Sample records for dam hydropower operational

  1. Classification of US hydropower dams by their modes of operation

    DOE PAGES

    McManamay, Ryan A.; Oigbokie, II, Clement O.; Kao, Shih -Chieh; ...

    2016-02-19

    A key challenge to understanding ecohydrologic responses to dam regulation is the absence of a universally transferable classification framework for how dams operate. In the present paper, we develop a classification system to organize the modes of operation (MOPs) for U.S. hydropower dams and powerplants. To determine the full diversity of MOPs, we mined federal documents, open-access data repositories, and internet sources. W then used CART classification trees to predict MOPs based on physical characteristics, regulation, and project generation. Finally, we evaluated how much variation MOPs explained in sub-daily discharge patterns for stream gages downstream of hydropower dams. After reviewingmore » information for 721 dams and 597 power plants, we developed a 2-tier hierarchical classification based on 1) the storage and control of flows to powerplants, and 2) the presence of a diversion around the natural stream bed. This resulted in nine tier-1 MOPs representing a continuum of operations from strictly peaking, to reregulating, to run-of-river, and two tier-2 MOPs, representing diversion and integral dam-powerhouse configurations. Although MOPs differed in physical characteristics and energy production, classification trees had low accuracies (<62%), which suggested accurate evaluations of MOPs may require individual attention. MOPs and dam storage explained 20% of the variation in downstream subdaily flow characteristics and showed consistent alterations in subdaily flow patterns from reference streams. Lastly, this standardized classification scheme is important for future research including estimating reservoir operations for large-scale hydrologic models and evaluating project economics, environmental impacts, and mitigation.« less

  2. Classification of US hydropower dams by their modes of operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A.; Oigbokie, II, Clement O.; Kao, Shih -Chieh

    A key challenge to understanding ecohydrologic responses to dam regulation is the absence of a universally transferable classification framework for how dams operate. In the present paper, we develop a classification system to organize the modes of operation (MOPs) for U.S. hydropower dams and powerplants. To determine the full diversity of MOPs, we mined federal documents, open-access data repositories, and internet sources. W then used CART classification trees to predict MOPs based on physical characteristics, regulation, and project generation. Finally, we evaluated how much variation MOPs explained in sub-daily discharge patterns for stream gages downstream of hydropower dams. After reviewingmore » information for 721 dams and 597 power plants, we developed a 2-tier hierarchical classification based on 1) the storage and control of flows to powerplants, and 2) the presence of a diversion around the natural stream bed. This resulted in nine tier-1 MOPs representing a continuum of operations from strictly peaking, to reregulating, to run-of-river, and two tier-2 MOPs, representing diversion and integral dam-powerhouse configurations. Although MOPs differed in physical characteristics and energy production, classification trees had low accuracies (<62%), which suggested accurate evaluations of MOPs may require individual attention. MOPs and dam storage explained 20% of the variation in downstream subdaily flow characteristics and showed consistent alterations in subdaily flow patterns from reference streams. Lastly, this standardized classification scheme is important for future research including estimating reservoir operations for large-scale hydrologic models and evaluating project economics, environmental impacts, and mitigation.« less

  3. [Effects of cascading hydropower dams operation on the structure and distribution pattern of benthic macroinvertebrate assemblages in Manwan Reservoir, Southwest China].

    PubMed

    Li, Jin Peng; Dong, Shi Kui; Peng, Ming Chun; Wu, Xuan; Zhou, Fang; Yu, Yin

    2017-12-01

    Benthic macroinvertebrate assemblages are one of the biological groups in aquatic ecosystem most sensitive to the habitat change and degradation, and can be a biological indicator for the aquatic ecosystem change and succession in cascading hydropower dam reservoir. The middle and lower reaches of the Lancang River are key spot for international biodiversity conservation and ecological studies on the effects of cascading hydropower dam exploitation. In this study, the reservoir of Manwan hydropower dam, the first dam in Lancang-Mekong river main stream, was selected as the study site. The benthic macroinvertebrate assemblages were sampled in 2011 and 2016 respectively. Meanwhile, the survey data before impounding (natural river, 1996) and early stage of single dam (1997) were collected to conduct the overall analysis for structure, distribution pattern and evolution of benthic macroinvertebrate assemblages. The results showed that the dominant biological group was gradually changed from the Oligochaeta and Insecta to the Mollusca. Along the longitudinal gradient, the density and biomass of the benthic macroinvertebrate assemblages were remarkably increased in reservoir, especially in the lacustrine zone. As for the functional feeding group, the predator and gatherer-collector changed into filter-collector predominantly in lacustrine zone. With the cascading dams operation, the biotic index indicated that the water quality of reservoir in 2016 was better than in 2011. The evolution of benthic macroinvertebrate assemblages in the Manwan Reservoir was related to the operation of Xiaowan dam in the upper reach, the hydrological regime and siltation in the reservoir, and would continue with dynamic changes with the operation of the cascading hydropower dam.

  4. PREDICTION OF TOTAL DISSOLVED GAS EXCHANGE AT HYDROPOWER DAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadjerioua, Boualem; Pasha, MD Fayzul K; Stewart, Kevin M

    2012-07-01

    Total dissolved gas (TDG) supersaturation in waters released at hydropower dams can cause gas bubble trauma in fisheries resulting in physical injuries and eyeball protrusion that can lead to mortality. Elevated TDG pressures in hydropower releases are generally caused by the entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin. The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. These dam operations are constrained bymore » state and federal water quality standards for TDG saturation which balance the benefits of spillway operations designed for Endangered Species Act (ESA)-listed fisheries versus the degradation to water quality as defined by TDG saturation. In the 1970s, the United States Environmental Protection Agency (USEPA), under the federal Clean Water Act (Section 303(d)), established a criterion not to exceed the TDG saturation level of 110% in order to protect freshwater and marine aquatic life. The states of Washington and Oregon have adopted special water quality standards for TDG saturation in the tailrace and forebays of hydropower facilities on the Columbia and Snake Rivers where spillway operations support fish passage objectives. The physical processes that affect TDG exchange at hydropower facilities have been studied throughout the CRB in site-specific studies and routine water quality monitoring programs. These data have been used to quantify the relationship between project operations, structural properties, and TDG exchange. These data have also been used to develop predictive models of TDG exchange to support real-time TDG management decisions. These empirically based predictive models have been developed for specific projects and account for both the fate of spillway

  5. Wind-Driven Ecological Flow Regimes Downstream from Hydropower Dams

    NASA Astrophysics Data System (ADS)

    Kern, J.; Characklis, G. W.

    2012-12-01

    Conventional hydropower can be turned on and off quicker and less expensively than thermal generation (coal, nuclear, or natural gas). These advantages enable hydropower utilities to respond to rapid fluctuations in energy supply and demand. More recently, a growing renewable energy sector has underlined the need for flexible generation capacity that can complement intermittent renewable resources such as wind power. While wind power entails lower variable costs than other types of generation, incorporating it into electric power systems can be problematic. Due to variable and unpredictable wind speeds, wind power is difficult to schedule and must be used when available. As a result, integrating large amounts of wind power into the grid may result in atypical, swiftly changing demand patterns for other forms of generation, placing a premium on sources that can be rapidly ramped up and down. Moreover, uncertainty in wind power forecasts will stipulate increased levels of 'reserve' generation capacity that can respond quickly if real-time wind supply is less than expected. These changes could create new hourly price dynamics for energy and reserves, altering the short-term financial signals that hydroelectric dam operators use to schedule water releases. Traditionally, hourly stream flow patterns below hydropower dams have corresponded in a very predictable manner to electricity demand, whose primary factors are weather (hourly temperature) and economic activity (workday hours). Wind power integration has the potential to yield more variable, less predictable flows at hydro dams, flows that at times could resemble reciprocal wind patterns. An existing body of research explores the impacts of standard, demand-following hydroelectric dams on downstream ecological flows; but weighing the benefits of increased reliance on wind power against further impacts to ecological flows may be a novel challenge for the environmental community. As a preliminary step in meeting this

  6. Rock Mass Behavior Under Hydropower Embankment Dams: A Two-Dimensional Numerical Study

    NASA Astrophysics Data System (ADS)

    Bondarchuk, A.; Ask, M. V. S.; Dahlström, L.-O.; Nordlund, E.

    2012-09-01

    Sweden has more than 190 large hydropower dams, of which about 50 are pure embankment dams and over 100 are concrete/embankment dams. This paper presents results from conceptual analyses of the response of typical Swedish rock mass to the construction of a hydropower embankment dam and its first stages of operation. The aim is to identify locations and magnitudes of displacements that are occurring in the rock foundation and grout curtain after construction of the dam, the first filling of its water reservoir, and after one seasonal variation of the water table. Coupled hydro-mechanical analysis was conducted using the two-dimensional distinct element program UDEC. Series of the simulations have been performed and the results show that the first filling of the reservoir and variation of water table induce largest magnitudes of displacement, with the greatest values obtained from the two models with high differential horizontal stresses and smallest spacing of sub-vertical fractures. These results may help identifying the condition of the dam foundation and contribute to the development of proper maintenance measures, which guarantee the safety and functionality of the dam. Additionally, newly developed dams may use these results for the estimation of the possible response of the rock foundation to the construction.

  7. Modelling the impact of large dams on flows and hydropower production of the Sekong, Sesan and Srepok Rivers in the Mekong Basin

    NASA Astrophysics Data System (ADS)

    Piman, T.; Cochrane, T. A.; Arias, M. E.

    2013-12-01

    Water flow patterns in the Mekong River and its tributaries are changing due to water resources development, particularly as a result of on-going rapid hydropower development of tributaries for economic growth. Local communities and international observers are concerned that alterations of natural flow patterns will have great impacts on biodiversity, ecosystem services, food securing and livelihood in the basin. There is also concern that un-coordinated dam development will have an adverse impact on energy production potential of individual hydropower plants. Of immediate concern is the proposed hydropower development in the transboundary Srepok, Sesan and Srekong (3S) Basin, which contributes up to 20% of the Mekong's annual flows, has a large potential for energy production, and provides critical ecosystem services to local people and the downstream Tonle Sap Lake and the Mekong delta. To assess the magnitude of potential changes in flows and hydropower production, daily flows were simulated over 20 years (1986-2005) using the SWAT and HEC ResSim models for a range of dam development and operations scenarios. Simulations of all current and proposed hydropower development in the 3S basin (41 dams) using an operation scheme to maximize electricity production will increase average dry seasonal flows by 88.1% while average wet seasonal flows decrease by 24.7% when compared to the baseline (no dams) scenario, About 55% of dry season flows changes are caused by the seven largest proposed dams (Lower Srepok 3, Lower Srepok4, Lower Sesan 3, Lower Sesan and Srepok 2, Xekong 5, Xekong 4, and Xe Xou). The total active storage of the existing and ongoing hydropower projects is only 6,616 million m3 while the cumulative active storage of the seven large proposed dams is 17,679 million m3. The Lower Srepok 3 project causes the highest impact on seasonal flow changes. Average energy production of the existing and ongoing hydropower projects is 73.2 GWh/day. Additional benefits

  8. Quantifying the extent of river fragmentation by hydropower dams in the Sarapiquí River Basin, Costa Rica

    USGS Publications Warehouse

    Anderson, Elizabeth P.; Pringle, Catherine M.; Freeman, Mary C.

    2008-01-01

    Costa Rica has recently experienced a rapid proliferation of dams for hydropower on rivers draining its northern Caribbean slope. In the Sarapiquí River Basin, eight hydropower plants were built between 1990 and 1999 and more projects are either under construction or proposed. The majority of these dams are small (<15 m tall) and operate as water diversion projects.While the potential environmental effects of individual projects are evaluated prior to dam construction, there is a need for consideration of the basin-scale ecological consequences of hydropower development. This study was a first attempt to quantify the extent of river fragmentation by dams in the Sarapiquí River Basin.Using simple spatial analyses, the length of river upstream from dams and the length of de-watered reaches downstream from dams was measured. Results indicated that there are currently 306.8 km of river (9.4% of the network) upstream from eight existing dams in the Sarapiquí River Basin and 30.6 km of rivers (0.9% of the network) with significantly reduced flow downstream from dams. Rivers upstream from dams primarily drain two life zones: Premontane Rain Forest (107.9 km) and Lower Montane Rain Forest (168.2 km).Simple spatial analyses can be used as a predictive or planning tool for considering the effects of future dams in a basin-scale context. In the Sarapiquí River Basin, we recommend that future dam projects be constructed on already dammed rivers to minimize additional river fragmentation and to protect remaining riverine connectivity.

  9. Hydropower generation, flood control and dam cascades: A national assessment for Vietnam

    NASA Astrophysics Data System (ADS)

    Nguyen-Tien, Viet; Elliott, Robert J. R.; Strobl, Eric A.

    2018-05-01

    Vietnam is a country with diverse terrain and climatic conditions and a dependency on hydropower for a significant proportion of its power needs and as such, is particularly vulnerable to changes in climate. In this paper we apply SWAT (Soil and Water Assessment Tool) derived discharge simulation results coupled with regression analysis to estimate the performance of hydropower plants for Vietnam between 1995 and mid-2014 when both power supply and demand increased rapidly. Our approach is to examine the watershed formed from three large inter-boundary basins: The Red River, the Vietnam Coast and the Lower Mekong River, which have a total area of 977,964 km2. We then divide this area into 7,887 sub-basins with an average area of 131.6 km2 (based on level 12 of HydroSHEDS/HydroBASINS datasets) and 53,024 Hydrological Response Units (HRUs). Next we simulate river flow for the 40 largest hydropower plants across Vietnam. Our validation process demonstrates that the simulated flows are significantly correlated with the gauged inflows into these dams and are able to serve as a good proxy for the inflows into hydropower dams in our baseline energy regression, which captures 87.7% of the variation in monthly power generation. In other results we estimate that large dams sacrifice on average around 18.2% of their contemporaneous production for the purpose of flood control. When we assess Vietnam's current alignment of dams we find that the current cascades of large hydropower dams appear to be reasonably efficient: each MWh/day increase in upstream generation adds 0.146 MWh/day to downstream generation. The study provides evidence for the multiple benefits of a national system of large hydropower dams using a cascade design. Such a system may help overcome future adverse impacts from changes in climate conditions. However, our results show that there is still room for improvement in the harmonization of cascades in some basins. Finally, possible adverse hydro

  10. Examining the economic impacts of hydropower dams on property values using GIS.

    PubMed

    Bohlen, Curtis; Lewis, Lynne Y

    2009-07-01

    While the era of dam building is largely over in the United States, globally dams are still being proposed and constructed. The articles in this special issue consider many aspects and impacts of dams around the world. This paper examines dam removal and the measurement of the impacts of dams on local community property values. Valuable lessons may be found. In the United States, hundreds of small hydropower dams will come up for relicensing in the coming decade. Whether or not the licenses are renewed and what happens to the dams if the licenses expires is a subject of great debate. Dams are beginning to be removed for river restoration and fisheries restoration and these "end-of-life" decisions may offer lessons for countries proposing or currently building small (and large) hydropower dams. What can these restoration stories tell us? In this paper, we examine the effects of dams along the Penobscot River in Maine (USA) on residential property values. We compare the results to findings from a similar (but ex post dam removal) data set for properties along the Kennebec river in Maine, where the Edwards Dam was removed in 1999. The Penobscot River Restoration Project, an ambitious basin-wide restoration effort, includes plans to remove two dams and decommission a third along the Penobscot River. Dam removal has significant effects on the local environment, and it is reasonable to anticipate that environmental changes will themselves be reflected in changes in property values. Here we examine historical real estate transaction data to examine whether landowners pay a premium or penalty to live near the Penobscot River or near a hydropower generating dam. We find that waterfront landowners on the Penobscot or other water bodies in our study area pay approximately a 16% premium for the privilege of living on the water. Nevertheless, landowners pay LESS to live near the Penobscot River than they do to live further away, contrary to the expectation that bodies of water

  11. Climate change impact on operation of dams and hydroelectricity generation in the Northeastern United States

    NASA Astrophysics Data System (ADS)

    Ehsani, N.; Vorosmarty, C. J.; Fekete, B. M.

    2016-12-01

    We are using a large-scale, high-resolution, fully integrated hydrological/reservoir/hydroelectricity model to investigate the impact of climate change on the operation of 11037 dams and generation of electricity from 375 hydroelectric power plants in the Northeastern United States. Moreover, we estimate the hydropower potential of the region by energizing the existing non-powered dams and then studying the impact of climate change on the hydropower potential. We show that climate change increases the impact of dams on the hydrology of the region. Warmer temperatures produce shorter frozen periods, earlier snowmelt and elevated evapotranspiration rates, which when combined with changes in precipitation, are projected to increase water availability in winter but reduce it during summer. As a result, the water that is stored by dams will be more than ever a necessary part of the routine water systems operations to compensate for these seasonal imbalances. The function of dams as emergency water storage for creating drought resiliency will mostly diminish in the future. Building more dams to cope with the local impacts of climate change on water resources and to offset the increased drought vulnerability may thus be inevitable. Annual hydroelectricity generation in the region is 41 Twh. Our estimate of the annual hydropower potential of non-powered dams adds up to 350 Twh. Climate change may reduce hydropower potential from non-powered dams by up to 13% and reduce current hydroelectricity generation by up to 8% annually. Hydroelectricity generation and hydropower potential may increase in winter months and decline in months of summer and fall. These changes call for recalibration of dam operations and may raise conflict of interests in multipurpose dams.

  12. Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model.

    PubMed

    Turner, Sean W D; Ng, Jia Yi; Galelli, Stefano

    2017-07-15

    An important and plausible impact of a changing global climate is altered power generation from hydroelectric dams. Here we project 21st century global hydropower production by forcing a coupled, global hydrological and dam model with three General Circulation Model (GCM) projections run under two emissions scenarios. Dams are simulated using a detailed model that accounts for plant specifications, storage dynamics, reservoir bathymetry and realistic, optimized operations. We show that the inclusion of these features can have a non-trivial effect on the simulated response of hydropower production to changes in climate. Simulation results highlight substantial uncertainty in the direction of change in globally aggregated hydropower production (~-5 to +5% change in mean global production by the 2080s under a high emissions scenario, depending on GCM). Several clearly impacted hotspots are identified, the most prominent of which encompasses the Mediterranean countries in southern Europe, northern Africa and the Middle East. In this region, hydropower production is projected to be reduced by approximately 40% on average by the end of the century under a high emissions scenario. After accounting for each country's dependence on hydropower for meeting its current electricity demands, the Balkans countries emerge as the most vulnerable (~5-20% loss in total national electricity generation depending on country). On the flipside, a handful of countries in Scandinavia and central Asia are projected to reap a significant increase in total electrical production (~5-15%) without investing in new power generation facilities. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model

    DOE PAGES

    Turner, Sean W. D.; Ng, Jia Yi; Galelli, Stefano

    2017-03-07

    Here, an important and plausible impact of a changing global climate is altered power generation from hydroelectric dams. Here we project 21st century global hydropower production by forcing a coupled, global hydrological and dam model with three General Circulation Model (GCM) projections run under two emissions scenarios. Dams are simulated using a detailed model that accounts for plant specifications, storage dynamics, reservoir bathymetry and realistic, optimized operations. We show that the inclusion of these features can have a non-trivial effect on the simulated response of hydropower production to changes in climate. Simulation results highlight substantial uncertainty in the direction ofmore » change in globally aggregated hydropower production (~–5 to + 5% change in mean global production by the 2080s under a high emissions scenario, depending on GCM). Several clearly impacted hotspots are identified, the most prominent of which encompasses the Mediterranean countries in southern Europe, northern Africa and the Middle East. In this region, hydropower production is projected to be reduced by approximately 40% on average by the end of the century under a high emissions scenario. After accounting for each country's dependence on hydropower for meeting its current electricity demands, the Balkans countries emerge as the most vulnerable (~ 5–20% loss in total national electricity generation depending on country). On the flipside, a handful of countries in Scandinavia and central Asia are projected to reap a significant increase in total electrical production (~ 5–15%) without investing in new power generation facilities.« less

  14. Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Sean W. D.; Ng, Jia Yi; Galelli, Stefano

    Here, an important and plausible impact of a changing global climate is altered power generation from hydroelectric dams. Here we project 21st century global hydropower production by forcing a coupled, global hydrological and dam model with three General Circulation Model (GCM) projections run under two emissions scenarios. Dams are simulated using a detailed model that accounts for plant specifications, storage dynamics, reservoir bathymetry and realistic, optimized operations. We show that the inclusion of these features can have a non-trivial effect on the simulated response of hydropower production to changes in climate. Simulation results highlight substantial uncertainty in the direction ofmore » change in globally aggregated hydropower production (~–5 to + 5% change in mean global production by the 2080s under a high emissions scenario, depending on GCM). Several clearly impacted hotspots are identified, the most prominent of which encompasses the Mediterranean countries in southern Europe, northern Africa and the Middle East. In this region, hydropower production is projected to be reduced by approximately 40% on average by the end of the century under a high emissions scenario. After accounting for each country's dependence on hydropower for meeting its current electricity demands, the Balkans countries emerge as the most vulnerable (~ 5–20% loss in total national electricity generation depending on country). On the flipside, a handful of countries in Scandinavia and central Asia are projected to reap a significant increase in total electrical production (~ 5–15%) without investing in new power generation facilities.« less

  15. Lost opportunities and future avenues to reconcile hydropower and sediment transport in the Mekong Basin through optimal sequencing of dam portfolios.

    NASA Astrophysics Data System (ADS)

    Castelletti, A.; Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.

    2017-12-01

    Dams are essential to meet growing water and energy demands. While dams cumulatively impact downstream rivers on network-scales, dam development is mostly based on ad-hoc economic and environmental assessments of single dams. Here, we provide evidence that replacing this ad-hoc approach with early strategic planning of entire dam portfolios can greatly reduce conflicts between economic and environmental objectives of dams. In the Mekong Basin (800,000km2), 123 major dam sites (status-quo: 56 built and under construction) could generate 280,000 GWh/yr of hydropower. Cumulatively, dams risk interrupting the basin's sediment dynamics with severe impacts on livelihoods and eco-systems. To evaluate cumulative impacts and benefits of the ad-hoc planned status-quo portfolio, we combine the CASCADE sediment connectivity model with data on hydropower production and sediment trapping at each dam site. We couple CASCADE to a multi-objective genetic algorithm (BORG) identifying a) portfolios resulting in an optimal trade-off between cumulative sediment trapping and hydropower production and b) an optimal development sequence for each portfolio. We perform this analysis first for the pristine basin (i.e., without pre-existing dams) and then starting from the status-quo portfolio, deriving policy recommendations for which dams should be prioritized in the near future. The status-quo portfolio creates a sub-optimal trade-off between hydropower and sediment trapping, exploiting 50 % of the basin's hydro-electric potential and trapping 60 % of the sediment load. Alternative optimal portfolios could have produced equivalent hydropower for 30 % sediment trapping. Imminent development of mega-dams in the lower basin will increase hydropower production by 20 % but increase sediment trapping to >90 %. In contrast, following an optimal development sequence can still increase hydropower by 30 % with limited additional sediment trapping by prioritizing dams in upper parts of the basin. Our

  16. Ecological consequences of hydropower development in Central America: Impacts of small dams and water diversion on neotropical stream fish assemblages

    USGS Publications Warehouse

    Anderson, Elizabeth P.; Freeman, Mary C.; Pringle, C.M.

    2006-01-01

    Small dams for hydropower have caused widespread alteration of Central American rivers, yet much of recent development has gone undocumented by scientists and conservationists. We examined the ecological effects of a small hydropower plant (Dona Julia Hydroelectric Center) on two low-order streams (the Puerto Viejo River and Quebradon stream) draining a mountainous area of Costa Rica. Operation of the Dona Julia plant has dewatered these streams, reducing discharge to ~ 10% of average annual flow. This study compared fish assemblage composition and aquatic habitat upstream and downstream of diversion dams on two streams and along a ~ 4 km dewatered reach of the Puerto Viejo River in an attempt to evaluate current instream flow recommendations for regulated Costa Rican streams. Our results indicated that fish assemblages directly upstream and downstream of the dam on the third order Puerto Viejo River were dissimilar, suggesting that the small dam (< 15 in high) hindered movement of fishes. Along the ~ 4 km dewatered reach of the Puerto Viejo River, species count increased with downstream distance from the dam. However, estimated species richness and overall fish abundance were not significantly correlated with downstream distance from the dam. Our results suggested that effects of stream dewatering may be most pronounced for a subset of species with more complex reproductive requirements, classified as equilibrium-type species based on their life-history. In the absence of changes to current operations, we expect that fish assemblages in the Puerto Viejo River will be increasingly dominated by opportunistic-type, colonizing fish species. Operations of many other small hydropower plants in Costa Rica and other parts of Central America mirror those of Doha Julia; the methods and results of this study may be applicable to some of those projects.

  17. Balancing hydropower production and river bed incision in operating a run-of-river hydropower scheme along the River Po

    NASA Astrophysics Data System (ADS)

    Denaro, Simona; Dinh, Quang; Bizzi, Simone; Bernardi, Dario; Pavan, Sara; Castelletti, Andrea; Schippa, Leonardo; Soncini-Sessa, Rodolfo

    2013-04-01

    Water management through dams and reservoirs is worldwide necessary to support key human-related activities ranging from hydropower production to water allocation, and flood risk mitigation. Reservoir operations are commonly planned in order to maximize these objectives. However reservoirs strongly influence river geomorphic processes causing sediment deficit downstream, altering the flow regime, leading, often, to process of river bed incision: for instance the variations of river cross sections over few years can notably affect hydropower production, flood mitigation, water supply strategies and eco-hydrological processes of the freshwater ecosystem. The river Po (a major Italian river) has experienced severe bed incision in the last decades. For this reason infrastructure stability has been negatively affected, and capacity to derive water decreased, navigation, fishing and tourism are suffering economic damages, not to mention the impact on the environment. Our case study analyzes the management of Isola Serafini hydropower plant located on the main Po river course. The plant has a major impact to the geomorphic river processes downstream, affecting sediment supply, connectivity (stopping sediment upstream the dam) and transport capacity (altering the flow regime). Current operation policy aims at maximizing hydropower production neglecting the effects in term of geomorphic processes. A new improved policy should also consider controlling downstream river bed incision. The aim of this research is to find suitable modeling framework to identify an operating policy for Isola Serafini reservoir able to provide an optimal trade-off between these two conflicting objectives: hydropower production and river bed incision downstream. A multi-objective simulation-based optimization framework is adopted. The operating policy is parameterized as a piecewise linear function and the parameters optimized using an interactive response surface approach. Global and local

  18. Enhancing water quality in hydropower system operations

    NASA Astrophysics Data System (ADS)

    Hayes, Donald F.; Labadie, John W.; Sanders, Thomas G.; Brown, Jackson K.

    1998-03-01

    The quality of impounded waters often degrades over time because of thermal stratification, sediment oxygen demands, and accumulation of pollutants. Consequently, reservoir releases impact water quality in tailwaters, channels, and other downstream water bodies. Low dissolved oxygen (DO) concentrations in the Cumberland River below Old Hickory dam result from stratification of upstream reservoirs and seasonally low release rates. Operational changes in upstream hydropower reservoirs may be one method to increase DO levels without substantially impacting existing project purposes. A water quality model of the upper Cumberland basin is integrated into an optimal control algorithm to evaluate water quality improvement opportunities through operational modifications. The integrated water quantity/quality model maximizes hydropower revenues, subject to various flow and headwater operational restrictions for satisfying multiple project purposes, as well as maintenance of water quality targets. Optimal daily reservoir release policies are determined for the summer drawdown period which increase DO concentrations under stratification conditions with minimal impact on hydropower production and other project purposes. Appendixes A-D available with entire article on microfiche. Order by mail from AGU, 2000 Florida Ave., N.W., Washington, DC 20009 or by phone at 800-966-2481; $2.50. Document W97-003. Payment must accompany order.

  19. Fragmentation of Andes-to-Amazon connectivity by hydropower dams

    PubMed Central

    Anderson, Elizabeth P.; Jenkins, Clinton N.; Heilpern, Sebastian; Maldonado-Ocampo, Javier A.; Carvajal-Vallejos, Fernando M.; Encalada, Andrea C.; Rivadeneira, Juan Francisco; Hidalgo, Max; Cañas, Carlos M.; Ortega, Hernan; Salcedo, Norma; Maldonado, Mabel; Tedesco, Pablo A.

    2018-01-01

    Andes-to-Amazon river connectivity controls numerous natural and human systems in the greater Amazon. However, it is being rapidly altered by a wave of new hydropower development, the impacts of which have been previously underestimated. We document 142 dams existing or under construction and 160 proposed dams for rivers draining the Andean headwaters of the Amazon. Existing dams have fragmented the tributary networks of six of eight major Andean Amazon river basins. Proposed dams could result in significant losses in river connectivity in river mainstems of five of eight major systems—the Napo, Marañón, Ucayali, Beni, and Mamoré. With a newly reported 671 freshwater fish species inhabiting the Andean headwaters of the Amazon (>500 m), dams threaten previously unrecognized biodiversity, particularly among endemic and migratory species. Because Andean rivers contribute most of the sediment in the mainstem Amazon, losses in river connectivity translate to drastic alteration of river channel and floodplain geomorphology and associated ecosystem services. PMID:29399629

  20. Fragmentation of Andes-to-Amazon connectivity by hydropower dams.

    PubMed

    Anderson, Elizabeth P; Jenkins, Clinton N; Heilpern, Sebastian; Maldonado-Ocampo, Javier A; Carvajal-Vallejos, Fernando M; Encalada, Andrea C; Rivadeneira, Juan Francisco; Hidalgo, Max; Cañas, Carlos M; Ortega, Hernan; Salcedo, Norma; Maldonado, Mabel; Tedesco, Pablo A

    2018-01-01

    Andes-to-Amazon river connectivity controls numerous natural and human systems in the greater Amazon. However, it is being rapidly altered by a wave of new hydropower development, the impacts of which have been previously underestimated. We document 142 dams existing or under construction and 160 proposed dams for rivers draining the Andean headwaters of the Amazon. Existing dams have fragmented the tributary networks of six of eight major Andean Amazon river basins. Proposed dams could result in significant losses in river connectivity in river mainstems of five of eight major systems-the Napo, Marañón, Ucayali, Beni, and Mamoré. With a newly reported 671 freshwater fish species inhabiting the Andean headwaters of the Amazon (>500 m), dams threaten previously unrecognized biodiversity, particularly among endemic and migratory species. Because Andean rivers contribute most of the sediment in the mainstem Amazon, losses in river connectivity translate to drastic alteration of river channel and floodplain geomorphology and associated ecosystem services.

  1. The Economic Benefits Of Multipurpose Reservoirs In The United States- Federal Hydropower Fleet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadjerioua, Boualem; Witt, Adam M.; Stewart, Kevin M.

    The United States is home to over 80,000 dams, of which approximately 3% are equipped with hydroelectric generating capabilities. When a dam serves as a hydropower facility, it provides a variety of energy services that range from clean, reliable power generation to load balancing that supports grid stability. In most cases, the benefits of dams and their associated reservoirs go far beyond supporting the nation s energy demand. As evidenced by the substantial presence of non-powered dams with the ability to store water in large capacities, the primary purpose of a dam may not be hydropower, but rather one ofmore » many other purposes. A dam and reservoir may support navigation, recreation, flood control, irrigation, and water supply, with each multipurpose benefit providing significant social and economic impacts on a local, regional, and national level. When hydropower is one of the services provided by a multipurpose reservoir, it is then part of an integrated system of competing uses. Operating rules, management practices, consumer demands, and environmental constraints must all be balanced to meet the multipurpose project s objectives. When federal dams are built, they are authorized by Congress to serve one or more functions. Legislation such as the Water Resources Development Act regulates the operation of the facility in order to coordinate the authorized uses and ensure the dam s intended objectives are being met. While multipurpose reservoirs account for billions of dollars in contributions to National Economic Development (NED) every year, no attempt has been made to evaluate their benefits on a national scale. This study is an on-going work conducted by Oak Ridge National Laboratory in an effort to estimate the economic benefits of multipurpose hydropower reservoirs in the United States. Given the important role that federal hydropower plays in the U.S., the first focus of this research will target the three main federal hydropower owners Tennessee

  2. Stress and deformation analysis of double curvature arc dams using finite element method (FEM): A case of budhi gandaki hydropower project

    NASA Astrophysics Data System (ADS)

    Mishra, Aanand Kumar; Singh, Ajay; Bahadur Singh, Akal

    2018-06-01

    High rise arc dams are widely used in the development of storage type hydropower project because of the economic advantage. Among different phases considered during the lifetime of dam, control of dam’s safety and performance becomes more concerned during the lifetime. This paper proposed the 3 – D finite element method (FEM) for stress and deformation analysis of double curvature arc dam considering the non – linearity of foundation rock following the Hoek – Brown Criterion. The proposed methodology is implemented through MATLAB scripting language and studied the double curvature arc dam proposed for Budhi Gandaki hydropower project. The stress developed in the foundation rock, compressive and tensile stress acting on the dam are investigated and analysed for the reservoir level variation. Deformation at the top of the dam and in the foundation rock is also investigated. In addition to that, stress and deformation variation in the foundation rock is analysed for various rock properties.

  3. Sensitivity of Water-Energy Nexus to dam operation: A Water-Energy Productivity concept.

    PubMed

    Basheer, Mohammed; Elagib, Nadir Ahmed

    2018-03-01

    Understanding and modelling the complex nature of interlinkages between water and energy are essential for efficient use of the two resources. Hydropower storage dams represent an interesting example of the water-energy interdependencies since they are often multipurpose. The concept of Water-Energy Productivity (WEP), defined as the amount of energy produced per unit of water lost in the process, is introduced in this study to illustrate the relationship between energy generation and water losses by examining the sensitivity of the Water-Energy Nexus (WEN) to changing dam operation policy. This concept is demonstrated by developing a water allocation model of the White Nile in Sudan, including Jebel Aulia Dam (JAD), using a general river and reservoir simulation software called RiverWare. A number of 77 operation scenarios of JAD are examined for 30 hydrologic years (1980-2009), considering reducing the Full Supply Level (FSL) gradually from its current value to the minimum possible value, increasing the Minimum Operating Level (MOL) gradually to the maximum possible level, and operating the dam at a Constant Operating Level (COL). The results show that raising the operating level does not necessarily increase the WEP. In comparison to the current policy, the analysis shows that a maximum WEP of 32.6GWh/BCM (GWh/Billion Cubic Meters) would be reached by raising the MOL to 375masl (meters above sea level), resulting in an increase in average annual energy generation to 164.6GWh (+18.1%) at the expense of an annual water loss of 5.05BCM (+12.7%). Even though this operation policy results in a more efficient water use compared to the original operation policy, a basin-wide assessment that includes all hydropower storage dams in the Nile basin should be conducted to decide on where and how much energy should be generated. The present analysis and future examination of the multi-dimensions of the WEN in the context of dam operation are imperative to improve the

  4. Evaluation of the Hydropower Generation Potential of a Dam Using Optimization Techniques: Application to Doma Dam, Nassarawa, in North Central Nigeria

    NASA Astrophysics Data System (ADS)

    Salami, Adebayo Wahab; Sule, Bolaji Fatai; Adunkpe, Tope Lacroix; Ayanshola, Ayanniyi Mufutau; Bilewu, Solomon Olakunle

    2017-03-01

    Optimization models have been developed to maximize annual energy generation from the Doma dam, subject to the constraint of releases for irrigation, ecological purposes, the water supply, the maximum yield from the reservoir and reservoir storage. The model was solved with LINGO software for various mean annual inflow exceedence probabilities. Two scenarios of hydropower retrofitting were considered. Scenario 1, with the reservoir inflows at 50%, 75%, and 90% probabilities of exceedence, gives the total annual hydropower as 0.531 MW, 0.450 MW and 0.291 MW, respectively. The corresponding values for scenario 2 were 0.615 MW, 0.507 MW, and 0.346 MW respectively. The study also considered increasing the reservoir's live storage to 32.63Mm3 by taking part of the flood storage so that the maximum draft increases to 7 Mm3. With this upper limit of storage and draft with reservoir inflows of 50%, 75% and 90% probabilities of exceedence, the hydropower generated increased to 0.609 MW, 0.540 MW, and 0.347 MW respectively for the scenario 1 arrangement, while those of scenario 2 increased to 0.699 MW, 0.579MW and 0.406 MW respectively. The results indicate that the Doma Dam is suitable for the production of hydroelectric power and that its generation potential is between 0.61 MW and 0.70 MW.

  5. Identifying and Evaluating Options for Improving Sediment Management and Fish Passage at Hydropower Dams in the Lower Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Wild, T. B.; Reed, P. M.; Loucks, D. P.

    2015-12-01

    The Mekong River basin in Southeast Asia is undergoing intensive and pervasive hydropower development to satisfy demand for increased energy and income to support its growing population of 60 million people. Just 20 years ago this river flowed freely. Today some 30 large dams exist in the basin, and over 100 more are being planned for construction. These dams will alter the river's natural water, sediment and nutrient flows, thereby impacting river morphology and ecosystems, and will fragment fish migration pathways. In doing so, they will degrade one of the world's most valuable and productive freshwater fish habitats. For those dams that have not yet been constructed, there still exist opportunities to modify their siting, design and operation (SDO) to potentially achieve a more balanced set of tradeoffs among hydropower production, sediment/nutrient passage and fish passage. We introduce examples of such alternative SDO opportunities for Sambor Dam in Cambodia, planned to be constructed on the main stem of the Mekong River. To evaluate the performance of such alternatives, we developed a Python-based simulation tool called PySedSim. PySedSim is a daily time step mass balance model that identifies the relative tradeoffs among hydropower production, and flow and sediment regime alteration, associated with reservoir sediment management techniques such as flushing, sluicing, bypassing, density current venting and dredging. To date, there has been a very limited acknowledgement or evaluation of the significant uncertainties that impact the evaluation of SDO alternatives. This research is formalizing a model diagnostic assessment of the key assumptions and parametric uncertainties that strongly influence PySedSim SDO evaluations. Using stochastic hydrology and sediment load data, our diagnostic assessment evaluates and compares several Sambor Dam alternatives using several performance measures related to energy production, sediment trapping and regime alteration, and

  6. Estimating the Effects of Climate Change on Federal Hydropower and Power Marketing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sale, Michael J; Kao, Shih-Chieh; Uria Martinez, Rocio

    The U.S. Department of Energy is currently preparing an assessment of the effects of climate change on federal hydropower, as directed by Congress in Section 9505 of the Secure Water Act of 2009 (P.L. 111-11). This paper describes the assessment approach being used in a Report to Congress currently being prepared by Oak Ridge National Laboratory. The 9505 assessment will examine climate change effects on water available for hydropower operations and the future power supplies marketed from federal hydropower projects. It will also include recommendations from the Power Marketing Administrations (PMAs) on potential changes in operation or contracting practices thatmore » could address these effects and risks of climate change. Potential adaption and mitigation strategies will also be identified. Federal hydropower comprises approximately half of the U.S. hydropower portfolio. The results from the 9505 assessment will promote better understanding among federal dam owners/operators of the sensitivity of their facilities to water availability, and it will provide a basis for planning future actions that will enable adaptation to climate variability and change. The end-users of information are Congressional members, their staff, the PMAs and their customers, federal dam owners/operators, and the DOE Water Power Program.« less

  7. Estimated cumulative sediment trapping in future hydropower reservoirs in Africa

    NASA Astrophysics Data System (ADS)

    Lucía, Ana; Berlekamp, Jürgen; Zarfl, Christiane

    2017-04-01

    Despite a rapid economic development in Sub-Saharan Africa, almost 70% of the human population in this area remain disconnected from electricity access (International Energy Agency 2011). Mitigating climate change and a search for renewable, "climate neutral" electricity resources are additional reasons why Africa will be one key centre for future hydropower dam building, with only 8% of the technically feasible hydropower potential actually exploited. About 300 major hydropower dams with a total capacity of 140 GW are currently under construction (11.4%) or planned (88.6%) (Zarfl et al. 2015). Despite the benefits of hydropower dams, fragmentation of the rivers changes the natural flow, temperature and sediment regime. This has consequences for a high number of people that directly depend on the primary sector linked to rivers and floodplains. But sediment trapping in the reservoir also affects dam operation and decreases its life span. Thus, the objective of this work is to quantify the dimension of sediment trapping by future hydropower dams in African river basins. Soil erosion is described with the universal soil loss equation (Wischmeier & Smith 1978) and combined with the connectivity index (Cavalli et al. 2013) to estimate the amount of eroded soil that reaches the fluvial network and finally ends up in the existing (Lehner et al. 2011) and future reservoirs (Zarfl et al. 2015) per year. Different scenarios assuming parameter values from the literature are developed to include model uncertainty. Estimations for existing dams will be compared with literature data to evaluate the applied estimation method and scenario assumptions. Based on estimations for the reservoir volume of the future dams we calculated the potential time-laps of the future reservoirs due to soil erosion and depending on their planned location. This approach could support sustainable decision making for the location of future hydropower dams. References Cavalli, M., Trevisani, S., Comiti

  8. Understanding the Amazon Hydrology for Sustainable Hydropower Development

    NASA Astrophysics Data System (ADS)

    Pokhrel, Y. N.; Chaudhari, S. N.

    2017-12-01

    Construction of 147 new hydropower dams, many of which are large, has been proposed in the Amazon river basin, despite the continuous stacking of negative impacts from the existing ones. These dams are continued to be built in a way that disrupts river ecology, causes large-scale deforestation, and negatively affects both the food systems nearby and downstream communities. In this study, we explore the impacts of the existing and proposed hydropower dams on the hydrological fluxes across the Amazonian Basin by incorporating human impact modules in an extensively validated regional hydrological model called LEAF-Hydro-Flood (LHF). We conduct two simulations, one in offline mode, forced by observed meteorological data for the historical period of 2000-2016 and the other in a coupled mode using the Weather Research and Forecasting (WRF) regional climate model. We mainly analyze terrestrial water storage and streamflow changes during the period of dam operations with and without human impacts. It is certain that the Amazon will undergo some major hydrological changes such as decrease in streamflow downstream in the coming decades caused due to these proposed dams. This study helps us understand and represent processes in a predictable manner, and provides the ability to evaluate future scenarios with dams and other major human influences while considering climate change in the basin. It also provides important insights on how to redesign the hydropower systems to make them truly renewable in terms of energy production, hydrology and ecology.

  9. Benthic macroinvertebrates as indicators of biological condition below hydropower dams on west slope Sierra Nevada streams, California, USA

    EPA Science Inventory

    Over 50 hydropower dams in California will undergo relicensing by the Federal Energy Regulatory Commission (FERC) in the next 15 years. An interpretive framework for biological data collected by relicensing studies is lacking. This study developed a multi-metric index of biotic...

  10. Sluiceway Operations to Pass Juvenile Salmonids at The Dalles Dam, Columbia River, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Gary E.; Khan, Fenton; Skalski, J. R.

    Existing ice and trash sluiceways are commonly used to pass juvenile salmonids downstream at hydropower dams through a benign, non-turbine route. At The Dalles Dam on the Columbia River, managers undertook optimizing operations of sluiceway weirs to maximize survival of juvenile salmonids at the powerhouse. We applied fixed-location hydroacoustic methods to compare fish passage rates and sluiceway efficiencies for two weir configurations during 2004 and 2005: three weirs versus six weirs, located at the mid- versus east powerhouse, respectively. We also analyzed horizontal distributions of passage at the sluiceway and turbines and the effects of operating turbines beneath open sluicewaymore » gates to provide supporting data relevant to operations optimization. Based on the findings, we recommend the following for long-term operations for the sluiceway at The Dalles Dam: open six rather than three sluiceway weirs to take advantage of the maximum hydraulic capacity of the sluiceway; open the three weirs above the western-most operating main turbine unit (MU) and the three weirs at MU 8 where turbine passage rates are relatively high; operate the turbine units below open sluiceway weirs as a standard procedure; operate the sluiceway 24 h/d year-round to maximize its benefits to juvenile salmonids; and use the same operations for spring and summer emigrants. These operational concepts are transferable to dams where sluiceway surface flow outlets are used protect downstream migrating fishes.« less

  11. Conflicting hydropower development and aquatic ecosystem conservation in Bhutan

    NASA Astrophysics Data System (ADS)

    Wi, S.; Yang, Y. C. E.

    2017-12-01

    Hydropower is one of the clean energy sources that many Himalayan countries are eager to develop to solve their domestic energy deficit issue such as India, Nepal and Pakistan. Like other Himalayan countries, Bhutan also has a great potential for hydropower development. However, Bhutan is one of few countries that has a domestic energy surplus and export its hydropower generation to neighboring countries (mainly to India). Exporting hydropower is one of the major economic sources in Bhutan. However, constructions of dams and reservoirs for hydropower development inevitably involve habitat fragmentation, causing a conflict of interest with the pursuit of value in aquatic ecosystem conservation. The objectives of this study is to 1) develop a distributed hydrologic model with snow and glacier module to simulate the hydrologic regimes of seven major watersheds in Bhutan; 2) apply the hydrologic model to compute hydropower generation for all existing and potential dams; 3) evaluate cascade impacts of each individual dam on downstream regions by employing three hydro-ecological indicators: the River Connectivity Index (RCI), Dendritic Connectivity Index (DCI), total affected river stretch (ARS), and 4) analyze the tradeoffs between hydropower generation and river connectivity at the national scale by means of a multiple objective genetic algorithm. Modeling results of three Pareto Fronts between ecological indicators and hydropower generation accompany with future energy export targets from the government can inform dam selections that maximizing hydropower generation while minimizing the impact on the aquatic ecosystem (Figure 1a). The impacts of climate change on these Pareto front are also explored to identify robust dam selection under changing temperature and precipitation (Figure 1b).

  12. Short-term Hydropower Reservoir Operations in Chile's Central Interconnected System: Tradeoffs between Hydrologic Alteration and Economic Performance

    NASA Astrophysics Data System (ADS)

    Olivares, M. A.

    2011-12-01

    Hydropower accounts for about 50% of the installed capacity in Chile's Central Interconnected System (CIS) and new developments are envisioned in the near future. Large projects involving reservoirs are perceived negatively by the general public. In terms of operations, hydropower scheduling takes place at monthly, weekly, daily and hourly intervals, and operations at each level affect different environmental processes. Due to its ability to quickly and inexpensively respond to short-term changes in demand, hydropower reservoirs often are operated to provide power during periods of peak demand. This operational scheme, known as hydropeaking, changes the hydrologic regime by altering the rate and frequency of changes in flow magnitude on short time scales. To mitigate impacts on downstream ecosystems, operational constraints -typically minimum instream flows and maximum ramping rates- are imposed on hydropower plants. These operational restrictions limit reduce operational flexibility and can reduce the economic value of energy generation by imposing additional costs on the operation of interconnected power systems. Methods to predict the degree of hydrologic alteration rely on statistical analyses of instream flow time series. Typically, studies on hydrologic alteration use historical operational records for comparison between pre- and post-dam conditions. Efforts to assess hydrologic alteration based on future operational schemes of reservoirs are scarce. This study couples two existing models: a mid-term operations planning and a short-term economic dispatch to simulate short-term hydropower reservoir operations under different future scenarios. Scenarios of possible future configurations of the Chilean CIS are defined with emphasis on the introduction of non-conventional renewables (particularly wind energy) and large hydropower projects in Patagonia. Both models try to reproduce the actual decision making process in the Chilean Central Interconnected System

  13. Effects of Climate Change and Deforestation on the Amazon's Hydrological Cycle Will Require Interventions to Hydropower Planning in Brazil

    NASA Astrophysics Data System (ADS)

    Arias, M. E.; Farinosi, F.; Lee, E.; Livino, A.; Moorcroft, P. R.

    2016-12-01

    Brazil is the 2nd largest hydropower producer in the world, and this energy source will continue to be a priority in the country for the foreseeable decades. Yet, climate change is expected to alter the country's hydrological regime, in particular in the Amazon where most new hydropower development is occurring. In order to better assess the potential of hydropower projects in decades to come, it is important to evaluate how future hydrological regimes will affect their performance and suitability. This study quantifies the impacts of climate change and land use conversion on hydropower generation, and identifies mechanisms that could help energy planners to account for future changes. Using the largest network of dams in Brazil's national portfolio within a single watershed, the Tapaj's River, this study connects global and regional future environmental projections to daily river flows and operations of 37 dams with an overall potential capacity of 29.4 GW. We found that climate change could decrease hydropower potential by 477-665 MW (-6 to -8% from historical conditions) during the dry season, a critical loss since dams are expected to operate at only one third of capacity during this perioddue to the limited reservoir volume of most projects in the Amazon lowlands. Furthermore, deforestation is expected to increase the inter-annual variability in hydropower potential from 2,798 for baseline conditions to 3,764-3,899 (+967-1102) MW under future scenarios for the 2040s. Consideration of future hydrological conditions on individual dams showed that the magnitude and uncertainty of losses could be greater than 30 MW -equivalent to the total potential of some dams in the inventory- in 11 of the projects studied. Future hydrological conditions could also delay the period when maximum daily generation occurs by 22-29 days, which could have important implications to energy planning in Brazil because these run-of-river dams would no longer be able to meet the country

  14. Economic implications of climate-driven trends in global hydropower generation

    NASA Astrophysics Data System (ADS)

    Turner, S. W. D.; Galelli, S.; Hejazi, M. I.; Clarke, L.; Edmonds, J.; Kim, S. H.

    2017-12-01

    Recent progress in global scale hydrological and dam modeling has allowed for the study of climate change impacts on global hydropower production. Here we explore how these impacts could affect the composition of global electricity supply, and what those changes could mean for power sector emissions and investment needs in the 21st century. Regional hydropower projections are developed for two emissions scenarios by forcing a coupled global hydrological and dam model (1593 major hydropower dams; 54% global installed capacity) with downscaled, bias-corrected climate realizations derived from sixteen General Circulation Models (GCMs). To incorporate possible non-linearity in hydropower response to climate change, dam simulations incorporate plant specifications (e.g., maximum turbine flow), reservoir storage dynamics, reservoir bathymetry, evaporation losses and bespoke, site specific operations. Consequent impacts on regional and global-level electricity generation and associated emissions and investment costs are examined using the Global Change Assessment Model (GCAM). We show that changes in hydropower generation resulting from climate change can shift power demands onto and away from carbon intensive technologies, resulting in significant impacts on CO2 emissions for several regions. Many of these countries are also highly vulnerable to investment impacts (costs of new electricity generating facilities to make up for shortfalls in hydro), which in some cases amount to tens of billions of dollars by 2100. The Balkans region—typified by weak economies in a drying region that relies heavily on hydropower—emerges as the most vulnerable. Reduced impacts of climate change on hydropower production under a low emissions scenario coincide with increased costs of marginal power generating capacity (low emissions requires greater uptake of clean generating technologies, which are more expensive). This means impacts on power sector investment costs are similar for high

  15. Balancing Energy, Food Security, and Critical Ecosystems: Dam Siting, Design and Operations in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Wild, T. B.; Reed, P. M.; Loucks, D.

