data will be analyzed in concert with geochemical and mineralogical data to reveal trends in biogeochemical processes in hydrothermal plumes and their correlation to microbial communities.

  12. Numerical studies of the effects of large neutrally buoyant particles on the flow instability and transition to turbulence in pipe flow

    NASA Astrophysics Data System (ADS)

    Yu, Zhaosheng; Wu, Tenghu; Shao, Xueming; Lin, Jianzhong

    2013-04-01

    The effects of large neutrally buoyant particles on the flow instability and turbulence transition in pipe flow are investigated with the fictitious domain method. The periodic boundary condition is introduced in the streamwise direction. The work comprises two parts. In the first part, the pressure gradient is kept constant, and the purpose is to study the particle-induced flow instability. In our previous study [X. Shao, Z. Yu, and B. Sun, Phys. Fluids 20, 103307 (2008), 10.1063/1.3005427], it was observed that a particle of a/R = 0.1 (a and R being the radii of the particle and the tube, respectively) induced the flow structure characterized by two pairs of weak and stable streamwise vortices at the Reynolds number of 1000. In the present study, our results show that the flow structure loses stability at the Reynolds number of 1500. However, it is interesting that the system eventually reaches a stable state: the particle spirals forward along the tube wall, accompanied by a stable flow structure for the case of one single particle in the computational domain. In the second part of the present study, the flow flux is kept constant, and the purpose is to examine the effects of particles on the critical Reynolds number based on the mean velocity. Our results show that large particles trigger the turbulence transition at low particle volume fractions, but delay the transition as the particle volume fraction exceeds a critical value, in agreement with the previous experimental observation [J.-P. Matas, J. F. Morris, and É. Guazzelli, Phys. Rev. Lett. 90, 014501 (2003), 10.1103/PhysRevLett.90.014501].

  13. Petrochronological and structural arguments for upper plate thickening and relamination of the lower plate buoyant material in the Variscan Bohemian Massif

    NASA Astrophysics Data System (ADS)

    Pe?estę, Vít; Holder, Robert; Lexa, Ondrej; Racek, Martin; Je?ábek, Petr

    2014-05-01

    Recent tectonic models for the Variscan evolution of the Bohemian Massif emphasize the role of Rayleigh-Taylor instability for the 355-340 Ma evolution of the Moldanubian domain. This model is based on the presence of weak, low-density felsic material tectonically underplating a high-density mafic layer and its subsequent gravity-driven overturn. However, earlier phases of the Variscan orogeny concerning the emplacement of felsic low-density material to the base of the upper plate are so far poorly documented. We contribute to this problem by deciphering of polyphase early-Variscan (~375 Ma) deformation and metamorphism close to the main Variscan suture. Detailed structural, pseudosection and microstructural analyses combined with LASS monazite dating were carried out in metapelites along the western margin of the upper plate represented by the Teplá Crystalline Complex (TCC). This region is represented by a ~25 km wide deformation zone with E-W metamorphic gradients associated with two distinct early-Variscan events (~380-375 and ~375-370 Ma). The first compressional event produced a vertical NNE-SSW trending fabric and a continuous and prograde Barrovian metamorphic sequence ranging from biotite to kyanite zones at a field geotherm of 20 to 25 °C/km. Subsequently, a gently SE dipping normal shear-zone associated with retrogression develops along the base of the TCC. This sub-horizontal fabric shows normal metamorphic zonation ranging from sillimanite, biotite to chlorite zones and indicates vertical shortening related to unroofing of high pressure metabasites of the underlying Mariánské-Lázn? Complex. The first metamorphic fabric is interpreted to result from early thickening of the upper plate during continental underthrusting of Saxothuringian continent (380 to 375 Ma) while the second deformation and metamorphism (~370 Ma) reflects vertical shortening produced by buoyant uplift of accreted Saxothuringian felsic crust. This event is the unique yet indirect testimony of relamination mechanisms governing further evolution of the orogenic lower crust in the Bohemian massif.

  14. An Experimental Field Dataset with Buoyant, Neutral, and Dense Gas Atmospheric Releases and Model Comparisons in Low-Wind Speed (Diffusion) Conditions

    SciTech Connect

    Veronica E. Wannberg, Gustavious Williams, Patrick Sawyer, and Richard Venedam

    2010-09-01

    Aunique field dataset from a series of low–wind speed experiments, modeling efforts using three commonly used models to replicate these releases, and statistical analysis of how well these models were able to predict the plume concentrations is presented. The experiment was designed to generate a dataset to describe the behavior of gaseous plumes under low-wind conditions and the ability of current, commonly used models to predict these movements. The dataset documents the release and transport of three gases: ammonia (buoyant), ethylene (neutral), and propylene (dense) in low–wind speed (diffusion) conditions. Release rates ranged from 1 to 20 kg h21. Ammonia and ethylene had five 5-min releases each to represent puff releases and five 20-min releases each to represent plume releases. Propylene had five 5-min puffs, six 20-min plumes, and a single 30-min plume. Thirty-two separate releases ranging from 6 to 47 min were conducted, of which only 30 releases generated useful data. The data collected included release rates, atmospheric concentrations to 100 m from the release point, and local meteorological conditions. The diagnostics included nine meteorological stations on 100-m centers and 36 photoionization detectors in a radial pattern. Three current stateof- the-practice models, Aerial locations of Hazardous Atmospheres (ALOHA), Emergency Prediction Information code (EPIcode), and Second-Order Closure Integrated Puff (SCIPUFF), were used to try to duplicate the measured field results. Low wind speeds are difficult to model, and all of the models had difficulty replicating the field measurements. However, the work does show that these models, if used correctly, are conservative (overpredict concentrations) and can be used for safety and emergency planning.

  15. Application of a 1-Dimensional Viscoelastic Bending Beam Model to the Buoyant Terminus of Lake-Calving Mendenhall Glacier, Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Boyce, E.; Motyka, R. J.; Bueler, E.

    2005-12-01

    Mendenhall Glacier is a lake-calving glacier in southeastern Alaska that is experiencing substantial thinning and increasingly rapid recession. The recent retreat of the terminus has been controlled mainly by calving dynamics, and therefore may not be directly driven by climatic trends. Lake-terminating glaciers form a population distinct from both tidewater glaciers and polar ice tongues, with some similarities to both groups. Unlike polar ice tongues, it is generally thought that temperate tidewater glaciers are unable to maintain a floating front. Studies of Mendenhall Glacier and other temperate lake-calving glaciers suggest that partial terminus floatation may not be uncommon, and may play a role in calving. At Mendenhall, we observed upward displacement of the calving front during a two-year period, which culminated in large-scale calving and terminus collapse during summer 2004. Rapid thinning and simultaneous retreat into a deeper basin led to floatation conditions along approximately 50 % of the calving front. This unstable terminus geometry lasted for ~ 2 years. We used a simple 1-dimensional model to investigate the transient response of a floating glacier tongue to buoyant forcing. The basic equations we used to model a viscoelastic bending beam of ice were developed by Reeh et al. (2003) We solve the model numerically using a Chebyshev spectral method. Rather than look at deflections along a transverse profile, we apply the appropriate boundary conditions for a grounding line and floating front. The model results may be compared to the measured glacier upwarping. Temperatures in Mendenhall Lake adjacent to the calving face show a cooling trend (4 to 2 °C) over the summer melt season and a stable thermal stratification, suggesting little or no convection along the calving front. Although melting of a submerged ice cliff may be an important mechanism for ice loss at tidewater glaciers, lack of convection and low water temperatures indicate it is much less so for lake-calving glaciers. Reeh, N., E. L. Christensen, C. Mayer, O. B. Olesen, 2003. Tidal bending of glaciers: a linear viscoelastic approach. Annals of Glaciology 37(1), 83-89.

  16. On the suitability of gelatin as a laboratory-scale analogue for host rock to study the propagation of buoyant liquid-filled fractures in geophysical applications, notably magmatic dikes

    NASA Astrophysics Data System (ADS)

    Tait, S.; Taisne, B.; Craster, R.; Bhat, H.

    2012-12-01

    Experimental modelling of the propagation of magma-filled fractures or dikes has relied heavily on the use of gelatin as a host solid because of several convenient properties, notably its low elastic shear modulus, as well as the properties of transparency and photo-elasticity. The first of these properties notably allows gelatin to deform under its own weight at laboratory scale. Quite a wide range of fluids have been used in order to study the propagation of cracks filled particularly with (positively or negatively) buoyant fluid, the case of buoyant cracks being believed particularly important for geologic applications. Fluids that have been used include air, various oils, alkanes, and mercury as well as some aqueous solutions, which raises the question of the action of surface energy between hydrophobic fluids and hydrophilic gelatin. One important discrepancy between experimental results and theory is that many experimental cracks filled with a constant volume of buoyant fluid have been observed to propagate at constant velocity whereas theory predicts that they should lengthen proportional to time^(1/3). Physical analysis and numerical calculations on this problem indeed suggest that it may be explained qualitatively by a surface energy effect, however, numerical values for the physical parameters involved indicate that the velocity predicted for viscous flow driven by surface energy between gelatin and different fluids is not that at which the fractures propagate. We review the experimental literature, and show that existing physical models for fissure propagation do not give a very satisfactory quantitative explanation of the fissure velocities observed. One source of discrepancy may be that theories are most commonly limited to 2-dimensional treatments whereas experimental fractures are naturally 3-dimensional. We also revisit the question of whether host solid fracture processes or rheologic variations, which have generally been thought to be unimportant in determining the velocity of fissures in the geologic context, may also be a source of discrepancy in the experimental data.

  17. The influence of buoyant forces and volume fraction of particles on the particle pushing/entrapment transition during directional solidification of Al/SiC and Al/graphite composites

    NASA Technical Reports Server (NTRS)

    Stefanescu, Doru M.; Moitra, Avijit; Kacar, A. Sedat; Dhindaw, Brij K.

    1990-01-01

    Directional solidification experiments in a Bridgman-type furnace were used to study particle behavior at the liquid/solid interface in aluminum metal matrix composites. Graphite or silicon-carbide particles were first dispersed in aluminum-base alloys via a mechanically stirred vortex. Then, 100-mm-diameter and 120-mm-long samples were cast in steel dies and used for directional solidification. The processing variables controlled were the direction and velocity of solidification and the temperature gradient at the interface. The material variables monitored were the interface energy, the liquid/particle density difference, the particle/liquid thermal conductivity ratio, and the volume fraction of particles. These properties were changed by selecting combinations of particles (graphite or silicon carbide) and alloys (Al-Cu, Al-Mg, Al-Ni). A model which consideres process thermodynamics, process kinetics (including the role of buoyant forces), and thermophysical properties was developed. Based on solidification direction and velocity, and on materials properties, four types of behavior were predicted. Sessile drop experiments were also used to determine some of the interface energies required in calculation with the proposed model. Experimental results compared favorably with model predictions.

  18. Generalized ballistic deposition of small buoyant particles

    NASA Astrophysics Data System (ADS)

    CsĂșcs, G.; Ramsden, J. J.

    1998-07-01

    The adsorption kinetics of the protein bee venom phospholipase A2 to a smooth, planar metal oxide surface has been measured under controlled hydrodynamic conditions using optical waveguide lightmode spectroscopy (OWLS). Adsorption follows the generalized ballistic deposition (GBD) model, except at low bulk protein concentrations, where Langmuir kinetics are observed.

  19. A Buoyant Life Investigating Mobile Platform (BLIMP)

    NASA Astrophysics Data System (ADS)

    Coleman, M.; Jones, J.; Rodgers, D.

    The Search for Life in new environments, e.g. Mars/Titan, will be scientifically challenging and have great engineering difficulties. In this paper we discuss an approach to field-testing methods relevant to three scientific thrusts in the detection of life and pre-biotic organic compounds on other worlds. We describe how this can be accomplished through a series of field trials using a mobile aerial vehicle that is a proxy for the exploration approaches and instrument techniques necessary for the next stage of life detection on other planets. We do this by deploying a mobile organic laboratory on Earth to demonstrate the requisite techniques. Terrestrial field trials will provide new insights on the colonization by life of fresh volcanic flows, and the competition between biotic and abiotic processes on a newly cooling piece of the Earth's crust. This paper suggests that such work could be very effectively conducted on Hawaii, where the erupted lava is basaltic, an important crustal component for terrestrial planets. The presence of water is generally agreed to be a prerequisite for planetary habitability but the combination of basalt and water is chemically unstable at the temperatures to which basalt cools after eruption. The subsequent chemical reactions occur because the total energy of the products is lower than that of the precursor materials and on Earth biological processes prosper by harvesting that difference in energy. For life processes to succeed they must out-compete the rate at which abiotic chemistry might accomplish the same tasks. Monitoring the rate at which chemical processes occur is therefore a life-detection approach. Biotic involvement in the rate of weathering of basalts is a test case for this new, generic life detection paradigm. This approach would be applicable to the periglacial zones of Mars, if liquid water were proven to be present there. We show that the use of a 15 meter autonomous blimp to carry various instrument packages (including camera, visible spectrometer, Tunable Diode Laser Spectrometer (TDLS) for gas and gas isotope analysis, gas chromatograph/mass spectrometer (GCMS). These could be calibrated followed by ground-truthing using field experiments in the interior of Meteor Crater in Arizona. This well understood system could then study the extreme environment of the still active volcanic caldera of Kilauea and the adjacent older lava flows. For Mars the blimp is a proxy for a lighter balloon or even a Martian Rover, which could carry a similar suite of instruments and take a similar set of measurements. For Titan, with its dense and high-molecular weight atmosphere calm winds and low gravity, a blimp will be the vehicle of choice. The experiments would be directly relevant. We discuss how a Titan Blimp could search for organic compounds in the post-Cassini exploration of Titan.

  20. A buoyant life investigating mobile platform (BLIMP)

    NASA Astrophysics Data System (ADS)

    Coleman, Max; Rodgers, David; Jones, Jack

    2006-01-01

    The search for life in new environments, e.g., Mars/Titan, will be scientifically challenging and have great engineering difficulties. In this paper the authors discuss an approach to field-testing methods relevant to three scientific thrusts in the detection of life and pre-biotic organics on other worlds. We describe how this can be accomplished through a series of field trials using a mobile aerial vehicle that is a proxy for the exploration approaches and instrument techniques necessary for the next stage of life detection on other planets. We do this by deploying a mobile organic laboratory on Earth to demonstrate the requisite techniques. We show how terrestrial field trials provide new insights on the colonization by life of fresh volcanic flows, and the competition between biotic and abiotic processes on a newly cooling piece of the Earth’s crust. This paper suggests that such work could be very effectively conducted on Hawaii, where the erupted lava is basaltic, an important crustal component for terrestrial planets. The presence of water is generally agreed to be a prerequisite for planetary habitability but the combination of basalt and water is chemically unstable at the temperatures to which basalt cools after eruption. The subsequent chemical reactions occur because the total energy of the products is lower than that of the precursor materials and on Earth biological processes result from organisms harvesting that difference in energy. For life processes to succeed they must out-compete the rate at which abiotic chemistry might accomplish the same tasks. Monitoring the rate at which chemical processes occur is therefore a life-detection approach. Biotic involvement in the rate of weathering of basalts is the test case for this new, generic life detection paradigm. This approach would be applicable to the periglacial zones of Mars, if liquid water were proven to be present there. We show that a 15 m autonomous BLIMP could carry various instrument packages including camera, visible spectrometer, tunable diode laser spectrometer (TDLS) for gas and gas isotope analysis, gas chromatograph/mass spectrometer (GCMS). These could be calibrated followed by ground-truthing using field experiments in the interior of Meteor Crater in Arizona. This well understood system could then study the extreme environment of the still active volcanic caldera of Kilauea and the adjacent older lava flows. For Mars the BLIMP is a proxy for a lighter balloon or even a Martian Rover, which could carry a similar suite of instruments and take a similar set of measurements. For Titan, with its dense and high-molecular weight atmosphere calm winds and low gravity, a BLIMP will be the vehicle of choice. The experiments would be directly relevant. We discuss how a Titan BLIMP could search for organic compounds in the post-Cassini exploration of Titan.

  1. Candle Flames in Non-Buoyant Atmospheres

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; Shu, Y.; Chang, P.; Tien, J. S.

    2000-01-01

    This paper addresses the behavior of a candle flame in a long-duration, quiescent microgravity environment both on the space Shuttle and the Mir Orbiting Station. On the Shuttle, the flames became dim blue after an initial transient where there was significant yellow (presumably soot) in the flame. The flame lifetimes were typically less than 60 seconds. The safety-mandated candlebox that contained the candle flame inhibited oxygen transport to the flame and thus limited the flame lifetime. The flames on the Mir were similar, except that the yellow luminosity persisted longer into the flame lifetime because of a higher initial oxygen concentration, The Mir flames burned for as long as 45 minutes. The difference in the flame lifetime between the Shuttle and Mir flames was primarily the redesigned candlebox that did not inhibit oxygen transport to the flame. In both environments, the flame intensity and the height-to-width ratio gradually decreased as the ambient oxygen content in the sealed chamber slowly decreased. Both sets of experiments showed spontaneous, axisymmetric flame oscillations just prior to extinction. The paper also presents a numerical model of a candle flame. The formulation is two-dimensional and time-dependent in the gas phase with constant specific heats, thermal conductivity and Lewis number (although different species can have different Lewis numbers), one-step finite-rate kinetics, and gas-phase radiative losses from CO2 and H2O. The treatment of the liquid/wick phase assumes that the, fuel evaporates from a constant diameter sphere connected to an inert cone. The model predicts a steady flame with a shape and size quantitatively similar to the Shuttle and Mir flames. The computation predicts that the flame size will increase slightly with increasing ambient oxygen mole fraction. The model also predicts pre-extinction flame oscillations if the rate of decrease in ambient oxygen is small enough, such as that which would occur for a flame burning in a sealed ambient.

  2. A modeling of buoyant gas plume migration

    SciTech Connect

    Silin, D.; Patzek, T.; Benson, S.M.

    2008-12-01

    This work is motivated by the growing interest in injecting carbon dioxide into deep geological formations as a means of avoiding its atmospheric emissions and consequent global warming. Ideally, the injected greenhouse gas stays in the injection zone for a geologic time, eventually dissolves in the formation brine and remains trapped by mineralization. However, one of the potential problems associated with the geologic method of sequestration is that naturally present or inadvertently created conduits in the cap rock may result in a gas leakage from primary storage. Even in a supercritical state, the carbon dioxide viscosity and density are lower than those of the formation brine. Buoyancy tends to drive the leaked CO{sub 2} plume upward. Theoretical and experimental studies of buoyancy-driven supercritical CO{sub 2} flow, including estimation of time scales associated with plume evolution and migration, are critical for developing technology, monitoring policy, and regulations for safe carbon dioxide geologic sequestration. In this study, we obtain simple estimates of vertical plume propagation velocity taking into account the density and viscosity contrast between CO{sub 2} and brine. We describe buoyancy-driven countercurrent flow of two immiscible phases by a Buckley-Leverett type model. The model predicts that a plume of supercritical carbon dioxide in a homogeneous water-saturated porous medium does not migrate upward like a bubble in bulk water. Rather, it spreads upward until it reaches a seal or until it becomes immobile. A simple formula requiring no complex numerical calculations describes the velocity of plume propagation. This solution is a simplification of a more comprehensive theory of countercurrent plume migration (Silin et al., 2007). In a layered reservoir, the simplified solution predicts a slower plume front propagation relative to a homogeneous formation with the same harmonic mean permeability. In contrast, the model yields much higher plume propagation estimates in a high-permeability conduit like a vertical fracture.

