Science.gov

Sample records for daily solar insolation

  1. Handbook of solar energy data for south-facing surfaces in the United States. Volume 2: Average hourly and total daily insolation data for 235 localities. Alaska - Montana

    NASA Technical Reports Server (NTRS)

    Smith, J. H.

    1980-01-01

    Average hourly and daily total insolation estimates for 235 United States locations are presented. Values are presented for a selected number of array tilt angles on a monthly basis. All units are in kilowatt hours per square meter.

  2. Insolation data manual and direct normal solar radiation data manual

    SciTech Connect

    1990-07-01

    The Insolation Data Manual presents monthly averaged data which describes the availability of solar radiation at 248 National Weather Service (NWS) stations, principally in the United States. Monthly and annual average daily insolation and temperature values have been computed from a base of 24--25 years of data, generally from 1952--1975, and listed for each location. Insolation values represent monthly average daily totals of global radiation on a horizontal surface and are depicted using the three units of measurement: kJ/m{sup 2} per day, Btu/ft{sup 2} per day and langleys per day. Average daily maximum, minimum and monthly temperatures are provided for most locations in both Celsius and Fahrenheit. Heating and cooling degree-days were computed relative to a base of 18.3 C (65 F). For each station, global {bar K}{sub T} (cloudiness index) values were calculated on a monthly and annual basis. Global {bar K}{sub T} is an index of cloudiness and indicates fractional transmittance of horizontal radiation, from the top of the atmosphere to the earth's surface. The second section of this volume presents long-term monthly and annual averages of direct normal solar radiation for 235 NWS stations, including a discussion of the basic derivation process. This effort is in response to a generally recognized need for reliable direct normal data and the recent availability of 23 years of hourly averages for 235 stations. The relative inaccessibility of these data on microfiche further justifies reproducing at least the long-term averages in a useful format. In addition to a definition of terms and an overview of the ADIPA model, a discussion of model validation results is presented.

  3. A calibrated, high-resolution goes satellite solar insolation product for a climatology of Florida evapotranspiration

    USGS Publications Warehouse

    Paech, S.J.; Mecikalski, J.R.; Sumner, D.M.; Pathak, C.S.; Wu, Q.; Islam, S.; Sangoyomi, T.

    2009-01-01

    Estimates of incoming solar radiation (insolation) from Geostationary Operational Environmental Satellite observations have been produced for the state of Florida over a 10-year period (1995-2004). These insolation estimates were developed into well-calibrated half-hourly and daily integrated solar insolation fields over the state at 2 km resolution, in addition to a 2-week running minimum surface albedo product. Model results of the daily integrated insolation were compared with ground-based pyranometers, and as a result, the entire dataset was calibrated. This calibration was accomplished through a three-step process: (1) comparison with ground-based pyranometer measurements on clear (noncloudy) reference days, (2) correcting for a bias related to cloudiness, and (3) deriving a monthly bias correction factor. Precalibration results indicated good model performance, with a station-averaged model error of 2.2 MJ m-2/day (13%). Calibration reduced errors to 1.7 MJ m -2/day (10%), and also removed temporal-related, seasonal-related, and satellite sensor-related biases. The calibrated insolation dataset will subsequently be used by state of Florida Water Management Districts to produce statewide, 2-km resolution maps of estimated daily reference and potential evapotranspiration for water management-related activities. ?? 2009 American Water Resources Association.

  4. Predicting Daily Insolation with Hourly Cloud Height and Coverage.

    NASA Astrophysics Data System (ADS)

    Meyers, T. P.; Dale, R. F.

    1983-04-01

    Solar radiation information is used in crop growth, boundary layer, entomological and plant pathological models, and in determining the potential use of active and passive solar energy systems. Yet solar radiation is among the least measured meteorological variables.A semi-physical model based on standard meteorological data was developed to estimate solar radiation received at the earth's surface. The radiation model includes the effects of Rayleigh scattering, absorption by water vapor and permanent gases, and absorption and scattering by aerosols and clouds. Cloud attenuation is accounted for by assigning transmission coefficients based on cloud height and amount. The cloud transmission coefficients for various heights and coverages were derived empirically from hourly observations of solar radiation in conjunction with corresponding cloud observations at West Lafayette, Indiana. The model was tested with independent data from West Lafayette and Indianapolis, Madison, WI, Omaha, NE, Columbia, MO, Nashville, TN, Seattle, WA, Los Angeles, CA, Phoenix, AZ, Lake Charles, LA, Miami, FL, and Sterling, VA. For each of these locations a 16% random sample of days was drawn within each of the 12 months in a year for testing the model. Excellent agreement between predicted and observed radiation values was obtained for all stations tested. Mean absolute errors ranged from 1.05 to 1.80 MJ m2 day1 and root-mean-square errors ranged from 1.31 to 2.32 MJ m2 day1. The model's performance judged by relative error was found to be independent of season and cloud amount for all locations tested.

  5. Influence of topographic complexity on solar insolation estimates for the Colorado River, Grand Canyon, AZ

    USGS Publications Warehouse

    Yard, M.D.; Bennett, G.E.; Mietz, S.N.; Coggins, L.G., Jr.; Stevens, L.E.; Hueftle, S.; Blinn, D.W.

    2005-01-01

    Rugged topography along the Colorado River in Glen and Grand Canyons, exemplifies features common to canyon-bound streams and rivers of the arid southwest. Physical relief influences regulated river systems, especially those that are altered, and have become partially reliant on aquatic primary production. We measured and modeled instantaneous solar flux in a topographically complex environment to determine where differences in daily, seasonal and annual solar insolation occurred in this river system. At a system-wide scale, topographic complexity generates a spatial and temporal mosaic of varying solar insolation. This solar variation is a predictable consequence of channel orientation, geomorphology, elevation angles and viewshed. Modeled estimates for clear conditions corresponded closely with observed measurements for both instantaneous photosynthetic photon flux density (PPFD: ??mol m-2 s-1) and daily insolation levels (relative error 2.3%, CI ??0.45, S.D. 0.3, n = 29,813). Mean annual daily insolation levels system-wide were estimated to be 36 mol m-2 d -1 (17.5 S.D.), and seasonally varied on average from 13.4-57.4 mol m-2 d-1, for winter and summer, respectively. In comparison to identical areas lacking topographic effect (idealized plane), mean daily insolation levels were reduced by 22% during summer, and as much as 53% during winter. Depending on outlying topography, canyon bound regions having east-west (EW) orientations had higher seasonal variation, averaging from 8.1 to 61.4 mol m-2 d-1, for winter and summer, respectively. For EW orientations, 70% of mid-channel sites were obscured from direct incidence during part of the year; and of these sites, average diffuse light conditions persisted for 19.3% of the year (70.5 days), and extended upwards to 194 days. This predictive model has provided an initial quantitative step to estimate and determine the importance of autotrophic production for this ecosystem, as well as a broader application for other canyon systems. ?? 2004 Published by Elsevier B.V.

  6. Distribution of global insolation over Pakistan

    SciTech Connect

    Raja, I.A.; Twidell, J.W. )

    1990-01-01

    There are only five observatories measuring global insolation in Pakistan, which cannot represent the solar climate of the country. However 37 observatories, distributed fairly well over the entire country, record sunshine. Therefore insolation-sunshine empirical equations are developed to estimate global insolation over Pakistan. Three neighboring observatories for which the insolation-sunshine records are available are also included in the study. Monthly and yearly maps are constructed, for daily global insolation, based on data for 40 locations. The isolines are compared with the results obtained in India and with world solar insolation maps.

  7. Solar microclimatology. [tables (data) on insolation for application to solar energy conversion by electric power plants

    NASA Technical Reports Server (NTRS)

    Mckenney, D. B.; Beauchamp, W. T.

    1975-01-01

    It has become apparent in recent years that solar energy can be used for electric power production by several methods. Because of the diffuse nature of the solar insolation, the area involved in any central power plant design can encompass several square miles. A detailed design of these large area collection systems will require precise knowledge of the local solar insolation. Detailed information will also be needed concerning the temporal nature of the insolation and the local spatial distribution. Therefore, insolation data was collected and analyzed for a network of sensors distributed over an area of several square kilometers in Arizona. The analyses of this data yielded probability distributions of cloud size, velocity, and direction of motion which were compared with data obtained from the National Weather Service. Microclimatological analyses were also performed for suitable modeling parameters pertinent to large scale electric power plant design. Instrumentation used to collect the data is described.

  8. Camera-based forecasting of insolation for solar systems

    NASA Astrophysics Data System (ADS)

    Manger, Daniel; Pagel, Frank

    2015-02-01

    With the transition towards renewable energies, electricity suppliers are faced with huge challenges. Especially the increasing integration of solar power systems into the grid gets more and more complicated because of their dynamic feed-in capacity. To assist the stabilization of the grid, the feed-in capacity of a solar power system within the next hours, minutes and even seconds should be known in advance. In this work, we present a consumer camera-based system for forecasting the feed-in capacity of a solar system for a horizon of 10 seconds. A camera is targeted at the sky and clouds are segmented, detected and tracked. A quantitative prediction of the insolation is performed based on the tracked clouds. Image data as well as truth data for the feed-in capacity was synchronously collected at one Hz using a small solar panel, a resistor and a measuring device. Preliminary results demonstrate both the applicability and the limits of the proposed system.

  9. SOLINS- SOLAR INSOLATION MODEL FOR COMPUTING AVAILABLE SOLAR ENERGY TO A SURFACE OF ARBITRARY ORIENTATION

    NASA Technical Reports Server (NTRS)

    Smith, J. H.

    1994-01-01

    This computer program, SOLINS, was developed to aid engineers and solar system designers in the accurate modeling of the average hourly solar insolation on a surface of arbitrary orientation. The program can be used to study insolation problems specific to residential and commercial applications where the amount of space available for solar collectors is limited by shadowing problems, energy output requirements, and costs. For tandem rack arrays, SOLINS will accommodate the use of augmentation reflectors built into the support structure to increase insolation values at the collector surface. As the use of flat plate solar collectors becomes more prevalent in the building industry, the engineer and designer must have the capability to conduct extensive sensitivity analyses on the orientation and location of solar collectors. SOLINS should prove to be a valuable aid in this area of engineering. SOLINS uses a modified version of the National Bureau of Standards model to calculate the direct, diffuse, and reflected components of total insolation on a tilted surface with a given azimuthal orientation. The model is based on the work of Liu and Jordan with corrections by Kusuda and Ishii to account for early morning and late afternoon errors. The model uses a parametric description of the average day solar climate to generate monthly average day profiles by hour of the insolation level on the collector surface. The model includes accommodation of user specified ground and landscape reflectivities at the collector site. For roof or ground mounted, tilted arrays, SOLINS will calculate insolation including the effects of shadowing and augmentation reflectors. The user provides SOLINS with data describing the array design, array orientation, the month, the solar climate parameter, the ground reflectance, and printout control specifications. For the specified array and environmental conditions, SOLINS outputs the hourly insolation the array will receive during an average day during the month specified, along with the total insolation the collector surface will receive over an average 24-hour period. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 computer with a central memory requirement of approximately 46K of 8 bit bytes. The SOLINS routines were developed in 1979.

  10. Effects of the Mount Pinatubo eruption on solar insolation: Four case studies

    SciTech Connect

    Rosenthal, A.L.; Robert, J.M.

    1993-05-01

    The Southwest Technology Development Institute staff analyzed solar insolation data from four sites recorded during the years 1990 through 1992. Analyses were performed to identify and quantify the effects on insolation caused by the eruption of Mount Pinatubo in the Philippines on June 15th and 16th, 1991. The four monitoring stations that supplied the raw data for this report were: The Southwest Region Experiment Station in Las Cruces, New Mexico; The Solar Radiation Research Laboratory at the National Renewable Energy Laboratory in Golden, Colorado; The Solar Insolation Monitor Program station operated by the Pacific Gas and Electric Company in Carrisa Plains, California; and The Solar Insolation monitor station at Sandia National Laboratories in Albuquerque, New Mexico. Data from each of the sites were recorded by dedicated datalogging equipment. Every effort was made to prevent data acquisition system problems (e.g., drift of the datalogger clock) from influencing the accuracy of the results.

  11. Handbook of solar energy data for south-facing surfaces in the United States. Volume I. An insolation, array shadowing, and reflector augmentation model

    SciTech Connect

    Smith, J.H.

    1980-01-15

    This handbook provides estimates of average available solar insolation to fixed, flat-plate, south-facing collector surfaces at various array tilt angles at numerous sites in the US. This first volume contains average daily, total insolation estimates, by month, and annual totals for 235 locations. A model that estimates the direct, diffuse, and reflected components of total insolation on an hourly, daily, and monthly basis is presented. A shadow loss model and a reflector augmentation model providing estimates of the losses and gains associated with various fixed array geometries are also described. These models can be used with the insolation model provided or with other recorded data. A FORTRAN computer program with user's guide is presented. The program can be used to generate additional handbook values or to examine the effects of array shadowing and fixed reflector augmentation effects on a daily, monthly, or annual basis. Array shadowing depends on location, array size, array tilt, array separation, and time. The program can be used to examine trade-offs between array spacing and insolation losses due to shadowing. The reflector augmentation program can be used to examine trade-offs among array size and tilt, separation, and reflector tilt to determine the combination of design values that optimize the economic objectives or technical criteria of the system.

  12. Estimating Insolation Incident on Tilted Surfaces

    NASA Technical Reports Server (NTRS)

    Elkin, R. E.; Toelle, R. G.

    1983-01-01

    ASHMET computer program estimates amount of solar insolation incident on surfaces of several types of solar collectors, including fixed-position flat-plate, monthly-tilt-adjusted flat-plat, beam-tracting, and fixed-azimuthtracker. Basic methodology employed in ASHMET is to use ASHRAE relationships to obtain clear-day total daily insolation incident on collector surface of representative day of each month of year. ASHMET is interactive program and prompts user for all required data.

  13. Insolation data manual: long-term monthly averages of solar radiation, temperature, degree-days and global anti K/sub T/ for 248 national weather service stations

    SciTech Connect

    Knapp, C L; Stoffel, T L; Whitaker, S D

    1980-10-01

    Monthly averaged data is presented which describes the availability of solar radiation at 248 National Weather Service stations. Monthly and annual average daily insolation and temperature values have been computed from a base of 24 to 25 years of data. Average daily maximum, minimum, and monthly temperatures are provided for most locations in both Celsius and Fahrenheit. Heating and cooling degree-days were computed relative to a base of 18.3/sup 0/C (65/sup 0/F). For each station, global anti K/sub T/ (cloudiness index) were calculated on a monthly and annual basis. (MHR)

  14. Effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    SciTech Connect

    Latta, A.F.; Bowyer, J.M.; Fujita, T.; Richter, P.H.

    1980-02-01

    This study determines the performance and cost of four 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States. The solar plants are conceptualized to begin commercial operation in the year 2000. It is assumed that major subsystem performance will have improved substantially as compared to that of pilot plants currently operating or under construction. The net average annual system efficiency is therefore roughly twice that of current solar thermal electric power plant designs. Similarly, capital costs reflecting goals based on high-volume mass production that are considered to be appropriate for the year 2000 have been used. These costs, which are approximately an order of magnitude below the costs of current experimental projects, are believed to be achievable as a result of the anticipated sizeable solar penetration into the energy market in the 1990 to 2000 timeframe. The paraboloidal dish, central receiver, cylindrical parabolic trough, and compound parabolic concentrators comprise the advanced collector concepts studied. All concepts exhibit their best performance when sited in regional areas such as the sunbelt where the annual insolation is high. The regional variation in solar plant performance has been assessed in relation to the expected rise in the future cost of residential and commercial electricity in the same regions. A discussion of the regional insolation data base, a description of the solar systems performance and costs, and a presentation of a range for the forecast cost of conventional electricity by region and nationally over the next several decades are given.

  15. Atmospheric effects on insolation in the Brazilian Amazon: Observed modification of solar radiation by clouds and smoke and derived single scattering albedo of fire aerosols

    NASA Astrophysics Data System (ADS)

    Schafer, J. S.; Holben, B. N.; Eck, T. F.; Yamasoe, M. A.; Artaxo, P.

    2002-10-01

    Five aerosol and solar flux monitoring sites were established in Brazil for the Large Scale Biosphere-Atmosphere Experiment in Amazônia (LBA) project. The first two sites were developed in the states of Rondonia and Mato Grosso in January 1999, while the others were initiated in September 1999 in Amazonas, Para, and near Brasilia (later relocated to Acre). Daily insolation [photosynthetically active radiation (PAR) and total solar] for 1999 and 9 months of 2000 was determined from flux measurements, and the daily fraction of theoretical cloud-free, background-aerosol insolation, fB(day), was evaluated for each site. Observed daily shortfall (MJ m-2 d-1) of PAR insolation due to clouds and aerosols (relative to modeled values for background aerosol), and the instantaneous reductions of PAR irradiance due to high aerosol optical thickness (AOT) smoke events are presented for 1999 at Alta Floresta. The ratio of PAR flux to total solar flux (PAR fraction) was examined for all atmospheric conditions during 1999, and the observed dependence of this parameter on column water vapor and smoke AOT was quantified. No significant relationship with cloud amount (as quantified) was found. Instantaneous PAR irradiance measurements and concurrent, cloud-cleared aerosol data from collocated CIMEL sunphotometers were used with a radiative transfer model to investigate the optical properties of smoke aerosols during the burning season. In particular, the single scattering albedo (SSA) was evaluated in the PAR spectral range for AOT440 nm values ranging from 0.8 to 3.0. These estimates were compared with the operational retrievals of the same parameter from algorithms developed by AERONET for CIMEL sunphotometer radiance measurements.

  16. The Effects of Solar Insolation on Organic-rich Cometary Analogue Samples

    NASA Astrophysics Data System (ADS)

    Lederer, Susan M.; Smith, D. C.; Olney, R. D.; Cintala, M. J.

    2009-09-01

    Comets are believed to be a rich source of both water and organics to the early Earth. Exposure of comet nuclei to the ultraviolet radiation from the Sun can lead to chemical reactions within these complex bodies that result in a wide variety of complex organic molecules. In general, cometary dust is believed to be comprised of roughly half organic-rich and half inorganic components. Signatures in UV emission spectra of cometary dust (e.g. P/Halley, Hyakutake) suggest the presence of polycyclic aromatic hydrocarbons (PAH). Likely candidates responsible for these features include pyrene, anthracene, phenanthrene, and napthalene. We have conducted a suite of experiments whereby both volatile-free and volatile-rich organic samples were insolated with a solar lamp (0.250-2.5 ?m) to investigate the chemistry that may occur both in the upper crust in comets (devoid of volatiles), as well as in the ice-rich portion of comet nuclei. Samples include each of the PAHs listed above, independently and in combination with volatiles (e.g. water, CO2, NH3, CH3OH). The samples are intimately mixed, cooled in a liquid nitrogen dewar, and insolated under vaccuum to mimic conditions in space and exposure to solar radiation. The resulting organic components are isolated and analyzed via a GCMS (mass spectrometer) and FTIR (Infrared spectrometer) to identify both the resultant organic molecules and their infrared signatures that may be detected telescopically. This work was supported by a Cottrell Scholar Award from the Research Corporation.

  17. The effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    NASA Technical Reports Server (NTRS)

    Latta, A. F.; Bowyer, J. M.; Fujita, T.

    1979-01-01

    This paper presents the performance and cost of four 10-MWe advanced solar thermal electric power plants sited in various regions of the continental United States. Each region has different insolation characteristics which result in varying collector field areas, plant performance, capital costs, and energy costs. The paraboloidal dish, central receiver, cylindrical parabolic trough, and compound parabolic concentrator (CPC) comprise the advanced concepts studied. This paper contains a discussion of the regional insolation data base, a description of the solar systems' performances and costs, and a presentation of a range for the forecast cost of conventional electricity by region and nationally over the next several decades.

  18. The effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    NASA Technical Reports Server (NTRS)

    Latta, A. F.; Bowyer, J. M.; Fujita, T.; Richter, P. H.

    1979-01-01

    The performance and cost of the 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States were determined. The regional insolation data base is discussed. A range for the forecast cost of conventional electricity by region and nationally over the next several cades are presented.

  19. The effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    NASA Technical Reports Server (NTRS)

    Latta, A. F.; Bowyer, J. M.; Fujita, T.; Richter, P. H.

    1980-01-01

    The performance and cost of four 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States was studied. Each region has different insolation characteristics which result in varying collector field areas, plant performance, capital costs and energy costs. The regional variation in solar plant performance was assessed in relation to the expected rise in the future cost of residential and commercial electricity supplied by conventional utility power systems in the same regions. A discussion of the regional insolation data base is presented along with a description of the solar systems performance and costs. A range for the forecast cost of conventional electricity by region and nationally over the next several decades is given.

  20. Handbook of solar energy data for south-facing surfaces in the United States. Volume 1: An insolation, array shadowing, and reflector augmentation model

    NASA Technical Reports Server (NTRS)

    Smith, J. H.

    1980-01-01

    A quick reference for obtaining estimates of available solar insolation for numerous locations and array angles is presented. A model and a computer program are provided which considered the effects of array shadowing reflector augmentation as design variables.

  1. High-resolution ensemble solar radiation estimates through assimilation of coarse-scale retrievals into a simple physical insolation model

    NASA Astrophysics Data System (ADS)

    Lee, S.; Margulis, S. A.

    2005-12-01

    The incident solar radiation flux at the earth's surface is the primary driver of the energy and water exchange between atmosphere and land or ocean, and therefore plays an important role in agriculture, climate research and monitoring, long-range weather prediction and the global hydrologic cycle. In this study a simple physical radiative transfer insolation model is developed for use in both prediction and data assimilation applications. The major advantage of this model is in its parsimony through only considering the most important parameters in the insolation process. One of the novel aspects of the model is the use of the Visible Infrared Solar-infrared Split window Technique (VISST) pixel-level cloud product as a primary model input. The product is used to facilitate cloud detection and to directly estimate cloud reflectance and absorption. The parsimony of the model and high-resolution VISST cloud product (available at ~ half-hourly temporal and 0.02° spatial resolution) allow for the computationally efficient prediction of high resolution solar radiation fields. The deterministic model was first tested over the Southern Great Plains (SGP) region during the summer of 1997. The insolation predictions were shown to correlate well with observations from ground measurements from 12 Atmospheric Radiation Measurement (ARM) SGP facilities during the investigated period. To further improve the solar radiation predictions, a probabilistic approach was adopted in order to merge the model predictions with well-developed retrieval products from the Solar Radiation Budget (SRB) downward shortwave radiation data from GEWEX (Global Energy and Water Cycle Experiment) Continental International Scale Project (GCISP), which is available at hourly temporal and 0.5° spatial resolutions. Probability distributions of the model input parameters were specified to generate an ensemble of open-loop high-resolution predictions. The coarse-scale SRB retrieval estimates were then assimilated into the model using an Ensemble Kalman Filtering (EnKF) approach. The result is a high-resolution estimate that weighs the uncertainty in both the simple model and the retrieval product. Comparison of the posterior estimates to the ground observations are performed and show significant improvement over the open-loop estimates, especially in cloudy sky conditions.

  2. Site insolation and wind power characteristics: technical report western region (north section)

    SciTech Connect

    1980-08-01

    This phase of the Site Insolation and Wind Power Characteristics Study was performed to provide statistical information on the expected future availability of solar and wind power at various sites in the Western Region (North Section) of the US Historic data (SOLMET), at 21 National Weather Service stations with hourly solar insolation and collateral meteorological information, were interrogated to provide an estimate of future trends. Solar data are global radiation incident on a horizontal surface, and wind data represent wind power normal to the air flow. Selected insolation and wind power conditions were investigated for their occurrence and persistence, for defined periods of time, on a monthly basis. Global horizontal insolation is related to inclined surfaces at each site. Ratios are provided, monthly, for multiplying global insolation to obtain insolation estimates on south-facing surfaces inclined at different angles with respect to the horizontal. Also, joint probability distribution tables are constructed showing the number of occurrences, out of a finite sample size, of daily average solar and wind power within selected intervals, by month. Information of this nature is intended as an aid to preliminary planning activities for the design and operation of solar and wind energy utilization and conversion systems.

  3. Site insolation and wind power characteristics: technical report western region (south section)

    SciTech Connect

    1980-08-01

    This phase of the Site Insolation and Wind Power Characteristics Study was performed to provide statistical information on the expected future availability of solar and wind power at various sites in the Western Region (South Section) of the US Historic data (SOLMET), at 22 National Weather Service stations with hourly solar insolation and collateral meteorological information, were interrogated to provide an estimate of future trends. Solar data are global radiation incident on a horizontal surface, and wind data represent wind power normal to the air flow. Selected insolation and wind power conditions were investigated for their occurrence and persistence, for defined periods of time, on a monthly basis. Global horizontal insolation is related to inclined surfaces at each site. Ratios are provided, monthly, for multiplying global insolation to obtain insolation estimates on south-facing surfaces inclined at different angles with respect to the horizontal. Also, joint probability distribution tables are constructed showing the number of occurrences, out of a finite sample size, of daily average solar and wind power within selected intervals, by month. Information of this nature is intended as an aid to preliminary planning activities for the design and operation of solar and wind energy utilization and conversion systems.

  4. Introduction to meteorological measurements and data handling for solar energy applications. Task IV-Development of an insolation handbook and instrument package

    SciTech Connect

    1980-10-01

    Recognizing a need for a coordinated approach to resolve energy problems, certain members of the Organization for Economic Cooperation and Development (OECD) met in September 1974 and agreed to develop an International Energy Program. The International Energy Agency (IEA) was established within the OECD to administer, monitor and execute this International Energy Program. In July 1975, Solar Heating and Cooling was selected as one of the sixteen technology fields for multilateral cooperation. Five project areas, called tasks, were identified for cooperative activities within the IEA Program to Develop and Test Solar Heating and Cooling Systems. The objective of one task was to obtain improved basic resource information for the design and operation of solar heating and cooling systems through a better understanding of the required insolation (solar radiation) and related weather data, and through improved techniques for measurement and evaluation of such data. At the February 1976 initial experts meeting in Norrkoeping, Sweden, the participants developed the objective statement into two subtasks. (1) an insolation handbook; and (2) a portable meteorological instrument package. This handbook is the product of the first subtask. The objective of this handbook is to provide a basis for a dialogue between solar scientists and meteorologists. Introducing the solar scientist to solar radiation and related meteorological data enables him to better express his scientific and engineering needs to the meteorologist; and introducing the meteorologist to the special solar radiation and meteorological data applications of the solar scientist enables him to better meet the needs of the solar energy community.

  5. Estimation of monthly mean daily global solar radiation in Tennessee

    SciTech Connect

    Lewis, G. )

    1990-10-01

    By comparing the published values of monthly mean daily global solar radiation on horizontal surfaces in Memphis and Nashville with calculated values using equations from four models for this parameter, it is shown that the best estimates arise from the use of a model that requires sunshine hours, rain days, and relative humidity as the relevant climatological variables. It is suggested that this equation be used to estimate monthly mean daily global solar radiation for all locations in Tennessee.

  6. Daily total global solar radiation modeling from several meteorological data

    NASA Astrophysics Data System (ADS)

    Bilgili, Mehmet; Ozgoren, Muammer

    2011-05-01

    This paper investigates the modeling of the daily total global solar radiation in Adana city of Turkey using multi-linear regression (MLR), multi-nonlinear regression (MNLR) and feed-forward artificial neural network (ANN) methods. Several daily meteorological data, i.e., measured sunshine duration, air temperature and wind speed and date of the year, i.e., monthly and daily, were used as independent variables to the MLR, MNLR and ANN models. In order to determine the relationship between the total global solar radiation and other meteorological data, and also to obtain the best independent variables, the MLR and MNLR analyses were performed with the "Stepwise" method in the Statistical Packages for the Social Sciences (SPSS) program. Thus, various models consisting of the combination of the independent variables were constructed and the best input structure was investigated. The performances of all models in the training and testing data sets were compared with the measured daily global solar radiation values. The obtained results indicated that the ANN method was better than the other methods in modeling daily total global solar radiation. For the ANN model, mean absolute error (MAE), mean absolute percentage error (MAPE), correlation coefficient ( R) and coefficient of determination ( R 2) for the training/testing data set were found to be 0.89/1.00 MJ/m2 day, 7.88/9.23%, 0.9824/0.9751, and 0.9651/0.9508, respectively.

  7. Stochastic Simulation of Daily Solar Radiation from Sunshine Duration

    NASA Astrophysics Data System (ADS)

    Lockart, N.; Kavetski, D.; Franks, S. W.

    2014-12-01

    Solar radiation is a key component of the energy balance used for estimating evaporation. As solar radiation is not widely measured, many empirical models have been developed to estimate solar radiation using sunshine hours (SSH) data. Most of these models only provide deterministic estimates of monthly solar radiation and do not provide an estimate of the uncertainty in the predictions. This study developed five stochastic models which use daily SSH data to produce probabilistic simulations of solar radiation, and can be used to estimate historical daily radiation. The predictive uncertainty due to the timing of the SSH during the day (estimated using Monte Carlo simulation), as well as due to external errors (such as the variability in cloud type and atmospheric composition), were considered. The developed models differ in their parameterisation of the direct and diffuse components of the solar radiation, using either no scaling, linear or quadratic scaling of the radiation by the daily SSH fraction to account for cloud attenuation. For each model the simulated solar radiation was compared with the observed radiation. The performance of the five models was compared and the models were found to perform similarly well, with an average error of approximately 9% for all locations studied. The results suggest that the uncertainty due to the timing of the SSH does not dominate predictive errors in global radiation. Rather the external uncertainty is the dominant source of predictive error in the radiation estimates.

  8. Load/weather/insolation database for estimating photovoltaic array and system performance in Egypt

    SciTech Connect

    El-Rafey, E.; El-Sherbiny, M. )

    1988-01-01

    In this article a simplified technique is reported for predicting photovoltaic (PV) array and system performance. A load/solar/weather database for seven different locations in Egypt is also provided to aid in the necessary calculations. The insolation data has been collected by the help of homemade, resistance-loaded standard solar cells so that their responses are linear with insolation level. Mean temperature and wind speed have been collected or measured on an hourly basis and averaged to give daily values. The fraction of the load that is met by the solar photovoltaic system is calculated for each of the seven locations. This fraction has been taken as a figure of merit to help in promoting photovoltaic applications in Egypt. In this study the Egyptian load profiles are classified according to a collected statistical real data. Array manufacturer's specification sheets and data on the locally fabricated solar cells have been used in the present calculations.

  9. Development of vibrating insoles.

    PubMed

    Hijmans, Juha M; Geertzen, Jan H B; Schokker, Bart; Postema, Klaas

    2007-12-01

    The objective of this study was to describe the development of vibrating insoles. Insoles, providing a subsensory mechanical noise signal to the plantar side of the feet, may improve balance in healthy young and older people and in patients with stroke or diabetic neuropathy. This study describes the requirements for the tactors, (tactile actuators) insole material and noise generator. A search for the components of vibrating insoles providing mechanical noise to the plantar side of the feet was performed. The mechanical noise signal should be provided by tactors built in an insole or shoe and should obtain an input signal from a noise generator and an amplifier. Possible tactors are electromechanical tactors, a piezo actuator or the VBW32 skin transducer. The Minirator MR1 of NTI, a portable MP3 player or a custom-made noise generator can provide these tactors with input. The tactors can be built in foam, silicone or cork insoles. In conclusion, a C2 electromechanical tactor, a piezo actuator or the VBW32 skin transducer, activated by a custom-made noise generator, built in a cork insole covered with a leather layer seems the ideal solution. PMID:17975456

  10. Retrieving daily global solar radiation from routine climate variables

    NASA Astrophysics Data System (ADS)

    Moradi, Isaac; Mueller, Richard; Perez, Richard

    2014-05-01

    Solar radiation is an important variable for studies related to solar energy applications, meteorology, climatology, hydrology, and agricultural meteorology. However, solar radiation is not routinely measured at meteorological stations; therefore, it is often required to estimate it using other techniques such as retrieving from satellite data or estimating using other geophysical variables. Over the years, many models have been developed to estimate solar radiation from other geophysical variables such as temperature, rainfall, and sunshine duration. The aim of this study was to evaluate six of these models using data measured at four independent worldwide networks. The dataset included 13 stations from Australia, 25 stations from Germany, 12 stations from Saudi Arabia, and 48 stations from the USA. The models require either sunshine duration hours (Ångstrom) or daily range of air temperature (Bristow and Campbell, Donatelli and Bellocchi, Donatelli and Campbell, Hargreaves, and Hargreaves and Samani) as input. According to the statistical parameters, Ångstrom and Bristow and Campbell indicated a better performance than the other models. The bias and root mean square error for the Ångstrom model were less than 0.25 MJ m2 day-1 and 2.25 MJ m2 day-1, respectively, and the correlation coefficient was always greater than 95 %. Statistical analysis using Student's t test indicated that the residuals for Ångstrom, Bristow and Campbell, Hargreaves, and Hargreaves and Samani are not statistically significant at the 5 % level. In other words, the estimated values by these models are statistically consistent with the measured data. Overall, given the simplicity and performance, the Ångstrom model is the best choice for estimating solar radiation when sunshine duration measurements are available; otherwise, Bristow and Campbell can be used to estimate solar radiation using daily range of air temperature.

  11. Nonlinear Insolation Forcing: A Physical Mechanism for Climate Change

    NASA Technical Reports Server (NTRS)

    Liu, H. S.

    1998-01-01

    This paper focuses on recent advances in the understanding of nonlinear insolation forcing for climate change. The amplitude-frequency resonances in the insolation variations induced by the Earth's changing obliquity are emergent and may provide a physical mechanism to drive the glaciation cycles. To establish the criterion that nonlinear insolation forcing is responsible for major climate changes, the cooperative phenomena between the frequency and amplitude of the insolation are defined as insolation pulsation. Coupling of the insolation frequency and amplitude variations has established an especially new and interesting series of insolation pulses. These pulses would modulate the insolation in such a way that the mode of insolation variations could be locked to generate the 100-kyr ice age cycle which is a long-time geophysical puzzle. The nonlinear behavior of insolation forcing is tested by energy balance and ice sheet climate models and the physical mechanism behind this forcing is explained in terms of pulse duration in the incoming solar radiation. Calculations of the solar energy flux at the top of the atmosphere show that the duration of the negative and positive insolation pulses is about 2 thousand years which is long enough to prolong glaciation into deep ice ages and cause rapid melting of large ice sheets in the high latitudes of the northern hemisphere. We have performed numerical simulations of climate response to nonlinear insolation forcing for the past 2 million years. Our calculated results of temperature fluctuations are in good agreement with the climate cycles as seen in the terrestrial biogenic silica (BDP-96-2) data as well as in the marine oxygen isotope (delta(sup 18)O) records.

  12. Ecological Modelling 143 (2001) 227243 A globally applicable model of daily solar irradiance

    E-print Network

    Hunt Jr., E. Raymond

    2001-01-01

    . At Luquillo, Puerto Rico, the daily atmospheric transmittance for solar radiation was approximately equal for this model that is widely used when solar irradiance data are not available. © 2001 Elsevier Science B.V. AllEcological Modelling 143 (2001) 227­243 A globally applicable model of daily solar irradiance

  13. Site insolation and wind power characteristics. Summary report

    SciTech Connect

    Bray, R E

    1980-08-01

    Design and operation of either large or small scale solar and wind energy conversion systems should be based, in part, on knowledge of expected solar and wind power trends. For this purpose, historic solar and wind data available at 101 National Weather Service stations were processed statistically. Preliminary planning data are provided for selected daily average solar and wind power conditions occurring and persisting for time periods of interest. Solar data are global radiation incident on a horizontal surface, and wind data represent wind power normal to the air flow. Empirical probabilities were constructed from the historic data to provide a reasonable inference of the chance of similar climatological conditions occurring at any given time in the future. (Diurnal wind power variations were also considered.) Ratios were also generated at each station to relate the global radiation data to insolation on a south-facing surface inclined at various angles. In addition, joint probability distributions were derived to show the proportion of days with solar and wind power within selected intervals.

  14. Timing and significance of maximum and minimum equatorial insolation

    NASA Astrophysics Data System (ADS)

    Ashkenazy, Yosef; Gildor, Hezi

    2008-01-01

    Variations in summer insolation at high northern latitudes on a timescale of 100 ka are very small. Thus a common belief is that the pronounced ~100 ka glacial cycles are not directly linked to the very weak 100 ka insolation periodicity. Here we show, analytically and numerically, that the annual maximum (and minimum) of daily equatorial insolation has pronounced eccentricity periodicities, with timescales of ~400 ka and ~100 ka, as well as a pronounced half-precession periodicity with timescale of ~11 ka. The timing of the maximum (and minimum) annual equatorial insolation may change around the equinoxes (solstices), alternating between the vernal and autumnal equinoxes (summer and winter solstices) where the time of the maximum (minimum) equatorial insolation may occur up to more than 1 month from the equinoxes (solstices). We also show that when considering the mean insolation of periods larger than 1 d, the ~11 ka periodicity becomes less dominant, and it vanishes when the averaging period is half a year; for the later case the maximum (minimum) may occur for any day in the annual cycle. The maximum equatorial insolation may alter the timing and amplitude of the maximum surface temperature of the summer hemisphere and in this way may drastically affect the Hadley circulation. Changes in Hadley circulation affect the heat and moisture transport from low to high latitudes, affecting the buildup of the high-latitude Northern Hemisphere ice sheets.

  15. The reliance of insolation pattern on surface aspect

    NASA Astrophysics Data System (ADS)

    Saad, N. Md; Hamid, J. R. Abdul; Mohd Suldi, A.

    2014-02-01

    The Sun's radiated energy is an important source in realizing the green technology concept construction. When interacting with the atmosphere and objects on the Earth's surface incoming solar radiation (insolation) will create insolation patterns that are ambiguous and as a result need to be investigated further. This paper explores the insolation pattern and ambiguities against topographic surfaces in the context of direct, diffuse, and reflectance irradiance. The topography is modeled from LiDAR data as Digital Surface Model (DSM) and Digital Terrain Model (DTM). The generated DSM and DTM were converted to Triangular Irregular Network (TIN) format within the Arc GIS environment before the insolation pattern could be visualized. The slope and aspect of the topography has an impact on the insolation which is the emphasis of this paper. The main outcome from the study is the insolation map and plots of relationship between the insolation and surface aspect. The findings from this study should contribute to the sustainable practices of green building technology.

  16. Differential Angstrom model for predicting insolation from hours of sunshine

    SciTech Connect

    Yeboah-Amankwah, D.; Agyeman, K.

    1990-01-01

    The Angstrom model for predicting insolation is limited in scope because it gives equal weighting to sunshine hours recorded at any time of the day. The differential Angstrom model presented in this paper removes this limitation and relates insolation, q{sub j}, in the j{sup th} hour to the sunshine duration, n{sub j}, of the same period by the equation: q{sub j} = a{sub j} + b{sub j}. By regression analysis of monthly data, the set of constants a{sub j} and b{sub j} for each hour of each month of the year can be determined. Thus, using the appropriate set of a and b regression coefficients, any sunshine data can be transformed to insolation. The sum of the equation over a day gives the daily insolation from which monthly means can be calculated. The method has been applied to the 1986 and 1988 sunshine data recorded at the University of Papua New Guinea to predict the observed insolation to within 3.5%. The differential Angstrom method has applications in places which have much recorded data on hours of sunshine but have limited observed insolation data.

  17. Pluto's Insolation History: Latitudinal Variations and Effects on Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Earle, Alissa M.; Binzel, Richard P.

    2014-11-01

    Since previous insolation modeling in the early 1990’s, new atmospheric pressure data, increased computational power, and the upcoming flyby of the Pluto system by NASA’s New Horizons spacecraft have generated new motivation and increased capabilities for the study of Pluto’s complex long-term (million-years) insolation history. The two primary topics of interest in studying Pluto’s insolation history are the variations in insolation patterns when integrated over different intervals and the evolution of diurnal insolation patterns over the last several decades. We find latitudinal dichotomies when comparing average insolation over timescales of days, decades, centuries, and millennia. Depending on the timescales of volatile migration, some consequences of these insolation patterns may be manifested in the surface features revealed by New Horizons. For any single rotation of Pluto there is a latitude that receives more insolation relative to the others. Often this is the sub-subsolar latitude but it can also be an arctic circle latitude when near-polar regions of Pluto experience the "midnight sun". We define the amount of that greatest insolation value over the course of one rotation as the "maximum diurnal insolation" (MDI). We find that MDI is driven to its highest values when Pluto’s obliquity creates a long arctic summer (or “midnight sun”) beginning just after perihelion. Pluto’s atmospheric pressure, as measured through stellar occultation observations during the past three decades, appears to correlate with Pluto's currently occurring midnight sun as quantified by the MDI parameter. If insolation (as parameterized by the MDI value) is the single dominant factor driving Pluto's atmospheric pressure, this “Midnight Sun Model” predicts that Pluto's maximum atmospheric pressure will be reached in 2017 followed by a steady decline. Pluto's maximum diurnal insolation value begins dropping after 2017 due to two factors: Pluto’s sub-solar point becomes more equatorial (lessening the midnight sun effect) and the planet continues to recede toward aphelion. This work was supported in part by the NASA New Horizons mission to Pluto under SwRI Subcontract 299433Q.

  18. Simulated and Observed Trends in Daily Solar Radiation Coefficients of Variation

    NASA Astrophysics Data System (ADS)

    McNellis, R.; Medvigy, D.

    2012-12-01

    This study investigates the possibility of historical and future changes in daily scale surface solar radiation variability. Coefficients of variation (CVs) were computed for the daily downward surface solar radiation from (i) the International Satellite Cloud Climatology Project (ISCCP), and (ii) 15 GCMs that have contributed to the Coupled Model Intercomparison Project 5 (CMIP5). Regression analysis was used to identify trends in CVs. Analysis of the ISCCP observations indicated that there have been statistically significant changes in solar radiation variability for 35% of the globe since 1984. Particularly large increases were found for tropical Africa, the Maritime Continent, and parts of Eurasia. Similar trends were detected in multi-model ensembles of "AMIP" and "historical" CMIP5 simulations. Preliminary analysis indicates that these trends are enhanced in CMIP5 simulations of future climate. Such changes in daily climate variability will have consequences for any process depending nonlinearly on climate, including solar energy production, agriculture, and natural terrestrial ecosystems.

  19. Relationships between insolation and rattlesnake hibernacula

    USGS Publications Warehouse

    Hamilton, B.T.; Nowak, E.M.

    2009-01-01

    We examined the relationship between insolation, climate, and hibernacula of black-tailed (Crotalus molossus), Great Basin (Crotalus lutosus), and western diamondback (Crotalus atrox) rattlesnakes at 4 sites in Arizona, Nevada, and Utah, Hibernacula were located through a combination of visual searches and radio telemetry from 1995 to 2003. We used global information systems to calculate insolation and compared hibernaculum insolation values with random points representing available insolation of the surrounding habitat. Insolation reflects soil temperatures, and we predicted that hibernacula in cool climates, at high elevations, and at high latitudes would have higher insolation relative to their surroundings, while hibernacula in warmer climates would not differ from their surroundings in insolation. Coolest temperatures, highest elevations, and highest latitudes occurred on the C. lutosus and C. molossus sites, where hibernaculum insolation was higher than surrounding insolation. Temperatures were intermediate on the high-elevation C. atrox site, where hibernaculum insolation did not differ from random-point insolation, Temperatures were highest on the low-elevation C. atrox site, where hibernaculum insolation was unexpectedly lower than random-point insolation, Our observations suggest that rattlesnakes in cool climates utilize hibernacula with insolation values higher than those of their surroundings, Rattlesnakes in warm climates utilize hibernacula with insolation values lower than or similar to those of their surroundings.

  20. Exponential approximation for daily average solar heating or photolysis. [of stratospheric ozone layer

    NASA Technical Reports Server (NTRS)

    Cogley, A. C.; Borucki, W. J.

    1976-01-01

    When incorporating formulations of instantaneous solar heating or photolytic rates as functions of altitude and sun angle into long range forecasting models, it may be desirable to replace the time integrals by daily average rates that are simple functions of latitude and season. This replacement is accomplished by approximating the integral over the solar day by a pure exponential. This gives a daily average rate as a multiplication factor times the instantaneous rate evaluated at an appropriate sun angle. The accuracy of the exponential approximation is investigated by a sample calculation using an instantaneous ozone heating formulation available in the literature.

  1. ASHMET: A computer code for estimating insolation incident on tilted surfaces

    NASA Technical Reports Server (NTRS)

    Elkin, R. F.; Toelle, R. G.

    1980-01-01

    A computer code, ASHMET, was developed by MSFC to estimate the amount of solar insolation incident on the surfaces of solar collectors. Both tracking and fixed-position collectors were included. Climatological data for 248 U. S. locations are built into the code. The basic methodology used by ASHMET is the ASHRAE clear-day insolation relationships modified by a clearness index derived from SOLMET-measured solar radiation data to a horizontal surface.

  2. Analysing the temporal and spatial variability of daily surface solar radiation in Europe

    NASA Astrophysics Data System (ADS)

    Herzog, Stephan; Richter, Lucas; Trentmann, Jörg; Ahrens, Bodo

    2015-04-01

    The spatial and temporal variability of the surface solar radiation is driven by the annual solar cycle and the variability of the cloud coverage. An improved understanding of this variability increases our understanding of the climate system; in addition this information helps to select locations for solar power plants to ensure the highest stability of the availability of solar energy. Here we present results of the analysis of the temporal and spatial variability of the surface solar radiation in Europe on the daily time scale. The analysis is performed using the new satellite-based CM SAF climate data record of surface radiation (SARAH - Solar Surface Radiation Dataset - Heliosat) available from 1983 to 2013 with a spatial resolution of 0.05 deg. The validation of SARAH against surface measurements from the DWD network shows the high quality of the data set in reproducing the features of the daily solar radiation. The analysis of the data reveals meteorological singularities, i.e., certain days throughout the year that have a significantly higher likelihood of high surface solar radiation. The spatial extend of these singularities as well as their connection to the Großwetterlagen will be discussed in this contribution.

  3. 21 CFR 880.6280 - Medical insole.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical insole. 880.6280 Section 880.6280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES....6280 Medical insole. (a) Identification. A medical insole is a device intended for medical...

  4. 21 CFR 880.6280 - Medical insole.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical insole. 880.6280 Section 880.6280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES....6280 Medical insole. (a) Identification. A medical insole is a device intended for medical...

  5. 21 CFR 880.6280 - Medical insole.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical insole. 880.6280 Section 880.6280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES....6280 Medical insole. (a) Identification. A medical insole is a device intended for medical...

  6. 21 CFR 880.6280 - Medical insole.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical insole. 880.6280 Section 880.6280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES....6280 Medical insole. (a) Identification. A medical insole is a device intended for medical...

  7. 21 CFR 880.6280 - Medical insole.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical insole. 880.6280 Section 880.6280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES....6280 Medical insole. (a) Identification. A medical insole is a device intended for medical...

  8. Coastal-inland solar radiation difference study. Final report

    SciTech Connect

    Bach, W.D. Jr.; Vukovich, F.M.

    1980-04-01

    The purpose of this study was to quantify the characteristics of solar insolation in the coastal zone and to determine the effect of the sea breeze circulation on the global insolation. In order to satisfy these objectives, a six station sampling network was established in the coastal plain of southeastern North Carolina, where previous evidence has indicated that the sea breeze circulation is almost a daily occurrence from late May through October. Three sites (Sloop Point, Onslow Beach, and Cape Fear Technical Institute (CFTI)) were located near the coast (coastal sites) to assess the insolation at the coast. A site (Clinton) was located in an area seldom affected by the sea breeze (about 100 km from the coast). Two additional sites, Wallace and Ellis Airport, located between the coastal sites and the control site, were to be used to assess the transient impact of the sea breeze upon the insolation. Pyranometers were located at each site to measure the global insolation. Direct normal insolation measured by a pyrheliometer and ultraviolet radiation measured by uv radiometers were observed at the Sloop Point and Clinton sites only. Data were collected during the calendar year 1978. The results of the study indicated that the global insolation had greater variability over the network during the summer season (June, July, and August). During the summer, there was a systematicdiurnal variation of the difference in global insolation between the inland and the coastal sites.

  9. The Effects of a Lateral Wedge Insole on Knee and Ankle Joints During Slope Walking.

    PubMed

    Uto, Yuki; Maeda, Tetsuo; Kiyama, Ryoji; Kawada, Masayuki; Tokunaga, Ken; Ohwatashi, Akihiko; Fukudome, Kiyohiro; Ohshige, Tadasu; Yoshimoto, Yoichi; Yone, Kazunori

    2015-12-01

    The purpose of this study was to determine whether a lateral wedge insole reduces the external knee adduction moment during slope walking. Twenty young, healthy subjects participated in this study. Subjects walked up and down a slope using 2 different insoles: a control flat insole and a 7° lateral wedge insole. A three-dimensional motion analysis system and force plate were used to examine the knee adduction moment, the ankle valgus moment, and the moment arm of the ground reaction force to the knee joint center in the frontal plane. The lateral wedge insole significantly decreased the moment arm of the ground reaction force, resulting in a reduction of the knee adduction moment during slope walking, similar to level walking. The reduction ratio of knee adduction moment by the lateral wedge insole during the early stance of up-slope walking was larger than that of level walking. Conversely, the lateral wedge insole increased the ankle valgus moment during slope walking, especially during the early stance phase of up-slope walking. Clinicians should examine the utilization of a lateral wedge insole for knee osteoarthritis patients who perform inclined walking during daily activity, in consideration of the load on the ankle joint. PMID:26252560

  10. Insolation patterns on eccentric exoplanets

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, Anthony R.

    2015-04-01

    Several studies have found that synchronously-rotating Earth-like planets in the habitable zones of M-dwarf stars should exhibit an "eyeball" climate pattern, with a pupil of open ocean facing the parent star, and ice everywhere else. Recent work on eccentric exoplanets by Wang et al. (Wang, Y., Tian, F., Hu, Y. [2014b] Astrophys. J. 791, L12) has extended this conclusion to the 2:1 spin-orbit resonance as well, where the planet rotates twice during one orbital period. However, Wang et al. also found that the 3:2 and 5:2 half-odd resonances produce a zonally-striped climate pattern with polar icecaps instead. Unfortunately, they used incorrect insolation functions for the 3:2 and 5:2 resonances whose long-term time averages are essentially independent of longitude. This paper presents the correct insolation patterns for eccentric exoplanets with negligible obliquities in the 0:1, 1:2, 1:1, 3:2, 2:1, 5:2, 3:1, 7:2, and 4:1 spin-orbit resonances. I confirm that the mean insolation is distributed in an eyeball pattern for integer resonances; but for half-odd resonances, the mean insolation takes a "double-eyeball" pattern, identical over the "eastern" and "western" hemispheres. Presuming that liquids, ices, clouds, albedo, and thermal emission are similarly distributed, this has significant implications for the observation and interpretation of potentially habitable exoplanets. Finally, whether a striped ball, eyeball, or double-eyeball pattern emerges, the possibility exists that long-term build-up of ice (or liquid) away from the hot spots may alter the planet's inertia tensor and quadrupole moments enough to re-orient the planet, ultimately changing the distribution of liquid and ice.

  11. Lunar and solar daily variations of ionospheric electron content at Delhi

    NASA Astrophysics Data System (ADS)

    Bhuyan, P. K.; Tyagi, T. R.

    1986-03-01

    Ionospheric electron content measurements obtained at Delhi during the period 1975-1980 have been analysed by the Chapman-Miller method to compute lunar and solar daily variations. The results show that the magnitude of the lunar harmonic components is about one-tenth that of the solar harmonic components. Significant seasonal and solar cycle variations were observed for both the lunar and the solar terms. The lunar semi-diurnal component, the most significant term, can be explained as due to the additional 'fountain' effect caused by the lunar semi-diurnal variation of the electric field at the equatorial region. The lunar semi-diurnal variations were found to have significant oceanic and ionospheric components.

  12. A preliminary study of the linear relationship between monthly averaged daily solar radiation and daily thermal amplitude in the north of Buenos Aires provence

    E-print Network

    Cionco, R; Rodriguez, R

    2012-01-01

    Using irradiance and temperature measurements obtained at the Facultad Regional San Nicol\\'as of UTN, we performed a preliminary study of the linear relationship between monthly averaged daily solar radiation and daily thermal amplitude. The results show a very satisfactory adjustment (R = 0.848, RMS = 0.066, RMS% = 9.690 %), even taking into account the limited number of months (36). Thus, we have a formula of predictive nature, capable of estimating mean monthly solar radiation for various applications. We expect to have new data sets to expand and improve the statistical significance of these results.

  13. Markov processes and Zipf's law in daily solar irradiation at earth's surface

    NASA Astrophysics Data System (ADS)

    Vindel, J. M.; Polo, J.

    2014-01-01

    Sequences of two consecutive days of solar irradiation (global horizontal and direct normal) have been studied here by different approaches. The frequency vs. rank relationships have been analyzed as an attempt to explore whether the Zifp's law is fulfilled, yielding to a partial fulfillment and observing that a good logarithmic fit can be applied to the data in the whole range. In addition, the pdfs of increments in two consecutive daily irradiation values are also studied, showing a relationship between persistence and the coefficients of the logarithmic fit. Finally, it has been shown that a Markov process can represent properly sequences of two consecutive daily irradiation values, for both global horizontal and direct normal components. Thus, synthetic series can be generated by Markov chains for characterizing daily global and direct irradiation.

  14. Estimation of daily global solar irradiation under different sky conditions in central and southern Iran

    NASA Astrophysics Data System (ADS)

    Didari, Shohreh; Zand-Parsa, Shahrokh

    2015-10-01

    Daily global solar irradiation (R s) is one of the main inputs in environmental modeling. Because of the lack of its measuring facilities, high-quality and long-term data are limited. In this research, R s values were estimated based on measured sunshine duration and cloud cover of our synoptic meteorological stations in central and southern Iran during 2008, 2009, and 2011. Clear sky solar irradiation was estimated from linear regression using extraterrestrial solar irradiation as the independent variable with normalized root mean square error (NRMSE) of 4.69 %. Daily R s was calibrated using measured sunshine duration and cloud cover data under different sky conditions during 2008 and 2009. The 2011 data were used for model validation. According to the results, in the presence of clouds, the R s model using sunshine duration data was more accurate when compared with the model using cloud cover data (NRMSE = 11. 69 %). In both models, with increasing sky cloudiness, the accuracy decreased. In the study region, more than 92 % of sunshine durations were clear or partly cloudy, which received close to 95 % of total solar irradiation. Hence, it was possible to estimate solar irradiation with a good accuracy in most days with the measurements of sunshine duration.

  15. On the Signature of Chaotic Dynamics in 10.7 cm Daily Solar Radio Flux

    NASA Astrophysics Data System (ADS)

    Ghosh, Oindrilla; Chatterjee, T. N.

    2015-11-01

    We examine the properties of the time-series of daily values of the 10.7-cm solar radio flux and sunspot-number activity indices, and their relative behavior. The analysis and the comparisons are based upon the estimation of the embedded dimension and the use of recurrence plots. The result shows higher-order chaos in 10.7-cm radio flux, and a similar but not identical chaotic nature in the sunspot number indicative of a change in the phase space of the Sun. Both data series show a stochastic behavior only during the rising and peak phase of Solar Cycle 23.

  16. Solar radiation on Mars

    SciTech Connect

    Appelbaum, J.; Flood, D.J.

    1989-08-01

    Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. Presented here is a procedure and solar radiation related data from which the diurnally, hourly and daily variation of the global, direct beam and diffuse insolation on Mars are calculated. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the sun with a special diode on the Viking cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.

  17. Lunar and solar daily variations of equivalent slab thickness at Delhi.

    NASA Astrophysics Data System (ADS)

    Bhuyan, P. K.; Tyagi, T. R.

    1987-02-01

    Equivalent slab thickness data obtained at Delhi during the ascending half of this solar cycle from 1978 to 1980 have been analysed by the Chapman-Miller method to compute the lunar and solar daily variations. Significant diurnal and seasonal variations were observed for the lunar as well as the solar terms. There is no apparent correlation between these variations and sunspot activity. The occurrence of the most significant lunar term, the lunar semidiurnal component, coincides with the diffusion caused by the additional fountain effect generated by the lunar semidiurnal variation of the electric field at the equatorial region. Except for the phase, the results obtained for slab thickness differ from those reported for ionospheric electron content for the same period and location.

  18. A Temperature-Based Model for Estimating Monthly Average Daily Global Solar Radiation in China

    PubMed Central

    Li, Huashan; Cao, Fei; Wang, Xianlong; Ma, Weibin

    2014-01-01

    Since air temperature records are readily available around the world, the models based on air temperature for estimating solar radiation have been widely accepted. In this paper, a new model based on Hargreaves and Samani (HS) method for estimating monthly average daily global solar radiation is proposed. With statistical error tests, the performance of the new model is validated by comparing with the HS model and its two modifications (Samani model and Chen model) against the measured data at 65 meteorological stations in China. Results show that the new model is more accurate and robust than the HS, Samani, and Chen models in all climatic regions, especially in the humid regions. Hence, the new model can be recommended for estimating solar radiation in areas where only air temperature data are available in China. PMID:24605046

  19. Motel solar hot-water installation--Atlanta, Georgia

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Analysis of hardness of local water, average insolation for site, and daily hot water requirements insures suitability of solar-energy system design. Report describes two units which are designed to supply 81 percent of motel's annual hot water demand based on hypothetical 85 percent occupancy. Report includes drawings, operating and maintenance instructions, and test results for 1 day of operation.

  20. Calculation of monthly average global solar radiation on horizontal surfaces using daily hours of bright sunshine

    SciTech Connect

    Halouani, N.; Nguyen, C.T.; Vo-Ngoc, D. )

    1993-03-01

    Several statistical models calculating the monthly average global solar radiation on horizontal surfaces using the daily hours of bright sunshine have been extensively evaluated and compared for Canadian regions. Results show that Gariepy's model provides the best overall performance and Hay's model is rated next best, whereas Rietveld's model has been found to be the least accurate. Local performances of models have also been established throughout Canada that show that both Gariepy's and Hay's models perform quite well. Recommended models have been suggested for the studied regions. 27 refs., 9 figs., 5 tabs.

  1. The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data

    SciTech Connect

    Behrang, M.A.; Assareh, E.; Ghanbarzadeh, A.; Noghrehabadi, A.R.