    2016-12-01

    The Mekong River basin in Southeast Asia is one of several river basins with exceptionally high biodiversity value where intensive hydropower dam development is anticipated. In the Mekong basin, over 100 dams are planned to be constructed in the next 20-30 years. As planned, these dams will alter the river's natural water, sediment and nutrient flows, and will fragment fish migration pathways. In doing so, they will degrade one of the world's most productive freshwater fish habitats, upon which some 60 million people depend for food and income security. For those dams that have not yet been constructed, there still exist opportunities to modify their siting, design and operation (SDO) to achieve a more balanced set of tradeoffs among hydropower production, sediment/nutrient passage and adult fish/larvae passage. We present a successful case study wherein we explored such alternative SDO opportunities in partnership with the Government of Cambodia for Sambor Dam, planned to be built on the main stem of the Mekong. Sambor would be one of the world's longest dams, spanning 18 km across the river just upstream of (1) Tonle Sap Lake, which supplies 70% of Cambodians' protein, and (2) the Mekong Delta in Vietnam, responsible for 50% of Vietnam's rice production. We will describe key dam siting and design modifications required to mitigate ecological impacts. We will then focus on the most promising alternative dam siting/design concept, exploring the reservoir operations space to demonstrate that a complex set of tradeoffs exist among a diverse set of energy and ecosystem objectives. Results indicate that even for a hydrologically small reservoir, a wide array of potential reservoir operating policies exist that have vastly different food-energy implications. While some policies would significantly mitigate ecological impacts, many policies exist that would pose a severe threat to the sustainability of the fishery. Failure to sample the reservoir operations space at

  16. Environmental Issues Related to Conventional Hydropower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhiqun; Colotelo, Alison HA; Brown, Richard S.

    Hydropower is the largest renewable electrical energy source in the world and has a total global capacity of approximately 1,010 GW from 150 countries. Although hydropower has many environmental advantages, hydropower dams have potential adverse ecological impacts such as fish passage, water quality, and habitat alterations.

  17. Hydropower Baseline Cost Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Connor, Patrick W.; Zhang, Qin Fen; DeNeale, Scott T.

    Recent resource assessments conducted by the United States Department of Energy have identified significant opportunities for expanding hydropower generation through the addition of power to non-powered dams and on undeveloped stream-reaches. Additional interest exists in the powering of existing water resource infrastructure such as conduits and canals, upgrading and expanding existing hydropower facilities, and the construction new pumped storage hydropower. Understanding the potential future role of these hydropower resources in the nation’s energy system requires an assessment of the environmental and techno-economic issues associated with expanding hydropower generation. To facilitate these assessments, this report seeks to fill the current gapsmore » in publically available hydropower cost-estimating tools that can support the national-scale evaluation of hydropower resources.« less

  18. Influence of hydropower dams on the composition of the suspended and riverbank sediments in the Danube.

    PubMed

    Klaver, Gerard; van Os, Bertil; Negrel, Philippe; Petelet-Giraud, Emmanuelle

    2007-08-01

    Large hydropower dams have major impacts on flow regime, sediment transport and the characteristics of water and sediment in downstream rivers. The Gabcikovo and Iron Gate dams divide the studied Danube transect (rkm 1895-795) into three parts. In the Gabcikovo Reservoir (length of 40km) only a part of the incoming suspended sediments were deposited. Contrary to this, in the much larger Iron Gate backwater zone and reservoir (length of 310km) all riverine suspended sediments were deposited within the reservoir. Subsequently, suspended sediments were transported by tributaries into the Iron Gate backwater zone. Here they were modified by fractional sedimentation before they transgressed downstream via the dams. Compared with undammed Danube sections, Iron Gate reservoir sediment and suspended matter showed higher clay contents and different K/Ga and Metal/Ga ratios. These findings emphasize the importance of reservoir-river sediment-fractionation.

  19. Regulatory approaches for addressing dissolved oxygen concerns at hydropower facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Mark J.; Cada, Glenn F.; Sale, Michael J.

    Low dissolved oxygen (DO) concentrations are a common water quality problem downstream of hydropower facilities. At some facilities, structural improvements (e.g. installation of weir dams or aerating turbines) or operational changes (e.g., spilling water over the dam) can be made to improve DO levels. In other cases, structural and operational approaches are too costly for the project to implement or are likely to be of limited effectiveness. Despite improvements in overall water quality below dams in recent years, many hydropower projects are unable to meet state water quality standards for DO. Regulatory agencies in the U.S. are considering or implementingmore » dramatic changes in their approach to protecting the quality of the Nation’s waters. New policies and initiatives have emphasized flexibility, increased collaboration and shared responsibility among all parties, and market-based, economic incentives. The use of new regulatory approaches may now be a viable option for addressing the DO problem at some hydropower facilities. This report summarizes some of the regulatory-related options available to hydropower projects, including negotiation of site-specific water quality criteria, use of biological monitoring, watershed-based strategies for the management of water quality, and watershed-based trading. Key decision points center on the health of the local biological communities and whether there are contributing impacts (i.e., other sources of low DO effluents) in the watershed. If the biological communities downstream of the hydropower project are healthy, negotiation for site-specific water quality standards or biocriteria (discharge performance criteria based on characteristics of the aquatic biota) might be pursued. If there are other effluent dischargers in the watershed that contribute to low DO problems, watershed-scale strategies and effluent trading may be effective. This report examines the value of regulatory approaches by reviewing their use

  20. On the effect of operation of the hydropower plant on the water quality of Rapel reservoir, central Chile

    NASA Astrophysics Data System (ADS)

    Rossel, V.; De La Fuente, A.

    2013-12-01

    Eutrophication of lakes and reservoirs is a common problem in systems with high incoming loads of nutrients. The consequent algae bloom related to the eutrophication alters the water quality and generates an incompatibility with the tourist and recreational activities. This study is focused on Rapel reservoir: an old, dentritic and monomictic reservoir, located in central Chile (34°S, 71.6°W), that has experienced numerous algae bloom events in the past years produced by high loads of nutrients, sediments and metals. This reservoir was originally constructed in 1968 for hydropower generation without environmental restrictions on its operation. Rapel is part of Chile's Central Interconnected System (SIC), and is controlled by an independent system operator (ISO) that decides the optimal allocation of water by minimizing the SIC's operation cost. As a result of this framework, Rapel reservoir operates based on a hydropeaking scheme, thus producing energy few hours a day while zero outflows are observed the remaining hours, impacting on Rapel river located downstream the reservoir. However, previous research showed that this hydropeaking has important effects on the hydrodynamic of the reservoir as well. Particularly, it enhances vertical mixing nears the dam, and reduces horizontal dispersion. Furthermore, hydropeaking defines the outflows water temperature, and the temperature profile near the dam. As a consequence of this role of hydropeaking on the hydrodynamics and mixing of Rapel reservoir, it is expected to be a link between hydropeaking and water quality. The aim of the study is to evaluate the impact of the operation of hydropower plant on the water quality of Rapel reservoir, for which the reservoir system is modeled using the three dimensional hydrodynamic and water quality model ELCOM-CAEDYM. Field data to validate the results and to define boundary and initial conditions are available for the austral summer period of 2009-2010. Different scenarios of

  1. Managing Tradeoffs between Hydropower and the Environment in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Loucks, Daniel P.; Wild, Thomas B.

    2015-04-01

    Hydropower dams are being designed and constructed at a rapid pace in the Mekong/Lancang River basin in Southeast Asia. These reservoirs are expected to trap significant amounts sediment, decreasing much of the river's capability to transport nutrients and maintain its geomorphology and habitats. We apply a simulation model for identifying and evaluating alternative dam siting, design and operating policy (SDO) options that could help maintain more natural sediment regimes downstream of dams and for evaluating the effect of these sediment-focused SDO strategies on hydropower production and reliability. We apply this approach to the planned reservoirs that would prevent a significant source of sediment from reaching critical Mekong ecosystems such as Cambodia's Tonle Sap Lake and the Mekong delta in Vietnam. Model results suggest that various SDO modifications could increase sediment discharge from this site by 300-450% compared to current plans, but a 30-55% loss in short-term annual energy production depending on various configurations of upstream reservoirs. Simulation results also suggest that sediment management-focused reservoir operating policies could cause ecological damage if they are not properly implemented.

  2. Potential effects of four Flaming Gorge Dam hydropower operational scenarios on the fishes of the Green River, Utah and Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hlohowskyj, I.; Hayse, J.W.

    1995-09-01

    Aerial videography and modeling were used to evaluate the impacts of four hydropower operational scenarios at Flaming Gorge Dam, Utah, on trout and native fishes in the Green River, Utah and Colorado. The four operational scenarios studied were year-round high fluctuations, seasonally adjusted high fluctuations, seasonally adjusted moderate fluctuations, and seasonally adjusted steady flows. Impacts on trout were evaluated by examining differences among scenarios in the areas of inundated substrates that serve as spawning and feeding habitat. All scenarios would provide at least 23 acres per mile of habitat for spawning and food production; seasonally adjusted operations would provide additionalmore » areas during periods of sustained high release. Seasonally adjusted high fluctuations would increase inundated areas by 12 to 26% for a short period in winter and spring, but food production and reproduction would not be expected to increase. Seasonally adjusted moderate fluctuations and steady flows would produce similar increases in area, but the longer period of inundation could also result in increased food production and provide additional spawning sites for trout. Impacts on native fishes were assessed by examining daily changes in backwater nursery areas. Compared with year-round high fluctuations, the daily changes in backwater area would decrease by about 47, 89, and 100% under the seasonally adjusted high fluctuation, moderate fluctuation, and steady flow scenarios, respectively. Similarly, daily stage fluctuations during the nursery period would decrease by 72, 89, and 100% under the seasonally adjusted high fluctuation, moderate fluctuation, and steady flow scenarios, respectively. These reductions in daily fluctuations in backwater area and stage would improve conditions in nursery habitats and could in turn improve recruitment and overwinter survival. Introduced fish species could also benefit from the seasonally adjusted operational scenarios.« less

  3. Hydropower Baseline Cost Modeling, Version 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Connor, Patrick W.

    Recent resource assessments conducted by the United States Department of Energy have identified significant opportunities for expanding hydropower generation through the addition of power to non-powered dams and on undeveloped stream-reaches. Additional interest exists in the powering of existing water resource infrastructure such as conduits and canals, upgrading and expanding existing hydropower facilities, and the construction new pumped storage hydropower. Understanding the potential future role of these hydropower resources in the nation’s energy system requires an assessment of the environmental and techno-economic issues associated with expanding hydropower generation. To facilitate these assessments, this report seeks to fill the current gapsmore » in publically available hydropower cost estimating tools that can support the national-scale evaluation of hydropower resources.« less

  4. Efficient ecologic and economic operational rules for dammed systems by means of nondominated sorting genetic algorithm II

    NASA Astrophysics Data System (ADS)

    Niayifar, A.; Perona, P.

    2015-12-01

    River impoundment by dams is known to strongly affect the natural flow regime and in turn the river attributes and the related ecosystem biodiversity. Making hydropower sustainable implies to seek for innovative operational policies able to generate dynamic environmental flows while maintaining economic efficiency. For dammed systems, we build the ecological and economical efficiency plot for non-proportional flow redistribution operational rules compared to minimal flow operational. As for the case of small hydropower plants (e.g., see the companion paper by Gorla et al., this session), we use a four parameters Fermi-Dirac statistical distribution to mathematically formulate non-proportional redistribution rules. These rules allocate a fraction of water to the riverine environment depending on current reservoir inflows and storage. Riverine ecological benefits associated to dynamic environmental flows are computed by integrating the Weighted Usable Area (WUA) for fishes with Richter's hydrological indicators. Then, we apply nondominated sorting genetic algorithm II (NSGA-II) to an ensemble of non-proportional and minimal flow redistribution rules in order to generate the Pareto frontier showing the system performances in the ecologic and economic space. This fast and elitist multiobjective optimization method is eventually applied to a case study. It is found that non-proportional dynamic flow releases ensure maximal power production on the one hand, while conciliating ecological sustainability on the other hand. Much of the improvement in the environmental indicator is seen to arise from a better use of the reservoir storage dynamics, which allows to capture, and laminate flood events while recovering part of them for energy production. In conclusion, adopting such new operational policies would unravel a spectrum of globally-efficient performances of the dammed system when compared with those resulting from policies based on constant minimum flow releases.

  5. Learning the ropes at Richard B. Russell Dam: Net systems for medium head hydropower pumpback and generation fish sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schilt, C.R.; Vu, P.D.; Nestler, J.M.

    1995-12-31

    At Richard B. Russell Dam on the Savannah River we have been monitoring the magnitude (numbers and masses) and species compositions as well as possible survival of fish entrained in operation of four 85 MW Francis pump turbines. In this paper we review our progress in net design for hydropower application. We also discuss basic net handling and introduce a method for net management in a very turbulent tailrace. This report is meant to share what we have learned at Russell Dam in hopes that it will facilitate similar efforts elsewhere. The commercial fishing industry has evolved methods of netmore » construction and handling that may be applied, with appropriate modification, at dams. The nets we use are most appropriately called trawls in that they have the form of a long sock placed over the penstock or draft tube. These nets are superficially similar to those used in commercial trawling for fish. Important differences are that: (1) the net remains relatively stationary while the water moves through it, not vice versa; (2) water velocities and turbulence are much greater at dams than in commercial fishing operations and (3) mesh sizes are much smaller for environmental sampling than for commercial trawling. And while a fouled trawl may stop the boat that pulls it, the water passed in generation or pumpback (about 140 ft. head at Russell) is for all practical purposes unstoppable. Our nets fish in a very turbulent discharge at 7,000 cu. ft./sec/turbine. Their strength and their ability to pass water effectively under all possible operating conditions are primary concerns. Trawl length, mesh sizes, and hanging ratios are important factors. Although we have had setbacks (usually in the form of torn nets) as this study has developed, we have incrementally improved our net design and handling. We review our net failures and the solutions we have found thus far in both construction and handling.« less

  6. Use of an autonomous sensor to evaluate the biological performance of the advanced turbine at Wanapum Dam

    DOE PAGES

    Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; ...

    2010-10-13

    Hydropower is the largest renewable energy resource in the United States and the world. However, hydropower dams have adverse ecological impacts because migrating fish may be injured or killed when they pass through hydroturbines. In the Columbia and Snake River basins, dam operators and engineers are required to make those hydroelectric facilities more fish-friendly through changes in hydroturbine design and operation after fish population declines and the subsequent listing of several species of Pacific salmon under the Endangered Species Act of 1973. Public Utility District No. 2 of Grant County, Washington, requested authorization from the Federal Energy Regulatory Commission tomore » replace the ten turbines at Wanapum Dam with advanced hydropower turbines designed to improve survival for fish passing through the turbines while improving operation efficiency and increasing power generation. As an additional measure to the primary metric of direct injury and mortality rates of juvenile Chinook salmon using balloon tag-recapture methodology, this study used an autonomous sensor device - the Sensor Fish - to provide insight into the specific hydraulic conditions and physical stresses experienced by the fish as well as the specific causes of fish biological response. We found that the new hydroturbine blade shape and the corresponding reduction of turbulence in the advanced hydropower turbine were effective in meeting the objectives of improving fish survival while enhancing operational efficiency of the dam. The frequency of severe events based on Sensor Fish pressure and acceleration measurements showed trends similar to those of fish survival determined by the balloon tag-recapture methodology. In addition, the new turbine provided a better pressure and rate of pressure change environment for fish passage. Altogether, the Sensor Fish data indicated that the advanced hydroturbine design improved passage of juvenile salmon at Wanapum Dam.« less

  7. Small Hydropower in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadjerioua, Boualem; Johnson, Kurt

    Small hydropower, defined in this report as hydropower with a generating capacity of up to 10 MW typically built using existing dams, pipelines, and canals has substantial opportunity for growth. Existing small hydropower comprises about 75% of the current US hydropower fleet in terms of number of plants. The economic feasibility of developing new small hydropower projects has substantially improved recently, making small hydropower the type of new hydropower development most likely to occur. In 2013, Congress unanimously approved changes to simplify federal permitting requirements for small hydropower, lowering costs and reducing the amount of time required to receive federalmore » approvals. In 2014, Congress funded a new federal incentive payment program for hydropower, currently worth approximately 1.5 cents/kWh. Federal and state grant and loan programs for small hydropower are becoming available. Pending changes in federal climate policy could benefit all renewable energy sources, including small hydropower. Notwithstanding remaining barriers, development of new small hydropower is expected to accelerate in response to recent policy changes.« less

  8. Exploring the hydropower potential of future ice-free glacier basins

    NASA Astrophysics Data System (ADS)

    Round, Vanessa; Farinotti, Daniel; Huss, Matthias

    2017-04-01

    The retreat of glaciers over the next century will present new challenges related to water availability and cause significant changes to the landscape. The construction of dams in areas becoming ice-free has previously been suggested as a mitigation measure against changes to water resources in the European Alps. In Switzerland, a number of hydropower dams already exist directly below glaciers, and the hydropower potential of natural lakes left by retreating glaciers has been recognised. We expand these concepts to the regional, and ultimately global, scale to assess the potential of creating hydropower dams in glacier basins, encouraged by advantages such as relatively low ecological and social impacts, and the possibility to replicate the water storage capabilities of glaciers. In a first order assessment, dam volumes are computed using a subglacial topography model and dam walls simulated at the terminus of each glacier. Potential power production is then estimated from projected glacier catchment runoff until 2100 based on the Global Glacier Evolution Model (GloGEM), and penstock head approximated from a global digital elevation model. Based on this, a feasibility ranking system is presented which takes into account various proxies for cost, demand and impact, such as proximity to populations and existing infrastructure, geological risks and threatened species. The ultimate objective is to identify locations of glacier retreat which could most feasibly and beneficially be used for hydropower production.

  9. 78 FR 58535 - Hydropower Regulatory Efficiency Act of 2013; Supplemental Notice of Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... license for hydropower development at non-powered dams and closed-loop pumped storage projects in... for licensing hydropower development at non-powered dams and closed-loop pumped storage projects... closed- loop pumped storage) affect the steps included in a two-year process? 3.9 Should there be a...

  10. Optimizing Wind And Hydropower Generation Within Realistic Reservoir Operating Policy

    NASA Astrophysics Data System (ADS)

    Magee, T. M.; Clement, M. A.; Zagona, E. A.

    2012-12-01

    Previous studies have evaluated the benefits of utilizing the flexibility of hydropower systems to balance the variability and uncertainty of wind generation. However, previous hydropower and wind coordination studies have simplified non-power constraints on reservoir systems. For example, some studies have only included hydropower constraints on minimum and maximum storage volumes and minimum and maximum plant discharges. The methodology presented here utilizes the pre-emptive linear goal programming optimization solver in RiverWare to model hydropower operations with a set of prioritized policy constraints and objectives based on realistic policies that govern the operation of actual hydropower systems, including licensing constraints, environmental constraints, water management and power objectives. This approach accounts for the fact that not all policy constraints are of equal importance. For example target environmental flow levels may not be satisfied if it would require violating license minimum or maximum storages (pool elevations), but environmental flow constraints will be satisfied before optimizing power generation. Additionally, this work not only models the economic value of energy from the combined hydropower and wind system, it also captures the economic value of ancillary services provided by the hydropower resources. It is recognized that the increased variability and uncertainty inherent with increased wind penetration levels requires an increase in ancillary services. In regions with liberalized markets for ancillary services, a significant portion of hydropower revenue can result from providing ancillary services. Thus, ancillary services should be accounted for when determining the total value of a hydropower system integrated with wind generation. This research shows that the end value of integrated hydropower and wind generation is dependent on a number of factors that can vary by location. Wind factors include wind penetration level

  11. Water temperature effects from simulated changes to dam operations and structures in the Middle and South Santiam Rivers, Oregon

    USGS Publications Warehouse

    Buccola, Norman L.

    2017-05-31

    Green Peter and Foster Dams on the Middle and South Santiam Rivers, Oregon, have altered the annual downstream water temperature profile (cycle). Operation of the dams has resulted in cooler summer releases and warmer autumn releases relative to pre-dam conditions, and that alteration can hinder recovery of various life stages of threatened spring-run Chinook salmon (Oncorhyncus tshawytscha) and winter steelhead (O. mykiss). Lake level management and the use of multiple outlets from varying depths at the dams can enable the maintenance of a temperature regime more closely resembling that in which the fish evolved by releasing warm surface water during summer and cooler, deeper water in the autumn. At Green Peter and Foster Dams, the outlet configuration is such that temperature control is often limited by hydropower production at the dams. Previously calibrated CE-QUAL-W2 water temperature models of Green Peter and Foster Lakes were used to simulate the downstream thermal effects from hypothetical structures and modified operations at the dams. Scenarios with no minimum power production requirements allowed some releases through shallower and deeper outlets (summer and autumn) to achieve better temperature control throughout the year and less year-to-year variability in autumn release temperatures. Scenarios including a hypothetical outlet floating 1 meter below the lake surface resulted in greater ability to release warm water during summer compared to existing structures. Later in Autumn (October 15–December 31), a limited amount of temperature control was realized downstream from Foster Dam by scenarios limited to operational changes with existing structures, resulting in 15-day averages within 1.0 degree Celsius of current operations.

  12. Hydropower, an energy source whose time has come again

    NASA Astrophysics Data System (ADS)

    1980-01-01

    Recent price increases in imported oil demonstrate the urgency for the U.S. to rapidly develop its renewable resources. One such renewable resource for which technology is available now is hydropower. Studies indicate that hydropower potential, particularly at existing dam sites, can save the county hundreds of thousands of barrels of oil per day. But problems and constraints-economic, environmental, institutional, and operational-limit is full potential. Federal programs have had little impact on helping to bring hydro projects on line. Specifically, the Department of Energy's Small Hydro Program could do more to overcome hydro constraints and problems through an effective outreach program and more emphasis on demonstration projects.

  13. Characterizing effects of hydropower plants on sub-daily flow regimes

    NASA Astrophysics Data System (ADS)

    Bejarano, María Dolores; Sordo-Ward, Álvaro; Alonso, Carlos; Nilsson, Christer

    2017-07-01

    A characterization of short-term changes in river flow is essential for understanding the ecological effects of hydropower plants, which operate by turning the turbines on or off to generate electricity following variations in the market demand (i.e., hydropeaking). The goal of our study was to develop an approach for characterizing the effects of hydropower plant operations on within-day flow regimes across multiple dams and rivers. For this aim we first defined ecologically meaningful metrics that provide a full representation of the flow regime at short time scales from free-flowing rivers and rivers exposed to hydropeaking. We then defined metrics that enable quantification of the deviation of the altered short-term flow regime variables from those of the unaltered state. The approach was successfully tested in two rivers in northern Sweden, one free-flowing and another regulated by cascades of hydropower plants, which were additionally classified based on their impact on short-term flows in sites of similar management. The largest differences between study sites corresponded to metrics describing sub-daily flow magnitudes such as amplitude (i.e., difference between the highest and the lowest hourly flows) and rates (i.e., rise and fall rates of hourly flows). They were closely followed by frequency-related metrics accounting for the numbers of within-day hourly flow patterns (i.e., rises, falls and periods of stability of hourly flows). In comparison, between-site differences for the duration-related metrics were smallest. In general, hydropeaking resulted in higher within-day flow amplitudes and rates and more but shorter periods of a similar hourly flow patterns per day. The impacted flow feature and the characteristics of the impact (i.e., intensity and whether the impact increases or decreases whatever is being described by the metric) varied with season. Our approach is useful for catchment management planning, defining environmental flow targets

  14. How run-of-river operation affects hydropower generation and value.

    PubMed

    Jager, Henriette I; Bevelhimer, Mark S

    2007-12-01

    Regulated rivers in the United States are required to support human water uses while preserving aquatic ecosystems. However, the effectiveness of hydropower license requirements nationwide has not been demonstrated. One requirement that has become more common is "run-of-river" (ROR) operation, which restores a natural flow regime. It is widely believed that ROR requirements (1) are mandated to protect aquatic biota, (2) decrease hydropower generation per unit flow, and (3) decrease energy revenue. We tested these three assumptions by reviewing hydropower projects with license-mandated changes from peaking to ROR operation. We found that ROR operation was often prescribed in states with strong water-quality certification requirements and migratory fish species. Although benefits to aquatic resources were frequently cited, changes were often motivated by other considerations. After controlling for climate, the overall change in annual generation efficiency across projects because of the change in operation was not significant. However, significant decreases were detected at one quarter of individual hydropower projects. As expected, we observed a decrease in flow during peak demand at 7 of 10 projects. At the remaining projects, diurnal fluctuations actually increased because of operation of upstream storage projects. The economic implications of these results, including both producer costs and ecologic benefits, are discussed. We conclude that regional-scale studies of hydropower regulation, such as this one, are long overdue. Public dissemination of flow data, license provisions, and monitoring data by way of on-line access would facilitate regional policy analysis while increasing regulatory transparency and providing feedback to decision makers.

  15. Determining the effects of dams on subdaily variation in river flows at a whole-basin scale

    USGS Publications Warehouse

    Zimmerman, J.K.H.; Letcher, B.H.; Nislow, K.H.; Lutz, K.A.; Magilligan, F.J.

    2010-01-01

    River regulation can alter the frequency and magnitude of subdaily flow variations causing major impacts on ecological structure and function. We developed an approach to quantify subdaily flow variation for multiple sites across a large watershed to assess the potential impacts of different dam operations (flood control, run-of-river hydropower and peaking hydropower) on natural communities. We used hourly flow data over a 9-year period from 30 stream gages throughout the Connecticut River basin to calculate four metrics of subdaily flow variation and to compare sites downstream of dams with unregulated sites. Our objectives were to (1) determine the temporal scale of data needed to characterize subdaily variability; (2) compare the frequency of days with high subdaily flow variation downstream of dams and unregulated sites; (3) analyse the magnitude of subdaily variation at all sites and (4) identify individual sites that had subdaily variation significantly higher than unregulated locations. We found that estimates of flow variability based on daily mean flow data were not sufficient to characterize subdaily flow patterns. Alteration of subdaily flows was evident in the number of days natural ranges of variability were exceeded, rather than in the magnitude of subdaily variation, suggesting that all rivers may exhibit highly variable subdaily flows, but altered rivers exhibit this variability more frequently. Peaking hydropower facilities had the most highly altered subdaily flows; however, we observed significantly altered ranges of subdaily variability downstream of some flood-control and run-of-river hydropower dams. Our analysis can be used to identify situations where dam operating procedures could be modified to reduce the level of hydrologic alteration. ?? 2009 John Wiley & Sons, Ltd.

  16. Designing multi-reservoir system designs via efficient water-energy-food nexus trade-offs - Selecting new hydropower dams for the Blue Nile and Nepal's Koshi Basin

    NASA Astrophysics Data System (ADS)

    Harou, J. J.; Hurford, A.; Geressu, R. T.

    2015-12-01

    Many of the world's multi-reservoir water resource systems are being considered for further development of hydropower and irrigation aiming to meet economic, political and ecological goals. Complex river basins serve many needs so how should the different proposed groupings of reservoirs and their operations be evaluated? How should uncertainty about future supply and demand conditions be factored in? What reservoir designs can meet multiple goals and perform robustly in a context of global change? We propose an optimized multi-criteria screening approach to identify best performing designs, i.e., the selection, size and operating rules of new reservoirs within multi-reservoir systems in a context of deeply uncertain change. Reservoir release operating rules and storage sizes are optimized concurrently for each separate infrastructure design under consideration across many scenarios representing plausible future conditions. Outputs reveal system trade-offs using multi-dimensional scatter plots where each point represents an approximately Pareto-optimal design. The method is applied to proposed Blue Nile River reservoirs in Ethiopia, where trade-offs between capital costs, total and firm energy output, aggregate storage and downstream irrigation and energy provision for the best performing designs are evaluated. The impact of filling period for large reservoirs is considered in a context of hydrological uncertainty. The approach is also applied to the Koshi basin in Nepal where combinations of hydropower storage and run-of-river dams are being considered for investment. We show searching for investment portfolios that meet multiple objectives provides stakeholders with a rich view on the trade-offs inherent in the nexus and how different investment bundles perform differently under plausible futures. Both case-studies show how the proposed approach helps explore and understand the implications of investing in new dams in a global change context.

  17. Improved evaluation of the blue water footprint from hydropower in the United States

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Gao, H.

    2017-12-01

    As the world's largest source of renewable energy, hydropower contributes 16.6% of the electricity production in the world. Even though it produces no waste, hydropower exhausts a considerable amount of water mostly through evaporation from the extended surface areas of the manmade lakes. The water footprint of hydropower becomes even larger with rising temperatures. To assist with the precise management of both water resources and energy production in the Contiguous United States (CONUS), 82 major dams—all with a primary purpose of producing hydroelectric power—were evaluated in terms of their blue water footprints. These dams account for 21% of the entire hydropower generation in the CONUS. Reservoir evaporation is calculated using state-of-the-art reservoir surface area and evaporation rate information. Instead of using fixed surface areas for the reservoirs—a practice which is adopted by virtually all other studies (and generally leads to over-or-under estimations)—time-variant surface areas were generated from Landsat imageries archived on Google Earth Engine (GEE) platform. Additionally, evaporation rates were calculated using an equilibrium method that incorporates the heat storage effects of the reservoirs. Results show that water consumption from hydropower is large and non-negligible. Furthermore, the differences of the blue water footprints among the dams studied are also significant. The results of this study can benefit the evaluation of existing dams (e.g. recommendation for dam removal) and the planning of future hydroelectric dams.

  18. HEPS4Power - Extended-range Hydrometeorological Ensemble Predictions for Improved Hydropower Operations and Revenues

    NASA Astrophysics Data System (ADS)

    Bogner, Konrad; Monhart, Samuel; Liniger, Mark; Spririg, Christoph; Jordan, Fred; Zappa, Massimiliano

    2015-04-01

    In recent years large progresses have been achieved in the operational prediction of floods and hydrological drought with up to ten days lead time. Both the public and the private sectors are currently using probabilistic runoff forecast in order to monitoring water resources and take actions when critical conditions are to be expected. The use of extended-range predictions with lead times exceeding 10 days is not yet established. The hydropower sector in particular might have large benefits from using hydro meteorological forecasts for the next 15 to 60 days in order to optimize the operations and the revenues from their watersheds, dams, captions, turbines and pumps. The new Swiss Competence Centers in Energy Research (SCCER) targets at boosting research related to energy issues in Switzerland. The objective of HEPS4POWER is to demonstrate that operational extended-range hydro meteorological forecasts have the potential to become very valuable tools for fine tuning the production of energy from hydropower systems. The project team covers a specific system-oriented value chain starting from the collection and forecast of meteorological data (MeteoSwiss), leading to the operational application of state-of-the-art hydrological models (WSL) and terminating with the experience in data presentation and power production forecasts for end-users (e-dric.ch). The first task of the HEPS4POWER will be the downscaling and post-processing of ensemble extended-range meteorological forecasts (EPS). The goal is to provide well-tailored forecasts of probabilistic nature that should be reliable in statistical and localized at catchment or even station level. The hydrology related task will consist in feeding the post-processed meteorological forecasts into a HEPS using a multi-model approach by implementing models with different complexity. Also in the case of the hydrological ensemble predictions, post-processing techniques need to be tested in order to improve the quality of the

  19. Exporting dams: China's hydropower industry goes global.

    PubMed

    McDonald, Kristen; Bosshard, Peter; Brewer, Nicole

    2009-07-01

    In line with China's "going out" strategy, China's dam industry has in recent years significantly expanded its involvement in overseas markets. The Chinese Export-Import Bank and other Chinese financial institutions, state-owned enterprises, and private firms are now involved in at least 93 major dam projects overseas. The Chinese government sees the new global role played by China's dam industry as a "win-win" situation for China and host countries involved. But evidence from project sites such as the Merowe Dam in Sudan demonstrates that these dams have unrecognized social and environmental costs for host communities. Chinese dam builders have yet to adopt internationally accepted social and environmental standards for large infrastructure development that can assure these costs are adequately taken into account. But the Chinese government is becoming increasingly aware of the challenge and the necessity of promoting environmentally and socially sound investments overseas.

  20. Influence of El Niño Southern Oscillation on global hydropower production

    NASA Astrophysics Data System (ADS)

    Ng, Jia Yi; Turner, Sean W. D.; Galelli, Stefano

    2017-03-01

    El Niño Southern Oscillation (ENSO) strongly influences the global climate system, affecting hydrology in many of the world’s river basins. This raises the prospect of ENSO-driven variability in global and regional hydroelectric power generation. Here we study these effects by generating time series of power production for 1593 hydropower dams, which collectively represent more than half of the world’s existing installed hydropower capacity. The time series are generated by forcing a detailed dam model with monthly-resolution, 20th century inflows—the model includes plant specifications, storage dynamics and realistic operating schemes, and runs irrespectively of the dam construction year. More than one third of simulated dams exhibit statistically significant annual energy production anomalies in at least one of the two ENSO phases of El Niño and La Niña. For most dams, the variability of relative anomalies in power production tends to be less than that of the forcing inflows—a consequence of dam design specifications, namely maximum turbine release rate and reservoir storage, which allows inflows to accumulate for power generation in subsequent dry years. Production is affected most prominently in Northwest United States, South America, Central America, the Iberian Peninsula, Southeast Asia and Southeast Australia. When aggregated globally, positive and negative energy production anomalies effectively cancel each other out, resulting in a weak and statistically insignificant net global anomaly for both ENSO phases.

  1. Hydropower and sustainability: resilience and vulnerability in China's powersheds.

    PubMed

    McNally, Amy; Magee, Darrin; Wolf, Aaron T

    2009-07-01

    Large dams represent a whole complex of social, economic and ecological processes, perhaps more than any other large infrastructure project. Today, countries with rapidly developing economies are constructing new dams to provide energy and flood control to growing populations in riparian and distant urban communities. If the system is lacking institutional capacity to absorb these physical and institutional changes there is potential for conflict, thereby threatening human security. In this paper, we propose analyzing sustainability (political, socioeconomic, and ecological) in terms of resilience versus vulnerability, framed within the spatial abstraction of a powershed. The powershed framework facilitates multi-scalar and transboundary analysis while remaining focused on the questions of resilience and vulnerability relating to hydropower dams. Focusing on examples from China, this paper describes the complex nature of dams using the sustainability and powershed frameworks. We then analyze the roles of institutions in China to understand the relationships between power, human security and the socio-ecological system. To inform the study of conflicts over dams China is a particularly useful case study because we can examine what happens at the international, national and local scales. The powershed perspective allows us to examine resilience and vulnerability across political boundaries from a dynamic, process-defined analytical scale while remaining focused on a host of questions relating to hydro-development that invoke drivers and impacts on national and sub-national scales. The ability to disaggregate the affects of hydropower dam construction from political boundaries allows for a deeper analysis of resilience and vulnerability. From our analysis we find that reforms in China's hydropower sector since 1996 have been motivated by the need to create stability at the national scale rather than resilient solutions to China's growing demand for energy and water

  2. Dams on Mekong tributaries as significant contributors of hydrological alterations to the Tonle Sap Floodplain in Cambodia

    NASA Astrophysics Data System (ADS)

    Arias, M. E.; Piman, T.; Lauri, H.; Cochrane, T. A.; Kummu, M.

    2014-12-01

    River tributaries have a key role in the biophysical functioning of the Mekong Basin. Of particular interest are the Sesan, Srepok, and Sekong (3S) rivers, which contribute nearly a quarter of the total Mekong discharge. Forty two dams are proposed in the 3S, and once completed they will exceed the active storage of China's large dam cascade in the Upper Mekong. Given their proximity to the Lower Mekong floodplains, the 3S dams could alter the flood-pulse hydrology driving the productivity of downstream ecosystems. Therefore, the main objective of this study was to quantify how hydropower development in the 3S, together with definite future (DF) plans for infrastructure development through the basin, would alter the hydrology of the Tonle Sap's Floodplain, the largest wetland in the Mekong and home to one of the most productive inland fisheries in the world. We coupled results from four numerical models representing the basin's surface hydrology, water resources development, and floodplain hydrodynamics. The scale of alterations caused by hydropower in the 3S was compared with the basin's DF scenario driven by the Upper Mekong dam cascade. The DF or the 3S development scenarios could independently increase Tonle Sap's 30-day minimum water levels by 30 ± 5 cm and decrease annual water level fall rates by 0.30 ± 0.05 cm day-1. When analyzed together (DF + 3S), these scenarios are likely to eliminate all baseline conditions (1986-2000) of extreme low water levels, a particularly important component of Tonle Sap's environmental flows. Given the ongoing trends and large economic incentives in the hydropower business in the region, there is a high possibility that most of the 3S hydropower potential will be exploited and that dams will be built even in locations where there is a high risk of ecological disruption. Hence, retrofitting current designs and operations to promote sustainable hydropower practices that optimize multiple river services - rather than just

  3. Dams on Mekong tributaries as significant contributors of hydrological alterations to the Tonle Sap Floodplain in Cambodia

    NASA Astrophysics Data System (ADS)

    Arias, M. E.; Piman, T.; Lauri, H.; Cochrane, T. A.; Kummu, M.

    2014-02-01

    River tributaries have a key role in the biophysical functioning of the Mekong Basin. Of particular attention are the Sesan, Srepok, and Sekong (3S) rivers, which contribute nearly a quarter of the total Mekong discharge. Forty two dams are proposed in the 3S, and once completed they will exceed the active storage of China's large dam cascade in the upper Mekong. Given their proximity to the lower Mekong floodplains, the 3S dams could alter the flood-pulse hydrology driving the productivity of downstream ecosystems. Therefore, the main objective of this study was to quantify how hydropower development in the 3S would alter the hydrology of the Tonle Sap floodplain, the largest wetland in the Mekong and home to one of the most productive inland fisheries in the world. We coupled results from four numerical models representing the basin's surface hydrology, water resources development, and floodplain hydrodynamics. The scale of alterations caused by hydropower in the 3S was compared with the basin's definite future development scenario (DF) driven by the upper Mekong dam cascade. The DF or the 3S development scenarios could independently increase Tonle Sap's 30 day minimum water levels by 30 ± 5 cm and decrease annual water level fall rates by 0.30 ± 0.05 cm d-2. When analyzed together (DF + 3S), these scenarios are likely to eliminate all baseline conditions (1986-2000) of extreme low water levels, a particularly important component of Tonle Sap's environmental flows. Given the ongoing trends and large economic incentives in the hydropower business in the region, there is a high possibility that most of the 3S hydropower potential will actually be exploited and that dams would be built even in locations where there is a high risk of ecological disruptions. Hence, retrofitting current designs and operations to promote sustainable hydropower practices that optimize multiple river services - rather than just maximize hydropower generation - appear to be the most

  4. Locks and Dam 1 (Ford Dam), Mississippi River, Draft Feasibility Report and Environmental Assessment for Hydropower.

    DTIC Science & Technology

    1984-08-01

    Mississippi River. 91 o In the event that the existing licensee, Ford Motor Company , or another non-Federal entity does not apply to FERC for rights to...interests. The existing hydropower plant and equipment are owned and operated by the Ford Motor Company . The existing four turbines generate a combined...Turbines (Ford Motor Company ) 51 Right (West) Abutment 51 Preliminary Screening of Alternatives 51 Conclusions of the Preliminary Comparative Review 53

  5. The changing hydrology of a dammed Amazon

    PubMed Central

    Timpe, Kelsie; Kaplan, David

    2017-01-01

    Developing countries around the world are expanding hydropower to meet growing energy demand. In the Brazilian Amazon, >200 dams are planned over the next 30 years, and questions about the impacts of current and future hydropower in this globally important watershed remain unanswered. In this context, we applied a hydrologic indicator method to quantify how existing Amazon dams have altered the natural flow regime and to identify predictors of alteration. The type and magnitude of hydrologic alteration varied widely by dam, but the largest changes were to critical characteristics of the flood pulse. Impacts were largest for low-elevation, large-reservoir dams; however, small dams had enormous impacts relative to electricity production. Finally, the “cumulative” effect of multiple dams was significant but only for some aspects of the flow regime. This analysis is a first step toward the development of environmental flows plans and policies relevant to the Amazon and other megadiverse river basins. PMID:29109972

  6. Understanding Hydrological Regime Alterations Caused by dams: the Santiago River case in the Andean Region of the Amazon Basin.

    NASA Astrophysics Data System (ADS)

    Rosero-Lopez, D.; Flecker, A.; Walter, M. T.

    2016-12-01

    Water resources in South America have been clearly targeted as key sources for hydropower expansion over the next 30 years. Ecuador, among the most biologically diverse countries in the world, has the highest density of hydropower dams, either operational, under construction, or planned, in the Amazon Basin. Ecuador's ambitious plan to change its energy portfolio is conceived to satisfy the country's demand and to empower the country to be the region's first hydroelectric energy exporter. The Santiago watershed located in the southeast part of the country has 39 facilities either under construction or in operation. The Santiago River and its main tributaries (Zamora and Upano) are expected to be impounded by large dams over the next 10 years. In order to understand the magnitude and potential impacts of regional dam development on hydrological regimes, a 35-year historical data set of stream discharge was analyzed. We examined flow regimes for time series between the construction of each dam, starting with the oldest and largest built in 1982 up until the most recent dam built in 2005. Preliminary results indicate a systematic displacement in flow seasonality following post-dam compared to pre-dam conditions. There are also notable differences in the distributions of peaks and pulses in post-dam flows. The range of changes from these results shows that punctuated and cumulative impacts are related to the size of each new impoundment. These observations and their implications to the livelihoods, biota, and ecosystems services in the Santiago watershed need to be incorporated into a broader cost-benefit analysis of hydropower generation in the western Amazon Basin.

  7. Out, out, dam spot! The geomorphic response of rivers to dam removal.

    Treesearch

    Jonathan Thompson

    2005-01-01

    About 75,000 irrigation, flood control, and hydropower dams in the United States are aging, deteriorating, or have outlived their useful lives and purposes. Not surprisingly, dam removal is emerging as both a challenge and opportunity for river management and research. Scientists at the PNW Research Station in Corvallis, Oregon, are using scale models and monitoring...

  8. Bureau of Reclamation Hydropower Lease of Power Privilege: Case Studies and Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, Taylor L.; Levine, Aaron L.; McLaughlin, Kathleen

    This report analyzes the U.S. Bureau of Reclamation's (Reclamation) lease of power privilege (LOPP) regulatory process for a nonfederal entity to use a Reclamation jurisdictional dam or conduit for power generation. Recent federal initiatives encouraging hydropower development at federally-owned facilities coupled with Reclamation's hydroelectric potential has led to an increased interest in powering Reclamation dams and conduits through the LOPP process. During the last five years, 23 of the 36 total LOPP projects (76 MW) have been initiated and are at some phase of the development process. Resource assessments analyzed in this report identify over 360 MW of hydroelectric potentialmore » at Reclamation-owned dams and conduits. This report provides considerations from Reclamation staff involved in the LOPP regulatory process and developers that have received an LOPP and are currently generating hydropower at a Reclamation dam or conduit. The authors also analyze LOPP regulatory processing timelines before and after the implementation of federal initiatives to streamline the LOPP process and provide case studies of hydropower projects that have obtained an LOPP.« less

  9. Tapping hidden hydropower potential in Swiss Alpine catchments in the context of the planned nuclear power phase out

    NASA Astrophysics Data System (ADS)

    Santos, Ana Clara; Schaefli, Bettina; Manso, Pedro; Schleiss, Anton; Portela, Maria Manuela; Rinaldo, Andrea

    2015-04-01

    In its Energy Strategy 2050, Switzerland is revising its energy perspectives with a strong focus on renewable sources of energy and in particular hydropower. In this context, the Swiss Government funded a number of competence centers for energy research (SCCERs), including one on the Supply of Energy (SCCER-SoE), which develops fundamental research and innovative solutions in geoenergies and hydropower . Hydropower is already the major energy source in Switzerland, corresponding to approximately 55% of the total national electricity production (which was 69 TWh in 2014). The Energy Strategy 2050 foresees at least a net increase by 1.53 TWh/year in average hydrological conditions, in a context were almost all major river systems are already exploited and a straightforward application of recent environmental laws will impact (reduce) current hydropower production. In this contribution, we present the roadmap of the SCCER-SoE and an overview of our strategy to unravel currently non-exploited hydropower potential, in particular in river systems that are already used for hydropower production. The aim is hereby to quantify non-exploited natural flows, unnecessary water spills or storage volume deficits, whilst considering non-conventional approaches to water resources valuation and management. Such a better understanding of the current potential is paramount to justify future scenarios of adaptation of the existing hydropower infrastructure combining the increase of storage capacity with new connections between existing reservoirs, heightening or strengthening existing dams, increasing the operational volume of natural lakes (including new glacier lakes), or by building new dams. Tapping hidden potential shall also require operational changes to benefit from new flow patterns emerging under an evolving climate and in particular in the context of the ongoing glacier retreat. The paper shall present a broad view over the mentioned issues and first conclusions of ongoing

  10. Fuzzy multiobjective models for optimal operation of a hydropower system

    NASA Astrophysics Data System (ADS)

    Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.

    2013-06-01

    Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.

  11. Operation of hydropower generation systems in the Alps under future climate and socio-economic drivers

    NASA Astrophysics Data System (ADS)

    Anghileri, Daniela; Castelletti, Andrea; Burlando, Paolo

    2015-04-01

    Alpine hydropower systems are an important source of renewable energy for many countries in Europe. In Switzerland, for instance, they represent the most important domestic source of renewable energy (around 55%). However, future hydropower production may be threatened by unprecedented challenges, such as a decreasing water availability, due to climate change (CC) and associated glacier retreat, and uncertain operating conditions, such as future power needs and highly fluctuating demand on the energy market. This second aspect has gained increasingly relevance since the massive introduction of solar and wind generating systems in the portfolios of many European countries. Because hydropower systems have the potential to provide backup storage of energy to compensate for fluctuations that are typical, for instance, of solar and wind generation systems, it is important to investigate how the increased demand for flexible operation, together with climate change challenge and fluctuating markets, can impact their operating policies. The Swiss Competence Center on Supply of Electricity (www.sccer-soe.ch) has been recently established to explore new potential paths for the development of future power generation systems. In this context, we develop modelling and optimization tools to design and assess new operation strategies for hydropower systems to increase their reliability, flexibility, and robustness to future operation conditions. In particular, we develop an advanced modelling framework for the integrated simulation of the operation of hydropower plants, which accounts for CC-altered streamflow regimes, new demand and market conditions, as well as new boundary conditions for operation (e.g., aquatic ecosystem conservation). The model construction consists of two primary components: a physically based and spatially distributed hydrological model, which describes the relevant hydrological processes at the basin scale, and an agent based decision model, which

  12. Simulation analysis of temperature control on RCC arch dam of hydropower station

    NASA Astrophysics Data System (ADS)

    XIA, Shi-fa

    2017-12-01

    The temperature analysis of roller compacted concrete (RCC) dam plays an important role in their design and construction. Based on three-dimensional finite element method, in the computation of temperature field, many cases are included, such as air temperature, elevated temperature by cement hydration heat, concrete temperature during placing, the influence of water in the reservoir, and boundary temperature. According to the corresponding parameters of RCC arch dam, the analysis of temperature field and stress field during the period of construction and operation is performed. The study demonstrates that detailed thermal stress analysis should be performed for RCC dams to provide a basis to minimize and control the occurrence of thermal cracking.

  13. The arrangement of deformation monitoring project and analysis of monitoring data of a hydropower engineering safety monitoring system

    NASA Astrophysics Data System (ADS)

    Wang, Wanshun; Chen, Zhuo; Li, Xiuwen

    2018-03-01

    The safety monitoring is very important in the operation and management of water resources and hydropower projects. It is the important means to understand the dam running status, to ensure the dam safety, to safeguard people’s life and property security, and to make full use of engineering benefits. This paper introduces the arrangement of engineering safety monitoring system based on the example of a water resource control project. The monitoring results of each monitoring project are analyzed intensively to show the operating status of the monitoring system and to provide useful reference for similar projects.

  14. Is it worth a dam?

    PubMed Central

    Joyce, S

    1997-01-01

    Once a sign of modernization and growth, dams are often seen today as symbols of environmental and social devastation. Over 800,000 dams have been built worldwide to provide drinking water, flood control, hydropower, irrigation, navigation, and water storage. Dams do indeed provide these things,but at the cost of several adverse, unexpected effects: disruption of ecosystems, decline of fish stocks, forced human and animal resettlements, and diseases such as malaria, which are borne by vectors that thrive in quiet waters. PMID:9349830

  15. The socio-economics dynamics of Dam on Rural Communities: A case study of Oyan Dam, Nigeria

    NASA Astrophysics Data System (ADS)

    Ayeni, Amidu; Ojifo, Lawrence

    2018-06-01

    Dams construction and operations have many benefits, nevertheless, they have also led to lots of negative social, health and human impacts. It is based on this that this study assesses the potential and socio-economics dynamics of Oyan dam between 1980 and 2016. The data used for this study include water level and discharge records of the dam between 2007 and 2016, Landsat imageries of 1984 and 2016 and socio-economic datasets for the period. Analysis of the dam potentials (water supply, agriculture and hydropower) and socio-economic impacts of the dam were carried out using basic statistical tools, land use change anaysis and field survey using questionnaire, structured interview with major stakeholders and personal observation. The results revealed that the water level and storage of the Oyan dam had a relative reduction of about 2 % as well as non-stationarity pattern of water abstraction and production for the period. The landuse classes show all classes decreased in extent except the cultivated landuse that acrued an increased of 19.9 % between 1984 and 2016. Furthermore, commercial water supply varied significantly between 2010 and 2016 while irrigation scheme is grossly under-utilized from the inception in 1983 to 2016. Finally, the result of socio-economic impacts revealed that majority of the selected communities' members are actually not benefiting from the dam and their livelihoods are not from the dam.

  16. Determining the effect of key climate drivers on global hydropower production

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Ng, J. Y.; Lee, D.; Block, P. J.

    2017-12-01

    Accounting for about 17% of total global electrical power production, hydropower is arguably the world's main renewable energy source and a key asset to meet Paris climate agreements. A key component of hydropower production is water availability, which depends on both precipitation and multiple drivers of climate variability acting at different spatial and temporal scales. To understand how these drivers impact global hydropower production, we study the relation between four patterns of ocean-atmosphere climate variability (i.e., El Niño Southern Oscillation, Pacific Decadal Oscillation, North Atlantic Oscillation, and Atlantic Multidecadal Oscillation) and monthly time series of electrical power production for over 1,500 hydropower reservoirs—obtained via simulation with a high-fidelity dam model forced with 20th century climate conditions. Notably significant relationships between electrical power productions and climate variability are found in many climate sensitive regions globally, including North and South America, East Asia, West Africa, and Europe. Coupled interactions from multiple, simultaneous climate drivers are also evaluated. Finally, we highlight the importance of using these climate drivers as an additional source of information within reservoir operating rules where the skillful predictability of inflow exists.

  17. Spatial design principles for sustainable hydropower development in river basins

    DOE PAGES

    Jager, Henriëtte I.; Efroymson, Rebecca A.; Opperman, Jeff J.; ...