  3. JBFA-Buoyant Flight, Special Edition

    NASA Technical Reports Server (NTRS)

    Wada, C.; Terada, K.; Ishii, C.; Nagamatsu, K.; Makino, M.; Ichiyoshi, S.

    1982-01-01

    Progress in the project to traverse the Pacific Ocean by manned balloon is summarized. The development of a hybrid lighter than aircraft combining the buoyancy of a gas bag with the vertical lift off capabilities of the helicopter is also addressed.

  4. Richardson effects in turbulent buoyant flows

    NASA Astrophysics Data System (ADS)

    Biggi, Renaud; Blanquart, Guillaume

    2010-11-01

    Rayleigh Taylor instabilities are found in a wide range of scientific fields from supernova explosions to underwater hot plumes. The turbulent flow is affected by the presence of buoyancy forces and may not follow the Kolmogorov theory anymore. The objective of the present work is to analyze the complex interactions between turbulence and buoyancy. Towards that goal, simulations have been performed with a high order, conservative, low Mach number code [Desjardins et. al. JCP 2010]. The configuration corresponds to a cubic box initially filled with homogeneous isotropic turbulence with heavy fluid on top and light gas at the bottom. The initial turbulent field was forced using linear forcing up to a Reynolds number of Re?=55 [Meneveau & Rosales, POF 2005]. The Richardson number based on the rms velocity and the integral length scale was varied from 0.1 to 10 to investigate cases with weak and strong buoyancy. Cases with gravity as a stabilizer of turbulence (gravity pointing up) were also considered. The evolution of the turbulent kinetic energy and the total kinetic energy was analyzed and a simple phenomenological model was proposed. Finally, the energy spectra and the isotropy of the flow were also investigated.

  5. Candle Flames in Non-Buoyant Atmospheres

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; Shu, Y.; Tien, J. S.

    1999-01-01

    This paper addresses the behavior of a candle flame in a long-duration, quiescent microgravity environment both on the space Shuttle and the Mir Orbiting Station (OS). On the Shuttle, the flames became dim blue after an initial transient where there was significant yellow (presumably soot) in the flame. The flame lifetimes were typically less than 60 seconds. The safety-mandated candlebox that contained the candle flame inhibited oxygen transport to the flame and thus limited the flame lifetime. 'Me flames on the Mir OS were similar, except that the yellow luminosity persisted longer into the flame lifetime because of a higher initial oxygen concentration. The Mir flames burned for as long as 45 minutes. The difference in the flame lifetime between the Shuttle and Mir flames was primarily the redesigned candlebox that did not inhibit oxygen transport to the flame. In both environments, the flame intensity and the height-to-width ratio gradually decreased as the ambient oxygen content in the sealed chamber slowly decreased. Both sets of experiments showed spontaneous, axisymmetric flame oscillations just prior to extinction. The paper also presents a numerical model of candle flame. The model is detailed in the gas-phase, but uses a simplified liquid/wick phase. 'Me model predicts a steady flame with a shape and size quantitatively similar to the Shuttle and Mir flames. ne model also predicts pre-extinction flame oscillations if the decrease in ambient oxygen is small enough.

  6. Pneumatic raft automatically reforms after rupture of buoyant member

    NASA Technical Reports Server (NTRS)

    Radnofsky, M. I.; Shewmake, G. A.

    1968-01-01

    Unique, inflated, expandable socks are attached within the inflated chamber of a raft or a float in such a way that collapse of the chamber wall through damage, causes the adjacent sock to expand and restore the original configuration.

  7. Mechanism for transition to turbulence in buoyant plume flow

    NASA Astrophysics Data System (ADS)

    Kimura, S.; Bejan, A.

    1983-10-01

    This paper reports a theoretical and experimental study of the fundamental mechanism responsible for transition in natural convection plume flow. Theoretically, it is argued that the transition occurs when the time of viscous penetration normal to the plume becomes comparable with the minimum time period with which the plume can fluctuate as an unstable inviscid stream. It is also argued that at transition the plume wavelength must always scale with the local plume diameter. The experimental part of the study focused on transition in the axisymmetric air plume above a point heat source. Smoke visualization of the plume shape at transition led to extensive observations that support strongly the transition mechanism proposed theoretically. The transitional plume is seen to meander in a plane (two-dimensionally) and with a wavelength which scales with the plume diameter. If excited by many such wavelengths, the plume has the property to select the natural wavelength proposed theoretically. The equivalence between the present transition mechanism and the transition predicted by the buckling theory is discussed.

  8. On the role of buoyant flexure in glacier calving

    NASA Astrophysics Data System (ADS)

    Wagner, Till J. W.; James, Timothy D.; Murray, Tavi; Vella, Dominic

    2016-01-01

    Interactions between glaciers and the ocean are key for understanding the dynamics of the cryosphere in the climate system. Here we investigate the role of hydrostatic forces in glacier calving. We develop a mathematical model to account for the elastic deformation of glaciers in response to three effects: (i) marine and lake-terminating glaciers tend to enter water with a nonzero slope, resulting in upward flexure around the grounding line; (ii) horizontal pressure imbalances at the terminus are known to cause hydrostatic in-plane stresses and downward acting torque; (iii) submerged ice protrusions at the glacier front may induce additional buoyancy forces that can cause calving. Our model provides theoretical estimates of the importance of each effect and suggests geometric and material conditions under which a given glacier will calve from hydrostatic flexure. We find good agreement with observations. This work sheds light on the intricate processes involved in glacier calving and can be hoped to improve our ability to model and predict future changes in the ice-climate system.

  9. Passive scalar mixing in variable-density, buoyant turbulent flows

    NASA Astrophysics Data System (ADS)

    Carroll, Phares L.; Blanquart, Guillaume

    2012-11-01

    The interplay between turbulence and buoyancy is not fully characterized despite its presence in a wide range of environmental phenomena and engineering problems. Although classical Kolmogorov theory states that the dissipative scales are purely isotropic, there is evidence that this no longer holds in the presence of buoyancy. In this a-priori analysis, we consider two incompressible, miscible fluids with different densities that are subject to external body forces (gravity). The simulation results are used to probe the effect of variable-density and buoyancy on turbulence generation, small-scale isotropy, kinetic energy evolution, and turbulent mixing. The presence of isotropic behavior at the Taylor micro- and dissipative scales is examined via the Favre Reynolds stress anisotropy tensor. Analysis is conducted on the alignment of vorticity with the direction of principle strains to verify observed directional preferences. The role of buoyancy in the generation of turbulence is isolated by examination of appropriate energy spectra. Finally, the efficacy of mixing at varying Atwood and Schmidt numbers is analyzed using the probability density function (PDF) of mixture-averaged specific volume, the PDF of the scalar dissipation rate, and the scalar energy spectra.

  10. Civil markets for buoyant heavy-lift vehicles

    NASA Technical Reports Server (NTRS)

    Mettam, P. J.; Hansen, D.; Ardema, M. D.

    1981-01-01

    Worldwide civil markets for heavy lift airships were investigated. Substantial potential market demand was identified for payloads of from 13 to 800 tons. The largest markets appear to be in applications to relieve port congestion, construction of power generating plants, and, most notably, logging. Because of significant uncertainties both in vehicle and market characteristics, further analysis will be necessary to verify the identified market potential of heavy lift airship concepts.

  11. Continents as lithological icebergs: The importance of buoyant lithospheric roots

    USGS Publications Warehouse

    Abbott, D.H.; Drury, R.; Mooney, W.D.

    1997-01-01

    An understanding of the formation of new continental crust provides an important guide to locating the oldest terrestrial rocks and minerals. We evaluated the crustal thicknesses of the thinnest stable continental crust and of an unsubductable oceanic plateau and used the resulting data to estimate the amount of mantle melting which produces permanent continental crust. The lithospheric mantle is sufficiently depleted to produce permanent buoyancy (i.e., the crust is unsubductable) at crustal thicknesses greater than 25-27 km. These unsubductable oceanic plateaus and hotspot island chains are important sources of new continental crust. The newest continental crust (e.g., the Ontong Java plateau) has a basaltic composition, not a granitic one. The observed structure and geochemistry of continents are the result of convergent margin magmatism and metamorphism which modify the nascent basaltic crust into a lowermost basaltic layer overlain by a more silicic upper crust. The definition of a continent should imply only that the lithosphere is unsubductable over ??? 0.25 Ga time periods. Therefore, the search for the oldest crustal rocks should include rocks from lower to mid-crustal levels.

  12. Lipid composition of positively buoyant eggs of reef building corals

    NASA Astrophysics Data System (ADS)

    Arai, Iakayuki; Kato, Misako; Heyward, Andrew; Ikeda, Yutaka; Iizuka, Tokio; Maruyama, Tadashi

    1993-07-01

    Lipid composition of the eggs of three reef building corals, Acropora millepora, A. tenuis and Montipora digitata, were determined. Sixty to 70% of the egg dry weight was lipid, which consisted of wax esters (69.5 81.8%), triacylglycerols (1.1 8.4%) and polar lipids c/mainly phospholipids (11.9 13.2%). Montipora digitata also contained some polar lipids typical of the thylakoid membrane in chloroplasts, probably due to the presence of symbiotic zooxanthellae in the eggs. The wax esters appeared to be the major contributor to positive buoyancy of the eggs, and specific gravity of wax esters in A. millepora was estimated to be 0.92. Among the fatty acids of the wax esters, 34.9 51.3% was hexadecanoic acid (16:0) while the major fatty acids in polar lipids were octadecenoic acid (18:1), hexadecanoic acid (16:0), eicosapentaenoic acid (20:5) and eicosatetraenoic acid (20:4). The wax ester appears to be the main component of the 4.5 6.0 ?m diameter lipid droplets which fill most of the central mass of the coral eggs.

  13. Second order closure modeling of turbulent buoyant wall plumes

    NASA Technical Reports Server (NTRS)

    Zhu, Gang; Lai, Ming-Chia; Shih, Tsan-Hsing

    1992-01-01

    Non-intrusive measurements of scalar and momentum transport in turbulent wall plumes, using a combined technique of laser Doppler anemometry and laser-induced fluorescence, has shown some interesting features not present in the free jet or plumes. First, buoyancy-generation of turbulence is shown to be important throughout the flow field. Combined with low-Reynolds-number turbulence and near-wall effect, this may raise the anisotropic turbulence structure beyond the prediction of eddy-viscosity models. Second, the transverse scalar fluxes do not correspond only to the mean scalar gradients, as would be expected from gradient-diffusion modeling. Third, higher-order velocity-scalar correlations which describe turbulent transport phenomena could not be predicted using simple turbulence models. A second-order closure simulation of turbulent adiabatic wall plumes, taking into account the recent progress in scalar transport, near-wall effect and buoyancy, is reported in the current study to compare with the non-intrusive measurements. In spite of the small velocity scale of the wall plumes, the results showed that low-Reynolds-number correction is not critically important to predict the adiabatic cases tested and cannot be applied beyond the maximum velocity location. The mean and turbulent velocity profiles are very closely predicted by the second-order closure models. but the scalar field is less satisfactory, with the scalar fluctuation level underpredicted. Strong intermittency of the low-Reynolds-number flow field is suspected of these discrepancies. The trends in second- and third-order velocity-scalar correlations, which describe turbulent transport phenomena, are also predicted in general, with the cross-streamwise correlations better than the streamwise one. Buoyancy terms modeling the pressure-correlation are shown to improve the prediction slightly. The effects of equilibrium time-scale ratio and boundary condition are also discussed.

  14. Bottom tension fence-type water buoyant containment boom

    SciTech Connect

    Brown, L. S.; March, F. A.

    1981-06-02

    A flexible, fence-type, water-borne pollutant containment boom is disclosed having a flexible, permanently attached tension reinforcing belt of continuous, substantially parallel, high modulus, aramid fibers adhesively secured to the boom proximate its bottom edge and having a plurality of handles spaced along the top edge of the boom, the handles being molded on both sides of the boom and overlapping the top edge and surrounding openings cut in the boom proximate the top edge leaving flaps of boom material to selectively close the openings.

  15. MEASUREMENT OF BUOYANT JET ENTRAINMENT FROM SINGLE AND MULTIPLE SOURCES

    EPA Science Inventory

    An experimental investigation was conducted to determine the dilution characteristics of single and multiple discharges typical of modern natural and mechanical draft cooling towers. Simultaneous measurements of velocity and tracer concentration profiles were taken at various dow...

  16. Countering Solutal Buoyant Convection with High Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemist, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitant, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in microgravity, we have been able to dramatically effect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. We postulate that limited convection in a magnetic field will provide the environment for the growth of high quality crystals. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. The paper will report on the current status of the investigation and discuss results from the experimental and modeling efforts.

  17. 46 CFR 160.010-3 - Inflatable buoyant apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) One or more exterior canopy lamps meeting the requirements of 46 CFR 160.151-15(n) must be provided... the buoyancy chambers so that the apparatus can, floating either side up, accommodate the number of... the buoyancy tubes are not vivid reddish orange, vivid yellow, or a fluorescent color of a similar...

  18. 46 CFR 160.010-3 - Inflatable buoyant apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) One or more exterior canopy lamps meeting the requirements of 46 CFR 160.151-15(n) must be provided... the buoyancy chambers so that the apparatus can, floating either side up, accommodate the number of... the buoyancy tubes are not vivid reddish orange, vivid yellow, or a fluorescent color of a similar...

  19. Time-dependent buoyant puff model for explosive sources

    SciTech Connect

    Kansa, E.J.

    1997-10-01

    This paper presents a new model for explosive puff rise histories that is derived from the strong conservative form of the partial differential equations of mass, momenta, and total energy that are integrated over space to yield a coupled system of time dependent nonlinear ordinary differential equations (ODEs). By allowing the dimensions of the puff to evolve laterally and horizontally, the initial rising spherical shaped puff evolves into a rising ellipsoidal shaped mushroom cloud. This model treats the turbulence that is generated by the puff itself and the ambient atmospheric turbulence as separate mechanisms in determining the puff history. The puff rise history was found to depend not only upon the mass and initial temperature of the explosion, but also upon the local stability conditions of the ambient atmosphere through which the puff rises. This model was calibrated by comparison with the Roller Coaster experiments, ranging from unstable to very stable atmospheric conditions; the agreement of the model history curves with these experimental curves was within 10%.

  20. Time-dependent buoyant puff model for explosive sources

    SciTech Connect

    Kansa, E.J.

    1997-01-01

    Several models exist to predict the time dependent behavior of bouyant puffs that result from explosions. This paper presents a new model that is derived from the strong conservative form of the conservation partial differential equations that are integrated over space to yield a coupled system of time dependent nonlinear ordinary differential equations. This model permits the cloud to evolve from an intial spherical shape not an ellipsoidal shape. It ignores the Boussinesq approximation, and treats the turbulence that is generated by the puff itself and the ambient atmospheric tubulence as separate mechanisms in determining the puff history. The puff cloud rise history was found to depend no only on the mass and initial temperature of the explosion, but also upon the stability conditions of the ambient atmosphere. This model was calibrated by comparison with the Roller Coaster experiments.

  1. 46 CFR 160.010-3 - Inflatable buoyant apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) One or more exterior canopy lamps meeting the requirements of 46 CFR 160.151-15(n) must be provided... the buoyancy tubes are not vivid reddish orange, vivid yellow, or a fluorescent color of a similar...

  2. PIV Measurements in Weakly Buoyant Gas Jet Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, Peter B.; Greenbberg, Paul S.; Urban, David L.; Wernet, Mark P.; Yanis, William

    2001-01-01

    Despite numerous experimental investigations, the characterization of microgravity laminar jet diffusion flames remains incomplete. Measurements to date have included shapes, temperatures, soot properties, radiative emissions and compositions, but full-field quantitative measurements of velocity are lacking. Since the differences between normal-gravity and microgravity diffusion flames are fundamentally influenced by changes in velocities, it is imperative that the associated velocity fields be measured in microgravity flames. Velocity measurements in nonbuoyant flames will be helpful both in validating numerical models and in interpreting past microgravity combustion experiments. Pointwise velocity techniques are inadequate for full-field velocity measurements in microgravity facilities. In contrast, Particle Image Velocimetry (PIV) can capture the entire flow field in less than 1% of the time required with Laser Doppler Velocimetry (LDV). Although PIV is a mature diagnostic for normal-gravity flames , restrictions on size, power and data storage complicate these measurements in microgravity. Results from the application of PIV to gas jet flames in normal gravity are presented here. Ethane flames burning at 13, 25 and 50 kPa are considered. These results are presented in more detail in Wernet et al. (2000). The PIV system developed for these measurements recently has been adapted for on-rig use in the NASA Glenn 2.2-second drop tower.

  3. Buoyant Low Stretch Diffusion Flames Beneath Cylindrical PMMA Samples

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Tien, J. S.

    1999-01-01

    A unique new way to study low gravity flames in normal gravity has been developed. To study flame structure and extinction characteristics in low stretch environments, a normal gravity low-stretch diffusion flame is generated using a cylindrical PMMA sample of varying large radii. Burning rates, visible flame thickness, visible flame standoff distance, temperature profiles in the solid and gas, and radiative loss from the system were measured. A transition from the blowoff side of the flammability map to the quenching side of the flammability map is observed at approximately 6-7/ sec, as determined by curvefits to the non-monotonic trends in peak temperatures, solid and gas-phase temperature gradients, and non-dimensional standoff distances. A surface energy balance reveals that the fraction of heat transfer from the flame that is lost to in-depth conduction and surface radiation increases with decreasing stretch until quenching extinction is observed. This is primarily due to decreased heat transfer from the flame, while the magnitude of the losses remains the same. A unique local extinction flamelet phenomena and associated pre-extinction oscillations are observed at very low stretch. An ultimate quenching extinction limit is found at low stretch with sufficiently high induced heat losses.

  4. Design considerations for a deepwater pile-founded buoyant platform

    SciTech Connect

    Basu, A.K.; Raznahan, M.

    1985-01-01

    The paper presents a new compliant platform concept for deepwater drilling and production. Like an articulated column it derives its stiffness from the large buoyancy provided near the sea surface, but it does not use any mechanical articulation. Instead, the rotational compliancy is achieved here by an ingenious design of the pile foundation system, similar to the one adopted in the Lena Guyed Tower. The principles underlying the design of the various components of this structure are discussed, using as an illustration a structure with a total deck load of 30,000 Tonnes for a 350m water depth northern North Sea field.