    2010-08-15

    The main objective of present study is to predict daily global solar radiation (GSR) on a horizontal surface, based on meteorological variables, using different artificial neural network (ANN) techniques. Daily mean air temperature, relative humidity, sunshine hours, evaporation, and wind speed values between 2002 and 2006 for Dezful city in Iran (32 16'N, 48 25'E), are used in this study. In order to consider the effect of each meteorological variable on daily GSR prediction, six following combinations of input variables are considered: (I)Day of the year, daily mean air temperature and relative humidity as inputs and daily GSR as output. (II)Day of the year, daily mean air temperature and sunshine hours as inputs and daily GSR as output. (III)Day of the year, daily mean air temperature, relative humidity and sunshine hours as inputs and daily GSR as output. (IV)Day of the year, daily mean air temperature, relative humidity, sunshine hours and evaporation as inputs and daily GSR as output. (V)Day of the year, daily mean air temperature, relative humidity, sunshine hours and wind speed as inputs and daily GSR as output. (VI)Day of the year, daily mean air temperature, relative humidity, sunshine hours, evaporation and wind speed as inputs and daily GSR as output. Multi-layer perceptron (MLP) and radial basis function (RBF) neural networks are applied for daily GSR modeling based on six proposed combinations. The measured data between 2002 and 2005 are used to train the neural networks while the data for 214 days from 2006 are used as testing data. The comparison of obtained results from ANNs and different conventional GSR prediction (CGSRP) models shows very good improvements (i.e. the predicted values of best ANN model (MLP-V) has a mean absolute percentage error (MAPE) about 5.21% versus 10.02% for best CGSRP model (CGSRP 5)). (author)

  2. Insolation and the Precession Index

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry

    2000-01-01

    Simple nonlinear climate models yield a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin omega, where e is the Earth's orbital eccentricity and omega is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these periods. Two such models, a grey body and an energy balance climate model with an added quadratic term, produce e sin omega terms in temperature. These terms, which without feedback mechanisms achieve extreme values of about plus or minus 0.48 K for the grey body and plus or minus 0.64 K for the energy balance model, simultaneously cool one hemisphere while they warm the other. Moreover, they produce long-term cooling in the northern hemisphere when the Sun's perigee is near northern solstice and long-term warming in the northern hemisphere when the perigee is near southern solstice. Thus this seemingly paradoxical mechanism works against the standard model which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it may be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is close to the Earth during southern summer. The cold water eventually flows north, cooling the northern hemisphere. This might explain why the northern oceans lag the southern ones when it comes to orbital forcing.

  3. A Five-Year Data Set of Insolation from GOES

    NASA Astrophysics Data System (ADS)

    Molling, C. C.; Heidinger, A. K.; Laszlo, I.

    2011-12-01

    The National Oceanic and Atmospheric Administration produces insolation from the East and West Geostationary Operational Environmental Satellites' (GOES) Imager in their GOES Surface and Insolation Product (GSIP). The GSIP 1/8x1/8 degree product is publicly available from April, 2009. Recently, the National Renewable Energy Laboratory has funded a project to create a 5 year long data set using the algorithm used in GSIP. At the University of Wisconsin's Cooperative Institute for Meteorological Satellite Studies, we have inserted the Satellite Algorithm for Shortwave RAdiation Budget (SASRAB) into the Pathfinder ATMOSpheres-extended (PATMOS-x) cloud products satellite imagery processing system and computed 5 years worth of radiation and cloud products. The benefits of this data set include the following: direct+diffuse and diffuse insolation every 30 min from both GOES-East and -West at the pixel level (4km at nadir); Extended Northern Hemisphere coverage for most images, with Full Disk coverage every 3 hours; many related radiation, cloud, atmosphere, and surface products at the same resolution; 5 years worth of data available for analysis; monthly, seasonal, and annual summaries of many of the pixel level quantities on a 0.1 degree grid. Anticipated uses of the data set include siting for photovoltaic arrays, solar-thermal power generation, and passive solar systems, as well as environmental applications such as coral bleaching.

  4. ASHMET: a computer code for estimating insolation incident on tilted surfaces

    SciTech Connect

    Elkin, R.F.; Toelle, R.G.

    1980-05-01

    A computer code, ASHMET, has been developed by MSFC to estimate the amount of solar insolation incident on the surfaces of solar collectors. Both tracking and fixed-position collectors have been included. Climatological data for 248 US locations are built into the code. This report describes the methodology of the code, and its input and output. The basic methodology used by ASHMET is the ASHRAE clear-day insolation relationships modified by a clearness index derived from SOLMET-measured solar radiation data to a horizontal surface.

  5. Prediction of hourly and daily diffuse solar fraction in the city of Fez (Morocco)

    NASA Astrophysics Data System (ADS)

    Ihya, B.; Mechaqrane, A.; Tadili, R.; Bargach, M. N.

    2015-05-01

    In this paper, 3-layers MLP (Multi-Layers Perceptron) Artificial Neural Network (ANN) models have been developed and tested for predicting hourly and daily diffuse solar fractions at Fez city in Morocco. In parallel, some empirical models were tested. Three years of data (2009-2011) have been used for establishing the parameters of all tested models and 1 year (2012) to test their prediction performances. To select the best ANN (3-layers MLP) architecture, we have conducted several tests by using different combinations of inputs and by varying the number of neurons in the hidden layer. The output is only the diffuse solar fraction. The performances of each model were assessed on the basis of four statistic characteristics: mean absolute error (MAE), relative mean bias error (RMBE), relative root mean square error (RRMSE) and the degree of agreement (DA). Additionally, the coefficient of correlation ( R) is used to test the linear regression between predicted and observed data. The results indicate that the ANN model is more suitable for predicting diffuse solar fraction than the empirical tested models at Fez city in Morocco.

  6. Determination of Martian Northern Polar Insolation Levels Using a Geodetic Elevation Model

    NASA Technical Reports Server (NTRS)

    Arrell, J. R.; Zuber, M. T.

    2000-01-01

    Solar insolation levels at the Martian polar caps bear significantly on the seasonal and climatic cycling of volatiles on that planet. In the northern hemisphere, the Martian surface slopes downhill from the equator to the pole such that the north polar cap is situated in a 5-km-deep hemispheric-scale depression. This large-scale topographic setting plays an important role in the insolation of the northern polar cap. Elevations measured by the Mars Orbiter Laser Altimeter (MOLA) provide comprehensive, high-accuracy topographical information required to precisely determine polar insolation. In this study, we employ a geodetic elevation model to quantify the north polar insolation and consider implications for seasonal and climatic changes. Additional information is contained in original extended abstract.

  7. Mean solar quiet daily variations in the earth’s magnetic field along East African longitudes

    NASA Astrophysics Data System (ADS)

    Bello, O. R.; Rabiu, A. B.; Yumoto, K.; Yizengaw, E.

    2014-08-01

    Solar quiet daily (Sq) variation in the earth’s magnetic field along the East African meridian was studied using data of the H, D and Z components recorded with Magnetic Data Acquisition System of SERC. One year data recorded at ten African geomagnetic observatories was used in the analysis of worldwide solar quiet daily variation (Wsq). The study revealed that the focus of Sq (H) in the southern hemisphere lies at the boundary of low and middle latitude region. Noon-time enhancement of Sq (H) was generally noticed at all stations along the meridian, though it is latitudinal dependent in terms of magnitude as it reduces with distance from dip equator. In addition, night-time variations also occur in small magnitude along African meridian in Sq (H) and Sq (Z) which could be attributed to non-ionospheric sources. Semi-diurnal variation was noticed in Sq (D) at all stations except in AAB that is under the influence of electrojet current. Dusk sector calm condition of Sq (D) current was notice in some stations and the same condition was also noticed at dawn sector in some other stations. The usual sunrise maximum and sunset minimum for D component at stations north of dip equator as well as sunrise minimum and sunset maximum was found to increase with distance away from dip equator. Day-time perturbation of Sq current was noticed to be more pronounced in all the three field elements. Mass plots of annual mean hourly value show contrasting phase pattern about the focus in H element and the results of the variations at each region with the associated standard error. It was concluded from the result of correlation coefficients computed that different currents system flowing in opposite directions could be responsible for contrasting patterns.

  8. Development of Daily Solar Maximum Flare Flux Forecast Models for Strong Flares

    NASA Astrophysics Data System (ADS)

    Shin, Seulki; Chu, Hyoungseok

    2015-08-01

    We have developed a set of daily solar maximum flare flux forecast models for strong flares using Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) methods. We consider input parameters as solar activity data from January 1996 to December 2013 such as sunspot area, X-ray maximum flare flux and weighted total flux of the previous day, and mean flare rates of McIntosh sunspot group (Zpc) and Mount Wilson magnetic classification. For a training data set, we use the same number of 61 events for each C-, M-, and X-class from Jan. 1996 to Dec. 2004, while other previous models use all flares. For a testing data set, we use all flares from Jan. 2005 to Nov. 2013. The statistical parameters from contingency tables show that the ANN models are better for maximum flare flux forecasting than the MLR models. A comparison between our maximum flare flux models and the previous ones based on Heidke Skill Score (HSS) shows that our all models for X-class flare are much better than the other models. According to the Hitting Fraction (HF), which is defined as a fraction of events satisfying that the absolute differences of predicted and observed flare flux in logarithm scale are less than equal to 0.5, our models successfully forecast the maximum flare flux of about two-third events for strong flares. Since all input parameters for our models are easily available, the models can be operated steadily and automatically on daily basis for space weather service.

  9. Interpreting insolation signals in ice core records

    NASA Astrophysics Data System (ADS)

    Hutterli, M. A.; Sime, L. C.

    2009-04-01

    High resolution East Antarctica stable water isotope ice core records are inversely related to Southern Hemisphere summer insolation intensity at the precession and obliquity timescales. Because Southern Hemisphere summer insolation varies directly out of phase with that in the Northern Hemisphere, this has lead to the suggestion that global climate is controlled by some measure of Northern Hemisphere summer insolation intensity. Here we present results from a snow metamorphism model and an isotope enabled GCM suggesting that the East Antarctic isotope ice core variations in the precession and obliquity bands may instead be caused by post-depositional processes that are modulated by changes in local insolation. This likely also applies to other ice core records and has implications for the interpretation of global climate change at these orbital periods.

  10. Temporal changes of the global reflectance of a wheat field as a function of daily solar irradiance

    NASA Technical Reports Server (NTRS)

    Franceschini, G. A.

    1981-01-01

    Based on in situ measurements of incident and reflected solar irradiation over a wheat field, daily values of the surface reflectance, a scene signature, were determined for a crop year. Diagnoses of these data reveal the character of the signature, and its changes with time, crop stage, and the magnitude of incident irradiance. The latter varies inversely with cloud cover.

  11. A Comparison of Satellite Based, Modeled Derived Daily Solar Radiation Data With Observed Data for the Continental US

    NASA Technical Reports Server (NTRS)

    White, Jeffrey W.; Hoogenboom, Gerrit; Wilkens, Paul W.; Stackhouse, Paul W., Jr.; Hoell, James M.

    2011-01-01

    Many applications of simulation models and related decision support tools for agriculture and natural resource management require daily meteorological data as inputs. Availability and quality of such data, however, often constrain research and decision support activities that require use of these tools. Daily solar radiation (SRAD) data are especially problematic because the instruments require electronic integrators, accurate sensors are expensive, and calibration standards are seldom available. The Prediction Of Worldwide Energy Resources (NASA/POWER; power.larc.nasa.gov) project at the NASA Langley Research Center estimates daily solar radiation based on data that are derived from satellite observations of outgoing visible radiances and atmospheric parameters based upon satellite observations and assimilation models. The solar data are available for a global 1 degree x 1 degree coordinate grid. SRAD can also be estimated based on attenuation of extraterrestrial radiation (Q0) using daily temperature and rainfall data to estimate the optical thickness of the atmosphere. This study compares daily solar radiation data from NASA/POWER (SRADNP) with instrument readings from 295 stations (SRADOB), as well as with values that were estimated with the WGENR solar generator. WGENR was used both with daily temperature and precipitation records from the stations reporting solar data and records from the NOAA Cooperative Observer Program (COOP), thus providing two additional sources of solar data, SRADWG and SRADCO. Values of SRADNP for different grid cells consistently showed higher correlations (typically 0.85 to 0.95) with SRADOB data than did SRADWG or SRADCO for sites within the corresponding cells. Mean values of SRADOB, SRADWG and SRADNP for sites within a grid cell usually were within 1 MJm-2d-1 of each other, but NASA/POWER values averaged 1.1 MJm-2d-1 lower than SRADOB. The magnitude of this bias was greater at lower latitudes and during summer months and may be at least partially explained by assumptions in ambient aerosol properties. Overall, the NASA/POWER solar radiation data are a promising resource for regional modeling studies where realistic accounting of historic variation is required.

  12. A Comparison of Satellite Based, Modeled Derived Daily Solar Radiation Data with Observed Data for the Continental US

    NASA Technical Reports Server (NTRS)

    White, Jeffrey W.; Hoogenboom, Gerrit; Wilkens, Paul W.; Stackhouse, Paul W., Jr.; Hoell, James M.

    2010-01-01

    Many applications of simulation models and related decision support tools for agriculture and natural resource management require daily meteorological data as inputs. Availability and quality of such data, however, often constrain research and decision support activities that require use of these tools. Daily solar radiation (SRAD) data are especially problematic because the instruments require electronic integrators, accurate sensors are expensive, and calibration standards are seldom available. The Prediction Of Worldwide Energy Resources (NASA/POWER; power.larc.nasa.gov) project at the NASA Langley Research Center estimates daily solar radiation based on data that are derived from satellite observations of outgoing visible radiances and atmospheric parameters based upon satellite observations and assimilation models. The solar data are available for a global 1 degree x 1 degree coordinate grid. SRAD can also be estimated based on attenuation of extraterrestrial radiation (Q0) using daily temperature and rainfall data to estimate the optical thickness of the atmosphere. This study compares daily solar radiation data from NASA/POWER (SRADNP) with instrument readings from 295 stations (SRADOB), as well as with values that were estimated with the WGENR solar generator. WGENR was used both with daily temperature and precipitation records from the stations reporting solar data and records from the NOAA Cooperative Observer Program (COOP), thus providing two additional sources of solar data, SRADWG and SRADCO. Values of SRADNP for different grid cells consistently showed higher correlations (typically 0.85 to 0.95) with SRADOB data than did SRADWG or SRADCO for sites within the corresponding cells. Mean values of SRADOB, SRADWG and SRADNP for sites within a grid cell usually were within 1 MJm-2d-1 of each other, but NASA/POWER values averaged 1.1 MJm-2d-1 lower than SRADOB. The magnitude of this bias was greater at lower latitudes and during summer months and may be at least partially explained by assumptions in ambient aerosol properties. Overall, the NASA/POWER solar radiation data are a promising resource for regional modeling studies where realistic accounting of historic variation is required.

  13. Solar radiation for Mars power systems

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Landis, Geoffrey A.

    1991-01-01

    Detailed information about the solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data from which the diurnally and daily variation of the global, direct (or beam), and diffuse insolation on Mars are calculated, are presented. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the Sun with a special diode on the Viking Lander cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.

  14. Solar Cooking

    Atmospheric Science Data Center

    2014-09-25

    ... (kWh/m2/day) Amount of electromagnetic energy (solar radiation) incident on the surface of the earth. Also referred to as total or global solar radiation.   Midday insolation (kWh/m2/day) Average ...

  15. Prediction of long-term performance of active solar heating systems using daily hours of bright sunshine

    SciTech Connect

    Nguyen, C.T.; Galanis, N.

    1984-08-01

    An algorithm based on daily hours of bright sunshine has been developed and used to evaluate the performance of active solar heating systems for different values of system parameters (collector area and efficiency curves; orientation and inclination; storage capacity; heating load). Comparisons of monthly and annual results with those obtained by other methods using measured values of global horizontal radiation show good results. The results were used to construct charts (for southern Quebec in this case) which do not require values of solar radiation for the prediction of the system's performance.

  16. Clinical Cosmobiology - Sudden Cardiac Death and Daily / Monthly Geomagnetic, Cosmic Ray and Solar Activity - the Baku Study (2003-2005)

    NASA Astrophysics Data System (ADS)

    Stoupel, E.; Babayev, E. S.; Mustafa, F. R.; Abramson, E.; Israelevich, P.; Sulkes, J.

    2006-12-01

    Part of results of collaborative studies for revealing an influence of the periodical changes of solar, geomagnetic and cosmic ray activities on the sudden cardiac death (SCD) mortality is described in this paper. The data covering daily and monthly temporal distribution of SCD (788 patients in 36 months in 2003-2005), taken from all of emergency and first medical aid stations of grand Baku area, were analyzed and compared with certain cosmophysical parameters. It was obtained that SCD is higher on the highest and lowest daily levels of geomagnetic activity. Days with SCD are accompanied by higher cosmic ray (neutron) activity. The monthly number of SCD was inversely related to solar and geomagnetic activities while was positively linked with cosmic ray activity level. It was concluded that cosmic ray activity could be considered as one of regulating external/environmental factors in human homeostasis.

  17. Increased insolation threshold for runaway greenhouse processes on Earth like planets

    E-print Network

    Leconte, Jérémy; Charnay, Benjamin; Wordsworth, Robin; Pottier, Alizée

    2013-01-01

    Because the solar luminosity increases over geological timescales, Earth climate is expected to warm, increasing water evaporation which, in turn, enhances the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can "runaway" until all the oceans are evaporated. Through increases in stratospheric humidity, warming may also cause oceans to escape to space before the runaway greenhouse occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated with unidimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of Earth's climate. Here we use a 3D global climate model to show that the threshold for the runaway greenhouse is about 375 W/m$^2$, significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmo...

  18. A general model for estimation of daily global solar radiation using air temperatures and site geographic parameters in Southwest China

    NASA Astrophysics Data System (ADS)

    Li, Mao-Fen; Fan, Li; Liu, Hong-Bin; Guo, Peng-Tao; Wu, Wei

    2013-01-01

    Estimation of daily global solar radiation (Rs) from routinely measured temperature data has been widely developed and used in many different areas of the world. However, many of them are site specific. It is assumed that a general model for estimating daily Rs using temperature variables and geographical parameters could be achieved within a climatic region. This paper made an attempt to develop a general model to estimate daily Rs using routinely measured temperature data (maximum (Tmax, °C) and minimum (Tmin, °C) temperatures) and site geographical parameters (latitude (La, °N), longitude (Ld, °E) and altitude (Alt, m)) for Guizhou and Sichuan basin of southwest China, which was classified into the hot summer and cold winter climate zone. Comparison analysis was carried out through statistics indicators such as root mean squared error of percentage (RMSE%), modeling efficiency (ME), coefficient of residual mass (CRM) and mean bias error (MBE). Site-dependent daily Rs estimating models were calibrated and validated using long-term observed weather data. A general formula was then obtained from site geographical parameters and the better fit site-dependent models with mean RMSE% of 38.68%, mean MBE of 0.381 MJ m-2 d-1, mean CRM of 0.04 and mean ME value of 0.713.

  19. Long-term variation in the upper atmosphere as seen in the geomagnetic solar quiet daily variation

    NASA Astrophysics Data System (ADS)

    Shinbori, Atsuki; Koyama, Yukinobu; Nose, Masahito; Hori, Tomoaki; Otsuka, Yuichi; Yatagai, Akiyo

    2014-12-01

    Characteristics of long-term variation in the amplitude of solar quiet (Sq) geomagnetic field daily variation have been investigated using 1-h geomagnetic field data obtained from 69 geomagnetic observation stations within the period of 1947 to 2013. The Sq amplitude observed at these geomagnetic stations showed a clear dependence on the 10- to 12-year solar activity cycle and tended to be enhanced during each solar maximum phase. The Sq amplitude was the smallest around the minimum of solar cycle 23/24 in 2008 to 2009. The relationship between the solar F10.7 index and Sq amplitude was approximately linear but about 53% of geomagnetic stations showed a weak nonlinear relation to the solar F10.7 index. In order to remove the effect of solar activity seen in the long-term variation of the Sq amplitude, we calculated a linear or second-order fitting curve between the solar F10.7 index and Sq amplitude during 1947 to 2013 and examined the residual Sq amplitude, which is defined as the deviation from the fitting curve. As a result, the majority of trends in the residual Sq amplitude that passed through a trend test showed negative values over a wide region. This tendency was relatively strong in Europe, India, the eastern part of Canada, and New Zealand. The relationship between the magnetic field intensity at 100-km altitude and residual Sq amplitude showed an anti-correlation for about 71% of the geomagnetic stations. Furthermore, the residual Sq amplitude at the equatorial station (Addis Ababa) was anti-correlated with the absolute value of the magnetic field inclination. This implies movement of the equatorial electrojet due to the secular variation of the ambient magnetic field.

  20. Artificial Neural Network models for estimating daily solar global UV, PAR and broadband radiant fluxes in an eastern Mediterranean site

    NASA Astrophysics Data System (ADS)

    Jacovides, C. P.; Tymvios, F. S.; Boland, J.; Tsitouri, M.

    2015-01-01

    In this paper, simple Artificial Neural Network (ANN) models for estimating daily solar global broadband as well as solar spectral global UV and PAR radiant fluxes have been established. The data used in this analysis are global ultraviolet UV (GUV), global photosynthetic photon flux density (PPFD-QP), broadband global radiant flux (Gh), extraterrestrial radiant flux (G0), air temperature (T), relative humidity (rh), sunshine duration (n), theoretical sunshine duration (N), precipitable water (w) and ozone column density (O3). By using different combinations of the above variables as inputs, numerous ANN-models have been developed. For each model, the output is the daily global GUV, QP and Gh solar radiant fluxes. Firstly, a set of 2 × 365 point (2 years) has been used for training each network-model, whereas a set of 365 point (1 year) has been engaged for testing and validating the ANN-models. It has been found that the ANN-models' accuracy depends on the parameters employed as well as spectral range considered. Comparisons between proposed ANN-models and conventional regression models revealed that the results of both methods are statistically significant. On closer examination of many error measures, though, it is clear that the ANN-models perform better overall. From this point of view, it turned out that the neural network technique is better suited further suggesting that the ANN methodology is a promising and a more accurate tool for estimating both broadband and spectral radiant fluxes.

  1. A 3D Visualization and Analysis Model of the Earth Orbit, Milankovitch Cycles and Insolation.

    NASA Astrophysics Data System (ADS)

    Kostadinov, Tihomir; Gilb, Roy

    2013-04-01

    Milankovitch theory postulates that periodic variability of Earth's orbital elements is a major climate forcing mechanism. Although controversies remain, ample geologic evidence supports the major role of the Milankovitch cycles in climate, e.g. glacial-interglacial cycles. There are three Milankovitch orbital parameters: orbital eccentricity (main periodicities of ~100,000 and ~400,000 years), precession (quantified as the longitude of perihelion, main periodicities 19,000-24,000 years) and obliquity of the ecliptic (Earth's axial tilt, main periodicity 41,000 years). The combination of these parameters controls the spatio-temporal patterns of incoming solar radiation (insolation) and the timing of the seasons with respect to perihelion, as well as season duration. The complex interplay of the Milankovitch orbital parameters on various time scales makes assessment and visualization of Earth's orbit and insolation variability challenging. It is difficult to appreciate the pivotal importance of Kepler's laws of planetary motion in controlling the effects of Milankovitch cycles on insolation patterns. These factors also make Earth-Sun geometry and Milankovitch theory difficult to teach effectively. Here, an astronomically precise and accurate Earth orbit visualization model is presented. The model offers 3D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcings. Both research and educational uses are envisioned for the model, which is developed in Matlab® as a user-friendly graphical user interface (GUI). We present the user with a choice between the Berger et al. (1978) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. A "demo" mode is also available, which allows the three Milankovitch parameters to be varied independently of each other (and over much larger ranges than the naturally occurring ones), so the user can isolate the effects of each parameter on orbital geometry, the seasons, and insolation. Users select a calendar date and the Earth is placed in its orbit using Kepler's laws; the calendar can be started on either vernal equinox (March 20) or perihelion (Jan. 3). Global insolation is computed as a function of latitude and day of year, using the chosen Milankovitch parameters. 3D surface plots of insolation and insolation anomalies (with respect to J2000) are then produced. Insolation computations use the model's own orbital geometry with no additional a-priori input other than the Milankovitch parameter solutions. Insolation computations are successfully validated against Laskar et al. (2004) values. The model outputs other relevant parameters as well, e.g. Earth's radius-vector length, solar declination and day length for the chosen date and latitude. Time-series plots of the Milankovitch parameters and EPICA ice core CO2 and temperature data can be produced. Envisioned future developments include computational efficiency improvements, more options for insolation plots on user-chosen spatio-temporal scales, and overlaying additional paleoclimatological proxy data.

  2. Intraocular pressure (IOP) in relation to four levels of daily geomagnetic and extreme yearly solar activity

    NASA Astrophysics Data System (ADS)

    Stoupel, E.; Goldenfeld, M.; Shimshoni, M.; Siegel, R.

    1993-03-01

    The link between geomagnetic field activity (GMA), solar activity and intraocular pressure (IOP) in healthy individuals was investigated. The IOP of 485 patients (970 eyes) was recorded over three nonconsecutive years (1979, 1986, 1989) which were characterized by maximal solar activity (1979, 1989) or minimal solar activity (1986). The measurements were also correlated with four categories of GMA activity: quiet (level I0), unsettled (II0), active (III0), and stormy (IV0). Participants were also differentiated by age and sex. We found that IOP was lowest on days of level IV0 (stormy) GMA. The drop in IOP concomitant with a decrease in GMA level was more significant during periods of low solar activity and in persons over 65 years of age. There was a trend towards higher IOP values on days of levels II0 and IV0 GMA in years of high solar activity. Differences between the sexes and among individuals younger than 65 years were not significant. Our results show an interesting aspect of environmental influence on the healthy population.

  3. Bulk Insolation Models as Predictors for Locations for High Lunar Hydrogen Concentrations

    NASA Technical Reports Server (NTRS)

    Mcclanahan, T. P.; Mitrofanov, I.G.; Boynton, W. V.; Chin, G.; Starr, R. D.; Evans, L. G.; Sanin, A.; Livengood, T.; Sagdeev, R.; Milikh, G.

    2013-01-01

    In this study we consider the bulk effects of surface illumination on topography (insolation) and the possible thermodynamic effects on the Moon's hydrogen budget. Insolation is important as one of the dominant loss processes governing distributions of hydrogen volatiles on the Earth, Mars and most recently Mercury. We evaluated three types of high latitude > 65 deg., illumination models that were derived from the Lunar Observing Laser Altimetry (LOLA) digital elevation models (DEM)'s. These models reflect varying accounts of solar flux interactions with the Moon's near-surface. We correlate these models with orbital collimated epithermal neutron measurements made by the Lunar Exploration Neutron Detector (LEND). LEND's measurements derive the Moon's spatial distributions of hydrogen concentration. To perform this analysis we transformed the topographic model into an insolation model described by two variables as each pixels 1) slope and 2) slope angular orientation with respect to the pole. We then decomposed the illumination models and epithermal maps as a function of the insolation model and correlate the datasets.

  4. Estimation of daily global solar radiation as a function of routine meteorological data in Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Meza, Francisco Javier; Yebra, María Lorenzo

    2015-06-01

    Solar radiation is the main responsible of many processes of the biophysical environment. Temperature changes, snow melt dynamics, carbon sequestration, evaporation from soils, plants, and open water bodies are explained by the amount of radiation received in a surface. Lack of direct observations and insufficient record length limit the ability to use global solar radiation information for resource use management and planning. Based on the general equation of Bristow and Campbell, we propose a modification that allows us to better represent atmospheric transmissivity as a function of routine meteorological variables and improve estimates of global solar radiation in Mediterranean and semi arid areas. The improved Bristow-Campbell model (IBC) is easy to use in any location where measurements of temperature, precipitation, and relative humidity are available, and present a simple solution that can be used as proxy for relative humidity in case that variable is not been measured.

  5. Early Pleistocene Glacial Cycles and the Integrated Summer Insolation Forcing

    NASA Astrophysics Data System (ADS)

    Huybers, Peter

    2006-07-01

    Long-term variations in Northern Hemisphere summer insolation are generally thought to control glaciation. But the intensity of summer insolation is primarily controlled by 20,000-year cycles in the precession of the equinoxes, whereas early Pleistocene glacial cycles occur at 40,000-year intervals, matching the period of changes in Earth's obliquity. The resolution of this 40,000-year problem is that glaciers are sensitive to insolation integrated over the duration of the summer. The integrated summer insolation is primarily controlled by obliquity and not precession because, by Kepler's second law, the duration of the summer is inversely proportional to Earth's distance from the Sun.

  6. Effect of Different Insoles on Postural Balance: A Systematic Review

    PubMed Central

    Christovão, Thaluanna Calil Lourenço; Neto, Hugo Pasini; Grecco, Luanda André Collange; Ferreira, Luiz Alfredo Braun; Franco de Moura, Renata Calhes; Eliege de Souza, Maria; Franco de Oliveira, Luis Vicente; Oliveira, Claudia Santos

    2013-01-01

    [Purpose] The aim of the present study was to perform a systematic review of the literature on the effect of different insoles on postural balance. [Subjects and Methods] A systematic review was conducted of four databases. The papers retrieved were evaluated based on the following inclusion criteria: 1) design: controlled clinical trial; 2) intervention: insole; 3) outcome: change in static postural balance; and 4) year of publication: 2005 to 2012. [Results] Twelve controlled trials were found comparing the effects of different insoles on postural balance. The papers had methodological quality scores of 3 or 4 on the PEDro scale. [Conclusion] Insoles have benefits that favor better postural balance and control. PMID:24259792

  7. Effect of Estimated Daily Global Solar Radiation Data on the Results of Crop Growth Models

    PubMed Central

    Trnka, Miroslav; Eitzinger, Josef; Kapler, Pavel; Dubrovský, Martin; Semerádová, Daniela; Žalud, Zden ?k; Formayer, Herbert

    2007-01-01

    The results of previous studies have suggested that estimated daily global radiation (RG) values contain an error that could compromise the precision of subsequent crop model applications. The following study presents a detailed site and spatial analysis of the RG error propagation in CERES and WOFOST crop growth models in Central European climate conditions. The research was conducted i) at the eight individual sites in Austria and the Czech Republic where measured daily RG values were available as a reference, with seven methods for RG estimation being tested, and ii) for the agricultural areas of the Czech Republic using daily data from 52 weather stations, with five RG estimation methods. In the latter case the RG values estimated from the hours of sunshine using the Ångström-Prescott formula were used as the standard method because of the lack of measured RG data. At the site level we found that even the use of methods based on hours of sunshine, which showed the lowest bias in RG estimates, led to a significant distortion of the key crop model outputs. When the Ångström-Prescott method was used to estimate RG, for example, deviations greater than ±10 per cent in winter wheat and spring barley yields were noted in 5 to 6 per cent of cases. The precision of the yield estimates and other crop model outputs was lower when RG estimates based on the diurnal temperature range and cloud cover were used (mean bias error 2.0 to 4.1 per cent). The methods for estimating RG from the diurnal temperature range produced a wheat yield bias of more than 25 per cent in 12 to 16 per cent of the seasons. Such uncertainty in the crop model outputs makes the reliability of any seasonal yield forecasts or climate change impact assessments questionable if they are based on this type of data. The spatial assessment of the RG data uncertainty propagation over the winter wheat yields also revealed significant differences within the study area. We found that RG estimates based on diurnal temperature range or its combination with daily total precipitation produced a bias of to 30 per cent in the mean winter wheat grain yields in some regions compared with simulations in which RG values had been estimated using the Ångström-Prescott formula. In contrast to the results at the individual sites, the methods based on the diurnal temperature range in combination with daily precipitation totals showed significantly poorer performance than the methods based on the diurnal temperature range only. This was due to the marked increase in the bias in RG estimates with altitude, longitude or latitude of given region. These findings in our view should act as an incentive for further research to develop more precise and generally applicable methods for estimating daily RG based more on the underlying physical principles and/or the remote sensing approach.

  8. Quick use of WEFAX images from METEOSAT to determine daily solar radiation in France

    SciTech Connect

    Delorme, C.; Gallo, A.; Olivieri, J. )

    1992-09-01

    The authors present some preliminary results about 74 days: March 15th to June 30th, 1990. Four WEFAX images per day from the visible channel of METEOSAT have been processed. The main elements of the GISTEL methodology are briefly stated again. The estimated daily global irradiation on the ground is compared with figures measured at 10 stations in the south of France. In order to analyze the main causes of inaccuracy, this comparison is made on several modes: estimated and measured values, estimated and measured weather indexes for normalization, station per station to detect possible geographic errors.

  9. Ultraviolet insolation drives seasonal and diurnal space weather variations

    NASA Astrophysics Data System (ADS)

    Newell, Patrick T.; Sotirelis, Thomas; Skura, Joseph P.; Meng, Ching-I.; Lyatsky, Wladislav

    2002-10-01

    We present several findings that improve the understanding of the seasonal and diurnal variation in auroral and magnetospheric activity. The total ionospheric conductivity in the nightside auroral oval from UV insolation (?P) is calculated, and its seasonal and diurnal variation is shown to correlate very highly with that of the Am and AL indices of geomagnetic activity (r = 0.89 and r = 0.75, respectively). Such excellent correlations with Am have been previously obtained by other researchers using instead the acute angle between the Earth's dipole axis and the Earth-Sun line, ?. However, the ionospheric conductivity formulation provides a more physical model to explain the equinoctial (McIntosh) effect. Namely, the level of geomagnetic activity is well-ordered by whether the nightside auroral oval is sunlit in one hemisphere or neither. We improve calculations of the expected pattern of seasonal and diurnal variations in the solar wind input. The elliptical nature of the Earth's orbit results in observed interplanetary magnetic field (IMF) strengths about 7% larger in January than June. When the Sun's spin axis tilt to the ecliptic plane is considered, the predicted IMF southward component (Bs) maximizes in February, as is observed. We also calculate the seasonal and diurnal variation of a more general solar wind-magnetosphere coupling function, EKL. EKL proves to have little (0.5%) diurnal variation and has a seasonal variation of about 14%. For the first time, the seasonal and diurnal variation in the ?PC, the polar cap flux (from Polar UVI observations, cross-calibrated to a DMSP-based standard) and in magnetotail stretching (the b2i index) are presented. Magnetotail stretching proves to correlate better (r = -0.57) with EKL than with ?P. ?PC correlates better with ?P, but the correlation (r = -0.49) is not nearly as strong as that for the indices of geomagnetic activity, Am and AL. Our survey of the seasonal and diurnal variation of the magnetosphere thus shows that some aspects (geomagnetic indices) correlate best with UV insolation, while others (magnetotail stretching) correlate best with solar wind input.

  10. Increased insolation threshold for runaway greenhouse processes on Earth-like planets.

    PubMed

    Leconte, Jérémy; Forget, Francois; Charnay, Benjamin; Wordsworth, Robin; Pottier, Alizée

    2013-12-12

    The increase in solar luminosity over geological timescales should warm the Earth's climate, increasing water evaporation, which will in turn enhance the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can 'run away' until the oceans have completely evaporated. Through increases in stratospheric humidity, warming may also cause evaporative loss of the oceans to space before the runaway greenhouse state occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated using one-dimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of the Earth's climate. Here we use a three-dimensional global climate model to show that the insolation threshold for the runaway greenhouse state to occur is about 375?W?m(-2), which is significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback effect on the long-term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to shift the runaway greenhouse limit to higher values of insolation than are inferred from one-dimensional models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains sufficiently cold and dry to hamper the escape of atmospheric water, even at large fluxes. This has strong implications for the possibility of liquid water existing on Venus early in its history, and extends the size of the habitable zone around other stars. PMID:24336285

  11. A wireless sensor insole for collecting gait data.

    PubMed

    Rösevall, John; Rusu, Cristina; Talavera, Guillermo; Carrabina, Jordi; Garcia, Joan; Carenas, Carlos; Breuil, Fanny; Reixach, Elisenda; Torrent, Marc; Burkard, Stefan; Colitti, Walter

    2014-01-01

    This paper presents the status of the EU project WIISEL - Wireless Insole for Independent and Safe Elderly Living, with the focus on sensors and wireless communications. Pressure and inertial sensors are embedded into insoles and a smartphone collects data utilizing Bluetooth Low Energy. PMID:24851988

  12. Insolation in Titan's troposphere Juan M. Lora a,

    E-print Network

    Russell, Joellen

    Insolation in Titan's troposphere Juan M. Lora a, , Paul J. Goodman b , Joellen L. Russell b Accepted 18 August 2011 Available online 31 August 2011 Keywords: Titan Radiative transfer a b s t r a c t Seasonality in Titan's troposphere is driven by latitudinally varying insolation. We show that the latitu

  13. Comment on "Strong signature of the active Sun in 100 years of terrestrial insolation data" by W. Weber.

    PubMed

    Feulner, Georg

    2011-11-01

    An analysis of ground-based observations of solar irradiance was recently published in this journal, reporting an apparent increase of solar irradiance on the ground of the order of 1% between solar minima and maxima [1]. Since the corresponding variations in total solar irradiance on top of the atmosphere are accurately determined from satellite observations to be of the order of 0.1% only [2], the one order of magnitude stronger effect in the terrestrial insolation data was interpreted as evidence for cosmic-ray induced aerosol formation in the atmosphere. In my opinion, however, this result does not reflect reality. Using the energy budget of Earth's surface, I show that changes of ground-based insolation with the solar cycle of the order of 1% between solar minima and maxima would result in large surface air temperature variations which are inconsistent with the instrumental record. It would appear that the strong variations of terrestrial irradiance found by [1] are due to the uncorrected effects of volcanic or local aerosols and seasonal variations. Taking these effects into account, I find a variation of terrestrial insolation with solar activity which is of the same order as the one measured from space, bringing the surface energy budget into agreement with the solar signal detected in temperature data. PMID:22279242

  14. Surface meteorology and Solar Energy

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  15. Long term comparison of some shock attenuating insoles.

    PubMed

    Pratt, D J

    1990-08-01

    The effect of one years general use on the performance of four shock attenuating insoles is reported. Testing was carried out using the JP Biomechanics Shock Meter on twelve volunteers on a timed oval course at eight intervals during the year. The results show that two of the insoles perform well (Viscolas and PPT) although deterioration does occur after 6-9 months use; the other two insoles (Plastazote and Gait Aid) perform poorly. It is suggested that manufacturers provide some information to the user or supplier regarding the effective life of their products. PMID:2235300

  16. Solar radiation on Mars: Update 1990

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Flood, Dennis J.

    1990-01-01

    Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. The authors present a procedure and solar radiation related data from which the diurnally and daily variation of the global, direct beam and diffuse insolation on Mars are calculated. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the Sun with a special diode on the Viking Lander cameras and computation based on multiple wavelength and multiple scattering of the solar radiation. This work is an update to NASA-TM-102299 and includes a refinement of the solar radiation model.

  17. Estimation of the monthly average daily solar radiation using geographic information system and advanced case-based reasoning.

    PubMed

    Koo, Choongwan; Hong, Taehoon; Lee, Minhyun; Park, Hyo Seon

    2013-05-01

    The photovoltaic (PV) system is considered an unlimited source of clean energy, whose amount of electricity generation changes according to the monthly average daily solar radiation (MADSR). It is revealed that the MADSR distribution in South Korea has very diverse patterns due to the country's climatic and geographical characteristics. This study aimed to develop a MADSR estimation model for the location without the measured MADSR data, using an advanced case based reasoning (CBR) model, which is a hybrid methodology combining CBR with artificial neural network, multiregression analysis, and genetic algorithm. The average prediction accuracy of the advanced CBR model was very high at 95.69%, and the standard deviation of the prediction accuracy was 3.67%, showing a significant improvement in prediction accuracy and consistency. A case study was conducted to verify the proposed model. The proposed model could be useful for owner or construction manager in charge of determining whether or not to introduce the PV system and where to install it. Also, it would benefit contractors in a competitive bidding process to accurately estimate the electricity generation of the PV system in advance and to conduct an economic and environmental feasibility study from the life cycle perspective. PMID:23548030

  18. Daily global solar radiation prediction from air temperatures using kernel extreme learning machine: A case study for Iran

    NASA Astrophysics Data System (ADS)

    Shamshirband, Shahaboddin; Mohammadi, Kasra; Chen, Hui-Ling; Narayana Samy, Ganthan; Petkovi?, Dalibor; Ma, Chao

    2015-11-01

    Lately, the kernel extreme learning machine (KELM) has gained considerable importance in the scientific area due to its great efficiency, easy implementation and fast training speed. In this paper, for the first time the potential of KELM to predict the daily horizontal global solar radiation from the maximum and minimum air temperatures (Tmax and Tmin) is appraised. The effectiveness of the proposed KELM method is evaluated against the grid search based support vector regression (SVR), as a robust methodology. Three KELM and SVR models are developed using different input attributes including: (1) Tmin and Tmax, (2) Tmin and Tmax-Tmin, and (3) Tmax and Tmax-Tmin. The achieved results reveal that the best predictions precision is achieved by models (3). The achieved results demonstrate that KELM offers favorable predictions and outperforms the SVR. For the KELM (3) model, the obtained statistical parameters of mean absolute bias error, root mean square error, relative root mean square error and correlation coefficient are 1.3445 MJ/m2, 2.0164 MJ/m2, 11.2464% and 0.9057%, respectively for the testing data. As further examination, a month-by-month evaluation is conducted and found that in six months from May to October the KELM (3) model provides further accuracy than overall accuracy. Based upon the relative root mean square error, the KELM (3) model shows excellent capability in the period of April to October while in the remaining months represents good performance.

  19. Assessment of the global monthly mean surface insolation estimated from satellite measurements using global energy balance archive data

    NASA Technical Reports Server (NTRS)

    Li, Zhanqing; Whitlock, Charles H.; Charlock, Thomas P.

    1995-01-01

    Global sets of surface radiation budget (SRB) have been obtained from satellite programs. These satellite-based estimates need validation with ground-truth observations. This study validates the estimates of monthly mean surface insolation contained in two satellite-based SRB datasets with the surface measurements made at worldwide radiation stations from the Global Energy Balance Archive (GEBA). One dataset was developed from the Earth Radiation Budget Experiment (ERBE) using the algorithm of Li et al. (ERBE/SRB), and the other from the International Satellite Cloud Climatology Project (ISCCP) using the algorithm of Pinker and Laszlo and that of Staylor (GEWEX/SRB). Since the ERBE/SRB data contain the surface net solar radiation only, the values of surface insolation were derived by making use of the surface albedo data contained GEWEX/SRB product. The resulting surface insolation has a bias error near zero and a root-mean-square error (RMSE) between 8 and 28 W/sq m. The RMSE is mainly associated with poor representation of surface observations within a grid cell. When the number of surface observations are sufficient, the random error is estimated to be about 5 W/sq m with present satellite-based estimates. In addition to demonstrating the strength of the retrieving method, the small random error demonstrates how well the ERBE derives from the monthly mean fluxes at the top of the atmosphere (TOA). A larger scatter is found for the comparison of transmissivity than for that of insolation. Month to month comparison of insolation reveals a weak seasonal trend in bias error with an amplitude of about 3 W/sq m. As for the insolation data from the GEWEX/SRB, larger bias errors of 5-10 W/sq m are evident with stronger seasonal trends and almost identical RMSEs.

  20. Traffic and nucleation events as main sources of ultrafine particles in high-insolation developed world cities

    NASA Astrophysics Data System (ADS)

    Brines, M.; Dall'Osto, M.; Beddows, D. C. S.; Harrison, R. M.; Gómez-Moreno, F.; Núñez, L.; Artíñano, B.; Costabile, F.; Gobbi, G. P.; Salimi, F.; Morawska, L.; Sioutas, C.; Querol, X.

    2015-05-01

    Road traffic emissions are often considered the main source of ultrafine particles (UFP, diameter smaller than 100 nm) in urban environments. However, recent studies worldwide have shown that - in high-insolation urban regions at least - new particle formation events can also contribute to UFP. In order to quantify such events we systematically studied three cities located in predominantly sunny environments: Barcelona (Spain), Madrid (Spain) and Brisbane (Australia). Three long-term data sets (1-2 years) of fine and ultrafine particle number size distributions (measured by SMPS, Scanning Mobility Particle Sizer) were analysed. Compared to total particle number concentrations, aerosol size distributions offer far more information on the type, origin and atmospheric evolution of the particles. By applying k-means clustering analysis, we categorized the collected aerosol size distributions into three main categories: "Traffic" (prevailing 44-63% of the time), "Nucleation" (14-19%) and "Background pollution and Specific cases" (7-22%). Measurements from Rome (Italy) and Los Angeles (USA) were also included to complement the study. The daily variation of the average UFP concentrations for a typical nucleation day at each site revealed a similar pattern for all cities, with three distinct particle bursts. A morning and an evening spike reflected traffic rush hours, whereas a third one at midday showed nucleation events. The photochemically nucleated particles' burst lasted 1-4 h, reaching sizes of 30-40 nm. On average, the occurrence of particle size spectra dominated by nucleation events was 16% of the time, showing the importance of this process as a source of UFP in urban environments exposed to high solar radiation. Nucleation events lasting for 2 h or more occurred on 55% of the days, this extending to > 4 h in 28% of the days, demonstrating that atmospheric conditions in urban environments are not favourable to the growth of photochemically nucleated particles. In summary, although traffic remains the main source of UFP in urban areas, in developed countries with high insolation urban nucleation events are also a main source of UFP. If traffic-related particle concentrations are reduced in the future, nucleation events will likely increase in urban areas, due to the reduced urban condensation sinks.

  1. Solar and temporal effects on Escherichia coli concentration at a Lake Michigan swimming beach

    USGS Publications Warehouse

    Whitman, Richard L.; Nevers, Meredith B.; Korinek, Ginger C.; Byappanahalli, Muruleedhara N.

    2004-01-01

    Studies on solar inactivation of Escherichia coli in freshwater and in situ have been limited. At 63rd St. Beach, Chicago, Ill., factors influencing the daily periodicity of culturable E. coli, particularly insolation, were examined. Water samples for E. coli analysis were collected twice daily between April and September 2000 three times a week along five transects in two depths of water. Hydrometeorological conditions were continuously logged: UV radiation, total insolation, wind speed and direction, wave height, and relative lake level. On 10 days, transects were sampled hourly from 0700 to 1500 h. The effect of sunlight on E. coli inactivation was evaluated with dark and transparent in situ mesocosms and ambient lake water. For the study, the number of E. coli samples collected (n) was 2,676. During sunny days, E. coli counts decreased exponentially with day length and exposure to insolation, but on cloudy days, E. coli inactivation was diminished; the E. coli decay rate was strongly influenced by initial concentration. In situ experiments confirmed that insolation primarily inactivated E. coli; UV radiation only marginally affected E. coli concentration. The relationship between insolation and E. coli density is complicated by relative lake level, wave height, and turbidity, all of which are often products of wind vector. Continuous importation and nighttime replenishment of E. coli were evident. These findings (i) suggest that solar inactivation is an important mechanism for natural reduction of indicator bacteria in large freshwater bodies and (ii) have implications for management strategies of nontidal waters and the use of E. coli as an indicator organism.

  2. Solar and temporal effects on Escherichia coli concentration at a Lake Michigan swimming beach.

    PubMed

    Whitman, Richard L; Nevers, Meredith B; Korinek, Ginger C; Byappanahalli, Muruleedhara N

    2004-07-01

    Studies on solar inactivation of Escherichia coli in freshwater and in situ have been limited. At 63rd St. Beach, Chicago, Ill., factors influencing the daily periodicity of culturable E. coli, particularly insolation, were examined. Water samples for E. coli analysis were collected twice daily between April and September 2000 three times a week along five transects in two depths of water. Hydrometeorological conditions were continuously logged: UV radiation, total insolation, wind speed and direction, wave height, and relative lake level. On 10 days, transects were sampled hourly from 0700 to 1500 h. The effect of sunlight on E. coli inactivation was evaluated with dark and transparent in situ mesocosms and ambient lake water. For the study, the number of E. coli samples collected (n) was 2,676. During sunny days, E. coli counts decreased exponentially with day length and exposure to insolation, but on cloudy days, E. coli inactivation was diminished; the E. coli decay rate was strongly influenced by initial concentration. In situ experiments confirmed that insolation primarily inactivated E. coli; UV radiation only marginally affected E. coli concentration. The relationship between insolation and E. coli density is complicated by relative lake level, wave height, and turbidity, all of which are often products of wind vector. Continuous importation and nighttime replenishment of E. coli were evident. These findings (i) suggest that solar inactivation is an important mechanism for natural reduction of indicator bacteria in large freshwater bodies and (ii) have implications for management strategies of nontidal waters and the use of E. coli as an indicator organism. PMID:15240311

  3. Solar radiation on Mars: Update 1991

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Landis, Geoffrey A.

    1991-01-01

    Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data are presented from which the daily variation of the global, direct beam and diffuse insolation on Mars are calculated. Given the optical depth of the Mars atmosphere, the global radiation is calculated from the normalized net flux function based on multiple wavelength and multiple scattering of the solar radiation. The direct beam was derived from the optical depth using Beer's law, and the diffuse component was obtained from the difference of the global and the direct beam radiation. The optical depths of the Mars atmosphere were derived from images taken of the Sun with a special diode on the cameras used on the two Viking Landers.

  4. Insolation Weathering: An Instrumentation and Field Based Study (Invited)

    NASA Astrophysics Data System (ADS)

    Eppes, M. C.; Warren, K.; Swami, S.; Folz-Donahue, K.; Evans, S.; Cavendar, J.; Smith, I.; Layzell, A.

    2010-12-01

    Processes of mechanical weathering related to diurnal insolation are largely unexplored. Recent studies (McFadden et al., 2005, Eppes et al., 2010) demonstrated that rocks in a range of environments exhibit preferentially orientated (~N-S) cracks that are hypothesized to form as rocks are heated and cooled during the sun’s daily transit across the sky. In this study, we attempt to better understand the association between rock fracture and directional insolation. In Charlotte, NC we instrumented a ~30 cm diameter granite boulder sitting in full sun exposure with 8 thermocouples, 8 strain rosettes, 6 acoustic emission sensors and a moisture sensor, in order to spatially and temporally correlate rock cracking with rock surface conditions. Temperature and strain are recorded every minute along with a suite of meteorological data, and acoustic emissions are continuously monitored. As part of an NSF REU, in the Providence Mountains of the Mojave Desert of Southern California, we examined every crack greater than 2 cm in length on 1027 desert pavement rocks of varying types and on surfaces of varying age (~1 ka to ~150 ka) in order to examine crack characteristics as a function of rock shape, rock type and rock exposure age. Analysis of preliminary instrumentation data indicates that rock cracking as monitored by AE devices occurs in discrete intervals of events that initially appear to be related to rapid changes in temperature and/or temperature gradients on the rock surface. Using 3-D location software, we are also able to locate the foci of events within the rock to a reasonable degree of certainty. Our data will allow us to begin to quantify the stress and temperature conditions under which cracking occurs. Preliminary analysis of our field data indicates that cracks exhibit preferred strike orientations (~NE) and dip directions (~ESE). These data support the idea that cracking occurs in association with the extreme temperature gradients that arise as rocks are first heated in the morning sun. Rock shape appears to enhance this effect. For example, more cracks are observed parallel to large flat SE facing surfaces as well as to NE oriented long axes of elongated rocks. We also observe correlations with rock type and cracking. For example, the average number of cracks per rock range from 3.4 (Meta-volcanic) to 1.9 (carbonates) to 0.8 (basalts) on a 140 ka surface. There is not an obvious trend through time in crack orientations, and the mode(s) of crack orientations appears to vary with surface age. These differences in orientations may be due to differences in the thermo-dynamic properties of different rock types and minerals, making them susceptible to cracking at different times of the day or year. Alternatively, cracks may have formed during discrete intervals when environmental conditions were favorable. Such conditions may have occurred at different times of the day and/or year throughout the Quaternary.

  5. Solar energy microclimate as determined from satellite observations

    NASA Technical Reports Server (NTRS)

    Vonder Haar, T. H.; Ellis, J. S.

    1975-01-01

    A method is presented for determining solar insolation at the earth's surface using satellite broadband visible radiance and cloud imagery data, along with conventional in situ measurements. Conventional measurements are used to both tune satellite measurements and to develop empirical relationships between satellite observations and surface solar insolation. Cloudiness is the primary modulator of sunshine. The satellite measurements as applied in this method consider cloudiness both explicitly and implicitly in determining surface solar insolation at space scales smaller than the conventional pyranometer network.

  6. A Wireless Flexible Sensorized Insole for Gait Analysis

    PubMed Central

    Crea, Simona; Donati, Marco; De Rossi, Stefano Marco Maria; Oddo, Calogero Maria; Vitiello, Nicola

    2014-01-01

    This paper introduces the design and development of a novel pressure-sensitive foot insole for real-time monitoring of plantar pressure distribution during walking. The device consists of a flexible insole with 64 pressure-sensitive elements and an integrated electronic board for high-frequency data acquisition, pre-filtering, and wireless transmission to a remote data computing/storing unit. The pressure-sensitive technology is based on an optoelectronic technology developed at Scuola Superiore Sant'Anna. The insole is a low-cost and low-power battery-powered device. The design and development of the device is presented along with its experimental characterization and validation with healthy subjects performing a task of walking at different speeds, and benchmarked against an instrumented force platform. PMID:24412902

  7. Effect of Optimal Daily Fertigation on Migration of Water and Salt in Soil, Root Growth and Fruit Yield of Cucumber (Cucumis sativus L.) in Solar-Greenhouse

    PubMed Central

    Liang, Xinshu; Gao, Yinan; Zhang, Xiaoying; Tian, Yongqiang; Zhang, Zhenxian; Gao, Lihong

    2014-01-01

    Inappropriate and excessive irrigation and fertilization have led to the predominant decline of crop yields, and water and fertilizer use efficiency in intensive vegetable production systems in China. For many vegetables, fertigation can be applied daily according to the actual water and nutrient requirement of crops. A greenhouse study was therefore conducted to investigate the effect of daily fertigation on migration of water and salt in soil, and root growth and fruit yield of cucumber. The treatments included conventional interval fertigation, optimal interval fertigation and optimal daily fertigation. Generally, although soil under the treatment optimal interval fertigation received much lower fertilizers than soil under conventional interval fertigation, the treatment optimal interval fertigation did not statistically decrease the economic yield and fruit nutrition quality of cucumber when compare to conventional interval fertigation. In addition, the treatment optimal interval fertigation effectively avoided inorganic nitrogen accumulation in soil and significantly (P<0.05) increased the partial factor productivity of applied nitrogen by 88% and 209% in the early-spring and autumn-winter seasons, respectively, when compared to conventional interval fertigation. Although soils under the treatments optimal interval fertigation and optimal daily fertigation received the same amount of fertilizers, the treatment optimal daily fertigation maintained the relatively stable water, electrical conductivity and mineral nitrogen levels in surface soils, promoted fine root (<1.5 mm diameter) growth of cucumber, and eventually increased cucumber economic yield by 6.2% and 8.3% and partial factor productivity of applied nitrogen by 55% and 75% in the early-spring and autumn-winter seasons, respectively, when compared to the treatment optimal interval fertigation. These results suggested that optimal daily fertigation is a beneficial practice for improving crop yield and the water and fertilizers use efficiency in solar greenhouse. PMID:24475204

  8. Timing and significance of maximum and minimum equatorial insolation

    E-print Network

    Gildor, Hezi

    , with timescales of $400 ka and $100 ka, as well as a pronounced half-precession periodicity with timescale of $11 the equinoxes (solstices), alternating between the vernal and autumnal equinoxes (summer and winter solstices the equinoxes (solstices). We also show that when considering the mean insolation of periods larger than 1 d

  9. Modeling sugarcane growth in response to age, insolation, and temperature

    SciTech Connect

    How, K.T.S.

    1986-01-01

    Modeling sugarcane growth in response to age of cane, insolation and air temperature using first-order multiple regression analysis and a nonlinear approach is investigated. Data are restricted to one variety from irrigated fields to eliminate the impact of varietal response and rainfall. Ten first-order models are investigated. The predictant is cane yield from 600 field tests. The predictors are cumulative values of insolation, maximum temperature, and minimum temperature for 3, 6, 12, and 18 months, or for each crop period derived from weather observations near the test plots. The low R-square values indicate that the selected predictor variables could not account for a substantial proportion of the variations of cane yield and the models have limited predictive values. The nonlinear model is based on known functional relationships between growth and age, growth and insolation, and growth and maximum temperature. A mathematical expression that integrates the effect of age, insolation and maximum temperature is developed. The constant terms and coefficients of the equation are determined from the requirement that the model must produce results that are reasonable when compared with observed monthly elongation data. The nonlinear model is validated and tested using another set of data.

  10. Global biogeography of autotroph chemistry: is insolation a driving force?

    E-print Network

    Chen, Zhongping

    1121 Global biogeography of autotroph chemistry: is insolation a driving force? Elizabeth T. Borer, Smith 2007, Hillebrand et al. 2009). Autotrophs require N for carbon acquisition via photosynthesis of N to P in autotrophs can indicate the nature of autotroph nutrient limitation (Verhoeven et al. 1996

  11. How accurate did GCMs compute the insolation at TOA for AMIP-2?

    NASA Astrophysics Data System (ADS)

    Raschke, Ehrhard; Giorgetta, Marco A.; Kinne, Stefan; Wild, Martin

    2005-12-01

    Monthly averages of solar radiation reaching the Top of the Atmosphere (TOA) as simulated by 20 General Circulation Models (GCMs) during the period 1985-1988 are compared. They were part of submissions to AMIP-2 (Atmospheric Model Intercomparison Project). Monthly averages of ISCCP-FD (International Satellite Cloud Climatology Project - Flux Data) are considered as reference. Considerable discrepancies are found: Most models reproduce the prescribed Total Solar Irradiance (TSI) value within +/-0.7 Wm-2. Monthly zonal averages disagree between +/-2 to +/-7 Wm-2, depending on latitude and season. The largest model diversity occurs near polar regions. Some models display a zonally symmetric insolation, while others and ISCCP show longitudinal deviations of the order of +/-1 Wm-2. With such differences in meridional gradients impacts in multi-annual simulations cannot be excluded. Sensitivity studies are recommended.

  12. Evaluation of satellite-based, modeled-derived daily solar radiation data for the continental U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many applications of simulation models and related decision support tools for agriculture and natural resource management require daily meteorological data as inputs. Availability and quality of such data, however, often constrain research and decision support activities that require use of these to...