    2015-02-27

    How can dams be arranged within a river basin such that they benefit society? Recent interest in this question has grown in response to the worldwide trend toward developing hydropower as a source of renewable energy in Asia and South America, and the movement toward removing unnecessary dams in the US. Environmental and energy sustainability are important practical concerns, and yet river development has rarely been planned with the goal of providing society with a portfolio of ecosystem services into the future. We organized a review and synthesis of the growing research in sustainable river basin design around four spatialmore » decisions: Is it better to build fewer mainstem dams or more tributary dams? Should dams be clustered or distributed among distant subbasins? Where should dams be placed along a river? At what spatial scale should decisions be made? We came up with the following design principles for increasing ecological sustainability: (i) concentrate dams within a subset of tributary watersheds and avoid downstream mainstems of rivers, (ii) disperse freshwater reserves among the remaining tributary catchments, (iii) ensure that habitat provided between dams will support reproduction and retain offspring, and (iv) formulate spatial decision problems at the scale of large river basins. Based on our review, we discuss trade-offs between hydropower and ecological objectives when planning river basin development. We hope that future testing and refinement of principles extracted from our review will define a path toward sustainable river basin design.« less

  18. Efficiently approximating the Pareto frontier: Hydropower dam placement in the Amazon basin

    USGS Publications Warehouse

    Wu, Xiaojian; Gomes-Selman, Jonathan; Shi, Qinru; Xue, Yexiang; Garcia-Villacorta, Roosevelt; Anderson, Elizabeth; Sethi, Suresh; Steinschneider, Scott; Flecker, Alexander; Gomes, Carla P.

    2018-01-01

    Real–world problems are often not fully characterized by a single optimal solution, as they frequently involve multiple competing objectives; it is therefore important to identify the so-called Pareto frontier, which captures solution trade-offs. We propose a fully polynomial-time approximation scheme based on Dynamic Programming (DP) for computing a polynomially succinct curve that approximates the Pareto frontier to within an arbitrarily small > 0 on treestructured networks. Given a set of objectives, our approximation scheme runs in time polynomial in the size of the instance and 1/. We also propose a Mixed Integer Programming (MIP) scheme to approximate the Pareto frontier. The DP and MIP Pareto frontier approaches have complementary strengths and are surprisingly effective. We provide empirical results showing that our methods outperform other approaches in efficiency and accuracy. Our work is motivated by a problem in computational sustainability concerning the proliferation of hydropower dams throughout the Amazon basin. Our goal is to support decision-makers in evaluating impacted ecosystem services on the full scale of the Amazon basin. Our work is general and can be applied to approximate the Pareto frontier of a variety of multiobjective problems on tree-structured networks.

  19. Cumulative effects of cascade hydropower stations on total dissolved gas supersaturation.

    PubMed

    Ma, Qian; Li, Ran; Feng, Jingjie; Lu, Jingying; Zhou, Qin

    2018-05-01

    Elevated levels of total dissolved gas (TDG) may occur downstream of dams during the spill process. These high levels would increase the incidence of gas bubble disease in fish and cause severe environmental impacts. With increasing numbers of cascade hydropower stations being built or planned, the cumulative effects of TDG supersaturation are becoming increasingly prominent. The TDG saturation distribution in the downstream reaches of the Jinsha River was studied to investigate the cumulative effects of TDG supersaturation resulting from the cascade hydropower stations. A comparison of the effects of the joint operation and the single operation of two hydropower stations (XLD and XJB) was performed to analyze the risk degree to fish posed by TDG supersaturation. The results showed that water with supersaturated TDG generated at the upstream cascade can be transported to the downstream power station, leading to cumulative TDG supersaturation effects. Compared with the single operation of XJB, the joint operation of both stations produced a much higher TDG saturation downstream of XJB, especially during the non-flood discharge period. Moreover, the duration of high TDG saturation and the lengths of the lethal and sub-lethal areas were much higher in the joint operation scenario, posing a greater threat to fish and severely damaging the environment. This work provides a scientific basis for strategies to reduce TDG supersaturation to the permissible level and minimize the potential risk of supersaturated TDG.

  20. The necessity of field research in prescription of Environmental Flows - A case of the hydropower dominated Middle Zambezi Catchment

    NASA Astrophysics Data System (ADS)

    Mwelwa, Elenestina; Crosato, Alessandra; Wright, Nigel; Beevers, Lindsay

    2013-04-01

    The research work in the Middle Zambezi sub-catchment has the key objective to investigate the state of the river and its flood plain in terms of flow variation, river and flood plain morphological variation for both the pre and post hydropower schemes. From the rich biodiversity that this area supports, both Zambia and Zimbabwe has established National Parks with Mana Pools National Park, Sapi and Chewore safari areas being designated as UNESCO World Heritage Site in 1984. The habitat sustenance depend on the river channels and the associated morphological features with the flood and recession interaction whose modification can lead to negative environmental consequences. The research findings on the state of the sub-catchment flows and morphology will be outlined. Highlights will be given on the following findings: dominance of hydropower regulation in the water balance of the river reach, historical map analysis and related rates of river channel morphology changes associated to dam operating events and, bed load sediment characterisation and distribution. With the use of SOBEK-Rural (1D/2D) model, analysis of future state of the sub-catchment will be outlined, taking into account the following scenarios: no dam state of the river reach; continue with current water regulation and operations; modification in water regulation to take into account favorable changes and; climate related variation of droughts. The research deductions and implications for maintaining the current dam operation practices will be outline as relates to the sustainability of the hydro-morphology and ecosystem of the catchment which support a rich wildlife habitat. The research observed critical water needs form the basis for environmental flows prescription and recommendation. Whereas the restoration of regular flooding has been identified to be important, the most critical need however is the timing of flood gate regulation which has been observed as a trigger to loss of islands and bars

  1. PNNL Fish Telemetry: Improving the Sustainability of Hydropower One Tag at a Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Evaluating the environmental impact of hydropower is critical to the growth, development, and maintenance of this vital energy source. Operators, developers, and regulators often turn to animal telemetry to measure the effect of dams on fish populations. PNNL’s tagging portfolio consists of a range of tags suitable for a variety of applications from active tags slightly larger than a grain of rice to larger tags that power themselves via a fish’s natural movement.

  2. A New Tool for Environmental and Economic Optimization of Hydropower Operations

    NASA Astrophysics Data System (ADS)

    Saha, S.; Hayse, J. W.

    2012-12-01

    As part of a project funded by the U.S. Department of Energy, researchers from Argonne, Oak Ridge, Pacific Northwest, and Sandia National Laboratories collaborated on the development of an integrated toolset to enhance hydropower operational decisions related to economic value and environmental performance. As part of this effort, we developed an analytical approach (Index of River Functionality, IRF) and an associated software tool to evaluate how well discharge regimes achieve ecosystem management goals for hydropower facilities. This approach defines site-specific environmental objectives using relationships between environmental metrics and hydropower-influenced flow characteristics (e.g., discharge or temperature), with consideration given to seasonal timing, duration, and return frequency requirements for the environmental objectives. The IRF approach evaluates the degree to which an operational regime meets each objective and produces a score representing how well that regime meets the overall set of defined objectives. When integrated with other components in the toolset that are used to plan hydropower operations based upon hydrologic forecasts and various constraints on operations, the IRF approach allows an optimal release pattern to be developed based upon tradeoffs between environmental performance and economic value. We tested the toolset prototype to generate a virtual planning operation for a hydropower facility located in the Upper Colorado River basin as a demonstration exercise. We conducted planning as if looking five months into the future using data for the recently concluded 2012 water year. The environmental objectives for this demonstration were related to spawning and nursery habitat for endangered fishes using metrics associated with maintenance of instream habitat and reconnection of the main channel with floodplain wetlands in a representative reach of the river. We also applied existing mandatory operational constraints for the

  3. Damming the rivers of the Amazon basin

    NASA Astrophysics Data System (ADS)

    Latrubesse, Edgardo M.; Arima, Eugenio Y.; Dunne, Thomas; Park, Edward; Baker, Victor R.; D'Horta, Fernando M.; Wight, Charles; Wittmann, Florian; Zuanon, Jansen; Baker, Paul A.; Ribas, Camila C.; Norgaard, Richard B.; Filizola, Naziano; Ansar, Atif; Flyvbjerg, Bent; Stevaux, Jose C.

    2017-06-01

    More than a hundred hydropower dams have already been built in the Amazon basin and numerous proposals for further dam constructions are under consideration. The accumulated negative environmental effects of existing dams and proposed dams, if constructed, will trigger massive hydrophysical and biotic disturbances that will affect the Amazon basin’s floodplains, estuary and sediment plume. We introduce a Dam Environmental Vulnerability Index to quantify the current and potential impacts of dams in the basin. The scale of foreseeable environmental degradation indicates the need for collective action among nations and states to avoid cumulative, far-reaching impacts. We suggest institutional innovations to assess and avoid the likely impoverishment of Amazon rivers.

  4. Damming the rivers of the Amazon basin.

    PubMed

    Latrubesse, Edgardo M; Arima, Eugenio Y; Dunne, Thomas; Park, Edward; Baker, Victor R; d'Horta, Fernando M; Wight, Charles; Wittmann, Florian; Zuanon, Jansen; Baker, Paul A; Ribas, Camila C; Norgaard, Richard B; Filizola, Naziano; Ansar, Atif; Flyvbjerg, Bent; Stevaux, Jose C

    2017-06-14

    More than a hundred hydropower dams have already been built in the Amazon basin and numerous proposals for further dam constructions are under consideration. The accumulated negative environmental effects of existing dams and proposed dams, if constructed, will trigger massive hydrophysical and biotic disturbances that will affect the Amazon basin's floodplains, estuary and sediment plume. We introduce a Dam Environmental Vulnerability Index to quantify the current and potential impacts of dams in the basin. The scale of foreseeable environmental degradation indicates the need for collective action among nations and states to avoid cumulative, far-reaching impacts. We suggest institutional innovations to assess and avoid the likely impoverishment of Amazon rivers.

  5. Squeezing Every Drop of Value from Federal Hydropower under a Continually Challenging Changing Environment

    NASA Astrophysics Data System (ADS)

    Kyriss, L.

    2011-12-01

    . Understanding how river flows impact archaeological and cultural resources and finding ways to minimize impacts 5. Identifying ways to incorporate traditional cultural knowledge into ongoing research into long-term impacts to the river system that result from dam and powerplant operations 6. Identifying impacts on downstream resources that result from dam and powerplant resources and finding ways to mitigate those impacts. 7. Finding ways to maximize the value of the hydropower while minimizing impacts to other resources 8. Ensuring power revenues remain sufficient to pay for the ongoing power operations and maintenance costs, the initial investment and interest costs, the irrigation costs assigned to power for repayment and the costs that power bears to fund environmental restoration and research. To meet our needs, Western continues to seek opportunities to find ways to identify shared interests and viable solutions to reach these goals. Western will need to continue seeking innovative approaches and partnerships with organizations that have conflicting and competing requirements. Only by finding ways to resolve these competing policy choices will people across the Western Unites States gain the most value from these resources.

  6. 78 FR 62322 - Hydropower Regulatory Efficiency Act of 2013; Notice of Rescheduled Two-Year Licensing Process...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-16

    ... at non-powered dams and closed-loop pumped storage projects in compliance with section 6 of the... process for licensing hydropower development at non-powered dams and closed-loop pumped storage projects...-powered dam versus closed- loop pumped storage) affect the steps included in a two-year process? 3.9...

  7. Climate impacts on hydropower and consequences for global electricity supply investment needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Sean W. D.; Hejazi, Mohamad; Kim, Son H.

    Recent progress in global scale hydrological and dam modeling has allowed for the study of climate change impacts on global hydropower production. Here we explore the possible consequences of these impacts for the electricity supply sector. Regional hydropower projections are developed for two emissions scenarios by forcing a coupled global hydrological and dam model with downscaled, bias-corrected climate realizations derived from sixteen general circulation models. Consequent impacts on power sector composition and associated emissions and investment costs are explored using the Global Change Assessment Model (GCAM). Changes in hydropower generation resulting from climate change can shift power demands onto andmore » away from carbon intensive technologies, resulting in significant impacts on power sector CO2 emissions for certain world regions—primarily those located in Latin America, as well as Canada and parts of Europe. Reduced impacts of climate change on hydropower production under a low emissions scenario coincide with increased costs of marginal power generating capacity—meaning impacts on power sector investment costs are similar for high and low emissions scenarios. Individual countries where impacts on investment costs imply significant risks or opportunities are identified.« less

  8. Seasonal forecasting for water resource management: the example of CNR Genissiat dam on the Rhone River in France

    NASA Astrophysics Data System (ADS)

    Dommanget, Etienne; Bellier, Joseph; Ben Daoud, Aurélien; Graff, Benjamin

    2014-05-01

    Compagnie Nationale du Rhône (CNR) has been granted the concession to operate the Rhone River from the Swiss border to the Mediterranean Sea since 1933 and carries out three interdependent missions: navigation, irrigation and hydropower production. Nowadays, CNR generates one quarter of France's hydropower electricity. The convergence of public and private interests around optimizing the management of water resources throughout the French Rhone valley led CNR to develop hydrological models dedicated to discharge seasonal forecasting. Indeed, seasonal forecasting is a major issue for CNR and water resource management, in order to optimize long-term investments of the produced electricity, plan dam maintenance operations and anticipate low water period. Seasonal forecasting models have been developed on the Genissiat dam. With an installed capacity of 420MW, Genissiat dam is the first of the 19 CNR's hydropower plants. Discharge forecasting at Genissiat dam is strategic since its inflows contributes to 20% of the total Rhone average discharge and consequently to 40% of the total Rhone hydropower production. Forecasts are based on hydrological statistical models. Discharge on the main Rhone River tributaries upstream Genissiat dam are forecasted from 1 to 6 months ahead thanks to multiple linear regressions. Inputs data of these regressions are identified depending on river hydrological regimes and periods of the year. For the melting season, from spring to summer, snow water equivalent (SWE) data are of major importance. SWE data are calculated from Crocus model (Météo France) and SLF's model (Switzerland). CNR hydro-meteorological forecasters assessed meteorological trends regarding precipitations for the next coming months. These trends are used to generate stochastically precipitation scenarios in order to complement regression data set. This probabilistic approach build a decision-making supports for CNR's water resource management team and provides them with

  9. Hydropower Modeling Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoll, Brady; Andrade, Juan; Cohen, Stuart

    Hydropower facilities are important assets for the electric power sector and represent a key source of flexibility for electric grids with large amounts of variable generation. As variable renewable generation sources expand, understanding the capabilities and limitations of the flexibility from hydropower resources is important for grid planning. Appropriately modeling these resources, however, is difficult because of the wide variety of constraints these plants face that other generators do not. These constraints can be broadly categorized as environmental, operational, and regulatory. This report highlights several key issues involving incorporating these constraints when modeling hydropower operations in terms of production costmore » and capacity expansion. Many of these challenges involve a lack of data to adequately represent the constraints or issues of model complexity and run time. We present several potential methods for improving the accuracy of hydropower representation in these models to allow for a better understanding of hydropower's capabilities.« less

  10. Design of Environmental Flows Below Diversion Hydropower Dams: Is There Benefit to Advanced Streamflow Prediction in Sparse Data Landscapes?

    NASA Astrophysics Data System (ADS)

    Kibler, K. M.; Alipour, M.

    2017-12-01

    Diversion hydropower has been shown to significantly alter river flow regimes by dewatering diversion bypass reaches. Data scarcity is one of the foremost challenges to establishing environmental flow regimes below diversion hydropower dams, especially in regions of sparse hydro-meteorological observation. Herein, we test two prediction strategies for generating daily flows in rivers developed with diversion hydropower: a catchment similarity model, and a rainfall-runoff model selected by multi-objective optimization based on soft data. While both methods are designed for ungauged rivers embedded within large regions of sparse hydrologic observation, one is more complex and computationally-intensive. The objective of this study is to assess the benefit of using complex modeling tools in data-sparse landscapes to support design of environmental flow regimes. Models were tested in gauged catchments and then used to simulate a 28-year record of daily flows in 32 ungauged rivers. After perturbing flows with the hydropower diversion, we detect alteration using Indicators of Hydrologic Alteration (IHA) metrics and compare outcomes of the two modeling approaches. The catchment similarity model simulates low flows well (Nash-Sutcliff efficiency (NSE) = 0.91), but poorly represents moderate to high flows (overall NSE = 0.25). The multi-objective rainfall-runoff model performs well overall (NSE = 0.72). Both models agree that flow magnitudes and variability consistently decrease following diversion as temporally-dynamic flows are replaced by static minimal flows. Mean duration of events sustained below the pre-diversion Q75 and mean hydrograph rise and fall rates increase. While we see broad areas of agreement, significant effects and thresholds vary between models, particularly in the representation of moderate flows. Thus, use of simplified streamflow models may bias detected alterations or inadequately characterize pre-regulation flow regimes, providing inaccurate

  11. Are Wind Power and Hydropower Complements or Competitors? An Analysis of Ecosystem Service Constraints in the Roanoke Basin

    NASA Astrophysics Data System (ADS)

    Reed, P. M.; Fernandez, A. R.; Blumsack, S.

    2011-12-01

    Hydropower can provide inexpensive, flexible fill-in power to compensate for intermittent renewable generation. Policies for hydropower dams maintain multiple services beyond electric generation, including environmental protection, flood control and recreation. We model the decision of a hydroelectric generator to shift some of its power production capacity away from the day-ahead energy market into a "wind-following" service that smoothes the intermittent production of wind turbines. Offering such a service imposes both private and social opportunity costs. Since fluctuations in wind energy output are not perfectly correlated with day-ahead energy prices, a wind-following service will necessarily affect generator revenues. Seasonal wind patterns produce conflicts with the goal of managing rivers for "ecosystem services" - the maintenance or enhancement of downstream ecosystems. We illustrate our decision model using the Kerr Dam in PJM's territory in North Carolina. We simulate the operation of Kerr Dam over a three-year period that features hydrologic variability from normal water years to extreme drought conditions. We use an optimization framework to estimate reservation prices for Kerr Dam offering wind-following services in the PJM market. Wind-following may be profitable for Kerr Dam at low capacity levels during some time periods if ecosystems services are neglected and if side payments, or reserves-type payments, are provided. Wind-following with ecosystem services yields revenue losses that typically cannot be recovered with reserves market payments. Water release patterns are inconsistent with ecosystem-services goals when Kerr Dam dedicates significant capacity to wind-following, particularly in drought years.

  12. Hydroeconomic Analysis of the Balance between Renewable Wind Energy, Hydropower, and Ecosystems Services in the Roanoke River Basin

    NASA Astrophysics Data System (ADS)

    Fernandez, A.; Blumsack, S.; Reed, P.

    2012-04-01

    Hydropower can provide inexpensive, flexible fill-in power to compensate for intermittent renewable generation. Policies for hydropower dams maintain multiple services beyond electric generation, including environmental protection, flood control and recreation. We model the decision of a hydroelectric generator to shift some of its power production capacity away from the day-ahead energy market into a "wind-following" service that smoothes the intermittent production of wind turbines. Offering such a service imposes both private and social opportunity costs. Since fluctuations in wind energy output are not perfectly correlated with day-ahead energy prices, a wind-following service will necessarily affect generator revenues. Seasonal wind patterns produce conflicts with the goal of managing rivers for "ecosystem services" - the maintenance or enhancement of downstream ecosystems. We illustrate our decision model using the Kerr Dam in PJM's territory in North Carolina. We simulate the operation of Kerr Dam over a three-year period that features hydrologic variability from normal water years to extreme drought conditions. We use an optimization framework to estimate reservation prices for Kerr Dam offering wind-following services in the PJM market. Wind-following may be profitable for Kerr Dam at low capacity levels during some time periods if ecosystems services are neglected and if side payments, or reserves-type payments, are provided. Wind-following with ecosystem services yields revenue losses that typically cannot be recovered with reserves market payments. Water release patterns are inconsistent with ecosystem-services goals when Kerr Dam dedicates significant capacity to wind-following, particularly in drought years.

  13. A Holistic Framework for Environmental Flows Determination in Hydropower Contexts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A; Bevelhimer, Mark S

    2013-05-01

    Among the ecological science community, the consensus view is that the natural flow regime sustains the ecological integrity of river systems. This prevailing viewpoint by many environmental stakeholders has progressively led to increased pressure on hydropower dam owners to change plant operations to affect downstream river flows with the intention of providing better conditions for aquatic biological communities. Identifying the neccessary magnitude, frequency, duration, timing, or rate of change of stream flows to meet ecological needs in a hydropower context is challenging because the ecological responses to changes in flows may not be fully known, there are usually a multitudemore » of competing users of flow, and implementing environmental flows usually comes at a price to energy production. Realistically, hydropower managers must develop a reduced set of goals that provide the most benefit to the identified ecological needs. As a part of the Department of Energy (DOE) Water Power Program, the Instream Flow Project (IFP) was carried out by Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Argon National Laboratory (ANL) as an attempt to develop tools aimed at defining environmental flow needs for hydropower operations. The application of these tools ranges from national to site-specific scales; thus, the utility of each tool will depend on various phases of the environmental flow process. Given the complexity and sheer volume of applications used to determine environmentally acceptable flows for hydropower, a framework is needed to organize efforts into a staged process dependent upon spatial, temporal, and functional attributes. By far, the predominant domain for determining environmental flows related to hydropower is within the Federal Energy Regulatory Commission (FERC) relicensing process. This process can take multiple years and can be very expensive depending on the scale of each hydropower project. The utility

  14. Multi-objective Operation Chart Optimization for Aquatic Species Habitat Conservation of Cascaded Hydropower System on Yuan River, Southwestern China

    NASA Astrophysics Data System (ADS)

    Wen, X.; Lei, X.; Fang, G.; Huang, X.

    2017-12-01

    Extensive cascading hydropower exploitation in southwestern China has been the subject of debate and conflict in recent years. Introducing limited ecological curves, a novel approach for derivation of hydropower-ecological joint operation chart of cascaded hydropower system was proposed, aiming to optimize the general hydropower and ecological benefits, and to alleviate the ecological deterioration in specific flood/dry conditions. The physical habitat simulation model is proposed initially to simulate the relationship between streamflow and physical habitat of target fish species and to determine the optimal ecological flow range of representative reach. The ecological—hydropower joint optimization model is established to produce the multi-objective operation chart of cascaded hydropower system. Finally, the limited ecological guiding curves were generated and added into the operation chart. The JS-MDS cascaded hydropower system on the Yuan River in southwestern China is employed as the research area. As the result, the proposed guiding curves could increase the hydropower production amount by 1.72% and 5.99% and optimize ecological conservation degree by 0.27% and 1.13% for JS and MDS Reservoir, respectively. Meanwhile, the ecological deterioration rate also sees a decrease from 6.11% to 1.11% for JS Reservoir and 26.67% to 3.89% for MDS Reservoir.

  15. Hydropower's Biogenic Carbon Footprint.

    PubMed

    Scherer, Laura; Pfister, Stephan

    2016-01-01

    Global warming is accelerating and the world urgently needs a shift to clean and renewable energy. Hydropower is currently the largest renewable source of electricity, but its contribution to climate change mitigation is not yet fully understood. Hydroelectric reservoirs are a source of biogenic greenhouse gases and in individual cases can reach the same emission rates as thermal power plants. Little is known about the severity of their emissions at the global scale. Here we show that the carbon footprint of hydropower is far higher than previously assumed, with a global average of 173 kg CO2 and 2.95 kg CH4 emitted per MWh of electricity produced. This results in a combined average carbon footprint of 273 kg CO2e/MWh when using the global warming potential over a time horizon of 100 years (GWP100). Nonetheless, this is still below that of fossil energy sources without the use of carbon capture and sequestration technologies. We identified the dams most promising for capturing methane for use as alternative energy source. The spread among the ~1500 hydropower plants analysed in this study is large and highlights the importance of case-by-case examinations.

  16. Hydropower's Biogenic Carbon Footprint

    PubMed Central

    Pfister, Stephan

    2016-01-01

    Global warming is accelerating and the world urgently needs a shift to clean and renewable energy. Hydropower is currently the largest renewable source of electricity, but its contribution to climate change mitigation is not yet fully understood. Hydroelectric reservoirs are a source of biogenic greenhouse gases and in individual cases can reach the same emission rates as thermal power plants. Little is known about the severity of their emissions at the global scale. Here we show that the carbon footprint of hydropower is far higher than previously assumed, with a global average of 173 kg CO2 and 2.95 kg CH4 emitted per MWh of electricity produced. This results in a combined average carbon footprint of 273 kg CO2e/MWh when using the global warming potential over a time horizon of 100 years (GWP100). Nonetheless, this is still below that of fossil energy sources without the use of carbon capture and sequestration technologies. We identified the dams most promising for capturing methane for use as alternative energy source. The spread among the ~1500 hydropower plants analysed in this study is large and highlights the importance of case-by-case examinations. PMID:27626943

  17. Efficient Operation of a Multi-purpose Reservoir in Chile: Integration of Economic Water Value for Irrigation and Hydropower

    NASA Astrophysics Data System (ADS)

    Olivares, M. A.; Gonzalez Cabrera, J. M., Sr.; Moreno, R.

    2016-12-01

    Operation of hydropower reservoirs in Chile is prescribed by an Independent Power System Operator. This study proposes a methodology that integrates power grid operations planning with basin-scale multi-use reservoir operations planning. The aim is to efficiently manage a multi-purpose reservoir, in which hydroelectric generation is competing with other water uses, most notably irrigation. Hydropower and irrigation are competing water uses due to a seasonality mismatch. Currently, the operation of multi-purpose reservoirs with substantial power capacity is prescribed as the result of a grid-wide cost-minimization model which takes irrigation requirements as constraints. We propose advancing in the economic co-optimization of reservoir water use for irrigation and hydropower at the basin level, by explicitly introducing the economic value of water for irrigation represented by a demand function for irrigation water. The proposed methodology uses the solution of a long-term grid-wide operations planning model, a stochastic dual dynamic program (SDDP), to obtain the marginal benefit function for water use in hydropower. This marginal benefit corresponds to the energy price in the power grid as a function of the water availability in the reservoir and the hydrologic scenarios. This function allows capture technical and economic aspects to the operation of hydropower reservoir in the power grid and is generated with the dual variable of the power-balance constraint, the optimal reservoir operation and the hydrologic scenarios used in SDDP. The economic value of water for irrigation and hydropower are then integrated into a basin scale stochastic dynamic program, from which stored water value functions are derived. These value functions are then used to re-optimize reservoir operations under several inflow scenarios.

  18. Survival of Atlantic salmon Salmo salar smolts through a hydropower complex

    USGS Publications Warehouse

    Stich, D.S.; Bailey, M.M.; Zydlewski, Joseph D.

    2014-01-01

    This study evaluated Atlantic salmon Salmo salar smolt survival through the lower Penobscot River, Maine, U.S.A., and characterized relative differences in proportional use and survival through the main-stem of the river and an alternative migration route, the Stillwater Branch. The work was conducted prior to removal of two main-stem dams and operational changes in hydropower facilities in the Stillwater Branch. Survival and proportional use of migration routes in the lower Penobscot were estimated from multistate (MS) models based on 6 years of acoustic telemetry data from 1669 smolts and 2 years of radio-telemetry data from 190 fish. A small proportion (0·12, 95% c.i. = 0·06–0·25) of smolts used the Stillwater Branch, and mean survival through the two operational dams in this part of the river was relatively high (1·00 and 0·97). Survival at Milford Dam, the dam that will remain in the main-stem of the Penobscot River, was relatively low (0·91), whereas survival through two dams that were removed was relatively high (0·99 and 0·98). Smolt survival could decrease in the Stillwater Branch with the addition of two new powerhouses while continuing to meet fish passage standards. The effects of removing two dams in the main-stem are expected to be negligible for smolt survival based on high survival observed from 2005 to 2012 at those locations. Survival through Milford Dam was been well below current regulatory standards, and thus improvement of passage at this location offers the best opportunity for improving overall smolt survival in the lower river.

  19. Ex post power economic analysis of record of decision operational restrictions at Glen Canyon Dam.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veselka, T. D.; Poch, L. A.; Palmer, C. S.

    On October 9, 1996, Bruce Babbitt, then-Secretary of the U.S. Department of the Interior signed the Record of Decision (ROD) on operating criteria for the Glen Canyon Dam (GCD). Criteria selected were based on the Modified Low Fluctuating Flow (MLFF) Alternative as described in the Operation of Glen Canyon Dam, Colorado River Storage Project, Arizona, Final Environmental Impact Statement (EIS) (Reclamation 1995). These restrictions reduced the operating flexibility of the hydroelectric power plant and therefore its economic value. The EIS provided impact information to support the ROD, including an analysis of operating criteria alternatives on power system economics. This exmore » post study reevaluates ROD power economic impacts and compares these results to the economic analysis performed prior (ex ante) to the ROD for the MLFF Alternative. On the basis of the methodology used in the ex ante analysis, anticipated annual economic impacts of the ROD were estimated to range from approximately $15.1 million to $44.2 million in terms of 1991 dollars ($1991). This ex post analysis incorporates historical events that took place between 1997 and 2005, including the evolution of power markets in the Western Electricity Coordinating Council as reflected in market prices for capacity and energy. Prompted by ROD operational restrictions, this analysis also incorporates a decision made by the Western Area Power Administration to modify commitments that it made to its customers. Simulated operations of GCD were based on the premise that hourly production patterns would maximize the economic value of the hydropower resource. On the basis of this assumption, it was estimated that economic impacts were on average $26.3 million in $1991, or $39 million in $2009.« less

  20. [Ecological risk assessment of hydropower dam construction on aquatic species in middle reaches of Lancang River, Southwest China based on ESHIPPO model].

    PubMed

    Li, Xiao-Yan; Peng, Ming-Chun; Dong, Shi-Kui; Liu, Shi-Liang; Li, Jin-Peng; Yang, Zhi-Feng

    2013-02-01

    An investigation was conducted on the phytoplankton, zooplankton, and fish at 8 sampling sections in the Manwan Reservoir before and after the construction of Xiaowan Hydropower Dam. The modified ESHIPPO model was applied to study the changes of the featured aquatic species, including endangered species, endemic specie, peis resource species, and native fish, aimed to make an ecological risk assessment of the dam construction on the aquatic species. The dam construction had definite ecological risk on the aquatic species, especially the endemic fish, in Langcang River, due to the changes of hydrological conditions. The endemic species including Bangia atropurpurea, Lemanea sinica, Prasiola sp., Attheyella yunnanensis, and Neutrodiaptomus mariadvigae were at high ecological risk, and thus, besides monitoring, protection measures were needed to be taken to lower the possibility of the species extinction. The widely distributed species of phytoplankton and zooplankton were at medium ecological risk, and protection measures besides monitoring should be prepared. Twelve kinds of native fish, including Barbodes huangchuchieni, Sinilabeo laticeps, Racoma lantsangensis, Racoma lissolabiatus, Paracobitis anguillioides, Schistura latifasciata, Botia nigrolineata, Vanmanenia striata, Homaloptera yunnanensis, Platytropius longianlis, Glyptothorax zanaensis, and Pseudecheneis immaculate, were at high ecological risk, and protection measures needed to be developed to prevent the possibility of the species loss and extinction.

  1. 94. DAM TAINTER GATE OPERATING MACHINERY METHOD OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    94. DAM - TAINTER GATE OPERATING MACHINERY - METHOD OF ATTACHING LIFTING CHAINS TO DRUMS OF HOIST - LAKESIDE TYPE (ML-4&5-55/34-FS), February 1938 - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 4, Alma, Buffalo County, WI

  2. Downstream effects of hydropower production on aquatic macroinvertebrate assemblages in two rivers in Costa Rica.

    PubMed

    Chaves-Ulloa, Ramsa; Umaña-Villalobos, Gerardo; Springer, Monika

    2014-04-01

    Despite the fact that little is known about the consequences of hydropower production in tropical areas, many large dams (> 15 m high) are currently under construction or consideration in the tropics. We researched the effects of large hydroelectric dams on aquatic macroinvertebrate assemblages in two Costa Rican rivers. We measured physicochemical characteristics and sampled aquatic macroinvertebrates from March 2003 to March 2004 in two dammed rivers, Peñas Blancas and San Lorenzo, as well as in the undammed Chachagua River. Sites above and below the dam had differences in their physicochemical variables, with wide variation and extreme values in variables measured below the dam in the San Lorenzo River. Sites below the dams had reduced water discharges, velocities, and depths when compared with sites above the dams, as well as higher temperatures and conductivity. Sites above dams were dominated by collector-gatherer-scrapers and habitat groups dominated by swimmer-clingers, while sites below dams had a more even representation of groups. In contrast, a comparison between two sites at different elevation in the undammed river maintained a similar assemblage composition. Tributaries might facilitate macroinvertebrate recovery above the turbine house, but the assemblage below the turbine house resembled the one below the dam. A massive sediment release event from the dam decreased the abundance per sample and macroinvertebrate taxa below the dam in the Peñas Blancas River. Our study illustrates the effects of hydropower production on neotropical rivers, highlighting the importance of using multiple measures of macroinvertebrate assemblage structure for assessing this type of environmental impact.

  3. Predicting environmental mitigation requirements for hydropower projects through the integration of biophysical and socio-political geographies

    DOE PAGES

    Bevelhimer, Mark S.; DeRolph, Christopher R.; Schramm, Michael P.

    2016-06-06

    Uncertainty about environmental mitigation needs at existing and proposed hydropower projects makes it difficult for stakeholders to minimize environmental impacts. Hydropower developers and operators desire tools to better anticipate mitigation requirements, while natural resource managers and regulators need tools to evaluate different mitigation scenarios and order effective mitigation. Here we sought to examine the feasibility of using a suite of multidisciplinary explanatory variables within a spatially explicit modeling framework to fit predictive models for future environmental mitigation requirements at hydropower projects across the conterminous U.S. Using a database comprised of mitigation requirements from more than 300 hydropower project licenses, wemore » were able to successfully fit models for nearly 50 types of environmental mitigation and to apply the predictive models to a set of more than 500 non-powered dams identified as having hydropower potential. The results demonstrate that mitigation requirements have been a result of a range of factors, from biological and hydrological to political and cultural. Furthermore, project developers can use these models to inform cost projections and design considerations, while regulators can use the models to more quickly identify likely environmental issues and potential solutions, hopefully resulting in more timely and more effective decisions on environmental mitigation.« less

  4. Predicting environmental mitigation requirements for hydropower projects through the integration of biophysical and socio-political geographies.

    PubMed

    DeRolph, Christopher R; Schramm, Michael P; Bevelhimer, Mark S

    2016-10-01

    Uncertainty about environmental mitigation needs at existing and proposed hydropower projects makes it difficult for stakeholders to minimize environmental impacts. Hydropower developers and operators desire tools to better anticipate mitigation requirements, while natural resource managers and regulators need tools to evaluate different mitigation scenarios and order effective mitigation. Here we sought to examine the feasibility of using a suite of multi-faceted explanatory variables within a spatially explicit modeling framework to fit predictive models for future environmental mitigation requirements at hydropower projects across the conterminous U.S. Using a database comprised of mitigation requirements from more than 300 hydropower project licenses, we were able to successfully fit models for nearly 50 types of environmental mitigation and to apply the predictive models to a set of more than 500 non-powered dams identified as having hydropower potential. The results demonstrate that mitigation requirements are functions of a range of factors, from biophysical to socio-political. Project developers can use these models to inform cost projections and design considerations, while regulators can use the models to more quickly identify likely environmental issues and potential solutions, hopefully resulting in more timely and more effective decisions on environmental mitigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Predicting environmental mitigation requirements for hydropower projects through the integration of biophysical and socio-political geographies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bevelhimer, Mark S.; DeRolph, Christopher R.; Schramm, Michael P.

    Uncertainty about environmental mitigation needs at existing and proposed hydropower projects makes it difficult for stakeholders to minimize environmental impacts. Hydropower developers and operators desire tools to better anticipate mitigation requirements, while natural resource managers and regulators need tools to evaluate different mitigation scenarios and order effective mitigation. Here we sought to examine the feasibility of using a suite of multidisciplinary explanatory variables within a spatially explicit modeling framework to fit predictive models for future environmental mitigation requirements at hydropower projects across the conterminous U.S. Using a database comprised of mitigation requirements from more than 300 hydropower project licenses, wemore » were able to successfully fit models for nearly 50 types of environmental mitigation and to apply the predictive models to a set of more than 500 non-powered dams identified as having hydropower potential. The results demonstrate that mitigation requirements have been a result of a range of factors, from biological and hydrological to political and cultural. Furthermore, project developers can use these models to inform cost projections and design considerations, while regulators can use the models to more quickly identify likely environmental issues and potential solutions, hopefully resulting in more timely and more effective decisions on environmental mitigation.« less

  6. Seasonal-Scale Optimization of Conventional Hydropower Operations in the Upper Colorado System

    NASA Astrophysics Data System (ADS)

    Bier, A.; Villa, D.; Sun, A.; Lowry, T. S.; Barco, J.

    2011-12-01

    Sandia National Laboratories is developing the Hydropower Seasonal Concurrent Optimization for Power and the Environment (Hydro-SCOPE) tool to examine basin-wide conventional hydropower operations at seasonal time scales. This tool is part of an integrated, multi-laboratory project designed to explore different aspects of optimizing conventional hydropower operations. The Hydro-SCOPE tool couples a one-dimensional reservoir model with a river routing model to simulate hydrology and water quality. An optimization engine wraps around this model framework to solve for long-term operational strategies that best meet the specific objectives of the hydrologic system while honoring operational and environmental constraints. The optimization routines are provided by Sandia's open source DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) software. Hydro-SCOPE allows for multi-objective optimization, which can be used to gain insight into the trade-offs that must be made between objectives. The Hydro-SCOPE tool is being applied to the Upper Colorado Basin hydrologic system. This system contains six reservoirs, each with its own set of objectives (such as maximizing revenue, optimizing environmental indicators, meeting water use needs, or other objectives) and constraints. This leads to a large optimization problem with strong connectedness between objectives. The systems-level approach used by the Hydro-SCOPE tool allows simultaneous analysis of these objectives, as well as understanding of potential trade-offs related to different objectives and operating strategies. The seasonal-scale tool will be tightly integrated with the other components of this project, which examine day-ahead and real-time planning, environmental performance, hydrologic forecasting, and plant efficiency.

  7. Hydropower Optimization Using Artificial Neural Network Surrogate Models of a High-Fidelity Hydrodynamics and Water Quality Model

    NASA Astrophysics Data System (ADS)

    Shaw, Amelia R.; Smith Sawyer, Heather; LeBoeuf, Eugene J.; McDonald, Mark P.; Hadjerioua, Boualem

    2017-11-01

    Hydropower operations optimization subject to environmental constraints is limited by challenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydrodynamic and water quality models within optimization schemes is driven by improved computational capabilities, increased requirements to meet specific points of compliance with greater resolution, and the need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an important advancement for computing hourly power generation schemes for a hydropower reservoir using high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of the high-fidelity hydrodynamic and water quality model CE-QUAL-W2 is successfully emulated by an artificial neural network, then integrated into a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. This methodology is applied to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints revealed capability to address multiple water quality constraints at specified locations. The reduced computational requirements of the new modeling approach demonstrated an ability to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.

  8. Hydropower Optimization Using Artificial Neural Network Surrogate Models of a High-Fidelity Hydrodynamics and Water Quality Model

    DOE PAGES

    Shaw, Amelia R.; Sawyer, Heather Smith; LeBoeuf, Eugene J.; ...

    2017-10-24

    Hydropower operations optimization subject to environmental constraints is limited by challenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydrodynamic and water quality models within optimization schemes is driven by improved computational capabilities, increased requirements to meet specific points of compliance with greater resolution, and the need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an important advancement for computing hourly power generation schemes for a hydropower reservoir using high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of the high-fidelity hydrodynamic and water quality model CE-QUAL-W2more » is successfully emulated by an artificial neural network, then integrated into a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. This methodology is applied to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints revealed capability to address multiple water quality constraints at specified locations. Here, the reduced computational requirements of the new modeling approach demonstrated an ability to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.« less

  9. Hydropower Optimization Using Artificial Neural Network Surrogate Models of a High-Fidelity Hydrodynamics and Water Quality Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Amelia R.; Sawyer, Heather Smith; LeBoeuf, Eugene J.

    Hydropower operations optimization subject to environmental constraints is limited by challenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydrodynamic and water quality models within optimization schemes is driven by improved computational capabilities, increased requirements to meet specific points of compliance with greater resolution, and the need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an important advancement for computing hourly power generation schemes for a hydropower reservoir using high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of the high-fidelity hydrodynamic and water quality model CE-QUAL-W2more » is successfully emulated by an artificial neural network, then integrated into a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. This methodology is applied to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints revealed capability to address multiple water quality constraints at specified locations. Here, the reduced computational requirements of the new modeling approach demonstrated an ability to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.« less

  10. Survival of Atlantic salmon Salmo salar smolts through a hydropower complex.

    PubMed

    Stich, D S; Bailey, M M; Zydlewski, J D

    2014-10-01

    This study evaluated Atlantic salmon Salmo salar smolt survival through the lower Penobscot River, Maine, U.S.A., and characterized relative differences in proportional use and survival through the main-stem of the river and an alternative migration route, the Stillwater Branch. The work was conducted prior to removal of two main-stem dams and operational changes in hydropower facilities in the Stillwater Branch. Survival and proportional use of migration routes in the lower Penobscot were estimated from multistate (MS) models based on 6 years of acoustic telemetry data from 1669 smolts and 2 years of radio-telemetry data from 190 fish. A small proportion (0·12, 95% c.i. = 0·06-0·25) of smolts used the Stillwater Branch, and mean survival through the two operational dams in this part of the river was relatively high (1·00 and 0·97). Survival at Milford Dam, the dam that will remain in the main-stem of the Penobscot River, was relatively low (0·91), whereas survival through two dams that were removed was relatively high (0·99 and 0·98). Smolt survival could decrease in the Stillwater Branch with the addition of two new powerhouses while continuing to meet fish passage standards. The effects of removing two dams in the main-stem are expected to be negligible for smolt survival based on high survival observed from 2005 to 2012 at those locations. Survival through Milford Dam was been well below current regulatory standards, and thus improvement of passage at this location offers the best opportunity for improving overall smolt survival in the lower river. © 2014 The Fisheries Society of the British Isles.

  11. Quadrennial Technology Review 2015: Technology Assessments--Hydropower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sam Baldwin, Gilbert Bindewald, Austin Brown, Charles Chen, Kerry Cheung, Corrie Clark, Joe Cresko,

    Hydropower has provided reliable and flexible base and peaking power generation in the United States for more than a century, contributing on average 10.5% of cumulative U.S. power sector net generation over the past six and one-half decades (1949–2013). It is the nation’s largest source of renewable electricity, with 79 GW of generating assets and 22 GW of pumped-storage assets in service, with hydropower providing half of all U.S. renewable power-sector generation (50% in 2014). In addition to this capacity, the U.S. Department of Energy (DOE) has identified greater than 80 GW of new hydropower resource potential: at least 5more » GW from rehabilitation and expansion of existing generating assets, up to 12 GW of potential at existing dams without power facilities, and over 60 GW of potential low-impact new development (LIND) in undeveloped stream reaches. However, despite this growth potential, hydropower capacity and production growth have stalled in recent years, with existing assets even experiencing decreases in capacity and production from lack of sustaining investments in infrastructure and increasing constraints on water use.« less

  12. Water, energy and agricultural landuse trends at Shiroro hydropower station and environs

    NASA Astrophysics Data System (ADS)

    Adegun, Olubunmi; Ajayi, Olalekan; Badru, Gbolahan; Odunuga, Shakirudeen

    2018-02-01

    The study examines the interplay among water resources, hydropower generation and agricultural landuse at the Shiroro hydropower station and its environs, in north-central Nigeria. Non-parametric trend analysis, hydropower footprint estimation, reservoir performance analysis, change detection analysis, and inferential statistics were combined to study the water-energy and food security nexus. Results of Mann-Kendall test and Sen's slope estimator for the period 1960 to 2013 showed a declining rainfall trend at Jos, around River Kaduna headwaters at -2.6 mm yr-1, while rainfall at Kaduna and Minna upstream and downstream of the reservoir respectively showed no trend. Estimates of hydropower footprint varied between 130.4 and 704.1 m3 GJ-1 between 1995 and 2013. Power generation reliability and resilience of the reservoir was 31.6 and 38.5 % respectively with year 2011 being the most vulnerable and least satisfactory. In addition to poor reliability and resilience indices, other challenges militating against good performance of hydropower generation includes population growth and climate change issues as exemplified in the downward trend observed at the headwaters. Water inflow and power generation shows a weak positive relationship with correlation coefficient (r) of 0.48, indicating less than optimal power generation. Total area of land cultivated increased from 884.59 km2 in 1986 prior to the commissioning of the hydropower station to 1730.83 km2 in 2016 which signifies an increased contribution of the dam to ensuring food security. The reality of reducing upstream rainfall amount coupled with high water footprint of electricity from the reservoir, therefore requires that a long term roadmap to improve operational coordination and management have to be put in place.

  13. Western United States Dams Challenges Faced, Options, and Opportunities

    NASA Astrophysics Data System (ADS)

    Raff, D.

    2017-12-01

    Water management in the Western United States relies significantly upon a fleet of small to very large engineered dams to store water during times of runoff and distribute that water during times of need. Much of this infrastructure is Federally owned and/or operated, and was designed and funded during the first half of the twentieth century through a complex set of repayment contracts for Federally authorized purposes addressing water supply, recreation, and hydropower, and other water management objectives. With environmental laws, namely the Endangered Species Act, and other environmental concerns taking a more active role in water resources in the mid to latter half of the twentieth century, this infrastructure is being stressed even greater than anticipated to provide authorized purposes. Additionally, weather and climate norms being experienced are certainly near the edges, if not outside, of anticipated variability in the climate and hydrology scenarios for which the infrastructure was designed. And, finally, these dams, economically designed for a lifespan of 50 - 100 years, are experiencing maintenance challenges from routine to significant. This presentation will focus on identifying some of the history and challenges facing the water infrastructure in the Western United States. Additionally, some perspectives on future paths to meet the needs of western irrigation and hydropower production will be provided.

  14. Trading river services: optimizing dam decisions at the basin scale to improve socio-ecological resilience

    NASA Astrophysics Data System (ADS)

    Roy, S. G.; Gold, A.; Uchida, E.; McGreavy, B.; Smith, S. M.; Wilson, K.; Blachly, B.; Newcomb, A.; Hart, D.; Gardner, K.

    2017-12-01

    Dam removal has become a cornerstone of environmental restoration practice in the United States. One outcome of dam removal that has received positive attention is restored access to historic habitat for sea-run fisheries, providing a crucial gain in ecosystem resilience. But dams also provide stakeholders with valuable services, and uncertain socio-ecological outcomes can arise if there is not careful consideration of the basin scale trade offs caused by dam removal. In addition to fisheries, dam removals can significantly affect landscape nutrient flux, municipal water storage, recreational use of lakes and rivers, property values, hydroelectricity generation, the cultural meaning of dams, and many other river-based ecosystem services. We use a production possibility frontiers approach to explore dam decision scenarios and opportunities for trading between ecosystem services that are positively or negatively affected by dam removal in New England. Scenarios that provide efficient trade off potentials are identified using a multiobjective genetic algorithm. Our results suggest that for many river systems, there is a significant potential to increase the value of fisheries and other ecosystem services with minimal dam removals, and further increases are possible by including decisions related to dam operations and physical modifications. Run-of-river dams located near the head of tide are often found to be optimal for removal due to low hydroelectric capacity and high impact on fisheries. Conversely, dams with large impoundments near a river's headwaters can be less optimal for dam removal because their value as nitrogen sinks often outweighs the potential value for fisheries. Hydropower capacity is negatively impacted by dam removal but there are opportunities to meet or exceed lost capacity by upgrading preserved hydropower dams. Improving fish passage facilities for dams that are critical for safety or water storage can also reduce impacts on fisheries. Our

  15. Proliferation of Hydroelectric Dams in the Andean Amazon and Implications for Andes-Amazon Connectivity

    PubMed Central

    Finer, Matt; Jenkins, Clinton N.

    2012-01-01

    Due to rising energy demands and abundant untapped potential, hydropower projects are rapidly increasing in the Neotropics. This is especially true in the wet and rugged Andean Amazon, where regional governments are prioritizing new hydroelectric dams as the centerpiece of long-term energy plans. However, the current planning for hydropower lacks adequate regional and basin-scale assessment of potential ecological impacts. This lack of strategic planning is particularly problematic given the intimate link between the Andes and Amazonian flood plain, together one of the most species rich zones on Earth. We examined the potential ecological impacts, in terms of river connectivity and forest loss, of the planned proliferation of hydroelectric dams across all Andean tributaries of the Amazon River. Considering data on the full portfolios of existing and planned dams, along with data on roads and transmission line systems, we developed a new conceptual framework to estimate the relative impacts of all planned dams. There are plans for 151 new dams greater than 2 MW over the next 20 years, more than a 300% increase. These dams would include five of the six major Andean tributaries of the Amazon. Our ecological impact analysis classified 47% of the potential new dams as high impact and just 19% as low impact. Sixty percent of the dams would cause the first major break in connectivity between protected Andean headwaters and the lowland Amazon. More than 80% would drive deforestation due to new roads, transmission lines, or inundation. We conclude with a discussion of three major policy implications of these findings. 1) There is a critical need for further strategic regional and basin scale evaluation of dams. 2) There is an urgent need for a strategic plan to maintain Andes-Amazon connectivity. 3) Reconsideration of hydropower as a low-impact energy source in the Neotropics. PMID:22529979

  16. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity.

    PubMed

    Finer, Matt; Jenkins, Clinton N

    2012-01-01

    Due to rising energy demands and abundant untapped potential, hydropower projects are rapidly increasing in the Neotropics. This is especially true in the wet and rugged Andean Amazon, where regional governments are prioritizing new hydroelectric dams as the centerpiece of long-term energy plans. However, the current planning for hydropower lacks adequate regional and basin-scale assessment of potential ecological impacts. This lack of strategic planning is particularly problematic given the intimate link between the Andes and Amazonian flood plain, together one of the most species rich zones on Earth. We examined the potential ecological impacts, in terms of river connectivity and forest loss, of the planned proliferation of hydroelectric dams across all Andean tributaries of the Amazon River. Considering data on the full portfolios of existing and planned dams, along with data on roads and transmission line systems, we developed a new conceptual framework to estimate the relative impacts of all planned dams. There are plans for 151 new dams greater than 2 MW over the next 20 years, more than a 300% increase. These dams would include five of the six major Andean tributaries of the Amazon. Our ecological impact analysis classified 47% of the potential new dams as high impact and just 19% as low impact. Sixty percent of the dams would cause the first major break in connectivity between protected Andean headwaters and the lowland Amazon. More than 80% would drive deforestation due to new roads, transmission lines, or inundation. We conclude with a discussion of three major policy implications of these findings. 1) There is a critical need for further strategic regional and basin scale evaluation of dams. 2) There is an urgent need for a strategic plan to maintain Andes-Amazon connectivity. 3) Reconsideration of hydropower as a low-impact energy source in the Neotropics.

  17. Development of probabilistic operating rules for Hluhluwe Dam, South Africa

    NASA Astrophysics Data System (ADS)

    Ndiritu, J.; Odiyo, J.; Makungo, R.; Mwaka, B.; Mthethwa, N.; Ntuli, C.; Andanje, A.