  5. Experiments versus modeling of buoyant drying of porous media

    NASA Astrophysics Data System (ADS)

    Salin, Dominique; Yiotis, Andreas; Tajer, Eshan; Yortsos, Yannis

    2013-11-01

    A series of isothermal drying experiments in packed glass beads saturated with hydrocarbons are conducted. The transparent cell allow observation of the formation of liquid films, as the gaseous phase invades the pore space. We demonstrate the existence of an early Constant Rate Period that lasts as long as the films saturate the surface of the packing, and of a subsequent Falling Rate Period that begins practically after the detachment of the film tips from the external surface. During the CRP, the process is controlled by diffusion within the stagnant gaseous phase in the upper part of the cells. During the FRP, the process is controlled by diffusion within the packing, with a drying rate inversely proportional to the observed position of the observed tips in the cell. Our model incorporates effects of corner film flow, internal and external mass transfer and the effect of gravity. Analytical results were derived. We are thus able to obtain results for the drying rates, the critical saturation and the extent of the film region with respect to the various dimensionless numbers that describe the process; the Bond, Capillary numbers and the dimensionless extent of the mass boundary layer. The experimental results agree very well with the theory, provided that the latter is generalized to account for the effects of corner roundness in the film region which were neglected in our analytical approach.

  6. Initial dilution of a vertical round non-buoyant jet in wavy cross-flow environment

    NASA Astrophysics Data System (ADS)

    Wang, Ya-na; Chen, Yong-ping; Xu, Zhen-shan; Pan, Yi; Zhang, Chang-kuan; Li, Chi-wai

    2015-12-01

    The phenomenon of wastewater discharged into coastal waters can be simplified as a turbulent jet under the effect of waves and currents. Previous studies have been carried out to investigate the jet behaviors under the current only or the wave only environment. To obtain better understanding of the jet behaviors in a realistic situation, a series of physical experiments on the initial dilution of a vertical round jet in the wavy cross-flow environment are conducted. The diluted processes of the jet are recorded by a high-resolution camcorder and the concentration fields of the jet are measured with a peristaltic suction pumping system. When the jet is discharged into the wavy cross-flow environment, a distinctive phenomenon, namely "effluent clouds", is observed. According to the quantitative measurements, the jet width in the wavy cross-flow environment increases more significantly than that does in the cross-flow only environment, indicating that the waves impose a positive effect on the enhancement of jet initial dilution. In order to generalize the experimental findings, a comprehensive velocity scale u a and a characteristic length scale l are introduced. Through dimensional analysis, it is found that the dimensionless centerline concentration trajectories y c/ l is in proportion to 1/3 power of the dimensionless downstream distance x/ l, and the dimensionless centerline dilution S c Q/( u a l 2) is proportional to the square of the dimensionless centerline trajectory y c/ l. Several empirical equations are then derived by using the Froude number of cross-flow Fr c as a reference coefficient. This paper provides a better understanding and new estimations of the jet initial dilution under the combined effect of waves and cross-flow current.

  7. Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions.

    PubMed

    Lashgari, Iman; Picano, Francesco; Breugem, Wim-Paul; Brandt, Luca

    2014-12-19

    The aim of this Letter is to characterize the flow regimes of suspensions of finite-size rigid particles in a viscous fluid at finite inertia. We explore the system behavior as a function of the particle volume fraction and the Reynolds number (the ratio of flow and particle inertia to viscous forces). Unlike single-phase flows, where a clear distinction exists between the laminar and the turbulent states, three different regimes can be identified in the presence of a particulate phase, with smooth transitions between them. At low volume fractions, the flow becomes turbulent when increasing the Reynolds number, transitioning from the laminar regime dominated by viscous forces to the turbulent regime characterized by enhanced momentum transport by turbulent eddies. At larger volume fractions, we identify a new regime characterized by an even larger increase of the wall friction. The wall friction increases with the Reynolds number (inertial effects) while the turbulent transport is weakly affected, as in a state of intense inertial shear thickening. This state may prevent the transition to a fully turbulent regime at arbitrary high speed of the flow. PMID:25554885

  8. Comparison of fish catches with buoyant pop nets and seines in vegetated and nonvegetated habitats

    USGS Publications Warehouse

    Dewey, M.R.; Holland-Bartels, L. E.; Zigler, S.J.

    1989-01-01

    Two models of pop nets were developed to sample fish in shallow riverine waters, one for use in vegetated areas and the other for nonvegetated areas. Both nets have a mechanical release mechanism that can be tripped from the water surface. Replicated field tests were conducted to compare pop-net catches with bag-seine collections every 2 weeks from May through mid-October. Overall, total catch per effort did not vary significantly (P 2) was smaller than the area swept by the average seine haul (70-140 m2). The pop net effectively sampled fish in shallow nonvegetated habitats and was useful in heavily vegetated areas where seining or electroshocking was difficult.

  9. The effect of wind mixing on the vertical distribution of buoyant plastic debris

    NASA Astrophysics Data System (ADS)

    Kukulka, T.; Proskurowski, G.; Morét-Ferguson, S.; Meyer, D. W.; Law, K. L.

    2012-04-01

    Micro-plastic marine debris is widely distributed in vast regions of the subtropical gyres and has emerged as a major open ocean pollutant. The fate and transport of plastic marine debris is governed by poorly understood geophysical processes, such as ocean mixing within the surface boundary layer. Based on profile observations and a one-dimensional column model, we demonstrate that plastic debris is vertically distributed within the upper water column due to wind-driven mixing. These results suggest that total oceanic plastics concentrations are significantly underestimated by traditional surface measurements, requiring a reinterpretation of existing plastic marine debris data sets. A geophysical approach must be taken in order to properly quantify and manage this form of marine pollution.

  10. Buoyant production and consumption of turbulence kinetic energy in cloud-topped mixed layers

    NASA Technical Reports Server (NTRS)

    Randall, D. A.

    1984-01-01

    It is pointed out that studies of the entraining planetary boundary layer (PBL) have generally emphasized the role of buoyancy fluxes in driving entrainment. The buoyancy flux is proportional to the rate of conversion of the potential energy of the mean flow into the kinetic energy of the turbulence. It is not unusual for conversion to proceed in both directions simultaneously. This occurs, for instance, in both clear and cloudy convective mixed layers which are capped by inversions. A partitioning of the net conversion into positive parts, generating turbulence kinetic energy (TKE), and negative parts (TKE-consuming), would make it possible to include the positive part in the gross production rate, and closure would be achieved. Three different approaches to partitioning have been proposed. The present investigation is concerned with a comparison of the three partitioning theories. Particular attention is given to the cloud-topped mixed layer because in this case the differences between two partitioning approaches are most apparent.

  11. 46 CFR 122.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... this chapter— (1) No later than the month and year on its servicing sticker affixed under 46 CFR 160... apparatus, inflatable life jackets, and inflated rescue boats. 122.730 Section 122.730 Shipping COAST GUARD..., inflatable life jackets, and inflated rescue boats. (a) An inflatable liferaft or inflatable...

  12. 46 CFR 122.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... this chapter— (1) No later than the month and year on its servicing sticker affixed under 46 CFR 160... apparatus, inflatable life jackets, and inflated rescue boats. 122.730 Section 122.730 Shipping COAST GUARD..., inflatable life jackets, and inflated rescue boats. (a) An inflatable liferaft or inflatable...

  13. 46 CFR 122.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... this chapter— (1) No later than the month and year on its servicing sticker affixed under 46 CFR 160... apparatus, inflatable life jackets, and inflated rescue boats. 122.730 Section 122.730 Shipping COAST GUARD..., inflatable life jackets, and inflated rescue boats. (a) An inflatable liferaft or inflatable...

  14. Large eddy simulation of turbulent buoyant flow in a confined cavity with conjugate heat transfer

    NASA Astrophysics Data System (ADS)

    Cintolesi, C.; Petronio, A.; Armenio, V.

    2015-09-01

    Turbulent natural convection in enclosure is a paradigmatic case for wide class of processes of great interest for industrial and environmental problems. The solid-fluid thermal interaction, the anisotropy of the turbulence intensity in the flow field along with the transient nature of heat transfer processes, pose challenges regarding the numerical modeling. The case of a square cavity with differently heated vertical walls and two horizontal conductive plates is studied at Ra = 1.58 × 109. The study is carried out numerically, using large-eddy simulation together with a dynamic Lagrangian turbulence model and a conjugate heat transfer method to take into account heat transfer at the solid surfaces. First, validation is carried out against the literature experimental and numerical data. The results of validation tests evidence the limitations of using the adiabatic conditions as a model for reproducing an insulator. In fact, the adiabatic condition represents the asymptotic behavior which is often difficult to reach in real conditions. Successively, the model is used to investigate the effect on the flow field of different materials composing the horizontal walls. Initial conditions representative of physical experiment are used. In order to reduce the computational time required for a simulation with insulating materials at the walls, a four-step temperature advancement strategy is proposed, based on the artificial reduction-first and recover-later of the specific heat coefficient Cp of the materials at different stages of the simulation. The conductivity of the solid media is found to influence the flow configuration since heat transfer at the solid walls substantially modifies the turbulent field and makes the flow field less homogeneous along the horizontal direction.

  15. Practical dispersion modelling for buoyant elevated sources in a tropical region

    NASA Astrophysics Data System (ADS)

    Best, P. R.; Stümer, L. J.

    The worst-case meteorological scenarios for the air pollution impact of coal-fired power stations located in tropical Australia are usually those of convective or seabreeze states. Under such conditions maximum hourly ground-level concentrations occur within 5 km of typical elevated sources and are potentially important unless either low sulphur coal is burnt (the usual situation for Australian coals) or restrictions are placed upon neighbouring land use. In such conditions even slightly complex surrounding terrain can cause major changes in surface and lower-level wind and turbulence characteristics, although the resultant effects on ground-level concentrations are probably relatively small. The monitoring data bases of an inland and a coastal power station in tropical Queensland give similar qualitative results to recent EPRI studies. Concurrent detailed meteorological measurements show that convective scaling techniques order both data sets in a satisfactory manner. The convective dispersion model of Spillane (1985, CSIRO internal report) has also shown more predictive skill than conventional approaches and emphasizes the importance of gathering vertical velocity statistics for most sites. Some of the forthcoming developments in related Australian dispersion work are outlined.

  16. NMR imaging and hydrodynamic analysis of neutrally buoyant non-Newtonian slurry flows

    SciTech Connect

    Bouillard, J.X.; Sinton, S.W.

    1995-02-01

    The flow of solids loaded suspension in cylindrical pipes has been the object of intense experimental and theoretical investigations in recent years. These types of flows are of great interest in chemical engineering because of their important use in many industrial manufacturing processes. Such flows are for example encountered in the manufacture of solid-rocket propellants, advanced ceramics, reinforced polymer composites, in heterogenous catalytic reactors, and in the pipeline transport of liquid-solids suspensions. In most cases, the suspension microstructure and the degree of solids dispersion greatly affect the final performance of the manufactured product. For example, solid propellant pellets need to be extremely-well dispersed in gel matrices for use as rocket engine solid fuels. The homogeneity of pellet dispersion is critical to allow good uniformity of the burn rate, which in turn affects the final mechanical performance of the engine. Today`s manufacturing of such fuels uses continuous flow processes rather than batch processes. Unfortunately, the hydrodynamics of such flow processes is poorly understood and is difficult to assess because it requires the simultaneous measurements of liquid/solids phase velocities and volume fractions. Due to the recent development in pulsed Fourier Transform NMR imaging, NMR imaging is now becoming a powerful technique for the non intrusive investigation of multi-phase flows. This paper reports and exposes a state-of-the-art experimental and theoretical methodology that can be used to study such flows. The hydrodynamic model developed for this study is a two-phase flow shear thinning model with standard constitutive fluid/solids interphase drag and solids compaction stresses. this model shows good agreement with experimental data and the limitations of this model are discussed.

  17. Observations of the frontal region of a buoyant river plume using an autonomous underwater vehicle

    NASA Astrophysics Data System (ADS)

    Rogowski, Peter; Terrill, Eric; Chen, Jialin

    2014-11-01

    To characterize the transitional region from the near-field to far-field of a river plume entering coastal waters, we conducted four surveys using an autonomous underwater vehicle (AUV) to target the outflow of the New River Inlet, North Carolina, during maximum ebb tide. The utilization of a mobile sensor to synoptically observe current velocity data in tandem with natural river plume tracers (e.g., colored dissolved organic matter, salinity) was essential in understanding the mechanisms driving the observed circulation and mixing patterns within these waters. We find that this region is regularly impacted by two primary processes: (1) the interaction of an old dredged channel plume with the main discharge and (2) the recirculation of the discharge plume by an eddy that persistently forms between the old channel and main discharge location. Wind-driven processes in the nearshore can enhance the interaction of these two plumes resulting in unstable regions where mixing of the merged plume with the receiving waters is accelerated. We also conduct comparisons between AUV velocity observations from two surveys and their corresponding velocity outputs from a parallelized quasi-3-D model. We conclude that the ability to observe the estuarine outflow transitional region at near-synoptic temporal scales and resolutions discussed in this paper is key in providing the mechanisms driving local circulation which is essential for proper parameterization of high-resolution numerical coastal models.

  18. Approximate Value of Buoyant Force: A Water-Filled Balloon Demonstration

    ERIC Educational Resources Information Center

    Radovanovic, Jelena; Slisko, Josip

    2012-01-01

    Floating and sinking might be common phenomena, encountered on a daily basis, but still represent conceptually complex scientific topics. Research has shown that most students have certain experiences and their own "theories" that explain why objects sink or float. Unfortunately, many of these "theories" are either misconceptions or are valid only


  19. NMR imaging and hydrodynamic analysis of neutrally buoyant non-Newtonian slurry flows

    NASA Astrophysics Data System (ADS)

    Bouillard, J. X.; Sinton, S. W.

    The flow of solids loaded suspension in cylindrical pipes has been the object of intense experimental and theoretical investigations in recent years. These types of flows are of great interest in chemical engineering because of their important use in many industrial manufacturing processes. Such flows are for example encountered in the manufacture of solid-rocket propellants, advanced ceramics, reinforced polymer composites, in heterogeneous catalytic reactors, and in the pipeline transport of liquid-solids suspensions. In most cases, the suspension microstructure and the degree of solids dispersion greatly affect the final performance of the manufactured product. For example, solid propellant pellets need to be extremely-well dispersed in gel matrices for use as rocket engine solid fuels. The homogeneity of pellet dispersion is critical to allow good uniformity of the burn rate, which in turn affects the final mechanical performance of the engine. Today's manufacturing of such fuels uses continuous flow processes rather than batch processes. Unfortunately, the hydrodynamics of such flow processes is poorly understood and is difficult to assess because it requires the simultaneous measurements of liquid/solids phase velocities and volume fractions. Due to the recent development in pulsed Fourier Transform NMR imaging, NMR imaging is now becoming a powerful technique for the non intrusive investigation of multi-phase flows. This paper reports and exposes a state-of-the-art experimental and theoretical methodology that can be used to study such flows. The hydrodynamic model developed for this study is a two-phase flow shear thinning model with standard constitutive fluid/solids interphase drag and solids compaction stresses. this model shows good agreement with experimental data and the limitations of this model are discussed.

  20. Academically Buoyant Students Are Less Anxious about and Perform Better in High-Stakes Examinations

    ERIC Educational Resources Information Center

    Putwain, David W.; Daly, Anthony L.; Chamberlain, Suzanne; Sadreddini, Shireen

    2015-01-01

    Background: Prior research has shown that test anxiety is negatively related to academic buoyancy, but it is not known whether test anxiety is an antecedent or outcome of academic buoyancy. Furthermore, it is not known whether academic buoyancy is related to performance on high-stakes examinations. Aims: To test a model specifying reciprocal…

  1. A PDF DISPERSION MODEL FOR BUOYANT PLUMES IN THE CONVECTIVE BOUNDARY LAYER (R823419)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  2. 46 CFR 180.137 - Stowage of life floats and buoyant apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... other standard specified by the Commandant; (2) Of proper strength for the size of the life float or... the body of the device; (2) Will not slip off; (3) Has a breaking strength that is at least...

  3. Buoyant Convection Heat Transfer of the Liquid LiPb Flow with a Transverse Magnetic Field

    NASA Astrophysics Data System (ADS)

    Wang, H. Y.; Zhang, X. D.; Ding, K. K.

    2010-03-01

    The nature convection of the liquid LiPb, due to thermal diffusion, in the poloidal channel adjacent to the First Wall (FW) perpendicular to the strong magnetic field of the blanket has been considered and studied. The cubic enclosure filled by the liquid metal LiPb flow is assumed as the analyzed model. It was numerical simulated by three-dimensional CFD with special MHD code. The Hartmann number is from 20 to 200. The wall of the enclosure was heated by a uniform temperature and the other wall was cooled along two opposite vertical walls, all other walls being adiabatic. The momentum equation and electrical-magnetic equations for the liquid LiPb flow in the enclosure have given. It is assumed the nature convection be steady-state conditions. The velocity and temperature of the LiPb flow with differential Hartmann number is discussed. The temperature distribution is changed due to magnetic field.There is a strong thermal coupling, modifying importantly the magnitude of the flow. The effect of the buoyancy on pressure driven duct flows has been investigated.

  4. 46 CFR 180.137 - Stowage of life floats and buoyant apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... dark color or of a type certified to be resistant to deterioration from ultraviolet light; and (3) If... to deterioration from ultraviolet light. (e) If the vessel carries more than one life float...

  5. 46 CFR 117.137 - Stowage of life floats and buoyant apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., is of a dark color or is of a type certified to be resistant to deterioration from ultraviolet light... resistant to deterioration from ultraviolent light; and (3) If metal, be corrosion resistant. (d) If...

  6. 46 CFR 180.137 - Stowage of life floats and buoyant apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... dark color or of a type certified to be resistant to deterioration from ultraviolet light; and (3) If... to deterioration from ultraviolet light. (e) If the vessel carries more than one life float...

  7. 46 CFR 117.137 - Stowage of life floats and buoyant apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., is of a dark color or is of a type certified to be resistant to deterioration from ultraviolet light... resistant to deterioration from ultraviolent light; and (3) If metal, be corrosion resistant. (d) If...

  8. Modelling Fluctuations in the Concentration of Neutrally Buoyant Substances in the Atmosphere.

    NASA Astrophysics Data System (ADS)

    Ride, David John

    1987-09-01

    Available from UMI in association with The British Library. This thesis sets out to model the probability density function (pdf) of the perceived concentration of a contaminant in the atmosphere using simple, physical representations of the dispersing contaminant. Sensors of differing types perceive a given concentration field in different ways; the chosen pdf must be able to describe all possible perceptions of the same field. Herein, sensors are characterised by the time taken to achieve a reading and by a threshold level of concentration below which the sensor does not respond and thus records a concentration of zero. A literature survey of theoretical and experimental work concerning concentration fluctuations is conducted, and the merits--or otherwise--of some standard pdfs in common use are discussed. The ways in which the central moments, the peak-to-mean ratio, the intermittency and the autocorrelation function behave under various combinations of threshold levels and time averaging are investigated. An original experiment designed to test the suitability of time averaging as a valid simulation of both sensor response times and sampling volumes is reported. The results suggest that, for practical purposes, smoothing from combined volume/time characteristics of a sensor can be modelled by time averaging the output of a more responsive sensor. A possible non -linear volume/time effect was observed at very high temporal resolutions. Intermittency is shown to be an important parameter of the concentration field. A geometric model for describing and explaining the intermittency of a meandering plume of material in terms of the ratio of the plume width to the amplitude of meander and the within-plume intermittency is developed and validated. It shows that the model cross plume profiles of intermittency cannot, in general, be represented by simple functional forms. A new physical model for the fluctuations in concentration from a dispersing contaminant is described which leads to the adoption of a truncated Gaussian (or 'clipped normal') pdf for time averaged concentrations. A series of experiments is described which was designed to test the aptness of this distribution and display changes in the perception of the parameters of the concentration field wrought by various combinations of thresholding and time averaging. The truncated Gaussian pdf is shown to be more suitable for describing fluctuations than the log-normal and negative exponential pdfs, and to possess a better physical basis than either of them. The combination of thresholding and time averaging on the output of a sensor is shown to produce complex results which could affect profoundly the assessment of the potential hazard presented by a toxic, flammable or explosive plume or cloud.