  13. Hemispheric Insolation Forcing of the Indian Ocean and Asian Monsoon: Local versus Remote Impacts*

    E-print Network

    Wisconsin at Madison, University of

    Hemispheric Insolation Forcing of the Indian Ocean and Asian Monsoon: Local versus Remote Impacts Asian monsoon on geological time scales. The influence of insolation forcing on the Indian Ocean and Asian monsoon is studied in this paper by isolating the Northern and Southern Hemispheric insolation

  14. Nonlinear response of summer temperature to Holocene insolation forcing in Alaska

    PubMed Central

    Clegg, Benjamin F.; Kelly, Ryan; Clarke, Gina H.; Walker, Ian R.; Hu, Feng Sheng

    2011-01-01

    Regional climate responses to large-scale forcings, such as precessional changes in solar irradiation and increases in anthropogenic greenhouse gases, may be nonlinear as a result of complex interactions among earth system components. Such nonlinear behaviors constitute a major source of climate “surprises” with important socioeconomic and ecological implications. Paleorecords are key for elucidating patterns and mechanisms of nonlinear responses to radiative forcing, but their utility has been greatly limited by the paucity of quantitative temperature reconstructions. Here we present Holocene July temperature reconstructions on the basis of midge analysis of sediment cores from three Alaskan lakes. Results show that summer temperatures during 10,000–5,500 calibrated years (cal) B.P. were generally lower than modern and that peak summer temperatures around 5,000 were followed by a decreasing trend toward the present. These patterns stand in stark contrast with the trend of precessional insolation, which decreased by ?10% from 10,000 y ago to the present. Cool summers before 5,500 cal B.P. coincided with extensive summer ice cover in the western Arctic Ocean, persistence of a positive phase of the Arctic Oscillation, predominantly La Niña-like conditions, and variation in the position of the Alaskan treeline. These results illustrate nonlinear responses of summer temperatures to Holocene insolation radiative forcing in the Alaskan sub-Arctic, possibly because of state changes in the Arctic Oscillation and El Niño-Southern Oscillation and associated land–atmosphere–ocean feedbacks. PMID:22084085

  15. Rocky Mountain hydroclimate: Holocene variability and the role of insolation, ENSO, and the North American Monsoon

    USGS Publications Warehouse

    Anderson, Lesleigh

    2012-01-01

    Over the period of instrumental records, precipitation maximum in the headwaters of the Colorado Rocky Mountains has been dominated by winter snow, with a substantial degree of interannual variability linked to Pacific ocean–atmosphere dynamics. High-elevation snowpack is an important water storage that is carefully observed in order to meet increasing water demands in the greater semi-arid region. The purpose here is to consider Rocky Mountain water trends during the Holocene when known changes in earth's energy balance were caused by precession-driven insolation variability. Changes in solar insolation are thought to have influenced the variability and intensity of the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North American Monsoon and the seasonal precipitation balance between rain and snow at upper elevations. Holocene records are presented from two high elevation lakes located in northwest Colorado that document decade-to-century scale precipitation seasonality for the past ~ 7000 years. Comparisons with sub-tropical records of ENSO indicate that the snowfall-dominated precipitation maxima developed ~ 3000 and 4000 years ago, coincident with evidence for enhanced ENSO/PDO dynamics. During the early-to-mid Holocene the records suggest a more monsoon affected precipitation regime with reduced snowpack, more rainfall, and net moisture deficits that were more severe than recent droughts. The Holocene perspective of precipitation indicates a far broader range of variability than that of the past century and highlights the non-linear character of hydroclimate in the U.S. west.

  16. Nonlinear response of summer temperature to Holocene insolation forcing in Alaska.

    PubMed

    Clegg, Benjamin F; Kelly, Ryan; Clarke, Gina H; Walker, Ian R; Hu, Feng Sheng

    2011-11-29

    Regional climate responses to large-scale forcings, such as precessional changes in solar irradiation and increases in anthropogenic greenhouse gases, may be nonlinear as a result of complex interactions among earth system components. Such nonlinear behaviors constitute a major source of climate "surprises" with important socioeconomic and ecological implications. Paleorecords are key for elucidating patterns and mechanisms of nonlinear responses to radiative forcing, but their utility has been greatly limited by the paucity of quantitative temperature reconstructions. Here we present Holocene July temperature reconstructions on the basis of midge analysis of sediment cores from three Alaskan lakes. Results show that summer temperatures during 10,000-5,500 calibrated years (cal) B.P. were generally lower than modern and that peak summer temperatures around 5,000 were followed by a decreasing trend toward the present. These patterns stand in stark contrast with the trend of precessional insolation, which decreased by ?10% from 10,000 y ago to the present. Cool summers before 5,500 cal B.P. coincided with extensive summer ice cover in the western Arctic Ocean, persistence of a positive phase of the Arctic Oscillation, predominantly La Niña-like conditions, and variation in the position of the Alaskan treeline. These results illustrate nonlinear responses of summer temperatures to Holocene insolation radiative forcing in the Alaskan sub-Arctic, possibly because of state changes in the Arctic Oscillation and El Niño-Southern Oscillation and associated land-atmosphere-ocean feedbacks. PMID:22084085

  17. Utility of NASA's daily solar and meteorological data for regional level modeling of wheat phenology and yield potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Data products from the NASA Science Mission Directorate's Applied Science Energy Managed Program provide estimates of long-term meteorological conditions from assimilation models and surface solar energy fluxes derived from satellite observations. NASA's Prediction Of Worldwide Energy Resource (POWE...

  18. Middle Holocene daily light cycle reconstructed from the strontium/calcium ratios of a fossil giant clam shell

    PubMed Central

    Hori, Masako; Sano, Yuji; Ishida, Akizumi; Takahata, Naoto; Shirai, Kotaro; Watanabe, Tsuyoshi

    2015-01-01

    Insolation is an important component of meteorological data because solar energy is the primary and direct driver of weather and climate. Previous analyses of cultivated giant clam shells revealed diurnal variation in the Sr/Ca ratio, which might reflect the influence of the daily light cycle. We applied proxy method to sample from prehistoric era, a fossil giant clam shell collected at Ishigaki Island in southern Japan. The specimen was alive during the middle Holocene and thus exposed to the warmest climate after the last glacial period. This bivalve species is known to form a growth line each day, as confirmed by the analysis of the Sr enrichment bands using EPMA and facilitated age-model. We analyzed the Sr/Ca, Mg/Ca and Ba/Ca ratios along the growth axis, measuring a 2-?m spot size at 2-?m interval using NanoSIMS. The Sr/Ca ratios in the winter layers are characterized by a striking diurnal cycle consisting of narrow growth lines with high Sr/Ca ratios and broad growth bands with low Sr/Ca ratios. These variations, which are consistent with those of the cultivated clam shell, indicate the potential for the reconstruction of the variation in solar insolation during the middle Holocene at a multi-hourly resolution. PMID:25736488

  19. Middle Holocene daily light cycle reconstructed from the strontium/calcium ratios of a fossil giant clam shell.

    PubMed

    Hori, Masako; Sano, Yuji; Ishida, Akizumi; Takahata, Naoto; Shirai, Kotaro; Watanabe, Tsuyoshi

    2015-01-01

    Insolation is an important component of meteorological data because solar energy is the primary and direct driver of weather and climate. Previous analyses of cultivated giant clam shells revealed diurnal variation in the Sr/Ca ratio, which might reflect the influence of the daily light cycle. We applied proxy method to sample from prehistoric era, a fossil giant clam shell collected at Ishigaki Island in southern Japan. The specimen was alive during the middle Holocene and thus exposed to the warmest climate after the last glacial period. This bivalve species is known to form a growth line each day, as confirmed by the analysis of the Sr enrichment bands using EPMA and facilitated age-model. We analyzed the Sr/Ca, Mg/Ca and Ba/Ca ratios along the growth axis, measuring a 2-?m spot size at 2-?m interval using NanoSIMS. The Sr/Ca ratios in the winter layers are characterized by a striking diurnal cycle consisting of narrow growth lines with high Sr/Ca ratios and broad growth bands with low Sr/Ca ratios. These variations, which are consistent with those of the cultivated clam shell, indicate the potential for the reconstruction of the variation in solar insolation during the middle Holocene at a multi-hourly resolution. PMID:25736488

  20. Simple device measures solar radiation

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.

    1977-01-01

    Simple inexpensive thermometer, insolated from surroundings by transparent glass or plastic encasement, measures intensities of solar radiation, or radiation from other sources such as furnaces or ovens. Unit can be further modified to accomplish readings from remote locations.

  1. FreeWalker: a smart insole for longitudinal gait analysis.

    PubMed

    Baitong Wang; Rajput, Kuldeep Singh; Wing-Kin Tam; Tung, Anthony K H; Zhi Yang

    2015-08-01

    Gait analysis is an important diagnostic measure to investigate the pattern of walking. Traditional gait analysis is generally carried out in a gait lab, with equipped force and body tracking sensors, which needs a trained medical professional to interpret the results. This procedure is tedious, expensive, and unreliable and makes it difficult to track the progress across multiple visits. In this paper, we present a smart insole called FreeWalker, which provides quantitative gait analysis outside the confinement of traditional lab, at low- cost. The insole consists of eight pressure sensors and two motion tracking sensors, i.e. 3-axis accelerometer and 3-axis gyroscope. This enables measurement of under-foot pressure distribution and motion sequences in real-time. The insole is enabled with onboard SD card as well as wireless data transmission, which help in continuous gait-cycle analysis. The data is then sent to a gateway, for analysis and interpretation of data, using a user interface where gait features are graphically displayed. We also present validation result of a subject's left foot, who was asked to perform a specific task. Experiment results show that we could achieve a data-sampling rate of over 1 KHz, transmitting data up to a distance of 20 meter and maintain a battery life of around 24 hours. Taking advantage of these features, FreeWalker can be used in various applications, like medical diagnosis, rehabilitation, sports and entertainment. PMID:26737102

  2. Time-dependent MHD modeling of the global solar corona for year 2007: Driven by daily-updated magnetic field synoptic data

    NASA Astrophysics Data System (ADS)

    Yang, L. P.; Feng, X. S.; Xiang, C. Q.; Liu, Yang; Zhao, Xuepu; Wu, S. T.

    2012-08-01

    In this paper, we develop a time-dependent MHD model driven by the daily-updated synoptic magnetograms (MHD-DUSM) to study the dynamic evolution of the global corona with the help of the 3D Solar-Interplanetary (SIP) adaptive mesh refinement (AMR) space-time conservation element and solution element (CESE) MHD model (SIP-AMR-CESE MHD Model). To accommodate the observations, the tangential component of the electric field at the lower boundary is specified to allow the flux evolution to match the observed changes of magnetic field. Meanwhile, the time-dependent solar surface boundary conditions derived from the method of characteristics and the mass flux limit are incorporated to couple the observation and the 3D MHD model. The simulated evolution of the global coronal structure during 2007 is compared with solar observations and solar wind measurements from both Ulysses and spacecrafts near the Earth. The MHD-DUSM model is also validated by comparisons with the standard potential field source surface (PFSS) model, the newly improved Wang-Sheeley-Arge (WSA) empirical formula, and the MHD simulation with a monthly synoptic magnetogram (MHD-MSM). Comparisons show that the MHD-DUSM results have good overall agreement with coronal and interplanetary structures, including the sizes and distributions of coronal holes, the positions and shapes of the streamer belts, and the transitions of the solar wind speeds and magnetic field polarities. The MHD-DUSM results also display many features different from those of the PFSS, the WSA, and the MHD-MSM models.

  3. Estimation of daily global solar radiation in Vietnamese Mekong Delta area: A combinational application of statistical downscaling method and Bayesian inference

    NASA Astrophysics Data System (ADS)

    Iizumi, T.; Nishimori, M.; Yokozawa, M.; Kotera, A.; Khang, N. D.

    2008-12-01

    Long-term daily global solar radiation (GSR) data of the same quality in the 20th century has been needed as a baseline to assess the climate change impact on paddy rice production in Vietnamese Mekong Delta area (MKD: 104.5-107.5oE/8.2-11.2oN). However, though sunshine duration data is available, the accessibility of GSR data is quite poor in MKD. This study estimated the daily GSR in MKD for 30-yr (1978- 2007) by applying the statistical downscaling method (SDM). The estimates of GSR was obtained from four different sources: (1) the combined equations with the corrected reanalysis data of daily maximum/minimum temperatures, relative humidity, sea level pressure, and precipitable water; (2) the correction equation with the reanalysis data of downward shortwave radiation; (3) the empirical equation with the observed sunshine duration; and (4) the observation at one site for short term. Three reanalysis data, i.e., NCEP-R1, ERA-40, and JRA-25, were used. Also the observed meteorological data, which includes many missing data, were obtained from 11 stations of the Vietnamese Meteorological Agency for 28-yr and five stations of the Global Summary of the Day for 30-yr. The observed GSR data for 1-yr was obtained from our station. Considering the use of data with many missing data for analysis, the Bayesian inference was used for this study, which has the powerful capability to optimize multiple parameters in a non-linear and hierarchical model. The Bayesian inference provided the posterior distributions of 306 parameter values relating to the combined equations, the empirical equation, and the correction equation. The preliminary result shows that the amplitude of daily fluctuation of modeled GSR was underestimated by the empirical equation and the correction equation. The combination of SDM and Bayesian inference has a potential to estimate the long- term daily GSR of the same quality even though in the area where the observed data is quite limited.

  4. Insolation and Resulting Surface Temperatures of Study Regions on the Moon and Implications for Mercury

    NASA Astrophysics Data System (ADS)

    Bauch, Karin E.; Hiesinger, Harald

    2010-05-01

    The imaging spectrometer MERTIS (Mercury Radiometer and Thermal Infrared Spectrometer) is part of the payload of ESA's BepiColombo mission, which is scheduled for launch in 2014 (Hiesinger et al., 2010). The instrument consists of an IR-spectrometer and radiometer, which observe the surface in the wavelength range of 7-14 and 7-40µm, respectively. The four scientific objectives are to a) study Mercury's surface composition, b) identify rock-forming minerals, c) globally map the surface mineralogy and d) study surface temperature and thermal inertia (Hiesinger et al., 2010; Helbert et al., 2005). Previous studies of the lunar surface have shown that thermal emission contributes to the observed signal from the surface and can influence the spectral characteristics, e.g. the depth of absorption bands (e.g. Clark, 2009; Pieters et al., 2009; Sunshine et al., 2009). Therefore accurate knowledge of the solar insolation and resulting thermal variations is needed. In order to calculate insolation and surface temperatures, we use a numerical model which has been described by Bauch et al. (2009). Surface temperatures are depending on the surface and subsurface bulk thermophysical properties, such as bulk density, heat capacity, thermal conductivity, emissivity, and albedo. Topography also influences surface temperatures, as it changes the angle of solar incidence, but also leads to shadowed areas, e.g. the floors of polar craters. The model solves the one-dimensional heat transfer equation, based on a depth and temperature dependent thermal inertia. The surface boundary condition is based on the energy balance relation; the energy entering a surface equals the energy leaving the surface. In addition to the direct solar insolation, reflectance and scattering from adjacent surface regions also influence the surface temperatures. In preparation of the MERTIS experiment, we performed detailed thermal models of the lunar surface, which we extrapolated to Mercury. For our simulation, we use topography data from the Moon and transfer them as model regions to the surface of Mercury. When calculated with lunar parameters, this allows us to compare the results to lunar temperature measurements of the Apollo, Clementine and Chandrayaan missions (e.g. Keihm and Langseth (1973), Lawson et al. (2000), Pieters et al. (2009)). It also allows a direct comparison of the insolation and thermal variation between craters on the lunar and mercurian surface. Hiesinger, H. et al. (2010), PSS 58, 144-165; Helbert, J. et al. (2005), LPSC XXXVI, Abstract #1753; Clark, R.N. (2009), Science 326, 562-564; Pieters, C.M. et al. (2009), Science 326, 568-572; Sunshine, J.M. et al. (2009), Science 326, 565-568; Bauch, K.E. et al. (2009) LPSC XL, Abstract #1789; Keihm, S.J. and Langseth, M.G. (1973), Proc. Lunar Sci. Conf. 4th, 2503-2513; Lawson, S.L. et al. (2000), JGR 105, E5, 4273-4290

  5. SERI (Solar Energy Research Institute) solar radiation resource assessment project

    NASA Astrophysics Data System (ADS)

    Hulstrom, R. L.; Maxwell, E.; Riordan, C.; Rymes, M.; Stoffel, T.

    1989-10-01

    The earth receives vast amounts of energy from the sun in the form of incident solar radiation. Solar radiation drives the earth's weather and sustains life. As a result of the increasing costs, uncertain availability, and potentially severe environmental impacts of other sources of energy, insolation is being considered as a clean renewable energy source for our needs for heating, cooling, electricity, and fuels. Widespread interest and activities were initiated immediately after the oil embargo of the mid-1970s. For many applications, the insolation must be converted to a different form, such as heat, electricity, or a fuel (liquid, gas, or solid). A technology that can do this is known as a solar energy conversion device or technology. A wide range of candidate technologies is being developed. Some of these technologies include photovoltaics (converting insolation to electricity), solar thermal (converting insolation to heat), solar thermal-electric (converting insolation to heat, then to electricity), and biomass (converting insolation to biomass and then to fuels).

  6. IHT: Tools for Computing Insolation Absorption by Particle Laden Flows

    SciTech Connect

    Grout, R. W.

    2013-10-01

    This report describes IHT, a toolkit for computing radiative heat exchange between particles. Well suited for insolation absorption computations, it is also has potential applications in combustion (sooting flames), biomass gasification processes and similar processes. The algorithm is based on the 'Photon Monte Carlo' approach and implemented in a library that can be interfaced with a variety of computational fluid dynamics codes to analyze radiative heat transfer in particle-laden flows. The emphasis in this report is on the data structures and organization of IHT for developers seeking to use the IHT toolkit to add Photon Monte Carlo capabilities to their own codes.

  7. Solar drying in the Caribbean

    SciTech Connect

    Headley, O. )

    1992-03-01

    The United Nations Food and Agricultural Organisation (FAO) has estimated that a quarter of crops are lost through inadequate handling after harvesting. The use of solar dryers can reduce these losses and improve the quality of food. Oliver Headley of the University of the West Indies overviews a range of dryers developed in the Caribbean region. Solar dryers have been used in various parts of the Caribbean for the past eighteen years. The main types are: closed cycle dryers with separate flat plate collector; open cycle dryers with roof vanes against direct sunlight; open cycle dryers with rockbed heat storage units; open cycle dryers with chimneys for air circulation; wire basket dryers with flow through ventilation; barn roof collectors feeding packed bed dryers. During the dry season (January to April), mean daily insolation in a typical Caribbean island is about 25 MJ/m{sup 2}. With such an abundant resource, solar crop drying emerged as a preferred method for the preservation of perishable commodities. In territories without fossil fuel reserves solar energy is an obvious alternative since it does not involve expenditure of scarce foreign exchange. Research and development work in solar crop drying was conducted both at experimental sites in the University and in rural districts throughout the region. Several types of dryer were designed and tested.

  8. Relative Accuracy of 1-Minute and Daily Total Solar Radiation Data for 12 Global and 4 Direct Beam Solar Radiometers: Preprint

    SciTech Connect

    Myers, D. R.; Wilcox, S. M.

    2009-03-01

    This report evaluates the relative performance of 12 global and four direct beam solar radiometers deployed at a single site over a 12-month period. Test radiometer irradiances were compared with a reference irradiance consisting of either an absolute cavity radiometer (during calibrations) or a low uncertainty thermopile pyrheliometer (during the evaluation period) for pyrheliometers; and for pyranometers a reference global irradiance computed from the reference pyrheliometer and diffuse irradiance from a shaded pyranometer.

  9. Reconstruction of six decades of daily total solar shortwave irradiation in the Iberian Peninsula using sunshine duration records

    NASA Astrophysics Data System (ADS)

    Román, Roberto; Bilbao, Julia; de Miguel, Argimiro

    2014-12-01

    Total global solar shortwave (G) irradiation and sunshine duration were recorded at nine Spanish stations located in the Iberian Peninsula. G irradiation under cloudless conditions was simulated by means of a radiative transfer model using satellite data as input. A method based on these cloudless simulations and sunshine duration records was developed to reconstruct G series. This model was validated against experimental data, providing a good agreement for cloudless skies (mean bias error of 0.4% and root mean square error of 5.8%). Monthly averages of modelled and measured G irradiation presented a mean bias error of 0.5% and a root mean square error of 3%. Differences between modelled and measured G irradiation were in agreement within the model uncertainties. The reconstruction model was applied to sunshine duration measurements, giving long-term G series at the nine locations. Monthly, seasonal, and annual G anomalies were calculated and analysed. Averaged series (using the nine locations) showed a statistically significant decrease in annual G from 1950 to the mid 1980s (-1.7%dc-1) together with a significant increase from the mid 1980s to 2011 (1.6%dc-1). The effect of uncertainty in the reconstructed series on statistically significant trends was studied.

  10. Dynamic modeling and sensitivity analysis of solar thermal energy conversion systems

    NASA Technical Reports Server (NTRS)

    Hamilton, C. L.

    1977-01-01

    Since the energy input to solar thermal conversion systems is both time variant and probabilistic, it is unlikely that simple steady-state methods for estimating lifetime performance will provide satisfactory results. The work described here uses dynamic modeling to begin identifying what must be known about input radiation and system dynamic characteristics to estimate performance reliably. Daily operation of two conceptual solar energy systems was simulated under varying operating strategies with time-dependent radiation intensity ranging from smooth input of several magnitudes to input of constant total energy whose intensity oscillated with periods from 1/4 hour to 6 hours. Integrated daily system output and efficiency were functions of both level and dynamic characteristics of insolation. Sensitivity of output to changes in total input was greater than one.

  11. Urban air pollution and solar energy

    NASA Technical Reports Server (NTRS)

    Gammon, R. B.; Huning, J. R.; Reid, M. S.; Smith, J. H.

    1981-01-01

    The design and performance of solar energy systems for many potential applications (industrial/residential heat, electricity generation by solar concentration and photovoltaics) will be critically affected by local insolation conditions. The effects of urban air pollution are considered and reviewed. A study of insolation data for Alhambra, California (9 km south of Pasadena) shows that, during a recent second-stage photochemical smog alert (greater than or equal to 0.35 ppm ozone), the direct-beam insolation at solar noon was reduced by 40%, and the total global by 15%, from clean air values. Similar effects have been observed in Pasadena, and are attributable primarily to air pollution. Effects due to advecting smog have been detected 200 km away, in the Mojave Desert. Preliminary performance and economic simulations of solar thermal and photovoltaic power systems indicate increasing nonlinear sensitivity of life cycle plant cost to reductions in insolation levels due to pollution.

  12. Could Insoles Offload Pressure? An Evaluation of the Effects of Arch-supported Functional Insoles on Plantar Pressure Distribution during Race Walking.

    PubMed

    Song, Qipeng; Xu, Kaisheng; Yu, Bing; Zhang, Cui; Sun, Wei; Mao, Dewei

    2015-01-01

    This study investigated the effectiveness of functional insoles on plantar pressure distribution during race walking so as to reduce the high plantar pressure and force on race walkers, who tend to suffer from overuse injury. A total of 20 male race walkers aged 21.19 ± 3.66 years and with a mean height of 178.85 ± 14.07 cm were recruited as participants. Each participant completed a race walking with functional or normal insoles. Plantar pressure insoles were used to collect vertical plantar pressure data. A two-way analysis of variance with a mixed design was used to determine the difference between the two conditions. Results showed that the use of functional insoles reduces the peak pressure and the impulse in the metatarsophalangeal joints and heels and thus suggest that functional insoles reduce the overuse injury risks of these parts. The first ground reaction force peak also decreased. This result suggested that functional insoles reduce the risks of foot and leg injuries. PMID:26061909

  13. Correlating Pluto's Albedo Distribution to Long Term Insolation Patterns

    NASA Astrophysics Data System (ADS)

    Earle, Alissa M.; Binzel, Richard P.; Stern, S. Alan; Young, Leslie A.; Buratti, Bonnie J.; Ennico, Kimberly; Grundy, Will M.; Olkin, Catherine B.; Spencer, John R.; Weaver, Hal A.

    2015-11-01

    NASA's New Horizons' reconnaissance of the Pluto system has revealed striking albedo contrasts from polar to equatorial latitudes on Pluto, as well as sharp boundaries for longitudinal variations. These contrasts suggest Pluto undergoes dynamic evolution that drives the redistribution of volatiles. Using the New Horizons results as a template, in this talk we will explore the volatile migration process driven seasonally on Pluto considering multiple timescales. These timescales include the current orbit (248 years) as well as the timescales for obliquity precession (amplitude of 23 degrees over 3 Myrs) and regression of the orbital longitude of perihelion (3.7 Myrs). We will build upon the long-term insolation history model described by Earle and Binzel (2015, Icarus 250, 405-412) with the goal of identifying the most critical timescales that drive the features observed in Pluto’s current post-perihelion epoch. This work was supported by the NASA New Horizons Project.

  14. Cracks in desert pavement rocks: Further insights into mechanical weathering by directional insolation

    NASA Astrophysics Data System (ADS)

    Eppes, Martha Cary; McFadden, Leslie D.; Wegmann, Karl W.; Scuderi, Louis A.

    2010-11-01

    The formation of cracks is a fundamental first step in the physical weathering of rocks in desert environments. In this study we combine new field data from the Mojave (U.S.), Gobi (Mongolia) and Strzelecki (Australia) deserts that collectively support the hypothesis that meridional cracks (cracks with orientations not readily attributable to rock anisotropies or shape) in boulders or cobbles form due to tensile stresses caused by directional heating and cooling during the sun's daily transit. The new studies indicate that rock size, surface age, and latitude play important roles with respect to their influence on rock fracture. Rock size and pavement surface age exert an influence on the development of rock cracks as the average clast size of mature desert pavements may be at or below the threshold-clast size for thermal cracking of rocks. Latitude-controlled seasonal temperature variations play a key role, as demonstrated by: 1) tightly clustered mean resultant orientations that differ by latitude, as predicted in McFadden et al. (2005), and 2) very cold wintertime temperatures and strong diurnal gradients that may favor crack development in wintertime, given the likelihood for strong clast heating during early morning hours. The consistent evidence for meridional cracks in surfaces of diverse age and desert environments, climate, vegetation, and distance of clast transport indicate that directional insolation may play the key role in initially generating and propagating rock fractures, rather than a secondary role as implied in recent field and modeling studies of physical weathering in deserts.

  15. A Novel Shear Reduction Insole Effect on the Thermal Response to Walking Stress, Balance, and Gait

    PubMed Central

    Ammanath, Peethambaran; Le, Tima; Luring, Christopher; Wensman, Jeffrey; Grewal, Gurtej S.; Najafi, Bijan; Pop-Busui, Rodica

    2014-01-01

    Shear stresses have been implicated in the formation of diabetes-related foot ulcers. The aim of this study was to evaluate the effect of a novel shear-reducing insole on the thermal response to walking, balance, and gait. Twenty-seven diabetes peripheral neuropathy patients were enrolled and asked to take 200 steps in both intervention and standard insoles. Thermal foot images of the feet were taken at baseline (1) following a 5-minute temperature acclimatization and (2) after walking. Testing order was randomized, and a 5-minute washout period was used between testing each insole condition. Sudomotor function was also assessed. Gait and balance were measured under single and dual task conditions using a validated body worn sensor system. The mean age was 65.1 years, height was 67.3 inches, weight was 218 pounds, and body mass index was 33.9, 48% were female, and 82% had type 2 diabetes. After walking in both insole conditions, foot temperatures increased significantly in standard insoles. The intervention insole significantly reduced forefoot and midfoot temperature increases (64.1%, P = .008; 48%, P = .046) compared to standard insoles. There were significant negative correlations with sudomotor function and baseline temperatures (r = .53-.57). The intervention demonstrated 10.4% less gait initiation double support time compared to standard insoles (P = .05). There were no differences in static balance measures. We found significantly lower forefoot and midfoot temperature increases following walking with shear-reducing insoles compared to standard insoles. We also found improvements in gait. These findings merit future study for the prevention of foot ulcer. PMID:25107709

  16. Solar Radiation on Mars: Tracking Photovoltaic Array

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Flood, Dennis J.; Crutchik, Marcos

    1994-01-01

    A photovoltaic power source for surface-based operation on Mars can offer many advantages. Detailed information on solar radiation characteristics on Mars and the insolation on various types of collector surfaces are necessary for effective design of future planned photovoltaic systems. In this article we have presented analytical expressions for solar radiation calculation and solar radiation data for single axis (of various types) and two axis tracking surfaces and compared the insulation to horizontal and inclined surfaces. For clear skies (low atmospheric dust load) tracking surfaces resulted in higher insolation than stationary surfaces, whereas for highly dusty atmospheres, the difference is small. The insolation on the different types of stationary and tracking surfaces depend on latitude, season and optical depth of the atmosphere, and the duration of system operation. These insolations have to be compared for each mission.

  17. Dependence on solar elevation and the daily sunshine fraction of the correlation between monthly-average-hourly diffuse and global radiation

    SciTech Connect

    Soler, A. )

    1992-01-01

    In the present work the authors study for Uccle, Belgium data (50{degree}48 minutes N, 4{degree}21 minutes E), the dependence on {anti {gamma}} and {sigma} of the correlations between {anti K}{sub d} = {anti I}{sub d}/{anti I}{sub o} and {anti I}{sub t} = {anti I}/{anti I}{sub o}, where {anti I}, {anti I}{sub d}, and {anti I}{sub o} are respectively, the monthly-average-hourly value of global, diffuse, and extraterrestrial radiation (all of them on a horizontal surface), {anti {gamma}} is the solar elevation at midhour and {sigma} the daily sunshine fraction. The dependence on {sigma} is studied for different ranges of values, from {sigma} = 0 to {sigma} > 0.9. The dependence on {anti {gamma}} is studied for {anti {gamma}} = 5{degree}, 10{degree}, 15{degree}, 25{degree}-30{degree}; 35{degree}-40{degree}; 45{degree}-60{degree} ({delta}{anti {gamma}} = 5{degree}). Relating the dependence on {sigma}, for increasing values of {sigma}({sigma} {>=} 0), there is an increase in {anti K}{sub d} with the increase in {anti K}{sub t}. For 0.42 < {anti K}{sub t} < 0.52 a maximum is obtained for {anti K}{sub d}. After the maximum, as the skies become clearer, {anti K}{sub d} decreases as {anti K}{sub t} increases. Relating the dependence on {anti {gamma}}, for each range of values of {sigma} ({sigma} > 0.2), values of the slope for linear {anti K}{sub d} = f({anti K}{sub t}) correlations show a tendency to decrease as {anti {gamma}} increases. For each value of {anti {gamma}} the slopes of the linear {anti K}{sub d} = f({anti K}{sub t}) correlations tend to decrease when {sigma} increases.

  18. Surface Radiation Budget (SRB) Release 2.5 QC Shortwave Daily Data in Native Format (SRB_REL2.5_QCSW_DAILY)

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W. (Principal Investigator)

    This data set contains average clear-sky surface insolation, all-sky surface insolation, surface absorbed SW flux, and all-sky surface albedo measured at daily intervals for each day for the entire globe between 07/01/1983 and 06/30/2005. These SW surface radiative parameters were derived with the Quality-Check SW (QCSW) algorithm of the NASA World Climate Research Programme/Global Energy and Water-Cycle Experiment (WCRP/GEWEX) Surface Radiation Budget (SRB) Project. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=Ranges from 1 degree (tropics and subtropics) to 120 degrees (the poles).; Temporal_Resolution=daily; Temporal_Resolution_Range=daily].

  19. Validity and reliability of pressure-measurement insoles for vertical ground reaction force assessment in field situations.

    PubMed

    Koch, Markus; Lunde, Lars-Kristian; Ernst, Michael; Knardahl, Stein; Veiersted, Kaj Bo

    2016-03-01

    This study aimed to test the validity and reliability of pressure-measurement insoles (medilogic(®) insoles) when measuring vertical ground reaction forces in field situations. Various weights were applied to and removed from the insoles in static mechanical tests. The force values measured simultaneously by the insoles and force plates were compared for 15 subjects simulating work activities. Reliability testing during the static mechanical tests yielded an average interclass correlation coefficient of 0.998. Static loads led to a creeping pattern of the output force signal. An individual load response could be observed for each insole. The average root mean square error between the insoles and force plates ranged from 6.6% to 17.7% in standing, walking, lifting and catching trials and was 142.3% in kneeling trials. The results show that the use of insoles may be an acceptable method for measuring vertical ground reaction forces in field studies, except for kneeling positions. PMID:26674403

  20. Analysis of walking improvement with dynamic shoe insoles, using two accelerometers

    NASA Astrophysics Data System (ADS)

    Tsuruoka, Yuriko; Tamura, Yoshiyasu; Shibasaki, Ryosuke; Tsuruoka, Masako

    2005-07-01

    The orthopedics at the rehabilitation hospital found that disorders caused by sports injuries to the feet or caused by lower-back are improved by wearing dynamic shoe insoles, these improve walking balance and stability. However, the relationship of the lower-back and knees and the rate of increase in stability were not quantitatively analyzed. In this study, using two accelerometers, we quantitatively analyzed the reciprocal spatiotemporal contributions between the lower-back and knee of patients with left lower-back pain by means of Relative Power Contribution Analysis. When the insoles were worn, the contribution of the left and right knee relative to the left lower-back pain was up to 26% ( p<0.05) greater than without the insoles. Comparing patients with and without insoles, we found that the variance in the step response analysis of the left and right knee decreased by up to 67% ( p<0.05). This shows an increase in stability.

  1. Quaternary Science Reviews 26 (2007) 30253029 Lesson from the past: present insolation minimum holds

    E-print Network

    Born, Andreas

    2007-01-01

    of the precession of the equinoxes causes the present-day perihelion to be in January. In contrast, at the onset influence of precession on insolation today is most similar to the situation around 400 ka BP (Fig. 2A

  2. GOES surface insolation to estimate wetlands evapotranspiration Jennifer M. Jacobsa,*, David A. Myersa

    E-print Network

    GOES surface insolation to estimate wetlands evapotranspiration Jennifer M. Jacobsa,*, David A observations, in combination with local meteorological measurements, were used to model evapotranspiration from evapotranspiration. The calculated instantaneous evaporative fluxes were in good agreement with 30-min average ground

  3. In the hot seat: Insolation, ENSO, and vegetation in the African tropics

    E-print Network

    In the hot seat: Insolation, ENSO, and vegetation in the African tropics Sarah J. Ivory,1 Joellen convergence, rather than precipitation amount. Citation: Ivory, S. J., J. Russell, and A. S. Cohen (2013

  4. Variation of solar cell sensitivity and solar radiation on tilted surfaces

    NASA Technical Reports Server (NTRS)

    Klucher, T. M.

    1978-01-01

    The validity is studied that one of various insolation models used to compute solar radiation incident on tilted surfaces from global data measured on horizontal surfaces. The variation of solar cell sensitivity to solar radiation is determined over a wide range of atmospheric condition. A new model was formulated that reduced the deviations between measured and predicted insolation to less than 3 percent. Evaluation of solar cell sensitivity data indicates small change (2-3 percent) in sensitivity from winter to summer for tilted cells. The feasibility of using such global data as a means for calibrating terrestrial solar cells is discussed.

  5. Operation and performance of the solar steam system at the Johnson & Johnson plant in Sherman, Texas

    NASA Astrophysics Data System (ADS)

    Brink, D. F.; Youngblood, S. B.

    1982-08-01

    A solar system that produces 174 C (345 F) steam is in operation at the Johnson and Johnson manufacturing plant in Sherman, Texas. The system uses parabolic trough collectors to heat pressurized water which then flashes to steam in a flash boiler; this steam is fed into the plant steam main for use in several manufacturing processes. The facility's performance has been monitored continuously since it began operation in January 1980. The collector field typically has delivered energy to the flash boiler at an average daily efficiency of 30 to 40 percent, with an hourly average efficiency ranging from 38 to 42 percent at peak insolation periods. The daily and hourly values for energy collected and steam generated on a clear day in September are presented, as well as a monthly summary for the first 13 months of operation.

  6. Effects of low-energy laser insolation upon the development of postradiation syndrome

    NASA Astrophysics Data System (ADS)

    Pavlova, Rimma N.; Gomberg, Vladimir G.; Boiko, Vladimir A.; Pupkova, Ludmila S.; Reznikov, Leonid L.; Dadali, V. A.

    1996-04-01

    Basic pathogenic research as well as the studies of clinical therapeutic aspects dealing with the long-term gamma radiation effects are of utmost significance nowadays. The main goal of the present study was to establish the capability of low-energy laser insolation to oppose the free radical oxidative chain reactions inherent to the effects of radiation. Adequate doses of low- energy laser insolation were shown to produce positive effects upon the metabolism similar to those of pharmacologic radioprotectors.

  7. Sensitivity of Asian and African climate to variations in seasonal insolation, glacial ice cover, sea surface temperature and Asian orography

    SciTech Connect

    DeMenocal, P.B. ); Rind, D. )

    1993-04-20

    The authors are interested in the general question of how low and high latitude regions interact on a climatic scale. Here they present results for modeled climatic influences in Asia and Africa, due to boundary condition changes in surrounding regions. The factors varied were the amount of solar insolation, the extent of glacial ice cover in high latitude areas, the north Atlantic sea surface temperatures, and the height of the Asian orography elevations. Results of using the GISS general circulation model, with these different imposed boundary conditions are then observed for their impact on the seasonal climate of the Asian and African monsoons. These results are then looked at in light of paleoclimatic evidence to see if these influences might be a major factor in driving the climate changes in Asia and Africa.

  8. Local effects of partly-cloudy skies on solar and emitted radiations

    NASA Technical Reports Server (NTRS)

    Whitney, D. A.; Griffin, T. J.

    1983-01-01

    Atmospheric aerosol and turbidity measurements were analyzed and the results are presented. The correlation of global insolation with cloud cover fractions for the first complete year's data set was completed. A theoretical model was developed to parameterize the effects of local aerosols upon insolation received at the ground using satellite radiometric data and insolation measurements under clear sky conditions. A February data set, composed of one minute integrated global insolation and direct solar irradiances, cloud cover fractions, meteorological data from nearby weather stations, and GOES East satellite radiometric data was collected to test the model and used to calculate the effects of local aerosols.

  9. Characteristics of long-term variation in the amlitude of the geomagnetic solar quiet (Sq) daily variation using the Inter-university Upper atmosphere Gobal Observation NETwork (IUGONET) data analysis system

    NASA Astrophysics Data System (ADS)

    Shinbori, A.; Koyama, Y.; Nose, M.; Hori, T.; Otsuka, Y.; Yatagai, A. I.

    2014-12-01

    Characteristics of long-term variation in the amplitude of solar quiet geomagnetic field daily variation (Sq) have been investigated using 1-hour geomagnetic field data obtained from 69 geomagnetic stations in a period of 1947-2013. In the present data analysis, we took advantage of the IUGONET data analysis system. The Sq amplitude clearly showed a 10-12 year solar activity dependence and it tended to enhance during each solar maximum. During the minimum of solar cycle 23/24 in 2008-2009, the Sq amplitude became the smallest in the investigated period. The relationship between the solar F10.7 index and Sq amplitude is approximately linear but 64 percent of geomagnetic stations show a weak nonlinear dependence on the solar F10.7 index. In order to remove the effect of solar activity seen in the long-term variation of the Sq amplitude, we calculated a linear or second order fitting curve between the solar F10.7 index and Sq amplitude during 1947-2013, and examined the residual Sq amplitude, which is defined as the deviation from the fitting curve. As a result, a majority of the trends in the residual Sq amplitude that passed through a trend test showed a negative value in a wide region. This tendency was relatively strong in Europe, India, the eastern part of Canada, and New Zealand. The relationship between the magnetic field intensity and residual Sq amplitude showed an anti-correlation for about 71 percent of geomagnetic stations. On the other hand, the residual Sq amplitude in the equatorial station (Addis Ababa) was anti-correlated with the absolute value of the magnetic field inclination. This implies the movement of the equatorial electrojet due to the secular variation of the ambient magnetic field.

  10. U.S. Solar Resource Maps and Tools from the National Renewable Energy Laboratory (NREL)

    DOE Data Explorer

    Solar maps provide monthly average daily total solar resource information on grid cells. The insolation values represent the resource available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal to equal to the latitude of the collector location. [Copied from http://www.nrel.gov/gis/solar.html] Several types of solar maps are made available. The U.S. Solar resource maps show the resource potential for energy from photovoltaics and from concentrating solar power (CSP). Both sets of maps are available in low or high resolution. A dynamic map based on version 2 of PVWATTS calculates electrical energy performance estimates for a grid-connected photovoltaic system. The map of U.S. Solar Measurement Station Locations is also dynamic, showing the spatial distribution of measurement stations across the U.S. that are monitored by programs and agencies such as DOE's Atmospheric Radiation Measurement (ARM) Program or NREL's Cooperative Network for Renewable Resource Measurements (CONFRRM). Clicking on a station location will take the user to the website of that station. Finally, static map images providing solar resource information averaged by month are also available.

  11. Does Wearing Textured Insoles during Non-class Time Improve Proprioception in Professional Dancers?

    PubMed

    Steinberg, N; Tirosh, O; Adams, R; Karin, J; Waddington, G

    2015-11-01

    This study sought to determine whether textured insoles inserted in the sports shoes of young dancers improved their inversion and eversion ankle movement discrimination. 26 ballet dancers (14 female, 12 male) from the Australian Ballet School, ages 14-19 years, were divided into 2 groups according to sex and class levels. During the first 4 weeks, the first intervention group (GRP1) was asked to wear textured insoles in their sports shoes during non-class periods, and the second intervention group (GRP2) followed standard practice. In the next 4 weeks, GRP2 was asked to wear the textured insoles and GRP1 did not wear the textured insoles. Participants were tested pre-intervention, after 4 weeks, and at 8 weeks for both inversion and eversion ankle discrimination. In both inversion and eversion testing positions, interaction was found between the 2 groups and the 3 testing times (p<0.001), with significant differences between the first testing and the second testing (p=0.038 and p=0.019, respectively), and between the third testing and the second testing (p=0.003 and p=0.029, respectively). In conclusion, the stimulation to the proprioceptive system arising from textured insoles worn for 4 weeks was sufficient to improve the ankle proprioception of ballet dancers, in both inversion and eversion movements. PMID:26332901

  12. New methods for evaluating physical and thermal comfort properties of orthotic materials used in insoles for patients with diabetes.

    PubMed

    Lo, Wai Ting; Yick, Kit Lun; Ng, Sun Pui; Yip, Joanne

    2014-01-01

    Orthotic insoles are commonly used in the treatment of the diabetic foot to prevent ulcerations. Choosing suitable insole material is vital for effective foot orthotic treatment. We examined seven types of orthotic materials. In consideration of the key requirements and end uses of orthotic insoles for the diabetic foot, including accommodation, cushioning, and control, we developed test methods for examining important physical properties, such as force reduction and compression properties, insole-skin friction, and shear properties, as well as thermal comfort properties of fabrication materials. A novel performance index that combines various material test results together was also proposed to quantify the overall performance of the insole materials. The investigation confirms that the insole-sock interface has a lower coefficient of friction and shearing stress than those of the insole-skin interface. It is also revealed that material brand and the corresponding density and cell volume, as well as thickness, are closely associated with the performance of moisture absorption and thermal comfort. On the basis of the proposed performance index, practitioners can better understand the properties and performance of various insole materials, thus prescribing suitable orthotic insoles for patients with diabetic foot. PMID:24933729

  13. Using an optimization approach to design an insole for lowering plantar fascia stress--a finite element study.

    PubMed

    Hsu, Yu-Chun; Gung, Yih-Wen; Shih, Shih-Liang; Feng, Chi-Kuang; Wei, Shun-Hwa; Yu, Chung-Huang; Chen, Chen-Sheng

    2008-08-01

    Plantar heel pain is a commonly encountered orthopedic problem and is most often caused by plantar fasciitis. In recent years, different shapes of insole have been used to treat plantar fasciitis. However, little research has been focused on the junction stress between the plantar fascia and the calcaneus when wearing different shapes of insole. Therefore, this study aimed to employ a finite element (FE) method to investigate the relationship between different shapes of insole and the junction stress, and accordingly design an optimal insole to lower fascia stress.A detailed 3D foot FE model was created using ANSYS 9.0 software. The FE model calculation was compared to the Pedar device measurements to validate the FE model. After the FE model validation, this study conducted parametric analysis of six different insoles and used optimization analysis to determine the optimal insole which minimized the junction stress between plantar fascia and calcaneus. This FE analysis found that the plantar fascia stress and peak pressure when using the optimal insole were lower by 14% and 38.9%, respectively, than those when using the flat insole. In addition, the stress variation in plantar fascia was associated with the different shapes of insole. PMID:18481179

  14. Insolation-sunshine relation with site elevation and latitude

    SciTech Connect

    Raja, I.A. )

    1994-07-01

    Data from six meteorological stations dispersed widely over Pakistan have been used to produce a correlation between the monthly means of easily measured sunshine duration and the less frequently recorded global solar radiation, taking into account the site elevation above sea level and the latitude. The relation is shown to be valuable for other regions too.

  15. Medium term comparison of shock attenuating insoles using a spectral analysis technique.

    PubMed

    Pratt, D J

    1988-10-01

    In view of the current interest in skeletal shock and the damage it could cause, this paper illustrates the value of a new device for measuring shock transients reliably during gait. Four orthotic insoles were tested (Viscolas, PPT, Plastazote and Gait Aid) during walking on a timed oval course at intervals during 1 month using the J.P. Biomechanics Shock Meter. The 'shock factor' for each insole was recorded and the data show that Viscolas and Gait Aid do not appear to deteriorate in use whereas PPT and Plastazote do. Viscolas and PPT perform well; Viscolas is just superior; Plastazote (after 2 days) and Gait Aid both perform poorly. It is suggested that manufacturers should acknowledge the effect of use on the insole properties because this information is of paramount interest to the users of their products. PMID:3236870

  16. A 3D Earth orbit model; visualization and analysis of Milankovitch cycles and insolation

    NASA Astrophysics Data System (ADS)

    Gilb, R. D.; Kostadinov, T. S.

    2012-12-01

    An astronomically precise and accurate Earth orbit graphical model, Earth orbit v2.0, is presented. The model offers 3D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcings. Prevalent paleoclimatic theories invoke Milankovitch cycles as a major forcing mechanism capable of shifting Earth's climate regimes on time scales of tens to hundreds of thousands of years. Variability of eccentricity (ellipticity of orbit), precession (longitude of perihelion) and obliquity (Earth's axial tilt) changes parameters such as amplitude of seasonal insolation, timing of seasons with respect to perihelion, and total annual insolation. Hays et al. (1976) demonstrated a strong link between Milankovitch cycles and paleoclimatological records, which has been confirmed and expanded many times since (e.g. Berger et al., 1994; Berger et al., 2010). The complex interplay of several orbital parameters on various time scales makes assessment and visualization of Earth's orbit and spatio-temporal insolation variability challenging. It is difficult to appreciate the pivotal importance of Kepler's laws of planetary motion in controlling the effects of Milankovitch cycles on insolation patterns on various spatio-temporal scales. These factors also make Milankovitch theory difficult to teach effectively. The model allows substantial user control in a robust, yet intuitive and user-friendly graphical user interface (GUI) developed in Matlab. We present the user with a choice between Berger et al. (1978) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. Berger solutions span from -1 Myr to +1 Myr, while Laskar provides solutions from -101 Myr to +21 Myr since J2000. Users can also choose a "demo" mode which allows the three Milankovitch parameters to be varied independently of each other, so the user can isolate the effects of each on orbital geometry and insolation. For example, extreme eccentricity can be chosen, which is useful for illustrating Kepler's laws, and precession can be varied to illustrate its effect on the timing of the seasons. Earth's orbit is plotted in 3D with the chosen real (past, present or future) or demo Milankovitch parameters. Earth is placed in its orbit using Kepler's Laws and the calendar can be started on either vernal equinox (March 20) or perihelion (Jan. 3). The Sun, perihelion, and the equinoxes and solstices are displayed in a plot that can be zoomed, panned and rotated in three dimensions. The model can also output time-series plots at varying scales from Berger and Laskar's solutions. Coupled with the orbit plotting and time-series functionality, global insolation is computed as a function of latitude and day of year, using the chosen Milankovitch parameters. 3D surface plots of insolation and insolation anomalies (compared to J2000) are then produced. Insolation computations use the model's own orbital geometry with no additional a-priori input other than the Milankovitch parameter solutions. Insolation computations are successfully validated against Laskar et al. (2004). Envisioned future developments include more options for insolation plots on user-chosen spatio-temporal scales and overlaying various paleoclimatological proxy data.

  17. Effects of prefabricated foot orthoses and soft insoles on postural stability in professional soccer players.

    PubMed

    Percy, M L; Menz, H B

    2001-04-01

    Postural stability is an important component of skilled athletic activity. However, the effects of foot orthoses on stability have not been adequately addressed. This study measured postural sway in 30 asymptomatic professional soccer players in three standing positions and four underfoot conditions. The results revealed that the underfoot condition had no significant effect on sway in the mediolateral or anteroposterior planes; however, there was a trend toward less mediolateral sway when subjects stood in a unipedal position with prefabricated orthoses. These results suggest that insoles and foot orthoses have no significant beneficial or detrimental effects on postural stability in asymptomatic subjects. Clinically, this suggests that no improvements in balance performance could be expected with prophylactic use of insoles or orthoses but that clinicians may prescribe insoles and foot orthoses without fear of impairing postural performance in elite athletes. PMID:11319249

  18. Insolation, erosion, and morphology of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Keller, H. U.; Mottola, S.; Davidsson, B.; Schröder, S. E.; Skorov, Y.; Kührt, E.; Groussin, O.; Pajola, M.; Hviid, S. F.; Preusker, F.; Scholten, F.; A'Hearn, M. F.; Sierks, H.; Barbieri, C.; Lamy, P.; Rodrigo, R.; Koschny, D.; Rickman, H.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Debei, S.; De Cecco, M.; Fornasier, S.; Fulle, M.; Gutiérrez, P. J.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kramm, J. R.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Michalik, H.; Naletto, G.; Sabau, L.; Thomas, N.; Vincent, J.-B.; Wenzel, K.-P.; Agarwal, J.; Güttler, C.; Oklay, N.; Tubiana, C.

    2015-11-01

    Context. The complex shape of comet 67P and its oblique rotation axis cause pronounced seasonal effects. Irradiation and hence activity vary strongly. Aims: We investigate the insolation of the cometary surface in order to predict the sublimation of water ice. The strongly varying erosion levels are correlated with the topography and morphology of the present cometary surface and its evolution. Methods: The insolation as a function of heliocentric distance and diurnal (spin dependent) variation is calculated using >105 facets of a detailed digital terrain model. Shading, but also illumination and thermal radiation by facets in the field of view of a specific facet are iteratively taken into account. We use a two-layer model of a thin porous dust cover above an icy surface to calculate the water sublimation, presuming steady state and a uniform surface. Our second model, which includes the history of warming and cooling due to thermal inertia, is restricted to a much simpler shape model but allows us to test various distributions of active areas. Results: Sublimation from a dirty ice surface yields maximum erosion. A thin dust cover of 50 ?m yields similar rates at perihelion. Only about 6% of the surface needs to be active to match the observed water production rates at perihelion. A dust layer of 1 mm thickness suppresses the activity by a factor of 4 to 5. Erosion on the south side can reach more than 10 m per orbit at active spots. The energy input to the concave neck area (Hapi) during northern summer is enhanced by about 50% owing to self-illumination. Here surface temperatures reach maximum values along the foot of the Hathor wall. Integrated over the whole orbit this area receives the least energy input. Based on the detailed shape model, the simulations identify "hot spots" in depressions and larger pits in good correlation with observed dust activity. Three-quarters of the total sublimation is produced while the sub-solar latitude is south, resulting in a distinct dichotomy in activity and morphology. Conclusions: The northern areas display a much rougher morphology than what is seen on Imhotep, an area at the equator that will be fully illuminated when 67P is closer to the Sun. Self-illumination in concave regions enhance the energy input and hence erosion. This explains the early activity observed at Hapi. Cliffs are more prone to erosion than horizontal, often dust covered, areas, which leads to surface planation. Local activity can only persist if the forming cliff walls are eroding. Comet 67P has two lobes and also two distinct sides. Transport of material from the south to the north is probable. The morphology of the Imhotep plain should be typical for the terrains of the yet unseen southern hemisphere.

  19. Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume.

    PubMed

    Abe-Ouchi, Ayako; Saito, Fuyuki; Kawamura, Kenji; Raymo, Maureen E; Okuno, Jun'ichi; Takahashi, Kunio; Blatter, Heinz

    2013-08-01

    The growth and reduction of Northern Hemisphere ice sheets over the past million years is dominated by an approximately 100,000-year periodicity and a sawtooth pattern (gradual growth and fast termination). Milankovitch theory proposes that summer insolation at high northern latitudes drives the glacial cycles, and statistical tests have demonstrated that the glacial cycles are indeed linked to eccentricity, obliquity and precession cycles. Yet insolation alone cannot explain the strong 100,000-year cycle, suggesting that internal climatic feedbacks may also be at work. Earlier conceptual models, for example, showed that glacial terminations are associated with the build-up of Northern Hemisphere 'excess ice', but the physical mechanisms underpinning the 100,000-year cycle remain unclear. Here we show, using comprehensive climate and ice-sheet models, that insolation and internal feedbacks between the climate, the ice sheets and the lithosphere-asthenosphere system explain the 100,000-year periodicity. The responses of equilibrium states of ice sheets to summer insolation show hysteresis, with the shape and position of the hysteresis loop playing a key part in determining the periodicities of glacial cycles. The hysteresis loop of the North American ice sheet is such that after inception of the ice sheet, its mass balance remains mostly positive through several precession cycles, whose amplitudes decrease towards an eccentricity minimum. The larger the ice sheet grows and extends towards lower latitudes, the smaller is the insolation required to make the mass balance negative. Therefore, once a large ice sheet is established, a moderate increase in insolation is sufficient to trigger a negative mass balance, leading to an almost complete retreat of the ice sheet within several thousand years. This fast retreat is governed mainly by rapid ablation due to the lowered surface elevation resulting from delayed isostatic rebound, which is the lithosphere-asthenosphere response. Carbon dioxide is involved, but is not determinative, in the evolution of the 100,000-year glacial cycles. PMID:23925242

  20. Drive-Response Analysis of Global Ice Volume, CO2, and Insolation using Information Transfer

    NASA Astrophysics Data System (ADS)

    Brendryen, J.; Hannisdal, B.

    2014-12-01

    The processes and interactions that drive global ice volume variability and deglaciations are a topic of considerable debate. Here we analyze the drive-response relationships between data sets representing global ice volume, CO2 and insolation over the past 800 000 years using an information theoretic approach. Specifically, we use a non-parametric measure of directional information transfer (IT) based on the construct of transfer entropy to detect the relative strength and directionality of interactions in the potentially chaotic and non-linear glacial-interglacial climate system. Analyses of unfiltered data suggest a tight coupling between CO2 and ice volume, detected as strong, symmetric information flow consistent with a two-way interaction. In contrast, IT from Northern Hemisphere (NH) summer insolation to CO2 is highly asymmetric, suggesting that insolation is an important driver of CO2. Conditional analysis further suggests that CO2 is a dominant influence on ice volume, with the effect of insolation also being significant but limited to smaller-scale variability. However, the strong correlation between CO2 and ice volume renders them information redundant with respect to insolation, confounding further drive-response attribution. We expect this information redundancy to be partly explained by the shared glacial-interglacial "sawtooth" pattern and its overwhelming influence on the transition probability distributions over the target interval. To test this, we filtered out the abrupt glacial terminations from the ice volume and CO2 records to focus on the residual variability. Preliminary results from this analysis confirm insolation as a driver of CO2 and two-way interactions between CO2 and ice volume. However, insolation is reduced to a weak influence on ice volume. Conditional analyses support CO2 as a dominant driver of ice volume, while ice volume and insolation both have a strong influence on CO2. These findings suggest that the effect of orbital variability on global ice volume may work primarily through its influence on CO2. Our preliminary results are consistent with the idea that the coupling between CO2 and ice volume likely occurs via a feedback loop that involves meltwater-induced shifts in oceanic circulation and associated changes in the carbon cycle.

  1. PUBLISHED ONLINE: 4 SEPTEMBER 2011 | DOI: 10.1038/NGEO1245 Significant contribution of insolation to Eemian

    E-print Network

    Born, Andreas

    of insolation to Eemian melting of the Greenland ice sheet Willem Jan van de Berg1 *, Michiel van den Broeke1,000 to 114,000 years ago, the volume of the Greenland ice sheet was about 30­60% smaller than the present for the future stability of the Greenland ice sheet. However, Northern Hemisphere insolation was much higher

  2. The Effect of Milankovitch Variations in Insolation on Equatorial Seasonality YOSEF ASHKENAZY

    E-print Network

    Gildor, Hezi

    times per year at the equinoxes, at times in the past the equatorial insolation has had only one maximum temperature (SST) close to the vernal equinox and minimum SST close to the autumnal equinox or vice versa- bital parameters of eccentricity, obliquity, and precession Corresponding author address: Yosef

  3. On the Departure from Isothermality of Pluto's Volatile Ice due to Local Insolation and Topography

    NASA Astrophysics Data System (ADS)

    Trafton, Laurence M.; Stansberry, John A.

    2015-11-01

    Pluto’s atmosphere is known to be supported by the vapor pressure of ices that are volatile at low temperature, primarily N2 and secondarily CH4 and CO. The atmospheric bulk is regulated by the globally average temperature of the ice, which is determined by a radiative balance between the diurnally average insolation absorbed globally by the volatile ice and the global volatile ice thermal radiation. This bulk is sufficient that Pluto’s atmosphere is close to hydrostatic equilibrium, though this may not remain so as Pluto continues to move towards aphelion. With the weight of the atmosphere currently distributed evenly around the body, the ice temperature is expected to be globally isothermal in absence of topographic variations, due to the transport of latent heat from regions of high insolation to low insolation through sublimation and condensation. Images returned from the New Horizons spacecraft show topographical features, including mountain ranges that extend above 3.5 km, with albedo variations that suggest a topographical dimension or dependence of the volatile ice deposits. In general, the conditions often applied to a volatile atmosphere of hydrostatic equilibrium and vapor-solid phase equilibrium are approximations that may not always both be appropriate. This is particularly the case in the presence of topography when the atmospheric lapse rate differs from the wet adiabat. We present our results of an investigation of the effect of variable insolation and topography on Pluto’s local ice temperature assuming an atmosphere close to hydrostatic equilibrium.

  4. Formation of gullies on Mars: Link to recent climate history and insolation microenvironments implicate

    E-print Network

    Marchant, David R.