    2017-08-01

    Hluhluwe Dam, with a 30 million m3 reservoir that supplies water for irrigation and Hluhluwe municipality in Kwa-Zulu Natal Province, South Africa, was consistently experiencing low storage levels over several non-drought years since 2001. The dam was operated by rules of thumb and there were no records of water releases for irrigation - the main user of the dam. This paper describes an assessment of the historic behaviour of the reservoir since its completion in 1964 and the development of operating rules that accounted for: i) the multiple and different levels of reliability at which municipal and irrigation demands need to be supplied, and ii) inter-annual and inter-decadal variability of climate and inflows into the dam. The assessment of the behaviour of the reservoir was done by simulation assuming trigonometric rule curves that were optimized to maximize both yield and storage state using the SCE-UA method. The resulting reservoir behaviour matched the observed historic trajectory reasonably well and indicated that the dam has mainly been operated at a demand of 10 million m3/year until 2000 when the demand suddenly rose to 25 million m3/year. Operating rules were developed from a statistical analysis of the base yields from 500 simulations of the reservoir each using 5 year-long stochastically generated sequences of inflows, rainfall and evaporation. After the implementation of the operating rules in 2009, the storage state of the dam improved and matched those of other reservoirs in the region that had established operating rules.

  18. Minimizing water consumption when producing hydropower

    NASA Astrophysics Data System (ADS)

    Leon, A. S.

    2015-12-01

    In 2007, hydropower accounted for only 16% of the world electricity production, with other renewable sources totaling 3%. Thus, it is not surprising that when alternatives are evaluated for new energy developments, there is strong impulse for fossil fuel or nuclear energy as opposed to renewable sources. However, as hydropower schemes are often part of a multipurpose water resources development project, they can often help to finance other components of the project. In addition, hydropower systems and their associated dams and reservoirs provide human well-being benefits, such as flood control and irrigation, and societal benefits such as increased recreational activities and improved navigation. Furthermore, hydropower due to its associated reservoir storage, can provide flexibility and reliability for energy production in integrated energy systems. The storage capability of hydropower systems act as a regulating mechanism by which other intermittent and variable renewable energy sources (wind, wave, solar) can play a larger role in providing electricity of commercial quality. Minimizing water consumption for producing hydropower is critical given that overuse of water for energy production may result in a shortage of water for other purposes such as irrigation, navigation or fish passage. This paper presents a dimensional analysis for finding optimal flow discharge and optimal penstock diameter when designing impulse and reaction water turbines for hydropower systems. The objective of this analysis is to provide general insights for minimizing water consumption when producing hydropower. This analysis is based on the geometric and hydraulic characteristics of the penstock, the total hydraulic head and the desired power production. As part of this analysis, various dimensionless relationships between power production, flow discharge and head losses were derived. These relationships were used to withdraw general insights on determining optimal flow discharge and

  19. Framing hydropower as green energy: assessing drivers, risks and tensions in the Eastern Himalayas

    NASA Astrophysics Data System (ADS)

    Ahlers, R.; Budds, J.; Joshi, D.; Merme, V.; Zwarteveen, M.

    2015-04-01

    The culturally and ecologically diverse region of the Eastern Himalayas is the target of ambitious hydropower development plans. Policy discourses at national and international levels position this development as synergistically positive: it combines the production of clean energy to fuel economic growth at regional and national levels with initiatives to lift poor mountain communities out of poverty. Different from hydropower development in the 20th century in which development agencies and banks were important players, contemporary initiatives importantly rely on the involvement of private actors, with a prominent role of the private finance sector. This implies that hydropower development is not only financially viable but also understood as highly profitable. This paper examines the new development of hydropower in the Eastern Himalayas of Nepal and India. It questions its framing as green energy, interrogates its links with climate change, and examines its potential for investment and capital accumulation. To do this, we also review the evidence on the extent to which its construction and operation may modify existing hydrogeological processes and ecosystems, as well as its impacts on the livelihoods of diverse groups of people that depend on these. The paper concludes that hydropower development in the region is characterized by inherent contentions and uncertainties, refuting the idea that dams constitute development projects whose impacts can be simply predicted, controlled and mitigated. Indeed, in a highly complex geological, ecological, cultural and political context that is widely regarded to be especially vulnerable to the effects of climate change, hydropower as a development strategy makes for a toxic cocktail.

  20. Framing hydropower as green energy: assessing drivers, risks and tensions in the Eastern Himalayas

    NASA Astrophysics Data System (ADS)

    Ahlers, R.; Budds, J.; Joshi, D.; Merme, V.; Zwarteveen, M.

    2014-11-01

    The culturally and ecologically diverse region of the Eastern Himalayas is the target of ambitious hydropower development plans. Policy discourses at national and international levels position this development as synergistically positive: it combines the production of clean energy to fuel economic growth at regional and national levels with initiatives to lift poor mountain communities out of poverty. Different from hydropower development in the 20th century in which development agencies and banks were important players, contemporary initiatives importantly rely on the involvement of private actors, with a prominent role of the private finance sector. This implies that hydropower development is not only financially viable but also understood as highly profitable. This paper examines the new development of hydropower in the Eastern Himalaya of Nepal and India. It questions its framing as green energy, interrogates its links with climate change, and examines its potential for investment and capital accumulation. To do this, we also review the evidence on the extent to which its construction and operation may modify existing hydrogeological processes and ecosystems, as well as its impacts on the livelihoods of diverse groups of people that depend on these. The paper concludes that hydropower development in the region is characterised by inherent contentions and uncertainties, refuting the idea that dams constitute development projects whose impacts can be simply predicted, controlled and mitigated. Indeed, in a highly complex geological, ecological, cultural and political context that is widely regarded to be especially vulnerable to the effects of climate change, hydropower as a development strategy makes for a toxic cocktail.

  1. An ecological economic assessment of flow regimes in a hydropower dominated river basin: the case of the lower Zambezi River, Mozambique.

    PubMed

    Fanaian, Safa; Graas, Susan; Jiang, Yong; van der Zaag, Pieter

    2015-02-01

    The flow regime of rivers, being an integral part of aquatic ecosystems, provides many important services benefiting humans in catchments. Past water resource developments characterized by river embankments and dams, however, were often dominated by one (or few) economic use(s) of water. This results in a dramatically changed flow regime negatively affecting the provision of other ecosystem services sustained by the river flow. This study is intended to demonstrate the value of alternative flow regimes in a river that is highly modified by the presence of large hydropower dams and reservoirs, explicitly accounting for a broad range of flow-dependent ecosystem services. In this study, we propose a holistic approach for conducting an ecological economic assessment of a river's flow regime. This integrates recent advances in the conceptualization and classification of ecosystem services (UK NEA, 2011) with the flow regime evaluation technique developed by Korsgaard (2006). This integrated approach allows for a systematic comparison of the economic values of alternative flow regimes, including those that are considered beneficial for aquatic ecosystems. As an illustration, we applied this combined approach to the Lower Zambezi Basin, Mozambique. Empirical analysis shows that even though re-operating dams to create environmentally friendly flow regimes reduces hydropower benefits, the gains to goods derived from the aquatic ecosystem may offset the forgone hydropower benefits, thereby increasing the total economic value of river flow to society. The proposed integrated flow assessment approach can be a useful tool for welfare-improving decision-making in managing river basins. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Advanced inflow forecasting for a hydropower plant in an Alpine hydropower regulated catchment - coupling of operational and hydrological forecasts

    NASA Astrophysics Data System (ADS)

    Tilg, Anna-Maria; Schöber, Johannes; Huttenlau, Matthias; Messner, Jakob; Achleitner, Stefan

    2017-04-01

    Hydropower is a renewable energy source which can help to stabilize fluctuations in the volatile energy market. Especially pumped-storage infrastructures in the European Alps play an important role within the European energy grid system. Today, the runoff of rivers in the Alps is often influenced by cascades of hydropower infrastructures where the operational procedures are triggered by energy market demands, water deliveries and flood control aspects rather than by hydro-meteorological variables. An example for such a highly hydropower regulated river is the catchment of the river Inn in the Eastern European Alps, originating in the Engadin (Switzerland). A new hydropower plant is going to be built as transboundary project at the boarder of Switzerland and Austria using the water of the Inn River. For the operation, a runoff forecast to the plant is required. The challenge in this case is that a high proportion of runoff is turbine water from an upstream situated hydropower cascade. The newly developed physically based hydrological forecasting system is mainly capable to cover natural hydrological runoff processes caused by storms and snow melt but can model only a small degree of human impact. These discontinuous parts of the runoff downstream of the pumped storage are described by means of an additional statistical model which has been developed. The main goal of the statistical model is to forecast the turbine water up to five days in advance. The lead time of the data driven model exceeds the lead time of the used energy production forecast. Additionally, the amount of turbine water is linked to the need of electricity production and the electricity price. It has been shown that especially the parameters day-ahead prognosis of the energy production and turbine inflow of the previous week are good predictors and are therefore used as input parameters for the model. As the data is restricted due to technical conditions, so-called Tobit models have been used to

  3. Effects of hydropower operations on spawning habitat, rearing habitat, and standing/entrapment mortality of fall Chinook salmon in the Hanford Reach of the Columbia River

    USGS Publications Warehouse

    Anglin, Donald R.; Haeseker, Steven L.; Skalicky, Joseph J.; Schaller, Howard; Tiffan, Kenneth F.; Hatten, James R.; Hoffarth, Paul; Nugent, John; Benner, David; Yoshinaka, Marv

    2006-01-01

    This report describes research conducted primarily in 2003 and 2004 to evaluate the effects of upstream dam operations on spawning and rearing conditions for fall Chinook salmon, Oncorhynchus tshawytscha, in the Hanford Reach of the Columbia River. Results from habitat modeling tasks which continued in 2005 and 2006 are also included in this report. This study is focused on the effects of streamflows and streamflow fluctuations on 1) entrapment and entrapment mortality of juveniles, 2) adult spawning habitat, and 3) juvenile rearing habitat. An independent peer review was conducted on the draft version of this report utilizing three reviewers, each with different areas of expertise and different levels of knowledge regarding hydrodynamic modeling, fall Chinook biology, life history, and habitat requirements, and fishery issues relating to hydropower development and operations. Peer review comments have been incorporated into this final version.

  4. Dam operations affect route-specific passage and survival of juvenile Chinook salmon at a main-stem diversion dam

    USGS Publications Warehouse

    Perry, Russell W.; Kock, Tobias J.; Couter, Ian I; Garrison, Thomas M; Hubble, Joel D; Child, David B

    2016-01-01

    Diversion dams can negatively affect emigrating juvenile salmon populations because fish must pass through the impounded river created by the dam, negotiate a passage route at the dam and then emigrate through a riverine reach that has been affected by reduced river discharge. To quantify the effects of a main-stem diversion dam on juvenile Chinook salmon in the Yakima River, Washington, USA, we used radio telemetry to understand how dam operations and river discharge in the 18-km reach downstream of the dam affected route-specific passage and survival. We found evidence of direct mortality associated with dam passage and indirect mortality associated with migration through the reach below the dam. Survival of fish passing over a surface spill gate (the west gate) was positively related to river discharge, and survival was similar for fish released below the dam, suggesting that passage via this route caused little additional mortality. However, survival of fish that passed under a sub-surface spill gate (the east gate) was considerably lower than survival of fish released downstream of the dam, with the difference in survival decreasing as river discharge increased. The probability of fish passing the dam via three available routes was strongly influenced by dam operations, with passage through the juvenile fish bypass and the east gate increasing with discharge through those routes. By simulating daily passage and route-specific survival, we show that variation in total survival is driven by river discharge and moderated by the proportion of fish passing through low-survival or high-survival passage routes.

  5. High-Resolution Free-GIS operations to assist hydropower potential assessment

    NASA Astrophysics Data System (ADS)

    Ganora, Daniele; Gallo, Enrico; Masoero, Alessandro; Laio, Francesco; Claps, Pierluigi

    2013-04-01

    Even in regions with mature hydropower development, needs for renewable energy suggest to revise plans of exploitation of water resources, according to EU and national environmental regulations. High resolution hydrological analysis is then needed to comply with the effects of existing hydropower plants and of other water withdrawals. Flow duration curves (FDC) are the tool usually adopted to represent water availability and variability for hydropower purposes. For this study, developed within the RENERFOR-ALCOTRA Project, a regional "spatially smooth" model has been developed for FDC estimation: the procedure adopted relates the L-moments of the FDC to several geomorphoclimatic parameters (more than 100), with the purpose to directly reconstruct a "naturalized" FDC. The proposed procedure is systematically extended to all the gauged basins located in Northwestern Italy, which is an area characterized by the presence of a large number of dams. For each basin, the annual average FDC is computed, its L-moments are calculated and corrected using a simplified model that takes into account the effect of upstream reservoirs and power plants. Then, each corrected L-moment is regionalized using multiple regressions techniques, allowing one to reconstruct the L-moments at any ungauged basin. Finally, the "naturalized" FDC is reconstructed at the ungauged site on the basis of the predicted L-moments. Due to necessity of obtaining high-resolution estimates, the method has been designed to keep the estimates of mean annual runoff congruent in the confluences. This feature is obtained considering only raster-summable explanatory variables, which are only a subset of the available descriptors. The residual hydropower potential is evaluated by mapping the mean naturalized flow estimated for each pixel of a DEM-derived river network raster model in two mountain basins used as case studies. Applying extensively the proposed methodology, the mean annual flow is reconstructed not

  6. The impacts of wind power integration on sub-daily variation in river flows downstream of hydroelectric dams.

    PubMed

    Kern, Jordan D; Patino-Echeverri, Dalia; Characklis, Gregory W

    2014-08-19

    Due to their operational flexibility, hydroelectric dams are ideal candidates to compensate for the intermittency and unpredictability of wind energy production. However, more coordinated use of wind and hydropower resources may exacerbate the impacts dams have on downstream environmental flows, that is, the timing and magnitude of water flows needed to sustain river ecosystems. In this paper, we examine the effects of increased (i.e., 5%, 15%, and 25%) wind market penetration on prices for electricity and reserves, and assess the potential for altered price dynamics to disrupt reservoir release schedules at a hydroelectric dam and cause more variable and unpredictable hourly flow patterns (measured in terms of the Richards-Baker Flashiness (RBF) index). Results show that the greatest potential for wind energy to impact downstream flows occurs at high (∼25%) wind market penetration, when the dam sells more reserves in order to exploit spikes in real-time electricity prices caused by negative wind forecast errors. Nonetheless, compared to the initial impacts of dam construction (and the dam's subsequent operation as a peaking resource under baseline conditions) the marginal effects of any increased wind market penetration on downstream flows are found to be relatively minor.

  7. Methane Ebullition in Temperate Hydropower Reservoirs and Implications for US Policy on Greenhouse Gas Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Benjamin L.; Arntzen, Evan V.; Goldman, Amy E.

    The United States is home to more than 87,000 dams, 2,198 of which are actively used for hydropower production. With the December 2015 consensus adoption of the United Nations Framework Convention on Climate Change’s Paris Agreement, it is imperative for the U.S. to accurately quantify greenhouse gas fluxes from its hydropower reservoirs. Methane ebullition, or methane bubbles originating from river or lake sediments, can account for nearly all of a reservoir’s methane emissions to the atmosphere. However, methane ebullition in hydropower reservoirs has been studied in only three temperate locations, none of which are in the United States. This studymore » measures high ebullitive methane fluxes from two hydropower reservoirs in eastern Washington, synthesizes the known information about methane ebullition from tropical, boreal, and temperate hydropower reservoirs, and investigates the implications for U.S. hydropower management and growth.« less

  8. National Hydropower Plant Dataset, Version 2 (FY18Q3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samu, Nicole; Kao, Shih-Chieh; O'Connor, Patrick

    The National Hydropower Plant Dataset, Version 2 (FY18Q3) is a geospatially comprehensive point-level dataset containing locations and key characteristics of U.S. hydropower plants that are currently either in the hydropower development pipeline (pre-operational), operational, withdrawn, or retired. These data are provided in GIS and tabular formats with corresponding metadata for each. In addition, we include access to download 2 versions of the National Hydropower Map, which was produced with these data (i.e. Map 1 displays the geospatial distribution and characteristics of all operational hydropower plants; Map 2 displays the geospatial distribution and characteristics of operational hydropower plants with pumped storagemore » and mixed capabilities only). This dataset is a subset of ORNL's Existing Hydropower Assets data series, updated quarterly as part of ORNL's National Hydropower Asset Assessment Program.« less

  9. Evaluating and optimizing the operation of the hydropower system in the Upper Yellow River: A general LINGO-based integrated framework.

    PubMed

    Si, Yuan; Li, Xiang; Yin, Dongqin; Liu, Ronghua; Wei, Jiahua; Huang, Yuefei; Li, Tiejian; Liu, Jiahong; Gu, Shenglong; Wang, Guangqian

    2018-01-01

    The hydropower system in the Upper Yellow River (UYR), one of the largest hydropower bases in China, plays a vital role in the energy structure of the Qinghai Power Grid. Due to management difficulties, there is still considerable room for improvement in the joint operation of this system. This paper presents a general LINGO-based integrated framework to study the operation of the UYR hydropower system. The framework is easy to use for operators with little experience in mathematical modeling, takes full advantage of LINGO's capabilities (such as its solving capacity and multi-threading ability), and packs its three layers (the user layer, the coordination layer, and the base layer) together into an integrated solution that is robust and efficient and represents an effective tool for data/scenario management and analysis. The framework is general and can be easily transferred to other hydropower systems with minimal effort, and it can be extended as the base layer is enriched. The multi-objective model that represents the trade-off between power quantity (i.e., maximum energy production) and power reliability (i.e., firm output) of hydropower operation has been formulated. With equivalent transformations, the optimization problem can be solved by the nonlinear programming (NLP) solvers embedded in the LINGO software, such as the General Solver, the Multi-start Solver, and the Global Solver. Both simulation and optimization are performed to verify the model's accuracy and to evaluate the operation of the UYR hydropower system. A total of 13 hydropower plants currently in operation are involved, including two pivotal storage reservoirs on the Yellow River, which are the Longyangxia Reservoir and the Liujiaxia Reservoir. Historical hydrological data from multiple years (2000-2010) are provided as input to the model for analysis. The results are as follows. 1) Assuming that the reservoirs are all in operation (in fact, some reservoirs were not operational or did not

  10. Efficient operation of a multi-purpose reservoir in Chile: Tradeoffs between irrigation and hydropower production

    NASA Astrophysics Data System (ADS)

    Gonzalez Cabrera, J. M., Sr.; Olivares, M. A.

    2015-12-01

    This study proposes a method to develop efficient operational policies for a reservoir the southern Chile. The main water uses in this system are hydropower and irrigation, with conflicting seasonal demands. The conflict between these two uses is currently managed through a so-called "irrigation agreement" which defines a series of operational conditions on the reservoir by restricting volumes used for power production depending on reservoir storage level. Other than that, the reservoir operation is driven by cost-minimization over the power grid. Recent evidence shows an increasing degree of conflict in this basin, which suggests that the static approach of irrigation agreements, might no longer be appropriate. Moreover, this agreement could be revised in light of decreased water availability. This problem poses a challenge related to the spatial scope of analysis. Thus, irrigation benefits are driven by decisions made within the basin, whereas hydropower benefits depend on the operation of the entire power grid. Exploring the tradeoffs between these two water uses involves modeling both scales. The proposed methodology integrates information from both a grid-wide power operations model and a basin-wide agro-economic model into a decision model for optimal reservoir operation. The first model, a hydrothermal coordination tool, schedules power production by each plant in the grid, and allows capturing technical and economic aspects to the operation of hydropower reservoirs. The agro-economic model incorporates economic features of irrigation in the basin, and allows obtaining irrigation water demand functions. Finally, the results of both models are integrated into a single model for optimal reservoir operation considering the tradeoffs between the two uses. The result of the joint operation of water resources, show a flexible coordination of uses, revealing the opportunity cost of irrigation, which it gives the possibility of negotiating transfers of water to

  11. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin.

    PubMed

    Ziv, Guy; Baran, Eric; Nam, So; Rodríguez-Iturbe, Ignacio; Levin, Simon A

    2012-04-10

    The Mekong River Basin, site of the biggest inland fishery in the world, is undergoing massive hydropower development. Planned dams will block critical fish migration routes between the river's downstream floodplains and upstream tributaries. Here we estimate fish biomass and biodiversity losses in numerous damming scenarios using a simple ecological model of fish migration. Our framework allows detailing trade-offs between dam locations, power production, and impacts on fish resources. We find that the completion of 78 dams on tributaries, which have not previously been subject to strategic analysis, would have catastrophic impacts on fish productivity and biodiversity. Our results argue for reassessment of several dams planned, and call for a new regional agreement on tributary development of the Mekong River Basin.

  12. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin

    PubMed Central

    Ziv, Guy; Baran, Eric; Nam, So; Rodríguez-Iturbe, Ignacio; Levin, Simon A.

    2012-01-01

    The Mekong River Basin, site of the biggest inland fishery in the world, is undergoing massive hydropower development. Planned dams will block critical fish migration routes between the river's downstream floodplains and upstream tributaries. Here we estimate fish biomass and biodiversity losses in numerous damming scenarios using a simple ecological model of fish migration. Our framework allows detailing trade-offs between dam locations, power production, and impacts on fish resources. We find that the completion of 78 dams on tributaries, which have not previously been subject to strategic analysis, would have catastrophic impacts on fish productivity and biodiversity. Our results argue for reassessment of several dams planned, and call for a new regional agreement on tributary development of the Mekong River Basin. PMID:22393001

  13. Soil erosion and sediment yield, a double barrel problem in South Africa's only large river network without a dam

    NASA Astrophysics Data System (ADS)

    Le Roux, Jay

    2016-04-01

    Soil erosion not only involves the loss of fertile topsoil but is also coupled with sedimentation of dams, a double barrel problem in semi-arid regions where water scarcity is frequent. Due to increasing water requirements in South Africa, the Department of Water and Sanitation is planning water resource development in the Mzimvubu River Catchment, which is the only large river network in the country without a dam. Two dams are planned including a large irrigation dam and a hydropower dam. However, previous soil erosion studies indicate that large parts of the catchment is severely eroded. Previous studies, nonetheless, used mapping and modelling techniques that represent only a selection of erosion processes and provide insufficient information about the sediment yield. This study maps and models the sediment yield comprehensively by means of two approaches over a five-year timeframe between 2007 and 2012. Sediment yield contribution from sheet-rill erosion was modelled with ArcSWAT (a graphical user interface for SWAT in a GIS), whereas gully erosion contributions were estimated using time-series mapping with SPOT 5 imagery followed by gully-derived sediment yield modelling in a GIS. Integration of the sheet-rill and gully results produced a total sediment yield map, with an average of 5 300 t km-2 y-1. Importantly, the annual average sediment yield of the areas where the irrigation dam and hydropower dam will be built is around 20 000 t km-2 y-1. Without catchment rehabilitation, the life expectancy of the irrigation dam and hydropower dam could be 50 and 40 years respectively.

  14. Local Economic Development and Hydropower Along the Brahmaputra River Basin in Northeast India

    NASA Astrophysics Data System (ADS)

    Mock, A.

    2014-12-01

    Large dams have long been controversial. They offer benefits, such as reduced greenhouse gas emissions, energy security, and local development, yet produce negative social and ecological impact, such as wildlife habitat destruction, human displacement, and the disruption of downstream fishing or agricultural industries. In the past decade, the Indian government has signed Memoranda of Understanding with hydroelectric power companies for the building of over 130 large dams on the Brahmaputra River in the state of Arunachal Pradesh in Northeast India. These dams can generate 43% of India's assessed hydropower potential to sustain India's growing economy. In addition, the Indian government claims that these dams will bring local development with needed jobs. However, local Arunachali people have protested and temporarily halted hydropower projects because of the impact of dams on their existing livelihoods. Using the North Eastern Electric Power Corporation's (NEEPCO) Ranganadi Hydroelectric Project as a case study, our project examined whether dams in Northeast India provide jobs for local people, and whether distance from the dam or work colony to a worker's hometown affects the type of job the worker received. Survey data from residents at NEEPCO's work colony in Doimukh, Arunachal Pradesh, was analyzed using SPSS (n = 18). Our research found that 100% of workers at the dam originally resided in Northeast India, with 33% from Arunachal Pradesh, and 67% from the nearby states of Assam, and Tripura. Further, our analysis revealed no statistically significant relationship between the distance to a worker's hometown and job type (p = .609). Where workers come from did not affect the type of job they received. More research using a larger sample size and additional hydroelectric project case studies is needed to further explore the relationship between worker home location and their job types.

  15. Disappearing rivers — The limits of environmental assessment for hydropower in India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erlewein, Alexander, E-mail: erlewein@sai.uni-heidelberg.de

    2013-11-15

    The mountain rivers of the Indian Himalaya possess a vast potential for hydropower generation. After decades of comparatively modest development recent years have seen a major intensification in the construction of new hydropower dams. Although increasingly portrayed as a form of renewable energy generation, hydropower development may lead to extensive alterations of fluvial systems and conflicts with resource use patterns of local communities. To appraise and reduce adverse effects is the purpose of statutory Environmental Impact Assessments (EIA) and corresponding mitigation plans. However, in the light of ambitious policies for hydropower expansion conventional approaches of environmental assessment are increasingly challengedmore » to keep up with the intensity and pace of development. This paper aims to explore the systemic limitations of environmental assessment for hydropower development in the Indian state of Himachal Pradesh. Based on a qualitative methodology involving interviews with environmental experts, document reviews and field observations the study suggests that the current practice of constraining EIAs to the project level fails to address the larger effects of extensive hydropower development. Furthermore, it is critically discussed as to what extent the concept of Strategic Environmental Assessment (SEA) might have the potential to overcome existing shortcomings.« less

  16. Distributional Impacts of Large Dams in China

    NASA Astrophysics Data System (ADS)

    Bao, X.

    2010-12-01

    Dams on a river are believed to have heterogeneous impacts to the upstream, local and downstream areas. Generally, irrigation dams will bring benefits to the downstream by facilitating more irrigation, while it will bring negative impacts to upstream due to inundation or no impact to local area as a combination result of population dislocation and economic benefits. This paper checked the impacts of large dams (above 100 meters) on the upstream, downstream and local area, using 2000-2008 county level data in China. Robust heterogeneous impacts of different categories of dams (mainly dams serving for irrigation, hydropower, or other purposes) were found on different areas, using IV regression approaches. Dams higher than 100 meters are significantly and heterogeneously impacting agricultural production, urban employment and rural per capita income. Its beneficial impact on agriculture production is significant for downstream especially in continuous drought years. But its impacts on social welfare indicators, such as primary school enrollment and hospital beds, are not heterogeneously different across regions.

  17. Modeling Total Dissolved Gas for Optimal Operation of Multireservoir Systems

    DOE PAGES

    Politano, Marcela; Castro, Alejandro; Hadjerioua, Boualem

    2017-02-09

    One important environmental issue of hydropower in the Columbia and Snake River Basins (Pacific Northwest region of United States) is elevated total dissolved gas (TDG) downstream of a dam, which has the potential to cause gas bubble disease in affected fish. Gas supersaturation in the Columbia River Basin primarily occurs due to dissolution of bubbles entrained during spill events. This paper presents a physically based TDG model that can be used to optimize spill operations in multireservoir hydropower systems. Independent variables of the model are forebay TDG, tailwater elevation, spillway and powerhouse discharges, project head, and environmental parameters such asmore » temperature and atmospheric pressure. The model contains seven physically meaningful experimental parameters, which were calibrated and validated against TDG data collected downstream of Rock Island Dam (Washington) from 2008 to 2012. In conclusion, a sensitivity analysis was performed to increase the understanding of the relationships between TDG downstream of the dam and processes such as air entrainment, lateral powerhouse flow, and dissolution.« less

  18. The effect of dams and seasons on malaria incidence and anopheles abundance in Ethiopia

    PubMed Central

    2013-01-01

    Background Reservoirs created by damming rivers are often believed to increase malaria incidence risk and/or stretch the period of malaria transmission. In this paper, we report the effects of a mega hydropower dam on P. falciparum malaria incidence in Ethiopia. Methods A longitudinal cohort study was conducted over a period of 2 years to determine Plasmodium falciparum malaria incidence among children less than 10 years of age living near a mega hydropower dam in Ethiopia. A total of 2080 children from 16 villages located at different distances from a hydropower dam were followed up from 2008 to 2010 using active detection of cases based on weekly house to house visits. Of this cohort of children, 951 (48.09%) were females and 1059 (51.91%) were males, with a median age of 5 years. Malaria vectors were simultaneously surveyed in all the 16 study villages. Frailty models were used to explore associations between time-to-malaria and potential risk factors, whereas, mixed-effects Poisson regression models were used to assess the effect of different covariates on anopheline abundance. Results Overall, 548 (26.86%) children experienced at least one clinical malaria episode during the follow up period with mean incidence rate of 14.26 cases/1000 child-months at risk (95% CI: 12.16 - 16.36). P. falciparum malaria incidence showed no statistically significant association with distance from the dam reservoir (p = 0.32). However, P. falciparum incidence varied significantly between seasons (p < 0.01). The malaria vector, Anopheles arabiensis, was however more abundant in villages nearer to the dam reservoir. Conclusions P. falciparum malaria incidence dynamics were more influenced by seasonal drivers than by the dam reservoir itself. The findings could have implications in timing optimal malaria control interventions and in developing an early warning system in Ethiopia. PMID:23566411

  19. Hydropower reservoirs: cytotoxic and genotoxic assessment using the Allium cepa root model.

    PubMed

    Rambo, Cassiano Lazarotto; Zanotelli, Patrícia; Dalegrave, Daniela; De Nez, Dinara; Szczepanik, Jozimar; Carazek, Fábio; Franscescon, Francini; Rosemberg, Denis Broock; Siebel, Anna Maria; Magro, Jacir Dal

    2017-03-01

    Hydropower offers a reliable source of electricity in several countries, and Brazil supplies its energy needs almost entirely through hydropower plants. Nevertheless, hydropower plants comprise large buildings and water reservoirs and dams, resulting in huge ecological disruptions. Here, we analyzed the impact of four hydropower reservoirs construction in metals and pesticides incidence and the cytotoxic and genotoxic potential of sediment elutriate of rivers from southern Brazil. Our analyses have evidenced the elevated incidence of different metals (lead, iron, cadmium, and chrome) and pesticides (methyl parathion, atrazine, and 2,4-dichlorophenoxyacetic acid). We showed that Allium cepa exposed to sediment elutriates did not change the seed germination rate and mitotic index. However, roots from Allium cepa exposed to reservoirs sediment elutriates showed increased occurrence of chromosomal aberrations and nuclear abnormalities. Therefore, the results obtained in our study indicate that sediment from reservoirs present elevated concentration of metals and pesticides and a significant genotoxic potential. Taken together, our data support that hydropower reservoirs represent an environmental scenario that could impact surrounding wildlife and population.

  20. Evaluating and optimizing the operation of the hydropower system in the Upper Yellow River: A general LINGO-based integrated framework

    PubMed Central

    Si, Yuan; Liu, Ronghua; Wei, Jiahua; Huang, Yuefei; Li, Tiejian; Liu, Jiahong; Gu, Shenglong; Wang, Guangqian

    2018-01-01

    The hydropower system in the Upper Yellow River (UYR), one of the largest hydropower bases in China, plays a vital role in the energy structure of the Qinghai Power Grid. Due to management difficulties, there is still considerable room for improvement in the joint operation of this system. This paper presents a general LINGO-based integrated framework to study the operation of the UYR hydropower system. The framework is easy to use for operators with little experience in mathematical modeling, takes full advantage of LINGO’s capabilities (such as its solving capacity and multi-threading ability), and packs its three layers (the user layer, the coordination layer, and the base layer) together into an integrated solution that is robust and efficient and represents an effective tool for data/scenario management and analysis. The framework is general and can be easily transferred to other hydropower systems with minimal effort, and it can be extended as the base layer is enriched. The multi-objective model that represents the trade-off between power quantity (i.e., maximum energy production) and power reliability (i.e., firm output) of hydropower operation has been formulated. With equivalent transformations, the optimization problem can be solved by the nonlinear programming (NLP) solvers embedded in the LINGO software, such as the General Solver, the Multi-start Solver, and the Global Solver. Both simulation and optimization are performed to verify the model’s accuracy and to evaluate the operation of the UYR hydropower system. A total of 13 hydropower plants currently in operation are involved, including two pivotal storage reservoirs on the Yellow River, which are the Longyangxia Reservoir and the Liujiaxia Reservoir. Historical hydrological data from multiple years (2000–2010) are provided as input to the model for analysis. The results are as follows. 1) Assuming that the reservoirs are all in operation (in fact, some reservoirs were not operational or did

  1. Measuring Non-Market Values for Hydropower Production and Water Storage on the Colorado River: A White Paper Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, Thomas Stephen; Chermak, Janie M.; Brookshire, David S.

    This study presents a conceptual framework for capturing the spatial and temporal aspects of non-market dimensions of value (DOV) and how they vary as the result of policy changes for hydropower generation and developed water uses. The foundation of this project is a literature review that reveals that focused, sector specific valuations are no longer adequate if the goal is to provide decision makers with a complete understanding of their decisions. Rather, estimates of non-market values for informing decisions regarding dam operations and/or other water management alternatives must consider the entire spectrum of market and non-market values, and the tradeoffsmore » (both positive and negative) between those values over time and space, while considering shifting preferences in an uncertain environment. This document describes the history and reasoning for these conclusions and presents a conceptual framework for understanding non-market values as a function of changes to hydropower operations and water resources management.« less

  2. Living Rivers: Importance of Andes-Amazon Connectivity and Consequences of Hydropower Development

    NASA Astrophysics Data System (ADS)

    Anderson, E.

    2016-12-01

    The inherent dynamism of rivers along elevational and longitudinal gradients underpins freshwater biodiversity, ecosystem function, and ecosystem services in the Andean-Amazon. While this region covers only a small part of the entire Amazon Basin, its influences on downstream ecology, biogeochemistry, and human wellbeing are disproportionate with its relative small size. Seasonal flow pulses from Andean rivers maintain habitat, signal migratory fishes, and export sediment, nutrients, and organic matter to distant ecosystems—like lowland Amazonia and the Atlantic coast of Brazil. Rivers are key transportation routes, and freshwater fisheries are a primary protein source for the >30 million people that inhabit the Amazon Basin. Numerous cultural traditions depend on free-flowing Andean rivers; examples include Kukama beliefs in the underwater cities of the Marañon River, where people who have drowned in rivers whose bodies are not recovered go to live, or the pre-dawn bathing rituals of the Peruvian Shawi, who gain energy and connect with ancestors in cold, fast-flowing Andean waters. Transformations in the Andean-Amazon landscape—in particular from dams—threaten to compromise flows critical for human and ecosystem wellbeing. Presently, at least 250 hydropower dams are in operation, under construction, or proposed for Andean-Amazon rivers. This presentation will discuss regional trends in hydropower development, quantify effects of existing and proposed dams on Andean-Amazon connectivity, and examine the social and cultural importance of free-flowing Andean-Amazon rivers.

  3. State Models to Incentivize and Streamline Small Hydropower Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, Taylor; Levine, Aaron; Johnson, Kurt

    In 2016, the hydropower fleet in the United States produced more than 6 percent (approximately 265,829 gigawatt-hours [GWh]) of the total net electricity generation. The median-size hydroelectric facility in the United States is 1.6 MW and 75 percent of total facilities have a nameplate capacity of 10 MW or less. Moreover, the U.S. Department of Energy's Hydropower Vision study identified approximately 79 GW hydroelectric potential beyond what is already developed. Much of the potential identified is at low-impact new stream-reaches, existing conduits, and non-powered dams with a median project size of 10 MW or less. To optimize the potential andmore » value of small hydropower development, state governments are crafting policies that provide financial assistance and expedite state and federal review processes for small hydroelectric projects. This report analyzes state-led initiatives and programs that incentivize and streamline small hydroelectric development.« less

  4. Regulation of hydropower: Who is in charge?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molm, J.

    1995-12-31

    The regulatory, legislative and judicial branches of government all have played a role in twisting and changing FERC`s authority over hydropower. At times authority over hydropower is kept at FERC; at other times it is granted to state or federal agencies. At present, decisions are driven by competing uses of water that require differing flows or quantities of water. It is the highest and best use of the f lows and the quantities that will dictate whether water quantities are used for hydropower or fish habitat. However, that is not where it all started. In First Iowa, the Federal Powermore » Commission ({open_quotes}FPC{close_quotes}) (predecessor to FERC) dismissed a license application solely on the ground of the failure of the license applicant to comply with Iowa statutes. Iowa law provided that no dam could be constructed or operated unless a permit had been issued by a state agency. The U.S. Supreme Court reversed the Commission deciding that the Iowa statute would vest in an Iowa agency a veto power over a federal project and thereby subordinate the FPC`s comprehensive planning obligation to state control. The Court ruled that there is a separation of those subjects that are under the jurisdiction of the states from those subjects that the Constitution delegates to the United States and over which Congress vests the FPC with authority to act. The Court stated that this {open_quotes}duality does not require two agencies to share in the final decision of the same issue.{close_quotes} Although the Supreme Court ruled that federal jurisdiction is preeminent, it should be underscored that it was the FPC`s decision to defer to state authority in the first place. The Supreme Court decision is a determinations that flows for hydropower purposes should be made by the FPC under authority of the Federal Power Act.« less

  5. Using Conventional Hydropower to Help Alleviate Variable Resource Grid Integration Challenges in the Western U.S

    NASA Astrophysics Data System (ADS)

    Veselka, T. D.; Poch, L.

    2011-12-01

    Integrating high penetration levels of wind and solar energy resources into the power grid is a formidable challenge in virtually all interconnected systems due to the fact that supply and demand must remain in balance at all times. Since large scale electricity storage is currently not economically viable, generation must exactly match electricity demand plus energy losses in the system as time unfolds. Therefore, as generation from variable resources such as wind and solar fluctuate, production from generating resources that are easier to control and dispatch need to compensate for these fluctuations while at the same time respond to both instantaneous change in load and follow daily load profiles. The grid in the Western U.S. is not exempt to grid integration challenges associated with variable resources. However, one advantage that the power system in the Western U.S. has over many other regional power systems is that its footprint contains an abundance of hydropower resources. Hydropower plants, especially those that have reservoir water storage, can physically change electricity production levels very quickly both via a dispatcher and through automatic generation control. Since hydropower response time is typically much faster than other dispatchable resources such as steam or gas turbines, it is well suited to alleviate variable resource grid integration issues. However, despite an abundance of hydropower resources and the current low penetration of variable resources in the Western U.S., problems have already surfaced. This spring in the Pacific Northwest, wetter than normal hydropower conditions in combination with transmission constraints resulted in controversial wind resource shedding. This action was taken since water spilling would have increased dissolved oxygen levels downstream of dams thereby significantly degrading fish habitats. The extent to which hydropower resources will be able to contribute toward a stable and reliable Western grid is

  6. Attitudes of Operative Dentistry Faculty toward Rubber Dam Isolation.

    ERIC Educational Resources Information Center

    Brackett, William W.; And Others

    1989-01-01

    Dental faculty responses (N=332) to a survey concerning use of rubber dams for excluding fluids from the working field in operative dentistry procedures indicated students receive adequate instruction in rubber dam use and are proficient at graduation, though motivating students to its use is problematic and patient resistance a factor. (MSE)

  7. Hydropower plans in eastern and southern Africa increase risk of concurrent climate-related electricity supply disruption

    NASA Astrophysics Data System (ADS)

    Conway, Declan; Dalin, Carole; Landman, Willem A.; Osborn, Timothy J.

    2017-12-01

    Hydropower comprises a significant and rapidly expanding proportion of electricity production in eastern and southern Africa. In both regions, hydropower is exposed to high levels of climate variability and regional climate linkages are strong, yet an understanding of spatial interdependences is lacking. Here we consider river basin configuration and define regions of coherent rainfall variability using cluster analysis to illustrate exposure to the risk of hydropower supply disruption of current (2015) and planned (2030) hydropower sites. Assuming completion of the dams planned, hydropower will become increasingly concentrated in the Nile (from 62% to 82% of total regional capacity) and Zambezi (from 73% to 85%) basins. By 2030, 70% and 59% of total hydropower capacity will be located in one cluster of rainfall variability in eastern and southern Africa, respectively, increasing the risk of concurrent climate-related electricity supply disruption in each region. Linking of nascent regional electricity sharing mechanisms could mitigate intraregional risk, although these mechanisms face considerable political and infrastructural challenges.

  8. Application of remote sensing data for measuring freshwater ecosystems changes below the Zeya dam in the Russian Far East

    NASA Astrophysics Data System (ADS)

    Nikitina, Oxana I.; Bazarov, Kirill Y.; Egidarev, Evgeny G.

    2018-06-01

    The large Zeya hydropower dam is located on the Zeya River, the largest left-bank tributary of the Amur-Heilong River in Russia. The dam had been constructed by 1980 and its operation has significantly transformed the flow regime of the Zeya River. The flow regulation has reduced the magnitude of periodic flooding of the floodplain areas located downstream from the Zeya dam and disrupted habitats of flora and fauna. An estimation of the transformation of the freshwater ecosystems is required to develop measures necessary either to maintain or restore disrupted ecosystems. Application of remote sensing methods allows measuring characteristics of the ecosystem's components. Two sections of a floodplain below the Zeya dam were considered for analysis in order to detect changes in objects at each site during the comparison of remote data from 1969/1971 and 2016.

  9. Effects of the uncertainty of energy price and water availability forecasts on the operation of Alpine hydropower reservoir systems

    NASA Astrophysics Data System (ADS)

    Anghileri, D.; Castelletti, A.; Burlando, P.

    2016-12-01

    European energy markets have experienced dramatic changes in the last years because of the massive introduction of Variable Renewable Sources (VRSs), such as wind and solar power sources, in the generation portfolios in many countries. VRSs i) are intermittent, i.e., their production is highly variable and only partially predictable, ii) are characterized by no correlation between production and demand, iii) have negligible costs of production, and iv) have been largely subsidized. These features result in lower energy prices, but, at the same time, in increased price volatility, and in network stability issues, which pose a threat to traditional power sources because of smaller incomes and higher maintenance costs associated to a more flexible operation of power systems. Storage hydropower systems play an important role in compensating production peaks, both in term of excess and shortage of energy. Traditionally, most of the research effort in hydropower reservoir operation has focused on modeling and forecasting reservoir inflow as well as designing reservoir operation accordingly. Nowadays, price variability may be the largest source of uncertainty in the context of hydropower systems, especially when considering medium-to-large reservoirs, whose storage can easily buffer small inflow fluctuations. In this work, we compare the effects of uncertain inflow and energy price forecasts on hydropower production and profitability. By adding noise to historic inflow and price trajectories, we build a set of synthetic forecasts corresponding to different levels of predictability and assess their impact on reservoir operating policies and performances. The study is conducted on different hydropower systems, including storage systems and pumped-storage systems, with different characteristics, e.g., different inflow-capacity ratios. The analysis focuses on Alpine hydropower systems where the hydrological regime ranges from purely ice and snow-melt dominated to mixed snow

  10. Assessment of Subyearling Chinook Salmon Survival through the Federal Hydropower Projects in the Main-Stem Columbia River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skalski, J. R.; Eppard, M. B.; Ploskey, Gene R.

    2014-07-11

    High survival through hydropower projects is an essential element in the recovery of salmonid populations in the Columbia River. It is also a regulatory requirement under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) established under the Endangered Species Act. It requires dam passage survival to be ≥0.96 and ≥0.93 for spring and summer outmigrating juvenile salmonids, respectively, and estimated with a standard error ≤ 0.015. An innovative virtual/paired-release design was used to estimate dam passage survival, defined as survival from the face of a dam to the tailrace mixing zone. A coordinated four-dam study was conductedmore » during the 2012 summer outmigration using 14,026 run-of-river subyearling Chinook salmon surgically implanted with acoustic micro-transmitter (AMT) tags released at 9 different locations, and monitored on 14 different detection arrays. Each of the four estimates of dam passage survival exceeded BiOp requirements with values ranging from 0.9414 to 0.9747 and standard errors, 0.0031 to 0.0114. Two consecutive years of survival estimates must meet BiOp standards in order for a hydropower project to be in compliance with recovery requirements for a fish stock.« less

  11. Hydrological impact of high-density small dams in a humid catchment, Southeast China

    NASA Astrophysics Data System (ADS)

    Lu, W.; Lei, H.; Yang, D.

    2017-12-01

    The Jiulong River basin is a humid catchment with a drainage area of 14,741 km2; however, it has over 1000 hydropower stations within it. Such catchment with high-density small dams is scarce in China. Yet few is known about the impact of high-density small dams on streamflow changes. To what extent the large number of dams alters the hydrologic patterns is a fundamental scientific issue for water resources management, flood control, and aquatic ecological environment protection. Firstly, trend and change point analyses are applied to determine the characteristics of inter-annual streamflow. Based on the detected change point, the study period is divided into two study periods, the ``natural'' and ``disturbed'' periods. Then, a geomorphology-based hydrological model (GBHM) and the fixing-changing method are adopted to evaluate the relative contributions of climate variations and damming to the changes in streamflow at each temporal scale (i.e., from daily, monthly to annual). Based on the simulated natural streamflow, the impact of dam construction on hydrologic alteration and aquatic ecological environment will be evaluated. The hydrologic signatures that will be investigated include flood peak, seasonality of streamflow, and the inter-annual variability of streamflow. In particular, the impacts of damming on aquatic ecological environment will be investigated using eco-flow metrics and indicators of hydrologic alteration (IHA) which contains 33 individual streamflow statistics that are closely related to aquatic ecosystem. The results of this study expect to provide a reference for reservoir operation considering both ecological and economic benefits of such operations in the catchment with high-density dams.

  12. 76 FR 57731 - Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... Competing Applications; Kachess Dam Hydropower, LLC On May 31, 2011, Kachess Dam Hydropower, LLC filed an... study the feasibility of the Kachess Dam Hydroelectric Project (project) to be located at Kachess Reservoir dam, owned and operated by the U.S. Bureau of Reclamation near Cle Elum and Roslyn in Kittitas...

  13. Migration depth and residence time of juvenile salmonids in the forebays of hydropower dams prior to passage through turbines or juvenile bypass systems: implications for turbine-passage survival.

    PubMed

    Li, Xinya; Deng, Zhiqun D; Brown, Richard S; Fu, Tao; Martinez, Jayson J; McMichael, Geoffrey A; Skalski, John R; Townsend, Richard L; Trumbo, Bradly A; Ahmann, Martin L; Renholds, Jon F

    2015-01-01

    Little is known about the three-dimensional depth distributions in rivers of individually marked fish that are in close proximity to hydropower facilities. Knowledge of the depth distributions of fish approaching dams can be used to understand how vulnerable fish are to injuries such as barotrauma as they pass through dams. To predict the possibility of barotrauma injury caused by pressure changes during turbine passage, it is necessary to understand fish behaviour relative to acclimation depth in dam forebays as they approach turbines. A guiding study was conducted using high-resolution three-dimensional tracking results of salmonids implanted with Juvenile Salmon Acoustic Telemetry System transmitters to investigate the depth distributions of subyearling and yearling Chinook salmon (Oncorhynchus tshawytscha) and juvenile steelhead (Oncorhynchus mykiss) passing two dams on the Snake River in Washington State. Multiple approaches were evaluated to describe the depth at which fish were acclimated, and statistical analyses were performed on large data sets extracted from ∼28 000 individually tagged fish during 2012 and 2013. Our study identified patterns of depth distributions of juvenile salmonids in forebays prior to passage through turbines or juvenile bypass systems. This research indicates that the median depth at which juvenile salmonids approached turbines ranged from 2.8 to 12.2 m, with the depths varying by species/life history, year, location (which dam) and diel period (between day and night). One of the most enlightening findings was the difference in dam passage associated with the diel period. The amount of time that turbine-passed fish spent in the immediate forebay prior to entering the powerhouse was much lower during the night than during the day. This research will allow scientists to understand turbine-passage survival better and enable them to assess more accurately the effects of dam passage on juvenile salmon survival.

  14. Migration depth and residence time of juvenile salmonids in the forebays of hydropower dams prior to passage through turbines or juvenile bypass systems: implications for turbine-passage survival

    PubMed Central

    Li, Xinya; Deng, Zhiqun D.; Brown, Richard S.; Fu, Tao; Martinez, Jayson J.; McMichael, Geoffrey A.; Skalski, John R.; Townsend, Richard L.; Trumbo, Bradly A.; Ahmann, Martin L.; Renholds, Jon F.

    2015-01-01

    Little is known about the three-dimensional depth distributions in rivers of individually marked fish that are in close proximity to hydropower facilities. Knowledge of the depth distributions of fish approaching dams can be used to understand how vulnerable fish are to injuries such as barotrauma as they pass through dams. To predict the possibility of barotrauma injury caused by pressure changes during turbine passage, it is necessary to understand fish behaviour relative to acclimation depth in dam forebays as they approach turbines. A guiding study was conducted using high-resolution three-dimensional tracking results of salmonids implanted with Juvenile Salmon Acoustic Telemetry System transmitters to investigate the depth distributions of subyearling and yearling Chinook salmon (Oncorhynchus tshawytscha) and juvenile steelhead (Oncorhynchus mykiss) passing two dams on the Snake River in Washington State. Multiple approaches were evaluated to describe the depth at which fish were acclimated, and statistical analyses were performed on large data sets extracted from ∼28 000 individually tagged fish during 2012 and 2013. Our study identified patterns of depth distributions of juvenile salmonids in forebays prior to passage through turbines or juvenile bypass systems. This research indicates that the median depth at which juvenile salmonids approached turbines ranged from 2.8 to 12.2 m, with the depths varying by species/life history, year, location (which dam) and diel period (between day and night). One of the most enlightening findings was the difference in dam passage associated with the diel period. The amount of time that turbine-passed fish spent in the immediate forebay prior to entering the powerhouse was much lower during the night than during the day. This research will allow scientists to understand turbine-passage survival better and enable them to assess more accurately the effects of dam passage on juvenile salmon survival. PMID:27293685

  15. Sustainable hydropower in Lower Mekong Countries: Technical assessment and training travel report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadjerioua, Boualem; Witt, Adam M.