  9. Seismic evidence for hotspot-induced buoyant flow beneath the Reykjanes Ridge.

    PubMed

    Gaherty, J B

    2001-08-31

    Volcanic hotspots and mid-ocean ridge spreading centers are the surface expressions of upwelling in Earth's mantle convection system, and their interaction provides unique information on upwelling dynamics. I investigated the influence of the Iceland hotspot on the adjacent mid-Atlantic spreading center using phase-delay times of seismic surface waves, which show anomalous polarization anisotropy-a delay-time discrepancy between waves with different polarizations. This anisotropy implies that the hotspot induces buoyancy-driven upwelling in the mantle beneath the ridge. PMID:11533487

  10. UTILITY OF BUOYANT PLUME MODELS IN PREDICTING THE INITIAL DILUTION OF DRILLING FLUIDS

    EPA Science Inventory

    Three computer programs, PLUME, OUTPLM, and DKHPLM, have been used by the U.S. Environmental Protection Agency and municipalities to estimate initial dilutions of sewage discharged into marine environments. odification of the input parameters for the three programs, while maintai...

  11. Near-Limit Flamelet Phenomena in Buoyant Low Stretch Diffusion Flames Beneath a Solid Fuel

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Tien, J. S.

    2000-01-01

    A unique near-limit low stretch multidimensional stable flamelet phenomena has been observed for the first time which extends the material flammability limit beyond the one-dimensional low stretch flammability limit to lower burning rates and higher relative heat losses than is possible with uniform flame coverage. During low stretch experiments burning the underside of very large radii (greater than or = 75 cm stretch rate less than or = 3/s) cylindrical cast PMMA samples, multidimensional flamelets were observed, in contrast with a one-dimensional flame that was found to blanket the surface for smaller radii samples ( higher stretch rate). Flamelets were observed by decreasing the stretch rate or by increasing the conductive heat loss from the flame. Flamelets are defined as flames that cover only part of the burning sample at any given time, but persist for many minutes. Flamelet phenomena is viewed as the flame's method of enhancing oxygen flow to the flame, through oxygen transport into the edges of the flamelet. Flamelets form as heat losses (surface radiation and solid-phase conduction) become large relative to the weakened heat release of the low stretch flame. While heat loss rates remain fairly constant, the limiting factor in the heat release of the flame is hypothesized to be the oxygen transport to the flame in this low stretch (low convective) environment. Flamelet extinction is frequently caused by encroachment of an adjacent flamelet. Large-scale whole-body flamelet oscillations at 1.2 - 1.95 Hz are noted prior to extinction of a flamelet. This oscillation is believed to be due a repeated process of excess fuel leakage through the dark channels between the flamelets, fuel premixing with slow incoming oxidizer, and subsequent rapid flame spread and retreat of the flamelet through the premixed layer. The oscillation frequency is driven by gas-phase diffusive time scales.

  12. A buoyant tornado-probe concept incorporating an inverted lifting device. [and balloon combination

    NASA Technical Reports Server (NTRS)

    Grant, F. C.

    1973-01-01

    Addition of an inverted lifting device to a simple balloon probe is shown to make possible low-altitude entry to tornado cores with easier launch conditions than for the simple balloon probe. Balloon-lifter combinations are particularly suitable for penetration of tornadoes with average to strong circulation, but tornadoes of less than average circulation which are inaccessible to simple balloon probes become accessible. The increased launch radius which is needed for access to tornadoes over a wide range of circulation results in entry times of about 3 minutes. For a simple balloon probe the uninflated balloon must be first dropped on, or near, the track of the tornado from a safe distance. The increase in typical launch radius from about 0.75 kilometer to slightly over 1.0 kilometer with a balloon-lifter combination suggests that a direct air launch may be feasible.

  13. Preventing Buoyant Displacement Gas Release Events in Hanford Double-Shell Waste Tanks

    SciTech Connect

    Meyer, Perry A.; Stewart, Charles W.

    2001-01-01

    This report summarizes the predictive methods used to ensure that waste transfer operations in Hanford waste tanks do not create waste configurations that lead to unsafe gas release events. The gas release behavior of the waste in existing double-shell tanks has been well characterized, and the flammable gas safety issues associated with safe storage of waste in the current configuration are being formally resolved. However, waste is also being transferred between double-shell tanks and from single-shell tanks into double-shell tanks by saltwell pumping and sluicing that create new wastes and waste configurations that have not been studied as well. Additionally, planning is underway for various waste transfer scenarios to support waste feed delivery to the proposed vitrification plant. It is critical that such waste transfers do not create waste conditions with the potential for dangerous gas release events.

  14. Model-Based Inquiry: A Buoyant Force Module for High School Physics Classes

    ERIC Educational Resources Information Center

    Neilson, Drew; Campbell, Todd; Allred, Benjamin

    2010-01-01

    Model-Based Inquiry (MBI) is an emergent instructional strategy that is gaining acceptance among science educators. This approach to learning realistically mirrors the work of scientists, who develop and test hypotheses to construct more sophisticated understandings of the natural world. This article details how the authors collaboratively taught…

  15. Influence of a buoyant river plume on phytoplankton nutrient dynamics: What controls standing stocks and productivity?

    NASA Astrophysics Data System (ADS)

    Kudela, Raphael M.; Peterson, Tawnya D.

    2009-02-01

    The influence of the Columbia River plume on phytoplankton rates and biomass accumulation was examined using multiday deckboard incubations as part of the coastal ocean processes River Influences on Shelf Ecosystems field program in August 2005. At a set of five stations encompassing the near-field plume (three stations) on the Oregon and Washington coasts, treatments consisting of control, added nitrate, and added nitrate with 0.45 ?m filtered plume water were used to assess the phytoplankton community response to macronutrients and micronutrients. For a subset of these stations, nutrient (nitrate, ammonium, and ammonium inhibition of nitrate) kinetics were obtained, as well as carbon-based estimates of productivity. For all experiments, nitrogen (nitrate) was clearly controlling both biomass accumulation and growth rates. Despite the apparent poleward trend toward increasing biomass in this region, there were no obvious differences in phytoplankton physiological capacity, nor were there any symptoms of iron limitation in the short term. We conclude that phytoplankton in this region are predominantly nitrogen limited but that upon release from this limiting factor, phosphorous and/or silicic acid (in waters not influenced by the Columbia River plume) would quickly become limiting. Evidence suggests that the mesoscale differences in phytoplankton biomass between the Oregon and Washington coasts result from a combination of enhanced grazing downstream and the physically retentive and dispersive effects of the plume itself.

  16. Approximate Value of Buoyant Force: A Water-Filled Balloon Demonstration

    NASA Astrophysics Data System (ADS)

    Radovanovic, Jelena; Slisko, Josip

    2012-10-01

    Floating and sinking might be common phenomena, encountered on a daily basis, but still represent conceptually complex scientific topics. Research has shown that most students have certain experiences and their own "theories" that explain why objects sink or float. Unfortunately, many of these "theories" are either misconceptions or are valid only under specific circumstances, lacking the generality of proper scientific explanations. Complete understanding of fundamental reasons behind objects' sinking or floating requires complex knowledge, including the analysis of the relationship between buoyancy and the force of gravity.

  17. ESTIMATING SURFACE CONCENTRATIONS FROM AN ELEVATED, BUOYANT PLUME IN A LIMITED-MIXED CONVECTIVE BOUNDARY LAYER

    EPA Science Inventory

    In the past decade, recent advances have suggested that convective scaling can be used to parameterize diffusion from a plume in the convective boundary layer (CBL). New methods such as convective scaling need to be explored because the traditionally used Gaussian plume model doe...

  18. Parameterising the Melting of Marine Glacier Termini with Buoyant Meltwater Plumes in a Stratified Ocean

    NASA Astrophysics Data System (ADS)

    Wells, A.; Magorrian, S.

    2014-12-01

    Melting of submerged marine glacier termini can impact the dynamics of ice flow, and hence provides a key control on the ocean forcing of ice sheets and potential sea-level rise. Melting rates are controlled by the supply of heat and salt to the ice-ocean interface, which depend on both the details of turbulence and the temperature and salinity conditions in the neighbouring ocean. One such feedback on ice melting comes from the buoyancy-driven flow of fresh meltwater rising along the ice face at a steep glacier terminus. The strength of this flow and resulting melting rates are sensitive to the vertical stratification of temperature and salinity in the neighbouring ocean. To build theoretical insight into the role of ocean stratification, we apply a plume model to describe buoyancy-driven flow along planar ice faces sitting in a stratified ocean. A range of background ocean temperature and salinity profiles are studied. Our plume model considers both persistent flows that rise to the ocean surface, or layered flows featuring multiple intrusions into the background ocean, with intrusions occurring after the plume density reaches a neutral buoyancy level compared to the background ocean density stratification. For flows with negligible subglacial discharge into a linear stratification, we theoretically derive approximate scaling laws for the dependence of melting rates on the temperature and salinity stratifications. The scaling laws are in good agreement with results from numerical simulations. Under appropriate conditions, these scaling laws may provide a computationally-efficient approximation to the rate of glacier terminus melting controlled by buoyancy-driven flows, in circumstances where the use of a more detailed ocean model proves impractical.

  19. Displacement forces on a neutral current detector from a buoyant and flexible cable under tension

    SciTech Connect

    Walston, S.

    1994-05-01

    As a means for maintaining order in the 112 NCD readout cables, it is proposed to put the cables under tension in such a way that they lie as straight as possible and rest along the top surface of the acrylic D{sub 2}O vessel. However, one aim is to avoid using top anchor points to secure the NCDs in the D{sub 2}O vessel, but rather to just let the counter`s inherent buoyancy maintain the necessary vertical orientation. As a result, applying a tension to the readout cable may pull the counters too far off of vertical. Whether or not the counter is pulled too far off of vertical depends in large part on the characteristics of the cable, i.e. modulus of elasticity and initial radius of curvature. Given that the applied tension in equilibrium is just equal to the restoring force on the counter when pulled off of vertical by some arbitrarily small amount, and given that the final radius of curvature of the readout cable is 6 meters (the radius of the D{sub 2}O vessel), what then must the modulus of elasticity be for a given initial radius of curvature of the cable? This assumes that the cable will be wrapped around a spool or somehow coiled for shipment. This also assumes that upon delivery of the cables, some effort can be made to straighten them out somewhat. For this approximation, the buoyancy of the cables is assumed to be negligible. The small length of cable that does not rest against the inner surface of the D{sub 2}O vessel is also neglected.

  20. Evaluation of the Split-H approach to modeling non-buoyant releases from vent stacks

    SciTech Connect

    Ramsdell, J.V.

    1983-04-01

    Position C.2.b of Regulatory Guide 1.111 describes an approach to modeling the diffusion of effluents from roof top vents and short stacks using an elevated plume model under some conditions and using a ground-level source building wake model under other conditions. The approach is sometimes called a Split-H model. This report presents the results of an evaluation of the technical basis for and utility of the concept behind the Split-H model, outlines the devlopment of an upgraded model with those estimated using the Regulatory Guide Split-H model and a ground-level building wake model, and discusses alternatives to the Regulatory Guide position that the NRC may wish to consider. Concentration comparisons are made using model results for meteorological data from 18 nuclear power plant sites.

  1. Approximate Value of Buoyant Force: A Water-Filled Balloon Demonstration

    ERIC Educational Resources Information Center

    Radovanovic, Jelena; Slisko, Josip

    2012-01-01

    Floating and sinking might be common phenomena, encountered on a daily basis, but still represent conceptually complex scientific topics. Research has shown that most students have certain experiences and their own "theories" that explain why objects sink or float. Unfortunately, many of these "theories" are either misconceptions or are valid only…

  2. Alginate gel-coated oil-entrapped alginate-tamarind gum-magnesium stearate buoyant beads of risperidone.

    PubMed

    Bera, Hriday; Boddupalli, Shashank; Nandikonda, Sridhar; Kumar, Sanoj; Nayak, Amit Kumar

    2015-01-01

    A novel alginate gel-coated oil-entrapped calcium-alginate-tamarind gum (TG)-magnesium stearate (MS) composite floating beads was developed for intragastric risperidone delivery with a view to improving its oral bioavailability. The TG-blended alginate core beads containing olive oil and MS as low-density materials were accomplished by ionotropic gelation technique. Effects of polymer-blend ratio (sodium alginate:TG) and crosslinker (CaCl2) concentration on drug entrapment efficiency (DEE, %) and cumulative drug release after 8 h (Q8h, %) were studied to optimize the core beads by a 3(2) factorial design. The optimized beads (F-O) exhibited DEE of 75.19±0.75% and Q8h of 78.04±0.38% with minimum errors in prediction. The alginate gel-coated optimized beads displayed superior buoyancy and sustained drug release property. The drug release profiles of the drug-loaded uncoated and coated beads were best fitted in Higuchi kinetic model with Fickian and anomalous diffusion driven mechanisms, respectively. The optimized beads yielded a notable sustained drug release profile as compared to marketed immediate release preparation. The uncoated and coated Ca-alginate-TG-MS beads were also characterized by SEM, FTIR and P-XRD analyses. Thus, the newly developed alginate-gel coated oil-entrapped alginate-TG-MS composite beads are suitable for intragastric delivery of risperidone over a prolonged period of time. PMID:25861741

  3. Buoyant thermocapillary flow with nonuniform supra-heating. I - Liquid-phase behavior. II - Two-phase behavior

    NASA Technical Reports Server (NTRS)

    Schiller, David N.; Sirignano, William A.

    1992-01-01

    The present computational study of transient heat transfer and fluid flow in a circular pool of n-decane which is undergoing central radiative heating from above gives attention to the volumetric absorption of the radiation incident on the pool surface. The first part of this study notes that buoyancy influences the number and recirculation rates of the subsurface vortices by stabilizing hot subsurface fluid above the colder core fluid; this affects the liquid surface temperature profile and in turn governs the velocity profile that is due to thermocapillarity. In the second part, the effects of gas-liquid phase coupling, variable density and thermophysical properties, and vaporization are considered.

  4. Pressure drop and heat transfer characteristics of nearly neutrally buoyant particulate slurry for advanced energy transmission fluids

    NASA Astrophysics Data System (ADS)

    Liu, K. V.; Choi, U. S.; Kasza, K. E.

    1988-12-01

    Under sponsorship of the U.S. Department of Energy, Argonne National Laboratory (ANL) is developing high-performance energy transmission fluids that have the potential to substantially reduce frictional losses and improve heat transfer in a variety of thermal systems, allowing the use of smaller piping, pumps, heat exchangers, and storage tanks. This paper presents experimental results and discusses the pressure drop and heat transfer characteristics of non-melting slurry flows. The experimental data obtained in this study improve the fundamental understanding of slurry fluid mechanics and heat transfer, and provide support for the use of slurries as advanced energy transmission fluids in thermal system applications.

  5. Sedimentation and dispersion of non-neutrally buoyant Brownian particles in cellular circulatory flows simulating local fluid agitation

    SciTech Connect

    Dungan, S.R.; Brenner, H.

    1988-10-01

    Spatially periodic fluid ''vortical'' velocity fields are utilized to model the role of microscale convection upon the sedimentation and dispersion of isolated spherical particles. In particular, generalized Taylor dispersion theory is employed to calculate the mean Stokes sedimentation velocity vector and dispersivity dyadic for a finite-size spherical Brownian particle settling in a laminar, spatially periodic fluid velocity field with zero mean flow (but nonzero ''circulation''). Surprisingly, such local cellular vortexlike motions are shown to have no effect whatsoever upon the long-time mean sedimentation velocity of the sphere, which is identical to its steady-state Stokes-law value occurring in a quiescent fluid. This conclusion is, inter alia, independent of the sphere size a relative to the spatial period l of the cellular flow (provided that a/l<<1), as well as of the ratio of the particle settling velocity to the magnitude of the cellular fluid velocity or circulation. On the other hand, local convection does affect particle dispersion relative to the mean particle velocity in these systems, consistent with recent calculations for a particular cellular velocity field (Mofatt (Rep. Prog. Phys. 46, 621 (1983)), Sagues and Horsthemke (Phys. Rev. A 34, 4136 (1986)), Rosenbluth et al. (Phys. Fluids 30, 2636 (1987))).

  6. Laminar round jet diffusion flame buoyant instabilities: Study on the disappearance of varicose structures at ultra-low Froude number

    SciTech Connect

    Boulanger, Joan

    2010-04-15

    At very low Froude number, buoyancy instabilities of round laminar jet diffusion flames disappear (except for small tip oscillations referred to as flickering) and those flames look stable and smooth. This study examines the contributions of the different phenomena in the flow dynamics that may explain this effect. It is observed that, at ultra-low Froude/Reynolds numbers, the material influenced by buoyancy is the plume of the flame and not the flame itself (reaction zone) that is short. Therefore, the vorticity creation zone does not profit from the reaction neighbourhood promoting a sharp gradient of density. Expansion and stretch are also important as they push vorticity creation terms more inside the flame and closer to the burner rim compared to moderate Froude flames. In these latter, the vorticity is continuously created around the flame reaction zone, along its developed height and closer to the vertical direction (in average). (author)

  7. A smoothed particle hydrodynamics study on the electrohydrodynamic deformation of a droplet suspended in a neutrally buoyant Newtonian fluid

    NASA Astrophysics Data System (ADS)

    Shadloo, M. S.; Rahmat, A.; Yildiz, M.

    2013-09-01

    In this paper, we have presented a 2D Lagrangian two-phase numerical model to study the deformation of a droplet suspended in a quiescent fluid subjected to the combined effects of viscous, surface tension and electric field forces. The electrostatics phenomena are coupled to hydrodynamics through the solution of a set of Maxwell equations. The relevant Maxwell equations and associated interface conditions are simplified relying on the assumptions of the so-called leaky dielectric model. All governing equations and the pertinent jump and boundary conditions are discretized in space using the incompressible Smoothed Particle Hydrodynamics method with improved interface and boundary treatments. Upon imposing constant electrical potentials to upper and lower horizontal boundaries, the droplet starts acquiring either prolate or oblate shape, and shows rather different flow patterns within itself and in its vicinity depending on the ratios of the electrical permittivities and conductivities of the constituent phases. The effects of the strength of the applied electric field, permittivity, surface tension, and the initial droplet radius on the droplet deformation parameter have been investigated in detail. Numerical results are validated by two highly credential analytical results which have been frequently cited in the literature. The numerically and analytically calculated droplet deformation parameters show good agreement for small oblate and prolate deformations. However, for some higher values of the droplet deformation parameter, numerical results overestimate the droplet deformation parameter. This situation was also reported in literature and is due to the assumption made in both theories, which is that the droplet deformation is rather small, and hence the droplet remains almost circular. Moreover, the flow circulations and their corresponding velocities in the inner and outer fluids are in agreement with theories.