    Formation of gullies on Mars: Link to recent climate history and insolation microenvironments Martian impact crater show that gully formation follows a geologically recent period of midlatitude and sedimentary fans of the gullies. Recent modeling shows that top-down melting can occur

  5. Northsouth topographic slope asymmetry on Mars: Evidence for insolation-related erosion at high obliquity

    E-print Network

    Head III, James William

    North­south topographic slope asymmetry on Mars: Evidence for insolation-related erosion at high 2003; published 12 August 2003. [1] A map of north­south subkilometer-scale slope asymmetry on Mars; 5415 Planetology: Solid Surface Planets: Erosion and weathering; 5450 Planetology: Solid Surface

  6. Temporal behavior of a ventilated claystone at the Tournemire URL: Cross-spectral analyses focused on daily harmonics

    NASA Astrophysics Data System (ADS)

    Bailly, David; Matray, Jean-Michel; Ababou, Rachid

    2014-12-01

    The main topic of this communication is the presentation of study, auscultation and supervision procedures of deep geological radioactive waste storage repositories using natural harmonic forcings. In this paper, the effects of natural ventilation on the macroscopic behavior of a clayrock are investigated by means of time series recorded underground over a period of two years in the eastern part of Gallery 1996 at the Tournemire Underground Research Laboratory (URL). This study is based on time series acquired in theatmosphere, at the gallery wall surface, and inside the rock mass. It includes measured signals from 6 thermo-hygrometers, 5 crack-meters (measuring the displacement of 2 shrinkage cracks and 3 tectonic fractures), and a 1 meter-FDR (Frequency Domain Reflectometry) profile probe equipped with 6 sensors for measuring the volumetric pore-water content into the rock mass. Auto-spectral and cross-spectral analyses using the concept of Singular Spectrum Harmonics (SSHs and cross-SSHs) are developed. Our analyses and interpretations focus here mainly on the solar diurnal atmospheric tide (denoted S1 ). This tide corresponds to the insolation cycle of the Earth atmosphere during a mean Solar Day (24 h 00 min). This component is tracked throughout the various measured signals ("Spectral Tracking" of tide fluctuations across signals). This is equivalent, in a way, to analyzing the temporal behavior of the URL during a "Mean Solar Day on Earth". Results indicate that the daily natural forcing caused mainly by a combination of barometric and temperature related fluctuations, is the most important effect overall on our various signals. The daily harmonic induces the fluctuations of gallery air temperature, relative and absolute air humidity and it leads to desaturation of the claystone, which in turn leads to the claystone deformation and damage. The effects of the annual harmonic SA may also be significant (it was fully analyzed in the more complete version of this work); however the SA results are not presented here because the spectral resolution on the annual harmonic is insufficient at this stage with only 2 years and 2 months of clean recorded data. Focusing the present study on daily fluctuations, the cross-spectral time shifts were obtained from the phase spectrum, for the daily component S1, for various pairs of pore-water content sensors located at different distances from the gallery wall. These time shifts were then used to quantify a "spectral velocity" which is found to be on the same order than the hydraulic conductivities deduced previously from pneumatic tests performed in the Excavation Damaged Zone of Gallery 1996.

  7. Surface Meteorology and Solar Energy (SSE) Data Release 5.1

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W. (Principal Investigator)

    The Surface meteorology and Solar Energy (SSE) data set contains over 200 parameters formulated for assessing and designing renewable energy systems.The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree].

  8. A method for subject-specific modelling and optimisation of the cushioning properties of insole materials used in diabetic footwear.

    PubMed

    Chatzistergos, Panagiotis E; Naemi, Roozbeh; Chockalingam, Nachiappan

    2015-06-01

    This study aims to develop a numerical method that can be used to investigate the cushioning properties of different insole materials on a subject-specific basis. Diabetic footwear and orthotic insoles play an important role for the reduction of plantar pressure in people with diabetes (type-2). Despite that, little information exists about their optimum cushioning properties. A new in-vivo measurement based computational procedure was developed which entails the generation of 2D subject-specific finite element models of the heel pad based on ultrasound indentation. These models are used to inverse engineer the material properties of the heel pad and simulate the contact between plantar soft tissue and a flat insole. After its validation this modelling procedure was utilised to investigate the importance of plantar soft tissue stiffness, thickness and loading for the correct selection of insole material. The results indicated that heel pad stiffness and thickness influence plantar pressure but not the optimum insole properties. On the other hand loading appears to significantly influence the optimum insole material properties. These results indicate that parameters that affect the loading of the plantar soft tissues such as body mass or a person's level of physical activity should be carefully considered during insole material selection. PMID:25937545

  9. Solar panel parallel mounting configuration

    NASA Technical Reports Server (NTRS)

    Mutschler, Jr., Edward Charles (Inventor)

    1998-01-01

    A spacecraft includes a plurality of solar panels interconnected with a power coupler and an electrically operated device to provide power to the device when the solar cells are insolated. The solar panels are subject to bending distortion when entering or leaving eclipse. Spacecraft attitude disturbances are reduced by mounting each of the solar panels to an elongated boom made from a material with a low coefficient of thermal expansion, so that the bending of one panel is not communicated to the next. The boom may be insulated to reduce its bending during changes in insolation. A particularly advantageous embodiment mounts each panel to the boom with a single mounting, which may be a hinge. The single mounting prevents transfer of bending moments from the panel to the boom.

  10. Managing Daily Life

    MedlinePLUS

    ... Other Ways to Help About Us Mission Financials History Staff & Board Media Awards Contact Us Home / Care for Duchenne / Managing Daily Life Print Email Managing Daily Life Environmental accessibility As the person with Duchenne starts to ...

  11. Daily exercise routines

    NASA Technical Reports Server (NTRS)

    Anderson, Patrick L.; Amoroso, Michael T.

    1990-01-01

    Viewgraphs on daily exercise routines are presented. Topics covered include: daily exercise and periodic stress testings; exercise equipment; physiological monitors; exercise protocols; physiological levels; equipment control; control systems; and fuzzy logic control.

  12. Solar Thermal Conversion

    SciTech Connect

    Kreith, F.; Meyer, R. T.

    1982-11-01

    The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

  13. Solar energy education. Renewable energy: A background text

    NASA Astrophysics Data System (ADS)

    Some of the most common forms of renewable energy are presented. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the Sun and the solar energy that it yields. Discussions on the Sun's composition and the relationship between the Earth, Sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy.

  14. Changes in windlass effect in response to different shoe and insole designs during walking.

    PubMed

    Lin, Shih-Cherng; Chen, Carl P C; Tang, Simon F T; Wong, Alice M K; Hsieh, Jui-Hsiang; Chen, Weng-Pin

    2013-02-01

    Windlass effect occurs during the pre-swing phase of gait cycle in which the peak tensile strain and force of the plantar aponeurosis (PA) is reached. The increased dorsiflexion angle of the 1st metatarsophalangeal (MTP) joint is the main causing factor. The aim of this study was to investigate thoroughly in finding the appropriate shoe and insole combination that can effectively decrease the windlass effect. Foot kinematic analyses of 10 normal volunteers (aged 25.2±2.1 years, height of 167.4±9.1 cm, and weight of 66.2±18.1 kg) were performed during gait under the conditions of barefoot, standard shoe (SS) with flat insole (FI) or carbon fiber insole (CFI), and rocker sole shoe (RSS) with FI or CFI. The shoe cover consisting of transparent polymer was used for accurate measurement of kinematic data as specific areas on the cover can be cut away for direct placement of reflective markers onto the skin. Under barefoot condition, the mean of maximum dorsiflexion angle of the 1st MTP joint was measured to be 48.0±7.3°, and decreased significantly to 28.2±5.7° when wearing SS with FI, and 24.1±5.7° when wearing SS with CFI. This angle was further decreased to around 13° when wearing RSS with FI or CFI. Subjects wearing footwear alone can increase the minimum medial longitudinal angle and decrease the maximum plantarflexion angle of metatarsus related to the calcaneus as compared with barefoot condition, resulting in flatter medial foot arch. Results suggested that RSS is the effective footwear in reducing the windlass effect regardless the type of insole inserted. The findings in this study provided us with the evidences in finding the appropriate footwear for treating foot disorders such as plantar fasciitis by effectively reducing the windlass effect. PMID:22884544

  15. The effect of cushioning insoles on back and lower extremity pain in an industrial setting.

    PubMed

    Jefferson, John R

    2013-10-01

    The purpose of this study was to examine the relationship between low back pain and lower extremity pain in a group of factory workers and determine the effect of cushioning insoles on low back pain and lower extremity pain. Data were gathered via questionnaire from 306 employees of an aircraft engine assembly factory. A subset of 40 workers who had reported significant levels of back or lower extremity pain were sampled for four consecutive 12-hour shifts wearing their normal footwear and then a week later for four consecutive shifts wearing cushioning insoles. High levels of low back pain and lower extremity pain were reported by workers on the plant floor, but low back pain was poorly correlated to lower extremity pain (r = 0.371). The effect of insoles on the subset of 40 workers was to lower low back pain by 38%, foot pain by 37%, and knee pain by 38% (p < .001). The reduction in low back pain, however, was not correlated to the reduction in lower extremity pain; workers reporting a decrease in low back pain differed from those reporting less lower extremity pain. PMID:24053218

  16. Southern Laurentide Ice-Sheet Retreat Synchronous with Rising Boreal Summer Insolation

    NASA Technical Reports Server (NTRS)

    Ullman, David J.; Carlson, Anders E.; Legrande, Allegra N.; Anslow, Faron S.; Moore, Angus K.; Caffee, Marc; Syverson, Kent M.; Licciardi, Joseph M.

    2014-01-01

    Establishing the precise timing for the onset of ice-sheet retreat at the end of the Last Glacial Maximum (LGM) is critical for delineating mechanisms that drive deglaciations. Uncertainties in the timing of ice-margin retreat and global ice-volume change allow a variety of plausible deglaciation triggers. Using boulder 10Be surface exposure ages, we date initial southern Laurentide ice-sheet (LIS) retreat from LGM moraines in Wisconsin (USA) to 23.0 +/- 0.6 ka, coincident with retreat elsewhere along the southern LIS and synchronous with the initial rise in boreal summer insolation 24-23 ka. We show with climate-surface mass balance simulations that this small increase in boreal summer insolation alone is potentially sufficient to drive enhanced southern LIS surface ablation. We also date increased southern LIS retreat after ca. 20.5 ka likely driven by an acceleration in rising isolation. This near-instantaneous southern LIS response to boreal summer insolation before any rise in atmospheric CO2 supports the Milankovic hypothesis of orbital forcing of deglaciations.

  17. The Principal Components of Adult Female Insole Shape Align Closely with Two of Its Classic Indicators

    PubMed Central

    Bookstein, Fred L.; Domjanic, Jacqueline

    2015-01-01

    The plantar surface of the human foot transmits the weight and dynamic force of the owner’s lower limbs to the ground and the reaction forces back to the musculoskeletal system. Its anatomical variation is intensely studied in such fields as sports medicine and orthopedic dysmorphology. Yet, strangely, the shape of the insole that accommodates this surface and elastically buffers these forces is neither an aspect of the conventional anthropometrics of feet nor an informative label on the packet that markets supplementary insoles. In this paper we pursue an earlier suggestion that insole form in vertical view be quantified in terms of the shape of the foot not at the plane of support (the “footprint”) but some two millimeters above that level. Using such sections extracted from laser scans of 158 feet of adult women from the University of Zagreb, in conjunction with an appropriate modification of today’s standard geometric morphometrics (GMM), we find that the sectioned form can be described by its size together with two meaningful relative warps of shape. The pattern of this shape variation is not novel. It is closely aligned with two of the standard footprint measurements, the Chippaux-Šmi?ák arch index and the Clarke arch angle, whose geometrical foci (the former in the ball of the foot, the latter in the arch) it apparently combines. Thus a strong contemporary analysis complements but does not supplant the simpler anthropometric analyses of half a century ago, with implications for applied anthropology. PMID:26308442

  18. Control Electronics for Solar/Flywheel Power Supply

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1986-01-01

    Control circuit automatically directs flow of electrical energy to and from motor with flywheel that constitutes storage element of solar-power system. When insolation is sufficient for charging, power is supplied by solar-cell array to load and motor. During periods of darkness, motor made to act as generator, drawing kinetic energy from flywheel and supplying it to load.

  19. MRO SOW Daily Script

    NASA Technical Reports Server (NTRS)

    Fisher, Forest E.; Khanampornpan, Teerapat; Gladden, Roy E.

    2008-01-01

    The MRO SOW daily script (wherein "MRO" signifies "Mars Reconnaissance Orbiter" and "SOW" signifies "sequence systems engineer of the week") is a computer program that automates portions of the MRO daily SOW procedure, which includes checking file-system sizes and automated sequence processor (ASP) log files. The MRO SOW daily script effects clear reporting of (1) the status of, and requirements imposed on, the file system and (2) the ASP log files.

  20. Project focus: Complete design of an interactive solar panel system to be situated on

    E-print Network

    Sun, Yu

    Project focus: · Complete design of an interactive solar panel system to be situated on top the effective area · Two types of solar cells: · 3 panel configurations: · Real-time power output data Si panels with 30.0o tilt c) 10 CdTe panels; 38.5o tilt · Solar insolation recorder, thermometer

  1. Plantar pressure relief under the metatarsal heads: therapeutic insole design using three-dimensional finite element model of the foot.

    PubMed

    Chen, Wen-Ming; Lee, Sung-Jae; Lee, Peter Vee Sin

    2015-02-26

    Therapeutic footwear with specially-made insoles is often used in people with diabetes and rheumatoid arthritis to relieve ulcer risks and pain due to high pressures from areas beneath bony prominences of the foot, in particular to the metatarsal heads (MTHs). In a three-dimensional finite element study of the foot and footwear with sensitivity analysis, effects of geometrical variations of a therapeutic insole, in terms of insole thicknesses and metatarsal pad (MP) placements, on local peak plantar pressure under MTHs and stress/strain states within various forefoot tissues, were determined. A validated musculoskeletal finite element model of the human foot was employed. Analyses were performed in a simulated muscle-demanding instant in gait. For many design combinations, increasing insole thicknesses consistently reduce peak pressures and internal tissue strain under MTHs, but the effects reach a plateau when insole becomes very thick (e.g., a value of 12.7mm or greater). Altering MP placements, however, showed a proximally- and a distally-placed MP could result in reverse effects on MTH pressure-relief. The unsuccessful outcome due to a distally-placed MP may attribute to the way it interacts with plantar tissue (e.g., plantar fascia) adjacent to the MTH. A uniform pattern of tissue compression under metatarsal shaft is necessary for a most favorable pressure-relief under MTHs. The designated functions of an insole design can best be achieved when the insole is very thick, and when the MP can achieve a uniform tissue compression pattern adjacent to the MTH. PMID:25620685

  2. Suppression of insolation heating induced by electromagnetic scatteringdue to fine spheres

    NASA Astrophysics Data System (ADS)

    Horie, J.; Mikada, H.; Goto, T.; Takekawa, J.; Manaka, Y.; Taniguchi, K.; Ashida, Y.

    2013-12-01

    The 2011 off the Pacific coast of Tohoku Earthquake, i.e., the greatest earthquake in the Japanese history, and the successive disaster at the Fukushima Daiichi Nuclear Power Plant have caused a fatal electric power shortage problem in summer in 2011. It is of key importance to reduce electricity demand and to save the energy. About one third of the total electricity demand at the peak consumption in summer is for the air-conditioning in the household and office sectors in Japan. It is, therefore, necessary to think deliberately of the reduction of electric power demand for air-conditioning. In fact, the temperature of materials rises when they are exposed to the sunlight (insolation heating) in particular in summer and the air-conditioning would become necessary for restoring the comfort in insolated housings. The energy for the air-conditioning is spent to pump out the heat changed in the materials of the insolated housings and would be proportional to the temperature to lower down. It is, therefore, clear that the reduction of the energy for the air-conditioning would strongly depend on relaxation of temperature rise or the insulation of insolated materials. Insolation heating could be suppressed when the materials are coated with paint admixed with fine silica spheres (insulating paint). By coating buildings' walls and roofs with such paint, the temperature of interior rooms could be kept lower without air-conditioning. These insulation effects are well known and have been utilized in the past, but have hardly been analyzed theoretically yet. Theoretical analysis would greatly enhance the effects of the suppression of insolation heating. In preceding studies, Ohkawa et al.(2009; 2011) and Mikada et al.(2011) focused on the electromagnetic wave scattering induced by fine spheres and developed the analytical method using superposition of scattered waves from each sphere (the first Born approximation), and indicated that the size of the spheres is one of the parameters affecting the light intensity transmitted through the paint. However, the rigorous results, not using such approximation or considering other parameters than the size of spheres, are still unknown. Such rigorous solution is necessary to find the best structure of the paint for insulating phenomena. In this study, we consider fine spheres randomly distributed in a paint layer coating a material, and analyze its scattering characteristics using the Monte Carlo ray tracing method based on the Mie theory. Three layers (air, paint and iron) are first assumed and a number of photons incident on the paint layer. The optical paths of photons are successively traced. We use their ratio between the number of reflected and transmitted photons and their phases in order toestimate the intensity of near-infrared sunlight that reaches the material (transmission intensity). As a result, it is found that the sphere radius should be less than 0.5 ?m and the refractive index of sphere is less than 1.45 if we want to decrease the transmission intensity to less than about 0.1. We conclude that the introduction of the Monte Carlo simulation has led us to a quantitative analysis of the insulation effects caused by electromagnetic scattering and to find the optimum size and material of spheres to be admixed with paint.

  3. Galactic Cosmic Rays and Insolation are the Main Drivers of Global Climate of the Earth

    E-print Network

    V. D. Rusov; I. V. Radin; A. V. Glushkov; V. N. Vaschenko; V. N. Pavlovich; T. N. Zelentsova; O. T. Mihalys; V. A. Tarasov; A. Kolos

    2005-06-22

    An energy-balance model of global climate, which takes into account a nontrivial role of galactic cosmic rays, is developed. The model is described by the fold catastrophe equation relative to increment of temperature, where galactic cosmic rays and insolation are control parameters. The comparison of the results of a computer simulation of time-dependent solution of the presented model and oxygen isotope records of deep-sea core V28-238 over the past 730 kyr are presented. The climate evolution in future 100 kyr is also predicted.

  4. Daily Life with Glaucoma

    MedlinePLUS

    ... cure. Some daily activities such as driving or playing certain sports may become more challenging. Loss of contrast sensitivity, problems with glare, and light sensitivity are some of the possible effects of glaucoma that may interfere with your activities. ...

  5. Tips for Daily Living

    MedlinePLUS

    ... Modifications Driving Finding Support You Are Not Alone Online Support Recovery and Support after Stroke Local Information: ... Tips and Gadgets for Daily Activities Dressing Tips Shopping Tips Modifying the Bathroom Driving After Stroke Going ...

  6. Development of SmartStep: an insole-based physical activity monitor.

    PubMed

    Sazonov, Edward S; Hegde, Nagaraj; Tang, Wenlong

    2013-01-01

    In our previous research we developed a SmartShoe--a shoe based physical activity monitor that can reliably differentiate between major postures and activities, accurately estimate energy expenditure of individuals, measure temporal gait parameters, and estimate body weights. In this paper we present the development of the next stage of the SmartShoe evolution--SmartStep, a physical activity monitor that is fully integrated into an insole, maximizing convenience and social acceptance of the monitor. Encapsulating the sensors, Bluetooth Low Energy wireless interface and the energy source within an assembly repeatedly loaded with high forces created during ambulation presented new design challenges. In this preliminary study we tested the ability of the SmartStep to measure the pressure differences between static weight-bearing and non-weight-bearing activities (such as no load vs. sitting vs. standing) as well as capture pressure variations during walking. We also measured long-term stability of the sensors and insole assembly under cyclic loading in a mechanical testing system. PMID:24111408

  7. Insolation and Abrupt Climate Change Effects on the Western Pacific Maritime Monsoon

    NASA Astrophysics Data System (ADS)

    Partin, J. W.; Quinn, T. M.; Shen, C.; Cardenas, M.; Siringan, F. P.; Hori, M.; Okumura, Y.; Banner, J. L.; Lin, K.; Jiang, X.; Taylor, F. W.

    2013-12-01

    Many monsoon-sensitive paleoclimate archives capture the response of the Asian-Australian monsoon system to changes in summer insolation, as well as abrupt climate changes such as the Younger Dryas (YD). The response is commonly a direct one in Holocene and YD archives. In the case of insolation, increased summer insolation leads to increased monsoon rainfall over land, as captured in stalagmite ?18O records from Oman and China. We evaluate this direct response using maritime stalagmite records from the island of Palawan, Philippines (10 N, 119 E). The wet season in Palawan occurs over the same months (June-October) as in Oman, India and China. Therefore, we expected the Palawan stalagmite ?18O record, a proxy of rainfall, to have a similar response to changing insolation and hence, a trend of decreasing monsoon rainfall over the Holocene. However, the Holocene trend in two partially replicated stalagmite ?18O records is opposite to that expected: rainfall increases over the Holocene, despite the decrease of summer insolation over the Holocene. We interpret the Holocene trend observed at Palawan to be the result of an increase in the maritime monsoon that balances the reduction in the land monsoon; an interpretation that is consistent with previously published results from coupled ocean-atmosphere general circulation model runs. Seawater ?18O reconstructions from marine sediment cores in the western tropical Pacific contain a freshening trend over the Holocene, also supporting the hypothesis of increase maritime monsoon rainfall. The direct relationship between monsoon rainfall over land as recorded in the YD interval in Chinese stalagmite records is also observed in maritime monsoon rainfall during the YD at Palawan: both records get drier during the YD cold interval. This agreement between YD stalagmite records from China and Palawan contrasts sharply with the inverse relationship between these records over the Holocene. We further investigate the nature of the changes in maritime monsoon rainfall in several ways. Output from global climate models in the PMIP2 compilation at 6ka provides a snapshot of conditions in the western Pacific during the mid-Holocene. Also, two global climate models run under transient conditions, LOVECLIM and NCAR CCSM3, are used to investigate the timing and spatial structure of the YD. We test the regional coherency of the Holocene trend in the Palawan stalagmite ?18O record by generating an additional Philippine stalagmite ?18O record from Negros, an island ~450 km east of Palawan. Preliminary data from Negros suggest a complex precipitation response in the Philippines over the Holocene, such that both the monsoon and the western Pacific warm pool influence the regional hydroclimate. Global climate model results from the isotope-enabled NASA GISS ModelE-R model provide further assistance in the interpretation of the multiple stalagmite ?18O records from the Philippines.

  8. Time variation analysis of the daily Forbush decrease indices

    NASA Astrophysics Data System (ADS)

    Patra, Sankar Narayan; Ghosh, Koushik; Panja, Subhash Chandra

    2011-08-01

    In the present paper we have analyzed the daily Forbush decrease indices from January 1, 1967 to December 31, 2003. First filtering the time series by Simple Exponential Smoothing, we have applied Scargle Method of Periodogram on the processed time series in order to search for its time variation. Study exhibits periodicities around 174, 245, 261, 321, 452, 510, 571, 584, 662, 703, 735, 741, 767, 774, 820, 970, 1062, 1082, 1489, 1715, 2317, 2577, 2768, 3241 and 10630 days with confidence levels higher than 90%. Some of these periods are significantly similar to the observed periodicities of other solar activities, like solar filament activity, solar electron flare occurrence, solar-flare rate, solar proton events, solar neutrino flux, solar irradiance, cosmic ray intensity and flare, spectrum of the sunspot, solar wind, southern coronal hole area and solar cycle, which may suggest that the Forbush decrease behaves similarly to these solar activities and these activities may have a common origin.

  9. Environmental data for sites in the National Solar Data Network

    SciTech Connect

    Not Available

    1981-02-01

    Available meteorological data for reporting sites in National Solar Data Network are presented as follows: the insolation table presents the total, diffuse, direct, maximum, and extra-terrestrial radiation for the solar site; the temperature table gives the average, daytime, nighttime, maximum, minimum, and inlet-water temperatures for the solar site. Wind speed and direction and relative humidity values for day and night are presented also. (MHR)

  10. Study of combined /photovoltaic-thermal/ solar energy systems

    NASA Astrophysics Data System (ADS)

    Neville, R. C.

    A theoretical analysis of a combined photovoltaic-thermal energy system for converting solar energy is presented. Optical concentration is employed to intensify the available solar energy density. The thermal energy extraction works both to cool the solar cells and to provide heat energy. Overall system efficiencies (total output energy, both thermal and electrical, divided by the available insolation) are shown to reach values close to 40%, with predicted capital costs less than 0.1 cent per kWh.

  11. An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles

    PubMed Central

    González, Iván; Fontecha, Jesús; Hervás, Ramón; Bravo, José

    2015-01-01

    A new gait phase detection system for continuous monitoring based on wireless sensorized insoles is presented. The system can be used in gait analysis mobile applications, and it is designed for real-time demarcation of gait phases. The system employs pressure sensors to assess the force exerted by each foot during walking. A fuzzy rule-based inference algorithm is implemented on a smartphone and used to detect each of the gait phases based on the sensor signals. Additionally, to provide a solution that is insensitive to perturbations caused by non-walking activities, a probabilistic classifier is employed to discriminate walking forward from other low-level activities, such as turning, walking backwards, lateral walking, etc. The combination of these two algorithms constitutes the first approach towards a continuous gait assessment system, by means of the avoidance of non-walking influences. PMID:26184199

  12. Solar Effective Envelope Design Advisor (SEEDA)

    NASA Astrophysics Data System (ADS)

    Mahaek, Ekkachai

    The lack of effort by mainstream architects in integrating energy-efficient strategies in architectural designing is due to the complexity in a building's energy conscious concepts and theories, the difficulties to visualize and quantify energy consumption, and the late implementing of energy consumption analysis in the conventional design process. This task would be accomplishing by a building system's engineer where results might be determined only after the basic architectural design has been completed. An effective simple tool and method should then be available to assist architects in building's energy-efficient designing at the beginning of the design. The building's energy consumption is directly and mainly influenced by the relationship of the sun, site, and its building configuration. The solar radiations will first impact on the building's envelope, which will have a direct effect on the amount of energy a building will consume. If an architect can define or map the intensity of solar energy on the site's buildable volume, and use this information to determine the levels of solar insolation, a more energy efficient building form can be proposed. This research hypothesis has shared the fundamental techniques of the Solar Envelope projection by Professor Ralph Knowles [Knowles, 1981] of the University of Southern California. However a different approach is taken by including the influence of regional restrictions and the surrounding buildings' shadows when projecting of solar volumes and solar envelope. The research methodology will discuss the development of a computer-based approach to develop a three-dimensional architectural form based on an insolation map related to the design site. The prototype computer program is referred as the Solar Effective Envelope Design Advisor (SEEDA). The solar insolation volume of the site is determined by integrating three types of computer-generated models include the Buildable Volume model based on design constraints; the Shading Condition Volumes models based on the shading objects that surrounded the adjacent site; and the Solar Envelope Volume model based on Ralph Knowles's principles and related research. Once the integrated volume is created, the levels of insolation at the volume's surface can then be determined and quantified. Hence, this solar insolation volume can be represented the effective envelope of the potential built-form and can be used as the reference for the solar energy-effective buildings design.

  13. Abstract--This article presents the development of a prototype insole derived from natural rubber from Hevea

    E-print Network

    Carvalho, João Luiz

    based on the principle of tissue regeneration using laser. This project proposes a "smart" insole prototype with a pressure monitoring system and an electronic system for tissue regeneration, which brasiliensis) with pressure monitoring system and electronic system for tissue regeneration, which will open

  14. Toothbrushing: Do It Daily.

    ERIC Educational Resources Information Center

    Texas Child Care, 1993

    1993-01-01

    Offers a practical guide for promoting daily toothbrushing in young children. Discusses the importance of proper dental care, explains the causes of tooth decay, describes proper dental care for infants and young children, recommends materials and teaching methods, and discusses visits to the dentist and the benefits of fluoride for dental health.…

  15. USAF solar thermal applications overview

    NASA Technical Reports Server (NTRS)

    Hauger, J. S.; Simpson, J. A.

    1981-01-01

    Process heat applications were compared to solar thermal technologies. The generic process heat applications were analyzed for solar thermal technology utilization, using SERI's PROSYS/ECONOMAT model in an end use matching analysis and a separate analysis was made for solar ponds. Solar technologies appear attractive in a large number of applications. Low temperature applications at sites with high insolation and high fuel costs were found to be most attractive. No one solar thermal technology emerges as a clearly universal or preferred technology, however,, solar ponds offer a potential high payoff in a few, selected applications. It was shown that troughs and flat plate systems are cost effective in a large number of applications.

  16. Inhomogeneities in daily data

    NASA Astrophysics Data System (ADS)

    Venema, Victor; Aguilar, Enric; Auchmann, Renate; Auer, Ingeborg; Brandsma, Theo; Chimani, Barbara; Gilabert, Alba; Mestre, Olivier; Toreti, Andrea; Vertacnik, Gregor

    2015-04-01

    Daily datasets have become a focus of climate research because they are essential for studying the variability and extremes in weather and climate. However, long observational climate records are usually affected by changes due to nonclimatic factors, resulting in inhomogeneities in the time series. Looking at the known physical causes of these inhomogeneities, one may expect that the tails of the distribution are especially affected. Although the number of national and regional homogenized daily temperature datasets is increasing, inhomogeneities affecting the tails of the distribution are often not or insufficiently taken into account. In this literature review we investigate the physical causes of inhomogeneities and how they affect the distribution with respect to its mean and its tails. We review what is known about changes in the distribution from existing historical parallel measurements. We discuss effects of the state-of-the-art homogenization methods on the temperature distribution. Finally, we provide an overview of the quality of available daily datasets that are often used for studies on changes in extremes and additionally describe well-homogenized regional datasets. As expected, this review provides evidence that the tails of the distribution are generally more affected by non-climatic changes than the means. This is a problem because the question to which extent daily homogenization methods can reduce those effects is insufficiently studied and most available methods are focused on temperature only. More specifically, it is advised to study whether the current deterministic correction methods should be succeeded by stochastic methods. Concerning the large scale available daily datasets, many of them are not homogenized (with respect to the distribution), whereas the number of national and regional homogenized datasets is strongly growing. Given the strong interest in studying changes in weather variability and extremes and the existence of often large inhomogeneities in the raw data, the homogenization of daily data and the development of better methods should have a high research priority. This research would be much facilitated by a global reference database with parallel measurements. The climate community, and especially those involved in homogenization, bias correction and the evaluation of uncertainties, should take an active role to foster the compilation of such a reference database. We have started an initiative collecting parallel datasets, which is an expert team of the International Surface Temperature Initiative. Its aims will be explained and its progress will be presented.

  17. USING CLOUD CLASSIFICATION TO MODEL SOLAR VARIABILITY Matthew J. Reno

    E-print Network

    1 USING CLOUD CLASSIFICATION TO MODEL SOLAR VARIABILITY Matthew J. Reno Sandia National classification of cloud type. Without using a model to convert satellite imagery to average insolation on the ground, this paper investigates using cloud categories to directly model the expected statistical

  18. Daily Food Checklist

    Cancer.gov

    The daily food checklist method is a form of food record. The tool is comprised of a list of foods; over the course of a day, a respondent makes a check beside a food each time she or he eats it. The checklist shares an advantage of other record methods in that it does not rely on memory. In addition, it avoids some disadvantages of complete quantitative food records in that it has relatively low respondent and investigator burden.

  19. An empirical model of the quiet daily geomagnetic field variation

    USGS Publications Warehouse

    Yamazaki, Y.; Yumoto, K.; Cardinal, M.G.; Fraser, B.J.; Hattori, P.; Kakinami, Y.; Liu, J.Y.; Lynn, K.J.W.; Marshall, R.; McNamara, D.; Nagatsuma, T.; Nikiforov, V.M.; Otadoy, R.E.; Ruhimat, M.; Shevtsov, B.M.; Shiokawa, K.; Abe, S.; Uozumi, T.; Yoshikawa, A.

    2011-01-01

    An empirical model of the quiet daily geomagnetic field variation has been constructed based on geomagnetic data obtained from 21 stations along the 210 Magnetic Meridian of the Circum-pan Pacific Magnetometer Network (CPMN) from 1996 to 2007. Using the least squares fitting method for geomagnetically quiet days (Kp ??? 2+), the quiet daily geomagnetic field variation at each station was described as a function of solar activity SA, day of year DOY, lunar age LA, and local time LT. After interpolation in latitude, the model can describe solar-activity dependence and seasonal dependence of solar quiet daily variations (S) and lunar quiet daily variations (L). We performed a spherical harmonic analysis (SHA) on these S and L variations to examine average characteristics of the equivalent external current systems. We found three particularly noteworthy results. First, the total current intensity of the S current system is largely controlled by solar activity while its focus position is not significantly affected by solar activity. Second, we found that seasonal variations of the S current intensity exhibit north-south asymmetry; the current intensity of the northern vortex shows a prominent annual variation while the southern vortex shows a clear semi-annual variation as well as annual variation. Thirdly, we found that the total intensity of the L current system changes depending on solar activity and season; seasonal variations of the L current intensity show an enhancement during the December solstice, independent of the level of solar activity. Copyright 2011 by the American Geophysical Union.

  20. A behavioral model for estimating population exposure to solar ultraviolet radiation.

    PubMed

    Diffey, Brian

    2008-01-01

    Determining the variability of solar UV exposure of different members of a population by direct measurement demands high compliance over an extended period of time by a large number of people. An alternative approach is to model the variables that affect personal exposure and this is the basis of the method reported here, which uses a random sampling technique to explore variability of exposure at different times of the year by habitués. It is shown that there are large variations in daily personal erythemal exposure, more so for indoor workers living in northern Europe than those resident in Florida, which are due not only to seasonal changes in ambient, but just as importantly to seasonal variation in behavior. Not surprisingly, holiday and summer weekend exposure account for the largest daily UV doses. Northern Europeans who take their summer vacation in Florida can double their exposure during this period compared with holidaying at home and this illustrates just how important sun protection measures should be during recreational exposure in areas of high insolation if the annual UV burden is to be sensibly controlled. PMID:18208455

  1. Ankle motion influences the external knee adduction moment and may predict who will respond to lateral wedge insoles?: an ancillary analysis from the SILK trial

    PubMed Central

    Chapman, G.J.; Parkes, M.J.; Forsythe, L.; Felson, D.T.; Jones, R.K.

    2015-01-01

    Summary Objective Lateral wedge insoles are a potential simple treatment for medial knee osteoarthritis (OA) patients by reducing the external knee adduction moment (EKAM). However in some patients, an increase in their EKAM is seen. Understanding the role of the ankle joint complex in the response to lateral wedge insoles is critical in understanding and potentially identifying why some patients respond differently to lateral wedge insoles. Method Participants with medial tibiofemoral OA underwent gait analysis whilst walking in a control shoe and a lateral wedge insole. We evaluated if dynamic ankle joint complex coronal plane biomechanical measures could explain and identify those participants that increased (biomechanical non-responder) or decreased (biomechanical responder) EKAM under lateral wedge conditions compared to the control shoe. Results Of the 70 participants studied (43 male), 33% increased their EKAM and 67% decreased their EKAM. Overall, lateral wedge insoles shifted the centre of foot pressure laterally, increased eversion of the ankle/subtalar joint complex (STJ) and the eversion moment compared to the control condition. Ankle angle at peak EKAM and peak eversion ankle/STJ complex angle in the control condition predicted if individuals were likely to decrease EKAM under lateral wedge conditions. Conclusions Coronal plane ankle/STJ complex biomechanical measures play a key role in reducing EKAM when wearing lateral wedge insoles. These findings may assist in the identification of those individuals that could benefit more from wearing lateral wedge insoles. PMID:25749010

  2. Local effects of partly-cloudy skies on solar and emitted radiation

    NASA Technical Reports Server (NTRS)

    Whitney, D. A.; Venable, D. D.

    1982-01-01

    A computer automated data acquisition system for atmospheric emittance, and global solar, downwelled diffuse solar, and direct solar irradiances is discussed. Hourly-integrated global solar and atmospheric emitted radiances were measured continuously from February 1981 and hourly-integrated diffuse solar and direct solar irradiances were measured continuously from October 1981. One-minute integrated data are available for each of these components from February 1982. The results of the correlation of global insolation with fractional cloud cover for the first year's data set. A February data set, composed of one-minute integrated global insolation and direct solar irradiance, cloud cover fractions, meteorological data from nearby weather stations, and GOES East satellite radiometric data, was collected to test the theoretical model of satellite radiometric data correlation and develop the cloud dependence for the local measurement site.

  3. Geology and insolation-driven climatic history of Amazonian north polar materials on Mars

    USGS Publications Warehouse

    Tanaka, K.L.

    2005-01-01

    Mariner 9 and Viking spacecraft images revealed that the polar regions of Mars, like those of Earth, record the planet's climate history. However, fundamental uncertainties regarding the materials, features, ages and processes constituting the geologic record remained. Recently acquired Mars Orbiter Laser Altimeter data and Mars Orbiter Camera high-resolution images from the Mars Global Surveyor spacecraft and moderately high-resolution Thermal Emission Imaging System visible images from the Mars Odyssey spacecraft permit more comprehensive geologic and climatic analyses. Here I map and show the history of geologic materials and features in the north polar region that span the Amazonian period (???3.0 Gyr ago to present). Erosion and redeposition of putative circumpolar mud volcano deposits (formed by eruption of liquefied, fine-grained material) led to the formation of an Early Amazonian polar plateau consisting of dark layered materials. Crater ejecta superposed on pedestals indicate that a thin mantle was present during most of the Amazonian, suggesting generally higher obliquity and insolation conditions at the poles than at present. Brighter polar layered deposits rest unconformably on the dark layers and formed mainly during lower obliquity over the past 4-5 Myr (ref. 20). Finally, the uppermost layers post-date the latest downtrend in obliquity <20,000 years ago. ?? 2005 Nature Publishing Group.

  4. Geology and insolation-driven climatic history of Amazonian north polar materials on Mars.

    PubMed

    Tanaka, Kenneth L

    2005-10-13

    Mariner 9 and Viking spacecraft images revealed that the polar regions of Mars, like those of Earth, record the planet's climate history. However, fundamental uncertainties regarding the materials, features, ages and processes constituting the geologic record remained. Recently acquired Mars Orbiter Laser Altimeter data and Mars Orbiter Camera high-resolution images from the Mars Global Surveyor spacecraft and moderately high-resolution Thermal Emission Imaging System visible images from the Mars Odyssey spacecraft permit more comprehensive geologic and climatic analyses. Here I map and show the history of geologic materials and features in the north polar region that span the Amazonian period (approximately 3.0 Gyr ago to present). Erosion and redeposition of putative circumpolar mud volcano deposits (formed by eruption of liquefied, fine-grained material) led to the formation of an Early Amazonian polar plateau consisting of dark layered materials. Crater ejecta superposed on pedestals indicate that a thin mantle was present during most of the Amazonian, suggesting generally higher obliquity and insolation conditions at the poles than at present. Brighter polar layered deposits rest unconformably on the dark layers and formed mainly during lower obliquity over the past 4-5 Myr (ref. 20). Finally, the uppermost layers post-date the latest downtrend in obliquity <20,000 years ago. PMID:16222294

  5. Investigations on postural stability and spatiotemporal parameters of human gait using developed wearable smart insole.

    PubMed

    Das, Ratan; Kumar, Neelesh

    2015-01-01

    Measurement of spatiotemporal parameters of human gait is important for designing new, intelligent and efficient prosthetic and orthotic devices. The paper presents a novel application of smart insole for measuring force generated at various pressure points during dynamic gait on a human foot. Besides recording and analysing the spatiotemporal parameters during stance phase, the developed sensor is also used for development of active orthotic devices. Data from the sensors is analysed in LabVIEW software for detection of plantar force and temporal gait parameters. The smart instrumentation allows processing, display and storage of gait parameters and gait events in real time. Variations of pressure pattern reported by gait experiments can also be used in identifying an accidental fall. This information will be used as a feedback signal for controlling the motion of an indigenously developed gait assistive device, i.e. an active orthotic device. Pressure at the heel and great toe points is higher than the metatarsal heads during dynamic walk. It is higher at the heel and metatarsals points than the toe point during standing position. PMID:25350821

  6. Insolation driven biomagnetic response to the Holocene Warm Period in semi-arid East Asia.

    PubMed

    Liu, Suzhen; Deng, Chenglong; Xiao, Jule; Li, Jinhua; Paterson, Greig A; Chang, Liao; Yi, Liang; Qin, Huafeng; Pan, Yongxin; Zhu, Rixiang

    2015-01-01

    The Holocene Warm Period (HWP) provides valuable insights into the climate system and biotic responses to environmental variability and thus serves as an excellent analogue for future global climate changes. Here we document, for the first time, that warm and wet HWP conditions were highly favourable for magnetofossil proliferation in the semi-arid Asian interior. The pronounced increase of magnetofossil concentrations at ~9.8?ka and decrease at ~5.9?ka in Dali Lake coincided respectively with the onset and termination of the HWP, and are respectively linked to increased nutrient supply due to postglacial warming and poor nutrition due to drying at ~6?ka in the Asian interior. The two-stage transition at ~7.7?ka correlates well with increased organic carbon in middle HWP and suggests that improved climate conditions, leading to high quality nutrient influx, fostered magnetofossil proliferation. Our findings represent an excellent lake record in which magnetofossil abundance is, through nutrient availability, controlled by insolation driven climate changes. PMID:25614046

  7. Insolation driven biomagnetic response to the Holocene Warm Period in semi-arid East Asia

    NASA Astrophysics Data System (ADS)

    Liu, Suzhen; Deng, Chenglong; Xiao, Jule; Li, Jinhua; Paterson, Greig A.; Chang, Liao; Yi, Liang; Qin, Huafeng; Pan, Yongxin; Zhu, Rixiang

    2015-01-01

    The Holocene Warm Period (HWP) provides valuable insights into the climate system and biotic responses to environmental variability and thus serves as an excellent analogue for future global climate changes. Here we document, for the first time, that warm and wet HWP conditions were highly favourable for magnetofossil proliferation in the semi-arid Asian interior. The pronounced increase of magnetofossil concentrations at ~9.8 ka and decrease at ~5.9 ka in Dali Lake coincided respectively with the onset and termination of the HWP, and are respectively linked to increased nutrient supply due to postglacial warming and poor nutrition due to drying at ~6 ka in the Asian interior. The two-stage transition at ~7.7 ka correlates well with increased organic carbon in middle HWP and suggests that improved climate conditions, leading to high quality nutrient influx, fostered magnetofossil proliferation. Our findings represent an excellent lake record in which magnetofossil abundance is, through nutrient availability, controlled by insolation driven climate changes.

  8. Insolation and glacial-interglacial control on southwestern African hydroclimate over the past 140 000 years

    NASA Astrophysics Data System (ADS)

    Collins, James A.; Schefuß, Enno; Govin, Aline; Mulitza, Stefan; Tiedemann, Ralf

    2014-07-01

    The past climate evolution of southwestern Africa is poorly understood and interpretations of past hydrological changes are sometimes contradictory. Here we present a record of leaf-wax ?D and ?C13 taken from a marine sediment core at 23°S off the coast of Namibia to reconstruct the hydrology and C3 versus C4 vegetation of southwestern Africa over the last 140 000 years (140 ka). We find lower leaf-wax ?D and higher ?C13 (more C4 grasses), which we interpret to indicate wetter Southern Hemisphere (SH) summer conditions and increased seasonality, during SH insolation maxima relative to minima and during the last glacial period relative to the Holocene and the last interglacial period. Nonetheless, the dominance of C4 grasses throughout the record indicates that the wet season remained brief and that this region has remained semi-arid. Our data suggest that past precipitation increases were derived from the tropics rather than from the winter westerlies. Comparison with a record from the Congo Basin indicates that hydroclimate in southwestern Africa has evolved in antiphase with that of central Africa over the last 140 ka.

  9. Solar Energy Education. Renewable energy: a background text. [Includes glossary

    SciTech Connect

    Not Available

    1985-01-01

    Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)

  10. Climatic and insolation control on the high-resolution total air content in the NGRIP ice core

    NASA Astrophysics Data System (ADS)

    Eicher, O.; Baumgartner, M.; Schilt, A.; Schmitt, J.; Schwander, J.; Stocker, T. F.; Fischer, H.

    2015-11-01

    Because the total air content (TAC) of polar ice is directly affected by the atmospheric pressure, its record in polar ice cores was considered as a proxy for past ice sheet elevation changes. However the Antarctic ice core TAC record is known to also contain an insolation signature, although the underlying physical mechanisms are still a matter of debate. Here we present a high-resolution TAC record over the whole North Greenland Ice Core Project ice core, covering the last 120 000 years, which independently supports an insolation signature in Greenland. Wavelet analysis reveals a clear precession and obliquity signal similar to previous findings on Antarctic TAC, with different insolation history. In our high-resolution record we also find a decrease of 3-5 % (3-4.2 mL kg-1) in TAC as a response to Dansgaard-Oeschger-Events (DO-events). TAC starts to decrease in parallel to increasing Greenland surface temperature and slightly before CH4 reacts to the warming, but also shows a two-step decline that lasts for several centuries into the warm phase/interstadial. The TAC response is larger than expected considering only local temperature and atmospheric pressure as a driver, pointing to transient firnification response caused by the accumulation-induced increase in the load on the firn at bubble close-off, while temperature changes deeper in the firn are still small.

  11. [Clinical relevance of unloading in cartilage therapy of the knee--shoe insoles, knee braces or additional operative procedure?].

    PubMed

    Kraus, T M; Imhoff, A B; Ateschrang, A; Stöckle, U; Schröter, S

    2015-02-01

    Restoration of a neutral biomechanical environment and reduction of overload is an important factor contributing to the success of any cartilage repair procedure. Reduction of overload can by achieved by so called unloading procedures in order to reduce intraarticular pressure from the repair zone. Unloading can be achieved via loss of weight, wedged shoe insoles, knee braces or via operations such as osteotomies around the knee joint. The cartilage therapy and the concomitant unloading procedure should be adapted to the individual pathology and realistic aims of the patient. Wedged insoles and braces are the least invasive treatment methods. In comparison, however, beneficial effects of braces outline those of laterally wedged heels. Nevertheless long-term compliance with insoles and braces is poor. Concerning braces either because the positive effects of the braces are too small or because the adverse effects are too large. Unloading in the long run may only be achieved through operative procedures. When an osteotomy seems to be too invasive the arthroscopic release of the posterior oblique ligament might be an option. Patients with an intact contralateral chondral status, medium to slight malalignment who want to remain at high activity levels, remain good candidates for unloading osteotomies. PMID:25723584

  12. A long-term numerical solution for the insolation quantities of the Earth

    NASA Astrophysics Data System (ADS)

    Laskar, J.; Robutel, P.; Joutel, F.; Gastineau, M.; Correia, A. C. M.; Levrard, B.

    2004-12-01

    We present here a new solution for the astronomical computation of the insolation quantities on Earth spanning from -250 Myr to 250 Myr. This solution has been improved with respect to La93 (Laskar et al. \\cite{Laskar1993}) by using a direct integration of the gravitational equations for the orbital motion, and by improving the dissipative contributions, in particular in the evolution of the Earth-Moon System. The orbital solution has been used for the calibration of the Neogene period (Lourens et al. \\cite{Lourens2004}), and is expected to be used for age calibrations of paleoclimatic data over 40 to 50 Myr, eventually over the full Palaeogene period (65 Myr) with caution. Beyond this time span, the chaotic evolution of the orbits prevents a precise determination of the Earth's motion. However, the most regular components of the orbital solution could still be used over a much longer time span, which is why we provide here the solution over 250 Myr. Over this time interval, the most striking feature of the obliquity solution, apart from a secular global increase due to tidal dissipation, is a strong decrease of about 0.38 degree in the next few millions of years, due to the crossing of the s6+g5-g6 resonance (Laskar et al. \\cite{Laskar1993}). For the calibration of the Mesozoic time scale (about 65 to 250 Myr), we propose to use the term of largest amplitude in the eccentricity, related to g2-g5, with a fixed frequency of 3.200''/yr, corresponding to a period of 405 000 yr. The uncertainty of this time scale over 100 Myr should be about 0.1%, and 0.2% over the full Mesozoic era.

  13. SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS

    E-print Network

    Heinemann, Detlev

    SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS Detlev Heinemann Oldenburg daily solar radiation forecasts for one to two days in advance have been produced with the Model Output.girodo@uni-oldenburg.de ABSTRACT Solar energy is expected to contribute major shares of the future global energy supply. Due to its

  14. Quantification of Daily Physical Activity

    NASA Technical Reports Server (NTRS)

    Whalen, Robert; Breit, Greg; Quintana, Jason

    1994-01-01

    The influence of physical activity on the maintenance and adaptation of musculoskeletal tissue is difficult to assess. Cumulative musculoskeletal loading is hard to quantify and the attributes of the daily tissue loading history affecting bone metabolism have not been completely identified. By monitoring the vertical component of the daily ground reaction force (GRFz), we have an indirect measure of cumulative daily lower limb musculoskeletal loading to correlate with bone density and structure. The objective of this research is to develop instrumentation and methods of analysis to quantify activity level in terms of the daily history of ground reaction forces.

  15. Effects of insolation on habitability and the isotopic history of Martian water

    NASA Astrophysics Data System (ADS)

    Moores, John

    Three aspects of the Habitability of the Northern Plains of Mars to organics and terrestrial-like microbial life were assessed. (1) Protection offered by small surface features and; (2) the breakdown of rocks to form soils were examined using a radiative transfer computer model. Two separate sublimation experiments provided a basis to improve; (3) estimates of the amount of available water today and in the past by determining the fractionation of HDO between present-day reservoirs. (1) UV radiation sterilizes the hardiest of terrestrial organisms within minutes on the Martian surface. Small surface features including pits, trenches, flat faces and overhangs may create "safe havens" for organisms by blocking much of the UV flux. In the most favorable cases, this flux is sufficiently reduced such that organic in-fall could accumulate beneath overhanging surfaces and in pits and cracks while terrestrial microorganisms could persist for several tens of martian years. (2) The production of soils on the surface is considered by analogy with the arid US Southwest. Here differential insolation of incipient cracks of random orientations predicts crack orientation distributions consistent with field observations by assuming that only crack orientations which shield their interiors, minimizing their water loss, can grow, eventually disrupting the clast. (3) Disaggregated water ice to simulate the polar caps was produced by flash freezing in liquid nitrogen and crushing. When dust was added to the mixtures, the D/H ratio of the sublimate gas was seen to decrease with time from the bulk ratio. The more dust was added to the mixture, the more pronounced was this effect. The largest fractionation factor observed during these experiments was 2.5. Clean ice was also prepared and overlain by dust to simulate ground ice. Here, the movement of water vapor was modeled using an effective diffusivity that incorporated both adsorption on grains and diffusion. For low temperatures (<-55°C) a significant difference between the diffusivities of H 2 O and HDO was observed. This suggests adsorptive-control within the regolith as energies of interaction are 60-70kJmol -1 . This ability of the martian regolith to preferentially adsorb HDO decouples the ice table and polar caps from the atmosphere and allows for geographic variations in the D/H ratio on Mars.

  16. Racing strategy and car design for staged solar car races using simulation of environmental and vehicular parameters

    SciTech Connect

    Seitzmeyer, R.L.; Morehouse, J.H.

    1999-07-01

    This paper develops an algorithm for a racing strategy such that the overall elapsed time for a solar car in a staged race is minimized within the constraints of energy availability. Additionally, factors (operating parameters) affecting car operation are explored, as well as opportunities to maximize car efficiency through design. The end product is computer program in which various environmental and vehicular parameters are entered, and the car's speed for any particular race course segment is the output. These operating parameters include external environmental factors such as insolation (including present and predicted), road distance and grade, speed limits, and wind velocity. The vehicle operating parameters include such factors as drag, drivetrain performance and efficiency, and solar system and battery characteristics and efficiencies. With the algorithm developed in this paper, the speed is varied for different road segments of each daily leg of the race. At the end of each road segment, the optimum speed for all the remaining segments is determined, based on the current and expected environmental and vehicle operating conditions for the rest of the road segments. This algorithm takes into consideration a non-efficient battery system and accommodates motor efficiency data. The car's energy usage for each segment of the course is simulated for various speeds and the local segment environmental conditions.

  17. Method and Apparatus for Monitoring of Daily Activity in Terms of Ground Reaction Forces

    NASA Technical Reports Server (NTRS)

    Whalen, Robert T. (Inventor); Breit, Gregory A. (Inventor)

    2001-01-01

    A device to record and analyze habitual daily activity in terms of the history of gait-related musculoskeletal loading is disclosed. The device consists of a pressure-sensing insole placed into the shoe or embedded in a shoe sole, which detects contact of the foot with the ground. The sensor is coupled to a portable battery-powered digital data logger clipped to the shoe or worn around the ankle or waist. During the course of normal daily activity, the system maintains a record of time-of-occurrence of all non-spurious foot-down and lift-off events. Off line, these data are filtered and converted to a history of foot-ground contact times, from which measures of cumulative musculoskeletal loading, average walking- and running-specific gait speed, total time spent walking and running, total number of walking steps and running steps, and total gait-related energy expenditure are estimated from empirical regressions of various gait parameters to the contact time reciprocal. Data are available as cumulative values or as daily averages by menu selection. The data provided by this device are useful for assessment of musculoskeletal and cardiovascular health and risk factors associated with habitual patterns of daily activity.

  18. Ash loading and insolation at Hanford, Washington during and after the eruption of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Laulainen, N. S.

    1982-01-01

    The effects of volcanic ash suspended in the atmosphere on the incident solar radiation was monitored at the Hanford Meteorological Station (HMS) subsequent to the major eruption of Mount St. Helens on May 18, 1980. Passage of the ash plume over Hanford resulted in a very dramatic decrease of solar radiation intensity to zero. A reduction in visibility to less than 1 km was observed, as great quantities of ash fell out of the plume onto the ground. Ash loading in the atmosphere remained very high for several days following the eruption, primarily as a result of resuspension from the surface. Visibilities remained low (2 to 8 km) during this period. Estimates of atmospheric turbidity were made from the ratio of diffuse-to-direct solar radiation; these turbidities were used to estimate extinction along a horizontal path, a quantity which can be related to visibility. Comparisons of observed and estimated visibilities were very good, in spite of the rather coarse approximations used in the estimates. Atmospheric clarity and visibility improved to near pre-eruption conditions following a period of rain showers. The diffuse-to-direct ratio of solar radiation provided a useful index for estimating volcanic ash loading of the atmosphere.

  19. Decentalized solar photovoltaic energy systems

    SciTech Connect

    Krupka, M. C.

    1980-09-01

    Environmental data for decentralized solar photovoltaic systems have been generated in support of the Technology Assessment of Solar Energy Systems program (TASE). Emphasis has been placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ, utilizing a unique solar cell array-roof shingle combination. Silicon solar cells, rated at 13.5% efficiency at 28/sup 0/C and 100 mW/cm/sup 2/ (AMI) insolation are used to generate approx. 10 kW (peak). An all-electric home is considered with lead-acid battery storage, dc-ac inversion and utility backup. The reference home is compared to others in regions of different insolation. Major material requirements, scaled to quad levels of end-use energy include significant quantities of silicon, copper, lead, antimony, sulfuric acid and plastics. Operating residuals generated are negligible with the exception of those from the storage battery due to a short (10-year) lifetime. A brief general discussion of other environmental, health, and safety and resource availability impacts is presented. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.

  20. Unravelling daily human mobility motifs

    E-print Network

    Schneider, Christian M.

    Human mobility is differentiated by time scales. While the mechanism for long time scales has been studied, the underlying mechanism on the daily scale is still unrevealed. Here, we uncover the mechanism responsible for ...

  1. Daily Food Plan for Moms

    MedlinePLUS

    ... a Budget Create a Grocery Game Plan Shop Smart to Fill Your Cart Prepare Healthy Meals Sample 2-Week Menus Resources for ... Food Plan for Moms You are here Home / Audience / Adults / Moms/ Moms-to-Be Daily Food ...

  2. The engineering analysis of solar radiation

    NASA Technical Reports Server (NTRS)

    Reid, M. S.; Hamilton, C. L.; Hester, O. V.

    1978-01-01

    A necessary precursor to construction of well-designed, efficient, and economically viable solar energy systems is the engineering analysis not only of the systems themselves but also of the solar radiation that will drive them. This paper presents the first steps in such an analysis to support the design of solar thermal power systems. A rationale for development of an integrated approach to this analysis is outlined, and elements of the approach are described. A dynamic computer simulation of a conceptual system was employed in an initial sensitivity analysis to explore how performance estimates might be affected by the precision and amount of detail in solar radiation data used as model input. A measurement program, including instrumentation, used to characterize precisely and in detail the solar resource at one location is described as is a probabilistic model derived from it, for predicting insolation as a function of time.

  3. Solar powered desalination system

    E-print Network

    Mateo, Tiffany Alisa

    2011-01-01

    efficiency for a PV system is a ratio of the electrical power output to the solarSolar Energy Calculator using Google Maps 23 Table 1.24: PV System Power Production Average Daily Irradiance (kWh/m2) Instillation Efficiencysolar-to-hydrogen (STH) conversion efficiency is 10%. (STH conversion efficiency is power

  4. Salt gradient solar pond technology in the US

    SciTech Connect

    Macaleer, B.S.; Rannels, J.E.

    1982-06-01

    The Jet Propulsion Laboratory has concluded that a potential exists for salt-gradient solar ponds. In a solar pond, there are three layers of salinity. The top layer absorbs sunlight, the middle serves as an insulator, while allowing radiation to pass through to the bottom layer, of the thickest salinity, which stores the energy. Selection of a site of adequate insolation, inexpensive land, free from aquifer interference, is discussed. The pond is filled by the injection procedure, as outlined. Costs vary dramatically based on site parameter limitations of insolation, water, salt, and aquifer. DOE has initiated RandD programs to address the problem of gradient zone erosion, characterize the parameters of heat extraction, and investigate the interactions of soil and brine. A feasibility study has been made at Salton Sea in the Imperial Valley. Other sites are being studied.

  5. Riding the Wave to Reach the Masses: Natural Events in Early Twentieth Century Portuguese Daily Press

    ERIC Educational Resources Information Center

    Simoes, Ana; Carneiro, Ana; Diogo, Maria Paula

    2012-01-01

    This paper brings together science communicated in newspapers in Portugal by looking at how news on natural events were communicated in two different newspapers--the capital newspaper "Diario de Noticias" ("Daily News") and the "Diario dos Acores" ("Azores Daily"). In particular, we look at how the 1900 solar eclipse, a hot topic throughout…

  6. Destruction of Sun-Grazing Comet C-2011 N3 (SOHO) Within the Low Solar Corona

    NASA Technical Reports Server (NTRS)

    Schrijver, C. J.; Brown, J. C.; Battams, K.; Saint-Hilaire, P.; Liu, W.; Hudson, H.; Pesnell, W. D.