    . The mission of the ORNL Water Power Program is to develop technologies, decision-support tools, and methods of analysis that enable holistic management of water-dependent energy infrastructure and natural resources in support of the DOE Energy Efficiency and Renewable Energy Office (DOE-EERE), Federal hydropower agencies, Federal Energy Regulatory Commission (FERC), Nuclear Regulatory Commission (NRC), energy producers, and other entities. In support of SIM, ORNL completed technical assessments of two hydropower plants owned and operated by the Electricity Generating Authority of Thailand (EGAT): Vajiralongkorn (VRK), with an installed capacity of 300 MW, and Rajjaprabha (RPB), with an installed capacity of 240MW. Technical assessment is defined as the assessment of hydropower operation and performance, and the identification of potential opportunities for performance improvement through plant optimization. At each plant, the assessment included an initial analysis of hydropower operating and performance metrics, provided by dam owners. After this analysis, ORNL engaged with the plant management team in a skills exchange, where best practices, operational methods, and technical challenges were discussed. The technical assessment process was outlined to plant management followed by a presentation of preliminary results and analysis based on 50 days of operational data. EGAT has agreed to provide a full year of operational data so a complete and detailed assessment that captures seasonal variability can be completed. The results of these assessments and discussions will be used to develop a set of best practices, training, and procedure recommendations to improve the efficiency of the two assessed plants« less

  16. Watering Down Barriers to Using Hydropower through Fisheries Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ham, Ken

    Much of our work on clean energy is targeted at improving performance of hydropower, the largest source of renewable energy in the Pacific Northwest and the nation. PNNL experts in hydropower—from computer scientists to biologists and engineers—are helping to optimize the efficiency and environmental performance of hydroelectric plants. The Columbia River is the nation’s most important hydropower resource, producing 40 percent of the nation’s hydroelectric generation and up to 70 percent of the region’s power. At PNNL, Fisheries Biologist Ken Ham and others are working with stakeholders in the Pacific Northwest, the Army Corps of Engineers and DOE to ensuremore » that this resource continues to provide its many benefits while setting a new standard for environmental sustainability. As aging turbines are replaced in existing hydropower dams, computational modeling and state-of-the-art fisheries research combine to aid the design of a next-generation hydro turbine that meets or exceeds current biological performance standards and produces more power.« less

  17. 78 FR 34258 - Safety Zone; Salvage Operations at Marseilles Dam; Illinois River

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ...-AA00 Safety Zone; Salvage Operations at Marseilles Dam; Illinois River AGENCY: Coast Guard, DHS. ACTION... Illinois River starting at Mile Marker 246.9 and extending 600 yards upstream of the Marseilles Dam to Mile... repair efforts at the Marseilles Dam. This safety zone is necessary to protect the general public...

  18. Anticipating impacts of climate change on fish habitat to support decisionmaking in hydropower licensing: a climate risk study for the Hiram Dam, Saco River, ME

    NASA Astrophysics Data System (ADS)

    Lagron, C. S.; Ray, A. J.; Barsugli, J. J.

    2016-12-01

    The Federal Energy Regulatory Commission (FERC) issues licenses for non-federal hydropower projects through its Integrated Licensing Process (ILP). Through this multi-stage, multi-year decision process, NOAA National Marine Fisheries Service (NMFS) can request studies needed to prescribe license conditions to mitigate dams' effects on trust resources, e.g. fish passages and flow requirements. NMFS must understand the combined effects of hydropower projects and climate change to fulfill its mandates to maintain fisheries and protected species. Although 30-50 year hydropower licenses and renewals are within the time frame of anticipated risks from changing climate, FERC has consistently rejected NMFS' climate study requests, stating climate science is "too uncertain," and therefore not actionable. The ILP is an opportunity to incorporate climate change risks in this decision process, and to make decisions now to avoid failures later in the system regarding both hydropower reliability (the concern of FERC and the applicant) and ecosystem health (NMFS's concern). NMFS has partnered with climate scientists at the ESRL Physical Sciences Division to co-produce a climate study request for the relicensing of the Hiram Project on the Saco River in Southern Maine. The Saco hosts Atlantic salmon (Salmo salar) runs which are not currently self-sustaining. This presentation will describe basin-to-basin variability in both historic river analyses (Hydro-Climate Data Network, HCDN) and projected hydrologic responses of New England rivers to climate forcings using statewide Precipitation-Runoff Modeling System (PRMS) demonstrate the need to develop Saco-specific watershed models. Furthermore, although methods for projecting fishery-relevant metrics (heat waves, flood annual exceedance probabilities) have been proven in nearby basins, this modeling has not been conducted at fishery-relevant thresholds. Climate study requests are an example of bridging between science and

  19. Analysis and Research on the effect of the Operation of Small Hydropower in the Regional Power Grid

    NASA Astrophysics Data System (ADS)

    Ang, Fu; Guangde, Dong; Xiaojun, Zhu; Ruimiao, Wang; Shengyi, Zhu

    2018-03-01

    The analysis of reactive power balance and voltage of power network not only affects the system voltage quality, but also affects the economic operation of power grid. In the calculation of reactive power balance and voltage analysis in the past, the problem of low power and low system voltage has been the concern of people. When small hydropower stations in the wet period of low load, the analysis of reactive power surplus and high voltage for the system, if small hydropower unit the capability of running in phase is considered, it can effectively solve the system low operation voltage of the key point on the high side.

  20. The Development of Brazilian Municipalities Flooded by Hydropower Plants

    NASA Astrophysics Data System (ADS)

    Araujo, N.; Moretto, E. M.; Roquetti, D. R.; Beduschi, L. C.; Praia, A.; Pulice, S.; Albiach, E.; Athayde, S.

    2016-12-01

    Hydropower plants cause negative environmental impacts during the phases of construction and operation. On the other hand, there is a general assumption that these projects also induce local development of the affected places, since there is a great influx of social and financial capital brought locally, especially during the construction phase the relationship between hydropower plant implementation s and local development has been controversial in the Environmental Impact Assessment field, and there is no empirical evidence showing how hydroelectric dam construction affects local development. Considering municipal development as a kind of local development and operationalizing the concept of human development by adopting income, longevity and education dimensions defined by Amartya Sen, this study aimed to verify empirical evidences regarding the role of hydropower plants in human development of their flooded municipalities in Brazil. For this, we considered 134 hydroelectric plants and correspondent 641 flooded municipalities, for which 155 human development indicators were obtained for the period of 2000 to 2010. Results obtained from statistical correlation analysis and their assumption tests showed that increases in the municipal flooded area and increases in the period of flooding - to which a given municipality is submitted - were associated with lower performances of human development indicators. Specifically, increases in social inequality, poverty and lower performances of longevity and education were detected for the flooded municipalities. We also found that the financial compensation was associated with better performance of municipal income and lower performances of education and longevity. Finally, approaching the growth poles theory of François Perroux and the productive linkages theory of Albert Hirschman, we suggest that the size of the flooded areas, the flooding period and the financial compensation may lead to an enclave situation in

  1. Enhanced genetic algorithm optimization model for a single reservoir operation based on hydropower generation: case study of Mosul reservoir, northern Iraq.

    PubMed

    Al-Aqeeli, Yousif H; Lee, T S; Abd Aziz, S

    2016-01-01

    Achievement of the optimal hydropower generation from operation of water reservoirs, is a complex problems. The purpose of this study was to formulate and improve an approach of a genetic algorithm optimization model (GAOM) in order to increase the maximization of annual hydropower generation for a single reservoir. For this purpose, two simulation algorithms were drafted and applied independently in that GAOM during 20 scenarios (years) for operation of Mosul reservoir, northern Iraq. The first algorithm was based on the traditional simulation of reservoir operation, whilst the second algorithm (Salg) enhanced the GAOM by changing the population values of GA through a new simulation process of reservoir operation. The performances of these two algorithms were evaluated through the comparison of their optimal values of annual hydropower generation during the 20 scenarios of operating. The GAOM achieved an increase in hydropower generation in 17 scenarios using these two algorithms, with the Salg being superior in all scenarios. All of these were done prior adding the evaporation (Ev) and precipitation (Pr) to the water balance equation. Next, the GAOM using the Salg was applied by taking into consideration the volumes of these two parameters. In this case, the optimal values obtained from the GAOM were compared, firstly with their counterpart that found using the same algorithm without taking into consideration of Ev and Pr, secondly with the observed values. The first comparison showed that the optimal values obtained in this case decreased in all scenarios, whilst maintaining the good results compared with the observed in the second comparison. The results proved the effectiveness of the Salg in increasing the hydropower generation through the enhanced approach of the GAOM. In addition, the results indicated to the importance of taking into account the Ev and Pr in the modelling of reservoirs operation.

  2. The geomorphic response of rivers to dams: a short course.

    Treesearch

    M.J. Furniss; J. Guntle

    2004-01-01

    CD-ROMCourse AgendaDay 1: Tuesday, March 11, 20031:15 Forest Service line officer perspective: John Berry, Forest Supervisor, El Dorado National Forest, CA2:00 Power company perspective: John Esler, Portland General Electric, OR3:30 The spatial and geographical context of nonfederal hydropower dams on Forest...

  3. Hydropower resources at risk: The status of hydropower regulation and development - 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, R.T.; Hunt, J.A.

    This report documents today`s hydropower licensing and development status based on published data as follows: (a) Federal Energy Regulatory Commission (FERC) databases, maintained by FERC`s Office of Hydropower Licensing, of: (1) operating FERC-regulated projects, federal projects, and known unlicensed projects; (2) surrendered licenses; and, (3) recent licensing and relicensing actions; (b) Energy Information Administration (EIA) data on installed capacity and generation from 1949 through 1995 for the various resources used to produce electricity in the U.S.; and, (c) FERC licensing orders, and environmental assessments or environmental impact statements for each individual project relicensed since 1980. The analysis conducted to preparemore » this paper includes the effects of all FERC hydropower licensing actions since 1980, and applies those findings to estimate the costs of hydropower licensing and development activity for the next 15 years. It also quantifies the national cost of hydropower regulation. The future estimates are quite conservative. The are presented in 1996 dollars without speculating on the effects of future inflation, license surrenders, conditions imposed through open-ended license articles, license terms greater than 30 years, or low water years. Instead, they show the most directly predictable influences on licensing outcomes using actual experiences since ECPA (after 1986).« less

  4. New seismic array solution for earthquake observations and hydropower plant health monitoring

    NASA Astrophysics Data System (ADS)

    Antonovskaya, Galina N.; Kapustian, Natalya K.; Moshkunov, Alexander I.; Danilov, Alexey V.; Moshkunov, Konstantin A.

    2017-09-01

    We present the novel fusion of seismic safety monitoring data of the hydropower plant in Chirkey (Caucasus Mountains, Russia). This includes new hardware solutions and observation methods, along with technical limitations for three types of applications: (a) seismic monitoring of the Chirkey reservoir area, (b) structure monitoring of the dam, and (c) monitoring of turbine vibrations. Previous observations and data processing for health monitoring do not include complex data analysis, while the new system is more rational and less expensive. The key new feature of the new system is remote monitoring of turbine vibration. A comparison of the data obtained at the test facilities and by hydropower plant inspection with remote sensors enables early detection of hazardous hydrodynamic phenomena.

  5. Malaria and water resource development: the case of Gilgel-Gibe hydroelectric dam in Ethiopia.

    PubMed

    Yewhalaw, Delenasaw; Legesse, Worku; Van Bortel, Wim; Gebre-Selassie, Solomon; Kloos, Helmut; Duchateau, Luc; Speybroeck, Niko

    2009-01-29

    Ethiopia plans to increase its electricity power supply by five-fold over the next five years to fulfill the needs of its people and support the economic growth based on large hydropower dams. Building large dams for hydropower generation may increase the transmission of malaria since they transform ecosystems and create new vector breeding habitats. The aim of this study was to assess the effects of Gilgel-Gibe hydroelectric dam in Ethiopia on malaria transmission and changing levels of prevalence in children. A cross-sectional, community-based study was carried out between October and December 2005 in Jimma Zone, south-western Ethiopia, among children under 10 years of age living in three 'at-risk' villages (within 3 km from dam) and three 'control' villages (5 to 8 km from dam). The man-made Gilgel-Gibe dam is operating since 2004. Households with children less than 10 years of age were selected and children from the selected households were sampled from all the six villages. This included 1,081 children from 'at-risk' villages and 774 children from 'control' villages. Blood samples collected from children using finger prick were examined microscopically to determine malaria prevalence, density of parasitaemia and identify malarial parasite species. Overall 1,855 children (905 girls and 950 boys) were surveyed. A total of 194 (10.5%) children were positive for malaria, of which, 117 (60.3%) for Plasmodium vivax, 76 (39.2%) for Plasmodium falciparum and one (0.5%) for both P. vivax and P. falciparum. A multivariate design-based analysis indicated that, while controlling for age, sex and time of data collection, children who resided in 'at-risk' villages close to the dam were more likely to have P. vivax infection than children who resided farther away (odds ratio (OR) = 1.63, 95% CI = 1.15, 2.32) and showed a higher OR to have P. falciparum infection than children who resided in 'control' villages, but this was not significant (OR = 2.40, 95% CI = 0.84, 6.88). A

  6. Malaria and water resource development: the case of Gilgel-Gibe hydroelectric dam in Ethiopia

    PubMed Central

    Yewhalaw, Delenasaw; Legesse, Worku; Van Bortel, Wim; Gebre-Selassie, Solomon; Kloos, Helmut; Duchateau, Luc; Speybroeck, Niko

    2009-01-01

    Background Ethiopia plans to increase its electricity power supply by five-fold over the next five years to fulfill the needs of its people and support the economic growth based on large hydropower dams. Building large dams for hydropower generation may increase the transmission of malaria since they transform ecosystems and create new vector breeding habitats. The aim of this study was to assess the effects of Gilgel-Gibe hydroelectric dam in Ethiopia on malaria transmission and changing levels of prevalence in children. Methods A cross-sectional, community-based study was carried out between October and December 2005 in Jimma Zone, south-western Ethiopia, among children under 10 years of age living in three 'at-risk' villages (within 3 km from dam) and three 'control' villages (5 to 8 km from dam). The man-made Gilgel-Gibe dam is operating since 2004. Households with children less than 10 years of age were selected and children from the selected households were sampled from all the six villages. This included 1,081 children from 'at-risk' villages and 774 children from 'control' villages. Blood samples collected from children using finger prick were examined microscopically to determine malaria prevalence, density of parasitaemia and identify malarial parasite species. Results Overall 1,855 children (905 girls and 950 boys) were surveyed. A total of 194 (10.5%) children were positive for malaria, of which, 117 (60.3%) for Plasmodium vivax, 76 (39.2%) for Plasmodium falciparum and one (0.5%) for both P. vivax and P. falciparum. A multivariate design-based analysis indicated that, while controlling for age, sex and time of data collection, children who resided in 'at-risk' villages close to the dam were more likely to have P. vivax infection than children who resided farther away (odds ratio (OR) = 1.63, 95% CI = 1.15, 2.32) and showed a higher OR to have P. falciparum infection than children who resided in 'control' villages, but this was not significant (OR = 2

  7. Analysis of information systems for hydropower operations

    NASA Technical Reports Server (NTRS)

    Sohn, R. L.; Becker, L.; Estes, J.; Simonett, D.; Yeh, W. W. G.

    1976-01-01

    The operations of hydropower systems were analyzed with emphasis on water resource management, to determine how aerospace derived information system technologies can increase energy output. Better utilization of water resources was sought through improved reservoir inflow forecasting based on use of hydrometeorologic information systems with new or improved sensors, satellite data relay systems, and use of advanced scheduling techniques for water release. Specific mechanisms for increased energy output were determined, principally the use of more timely and accurate short term (0-7 days) inflow information to reduce spillage caused by unanticipated dynamic high inflow events. The hydrometeorologic models used in predicting inflows were examined to determine the sensitivity of inflow prediction accuracy to the many variables employed in the models, and the results used to establish information system requirements. Sensor and data handling system capabilities were reviewed and compared to the requirements, and an improved information system concept outlined.

  8. Stream Classification Tool User Manual: For Use in Applications in Hydropower-Related Evironmental Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A.; Troia, Matthew J.; DeRolph, Christopher R.

    Stream classifications are an inventory of different types of streams. Classifications help us explore similarities and differences among different types of streams, make inferences regarding stream ecosystem behavior, and communicate the complexities of ecosystems. We developed a nested, layered, and spatially contiguous stream classification to characterize the biophysical settings of stream reaches within the Eastern United States (~ 900,000 reaches). The classification is composed of five natural characteristics (hydrology, temperature, size, confinement, and substrate) along with several disturbance regime layers, and each was selected because of their relevance to hydropower mitigation. We developed the classification at the stream reach levelmore » using the National Hydrography Dataset Plus Version 1 (1:100k scale). The stream classification is useful to environmental mitigation for hydropower dams in multiple ways. First, it creates efficiency in the regulatory process by creating an objective and data-rich means to address meaningful mitigation actions. Secondly, the SCT addresses data gaps as it quickly provides an inventory of hydrology, temperature, morphology, and ecological communities for the immediate project area, but also surrounding streams. This includes identifying potential reference streams as those that are proximate to the hydropower facility and fall within the same class. These streams can potentially be used to identify ideal environmental conditions or identify desired ecological communities. In doing so, the stream provides some context for how streams may function, respond to dam regulation, and an overview of specific mitigation needs. Herein, we describe the methodology in developing each stream classification layer and provide a tutorial to guide applications of the classification (and associated data) in regulatory settings, such as hydropower (re)licensing.« less

  9. Inflow forecasting model construction with stochastic time series for coordinated dam operation

    NASA Astrophysics Data System (ADS)

    Kim, T.; Jung, Y.; Kim, H.; Heo, J. H.

    2014-12-01

    Dam inflow forecasting is one of the most important tasks in dam operation for an effective water resources management and control. In general, dam inflow forecasting with stochastic time series model is possible to apply when the data is stationary because most of stochastic process based on stationarity. However, recent hydrological data cannot be satisfied the stationarity anymore because of climate change. Therefore a stochastic time series model, which can consider seasonality and trend in the data series, named SARIMAX(Seasonal Autoregressive Integrated Average with eXternal variable) model were constructed in this study. This SARIMAX model could increase the performance of stochastic time series model by considering the nonstationarity components and external variable such as precipitation. For application, the models were constructed for four coordinated dams on Han river in South Korea with monthly time series data. As a result, the models of each dam have similar performance and it would be possible to use the model for coordinated dam operation.Acknowledgement This research was supported by a grant 'Establishing Active Disaster Management System of Flood Control Structures by using 3D BIM Technique' [NEMA-NH-12-57] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea.

  10. The future role of dams in the United States of America

    NASA Astrophysics Data System (ADS)

    Ho, Michelle; Lall, Upmanu; Allaire, Maura; Devineni, Naresh; Kwon, Hyun Han; Pal, Indrani; Raff, David; Wegner, David

    2017-02-01

    xml:id="wrcr22481-sec-1001" numbered="no">Storage and controlled distribution of water have been key elements of a human strategy to overcome the space and time variability of water, which have been marked by catastrophic droughts and floods throughout the course of civilization. In the United States, the peak of dam building occurred in the mid-20th century with knowledge limited to the scientific understanding and hydrologic records of the time. Ecological impacts were considered differently than current legislative and regulatory controls would potentially dictate. Additionally, future costs such as maintenance or removal beyond the economic design life were not fully considered. The converging risks associated with aging water storage infrastructure and uncertainty in climate in addition to the continuing need for water storage, flood protection, and hydropower result in a pressing need to address the state of dam infrastructure across the nation. Decisions regarding the future of dams in the United States may, in turn, influence regional water futures through groundwater outcomes, economic productivity, migration, and urban growth. We advocate for a comprehensive national water assessment and a formal analysis of the role dams play in our water future. We emphasize the urgent need for environmentally and economically sound strategies to integrate surface and groundwater storage infrastructure in local, regional, and national water planning considerations. A research agenda is proposed to assess dam failure impacts and the design, operation, and need for dams considering both paleo and future climate, utilization of groundwater resources, and the changing societal values toward the environment.

  11. 75 FR 62516 - Northern Illinois Hydropower, LLC; Notice of Application Ready for Environmental Analysis and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ...: Northern Illinois Hydropower, LLC. e. Name of Project: Dresden Island Project. f. Location: U.S. Army Corps of Engineers' Dresden Island Lock and Dam on the Illinois River, in the Town of Morris, Grundy County... Description: The Dresden Island Project would utilize the Corps of Engineers' existing Dresden Island Lock and...

  12. A multi-scale spatial approach to address environmental effects of small hydropower development.

    PubMed

    McManamay, Ryan A; Samu, Nicole; Kao, Shih-Chieh; Bevelhimer, Mark S; Hetrick, Shelaine C

    2015-01-01

    Hydropower development continues to grow worldwide in developed and developing countries. While the ecological and physical responses to dam construction have been well documented, translating this information into planning for hydropower development is extremely difficult. Very few studies have conducted environmental assessments to guide site-specific or widespread hydropower development. Herein, we propose a spatial approach for estimating environmental effects of hydropower development at multiple scales, as opposed to individual site-by-site assessments (e.g., environmental impact assessment). Because the complex, process-driven effects of future hydropower development may be uncertain or, at best, limited by available information, we invested considerable effort in describing novel approaches to represent environmental concerns using spatial data and in developing the spatial footprint of hydropower infrastructure. We then use two case studies in the US, one at the scale of the conterminous US and another within two adjoining rivers basins, to examine how environmental concerns can be identified and related to areas of varying energy capacity. We use combinations of reserve-design planning and multi-metric ranking to visualize tradeoffs among environmental concerns and potential energy capacity. Spatial frameworks, like the one presented, are not meant to replace more in-depth environmental assessments, but to identify information gaps and measure the sustainability of multi-development scenarios as to inform policy decisions at the basin or national level. Most importantly, the approach should foster discussions among environmental scientists and stakeholders regarding solutions to optimize energy development and environmental sustainability.

  13. The invisibility of fisheries in the process of hydropower development across the Amazon.

    PubMed

    Doria, Carolina Rodrigues da Costa; Athayde, Simone; Marques, Elineide E; Lima, Maria Alice Leite; Dutka-Gianelli, Jynessa; Ruffino, Mauro Luis; Kaplan, David; Freitas, Carlos E C; Isaac, Victoria N

    2018-05-01

    We analyze the invisibility of fisheries and inadequacy of fishers' participation in the process of hydropower development in the Amazon, focusing on gaps between legally mandated and actual outcomes. Using Ostrom's institutional design principles for assessing common-pool resource management, we selected five case studies from Brazilian Amazonian watersheds to conduct an exploratory comparative case-study analysis. We identify similar problems across basins, including deficiencies in the dam licensing process; critical data gaps; inadequate stakeholder participation; violation of human rights; neglect of fishers' knowledge; lack of organization and representation by fishers' groups; and lack of governmental structure and capacity to manage dam construction activities or support fishers after dam construction. Fishers have generally been marginalized or excluded from decision-making regarding planning, construction, mitigation, compensation, and monitoring of the social-ecological impacts of hydroelectric dams. Addressing these deficiencies will require concerted investments and efforts by dam developers, government agencies and civil society, and the promotion of inter-sectorial dialogue and cross-scale participatory planning and decision-making that includes fishers and their associations.

  14. Hydropower licensing and evolving climate: climate knowledge to support risk assessment for long-term infrastructure decisions

    NASA Astrophysics Data System (ADS)

    Ray, A. J.; Walker, S. H.; Trainor, S. F.; Cherry, J. E.

    2014-12-01

    This presentation focuses on linking climate knowledge to the complicated decision process for hydropower dam licensing, and the affected parties involved in that process. The U.S. Federal Energy Regulatory Commission issues of licenses for nonfederal hydroelectric operations, typically 30-50 year licenses, and longer infrastructure lifespan, a similar time frame as the anticipated risks of changing climate and hydrology. Resources managed by other federal and state agencies such as the NOAA National Marine Fisheries Service may be affected by new or re-licensed projects. The federal Integrated Licensing Process gives the opportunity for affected parties to recommend issues for consultative investigation and possible mitigation, such as impacts to downstream fisheries. New or re-licensed projects have the potential to "pre-adapt" by considering and incorporating risks of climate change into their planned operations as license terms and conditions. Hundreds of hydropower facilities will be up for relicensing in the coming years (over 100 in the western Sierra Nevada alone, and large-scale water projects such as the proposed Lake Powell Pipeline), as well as proposed new dams such as the Susitna project in Alaska. Therefore, there is a need for comprehensive guidance on delivering climate analysis to support understanding of risks of hydropower projects to other affected resources, and decisions on licensing. While each project will have a specific context, many of the questions will be similar. We also will discuss best practices for the use of climate science in water project planning and management, and how creating the best and most appropriate science is also still a developing art. We will discuss the potential reliability of that science for consideration in long term planning, licensing, and mitigation planning for those projects. For science to be "actionable," that science must be understood and accepted by the potential users. This process is a negotiation

  15. Operational value of ensemble streamflow forecasts for hydropower production: A Canadian case study

    NASA Astrophysics Data System (ADS)

    Boucher, Marie-Amélie; Tremblay, Denis; Luc, Perreault; François, Anctil

    2010-05-01

    Ensemble and probabilistic forecasts have many advantages over deterministic ones, both in meteorology and hydrology (e.g. Krzysztofowicz, 2001). Mainly, they inform the user on the uncertainty linked to the forecast. It has been brought to attention that such additional information could lead to improved decision making (e.g. Wilks and Hamill, 1995; Mylne, 2002; Roulin, 2007), but very few studies concentrate on operational situations involving the use of such forecasts. In addition, many authors have demonstrated that ensemble forecasts outperform deterministic forecasts in terms of performance (e.g. Jaun et al., 2005; Velazquez et al., 2009; Laio and Tamea, 2007). However, such performance is mostly assessed on the basis of numerical scoring rules, which compare the forecasts to the observations, and seldom in terms of management gains. The proposed case study adopts an operational point of view, on the basis that a novel forecasting system has value only if it leads to increase monetary and societal gains (e.g. Murphy, 1994; Laio and Tamea, 2007). More specifically, Environment Canada operational ensemble precipitation forecasts are used to drive the HYDROTEL distributed hydrological model (Fortin et al., 1995), calibrated on the Gatineau watershed located in Québec, Canada. The resulting hydrological ensemble forecasts are then incorporated into Hydro-Québec SOHO stochastic management optimization tool that automatically search for optimal operation decisions for the all reservoirs and hydropower plants located on the basin. The timeline of the study is the fall season of year 2003. This period is especially relevant because of high precipitations that nearly caused a major spill, and forced the preventive evacuation of a portion of the population located near one of the dams. We show that the use of the ensemble forecasts would have reduced the occurrence of spills and flooding, which is of particular importance for dams located in populous area, and

  16. Methane Ebullition in Temperate Hydropower Reservoirs and Implications for US Policy on Greenhouse Gas Emissions.

    PubMed

    Miller, Benjamin L; Arntzen, Evan V; Goldman, Amy E; Richmond, Marshall C

    2017-10-01

    The United States is home to 2198 dams actively used for hydropower production. With the December 2015 consensus adoption of the United Nations Framework Convention on Climate Change Paris Agreement, it is important to accurately quantify anthropogenic greenhouse gas emissions. Methane ebullition, or methane bubbles originating from river or lake sediments, has been shown to account for nearly all methane emissions from tropical hydropower reservoirs to the atmosphere. However, distinct ebullitive methane fluxes have been studied in comparatively few temperate hydropower reservoirs globally. This study measures ebullitive and diffusive methane fluxes from two eastern Washington reservoirs, and synthesizes existing studies of methane ebullition in temperate, boreal, and tropical hydropower reservoirs. Ebullition comprises nearly all methane emissions (>97%) from this study's two eastern Washington hydropower reservoirs to the atmosphere. Summer methane ebullition from these reservoirs was higher than ebullition in six southeastern U.S. hydropower reservoirs, however it was similar to temperate reservoirs in other parts of the world. Our literature synthesis suggests that methane ebullition from temperate hydropower reservoirs can be seasonally elevated compared to tropical climates, however annual emissions are likely to be higher within tropical climates, emphasizing the possible range of methane ebullition fluxes and the need for the further study of temperate reservoirs. Possible future changes to the Intergovernmental Panel on Climate Change and UNFCCC guidelines for national greenhouse gas inventories highlights the need for accurate assessment of reservoir emissions.

  17. Methane Ebullition in Temperate Hydropower Reservoirs and Implications for US Policy on Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Miller, Benjamin L.; Arntzen, Evan V.; Goldman, Amy E.; Richmond, Marshall C.

    2017-10-01

    The United States is home to 2198 dams actively used for hydropower production. With the December 2015 consensus adoption of the United Nations Framework Convention on Climate Change Paris Agreement, it is important to accurately quantify anthropogenic greenhouse gas emissions. Methane ebullition, or methane bubbles originating from river or lake sediments, has been shown to account for nearly all methane emissions from tropical hydropower reservoirs to the atmosphere. However, distinct ebullitive methane fluxes have been studied in comparatively few temperate hydropower reservoirs globally. This study measures ebullitive and diffusive methane fluxes from two eastern Washington reservoirs, and synthesizes existing studies of methane ebullition in temperate, boreal, and tropical hydropower reservoirs. Ebullition comprises nearly all methane emissions (>97%) from this study's two eastern Washington hydropower reservoirs to the atmosphere. Summer methane ebullition from these reservoirs was higher than ebullition in six southeastern U.S. hydropower reservoirs, however it was similar to temperate reservoirs in other parts of the world. Our literature synthesis suggests that methane ebullition from temperate hydropower reservoirs can be seasonally elevated compared to tropical climates, however annual emissions are likely to be higher within tropical climates, emphasizing the possible range of methane ebullition fluxes and the need for the further study of temperate reservoirs. Possible future changes to the Intergovernmental Panel on Climate Change and UNFCCC guidelines for national greenhouse gas inventories highlights the need for accurate assessment of reservoir emissions.

  18. Dam pre-release as an important operation strategy in reducing flood impact in Malaysia

    NASA Astrophysics Data System (ADS)

    Hidayah Ishak, Nurul; Mustafa Hashim, Ahmad

    2018-03-01

    The 2014 flood was reported to be one of the worst natural disaster has ever affected several states in the northern part of Peninsular Malaysia. Overwhelming rainfall was noted as one of the main factors causing such impact, which was claimed to be unprecedented to some extent. The state of Perak, which is blessed with four cascading dams had also experienced flood damage at a scale that was considered the worst in history. The rainfall received had caused the dam to reach danger level that necessitated additional discharge to be released. Safety of the dams was of great importance and such unavoidable additional discharge was allowed to avoid catastrophic failure of the dam structures. This paper discusses the dam pre-release as a significant dam management strategy in reducing flood impact. An important balance between required dam storage to be maintained and the risk element that can be afforded is the crucial factor in such enhanced operation strategy. While further possibility in developing a carefully engineered dam pre-release strategy can be explored for dam operation in Malaysia, this has already been introduced in some developed countries. Australia and South Africa are examples where pre-release has been practiced and proven to reduce flood risk. The concept involves controlling the dam lake level throughout the year, in reference to the rainfall data and the hydrological properties for the catchment area of the dams. Plentiful data analysis need to be done in contemplation of producing the optimal pre-release model. The amount of heavy rainfalls received is beyond human control but the distribution of the discharge from the dams can be further managed with the appropriate pre-release strategy.

  19. Factors influencing movement of two migratory fishes within the tailrace of a large neotropical dam and their implications for hydropower impacts

    USGS Publications Warehouse

    Suzuki, F. M.; Dunham, Jason B.; Silva, L. G. M.; Alves, C. B. M.; Pompeu, P.S.

    2017-01-01

    Fish attempting to move upstream through hydroelectric dams can be trapped and killed in turbines. Understanding fish movement patterns can provide useful insights for how to manage dam operations to minimize fish kill in turbines. We evaluated the movements of two migratory fish (Curimba-Prochilodus argenteus and Mandi-Pimelodus maculatus) using acoustic telemetry in the tailrace of Três Marias Dam (São Francisco River, Brazil) from 31 October 2011 to 16 February 2012. The majority of tagged fish left the tailrace in less than one week; however, some individuals returned, performing several visits to the tailrace. Mandi remained longer in the tailrace than Curimba. The number of visits was influenced by diel period, turbine and spillway discharge. Although the diel period was the only important contributor to the visits performed by Curimba, the movements of Mandi were significantly influenced by three factors. We found that whereas Curimba was predominantly diurnal, Mandi showed nocturnal habits. Additionally, visits of Mandi were significantly greater during higher turbine and spillway discharge. We discuss the implications of these results for understanding fish movements in the Três Marias Dam tailrace and their potential implications for adapting hydroelectric operations to minimize fish kills.

  20. Simulating potential structural and operational changes for Detroit Dam on the North Santiam River, Oregon, for downstream temperature management

    USGS Publications Warehouse

    Buccola, Norman L.; Rounds, Stewart A.; Sullivan, Annett B.; Risley, John C.

    2012-01-01

    achievement of downstream temperature goals requires that releases of warm water near the surface of the lake and cold water below the thermocline are both possible with the available dam outlets during spring, summer, and autumn. This constraint can be met to some extent with existing outlets, but only if access to the spillway is extended into autumn by keeping the lake level higher than called for by the current rule curve (the typical target water-surface elevation throughout the year). If new outlets are considered, a variable-elevation outlet such as a sliding gate structure, or a floating outlet in combination with a fixed-elevation outlet at sufficient depth to access cold water, is likely to work well in terms of accessing a range of water temperatures and achieving downstream temperature targets. Furthermore, model results indicate that it is important to release warm water from near the lake surface during midsummer. If not released downstream, the warm water will build up at the top of the lake as a result of solar energy inputs and the thermocline will deepen, potentially causing warm water to reach the depth of deeper fixed-elevation outlets in autumn, particularly when the lake level is drawn down to make room for flood storage. Delaying the drawdown in autumn can help to keep the thermocline above such outlets and preserve access to cold water. Although it is important to generate hydropower at Detroit Dam, minimum power-production requirements limit the ability of dam operators to meet downstream temperature targets with existing outlet structures. The location of the power penstocks below the thermocline in spring and most of summer causes the release of more cool water during summer than is optimal. Reducing the power-production constraint allows the temperature target to be met more frequently, but at the cost of less power generation. Finally, running the Detroit Dam, Big Cliff Dam, and North Santiam and Santiam River models in series allows dam operators

  1. Climate impacts on hydropower and consequences for global electricity supply investment needs

    DOE PAGES

    Turner, Sean W. D.; Hejazi, Mohamad; Kim, Son H.; ...

    2017-11-15

    Climate change is projected to increase hydropower generation in some parts of the world and decrease it in others. Here we explore the possible consequences of these impacts for the electricity supply sector at the global scale. Regional hydropower projections are developed by forcing a coupled global hydrological and dam model with downscaled, bias-corrected climate realizations. Consequent impacts on power sector composition and associated emissions and investment costs are explored using the Global Change Assessment Model (GCAM). We find that climate-driven changes in hydropower generation may shift power demands onto and away from carbon intensive technologies. This then causes significantlymore » altered power sector CO 2 emissions in several hydro-dependent regions, although the net global impact is modest. For drying regions, we estimate a global, cumulative investment need of approximately one trillion dollars (±$500 billion) this century to make up for deteriorated hydropower generation caused by climate change. Total investments avoided are of a similar magnitude across regions projected to experience increased precipitation. Investment risks and opportunities are concentrated in hydro-dependent countries for which significant climate change is expected. Various countries throughout the Balkans, Latin America and Southern Africa are most vulnerable, whilst Norway, Canada, and Bhutan emerge as clear beneficiaries.« less

  2. Climate impacts on hydropower and consequences for global electricity supply investment needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Sean W. D.; Hejazi, Mohamad; Kim, Son H.

    Climate change is projected to increase hydropower generation in some parts of the world and decrease it in others. Here we explore the possible consequences of these impacts for the electricity supply sector at the global scale. Regional hydropower projections are developed by forcing a coupled global hydrological and dam model with downscaled, bias-corrected climate realizations. Consequent impacts on power sector composition and associated emissions and investment costs are explored using the Global Change Assessment Model (GCAM). We find that climate-driven changes in hydropower generation may shift power demands onto and away from carbon intensive technologies. This then causes significantlymore » altered power sector CO 2 emissions in several hydro-dependent regions, although the net global impact is modest. For drying regions, we estimate a global, cumulative investment need of approximately one trillion dollars (±$500 billion) this century to make up for deteriorated hydropower generation caused by climate change. Total investments avoided are of a similar magnitude across regions projected to experience increased precipitation. Investment risks and opportunities are concentrated in hydro-dependent countries for which significant climate change is expected. Various countries throughout the Balkans, Latin America and Southern Africa are most vulnerable, whilst Norway, Canada, and Bhutan emerge as clear beneficiaries.« less

  3. Performance assessment of deterministic and probabilistic weather predictions for the short-term optimization of a tropical hydropower reservoir

    NASA Astrophysics Data System (ADS)

    Mainardi Fan, Fernando; Schwanenberg, Dirk; Alvarado, Rodolfo; Assis dos Reis, Alberto; Naumann, Steffi; Collischonn, Walter

    2016-04-01

    Hydropower is the most important electricity source in Brazil. During recent years, it accounted for 60% to 70% of the total electric power supply. Marginal costs of hydropower are lower than for thermal power plants, therefore, there is a strong economic motivation to maximize its share. On the other hand, hydropower depends on the availability of water, which has a natural variability. Its extremes lead to the risks of power production deficits during droughts and safety issues in the reservoir and downstream river reaches during flood events. One building block of the proper management of hydropower assets is the short-term forecast of reservoir inflows as input for an online, event-based optimization of its release strategy. While deterministic forecasts and optimization schemes are the established techniques for the short-term reservoir management, the use of probabilistic ensemble forecasts and stochastic optimization techniques receives growing attention and a number of researches have shown its benefit. The present work shows one of the first hindcasting and closed-loop control experiments for a multi-purpose hydropower reservoir in a tropical region in Brazil. The case study is the hydropower project (HPP) Três Marias, located in southeast Brazil. The HPP reservoir is operated with two main objectives: (i) hydroelectricity generation and (ii) flood control at Pirapora City located 120 km downstream of the dam. In the experiments, precipitation forecasts based on observed data, deterministic and probabilistic forecasts with 50 ensemble members of the ECMWF are used as forcing of the MGB-IPH hydrological model to generate streamflow forecasts over a period of 2 years. The online optimization depends on a deterministic and multi-stage stochastic version of a model predictive control scheme. Results for the perfect forecasts show the potential benefit of the online optimization and indicate a desired forecast lead time of 30 days. In comparison, the use of

  4. First Assessment of Itaipu Dam Ensemble Inflow Forecasting System

    NASA Astrophysics Data System (ADS)

    Mainardi Fan, Fernando; Machado Vieira Lisboa, Auder; Gomes Villa Trinidad, Giovanni; Rógenes Monteiro Pontes, Paulo; Collischonn, Walter; Tucci, Carlos; Costa Buarque, Diogo

    2017-04-01

    Inflow forecasting for Hydropower Plants (HPP) Dams is one of the prominent uses for hydrological forecasts. A very important HPP in terms of energy generation for South America is the Itaipu Dam, located in the Paraná River, between Brazil and Paraguay countries, with a drainage area of 820.000km2. In this work, we present the development of an ensemble forecasting system for Itaipu, operational since November 2015. The system is based in the MGB-IPH hydrological model, includes hydrodynamics simulations of the main river, and is run every day morning forced by seven different rainfall forecasts: (i) CPTEC-ETA 15km; (ii) CPTEC-BRAMS 5km; (iii) SIMEPAR WRF Ferrier; (iv) SIMEPAR WRF Lin; (v) SIMEPAR WRF Morrison; (vi) SIMEPAR WRF WDM6; (vii) SIMEPAR MEDIAN. The last one (vii) corresponds to the median value of SIMEPAR WRF model versions (iii to vi) rainfall forecasts. Besides the developed system, the "traditional" method for inflow forecasting generation for the Itaipu Dam is also run every day. This traditional method consists in the approximation of the future inflow based on the discharge tendency of upstream telemetric gauges. Nowadays, after all the forecasts are run, the hydrology team of Itaipu develop a consensus forecast, based on all obtained results, which is the one used for the Itaipu HPP Dam operation. After one year of operation a first evaluation of the Ensemble Forecasting System was conducted. Results show that the system performs satisfactory for rising flows up to five days lead time. However, some false alarms were also issued by most ensemble members in some cases. And not in all cases the system performed better than the traditional method, especially during hydrograph recessions. In terms of meteorological forecasts, some members usage are being discontinued. In terms of the hydrodynamics representation, it seems that a better information of rivers cross section could improve hydrographs recession curves forecasts. Those opportunities for

  5. Decision Support System for Reservoir Management and Operation in Africa

    NASA Astrophysics Data System (ADS)

    Navar, D. A.

    2016-12-01

    Africa is currently experiencing a surge in dam construction for flood control, water supply and hydropower production, but ineffective reservoir management has caused problems in the region, such as water shortages, flooding and loss of potential hydropower generation. Our research aims to remedy ineffective reservoir management by developing a novel Decision Support System(DSS) to equip water managers with a technical planning tool based on the state of the art in hydrological sciences. The DSS incorporates a climate forecast model, a hydraulic model of the watershed, and an optimization model to effectively plan for the operation of a system of cascade large-scale reservoirs for hydropower production, while treating water supply and flood control as constraints. Our team will use the newly constructed hydropower plants in the Omo Gibe basin of Ethiopia as the test case. Using the basic HIDROTERM software developed in Brazil, the General Algebraic Modeling System (GAMS) utilizes a combination of linear programing (LP) and non-linear programming (NLP) in conjunction with real time hydrologic and energy demand data to optimize the monthly and daily operations of the reservoir system. We compare the DSS model results with the current reservoir operating policy used by the water managers of that region. We also hope the DSS will eliminate the current dangers associated with the mismanagement of large scale water resources projects in Africa.

  6. Effects of Climate Change on Federal Hydropower. Report to Congress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This is a formal Department of Energy report to Congress. It outlines the findings of an assessment directed by Congress in Section 9505 of the SECURE Water Act of 2009 (Public Law 111-11), the US Department of Energy (DOE), in consultation with the federal Power Marketing Administrations (PMAs) and other federal agencies, including federal dam owners, has prepared a comprehensive assessment examining the effects of climate change on water available for hydropower at federal facilities and on the marketing of power from these federal facilities.

  7. Value of ecosystem hydropower service and its impact on the payment for ecosystem services.

    PubMed

    Fu, B; Wang, Y K; Xu, P; Yan, K; Li, M

    2014-02-15

    Hydropower is an important service provided by ecosystems. We surveyed all the hydropower plants in the Zagunao River Basin, Southwest China. Then, we assessed the hydropower service by using the InVEST (The Integrated Value and Tradeoff of Ecosystem Service Tools) model. Finally, we discussed the impact on ecological compensation. The results showed that: 1) hydropower service value of ecosystems in the Zagunao River Basin is 216.29 Euro/hm(2) on the average, of which the high-value area with more than 475.65 Euro/hm(2) is about 750.37 km(2), accounting for 16.12% of the whole watershed, but it provides 53.47% of the whole watershed service value; 2) ecosystem is an ecological reservoir with a great regulation capacity. Dams cannot completely replace the reservoir water conservation function of ecosystems, and has high economic and environmental costs that must be paid as well. Compensation for water conservation services should become an important basis for ecological compensation of hydropower development. 3) In the current PES cases, the standard of compensation is generally low. Cascade development makes the value of upstream ecosystem services become more prominent, reflecting the differential rent value, and the value of ecosystem services should be based on the distribution of differentiated ecological compensation. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Downstream migration and multiple dam passage by Atlantic Salmon smolts

    USGS Publications Warehouse

    Nyqvist, D.; McCormick, Stephen; Greenberg, L.; Ardren, W.R.; Bergman, E.; Calles, O.; Castro-Santos, Theodore R.

    2017-01-01

    The purpose of this study was to investigate behavior and survival of radio-tagged wild and hatchery-reared landlocked Atlantic Salmon Salmo salar smolts as they migrated past three hydropower dams equipped with fish bypass solutions in the Winooski River, Vermont. Among hatchery-reared smolts, those released early were more likely to initiate migration and did so after less delay than those released late. Once migration was initiated, however, the late-released hatchery smolts migrated at greater speeds. Throughout the river system, hatchery-reared fish performed similarly to wild fish. Dam passage rates varied between the three dams and was highest at the dam where unusually high spill levels occurred throughout the study period. Of the 50 fish that did migrate downstream, only 10% managed to reach the lake. Migration success was low despite the presence of bypass solutions, underscoring the need for evaluations of remedial measures; simply constructing a fishway is not synonymous with providing fish passage.

  9. Total Dissolved Gas Monitoring in Chum Salmon Spawning Gravels Below Bonneville Dam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arntzen, Evan V.; Geist, David R.; Panther, Jennifer L.

    2007-01-30

    At the request of the U.S. Army Corps of Engineers (Portland District), Pacific Northwest National Laboratory (PNNL) conducted research to determine whether total dissolved gas concentrations are elevated in chum salmon redds during spring spill operations at Bonneville Dam. The study involved monitoring the total dissolved gas levels at egg pocket depth and in the river at two chum salmon spawning locations downstream from Bonneville Dam. Dissolved atmospheric gas supersaturation generated by spill from Bonneville Dam may diminish survival of chum (Oncorhynchus keta) salmon when sac fry are still present in the gravel downstream from Bonneville Dam. However, no previousmore » work has been conducted to determine whether total dissolved gas (TDG) levels are elevated during spring spill operations within incubation habitats. The guidance used by hydropower system managers to provide protection for pre-emergent chum salmon fry has been to limit TDG to 105% after allowing for depth compensation. A previous literature review completed in early 2006 shows that TDG levels as low as 103% have been documented to cause mortality in sac fry. Our study measured TDG in the incubation environment to evaluate whether these levels were exceeded during spring spill operations. Total dissolved gas levels were measured within chum salmon spawning areas near Ives Island and Multnomah Falls on the Columbia River. Water quality sensors screened at egg pocket depth and to the river were installed at both sites. At each location, we also measured dissolved oxygen, temperature, specific conductance, and water depth to assist with the interpretation of TDG results. Total dissolved gas was depth-compensated to determine when levels were high enough to potentially affect sac fry. This report provides detailed descriptions of the two study sites downstream of Bonneville Dam, as well as the equipment and procedures employed to monitor the TDG levels at the study sites. Results of the

  10. The future of hydropower planning modeling

    NASA Astrophysics Data System (ADS)

    Haas, J.; Zuñiga, D.; Nowak, W.; Olivares, M. A.; Castelletti, A.; Thilmant, A.

    2017-12-01

    Planning the investment and operation of hydropower plants with optimization tools dates back to the 1970s. The focus used to be solely on the provision of energy. However, advances in computational capacity and solving algorithms, dynamic markets, expansion of renewable sources, and a better understanding of hydropower environmental impacts have recently led to the development of novel planning approaches. In this work, we provide a review, systematization, and trend analysis of these approaches. Further, through interviews with experts, we outline the future of hydropower planning modeling and identify the gaps towards it. We classified the found models along environmental, economic, multipurpose and technical criteria. Environmental interactions include hydropeaking mitigation, water quality protection and limiting greenhouse gas emissions from reservoirs. Economic and regulatory criteria consider uncertainties of fossil fuel prices and relicensing of water rights and power purchase agreements. Multipurpose considerations account for irrigation, tourism, flood protection and drinking water. Recently included technical details account for sedimentation in reservoirs and variable efficiencies of turbines. Additional operational considerations relate to hydrological aspects such as dynamic reservoir inflows, water losses, and climate change. Although many of the above criteria have been addressed in detail on a project-to-project basis, models remain overly simplistic for planning large power fleets. Future hydropower planning tools are expected to improve the representation of the water-energy nexus, including environmental and multipurpose criteria. Further, they will concentrate on identifying new sources of operational flexibility (e.g. through installing additional turbines and pumps) for integrating renewable energy. The operational detail will increase, potentially emphasizing variable efficiencies, storage capacity losses due to sedimentation, and the

  11. 75 FR 40801 - Wilkesboro Hydropower, LLC; Notice of Application Accepted for Filing and Soliciting Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ..., LLC. e. Name of Project: W. Kerr Scott Hydropower Project. f. Location: The proposed project would be located at the existing U.S. Army Corps of Engineers' (Corps) W. Kerr Scott dam on the Yadkin River, near...(r). h. Applicant Contacts: Mr. Kevin Edwards, P.O. Box 143, Mayodan, NC 27027; Mr. Dean Edwards, P.O...

  12. Sluiceway Operations for Adult Steelhead Downstream Passage at The Dalles Dam, Columbia River, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Fenton; Royer, Ida M.; Johnson, Gary E.

    2013-10-01

    This study evaluated adult steelhead (Oncorhynchus mykiss; fallbacks and kelts) downstream passage at The Dalles Dam in the Columbia River, USA, during the late fall, winter, and early spring months between 2008 and 2011. The purpose of the study was to determine the efficacy of operating the dam’s ice-and-trash sluiceway during non-spill months to provide a relatively safe, non-turbine, surface outlet for overwintering steelhead fallbacks and downstream migrating steelhead kelts. We applied the fixed-location hydroacoustic technique to estimate fish passage rates at the sluiceway and turbines of the dam. The spillway was closed during our sampling periods, which generally occurredmore » in late fall, winter, and early spring. The sluiceway was highly used by adult steelhead (91–99% of total fish sampled passing the dam) during all sampling periods. Turbine passage was low when the sluiceway was not operated. This implies that lack of a sluiceway route did not result in increased turbine passage. However, when the sluiceway was open, adult steelhead used it to pass through the dam. The sluiceway may be operated during late fall, winter, and early spring to provide an optimal, non-turbine route for adult steelhead (fallbacks and kelts) downstream passage at The Dalles Dam.« less

  13. Impact of alternative environmental flow prescriptions on hydropower production and fish habitat suitability

    NASA Astrophysics Data System (ADS)

    Ceola, Serena; Pugliese, Alessio; Castellarin, Attilio; Galeati, Giorgio

    2015-04-01

    Anthropogenic activities along streams and rivers are increasingly recognised to be a major concern for fluvial ecosystems. The management of water resources, by means of e.g. flow diversions and dams, for industrial, agricultural, water-supply, hydropower production and flood protection purposes induces significant changes to the natural streamflow regime of a river. Indeed, the river flow regime is known to be a major abiotic factor influencing fluvial ecosystems. An established approach aimed at preserving the behaviour and distribution of fluvial species relies on the definition of minimum streamflow requirements (i.e., environmental flows) downstream of dams and diversion structures. Such environmental flows are normally identified through methodologies that have an empirical nature and may not be representative of local ecological and hydraulic conditions. While the effect of imposing a minimum discharge release is easily predictable in terms of e.g. loss of hydropower production, the advantages in terms of species preferences are often poorly understood and seldom assessed. To analyse the interactions between flow releases and the behaviour and distribution of fluvial species (i.e., from periphyton, to benthic invertebrate and fish), one may use a habitat suitability curve, which is a fundamental tool capable of describing species preferences influenced by any generic environmental variable. The outcomes of a real case study applied to several Italian rivers, located in the Marche administrative district in Central Italy (∽10000km2), in which we quantitatively assess the effects of alternative environmental flow scenarios on the existing hydropower network and on two fish species that are quite abundant in the study area (i.e., Leuciscus cephalus cabeda and Barbus barbus plebejus), will be presented and discussed. The proposed analysis, which can be easily adapted to different riparian habitats and hydrological contexts, is a useful tool to guide the

  14. Impact of Alternative Environmental Flow Prescriptions on Hydropower Production and Fish Habitat Suitability

    NASA Astrophysics Data System (ADS)

    Castellarin, A.; Ceola, S.; Pugliese, A.; Galeati, G. A.