  8. Large-Eddy Simulation of the Neutrally Buoyant Atmospheric Boundary Layer Using two Subgrid-Scale Closures: a Comparative Assessment.

    NASA Astrophysics Data System (ADS)

    Anderson, W. C.; Basu, S.

    2006-12-01

    The traditional Smagorinsky Subgrid-Scale (SGS) closure and its several dynamic variants have been widely used for large-eddy simulation (LES) of high-Reynolds number atmospheric boundary layer (ABL) flows. However, this SGS base model assumes that the energy dissipation rate equals the SGS energy production rate. This strong assumption can be avoided by using a SGS model based on Kolmogorov's scaling hypothesis (Wong and Lilly, 1994). In this work, we take these SGS base models, and make theoretical amendments which allow for scale-dependent dynamic computation of the SGS coefficient (we also use local averaging to account for patchy and sporadic turbulence). These SGS models are used in LES of a well known neutral ABL case-study. We compare simulation results including Monin-Obukhov similarity theory, flow visualizations, energy spectra, and several higher-order statistics. Both the SGS base models demonstrate that, for the physical case considered here, the locally-averaged scale-dependent dynamic modeling approach offers significant benefits. Comparative assessment shows general agreement between the models. Albeit, comparison of the energy spectra illustrates that the Kolmogorov-based SGS model is over-dissipative at the highest wave-numbers. This characteristic is consistent, and we offer flow visualizations which support this position.

  9. 46 CFR 160.060-8 - Marking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam... with U.S. Coast Guard regulations. Polyethylene foam buoyant material provides a minimum buoyant...

  10. 46 CFR 160.060-8 - Marking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam... with U.S. Coast Guard regulations. Polyethylene foam buoyant material provides a minimum buoyant...

  11. 46 CFR 160.060-8 - Marking.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam... with U.S. Coast Guard regulations. Polyethylene foam buoyant material provides a minimum buoyant...

  12. 46 CFR 160.060-8 - Marking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam... with U.S. Coast Guard regulations. Polyethylene foam buoyant material provides a minimum buoyant...

  13. 46 CFR 160.060-8 - Marking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam... with U.S. Coast Guard regulations. Polyethylene foam buoyant material provides a minimum buoyant...

  14. Potential migration of buoyant LNAPL from intermediate level waste (ILW) emplaced in a geological disposal facility (GDF) for U.K. radioactive waste.

    PubMed

    Benbow, Steven J; Rivett, Michael O; Chittenden, Neil; Herbert, Alan W; Watson, Sarah; Williams, Steve J; Norris, Simon

    2014-10-15

    A safety case for the disposal of Intermediate Level (radioactive) Waste (ILW) in a deep geological disposal facility (GDF) requires consideration of the potential for waste-derived light non-aqueous phase liquid (LNAPL) to migrate under positive buoyancy from disposed waste packages. Were entrainment of waste-derived radionuclides in LNAPL to occur, such migration could result in a shorter overall travel time to environmental or human receptors than radionuclide migration solely associated with the movement of groundwater. This paper provides a contribution to the assessment of this issue through multiphase-flow numerical modelling underpinned by a review of the UK's ILW inventory and literature to define the nature of the associated ILW LNAPL source term. Examination has been at the waste package-local GDF environment scale to determine whether proposed disposal of ILW would lead to significant likelihood of LNAPL migration, both from waste packages and from a GDF vault into the local host rock. Our review and numerical modelling support the proposition that the release of a discrete free phase LNAPL from ILW would not present a significant challenge to the safety case even with conservative approximations. 'As-disposed' LNAPL emplaced with the waste is not expected to pose a significant issue. 'Secondary LNAPL' generated in situ within the disposed ILW, arising from the decomposition of plastics, in particular PVC (polyvinyl chloride), could form the predominant LNAPL source term. Released high molecular weight phthalate plasticizers are judged to be the primary LNAPL potentially generated. These are expected to have low buoyancy-based mobility due to their very low density contrast with water and high viscosity. Due to the inherent uncertainties, significant conservatisms were adopted within the numerical modelling approach, including: the simulation of a deliberately high organic material--PVC content wastestream (2D03) within an annular grouted waste package vulnerable to LNAPL release; upper bound inventory estimates of LNAPLs; incorporating the lack of any hydraulic resistance of the package vent; the lack of any degradation of dissolved LNAPL; and, significantly, the small threshold displacement pressure assumed at which LNAPL is able to enter initially water-saturated pores. Initial scoping calculations on the latter suggested that the rate at which LNAPL is able to migrate from a waste package is likely to be very small and insignificant for likely representative displacement pressure data: this represents a key result. Adopting a conservative displacement pressure, however, allowed the effect of other features and processes in the system to be assessed. High LNAPL viscosity together with low density contrast with water reduces LNAPL migration potential. Migration to the host rock is less likely if waste package vent fluxes are small, solubility limits are high and path lengths through the backfill are short. The capacity of the system to dissolve all of the free LNAPL will, however, depend on groundwater availability. Even with the conservatisms invoked, the overall conclusion of model simulations of intact and compromised (cracked or corroded) waste packages, for a range of realistic ILW LNAPL scenarios, is that it is unlikely that significant LNAPL would be able to migrate from the waste packages and even more unlikely it would be sufficiently persistent to reach the host rock immediately beyond the GDF. PMID:25147021

  15. Potential migration of buoyant LNAPL from Intermediate Level Waste (ILW) emplaced in a geological disposal facility (GDF) for UK radioactive waste

    NASA Astrophysics Data System (ADS)

    Benbow, Steven J.; Rivett, Michael O.; Chittenden, Neil; Herbert, Alan W.; Watson, Sarah; Williams, Steve J.; Norris, Simon

    2014-10-01

    A safety case for the disposal of Intermediate Level (radioactive) Waste (ILW) in a deep geological disposal facility (GDF) requires consideration of the potential for waste-derived light non-aqueous phase liquid (LNAPL) to migrate under positive buoyancy from disposed waste packages. Were entrainment of waste-derived radionuclides in LNAPL to occur, such migration could result in a shorter overall travel time to environmental or human receptors than radionuclide migration solely associated with the movement of groundwater. This paper provides a contribution to the assessment of this issue through multiphase-flow numerical modelling underpinned by a review of the UK's ILW inventory and literature to define the nature of the associated ILW LNAPL source term. Examination has been at the waste package-local GDF environment scale to determine whether proposed disposal of ILW would lead to significant likelihood of LNAPL migration, both from waste packages and from a GDF vault into the local host rock. Our review and numerical modelling support the proposition that the release of a discrete free phase LNAPL from ILW would not present a significant challenge to the safety case even with conservative approximations. ‘As-disposed' LNAPL emplaced with the waste is not expected to pose a significant issue. ‘Secondary LNAPL' generated in situ within the disposed ILW, arising from the decomposition of plastics, in particular PVC (polyvinyl chloride), could form the predominant LNAPL source term. Released high molecular weight phthalate plasticizers are judged to be the primary LNAPL potentially generated. These are expected to have low buoyancy-based mobility due to their very low density contrast with water and high viscosity. Due to the inherent uncertainties, significant conservatisms were adopted within the numerical modelling approach, including: the simulation of a deliberately high organic material - PVC content wastestream (2D03) within an annular grouted waste package vulnerable to LNAPL release; upper bound inventory estimates of LNAPLs; incorporating the lack of any hydraulic resistance of the package vent; the lack of any degradation of dissolved LNAPL; and, significantly, the small threshold displacement pressure assumed at which LNAPL is able to enter initially water-saturated pores. Initial scoping calculations on the latter suggested that the rate at which LNAPL is able to migrate from a waste package is likely to be very small and insignificant for likely representative displacement pressure data: this represents a key result. Adopting a conservative displacement pressure, however, allowed the effect of other features and processes in the system to be assessed. High LNAPL viscosity together with low density contrast with water reduces LNAPL migration potential. Migration to the host rock is less likely if waste package vent fluxes are small, solubility limits are high and path lengths through the backfill are short. The capacity of the system to dissolve all of the free LNAPL will, however, depend on groundwater availability. Even with the conservatisms invoked, the overall conclusion of model simulations of intact and compromised (cracked or corroded) waste packages, for a range of realistic ILW LNAPL scenarios, is that it is unlikely that significant LNAPL would be able to migrate from the waste packages and even more unlikely it would be sufficiently persistent to reach the host rock immediately beyond the GDF.

  16. Vertical arrays of SiO2 micro/nanotubes templated from Si pillars by chemical oxidation for high loading capacity buoyant aquatic devices.

    PubMed

    Yoon, Sung-Soo; Khang, Dahl-Young

    2013-12-26

    A simple and facile method to fabricate SiO2 micro- or nanotubes has been demonstrated based on room temperature wet chemical oxidation of a porous layer of Si pillar templates that have been prepared by metal-assisted chemical etching (MaCE). Under typical conditions, Si pillars produced by the MaCE have been found to be covered with a thin nanoporous Si layer. The porous Si skin layer has been chemically oxidized by simple dipping in AgNO3 solution at room temperature, which has led to seamless SiO2 shell layer thanks to the accompanying volume expansion during the wet oxidation. Following wet removal of core Si by KOH yields the SiO2 micro- or nanotubes, either in test tube shape or in open shape at both ends, depending on processing method. The vertical arrays of the SiO2 tube on the Si substrate, after hydrophobic siloxane oligomer printing, has been found to have very large loading capacity on water, due to extremely high porosity (>90%) and good enough mechanical stability. The novel method to fabricate SiO2 tubes can shed new light in design of novel aquatic devices, other than simple mimicking the leg of a water strider. Also, the method may be very helpful in various applications of SiO2 nanotubes. PMID:24313459

  17. 46 CFR 160.047-3a - Materials-Dee ring and snap hook assemblies and other instruments of closure for buoyant vests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tested for weathering. The Coast Guard will determine which one or more of the following tests will be... minutes of completion of the weathering test required by paragraph (b)(1) of this section, the...

  18. 46 CFR 160.047-3a - Materials-Dee ring and snap hook assemblies and other instruments of closure for buoyant vests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... tested for weathering. The Coast Guard will determine which one or more of the following tests will be... minutes of completion of the weathering test required by paragraph (b)(1) of this section, the...

  19. 46 CFR 160.047-3a - Materials-Dee ring and snap hook assemblies and other instruments of closure for buoyant vests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... tested for weathering. The Coast Guard will determine which one or more of the following tests will be... minutes of completion of the weathering test required by paragraph (b)(1) of this section, the...

  20. 46 CFR 160.047-3a - Materials-Dee ring and snap hook assemblies and other instruments of closure for buoyant vests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tested for weathering. The Coast Guard will determine which one or more of the following tests will be... minutes of completion of the weathering test required by paragraph (b)(1) of this section, the...

  1. 46 CFR 160.052-3a - Materials-Dee ring and snap hook assemblies and other instruments of closure for buoyant vests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tested for weathering. The Coast Guard will determine which one or more of the following tests will be... minutes of completion of the weathering test required by paragraph (b)(1) of this section, the...

  2. 46 CFR 160.052-3a - Materials-Dee ring and snap hook assemblies and other instruments of closure for buoyant vests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tested for weathering. The Coast Guard will determine which one or more of the following tests will be... minutes of completion of the weathering test required by paragraph (b)(1) of this section, the...

  3. 46 CFR 160.047-3a - Materials-Dee ring and snap hook assemblies and other instruments of closure for buoyant vests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tested for weathering. The Coast Guard will determine which one or more of the following tests will be... minutes of completion of the weathering test required by paragraph (b)(1) of this section, the...

  4. 46 CFR 160.052-3a - Materials-Dee ring and snap hook assemblies and other instruments of closure for buoyant vests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... tested for weathering. The Coast Guard will determine which one or more of the following tests will be... minutes of completion of the weathering test required by paragraph (b)(1) of this section, the...

  5. 46 CFR 160.052-3a - Materials-Dee ring and snap hook assemblies and other instruments of closure for buoyant vests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... tested for weathering. The Coast Guard will determine which one or more of the following tests will be... minutes of completion of the weathering test required by paragraph (b)(1) of this section, the...

  6. 46 CFR 160.052-3a - Materials-Dee ring and snap hook assemblies and other instruments of closure for buoyant vests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tested for weathering. The Coast Guard will determine which one or more of the following tests will be... minutes of completion of the weathering test required by paragraph (b)(1) of this section, the...

  7. 46 CFR 160.052-5 - Construction-standard vests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Plastic Foam...) Buoyant inserts. The unicellular plastic foam buoyant inserts shall be cut and formed as shown on Dwg....

  8. 46 CFR 160.052-5 - Construction-standard vests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Plastic Foam...) Buoyant inserts. The unicellular plastic foam buoyant inserts shall be cut and formed as shown on Dwg....

  9. 46 CFR 160.052-5 - Construction-standard vests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Plastic Foam...) Buoyant inserts. The unicellular plastic foam buoyant inserts shall be cut and formed as shown on Dwg....

  10. 46 CFR 160.049-4 - Construction and workmanship.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam... box type filled with unicellular plastic foam buoyant material. Such cushions consist essentially of...

  11. 46 CFR 160.049-4 - Construction and workmanship.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam... box type filled with unicellular plastic foam buoyant material. Such cushions consist essentially of...

  12. 46 CFR 160.049-4 - Construction and workmanship.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam... box type filled with unicellular plastic foam buoyant material. Such cushions consist essentially of...

  13. 46 CFR 160.060-1 - Incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam... Polyethylene (Buoyant, Slab, Slitted Trigonal Pattern) (b) Plans. The following plans, of the issue in...

  14. 46 CFR 160.060-1 - Incorporation by reference.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam... Polyethylene (Buoyant, Slab, Slitted Trigonal Pattern) (b) Plans. The following plans, of the issue in...

  15. 46 CFR 160.060-1 - Incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam... Polyethylene (Buoyant, Slab, Slitted Trigonal Pattern) (b) Plans. The following plans, of the issue in...

  16. 46 CFR 160.060-1 - Incorporation by reference.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam... Polyethylene (Buoyant, Slab, Slitted Trigonal Pattern) (b) Plans. The following plans, of the issue in...

  17. 46 CFR 160.060-1 - Incorporation by reference.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam... Polyethylene (Buoyant, Slab, Slitted Trigonal Pattern) (b) Plans. The following plans, of the issue in...

  18. Sipuleucel-T (Provenge(Âź))-Autopsy of an Innovative Paradigm Change in Cancer Treatment: Why a Single-Product Biotech Company Failed to Capitalize on its Breakthrough Invention.

    PubMed

    JarosƂawski, Szymon; Toumi, Mondher

    2015-10-01

    Approved by the US Food and Drug Administration (FDA) in 2010, sipuleucel-T (Provenge(Âź)) was the first 'personalized' cancer vaccine for the treatment of prostate cancer in a metastatic, non-symptomatic population of 30,000 men in the USA. Sipuleucel-T is prepared individually for each patient and infused in three sessions over a period of 1 month. However, in 2015, Dendreon, the owner of sipuleucel-T, filed for bankruptcy. This opinion paper reviews the probable reasons this innovative product failed to achieve commercial success. PubMed and internet searches were performed focused on pricing, reimbursement, and market access. We found that sipuleucel-T's FDA approval was delayed by 3 years, reportedly because of the vaccine's new mechanism of action. Sipuleucel-T was cleared by the European Medicines Agency 2 years later, but other national agencies were not approached. It was priced at $US93,000 for a course of treatment, and this high price combined with the company's late securement of reimbursement for the vaccine by the US Centers for Medicare and Medicaid Services (CMS) resulted in another year's delay in accessing the market. Despite a positive recommendation by the National Comprehensive Cancer Network, sipuleucel-T's complex administration, high price, and uncertainty about the reimbursement status deterred doctors from prescribing the product. Furthermore, the vaccine's supply was limited during the first year of launch due to limited manufacturing capacity. In addition, two oral metastatic prostate cancer drugs with similar survival benefits reached the US market 1 and 2 years after sipuleucel-T. Also, even though Dendreon's market capitalization topped $US7.5 billion following the FDA's approval of sipuleucel-T, this value degraded gradually until the firm's bankruptcy 5 years later. We conclude that the bankruptcy of Dendreon was largely due to the delay in securing FDA approval and CMS coverage, as well as the high cost that had to be incurred by providers up-front. Licensing sipuleucel-T to a pharmaceutical company more experienced in the market access pathway may have saved the company and the product. PMID:26403092

  19. 46 CFR 160.049-7 - Procedure for approval.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam § 160.049-7... be granted separately to each manufacturer for each unicellular plastic foam buoyant cushion...

  20. 46 CFR 160.049-7 - Procedure for approval.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam § 160.049-7... be granted separately to each manufacturer for each unicellular plastic foam buoyant cushion...

  1. 46 CFR 160.052-1 - Incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Plastic Foam..., Unicellular Plastic Foam, Adult and Child. 164.015—Plastic Foam, Unicellular, Buoyant Sheet and Molded...

  2. 46 CFR 160.052-1 - Incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Plastic Foam..., Unicellular Plastic Foam, Adult and Child. 164.015—Plastic Foam, Unicellular, Buoyant Sheet and Molded...

  3. 46 CFR 160.049-7 - Procedure for approval.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam § 160.049-7... be granted separately to each manufacturer for each unicellular plastic foam buoyant cushion...

  4. 46 CFR 160.052-1 - Incorporation by reference.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Plastic Foam..., Unicellular Plastic Foam, Adult and Child. 164.015—Plastic Foam, Unicellular, Buoyant Sheet and Molded...

  5. 46 CFR 131.540 - Operational readiness.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., rescue boat, life float, or buoyant apparatus must be in good working order and ready for immediate use... lifeboat, liferaft, survival craft, rescue boat, life float, or buoyant apparatus is stowed, launched,...

  6. 46 CFR 131.540 - Operational readiness.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., rescue boat, life float, or buoyant apparatus must be in good working order and ready for immediate use... lifeboat, liferaft, survival craft, rescue boat, life float, or buoyant apparatus is stowed, launched,...

  7. 46 CFR 131.540 - Operational readiness.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., rescue boat, life float, or buoyant apparatus must be in good working order and ready for immediate use... lifeboat, liferaft, survival craft, rescue boat, life float, or buoyant apparatus is stowed, launched,...

  8. 46 CFR 131.540 - Operational readiness.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., rescue boat, life float, or buoyant apparatus must be in good working order and ready for immediate use... lifeboat, liferaft, survival craft, rescue boat, life float, or buoyant apparatus is stowed, launched,...