    2012-01-01

    Observations of comets in Sun-grazing orbits that survive solar insolation long enough to penetrate into the Suns inner corona provide information on the solar atmosphere and magnetic field as well as on the makeup of the comet. On 6 July 2011, the Solar Dynamics Observatory (SDO) observed the demise of comet C2011 N3 (SOHO) within the low solar corona in five wavelength bands in the extreme ultraviolet (EUV). The comet penetrated to within 0.146 solarradius (100,000 kilometers) of the solar surface before its EUV signal disappeared.

  7. Timing of insolation forcing, CO2 and sea level changes around the current and last four interglacial periods

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Aoki, S.; Nakazawa, T.; Abe-Ouchi, A.; Saito, F.

    2013-12-01

    Investigation of the roles of different forcings (e.g. orbital variations and greenhouse gases) on climate and sea level requires a paleoclimate chronology with high accuracy. Such a chronology for the past 360 ky was constructed through orbital tuning of O2/N2 ratio of trapped air in the Dome Fuji and Vostok ice cores with local summer insolation (Kawamura et al., 2007). We extend the O2/N2 chronology back to ~500 kyr by analyzing the second Dome Fuji ice core, and find the duration of 11 ka, 5 ka, 9 ka, and 20 ka for MIS 5e, 7e, 9e and 11c interglacial periods in Antarctica, with similar variations in atmospheric CO2. The termination timings are consistent with the rising phase of Northern Hemisphere summer insolation. Marine sediment cores from northern North Atlantic contain millennial-scale signatures in various proxy records (e.g. SST, IRD), including abrupt climatic shifts and bipolar seesaw. Based on the bipolar correlation of millennial-scale events, it is possible to transfer our accurate chronology to marine cores from the North Atlantic. As a first attempt, we correlate the planktonic ?18O and IRD records from the marine core ODP 980 with the ice-core ?18O and CH4 around MIS 11. We find that the durations of interglacial plateaus of planktonic ?18O (proxy for sea surface environments) and benthic ?18O (proxy for ice volume and deep-sea temperature) for MIS 11c are 20 and 15 ka, respectively, which are significantly shorter than originally suggested. These durations are similar to that of Antarctic climate and atmospheric CO2. However, the onsets of interglacial levels in ODP980 for MIS 11 are significantly later than those in Antarctic ?18O and atmospheric CO2 (by as much as ~10 ka), suggesting very long duration (more than one precession cycle) for the complete deglaciation and northern high-latitude warming for Termination V. Atmospheric CO2 may have been the critical forcing for this termination. The long duration of Termination V is consistent with our new ice sheet simulations (extended from the work of Abe-Ouchi et al., 2013) in which an ice-sheet/climate model is forced by insolation and CO2 variations. In the presentation, comparisons for other interglacial periods will also be reported.

  8. Test-retest reliability of an insole plantar pressure system to assess gait along linear and curved trajectories

    PubMed Central

    2014-01-01

    Background Previous studies have assessed reliability of insole technology for evaluating foot pressure distribution during linear walking. Since in natural motion straight walking is intermingled with turns, we determined the test-retest reliability of insole assessment for curved as well as linear trajectories, and estimated the minimum number of steps required to obtain excellent reliability for each output variable. Methods Sixteen young healthy participants were recruited. Each performed, two days apart, two sessions of three walking conditions: linear (LIN) and curved, clockwise (CW) and counter-clockwise (CCW). The Pedar-X system was used to collect pressure distribution. Foot print was analyzed both as a whole and as subdivided into eight regions: medial and lateral heel, medial and lateral arch, I metatarsal head, II-V metatarsal heads, hallux, lateral toes. Reliability was assessed by using intraclass correlation coefficient (ICC) for clinically relevant variables from analysis of 50 steps per trajectory: Peak Force (PF); Peak Pressure (PP); Contact Area (CA); Stance Duration (S). Results When considering whole-foot, all variables showed an ICC >0.80, therefore highly reliable. This was true for both LIN and curved trajectories. There was no difference in ICC of the four variables between left and right foot. When collapsing foot and trajectories, S had a lower ICC than PP and CA, and PP lower than CA. Mean percent error between the values of first and second session was <5%. When separately considering the eight foot regions, ICCs of PF, PP and CA for all regions and trajectories were generally >0.90, indicating excellent reliability. In curved trajectories, S showed smaller ICCs. Since the least ICC value for S was 0.60 in LIN trajectory, we estimated that to achieve an ICC ?0.90 more than 200 steps should be collected. Conclusions High reliability of insole dynamic variables (PF, PP, CA) is obtained with 50 steps using the Pedar-X system. On the contrary, high reliability of temporal variable (S) requires a larger step number. The negligible differences in ICC between LIN and curved trajectory allow use of this device for gait assessment along mixed trajectories in both clinical and research setting. PMID:24903003

  9. Delayed build-up of Arctic ice sheets during 400, 000-year minima in insolation variability confirmed by Chinese loess

    NASA Astrophysics Data System (ADS)

    Hao, Q.; Wang, L.; Oldfield, F.; Peng, S.; Qin, L.; Song, Y.; Xu, B.; Qiao, Y.; Bloemendal, J.; Guo, Z.

    2013-12-01

    The growth and decay of the Northern Hemisphere ice volume led to alternations of glacial and interglacial climate and major changes in sea level during the Quaternary period. Unfortunately, long-term continuous records of ice-sheet variability in the Northern during the Quaternary period Hemisphere only are scarce because benthic ?18O records represent an integrated signal of changes in ice volume in both polar regions. Direct sedimentary records of Northern Hemisphere polar ice sheets exist only for the late Quaternary and longer term records are scarce. However, variations in Northern Hemisphere ice sheets influence the Siberian High (an atmospheric pressure system), so variations in the East Asian winter monsoon (EAWM)--as recorded in the aeolian dust deposits on the Chinese Loess Plateau--can serve as a useful proxy of Arctic climate variability. Here we present an EAWM proxy record using grain-size variations in two parallel loess sections over the past 900 kyr to address the timing of build-up of Northern hemisphere ice sheets around 413 kyr mimina in eccentricity and precessional variability. These periods are regarded as the astronomical analogues of the present interglacial. The results show that during periods of low eccentricity and precessional variability around 400 kyr and 800 kyr ago, the grain-size-inferred intensity of the EAWM remains weak for up to 20 kyr after the end of the interglacial episodes MIS 11, MIS 19 and MIS 21. In contrast, there is a rapid increase in the EAWM after the end of most other interglacials. We conclude that, for these interglacials at 400 kyr intervals, the weak EAWM winds maintain a non-glacial climate at high northern latitudes for much longer than expected from the conventional loess and marine oxygen isotope records. During these times, the less severe summer insolation minima at 65° N (modulated by 413-kyr eccentricity cycles) would have suppressed ice and snow accumulation, leading to a weak Siberian High and, consequently, weak EAWM winds. Astronomically driven insolation during the present interglacial and in the near future is characterized by its low-amplitude variability. The close similarity between future insolation and that 400 kyr ago leads us to speculate that the future climate may still remain in interglacial mode for more that ~40 kyr, even in the absence of anthropogenic greenhouse gases. Asynchronous development of hemispheric ice sheets suggested by this study sheds new lights on understanding the forcing mechanism of glacial-interglacial alternations.

  10. Three computer codes to read, plot and tabulate operational test-site recorded solar data

    NASA Technical Reports Server (NTRS)

    Stewart, S. D.; Sampson, R. S., Jr.; Stonemetz, R. E.; Rouse, S. L.

    1980-01-01

    Computer programs used to process data that will be used in the evaluation of collector efficiency and solar system performance are described. The program, TAPFIL, reads data from an IBM 360 tape containing information (insolation, flowrates, temperatures, etc.) from 48 operational solar heating and cooling test sites. Two other programs, CHPLOT and WRTCNL, plot and tabulate the data from the direct access, unformatted TAPFIL file. The methodology of the programs, their inputs, and their outputs are described.

  11. Using a pilot study to establish experimental methods for inexpensive instrumented insoles used in dynamic skiing analysis.

    PubMed

    Vogt, Andrew Peter; Boppana, Abhijit; Bamberg, Stacy J M

    2014-01-01

    Loss of balance leads to increased likelihood of falling for human locomotion. Determining the likelihood of falling for skiing locomotion is challenging because, unlike walking, normal locomotion is not clearly defined. One of the first learned styles of skiing is wedge style (WS). WS affords relatively easier balancing and speed control due to a wide base of support and greater resistance to forward movement, respectively. As skiers become more familiar with WS, their sensory, cognition, and actuation improve and they are able to apply more advanced styles, namely parallel style (PS), which requires refined balance. This paper studies the effects of WS and PS, on a single subject pilot study, and how they effect the likelihood of falling. A traditional laboratory setting was not suitable because of extreme difficulty and expense required to mimic the environment. Specially designed instrumented insoles were used to capture force data in a mountain environment. PMID:25570614

  12. Sensitivity of Asian and African climate to variations in seasonal insolation, glacial ice cover, sea surface temperature, and Asian orography

    NASA Technical Reports Server (NTRS)

    Demenocal, Peter B.; Rind, David

    1993-01-01

    A general circulation model was used to investigate the sensitivity of Asian and African climate to prescribed changes in boundary conditions with the objective of identifying the relative importance of individual high-latitude glacial boundary conditions on seasonal climate and providing a physical basis for interpreting the paleoclimate record. The circulation model is described and results are presented. Insolation forcing increased summer Asian monsoon winds, while increased high-latitude ice cover strengthened winter Asian trade winds causing decreased precipitation. These factors had little effect on African climate. Cooler North Atlantic sea surface temperatures enhanced winter trade winds over North Africa, southern Asian climate was relatively unaffected. Reducing Asian orography enhanced Asian winter circulation while decreasing the summer monsoon. These model results suggest that African and southern Asian climate respond differently to separate elements of high-latitude climate variability.

  13. Estimating solar radiation for plant simulation models

    NASA Technical Reports Server (NTRS)

    Hodges, T.; French, V.; Leduc, S.

    1985-01-01

    Five algorithms producing daily solar radiation surrogates using daily temperatures and rainfall were evaluated using measured solar radiation data for seven U.S. locations. The algorithms were compared both in terms of accuracy of daily solar radiation estimates and terms of response when used in a plant growth simulation model (CERES-wheat). Requirements for accuracy of solar radiation for plant growth simulation models are discussed. One algorithm is recommended as being best suited for use in these models when neither measured nor satellite estimated solar radiation values are available.

  14. A Multi-Stage Human Factors and Comfort Assessment of Instrumented Insoles Designed for Use in a Connected Health Infrastructure.

    PubMed

    Harte, Richard; Quinlan, Leo R; Glynn, Liam; Rodriguez-Molinero, Alejandro; Scharf, Thomas; Carenas, Carlos; Reixach, Elisenda; Garcia, Joan; Carrabina, Jordi; ÓLaighin, Gearóid

    2015-01-01

    Wearable electronics are gaining widespread use as enabling technologies, monitoring human physical activity and behavior as part of connected health infrastructures. Attention to human factors and comfort of these devices can greatly positively influence user experience, with a subsequently higher likelihood of user acceptance and lower levels of device rejection. Here, we employ a human factors and comfort assessment methodology grounded in the principles of human-centered design to influence and enhance the design of an instrumented insole. A use case was developed and interrogated by stakeholders, experts, and end users, capturing the context of use and user characteristics for the instrumented insole. This use case informed all stages of the design process through two full design cycles, leading to the development of an initial version 1 and a later version 2 prototype. Each version of the prototype was subjected to an expert human factors inspection and controlled comfort assessment using human volunteers. Structured feedback from the first cycle of testing was the driver of design changes implemented in the version 2 prototype. This prototype was found to have significantly improved human factors and comfort characteristics over the first version of the prototype. Expert inspection found that many of the original problems in the first prototype had been resolved in the second prototype. Furthermore, a comfort assessment of this prototype with a group of young healthy adults showed it to be indistinguishable from their normal footwear. This study demonstrates the power and effectiveness of human factors and comfort assessment methodologies in influencing and improving the design of wearable devices. PMID:26694468

  15. Winter to Spring Transition in Europe 48-45 degrees N: From Temperature Control by Advection to Control by Insolation

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Hu, H.; Jusem, J. C.; Starr, D.

    1999-01-01

    As established in previous studies, and analyzed further herein for the years 1988-1998, warm advection from the North Atlantic is the predominant control of the surface-air temperature in northern-latitude Europe in late winter. This thesis is supported by the substantial correlation Cti between the speed of the southwesterly surface winds over the eastern North Atlantic, as quantified by a specific Index Ina, and the 2-meter level temperature Ts over central Europe (48-54 deg N; 5-25 deg E), for January, February and early March. In mid-March and subsequently, the correlation Cti drops drastically (quite often it is negative). The change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature. As (a) the sun rises higher in the sky, (b) the snows melt (the surface absorptivity can increase by a factor of 3.0), (c) the ocean-surface winds weaken, and (d) the temperature difference between land and ocean (which we analyze) becomes small, absorption of insolation replaces the warm advection as the dominant control of the continental temperature. We define the onset of spring by this transition, which evaluated for the period of our study occurs at pentad 16 (Julian Date 76, that is, March 16). The control by insolation means that the surface is cooler under cloudy conditions than under clear skies. This control produces a much smaller interannual variability of the surface temperature and of the lapse rate than prevailing in winter, when the control is by advection. Regional climatic data would be of greatest value for agriculture and forestry if compiled for well-defined seasons. For continental northern latitudes, analysis presented here of factors controlling the surface temperature appears an appropriate tool for this task.

  16. Design of landfill daily cells.

    PubMed

    Panagiotakopoulos, D; Dokas, I

    2001-08-01

    The objective of this paper is to study the behaviour of the landfill soil-to-refuse (S/R) ratio when size, geometry and operating parameters of the daily cell vary over realistic ranges. A simple procedure is presented (1) for calculating the cell parameters values which minimise the S/R ratio and (2) for studying the sensitivity of this minimum S/R ratio to variations in cell size, final refuse density, working face length, lift height and cover thickness. In countries where daily soil cover is required, savings in landfill space could be realised following this procedure. The sensitivity of minimum S/R to variations in cell dimensions decreases with cell size. Working face length and lift height affect the S/R ratio significantly. This procedure also offers the engineer an additional tool for comparing one large daily cell with two or more smaller ones, at two different working faces within the same landfill. PMID:11720268

  17. Integrated summer insolation forcing and 40,000-year glacial cycles: The perspective from an ice-sheet/energy-balance model

    E-print Network

    Tziperman, Eli

    with the precession of the equinoxes, or at $20,000-year periods (assuming that the eccentricity of the Earth's orbit,000-year period), the lack of ice-volume variability at precession periods (20,000 years) is difficult to reconcile with most parameterizations of the insolation forcing. It was recently proposed that precession

  18. Progress in passive solar energy systems. Volume 8. Part 1

    SciTech Connect

    Hayes, J.; Andrejko, D.A.

    1983-01-01

    This book presents the papers given at a conference sponsored by the US DOE, the Solar Energy Research Institute, SolarVision, Inc., and the Southern California Solar Energy Society. The topics considered at the conference included sizing solar energy systems for agricultural applications, a farm scale ethanol production plant, the EEC wind energy RandD program, the passive solar performance assessment of an earth-sheltered house, the ARCO 1 MW photovoltaic power plant, the performance of a dendritic web photovoltaic module, second generation point focused concentrators, linear fresnel lens concentrating photovoltaic collectors, photovoltaic conversion efficiency, amorphous silicon thin film solar cells, a photovoltaic system for a shopping center, photovoltaic power generation for the utility industry, spectral solar radiation, and the analysis of insolation data.

  19. The effectiveness of shoe insoles for the prevention and treatment of low back pain: a systematic review and meta-analysis of randomised controlled trials

    PubMed Central

    2014-01-01

    Background Low back pain (LBP) is a significant public health problem in Western industrialised countries and has been reported to affect up to 80% of adults at some stage in their lives. It is associated with high health care utilisation costs, disability, work loss and restriction of social activities. An intervention of foot orthoses or insoles has been suggested to reduce the risk of developing LBP and be an effective treatment strategy for people suffering from LBP. However, despite the common usage of orthoses and insoles, there is a lack of clear guidelines for their use in relation to LBP. The aim of this review is to investigate the effectiveness of foot orthoses and insoles in the prevention and treatment of non specific LBP. Methods A systematic search of MEDLINE, CINAHL, EMBASE and The Cochrane Library was conducted in May 2013. Two authors independently reviewed and selected relevant randomised controlled trials. Quality was evaluated using the Cochrane Collaboration Risk of Bias Tool and the Downs and Black Checklist. Meta-analysis of study data were conducted where possible. Results Eleven trials were included: five trials investigated the treatment of LBP (n?=?293) and six trials examined the prevention of LBP (n?=?2379) through the use of foot orthoses or insoles. Meta-analysis showed no significant effect in favour of the foot orthoses or insoles for either the treatment trials (standardised mean difference (SMD) -0.74, CI 95%: -1.5 to 0.03) or the prevention trials (relative risk (RR) 0.78, CI 95%: 0.50 to 1.23). Conclusions There is insufficient evidence to support the use of insoles or foot orthoses as either a treatment for LBP or in the prevention of LBP. The small number, moderate methodological quality and the high heterogeneity of the available trials reduce the strength of current findings. Future research should concentrate on identification of LBP patients most suited to foot orthoses or insole treatment, as there is some evidence that trials structured along these lines have a greater effect on reducing LBP. PMID:24775807

  20. Test results, Industrial Solar Technology parabolic trough solar collector

    SciTech Connect

    Dudley, V.E.; Evans, L.R.; Matthews, C.W.

    1995-11-01

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  1. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  2. Digital Daily Cycles of Individuals

    NASA Astrophysics Data System (ADS)

    Aledavood, Talayeh; Lehmann, Sune; Saramäki, Jari

    2015-10-01

    Humans, like almost all animals, are phase-locked to the diurnal cycle. Most of us sleep at night and are active through the day. Because we have evolved to function with this cycle, the circadian rhythm is deeply ingrained and even detectable at the biochemical level. However, within the broader day-night pattern, there are individual differences: e.g., some of us are intrinsically morning-active, while others prefer evenings. In this article, we look at digital daily cycles: circadian patterns of activity viewed through the lens of auto-recorded data of communication and online activity. We begin at the aggregate level, discuss earlier results, and illustrate differences between population-level daily rhythms in different media. Then we move on to the individual level, and show that there is a strong individual-level variation beyond averages: individuals typically have their distinctive daily pattern that persists in time. We conclude by discussing the driving forces behind these signature daily patterns, from personal traits (morningness/eveningness) to variation in activity level and external constraints, and outline possibilities for future research.

  3. Providing daily updated weather data for online risk assessment

    NASA Astrophysics Data System (ADS)

    Petritsch, R.; Hasenauer, H.

    2009-04-01

    Daily weather data are an important constraint for diverse applications in ecosystem research. In particular, temperature and precipitation are the main drivers for forest ecosystem productivity. Mechanistic modeling theory heavily relies on daily values for minimum and maximum temperatures, precipitation, incident solar radiation and vapor pressure. These data are usually provided by interpolation techniques using measured values from surrounding stations or weather generators based on monthly mean values. One well-known and frequently used software packages is DAYMET which was adapted and validated for Austrian purposes. The calculation includes the interpolation of maximum and minimum temperature and precipitation based on near-by measurements and the subsequent extrapolation of incident solar radiation and vapor pressure deficit based on the temperature and precipitation values. The Austrian version of DAYMET uses daily weather data from more than 400 measuring stations all over Austria from 1960 to 2005. Due to internal procedures of DAYMET daily values for a whole year are estimated together; thus, the update of the database may only be done with full year records. Whether this approach convenient for retrospective modeling studies risk assessment (e.g. drought stress, forest fire, insect outbreaks) needs a higher update frequency than a full year. At best the measurements would be available immediately after they are taken. In practice the update frequency is limited by the operational provision of daily weather data. The aim of this study is to implement a concept for providing daily updated weather data as it could be used for continuous risk assessment. First we built a new climate database containing all available daily measurements. It is based on a well-established Relational Database Management System (RDBMS) and may be accessed and extended using the Standard Query Language (SQL). Secondly, we re-implemented the interpolation logic for temperature and precipitation. Incident solar radiation and vapor pressure deficit were calculated with the same procedure as used in DAYMET adjusted to the new data handling. Cross validation is used to obtain optimal parameters but also for rough accuracy estimation of the generated daily weather data. A validation including detailed residual analyses is done using a set of 23 independent climate stations. The results are comparable with the original procedure and allow an online calculation of the needed parameters.

  4. Determination of the running quiet daily geomagnetic variation

    NASA Astrophysics Data System (ADS)

    Janzhura, A. S.; Troshichev, O. A.

    2008-05-01

    A new automatic running method for derivation of the quiet daily geomagnetic variation--"quiet day curve" (QDC) is described. The method consists in the automatic distinction of the quietest periods using the geomagnetic variations parameterization, calculation of the proper quiet daily variation for certain days, reconstruction of QDC for each day of the elapsed period and extrapolation of QDC for the subsequent period. The method ensures statistically reliable QDCs during the epoch of the solar activity maximum if the time interval used for derivation of QDC is not less than 30 days. The method of the running QDC calculation implies the uninterrupted calculation of the QDC resulting from the continuous 1-day forward shift of the 30-day interval. The method makes it possible to derive automatically and on-line the quiet daily variation in the polar caps, where northward interplanetary magnetic field can generate large magnetic disturbances during periods of planetary magnetic quiescence. This is the main advantage of the running QDC method over other known methods. It is shown that along with the seasonal (from month to month) and the solar cycle (from year to year) changes, the QDC amplitude is modified on a time scale less then a month following solar activity flashes.

  5. Emerging NOAA Surface Solar Radiation for Solar Energy

    NASA Astrophysics Data System (ADS)

    Kondratovich, V.; Laszlo, I.; Liu, H.

    2012-12-01

    Solar power has been growing at an annual rate of 40% in recent years. By 2025 it could grow to 10% of U.S. power needs. Sunlight is the fuel for solar power generation technologies, and as such one needs to know the quality and future availability of the fuel for accurate analysis of system performance. Sunlight (solar radiation) at the surface has been routinely estimated in real time from measurements of the Geostationary Operational Environmental Satellite (GOES) operated by the US National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite, Data and Information Service (NESDIS). The GOES solar radiation data have been made available in the GOES Surface and Insolation Product (GSIP) suite since January 1996 for the contiguous U.S. every daytime hour at a spatial resolution of ~50 km (GSIP-V1). Since April 2009, solar radiation retrievals have been performed at a higher spatial resolution (~14 km) and cover larger areas (GSIP-V2). The GSIP-V1 data have recently been screened for quality, adjusted for changes in calibration, and parameters useful for the solar energy sector have been derived for the period of 1999-2009. In this presentation, we describe the quality control process and various adjustments applied, and provide examples of selected solar energy parameters (average, midday and clear-sky insolation, clear-sky days, diffuse and direct normal radiation, etc.) and their evaluation. The Advanced Baseline Imager (ABI), one of the flagship instruments of NOAA's new geostationary satellite, GOES-R, will expand frequency and coverage of multispectral remote sensing of atmospheric and surface properties. The planned rapid observations (5-15 minutes) from ABI provide an opportunity to obtain information needed for solar energy applications where frequent observations of solar radiation reaching the surface are essential for planning and load management. The ABI algorithm, that is quite different from the one applied in GSIP-V1 and V2, uses atmospheric and surface data retrieved from multiple narrow bands using algorithms dedicated to the retrieval of these data. The algorithm is currently run with proxy data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the EOS satellites Terra and Aqua and the Visible and Infrared Imaging Radiometer Suite (VIIRS) onboard the recently launched Suomi National Polar-orbiting Partnership (NPP) satellite. The ABI algorithm will be explained as well as examples will be shown.

  6. Synchronous flowering of the rubber tree (Hevea brasiliensis) induced by high solar radiation intensity.

    PubMed

    Yeang, Hoong-Yeet

    2007-01-01

    How tropical trees flower synchronously near the equator in the absence of significant day length variation or other meteorological cues has long been a puzzle. The rubber tree (Hevea brasiliensis) is used as a model to investigate this phenomenon. The annual cycle of solar radiation intensity is shown to correspond closely with the flowering of the rubber tree planted near the equator and in the subtropics. Unlike in temperate regions, where incoming solar radiation (insolation) is dependent on both day length and radiation intensity, insolation at the equator is due entirely to the latter. Insolation at the upper atmosphere peaks twice a year during the spring and autumn equinoxes, but the actual solar radiation that reaches the ground is attenuated to varying extents in different localities. The rubber tree shows one or two flowering seasons a year (with major and minor seasons in the latter) in accordance with the solar radiation intensity received. High solar radiation intensity, and in particular bright sunshine (as distinct from prolonged diffuse radiation), induces synchronous anthesis and blooming in Hevea around the time of the equinoxes. The same mechanism may be operational in other tropical tree species. PMID:17587376

  7. Solar excitation of CdS/Cu2S photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Boer, K. W.

    1976-01-01

    Solar radiation of five typical clear weather days and under a variety of conditions is used to determine the spectral distribution of the photonflux at different planes of a CdS/Cu2S solar cell. The fractions of reflected and absorbed flux are determined at each of the relevant interfaces and active volume elements of the solar cell. The density of absorbed photons is given in respect to spectral and spatial distribution. The variance of the obtained distribution, with changes in insolation and absorption spectra of the active solar cell layers, is indicated. A catalog of typical examples is given in the appendix.

  8. Projected techno-economic improvements for advanced solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Manvi, R.; Roschke, E. J.

    1979-01-01

    The projected characteristics of solar thermal power plants (with outputs up to 10 MWe) employing promising advanced technology subsystems/components are compared to current (or pre-1985) steam-Rankine systems. Improvements accruing to advanced technology development options are delineated. The improvements derived from advanced systems result primarily from achieving high efficiencies via solar collector systems which (1) capture a large portion of the available insolation and (2) concentrate this captured solar flux to attain high temperatures required for high heat engine/energy conversion performance. The most efficient solar collector systems employ two-axis tracking. Attractive systems include the central receiver/heliostat and the parabolic dish.

  9. WAPA Daily Energy Accounting Activities

    Energy Science and Technology Software Center (ESTSC)

    1990-10-01

    ISA (Interchange, Scheduling, & Accounting) is the interchange scheduling system used by the DOE Western Area Power Administration to perform energy accounting functions associated with the daily activities of the Watertown Operations Office (WOO). The system's primary role is to provide accounting functions for scheduled energy which is exchanged with other power companies and power operating organizations. The system has a secondary role of providing a historical record of all scheduled interchange transactions. The followingmore »major functions are performed by ISA: scheduled energy accounting for received and delivered energy; generation scheduling accounting for both fossil and hydro-electric power plants; metered energy accounting for received and delivered totals; energy accounting for Direct Current (D.C.) Ties; regulation accounting; automatic generation control set calculations; accounting summaries for Basin, Heartland Consumers Power District, and the Missouri Basin Municipal Power Agency; calculation of estimated generation for the Laramie River Station plant; daily and monthly reports; and dual control areas.« less

  10. Solar Pumped Lasers and Their Applications

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.

    1991-01-01

    Since 1980, NASA has been pursuing high power solar lasers as part of the space power beaming program. Materials in liquid, solid, and gas phases have been evaluated against the requirements for solar pumping. Two basic characteristics of solar insolation, namely its diffuse irradiance and 5800 K blackbody-like spectrum, impose rather stringent requirements for laser excitation. However, meeting these requirements is not insurmountable as solar thermal energy technology has progressed today, and taking advantage of solar pumping lasers is becoming increasingly attractive. The high density photons of concentrated solar energy have been used for mainly electric power generation and thermal processing of materials by the DOE Solar Thermal Technologies Program. However, the photons can interact with materials through many other direct kinetic paths, and applications of the concentrated photons could be extended to processes requiring photolysis, photosynthesis, and photoexcitation. The use of solar pumped lasers on Earth seems constrained by economics and sociopolitics. Therefore, prospective applications may be limited to those that require use of quantum effects and coherency of the laser in order to generate extremely high value products and services when conventional and inexpensive means are ineffective or impossible. The new applications already proposed for concentrated solar photons, such as destruction of hazardous waste, production of renewable fuel, production of fertilizer, and air/water pollution controls, may benefit from the use of inexpensive solar pumped laser matched with the photochemical kinetics of these processes.

  11. Reconciling Consumer and Utility Objectives in the Residential Solar PV Market

    NASA Astrophysics Data System (ADS)

    Arnold, Michael R.

    Today's energy market is facing large-scale changes that will affect all market players. Near the top of that list is the rapid deployment of residential solar photovoltaic (PV) systems. Yet that growing trend will be influenced multiple competing interests between various stakeholders, namely the utility, consumers and technology provides. This study provides a series of analyses---utility-side, consumer-side, and combined analyses---to understand and evaluate the effect of increases in residential solar PV market penetration. Three urban regions have been selected as study locations---Chicago, Phoenix, Seattle---with simulated load data and solar insolation data at each locality. Various time-of-use pricing schedules are investigated, and the effect of net metering is evaluated to determine the optimal capacity of solar PV and battery storage in a typical residential home. The net residential load profile is scaled to assess system-wide technical and economic figures of merit for the utility with an emphasis on intraday load profiles, ramp rates and electricity sales with increasing solar PV penetration. The combined analysis evaluates the least-cost solar PV system for the consumer and models the associated system-wide effects on the electric grid. Utility revenue was found to drop by 1.2% for every percent PV penetration increase, net metering on a monthly or annual basis improved the cost-effectiveness of solar PV but not battery storage, the removal of net metering policy and usage of an improved the cost-effectiveness of battery storage and increases in solar PV penetration reduced the system load factor. As expected, Phoenix had the most favorable economic scenario for residential solar PV, primarily due to high solar insolation. The study location---solar insolation and load profile---was also found to affect the time of year at which the largest net negative system load was realized.

  12. Environmental data for sites in the National Solar Data Network

    SciTech Connect

    Not Available

    1980-12-01

    The environmental data for the NSDN are presented in the form of tables for each solar site. The solar sites are grouped into 12 zones, each of which consists of several adjacent states. The solar energy sites are in alphabetical sequence within each zone. The tables provide available meteorological data for reporting sites in the NSDN as follows: Insolation - the insolation table presents the total, diffuse, direct, maximum, and extra-terrestrial radiation for the solar site. It also shows the ratio of total extra-terrestrial radiation, as a percent. Temperature - the temperature table gives the average, daytime, nightime, maximum, minimum and inlet-water temperatures for the solar site. Additional tables are presented for some of these NSDN sites, supplying either wind or relative humidity data, or both. Wind - all of the passive and some of the active solar sites are equipped with wind sensors. These provide information for two wind tables. The first furnishes wind speed and direction. The second table correlates wind speed with time (hours for a range of speeds) for each day. Humidity - the humidity table provides relative humidity values for day and night. A technical discussion of the instruments and measurements used to obtain these data tables is given. A map illustrating the climate zones is provided.

  13. Environmental data for sites in the National Solar Data Network

    SciTech Connect

    Not Available

    1980-04-01

    The environmental data are presented in the form of tables for each solar site. The solar sites are grouped into 12 zones, each of which consists of several adjacent states. The solar energy sites are in alphabetical sequence within each zone. The tables provide available meteorological data for reporting sites in the NSDN as follows: (1) insolation: the insolation table presents the total, diffuse, direct, maximum, and extra-terrestrial radiation for the solar site. It also shows the ratio of total extra-terrestrial radiation, as a percent. (2) Temperature: the temperature table gives the average, daytime, nighttime, maximum, minimum and inlet-water temperatures for the solar site. Additional tables are presented for some of these NSDN sites, supplying either wind or relative humidity data, or both. (1) Wind: all of the passive and some of the active solar sites are equipped with wind sensors. These provide information for two wind tables. The first furnishes wind speed and direction. The second table correlates wind speed with time (hours for a range of speeds) for each day. (2) Humidity: the humidity table provides relative humidity values for day and night. It also gives values for the maximum and minimum humidity for each day. A technical discussion of the instruments and measurements used to obtain these data tables is given, and a map illustrating the climate zones is provided.

  14. Intent to Quit among Daily and Non-Daily College Student Smokers

    ERIC Educational Resources Information Center

    Pinsker, E. A.; Berg, C. J.; Nehl, E. J.; Prokhorov, A. V.; Buchanan, T. S.; Ahluwalia, J. S.

    2013-01-01

    Given the high prevalence of young adult smoking, we examined (i) psychosocial factors and substance use among college students representing five smoking patterns and histories [non-smokers, quitters, native non-daily smokers (i.e. never daily smokers), converted non-daily smokers (i.e. former daily smokers) and daily smokers] and (ii) smoking…

  15. Evidence for insolation and Pacific forcing of late glacial through Holocene climate in the Central Mojave Desert (Silver Lake, CA)

    NASA Astrophysics Data System (ADS)

    Kirby, Matthew E.; Knell, Edward J.; Anderson, William T.; Lachniet, Matthew S.; Palermo, Jennifer; Eeg, Holly; Lucero, Ricardo; Murrieta, Rosa; Arevalo, Andrea; Silveira, Emily; Hiner, Christine A.

    2015-09-01

    Silver Lake is the modern terminal playa of the Mojave River in southern California (USA). As a result, it is well located to record both influences from the winter precipitation dominated San Bernardino Mountains - the source of the Mojave River - and from the late summer to early fall North American monsoon at Silver Lake. Here, we present various physical, chemical and biological data from a new radiocarbon-dated, 8.2 m sediment core taken from Silver Lake that spans modern through 14.8 cal ka BP. Texturally, the core varies between sandy clay, clayey sand, and sand-silt-clay, often with abrupt sedimentological transitions. These grain-size changes are used to divide the core into six lake status intervals over the past 14.8 cal ka BP. Notable intervals include a dry Younger Dryas chronozone, a wet early Holocene terminating 7.8 - 7.4 cal ka BP, a distinct mid-Holocene arid interval, and a late Holocene return to ephemeral lake conditions. A comparison to potential climatic forcings implicates a combination of changing summer - winter insolation and tropical and N Pacific sea-surface temperature dynamics as the primary drivers of Holocene climate in the central Mojave Desert.

  16. Formation of gullies on Mars: Link to recent climate history and insolation microenvironments implicate surface water flow origin

    PubMed Central

    Head, James W.; Marchant, David R.; Kreslavsky, Mikhail A.

    2008-01-01

    Features seen in portions of a typical midlatitude Martian impact crater show that gully formation follows a geologically recent period of midlatitude glaciation. Geological evidence indicates that, in the relatively recent past, sufficient snow and ice accumulated on the pole-facing crater wall to cause glacial flow and filling of the crater floor with debris-covered glaciers. As glaciation waned, debris-covered glaciers ceased flowing, accumulation zones lost ice, and newly exposed wall alcoves continued as the location for limited snow/frost deposition, entrapment, and preservation. Analysis of the insolation geometry of this pole-facing crater wall, and similar occurrences in other craters at these latitudes on Mars, shows that they are uniquely favored for accumulation of snow and ice, and a relatively more rapid exposure to warmer summer temperatures. We show that, after the last glaciation, melting of residual snow and ice in alcoves could have formed the fluvial channels and sedimentary fans of the gullies. Recent modeling shows that top-down melting can occur in these microenvironments under conditions similar to those currently observed on Mars, if small amounts of snow or frost accumulate in alcoves and channels. Accumulation and melting is even more favored in the somewhat wetter, relatively recent geological past of Mars, after the period of active glaciation. PMID:18725636

  17. Cloud cover estimation: Use of GOES imagery in development of cloud cover data base for insolation assessment

    NASA Technical Reports Server (NTRS)

    Huning, J. R.; Logan, T. L.; Smith, J. H.

    1982-01-01

    The potential of using digital satellite data to establish a cloud cover data base for the United States, one that would provide detailed information on the temporal and spatial variability of cloud development are studied. Key elements include: (1) interfacing GOES data from the University of Wisconsin Meteorological Data Facility with the Jet Propulsion Laboratory's VICAR image processing system and IBIS geographic information system; (2) creation of a registered multitemporal GOES data base; (3) development of a simple normalization model to compensate for sun angle; (4) creation of a variable size georeference grid that provides detailed cloud information in selected areas and summarized information in other areas; and (5) development of a cloud/shadow model which details the percentage of each grid cell that is cloud and shadow covered, and the percentage of cloud or shadow opacity. In addition, comparison of model calculations of insolation with measured values at selected test sites was accomplished, as well as development of preliminary requirements for a large scale data base of cloud cover statistics.

  18. ‘Niigata S3’ is a new strawberry cultivar suitable for forcing culture under low temperature and insolation conditions

    PubMed Central

    Hamato, Naonori; Kotake, Osamu; Ono, Nagaaki; Kurashima, Hiroshi; Nakano, Masaru; Iwamoto, Yuzuri; Takahashi, Yoshihiko

    2014-01-01

    ‘Niigata S3’ is a new strawberry (Fragaria × ananassa Duch.) cultivar that is early flowering and possesses high soluble solid content and good coloration. It was selected from a cross between Kei812 (seed parent) and ‘Asuka-Ruby’ (pollen parent). The first harvest date of ‘Niigata S3’ was December 27, 34 days earlier than ‘Echigohime’ and 9 days earlier than ‘Asuka-Ruby’ (means of 2007 and 2008). The marketable yield of ‘Niigata S3’ was 85% of ‘Echigohime’, 107% of ‘Asuka-Ruby’, while the early yield was 145% of ‘Echigohime’, 85% of ‘Asuka-Ruby’ (based on 2007 and 2008 means). The shape of the fruit is long conical, and its skin color medium-red. The fruit skin hardness of ‘Niigata S3’ was 31.5 g/mm2, which was harder than ‘Echigohime’, and its average soluble solid content was 11.4%, which was higher than the values for ‘Echigohime’ and ‘Asuka-Ruby’ (2008). Furthermore, ‘Niigata S3’ did not bear apical overripe fruit. This new cultivar is adaptable to the climatic conditions of Niigata, as well as other regions that experience low winter temperatures and insolation. PMID:25914600

  19. Formation of gullies on Mars: link to recent climate history and insolation microenvironments implicate surface water flow origin.

    PubMed

    Head, James W; Marchant, David R; Kreslavsky, Mikhail A

    2008-09-01

    Features seen in portions of a typical midlatitude Martian impact crater show that gully formation follows a geologically recent period of midlatitude glaciation. Geological evidence indicates that, in the relatively recent past, sufficient snow and ice accumulated on the pole-facing crater wall to cause glacial flow and filling of the crater floor with debris-covered glaciers. As glaciation waned, debris-covered glaciers ceased flowing, accumulation zones lost ice, and newly exposed wall alcoves continued as the location for limited snow/frost deposition, entrapment, and preservation. Analysis of the insolation geometry of this pole-facing crater wall, and similar occurrences in other craters at these latitudes on Mars, shows that they are uniquely favored for accumulation of snow and ice, and a relatively more rapid exposure to warmer summer temperatures. We show that, after the last glaciation, melting of residual snow and ice in alcoves could have formed the fluvial channels and sedimentary fans of the gullies. Recent modeling shows that top-down melting can occur in these microenvironments under conditions similar to those currently observed on Mars, if small amounts of snow or frost accumulate in alcoves and channels. Accumulation and melting is even more favored in the somewhat wetter, relatively recent geological past of Mars, after the period of active glaciation. PMID:18725636

  20. The Relationship Between Reductions in Knee Loading and Immediate Pain Response Whilst Wearing Lateral Wedged Insoles in Knee Osteoarthritis

    PubMed Central

    Jones, Richard K.; Chapman, Graham J.; Forsythe, Laura; Parkes, Matthew J.; Felson, David T.

    2015-01-01

    Studies of lateral wedge insoles (LWIs) in medial knee osteoarthritis (OA) have shown reductions in the average external knee adduction moment (EKAM) but no lessening of knee pain. Some treated patients actually experience increases in the EKAM which could explain the overall absence of pain response. We examined whether, in patients with painful medial OA, reductions in the EKAM were associated with lessening of knee pain. Each patient underwent gait analysis whilst walking in a control shoe and two LWI’s. We evaluated the relationship between change in EKAM and change in knee pain using Spearman Rank Correlation coefficients and tested whether dichotomizing patients into biomechanical responders (decreased EKAM) and non-responders (increased EKAM) would identify those with reductions in knee pain. In 70 patients studied, the EKAM was reduced in both LWIs versus control shoe (?5.21% and ?6.29% for typical and supported wedges, respectively). The change in EKAM using LWIs was not significantly associated with the direction of knee pain change. Further, 54% were biomechanical responders, but these persons did not have more knee pain reduction than non-responders. Whilst LWIs reduce EKAM, there is no clearcut relationship between change in medial load when wearing LWIs and corresponding change in knee pain. PMID:24903067

  1. Integrally regulated solar array demonstration using an Intel 8080 microprocessor

    NASA Technical Reports Server (NTRS)

    Petrik, E. J.

    1977-01-01

    A concept for regulating the voltage of a solar array by using a microprocessor to effect discrete voltage changes was demonstrated. Eight shorting switches were employed to regulate a simulated array at set-point voltages between 10,000 and 15,000 volts. The demonstration showed that the microprocessor easily regulated the solar array output voltage independently of whether or not the switched cell groups were binary sized in voltage. In addition, the microprocessor provided logic memory capability to perform additional tasks such as locating and insolating a faulty switch.

  2. Criteria for the evaluation of laser solar energy converter systems

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1985-01-01

    Assuming that a parabolic insolation-collection mirror-based solar pumped laser has a collector and heat emitter whose weights are proportional to their areas, and that the weight of the laser is negligible by comparison, the output power/unit weight can be expressed in terms of the efficiencies and working temperatures of the system. This ratio appears to be several times higher for an IBr laser than for one operating on C3F7I, because the solar utilization efficiency is greater for the former despite its lower working temperature.

  3. Insolation-Induced Differences in the Southern and Deep Oceans Between the Interglacials before and after the Mid-Brunhes Transition

    NASA Astrophysics Data System (ADS)

    Yin, Q.; Mouchet, A.; Berger, A. L.

    2014-12-01

    The interglacials after 430 ka BP are characterized by warmer climates and higher atmospheric CO2 concentrations than the interglacials which occurred before. The cause of this climatic transition (the so-called Mid-Brunhes Event, MBE) is not yet fully understood. Based on climate model simulations, our results show that, in response to insolation changes only, feedbacks between sea ice, temperature, evaporation and salinity caused vigorous pre-MBE Antarctic Bottom Water (AABW) formation and Southern Ocean ventilation (Yin, 2013, Insolation-induced mid-Brunhes transition in Southern Ocean ventilation and deep-ocean temperature. Nature, 494, 222-225). Our results also show that strong Westerlies increased the pre-MBE overturning in the Southern Ocean via an increased latitudinal insolation gradient created by changes in eccentricity during austral winter and in obliquity during austral summer. The enhanced AABW formation leads to a cooler deep ocean during the older interglacials. These insolation-induced differences in the deep-sea temperature and in the Southern Ocean ventilation between the more recent interglacials and the older ones were not expected, because there is no visible systematic difference in the astronomical parameters between the interglacials before and after 430 ka ago. The apparent MBE (i.e. the difference in the interglacial intensity before and after 430 ka BP) appears resulting from the complex response of the climate system to the different combinations of the astronomical parameters prevailing before and after 430 ka BP. Preliminary results from a carbon cycle model shed light on the possible role of the Southern Ocean in the magnitude change of the interglacial atmospheric CO2 concentration around 430 ka.

  4. Daily Medicine Record for Your Child

    MedlinePLUS

    ... the-Counter Pain Relievers and Fever Reducers Daily Medicine Record for Your Child (English) Share Tweet Linkedin ... Age: ____ 2 years old___ Weight: ___ 30 pounds ___ Daily Medicine Record Child’s name: ___________________ Today’s date: _________________ Age: ____________ Weight: ________________ (pounds) ...

  5. Daily cycles in coastal dunes

    USGS Publications Warehouse

    Hunter, R.E.; Richmond, B.M.

    1988-01-01

    Daily cycles of summer sea breezes produce distinctive cyclic foreset deposits in dune sands of the Texas and Oregon coasts. In both areas the winds are strong enough to transport sand only during part of the day, reach a peak during the afternoon, and vary little in direction during the period of sand transport. Cyclicity in the foreset deposits is made evident by variations in the type of sedimentary structure, the texture, and the heavy-mineral content of the sand. Some of the cyclic deposits are made up entirely of one basic type of structure, in which the character of the structure varies cyclically; for example, the angle of climb in a climbing-wind-ripple structure may vary cyclically. Other cyclic deposits are characterized by alternations of two or more structural types. Variations in the concentration of fine-grained heavy minerals, which account for the most striking cyclicity, arise mainly because of segregation on wind-rippled depositional surfaces: where the ripples climb at low angles, the coarsegrained light minerals, which accumulate preferentially on ripple crests, tend to be excluded from the local deposit. Daily cyclic deposits are thickest and best developed on small dunes and are least recognizable near the bases of large dunes. ?? 1988.

  6. When Daily Sunspot Births Become Positively Correlated

    NASA Astrophysics Data System (ADS)

    Shapoval, Alexander; Le Mouël, Jean-Louis; Shnirman, Mikhail; Courtillot, Vincent

    2015-10-01

    We study the first differences w(t) of the International Sunspot Number (ISSN) daily series for the time span 1850 - 2013. The one-day correlations ?1 between w(t) and w(t+1) are computed within four-year sliding windows and are found to shift from negative to positive values near the end of Cycle 17 ({˜} 1945). They remain positive during the last Grand Maximum and until {˜} 2009, when they fall to zero. We also identify a prominent regime change in {˜} 1915, strengthening previous evidence of major anomalies in solar activity at this date. We test an autoregressive process of order 1 (AR(1)) as a model that can reproduce the high-frequency component of ISSN: we compute ?1 for this AR(1) process and find that it is negative. Positive values of ?1 are found only if the process involves positive correlation: this leads us to suggest that the births of successive spots are positively correlated during the last Grand Maximum.

  7. When Daily Sunspot Births Become Positively Correlated

    NASA Astrophysics Data System (ADS)

    Shapoval, Alexander; Le Mouël, Jean-Louis; Shnirman, Mikhail; Courtillot, Vincent

    2015-10-01

    We study the first differences w(t) of the International Sunspot Number (ISSN) daily series for the time span 1850 - 2013. The one-day correlations ?1 between w(t) and w(t+1) are computed within four-year sliding windows and are found to shift from negative to positive values near the end of Cycle 17 ( ˜ 1945). They remain positive during the last Grand Maximum and until ˜ 2009, when they fall to zero. We also identify a prominent regime change in ˜ 1915, strengthening previous evidence of major anomalies in solar activity at this date. We test an autoregressive process of order 1 (AR(1)) as a model that can reproduce the high-frequency component of ISSN: we compute ?1 for this AR(1) process and find that it is negative. Positive values of ?1 are found only if the process involves positive correlation: this leads us to suggest that the births of successive spots are positively correlated during the last Grand Maximum.

  8. Environmental data for sites in the National Solar Data Network

    SciTech Connect

    Not Available

    1981-06-01

    Environmental information collected at the sites of the National Solar Data Network is presented in the form of tables for each solar site. The sites are grouped into 12 zones, each of which consists of several adjacent states. The insolation table presents the total, diffuse, direct, maximum, and extraterrestrial radiation for the solar site. It also shows the ratio of total to extraterrestrial radiation as a percent. The temperature table gives the average, daytime, nighttime, maximum, minimum and inlet-water temperatures for the solar site. All of the passive and some of the active solar sites are equipped with wind sensors which provide information for two wind tables furnishing wind speed and direction. For some sites, a humidity table provides relative humidity values for day and night. It also gives values for the maximum and minimum humidity for each day. A technical discussion of the instruments and measurements used to obtain these data tables is included. (LEW)

  9. Solar Energy Reporting

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Last year the people of Cleveland, Ohio were troubled by natural gas shortages during one of the coldest winters on record. The severe winter generated a great deal of interest in solar energy as an alternative source of heat. Home owners, home builders and civic officials wanted to know just how much solar energy is available in Cleveland. Now they get a daily report through the city's news media, from information supplied as a community service by NASA's Lewis Research Center. Lewis routinely makes daily measurements of solar energy as part of its continuing research in behalf of the Department of Energy. The measuring device is a sun sensor called a pyranometer (upper photo) located atop a building at the NASA Center. To make the information conveniently available to news media, Lewis developed a Voice Output Integrating Insolometer, an automated system that acquires information from the sun sensor and translates it into a recorded telephone message. The Lewis pyranometer collects sun data for 15 hours daily and measures the total solar energy yield. For reporting to the public, the information is electronically converted to a specific reading. A media representative calling in gets a voice-synthesized announcement of a two or three digit number; the number corresponds to the kilowatt-hours of solar energy that would be available to a typical 500-square-foot solar collector system. Response in Cleveland has been favorable and interest is developing in other parts of the country.

  10. Conceptual design of a solar cogeneration facility at Pioneer Mill Co. , Ltd

    SciTech Connect

    Not Available

    1981-04-01

    Results are reported of a conceptual design study of the retrofit of a solar central receiver system to an existing cogeneration facility at a Hawaii raw sugar factory. Background information on the site, the existing facility, and the project organization is given. Then the results are presented o the work to select the site specific configuration, including the working fluid, receiver concept, heliostat field site, and the determination of the solar facility size and of the role of thermal storage. The system selected would use water-steam as its working fluid in a twin-cavity receiver collecting sunlight from 41,420 m/sup 2/ of heliostat mirrors. The lates version of the system specification is appended, as are descriptions of work to measure site insolation and a site insolation mathematical model and interface data for the local utility. (LEW)

  11. Modeling topographic influences on solar radiation: A manual for the SOLARFLUX Model

    SciTech Connect

    Rich, P.M.; Hetrick, W.A.; Saving, S.C.

    1995-11-01

    SOLARFLUX is a geographical information system (GIS) based computer program (running under ARC/INFO and GRID) that models incoming solar radiation based on surface orientation (slope and aspect), solar angle (azimuth and zenith) as it shifts over time, shadows caused by topographic features, and atmospheric conditions. A convenient user interface allows specification of program parameters including latitude, time interval for simulation, file name of a topographic surface, atmospheric conditions (transmittivity), and file names for output. The user specifies a topographic surface as an array of elevation values (GRID). SOLARFLUX generates five basic types of output: 1) total direct radiation, 2) duration of direct sunlight, 3) total diffuse radiation, 4) skyview factor, and 5) hemispherical viewsheds of sky obstruction for specified surface locations. This manual serves as the comprehensive guide to SOLARFLUX. Included are discussions on modeling insolation on complex surfaces, our theoretical approach, program setup and operation, and a set of applications illustrating characteristics of topographic insolation modeling.

  12. Predicting Complete Ground Reaction Forces and Moments During Gait With Insole Plantar Pressure Information Using a Wavelet Neural Network.

    PubMed

    Sim, Taeyong; Kwon, Hyunbin; Oh, Seung Eel; Joo, Su-Bin; Choi, Ahnryul; Heo, Hyun Mu; Kim, Kisun; Mun, Joung Hwan

    2015-09-01

    In general, three-dimensional ground reaction forces (GRFs) and ground reaction moments (GRMs) that occur during human gait are measured using a force plate, which are expensive and have spatial limitations. Therefore, we proposed a prediction model for GRFs and GRMs, which only uses plantar pressure information measured from insole pressure sensors with a wavelet neural network (WNN) and principal component analysis-mutual information (PCA-MI). For this, the prediction model estimated GRFs and GRMs with three different gait speeds (slow, normal, and fast groups) and healthy/pathological gait patterns (healthy and adolescent idiopathic scoliosis (AIS) groups). Model performance was validated using correlation coefficients (r) and the normalized root mean square error (NRMSE%) and was compared to the prediction accuracy of the previous methods using the same dataset. As a result, the performance of the GRF and GRM prediction model proposed in this study (slow group: r?=?0.840-0.989 and NRMSE%?=?10.693-15.894%; normal group: r?=?0.847-0.988 and NRMSE% =?10.920-19.216%; fast group: r?=?0.823-0.953 and NRMSE%?=?12.009-20.182%; healthy group: r?=?0.836-0.976 and NRMSE%?=?12.920-18.088%; and AIS group: r?=?0.917-0.993 and NRMSE%?=?7.914-15.671%) was better than that of the prediction models suggested in previous studies for every group and component (p?

  13. Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability.

    PubMed

    Hao, Qingzhen; Wang, Luo; Oldfield, Frank; Peng, Shuzhen; Qin, Li; Song, Yang; Xu, Bing; Qiao, Yansong; Bloemendal, Jan; Guo, Zhengtang

    2012-10-18

    Knowledge of the past variability of climate at high northern latitudes during astronomical analogues of the present interglacial may help to inform our understanding of future climate change. Unfortunately, long-term continuous records of ice-sheet variability in the Northern Hemisphere only are scarce because records of benthic (18)O content represent an integrated signal of changes in ice volume in both polar regions. However, variations in Northern Hemisphere ice sheets influence the Siberian High (an atmospheric pressure system), so variations in the East Asian winter monsoon (EAWM)--as recorded in the aeolian dust deposits on the Chinese Loess Plateau--can serve as a useful proxy of Arctic climate variability before the ice-core record begins. Here we present an EAWM proxy record using grain-size variations in two parallel loess sections representative of sequences across the whole of the Chinese Loess Plateau over the past 900,000?years. The results show that during periods of low eccentricity and precessional variability at approximately 400,000-year intervals, the grain-size-inferred intensity of the EAWM remains weak for up to 20,000?years after the end of the interglacial episode of high summer monsoon activity and strong pedogenesis. In contrast, there is a rapid increase in the EAWM after the end of most other interglacials. We conclude that, for both the 400,000-year interglacials, the weak EAWM winds maintain a mild, non-glacial climate at high northern latitudes for much longer than expected from the conventional loess and marine oxygen isotope records. During these times, the less-severe summer insolation minima at 65°?N (ref. 4) would have suppressed ice and snow accumulation, leading to a weak Siberian High and, consequently, weak EAWM winds. PMID:23034648

  14. The daily processing of asteroid observations by Gaia

    E-print Network

    Tanga, Paolo; Oro, Aldo Dell; Muinonen, Karri; Pauwels, Thierry; Thuillot, William; Berthier, Jerome; Cellino, Alberto; Hestroffer, Daniel; Petit, Jean-Marc; Carry, Benoit; David, Pedro; Delbo, Marco; Fedorets, Grigori; Galluccio, Laurent; Granvik, Mikael; Ordenovic, Christophe; Pentikainen, Hanna

    2015-01-01

    The Gaia mission started its regular observing program in the summer of 2014, and since then it is regularly obtaining observations of asteroids. This paper draws the outline of the data processing for Solar System objects, and in particular on the daily "short-term" processing, from the on-board data acquisition to the ground-based processing. We illustrate the tools developed to compute predictions of asteroid observations, we discuss the procedures implemented by the daily processing, and we illustrate some tests and validations of the processing of the asteroid observations. Our findings are overall consistent with the expectations concerning the performances of Gaia and the effectiveness of the developed software for data reduction.

  15. Residential heating costs: a comparison of geothermal, solar and conventional resources

    SciTech Connect

    Bloomster, C.H.; Garrett-Price, B.A.; Fassbender, L.L.

    1980-08-01

    The costs of residential heating throughout the United States using conventional, solar, and geothermal energy were determined under current and projected conditions. These costs are very sensitive to location - being dependent on the local prices of conventional energy supplies, local solar insolation, cimate, and the proximity and temperature of potential geothermal resources. The sharp price increases in imported fuels during 1979 and the planned decontrol of domestic oil and natural gas prices have set the stage for geothermal and solar market penetration in the 1980's.

  16. Evaluation of initial collector field performance at the Langley Solar Building Test Facility

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Jensen, R. N.; Knoll, R. H.

    1977-01-01

    The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. A 1,180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row were calculated and recorded along with sensor, insolation, and weather data every five minutes using a minicomputer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.

  17. The application of simulation modeling to the cost and performance ranking of solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Rosenberg, L. S.; Revere, W. R.; Selcuk, M. K.

    1981-01-01

    Small solar thermal power systems (up to 10 MWe in size) were tested. The solar thermal power plant ranking study was performed to aid in experiment activity and support decisions for the selection of the most appropriate technological approach. The cost and performance were determined for insolation conditions by utilizing the Solar Energy Simulation computer code (SESII). This model optimizes the size of the collector field and energy storage subsystem for given engine generator and energy transport characteristics. The development of the simulation tool, its operation, and the results achieved from the analysis are discussed.

  18. Solar Energy for Pacific Northwest Buildings.

    ERIC Educational Resources Information Center

    Reynolds, John S.

    Data presented in this report indicate that solar space and water heating are possible in the Pacific Northwest. The first section of the report contains solar records from several stations in the region illustrating space heating needs that could be met, on an average daily basis, by solar energy. The data are summarized, and some preliminary…

  19. Solar Village--Educational Initiative for Kids.

    ERIC Educational Resources Information Center

    Hugerat, Muhamad; Ilyian, Salman; Toren, Zehava; Anabosi, Fawzi

    2003-01-01

    Explains a model of a solar village in the context of the school which does not contribute to air pollution by using only solar energy. Suggests that pupils would be active participants in building systems and understanding the contact between the knowledge of the basic science of solar energy and the technology processes in daily life.…

  20. Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX'08 field campaign

    NASA Astrophysics Data System (ADS)

    Anderson, Martha C.; Kustas, William P.; Alfieri, Joseph G.; Gao, Feng; Hain, Christopher; Prueger, John H.; Evett, Steven; Colaizzi, Paul; Howell, Terry; Chávez, José L.

    2012-12-01

    Robust spatial information about environmental water use at field scales and daily to seasonal timesteps will benefit many applications in agriculture and water resource management. This information is particularly critical in arid climates where freshwater resources are limited or expensive, and groundwater supplies are being depleted at unsustainable rates to support irrigated agriculture as well as municipal and industrial uses. Gridded evapotranspiration (ET) information at field scales can be obtained periodically using land-surface temperature-based surface energy balance algorithms applied to moderate resolution satellite data from systems like Landsat, which collects thermal-band imagery every 16 days at a resolution of approximately 100 m. The challenge is in finding methods for interpolating between ET snapshots developed at the time of a clear-sky Landsat overpass to provide complete daily time-series over a growing season. This study examines the efficacy of a simple gap-filling algorithm designed for applications in data-sparse regions, which does not require local ground measurements of weather or rainfall, or estimates of soil texture. The algorithm relies on general conservation of the ratio between actual ET and a reference ET, generated from satellite insolation data and standard meteorological fields from a mesoscale model. The algorithm was tested with ET retrievals from the Atmosphere-Land Exchange Inverse (ALEXI) surface energy balance model and associated DisALEXI flux disaggregation technique, which uses Landsat-scale thermal imagery to reduce regional ALEXI maps to a finer spatial resolution. Daily ET at the Landsat scale was compared with lysimeter and eddy covariance flux measurements collected during the Bushland Evapotranspiration and Agricultural Remote sensing EXperiment of 2008 (BEAREX08), conducted in an irrigated agricultural area in the Texas Panhandle under highly advective conditions. The simple gap-filling algorithm performed reasonably at most sites, reproducing observed cumulative ET to within 5-10% over the growing period from emergence to peak biomass in both rainfed and irrigated fields.