    2015-12-01

    Anthropogenic activities along streams and rivers are increasingly recognized to be a major concern for fluvial ecosystems. The management of water resources, by means of e.g. flow diversions and dams, for industrial, agricultural, water-supply, hydropower production and flood protection purposes induces significant changes to the natural streamflow regime of a river. Indeed, the river flow regime is known to be a major abiotic factor influencing fluvial ecosystems. An established approach aimed at preserving the behaviour and distribution of fluvial species relies on the definition of minimum streamflow requirements (i.e., environmental flows) downstream of dams and diversion structures. Such environmental flows are normally identified through methodologies that have an empirical nature and may not be representative of local ecological and hydraulic conditions. While the effect of imposing a minimum discharge release is easily predictable in terms of e.g. loss of hydropower production, the advantages in terms of species preferences are often poorly understood and seldom assessed. To analyze the interactions between flow releases and the behaviour and distribution of fluvial species (i.e., from periphyton, to benthic invertebrate and fish), one may use a habitat suitability curve, which is a fundamental tool capable of describing species preferences influenced by any generic environmental variable. The outcomes of a real case study applied to several Italian rivers, located in the Marche administrative district in Central Italy (∽10000km2), in which we quantitatively assess the effects of alternative environmental flow scenarios on the existing hydropower network and on two fish species that are quite abundant in the study area (i.e., Leuciscus cephalus cabeda and Barbus barbus plebejus), will be presented and discussed. The proposed analysis, which can be easily adapted to different riparian habitats and hydrological contexts, is a useful tool to guide the

  15. Relation between flows and dissolved oxygen in the Roanoke River between Roanoke Rapids Dam and Jamesville, North Carolina, 2005-2009

    USGS Publications Warehouse

    Wehmeyer, Loren L.; Wagner, Chad R.

    2011-01-01

    The relation between dam releases and dissolved-oxygen concentration, saturation and deficit, downstream from Roanoke Rapids Dam in North Carolina was evaluated from 2005 to 2009. Dissolved-oxygen data collected at four water-quality monitoring stations downstream from Roanoke Rapids Dam were used to determine if any statistical relations or discernible quantitative or qualitative patterns linked Roanoke River in-stream dissolved-oxygen levels to hydropower peaking at Roanoke Rapids Dam. Unregulated tributaries that inundate and drain portions of the Roanoke River flood plain are crucial in relation to in-stream dissolved oxygen. Hydropower peaking from 2005 to 2009 both inundated and drained portions of the flood plain independently of large storms. The effects of these changes in flow on dissolved-oxygen dynamics are difficult to isolate, however, because of (1) the variable travel time for water to move down the 112-mile reach of the Roanoke River from Roanoke Rapids Dam to Jamesville, North Carolina, and (2) the range of in-situ conditions, particularly inundation history and water temperature, in the flood plain. Statistical testing was conducted on the travel-time-adjusted hourly data measured at each of the four water-quality stations between May and November 2005-2009 when the weekly mean flow was 5,000-12,000 cubic feet per second (a range when Roanoke Rapids Dam operations likely affect tributary and flood-plain water levels). Results of this statistical testing indicate that at the 99-percent confidence interval dissolved-oxygen levels downstream from Roanoke Rapids Dam were lower during peaking weeks than during non-peaking weeks in three of the five years and higher in one of the five years; no data were available for weeks with peaking in 2007. For the four years of statistically significant differences in dissolved oxygen between peaking and non-peaking weeks, three of the years had statistically signficant differences in water temperature. Years

  16. A stream-scale model to optimize the water allocation for Small Hydropower Plants and the application to traditional systems

    NASA Astrophysics Data System (ADS)

    Razurel, Pierre; Niayifar, Amin; Perona, Paolo

    2017-04-01

    Hydropower plays an important role in supplying worldwide energy demand where it contributes to approximately 16% of global electricity production. Although hydropower, as an emission-free renewable energy, is a reliable source of energy to mitigate climate change, its development will increase river exploitation. The environmental impacts associated with both small hydropower plants (SHP) and traditional dammed systems have been found to the consequence of changing natural flow regime with other release policies, e.g. the minimal flow. Nowadays, in some countries, proportional allocation rules are also applied aiming to mimic the natural flow variability. For example, these dynamic rules are part of the environmental guidance in the United Kingdom and constitute an improvement in comparison to static rules. In a context in which the full hydropower potential might be reached in a close future, a solution to optimize the water allocation seems essential. In this work, we present a model that enables to simulate a wide range of water allocation rules (static and dynamic) for a specific hydropower plant and to evaluate their associated economic and ecological benefits. It is developed in the form of a graphical user interface (GUI) where, depending on the specific type of hydropower plant (i.e., SHP or traditional dammed system), the user is able to specify the different characteristics (e.g., hydrological data and turbine characteristics) of the studied system. As an alternative to commonly used policies, a new class of dynamic allocation functions (non-proportional repartition rules) is introduced (e.g., Razurel et al., 2016). The efficiency plot resulting from the simulations shows the environmental indicator and the energy produced for each allocation policies. The optimal water distribution rules can be identified on the Pareto's frontier, which is obtained by stochastic optimization in the case of storage systems (e.g., Niayifar and Perona, submitted) and by

  17. Influences of Dam Operations in Groundwater-Surface Water Mixing Zones: Towards Multiscale Understanding

    NASA Astrophysics Data System (ADS)

    Stegen, J.; Scheibe, T. D.; Chen, X.; Huang, M.; Arntzen, E.; Garayburu-Caruso, V. A.; Graham, E.; Johnson, T. C.; Strickland, C. E.

    2017-12-01

    The installation and operation of dams have myriad influences on ecosystems, from direct effects on hydrographs to indirect effects on marine biogeochemistry and terrestrial food webs. With > 50000 existing and > 3700 planned large dams world-wide there is a pressing need for holistic understanding of dam impacts. Such understanding is likely to reveal unrecognized opportunities to modify dam operations towards beneficial outcomes. One of the most dramatic influences of daily dam operations is the creation of `artificial intertidal zones' that emerge from short-term increases and decreases in discharge due to hydroelectric power demands; known as hydropeaking. There is a long history of studying the influences of hydropeaking on macrofauna such as fish and invertebrates, but only recently has significant attention been paid to the hydrobiogeochemical effects of hydropeaking. Our aim here is to develop an integrated conceptual model of the hydrobiogeochemical influences of hydropeaking. To do so we reviewed available literature focusing on hydrologic and/or biogeochemical influences of hydropeaking. Results from these studies were collated into a single conceptual model that integrates key physical (e.g., sediment transport, hydromorphology) and biological (e.g., timescale of microbiome response) processes. This conceptual model highlights non-intuitive impacts of hydropeaking, the presence of critical thresholds, and strong interactions among processes. When examined individually these features suggest context dependency, but when viewed through an integrated conceptual model, common themes emerge. We will further discuss a critical next step, which is the local to regional to global evaluation of this conceptual model, to enable multiscale understanding. We specifically propose a global `hydropeaking network' of researchers using common methods, data standards, and analysis techniques to quantify the hydrobiogeochemical effects of hydropeaking across biomes. We

  18. 75 FR 65299 - Endangered and Threatened Species; Recovery Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    .../quantity. Address direct impacts of Willamette hydropower and flood control dam/reservoir operations by... eastside tributaries of the Willamette River; adverse thermal effects downstream from operation of the dams... spawning is high. c. Downstream passage survival of juvenile offspring through the reservoir and dam...

  19. A brief history of 20th century dam construction and a look into the future

    NASA Astrophysics Data System (ADS)

    van de Giesen, Nick

    2010-05-01

    In this presentation, an overview is given of global dam building activities in the 20th century. Political, economical and hydrological factors shaped the building of large dams. The development of the relations between these three factors and dam building over time is examined. One can argue whether or not history is simply "one damn thing after another" but the second half of the 20th century suggests that history is at least reflected by the construction of one dam after another. The financial crisis of the 1930's started the first construction wave of large hydropower dams in the United States. This wave continued into the Second World War. During the Cold War, the weapon race between the USA and USSR was accompanied by a parallel neck-and-neck race in dam construction. By the 1970's, dam construction in the USA tapered off, while that in the USSR continued until its political disintegration. In China, we see two spurts in dam development, the first one coinciding with the disastrous Great Leap Forward and the second with the liberalization of the Chinese economy after the fall of the Berlin Wall. Economic and political events thus shaped to an important extent decisions surrounding the construction of large dams. Clearly, there are some hydrological prerequisites for the construction of dams. The six largest dam building nations are USSR, Canada, USA, China, Brazil, and India, all large countries with ample water resources and mountain ranges. Australia has relatively little reservoir storage for the simple fact that most of this country is flat and dry. A few countries have relatively large amounts of reservoir storage. Especially Uganda (Owens Falls), Ghana (Akosombo), and Zimbabwe (Kariba) are examples of small countries where gorges in major rivers were "natural" places for large dams and reservoirs to be built early on. It seems that, deserts aside, the average potential storage capacity lies for most continents around 10 cm or about 50% of the total

  20. Projecting changes in annual hydropower generation using regional runoff data: An assessment of the United States federal hydropower plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kao, Shih -Chieh; Sale, Michael J.; Ashfaq, Moetasim

    Federal hydropower plants account for approximately half of installed US conventional hydropower capacity, and are an important part of the national renewable energy portfolio. Utilizing the strong linear relationship between the US Geological Survey WaterWatch runoff and annual hydropower generation, a runoff-based assessment approach is introduced in this study to project changes in annual and regional hydropower generation in multiple power marketing areas. Future climate scenarios are developed with a series of global and regional climate models, and the model output is bias-corrected to be consistent with observed data for the recent past. Using this approach, the median decrease inmore » annual generation at federal projects is projected to be less than –2 TWh, with an estimated ensemble uncertainty of ±9 TWh. Although these estimates are similar to the recently observed variability in annual hydropower generation, and may therefore appear to be manageable, significantly seasonal runoff changes are projected and it may pose significant challenges in water systems with higher limits on reservoir storage and operational flexibility. Lastly, future assessments will be improved by incorporating next-generation climate models, by closer examination of extreme events and longer-term change, and by addressing the interactions among hydropower and other water uses.« less

  1. Projecting changes in annual hydropower generation using regional runoff data: An assessment of the United States federal hydropower plants

    DOE PAGES

    Kao, Shih -Chieh; Sale, Michael J.; Ashfaq, Moetasim; ...

    2014-12-18

    Federal hydropower plants account for approximately half of installed US conventional hydropower capacity, and are an important part of the national renewable energy portfolio. Utilizing the strong linear relationship between the US Geological Survey WaterWatch runoff and annual hydropower generation, a runoff-based assessment approach is introduced in this study to project changes in annual and regional hydropower generation in multiple power marketing areas. Future climate scenarios are developed with a series of global and regional climate models, and the model output is bias-corrected to be consistent with observed data for the recent past. Using this approach, the median decrease inmore » annual generation at federal projects is projected to be less than –2 TWh, with an estimated ensemble uncertainty of ±9 TWh. Although these estimates are similar to the recently observed variability in annual hydropower generation, and may therefore appear to be manageable, significantly seasonal runoff changes are projected and it may pose significant challenges in water systems with higher limits on reservoir storage and operational flexibility. Lastly, future assessments will be improved by incorporating next-generation climate models, by closer examination of extreme events and longer-term change, and by addressing the interactions among hydropower and other water uses.« less

  2. The Mekong's future flows under multiple driving factors: How future climate change, hydropower developments and irrigation expansion drive hydrological changes?

    NASA Astrophysics Data System (ADS)

    Hoang, L. P.; van Vliet, M. T. H.; Lauri, H.; Kummu, M.; Koponen, J.; Supit, I.; Leemans, R.; Kabat, P.; Ludwig, F.

    2016-12-01

    The Mekong River's flows and water resources are in many ways essential for sustaining economic growths, flood security of about 70 million people and biodiversity in one of the world's most ecologically productive wetland systems. The river's hydrological cycle, however, are increasingly perturbed by climate change, large-scale hydropower developments and rapid irrigated land expansions. This study presents an integrated impact assessment to characterize and quantify future hydrological changes induced by these driving factors, both separately and combined. We have integrated a crop simulation module and a hydropower dam module into a distributed hydrological model (VMod) and simulated the Mekong's hydrology under multiple climate change and development scenarios. Our results show that the Mekong's hydrological regime will experience substantial changes caused by the considered factors. Magnitude-wise, hydropower dam developments exhibit the largest impacts on river flows, with projected higher flows (up to +35%) during the dry season and lower flows (up to -44%) during the wet season. Annual flow changes caused by the dams, however, are relatively marginal. In contrast to this, climate change is projected to increase the Mekong's annual flows (up to +16%) while irrigated land expansions result in annual flow reductions (-1% to -3%). Combining the impacts of these three drivers, we found that river flow changes, especially those at the monthly scale, largely differ from changes under the individual driving factors. This is explained by large differences in impacts' magnitudes and contrasting impacts' directions for the individual drivers. We argue that the Mekong's future flows are likely driven by multiple factors and thus advocate for integrated assessment approaches and tools that support proper considerations of these factors and their interplays.

  3. Hydrology and Mosquito Population Dynamics around a Hydropower Reservoir in Africa

    NASA Astrophysics Data System (ADS)

    Endo, N.; Eltahir, E. A.

    2013-12-01

    Malaria is associated with dams because their reservoirs provide mosquitoes, the vector of malaria, with permanent breeding sites. The risk of contracting malaria is likely to be enhanced following the increasing trend of hydropower dam construction to satisfy the expanding energy needs in developing countries. A close examination of its adverse health impacts is critical in the design, construction, and operation phases. We will present results of extensive field studies in 2012 and 2013 around the Koka Reservoir, Ethiopia. The results uncover the importance of reservoir management especially after the rainy seasons. Furthermore, we show the capability of a newly modified hydrology, entomology and malaria transmission simulator, HYDREMATS (Bomblies et al, 2008), and its potential as a tool for evaluating environmental management strategies to control malaria. HYDREMATS was developed to represent how the hydrology in nearby villages is impacted by the reservoir system, and the role of different types of vector ecologies associated with different Anopheles mosquito species. The hydrology component of HYDREMATS simulates three different mosquito breeding habitats: rain-fed pools, groundwater pools, and shoreline water. The entomology component simulates the life cycles of An. funestus and An. arabiensis, the two main vectors around the reservoir. The model was calibrated over the 2012-2013 period. The impact of reservoir water level management on the mosquito population is explored based on numerical model simulations and field experiments.

  4. Modeling Shasta Dam operations to regulate temperatures for Chinook salmon under extreme climate and climate change

    NASA Astrophysics Data System (ADS)

    Dai, A.; Saito, L.; Sapin, J. R.; Rajagopalan, B.; Hanna, R. B.; Kauneckis, D. L.

    2014-12-01

    Chinook salmon populations have declined significantly after the construction of Shasta Dam on the Sacramento River in 1945 prevented them from spawning in the cold waters upstream. In 1994, the winter-run Chinook were listed under the Endangered Species Act and 3 years later the US Bureau of Reclamation began operating a temperature control device (TCD) on the dam that allows for selective withdrawal for downstream temperature control to promote salmon spawning while also maximizing power generation. However, dam operators are responsible to other interests that depend on the reservoir for water such as agriculture, municipalities, industry, and recreation. An increase in temperatures due to climate change may place additional strain on the ability of dam operations to maintain spawning habitat for salmon downstream of the dam. We examined the capability of Shasta Dam to regulate downstream temperatures under extreme climates and climate change by using stochastically generated streamflow, stream temperature, and weather inputs with a two-dimensional CE-QUAL-W2 model under several operational options. Operation performance was evaluated using degree days and cold pool volume (volume of water below a temperature threshold). Model results indicated that a generalized operations release schedule, in which release elevations varied over the year to match downstream temperature targets, performed best overall in meeting temperature targets while preserving cold pool volume. Releasing all water out the bottom throughout the year tended to meet temperature targets at the expense of depleting the cold pool, and releasing all water out uppermost gates preserved the cold pool, but released water that was too warm during the critical spawning period. With higher air temperatures due to climate change, both degree day and cold pool volume metrics were worse than baseline conditions, which suggests that Chinook salmon may be more negatively affected under climate change.

  5. Large storage operations under climate change: expanding uncertainties and evolving tradeoffs

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Anghileri, Daniela; Castelletti, Andrea; Vu, Phuong Nam; Soncini-Sessa, Rodolfo

    2016-03-01

    In a changing climate and society, large storage systems can play a key role for securing water, energy, and food, and rebalancing their cross-dependencies. In this letter, we study the role of large storage operations as flexible means of adaptation to climate change. In particular, we explore the impacts of different climate projections for different future time horizons on the multi-purpose operations of the existing system of large dams in the Red River basin (China-Laos-Vietnam). We identify the main vulnerabilities of current system operations, understand the risk of failure across sectors by exploring the evolution of the system tradeoffs, quantify how the uncertainty associated to climate scenarios is expanded by the storage operations, and assess the expected costs if no adaptation is implemented. Results show that, depending on the climate scenario and the time horizon considered, the existing operations are predicted to change on average from -7 to +5% in hydropower production, +35 to +520% in flood damages, and +15 to +160% in water supply deficit. These negative impacts can be partially mitigated by adapting the existing operations to future climate, reducing the loss of hydropower to 5%, potentially saving around 34.4 million US year-1 at the national scale. Since the Red River is paradigmatic of many river basins across south east Asia, where new large dams are under construction or are planned to support fast growing economies, our results can support policy makers in prioritizing responses and adaptation strategies to the changing climate.

  6. Water temperature effects from simulated dam operations and structures in the Middle Fork Willamette River, western Oregon

    USGS Publications Warehouse

    Buccola, Norman L.; Turner, Daniel F.; Rounds, Stewart A.

    2016-09-14

    Significant FindingsStreamflow and water temperature in the Middle Fork Willamette River (MFWR), western Oregon, have been regulated and altered since the construction of Lookout Point, Dexter, and Hills Creek Dams in 1954 and 1961, respectively. Each year, summer releases from the dams typically are cooler than pre-dam conditions, with the reverse (warmer than pre-dam conditions) occurring in autumn. This pattern has been detrimental to habitat of endangered Upper Willamette River (UWR) Chinook salmon (Oncorhynchus tshawytscha) and UWR winter steelhead (O. mykiss) throughout multiple life stages. In this study, scenarios testing different dam-operation strategies and hypothetical dam-outlet structures were simulated using CE-QUAL-W2 hydrodynamic/temperature models of the MFWR system from Hills Creek Lake (HCR) to Lookout Point (LOP) and Dexter (DEX) Lakes to explore and understand the efficacy of potential flow and temperature mitigation options.Model scenarios were run in constructed wet, normal, and dry hydrologic calendar years, and designed to minimize the effects of Hills Creek and Lookout Point Dams on river temperature by prioritizing warmer lake surface releases in May–August and cooler, deep releases in September–December. Operational scenarios consisted of a range of modified release rate rules, relaxation of power-generation constraints, variations in the timing of refill and drawdown, and maintenance of different summer maximum lake levels at HCR and LOP. Structural scenarios included various combinations of hypothetical floating outlets near the lake surface and hypothetical new outlets at depth. Scenario results were compared to scenarios using existing operational rules that give temperature management some priority (Base), scenarios using pre-2012 operational rules that prioritized power generation over temperature management (NoBlend), and estimated temperatures from a without-dams condition (WoDams).Results of the tested model scenarios led

  7. Model based hydropower gate operation for mitigation of CSO impacts by means of river base flow increase.

    PubMed

    Achleitner, S; De Toffol, S; Engelhard, C; Rauch, W

    2005-01-01

    In river stretches being subjected to flow regulation, usually for the purpose of energy production (e.g. Hydropower) or flood protection (river barrage), a special measure can be taken against the effect of combined sewer overflows (CSOs). The basic idea is the temporal increase of the river base flow (during storm weather) as an in-stream measure for mitigation of CSO spilling. The focus is the mitigation of the negative effect of acute pollution of substances. The measure developed can be seen as an application of the classic real time control (RTC) concept onto the river system. Upstream gate operation is to be based on real time monitoring and forecasting of precipitation. The main objective is the development of a model based predictive control system for the gate operation, by modelling of the overall wastewater system (incl. the receiving water). The main emphasis is put on the operational strategy and the appropriate short-term forecast of spilling events. The potential of the measure is tested for the application of the operational strategy and its ecological and economic feasibility. The implementation of such an in-stream measure into the hydropower's operational scheme is unique. Advantages are (a) the additional in-stream dilution of acute pollutants entering the receiving water and (b) the resulting minimization of the required CSO storage volume.

  8. Assessment of the Effects of Climate Change on Federal Hydropower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sale, Michael J.; Shih-Chieh, Kao; Ashfaq, Moetasim

    As directed by Congress in Section 9505 of the SECURE Water Act of 2009 (Public Law 111-11), the US Department of Energy (DOE), in consultation with the federal Power Marketing Administrations (PMAs) and other federal agencies, including federal dam owners, has prepared a comprehensive assessment examining the effects of climate change on water available for hydropower at federal facilities and on the marketing of power from these federal facilities. This Oak Ridge National Laboratory report, referred to as the “9505 Assessment,” describes the technical basis for the report to Congress that was called for in the SECURE Water Act.

  9. Rock Mass Classification of Karstic Terrain in the Reservoir Slopes of Tekeze Hydropower Project

    NASA Astrophysics Data System (ADS)

    Hailemariam Gugsa, Trufat; Schneider, Jean Friedrich

    2010-05-01

    Hydropower reservoirs in deep gorges usually experience slope failures and mass movements. History also showed that some of these projects suffered severe landslides, which left lots of victims and enormous economic loss. Thus, it became vital to make substantial slope stability studies in such reservoirs to ensure safe project development. This study also presents a regional scale instability assessment of the Tekeze Hydropower reservoir slopes. Tekeze hydropower project is a newly constructed double arch dam that completed in August 2009. It is developed on Tekeze River, tributary of Blue Nile River that runs across the northern highlands of Ethiopia. It cuts a savage gorge 2000m deep, the deepest canyon in Africa. The dam is the highest dam in Ethiopia at 188m, 10 m higher than China's Three Gorges Dam. It is being developed by Chinese company at a cost of US350M. The reservoir is designed at 1140 m elevation, as retention level to store more than 9000 million m3 volume of water that covers an area of 150 km2, mainly in channel filling form. In this study, generation of digital elevation model from ASTER satellite imagery and surface field investigation is initially considered for further image processing and terrain parameters' analyses. Digitally processed multi spectral ASTER ortho-images drape over the DEM are used to have different three dimensional perspective views in interpreting lithological, structural and geomorphological features, which are later verified by field mapping. Terrain slopes are also delineated from the relief scene. A GIS database is ultimately developed to facilitate the delineation of geotechnical units for slope rock mass classification. Accordingly, 83 geotechnical units are delineated and, within them, 240 measurement points are established to quantify in-situ geotechnical parameters. Due to geotechnical uncertainties, four classification systems; namely geomorphic rock mass strength classification (RMS), slope mass rating (SMR

  10. Future changes in Yuan River ecohydrology: Individual and cumulative impacts of climates change and cascade hydropower development on runoff and aquatic habitat quality.

    PubMed

    Wen, Xin; Liu, Zhehua; Lei, Xiaohui; Lin, Rongjie; Fang, Guohua; Tan, Qiaofeng; Wang, Chao; Tian, Yu; Quan, Jin

    2018-08-15

    The eco-hydrological system in southwestern China is undergoing great changes in recent decades owing to climate change and extensive cascading hydropower exploitation. With a growing recognition that multiple drivers often interact in complex and nonadditive ways, the purpose of this study is to predict the potential future changes in streamflow and fish habitat quality in the Yuan River and quantify the individual and cumulative effect of cascade damming and climate change. The bias corrected and spatial downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) General Circulation Model (GCM) projections are employed to drive the Soil and Water Assessment Tool (SWAT) hydrological model and to simulate and predict runoff responses under diverse scenarios. Physical habitat simulation model is established to quantify the relationship between river hydrology and fish habitat, and the relative change rate is used to assess the individual and combined effects of cascade damming and climate change. Mean annual temperature, precipitation and runoff in 2015-2100 show an increasing trend compared with that in 1951-2010, with a particularly pronounced difference between dry and wet years. The ecological habitat quality is improved under cascade hydropower development since that ecological requirement has been incorporated in the reservoir operation policy. As for middle reach, the runoff change from January to August is determined mainly by damming, and climate change influence becomes more pronounced in dry seasons from September to December. Cascade development has an effect on runoff of lower reach only in dry seasons due to the limited regulation capacity of reservoirs, and climate changes have an effect on runoff in wet seasons. Climate changes have a less significant effect on fish habitat quality in middle reach than damming, but a more significant effect in lower reach. In addition, the effect of climate changes on fish habitat quality in lower reach is high

  11. Estimating Sediment Delivery to The Rio Maranon, Peru Prior to Large-Scale Hydropower Developments Using High Resolution Imagery from Google Earth and a DJI Phantom 3 Drone

    NASA Astrophysics Data System (ADS)

    Goode, J. R.; Candelaria, T.; Kramer, N. R.; Hill, A. F.

    2016-12-01

    As global energy demands increase, generating hydroelectric power by constructing dams and reservoirs on large river systems is increasingly seen as a renewable alternative to fossil fuels, especially in emerging economies. Many large-scale hydropower projects are located in steep mountainous terrain, where environmental factors have the potential to conspire against the sustainability and success of such projects. As reservoir storage capacity decreases when sediment builds up behind dams, high sediment yields can limit project life expectancy and overall hydropower viability. In addition, episodically delivered sediment from landslides can make quantifying sediment loads difficult. These factors, combined with remote access, limit the critical data needed to effectively evaluate development decisions. In the summer of 2015, we conducted a basic survey to characterize the geomorphology, hydrology and ecology of 620 km of the Rio Maranon, Peru - a major tributary to the Amazon River, which flows north from the semi-arid Peruvian Andes - prior to its dissection by several large hydropower dams. Here we present one component of this larger study: a first order analysis of potential sediment inputs to the Rio Maranon, Peru. To evaluate sediment delivery and storage in this system, we used high resolution Google Earth imagery to delineate landslides, combined with high resolution imagery from a DJI Phantom 3 Drone, flown at alluvial fan inputs to the river in the field. Because hillslope-derived sediment inputs from headwater tributaries are important to overall ecosystem health in large river systems, our study has the potential to contribute to the understanding the impacts of large Andean dams on sediment connectivity to the Amazon basin.

  12. Analysis of information systems for hydropower operations: Executive summary

    NASA Technical Reports Server (NTRS)

    Sohn, R. L.; Becker, L.; Estes, J.; Simonett, D.; Yeh, W.

    1976-01-01

    An analysis was performed of the operations of hydropower systems, with emphasis on water resource management, to determine how aerospace derived information system technologies can effectively increase energy output. Better utilization of water resources was sought through improved reservoir inflow forecasting based on use of hydrometeorologic information systems with new or improved sensors, satellite data relay systems, and use of advanced scheduling techniques for water release. Specific mechanisms for increased energy output were determined, principally the use of more timely and accurate short term (0-7 days) inflow information to reduce spillage caused by unanticipated dynamic high inflow events. The hydrometeorologic models used in predicting inflows were examined in detail to determine the sensitivity of inflow prediction accuracy to the many variables employed in the models, and the results were used to establish information system requirements. Sensor and data handling system capabilities were reviewed and compared to the requirements, and an improved information system concept was outlined.

  13. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulkner, James R.; Smith, Steven G.; Muir, William D.

    2009-06-23

    In 2008, the National Marine Fisheries Service completed the sixteenth year of a study to estimate survival and travel time of juvenile salmonids Oncorhynchus spp. passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder (PIT) tags. We PIT tagged and released a total of 18,565 hatchery steelhead O. mykiss, 15,991 wild steelhead, and 9,714 wild yearling Chinook salmon O. tshawytscha at Lower Granite Dam in the Snake River. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from themore » hydropower system and at sites within the hydropower system in both the Snake and Columbia Rivers. These included 122,061 yearling Chinook salmon tagged at Lower Granite Dam for evaluation of latent mortality related to passage through Snake River dams. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, Ice Harbor, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the single-release model). Primary research objectives in 2008 were to: (1) estimate reach survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling Chinook salmon and steelhead, (2) evaluate relationships between survival estimates and migration conditions, and (3) evaluate the survival estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2008 for PIT-tagged yearling Chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Additional details on the methodology and statistical models used are provided in previous reports cited here

  14. Widespread Forest Vertebrate Extinctions Induced by a Mega Hydroelectric Dam in Lowland Amazonia

    PubMed Central

    2015-01-01

    Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, under-construction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species) responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments. PMID:26132139

  15. Widespread Forest Vertebrate Extinctions Induced by a Mega Hydroelectric Dam in Lowland Amazonia.

    PubMed

    Benchimol, Maíra; Peres, Carlos A

    2015-01-01

    Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, under-construction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species) responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments.

  16. Fish navigation of large dams emerges from their modulation of flow field experience

    PubMed Central

    Goodwin, R. Andrew; Politano, Marcela; Garvin, Justin W.; Nestler, John M.; Hay, Duncan; Anderson, James J.; Weber, Larry J.; Dimperio, Eric; Smith, David L.; Timko, Mark

    2014-01-01

    Navigating obstacles is innate to fish in rivers, but fragmentation of the world’s rivers by more than 50,000 large dams threatens many of the fish migrations these waterways support. One limitation to mitigating the impacts of dams on fish is that we have a poor understanding of why some fish enter routes engineered for their safe travel around the dam but others pass through more dangerous routes. To understand fish movement through hydropower dam environments, we combine a computational fluid dynamics model of the flow field at a dam and a behavioral model in which simulated fish adjust swim orientation and speed to modulate their experience to water acceleration and pressure (depth). We fit the model to data on the passage of juvenile Pacific salmonids (Oncorhynchus spp.) at seven dams in the Columbia/Snake River system. Our findings from reproducing observed fish movement and passage patterns across 47 flow field conditions sampled over 14 y emphasize the role of experience and perception in the decision making of animals that can inform opportunities and limitations in living resources management and engineering design. PMID:24706826

  17. Influence of El Niño Southern Oscillation on global hydropower production

    NASA Astrophysics Data System (ADS)

    Ng, Jia Yi; Turner, Sean; Galelli, Stefano

    2016-04-01

    Hydropower contributes significantly to meeting the world's energy demand, accounting for at least 16% of total electrical output. Its role as a mature and cost competitive renewable energy source is expected to become increasingly important as the world transits to a low-carbon economy. A key component of hydropower production is runoff, which is highly dependent on precipitation and other climate variables. As such, it becomes critical to understand how the drivers of climate variability impact hydropower production. One globally-important driver is the El Niño Southern Oscillation (ENSO). While it is known that ENSO influences hydrological processes, the potential value of its associated teleconnection in design related tasks has yet to be explored at the global scale. Our work seeks to characterize the impact of ENSO on global hydropower production so as to quantify the potential for increased production brought about by incorporating climate information within reservoir operating models. We study over 1,500 hydropower reservoirs - representing more than half the world's hydropower capacity. A historical monthly reservoir inflow time series is assigned to each reservoir from a 0.5 degree gridded global runoff dataset. Reservoir operating rules are designed using stochastic dynamic programming, and storage dynamics are simulated to assess performance under the climate conditions of the 20th century. Results show that hydropower reservoirs in the United States, Brazil, Argentina, Australia, and Eastern China are strongly influenced by ENSO episodes. Statistically significant lag correlations between ENSO indicators and hydropower production demonstrate predictive skill with lead times up to several months. Our work highlights the potential for using these indicators to increase the contribution of existing hydropower plants to global energy supplies.

  18. Mitigating Dam Impacts Using Environmental Flow Releases

    NASA Astrophysics Data System (ADS)

    Richter, B. D.

    2017-12-01

    One of the most ecologically disruptive impacts of dams is their alteration of natural river flow variability. Opportunities exist for modifying the operations of existing dams to recover many of the environmental and social benefits of healthy ecosystems that have been compromised by present modes of dam operation. The potential benefits of dam "re-operation" include recovery of fish, shellfish, and other wildlife populations valued both commercially and recreationally, including estuarine species; reactivation of the flood storage and water purification benefits that occur when floods are allowed to flow into floodplain forests and wetlands; regaining some semblance of the naturally dynamic balance between river erosion and sedimentation that shapes physical habitat complexity, and arresting problems associated with geomorphic imbalances; cultural and spiritual uses of rivers; and many other socially valued products and services. Assessing the potential benefits of dam re-operation begins by characterizing the dam's effects on the river flow regime, and formulating hypotheses about the ecological and social benefits that might be restored by releasing water from the dam in a manner that more closely resembles natural flow patterns. These hypotheses can be tested by implementing a re-operation plan, tracking the response of the ecosystem, and continually refining dam operations through adaptive management. This presentation will highlight a number of land and water management strategies useful in implementing a dam re-operation plan, with reference to a variety of management contexts ranging from individual dams to cascades of dams along a river to regional energy grids. Because many of the suggested strategies for dam re-operation are predicated on changes in the end-use of the water, such as reductions in urban or agricultural water use during droughts, a systemic perspective of entire water management systems will be required to attain the fullest possible

  19. Application of wavelet analysis for monitoring the hydrologic effects of dam operation: Glen canyon dam and the Colorado River at lees ferry, Arizona

    USGS Publications Warehouse

    White, M.A.; Schmidt, J.C.; Topping, D.J.

    2005-01-01

    Wavelet analysis is a powerful tool with which to analyse the hydrologic effects of dam construction and operation on river systems. Using continuous records of instantaneous discharge from the Lees Ferry gauging station and records of daily mean discharge from upstream tributaries, we conducted wavelet analyses of the hydrologic structure of the Colorado River in Grand Canyon. The wavelet power spectrum (WPS) of daily mean discharge provided a highly compressed and integrative picture of the post-dam elimination of pronounced annual and sub-annual flow features. The WPS of the continuous record showed the influence of diurnal and weekly power generation cycles, shifts in discharge management, and the 1996 experimental flood in the post-dam period. Normalization of the WPS by local wavelet spectra revealed the fine structure of modulation in discharge scale and amplitude and provides an extremely efficient tool with which to assess the relationships among hydrologic cycles and ecological and geomorphic systems. We extended our analysis to sections of the Snake River and showed how wavelet analysis can be used as a data mining technique. The wavelet approach is an especially promising tool with which to assess dam operation in less well-studied regions and to evaluate management attempts to reconstruct desired flow characteristics. Copyright ?? 2005 John Wiley & Sons, Ltd.

  20. Prioritizing removal of dams for passage of diadromous fishes on a major river system

    USGS Publications Warehouse

    Kocovsky, P.M.; Ross, R.M.; Dropkin, D.S.

    2009-01-01

    Native diadromous fishes have been extirpated from much of the Susquehanna River system for nearly a century. Recent restoration efforts have focused on removal of dams, but there are hundreds of dams and presently there is no biologically based system to assist in prioritizing their removal. We present a new method that uses existing habitat suitability index models (HSI) for American shad Alosa sapidissima, alewife A. pseudoharengus, blueback herring A. aestivalis, and American eel Anguilla rostrata to prioritize the removal of non-hydropower dams within the Susquehanna River system. We ranked HSI scores for each of the four species, association between a landscape-scale factor and HSIs, length of river opened by removing a dam, and distance from the mouth at Chesapeake Bay for each dam and then calculated a mean rank prioritization for dam removal by averaging the ranks for the seven criteria. This prioritization method is resistant to outliers, is not strongly affected by somewhat arbitrary decisions on metrics included in the analysis, and provides a biologically based prioritization for dam removal that can be easily amended to include other metrics or adapted to other river systems and that complements other social and economic considerations that must be included in decisions to remove dams.

  1. Game theory competition analysis of reservoir water supply and hydropower generation

    NASA Astrophysics Data System (ADS)

    Lee, T.

    2013-12-01

    The total installed capacity of the power generation systems in Taiwan is about 41,000 MW. Hydropower is one of the most important renewable energy sources, with hydropower generation capacity of about 4,540 MW. The aim of this research is to analyze competition between water supply and hydropower generation in water-energy systems. The major relationships between water and energy systems include hydropower generation by water, energy consumption for water system operation, and water consumption for energy system. In this research, a game-theoretic Cournot model is formulated to simulate oligopolistic competition between water supply, hydropower generation, and co-fired power generation in water-energy systems. A Nash equilibrium of the competitive market is derived and solved by GAMS with PATH solver. In addition, a case study analyzing the competition among water supply and hydropower generation of De-ji and Ku-Kuan reservoirs, Taipower, Star Energy, and Star-Yuan power companies in central Taiwan is conducted.

  2. Basin-scale impacts of hydropower development on the Mompós Depression wetlands, Colombia

    NASA Astrophysics Data System (ADS)

    Angarita, Héctor; Wickel, Albertus J.; Sieber, Jack; Chavarro, John; Maldonado-Ocampo, Javier A.; Herrera-R., Guido A.; Delgado, Juliana; Purkey, David

    2018-05-01

    A number of large hydropower dams are currently under development or in an advanced stage of planning in the Magdalena River basin, Colombia, spelling uncertainty for the Mompós Depression wetlands, one of the largest wetland systems in South America at 3400 km2. Annual large-scale inundation of floodplains and their associated wetlands regulates water, nutrient, and sediment cycles, which in turn sustain a wealth of ecological processes and ecosystem services, including critical food supplies. In this study, we implemented an integrated approach focused on key attributes of ecologically functional floodplains: (1) hydrologic connectivity between the river and the floodplain, and between upstream and downstream sections; (2) hydrologic variability patterns and their links to local and regional processes; and (3) the spatial scale required to sustain floodplain-associated processes and benefits, like migratory fish biodiversity. The implemented framework provides an explicit quantification of the nonlinear or direct response relationship of those considerations with hydropower development. The proposed framework was used to develop a comparative analysis of the potential effects of the hydropower expansion necessary to meet projected 2050 electricity requirements. As part of this study, we developed an enhancement of the Water Evaluation and Planning system (WEAP) that allows resolution of the floodplains water balance at a medium scale (˜ 1000 to 10 000 km2) and evaluation of the potential impacts of upstream water management practices. In the case of the Mompós Depression wetlands, our results indicate that the potential additional impacts of new hydropower infrastructure with respect to baseline conditions can range up to one order of magnitude between scenarios that are comparable in terms of energy capacity. Fragmentation of connectivity corridors between lowland floodplains and upstream spawning habitats and reduction of sediment loads show the greatest

  3. Treatise on water hammer in hydropower standards and guidelines

    NASA Astrophysics Data System (ADS)

    Bergant, A.; Karney, B.; Pejović, S.; Mazij, J.

    2014-03-01

    This paper reviews critical water hammer parameters as they are presented in official hydropower standards and guidelines. A particular emphasize is given to a number of IEC standards and guidelines that are used worldwide. The paper critically assesses water hammer control strategies including operational scenarios (closing and opening laws), surge control devices (surge tank, pressure regulating valve, flywheel, etc.), redesign of the water conveyance system components (tunnel, penstock), or limitation of operating conditions (limited operating range) that are variably covered in standards and guidelines. Little information is given on industrial water hammer models and solutions elsewhere. These are briefly introduced and discussed in the light of capability (simple versus complex systems), availability of expertise (in house and/or commercial) and uncertainty. The paper concludes with an interesting water hammer case study referencing the rules and recommendations from existing hydropower standards and guidelines in a view of effective water hammer control. Recommendations are given for further work on development of a special guideline on water hammer (hydraulic transients) in hydropower plants.

  4. Optimizing Hydropower Day-Ahead Scheduling for the Oroville-Thermalito Project

    NASA Astrophysics Data System (ADS)

    Veselka, T. D.; Mahalik, M.

    2012-12-01

    Under an award from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Water Power Program, a team of national laboratories is developing and demonstrating a suite of advanced, integrated analytical tools to assist managers and planners increase hydropower resources while enhancing the environment. As part of the project, Argonne National Laboratory is developing the Conventional Hydropower Energy and Environmental Systems (CHEERS) model to optimize day-ahead scheduling and real-time operations. We will present the application of CHEERS to the Oroville-Thermalito Project located in Northern California. CHEERS will aid California Department of Water Resources (CDWR) schedulers in making decisions about unit commitments and turbine-level operating points using a system-wide approach to increase hydropower efficiency and the value of power generation and ancillary services. The model determines schedules and operations that are constrained by physical limitations, characteristics of plant components, operational preferences, reliability, and environmental considerations. The optimization considers forebay and afterbay implications, interactions between cascaded power plants, turbine efficiency curves and rough zones, and operator preferences. CHEERS simultaneously considers over time the interactions among all CDWR power and water resources, hydropower economics, reservoir storage limitations, and a set of complex environmental constraints for the Thermalito Afterbay and Feather River habitats. Power marketers, day-ahead schedulers, and plant operators provide system configuration and detailed operational data, along with feedback on model design and performance. CHEERS is integrated with CDWR data systems to obtain historic and initial conditions of the system as the basis from which future operations are then optimized. Model results suggest alternative operational regimes that improve the value of CDWR resources to the grid while

  5. Opportunities for Energy Development in Water Conduits: A Report Prepared in Response to Section 7 of the Hydropower Regulatory Efficiency Act of 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sale, Michael J.; Bishop, Norman A.; Reiser, Sonya L.

    2014-09-01

    In Section 7 of the Hydropower Regulatory Efficiency Act (HREA) of 2013 (P.L. 113-23), Congress directed the U.S. Department of Energy (DOE) to prepare an analysis of conduit hydropower opportunities available in the United States and to present case studies that describe the potential energy generation from these types of hydropower projects. Those analyses have been included in a new DOE report to Congress, and this ORNL/TM provides additional technical details supporting that report. Conduit hydropower offers important new ways to enhance renewable energy portfolios in the United States, as well as to increase the energy efficiency of water deliverymore » systems. Conduit hydropower projects are constructed on existing water-conveyance structures, such as irrigation canals or pressurized pipelines that deliver water to municipalities, industry, or agricultural water users. Although water conveyance infrastructures are usually designed for non-power purposes, new renewable energy can often be harvested from them without affecting their original purpose and without the need to construct new dams or diversions. Conduit hydropower differs from more conventional hydropower development in that it is generally not located on natural rivers or waterways and therefore does not involve the types of environmental impacts that are associated with hydropower. The addition of hydropower to existing water conduits can provide valuable new revenue sources from clean, renewable energy. The new energy can be used within the existing water distribution systems to offset other energy demands, or it can be sold into regional transmission systems.« less

  6. Billy Shaw Dam and Reservoir : Environmental Assessment and Finding of No Significant Impacts.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    United States. Bonneville Power Administration; Shoshone-Paiute Tribes of the Duck Valley Reservation, Nevada.

    This notice announces BPA`s decision to fund the construction, operation, and maintenance of the Billy Shaw Dam and Reservoir on the Duck Valley Reservation. This project is part of a continuing effort to address system-wide fish and wildlife losses caused by the development of the hydropower system in the Columbia River Basin. BPA has prepared an Environmental Assessment (EA) evaluating the potential environmental impacts of the proposed project. Based on the analysis in the EA, BPA has determined that the Proposed Action is not a major Federal action significantly affecting the quality of the human environment, within the meaning ofmore » the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI.« less

  7. The water footprint of human-made reservoirs for hydropower, irrigation, water supply, flood prevention, fishing and recreation on a global scale

    NASA Astrophysics Data System (ADS)

    Hogeboom, Rick; Knook, Luuk; Hoekstra, Arjen

    2017-04-01

    Increasing the availability of freshwater to meet growing and competing demands is on many policy agendas. The Sustainable Development Goals (SDGs) prescribe sustainable management of water for human consumption. For centuries humans have resorted to building dams to store water in periods of excess for use in times of shortage. Although dams and their reservoirs have made important contributions to human development, it is increasingly acknowledged that reservoirs can be substantial water consumers as well. We estimated the water footprint of human-made reservoirs on a global scale and attributed it to the various reservoir purposes (hydropower generation, residential and industrial water supply, irrigation water supply, flood protection, fishing and recreation) based on their economic value. We found that economic benefits from derived products and services from 2235 reservoirs globally, amount to 311 billion US dollar annually, with residential and industrial water supply and hydropower generation as major contributors. The water footprint associated with these benefits is the sum of the water footprint of dam construction (< 1 % contribution) and evaporation from the reservoir's surface area. The latter was calculated as an ensemble mean of four different methods for estimating open water evaporation. The total water footprint of reservoirs globally adds up to ˜104 km3yr-1. Attribution per purpose shows that, with a global average water footprint of 21,5 m3GJ,-1 hydropower on average is a water intensive form of energy. We contextualized the water footprint of reservoirs and their purposes with regard to the water scarcity level of the river basin in which they occur. We found the lion's share (55%) of the water footprint is located in non-water scarce basins and only 1% in year-round scarce basins. The purpose for which the reservoir is primarily used changes with increasing water scarcity, from mainly hydropower generation in non-scarce basins, to the (more

  8. Evaluation of the Biological Effects of the Northwest Power Conservation Council's Mainstem Amendment on the Fisheries Upstream and Downstream of Libby Dam, Montana, 2007-2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sylvester, Ryan; Stephens, Brian; Tohtz, Joel

    2009-04-03

    A new project began in 2005 to monitor the biological and physical effects of improved operations of Hungry Horse and Libby Dams, Montana, called for by the Northwest Power and Conservation Council (NPCC) Mainstem Amendment. This operating strategy was designed to benefit resident fish impacted by hydropower and flood control operations. Under the new operating guidelines, July through September reservoir drafts will be limited to 10 feet from full pool during the highest 80% of water supply years and 20 feet from full pool during the lowest 20% of water supply (drought) years. Limits were also established on how rapidlymore » discharge from the dams can be increased or decreased depending on the season. The NPCC also directed the federal agencies that operate Libby and Hungry Horse Dams to implement a new flood control strategy (VARQ) and directed Montana Fish, Wildlife & Parks to evaluate biological responses to this operating strategy. The Mainstem Amendment operating strategy has not been fully implemented at the Montana dams as of June 2008 but the strategy will be implemented in 2009. This report highlights the monitoring methods used to monitor the effects of the Mainstem Amendment operations on fishes, habitat, and aquatic invertebrates upstream and downstream of Libby Dam. We also present initial assessments of data and the effects of various operating strategies on physical and biological components of the systems upstream and downstream of Libby Dam. Annual electrofishing surveys in the Kootenai River and selected tributaries, along with gill net surveys in the reservoir, are being used to quantify the impacts of dam operations on fish populations upstream and downstream of Libby Dam. Scales and otoliths are being used to determine the age structure and growth of focal species. Annual population estimates and tagging experiments provide estimates of survival and growth in the mainstem Kootenai River and selected tributaries. Radio telemetry will be

  9. Sediment and water discharge rates of Turkish Black Sea rivers before and after hydropower dam construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, B.J.

    1994-06-01

    Presently, the water discharge rate to the Black Sea by Turkish rivers is approximately 41 km[sup 3]/yr. The sediment discharge rate of Turkish rivers to the Black Sea is 28 x 10[sup 6] t/yr. Before construction of the hydroelectric dams, the sediment discharge rate was approximately 70 x 10[sup 6] t/yr. The sharp reduction in sediment load is largely a result of the dams near the mouths of the Yesil Irmak and Kizil Irmak rivers. Before the construction of dams, Turkish rivers contributed approximately one third of the total amount of sediment received by the Black Sea from all surroundingmore » rivers. The life-span of the major reservoirs varies from approximately only one century (Yesil Irmak river reservoirs) to several thousand years (Sakarya river reservoirs). Life-span for the large Altinkaya Dam reservoir is estimated with approximately 500 yr.« less

  10. Mitigation for the Construction and Operation of Libby Dam, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunnigan, James; DeShazer, Jay; Garrow, Larry

    2005-06-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine themore » biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana Fish, Wildlife & Parks (MFWP) uses a combination of techniques to collect physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered and threatened species, and the assessment of restoration or management activities designed to restore native fishes and their habitats.« less

  11. Mitigation for the Construction and Operation of Libby Dam, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunnigan, James; DeShazer, Jay; Garrow, Larry

    2004-06-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determinemore » the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana FWP uses a combination of diverse techniques to collect a variety of physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered, threatened species, and the assessment of restoration or management activities intended to restore native fishes and their habitats.« less

  12. Hydropower Production and Fish Habitat Suitability: Impact and Effectiveness of Environmental Flow Prescriptions

    NASA Astrophysics Data System (ADS)

    Ceola, Serena; Pugliese, Alessio; Galeati, Giorgio; Castellarin, Attilio

    2017-04-01

    The anthropogenic alteration of the natural flow regime of a river for hydropower production can significantly modify the processes and functions associated with fluvial ecosystems. In order to preserve the fluvial habitat downstream of dams and diversion structures, environmental flows are commonly defined. Such environmental flows are generally computed from empirical methodologies, which are seldom based on site-specific studies, and may not be representative of local ecological and hydraulic conditions. Here we present the results of a quantitative analysis on the effectiveness of two alternative environmental flow scenarios prescribed in Central Italy (time-invariant experimental and empirically-based flow release versus time-variant hydrogeomorphologically-based flow release) and their impact on hydropower production and fish habitat suitability. The latter is examined by means of several models of habitat suitability curve, which is a well-known approach capable of analysing fluvial species preferences as a function of key eco-hydraulic features, such as water depth, flow velocity and river substrate. The results show an evident loss of hydropower production moving from the time-invariant experimental flow release to the hydrogeomorphological one (nearly 20% at the annual scale). Concerning the effects in terms of fish habitat suitability, our outcomes are less obvious, since they are species- and life stage-specific. The proposed analysis, which can be easily adapted to different riparian habitats and hydrological contexts, is a useful tool to guide the derivation of optimal water resource management strategies in order to ensure both hydropower production and fluvial ecosystem protection.

  13. Hydropower Production and Fish Habitat Suitability: Impact and Effectiveness of Environmental Flow Prescriptions

    NASA Astrophysics Data System (ADS)

    Castellarin, A.; Galeati, G.; Ceola, S.; Pugliese, A.; Ventura, M.; Montanari, A.

    2017-12-01

    The anthropogenic alteration of the natural flow regime of a river for hydropower production can significantly modify the processes and functions associated with fluvial ecosystems. In order to preserve the fluvial habitat downstream of dams and diversion structures, environmental flows are commonly defined. Such environmental flows are generally computed from empirical methodologies, which are seldom based on site-specific studies, and may not be representative of local ecological and hydraulic conditions. Here we present the results of a quantitative analysis on the effectiveness of two alternative environmental flow scenarios prescribed in Central Italy (time-invariant experimental and empirically-based flow release versus time-variant hydrogeomorphologically-based flow release) and their impact on hydropower production and fish habitat suitability. The latter is examined by means of several models of habitat suitability curve, which is a well-known approach capable of analysing fluvial species preferences as a function of key eco-hydraulic features, such as water depth, flow velocity and river substrate. The results show an evident loss of hydropower production moving from the time-invariant experimental flow release to the hydrogeomorphological one (nearly 20% at the annual scale). Concerning the effects in terms of fish habitat suitability, our outcomes are less obvious, since they are species- and life stage-specific. The proposed analysis, which can be easily adapted to different riparian habitats and hydrological contexts, is a useful tool to guide the derivation of optimal water resource management strategies in order to ensure both hydropower production and fluvial ecosystem protection.