  9. 46 CFR 131.540 - Operational readiness.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., rescue boat, life float, or buoyant apparatus must be in good working order and ready for immediate use... lifeboat, liferaft, survival craft, rescue boat, life float, or buoyant apparatus is stowed, launched,...

  10. 46 CFR 160.064-2 - Types and models.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to be worn on the body and those intended to be thrown. (b) Models. Water safety buoyant devices may... buoyant devices intended to be thrown in water shall be of a minimum size intended for adults....

  11. 46 CFR 160.064-2 - Types and models.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to be worn on the body and those intended to be thrown. (b) Models. Water safety buoyant devices may... buoyant devices intended to be thrown in water shall be of a minimum size intended for adults....

  12. 46 CFR 160.073-1 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... APPROVAL LIFESAVING EQUIPMENT Float-Free Link or Life Floats and Buoyant Apparatus § 160.073-1 Scope. (a) This subpart contains requirements for a float-free link used for connecting a life float or buoyant apparatus painter to a vessel. The float-free link is designed to be broken by the buoyant force of the...

  13. 46 CFR 160.073-1 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... APPROVAL LIFESAVING EQUIPMENT Float-Free Link or Life Floats and Buoyant Apparatus § 160.073-1 Scope. (a) This subpart contains requirements for a float-free link used for connecting a life float or buoyant apparatus painter to a vessel. The float-free link is designed to be broken by the buoyant force of the...

  14. 46 CFR 160.073-1 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... APPROVAL LIFESAVING EQUIPMENT Float-Free Link or Life Floats and Buoyant Apparatus § 160.073-1 Scope. (a) This subpart contains requirements for a float-free link used for connecting a life float or buoyant apparatus painter to a vessel. The float-free link is designed to be broken by the buoyant force of the...

  15. 46 CFR 160.073-1 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... APPROVAL LIFESAVING EQUIPMENT Float-Free Link or Life Floats and Buoyant Apparatus § 160.073-1 Scope. (a) This subpart contains requirements for a float-free link used for connecting a life float or buoyant apparatus painter to a vessel. The float-free link is designed to be broken by the buoyant force of the...

  16. 46 CFR 160.073-1 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... APPROVAL LIFESAVING EQUIPMENT Float-Free Link or Life Floats and Buoyant Apparatus § 160.073-1 Scope. (a) This subpart contains requirements for a float-free link used for connecting a life float or buoyant apparatus painter to a vessel. The float-free link is designed to be broken by the buoyant force of the...

  17. 46 CFR 180.175 - Survival craft equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... certified to be resistant to deterioration from ultraviolet light; and (iv) Be stowed in such a way that it... buoyant apparatus by a 10 mm (3/8 inch) lanyard, resistant to deterioration from ultraviolet light, and at..., pendants, two paddles, a painter, and a light. (e) Buoyant apparatus. Each buoyant apparatus must be...

  18. 46 CFR 180.175 - Survival craft equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... certified to be resistant to deterioration from ultraviolet light; and (iv) Be stowed in such a way that it... buoyant apparatus by a 10 mm (3/8 inch) lanyard, resistant to deterioration from ultraviolet light, and at..., pendants, two paddles, a painter, and a light. (e) Buoyant apparatus. Each buoyant apparatus must be...

  19. 46 CFR 160.010-2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Definitions. 160.010-2 Section 160.010-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Buoyant Apparatus for Merchant Vessels § 160.010-2 Definitions. Buoyant apparatus. Buoyant apparatus...

  20. CONSEQUENCES OF NON-LINEAR DENSITY EFFECTS ON BUOYANCY AND PLUME BEHAVIOR

    EPA Science Inventory

    Aquatic plumes, as turbulent streams, grow by entraining ambient water. Buoyant plumes rise and dense ones sink, but, non-linear kinetic effects can reverse the buoyant force in mid-phenomenon. The class of nascent-density plumes begin as buoyant, upwardly accelerating plumes tha...

  1. Familial hypobetalipoproteinemia caused by a mutation in the apolipoprotein B gene that results in a truncated species of apolipoprotein B (B-31). A unique mutation that helps to define the portion of the apolipoprotein B molecule required for the formation of buoyant, triglyceride-rich lipoproteins.

    PubMed Central

    Young, S G; Hubl, S T; Smith, R S; Snyder, S M; Terdiman, J F

    1990-01-01

    Apolipoprotein B-100 has a crucial structural role in the formation of VLDL and LDL. Familial hypobetalipoproteinemia, a syndrome in which the concentration of LDL cholesterol in plasma is abnormally low, can be caused by mutations in the apo B gene that prevent the translation of a full-length apo B-100 molecule. Prior studies have revealed that truncated species of apo B [e.g., apo B-37 (1728 amino acids), apo B-46 (2057 amino acids)] can occasionally be identified in the plasma of subjects with familial hypobetalipoproteinemia; in each of these cases, the truncated apo B species has been a prominent protein component of VLDL. In this report, we describe a kindred with hypobetalipoproteinemia in which the plasma of four affected heterozygotes contained a unique truncated apo B species, apo B-31. Apolipoprotein B-31 is caused by the deletion of a single nucleotide in the apo B gene, and it is predicted to contain 1425 amino acids. Apolipoprotein B-31 is the shortest of the mutant apo B species to be identified in the plasma of a subject with hypobetalipoproteinemia. In contrast to longer truncated apo B species, apo B-31 was undetectable in the VLDL and the LDL; however, it was present in the HDL fraction and the lipoprotein-deficient fraction of plasma. The density distribution of apo B-31 in the plasma suggests the possibility that the amino-terminal 1425 amino acids of apo B-100 are sufficient to permit the formation and secretion of small, dense lipoproteins but are inadequate to support the formation of the more lipid-rich VLDL and LDL particles. Images PMID:2312735

  2. 46 CFR 160.060-3 - Materials-standard vests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam... incorporated in the finished product. (b) Unicellular polyethylene foam. The unicellular polyethylene...

  3. 46 CFR 160.060-3 - Materials-standard vests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam... incorporated in the finished product. (b) Unicellular polyethylene foam. The unicellular polyethylene...

  4. 46 CFR 164.013-6 - Production tests, inspections, and marking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant... shall provide in-plant quality control of polyethylene foam in accordance with the requirements of §...

  5. 46 CFR 164.013-6 - Production tests, inspections, and marking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant... shall provide in-plant quality control of polyethylene foam in accordance with the requirements of §...

  6. 46 CFR 160.060-3 - Materials-standard vests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam... incorporated in the finished product. (b) Unicellular polyethylene foam. The unicellular polyethylene...

  7. 46 CFR 160.060-3 - Materials-standard vests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam... incorporated in the finished product. (b) Unicellular polyethylene foam. The unicellular polyethylene...

  8. 46 CFR 160.060-3 - Materials-standard vests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam... incorporated in the finished product. (b) Unicellular polyethylene foam. The unicellular polyethylene...

  9. 46 CFR 164.013-6 - Production tests, inspections, and marking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant... shall provide in-plant quality control of polyethylene foam in accordance with the requirements of §...

  10. 46 CFR 164.013-6 - Production tests, inspections, and marking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant... shall provide in-plant quality control of polyethylene foam in accordance with the requirements of §...

  11. 46 CFR 164.013-6 - Production tests, inspections, and marking.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant... shall provide in-plant quality control of polyethylene foam in accordance with the requirements of §...

  12. 46 CFR 160.064-6 - Examinations, tests and inspections.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... labeled water safety buoyant devices shall maintain quality control of the materials used, manufacturing... inspections and tests of representative samples and components produced to maintain the quality of...

  13. 46 CFR 160.049-1 - Incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam § 160.049-1... Guard specifications: 160.055—Life Preservers, Unicellular Plastic Foam, Adult and Child. 164.015—Plastic Foam, Unicellular, Buoyant, Sheet and Molded Shapes. (4) Military specifications....

  14. 46 CFR 160.049-1 - Incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam § 160.049-1... Guard specifications: 160.055—Life Preservers, Unicellular Plastic Foam, Adult and Child. 164.015—Plastic Foam, Unicellular, Buoyant, Sheet and Molded Shapes. (4) Military specifications....

  15. 46 CFR 160.048-1 - Incorporation by reference.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion, Fibrous Glass § 160.048-1... documents: (1) Military specification: MIL-B-2766—Batt, Fibrous Glass, Lifesaving Equipment. (2) Federal... issue in effect on the date kapok or fibrous glass buoyant cushions are manufactured, form a part...

  16. 46 CFR 160.048-1 - Incorporation by reference.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion, Fibrous Glass § 160.048-1... documents: (1) Military specification: MIL-B-2766—Batt, Fibrous Glass, Lifesaving Equipment. (2) Federal... issue in effect on the date kapok or fibrous glass buoyant cushions are manufactured, form a part...

  17. 46 CFR 160.049-1 - Incorporation by reference.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam § 160.049-1... Guard specifications: 160.055—Life Preservers, Unicellular Plastic Foam, Adult and Child. 164.015—Plastic Foam, Unicellular, Buoyant, Sheet and Molded Shapes. (4) Military specifications....

  18. 46 CFR 160.073-10 - Construction and performance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Float-Free Link or Life Floats and Buoyant... in figure 160.073-10. The link must be formed from a single salt water corrosion-resistant wire. A... (134 lb.) for links intended for life floats and buoyant apparatus of 10 persons and less capacity....

  19. 46 CFR 160.073-10 - Construction and performance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Float-Free Link or Life Floats and Buoyant... in figure 160.073-10. The link must be formed from a single salt water corrosion-resistant wire. A... (134 lb.) for links intended for life floats and buoyant apparatus of 10 persons and less capacity....

  20. 46 CFR 160.073-10 - Construction and performance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Float-Free Link or Life Floats and Buoyant... in figure 160.073-10. The link must be formed from a single salt water corrosion-resistant wire. A... (134 lb.) for links intended for life floats and buoyant apparatus of 10 persons and less capacity....

  1. 46 CFR 160.073-10 - Construction and performance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Float-Free Link or Life Floats and Buoyant... in figure 160.073-10. The link must be formed from a single salt water corrosion-resistant wire. A... (134 lb.) for links intended for life floats and buoyant apparatus of 10 persons and less capacity....

  2. 46 CFR 160.073-10 - Construction and performance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Float-Free Link or Life Floats and Buoyant... in figure 160.073-10. The link must be formed from a single salt water corrosion-resistant wire. A... (134 lb.) for links intended for life floats and buoyant apparatus of 10 persons and less capacity....

  3. 46 CFR 160.064-2 - Types and models.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Types and models. 160.064-2 Section 160.064-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Marine Buoyant Devices § 160.064-2 Types and models. (a) Types. Water safety buoyant devices covered...

  4. 46 CFR 160.064-2 - Types and models.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Types and models. 160.064-2 Section 160.064-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Marine Buoyant Devices § 160.064-2 Types and models. (a) Types. Water safety buoyant devices covered...

  5. 46 CFR 160.064-2 - Types and models.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Types and models. 160.064-2 Section 160.064-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Marine Buoyant Devices § 160.064-2 Types and models. (a) Types. Water safety buoyant devices covered...

  6. 46 CFR 160.002-5 - Sampling, tests, and inspections.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... accordance with this section and § 160.001-5. (b) Buoyancy test. The buoyancy of the pad inserts from the... the buoyant pad insert covers slit so as not to entrap air. The period of submersion must be at least 48 hours. (c) Buoyancy required. The buoyant pad inserts from Model 3 adult life preservers...

  7. 46 CFR 160.047-4 - Construction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... essentially consist of a vest-cut envelope containing compartments in which are enclosed pads of buoyant... buoyant pad inserts, two front compartments and one back compartment, and reinforcing strips of the same... center of the neck hole to the top of the vest as shown in Section J-J of the drawings. (c) Pad...

  8. 46 CFR 160.005-5 - Sampling, tests, and inspections.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... accordance with this section and § 160.001-5. (b) Buoyancy test. The buoyancy of the pad inserts from the... the buoyant pad insert covers slit so as not to entrap air. The period of submersion must be at least 48 hours. (c) Buoyancy required. The buoyant pad inserts from Model 3 adult life preservers...

  9. 46 CFR 160.055-7 - Sampling, tests, and inspections.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... accordance with this section and § 160.001-5. (b) Buoyancy test. The buoyancy of the pad inserts from the... the buoyant pad insert covers slit so as not to entrap air. The period of submersion must be at least 48 hours. (c) Buoyancy required. The buoyant pad inserts from Model 3 adult life preservers...

  10. 46 CFR 160.005-5 - Sampling, tests, and inspections.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... accordance with this section and § 160.001-5. (b) Buoyancy test. The buoyancy of the pad inserts from the... the buoyant pad insert covers slit so as not to entrap air. The period of submersion must be at least 48 hours. (c) Buoyancy required. The buoyant pad inserts from Model 3 adult life preservers...

  11. 46 CFR 160.002-5 - Sampling, tests, and inspections.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... accordance with this section and § 160.001-5. (b) Buoyancy test. The buoyancy of the pad inserts from the... the buoyant pad insert covers slit so as not to entrap air. The period of submersion must be at least 48 hours. (c) Buoyancy required. The buoyant pad inserts from Model 3 adult life preservers...

  12. 46 CFR 117.175 - Survival craft equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... if synthetic, or of a type certified to be resistant to deterioration from ultraviolet light; and (iv... deterioration from ultraviolet light, and at least 5.5 meters (18 feet) in length. (g) Other survival craft. If..., and a light. (e) Buoyant apparatus. Each buoyant apparatus must be fitted with a lifeline, pendants,...

  13. 46 CFR 117.175 - Survival craft equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... if synthetic, or of a type certified to be resistant to deterioration from ultraviolet light; and (iv... deterioration from ultraviolet light, and at least 5.5 meters (18 feet) in length. (g) Other survival craft. If..., and a light. (e) Buoyant apparatus. Each buoyant apparatus must be fitted with a lifeline, pendants,...

  14. 46 CFR 169.556 - Work vests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Work vests. 169.556 Section 169.556 Shipping COAST GUARD... Firefighting Equipment Additional Lifesaving Equipment § 169.556 Work vests. (a) Buoyant work vests carried.... (b) Approved buoyant work vests are items of safety apparel and may be carried aboard vessels to...

  15. 46 CFR 169.556 - Work vests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Work vests. 169.556 Section 169.556 Shipping COAST GUARD... Firefighting Equipment Additional Lifesaving Equipment § 169.556 Work vests. (a) Buoyant work vests carried.... (b) Approved buoyant work vests are items of safety apparel and may be carried aboard vessels to...

  16. 46 CFR 169.556 - Work vests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Work vests. 169.556 Section 169.556 Shipping COAST GUARD... Firefighting Equipment Additional Lifesaving Equipment § 169.556 Work vests. (a) Buoyant work vests carried.... (b) Approved buoyant work vests are items of safety apparel and may be carried aboard vessels to...

  17. 46 CFR 169.556 - Work vests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Work vests. 169.556 Section 169.556 Shipping COAST GUARD... Firefighting Equipment Additional Lifesaving Equipment § 169.556 Work vests. (a) Buoyant work vests carried.... (b) Approved buoyant work vests are items of safety apparel and may be carried aboard vessels to...

  18. 46 CFR 169.556 - Work vests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Work vests. 169.556 Section 169.556 Shipping COAST GUARD... Firefighting Equipment Additional Lifesaving Equipment § 169.556 Work vests. (a) Buoyant work vests carried.... (b) Approved buoyant work vests are items of safety apparel and may be carried aboard vessels to...

  19. BATHYMETRIC IRREGULARITIES, JET FORMATION, AND SUBSEQUENT MIXING PROCESSES

    EPA Science Inventory

    It is well known that bathymetric contours influence and steer currents and that irregularities in bathymetry contribute to the formation of aquatic non-buoyant jets and buoyant plumes. For example, bathymetric irregularities can channel flow through canyons or accelerate flow ov...

  20. 46 CFR 160.010-9 - Procedure for approval.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Procedure for approval. 160.010-9 Section 160.010-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Buoyant Apparatus for Merchant Vessels § 160.010-9 Procedure for approval. (a) A buoyant...

  1. REMOVING WATER-SOLUBLE HAZARDOUS MATERIAL SPILLS FROM WATERWAYS WITH CARBON

    EPA Science Inventory

    A model for the removal of water-soluble organic materials from water by carbon-filled, buoyant packets and panels is described. Based on this model, equations are derived for the removal of dissolved organic compounds from waterways by buoyant packets that are either (a) cycled ...

  2. 46 CFR 160.048-6 - Marking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Marking. 160.048-6 Section 160.048-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion, Fibrous Glass § 160.048-6 Marking. (a) Each buoyant cushion must have...

  3. 46 CFR 160.049-6 - Marking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Marking. 160.049-6 Section 160.049-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam § 160.049-6 Marking. (a) Each buoyant cushion must have...

  4. 46 CFR 160.048-6 - Marking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Marking. 160.048-6 Section 160.048-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion, Fibrous Glass § 160.048-6 Marking. (a) Each buoyant cushion must have...

  5. 46 CFR 160.064-4 - Marking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Marking. 160.064-4 Section 160.064-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Marine Buoyant Devices § 160.064-4 Marking. (a) Each water safety buoyant device must have the...

  6. 46 CFR 160.064-4 - Marking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Marking. 160.064-4 Section 160.064-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Marine Buoyant Devices § 160.064-4 Marking. (a) Each water safety buoyant device must have the...

  7. 46 CFR 160.056-2 - Construction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... construction shall be such as is accepted as good engineering practice in the case of the specific material... = Volume of buoyant material required in cubic feet. W = Weight of equipped boat, in pounds. d = Specific gravity of hull material. c = Density of buoyant material, in pounds per cubic foot....

  8. 46 CFR 160.056-2 - Construction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... construction shall be such as is accepted as good engineering practice in the case of the specific material... = Volume of buoyant material required in cubic feet. W = Weight of equipped boat, in pounds. d = Specific gravity of hull material. c = Density of buoyant material, in pounds per cubic foot....

  9. Anti-pollution barrier

    SciTech Connect

    Webb, M.G.

    1982-05-18

    A barrier is disclosed for impeding the spread of oil spilt on water comprising two angled buoyant rigid elements each of which is moulded onto a respective angled stiffener to form z-shaped members in cross-section. The two zshaped members are positioned back to back so that each is a mirror image of the other. The ends of the angled stiffeners remote from the angled buoyant rigid elements are rotatably connected and the two angled buoyant rig elements are releasably joined by a fastene. A flexible membrane passes around the ends of the angled stiffeners remote from the angled buoyant rigid elements, each end of the membrane being moulded into one of the angled buoyant rigid elements.