  1. Surface Radiation Budget (SRB) Release 2 Shortwave Daily Data in Native Format (SRB_REL2_SW_DAILY)

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W. (Principal Investigator)

    This data set contains upward and downward fluxes, photosynthetically active radiative flux, aerosol and cloud optical depth, cloud fraction, and solar zenith angle measured at three hourly intervals for each day for the entire globe between 07/01/1983 and 10/31/1995. These SW surface radiative parameters were derived with the Shortwave algorithm of the NASA World Climate Research Programme/Global Energy and Water-Cycle Experiment (WCRP/GEWEX) Surface Radiation Budget (SRB) Project. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1998-07-26] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=Ranges from 1 degree (tropics and subtropics) to 120 degrees (the poles).; Temporal_Resolution=daily; Temporal_Resolution_Range=daily].

  2. Orbital Resonance and Solar Cycles

    E-print Network

    P. A. Semi

    2009-03-29

    We present an analysis of planetary moves, encoded in DE406 ephemerides. We show resonance cycles between most planets in Solar System, of differing quality. The most precise resonance - between Earth and Venus, which not only stabilizes orbits of both planets, locks planet Venus rotation in tidal locking, but also affects the Sun: This resonance group (E+V) also influences Sunspot cycles - the position of syzygy between Earth and Venus, when the barycenter of the resonance group most closely approaches the Sun and stops for some time, relative to Jupiter planet, well matches the Sunspot cycle of 11 years, not only for the last 400 years of measured Sunspot cycles, but also in 1000 years of historical record of "severe winters". We show, how cycles in angular momentum of Earth and Venus planets match with the Sunspot cycle and how the main cycle in angular momentum of the whole Solar system (854-year cycle of Jupiter/Saturn) matches with climatologic data, assumed to show connection with Solar output power and insolation. We show the possible connections between E+V events and Solar global p-Mode frequency changes. We futher show angular momentum tables and charts for individual planets, as encoded in DE405 and DE406 ephemerides. We show, that inner planets orbit on heliocentric trajectories whereas outer planets orbit on barycentric trajectories.

  3. Maximum solar energy tracker from solar photovoltaic system using fuzzy logic controller

    SciTech Connect

    Mandal, S.K.; Phulambrikar, A.S.

    1998-07-01

    In solar PV system, the output DC voltage is variable with insolation, temperature, etc. The basic I-V characteristics of solar cell is non-linear from maximum (short circuit) to minimum (open circuit) with varying load. The maximum power transfer takes place at a particular voltage (Vm) called as Maximum Power point Tracker (MPPT). The MPPT is time varying with insolation, temperature and load, etc. To get the maximum output from SPV the system always operates at MPPT for maximum efficiency and economic operation of integrated SPV system. Generally, the maximum power point is within voltage range of 13V to 15V. The DC to DC converter (chopper) is used for this purpose. Here, the converter is modeled as a non-linear system. The Chopper output voltage is a function of input voltage (Vi) and duty ratio (delta). The Fuzzy Logic Controller (FLC) is used to operate the SPV at Vm voltage, though insolation, temperature and load are changed with respect to time, by controlling the duty ratio. Firstly, from previous knowledge base of the system FLC determines the voltage of MPPT considering the instantaneous temperature, insolation and load. Then the FLC operate the system at that voltage. The error and rate of change of error in output voltage for a certain value of input voltage are input to FLC. Then FLC determines the new duty ratio to minimize the error in output voltage (Vm). Here, the new duty ratio is non-linear function of error and rate of change of error in output voltage. The switch is ON for one or two duty cycles. After that again measure the parameters (Vm, dVm/dt) to determine the new duty ratio by using the Fuzzy Logic and the switch will be ON according to new duty ratio. This process will continue until the error in output voltage (Vm) is zero. The Fuzzy Logic Controller Base maximum solar energy tracker has fast response and is more accurate than feed forward control system with conventional controllers.

  4. Cokriging estimation of daily suspended sediment loads

    USGS Publications Warehouse

    Li, Z.; Zhang, Y.-K.; Schilling, K.; Skopec, M.

    2006-01-01

    Daily suspended sediment loads (S) were estimated using cokriging (CK) of S with daily river discharge based on weekly, biweekly, or monthly sampled sediment data. They were also estimated with ordinary kriging (OK) and a rating curve method. The estimated daily loads were compared with the daily measured values over a nine-year-period. The results show that the estimated daily sediment loads with the CK using the weekly measured data best matched the measured daily values. The rating curve method based on the same data provides a fairly good match but it tends to underestimate the peak and overestimate the low values. The CK estimation was better than the rating curve because CK considers the temporal correlation among the data values and honors the measured points whereas the rating curve method does not. For the site studied, weekly sampling may be frequent enough for estimating daily sediment loads with CK when daily discharge data is available. The estimated daily loads with CK were less reliable when the sediment samples were taken less frequently, i.e., biweekly or monthly. The OK estimates using the weekly measured data significantly underestimates the daily S because unlike CK and the rating curve, OK makes no use of the correlation of sediment loads with frequently measured river discharge. ?? 2005 Elsevier B.V. All rights reserved.

  5. Visual stimuli in daily life.

    PubMed

    Kasteleijn-Nolst Trenité, Dorothée G A; van der Beld, Gerrit; Heynderickx, Ingrid; Groen, Paul

    2004-01-01

    People of all ages, but especially children and adolescents, are increasingly exposed to visual stimuli. Typical environmental stimuli that can trigger epileptic seizures in susceptible persons are televisions (TVs), computers, videogames (VGs), discothèque lights, venetian blinds, striped walls, rolling stairs (escalators), striped clothing, and sunlight reflected from snow or the sea or interrupted by trees during a ride in a car or train. Less common stimuli are rotating helicopter blades, disfunctioning fluorescent lighting, welding lights, etc. New potentially provocative devices turn up now and then unexpectedly. During the last decades especially, displays have become increasingly dominant in many of our daily-life activities. We therefore focus mainly on the characteristics of artificial light and on current and future developments in video displays and videogames. Because VG playing has been shown also to have positive effects, a rating system might be developed for provocativeness to inform consumers about the content. It is important that patients with epilepsy be informed adequately about their possible visual sensitivity. PMID:14706037

  6. Correlation between solar activity and Earth's ionospheric electron content during the 23rd solar cycle

    NASA Astrophysics Data System (ADS)

    Bergeot, N.; Legrand, J.; Burston, R.; Bruyninx, C.; Defraigne, P.; Chevalier, J.; Clette, F.; Marque, C.; Lefevre, L.

    2010-12-01

    The beginning of the 23rd solar cycle (May 1996 to December 2008) coincided with the start of the catalogue of global ionospheric modeling using GPS data. Comparison between solar activity parameters and GPS-derived Total Electron Content (TEC) is now possible for the whole of solar cycle 23. In this study, we compared the daily sunspot number and F10.7 cm flux with the daily mean global TEC values during the entire last solar cycle. In order to better understand the ionization response, we show correlations between the daily F10.7cm delivered by NGDC-NOAA (National Geophysical Data Center - National Oceanic and Atmospheric Administration) and the daily sunspot number from SIDC (Solar Influences Data Analysis Center) with the daily mean latitudinal TEC values extracted from CODE (Center for Orbit Determination in Europe) GPS-based global ionospheric maps for the period 1995-2009. The correlations were investigated for different daily mean latitudinal ionospheric TEC: (1) expressed in geographic and geomagnetic coordinates; (2) with respect to the seasons and; (3) with respect to the different phases of the solar cycle. In general, results show in the north and south hemispheres a different ionospheric response (TEC) to solar activity (F10.7cm). Moreover, the switch from geographic to geomagnetic coordinates does not change the observed correlation between TEC and solar parameters. Finally, a larger correlation is observed at N20°-30° during the transition phase in the solar cycle.

  7. Solar energy system economic evaluation: Contemporary Newman, Georgia

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An economic evaluation of performance of the solar energy system (based on life cycle costs versus energy savings) for five cities considered to be representative of a broad range of environmental and economic conditions in the United States is discussed. The considered life cycle costs are: hardware, installation, maintenance, and operating costs for the solar unique components of the total system. The total system takes into consideration long term average environmental conditions, loads, fuel costs, and other economic factors applicable in each of five cities. Selection criteria are based on availability of long term weather data, heating degree days, cold water supply temperature, solar insolation, utility rates, market potential, and type of solar system.

  8. Electric power - Photovoltaic or solar dynamic?

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Hallinan, G. J.; Hieatt, J. L.

    1985-01-01

    The design of the power system for supplying the Space Station with insolation-generated electricity is the main Phase B task at NASA-Lewis Center. The advantages and limitations of two types of power systems, the photovoltaic arrays (PV) and the solar dynamic system (SD), are discussed from the points of view of cost, overall systems integration, and growth. Subsystems of each of these options are described, and a sketch of a projected SD system is shown. The PV technology is well developed and proven, but its low efficiency calls for solar arrays of large areas, which affect station dynamics, control, and drag compensation. The SD systems would be less costly to operate than VP, and are more efficient, needing less deployed area. The major drawback of the SD is its infancy. The conservative and forgiving designs for some of its components must still be created and tested, and the development risks assessed.

  9. Solar radiation management impacts on agriculture in China: A case study in the Geoengineering Model Intercomparison Project (GeoMIP)

    NASA Astrophysics Data System (ADS)

    Xia, Lili; Robock, Alan; Cole, Jason; Curry, Charles L.; Ji, Duoying; Jones, Andy; Kravitz, Ben; Moore, John C.; Muri, Helene; Niemeier, Ulrike; Singh, Balwinder; Tilmes, Simone; Watanabe, Shingo; Yoon, Jin-Ho

    2014-07-01

    Geoengineering via solar radiation management could affect agricultural productivity due to changes in temperature, precipitation, and solar radiation. To study rice and maize production changes in China, we used results from 10 climate models participating in the Geoengineering Model Intercomparison Project (GeoMIP) G2 scenario to force the Decision Support System for Agrotechnology Transfer (DSSAT) crop model. G2 prescribes an insolation reduction to balance a 1% a-1 increase in CO2 concentration (1pctCO2) for 50 years. We first evaluated the DSSAT model using 30 years (1978-2007) of daily observed weather records and agriculture practices for 25 major agriculture provinces in China and compared the results to observations of yield. We then created three sets of climate forcing for 42 locations in China for DSSAT from each climate model experiment: (1) 1pctCO2, (2) G2, and (3) G2 with constant CO2 concentration (409 ppm) and compared the resulting agricultural responses. In the DSSAT simulations: (1) Without changing management practices, the combined effect of simulated climate changes due to geoengineering and CO2 fertilization during the last 15 years of solar reduction would change rice production in China by -3.0 ± 4.0 megaton (Mt) (2.4 ± 4.0%) as compared with 1pctCO2 and increase Chinese maize production by 18.1 ± 6.0 Mt (13.9 ± 5.9%). (2) The termination of geoengineering shows negligible impacts on rice production but a 19.6 Mt (11.9%) reduction of maize production as compared to the last 15 years of geoengineering. (3) The CO2 fertilization effect compensates for the deleterious impacts of changes in temperature, precipitation, and solar radiation due to geoengineering on rice production, increasing rice production by 8.6 Mt. The elevated CO2 concentration enhances maize production in G2, contributing 7.7 Mt (42.4%) to the total increase. Using the DSSAT crop model, virtually all of the climate models agree on the sign of the responses, even though the spread across models is large. This suggests that solar radiation management would have little impact on rice production in China but could increase maize production.

  10. Daily regulation of hormone profiles.

    PubMed

    Kalsbeek, Andries; Fliers, Eric

    2013-01-01

    The highly coordinated output of the hypothalamic biological clock does not only govern the daily rhythm in sleep/wake (or feeding/fasting) behaviour but also has direct control over many aspects of hormone release. In fact, a significant proportion of our current understanding of the circadian clock has its roots in the study of the intimate connections between the hypothalamic clock and multiple endocrine axes. This chapter will focus on the anatomical connections used by the mammalian biological clock to enforce its endogenous rhythmicity on the rest of the body, using a number of different hormone systems as a representative example. Experimental studies have revealed a highly specialised organisation of the connections between the mammalian circadian clock neurons and neuroendocrine as well as pre-autonomic neurons in the hypothalamus. These complex connections ensure a logical coordination between behavioural, endocrine and metabolic functions that will help the organism adjust to the time of day most efficiently. For example, activation of the orexin system by the hypothalamic biological clock at the start of the active phase not only ensures that we wake up on time but also that our glucose metabolism and cardiovascular system are prepared for this increased activity. Nevertheless, it is very likely that the circadian clock present within the endocrine glands plays a significant role as well, for instance, by altering these glands' sensitivity to specific stimuli throughout the day. In this way the net result of the activity of the hypothalamic and peripheral clocks ensures an optimal endocrine adaptation of the metabolism of the organism to its time-structured environment. PMID:23604480

  11. Altering Knee Abduction Angular Impulse Using Wedged Insoles for Treatment of Patellofemoral Pain in Runners: A Six-Week Randomized Controlled Trial

    PubMed Central

    Lewinson, Ryan T.; Wiley, J. Preston; Humble, R. Neil; Worobets, Jay T.; Stefanyshyn, Darren J.

    2015-01-01

    Objective Determine if a change in internal knee abduction angular impulse (KAAI) is related to pain reduction for runners with patellofemoral pain (PFP) by comparing lateral and medial wedge insole interventions, and increased KAAI and decreased KAAI groups. Design Randomized controlled clinical trial (ClinicalTrials.gov ID# NCT01332110). Setting Biomechanics laboratory and community. Patients Thirty-six runners with physician-diagnosed PFP enrolled in the trial, and 27 were analyzed. Interventions Runners with PFP were randomly assigned to either an experimental 3 mm lateral wedge or control 6 mm medial wedge group. Participants completed a biomechanical gait analysis to quantify KAAIs with their assigned insole, and then used their assigned insole for six-weeks during their regular runs. Usual pain during running was measured at baseline and at six-week follow-up using a visual analog scale. Statistical tests were performed to identify differences between wedge types, differences between biomechanical response types (i.e. increase or decrease KAAI), as well as predictors of pain reduction. Main Outcome Measures Percent change in KAAI relative to neutral, and % change in pain over six weeks. Results Clinically meaningful reductions in pain (>33%) were measured for both footwear groups; however, no significant differences between footwear groups were found (p = 0.697). When participants were regrouped based on KAAI change (i.e., increase or decrease), again, no significant differences in pain reduction were noted (p = 0.146). Interestingly, when evaluating absolute change in KAAI, a significant relationship between absolute % change in KAAI and % pain reduction was observed (R2 = 0.21; p = 0.030), after adjusting for baseline pain levels. Conclusion The greater the absolute % change in KAAI during running, the greater the % reduction in pain over six weeks, regardless of wedge type, and whether KAAIs increased or decreased. Lateral and medial wedge insoles were similar in effectiveness for treatment of PFP. Clinical Relevance Altering KAAI should be a focus of future PFP research. Lateral wedges should be studied further as an alternative therapy to medial wedges for management of PFP. Trial Registration ClinicalTrials.gov NCT01332110 PMID:26230399

  12. [Lipid therapy in daily routine].

    PubMed

    Sonntag, F; Schaefer, J R; Gitt, A K; Weizel, A; Jannowitz, C; Karmann, B; Pittrow, D; Bestehorn, K

    2012-10-01

    Patients with increased cardiovascular risk profile are frequently seen in general practice. Comprehensive management of modifiable risk factors, in particular dyslipidemia, is mandatory. Many studies in clinical practice have shown a gap between the recommendations in clinical guidelines and the actual situation. Current data on the management situation of patients with high cardiovascular risk is provided by the prospective registry LIMA. Primary care physicians in 2,387 offices throughout Germany documented 13,924 patients with coronary artery disease (CAD), diabetes mellitus or peripheral arterial disease (PAD). Treatment with simvastatin 40?mg was an inclusion criterion. Physicians documented drug utilization, laboratory values (lipids, blood glucose), blood pressure and clinical events over one year and received feedback about the target value attainment of their patients after data entry. Mean age of the patients was 65.7 years, and 61.6?% were men. CAD was reported in 70.6?%, diabetes mellitus in 58.2?% and PAD in 14.9?%. Most patients (68?%) received simvastatin as monotherapy also after the inclusion visit; 20.6?% of patients received in addition the cholesterol absorption inhibitor (ezetimibe) in the first 6 months, and 23.3?% in the second 6 months. Patients achieved the LDL-cholesterol target value in 31.8?% at entry and 50.0?% after one year. The blood pressure target daily practice comprehensive management of risk factors in patients at high cardiovascular risk remains a challenge. For normalization of increased LDL cholesterol values addition of ezetimibe to existing statin therapy improves the chances of patients for target level attainment. PMID:23023622

  13. 1 CFR 5.6 - Daily publication.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Daily publication. 5.6 Section 5.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.6 Daily publication. There shall be an edition of the Federal Register published for each official Federal working day....

  14. 1 CFR 5.6 - Daily publication.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 1 General Provisions 1 2012-01-01 2012-01-01 false Daily publication. 5.6 Section 5.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.6 Daily publication. There shall be an edition of the Federal Register published for each official Federal working day....

  15. 1 CFR 5.6 - Daily publication.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 1 General Provisions 1 2013-01-01 2012-01-01 true Daily publication. 5.6 Section 5.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.6 Daily publication. There shall be an edition of the Federal Register published for each official Federal working day....

  16. 1 CFR 5.6 - Daily publication.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1 General Provisions 1 2011-01-01 2011-01-01 false Daily publication. 5.6 Section 5.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.6 Daily publication. There shall be an edition of the Federal Register published for each official Federal working day....

  17. 1 CFR 5.6 - Daily publication.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 1 General Provisions 1 2014-01-01 2012-01-01 true Daily publication. 5.6 Section 5.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.6 Daily publication. There shall be an edition of the Federal Register published for each official Federal working day....

  18. Daily Spiritual Experiences and Prosocial Behavior

    ERIC Educational Resources Information Center

    Einolf, Christopher J.

    2013-01-01

    This paper examines how the Daily Spiritual Experiences Scale (DSES) relates to range of prosocial behaviors, using a large, nationally representative U.S. data set. It finds that daily spiritual experiences are a statistically and substantively significant predictor of volunteering, charitable giving, and helping individuals one knows personally.…

  19. Children's Daily Routines during Kindergarten Transition

    ERIC Educational Resources Information Center

    Wildenger, Leah K.; McIntyre, Laura Lee; Fiese, Barbara H.; Eckert, Tanya L.

    2008-01-01

    Routines are an important feature of family life and functioning in families with young children. Common daily routines such as dinnertime, bedtime, and waking activities are powerful organizers of family behavior and may be instrumental to children and families during times of transition, such as elementary school entry. Daily routines were…

  20. Daily Stressors in Primary Education Students

    ERIC Educational Resources Information Center

    Fernández-Baena, F. Javier; Trianes, María V.; Escobar, Milagros; Blanca, María J.; Muñoz, Ángela M.

    2015-01-01

    Daily stress can have a bearing on children's emotional and academic development. This study aimed to assess daily stressors and to determine their prevalence among primary education students, taking into account their gender, academic year, social adaptation, and the school location. A sample of 7,354 Spanish schoolchildren aged between 6…

  1. Validation of the guidelines for portable meteorological instrument packages. Task IV. Development of an insolation handbook and instrumentation package

    SciTech Connect

    1980-10-01

    The purpose of this report is to show how the objective of developing guidelines for a solar energy related portable meteorology instrument package, under the auspices of the International Energy Agency (IEA), was carried out and preliminarily demonstrated and validated. A project to develop guidelines for such packages was initiated at IEA's Solar Heating and Cooling of Buildings Program Expert's Meeting held in Norrkoping, Sweden in February 1976. An international comparison of resultant devices was conducted on behalf of the IEA at a conference held in Hamburg, Federal Republic of Germany, in 1978. Results of the 1978 Hamburg comparison of two devices and the Swiss Mobile Solar Radiation System, using German meteorological standards, are discussed. The consensus of the IEA Task Group is that the objective of the subtask has been accomplished.

  2. Progressing Deployment of Solar Photovoltaic Installations in the United States

    NASA Astrophysics Data System (ADS)

    Kwan, Calvin Lee

    2011-07-01

    This dissertation evaluates the likelihood of solar PV playing a larger role in national and state level renewable energy portfolios. I examine the feasibility of large-scale solar PV arrays on college campuses, the financials associated with large-scale solar PV arrays and finally, the influence of environmental, economic, social and political variables on the distribution of residential solar PV arrays in the United States. Chapter two investigates the challenges and feasibility of college campuses adopting a net-zero energy policy. Using energy consumption data, local solar insolation data and projected campus growth, I present a method to identify the minimum sized solar PV array that is required for the City College campus of the Los Angeles Community College District to achieve net-zero energy status. I document how current energy demand can be reduced using strategic demand side management, with remaining energy demand being met using a solar PV array. Chapter three focuses on the financial feasibility of large-scale solar PV arrays, using the proposed City College campus array as an example. I document that even after demand side energy management initiatives and financial incentives, large-scale solar PV arrays continue to have ROIs greater than 25 years. I find that traditional financial evaluation methods are not suitable for environmental projects such as solar PV installations as externalities are not taken into account and therefore calls for development of alternative financial valuation methods. Chapter four investigates the influence of environmental, social, economic and political variables on the distribution of residential solar PV arrays across the United States using ZIP code level data from the 2000 US Census. Using data from the National Renewable Energy Laboratory's Open PV project, I document where residential solar PVs are currently located. A zero-inflated negative binomial model was run to evaluate the influence of selected variables. Using the same model, predicted residential solar PV shares were generated and illustrated using GIS software. The results of this model indicate that solar insolation, state energy deregulation and cost of electricity are statistically significant factors positively correlated with the adoption of residential solar PV arrays. With this information, policymakers at the towns and cities level can establish effective solar PV promoting policies and regulations for their respective locations.

  3. Terrestrial cooling and solar variability

    NASA Technical Reports Server (NTRS)

    Agee, E. M.

    1982-01-01

    Observational evidence from surface temperature records is presented and discussed which suggests a significant cooling trend over the Northern Hemisphere from 1940 to the present. This cooling trend is associated with an increase of the latitudinal gradient of temperature and the lapse rate, as predicted by climate models with decreased solar input and feedback mechanisms. Evidence suggests that four of these 80- to 100-year cycles of global surface temperature fluctuation may have occurred, and in succession, from 1600 to the present. Interpretation of sunspot activity were used to infer a direct thermal response of terrestrial temperature to solar variability on the time scale of the Gleissberg cycle (90 years, an amplitude of the 11-year cycles). A physical link between the sunspot activity and the solar parameter is hypothesized. Observations of sensible heat flux by stationary planetary waves and transient eddies, as well as general circulation modeling results of these processes, were examined from the viewpoint of the hypothesis of cooling due to reduced insolation.

  4. The Role of Insolation and the Equatorial Pacific in South American Climate during the Holocene: A Paleoclimate Record from Laguna Blanca, Venezuela

    NASA Astrophysics Data System (ADS)

    Polissar, P. J.; Abbott, M.; Wolfe, A. P.; Bezada, M.; Vuille, M.

    2009-12-01

    Insolation forcing of tropical climate at precessional timescales appears to be a widespread phenomenon in South America. This could reflect the influence of local insolation changes on rainfall and evaporation, and hence migration of the marine intertropical convergence zone (ITCZ) and its terrestrial expression, the South American summer monsoon. However, modern interannual climate variability in South America is also closely linked to ocean-atmosphere interactions in the tropical Pacific expressed primarily as the El Niño-Southern Oscillation (ENSO). The timing of climate changes in the Northern and Southern Hemisphere tropics is one way to distinguish between these mechanisms. Precessional forcing of Atlantic ITCZ migration would cause changes in the northern and southern hemispheres that are opposite in sign. In contrast, ENSO variability has a similar character in the Andean regions of both hemispheres. Here we develop a new terrestrial paleoclimate record in the northern tropics of South America. Lake level fluctuations from Laguna Blanca, located in the Venezuelan Andes, exhibit arid-humid intervals during the past 10,000 years that occur at the same time as those in the neotropics of both hemispheres. This pattern suggests that millennial-scale climate trends in Andean South America may reflect changes in the mean state and variability of the equatorial Pacific Ocean.

  5. Environmental data for sites in the National Solar Data Network

    SciTech Connect

    Not Available

    1980-09-01

    The Department of Energy's National Solar Data Program established solar energy systems in residential and commercial buildings across the United States. These solar sites are linked to Vitro Laboratories Division's computer in the National Solar Data Network (NSDN). Vitro collects and analyzes data from this network to determine the thermal performance of each of the solar systems. The environmental data for the NSDN are presented in the form of tables for each solar site. The solar sites are grouped into 12 zones, each of which consists of several adjacent states. The solar energy sites are in alphabetical sequence within each zone. The tables provide available meteorological data for reporting sites in the NSDN as follows: the insolation table presents the total, diffuse, direct, maximum, and extra-terrestrial radiation for the solar site. It also shows the ratio of total extra-terrestrial radiation, as a percent; the temperature table gives the average, daytime, nighttime, maximum, minimum and inlet-water temperatures for the solar site. Additional tables are presented for some of these NSDN sites, supplying either wind or relative humidity data, or both. (MHR)

  6. Adolescent Daily and General Maladjustment: Is There Reactivity to Daily Repeated Measures Methodologies?

    ERIC Educational Resources Information Center

    Nishina, Adrienne

    2012-01-01

    The present study examined whether repeated exposure to daily surveys about negative social experiences predicts changes in adolescents' daily and general maladjustment, and whether question content moderates these changes. Across a 2-week period, 6th-grade students (N = 215; mode age = 11) completed 5 daily reports tapping experienced or…

  7. Astronomical forcing, insolation and millennial-scale climate variability: evidence from the North Atlantic Ocean (IODP Expedition 306, Site U1313) during the Early-Middle Pleistocene

    NASA Astrophysics Data System (ADS)

    Ferretti, Patrizia; Crowhurst, Simon; Naafs, David; Barbante, Carlo

    2015-04-01

    Since the seminal work by Hays, Imbrie and Shackleton (1976), a plethora of studies mostly based on marine sediments collected during DSDP-ODP-IODP Expeditions has demonstrated a correlation between orbital variations and climatic change. However, information on how changes in orbital boundary conditions affected the frequency and amplitude of millennial-scale climate variability is still fragmentary. Here we examine the record of climatic conditions from MIS 23 to 17 (c. 920-670 ka) using high-resolution stable isotope records from benthic and planktonic foraminifera from a sedimentary sequence in the North Atlantic (Integrated Ocean Drilling Program Expedition 306, Site U1313) in order to evaluate the climate system's response in the millennial band to known orbitally induced insolation changes. Special emphasis is placed on Marine Isotope Stage (MIS) 19, an interglacial centred at around 785 ka during which the insolation appears comparable to the current orbital geometry: MIS 19 is characterised by a minimum of the 400-kyr eccentricity cycle, subdued amplitude of precessional changes, and small amplitude variations in insolation making this marine isotopic stage a potential astronomical analogue for the Holocene and its future evolution, if this remains governed by natural forcing (Loutre and Berger 2000). Benthic and planktonic foraminiferal oxygen isotope values indicate relatively stable conditions during the peak warmth of MIS 19, but sea-surface and deep-water reconstructions start diverging during the transition towards the glacial MIS 18, when large, cold excursions disrupt the surface waters whereas low amplitude millennial scale fluctuations persist in the deep waters as recorded by the oxygen isotope signal (Ferretti et al., 2015). The glacial inception occurred at ˜779 ka, in agreement with an increased abundance of tetra-unsaturated alkenones, reflecting the influence of icebergs and associated meltwater pulses and high-latitude waters at the study site. Using a variety of time series analysis techniques, we evaluate the evolution of millennial climate variability in response to changing orbital boundary conditions during the early-middle Pleistocene. Suborbital variability in both surface- and deep-water records is mainly concentrated at a period of ˜11 kyr and, additionally, at ˜5.8 and ˜3.9 kyr in the deep ocean; these periods are equal to harmonics of precession band oscillations. The fact that the response at the 11 kyr period increased over the same interval during which the amplitude of the response to the precessional cycle increased supports the notion that most of the variance in the 11 kyr band in the sedimentary record is nonlinearly transferred from precession band oscillations. Considering that these periodicities are important features in the equatorial and intertropical insolation, these observations are in line with the view that the low-latitude regions play an important role in the response of the climate system to the astronomical forcing. We conclude that the effect of the orbitally induced insolation is of fundamental importance in regulating the timing and amplitude of millennial scale climate variability. Ferretti P., Crowhurst S.J., Naafs B.D.A., Barbante C., 2015. Quaternary Science Reviews 108, 95-110. Hays J.D., Imbrie J., Shackleton N.J., 1976. Science 194, 1121-1132. Loutre M.F., Berger A., 2000. Climatic Change 46, 61-90.

  8. Noise in pressure transducer readings produced by variations in solar radiation

    USGS Publications Warehouse

    Cain, S. F., III; Davis, G.A.; Loheide, S.P., II; Butler, J.J., Jr.

    2004-01-01

    Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.

  9. Solar astronomy

    NASA Technical Reports Server (NTRS)

    Rosner, Robert; Noyes, Robert; Antiochos, Spiro K.; Canfield, Richard C.; Chupp, Edward L.; Deming, Drake; Doschek, George A.; Dulk, George A.; Foukal, Peter V.; Gilliland, Ronald L.

    1991-01-01

    An overview is given of modern solar physics. Topics covered include the solar interior, the solar surface, the solar atmosphere, the Large Earth-based Solar Telescope (LEST), the Orbiting Solar Laboratory, the High Energy Solar Physics mission, the Space Exploration Initiative, solar-terrestrial physics, and adaptive optics. Policy and related programmatic recommendations are given for university research and education, facilitating solar research, and integrated support for solar research.

  10. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Technical Reports Server (NTRS)

    Keddy, E.; Sena, J. Tom; Merrigan, M.; Heidenreich, Gary; Johnson, Steve

    1988-01-01

    An integrated heat pipe-thermal storage system was developed as part of the Organic Rankine Cycle Solar Dynamic Power System solar receiver for space station application. The solar receiver incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain thermal energy storage (TES) canisters within the vapor space with a toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe. Part of this thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of earth orbit, the stored energy in the TES units is transferred by the potassium vapor to the toluene heater tube. A developmental heat pipe element was constructed that contains axial arteries and a distribution wick connecting the toluene heater and the TES units to the solar insolation surface of the heat pipe. Tests were conducted to demonstrate the heat pipe, TES units, and the heater tube operation. The heat pipe element was operated at design input power of 4.8 kW. Thermal cycle tests were conducted to demonstrate the successful charge and discharge of the TES units. Axial power flux levels up to 15 watts/sq cm were demonstrated and transient tests were conducted on the heat pipe element. Details of the heat pipe development and test procedures are presented.

  11. Daily intake of 4-nonylphenol in Taiwanese.

    PubMed

    Lu, Yu-Yu; Chen, Mei-Lien; Sung, Fung-Chang; Wang, Paulus Shyi-Gang; Mao, I-Fang

    2007-10-01

    Alkylphenol polyethoxylates (APEO), alkylphenols combined with ethylene oxide, are a class of nonionic surfactants. APEO have been widely used for industrial, agricultural and household applications, and are biodegraded to more persistent and estrogen-active products, namely, nonylphenol (NP), octylphenol (OP), butylphenol (BP), nonylphenol monoethoxylate (NP(1)EO) and nonylphenol diethoxylate (NP(2)EO). This study determined NP levels in commonly consumed foodstuffs to assess daily intake of NP in a Taiwanese population. This study analyzes 318 of samples from 25 types of commonly consumed foodstuffs in northern, central, southern and eastern regions of Taiwan and estimates daily intake of NP in 466 subjects. Moreover, daily NP intake for 3915 additional subjects was estimated by analyzing data from the Nutrition and health survey in Taiwan (NAHSIT). The foodstuff samples were analyzed for five alkylphenol compounds simultaneously by HPLC with fluorescence detection. Additionally, the average compositions of typical foods consumed in Taiwan were investigated. In combination with alkylphenol levels in these foodstuffs, daily intake of NP in Taiwanese was calculated. The average daily intake of NP for the 466 subjects was 28.04+/-25.32 microg/day. Estimated daily intake of NP, based on NP levels in this study as well as the NAHSIT data, was 31.40 microg/day. Rice was the most commonly consumed source of NP, the proportion was 21.46% among daily intake of NP and the following were aquatic products and livestock, which percentage were 17.97% and 17.38%, respectively. Additionally, oysters had the highest NP levels (235.8+/-90.7 ng/g) in four regions of Taiwan, followed by salmon (123.8+/-116.2 ng/g). This study suggested that the average daily NP intake in Taiwan is 4-fold and 8.5-fold higher than daily intake in Germany and New Zealand, respectively and rice was the major source of NP intake. PMID:17512594

  12. Results of heating mode performance tests of a solar-assisted heat pump

    NASA Technical Reports Server (NTRS)

    Jones, C. B.; Smetana, F. O.

    1979-01-01

    The performance of a heat pump, utilizing 8.16 square meters of low-cost solar collectors as the evaporator in a Freon-114 refrigeration cycle, was determined under actual insolation conditions during the summer and fall of 1976. C.O.P.'s (coefficient of performance) greater than 3 were obtained with condensing temperatures around 78 C and evaporating temperatures around 27 C. Ambient temperatures were about 3 C above evaporating temperatures. Similar performance levels were obtained at other insolation and temperature conditions. Experience with the system has identified some component and system changes which should increase the obtainable C.O.P. to about 4.0. These are described along with the system's design rationale. The accumulated data are presented as an appendix.

  13. 27 CFR 19.650 - Daily records.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...TREASURY LIQUORS DISTILLED SPIRITS PLANTS Production of Vinegar by the Vaporizing Process Required Records for Vinegar Plants § 19.650 Daily records. Each manufacturer of vinegar by the vaporizing process must keep accurate...

  14. 27 CFR 19.829 - Daily records.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...DISTILLED SPIRITS PLANTS Production of Vinegar by the Vaporizing Process Records ...Daily records. Each manufacturer of vinegar by the vaporizing process shall keep accurate...distilled spirits used in the manufacture of vinegar; (e) The wine gallons of...

  15. Products to Aid in Daily Living

    MedlinePLUS

    ... Research In Your Community Advocate Get Involved Donate Products to Aid in Daily Living The materials and ... Check back for an update to this message. Product List Product/Services Topics Care Services Information and ...

  16. [Postexposure prophylaxis in daily clinical practice].

    PubMed

    Küpper, Marc Fabian; Stellbrink, Hans-Jürgen; Kern, Winfried V; Müller, Matthias C

    2015-04-01

    Postexposure prophylaxis with antiinfective medication or immunizations are common problems in daily care of out- and inpatients in Germany. We discuss the most relevant situations in adult patients, other populations (neonates, children) are not considered. PMID:25826030

  17. The 1-kW solar Stirling experiment

    NASA Technical Reports Server (NTRS)

    Giandomenico, A.

    1981-01-01

    The objective of this experiment was to demonstrate electrical power generation using a small free-piston Stirling engine and linear alternator in conjunction with a parabolic solar collector. A test bed collector, formerly used at the JPL Table Mountain Observatory, was renovated and used to obtain practical experience and to determine test receiver performance. The collector was mounted on a two-axis tracker, with a cold water calorimeter mounted on the collector to measure its efficiency, while a separate, independently tracking radiometer was used to measure solar insolation. The solar receiver was designed to absorb energy from the collector, then transfer the resulting thermal energy to the Stirling engine. Successful testing of receiver/collector assembly yielded valuable inputs for design of the Stirling engine heater head.

  18. Small solar thermal electric power plants with early commercial potential

    NASA Technical Reports Server (NTRS)

    Jones, H. E.; Bisantz, D. J.; Clayton, R. N.; Heiges, H. H.; Ku, A. C.

    1979-01-01

    Cost-effective small solar thermal electric power plants (1- to 10-MW nominal size) offer an attractive way of helping the world meet its future energy needs. The paper describes the characteristics of a conceptual near-term plant (about 1 MW) and a potential 1990 commercial version. The basic system concept is one in which steam is generated using two-axis tracking, parabolic dish, and point-focusing collectors. The steam is transported through low-loss piping to a central steam turbine generator unit where it is converted to electricity. The plants have no energy storage and their output power level varies with the solar insolation level. This system concept, which is firmly based on state-of-the-art technology, is projected to offer one of the fastest paths for U.S. commercialization of solar thermal electric power plants through moderate technology advances and mass production.

  19. Solar energy system economic evaluation for Solaron Akron, Akron, Ohio

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The economic analysis of the solar energy system that was installed at Akron, Ohio is developed for this and four other sites typical of a wide range of environmental and economic conditions. The analysis is accomplished based on the technical and economic models in the f chart design procedure with inputs based on the characteristics of the installed parameters of present worth of system cost over a projected twenty year life: life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated. Results show that only in Albuquerque, New Mexico, where insolation is 1828 Btu/sq ft/day and the conventional energy cost is high, is this solar energy system marginally profitable.

  20. Holocene vegetation and climate histories in the eastern Tibetan Plateau: controls by insolation-driven temperature or monsoon-derived precipitation changes?

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Yu, Z.; Zhao, W.

    2012-12-01

    The climates on the eastern Tibetan Plateau are strongly influenced by direct insolation heating as well as monsoon-derived precipitation change. However, the moisture and temperature influences on regional vegetation and climate have not been well documented in paleoclimate studies. Here we present a well-dated and high-resolution loss-on-ignition, peat property and fossil pollen record over the last 10,000 years from a sedge-dominated fen peatland in the central Zoige Basin on the eastern Tibetan Plateau and discuss its ecological and climatic interpretations. Lithology results indicate that organic matter content is high at 60-80% between 10 and 3 ka (1 ka = 1000 cal yr BP) and shows large-magnitude fluctuations in the last 3000 years. Ash-free bulk density, as a proxy of peat decomposition and peatland surface moisture conditions, oscillates around a mean value of 0.1 g/cm3, with low values at 6.5-4.7 ka, reflecting a wet interval, and an increasing trend from 4.7 to 2 ka, suggesting a drying trend. The time-averaged mean carbon accumulation rates are 30.6 gC/m2/yr for the last 10,000 years, higher than that from many northern peatlands. Tree pollen (mainly from Picea), mostly reflecting temperature change in this alpine meadow-forest ecotonal region, has variable values (from 3 to 34%) during the early Holocene, reaches the peak value during the mid-Holocene at 6.5 ka, and then decreases until 2 ka. The combined peat property and pollen data indicate that a warm and wet climate prevailed in the mid-Holocene (6.5-4.7 ka), representing a monsoon maximum or "optimum climate" for the region. The timing is consistent with recent paleo-monsoon records from southern China and with the idea that the interplays of summer insolation and other extratropical large-scale boundary conditions, including sea-surface temperature and sea-level change, control regional climate. The cooling and drying trend since the mid-Holocene likely reflects the decrease in insolation heating and weakening of summer monsoons. Regional synthesis of five pollen records along a southenorth transect indicates that this climate pattern can be recognized all across the eastern Tibetan Plateau. The peatland and vegetation changes in the late Holocene suggest complex and dramatic responses of these lowland and upland ecosystems to changes in temperature and moisture conditions and human activities.

  1. Closed landfills to solar energy power plants: Estimating the solar potential of closed landfills in California

    NASA Astrophysics Data System (ADS)

    Munsell, Devon R.

    Solar radiation is a promising source of renewable energy because it is abundant and the technologies to harvest it are quickly improving. An ongoing challenge is to find suitable and effective areas to implement solar energy technologies without causing ecological harm. In this regard, one type of land use that has been largely overlooked for siting solar technologies is closed or soon to be closed landfills. Utilizing Geographic Information System (GIS) based solar modeling; this study makes an inventory of solar generation potential for such sites in the state of California. The study takes account of various site characteristics in relation to the siting needs of photovoltaic (PV) geomembrane and dish-Stirling technologies (e.g., size, topography, closing date, solar insolation, presence of landfill gas recovery projects, and proximity to transmission grids and roads). This study reaches the three principal conclusions. First, with an estimated annual solar electricity generation potential of 3.7 million megawatt hours (MWh), closed or soon to be closed landfill sites could provide an amount of power significantly larger than California's current solar electric generation. Secondly, the possibility of combining PV geomembrane, dish-Stirling, and landfill gas (LFG) to energy technologies at particular sites deserves further investigation. Lastly, there are many assumptions, challenges, and limitations in conducting inventory studies of solar potential for specific sites, including the difficulty in finding accurate data regarding the location and attributes of potential landfills to be analyzed in the study. Furthermore, solar modeling necessarily simplifies a complex phenomenon, namely incoming solar radiation. Additionally, site visits, while necessary for finding details of the site, are largely impractical for a large scale study.

  2. Vestibular loss disrupts daily rhythm in rats.

    PubMed

    Martin, T; Mauvieux, B; Bulla, J; Quarck, G; Davenne, D; Denise, P; Philoxène, B; Besnard, S

    2015-02-01

    Hypergravity disrupts the circadian regulation of temperature (Temp) and locomotor activity (Act) mediated through the vestibular otolithic system in mice. In contrast, we do not know whether the anatomical structures associated with vestibular input are crucial for circadian rhythm regulation at 1 G on Earth. In the present study we observed the effects of bilateral vestibular loss (BVL) on the daily rhythms of Temp and Act in semipigmented rats. Our model of vestibular lesion allowed for selective peripheral hair cell degeneration without any other damage. Rats with BVL exhibited a disruption in their daily rhythms (Temp and Act), which were replaced by a main ultradian period (? <20 h) for 115.8 ± 68.6 h after vestibular lesion compared with rats in the control group. Daily rhythms of Temp and Act in rats with BVL recovered within 1 wk, probably counterbalanced by photic and other nonphotic time cues. No correlation was found between Temp and Act daily rhythms after vestibular lesion in rats with BVL, suggesting a direct influence of vestibular input on the suprachiasmatic nucleus. Our findings support the hypothesis that the vestibular system has an influence on daily rhythm homeostasis in semipigmented rats on Earth, and raise the question of whether daily rhythms might be altered due to vestibular pathology in humans. PMID:25505031

  3. Tracking daily land surface albedo and reflectance anisotropy with moderate-resolution imaging spectroradiometer (MODIS)

    NASA Astrophysics Data System (ADS)

    Shuai, Yanmin

    A new algorithm provides daily values of land surface albedo and angular reflectance at a 500-m spatial resolution using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments currently in orbit on NASA's Terra and Aqua satellite platforms. To overcome the day-to-day variance in observed surface reflectance induced by differences in view and solar illumination angles, the algorithm uses the RossThickLiSparse-Reciprocal bidirectional reflectance model, which is fitted to all MODIS observations of a 500-m resolution cell acquired during a 16-day moving window. Individual observations are weighted by their quality, observation coverage, and proximity to the production date of interest. Product quality is measured by (1) the root mean square error (RMSE) of observations against the best model fit; and (2) the ability of the angular sampling pattern of the observations at hand to determine reflectance model parameters accurately. A regional analysis of model fits to data from selected MODIS data tiles establishes the bounds of these quality measures for application in the daily algorithm. The algorithm, which is now available to users of direct broadcast satellite data from MODIS, allows daily monitoring of rapid surface radiation and land surface change phenomena such as crop development and forest foliage cycles. In two demonstrations, the daily algorithm captured rapid change in plant phenology. The growth phases of a winter wheat crop, as monitored at the Yucheng agricultural research station in Yucheng, China, matched MODIS daily multispectral reflectance data very well, especially during the flowering and heading stages. The daily algorithm also captured the daily change in autumn leaf color in New England, documenting the ability of the algorithm to work well over large regions with varying degrees of cloud cover and atmospheric conditions. Daily surface albedos measured using ground-based instruments on towers at the agricultural and forest locations also compared very favorably with the MODIS albedo measures derived with the new daily algorithm, achieving RMSE values of less than 0.03 units.

  4. Solar Power System Evaluated for the Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.

    2000-01-01

    The electric power system is a crucial element of any mission for the human exploration of the Martian surface. The bulk of the power generated will be delivered to crew life support systems, extravehicular activity suits, robotic vehicles, and predeployed in situ resource utilization (ISRU) equipment. In one mission scenario, before the crew departs for Mars, the ISRU plant operates for 435 days producing liquefied methane and oxygen for ascent-stage propellants and water for crew life support. About 200 days after ISRU production is completed, the crew arrives for a 500-day surface stay. In this scenario, the power system must operate for a total of 1130 days (equivalent to 1100 Martian "sols"), providing 400 MW-hr of energy to the ISRU plant and up to 18 kW of daytime user power. A photovoltaic power-generation system with regenerative fuel cell (RFC) energy storage has been under study at the NASA Glenn Research Center at Lewis Field. The conceptual power system is dominated by the 4000- m2 class photovoltaic array that is deployed orthogonally as four tent structures, each approximately 5 m on a side and 100-m long. The structures are composed of composite members deployed by an articulating mast, an inflatable boom, or rover vehicles, and are subsequently anchored to the ground. Array panels consist of thin polymer membranes with thin-film solar cells. The array is divided into eight independent electrical sections with solar cell strings operating at 600 V. Energy storage is provided by regenerative fuel cells based on hydrogen-oxygen proton exchange membrane technology. Hydrogen and oxygen reactants are stored in gaseous form at 3000 psi, and the water produced is stored at 14.7 psi. The fuel cell operating temperature is maintained by a 40-m2 deployable pumped-fluid loop radiator that uses water as the working fluid. The power management and distribution (PMAD) architecture features eight independent, regulated 600-Vdc channels. Power management and distribution power cables use various gauges of copper conductors with ethylene tetrafluoroethylene insulation. To assess power system design options and sizing, we developed a dedicated Fortran code to predict detailed power system performance and estimate system mass. This code also modeled the requisite Mars surface environments: solar insolation, Sun angles, dust storms, dust deposition, and thermal and ultraviolet radiation. Using this code, trade studies were performed to assess performance and mass sensitivities to power system design parameters (photovoltaic array geometry and orientation) and mission parameters (landing date and landing site latitude, terrain slope, and dust storm activity). Mission analysis cases were also run. Power results are shown in this graph for an analysis case with a September 1, 2012, landing date; 18.95 North latitude landing site; two seasonal dusts storms; and tent arrays. To meet user load requirements and the ISRU energy requirement, an 8-metric ton (MT) power system and 4000-m2 photovoltaic array area were required for the assumed advanced CuInS2 thin-film solar cell technology. In this figure, the top curve is the average daytime photovoltaic array power, the middle curve is average daytime user load power, and the bottom curve is nighttime power. At mission day 1, daytime user power exceeds 120 kW before falling off to 80 kW at the end of the mission. Throughout the mission, nighttime user power is set to the nighttime power requirement. In this analysis, "nighttime" is defined as the 13- to 15-hr period when array power output is below the daytime power requirement. During dust storms, power system capability falls off dramatically so that by mission day 900, a daily energy balance cannot be maintained. Under these conditions, the ISRU plant is placed in standby mode, and the regenerative fuel cell energy storage is gradually discharged to meet user loads.

  5. Feasibility Study on the Use of a Solar Thermoelectric Cogenerator Comprising a Thermoelectric Module and Evacuated Tubular Collector with Parabolic Trough Concentrator

    NASA Astrophysics Data System (ADS)

    Miao, L.; Zhang, M.; Tanemura, S.; Tanaka, T.; Kang, Y. P.; Xu, G.

    2012-06-01

    We have designed a new solar thermoelectric cogeneration system consisting of an evacuated tubular solar collector (ETSC) with a parabolic trough concentrator (PTC) and thermoelectric modules (TEMs) to supply both thermal energy and electricity. The main design concepts are (1) the hot side of the TEM is bonded to the solar selective absorber installed in an evacuated glass tube, (2) the cold side of the TEM is also bonded to the heat sink, and (3) the outer circulated water is heated by residual solar energy after TEM generation. We present an example solar thermal simulation based on energy balance and heat transfer as used in solar engineering to predict the electrical conversion efficiency and solar thermal conversion efficiency for different values of parameters such as the solar insolation, concentration ratio, and TEM ZT values.

  6. Solar index generation and delivery

    SciTech Connect

    Lantz, L.J.

    1980-01-01

    The Solar Index, or, more completely defined as the Service Hot Water Solar Index, was conceptualized during the spring of 1978. The purpose was to enhance public awareness to solar energy usability. Basically, the Solar Index represents the percentage of energy that solar would provide in order to heat an 80 gallon service hot water load for a given location and day. The Index is computed by utilizing SOLCOST, a computer program, which also has applications to space heating, cooling, and heat pump systems and which supplies economic analyses for such solar energy systems. The Index is generated for approximately 68 geographic locations in the country on a daily basis. The definition of the Index, how the project came to be, what it is at the present time and a plan for the future are described. Also presented are the models used for the generation of the Index, a discussion of the primary tool of implementation (the SOLCOST program) and future efforts.

  7. Solar Lentigo

    MedlinePLUS

    newsletter | contact Share | Solar Lentigo Information for adults A A A This image displays many solar lentigos due to the patient having many sunburns as a child and teenager. Overview A solar lentigo (plural, solar lentigines), also known as a ...

  8. Opportunities and Challenges for Solar Minigrid Development in Rural India

    SciTech Connect

    Thirumurthy, N.; Harrington, L.; Martin, D.; Thomas, L.; Takpa, J.; Gergan, R.

    2012-09-01

    The goal of this report is to inform investors about the potential of solar minigrid technologies to serve India's rural market. Under the US-India Energy Dialogue, the US Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is supporting the Indian Ministry of New and Renewable Energy (MNRE)'s Jawaharlal Nehru National Solar Mission (JNNSM) in performing a business-case and policy-oriented analysis on the deployment of solar minigrids in India. The JNNSM scheme targets the development of 2GW of off-grid solar power by 2022 and provides large subsidies to meet this target. NREL worked with electricity capacity and demand data supplied by the Ladakh Renewable Energy Development Agency (LREDA) from Leh District, to develop a technical approach for solar minigrid development. Based on the NREL-developed, simulated solar insolation data for the city of Leh, a 250-kW solar photovoltaic (PV) system can produce 427,737 kWh over a 12-month period. The business case analysis, based on several different scenarios and JNNSM incentives shows the cost of power ranges from Rs. 6.3/kWh (US$0.126) to Rs. 9/kWh (US$0.18). At these rates, solar power is a cheaper alternative to diesel. An assessment of the macro-environment elements--including political, economic, environmental, social, and technological--was also performed to identify factors that may impact India?s energy development initiatives.

  9. Daily soil temperature modeling using neuro-fuzzy approach

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh Talaee, P.

    2014-11-01

    Soil temperature is an important meteorological parameter which influences a number of processes in agriculture, hydrology, and environment. However, soil temperature records are not routinely available from meteorological stations. This work aimed to estimate daily soil temperature using the coactive neuro-fuzzy inference system (CANFIS) in arid and semiarid regions. For this purpose, daily soil temperatures were recorded at six depths of 5, 10, 20, 30, 50, and 100 cm below the surface at two synoptic stations in Iran. According to correlation analysis, mean, maximum, and minimum air temperatures, relative humidity, sunshine hours, and solar radiation were selected as the inputs of the CANFIS models. It was concluded that, in most cases, the best soil temperature estimates with a CANFIS model can be provided with the Takagi-Sugeno-Kang (TSK) fuzzy model and the Gaussian membership function. Comparison of the models' performances at arid and semiarid locations showed that the CANFIS models' performances in arid site were slightly better than those in semiarid site. Overall, the obtained results indicated the capabilities of the CANFIS model in estimating soil temperature in arid and semiarid regions.

  10. New developments for future solar power plants

    NASA Astrophysics Data System (ADS)

    Lorenz, J.; Feustel, J.; Kraft, M.

    The development of a planned solar farm providing 15 to 500 kW of electrical and mechanical energy in regions with high insolation is discussed. In the proposed power plant, 200 to 300 C heat generated in tracking parabolic cylindrical collectors is used to produce high-pressure steam as a source of mechanical energy, electricity or low-temperature heat. The optimization of system operating temperature and collector area with respect to collector and machine efficiency is discussed, and the first plant prototype is presented. Advanced development of the modular collector units and the energy conversion circuit, which consists of the boiler, expansion machine, electrical generator, condenser, cooling tower and control, monitoring and auxiliary devices, is then considered.

  11. Solar and Photovoltaic Data from the University of Oregon Solar Radiation Monitoring Laboratory (UO SRML)

    DOE Data Explorer

    The UO SRML is a regional solar radiation data center whose goal is to provide sound solar resource data for planning, design, deployment, and operation of solar electric facilities in the Pacific Northwest. The laboratory has been in operation since 1975. Solar data includes solar resource maps, cumulative summary data, daily totals, monthly averages, single element profile data, parsed TMY2 data, and select multifilter radiometer data. A data plotting program and other software tools are also provided. Shade analysis information and contour plots showing the effect of tilt and orientation on annual solar electric system perfomance make up a large part of the photovoltaics data.(Specialized Interface)

  12. To develop a dynamic model of a collector loop for purpose of improved control of solar heating and cooling. Final technical report. [TRNSYS code

    SciTech Connect

    Herczfeld, P R; Fischl, R

    1980-01-01

    The program objectives were to (1) assess the feasibility of using the TRNSYS computer code for solar heating and cooling control studies and modify it wherever possible, and (2) develop a new dynamic model of the solar collector which reflects the performance of the collector under transient conditions. Also, the sensitivity of the performance of this model to the various system parameters such as collector time constants, flow rates, turn-on and turn-off temperature set points, solar insolation, etc., was studied. Results are presented and discussed. (WHK)

  13. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect mode at the Sanford Solar Observatory are presented. These observations show no variations in the rotation rate that exceed the observational error of about one percent. The average rotation rate is indistinguishable from that of sunspots and large scale magnetic field structures.

  14. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.; Wilcox, J. M.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect are made at the Stanford Solar Observatory. These observations show no variations in the rotation rate that exceed the observational error of about 1%. The average rotation rate is indistinguishable from that of sunspots and large-scale magnetic field structures.

  15. Forecasting of Solar Radiation Detlev Heinemann, Elke Lorenz, Marco Girodo

    E-print Network

    Heinemann, Detlev

    Forecasting of Solar Radiation Detlev Heinemann, Elke Lorenz, Marco Girodo Oldenburg University systems in buildings, control of solar thermal power plants and the management of electricity grids have been presented more than twenty years ago (Jensenius, 1981), when daily solar radiation forecasts

  16. xtreme space weather storms are driven by solar activity, which

    E-print Network

    Wheatland, Michael S.

    on the Sun varies with a semi-regular 11-year cycle known as the solar cycle. Short-term variations (daily the solar disk. There are also longer- term variations occurring over timescales from years to centuriesE xtreme space weather storms are driven by solar activity, which originates at sunspots

  17. Testing the relationship between the solar radiation dose and surface DMS concentrations using in situ data

    NASA Astrophysics Data System (ADS)

    Miles, C. J.; Bell, T. G.; Lenton, T. M.

    2009-09-01

    The proposed strong positive relationship between dimethylsulphide (DMS) concentration and the solar radiation dose (SRD) received into the surface ocean is tested using data from the Atlantic Meridional Transect (AMT) programme. In situ, daily data sampled concurrently with DMS concentrations is used for the component variables of the SRD (mixed layer depth, MLD, surface insolation, I0, and a light attenuation coefficient, k) to calculate SRDinsitu. This is the first time in situ data for all of the components, including k, has been used to test the SRD-DMS relationship over large spatial scales. We find a significant correlation (?=0.55 n=65 p<0.01) but the slope of this relationship (0.006 nM/W m-2) is less than previously found at the global (0.019 nM/W m-2) and regional scales (Blanes Bay, Mediterranean, 0.028 nM/W m-2; Sargasso Sea 0.017 nM/W m-2). The correlation is improved (?=0.74 n=65 p<0.01) by replacing the in situ data with an estimated I0 (which assumes a constant 50% removal of the top of atmosphere value; 0.5×TOA), a MLD climatology and a fixed value for k following previous work. Equally strong, but non-linear relationships are also found between DMS and both in situ MLD (?=0.61 n=65 p<0.01) and the estimated I0 (?=0.73 n=65 p<0.01) alone. Using a satellite-retrieved, cloud-adjusted surface UVA irradiance to calculate a UV radiation dose (UVRD) with a climatological MLD also provides an equivalent correlation (?=0.67 n=54 p<0.01) to DMS. With this data, MLD appears the dominant control upon DMS concentrations and remains a useful shorthand to prediction without fully resolving the biological processes involved. However, the implied relationship between the incident solar/ultraviolet radiation (modulated by MLD), and sea surface DMS concentrations, is critical for closing a climate feedback loop.

  18. Natural heat storage in a brine-filled solar pond in the Tully Valley of central New York

    USGS Publications Warehouse

    Hayhurst, Brett; Kappel, William M.

    2014-01-01

    The Tully Valley, located in southern Onondaga County, New York, has a long history of unusual natural hydrogeologic phenomena including mudboils (Kappel, 2009), landslides (Tamulonis and others, 2009; Pair and others, 2000), landsurface subsidence (Hackett and others, 2009; Kappel, 2009), and a brine-filled sinkhole or “Solar pond” (fig. 1), which is documented in this report. A solar pond is a pool of salty water (brine) which stores the sun’s energy in the form of heat. The saltwater naturally forms distinct layers with increasing density between transitional zones (haloclines) of rapidly changing specific conductance with depth. In a typical solar pond, the top layer has a low salt content and is often times referred to as the upper convective zone (Lu and others, 2002). The bottom layer is a concentrated brine that is either convective or temperature stratified dependent on the surrounding environment. Solar insolation is absorbed and stored in the lower, denser brine while the overlying halocline acts as an insulating layer and prevents heat from moving upwards from the lower zone (Lu and others, 2002). In the case of the Tully Valley solar pond, water within the pond can be over 90 degrees Fahrenheit (°F) in late summer and early fall. The purpose of this report is to summarize observations at the Tully Valley brine-filled sinkhole and provide supplemental climate data which might affect the pond salinity gradients insolation (solar energy).

  19. Experimental Performance of a Solar Thermoelectric Cogenerator Comprising Thermoelectric Modules and Parabolic Trough Concentrator without Evacuated Tube

    NASA Astrophysics Data System (ADS)

    Miao, L.; Kang, Y. P.; Li, C.; Tanemura, S.; Wan, C. L.; Iwamoto, Y.; Shen, Y.; Lin, H.