  14. A Hydropower Biological Evaluation Toolset (HBET) for Characterizing Hydraulic Conditions and Impacts of Hydro-Structures on Fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Hongfei; Deng, Zhiqun; Martinez, Jayson

    Currently, approximately 16% of the world’s electricity and over 80% of the world’s renewable electricity is generated from hydropower resources, and there is potential for development of a significant amount of new hydropower capacity. However, in practice, realizing all the potential hydropower resource is limited by various factors, including environmental effects and related mitigation requirements. That is why hydropower regulatory requirements frequently call for targets to be met regarding fish injury and mortality rates. Hydropower Biological Evaluation Toolset (HBET), an integrated suite of software tools, is designed to characterize hydraulic conditions of hydropower structures and provide quantitative estimates of fishmore » injury and mortality rates due to various physical stressors including strike, pressure, and shear. HBET enables users to design new studies, analyze data, perform statistical analyses, and evaluate biological responses. In this paper, we discuss the features of the HBET software and describe a case study that illustrates its functionalities. HBET can be used by turbine manufacturers, hydropower operators, and regulators to design and operate hydropower systems that minimize ecological impacts in a cost-effective manner.« less

  15. The role of hydropower in electric power integration of Asian countries

    NASA Astrophysics Data System (ADS)

    Belyaev, Lev; Savelyev, Vladimir; Chudinova, Lyudmila

    2018-01-01

    The possible role of hydropower plants in formation and operation of interstate power pools is described based on the generalization of the world experience. Peculiarities of the influence of hydropower on development of interstate electric ties in this part of the world and potential effects are showed on the example of Central and Northeast Asia.

  16. Geographical Overview of the Three Gorges Dam and Reservoir, China - Geologic Hazards and Environmental Impacts

    USGS Publications Warehouse

    Highland, Lynn M.

    2008-01-01

    The Three Gorges Dam and Reservoir on the Yangtze River, China, has been an ambitious and controversial project. The dam, the largest in the world as of 2008, will provide hydropower, help to manage flood conditions, and increase the navigability of the Yangtze River. However, this massive project has displaced human and animal populations and altered the stability of the banks of the Yangtze, and it may intensify the seismic hazard of the area. It has also hindered archeological investigations in the reservoir and dam area. This report, originally in the form of a Microsoft PowerPoint presentation, gives a short history and overview of the dam construction and subsequent consequences, especially geologic hazards already noted or possible in the future. The report provides photographs, diagrams, and references for the reader's further research - a necessity, because this great undertaking is dynamic, and both its problems and successes continue to evolve. The challenges and consequences of Three Gorges Dam will be closely watched and documented as lessons learned and applied to future projects in China and elsewhere.

  17. Large-scale projects in the amazon and human exposure to mercury: The case-study of the Tucuruí Dam.

    PubMed

    Arrifano, Gabriela P F; Martín-Doimeadios, Rosa C Rodríguez; Jiménez-Moreno, María; Ramírez-Mateos, Vanesa; da Silva, Núbia F S; Souza-Monteiro, José Rogério; Augusto-Oliveira, Marcus; Paraense, Ricardo S O; Macchi, Barbarella M; do Nascimento, José Luiz M; Crespo-Lopez, Maria Elena

    2018-01-01

    The Tucuruí Dam is one of the largest dams ever built in the Amazon. The area is not highly influenced by gold mining as a source of mercury contamination. Still, we recently noted that one of the most consumed fishes (Cichla sp.) is possibly contaminated with methylmercury. Therefore, this work evaluated the mercury content in the human population living near the Tucuruí Dam. Strict exclusion/inclusion criteria were applied for the selection of participants avoiding those with altered hepatic and/or renal functions. Methylmercury and total mercury contents were analyzed in hair samples. The median level of total mercury in hair was above the safe limit (10µg/g) recommended by the World Health Organization, with values up to 75µg/g (about 90% as methylmercury). A large percentage of the participants (57% and 30%) showed high concentrations of total mercury (≥ 10µg/g and ≥ 20µg/g, respectively), with a median value of 12.0µg/g. These are among the highest concentrations ever detected in populations living near Amazonian dams. Interestingly, the concentrations are relatively higher than those currently shown for human populations highly influenced by gold mining areas. Although additional studies are needed to confirm the possible biomagnification and bioaccumulation of mercury by the dams in the Amazon, our data already support the importance of adequate impact studies and continuous monitoring. More than 400 hydropower dams are operational or under construction in the Amazon, and an additional 334 dams are presently planned/proposed. Continuous monitoring of the populations will assist in the development of prevention strategies and government actions to face the problem of the impacts caused by the dams. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Estimating irrigation water demand using an improved method and optimizing reservoir operation for water supply and hydropower generation: a case study of the Xinfengjiang reservoir in southern China

    USGS Publications Warehouse

    Wu, Yiping; Chen, Ji

    2013-01-01

    The ever-increasing demand for water due to growth of population and socioeconomic development in the past several decades has posed a worldwide threat to water supply security and to the environmental health of rivers. This study aims to derive reservoir operating rules through establishing a multi-objective optimization model for the Xinfengjiang (XFJ) reservoir in the East River Basin in southern China to minimize water supply deficit and maximize hydropower generation. Additionally, to enhance the estimation of irrigation water demand from the downstream agricultural area of the XFJ reservoir, a conventional method for calculating crop water demand is improved using hydrological model simulation results. Although the optimal reservoir operating rules are derived for the XFJ reservoir with three priority scenarios (water supply only, hydropower generation only, and equal priority), the river environmental health is set as the basic demand no matter which scenario is adopted. The results show that the new rules derived under the three scenarios can improve the reservoir operation for both water supply and hydropower generation when comparing to the historical performance. Moreover, these alternative reservoir operating policies provide the flexibility for the reservoir authority to choose the most appropriate one. Although changing the current operating rules may influence its hydropower-oriented functions, the new rules can be significant to cope with the increasingly prominent water shortage and degradation in the aquatic environment. Overall, our results and methods (improved estimation of irrigation water demand and formulation of the reservoir optimization model) can be useful for local watershed managers and valuable for other researchers worldwide.

  19. Hydropower Generation Performance Testing at Plants in Thailand and Laos

    DOE PAGES

    Kern, Jamie; Hadjerioua, Boualem; Christian, Mark H.; ...

    2017-04-01

    An operational assessment of four hydropower plants in Southeast Asia revealed that gains in both energy production and water conservation could be achieved with little monetary investment through operational optimization efforts.

  20. Hydropower Generation Performance Testing at Plants in Thailand and Laos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kern, Jamie; Hadjerioua, Boualem; Christian, Mark H.

    An operational assessment of four hydropower plants in Southeast Asia revealed that gains in both energy production and water conservation could be achieved with little monetary investment through operational optimization efforts.

  1. 77 FR 42714 - Eagle Creek Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC; Notice of Application...: Eagle Creek Hydropower, LLC; Eagle Creek Land Resources, LLC; and Eagle Creek Water Resources, LLC. e... Contact: Robert Gates, Senior Vice President-- Operations, Eagle Creek Hydropower, LLC, Eagle Creek Water...

  2. Summary Report of Advanced Hydropower Innovations and Cost Reduction Workshop at Arlington, VA, November 5 & 6, 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Connor, Patrick; Rugani, Kelsey; West, Anna

    On behalf of the U.S. Department of Energy (DOE) Wind and Water Power Technology Office (WWPTO), Oak Ridge National Laboratory (ORNL), hosted a day and half long workshop on November 5 and 6, 2015 in the Washington, D.C. metro area to discuss cost reduction opportunities in the development of hydropower projects. The workshop had a further targeted focus on the costs of small, low-head1 facilities at both non-powered dams (NPDs) and along undeveloped stream reaches (also known as New Stream-Reach Development or “NSD”). Workshop participants included a cross-section of seasoned experts, including project owners and developers, engineering and construction experts,more » conventional and next-generation equipment manufacturers, and others to identify the most promising ways to reduce costs and achieve improvements for hydropower projects.« less

  3. 2014 Hydropower Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uria-Martinez, Rocio; O'Connor, Patrick W.; Johnson, Megan M.

    2015-04-30

    The U.S. hydropower fleet has been providing clean, reliable power for more than a hundred years. However, no systematic documentation exists of the U.S. fleet and the trends influencing it in recent years. This first-ever Hydropower Market Report seeks to fill this gap and provide industry and policy makers with a quantitative baseline on the distribution, capabilities, and status of hydropower in the United States.

  4. Predicting the thermal effects of dam removal on the Klamath River

    USGS Publications Warehouse

    Bartholow, J.M.; Campbell, S.G.; Flug, M.

    2004-01-01

    The Klamath River once supported large runs of anadromous salmonids. Water temperature associated with multiple mainstem hydropower facilities might be one of many factors responsible for depressing Klamath salmon stocks. We combined a water quantity model and a water quality model to predict how removing the series of dams below Upper Klamath Lake might affect water temperatures, and ultimately fish survival, in the spawning and rearing portions of the mainstem Klamath. We calibrated the water quantity and quality models and applied them for the hydrometeorological conditions during a 40-year postdam period. Then, we hypothetically removed the dams and their impoundments from the models and reestimated the river’s water temperatures. The principal thermal effect of dam and reservoir removal would be to restore the timing (phase) of the river’s seasonal thermal signature by shifting it approximately 18 days earlier in the year, resulting in river temperatures that more rapidly track ambient air temperatures. Such a shift would likely cool thermal habitat conditions for adult fall chinook (Oncorhynchus tshawytscha) during upstream migration and benefit mainstem spawning. By contrast, spring and early summer temperatures could be warmer without dams, potentially harming chinook rearing and outmigration in the mainstem. Dam removal might affect the river’s thermal regime during certain conditions for over 200 km of the mainstem.

  5. Advancing reservoir operation description in physically based hydrological models

    NASA Astrophysics Data System (ADS)

    Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir

  6. Modeling Multi-Reservoir Hydropower Systems in the Sierra Nevada with Environmental Requirements and Climate Warming

    NASA Astrophysics Data System (ADS)

    Rheinheimer, David Emmanuel

    generally well simulated, mostly limited by the accuracy of inflow hydrology. System-wide hydropower generation is reduced by 9% with 6 °C warming. Most reductions in hydropower generation occur in the highly productive watersheds in the northern Sierra Nevada. The central Sierra Nevada sees less reduction in annual runoff and can adapt better to changes in runoff timing. Generation in southern watersheds is expected to decrease. System-wide, reservoirs adapt to capture earlier runoff, but mostly decrease in mean reservoir storage with warming due to decreasing annual runoff. Second, a multi-reservoir optimization model is developed using linear programming that considers the minimum instream flows (MIFs) and weekly down ramp rates (DRRs) in the Upper Yuba River in the northern Sierra Nevada. Weekly DRR constraints are used to mimic spring snowmelt flows, which are particularly important for downstream ecosystems in the Sierra Nevada but are currently missing due to the influence of dams. Trade-offs between MIFs, DRRs and hydropower are explored with air temperature warming (+0, 2, 4 and 6 °C). Under base case operations, mean annual hydropower generation increases slightly with 2 °C warming and decreases slightly with 6 °C warming. With 6 °C warming, the most ecologically beneficial MIF and DRR reduce hydropower generation 5.5% compared to base case operations and a historical climate, which has important implications for re-licensing the hydropower project. Finally, reservoir management for downstream temperatures is explored using a linear programming model to optimally release water from a reservoir using selective withdrawal. The objective function is to minimize deviations from desired downstream temperatures, which are specified to mimic the natural temperature regime in the river. One objective of this study was to develop a method that can be readily integrated into a basin-scale multi-reservoir optimization model using a network representation of system

  7. After Three Gorges Dam: What have we learned?

    NASA Astrophysics Data System (ADS)

    Natali, J.; Williams, P.; Wong, R.; Kondolf, G. M.

    2013-12-01

    China is at a critical point in its development path. By investing heavily in large-scale infrastructure, the rewards of economic growth weigh against long-term environmental and social costs. The construction of Three Gorges Dam, the world's largest hydroelectric project, began in 1994. Between 2002 and 2010, its 660 kilometer reservoir filled behind a 181 meter dam, displacing at least 1.4 million people and transforming Asia's longest river (the Yangtze) while generating nearly 100 billion kWh/yr of electricity -- 2.85% of China's current electric power usage. As the mega-project progenitor in a cascade of planned dams, the Three Gorges Dam emerges as a test case for how China will plan, execute and mitigate its development pathway and the transformation of its environment. Post-Project Assessments (PPA) provide a systematic, scientific method for improving the practice of environmental management - particularly as they apply to human intervention in river systems. In 2012, the Department of Landscape Architecture and Environmental Planning at University of California, Berkeley organized a symposium-based PPA for the Three Gorges Dam on the Yangtze River. Prior to this symposium, the twelve invited Chinese scientists, engineers and economists with recent research on Three Gorges Dam had not had the opportunity to present their evaluations together in an open, public forum. With a 50-year planning horizon, the symposium's five sessions centered on impacts on flows, geomorphology, geologic hazards, the environment and socioeconomic effects. Three Gorges' project goals focused on flood control, hydropower and improved navigation. According to expert research, major changes in sediment budget and flow regime from reservoir operation have significantly reduced sediment discharge into the downstream river and estuary, initiating a series of geomorphic changes with ecological and social impacts. While the dam reduces high flow stages from floods originating above the

  8. Ethiopia's Grand Renaissance Dam: Implications for Downstream Riparian Countries

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Block, P. J.; Hammond, M.; King, A.

    2013-12-01

    Ethiopia has begun seriously developing their significant hydropower potential by launching construction of the Grand Ethiopian Renaissance Dam (GERD) on the Blue Nile River to facilitate local and regional growth. Although this has required substantial planning on Ethiopia's part, no policy dictating the reservoir filling rate strategy has been publicly issued. This filling stage will have clear implications on downstream flows in Sudan and Egypt, complicated by evaporative losses, climate variability, and climate change. In this study, various filling policies and future climate states are simultaneously explored to infer potential streamflow reductions at Lake Nasser, providing regional decision-makers with a set of plausible, justifiable, and comparable outcomes. Schematic of the model framework Box plots of 2017-2032 percent change in annual average streamflow at Lake Nasser for each filling policy constructed from the 100 time-series and weighted precipitation changes. All values are relative to the no dam policy and no changes to future precipitation.

  9. Hydropower Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-04-02

    The Water Power Program helps industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity. Through support for public, private, and nonprofit efforts, the Water Power Program promotes the development, demonstration, and deployment of advanced hydropower devices and pumped storage hydropower applications. These technologies help capture energy stored by diversionary structures, increase the efficiency of hydroelectric generation, and use excess grid energy to replenish storage reserves for use during periods of peak electricity demand. In addition, the Water Power Program works to assess the potential extractable energy from domestic water resources to assist industry and government inmore » planning for our nation’s energy future. From FY 2008 to FY 2014, DOE’s Water Power Program announced awards totaling approximately $62.5 million to 33 projects focused on hydropower. Table 1 provides a brief description of these projects.« less

  10. Alpine hydropower in a low carbon economy: Assessing the local implication of global policies

    NASA Astrophysics Data System (ADS)

    Anghileri, Daniela; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    In the global transition towards a more efficient and low-carbon economy, renewable energy plays a major role in displacing fossil fuels, meeting global energy demand while reducing carbon dioxide emissions. In Europe, Variable Renewable Sources (VRS), such as wind and solar power sources, are becoming a relevant share of the generation portfolios in many countries. Beside the indisputable social and environmental advantages of VRS, on the short medium term the VRS-induced lowering energy prices and increasing price's volatility might challenge traditional power sources and, among them, hydropower production, because of smaller incomes and higher maintenance costs associated to a more flexible operation of power systems. In this study, we focus on the Swiss hydropower sector analysing how different low-carbon targets and strategies established at the Swiss and European level might affect energy price formation and thus impact - through hydropower operation - water availability and ecosystems services at the catchment scale. We combine a hydrological model to simulate future water availability and an electricity market model to simulate future evolution of energy prices based on official Swiss and European energy roadmaps and CO2 price trends in the European Union. We use Multi-Objective optimization techniques to design alternative hydropower reservoir operation strategies, aiming to maximise the hydropower companies' income or to provide reliable energy supply with respect to the energy demand. This integrated model allows analysing to which extent global low-carbon policies impact reservoir operation at the local scale, and to gain insight on how to prioritise compensation measures and/or adaptation strategies to mitigate the impact of VRS on hydropower companies in increasingly water constrained settings. Numerical results are shown for a real-world case study in the Swiss Alps.

  11. Operation ranges and dynamic capabilities of variable-speed pumped-storage hydropower

    NASA Astrophysics Data System (ADS)

    Mercier, Thomas; Olivier, Mathieu; Dejaeger, Emmanuel

    2017-04-01

    The development of renewable and intermittent power generation creates incentives for the development of both energy storage solutions and more flexible power generation assets. Pumped-storage hydropower (PSH) is the most established and mature energy storage technology, but recent developments in power electronics have created a renewed interest by providing PSH units with a variable-speed feature, thereby increasing their flexibility. This paper reviews technical considerations related to variable-speed PSH in link with the provision of primary frequency control, also referred to as frequency containment reserves (FCRs). Based on the detailed characteristics of a scale model pump-turbine, the variable-speed operation ranges in pump and turbine modes are precisely assessed and the implications for the provision of FCRs are highlighted. Modelling and control for power system studies are discussed, both for fixed- and variable-speed machines and simulation results are provided to illustrate the high dynamic capabilities of variable-speed PSH.

  12. Dams, Hydrology and Risk in Future River Management

    NASA Astrophysics Data System (ADS)

    Wegner, D. L.

    2017-12-01

    Across America there are over 80,000 large to medium dams and globally the number is in excess of 800,000. Currently there are over 1,400 dams and diversion structures being planned or under construction globally. In addition to these documented dams there are thousands of small dams populating watersheds. Governments, agencies, native tribes, private owners and regulators all have a common interest in safe dams. Often dam safety is characterized as reducing structural risk while providing for maximum operational flexibility. In the 1970's there were a number of large and small dam failures in the United States. These failures prompted the federal government to issue voluntary dam safety guidelines. These guidelines were based on historic information incorporated into a risk assessment process to analyze, evaluate and manage risk with the goal to improve the quality of and support of dam management and safety decisions. We conclude that historic and new risks need to be integrated into dam management to insure adequate safety and operational flexibility. A recent assessment of the future role of dams in the United States premises that future costs such as maintenance or removal beyond the economic design life have not been factored into the long-term operations or relicensing of dams. The converging risks associated with aging water storage infrastructure, multiple dams within watersheds and uncertainty in demands policy revisions and an updated strategic approach to dam safety. Decisions regarding the future of dams in the United States may, in turn, influence regional water planning and management. Leaders in Congress and in the states need to implement a comprehensive national water assessment and a formal analysis of the role dams play in our water future. A research and national policy agenda is proposed to assess future impacts and the design, operation, and management of watersheds and dams.

  13. Dokan Hydropower Reservoir Operation under Stochastic Conditions as Regards the Inflows and the Energy Demands

    NASA Astrophysics Data System (ADS)

    Izat Rashed, Ghamgeen

    2018-03-01

    This paper presented a way of obtaining certain operating rules on time steps for the management of a large reservoir operation with a peak hydropower plant associated to it. The rules were allowed to have the form of non-linear regression equations which link a decision variable (here the water volume in the reservoir at the end of the time step) by several parameters influencing it. This paper considered the Dokan hydroelectric development KR-Iraq, which operation data are available for. It was showing that both the monthly average inflows and the monthly power demands are random variables. A model of deterministic dynamic programming intending the minimization of the total amount of the squares differences between the demanded energy and the generated energy is run with a multitude of annual scenarios of inflows and monthly required energies. The operating rules achieved allow the efficient and safe management of the operation and it is quietly and accurately known the forecast of the inflow and of the energy demand on the next time step.

  14. Hydropower Vision: Full Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Hydropower has provided clean, affordable, reliable, and renewable electricity in the United States for more than a century. Building on hydropower’s historical significance, and to inform the continued technical evolution, energy market value, and environmental performance of the industry, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has led a first-of-its-kind comprehensive analysis focused on a set of potential pathways for the environmentally sustainable expansion of hydropower (hydropower generation and pumped storage) in the United States.

  15. Impacts of climate change, policy and Water-Energy-Food nexus on hydropower development

    DOE PAGES

    Zhang, Xiao; Li, Hong-Yi; Deng, Zhiqun Daniel; ...

    2017-10-10

    We report that hydropower plays an important role as the global energy system moves towards a less carbon-intensive and sustainable future as promoted under the Sustainable Development Goals (SDGs). This article provides a systematic review of the impacts from policy, climate change and Water-Energy-Food (W-E-F) nexus on hydropower development at global scale. Asia, Africa and Latin America are hotspots promoting hydropower development with capacity expansion, while Europe and North America focus on performance improvement and environment impacts mitigation. Climate change is projected to improve gross hydropower potential (GHP) at high latitude of North Hemisphere and tropical Africa and decrease thatmore » in the US, South Africa and south and central Europe. Analysis from W-E-F nexus highlights the importance of integrated approaches as well as cross-sectoral coordination so as to improve resources use efficiency and achieve sustainable hydropower development. In conclusion, these three factors together shape the future of hydropower and need to be considered for planning and operation purpose.« less

  16. Impacts of climate change, policy and Water-Energy-Food nexus on hydropower development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao; Li, Hong-Yi; Deng, Zhiqun Daniel

    We report that hydropower plays an important role as the global energy system moves towards a less carbon-intensive and sustainable future as promoted under the Sustainable Development Goals (SDGs). This article provides a systematic review of the impacts from policy, climate change and Water-Energy-Food (W-E-F) nexus on hydropower development at global scale. Asia, Africa and Latin America are hotspots promoting hydropower development with capacity expansion, while Europe and North America focus on performance improvement and environment impacts mitigation. Climate change is projected to improve gross hydropower potential (GHP) at high latitude of North Hemisphere and tropical Africa and decrease thatmore » in the US, South Africa and south and central Europe. Analysis from W-E-F nexus highlights the importance of integrated approaches as well as cross-sectoral coordination so as to improve resources use efficiency and achieve sustainable hydropower development. In conclusion, these three factors together shape the future of hydropower and need to be considered for planning and operation purpose.« less

  17. US hydropower resource assessment for Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francfort, J.E.

    1996-09-01

    US DOE is developing an estimate of the undeveloped hydropower potential in US. The Hydropower Evaluation Software (HES) is a computer model developed by INEL for this purpose. HES measures the undeveloped hydropower resources available in US, using uniform criteria for measurement. The software was tested using hydropower information and data provided by Southwestern Power Administration. It is a menu-driven program that allows the PC user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes, and generate reports. This report describes the resource assessment results for the State ofmore » Hawaii.« less

  18. An Operational Short-Term Forecasting System for Regional Hydropower Management

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Labuhn, K. A.; Calappi, T. J.; MacNeil, A.

    2017-12-01

    The Niagara River is the natural outlet of Lake Erie and drains four of the five Great lakes. The river is used to move commerce and is home to both sport fishing and tourism industries. It also provides nearly 5 million kilowatts of hydropower for approximately 3.9 million homes. Due to a complex international treaty and the necessity of balancing water needs for an extensive tourism industry, the power entities operating on the river require detailed and accurate short-term river flow forecasts to maximize power output. A new forecast system is being evaluated that takes advantage of several previously independent components including the NOAA Lake Erie operational Forecast System (LEOFS), a previously developed HEC-RAS model, input from the New York Power Authority(NYPA) and Ontario Power Generation (OPG) and lateral flow forecasts for some of the tributaries provided by the NOAA Northeast River Forecast Center (NERFC). The Corps of Engineers updated the HEC-RAS model of the upper Niagara River to use the output forcing from LEOFS and a planned Grass Island Pool elevation provided by the power entities. The entire system has been integrated at the NERFC; it will be run multiple times per day with results provided to the Niagara River Control Center operators. The new model helps improve discharge forecasts by better accounting for dynamic conditions on Lake Erie. LEOFS captures seiche events on the lake that are often several meters of displacement from still water level. These seiche events translate into flow spikes that HEC-RAS routes downstream. Knowledge of the peak arrival time helps improve operational decisions at the Grass Island Pool. This poster will compare and contrast results from the existing operational flow forecast and the new integrated LEOFS/HEC-RAS forecast. This additional model will supply the Niagara River Control Center operators with multiple forecasts of flow to help improve forecasting under a wider variety of conditions.

  19. Evaluation of the Three Gorges Dam project using multi-criteria analysis (MCA) based on a sustainable perspective

    NASA Astrophysics Data System (ADS)

    Han, Yue; Zheng, Wei; Guo, Junshan; Ma, Yihe; Ding, Junqi; Zhu, Lingkai; Che, Yongqiang; Zhang, Yanpeng

    2018-02-01

    Abstract . The Three Gorges dam of China is one of the largest and expensive hydropower projects of the world. The four main purposes of the project are flood control,energy production, improved navigation and fresh water supply. The dam project has been completed and running successfully with the potential benefits. However, this project is still a controversial issue among many environmentalists and socialists due to various impacts. This study focuses on the benefit and the impacts of the project, and also evaluates the performance of the project using multi-criteria analysis (MCA) approach from a sustainable perspective. Different sustainability criteria related with the dam project have been identified and used for the ranking and rating process. The final result of MCA comes with this scoring process and pairwise comparison, which evaluates the performance of the project considering different positive and negative aspects.

  20. Integrated Flood Forecast and Virtual Dam Operation System for Water Resources and Flood Risk Management

    NASA Astrophysics Data System (ADS)

    Shibuo, Yoshihiro; Ikoma, Eiji; Lawford, Peter; Oyanagi, Misa; Kanauchi, Shizu; Koudelova, Petra; Kitsuregawa, Masaru; Koike, Toshio

    2014-05-01

    While availability of hydrological- and hydrometeorological data shows growing tendency and advanced modeling techniques are emerging, such newly available data and advanced models may not always be applied in the field of decision-making. In this study we present an integrated system of ensemble streamflow forecast (ESP) and virtual dam simulator, which is designed to support river and dam manager's decision making. The system consists of three main functions: real time hydrological model, ESP model, and dam simulator model. In the real time model, the system simulates current condition of river basins, such as soil moisture and river discharges, using LSM coupled distributed hydrological model. The ESP model takes initial condition from the real time model's output and generates ESP, based on numerical weather prediction. The dam simulator model provides virtual dam operation and users can experience impact of dam control on remaining reservoir volume and downstream flood under the anticipated flood forecast. Thus the river and dam managers shall be able to evaluate benefit of priori dam release and flood risk reduction at the same time, on real time basis. Furthermore the system has been developed under the concept of data and models integration, and it is coupled with Data Integration and Analysis System (DIAS) - a Japanese national project for integrating and analyzing massive amount of observational and model data. Therefore it has advantage in direct use of miscellaneous data from point/radar-derived observation, numerical weather prediction output, to satellite imagery stored in data archive. Output of the system is accessible over the web interface, making information available with relative ease, e.g. from ordinary PC to mobile devices. We have been applying the system to the Upper Tone region, located northwest from Tokyo metropolitan area, and we show application example of the system in recent flood events caused by typhoons.

  1. Development and Implementation of an Optimization Model for Hydropower and Total Dissolved Gas in the Mid-Columbia River System

    DOE PAGES

    Witt, Adam; Magee, Timothy; Stewart, Kevin; ...

    2017-08-10

    Managing energy, water, and environmental priorities and constraints within a cascade hydropower system is a challenging multiobjective optimization effort that requires advanced modeling and forecasting tools. Within the mid-Columbia River system, there is currently a lack of specific solutions for predicting how coordinated operational decisions can mitigate the impacts of total dissolved gas (TDG) supersaturation while satisfying multiple additional policy and hydropower generation objectives. In this study, a reduced-order TDG uptake equation is developed that predicts tailrace TDG at seven hydropower facilities on the mid-Columbia River. The equation is incorporated into a general multiobjective river, reservoir, and hydropower optimization toolmore » as a prioritized operating goal within a broader set of system-level objectives and constraints. A test case is presented to assess the response of TDG and hydropower generation when TDG supersaturation is optimized to remain under state water-quality standards. Satisfaction of TDG as an operating goal is highly dependent on whether constraints that limit TDG uptake are implemented at a higher priority than generation requests. According to the model, an opportunity exists to reduce TDG supersaturation and meet hydropower generation requirements by shifting spillway flows to different time periods. In conclusion, a coordinated effort between all project owners is required to implement systemwide optimized solutions that satisfy the operating policies of all stakeholders.« less

  2. Development and Implementation of an Optimization Model for Hydropower and Total Dissolved Gas in the Mid-Columbia River System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witt, Adam; Magee, Timothy; Stewart, Kevin

    Managing energy, water, and environmental priorities and constraints within a cascade hydropower system is a challenging multiobjective optimization effort that requires advanced modeling and forecasting tools. Within the mid-Columbia River system, there is currently a lack of specific solutions for predicting how coordinated operational decisions can mitigate the impacts of total dissolved gas (TDG) supersaturation while satisfying multiple additional policy and hydropower generation objectives. In this study, a reduced-order TDG uptake equation is developed that predicts tailrace TDG at seven hydropower facilities on the mid-Columbia River. The equation is incorporated into a general multiobjective river, reservoir, and hydropower optimization toolmore » as a prioritized operating goal within a broader set of system-level objectives and constraints. A test case is presented to assess the response of TDG and hydropower generation when TDG supersaturation is optimized to remain under state water-quality standards. Satisfaction of TDG as an operating goal is highly dependent on whether constraints that limit TDG uptake are implemented at a higher priority than generation requests. According to the model, an opportunity exists to reduce TDG supersaturation and meet hydropower generation requirements by shifting spillway flows to different time periods. In conclusion, a coordinated effort between all project owners is required to implement systemwide optimized solutions that satisfy the operating policies of all stakeholders.« less

  3. The Second Assessment of the Effects of Climate Change on Federal Hydropower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kao, Shih-Chieh; Ashfaq, Moetasim; Naz, Bibi S.

    Hydropower is a key contributor to the US renewable energy portfolio due to its established development history and the diverse benefits it provides to the electric power system. Ensuring the sustainable operation of existing hydropower facilities is of great importance to the US renewable energy portfolio and the reliability of electricity grid. As directed by Congress in Section 9505 of the SECURE Water Act (SWA) of 2009 (Public Law 111-11), the US Department of Energy (DOE), in consultation with the federal Power Marketing Administrations (PMAs) and other federal agencies, has prepared a second quinquennial report on examining the potential effectsmore » of climate change on water available for hydropower at federal facilities and on the marketing of power from these federal facilities. This Oak Ridge National Laboratory (ORNL) Technical Memorandum, referred to as the 9505 assessment, describes the technical basis for the report to Congress that was called for in the SWA. To evaluate the potential climate change effects on 132 federal hydropower plants across the entire US, a spatially consistent assessment approach is designed to enable an interregional comparison. This assessment uses a series of models and methods with different spatial resolutions to gradually downscale the global climate change signals into watershed-scale hydrologic projections to support hydropower impact assessment. A variety of historic meteorological and hydrologic observations, hydropower facility characteristics, and geospatial datasets is collected to support model development, calibration, and verification. Among most of the federal hydropower plants throughout the US, the most important climate change effect on hydrology is likely to be the trend toward earlier snowmelt and change of runoff seasonality. Under the projections of increasing winter/spring runoff and decreasing summer/fall runoff, water resource managers may need to consider different water use allocations. With the

  4. Influence of multiple dam passage on survival of juvenile Chinook salmon in the Columbia River estuary and coastal ocean

    PubMed Central

    Rechisky, Erin L.; Welch, David W.; Porter, Aswea D.; Jacobs-Scott, Melinda C.; Winchell, Paul M.

    2013-01-01

    Multiple dam passage during seaward migration is thought to reduce the subsequent survival of Snake River Chinook salmon. This hypothesis developed because juvenile Chinook salmon from the Snake River, the Columbia River’s largest tributary, migrate >700 km through eight hydropower dams and have lower adult return rates than downstream populations that migrate through only 3 or 4 dams. Using a large-scale telemetry array, we tested whether survival of hatchery-reared juvenile Snake River spring Chinook salmon is reduced in the estuary and coastal ocean relative to a downstream, hatchery-reared population from the Yakima River. During the initial 750-km, 1-mo-long migration through the estuary and coastal ocean, we found no evidence of differential survival; therefore, poorer adult returns of Snake River Chinook may develop far from the Columbia River. Thus, hydrosystem mitigation efforts may be ineffective if differential mortality rates develop in the North Pacific Ocean for reasons unrelated to dam passage. PMID:23576733

  5. Exploring current and projected tradeoffs between hydropower profitability and reliability of supply in the Alps

    NASA Astrophysics Data System (ADS)

    Anghileri, D.; Castelletti, A.; Burlando, P.

    2015-12-01

    The recent spreading of renewable energy across Europe and the associated production variability and uncertainty are emerging challenges for hydropower system operation. Widely distributed and highly intermittent solar and wind power generation systems, along with feed-in-tariffs, at which they are remunerated, are threating the operation of traditional hydropower systems. For instance, in countries where the transition to a larger production by means of renewable power systems is a novel process, e.g. Switzerland, many hydropower companies are operating their reservoirs with low or no profits, claiming for a revision of the entire energy market system. This situation goes along with the problem of ensuring energy supply both nowadays and in the future, with changing energy demand and available water resources. In this work, we focus on a hydropower system in the Swiss Alps to explore how different operating policies can cope with both adequate energy supply and profitable operation under current and future climate and socio-economic conditions. We investigate the operation of the Mattmark reservoir in South-West Switzerland. Mattmark is a pumped reservoir of 98 106 m3 fed by a natural catchment of 37 km2 and contributing catchments, summing up to 51 km2, connected by several diversion channels. The hydrological regime, snow- and ice-melt dominated, has already experienced changes in the last decades due to glacier retreat and is expected to be strongly impacted by climate change in the future. We use Multi-Objective optimization techniques to explore current tradeoffs between profitability and secure supply. We then investigate how tradeoffs may evolve in time under different climate change projections and energy market scenarios. Results inform on the co-evolution of climate- and socio-economic induced variations, thus unveiling potential co-benefit situations to hydropower generation and providing insights to future energy market design.

  6. McNary Dam, Ice Harbor Dam, and Lower Monumental Dam Smolt Monitoring Program; 1996 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillson, Todd; Lind, Sharon; Price, William

    1997-07-01

    The Washington Department of Fish & Wildlife (WDFW) assumed responsibility for the Smolt Monitoring Program at McNary Dam on the Columbia River in 1990 and at the new juvenile collection facility at Lower Monumental Dam on the Snake River in 1993. In 1996, Smolt Monitoring Program activities also began at the new juvenile collection facility located at Ice Harbor Dam. This report summarizes the 1996 Smolt Monitoring work at all three sites. The work at Ice Harbor consisted of Gas Bubble Trauma (GBT) monitoring only. In general, the 1996 passage season at both the McNary and Lower Monumental sites canmore » be characterized by reduced passage of juveniles through the collection systems due to elevated river flows and spill, and low (<1%) overall facility mortality rates most likely resulting from cooler water temperatures. In accordance with the National Marine Fisheries Service recommendations (NMFS, 1995) all spring migrants were bypassed at McNary Dam in 1996. Mechanical problems within the McNary collection system resulted in collection and sampling activities being delayed until April 18 at this site, while sampling and collection began on the scheduled starting date of April 1 at Lower Monumental Dam. Monitoring operations were conducted through December 14 at McNary Dam and through October 28 at Lower Monumental Dam. An ongoing transportation evaluation summer migrant marking program was conducted at McNary Dam in 1996 by the NMFS. This necessitated the sampling of 394,211 additional fish beyond the recommended sampling guidelines. All total, 509,237 and 31,219 juvenile salmonids were anesthetized and individually counted, examined for scale loss, injuries, and brands by WDFW Smolt Monitoring personnel in 1996 at McNary Dam and Lower Monumental Dam, respectively.« less

  7. Reconstructing Sediment Supply, Transport and Deposition Behind the Elwha River Dams

    NASA Astrophysics Data System (ADS)

    Beveridge, C.

    2017-12-01

    The Elwha River watershed in Olympic National Park of Washington State, USA is predominantly a steep, mountainous landscape where dominant geomorphic processes include landslides, debris flows and gullying. The river is characterized by substantial variability of channel morphology and fluvial processes, and alternates between narrow bedrock canyons and wider alluvial reaches for much of its length. Literature suggests that the Elwha watershed is topographically and tectonically in steady state. The removal of the two massive hydropower dams along the river in 2013 marked the largest dam removal in history. Over the century long lifespan of the dams, approximately 21 million cubic meters of sediment was impounded behind them. Long term erosion rates documented in this region and reservoir sedimentation data give unprecedented opportunities to test watershed sediment yield models and examine dominant processes that control sediment yield over human time scales. In this study, we aim to reconstruct sediment supply, transport and deposition behind the Glines Canyon Dam (most upstream dam) over its lifespan using a watershed modeling approach. We developed alternative models of varying complexity for sediment production and transport at the network scale driven by hydrologic forcing. We simulate sediment supply and transport in tributaries upstream of the dam. The modeled sediment supply and transport dynamics are based on calibrated formulae (e.g., bedload transport is simulated using Wilcock-Crowe 2003 with modification based on observed bedload transport in the Elwha River). Observational data that aid in our approach include DEM, channel morphology, meteorology, and streamflow and sediment (bedload and suspended load) discharge. We aim to demonstrate how the observed sediment yield behind the dams was influenced by upstream transport supply and capacity limitations, thereby demonstrating the scale effects of flow and sediment transport processes in the Elwha River

  8. Hydropower Resource Assessment of Brazilian Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas G. Hall

    The Idaho National Laboratory (INL) in collaboration with the U.S. Geological Survey (USGS) with the assistance of the Empresa de Pesquisa Energetica (EPE) and the Agencia Nacional de Energia Electrica (ANEEL) has performed a comprehensive assessment of the hydropower potential of all Brazilian natural streams. The methodology by which the assessment was performed is described. The results of the assessment are presented including an estimate of the hydropower potential for all of Brazil, and the spatial distribution of hydropower potential thus providing results on a state by state basis. The assessment results have been incorporated into a geographic information systemmore » (GIS) application for the Internet called the Virtual Hydropower Prospector do Brasil. VHP do Brasil displays potential hydropower sites on a map of Brazil in the context of topography and hydrography, existing power and transportation infrastructure, populated places and political boundaries, and land use. The features of the application, which includes tools for finding and selecting potential hydropower sites and other features and displaying their attributes, is fully described.« less

  9. Applying the World Water and Agriculture Model to Filling Scenarios for the Grand Ethiopian Renaissance Dam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa, Daniel L.; Tidwell, Vincent C.; Passell, Howard D.

    The World Water and Agriculture Model has been used to simulate water, hydropower, and food sector effects in Egypt, Sudan, and Ethiopia during the filling of the Grand Ethiopian Renaissance Dam reservoir. This unique capability allows tradeoffs to be made between filling policies for the Grand Ethiopian Renaissance Dam reservoir. This Nile River Basin study is presented to illustrate the capacity to use the World Water and Agriculture Model to simulate regional food security issues while keeping a global perspective. The study uses runoff data from the Intergovernmental Panel for Climate Change Coupled Model Inter-comparison Project Phase 5 and informationmore » from the literature in order to establish a reasonable set of hydrological initial conditions. Gross Domestic Product and population growth are modelled exogenously based on a composite projection of United Nations and World Bank data. The effects of the Grand Ethiopian Renaissance Dam under various percentages of water withheld are presented.« less

  10. Water-quality data for the Ohio River from New Cumberland Dam to Pike Island Dam, West Virginia and Ohio, May-October 1993

    USGS Publications Warehouse

    Miller, K.F.; Messinger, Terence; Waldron, M.C.; Faulkenburg, C.W.

    1996-01-01

    This report contains water-quality data for the Ohio River from river mile 51.1 (3.3 miles upstream from New Cumberland Dam) to river mile 84.0 (0.2 miles upstream from Pike Island Dam) that were collected during the summer and fall of 1993. The data were collected to establish the water quality of the Ohio River and to use in assessing the proposed effects of hydropower development on the water quality of the Ohio River. Water quality was determined by a combination of repeated synoptic field measurements, continuous-record monitoring, and laboratory analyses. Synoptic measurements were made along a longitudinal transect with 18 mid-channel sampling sites; cross-sectional transects of water-quality measurements were made at 5 of these sites. Water-quality measurements also were made at two sites located on the back-channel (Ohio) side of Browns Island. At each longitudinal-transect and back-channel sampling site, measurements were made of specific conductance, pH, water temperature, and dissolved oxygen conentration. Longitudinal-transect and back-channel stations were sampled at four depths (at the surface, about 3.3 feet below the surface, middle of the water column, and near the bottom of the river). Cross-sectional transects consisted of three to four detailed vertical profiles of the same characteristics. Water samples were collected from three depths at the mid-channel vertical profile in each cross-sectional transect and were analyzed for concentrations of phytoplankton photosynthetic pigments chlorophyll a and chlorophyll b. Estimates of the depth of light penetration (Secchi-disk transparency) were made at pigment-sampling locations whenever light and river-surface conditions were appropriate. Synoptic sampling usually was completed in 12 hours or less and was repeated 10 times from May through October 1993. Continuous-record monitoring of water quality consisted of hourly measurements of specific conductance, pH, water temperature, and dissolved oxygen

  11. 76 FR 57731 - Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... Competing Applications; McKay Dam Hydropower, LLC On May 31, 2011, McKay Dam Hydropower, LLC filed an... study the feasibility of the McKay Dam Hydroelectric Project (project) to be located at the McKay dam near Pendleton in Umatilla County, [[Page 57732

  12. Anthropogenic Water Uses and River Flow Regime Alterations by Dams

    NASA Astrophysics Data System (ADS)

    Ferrazzi, M.; Botter, G.

    2017-12-01

    Dams and impoundments have been designed to reconcile the systematic conflict between patterns of anthropogenic water uses and the temporal variability of river flows. Over the past seven decades, population growth and economic development led to a marked increase in the number of these water infrastructures, so that unregulated free-flowing rivers are now rare in developed countries and alterations of the hydrologic cycle at global scale have to be properly considered and characterized. Therefore, improving our understanding of the influence of dams and reservoirs on hydrologic regimes is going to play a key role in water planning and management. In this study, a physically based analytic approach is combined to extensive hydrologic data to investigate natural flow regime alterations downstream of dams in the Central-Eastern United States. These representative case studies span a wide range of different uses, including flood control, water supply and hydropower production. Our analysis reveals that the most evident effects of flood control through dams is a decrease in the intra-seasonal variability of flows, whose extent is controlled by the ratio between the storage capacity for flood control and the average incoming streamflow. Conversely, reservoirs used for water supply lead to an increase of daily streamflow variability and an enhanced inter-catchment heterogeneity. Over the last decades, the supply of fresh water required to sustain human populations has become a major concern at global scale. Accordingly, the number of reservoirs devoted to water supply increased by 50% in the US. This pattern foreshadows a possible shift in the cumulative effect of dams on river flow regimes in terms of inter-catchment homogenization and intra-annual flow variability.

  13. Organizing Environmental Flow Frameworks to Meet Hydropower Mitigation Needs

    NASA Astrophysics Data System (ADS)

    McManamay, Ryan A.; Brewer, Shannon K.; Jager, Henriette I.; Troia, Matthew J.

    2016-09-01

    The global recognition of the importance of natural flow regimes to sustain the ecological integrity of river systems has led to increased societal pressure on the hydropower industry to change plant operations to improve downstream aquatic ecosystems. However, a complete reinstatement of natural flow regimes is often unrealistic when balancing water needs for ecosystems, energy production, and other human uses. Thus, stakeholders must identify a prioritized subset of flow prescriptions that meet ecological objectives in light of realistic constraints. Yet, isolating aspects of flow regimes to restore downstream of hydropower facilities is among the greatest challenges of environmental flow science due, in part, to the sheer volume of available environmental flow tools in conjunction with complex negotiation-based regulatory procedures. Herein, we propose an organizational framework that structures information and existing flow paradigms into a staged process that assists stakeholders in implementing environmental flows for hydropower facilities. The framework identifies areas where regulations fall short of the needed scientific process, and provide suggestions for stakeholders to ameliorate those situations through advanced preparation. We highlight the strengths of existing flow paradigms in their application to hydropower settings and suggest when and where tools are most applicable. Our suggested framework increases the effectiveness and efficiency of the e-flow implementation process by rapidly establishing a knowledge base and decreasing uncertainty so more time can be devoted to filling knowledge gaps. Lastly, the framework provides the structure for a coordinated research agenda to further the science of environmental flows related to hydropower environments.

  14. Organizing environmental flow frameworks to meet hydropower mitigation needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A.; Brewer, Shannon K.; Jager, Henriette I.

    The global recognition of the importance of natural flow regimes to sustain the ecological integrity of river systems has led to increased societal pressure on the hydropower industry to change plant operations to improve downstream aquatic ecosystems. However, a complete reinstatement of natural flow regimes is often unrealistic when balancing water needs for ecosystems, energy production, and other human uses. Thus, stakeholders must identify a prioritized subset of flow prescriptions that meet ecological objectives in light of realistic constraints. Yet, isolating aspects of flow regimes to restore downstream of hydropower facilities is among the greatest challenges of environmental flow sciencemore » due, in part, to the sheer volume of available environmental flow tools in conjunction with complex negotiation-based regulatory procedures. Here, we propose an organizational framework that structures information and existing flow paradigms into a staged process that assists stakeholders in implementing environmental flows for hydropower facilities. The framework identifies areas where regulations fall short of the needed scientific process, and provide suggestions for stakeholders to ameliorate those situations through advanced preparation. We highlight the strengths of existing flow paradigms in their application to hydropower settings and suggest when and where tools are most applicable. In conclusion, our suggested framework increases the effectiveness and efficiency of the e-flow implementation process by rapidly establishing a knowledge base and decreasing uncertainty so more time can be devoted to filling knowledge gaps. As a result, the framework provides the structure for a coordinated research agenda to further the science of environmental flows related to hydropower environments.« less

  15. Organizing environmental flow frameworks to meet hydropower mitigation needs

    USGS Publications Warehouse

    McManamay, Ryan A.; Brewer, Shannon K.; Jager, Henriette; Troia, Matthew J.

    2016-01-01

    The global recognition of the importance of natural flow regimes to sustain the ecological integrity of river systems has led to increased societal pressure on the hydropower industry to change plant operations to improve downstream aquatic ecosystems. However, a complete reinstatement of natural flow regimes is often unrealistic when balancing water needs for ecosystems, energy production, and other human uses. Thus, stakeholders must identify a prioritized subset of flow prescriptions that meet ecological objectives in light of realistic constraints. Yet, isolating aspects of flow regimes to restore downstream of hydropower facilities is among the greatest challenges of environmental flow science due, in part, to the sheer volume of available environmental flow tools in conjunction with complex negotiation-based regulatory procedures. Herein, we propose an organizational framework that structures information and existing flow paradigms into a staged process that assists stakeholders in implementing environmental flows for hydropower facilities. The framework identifies areas where regulations fall short of the needed scientific process, and provide suggestions for stakeholders to ameliorate those situations through advanced preparation. We highlight the strengths of existing flow paradigms in their application to hydropower settings and suggest when and where tools are most applicable. Our suggested framework increases the effectiveness and efficiency of the e-flow implementation process by rapidly establishing a knowledge base and decreasing uncertainty so more time can be devoted to filling knowledge gaps. Lastly, the framework provides the structure for a coordinated research agenda to further the science of environmental flows related to hydropower environments.

  16. Organizing environmental flow frameworks to meet hydropower mitigation needs

    DOE PAGES

    McManamay, Ryan A.; Brewer, Shannon K.; Jager, Henriette I.; ...

    2016-06-25

    The global recognition of the importance of natural flow regimes to sustain the ecological integrity of river systems has led to increased societal pressure on the hydropower industry to change plant operations to improve downstream aquatic ecosystems. However, a complete reinstatement of natural flow regimes is often unrealistic when balancing water needs for ecosystems, energy production, and other human uses. Thus, stakeholders must identify a prioritized subset of flow prescriptions that meet ecological objectives in light of realistic constraints. Yet, isolating aspects of flow regimes to restore downstream of hydropower facilities is among the greatest challenges of environmental flow sciencemore » due, in part, to the sheer volume of available environmental flow tools in conjunction with complex negotiation-based regulatory procedures. Here, we propose an organizational framework that structures information and existing flow paradigms into a staged process that assists stakeholders in implementing environmental flows for hydropower facilities. The framework identifies areas where regulations fall short of the needed scientific process, and provide suggestions for stakeholders to ameliorate those situations through advanced preparation. We highlight the strengths of existing flow paradigms in their application to hydropower settings and suggest when and where tools are most applicable. In conclusion, our suggested framework increases the effectiveness and efficiency of the e-flow implementation process by rapidly establishing a knowledge base and decreasing uncertainty so more time can be devoted to filling knowledge gaps. As a result, the framework provides the structure for a coordinated research agenda to further the science of environmental flows related to hydropower environments.« less

  17. Organizing Environmental Flow Frameworks to Meet Hydropower Mitigation Needs.

    PubMed

    McManamay, Ryan A; Brewer, Shannon K; Jager, Henriette I; Troia, Matthew J

    2016-09-01

    The global recognition of the importance of natural flow regimes to sustain the ecological integrity of river systems has led to increased societal pressure on the hydropower industry to change plant operations to improve downstream aquatic ecosystems. However, a complete reinstatement of natural flow regimes is often unrealistic when balancing water needs for ecosystems, energy production, and other human uses. Thus, stakeholders must identify a prioritized subset of flow prescriptions that meet ecological objectives in light of realistic constraints. Yet, isolating aspects of flow regimes to restore downstream of hydropower facilities is among the greatest challenges of environmental flow science due, in part, to the sheer volume of available environmental flow tools in conjunction with complex negotiation-based regulatory procedures. Herein, we propose an organizational framework that structures information and existing flow paradigms into a staged process that assists stakeholders in implementing environmental flows for hydropower facilities. The framework identifies areas where regulations fall short of the needed scientific process, and provide suggestions for stakeholders to ameliorate those situations through advanced preparation. We highlight the strengths of existing flow paradigms in their application to hydropower settings and suggest when and where tools are most applicable. Our suggested framework increases the effectiveness and efficiency of the e-flow implementation process by rapidly establishing a knowledge base and decreasing uncertainty so more time can be devoted to filling knowledge gaps. Lastly, the framework provides the structure for a coordinated research agenda to further the science of environmental flows related to hydropower environments.

  18. Modeling Net Land Occupation of Hydropower Reservoirs in Norway for Use in Life Cycle Assessment.

    PubMed

    Dorber, Martin; May, Roel; Verones, Francesca

    2018-02-20

    Increasing hydropower electricity production constitutes a unique opportunity to mitigate climate change impacts. However, hydropower electricity production also impacts aquatic and terrestrial biodiversity through freshwater habitat alteration, water quality degradation, and land use and land use change (LULUC). Today, no operational model exists that covers any of these cause-effect pathways within life cycle assessment (LCA). This paper contributes to the assessment of LULUC impacts of hydropower electricity production in Norway in LCA. We quantified the inundated land area associated with 107 hydropower reservoirs with remote sensing data and related it to yearly electricity production. Therewith, we calculated an average net land occupation of 0.027 m 2 ·yr/kWh of Norwegian storage hydropower plants for the life cycle inventory. Further, we calculated an adjusted average land occupation of 0.007 m 2 ·yr/kWh, accounting for an underestimation of water area in the performed maximum likelihood classification. The calculated land occupation values are the basis to support the development of methods for assessing the land occupation impacts of hydropower on biodiversity in LCA at a damage level.