  10. Active-specific immunotherapy for non-small cell lung cancer

    PubMed Central

    Winter, Hauke; van den Engel, Natasja K.; Rusan, Margareta; Schupp, Nina; Poehlein, Christian H.; Hu, Hong-Ming; Hatz, Rudolf A.; Urba, Walter J.; Jauch, Karl-Walter; Fox, Bernard A.; Rüttinger, Dominik

    2011-01-01

    Non-small cell lung cancer constitutes about 85% of all newly diagnosed cases of lung cancer and continues to be the leading cause of cancer-related deaths worldwide. Standard treatment for this devastating disease, such as systemic chemotherapy, has reached a plateau in effectiveness and comes with considerable toxicities. For all stages of disease fewer than 20% of patients are alive 5 years after diagnosis; for metastatic disease the median survival is less than one year. Until now, the success of active-specific immunotherapy for all tumor types has been sporadic and unpredictable. However, the active-specific stimulation of the host’s own immune system still holds great promise for achieving non-toxic and durable antitumor responses. Recently, sipuleucel-T (Provengeź; Dendreon Corp., Seattle, WA) was the first therapeutic cancer vaccine to receive market approval, in this case for advanced prostate cancer. Other phase III clinical trials using time-dependent endpoints, e.g. in melanoma and follicular lymphoma, have recently turned out positive. More sophisticated specific vaccines have now also been developed for lung cancer, which, for long, was not considered an immune-sensitive malignancy. This may explain why advances in active-specific immunotherapy for lung cancer lag behind similar efforts in renal cell cancer, melanoma or prostate cancer. However, various vaccines are now being evaluated in controlled phase III clinical trials, raising hopes that active-specific immunotherapy may become an additional effective therapy for patients with lung cancer. This article reviews the most prominent active-specific immunotherapeutic approaches using protein/peptide, whole tumor cells, and dendritic cells as vaccines for lung cancer. PMID:22263073

  11. Translational Approaches towards Cancer Gene Therapy: Hurdles and Hopes

    PubMed Central

    Barar, Jaleh; Omidi, Yadollah

    2012-01-01

    Introduction Of the cancer gene therapy approaches, gene silencing, suicide/apoptosis inducing gene therapy, immunogene therapy and targeted gene therapy are deemed to sub-stantially control the biological consequences of genomic changes in cancerous cells. Thus, a large number of clinical trials have been conducted against various malignancies. In this review, we will discuss recent translational progresses of gene and cell therapy of cancer. Methods Essential information on gene therapy of cancer were reviewed and discussed towards their clinical translations. Results Gene transfer has been rigorously studied in vitro and in vivo, in which some of these gene therapy endeavours have been carried on towards translational investigations and clinical applications. About 65% of gene therapy trials are related to cancer therapy. Some of these trials have been combined with cell therapy to produce personalized medicines such as Sipuleucel-T (Provenge¼, marketed by Dendreon, USA) for the treatment of asymptomatic/minimally symptomatic metastatic hormone-refractory prostate cancer. Conclusion Translational approach links two diverse boundaries of basic and clinical researches. For successful translation of geno-medicines into clinical applications, it is essential 1) to have the guidelines and standard operating procedures for development and application of the genomedicines specific to clinically relevant biomarker(s); 2) to conduct necessary animal experimental studies to show the “proof of concept” for the proposed genomedicines; 3) to perform an initial clinical investigation; and 4) to initiate extensive clinical trials to address all necessary requirements. In short, translational researches need to be refined to accelerate the geno-medicine development and clinical applications. PMID:23678451

  12. FLOCCULATION-FLOTATION AIDS FOR TREATMENT OF COMBINED SEWER OVERFLOWS

    EPA Science Inventory

    The objectives of this study were to investigate the flocculation/flotation characteristics of combined sewer overflow through laboratory and field testing. The concept involves the introduction of chemicals and buoyant flotation aids into the overflow and the subsequent cofloccu...

  13. 46 CFR 164.015-2 - Types.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... APPROVAL MATERIALS Plastic Foam, Unicellular, Buoyant, Sheet and Molded Shape § 164.015-2 Types. (a..., polymer or copolymer plastic foam shall be of three types as follows: Type A—for life preservers,...

  14. 46 CFR 164.015-2 - Types.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... APPROVAL MATERIALS Plastic Foam, Unicellular, Buoyant, Sheet and Molded Shape § 164.015-2 Types. (a..., polymer or copolymer plastic foam shall be of three types as follows: Type A—for life preservers,...

  15. 46 CFR 160.048-2 - Types and sizes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Types and sizes. (a) Types. Buoyant cushions shall be of the box type, i.e., have top, bottom and gusset... than 225 square inches top surface area; widths and lengths which fall within the dimensions shown...

  16. 46 CFR 160.048-2 - Types and sizes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Types and sizes. (a) Types. Buoyant cushions shall be of the box type, i.e., have top, bottom and gusset... than 225 square inches top surface area; widths and lengths which fall within the dimensions shown...

  17. 46 CFR 160.048-2 - Types and sizes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Types and sizes. (a) Types. Buoyant cushions shall be of the box type, i.e., have top, bottom and gusset... than 225 square inches top surface area; widths and lengths which fall within the dimensions shown...

  18. Increase in cell mass during the division cycle of Escherichia coli B/rA.

    PubMed Central

    Kubitschek, H E

    1986-01-01

    Increase in the mean cell mass of undivided cells was determined during the division cycle of Escherichia coli B/rA. Cell buoyant densities during the division cycle were determined after cells from an exponentially growing culture were separated by size. The buoyant densities of these cells were essentially independent of cell age, with a mean value of 1.094 g ml-1. Mean cell volume and buoyant density were also determined during synchronous growth in two different media, which provided doubling times of 40 and 25 min. Cell volume and mass increased linearly at both growth rates, as buoyant density did not vary significantly. The results are consistent with only one of the three major models of cell growth, linear growth, which specifies that the rate of increase in cell mass is constant throughout the division cycle. PMID:3536854

  19. Structure of laboratory ball lightning.

    PubMed

    Ito, Tsuyohito; Tamura, Tomoya; Cappelli, Mark A; Hamaguchi, Satoshi

    2009-12-01

    Trajectories of self-sustained laboratory ball lightning, generated by arc discharges with silicon, are investigated for understanding the possibility of buoyant flight. Extremely low apparent densities are found, nearly approaching that of standard air. The freely buoyant balls are observed to survive for about 0.1 s, with significantly buoyant balls surviving for several seconds. These ball lightning objects are found to have a density and size that can easily allow them to be carried by a gentle breeze of a few meters per second. The results are interpreted by a model that is an extension of that first proposed by Abrahamson and Dinniss [J. Abrahamson and J. Dinniss, Nature (London) 403, 519 (2000)]. The buoyant behavior of ball lightning seen in our experiments is believed to arise as a result of the formation of a nanoparticle oxide network growing from a molten silicon core. PMID:20365306

  20. Structure of laboratory ball lightning

    NASA Astrophysics Data System (ADS)

    Ito, Tsuyohito; Tamura, Tomoya; Cappelli, Mark A.; Hamaguchi, Satoshi

    2009-12-01

    Trajectories of self-sustained laboratory ball lightning, generated by arc discharges with silicon, are investigated for understanding the possibility of buoyant flight. Extremely low apparent densities are found, nearly approaching that of standard air. The freely buoyant balls are observed to survive for about 0.1 s, with significantly buoyant balls surviving for several seconds. These ball lightning objects are found to have a density and size that can easily allow them to be carried by a gentle breeze of a few meters per second. The results are interpreted by a model that is an extension of that first proposed by Abrahamson and Dinniss [J. Abrahamson and J. Dinniss, Nature (London) 403, 519 (2000)]. The buoyant behavior of ball lightning seen in our experiments is believed to arise as a result of the formation of a nanoparticle oxide network growing from a molten silicon core.

  1. 46 CFR 160.052-6 - Construction-nonstandard vests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Plastic Foam, Adult and Child § 160.052-6 Construction—nonstandard vests. (a) General. The construction... the following volume of plastic foam buoyant material, determined by the displacement method: (1)...

  2. 46 CFR 164.015-2 - Types.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... APPROVAL MATERIALS Plastic Foam, Unicellular, Buoyant, Sheet and Molded Shape § 164.015-2 Types. (a..., polymer or copolymer plastic foam shall be of three types as follows: Type A—for life preservers,...

  3. 46 CFR 160.052-6 - Construction-nonstandard vests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Plastic Foam, Adult and Child § 160.052-6 Construction—nonstandard vests. (a) General. The construction... the following volume of plastic foam buoyant material, determined by the displacement method: (1)...

  4. 46 CFR 160.052-7 - Inspections and tests-standard and nonstandard vests. 1

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Buoyant Vest, Unicellular Plastic Foam, Adult and Child § 160.052-7 Inspections and tests—standard and nonstandard vests. 1 1 The manufacturer of a personal flotation device must meet 33 CFR 181.701 through 33...

  5. 46 CFR 160.052-7 - Inspections and tests-standard and nonstandard vests. 1

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Buoyant Vest, Unicellular Plastic Foam, Adult and Child § 160.052-7 Inspections and tests—standard and nonstandard vests. 1 1 The manufacturer of a personal flotation device must meet 33 CFR 181.701 through 33...

  6. 46 CFR 160.052-6 - Construction-nonstandard vests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Plastic Foam, Adult and Child § 160.052-6 Construction—nonstandard vests. (a) General. The construction... the following volume of plastic foam buoyant material, determined by the displacement method: (1)...

  7. 46 CFR 160.052-7 - Inspections and tests-standard and nonstandard vests. 1

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Buoyant Vest, Unicellular Plastic Foam, Adult and Child § 160.052-7 Inspections and tests—standard and nonstandard vests. 1 1 The manufacturer of a personal flotation device must meet 33 CFR 181.701 through 33...

  8. Sedimentation Of Oil-MIneral Aggregates For Remediation Of Vegetable Oil Spills

    EPA Science Inventory

    A response alternative for floating vegetable oil spills based on sedimentation of negatively buoyant oil-mineral aggregrates followed by anaerobic biodegradation in the sediments is under investigation. Sedimentation of floating canola oil by interaction with montmorillonite wa...

  9. Mineralogy: Garnet goes hungry

    NASA Astrophysics Data System (ADS)

    Bina, Craig R.

    2013-05-01

    Sinking slabs of oceanic lithosphere often stagnate in Earth's mantle. Experiments show that common slab minerals transform to their high-pressure, high-density counterparts at very slow rates, thus keeping the slabs buoyant and impeding subduction.

  10. 33 CFR 140.7 - Incorporation by reference.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Drop Lines for Construction and Industrial Use. 142.42 ANSI/UL1123-1987—Standard for Marine Buoyant....33 ANSI Z87.1-1979—Practice for Occupational and Educational Eye and Face Protection. 142.27 ANSI...

  11. 33 CFR 140.7 - Incorporation by reference.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Drop Lines for Construction and Industrial Use. 142.42 ANSI/UL1123-1987—Standard for Marine Buoyant....33 ANSI Z87.1-1979—Practice for Occupational and Educational Eye and Face Protection. 142.27 ANSI...

  12. 33 CFR 140.7 - Incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Drop Lines for Construction and Industrial Use. 142.42 ANSI/UL1123-1987—Standard for Marine Buoyant....33 ANSI Z87.1-1979—Practice for Occupational and Educational Eye and Face Protection. 142.27 ANSI...

  13. 33 CFR 140.7 - Incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Drop Lines for Construction and Industrial Use. 142.42 ANSI/UL1123-1987—Standard for Marine Buoyant....33 ANSI Z87.1-1979—Practice for Occupational and Educational Eye and Face Protection. 142.27 ANSI...

  14. 46 CFR 164.013-2 - Incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CFR part 51. To enforce any edition other than the one listed in paragraph (b) of this section, notice...: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab, Slitted Trigonal...

  15. 46 CFR 160.060-6 - Construction-nonstandard vests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Polyethylene Foam, Adult and Child § 160.060-6 Construction—nonstandard vests. (a) General. The construction... must contain the following volume of unicellular polyethylene foam buoyant material, determined by...

  16. 46 CFR 160.060-6 - Construction-nonstandard vests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Polyethylene Foam, Adult and Child § 160.060-6 Construction—nonstandard vests. (a) General. The construction... must contain the following volume of unicellular polyethylene foam buoyant material, determined by...

  17. 46 CFR 164.013-2 - Incorporation by reference.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CFR part 51. To enforce any edition other than the one listed in paragraph (b) of this section, notice...: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab, Slitted Trigonal...

  18. 46 CFR 160.060-6 - Construction-nonstandard vests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Polyethylene Foam, Adult and Child § 160.060-6 Construction—nonstandard vests. (a) General. The construction... must contain the following volume of unicellular polyethylene foam buoyant material, determined by...

  19. 46 CFR 164.013-2 - Incorporation by reference.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CFR part 51. To enforce any edition other than the one listed in paragraph (b) of this section, notice...: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab, Slitted Trigonal...

  20. 46 CFR 164.013-2 - Incorporation by reference.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CFR part 51. To enforce any edition other than the one listed in paragraph (b) of this section, notice...: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab, Slitted Trigonal...

  1. 46 CFR 164.013-2 - Incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CFR part 51. To enforce any edition other than the one listed in paragraph (b) of this section, notice...: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab, Slitted Trigonal...

  2. 46 CFR 160.060-6 - Construction-nonstandard vests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Polyethylene Foam, Adult and Child § 160.060-6 Construction—nonstandard vests. (a) General. The construction... must contain the following volume of unicellular polyethylene foam buoyant material, determined by...

  3. 46 CFR 160.060-6 - Construction-nonstandard vests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Polyethylene Foam, Adult and Child § 160.060-6 Construction—nonstandard vests. (a) General. The construction... must contain the following volume of unicellular polyethylene foam buoyant material, determined by...

  4. 46 CFR 164.019-3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... component. PFD Type means the performance type designation as indicated in 33 CFR part 175 and this... (Buoyant Cushions). 4RB IV (Recreational Ring Buoys only). 5 Wearable Type V (intended use must...

  5. 46 CFR 164.019-3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... component. PFD Type means the performance type designation as indicated in 33 CFR part 175 and this... (Buoyant Cushions). 4RB IV (Recreational Ring Buoys only). 5 Wearable Type V (intended use must...

  6. 46 CFR 164.019-3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... component. PFD Type means the performance type designation as indicated in 33 CFR part 175 and this... (Buoyant Cushions). 4RB IV (Recreational Ring Buoys only). 5 Wearable Type V (intended use must...

  7. Experimentally Determining the Molar Mass of Carbon Dioxide Using a Mylar Balloon.

    ERIC Educational Resources Information Center

    Jackson, Barbara Albers; Crouse, David J.

    1998-01-01

    Describes how to determine the mass of a gas in a flexible, lightweight container and argues that the buoyant force of air needs to be taken into account. Recommends the use of mylar and describes equipment preparation. (DDR)

  8. EXPERIMENTAL SIMULATION OF SINGLE AND MULTIPLE CELL COOLING TOWER PLUMES

    EPA Science Inventory

    An experimental investigation was conducted to determine the dilution characteristics of single and multiple port buoyant discharges typical of modern natural and mechanical draft cooling towers. Simultaneous measurements of velocity and tracer concentration profiles were taken a...

  9. Geochemistry: Rise of the continents

    NASA Astrophysics Data System (ADS)

    Lee, Cin-Ty A.; McKenzie, N. Ryan

    2015-07-01

    The continents are archives of Earth's evolution. Analysis of the isotopic signature of continental crust globally suggests that buoyant, silicic continents began to form 3 billion years ago, possibly linked to the onset of plate tectonics.

  10. 46 CFR 160.049-4 - Construction and workmanship.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... is to provide buoyancy to aid a person in keeping afloat in the water. Buoyant cushions providing less than 20 pounds buoyancy or less than 2 inches in thickness will not be acceptable. (b) Cover....

  11. 46 CFR 160.049-4 - Construction and workmanship.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... is to provide buoyancy to aid a person in keeping afloat in the water. Buoyant cushions providing less than 20 pounds buoyancy or less than 2 inches in thickness will not be acceptable. (b) Cover....

  12. 46 CFR 160.073-5 - Certification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Float-Free Link or Life Floats and Buoyant Apparatus § 160.073-5 Certification. (a) The float-free link is not approved by the Coast Guard. The manufacturer of the link...

  13. 46 CFR 160.073-5 - Certification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Float-Free Link or Life Floats and Buoyant Apparatus § 160.073-5 Certification. (a) The float-free link is not approved by the Coast Guard. The manufacturer of the link...

  14. 46 CFR 160.073-5 - Certification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Float-Free Link or Life Floats and Buoyant Apparatus § 160.073-5 Certification. (a) The float-free link is not approved by the Coast Guard. The manufacturer of the link...

  15. 46 CFR 160.073-5 - Certification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Float-Free Link or Life Floats and Buoyant Apparatus § 160.073-5 Certification. (a) The float-free link is not approved by the Coast Guard. The manufacturer of the link...

  16. Feasibility study of modern airships, phase 2. Volume 1: Heavy lift airship vehicle. Book 1: Overall study results

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A Heavy Lift Airship combining buoyant lift derived from a conventional helium-filled non-rigid airship hull with propulsive lift derived from conventional helicopter rotors was investigated. The buoyant lift essentially offsets the empty weight of the vehicle; thus the rotor thrust is available for useful load and to maneuver and control the vehicle. Such a vehicle is capable of providing a quantum increase in current vertical lifting capability. Certain critical deficiencies of past airships are significantly minimized or eliminated.

  17. Investigation of the free flow electrophoretic process. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Weiss, R. A.; Lanham, J. W.; Richman, D. W.; Walker, C. D.

    1979-01-01

    The effect of gravity on the free flow electrophoretic process was investigated. The demonstrated effects were then compared with predictions made by mathematical models. Results show that the carrier buffer flow was affected by gravity induced thermal convection and that the movement of the separating particle streams was affected by gravity induced buoyant forces. It was determined that if gravity induced buoyant forces were included in the mathematical models, then effective predictions of electrophoresis chamber separation performance were possible.

  18. Measurements and implications of vortex motions using two flow-visualization techniques

    NASA Technical Reports Server (NTRS)

    Delisi, Donald P.; Greene, George C.

    1990-01-01

    The present comparative study of two different, but complementary flow-visualization techniques, which yield different interpretations of vortex-migration distance and lifetime, gives attention to the difficulty of determining vortex evolution and lifetime from flow-visualization measurements. The techniques involved the release of a fluorescent dye and of neutrally buoyant particles in a water-filled towing tank. Vortices are found to migrate farther, and last longer, when visualized with neutrally buoyant particles rather than with dyes.

  19. Nonlinear waves in a multilayer system

    NASA Astrophysics Data System (ADS)

    Simanovskii, Ilya B.; Viviani, Antonio; Dubois, Frank; Legros, Jean-Claude

    2009-02-01

    The joint action of buoyant and thermocapillary mechanisms of instability in a multilayer system, is investigated. The nonlinear convective regimes are studied by the finite difference method. The periodic boundary conditions on the lateral boundaries, are considered. It is found that the competition of both mechanisms of instability may lead to the appearance of a buoyant-thermocapillary traveling wave and a modulated traveling wave. To cite this article: I.B. Simanovskii et al., C. R. Mecanique 337 (2009).