    2015-06-01

    A prototype practical solar-thermoelectric cogenerator composed of (1) a primary component of a pile of solar-selective absorber (SSA) slab, thermoelectric (TE) modules, and a depressed water flow tube (multichannel cooling heat sink, MCS), and (2) a parabolic trough concentrator with aperture area of 2m × 2m and east-west focal axis was constructed. Its cogeneration performance under the best climatic and solar insolation conditions in Guangzhou, China was tested. For simplicity, the evacuated glass tube to cover the primary component was eliminated from the system. Six Bi2Te3 TE modules were arranged in series, directly bonded to the rear surface of the solar absorber slab. The hot-side temperature of the TE module reached up to 152°C. The experimentally obtained instantaneous results for the solar to electrical conversion efficiency, heat exchange coefficient of the MCS, and overall system efficiency under the best environmental and solar insolation conditions were about 1.14%, 56.1%, and 49.5%, respectively. To justify these values, an equivalent thermal network diagram based on a single-temperature-node heat transfer model representing the respective system components was used to analyze the thermal transfer and losses of the system. Finally, electrical power of 18° W was generated, with 2 L/min of hot water at 37°C being produced and stored in the insulated container.

  20. Modeling Solar Lyman Alpha Irradiance

    NASA Technical Reports Server (NTRS)

    Pap, J.; Hudson, H. S.; Rottman, G. J.; Willson, R. C.; Donnelly, R. F.; London, J.

    1990-01-01

    Solar Lyman alpha irradiance is estimated from various solar indices using linear regression analyses. Models developed with multiple linear regression analysis, including daily values and 81-day running means of solar indices, predict reasonably well both the short- and long-term variations observed in Lyman alpha. It is shown that the full disk equivalent width of the He line at 1083 nm offers the best proxy for Lyman alpha, and that the total irradiance corrected for sunspot effect also has a high correlation with Lyman alpha.

  1. CONC/11: A computer program for calculating the performance of dish-type solar thermal collectors and power systems

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1984-01-01

    The CONC/11 computer program designed for calculating the performance of dish-type solar thermal collectors and power systems is discussed. This program is intended to aid the system or collector designer in evaluating the performance to be expected with possible design alternatives. From design or test data on the characteristics of the various subsystems, CONC/11 calculates the efficiencies of the collector and the overall power system as functions of the receiver temperature for a specified insolation. If desired, CONC/11 will also determine the receiver aperture and the receiver temperature that will provide the highest efficiencies at a given insolation. The program handles both simple and compound concentrators. The CONC/11 is written in Athena Extended FORTRAN (similar to FORTRAN 77) to operate primarily in an interactive mode on a Sperry 1100/81 computer. It could also be used on many small computers. A user's manual is also provided for this program.

  2. Solar production of industrial process hot water. Quarterly performance report, January-March 1980

    SciTech Connect

    Not Available

    1980-01-01

    The performance of the Campbell Soup solar hot water facility is tabulated for January through March 1980, from each of the monthly performance reports. The data during this period indicates that the system is operating with good reliability (95 percent in February, 90 percent in March). Of the days that the system was not operating in those months, only one was for work on the system, one was for testing of the flat plate collectors, and the remainder were due to the system not operating because the storage tank was full. The data also show that the system was operating consistently at good thermal efficiency (50 percent). Actual measured system performance is compared with calculated values. The measured energy to storage values is lower than the predicted values primarily due to the collectors receiving less than the predicted insolation during operation. The system was controlled by a clock timer and ran only 6 hours a day, thereby missing available insolation. The system controls have been revised to permit collector operation whenever there is available insolation. On 6 days in March, the system shut down early because the tank filled up, thereby losing about 24 hours of system operation. It is estimated that in March that energy to storage would have been 50 percent higher if the system had not lost operating time due to the storage tank being full. Taking these two effects into account, measured performance compares well with predicted performance.

  3. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    PubMed

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-04-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner. PMID:24718363

  4. Three computer codes to read, plot, and tabulate operational test-site recorded solar data. [TAPFIL, CHPLOT, and WRTCNL codes

    SciTech Connect

    Stewart, S.D.; Sampson, R.J. Jr.; Stonemetz, R.E.; Rouse, S.L.

    1980-07-01

    A computer program, TAPFIL, has been developed by MSFC to read data from an IBM 360 tape for use on the PDP 11/70. The information (insolation, flowrates, temperatures, etc.) from 48 operational solar heating and cooling test sites is stored on the tapes. Two other programs, CHPLOT and WRTCNL, have been developed to plot and tabulate the data. These data will be used in the evaluation of collector efficiency and solar system performance. This report describes the methodology of the programs, their inputs, and their outputs.

  5. Estimation of the diffuse fraction of daily and monthly average global radiation for Fudhaliyah, Baghdad (Iraq)

    SciTech Connect

    Al-Hamdani, N.; Al-Riahi, M.; Tahir, K. )

    1989-01-01

    Separating the global solar radiation on a horizontal surface into direct and diffuse components is required in the simulation of solar energy systems. Many models have been developed for this purpose. The aim of this study is to establish, from the data collected over the period 1985-1986 at Fudhaliyah, daily correlations between (i) diffuse fraction of global radiation and clearness index; (ii) diffuse fraction and fractional sunshine duration; (iii) diffuse fraction and clearness index combined with fractional sunshine duration. In addition, the monthly average values of the above-mentioned correlations were established. Comparison with the most commonly used equation, Page's correlation, gives good agreement for monthly average of the relationship between diffuse fraction and clearness index. An equation for daily diffuse transmissivity values that incorporates a single physically based coefficient, which reflects the maximum clear-sky transmissivity at the study site is presented.

  6. Big Ideas behind Daily 5 and CAFE

    ERIC Educational Resources Information Center

    Boushey, Gail; Moser, Joan

    2012-01-01

    The Daily 5 and CAFE were born out of The Sister's research and observations of instructional mentors, their intense desire to be able to deliver highly intentional, focused instruction to small groups and individuals while the rest of the class was engaged in truly authentic reading and writing, and their understanding that a one size fits all…

  7. INVEST IN YOUR BONES Daily Activities

    E-print Network

    INVEST IN YOUR BONES Daily Activities Leaflet 3 Another osteoporosis prevention step to decrease lifestyle. Let's see how you can do that. If you have osteoporosis, follow carefully the activity program. Remember the following about osteoporosis: is largely preventable and treatable is a serious

  8. TRENDS IN ANNUAL AND DAILY PRECIPITATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Annual precipitation in the Great Plains was generally higher during the last two decades of the 20th century. Corresponding changes in daily precipitation amount, number of rainy days, and distribution throughout the year were investigated for Kingfisher in central Oklahoma. The number of rainy da...

  9. On the Digital Daily Cycles of Individuals

    E-print Network

    Aledavood, Talayeh; Saramäki, Jari

    2015-01-01

    Humans, like almost all animals, are phase-locked to the diurnal cycle. Most of us sleep at night and are active through the day. Because we have evolved to function with this cycle, the circadian rhythm is deeply ingrained and even detectable at the biochemical level. However, within the broader day-night pattern, there are individual differences: e.g., some of us are intrinsically morning-active, while others prefer evenings. In this article, we look at digital daily cycles: circadian patterns of activity viewed through the lens of auto-recorded data of communication and online activity. We begin at the aggregate level, discuss earlier results, and illustrate differences between population-level daily rhythms in different media. Then we move on to the individual level, and show that there is a strong individual-level variation beyond averages: individuals typically have their distinctive daily pattern that persists in time. We conclude by discussing the driving forces behind these signature daily patterns, ...

  10. The Case for Daily Physical Education

    ERIC Educational Resources Information Center

    Lynn, Susan

    2007-01-01

    According to a recent study, only 56 percent of high school students participate in physical education, and the percentage of schools requiring physical education has progressively dropped. The goal of providing daily physical education to all K-12 students in the United States presents challenges such as budgetary issues, less time for other…

  11. 27 CFR 19.650 - Daily records.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Production of Vinegar by the Vaporizing Process Required Records for Vinegar Plants § 19.650 Daily records. Each manufacturer of vinegar by the vaporizing... proof gallons of distilled spirits used in the manufacture of vinegar; (e) The wine gallons of...

  12. 27 CFR 19.650 - Daily records.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Production of Vinegar by the Vaporizing Process Required Records for Vinegar Plants § 19.650 Daily records. Each manufacturer of vinegar by the vaporizing... proof gallons of distilled spirits used in the manufacture of vinegar; (e) The wine gallons of...

  13. 27 CFR 19.650 - Daily records.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... OF THE TREASURY ALCOHOL DISTILLED SPIRITS PLANTS Production of Vinegar by the Vaporizing Process Required Records for Vinegar Plants § 19.650 Daily records. Each manufacturer of vinegar by the vaporizing... proof gallons of distilled spirits used in the manufacture of vinegar; (e) The wine gallons of...

  14. 27 CFR 19.829 - Daily records.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Production of Vinegar by the Vaporizing Process Records § 19.829 Daily records. Each manufacturer of vinegar by the vaporizing process shall keep accurate... spirits used in the manufacture of vinegar; (e) The wine gallons of vinegar produced; and (f) The...

  15. 27 CFR 19.650 - Daily records.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... OF THE TREASURY ALCOHOL DISTILLED SPIRITS PLANTS Production of Vinegar by the Vaporizing Process Required Records for Vinegar Plants § 19.650 Daily records. Each manufacturer of vinegar by the vaporizing... proof gallons of distilled spirits used in the manufacture of vinegar; (e) The wine gallons of...

  16. CentreDaily.com Next Story >

    E-print Network

    Hunter, David

    CentreDaily.com Next Story > Warm Arctic sets record for summer sea ice melt Teen pot use linked M. HACKETT -- AP By MALCOLM RITTER and NICK PERRY -- Associated Press NEW YORK -- Teens who to the developing brain. NEW YORK: Teen pot use linked to later declines in IQ | Healt... http

  17. Good Ideas for Teaching Daily Adult Living.

    ERIC Educational Resources Information Center

    Leigh, Robert K.

    Intended for practicing Adult Basic Education teachers, this handbook provides materials for teaching specific coping skills in the area of daily adult living. Three areas of study are explored: (1) community, which includes organizations, health, nutrition, safety, money management, and media; (2) government and law, which includes citizenship,…

  18. INTERPOLATING VANCOUVER'S DAILY AMBIENT PM 10 FIELD

    EPA Science Inventory

    In this article we develop a spatial predictive distribution for the ambient space- time response field of daily ambient PM10 in Vancouver, Canada. Observed responses have a consistent temporal pattern from one monitoring site to the next. We exploit this feature of the field b...

  19. National Institutes of Health Daily Food List

    Cancer.gov

    DAILY FOOD LIST PARTICIPANT ID HERE NOTIFICATION TO RESPONDENT OF ESTIMATED BURDEN Public reporting burden for this collection of information is estimated to average 5 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.

  20. Break Correction of Swiss Daily and Sub-Daily Temperature Series

    NASA Astrophysics Data System (ADS)

    Auchmann, Renate; Kuglitsch, Franz; Toreti, Andrea; Brönnimann, Stefan

    2014-05-01

    Many applications in climate science require high-quality, long-term data at a high temporal resolution. However, such records are often affected by artificial breaks. The challenging task of homogenizing daily and sub-daily data has only been partially addressed in recent years. Therefore, the number of available datasets providing homogeneous daily and sub-daily series is still small compared to the volume of monthly or annual data. In this study, series of daily maximum (Tmax), daily minimum (Tmin), morning (Tmorn), noon (Tnoon) and evening (Teve), and daily mean (Tmean) temperatures measured in 61 stations of the Swiss climate observation network were corrected for artificial breaks. The break detection for the above mentioned series was accomplished in a former study by using a combination of three different break detection methods. Here the previously determined breakpoints are corrected by applying the method of higher-order moments for autocorrelated data (HOMAD), which is an improved version of the higher-order moments method (HOM), providing an objective choice of regression parameters.

  1. High altitude current-voltage measurement of GaAs/Ge solar cells

    NASA Technical Reports Server (NTRS)

    Hart, Russell E., Jr.; Brinker, David J.; Emery, Keith A.

    1988-01-01

    Measurements of high-voltage (Voc of 1.2 V) gallium arsenide on germanium tandem junction solar cells at air mass 0.22 showed that the insolation in the red portion of the solar spectrum is insufficient to obtain high fill factor. On the basis of measurements in the LeRC X-25L solar simulator, these cells were believed to be as efficient as 21.68 percent AM0. Solar simulator spectrum errors in the red end allowed the fill factor to be as high as 78.7 percent. When a similar cell's current-voltage characteristic was measured at high altitude in the NASA Lear Jet Facility, a loss of 15 percentage points in fill factor was observed. This decrease was caused by insufficient current in the germanium bottom cell of the tandem stack.

  2. Development of flat-plate solar collectors for the heating and cooling of buildings

    NASA Technical Reports Server (NTRS)

    Ramsey, J. W.; Borzoni, J. T.; Holland, T. H.

    1975-01-01

    The relevant design parameters in the fabrication of a solar collector for heating liquids were examined. The objective was to design, fabricate, and test a low-cost, flat-plate solar collector with high collection efficiency, high durability, and requiring little maintenance. Computer-aided math models of the heat transfer processes in the collector assisted in the design. The preferred physical design parameters were determined from a heat transfer standpoint and the absorber panel configuration, the surface treatment of the absorber panel, the type and thickness of insulation, and the number, spacing and material of the covers were defined. Variations of this configuration were identified, prototypes built, and performance tests performed using a solar simulator. Simulated operation of the baseline collector configuration was combined with insolation data for a number of locations and compared with a predicted load to determine the degree of solar utilization.

  3. Irrigation market for solar thermal parabolic dish systems

    NASA Technical Reports Server (NTRS)

    Habib-Agahi, H.; Jones, S. C.

    1981-01-01

    The potential size of the onfarm-pumped irrigation market for solar thermal parabolic dish systems in seven high-insolation states is estimated. The study is restricted to the displacement of three specific fuels: gasoline, diesel and natural gas. The model was developed to estimate the optimal number of parabolic dish modules per farm based on the minimum cost mix of conventional and solar thermal energy required to meet irrigation needs. The study concludes that the potential market size for onfarm-pumped irrigation applications ranges from 101,000 modules when a 14 percent real discount rate is assumed to 220,000 modules when the real discount rate drops to 8 percent. Arizona, Kansas, Nebraska, New Mexico and Texas account for 98 percent of the total demand for this application, with the natural gas replacement market accounting for the largest segment (71 percent) of the total market.

  4. Texasgulf solar cogeneration program. Mid-term topical report

    SciTech Connect

    Not Available

    1981-02-01

    The status of technical activities of the Texasgulf Solar Cogeneration Program at the Comanche Creek Sulfur Mine is described. The program efforts reported focus on preparation of a system specification, selection of a site-specific configuration, conceptual design, and facility performance. Trade-off studies performed to select the site-specific cogeneration facility configuration that would be the basis for the conceptual design efforts are described. Study areas included solar system size, thermal energy storage, and field piping. The conceptual design status is described for the various subsystems of the Comanche Creek cogeneration facility. The subsystems include the collector, receiver, master control, fossil energy, energy storage, superheat boiler, electric power generation, and process heat subsystems. Computer models for insolation and performance are also briefly discussed. Appended is the system specification. (LEW)

  5. Racial Differences in Exposure and Reactivity to Daily Family Stressors

    ERIC Educational Resources Information Center

    Cichy, Kelly E.; Stawski, Robert S.; Almeida, David M.

    2012-01-01

    Using data from the National Study of Daily Experiences, the authors examined racial differences in exposure and reactivity to daily stressors involving family members. Respondents included African American and European American adults age 34 to 84 (N = 1,931) who participated in 8 days of daily interviews during which they reported on daily

  6. Sunspot Unit Areas: A New Parameter to Describe the Long-term Solar Variability

    E-print Network

    Sunspot Unit Areas: A New Parameter to Describe the Long-term Solar Variability K.J. Li1,2 , J. Qiu indices that are historically used to describe the long-term solar variability. The daily SN is calculated to reflect long-term solar variations, and both are correlated with other indices of long-term solar

  7. Nowcasting daily minimum air and grass temperature

    NASA Astrophysics Data System (ADS)

    Savage, M. J.

    2015-06-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient (b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass and grass-surface minima yielded increased RMSEs compared to those for air temperature at 2 m. The sufficiently small RMSEs using the 2-h ahead nowcasts of the air temperature minimum, for the exponential model, demonstrate that the methodology used may be applied operationally but with increased errors for grass minimum temperature and the 4-h nowcasts.

  8. Seasonal and spatial variation of organic tracers for biomass burning in PM1 aerosols from highly insolated urban areas.

    PubMed

    van Drooge, B L; Fontal, M; Bravo, N; Fernández, P; Fernández, M A; Muñoz-Arnanz, J; Jiménez, B; Grimalt, J O

    2014-10-01

    PM1 aerosol characterization on organic tracers for biomass burning (levoglucosan and its isomers and dehydroabietic acid) was conducted within the AERTRANS project. PM1 filters (N = 90) were sampled from 2010 to 2012 in busy streets in the urban centre of Madrid and Barcelona (Spain) at ground-level and at roof sites. In both urban areas, biomass burning was not expected to be an important local emission source, but regional emissions from wildfires, residential heating or biomass removal may influence the air quality in the cities. Although both areas are under influence of high solar radiation, Madrid is situated in the centre of the Iberian Peninsula, while Barcelona is located at the Mediterranean Coast and under influence of marine atmospheres. Two extraction methods were applied, i.e. Soxhlet and ASE, which showed equivalent results after GC-MS analyses. The ambient air concentrations of the organic tracers for biomass burning increased by an order of magnitude at both sites during winter compared to summer. An exception was observed during a PM event in summer 2012, when the atmosphere in Barcelona was directly affected by regional wildfire smoke and levels were four times higher as those observed in winter. Overall, there was little variation between the street and roof sites in both cities, suggesting that regional biomass burning sources influence the urban areas after atmospheric transport. Despite the different atmospheric characteristics in terms of air relative humidity, Madrid and Barcelona exhibit very similar composition and concentrations of biomass burning organic tracers. Nevertheless, levoglucosan and its isomers seem to be more suitable for source apportionment purposes than dehydroabietic acid. In both urban areas, biomass burning contributions to PM were generally low (2 %) in summer, except on the day when wildfire smoke arrive to the urban area. In the colder periods the contribution increase to around 30 %, indicating that regional biomass burning has a substantial influence on the urban air quality. PMID:24477336

  9. Solar cooling in Madrid: Available solar energy

    SciTech Connect

    Izquierdo, M.; Hernandez, F.; Martin, E. )

    1994-11-01

    This paper analyzes the behaviour of an absorption chiller lithium bromide installation fed by a field of flat-plate solar collectors and condensed by swimming pool water. A method of calculation in a variable regime is developed in terms of the obtained experimental results. Starting from the meteorological variables of a clear summer day and from the project data (collector normalization curve, collector and installation mass), the minimum solar radiation level necessary to initiate the process, I[sub min], and the instantaneous available solar energy, Q[sub u] + W[sub 1] is determined. The solar radiation threshold, I[sub min], necessary to obtain the process temperature, t[sub ave], in each instant, is obtained by adding to the corrected Klein radiation threshold, I[sub k,c], the heat capacity effects of the collector, HCE[sub CO], and of the installation, HCE[sub ins], as well as the losses of heat of the pipes to the surroundings, Q[sub 1]. The instantaneous available solar energy, available useful heat, in addition to the wind collector losses to the surroundings, Q[sub u] + W[sub 1], is the difference, in each instant, between the radiation, I[sub g1T], and the radiation threshold, I[sub min].The integration during the day of the instantaneous available solar energy allows us to calculate the daily available function, H[sub T]. The value of H[sub T], measured in the swimming-pool water condensation installation reached 6.92 MJ/(m[sup 2] day ). The calculated values of H[sub T] for a conventional installation condensed by tower water, or air, have been 6.35 and 0.56 MJ/(m[sup 2] day). respectively.

  10. Heavy metals in common foodstuff: Daily intake

    SciTech Connect

    Tsoumbaris, P.; Tsoukali-Papadopoulou, H. )

    1994-07-01

    Lately, toxic effects of some heavy metals (Pb, Cd) as well as desirable ones of some others (Ni, Mn, Zn) have been a field of thorough investigation. The main way of human body fortification in metals is through foodchain depending on the kind and quantity of the consumed food, according to dietary habits. The purpose of this study is the calculation of metals daily intake through common foodstuff of Greek inhabitants. The calculation is based on results from quantitative analysis of Pb, Cd, Ni, Mn, and Zn in common foodstuff from the market of the city of Thessaloniki. The daily food consumption data is derived from three sources: (a) answers to a questionnaire distributed to families of the city of Thessaloniki, (b) nutrition data provided by the Agricultural Bank of Greece and (c) nutrition data according to international bibliography.

  11. Daily rhythms in mobile telephone communication

    E-print Network

    Aledavood, Talayeh; Roberts, Sam G B; Reed-Tsochas, Felix; Moro, Esteban; Dunbar, Robin I M; Saramäki, Jari

    2015-01-01

    Circadian rhythms are known to be important drivers of human activity and the recent availability of electronic records of human behaviour has provided fine-grained data of temporal patterns of activity on a large scale. Further, questionnaire studies have identified important individual differences in circadian rhythms, with people broadly categorised into morning-like or evening-like individuals. However, little is known about the social aspects of these circadian rhythms, or how they vary across individuals. In this study we use a unique 18-month dataset that combines mobile phone calls and questionnaire data to examine individual differences in the daily rhythms of mobile phone activity. We demonstrate clear individual differences in daily patterns of phone calls, and show that these individual differences are persistent despite a high degree of turnover in the individuals' social networks. Further, women's calls were longer than men's calls, especially during the evening and at night, and these calls wer...

  12. Solar Cookers.

    ERIC Educational Resources Information Center

    King, Richard C.

    1981-01-01

    Describes the use of solar cookers in the science classroom. Includes instructions for construction of a solar cooker, an explanation of how solar cookers work, and a number of suggested activities. (DS)

  13. Daily Water Use in Nine Cities

    NASA Astrophysics Data System (ADS)

    Maidment, David R.; Miaou, Shaw-Pin

    1986-06-01

    Transfer functions are used to model the short-term response of daily municipal water use to rainfall and air temperature variations. Daily water use data from nine cities are studied, three cities each from Florida, Pennsylvania, and Texas. The dynamic response of water use to rainfall and air temperature is similar across the cities within each State; in addition the responses of the Texas and Florida cities are very similar to one another while the response of the Pennsylvania cities is more sensitive to air temperature and less to rainfall. There is little impact of city size on the response functions. The response of water use to rainfall depends first on the occurrence of rainfall and second on its magnitude. The occurrence of a rainfall more than 0.05 in./day (0.13 cm/day) causes a drop in the seasonal component of water use one day later that averages 38% for the Texas cities, 42% for the Florida cities, and 7% for the Pennsylvania cities. In Austin, Texas, a spatially averaged rainfall series shows a clearer relationship with water use than does rainfall data from a single gage. There is a nonlinear response of water use to air temperature changes with no response for daily maximum air temperatures between 40° and 70°F (4-21°C) an increase in water use with air temperature beyond 70°F; above 85°-90°F (29°-32°C) water use increases 3-5 times more per degree than below that limit in Texas and Florida. The model resulting from these studies can be used for daily water use forecasting and water conservation analysis.

  14. Understanding metropolitan patterns of daily encounters.

    PubMed

    Sun, Lijun; Axhausen, Kay W; Lee, Der-Horng; Huang, Xianfeng

    2013-08-20

    Understanding of the mechanisms driving our daily face-to-face encounters is still limited; the field lacks large-scale datasets describing both individual behaviors and their collective interactions. However, here, with the help of travel smart card data, we uncover such encounter mechanisms and structures by constructing a time-resolved in-vehicle social encounter network on public buses in a city (about 5 million residents). Using a population scale dataset, we find physical encounters display reproducible temporal patterns, indicating that repeated encounters are regular and identical. On an individual scale, we find that collective regularities dominate distinct encounters' bounded nature. An individual's encounter capability is rooted in his/her daily behavioral regularity, explaining the emergence of "familiar strangers" in daily life. Strikingly, we find individuals with repeated encounters are not grouped into small communities, but become strongly connected over time, resulting in a large, but imperceptible, small-world contact network or "structure of co-presence" across the whole metropolitan area. Revealing the encounter pattern and identifying this large-scale contact network are crucial to understanding the dynamics in patterns of social acquaintances, collective human behaviors, and--particularly--disclosing the impact of human behavior on various diffusion/spreading processes. PMID:23918373

  15. A Double-Edged Sword: Race, Daily Family Support Exchanges, and Daily Well-Being

    PubMed Central

    Cichy, Kelly E.; Stawski, Robert S.; Almeida, David M.

    2013-01-01

    This study contributes to research on race and family ties by exploring racial differences in the direct effects of family support exchanges on daily well-being and the extent to which family support buffers/exacerbates stressor reactivity. African Americans and European Americans aged 34 to 84 (N = 1,931) from the National Study of Daily Experiences (NSDE) reported on family support exchanges (i.e., support received/support provided), daily stressors, and negative affect during 8 days of telephone interviews. On a daily basis, receiving family support was not associated with well-being, whereas providing family support was associated with compromised well-being among African Americans. As expected, receiving family support buffered reactivity to daily tensions for both races, whereas providing emotional support to family exacerbated African Americans’ reactivity to daily tensions. Together, our findings suggest that even after considering the benefits of receiving family support, providing family support takes an emotional toll on African Americans. PMID:25368438

  16. Evolution of the banks of thermokarst lakes in Central Yakutia (Central Siberia) due to retrogressive thaw slump activity controlled by insolation

    NASA Astrophysics Data System (ADS)

    Séjourné, A.; Costard, F.; Fedorov, A.; Gargani, J.; Skorve, J.; Massé, M.; Mège, D.

    2015-07-01

    As observed in most regions in the Arctic, the thawing of ice-rich permafrost (thermokarst) has been developing in Central Yakutia. However, the relationship between thermokarst development and climate variations is not well understood in this region, in particular the development rate of thaw slumps. The objective of this paper is to understand the current development of thermokarst by studying the evolution of the banks of thermokarst lakes. We studied retrogressive thaw slumps and highly degraded ice-wedge polygons (baydjarakhs), indicative of thermokarst, using high resolution satellite images taken in 2011-2013 and conducting field studies. The retrogressive thaw slump activity results in the formation of thermocirque with a minimum and maximum average headwall retreat of 0.5 and 3.16 m·yr- 1 respectively. The thermocirques and the baydjarakhs are statistically more concentrated on the south- to southwest-facing banks of thermokarst lakes. Moreover, the rate of headwall retreat of the thermocirques is the most important on the south-facing banks of the lakes. These observations indicate a control of the current permafrost thaw on the banks of thermokarst lakes by insolation. In the context of recent air temperature increase in Central Yakutia, the rate of thermocirque development may increase in the future.

  17. Global daily reference evapotranspiration modeling and evaluation

    USGS Publications Warehouse

    Senay, G.B.; Verdin, J.P.; Lietzow, R.; Melesse, Assefa M.

    2008-01-01

    Accurate and reliable evapotranspiration (ET) datasets are crucial in regional water and energy balance studies. Due to the complex instrumentation requirements, actual ET values are generally estimated from reference ET values by adjustment factors using coefficients for water stress and vegetation conditions, commonly referred to as crop coefficients. Until recently, the modeling of reference ET has been solely based on important weather variables collected from weather stations that are generally located in selected agro-climatic locations. Since 2001, the National Oceanic and Atmospheric Administration's Global Data Assimilation System (GDAS) has been producing six-hourly climate parameter datasets that are used to calculate daily reference ET for the whole globe at 1-degree spatial resolution. The U.S. Geological Survey Center for Earth Resources Observation and Science has been producing daily reference ET (ETo) since 2001, and it has been used on a variety of operational hydrological models for drought and streamflow monitoring all over the world. With the increasing availability of local station-based reference ET estimates, we evaluated the GDAS-based reference ET estimates using data from the California Irrigation Management Information System (CIMIS). Daily CIMIS reference ET estimates from 85 stations were compared with GDAS-based reference ET at different spatial and temporal scales using five-year daily data from 2002 through 2006. Despite the large difference in spatial scale (point vs. ???100 km grid cell) between the two datasets, the correlations between station-based ET and GDAS-ET were very high, exceeding 0.97 on a daily basis to more than 0.99 on time scales of more than 10 days. Both the temporal and spatial correspondences in trend/pattern and magnitudes between the two datasets were satisfactory, suggesting the reliability of using GDAS parameter-based reference ET for regional water and energy balance studies in many parts of the world. While the study revealed the potential of GDAS ETo for large-scale hydrological applications, site-specific use of GDAS ETo in complex hydro-climatic regions such as coastal areas and rugged terrain may require the application of bias correction and/or disaggregation of the GDAS ETo using downscaling techniques. ?? 2008 American Water Resources Association.

  18. A note on solar elevation dependence of clear sky snow albedo

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1981-01-01

    Recent attempts to match shortwave albedo of snow for clear skies using approximate spectral solar fluxes and solutions of the radiative transfer equation for snow were unsuccessful until a separate surface reflection term was introduced. A separate consideration of specular reflection from surface snow grains has been objected to as being ad hoc. Results based on a new parameterization of shortwave radiation are discussed. Compared to the previous radiation models, new model gives higher diffuse insolation and predicts higher albedos. The difference between observed and predicted albedos is substantially reduced without invoking surface reflection.

  19. Performance of the Birmingham Solar-Oscillations Network (BiSON)

    E-print Network

    Hale, S J; Chaplin, W J; Davies, G R; Elsworth, Y P

    2015-01-01

    The Birmingham Solar-Oscillations Network (BiSON) has been operating with a full complement of six stations since 1992. Over 20 years later, we look back on the network history. The meta-data from the sites have been analysed to assess performance in terms of site insolation, with a brief look at the challenges that have been encountered over the years. We explain how the international community can gain easy access to the ever-growing dataset produced by the network, and finally look to the future of the network and the potential impact of nearly 25 years of technology miniaturisation.

  20. Characterization of vegetation properties: Canopy modeling of pinyon-juniper and ponderosa pine woodlands; Final report. Modeling topographic influences on solar radiation: A manual for the SOLARFLUX model

    SciTech Connect

    Rich, P.M.; Hetrick, W.A.; Saving, S.C.

    1994-12-31

    This report is comprised of two studies. The first study focuses on plant canopies in pinyon-juniper woodland, ponderosa pine woodland, and waste sites at Los Alamos National Laboratory which involved five basic areas of research: (1) application of hemispherical photography and other gap fraction techniques to study solar radiation regimes and canopy architecture, coupled with application of time-domain reflectometry to study soil moisture; (2) detailed characterization of canopy architecture using stand mapping and allometry; (3) development of an integrated geographical information system (GIS) database for relating canopy architecture with ecological, hydrological, and system modeling approaches; (4) development of geometric models that simulate complex sky obstruction, incoming solar radiation for complex topographic surfaces, and the coupling of incoming solar radiation with energy and water balance, with simulations of incoming solar radiation for selected native vegetation and experimental waste cover design sites; and (5) evaluation of the strengths and limitations of the various field sampling techniques. The second study describes an approach to develop software that takes advantage of new generation computers to model insolation on complex topographic surfaces. SOLARFLUX is a GIS-based (ARC/INFO, GRID) computer program that models incoming solar radiation based on surface orientation (slope and aspect), solar angle (azimuth and zenith) as it shifts over time, shadows caused by topographic features, and atmospheric conditions. This manual serves as the comprehensive guide to SOLARFLUX. Included are discussions on modelling insolation on complex surfaces, the theoretical approach, program setup and operation, and a set of applications illustrating characteristics of topographic insolation modelling.

  1. Estimating solar access of typical residential rooftops: A case study in San Jose, CA

    SciTech Connect

    Levinson, Ronnen M.; Gupta, Smita; Akbari, Hashem; Pomerantz, Melvin

    2008-03-03

    Shadows cast by trees and buildings can limit the solar access of rooftop solar-energy systems, including photovoltaic panels and thermal collectors. This study characterizes rooftop shading in a residential neighborhood of San Jose, CA, one of four regions analyzed in a wider study of the solar access of California homes.High-resolution orthophotos and LiDAR (Light Detection And Ranging) measurements of surface height were used to create a digital elevation model of all trees and buildings in a 4 km2 residential neighborhood. Hourly shading of roofing planes (the flat elements of roofs) was computed geometrically from the digital elevation model. Parcel boundaries were used to determine the extent to which roofing planes were shaded by trees and buildings in neighboring parcels.In the year in which surface heights were measured (2005), shadows from all sources ("total shading") reduced the insolation received by S-, SW-, and W-facing residential roofing planes in the study area by 13 - 16percent. Shadows cast by trees and buildings in neighboring parcels reduced insolation by no more than 2percent. After 30 years of simulated maximal tree growth, annual total shading increased to 19 - 22percent, and annual extraparcel shading increased to 3 - 4percent.

  2. Development of an integrated heat pipe-thermal storage system for a solar receiver

    SciTech Connect

    Keddy, E.S.; Sena, J.T.; Merrigan, M.A.; Heidenreich, G.; Johnson, S.

    1987-01-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. Sundstrand Corporation is developing a ORC-SDPS candidate for the Space Station that uses toluene as the organic fluid and LiOH as the TES material. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube. 3 refs., 8 figs.

  3. Communicating Solar Astronomy to the public

    NASA Astrophysics Data System (ADS)

    Yaji, Kentaro; Solar Observatory NAOJ, The

    2015-08-01

    The Sun is the nearest star to us, so that the public is greatly interested in the Sun itself and in solar activity. The Solar Observatory, National Astronomical Observatory of Japan is one of the solar research divisions. Various data of the Sun obtained with our instruments, systematically accumulated more than one hundred years since 1910s, are open to not only researchers but also the public as online database. So, we have many chances that the public request solar images for the education and the media. In addition, we release daily solar observation informations on the web and with social media and guide visitors to our observation facilities. It is reviewed about the public relations and outreach activities of the Solar Observatory, including recent solar observation topics.

  4. Characteristics of daily variation of rainfall over the tropics

    NASA Astrophysics Data System (ADS)

    Inoue, Toshiro

    2015-04-01

    Characteristics of daily variation of rainfall over the tropics were studied using 14 years TRMM 3G68 data. Diurnal variation of rainfall has been studied extensively using in situ, satellite and radar data. Most studies on diurnal variation are focused on one local peak a day. We has noted on two local peaks of rainfall over southern Africa and Amazon during boreal winter from NICAM simulation and satellite observations. Our study suggests solar heating during daytime and radiation cooling during nighttime might cause the two local peaks of rainfall. The amplitude is depending on how strong the solar heating and/or radiation cooling comparing with other atmospheric conditions. Here we studied the two local peaks of rainfall over the tropics (30N-30S) with changing the area size (1.5, 2.5, 5 lat/lon grid) and season. Basic hourly rainfall data was constructed over 0.5 lat/lon grid by averaging 14 years 3G68 data (both PR and TMI). First we select the grid where two local peaks exist. The grid is defined as second peak is larger than 20% of primary peak. Further, when we detect more than two peaks, we discard the grid. Then we applied harmonic analysis for the time series over the grid (where only two local peaks exist) to get the second amplitude. Regardless of area size and sensor (PR/TMI), we can see many grids where the two local peaks a day exist, over both ocean and land. The amplitude is slightly larger over land and larger amount of rainfall area where shifts depending on season. Most grids indicate that earlier peak corresponds to early morning and later peak corresponds to afternoon.

  5. Solar Energy.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  6. BOREAS TE-21 Daily Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Kimball, John; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-21 (Terrestrial Ecology) team collected data sets in support of its efforts to characterize and interpret information on the meteorology of boreal forest areas. Daily meteorological data were derived from half-hourly BOREAS tower flux (TF) and Automatic Meteorological Station (AMS) mesonet measurements collected in the Southern and Northern Study Areas (SSA and NSA) for the period of 01 Jan 1994 until 31 Dec 1994. The data were stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  7. Daily Spiritual Experiences and Adolescent Treatment Response

    PubMed Central

    LEE, MATTHEW T.; VETA, PAIGE S.; JOHNSON, BYRON R.; PAGANO, MARIA E.

    2014-01-01

    The purpose of this study is to explore changes in belief orientation during treatment and the impact of increased daily spiritual experiences (DSE) on adolescent treatment response. One-hundred ninety-five adolescents court-referred to a 2-month residential treatment program were assessed at intake and discharge. Forty percent of youth who entered treatment as agnostic or atheist identified themselves as spiritual or religious at discharge. Increased DSE was associated with greater likelihood of abstinence, increased prosocial behaviors, and reduced narcissistic behaviors. Results indicate a shift in DSE that improves youth self-care and care for others that may inform intervention approaches for adolescents with addiction. PMID:25525291

  8. Solar Systems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar collectors shown are elements of domestic solar hot water systems produced by Solar One Ltd., Virginia Beach, Virginia. Design of these systems benefited from technical expertise provided Solar One by NASA's Langley Research Center. The company obtained a NASA technical support package describing the d e sign and operation of solar heating equipment in NASA's Tech House, a demonstration project in which aerospace and commercial building technology are combined in an energy- efficient home. Solar One received further assistance through personal contact with Langley solar experts. The company reports that the technical information provided by NASA influenced Solar One's panel design, its selection of a long-life panel coating which increases solar collection efficiency, and the method adopted for protecting solar collectors from freezing conditions.

  9. 30 CFR 77.1906 - Hoists; daily inspection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1906 Hoists; daily inspection. (a) Hoists used to transport persons shall be inspected daily....

  10. 30 CFR 77.1906 - Hoists; daily inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1906 Hoists; daily inspection. (a) Hoists used to transport persons shall be inspected daily....

  11. 42 CFR 409.34 - Criteria for “daily basis”.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM HOSPITAL INSURANCE BENEFITS Requirements for Coverage of Posthospital SNF Care § 409.34 Criteria for “daily basis”. (a) To meet the daily basis requirement specified in §...

  12. 42 CFR 409.34 - Criteria for “daily basis”.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM HOSPITAL INSURANCE BENEFITS Requirements for Coverage of Posthospital SNF Care § 409.34 Criteria for “daily basis”. (a) To meet the daily basis requirement specified in §...

  13. 42 CFR 409.34 - Criteria for “daily basis”.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM HOSPITAL INSURANCE BENEFITS Requirements for Coverage of Posthospital SNF Care § 409.34 Criteria for “daily basis”. (a) To meet the daily basis requirement specified in §...

  14. 42 CFR 409.34 - Criteria for “daily basis”.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM HOSPITAL INSURANCE BENEFITS Requirements for Coverage of Posthospital SNF Care § 409.34 Criteria for “daily basis”. (a) To meet the daily basis requirement specified in §...

  15. 42 CFR 409.34 - Criteria for “daily basis”.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM HOSPITAL INSURANCE BENEFITS Requirements for Coverage of Posthospital SNF Care § 409.34 Criteria for “daily basis”. (a) To meet the daily basis requirement specified in §...

  16. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 2011-04-01 false Daily activity assist device. 890.5050 ...CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily activity assist device. (a)...

  17. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 2010-04-01 false Daily activity assist device. 890.5050 ...CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily activity assist device. (a)...

  18. 19 CFR 159.35 - Certified daily rate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...OF DUTIES Conversion of Foreign Currency § 159.35 Certified daily rate. The daily buying rate of foreign currency which is determined by the Federal...used for the conversion of foreign currency whenever a proclaimed rate...

  19. 19 CFR 159.35 - Certified daily rate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...OF DUTIES Conversion of Foreign Currency § 159.35 Certified daily rate. The daily buying rate of foreign currency which is determined by the Federal...used for the conversion of foreign currency whenever a proclaimed rate...

  20. Variability of solar ultraviolet irradiance

    NASA Technical Reports Server (NTRS)

    Pap, J. M.; Donnelly, R. F.; Hudson, H. S.; Rottman, G. J.; Willson, R. C.

    1991-01-01

    A model of solar Lyman alpha irradiance developed by multiple linear regression analysis, including the daily values and 81-day running means of the full disk equivalent width of the Helium line at 1083 nm, predicts reasonably well both the short- and long-term variations observed in Lyman alpha. In contrast, Lyman alpha models calculated from the 10.7-cm radio flux overestimate the observed variations in the rising portion and maximum period of solar cycle, and underestimates them during solar minimum. Models are shown of Lyman alpha based on the He-line equivalent width and 10.7-cm radio flux for those time intervals when no satellite observations exist, namely back to 1974 and after April 1989, when the measurements of the Solar Mesosphere Satellite were terminated.

  1. Solar coronal structure near the time of the 1991 July 11 total solar eclipse

    NASA Astrophysics Data System (ADS)

    Sime, D. G.; Streete, J.

    1993-05-01

    We present observations of the solar corona in white light at the time of the 1991 July 11 total solar eclipse together with daily observations made during the interval 1991 June 12 to August 16 designed to provide a synoptic context in which data from the total solar eclipse can be interpreted. Included in the daily observations are those from the Mark-III K-coronameter of the Mauna Loa Solar Observatory as well as photographic records of the sun in H-alpha made from the same site. Combining these data with the eclipse observation, we estimate a probable global density distribution of the corona at the time of the eclipse. This indicates that although the eclipse occurred soon after the most recent solar activity cycle maximum, the corona was already organized in a tilted dipole configuration.

  2. Daily Rhythms in Mobile Telephone Communication

    PubMed Central

    Aledavood, Talayeh; López, Eduardo; Roberts, Sam G. B.; Reed-Tsochas, Felix; Moro, Esteban; Dunbar, Robin I. M.; Saramäki, Jari

    2015-01-01

    Circadian rhythms are known to be important drivers of human activity and the recent availability of electronic records of human behaviour has provided fine-grained data of temporal patterns of activity on a large scale. Further, questionnaire studies have identified important individual differences in circadian rhythms, with people broadly categorised into morning-like or evening-like individuals. However, little is known about the social aspects of these circadian rhythms, or how they vary across individuals. In this study we use a unique 18-month dataset that combines mobile phone calls and questionnaire data to examine individual differences in the daily rhythms of mobile phone activity. We demonstrate clear individual differences in daily patterns of phone calls, and show that these individual differences are persistent despite a high degree of turnover in the individuals’ social networks. Further, women’s calls were longer than men’s calls, especially during the evening and at night, and these calls were typically focused on a small number of emotionally intense relationships. These results demonstrate that individual differences in circadian rhythms are not just related to broad patterns of morningness and eveningness, but have a strong social component, in directing phone calls to specific individuals at specific times of day. PMID:26390215

  3. Cocaine craving and use during daily life

    PubMed Central

    Preston, Kenzie L.; Vahabzadeh, Massoud; Schmittner, John; Lin, Jia-Ling; Gorelick, David A.; Epstein, David H.

    2010-01-01

    Rationale Craving is often assumed to cause ongoing drug use and relapse and is a major focus of addiction research. However, its relationship to drug use has not been adequately documented. Objectives The aim of this study was to investigate the relationship between craving and drug use in real time and in the daily living environments of drug users. Methods In a prospective, longitudinal, cohort design (Ecological Momentary Assessment), 112 cocaine-abusing individuals in methadone maintenance treatment rated their craving and mood at random times (two to five times daily, prompted by electronic diaries) as they went about their everyday activities. They also initiated an electronic-diary entry each time they used cocaine. Drug use was monitored by thrice-weekly urine testing. Results During periods of urine-verified cocaine use, ratings of cocaine craving increased across the day and were higher than during periods of urine-verified abstinence. During the five hours prior to cocaine use, ratings of craving significantly increased. These patterns were not seen in ratings of heroin craving or mood (e.g., feeling happy or bored). Conclusions Cocaine craving is tightly coupled to cocaine use in users’ normal environments. Our findings provide previously unavailable support for a relationship that has been seriously questioned in some theoretical accounts. We discuss what steps will be needed to determine whether craving causes use. PMID:19777216

  4. Typical noise exposure in daily life

    PubMed Central

    Flamme, Gregory A.; Stephenson, Mark R.; Deiters, Kristy; Tatro, Amanda; VanGessel, Devon; Geda, Kyle; Wyllys, Krista; McGregor, Kara

    2015-01-01

    Objective Identify the distribution of typical noise levels present in daily life and identify factors associated with average sound levels. Design This was an observational study. Study sample Participants (N = 286) were 20 to 68 year old men and women, drawn from the general population of Kalamazoo County, Michigan . A total of 73 000 person-hours of noise monitoring were conducted. Results Median overall daily average levels were 79 and 77 dBLeqA,8,equiv , with average levels exceeding EPA recommended levels for 70% of participants. Median levels were similar between the hours of 9 a.m. and 9 p.m., and varied little across days of the week. Gender, occupational classification, and history of occupational noise exposure were related to average noise levels, but age, educational attainment, and non-occupational noise exposures were not. Conclusions A large portion of the general population is exposed to noise levels that could result in long-term adverse effects on hearing. Gender and occupation were most strongly related to exposure, though most participants in this study had occupations that are not conventionally considered noisy. PMID:22264061

  5. Solar Energy Economics Revisited: The Promise and Challenge of Orbiting Reflectors for World Energy Supply

    NASA Technical Reports Server (NTRS)

    Billman, Kenneth W.; Gilbreath, William P.; Bowen, Stuart W.

    1978-01-01

    A system of orbiting, large-area, low mass density reflector satellites which provide nearly continuous solar energy to a world-distributed set of conversion sites is examined under the criteria for any potential new energy system: technical feasibility, significant and renewable energy impact, economic feasibility and social/political acceptability. Although many technical issues need further study, reasonable advances in space technology appear sufficient to implement the system. The enhanced insolation is shown to greatly improve the economic competitiveness of solar-electric generation to circa 1995 fossil/nuclear alternatives. The system is shown to have the potential for supplying a significant fraction of future domestic and world energy needs. Finally, the environmental and social issues, including a means for financing such a large shift to a world solar energy dependence, is addressed.

  6. 1 CFR 6.3 - Daily lists of parts affected.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1 General Provisions 1 2011-01-01 2011-01-01 false Daily lists of parts affected. 6.3 Section 6.3 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.3 Daily lists of parts affected. (a) Each daily issue of the Federal Register shall carry...

  7. 1 CFR 6.3 - Daily lists of parts affected.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 1 General Provisions 1 2014-01-01 2012-01-01 true Daily lists of parts affected. 6.3 Section 6.3 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.3 Daily lists of parts affected. (a) Each daily issue of the Federal Register shall carry...

  8. 1 CFR 6.3 - Daily lists of parts affected.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 1 General Provisions 1 2013-01-01 2012-01-01 true Daily lists of parts affected. 6.3 Section 6.3 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.3 Daily lists of parts affected. (a) Each daily issue of the Federal Register shall carry...

  9. 1 CFR 6.3 - Daily lists of parts affected.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Daily lists of parts affected. 6.3 Section 6.3 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.3 Daily lists of parts affected. (a) Each daily issue of the Federal Register shall carry...

  10. 1 CFR 6.1 - Index to daily issues.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 1 General Provisions 1 2013-01-01 2012-01-01 true Index to daily issues. 6.1 Section 6.1 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.1 Index to daily issues. Each daily issue of the Federal Register shall be appropriately indexed....

  11. 1 CFR 6.3 - Daily lists of parts affected.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 1 General Provisions 1 2012-01-01 2012-01-01 false Daily lists of parts affected. 6.3 Section 6.3 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.3 Daily lists of parts affected. (a) Each daily issue of the Federal Register shall carry...

  12. 1 CFR 6.1 - Index to daily issues.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 1 General Provisions 1 2014-01-01 2012-01-01 true Index to daily issues. 6.1 Section 6.1 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.1 Index to daily issues. Each daily issue of the Federal Register shall be appropriately indexed....

  13. 1 CFR 6.1 - Index to daily issues.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1 General Provisions 1 2011-01-01 2011-01-01 false Index to daily issues. 6.1 Section 6.1 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.1 Index to daily issues. Each daily issue of the Federal Register shall be appropriately indexed....

  14. 1 CFR 6.1 - Index to daily issues.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 1 General Provisions 1 2012-01-01 2012-01-01 false Index to daily issues. 6.1 Section 6.1 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.1 Index to daily issues. Each daily issue of the Federal Register shall be appropriately indexed....

  15. 1 CFR 6.1 - Index to daily issues.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Index to daily issues. 6.1 Section 6.1 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.1 Index to daily issues. Each daily issue of the Federal Register shall be appropriately indexed....

  16. Solar electricity supply isolines of generation capacity and storage

    PubMed Central

    Grossmann, Wolf; Grossmann, Iris; Steininger, Karl W.

    2015-01-01

    The recent sharp drop in the cost of photovoltaic (PV) electricity generation accompanied by globally rapidly increasing investment in PV plants calls for new planning and management tools for large-scale distributed solar networks. Of major importance are methods to overcome intermittency of solar electricity, i.e., to provide dispatchable electricity at minimal costs. We find that pairs of electricity generation capacity G and storage S that give dispatchable electricity and are minimal with respect to S for a given G exhibit a smooth relationship of mutual substitutability between G and S. These isolines between G and S support the solving of several tasks, including the optimal sizing of generation capacity and storage, optimal siting of solar parks, optimal connections of solar parks across time zones for minimizing intermittency, and management of storage in situations of far below average insolation to provide dispatchable electricity. G?S isolines allow determining the cost-optimal pair (G,S) as a function of the cost ratio of G and S. G?S isolines provide a method for evaluating the effect of geographic spread and time zone coverage on costs of solar electricity. PMID:25755261

  17. Dynamic conversion of solar generated heat to electricity

    NASA Technical Reports Server (NTRS)

    Powell, J. C.; Fourakis, E.; Hammer, J. M.; Smith, G. A.; Grosskreutz, J. C.; Mcbride, E.

    1974-01-01

    The effort undertaken during this program led to the selection of the water-superheated steam (850 psig/900 F) crescent central receiver as the preferred concept from among 11 candidate systems across the technological spectrum of the dynamic conversion of solar generated heat to electricity. The solar power plant designs were investigated in the range of plant capacities from 100 to 1000 Mw(e). The investigations considered the impacts of plant size, collector design, feed-water temperature ratio, heat rejection equipment, ground cover, and location on solar power technical and economic feasibility. For the distributed receiver systems, the optimization studies showed that plant capacities less than 100 Mw(e) may be best. Although the size of central receiver concepts was not parametrically investigated, all indications are that the optimal plant capacity for central receiver systems will be in the range from 50 to 200 Mw(e). Solar thermal power plant site selection criteria and methodology were also established and used to evaluate potentially suitable sites. The result of this effort was to identify a site south of Inyokern, California, as typically suitable for a solar thermal power plant. The criteria used in the selection process included insolation and climatological characteristics, topography, and seismic history as well as water availability.

  18. Daily ozone cycle in the stratosphere: global, regional and seasonal behaviour modelled with the Whole Atmosphere Community Climate Model

    NASA Astrophysics Data System (ADS)

    Schanz, A.; Hocke, K.; Kämpfer, N.

    2014-07-01

    The Whole Atmosphere Community Climate Model (WACCM) is utilised to study the daily ozone cycle and underlying photochemical and dynamical processes. The analysis is focused on the daily ozone cycle in the middle stratosphere at 5 hPa where satellite-based trend estimates of stratospheric ozone are most biased by diurnal sampling effects and drifting satellite orbits. The simulated ozone cycle shows a minimum after sunrise and a maximum in the late afternoon. Further, a seasonal variation of the daily ozone cycle in the stratosphere was found. Depending on season and latitude, the peak-to-valley difference of the daily ozone cycle varies mostly between 3 and 5% (0.4 ppmv) with respect to the midnight ozone volume mixing ratio. The maximal variation of 15% (0.8 ppmv) is found at the polar circle in summer. The global pattern of the strength of the daily ozone cycle is mainly governed by the solar zenith angle and the sunshine duration. In addition, we find synoptic-scale variations in the strength of the daily ozone cycle. These variations are often anti-correlated to regional temperature anomalies and are due to the temperature dependence of the rate coefficients k2 and k3 of the Chapman cycle reactions. Further, the NOx catalytic cycle counteracts the accumulation of ozone during daytime and leads to an anti-correlation between anomalies in NOx and the strength of the daily ozone cycle. Similarly, ozone recombines with atomic oxygen which leads to an anti-correlation between anomalies in ozone abundance and the strength of the daily ozone cycle. At higher latitudes, an increase of the westerly (easterly) wind cause a decrease (increase) in the sunshine duration of an air parcel leading to a weaker (stronger) daily ozone cycle.

  19. Daily ozone cycle in the stratosphere: global, regional and seasonal behaviour modelled with the Whole Atmosphere Community Climate Model

    NASA Astrophysics Data System (ADS)

    Schanz, A.; Hocke, K.; Kämpfer, N.

    2014-03-01

    The Whole Atmosphere Community Climate Model (WACCM) is utilised to study the daily ozone cycle and underlying photochemical and dynamical processes. The analysis is focused on the daily ozone cycle in the middle stratosphere at 5 hPa where satellite-based trend estimates of stratospheric ozone are most biased by diurnal sampling effects and drifting satellite orbits. The simulated ozone cycle shows a minimum after sunrise and a maximum in the late afternoon. Further, a seasonal variation of the daily ozone cycle in the stratosphere was found. Depending on season and latitude, the peak-to-valley difference of the daily ozone cycle varies mostly between 3-5% (0.4 ppmv) with respect to the midnight ozone volume mixing ratio. The maximal variation of 15% (0.8 ppmv) is found at the polar circle in summer. The global pattern of the strength of the daily ozone cycle is mainly governed by the solar zenith angle and the sunshine duration. In addition, we find synoptic scale variations in the strength of the daily ozone cycle. These variations are often anti-correlated to regional temperature anomalies and are due to the temperature dependence of the rate coefficients k2 and k3 of the Chapman cycle reactions. Further, the NOx catalytic cycle counteracts to the accumulation of ozone during daytime and leads to an anti-correlation between anomalies in NOx and the strength of the daily ozone cycle. Similarly, ozone recombines with atomic oxygen which leads to an anti-correlation between anomalies in ozone abundance and the strength of the daily ozone cycle. At higher latitudes, an increase of the westerly (easterly) wind cause a decrease (increase) in the sunshine duration of an air parcel leading to a weaker (stronger) daily ozone cycle.

  20. Investigation of daily covering material for biocells

    NASA Astrophysics Data System (ADS)

    Bendere, R.; Smigins, R.; Medne, O.; Berzina-Cimdina, L.; Rugele, K.

    2014-02-01

    Bioreactor landfilling, with the acceptance of landfill Directive 1999/31/EC has lost its actuality in European Union; at the same time, this method can still be used for acceleration of biowaste degradation and biogas production. One of the possibilities to reduce the disposal of biowaste is to use biocells for its anaerobic pre-treatment before landfilling. The daily filling up of such a cell requires isolation of the main volume to limit gas emissions, reduce smells, etc. Bioprocesses that are of the utmost importance for biocell treatment are often not taken into account in selection of materials to be used as daily landfill covers. Based on physical, chemical and biological methods the investigations have been carried out into different covering materials offered in the market, with identification of parameters that are the most important for daily covering the biocells. It is found that the materials fitted best this purpose should be of biological origin and consist of small bio-particles with large surface, without the inhibitors of anaerobic processes such as sulphuric compounds. Bioreaktoru pielietošana atkritumu uzglab?šanas sf?r?, sakar? ar Direkt?vas 1999/31/EC pie?emšanu, ir zaud?jusi savu aktualit?ti, ta?u š? metode v?l joproj?m var tikt izmantota bioatkritumu no?rd?šanai un biog?zes ražošanai. Viena no iesp?j?m k? samazin?t bioatkritumu izvietošanu ir bioš?nu izmantošana bioatkritumu anaerobai pirmsapstr?dei pirms to noglab?šanas. Š?nas piepild?šana ikdien? prasa nepieciešam?bu izol?t liel?ko t?s da?u, lai samazin?tu g?zes emisiju, smakas, utt. Materi?li, kas ikdien? tiek izmantoti atkritumu p?rkl?šanai, nepietiekami ietekm? bioprocesus, kas pamat? ir galvenais bioš?nas izmantošanas m?r?is. Šaj? sakar? ir veikta daž?du tirdzniec?b? pieejamu p?rkl?juma materi?lu izp?te, pielietojot virkni fizik?lo, ??misko un biolo?isko metožu, un nosakot svar?g?kos parametrus, kas ir b?tiski šo materi?lu izmantošanai ikdien? k? bioš?nas p?rkl?jumu. P?t?jumu rezult?t? noteikts, ka visatbilstoš?kie ir materi?li ar biolo?isko izcelsmi, sast?voši no maz?m bio da?i??m ar lielu laukumu bez anaerobo procesu inhibitoriem, piem?ram, s?ra komponent?m.

  1. When Daily Deal Services Meet Twitter: Understanding Twitter as a Daily Deal Marketing Platform

    E-print Network

    Chung, Chin-Wan

    Factors, Measurement Keywords Twitter, Daily Deal Service, Social Media Marketing, Electronic Commerce contents, or tweets, act as an important source of advertising and brand managing. Groupon and LivingSocial which enables users to build social networks and share information, has been recognized as a potentially

  2. Solar Collectors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Solar Energy's solar panels are collectors for a solar energy system which provides heating for a drive-in bank in Akron, OH. Collectors were designed and manufactured by Solar Energy Products, a firm established by three former NASA employees. Company President, Frank Rom, an example of a personnel-type technology transfer, was a Research Director at Lewis Research Center, which conducts extensive solar heating and cooling research, including development and testing of high-efficiency flat-plate collectors. Rom acquired solar energy expertise which helped the company develop two types of collectors, one for use in domestic/commercial heating systems and the other for drying grain.