  20. Distribution and composition of hydrothermal plume particles from the ASHES vent field at Axial Volcano, Juan de Fuca Ridge. [Axial Seamount Hydrothermal Emission Study

    SciTech Connect

    Feely, R.A.; Geiselman, T.L.; Baker, E.T.; Massoth, G.J. ); Hammond, S.R. )

    1990-08-10

    In 1986 and 1987, buoyant and neutrally buoyant hydrothermal plume particles from the ASHES vent field within Axial Volcano were sampled to study their variations in composition with height above the seafloor. Individual mineral phases were identified using standard X ray diffraction procedures. Elemental composition and particle morphologies were determined by X ray fluorescence spectrometry and scanning electron microscopy/X ray energy spectrometry techniques. The vent particles were primarily composed of sphalerite, anhydrite, pyrite, pyrrhotite, chalcopyrite, barite, hydrous iron oxides, and amorphous silica. Grain size analyses of buoyant plume particles showed rapid particle growth in the first few centimeters above the vent orifice, followed by differential sedimentation of the larger sulfide and sulfate minerals out of the buoyant plume. The neutrally buoyant plume consisted of a lower plume, which was highly enriched in Fe, S, Zn, and Cu, and an upper plume, which was highly enriched in Fe and Mn. The upper plume was enriched in Fe and Mn oxyhydroxide particles, and the lower plume was enriched in suspended sulfide particles in addition to the Fe and Mn oxyhydroxide particles. The chemical data for the water column particles indicate that chemical scavenging and differential sedimentation processes are major factors controlling the composition of the dispersing hydrothermal particles. Short-term sediment trap experiments indicate that the fallout from the ASHES vent field is not as large as some of the other vent fields on the Juan de Fuca Ridge.

  1. A Lighter-Than-Air System Enhanced with Kinetic Lift

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy

    2002-01-01

    A hybrid airship system is proposed in which the buoyant lift is enhanced with kinetic lift. The airship would consist of twin hulls in which the buoyant gas is contained. The twin hulls would be connected in parallel by a wing having an airfoil contour. In forward flight, the wing would provide kinetic lift that would add to the buoyant lift. The added lift would permit a greater payload/altitude combination than that which could be supported by the buoyant lift alone. The buoyant lift is a function of the volume of gas and the flight altitude. The kinetic lift is a function of the airfoil section, wing area, and the speed and altitude of flight. Accordingly there are a number of factors that can be manipulated to arrive at a particular design. Particular designs could vary from small, lightweight systems to very large, heavy-load systems. It will be the purpose of this paper to examine the sensitivity of such a design to the several variables. In addition, possible uses made achievable by such a hybrid system will be suggested.

  2. Feasibility study of modern airships. Phase 2: Executive summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A feasibility study of modern airships has been completed. Three promising modern airship systems' concepts and their associated missions were studied; (1) a heavy-lift airship, employing a non-rigid hull and a significant amount of rotor lift, used for short-range transport and positioning of heavy military and civil payloads, (2) a VTOL (vertical take-off and landing), metalclad, partially buoyant airship used as a short-haul commercial transport; and (3) a class of fully-buoyant airships used for long-endurance Navy missions. The heavy-lift airship concept offers a substantial increase in vertical lift capability over existing systems and is projected to have lower total operating costs per ton-mile. The VTOL airship transport concept appears to be economically competitive with other VTOL aircraft concepts but can attain significantly lower noise levels. The fully-buoyant airship concept can provide an airborne platform with long endurance that satisfies many Navy mission requirements.

  3. High current diversionary oil-boom

    SciTech Connect

    Tsahalis, D.T.

    1986-09-09

    This patent describes a method for skimming and diverting a floating liquid pollutant on a water surface, comprising: providing at least two buoyant members spaced apart and describing a capture area; providing a substantially water and pollutant impermeable membrane disposed between the buoyant members defining a capture volume which has an increasing cross-sectional area in the direction of the open end, the capture volume directing the pollutant to a collection area; directing the pollutant into the capture area by maintaining a current velocity relative to the buoyant members; and, maintaining a constant mean flow velocity throughout the capture volume such that an increasingly larger thickness of the pollutant collects within the capture volume in the direction of the collection area.

  4. Computer aided airship design

    NASA Technical Reports Server (NTRS)

    Davis, S. J.; Rosenstein, H.

    1975-01-01

    The Comprehensive Airship Sizing and Performance Computer Program (CASCOMP) is described which was developed and used in the design and evaluation of advanced lighter-than-air (LTA) craft. The program defines design details such as engine size and number, component weight buildups, required power, and the physical dimensions of airships which are designed to meet specified mission requirements. The program is used in a comparative parametric evaluation of six advanced lighter-than-air concepts. The results indicate that fully buoyant conventional airships have the lightest gross lift required when designed for speeds less than 100 knots and the partially buoyant concepts are superior above 100 knots. When compared on the basis of specific productivity, which is a measure of the direct operating cost, the partially buoyant lifting body/tilting prop-rotor concept is optimum.

  5. Mass and density measurements of live and dead Gram-negative and Gram-positive bacterial populations.

    PubMed

    Lewis, Christina L; Craig, Caelli C; Senecal, Andre G

    2014-06-01

    Monitoring cell growth and measuring physical features of food-borne pathogenic bacteria are important for better understanding the conditions under which these organisms survive and proliferate. To address this challenge, buoyant masses of live and dead Escherichia coli O157:H7 and Listeria innocua were measured using Archimedes, a commercially available suspended microchannel resonator (SMR). Cell growth was monitored with Archimedes by observing increased cell concentration and buoyant mass values of live growing bacteria. These growth data were compared to optical density measurements obtained with a Bioscreen system. We observed buoyant mass measurements with Archimedes at cell concentrations between 10(5) and 10(8) cells/ml, while growth was not observed with optical density measurements until the concentration was 10(7) cells/ml. Buoyant mass measurements of live and dead cells with and without exposure to hydrogen peroxide stress were also compared; live cells generally had a larger buoyant mass than dead cells. Additionally, buoyant mass measurements were used to determine cell density and total mass for both live and dead cells. Dead E. coli cells were found to have a larger density and smaller total mass than live E. coli cells. In contrast, density was the same for both live and dead L. innocua cells, while the total mass was greater for live than for dead cells. These results contribute to the ongoing challenge to further develop existing technologies used to observe cell populations at low concentrations and to measure unique physical features of cells that may be useful for developing future diagnostics. PMID:24705320

  6. Mass and Density Measurements of Live and Dead Gram-Negative and Gram-Positive Bacterial Populations

    PubMed Central

    Craig, Caelli C.; Senecal, Andre G.

    2014-01-01

    Monitoring cell growth and measuring physical features of food-borne pathogenic bacteria are important for better understanding the conditions under which these organisms survive and proliferate. To address this challenge, buoyant masses of live and dead Escherichia coli O157:H7 and Listeria innocua were measured using Archimedes, a commercially available suspended microchannel resonator (SMR). Cell growth was monitored with Archimedes by observing increased cell concentration and buoyant mass values of live growing bacteria. These growth data were compared to optical density measurements obtained with a Bioscreen system. We observed buoyant mass measurements with Archimedes at cell concentrations between 105 and 108 cells/ml, while growth was not observed with optical density measurements until the concentration was 107 cells/ml. Buoyant mass measurements of live and dead cells with and without exposure to hydrogen peroxide stress were also compared; live cells generally had a larger buoyant mass than dead cells. Additionally, buoyant mass measurements were used to determine cell density and total mass for both live and dead cells. Dead E. coli cells were found to have a larger density and smaller total mass than live E. coli cells. In contrast, density was the same for both live and dead L. innocua cells, while the total mass was greater for live than for dead cells. These results contribute to the ongoing challenge to further develop existing technologies used to observe cell populations at low concentrations and to measure unique physical features of cells that may be useful for developing future diagnostics. PMID:24705320

  7. Numerical study of turbulent heat transfer in a spherical annulus

    SciTech Connect

    Stein, W.; Brandt, H.

    1988-11-01

    A numerical study of steady, buoyant, incompressible water flow and heat transfer through a spherical annulus has been made. A two-dimensional computer code based on the TEACH code was rewritten in spherical coordinates to model the Navier--Stokes equation and to model fluid turbulence with a k--epsilon turbulence model. Results are given for the total system Nusselt number, local heat transfer rate, and fluid flow characteristics for both buoyant and nonbuoyant laminar and turbulence modeled flow. Incorporating both the turbulence model and buoyancy into the calculations improves the results.

  8. Are Brazil Nuts Attractive?

    NASA Astrophysics Data System (ADS)

    Sanders, Duncan A.; Swift, Michael R.; Bowley, R. M.; King, P. J.

    2004-11-01

    We present event-driven simulation results for single and multiple intruders in a vertically vibrated granular bed. Under our vibratory conditions, the mean vertical position of a single intruder is governed primarily by a buoyancylike effect. Multiple intruders also exhibit buoyancy governed behavior; however, multiple neutrally buoyant intruders cluster spontaneously and undergo horizontal segregation. These effects can be understood by considering the dynamics of two neutrally buoyant intruders. We have measured an attractive force between such intruders which has a range of five intruder diameters, and we provide a mechanistic explanation for the origins of this force.

  9. Technical manual: hood system capture of process fugitive particulate emissions. Final report, September 1983-September 1985

    SciTech Connect

    Kashdan, E.R.; Coy, D.W.; Spivey, J.J.; Cesta, T.; Goodfellow, H.D.

    1986-04-01

    The manual provides to regulatory officials--charged with the responsibility of reviewing hood systems for capture of process fugitive emissions--with a reference guide on the design and evaluation of hood systems. Engineering analyses of the most-important hood types are presented. In particular, consideration is given to design methods for local and remote capture of buoyant sources, and enclosures for buoyant and inertial sources. A unique collection of case studies of actual or representative hood systems has been included to provide insight into the evaluation of existing systems or the design of a planned system.

  10. Technology update: Tethered aerostat structural design and material developments

    NASA Technical Reports Server (NTRS)

    Witherow, R. G.

    1975-01-01

    Requirements exist for an extremely stable, high performance, all-weather tethered aerostat system. This requirement has been satisfied by a 250,000 cubic foot captive buoyant vehicle as demonstrated by over a year of successful field operations. This achievement required significant advancements in several technology areas including composite materials design, aerostatics and aerodynamics, structural design, electro-mechanical design, vehicle fabrication and mooring operations. This paper specifically addresses the materials and structural design aspects of pressurized buoyant vehicles as related to the general class of Lighter Than Air vehicles.

  11. Method of controlling displacement of propping agent in fracturing treatments

    SciTech Connect

    Erbstoesser, S.R.; Graham, R.L.

    1983-12-20

    A method of preventing overdisplacement of propping agent particles during well treatments to hydraulically induce a fracture in a subterranean formation wherein buoyant or neutrally buoyant ball sealers are incorporated in the trailing end portion of the fracturing fluid. The ball sealers seat on at least some of the well perforations in final stages of particle injection thereby causing the surface pumping pressure to increase, signaling the end of the treating operation. This minimizes proppant overdisplacement and provides for a fully packed fracture in the near wellbore region.

  12. Analysis of the DNAs from seven varicella-zoster virus isolates.

    PubMed Central

    Richards, J C; Hyman, R W; Rapp, F

    1979-01-01

    The 32P-labeled DNAs from seven different clinical isolates of human varicella-zoster virus (VZV) were independently digested with five site-specific restriction endonucleases, EcoRI, HindIII, SmaI, BamHI, and AvaI. The digestion products were analyzed by electrophoresis on 0.5% agarose gels followed by autoradiography of the dried gels. Evaluation of the restriction enzyme cleavage patterns revealed small variations among the VZV DNAs. The VZV DNAs were also compared based on their buoyant densities in CsCl. No significant buoyant density differences were detected among the VZV DNAs. Images PMID:229268

  13. Apparatus for Teaching Physics.

    ERIC Educational Resources Information Center

    Gottlieb, Herbert H., Ed.

    1979-01-01

    Describes the following: a device which converts the displacement of a pendulum into an electric signal and is used as a voltage generator of low frequencies; a turn-by-turn transformer demonstration; how to remove the buoyant force on a piece of cork immersed in water; and how to demonstrate Coulomb's Law on the overhead projector. (GA)

  14. 46 CFR 160.047-4 - Construction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Construction. 160.047-4 Section 160.047-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS... and Child § 160.047-4 Construction. (a) General. This specification covers buoyant vests...

  15. 46 CFR 160.047-4 - Construction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Construction. 160.047-4 Section 160.047-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS... and Child § 160.047-4 Construction. (a) General. This specification covers buoyant vests...

  16. Solid Surface Combustion Experiment

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This video describes the development of the Solid Surface Combustion Experiment (SSCE) by researchers at NASA LeRC. The experiment studies fire spreading over a small solid fuel sample subjected to microgravity conditions in Earth orbit. Buoyant convection, which determines the heat transfer in fires on Earth, disappears in microgravity; hence, this experiment will help researchers understand how fires act on Earth.

  17. Multi-gradient drilling method and system

    DOEpatents

    Maurer, William C. (Houston, TX); Medley, Jr., George H. (Spring, TX); McDonald, William J. (Houston, TX)

    2003-01-01

    A multi-gradient system for drilling a well bore from a surface location into a seabed includes an injector for injecting buoyant substantially incompressible articles into a column of drilling fluid associated with the well bore. Preferably, the substantially incompressible articles comprises hollow substantially spherical bodies.

  18. 33 CFR 183.114 - Test of flotation materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 24 hours at 23 plus or minus 2 °C in a 5-percent solution of trisodium phosphate in water. (g) 30-day... being immersed for 30 days at 23 plus or minus 2 °C in a 5-percent solution of trisodium phosphate in water. (h) The buoyant force reduction in paragraphs (a) through (g) of this section is measured...

  19. 46 CFR 160.049-6 - Marking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Marking. 160.049-6 Section 160.049-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam §...

  20. 46 CFR 26.30-1 - Approved unicellular plastic foam work vests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Approved unicellular plastic foam work vests. 26.30-1 Section 26.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS OPERATIONS Work Vest § 26.30-1 Approved unicellular plastic foam work vests. (a) Buoyant work vests carried under...

  1. 46 CFR 160.049-5 - Inspections and tests. 1

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam § 160.049-5 Inspections and tests. 1 1 The manufacturer of a personal flotation device must meet 33 CFR 181.701 through 33 CFR 181.705 which require an instruction pamphlet for each device that is sold or offered for sale...

  2. 46 CFR 26.30-1 - Approved unicellular plastic foam work vests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Approved unicellular plastic foam work vests. 26.30-1 Section 26.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS OPERATIONS Work Vest § 26.30-1 Approved unicellular plastic foam work vests. (a) Buoyant work vests carried under...

  3. 46 CFR 160.049-6 - Marking.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Marking. 160.049-6 Section 160.049-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam §...

  4. 46 CFR 160.049-2 - Types and sizes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Types and sizes. 160.049-2 Section 160.049-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam §...

  5. 46 CFR 160.049-3 - Materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam § 160.049-3... requirements of subpart 164.019. (b) Unicellular plastic foam. The unicellular plastic foam shall be all new... fiber or plastic material suitable for the purpose....

  6. 46 CFR 26.30-1 - Approved unicellular plastic foam work vests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Approved unicellular plastic foam work vests. 26.30-1 Section 26.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS OPERATIONS Work Vest § 26.30-1 Approved unicellular plastic foam work vests. (a) Buoyant work vests carried under...

  7. 46 CFR 160.049-2 - Types and sizes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Types and sizes. 160.049-2 Section 160.049-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam §...

  8. 46 CFR 26.30-1 - Approved unicellular plastic foam work vests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Approved unicellular plastic foam work vests. 26.30-1 Section 26.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS OPERATIONS Work Vest § 26.30-1 Approved unicellular plastic foam work vests. (a) Buoyant work vests carried under...

  9. 46 CFR 164.015-1 - Applicable specifications and standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Plastic Foam, Unicellular, Buoyant, Sheet... following specification and standard, of the issue in effect on the date the plastic foam material is... be kept on file by the plastic foam manufacturer with this subpart. (1) The Federal Specification...

  10. 46 CFR 164.015-3 - Material and workmanship.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: SPECIFICATIONS AND APPROVAL MATERIALS Plastic Foam, Unicellular, Buoyant, Sheet and Molded Shape § 164.015-3 Material and workmanship. (a) The unicellular plastic foam shall be all new material complying with the... values within the limits shown in Table 164.015-4(a). (b) The unicellular plastic foam shall be...

  11. 46 CFR 160.049-8 - Recognized laboratory.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Recognized laboratory. 160.049-8 Section 160.049-8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam §...

  12. 46 CFR 164.015-1 - Applicable specifications and standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Plastic Foam, Unicellular, Buoyant, Sheet... following specification and standard, of the issue in effect on the date the plastic foam material is... be kept on file by the plastic foam manufacturer with this subpart. (1) The Federal Specification...

  13. 46 CFR 164.015-5 - Procedure for acceptance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: SPECIFICATIONS AND APPROVAL MATERIALS Plastic Foam, Unicellular, Buoyant, Sheet and Molded Shape § 164.015-5 Procedure for acceptance. (a) Unicellular plastic foam is not subject to formal approval, but will be... unicellular plastic foam prior to being incorporated into finished products, or during the course...

  14. 46 CFR 160.049-5 - Inspections and tests. 1

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam § 160.049-5 Inspections and tests. 1 1 The manufacturer of a personal flotation device must meet 33 CFR 181.701 through 33 CFR 181.705 which require an instruction pamphlet for each device that is sold or offered for sale...

  15. 46 CFR 160.049-8 - Recognized laboratory.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Recognized laboratory. 160.049-8 Section 160.049-8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam §...

  16. 46 CFR 160.049-3 - Materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Cushion Plastic Foam § 160.049-3... requirements of subpart 164.019. (b) Unicellular plastic foam. The unicellular plastic foam shall be all new... fiber or plastic material suitable for the purpose....

  17. 46 CFR 164.015-3 - Material and workmanship.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: SPECIFICATIONS AND APPROVAL MATERIALS Plastic Foam, Unicellular, Buoyant, Sheet and Molded Shape § 164.015-3 Material and workmanship. (a) The unicellular plastic foam shall be all new material complying with the... values within the limits shown in Table 164.015-4(a). (b) The unicellular plastic foam shall be...

  18. 46 CFR 26.30-1 - Approved unicellular plastic foam work vests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Approved unicellular plastic foam work vests. 26.30-1 Section 26.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS OPERATIONS Work Vest § 26.30-1 Approved unicellular plastic foam work vests. (a) Buoyant work vests carried under...

  19. 46 CFR 164.015-5 - Procedure for acceptance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: SPECIFICATIONS AND APPROVAL MATERIALS Plastic Foam, Unicellular, Buoyant, Sheet and Molded Shape § 164.015-5 Procedure for acceptance. (a) Unicellular plastic foam is not subject to formal approval, but will be... unicellular plastic foam prior to being incorporated into finished products, or during the course...

  20. 33 CFR 149.327 - What are the approval requirements for work vests and anti-exposure (deck) suits?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: DESIGN, CONSTRUCTION, AND EQUIPMENT Lifesaving Equipment Manned Deepwater Port Requirements § 149.327 What are the...) suits on a manned deepwater port must be of a buoyant type approved under: (a) Approval series...