  3. Daily oral iron supplementation during pregnancy

    PubMed Central

    Peña-Rosas, Juan Pablo; De-Regil, Luz Maria; Dowswell, Therese; Viteri, Fernando E

    2014-01-01

    Background Iron and folic acid supplementation has been the preferred intervention to improve iron stores and prevent anaemia among pregnant women, and it may also improve other maternal and birth outcomes. Objectives To assess the effects of daily oral iron supplements for pregnant women, either alone or in conjunction with folic acid, or with other vitamins and minerals as a public health intervention. Search methods We searched the Cochrane Pregnancy and Childbirth Group’s Trials Register (2 July 2012). We also searched the WHO International Clinical Trials Registry Platform (ICTRP) (2 July 2012) and contacted relevant organisations for the identification of ongoing and unpublished studies. Selection criteria Randomised or quasi-randomised trials evaluating the effects of oral preventive supplementation with daily iron, iron + folic acid or iron + other vitamins and minerals during pregnancy. Data collection and analysis We assessed the methodological quality of trials using standard Cochrane criteria. Two review authors independently assessed trial eligibility, extracted data and conducted checks for accuracy. Main results We included 60 trials. Forty-three trials, involving more than 27,402 women, contributed data and compared the effects of daily oral supplements containing iron versus no iron or placebo. Overall, women taking iron supplements were less likely to have low birthweight newborns (below 2500 g) compared with controls (8.4% versus 10.2%, average risk ratio (RR) 0.81; 95% confidence interval (CI) 0.68 to 0.97, 11 trials, 8480 women) and mean birthweight was 30.81 g greater for those infants whose mothers received iron during pregnancy (average mean difference (MD) 30.81; 95% CI 5.94 to 55.68, 14 trials, 9385 women). Preventive iron supplementation reduced the risk of maternal anaemia at term by 70% (RR 0.30; 95% CI 0.19 to 0.46, 14 trials, 2199 women) and iron deficiency at term by 57% (RR 0.43; 95% CI 0.27 to 0.66, seven trials, 1256 women). Although the difference between groups did not reach statistical significance, women who received iron supplements were more likely than controls to report side effects (25.3% versus 9.91%) (RR 2.36; 95% CI 0.96 to 5.82, 11 trials, 4418 women), particularly at doses 60 mg of elemental iron or higher. Women receiving iron were on average more likely to have higher haemoglobin (Hb) concentrations at term and in the postpartum period, but were at increased risk of Hb concentrations greater than 130g/L during pregnancy and at term. Twenty-three studies were conducted in countries that in 2011 had some malaria risk in parts of the country. In some of these countries/territories, malaria is present only in certain areas or up to a particular altitude. Only two of these reported malaria outcomes. There is no evidence that iron supplementation increases placental malaria. For some outcomes heterogeneity was higher than 50%. Authors’ conclusions Prenatal supplementation with daily iron are effective to reduce the risk of low birthweight, and to prevent maternal anaemia and iron deficiency in pregnancy. Associated maternal side effects and particularly high Hb concentrations during pregnancy at currently used doses suggest the need to update recommendations on doses and regimens for routine iron supplementation. PMID:23235616

  4. Inclusion of Building Envelope Thermal Lag Effects in Linear Regression Models of Daily Basis Building Energy Use Data 

    E-print Network

    Masuda, H.; Claridge, D. E.

    2012-01-01

    ?Building?Envelope?Thermal?Lag? Effects?in?Linear?Regression?Models?of?Daily? Basis?Building?Energy?Use?Data The?12th International?Conference?for?Enhanced?Building?Operations October?22nd?26th,?2012 Manchester,?UK Hiroko?Masuda?and?Dr.?David?E.?Claridge Energy...?hour?cycle?variations?are?averaged?out?in?daily?data. ? The?dominant?driving?terms?of?most?buildings?follow?a?24?h?cycle.?(Rabl,?1992)? solar?irradiance,?OA?temperature,?ventilation,?occupancy?level,?lights?and?equipment?loads,? delayed...

  5. Once-daily therapies for the treatment of HIV infection.

    PubMed

    Tashima, Karen T; Mitty, Jennifer Adelson

    2006-07-01

    For patients initiating antiretroviral therapy, there are several well-tolerated once-daily regimens from which to choose. Once-daily antiretroviral therapy may be ideal for patient adherence and convenience. However, results of a few recent clinical trials exploring new once-daily regimens have shown that one cannot assume that any three-drug combination will be successful. Once-daily therapy options for treatment-experienced patients are more limited but may be successful depending on prior antiretroviral treatment exposure and resistance mutations. Current approaches to once-daily therapy include simplifying successful regimens and investigating novel antiretroviral agents with long half-lives. PMID:16608665

  6. A computer program to determine the possible daily release window for sky target experiments

    NASA Technical Reports Server (NTRS)

    Michaud, N. H.

    1973-01-01

    A computer program is presented which is designed to determine the daily release window for sky target experiments. Factors considered in the program include: (1) target illumination by the sun at release time and during the tracking period; (2) look angle elevation above local horizon from each tracking station to the target; (3) solar depression angle from the local horizon of each tracking station during the experimental period after target release; (4) lunar depression angle from the local horizon of each tracking station during the experimental period after target release; and (5) total sky background brightness as seen from each tracking station while viewing the target. Program output is produced in both graphic and data form. Output data can be plotted for a single calendar month or year. The numerical values used to generate the plots are furnished to permit a more detailed review of the computed daily release windows.

  7. Test results: SEGS LS-2 solar collector

    NASA Astrophysics Data System (ADS)

    Dudley, Vernon E.; Kolb, Gregory J.; Mahoney, A. Roderick; Mancini, Thomas R.; Matthews, Chauncey W.; Sloan, Michael; Kearney, David

    1994-12-01

    A SEGS LS-2 parabolic trough solar collector was tested to determine the collector efficiency and thermal losses with two types of receiver selective coatings, combined with three different receiver configurations: glass envelope with either vacuum or air in the receiver annulus, and glass envelope removed from the receiver. As expected, collector performance was significantly affected by each variation in receiver configuration. Performance decreased when the cermet selective coating was changed to a black chrome coating, and progressively degraded as air was introduced into the vacuum annulus, and again when the glass envelope was removed from the receiver. For each receiver configuration, performance equations were derived relating collector efficiency and thermal losses to the operating temperature. For the bare receiver (no glass envelope) efficiency and thermal losses are shown as a function of wind speed. An incident angle modifier equation was also developed for each receiver case. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature. Results from the experiments were compared with predictions from a one-dimensional analytical model of the solar receiver. Differences between the model and experiment were generally within the band of experimental uncertainty.

  8. 1 Copyright 2004 by ASME Proceedings of Solar 2004

    E-print Network

    Ribando, Robert J.

    1 Copyright © 2004 by ASME Proceedings of Solar 2004 July 11-14, 2004 Portland, Oregon ISEC2004 in a typical U.S. home, residential energy conservation techniques hold great promise for significant savings in the structure. The building shell is subjected to a daily variation in solar radiation and air temperature

  9. Mathematical links between optimum solar collector tilts in isotropic sky for intercepting maximum solar irradiance

    NASA Astrophysics Data System (ADS)

    Stanciu, Dorin; Stanciu, Camelia; Paraschiv, Ioana

    2016-01-01

    The paper presents a mathematical modeling of the optimum tilt for solar collectors for intercepting maximum solar irradiance (power density), at different geographical locations, periods of time and different base-ground types. The solar irradiance received by the collector is estimated based on isotropic sky analysis models, namely Hottel & Woertz model and Liu & Jordan model. The optimum value for the tilt is considered for maximum hourly and respectively daily noon incident solar irradiance. This paper emphasizes the mathematical link between the optima computed under the two considered models assumptions. Also the ground reflectance factor influence on the optimum tilt difference between considered models is presented related to latitude.

  10. Insignificant solar-terrestrial triggering of earthquakes

    USGS Publications Warehouse

    Love, Jeffrey J.; Thomas, Jeremy N.

    2013-01-01

    We examine the claim that solar-terrestrial interaction, as measured by sunspots, solar wind velocity, and geomagnetic activity, might play a role in triggering earthquakes. We count the number of earthquakes having magnitudes that exceed chosen thresholds in calendar years, months, and days, and we order these counts by the corresponding rank of annual, monthly, and daily averages of the solar-terrestrial variables. We measure the statistical significance of the difference between the earthquake-number distributions below and above the median of the solar-terrestrial averages by ?2 and Student's t tests. Across a range of earthquake magnitude thresholds, we find no consistent and statistically significant distributional differences. We also introduce time lags between the solar-terrestrial variables and the number of earthquakes, but again no statistically significant distributional difference is found. We cannot reject the null hypothesis of no solar-terrestrial triggering of earthquakes.

  11. "Productive and counterproductive job crafting: A daily diary study": Correction.

    PubMed

    2015-10-01

    Reports an error in "Productive and Counterproductive Job Crafting: A Daily Diary Study" by Evangelia Demerouti, Arnold B. Bakker and Jonathon R. B. Halbesleben (Journal of Occupational Health Psychology, Advanced Online Publication, Mar 23, 2015, np). There was an error in the results. In the Results section, under the subheading Testing Hypotheses, the parenthetical text referring to "lower bound and upper bound" for reducing demands to work engagement through workload in the second paragraph and for reducing demands on task performance through day-level workload and work engagement in the sixth paragraph respectively should have read as follows: (lower bound = -.040 to upper bound = -.002) (The following abstract of the original article appeared in record 2015-12645-001.) The present study aims to uncover the way daily job crafting influences daily job performance (i.e., task performance, altruism, and counterproductive work behavior). Job crafting was conceptualized as "seeking resources," "seeking challenges," and "reducing demands" and viewed as strategies individuals use to optimize their job characteristics. We hypothesized that daily job crafting relates to daily job demands and resources (work pressure and autonomy), which consequently relate to daily work engagement and exhaustion and ultimately to job performance. A sample of 95 employees filled in a quantitative diary for 5 consecutive working days (n occasions = 475). We predicted and found that daily seeking resources was positively associated with daily task performance because daily autonomy and work engagement increased. In contrast, daily reducing demands was detrimental for daily task performance and altruism, because employees lower their daily workload and consequently their engagement and exhaustion, respectively. Only daily seeking challenges was positively (rather than negatively) associated with daily counterproductive behavior. We conclude that employee job crafting can have both beneficial and detrimental effects on job performance. (PsycINFO Database Record PMID:26414538

  12. Discrepant responses of the global electron content to the solar cycle and solar rotation variations of EUV irradiance

    NASA Astrophysics Data System (ADS)

    Chen, Yiding; Liu, Libo; Le, Huijun; Zhang, Hui

    2015-12-01

    In this paper, the responses of the ionosphere to the solar cycle and solar rotation variations of extreme ultraviolet (EUV) irradiance are comparatively investigated using daily mean global electron content (GEC) and 0.1-50 nm EUV daily flux. GEC is well correlated with EUV on both the solar cycle and solar rotation timescales; however, the responses of GEC to the solar cycle and solar rotation variations of EUV are significantly different in terms of the following two aspects: (1) There is a significant time lag between the solar rotation variations of GEC and EUV; the lag is dominated by a 1-day lag and generally presents a decrease trend with solar activity decreasing. For the solar cycle variations of GEC and EUV, however, there are no evident time lags. (2) The GEC versus EUV slopes are different for the solar cycle and solar rotation variations of GEC and EUV; the solar cycle GEC versus EUV slope is higher than the solar rotation GEC versus EUV slope, and this difference occurs in different seasons and latitudinal bands. The results present an aspect of the difference between ionospheric climatology and weather.

  13. Solar Geometry

    Atmospheric Science Data Center

    2014-09-25

    Solar Noon (GMT time) The time when the sun is due south in the northern hemisphere or due north in the southern ... The average cosine of the angle between the sun and directly overhead during daylight hours.   Cosine solar ...

  14. Solar Index generation and delivery

    SciTech Connect

    Lantz, L.J.

    1980-01-01

    The Solar Index, more completely defined as the Service Hot Water Solar Index, was conceptualized during the spring of 1978 with direction from a US Government interoffice agency committee which was headed by the Department of Energy. The purpose was to enhance public awareness of solar energy usability. Basically, the Solar Index represents the percentage of energy that solar would provide in order to heat an 80-gallon service hot water load for a given location and day. The Index is computed by utilizing SOLCOST, a computer program, which in addition to solar service hot water systems, has the ability to estimate thermal performance of space heating, cooling, and heat pump systems. It also supplies economic analyses for these solar energy systems. The Index is generated daily for most large metropolitan locations in the country. The definition of the Index, how the project came to be, what it is at the present time, and a plan for the future are presented. Also presented are the models used for the generation of the Index, a discussion of the primary tool of implementation (the SOLCOST Program), and future efforts.

  15. Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning

    SciTech Connect

    Martin, Luis; Marchante, Ruth; Cony, Marco; Zarzalejo, Luis F.; Polo, Jesus; Navarro, Ana

    2010-10-15

    Due to strong increase of solar power generation, the predictions of incoming solar energy are acquiring more importance. Photovoltaic and solar thermal are the main sources of electricity generation from solar energy. In the case of solar thermal energy plants with storage energy system, its management and operation need reliable predictions of solar irradiance with the same temporal resolution as the temporal capacity of the back-up system. These plants can work like a conventional power plant and compete in the energy stock market avoiding intermittence in electricity production. This work presents a comparisons of statistical models based on time series applied to predict half daily values of global solar irradiance with a temporal horizon of 3 days. Half daily values consist of accumulated hourly global solar irradiance from solar raise to solar noon and from noon until dawn for each day. The dataset of ground solar radiation used belongs to stations of Spanish National Weather Service (AEMet). The models tested are autoregressive, neural networks and fuzzy logic models. Due to the fact that half daily solar irradiance time series is non-stationary, it has been necessary to transform it to two new stationary variables (clearness index and lost component) which are used as input of the predictive models. Improvement in terms of RMSD of the models essayed is compared against the model based on persistence. The validation process shows that all models essayed improve persistence. The best approach to forecast half daily values of solar irradiance is neural network models with lost component as input, except Lerida station where models based on clearness index have less uncertainty because this magnitude has a linear behaviour and it is easier to simulate by models. (author)

  16. Solar dynamo as host power pacemaker of the Earth global climate

    E-print Network

    Rusov, Vitaliy D; Vaschenko, Vladimir N; Mavrodiev, Strachimir Cht; Beglaryan, Margarita E; Zelentsova, Tatiana N; Tarasov, Victor A; Litvinov, Dmitriy A; Smolyar, Vladimir P; Vachev, Boyko I

    2011-01-01

    It is known that the so-called problem of solar power pacemaker related to possible existence of some hidden but key mechanism of energy influence of the Sun on fundamental geophysical processes is one of the principal and puzzling problems of modern climatology. The "tracks" of this mechanism have been shown up in different problems of solar-terrestrial physics for a long time and, in particular, in climatology, where the solar-climate variability is stably observed. However, the mechanisms by which small changes in the Sun's energy (solar irradiance or insolation) output during the solar cycle can cause change in the weather and climate are still unknown. We analyze possible causes of the solar-climate variability concentrating one's attention on the physical substantiation of strong correlation between the temporal variations of magnetic flux of the solar tachocline zone and the Earth magnetic field (Y-component). We propose an effective mechanism of solar dynamo-geodynamo connection which plays the role o...

  17. Buffer thermal energy storage for an air Brayton solar engine

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    The application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine was studied. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written which models the recuperator, receiver, and thermal storage device as finite-element thermal masses. Actual operating or predicted performance data are used for all components, including the rotating equipment. Based on insolation input and a specified control scheme, the program predicts the Brayton engine operation, including flows, temperatures, and pressures for the various components, along with the engine output power. An economic parametric study indicates that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life.

  18. Transient response of a concentric evacuated tubular solar collector

    NASA Astrophysics Data System (ADS)

    Al-Khalil, Kamel M.; Jakubowski, Gerald S.; Springman, Richard A.

    The transient and the steady state performances of an evacuated coaxial tubular solar collector were investigated. A purely implicit central finite differencing numerical technique was used to determine the time-varying temperature distributions in the collector components as well as the fluid exit temperature. Experimental indoor transient tests were conducted in which step inputs of insolation were used. Close agreeement between the experimental and the theoretical results was obtained. The computer model was found to be useful to carry out a complete parametric study. The latter showed that the fluid flow rate had the largest effect on the performance of the collector tube. Lower flow rates resulted in lower efficiencies and longer response times.

  19. Effects of Converting Tacrolimus Formulation from Twice-Daily to Once-Daily in Liver Transplantation Recipients

    PubMed Central

    Thorat, Ashok; Chou, Hong-Shiue; Lee, Chen-Fang; Soong, Ruey-Shyang; Wu, Ting-Jung; Lee, Wei-Chen

    2014-01-01

    Typically, tacrolimus is administrated twice daily. Prolonged-release tacrolimus is the once-daily formulation and may be more convenient for patients. Experience with the administration of the once-daily formulation is still limited. This study enrolled 210 liver transplant recipients who had stable liver function and converted tacrolimus from a twice-daily to once-daily formulation on a 1?mg to 1?mg basis. Among 210 patients, seven patients (3.3%) were withdrawn from the once-daily formulation due to allergy and fatigue. For the other patients, the trough concentration after converting to the once-daily formulation was lower than that of the twice-daily formulation. Liver enzymes were mildly elevated in 3 months after formulation conversion and serum creatinine and uric acid were mildly decreased. Seven patients (3.4%) had clinical suspicion of acute rejection after the formulation conversion and three of them were caused by nonadherence. 155 patients (76.4%) experienced a more convenient life with an increase of social activity. Forty-seven patients (23.2%) experienced the convenience of once-daily formulation during overseas trips. In conclusion, tacrolimus can be safely converted from the twice-daily to the once-daily formulation for most stable liver recipients. Acute rejection may occur in a minority of patients during formulation conversion and should be carefully monitored. PMID:25121091

  20. Buying Solar.

    ERIC Educational Resources Information Center

    Dawson, Joe

    Presented are guidelines for buying solar systems for the individual consumer. This is intended to help the consumer reduce many of the risks associated with the purchase of solar systems, particularly the risks of fraud and deception. Engineering terms associated with solar technology are presented and described to enable the consumer to discuss…

  1. Thermal buffering of receivers for parabolic dish solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Fujita, T.; Gajanana, B. C.; Marcus, C. J.

    1980-01-01

    A parabolic dish solar thermal power plant comprises a field of parabolic dish power modules where each module is composed of a two-axis tracking parabolic dish concentrator which reflects sunlight (insolation) into the aperture of a cavity receiver at the focal point of the dish. The heat generated by the solar flux entering the receiver is removed by a heat transfer fluid. In the dish power module, this heat is used to drive a small heat engine/generator assembly which is directly connected to the cavity receiver at the focal point. A computer analysis is performed to assess the thermal buffering characteristics of receivers containing sensible and latent heat thermal energy storage. Parametric variations of the thermal inertia of the integrated receiver-buffer storage systems coupled with different fluid flow rate control strategies are carried out to delineate the effect of buffer storage, the transient response of the receiver-storage systems and corresponding fluid outlet temperature. It is concluded that addition of phase change buffer storage will substantially improve system operational characteristics during periods of rapidly fluctuating insolation due to cloud passage.

  2. Charcoal-methanol adsorption refrigerator powered by a compound parabolic concentrating solar collector

    SciTech Connect

    Headley, O.StC.; Kothdiwala, A.F.; McDoom, I.A. )

    1994-08-01

    A compound parabolic concentrating solar collector (CPC) of concentration ratio 3.9 and aperture area 2.0 m[sup 2] was used to power an intermittent solid adsorption refrigerator and ice maker using activated charcoal (carbon) as the adsorbing medium and methanol as the working fluid. The copper tube receiver of the CPC was packed with 2.5 kg of imported adsorbent 207E3, which was only utilized when the performance of activated charcoal (ACJ1, produced from local coconut shells) was found to be inferior to the imported adsorbent. Up to 1 kg of ice at an evaporator temperature of [minus]6[degrees]C was produced, with the net solar coefficient of performance (COP) being of the order of 0.02. Maximum receiver/adsorbent temperature recorded was 154[degrees]C on a day when the insolation was 26.8 MJ/m[sup [minus]2]. Temperatures in excess of 150[degrees]C are undesirable since they favour the conversion of methanol to dimethyl ether, a noncondensable gas which inhibits both condensation and adsorption. The major advantage of this system is its ability to produce ice even on overcast days (insolation [approximately] 10 MJ/m[sup [minus]2]).

  3. Observation of 8 B Solar Neutrinos from 300-day data at Super-Kamiokande

    E-print Network

    Tokyo, University of

    of the low-energy analysis sub-group of this ex- periment for sharing daily work of solar neutrino analysis puzzle ) is con#12;rmed. Neutrino oscillation is proposed as a plausible explanation for the solarObservation of 8 B Solar Neutrinos from 300-day data at Super-Kamiokande Takayuki Yamaguchi

  4. Productive and counterproductive job crafting: A daily diary study.

    PubMed

    Demerouti, Evangelia; Bakker, Arnold B; Halbesleben, Jonathon R B

    2015-10-01

    [Correction Notice: An Erratum for this article was reported in Vol 20(4) of Journal of Occupational Health Psychology (see record 2015-44183-001). There was an error in the results. In the Results section, under the subheading Testing Hypotheses, the parenthetical text referring to "lower bound and upper bound" for reducing demands to work engagement through workload in the second paragraph and for reducing demands on task performance through day-level workload and work engagement in the sixth paragraph respectively should have read as follows: (lower bound = -.040 to upper bound = -.002)] The present study aims to uncover the way daily job crafting influences daily job performance (i.e., task performance, altruism, and counterproductive work behavior). Job crafting was conceptualized as "seeking resources," "seeking challenges," and "reducing demands" and viewed as strategies individuals use to optimize their job characteristics. We hypothesized that daily job crafting relates to daily job demands and resources (work pressure and autonomy), which consequently relate to daily work engagement and exhaustion and ultimately to job performance. A sample of 95 employees filled in a quantitative diary for 5 consecutive working days (n occasions = 475). We predicted and found that daily seeking resources was positively associated with daily task performance because daily autonomy and work engagement increased. In contrast, daily reducing demands was detrimental for daily task performance and altruism, because employees lower their daily workload and consequently their engagement and exhaustion, respectively. Only daily seeking challenges was positively (rather than negatively) associated with daily counterproductive behavior. We conclude that employee job crafting can have both beneficial and detrimental effects on job performance. (PsycINFO Database Record PMID:25798721

  5. Solar flair.

    PubMed

    Manuel, John S

    2003-02-01

    Design innovations and government-sponsored financial incentives are making solar energy increasingly attractive to homeowners and institutional customers such as school districts. In particular, the passive solar design concept of daylighting is gaining favor among educators due to evidence of improved performance by students working in daylit classrooms. Electricity-generating photovoltaic systems are also becoming more popular, especially in states such as California that have high electric rates and frequent power shortages. To help spread the word about solar power, the U.S. Department of Energy staged its first-ever Solar Decathlon in October 2002. This event featured solar-savvy homes designed by 14 college teams. PMID:12573926

  6. Solar flair.

    PubMed Central

    Manuel, John S

    2003-01-01

    Design innovations and government-sponsored financial incentives are making solar energy increasingly attractive to homeowners and institutional customers such as school districts. In particular, the passive solar design concept of daylighting is gaining favor among educators due to evidence of improved performance by students working in daylit classrooms. Electricity-generating photovoltaic systems are also becoming more popular, especially in states such as California that have high electric rates and frequent power shortages. To help spread the word about solar power, the U.S. Department of Energy staged its first-ever Solar Decathlon in October 2002. This event featured solar-savvy homes designed by 14 college teams. PMID:12573926

  7. Solar Neutrinos

    E-print Network

    A. B. McDonald

    2002-09-21

    Present results and future measurements of solar neutrinos are discussed. The results to date indicate that solar electron neutrinos are changing to other active types and that transitions solely to sterile neutrinos are disfavored. The flux of $^{8}B$ solar neutrinos produced in the Sun, inferred assuming only active neutrino types, is found to be in very good agreement with solar model calculations. Future measurements will focus on greater accuracy for charged current and neutral current sensitive reactions to provide more accurate measurements of neutrino flavour change and further studies of day-night flux differences and spectral shape. Other experiments sensitive to lower energy solar neutrinos will be in operation soon.

  8. Sensitivity of the Oceanic Turbulent Boundary Layer to Cyclic Insolation Change with Response Periods of 23 to 2.5 Ky: an Equatorial Atlantic Record for the Last 200 Ka

    NASA Technical Reports Server (NTRS)

    Mcintyre, Andrew

    1990-01-01

    Time series of sea-surface temperature in cores sited beneath the region of maximum divergence centered on 10 degrees W are characterized by two sets of periodic signals. The dominant signal is centered on a period of 23 Ky and is coherent with and lags, approx. 2.5 Ky, the precessional component of orbitally controlled insolation. The subdominant periods occur between 4.0 and 2.5 Ky. Both sets of signals record variation in the seasonal intensity of oceanic divergence modulated by variation in tropical easterly intensity. The longer periods are a response to precessional forcing. The forcing responsible for the shorter periods is unknown.

  9. TRENDS IN ESTIMATED MIXING DEPTH DAILY MAXIMUMS

    SciTech Connect

    Buckley, R; Amy DuPont, A; Robert Kurzeja, R; Matt Parker, M

    2007-11-12

    Mixing depth is an important quantity in the determination of air pollution concentrations. Fireweather forecasts depend strongly on estimates of the mixing depth as a means of determining the altitude and dilution (ventilation rates) of smoke plumes. The Savannah River United States Forest Service (USFS) routinely conducts prescribed fires at the Savannah River Site (SRS), a heavily wooded Department of Energy (DOE) facility located in southwest South Carolina. For many years, the Savannah River National Laboratory (SRNL) has provided forecasts of weather conditions in support of the fire program, including an estimated mixing depth using potential temperature and turbulence change with height at a given location. This paper examines trends in the average estimated mixing depth daily maximum at the SRS over an extended period of time (4.75 years) derived from numerical atmospheric simulations using two versions of the Regional Atmospheric Modeling System (RAMS). This allows for differences to be seen between the model versions, as well as trends on a multi-year time frame. In addition, comparisons of predicted mixing depth for individual days in which special balloon soundings were released are also discussed.

  10. Chaos and scaling in daily river flow

    E-print Network

    M. De Domenico; M. Ali Ghorbani

    2011-04-07

    Adequate knowledge of the nature of river flow process is crucial for proper planning and management of our water resources and environment. This study attempts to detect the salient characteristics of flow dynamics of the Karoon River in Iran. Daily discharge series observed over a period of six years (1999-2004) is analyzed to examine the chaotic and scaling characteristics of the flow dynamics. The presence of chaos is investigated through the correlation dimension and Lyapunov exponent methods, while the Hurst exponent and R\\'enyi dimension analyses are performed to explore the scaling characteristics. The low correlation dimension ($2.60 \\pm 0.07$) and the positive largest Lyapunov exponent ($0.014 \\pm 0.001$) suggest the presence of low-dimensional chaos; they also imply that the flow dynamics are dominantly governed by three variables and can be reliably predicted up to 48 days (i.e. prediction horizon). Results from the Hurst exponent and R\\'enyi dimension analyses reveal the multifractal character of the flow dynamics, with persistent and anti-persistent behaviors observed at different time scales.

  11. Kiwifruit: our daily prescription for health.

    PubMed

    Stonehouse, Welma; Gammon, Cheryl S; Beck, Kathryn L; Conlon, Cathryn A; von Hurst, Pamela R; Kruger, Rozanne

    2013-06-01

    Kiwifruit are unequalled, compared with other commonly consumed fruit, for their nutrient density, health benefits, and consumer appeal. Research into their health benefits has focussed on the cultivars Actinidia deliciosa 'Hayward' (green kiwifruit) and Actinidia chinensis 'Hort 16A', ZESPRI(®) (gold kiwifruit). Compared with other commonly consumed fruit, both green and gold kiwifruit are exceptionally high in vitamins C, E, K, folate, carotenoids, potassium, fibre, and phytochemicals acting in synergy to achieve multiple health benefits. Kiwifruit, as part of a healthy diet, may increase high-density lipoprotein cholesterol, and decrease triglycerides, platelet aggregation, and elevated blood pressure. Consuming gold kiwifruit with iron-rich meals improves poor iron status, and green kiwifruit aids digestion and laxation. As a rich source of antioxidants, they may protect the body from endogenous oxidative damage. Kiwifruit may support immune function and reduce the incidence and severity of cold or flu-like illness in at-risk groups such as older adults and children. However, kiwifruit are allergenic, and although symptoms in most susceptible individuals are mild, severe reactions have been reported. While many research gaps remain, kiwifruit with their multiple health benefits have the potential to become part of our "daily prescription for health." PMID:23746068

  12. Egocentric daily activity recognition via multitask clustering.

    PubMed

    Yan, Yan; Ricci, Elisa; Liu, Gaowen; Sebe, Nicu

    2015-10-01

    Recognizing human activities from videos is a fundamental research problem in computer vision. Recently, there has been a growing interest in analyzing human behavior from data collected with wearable cameras. First-person cameras continuously record several hours of their wearers' life. To cope with this vast amount of unlabeled and heterogeneous data, novel algorithmic solutions are required. In this paper, we propose a multitask clustering framework for activity of daily living analysis from visual data gathered from wearable cameras. Our intuition is that, even if the data are not annotated, it is possible to exploit the fact that the tasks of recognizing everyday activities of multiple individuals are related, since typically people perform the same actions in similar environments, e.g., people working in an office often read and write documents). In our framework, rather than clustering data from different users separately, we propose to look for clustering partitions which are coherent among related tasks. In particular, two novel multitask clustering algorithms, derived from a common optimization problem, are introduced. Our experimental evaluation, conducted both on synthetic data and on publicly available first-person vision data sets, shows that the proposed approach outperforms several single-task and multitask learning methods. PMID:26067371

  13. Solar Energy: Solar System Economics.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  14. Solar Sailing

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2009-01-01

    Solar sailing is a topic of growing technical and popular interest. Solar sail propulsion will make space exploration more affordable and offer access to destinations within (and beyond) the solar system that are currently beyond our technical reach. The lecture will describe solar sails, how they work, and what they will be used for in the exploration of space. It will include a discussion of current plans for solar sails and how advanced technology, such as nanotechnology, might enhance their performance. Much has been accomplished recently to make solar sail technology very close to becoming an engineering reality and it will soon be used by the world s space agencies in the exploration of the solar system and beyond. The first part of the lecture will summarize state-of-the-art space propulsion systems and technologies. Though these other technologies are the key to any deep space exploration by humans, robots, or both, solar-sail propulsion will make space exploration more affordable and offer access to distant and difficult destinations. The second part of the lecture will describe the fundamentals of space solar sail propulsion and will describe the near-, mid- and far-term missions that might use solar sails as a propulsion system. The third part of the lecture will describe solar sail technology and the construction of current and future sailcraft, including the work of both government and private space organizations.

  15. Daily Interpersonal and Affective Dynamics in Personality Disorder

    PubMed Central

    Wright, Aidan G.C.; Hopwood, Christopher J.; Simms, Leonard J.

    2015-01-01

    In this naturalistic study we adopt the lens of interpersonal theory to examine between-and within-person differences in dynamic processes of daily affect and interpersonal behaviors among individuals (N = 101) previously diagnosed with personality disorders who completed daily diaries over the course of 100 days. Dispositional ratings of interpersonal problems and measures of daily stress were used as predictors of daily shifts in interpersonal behavior and affect in multilevel models. Results indicate that ~40%–50% of the variance in interpersonal behavior and affect is due to daily fluctuations, which are modestly related to dispositional measures of interpersonal problems but strongly related to daily stress. The findings support conceptions of personality disorders as a dynamic form of psychopathology involving the individuals interacting with and regulating in response to the contextual features of their environment. PMID:26200849

  16. Distinguishing affective and non-affective reactions to daily events.

    PubMed

    Nezlek, John B

    2005-12-01

    The study of daily events has been dominated by a focus on affective reactions to daily events. Although informative, this research needs to be complemented by research on non-affective and cognitive reactions to events. Although daily events are certainly related to how people feel, they are also related to how people think, particularly about themselves. The present article presents the results of a series of studies examining relationships between daily events and both affective and non-affective states. These results suggest that although affective and non-affective reactions to daily events may covary (e.g., when people feel badly, they may think more poorly about themselves and vice versa), this covariation is not perfect. Non-affective states covary with daily events above and beyond the covariation between events and affect, and affective states covary with events above and beyond the covariation between events and non-affective states. PMID:16274445

  17. The role of locus of control in daily life.

    PubMed

    Ryon, Holly S; Gleason, Marci E J

    2014-01-01

    Conceived of as a stable trait, locus of control has been linked with psychological and physical health outcomes. We investigated whether locus of control operates as a state variable, whether variation in daily locus of control is associated with anxiety and stressful events, and whether it predicts daily health behaviors and symptoms. Using a daily diary study of pregnant couples, we found daily variation in locus of control was predicted by daily hassles and anxiety such that high same-day and previous-day anxiety and hassles were associated with reports of lower levels of control. Furthermore, daily locus of control was positively associated with positive health behaviors and predicted negative health symptoms. These results provide evidence for a social learning perspective on the development and maintenance of individuals' sense of control and suggest that locus of control should be considered both a state- and trait-level construct in future research. PMID:24107710

  18. Solar active region display system

    NASA Astrophysics Data System (ADS)

    Golightly, M.; Raben, V.; Weyland, M.

    2003-04-01

    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing operation through network firewalls; data is compressed to enhance performance over limited bandwidth connections. All applications and services are written in the JAVA program language for platform independence. Several versions of SARDS have been in operational use by the NASA Space Radiation Analysis Group, NOAA Space Weather Operations, and U.S. Air Force Weather Agency since 1999.

  19. Assessment of solar options for small power systems applications. Volume V. SOLSTEP: a computer model for solar plant system simulations

    SciTech Connect

    Bird, S.P.

    1980-09-01

    The simulation code, SOLSTEP, was developed at the Pacific Northwest Laboratory to facilitate the evaluation of proposed designs for solar thermal power plants. It allows the user to analyze the thermodynamic and economic performance of a conceptual design for several field size-storage capacity configurations. This feature makes it possible to study the levelized energy cost of a proposed concept over a range of plant capacity factors. The thermodynamic performance is analyzed on a time step basis using actual recorded meteorological and insolation data for specific geographic locations. The flexibility of the model enables the user to analyze both central and distributed generation concepts using either thermal or electric storage systems. The thermodynamic and economic analyses view the plant in a macroscopic manner as a combination of component subsystems. In the thermodynamic simulation, concentrator optical performance is modeled as a function of solar position; other aspects of collector performance can optionally be treated as functions of ambient air temperature, wind speed, and component power level. The power conversion model accounts for the effects of ambient air temperature, partial load operation, auxiliary power demands, and plant standby and startup energy requirements. The code was designed in a modular fashion to provide efficient evaluations of the collector system, total plant, and system economics. SOLSTEP has been used to analyze a variety of solar thermal generic concepts involving several collector types and energy conversion and storage subsystems. The code's straightforward models and modular nature facilitated simple and inexpensive parametric studies of solar thermal power plant performance.

  20. Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    2007-01-01

    A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.

  1. A Method for Calculating Reference Evapotranspiration on Daily Time Scales

    E-print Network

    Farmer, William

    Measures of reference evapotranspiration are essential for applications of agricultural management and water resources engineering. Using numerous esoteric variables, one can calculate daily reference evapotranspiration ...

  2. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily activity assist device. (a) Identification....

  3. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily activity assist device. (a) Identification....

  4. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily activity assist device. (a) Identification....

  5. Estimating daily mean land surface albedo from MODIS data

    NASA Astrophysics Data System (ADS)

    Wang, Dongdong; Liang, Shunlin; He, Tao; Yu, Yunyue; Schaaf, Crystal; Wang, Zhuosen

    2015-05-01

    Land surface albedo (LSA) is an important component of the surface radiation budget. For calculation of the surface shortwave net radiation budget, temporal mean albedo is more important than instantaneous albedo. Although Moderate Resolution Imaging Spectroradiometer (MODIS) albedo products have been extensively validated, little effort has been made to evaluate the accuracy of daily mean albedo from MODIS. In this study, we calculate daily mean albedo from MODIS data using a direct method and a look-up table (LUT) method. Comparison with in situ albedo measured at 27 field stations shows that both methods can estimate daily mean albedo with high accuracy. The root-mean-square error (RMSE) of snow-free daily mean albedo retrieved by the LUT method and the direct method is 0.033 and 0.034, respectively. Over the 12 spatially representative stations, RMSE of daily mean albedo is 0.022 and 0.023 by the LUT and direct approach, respectively. Simply using the local noon albedo value as a surrogate of daily mean albedo leads to overestimation of daily shortwave net radiation. By using the data of daily mean albedo, the bias in estimating daily shortwave net radiation can be reduced by 2.8 W/m2 with the direct method and 2.6 W/m2 with the LUT method, compared to the use of local noon albedo.

  6. Estimation of available global solar radiation using sunshine duration over South Korea

    NASA Astrophysics Data System (ADS)

    Das, Amrita; Park, Jin-ki; Park, Jong-hwa

    2015-11-01

    Besides designing a solar energy system, accurate insolation data is also a key component for many biological and atmospheric studies. But solar radiation stations are not widely available due to financial and technical limitations; this insufficient number affects the spatial resolution whenever an attempt is made to construct a solar radiation map. There are several models in literature for estimating incoming solar radiation using sunshine fraction. Seventeen of such models among which 6 are linear and 11 non-linear, have been chosen for studying and estimating solar radiation on a horizontal surface over South Korea. The better performance of a non-linear model signifies the fact that the relationship between sunshine duration and clearness index does not follow a straight line. With such a model solar radiation over 79 stations measuring sunshine duration is computed and used as input for spatial interpolation. Finally monthly solar radiation maps are constructed using the Ordinary Kriging method. The cross validation results show good agreement between observed and predicted data.

  7. Numerical Study of the Global Corona for CR 2055 Driven by Daily Updated Synoptic Magnetic Field

    NASA Astrophysics Data System (ADS)

    Feng, X.; Yang, L. P.; Xiang, C. Q.; Liu, Y.; Zhao, X.; Wu, S. T.

    2012-07-01

    In this paper, a preliminary study of the global corona for Carrington rotation (CR) 2055 is carried out by the 3D Solar-Interplanetary (SIP) adaptive mesh refinement (AMR) space-time conservation element and solution element (CESE) MHD model (SIP-AMR-CESE MHD model) (Feng et al. 2011a), which is driven by the daily-updated magnetic field synoptic data. To incorporate the observations into the model, the lower boundary conditions are specified according to the flux evolution of the observed magnetic field and the normal projected characteristic method. The simulated results are compared with solar observations and in-situ solar wind measurements, which are mapped from both Ulysses and other near-Earth spacecraft to the computation domain. Comparisons show that the MHD results have good overall agreement with coronal and interplanetary structures, including the size and distribution of coronal holes and the transition of the solar wind speeds and magnetic field polarities. The MHD results are also compared with the Potential Field Source Surface (PFSS) and Wang-Sheeley-Arge (WSA) methods.

  8. The Effect of Personality on Daily Life Emotional Processes

    PubMed Central

    Komulainen, Emma; Meskanen, Katarina; Lipsanen, Jari; Lahti, Jari Marko; Jylhä, Pekka; Melartin, Tarja; Wichers, Marieke; Isometsä, Erkki; Ekelund, Jesper

    2014-01-01

    Personality features are associated with individual differences in daily emotional life, such as negative and positive affectivity, affect variability and affect reactivity. The existing literature is somewhat mixed and inconclusive about the nature of these associations. The aim of this study was to shed light on what personality features represent in daily life by investigating the effect of the Five Factor traits on different daily emotional processes using an ecologically valid method. The Experience Sampling Method was used to collect repeated reports of daily affect and experiences from 104 healthy university students during one week of their normal lives. Personality traits of the Five Factor model were assessed using NEO Five Factor Inventory. Hierarchical linear modeling was used to analyze the effect of the personality traits on daily emotional processes. Neuroticism predicted higher negative and lower positive affect, higher affect variability, more negative subjective evaluations of daily incidents, and higher reactivity to stressors. Conscientiousness, by contrast, predicted lower average level, variability, and reactivity of negative affect. Agreeableness was associated with higher positive and lower negative affect, lower variability of sadness, and more positive subjective evaluations of daily incidents. Extraversion predicted higher positive affect and more positive subjective evaluations of daily activities. Openness had no effect on average level of affect, but predicted higher reactivity to daily stressors. The results show that the personality features independently predict different aspects of daily emotional processes. Neuroticism was associated with all of the processes. Identifying these processes can help us to better understand individual differences in daily emotional life. PMID:25343494

  9. Determination of potential solar power sites in the United States based upon satellite cloud observations

    NASA Technical Reports Server (NTRS)

    Hiser, H. W.; Senn, H. V.; Bukkapatnam, S. T.; Akyuzlu, K.

    1977-01-01

    The use of cloud images in the visual spectrum from the SMS/GOES geostationary satellites to determine the hourly distribution of sunshine on a mesoscale in the continental United States excluding Alaska is presented. Cloud coverage and density as a function of time of day and season are evaluated through the use of digital data processing techniques. Low density cirrus clouds are less detrimental to solar energy collection than other types; and clouds in the morning and evening are less detrimental than those during midday hours of maximum insolation. Seasonal geographic distributions of cloud cover/sunshine are converted to langleys of solar radiation received at the earth's surface through relationships developed from long term measurements at six widely distributed stations.

  10. Thermal control system and method for a passive solar storage wall

    SciTech Connect

    Ortega, J.K.E.

    1981-07-10

    A system and method are provided for controlling the storing and release of thermal energy from a thermal storage wall wherein said wall is capable of storing thermal energy from insolation. The system and method includes a device such as a plurality of louvers spaced a predetermined distance from the thermal wall for regulating the release of thermal energy from the thermal wall. This regulating device is made from a material which is substantially transparent to the incoming solar radiation so that when it is in any operative position, the thermal storage wall substantially receives all of the impacting solar radiation. The material in the regulating device is further capable of being substantially opaque to thermal energy so that when the device is substantially closed, thermal release of energy from the storage wall is substantially minimized. An adjustment device is interconnected with the regulating mechanism for selectively opening and closing it in order to regulate the release of thermal energy from the wall.

  11. Ozone changes under solar geoengineering: implications for UV exposure and air quality

    NASA Astrophysics Data System (ADS)

    Nowack, P. J.; Abraham, N. L.; Braesicke, P.; Pyle, J. A.

    2015-11-01

    Various forms of geoengineering have been proposed to counter anthropogenic climate change. Methods which aim to modify the Earth's energy balance by reducing insolation are often subsumed under the term Solar Radiation Management (SRM). Here, we present results of a standard SRM modelling experiment in which the incoming solar irradiance is reduced to offset the global mean warming induced by a quadrupling of atmospheric carbon dioxide. For the first time in an atmosphere-ocean coupled climate model, we include atmospheric composition feedbacks such as ozone changes under this scenario. Including the composition changes, we find large reductions in surface UV-B irradiance, with implications for vitamin D production, and increases in surface ozone concentrations, both of which could be important for human health. We highlight that both tropospheric and stratospheric ozone changes should be considered in the assessment of any SRM scheme, due to their important roles in regulating UV exposure and air quality.

  12. Intra-hour Direct Normal Irradiance Solar Forecasting Using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Queener, Benjamin Daniel

    The development and utilization of solar energy has resulted in increased interest in solar irradiance forecasting. Ground level insolation has a natural variability due to atmospheric processes that are directly tied to the local meteorological conditions. Independent System Operators (ISOs) find that forecasting errors for small timescales are highly dependent on the characteristics and dynamics of the local cloud cover. This work seeks to explore the use of Genetic Programming to develop forecasting programs that surpass the performance of persistence forecasting. Specifically, our interest lies in forecasting a 30-second average Direct Normal Irradiance with a time horizon of five minutes. The GP-produced forecasting programs will be compared to the performance of persistence forecasting in the terms of Root Means-Squared Errors (RMSE). These proof-of-concept experiments have demonstrated that GP is a promising approach, producing forecasting programs with a 10% performance improvement over persistence forecasts.

  13. Advanced latent heat of fusion thermal energy storage for solar power systems

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Stearns, J. W.

    1985-01-01

    The use of solar thermal power systems coupled with thermal energy storage (TES) is being studied for both terrestrial and space applications. In the case of terrestrial applications, it was found that one or two hours of TES could shift the insolation peak (solar noon) to coincide with user peak loads. The use of a phase change material (PCM) is attractive because of the higher energy storage density which can be achieved. However, the use of PCM has also certain disadvantages which must be addressed. Proof of concept testing was undertaken to evaluate corrosive effects and thermal ratcheting effects in a slurry system. It is concluded that the considered alkali metal/alkali salt slurry approach to TES appears to be very viable, taking into account an elimination of thermal ratcheting in storage systems and the reduction of corrosive effects. The approach appears to be useful for an employment involving temperatures applicable to Brayton or Stirling cycles.

  14. Reconstruction of daily erythemal UV radiation values for the last century - The benefit of modelled ozone

    NASA Astrophysics Data System (ADS)

    Junk, J.; Feister, U.; Rozanov, E.; Krzy?cin, J. W.

    2013-05-01

    Solar erythemal UV radiation (UVER) is highly relevant for numerous biological processes that affect plants, animals, and human health. Nevertheless, long-term UVER records are scarce. As significant declines in the column ozone concentration were observed in the past and a recovery of the stratospheric ozone layer is anticipated by the middle of the 21st century, there is a strong interest in the temporal variation of UVER time series. Therefore, we combined groundbased measurements of different meteorological variables with modeled ozone data sets to reconstruct time series of daily totals of UVER at the Meteorological Observatory Potsdam, Germany. Artificial neural networks were trained with measured UVER, sunshine duration, the day of year, measured and modeled total column ozone, as well as the minimum solar zenith angle. This allows for the reconstruction of daily totals of UVER for the period from 1901 to 1999. Additionally, analyses of the long-term variations from 1901 until 1999 of the reconstructed, new UVER data set are presented. The time series of monthly and annual totals of UVER provide a long-term meteorological basis for epidemiological investigations in human health and occupational medicine for the region of Potsdam and Berlin. A strong benefit of our ANN-approach is the fact that it can be easily adapted to different geographical locations, as successfully tested in the framework of the COSTAction 726.

  15. Mercury Conditions for the MESSENGER Mission Simulated in High- Solar-Radiation Vacuum Tests

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2003-01-01

    The MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) spacecraft, planned for launch in March 2004, will perform two flybys of Mercury before entering a year-long orbit of the planet in September 2009. The mission will provide opportunities for detailed characterization of the surface, interior, atmosphere, and magnetosphere of the closest planet to the Sun. The NASA Glenn Research Center and the MESSENGER spacecraft integrator, the Johns Hopkins University Applied Physics Laboratory, have partnered under a Space Act Agreement to characterize a variety of critical components and materials under simulated conditions expected near Mercury. Glenn's Vacuum Facility 6, which is equipped with a solar simulator, can simulate the vacuum and high solar radiation anticipated in Mercury orbit. The MESSENGER test hardware includes a variety of materials and components that are being characterized during the Tank 6 vacuum tests, where the hardware will be exposed to up to 11 suns insolation, simulating conditions expected in Mercury orbit. In 2002, ten solar vacuum tests were conducted, including beginning of life, end of life, backside exposure, and solar panel thermal shock cycling tests. Components tested include candidate solar array panels, sensors, thermal shielding materials, and communication devices. As an example, for the solar panel thermal shock cycling test, two candidate solar array panels were suspended on a lift mechanism that lowered the panels into a liquid-nitrogen-cooled box. After reaching -140 C, the panels were then lifted out of the box and exposed to the equivalent of 6 suns (8.1 kilowatts per square meters). After five cold soak/heating cycles were completed successfully, there was no apparent degradation in panel performance. An anticipated 100-hr thermal shield life test is planned for autumn, followed by solar panel flight qualification tests in winter. Glenn's ongoing support to the MESSENGER program has been instrumental in identifying design solutions and validating thermal performance models under a very aggressive development schedule. The test data have assisted Johns Hopkins engineers in selecting a flight solar array vendor and a thermal shield design. MESSENGER is one in a series of missions in NASA's Discovery Program. Infrared thermography provides data on the thermal gradients in the MESSENGER components during high solar insolation vacuum testing.

  16. Solar Physics

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The areas of emphasis are: (1) develop theoretical models of the transient release of magnetic energy in the solar atmosphere, e.g., in solar flares, eruptive prominences, coronal mass ejections, etc.; (2) investigate the role of the Sun's magnetic field in the structuring of solar corona by the development of three-dimensional numerical models that describe the field configuration at various heights in the solar atmosphere by extrapolating the field at the photospheric level; (3) develop numerical models to investigate the physical parameters obtained by the ULYSSES mission; (4) develop numerical and theoretical models to investigate solar activity effects on the solar wind characteristics for the establishment of the solar-interplanetary transmission line; and (5) develop new instruments to measure solar magnetic fields and other features in the photosphere, chromosphere transition region and corona. We focused our investigation on the fundamental physical processes in solar atmosphere which directly effect our Planet Earth. The overall goal is to establish the physical process for the Sun-Earth connections.

  17. Solar Simulator

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Oriel Corporation's simulators have a high pressure xenon lamp whose reflected light is processed by an optical system to produce a uniform solar beam. Because of many different types of applications, the simulators must be adjustable to replicate many different areas of the solar radiation spectrum. Simulators are laboratory tools for such purposes as testing and calibrating solar cells, or other solar energy systems, testing dyes, paints and pigments, pharmaceuticals and cosmetic preparations, plant and animal studies, food and agriculture studies and oceanographic research.

  18. Long daily movements of wolves (Canis lupus) during pup raising

    USGS Publications Warehouse

    Mech, L. David; Cluff, H. Dean

    2009-01-01

    Wolves, Canis lupus, on Ellesmere Island traveled a daily round-trip distance of 40.2 km from their den to a landfill during July 2008, plus an undetermined distance hunting after leaving the landfill. Although long travels by Wolves are well known, this appears to be the first documentation of long daily movements by Wolves rearing pups.

  19. Manual of Alternative Procedures: Activities of Daily Living.

    ERIC Educational Resources Information Center

    McCormack, James E.; And Others

    Intended for teachers and others providing services for moderately and severely physically and/or mentally handicapped children and young adults, the manual presents strategies, procedures, and task analyses for training in daily living skills. Section I provides an overview of tactics for teaching activities of daily living (ADL) skills,…

  20. Estimating Daily Energy Expenditure from Video for Assistive Monitoring

    E-print Network

    Chrobak, Marek

    problems, and ascertain adherence to regimens. Figure 1 shows the daily energy expenditure dashboard at the dashboard and decide whether the three low activity days indicate a problem requiring intervention. Most: Daily energy expenditure dashboard for 5 days. The graphs show the activity level across e

  1. Meteorological Data recorded at Armagh Observatory: Volume 4 -Daily, Monthly

    E-print Network

    Meteorological Data recorded at Armagh Observatory: Volume 4 - Daily, Monthly and Annual Soil access is possible to over 7,000 pages of raw, daily, meteorological data stretching back to 1795, as well as calibrated and standard- ised meteorological series for scienti#12;c and educational use

  2. News Values and Country Non-Daily Reporting.

    ERIC Educational Resources Information Center

    Vines, Josie

    2001-01-01

    Suggests Australia's country, non-daily newspapers present journalism graduates with excellent opportunities to experience a wide range of journalistic responsibilities and compile an impressive portfolio. Argues the need for the news values of these newspapers to be integrated into pedagogical models. Documents the country non-daily's news…

  3. The Daily Curriculum Guide, Year II, Weeks 1-10.

    ERIC Educational Resources Information Center

    Dissemination and Assessment Center for Bilingual Education, Austin, TX.

    Spanning two years, the program set forth in the Daily Curriculum Guide for preschool Spanish-speaking children is essentially a language maintenance model in which Spanish is used as a means to develop basic concepts, skills and attitudes. This guide gives daily lesson plans for the first ten weeks of the second year. Each lesson, written in…

  4. 7 CFR 59.301 - Mandatory Daily Reporting for Lambs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Mandatory Daily Reporting for Lambs. 59.301 Section 59... (CONTINUED) LIVESTOCK MANDATORY REPORTING Lamb Reporting § 59.301 Mandatory Daily Reporting for Lambs. (a) In... prices for lambs (per hundredweight) established on that day as F.O.B. feedlot or delivered at the...

  5. 7 CFR 59.301 - Mandatory Daily Reporting for Lambs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Mandatory Daily Reporting for Lambs. 59.301 Section 59... (CONTINUED) LIVESTOCK MANDATORY REPORTING Lamb Reporting § 59.301 Mandatory Daily Reporting for Lambs. (a) In... prices for lambs (per hundredweight) established on that day as F.O.B. feedlot or delivered at the...

  6. 7 CFR 59.301 - Mandatory Daily Reporting for Lambs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Mandatory Daily Reporting for Lambs. 59.301 Section 59... (CONTINUED) LIVESTOCK MANDATORY REPORTING Lamb Reporting § 59.301 Mandatory Daily Reporting for Lambs. (a) In... prices for lambs (per hundredweight) established on that day as F.O.B. feedlot or delivered at the...

  7. 7 CFR 59.301 - Mandatory Daily Reporting for Lambs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Mandatory Daily Reporting for Lambs. 59.301 Section 59... (CONTINUED) LIVESTOCK MANDATORY REPORTING Lamb Reporting § 59.301 Mandatory Daily Reporting for Lambs. (a) In... prices for lambs (per hundredweight) established on that day as F.O.B. feedlot or delivered at the...

  8. 7 CFR 59.301 - Mandatory Daily Reporting for Lambs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Mandatory Daily Reporting for Lambs. 59.301 Section 59... (CONTINUED) LIVESTOCK MANDATORY REPORTING Lamb Reporting § 59.301 Mandatory Daily Reporting for Lambs. (a) In... prices for lambs (per hundredweight) established on that day as F.O.B. feedlot or delivered at the...

  9. DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES

    E-print Network

    DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES EDWARD B. BROTHERS! CHRISTOPHER P. MATHEWS," AND REUBEN LASKER3 ABSTRACT Daily growth increments have been found in otoliths of fish larvae. A simple technique for observing these marks is described and can be used on otoliths from larvae

  10. GENERATING REPRESENTATIVE SEQUENCES OF DAILY PRECIPITATION FOR AGRICULTURAL SIMULATIONS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Uniform random numbers are often used in chain-dependent daily precipitation models to simulate the stochastic component of daily precipitation. This study shows that relatively short sequences of uniform random numbers, often involved in practical water resources and agricultural applications, are...

  11. Appendix 22 Draft Nutrient Management Plan and Total Maximum Daily

    E-print Network

    Appendix 22 Draft Nutrient Management Plan and Total Maximum Daily Load for Flathead Lake, Montana. #12;11/01/01 DRAFT i October 30, 2001 Draft Nutrient Management Plan and Total Maximum Daily Load for Flathead Lake, Montana #12;SECTION 1.0 INTRODUCTION

  12. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  13. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  14. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  15. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  16. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  17. Experiential avoidance and well-being: a daily diary analysis.

    PubMed

    Machell, Kyla A; Goodman, Fallon R; Kashdan, Todd B

    2015-01-01

    Experiential avoidance (EA) is a regulatory strategy characterised by efforts to control or avoid unpleasant thoughts, feelings and bodily sensations. Most studies of EA have used trait measures without considering the effects of EA on psychological functioning in naturalistic settings. To address this gap, we used daily diary methodology to examine the influence of EA of anxiety on everyday well-being. For two weeks, 89 participants provided daily reports of EA, positive and negative affect, enjoyment of daily events and meaning in life (MIL). Daily EA predicted higher negative affect, lower positive affect, less enjoyment of daily events (exercising, eating food and listening to music) and less MIL. The effect of EA on positive affect was not accounted for by the amount of negative affect experienced. Our daily measure of EA was a stronger predictor of daily well-being than a traditional trait measure (The Acceptance and Action Questionnaire). Taken together, results offer insights into the adverse effects of EA on daily well-being and suggest that EA is a context-specific regulatory strategy that might be best captured using a state-dependent measure. PMID:24800802

  18. The Determinants of Daily Function in Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Tseng, Mei-Hui; Chen, Kuan-Lin; Shieh, Jeng-Yi; Lu, Lu; Huang, Chien-Yu

    2011-01-01

    The aim of this study was to identify determinants of daily function in a population-based sample of children with cerebral palsy (CP). The study took into consideration factors from the entire scope of the International Classification of Functioning, Disability, and Health (ICF). Furthermore, the determinants of daily function were examined from…

  19. Modeling a solar-heated anaerobic digester for the developing world using system dynamics

    NASA Astrophysics Data System (ADS)

    Bentley, Johanna Lynn

    Much of the developing world lacks access to a dependable source of energy. Agricultural societies such as Mozambique and Papua New Guinea could sustain a reliable energy source through the microbacterial decomposition of animal and crop waste. Anaerobic digestion produces methane, which can be used directly for heating, cooking, and lighting. Adding a solar component to the digester provides a catalyst for bacteria activity, accelerating digestion and increasing biogas production. Using methane decreases the amount of energy expended by collecting and preparing firewood, eliminates hazardous health effects linked to inhalation of particles, and provides energy close to where it is needed. The purpose of this work is two fold: initial efforts focus on the development and validation of a computer-based system dynamics model that combines elements of the anaerobic digestion process in order to predict methane output; second, the model is flexed to explore how the addition of a solar component increases robustness of the design, examines predicted biogas generation as a function of varying input conditions, and determines how best to configure such systems for use in varying developing world environments. Therefore, the central components of the system: solar insolation, waste feedstock, bacteria population and consumption rates, and biogas production are related both conceptually and mathematically through a serious of equations, conversions, and a causal loop and feedback diagram. Given contextual constraints and initial assumptions for both locations, it was determined that solar insolation and subsequent digester temperature control, amount of waste, and extreme weather patterns had the most significant impact on the system as a whole. Model behavior was both reproducible and comparable to that demonstrated in existing experimental systems. This tool can thus be flexed to fit specific contexts within the developing world to improve the standard of living of many people, without significantly altering everyday activities.

  20. Determination of daily total ultraviolet-B in a subtropical region (Upper Egypt): An empirical approach

    NASA Astrophysics Data System (ADS)

    Adam, Mahmoud El-Nouby

    2015-02-01

    Given the fundamental role played by ultraviolet-B (UVB) and due to the lack of long-term measurements of its magnitude, the present work has established an empirical approach to estimate daily total UVB in all sky conditions (UVBd). Data from eight years (2000-2007) of UVBd and daily total global solar radiation (Gd) have been used. For both variables, the dataset used was examined, and a relationship between these two quantities was developed. In addition, the variation of daily clearness indices of UVB and global solar radiation, G (KtUVB and Kt respectively) was determined. Kt was introduced to determine UVBd. This variable can be considered as an atmospheric modulator of the maximum values of UVBd (under clear-sky conditions, UVB0d). The relationship between UVBd and the product of UVB0d and Kt (UVB0d*Kt) was parameterized. The significance and performance of this empirical approach have been evaluated with the aid of several statistical analysis procedures. The results show that the modeling index (d) and the coefficient of modeling efficiency (ME) were 0.99 and 1 respectively. In addition, the root mean square error (RMSE), the mean bias error (MBE), and the mean absolute error (MAE) were 8%, - 0.3%, and 6%, respectively. Datasets for a new time period from Qena and another location (Aswan) were used to validate the proposed approach. The results of this empirical approach were satisfactory, with a correlation coefficient of 0.98 between measured and estimated values of UVBd for both sites.