  19. The performance of the Hydromorphological Index of Diversity (HMID) in a hydropower affected meandering river

    NASA Astrophysics Data System (ADS)

    Stähly, Severin; Bourqui, Pierre; Franca, Mario J.; Robinson, Christopher; Schleiss, Anton J.

    2016-04-01

    More than half of the Swiss electricity is produced by hydropower. Large price fluctuations cause severe hydropeaking flow regimes due to corresponding production fluctuations, which undisputedly have a negative impact on aquatic biota. Water diversion due to dams on the other hand imposes downstream residual flow regimes. The absence of flood events and regular sediment supply disrupts sediment dynamics and disconnects floodplains, which are habitats of high value, from its main channel. The residual-flow controlled reach at the Sarine river in western Switzerland is the subject of the present study. The Sarine meanders strongly and the river reach under analysis has a bed incision of locally more than 100 m. Its incision provokes the isolation of the river which is consequently minimally touched by human structures and shows a natural geomorphology. Since the construction of a dam upstream this reach in 1948, aiming at the water abstraction to hydropower, vegetation could establish and the active floodplain decreased its area, as airborne images show. Nevertheless, it is classified as a floodplain of national importance and it has been under protection since 1992. It is supposed to be a valuable habitat for a wide range of organisms. The Hydromorphological Index of Diversity (HMID) is a simple tool for quantifying the habitat richness in a river reach, taking into account the mean values and the variation of water depth and flow velocity. For channelized rivers, HMID values from up to 5 are expected, while morphological pristine sites with a high spatial variability of water depth and velocity show values of 9 or higher. For the residual flow of the Sarine River, flow depth and velocity were measured using ADCP and ADV. The results are compared with a nearby natural reference river and the outcome of a 2D numerical simulation. Finally, the behaviour and limitations of the HMID, in a hydropower affected river, are discussed. In the close future an artificial flood

  20. Land Systems Impacts of Hydropower Development

    NASA Astrophysics Data System (ADS)

    Wu, G. C.; Torn, M. S.

    2016-12-01

    Hydropower is often seen as the low-cost, low-carbon, and high-return technology for meeting rising electricity demand and fueling economic growth. Despite the magnitude and pace of hydropower expansion in many developing countries, the potential land use and land cover change (LULCC), particularly indirect LULCC, resulting from hydropower development is poorly understood. Hydropower-driven LULCC can have multiple impacts ranging from global and local climate modification (e.g., increased extreme precipitation events or increased greenhouse gas emissions), ecosystem degradation and fragmentation, to feedbacks on hydropower generation (e.g., increased sedimentation of the reservoir). As a result, a better understanding of both direct and indirect LULCC impacts can inform a more integrated and low-impact model for energy planning in countries with transitioning or growing energy portfolios. This study uses multi-scale remote sensing imagery (Landsat, MODIS, fine-resolution commercial imagery) to estimate LULCC from past hydropower projects intended primarily for electricity generation in 12 countries in Africa, South and Central America, South Asia, and Southeast Asia. It is important to examine multiple locations to determine how socio-political and environmental context determines the magnitude of LULCC. Previous studies have called for the need to scale-up local case studies to examine "cumulative impacts" of multiple development activities within a watershed. We use a pre-test/post-test quasi-experimental design using a time series of classified images and vegetation indices before and after hydropower plant construction as the response variable in an interrupted time series regression analysis. This statistical technique measures the "treatment" effect of hydropower development on indirect LULCC. Preliminary results show land use change and landscape fragmentation following hydropower development, primarily agricultural and urban in nature. These results suggest

  1. Hydropower impacts on reservoir fish populations are modified by environmental variation.

    PubMed

    Eloranta, Antti P; Finstad, Anders G; Helland, Ingeborg P; Ugedal, Ola; Power, Michael

    2018-03-15

    Global transition towards renewable energy production has increased the demand for new and more flexible hydropower operations. Before management and stakeholders can make informed choices on potential mitigations, it is essential to understand how the hydropower reservoir ecosystems respond to water level regulation (WLR) impacts that are likely modified by the reservoirs' abiotic and biotic characteristics. Yet, most reservoir studies have been case-specific, which hampers large-scale planning, evaluation and mitigation actions across various reservoir ecosystems. Here, we investigated how the effect of the magnitude, frequency and duration of WLR on fish populations varies along environmental gradients. We used biomass, density, size, condition and maturation of brown trout (Salmo trutta L.) in Norwegian hydropower reservoirs as a measure of ecosystem response, and tested for interacting effects of WLR and lake morphometry, climatic conditions and fish community structure. Our results showed that environmental drivers modified the responses of brown trout populations to different WLR patterns. Specifically, brown trout biomass and density increased with WLR magnitude particularly in large and complex-shaped reservoirs, but the positive relationships were only evident in reservoirs with no other fish species. Moreover, increasing WLR frequency was associated with increased brown trout density but decreased condition of individuals within the populations. WLR duration had no significant impacts on brown trout, and the mean weight and maturation length of brown trout showed no significant response to any WLR metrics. Our study demonstrates that local environmental characteristics and the biotic community strongly modify the hydropower-induced WLR impacts on reservoir fishes and ecosystems, and that there are no one-size-fits-all solutions to mitigate environmental impacts. This knowledge is vital for sustainable planning, management and mitigation of hydropower

  2. Deriving adaptive operating rules of hydropower reservoirs using time-varying parameters generated by the EnKF

    NASA Astrophysics Data System (ADS)

    Feng, Maoyuan; Liu, Pan; Guo, Shenglian; Shi, Liangsheng; Deng, Chao; Ming, Bo

    2017-08-01

    Operating rules have been used widely to decide reservoir operations because of their capacity for coping with uncertain inflow. However, stationary operating rules lack adaptability; thus, under changing environmental conditions, they cause inefficient reservoir operation. This paper derives adaptive operating rules based on time-varying parameters generated using the ensemble Kalman filter (EnKF). A deterministic optimization model is established to obtain optimal water releases, which are further taken as observations of the reservoir simulation model. The EnKF is formulated to update the operating rules sequentially, providing a series of time-varying parameters. To identify the index that dominates the variations of the operating rules, three hydrologic factors are selected: the reservoir inflow, ratio of future inflow to current available water, and available water. Finally, adaptive operating rules are derived by fitting the time-varying parameters with the identified dominant hydrologic factor. China's Three Gorges Reservoir was selected as a case study. Results show that (1) the EnKF has the capability of capturing the variations of the operating rules, (2) reservoir inflow is the factor that dominates the variations of the operating rules, and (3) the derived adaptive operating rules are effective in improving hydropower benefits compared with stationary operating rules. The insightful findings of this study could be used to help adapt reservoir operations to mitigate the effects of changing environmental conditions.

  3. The effects of overwinter flowson the spring condition of rainbow and brown trout size classes in the Green River downstream of Flaming Gorge Dam, Utah.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnusson, A. K.; LaGory, K. E.; Hayse, J. W.

    2010-06-25

    Flaming Gorge Dam, a hydroelectric facility operated by the Bureau of Reclamation (Reclamation), is located on the Green River in Daggett County, northeastern Utah. Until recently, and since the early 1990s, single daily peak releases or steady flows have been the operational pattern of the dam during the winter period. However, releases from Flaming Gorge Reservoir followed a double-peak pattern (two daily flow peaks) during the winters of 2006-2007 and 2008-2009. Because there is little recent long-term history of double-peaking at Flaming Gorge Dam, the potential effects of double-peaking operations on trout body condition in the dam's tailwater are notmore » known. A study plan was developed that identified research activities to evaluate potential effects from winter double-peaking operations (Hayse et al. 2009). Along with other tasks, the study plan identified the need to conduct a statistical analysis of historical trout condition and macroinvertebrate abundance to evaluate the potential effects of hydropower operations. The results from analyses based on the combined size classes of trout (85-630 mm) were presented in Magnusson et al. (2008). The results of this earlier analysis suggested possible relationships between trout condition and flow, but concern that some of the relationships resulted from size-based effects (e.g., apparent changes in condition may have been related to concomitant changes in size distribution, because small trout may have responded differently to flow than large trout) prompted additional analysis of within-size class relationships. This report presents the results of analyses of three different size classes of trout (small: 200-299 mm, medium: 300-399 mm, and large: {ge}400 mm body length). We analyzed historical data to (1) describe temporal patterns and relationships among flows, benthic macroinvertebrate abundance, and condition of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in the tailwaters of

  4. Regional assessment of the hydropower potential of rivers in West Africa

    NASA Astrophysics Data System (ADS)

    Kling, Harald; Stanzel, Philipp; Fuchs, Martin

    2016-04-01

    The 15 countries of the Economic Community of West African States (ECOWAS) face a constant shortage of energy supply, which limits sustained economic growth. Currently there are about 50 operational hydropower plants and about 40 more are under construction or refurbishment. The potential for future hydropower development - especially for small-scale plants in rural areas - is assumed to be large, but exact data are missing. This study supports the energy initiatives of the "ECOWAS Centre for Renewable Energy and Energy Efficiency" (ECREEE) by assessing the hydropower potential of all rivers in West Africa. For more than 500,000 river reaches the hydropower potential was computed from channel slope and mean annual discharge. In large areas there is a lack of discharge observations. Therefore, an annual water balance model was used to simulate discharge. The model domain covers 5 Mio km², including e.g. the Niger, Volta, and Senegal River basins. The model was calibrated with observed data of 410 gauges, using precipitation and potential evapotranspiration data as inputs. Historic variations of observed annual discharge between 1950 and 2010 are simulated well by the model. As hydropower plants are investments with a lifetime of several decades we also assessed possible changes in future discharge due to climate change. To this end the water balance model was driven with bias-corrected climate projections of 15 Regional Climate Models for two emission scenarios of the CORDEX-Africa ensemble. The simulation results for the river network were up-scaled to sub-areas and national summaries. This information gives a regional quantification of the hydropower potential, expected climate change impacts, as well as a regional classification for general suitability (or non-suitability) of hydropower plant size - from small-scale to large projects.

  5. Optimization of Multiple and Multipurpose Reservoir System Operations by Using Matrix Structure (Case Study: Karun and Dez Reservoir Dams)

    PubMed Central

    Othman, Faridah; Taghieh, Mahmood

    2016-01-01

    Optimal operation of water resources in multiple and multipurpose reservoirs is very complicated. This is because of the number of dams, each dam’s location (Series and parallel), conflict in objectives and the stochastic nature of the inflow of water in the system. In this paper, performance optimization of the system of Karun and Dez reservoir dams have been studied and investigated with the purposes of hydroelectric energy generation and providing water demand in 6 dams. On the Karun River, 5 dams have been built in the series arrangements, and the Dez dam has been built parallel to those 5 dams. One of the main achievements in this research is the implementation of the structure of production of hydroelectric energy as a function of matrix in MATLAB software. The results show that the role of objective function structure for generating hydroelectric energy in weighting method algorithm is more important than water supply. Nonetheless by implementing ε- constraint method algorithm, we can both increase hydroelectric power generation and supply around 85% of agricultural and industrial demands. PMID:27248152

  6. Damming the Brahmaputra: Impacts on the Resilience of Local Communities to Floods and Climate Change

    NASA Astrophysics Data System (ADS)

    Rampini, C.

    2016-12-01

    Recurrent destructive floods along the Brahmaputra river basin are a major challenge for the people and state governments of Northeast India. Climate change is expected to further exacerbate this challenge, as melting Himalayan glaciers and changes in the South Asian monsoon lead to an increase in the frequency of severe floods. At the same time, the Brahmaputra has become the focus of India's hydropower development efforts, with 140 new dams planned along its main stem and tributaries. Though these dams could provide flood protection for downstream communities, political and economic factors have led dam builders to prioritize hydroelectricity generation over flood control. Using the Ranganadi Hydroelectric Project in Arunachal Pradesh as a case study, this research investigates the effects of dam building on the resilience of downstream communities to floods that are becoming increasingly severe as a result of climate change. Findings suggest that dams in Northeast are eroding downstream communities' resilience to floods by increasing their vulnerability and reducing their adaptive capacity to these natural hazards. The risk is that, as dams and climate change jointly make the floodplains of Northeast India increasingly hazardous, uninhabitable and unproductive, they will push local communities away from these landscapes and agricultural livelihoods and towards more carbon-intensive livelihoods. More broadly this research highlights the danger of pursuing climate change mitigation and renewable energy development projects without considering their impacts on the vulnerability and adaptability of affected communities to climate change.

  7. Impact of Climate Change on Irrigation and Hydropower Potential: A Case of Upper Blue Nile Basin

    NASA Astrophysics Data System (ADS)

    Abdella, E. J.; Gosain, A. K.; Khosa, R.

    2017-12-01

    potential could be produced if all planed dams are constructed. The results in this study demonstrate the general idea of future water availability for different purpose in the basin, but uncertainties still exist in the projected future climate and simulated runoff. Optimal operation of existing and proposed reservoirs is also crucial in the context of climate change.

  8. Interactions Between Land Use, Climate and Hydropower in Scotland

    NASA Astrophysics Data System (ADS)

    Sample, J.

    2014-12-01

    To promote the transition towards a low carbon economy, the Scottish Government has adopted ambitious energy targets, including generating all electricity from renewable sources by 2020. To achieve this, continued investment will be required across a range of sustainable technologies. Hydropower has a long history in Scotland and the present-day operational capacity of ~1.5 GW makes a substantial contribution to the national energy budget. In addition, there remains potential for ~500 MW of further development, mostly in the form of small to medium size run-of-river schemes. Climate change is expected to lead to an intensification of the global hydrological cycle, leading to changes in both the magnitude and seasonality of river flows. There may also be indirect effects, such as changing land use, enhanced evapotranspiration rates and an increased demand for irrigation, all of which could affect the water available for energy generation. Preliminary assessments of hydropower commonly use flow duration curves (FDCs) to estimate the power generation potential at proposed new sites. In this study, we use spatially distributed modelling to generate daily and monthly FDCs for a range of Scottish catchments using a variety of future land use and climate change scenarios. These are then used to assess Scotland's future hydropower potential under different flow regimes. The results are spatially variable and include large uncertainties, but some consistent patterns emerge. Many locations are predicted to experience enhanced seasonality, with lower power generation potential in the summer months and greater potential during the autumn and winter. Some sites may require infrastructural changes in order to continue operating at optimum efficiency. We discuss the implications and limitations of our results, and highlight design and adaptation options for maximising the resilience of hydropower installations under changing future flow patterns.

  9. China's rising hydropower demand challenges water sector.

    PubMed

    Liu, Junguo; Zhao, Dandan; Gerbens-Leenes, P W; Guan, Dabo

    2015-07-09

    Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China based on data from 875 representative reservoirs (209 with power plants). In 2010, the reservoir WF totaled 27.9 × 10(9) m(3) (Gm(3)), or 22% of China's total water consumption. Ignoring the reservoir WF seriously underestimates human water appropriation. The reservoir WF associated with industrial, domestic and agricultural WFs caused water scarcity in 6 of the 10 major Chinese river basins from 2 to 12 months annually. The hydropower WF was 6.6 Gm(3) yr(-1) or 3.6 m(3) of water to produce a GJ (10(9) J) of electricity. Hydropower is a water intensive energy carrier. As a response to global climate change, the Chinese government has promoted a further increase in hydropower energy by 70% by 2020 compared to 2012. This energy policy imposes pressure on available freshwater resources and increases water scarcity. The water-energy nexus requires strategic and coordinated implementations of hydropower development among geographical regions, as well as trade-off analysis between rising energy demand and water use sustainability.

  10. Beyond harm's reach? Submersion of river turtle nesting areas and implications for restoration actions after Amazon hydropower development.

    PubMed

    Norris, Darren; Michalski, Fernanda; Gibbs, James P

    2018-01-01

    The global expansion of energy demands combined with abundant rainfall, large water volumes and high flow in tropical rivers have led to an unprecedented expansion of dam constructions in the Amazon. This expansion generates an urgent need for refined approaches to river management; specifically a move away from decision-making governed by overly generalized guidelines. For the first time we quantify direct impacts of hydropower reservoir establishment on an Amazon fresh water turtle. We conducted surveys along 150 km of rivers upstream of a new dam construction during the low water months that correspond to the nesting season of Podocnemis unifilis in the study area. Comparison of nest-areas before (2011, 2015) and after (2016) reservoir filling show that reservoir impacts extend 13% beyond legally defined limits. The submerged nesting areas accounted for a total of 3.8 ha of nesting habitat that was inundated as a direct result of the reservoir filling in 2016. Our findings highlight limitations in the development and implementation of existing Brazilian environmental impact assessment process. We also propose potential ways to mitigate the negative impacts of dams on freshwater turtles and the Amazonian freshwater ecosystems they inhabit.

  11. Exploring the impact of co-varying water availability and energy price on productivity and profitability of Alpine hydropower

    NASA Astrophysics Data System (ADS)

    Anghileri, Daniela; Botter, Martina; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Alpine hydropower systems are experiencing dramatic changes both from the point of view of hydrological conditions, e.g., water availability and frequency of extremes events, and of energy market conditions, e.g., partial or total liberalization of the market and increasing share of renewable power sources. Scientific literature has, so far, mostly focused on the analysis of climate change impacts and associated uncertainty on hydropower operation, underlooking the consequences that socio-economic changes, e.g., energy demand and/or price changes, can have on hydropower productivity and profitability. In this work, we analyse how hydropower reservoir operation is affected by changes in both water availability and energy price. We consider stochastically downscaled climate change scenarios of precipitation and temperature to simulate reservoir inflows using a physically explicit hydrological model. We consider different scenarios of energy demand and generation mix to simulate energy prices using an electricity market model, which includes different generation sources, demand sinks, and features of the transmission lines. We then use Multi-Objective optimization techniques to design the operation of hydropower reservoirs for different purposes, e.g. maximization of revenue and/or energy production. The objective of the work is to assess how the tradeoffs between the multiple operating objectives evolve under different co-varying climate change and socio-economic scenarios and to assess the adaptive capacity of the system. The modeling framework is tested on the real-world case study of the Mattmark reservoir in Switzerland.

  12. U.S. hydropower resource assessment for Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, A.M.; Francfort, J.E.

    1998-08-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based onmore » the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Idaho.« less

  13. Hydropower versus irrigation—an analysis of global patterns

    NASA Astrophysics Data System (ADS)

    Zeng, Ruijie; Cai, Ximing; Ringler, Claudia; Zhu, Tingju

    2017-03-01

    Numerous reservoirs around the world provide multiple flow regulation functions; key among these are hydroelectricity production and water releases for irrigation. These functions contribute to energy and food security at national, regional and global levels. While reservoir operations for hydroelectricity production might support irrigation, there are also well-known cases where hydroelectricity production reduces water availability for irrigated food production. This study assesses these relationships at the global level using machine-learning techniques and multi-source datasets. We find that 54% of global installed hydropower capacity (around 507 thousand Megawatt) competes with irrigation. Regions where such competition exists include the Central United States, northern Europe, India, Central Asia and Oceania. On the other hand, 8% of global installed hydropower capacity (around 79 thousand Megawatt) complements irrigation, particularly in the Yellow and Yangtze River Basins of China, the East and West Coasts of the United States and most river basins of Southeast Asia, Canada and Russia. No significant relationship is found for the rest of the world. We further analyze the impact of climate variables on the relationships between hydropower and irrigation. Reservoir flood control functions that operate under increased precipitation levels appear to constrain hydroelectricity production in various river basins of the United States, South China and most basins in Europe and Oceania. On the other hand, increased reservoir evaporative losses and higher irrigation requirements due to higher potential evaporation levels may lead to increased tradeoffs between irrigation and hydropower due to reduced water availability in regions with warmer climates, such as India, South China, and the Southern United States. With most reservoirs today being built for multiple purposes, it is important for policymakers to understand and plan for growing tradeoffs between key

  14. Libby Mitigation Program, 2007 Annual Progress Report: Mitigation for the Construction and Operation of Libby Dam.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunnigan, James; DeShazer, J.; Garrow, L.

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin (Columbia River Treaty 1964). Libby Reservoir inundated 109 stream miles of the mainstem Kootenai River in the United States and Canada, and 40 miles of tributary streams in the U.S. that provided habitat for spawning, juvenile rearing, and migratory passage (Figure 1). The authorized purpose of the dam is to provide power (91.5%), flood control (8.3%), and navigation and other benefits (0.2%; Storm et al. 1982). The Pacific Northwest Power Act of 1980 recognized possiblemore » conflicts stemming from hydroelectric projects in the northwest and directed Bonneville Power Administration to 'protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries' (4(h)(10)(A)). Under the Act, the Northwest Power Planning Council was created and recommendations for a comprehensive fish and wildlife program were solicited from the region's federal, state, and tribal fish and wildlife agencies. Among Montana's recommendations was the proposal that research be initiated to quantify acceptable seasonal minimum pool elevations to maintain or enhance the existing fisheries (Graham et al. 1982). Research to determine how operations of Libby Dam affect the reservoir and river fishery and to suggest ways to lessen these effects began in May 1983. The framework for the Libby Reservoir Model (LRMOD) was completed in 1989. Development of Integrated Rule Curves (IRCs) for Libby Dam operation was completed in 1996 (Marotz et al. 1996). The Libby Reservoir Model and the IRCs continue to be refined (Marotz et al 1999). Initiation of mitigation projects such as lake rehabilitation and stream restoration began in 1996. The primary focus of the Libby Mitigation project now is to restore the fisheries and fish

  15. Increased sediment load during a large-scale dam removal changes nearshore subtidal communities

    PubMed Central

    Foley, Melissa M.; Berry, Helen D.; Duda, Jeffrey J.; Hudson, Benjamin; Elder, Nancy E.; Beirne, Matthew M.; Warrick, Jonathan A.; McHenry, Michael L.; Stevens, Andrew W.; Eidam, Emily F.; Ogston, Andrea S.; Gelfenbaum, Guy; Pedersen, Rob

    2017-01-01

    The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx—over 10 million tonnes—during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal community (3 m to 17 m depth). Biological changes were primarily driven by sediment deposition and elevated suspended sediment concentrations. Macroalgae, predominantly kelp and foliose red algae, were abundant before dam removal with combined cover levels greater than 50%. Where persistent sediment deposits formed, macroalgae decreased greatly or were eliminated. In areas lacking deposition, macroalgae cover decreased inversely to suspended sediment concentration, suggesting impacts from light reduction or scour. Densities of most invertebrate and fish taxa decreased in areas with persistent sediment deposition; however, bivalve densities increased where mud deposited over sand, and flatfish and Pacific sand lance densities increased where sand deposited over gravel. In areas without sediment deposition, most invertebrate and fish taxa were unaffected by increased suspended sediment or the loss of algae cover associated with it; however, densities of tubeworms and flatfish, and primary cover of sessile invertebrates increased suggesting benefits of increased particulate matter or relaxed competition with macroalgae for space. As dam removal neared completion, we saw evidence of macroalgal recovery that likely owed to water column clearing, indicating that long-term recovery from dam removal effects may be starting. Our results are relevant to future dam removal projects in coastal areas and more generally to understanding effects of increased sedimentation on nearshore subtidal benthic communities. PMID:29220368

  16. Increased sediment load during a large-scale dam removal changes nearshore subtidal communities.

    PubMed

    Rubin, Stephen P; Miller, Ian M; Foley, Melissa M; Berry, Helen D; Duda, Jeffrey J; Hudson, Benjamin; Elder, Nancy E; Beirne, Matthew M; Warrick, Jonathan A; McHenry, Michael L; Stevens, Andrew W; Eidam, Emily F; Ogston, Andrea S; Gelfenbaum, Guy; Pedersen, Rob

    2017-01-01

    The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx-over 10 million tonnes-during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal community (3 m to 17 m depth). Biological changes were primarily driven by sediment deposition and elevated suspended sediment concentrations. Macroalgae, predominantly kelp and foliose red algae, were abundant before dam removal with combined cover levels greater than 50%. Where persistent sediment deposits formed, macroalgae decreased greatly or were eliminated. In areas lacking deposition, macroalgae cover decreased inversely to suspended sediment concentration, suggesting impacts from light reduction or scour. Densities of most invertebrate and fish taxa decreased in areas with persistent sediment deposition; however, bivalve densities increased where mud deposited over sand, and flatfish and Pacific sand lance densities increased where sand deposited over gravel. In areas without sediment deposition, most invertebrate and fish taxa were unaffected by increased suspended sediment or the loss of algae cover associated with it; however, densities of tubeworms and flatfish, and primary cover of sessile invertebrates increased suggesting benefits of increased particulate matter or relaxed competition with macroalgae for space. As dam removal neared completion, we saw evidence of macroalgal recovery that likely owed to water column clearing, indicating that long-term recovery from dam removal effects may be starting. Our results are relevant to future dam removal projects in coastal areas and more generally to understanding effects of increased sedimentation on nearshore subtidal benthic communities.

  17. Increased sediment load during a large-scale dam removal changes nearshore subtidal communities

    USGS Publications Warehouse

    Rubin, Stephen P.; Miller, Ian M.; Foley, Melissa M.; Berry, Helen D.; Duda, Jeffrey J.; Hudson, Benjamin; Elder, Nancy E.; Beirne, Matthew M.; Warrick, Jonathan; McHenry, Michael L.; Stevens, Andrew; Eidam, Emily; Ogston, Andrea; Gelfenbaum, Guy R.; Pedersen, Rob

    2017-01-01

    The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx—over 10 million tonnes—during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal community (3 m to 17 m depth). Biological changes were primarily driven by sediment deposition and elevated suspended sediment concentrations. Macroalgae, predominantly kelp and foliose red algae, were abundant before dam removal with combined cover levels greater than 50%. Where persistent sediment deposits formed, macroalgae decreased greatly or were eliminated. In areas lacking deposition, macroalgae cover decreased inversely to suspended sediment concentration, suggesting impacts from light reduction or scour. Densities of most invertebrate and fish taxa decreased in areas with persistent sediment deposition; however, bivalve densities increased where mud deposited over sand, and flatfish and Pacific sand lance densities increased where sand deposited over gravel. In areas without sediment deposition, most invertebrate and fish taxa were unaffected by increased suspended sediment or the loss of algae cover associated with it; however, densities of tubeworms and flatfish, and primary cover of sessile invertebrates increased suggesting benefits of increased particulate matter or relaxed competition with macroalgae for space. As dam removal neared completion, we saw evidence of macroalgal recovery that likely owed to water column clearing, indicating that long-term recovery from dam removal effects may be starting. Our results are relevant to future dam removal projects in coastal areas and more generally to understanding effects of increased sedimentation on nearshore subtidal benthic communities.

  18. Recent sediment studies refute Glen Canyon Dam hypothesis

    USGS Publications Warehouse

    Rubin, David M.; Topping, David J.; Schmidt, John C.; Hazel, Joe; Kaplinski, Matt; Melis, Theodore S.

    2002-01-01

    Recent studies of sedimentology hydrology, and geomorphology indicate that releases from Glen Canyon Dam are continuing to erode sandbars and beaches in the Colorado River in Grand Canyon National Park, despite attempts to restore these resources. The current strategy for dam operations is based on the hypothesis that sand supplied by tributaries of the Colorado River downstream from the dam will accumulate in the channel during normal dam operations and remain available for restoration floods. Recent work has shown that this hypothesis is false, and that tributary sand inputs are exported downstream rapidly typically within weeks or months under the current flow regime.

  19. Integrated Data-Archive and Distributed Hydrological Modelling System for Optimized Dam Operation

    NASA Astrophysics Data System (ADS)

    Shibuo, Yoshihiro; Jaranilla-Sanchez, Patricia Ann; Koike, Toshio

    2013-04-01

    Analysis System, a Japanese national project for collecting, integrating and analyzing massive amount of global scale observation data, meaning that the present system is applicable worldwide. We demonstrate the integrated system with observed extreme events in Angat Watershed, the Philippines, and Upper Tone River basin, Japan. The results show promising performance for operational use of the system to support river and dam managers' decision-making.

  20. Steady and transient regimes in hydropower plants

    NASA Astrophysics Data System (ADS)

    Gajic, A.

    2013-12-01

    Hydropower plant that has been in operation for about 30 years has to be reconstructed. They have already installed 12 Kaplan turbines, the largest in the world at that time. The existing CAM relationship was determined based on hydraulic model tests and checked by efficiency on-site tests. It was also tested based on turbine bearing vibrations. In order to discover vibrations and long cracks on stay vanes detailed on-site measurements were performed. Influence of the modification of the trailing edges on the dynamic stresses of the stay vanes is also shown. In order to improve power output transient regimes were analyzed, both experimentally and numerically. Reversible hydropower plant, a pioneer in Europe since it was the first Pump storage power plant constructed with the highest head pump-turbines in the world. Analyses of transient regimes discover some problems with S-shaped characteristics coupled with non-symmetrical penstock.

  1. Hydropower | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    how hydropower may fit into your climate action plans. Campus Options Considerations Sample Project action plan. A history of the Cornell hydropower plant is available on the university's website. Examples

  2. Assessing Hydropower in the West

    DOE PAGES

    Johnson, Megan M.; Uria Martinez, Rocio

    2015-06-01

    On April 27, the U.S. Department of Energy (DOE) released the 2014 Hydropower Market Report, which provides a quantitative baseline on the distribution, capabilities, and status of hydropower in the United States. Although the report shows many interesting trends and figures, this article focuses on those related to the western region.

  3. Emergency Planning for Dams: Bibliography and Abstracts of Selected Publications,

    DTIC Science & Technology

    1982-01-01

    Government Operations. Teton Dam Disaster: Hearings Before a Subcom- mittee of the Committee on Government Operations, House of Representatives. U.S...Government Printing Office. Washington, DC. 1976. Committee on Government Operations. Teton Dam Disaster: Thirtieth Response. U.S. Government Printing Office...Design Earthquakes. * Teton Dam Failure. *Summary of 1st Session on Evaluation OSummary of Session on Failure and of Seismic Stability. Near Failure

  4. A parametric study of the value of hydrological information for irrigation and hydropower management of the Feather River

    NASA Technical Reports Server (NTRS)

    Wetzler, E.; Sand, F.; Stevenson, P.; Putnam, M.

    1975-01-01

    A case study analysis is presented of the relationships between improvements in the accuracy, frequency, and timeliness of information used in making hydrological forecasts and economic benefits in the areas of hydropower and irrigation. The area chosen for the case study is the Oroville Dam and Reservoir. Emphasis is placed on the use of timely and accurate mapping of the aerial extent of snow in the basin by earth resources survey systems such as LANDSAT. The subject of benefits resulting from improved runoff forecasts is treated in a generalized way without specifying the source of the improvements.

  5. Beyond harm’s reach? Submersion of river turtle nesting areas and implications for restoration actions after Amazon hydropower development

    PubMed Central

    Michalski, Fernanda; Gibbs, James P.

    2018-01-01

    The global expansion of energy demands combined with abundant rainfall, large water volumes and high flow in tropical rivers have led to an unprecedented expansion of dam constructions in the Amazon. This expansion generates an urgent need for refined approaches to river management; specifically a move away from decision-making governed by overly generalized guidelines. For the first time we quantify direct impacts of hydropower reservoir establishment on an Amazon fresh water turtle. We conducted surveys along 150 km of rivers upstream of a new dam construction during the low water months that correspond to the nesting season of Podocnemis unifilis in the study area. Comparison of nest-areas before (2011, 2015) and after (2016) reservoir filling show that reservoir impacts extend 13% beyond legally defined limits. The submerged nesting areas accounted for a total of 3.8 ha of nesting habitat that was inundated as a direct result of the reservoir filling in 2016. Our findings highlight limitations in the development and implementation of existing Brazilian environmental impact assessment process. We also propose potential ways to mitigate the negative impacts of dams on freshwater turtles and the Amazonian freshwater ecosystems they inhabit. PMID:29333347

  6. Root Cause Failure Analysis of Stator Winding Insulation failure on 6.2 MW hydropower generator

    NASA Astrophysics Data System (ADS)

    Adhi Nugroho, Agus; Widihastuti, Ida; Ary, As

    2017-04-01

    Insulation failure on generator winding insulation occurred in the Wonogiri Hydropower plant has caused stator damage since ase was short circuited to ground. The fault has made the generator stop to operate. Wonogiri Hydropower plant is one of the hydroelectric plants run by PT. Indonesia Power UBP Mrica with capacity 2 × 6.2 MW. To prevent damage to occur again on hydropower generators, an analysis is carried out using Root Cause Failure Analysis RCFA is a systematic approach to identify the root cause of the main orbasic root cause of a problem or a condition that is not wanted. There are several aspects to concerned such as: loading pattern and operations, protection systems, generator insulation resistance, vibration, the cleanliness of the air and the ambient air. Insulation damage caused by gradual inhomogeneous cooling at the surface of winding may lead in to partial discharge. In homogeneous cooling may present due to lattice hampered by dust and oil deposits. To avoid repetitive defects and unwanted condition above, it is necessary to perform major maintenance overhaul every 5000-6000 hours of operation.

  7. Fishy Business: Response of Stream Fish Assemblages to Small Hydro-power Plant Induced Flow Alteration in the Western Ghats, Karnataka

    NASA Astrophysics Data System (ADS)

    Rao, S. T.; Krishnaswamy, J.; Bhalla, R. S.

    2017-12-01

    Alteration of natural flow regimes is considered as a major threat to freshwater fish assemblages as it disturbs the water quality and micro-habitat features of rivers. Small hydro-power (SHP), which is being promoted as a clean and green substitute for large hydro-power generation, alters the natural flow regime of head-water streams by flow diversion and regulation. The effects of altered flow regime on tropical stream fish assemblages, driven by seasonality induced perturbations to water quality and microhabitat parameters are largely understudied. My study examined the potential consequences of flow alteration by SHPs on fish assemblages in two tributaries of the west-flowing Yettinahole River which flows through the reserved forests of Sakleshpur in the Western Ghats of Karnataka. The flow in one of the tributaries followed natural flow regime while the other comprised three regimes: a near-natural flow regime above the dam, rapidly varying discharge below the dam and a dewatered regime caused by flow diversion. The study found that the altered flow regime differed from natural flow regime in terms of water quality, microhabitat heterogeneity and fish assemblage response, each indicative of the type of flow alteration. Fish assemblage in the natural flow regime was characterized by a higher catch per site, a strong association of endemic and trophic specialist species. The flow regime above the dam was found to mimic some components of the natural flow regime, both ecological and environmental. Non endemic, generalist and pool tolerant species were associated with the dewatered regime. There was a lack of strong species-regime association and an overall low catch per site for the flow regulated regime below the dam. This study highlights the consequences of altered flows on the composition of freshwater fish assemblages and portrays the potential of freshwater fish as indicators of the degree and extent of flow alteration. The study recommends the need for

  8. Behavior and dam passage of juvenile Chinook salmon and juvenile steelhead at Detroit Reservoir and Dam, Oregon, March 2012-February 2013

    USGS Publications Warehouse

    Beeman, John W.; Hansel, Hal C.; Hansen, Amy C.; Evans, Scott D.; Haner, Philip V.; Hatton, Tyson W.; Kofoot, Eric E.; Sprando, Jamie M.; Smith, Collin D.

    2014-01-01

    The in-reservoir movements and dam passage of individual juvenile Chinook salmon (Oncorhynchus tshawytscha) and juvenile steelhead (Oncorhynchus mykiss) were studied at Detroit Reservoir and Dam, near Detroit, Oregon, during 2012 and 2013. The goal of the study was to provide data to inform decisions about future downstream passage alternatives and factors affecting downstream passage rates with the existing dam configuration. In 2012, 468 juvenile Chinook salmon and 200 juvenile steelhead were tagged and released during a 3-month period in the spring, and another 514 juvenile Chinook salmon were tagged and released during a 3-month period in the fall. The fish were surgically implanted with a small acoustic transmitter with an expected life of about 3 months and a passive integrated transponder tag with an indefinite life, and were released into the two main tributaries several kilometers upstream of the reservoir. Juvenile Chinook salmon migrated from the release sites to the reservoir in a greater proportion than juvenile steelhead, but once in the reservoir, juvenile steelhead migrated to the forebay faster and had a higher dam passage rate than juvenile Chinook salmon. The routes available for passing water and fish varied throughout the year, with low reservoir elevations in winter and high reservoir elevations in summer in accordance with the flood-control purpose of the dam. Most dam passage was through the spillway during the spring and summer, when the reservoir elevation was high and the spillway and powerhouse were the most common routes in operation, and via the powerhouse during the fall and winter period, when the reservoir elevation was low and the regulating outlet and powerhouse were the most common routes in operation. Few tagged fish passed when the powerhouse was the only route in operation. Dam passage rates during the spring and summer were greatest at night, increased with dam discharge, and were greater when water was passed freely over the

  9. Water-quality data for the Ohio River from Willow Island Dam to Belleville Dam, West Virginia and Ohio, May-October 1993

    USGS Publications Warehouse

    Miller, K.F.

    1996-01-01

    This report contains water-quality data for the Ohio River from river mile 160.6 (1.1 mile upstream from Willow Island Dam) to river mile 203.6 (0.3 mile upstream from Belleville Dam) that were collected during the summer and fall of 1993. The data were collected to establish the water quality of the Ohio River and to use in assessing the proposed effects of hydropower development on the water quality of the Ohio River. Water quality was monitored by a combination of synoptic field measurements, laboratory analyses, and continuous- record monitoring. Field measurements of water- quality characteristics were made along a longitudinal transect with 24 mid-channel sampling sites; cross-sectional transects of water-quality measurements were made at six of these sites. Water-quality measurements also were made at six sites located on the back-channel (West Virginia) sides of Marietta, Muskingum, and Blennerhassett Islands. At each longitudinal-transect and back- channel sampling site, measurements of specific conductance, pH, water temperature, and dissolved oxygen concentration were made at three depths (about 3.3 feet below the surface of the water, middle of the water column, and near the bottom of the river). Cross-sectional transects consisted of three to four detailed vertical profiles of the same characteristics. Water samples were collected at three depths in the mid-channel vertical profile in each cross-sectional transect and were analyzed for concentrations of phytoplankton chlorophyll a and chlorophyll b. Estimates of the depth of light penetration (Secchi disk transparency) were made at phytoplankton- pigment-sampling locations whenever light and river-surface conditions were appropriate. Each synoptic sampling event was completed in 2 days or less. The entire network was sampled 10 times from May 24 to October 27, 1993. Continuous-record monitoring of water quality consisted of hourly measurments of specific conductance, pH, water temperature, and

  10. Improving the flow representation in a stochastic programming model for hydropower operations in Chile

    NASA Astrophysics Data System (ADS)

    Morales, Y.; Olivares, M. A.; Vargas, X.

    2015-12-01

    This research aims to improve the representation of stochastic water inflows to hydropower plants used in a grid-wide, power production scheduling model in central Chile. The model prescribes the operation of every plant in the system, including hydropower plants located in several basins, and uses stochastic dual dynamic programming (SDDP) with possible inflow scenarios defined from historical records. Each year of record is treated as a sample of weekly inflows to power plants, assuming this intrinsically incorporates spatial and temporal correlations, without any further autocorrelation analysis of the hydrological time series. However, standard good practice suggests the use of synthetic flows instead of raw historical records.The proposed approach generates synthetic inflow scenarios based on hydrological modeling of a few basins in the system and transposition of flows with other basins within so-called homogeneous zones. Hydrologic models use precipitation and temperature as inputs, and therefore this approach requires producing samples of those variables. Development and calibration of these models imply a greater demand of time compared to the purely statistical approach to synthetic flows. This approach requires consideration of the main uses in the basins: agriculture and hydroelectricity. Moreover a geostatistical analysis of the area is analyzed to generate a map that identifies the relationship between the points where the hydrological information is generated and other points of interest within the power system. Consideration of homogeneous zones involves a decrease in the effort required for generation of information compared with hydrological modeling of every point of interest. It is important to emphasize that future scenarios are derived through a probabilistic approach that incorporates the features of the hydrological year type (dry, normal or wet), covering the different possibilities in terms of availability of water resources. We present

  11. The Water - Energy Nexus Of Hydropower. Are The Trade-Offs Between Electricity Generation And Water Supply Negligible?

    NASA Astrophysics Data System (ADS)

    Scherer, L.; Pfister, S.

    2015-12-01

    Hydropower ranks first among renewable sources of power production and provides globally about 16% of electricity. While it is praised for its low greenhouse gas emissions, it is accused of its large water consumption which surpasses that of all conventional and most renewable energy sources (except for bioenergy) by far. Previous studies mostly applied a gross evaporation approach where all the current evaporation from the plant's reservoir is allocated to hydropower. In contrast, we only considered net evaporation as the difference between current evaporation and actual evapotranspiration before the construction of the reservoir. In addition, we take into account local water stress, its monthly fluctuations and storage effects of the reservoir in order to assess the impacts on water availability for other users. We apply the method to a large dataset of almost 1500 globally distributed hydropower plants (HPPs), covering ~43% of global annual electricity generation, by combining reservoir information from the Global Reservoir and Dam (GRanD) database with information on electricity generation from the CARMA database. While we can confirm that the gross water consumption of hydropower is generally large (production-weighted average of 97 m3/GJ), other users are not necessarily deprived of water. In contrast, they also benefit in many cases from the reservoir because water is rather stored in the wet season and released in the dry season, thereby alleviating water stress. The production-weighted water scarcity footprint of the analyzed HPPs amounts to -41 m3 H2Oe/GJ. It has to be noted that the impacts among individual plants vary a lot. Larger HPPs generally consume less water per unit of electricity generated, but also the benefits related to alleviating water scarcity are lower. Overall, reservoirs promote both, energy and water security. Other environmental impacts such as flow alterations and social impacts should, however, also be considered, as they can be

  12. Large dams and alluvial rivers in the Anthropocene: The impacts of the Garrison and Oahe Dams on the Upper Missouri River

    USGS Publications Warehouse

    Skalak, Katherine; Benthem, Adam J.; Schenk, Edward R.; Hupp, Cliff R.; Galloway, Joel M.; Nustad, Rochelle A.; Wiche, Gregg J.

    2013-01-01

    The Missouri River has had a long history of anthropogenic modification with considerable impacts on river and riparian ecology, form, and function. During the 20th century, several large dam-building efforts in the basin served the needs for irrigation, flood control, navigation, and the generation of hydroelectric power. The managed flow provided a range of uses, including recreation, fisheries, and habitat. Fifteen dams impound the main stem of the river, with hundreds more on tributaries. Though the effects of dams and reservoirs are well-documented, their impacts have been studied individually, with relatively little attention paid to their interaction along a river corridor. We examine the morphological and sedimentological changes in the Upper Missouri River between the Garrison Dam in ND (operational in 1953) and Oahe Dam in SD (operational in 1959). Through historical aerial photography, stream gage data, and cross sectional surveys, we demonstrate that the influence of the upstream dam is still a major control of river dynamics when the backwater effects of the downstream reservoir begin. In the “Anthropocene”, dams are ubiquitous on large rivers and often occur in series, similar to the Garrison Dam Segment. We propose a conceptual model of how interacting dams might affect river geomorphology, resulting in distinct and recognizable morphologic sequences that we term “Inter-Dam sequence” characteristic of major rivers in the US.

  13. Impacts of Dams and Global Warming on Fish Biodiversity in the Indo-Burma Hotspot

    PubMed Central

    Nam, So; Samejima, Hiromitsu; Watanabe, Katsutoshi; Grudpan, Chaiwut; Grudpan, Jarungjit; Magtoon, Wichan; Musikasinthorn, Prachya; Nguyen, Phuong Thanh; Praxaysonbath, Bounthob; Sato, Tomoyuki; Shimatani, Yukihiro; Suvarnaraksha, Apinun; Tanaka, Wataru; Thach, Phanara; Tran, Dac Dinh; Yamashita, Tomomi

    2016-01-01

    Both hydropower dams and global warming pose threats to freshwater fish diversity. While the extent of global warming may be reduced by a shift towards energy generation by large dams in order to reduce fossil-fuel use, such dams profoundly modify riverine habitats. Furthermore, the threats posed by dams and global warming will interact: for example, dams constrain range adjustments by fishes that might compensate for warming temperatures. Evaluation of their combined or synergistic effects is thus essential for adequate assessment of the consequences of planned water-resource developments. We made projections of the responses of 363 fish species within the Indo-Burma global biodiversity hotspot to the separate and joint impacts of dams and global warming. The hotspot encompasses the Lower Mekong Basin, which is the world’s largest freshwater capture fishery. Projections for 81 dam-building scenarios revealed progressive impacts upon projected species richness, habitable area, and the proportion of threatened species as generating capacity increased. Projections from 126 global-warming scenarios included a rise in species richness, a reduction in habitable area, and an increase in the proportion of threatened species; however, there was substantial variation in the extent of these changes among warming projections. Projections from scenarios that combined the effects of dams and global warming were derived either by simply adding the two threats, or by combining them in a synergistic manner that took account of the likelihood that habitat shifts under global warming would be constrained by river fragmentation. Impacts on fish diversity under the synergistic projections were 10–20% higher than those attributable to additive scenarios, and were exacerbated as generating capacity increased—particularly if CO2 emissions remained high. The impacts of dams, especially those on river mainstreams, are likely to be greater, more predictable and more immediately

  14. Impacts of Dams and Global Warming on Fish Biodiversity in the Indo-Burma Hotspot.

    PubMed

    Kano, Yuichi; Dudgeon, David; Nam, So; Samejima, Hiromitsu; Watanabe, Katsutoshi; Grudpan, Chaiwut; Grudpan, Jarungjit; Magtoon, Wichan; Musikasinthorn, Prachya; Nguyen, Phuong Thanh; Praxaysonbath, Bounthob; Sato, Tomoyuki; Shibukawa, Koichi; Shimatani, Yukihiro; Suvarnaraksha, Apinun; Tanaka, Wataru; Thach, Phanara; Tran, Dac Dinh; Yamashita, Tomomi; Utsugi, Kenzo

    2016-01-01

    Both hydropower dams and global warming pose threats to freshwater fish diversity. While the extent of global warming may be reduced by a shift towards energy generation by large dams in order to reduce fossil-fuel use, such dams profoundly modify riverine habitats. Furthermore, the threats posed by dams and global warming will interact: for example, dams constrain range adjustments by fishes that might compensate for warming temperatures. Evaluation of their combined or synergistic effects is thus essential for adequate assessment of the consequences of planned water-resource developments. We made projections of the responses of 363 fish species within the Indo-Burma global biodiversity hotspot to the separate and joint impacts of dams and global warming. The hotspot encompasses the Lower Mekong Basin, which is the world's largest freshwater capture fishery. Projections for 81 dam-building scenarios revealed progressive impacts upon projected species richness, habitable area, and the proportion of threatened species as generating capacity increased. Projections from 126 global-warming scenarios included a rise in species richness, a reduction in habitable area, and an increase in the proportion of threatened species; however, there was substantial variation in the extent of these changes among warming projections. Projections from scenarios that combined the effects of dams and global warming were derived either by simply adding the two threats, or by combining them in a synergistic manner that took account of the likelihood that habitat shifts under global warming would be constrained by river fragmentation. Impacts on fish diversity under the synergistic projections were 10-20% higher than those attributable to additive scenarios, and were exacerbated as generating capacity increased-particularly if CO2 emissions remained high. The impacts of dams, especially those on river mainstreams, are likely to be greater, more predictable and more immediately pressing for

  15. Is the economic value of hydrological forecasts related to their quality? Case study of the hydropower sector.

    NASA Astrophysics Data System (ADS)

    Cassagnole, Manon; Ramos, Maria-Helena; Thirel, Guillaume; Gailhard, Joël; Garçon, Rémy

    2017-04-01

    The improvement of a forecasting system and the evaluation of the quality of its forecasts are recurrent steps in operational practice. However, the evaluation of forecast value or forecast usefulness for better decision-making is, to our knowledge, less frequent, even if it might be essential in many sectors such as hydropower and flood warning. In the hydropower sector, forecast value can be quantified by the economic gain obtained with the optimization of operations or reservoir management rules. Several hydropower operational systems use medium-range forecasts (up to 7-10 days ahead) and energy price predictions to optimize hydropower production. Hence, the operation of hydropower systems, including the management of water in reservoirs, is impacted by weather, climate and hydrologic variability as well as extreme events. In order to assess how the quality of hydrometeorological forecasts impact operations, it is essential to first understand if and how operations and management rules are sensitive to input predictions of different quality. This study investigates how 7-day ahead deterministic and ensemble streamflow forecasts of different quality might impact the economic gains of energy production. It is based on a research model developed by Irstea and EDF to investigate issues relevant to the links between quality and value of forecasts in the optimisation of energy production at the short range. Based on streamflow forecasts and pre-defined management constraints, the model defines the best hours (i.e., the hours with high energy prices) to produce electricity. To highlight the link between forecasts quality and their economic value, we built several synthetic ensemble forecasts based on observed streamflow time series. These inputs are generated in a controlled environment in order to obtain forecasts of different quality in terms of accuracy and reliability. These forecasts are used to assess the sensitivity of the decision model to forecast quality

  16. Projected impacts of climate change on hydropower potential in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xingcai; Tang, Qiuhong; Voisin, Nathalie

    Hydropower is an important renewable energy source in China, but it is sensitive to climate change, because the changing climate may alter hydrological conditions (e.g., river flow and reservoir storage). Future changes and associated uncertainties in China's gross hydropower potential (GHP) and developed hydropower potential (DHP) are projected using simulations from eight global hydrological models (GHMs), including a large-scale reservoir regulation model, forced by five general circulation models (GCMs) with climate data under two representative concentration pathways (RCP2.6 and RCP8.5). Results show that the estimation of the present GHP of China is comparable to other studies; overall, the annual GHP is projectedmore » to change by −1.7 to 2 % in the near future (2020–2050) and increase by 3 to 6 % in the late 21st century (2070–2099). The annual DHP is projected to change by −2.2 to −5.4 % (0.7–1.7 % of the total installed hydropower capacity (IHC)) and −1.3 to −4 % (0.4–1.3 % of total IHC) for 2020–2050 and 2070–2099, respectively. Regional variations emerge: GHP will increase in northern China but decrease in southern China – mostly in south central China and eastern China – where numerous reservoirs and large IHCs currently are located. The area with the highest GHP in southwest China will have more GHP, while DHP will reduce in the regions with high IHC (e.g., Sichuan and Hubei) in the future. The largest decrease in DHP (in %) will occur in autumn or winter, when streamflow is relatively low and water use is competitive. Large ranges in hydropower estimates across GHMs and GCMs highlight the necessity of using multimodel assessments under climate change conditions. This study prompts the consideration of climate change in planning for hydropower development and operations in China, to be further combined with a socioeconomic analysis for strategic expansion.« less

  17. Hydroacoustic Evaluation of Overwintering Summer Steelhead Fallback and Kelt Passage at The Dalles Dam Turbines, Early Spring 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Fenton; Royer, Ida M.

    2012-02-01

    This report presents the results of an evaluation of overwintering summer steelhead (Oncorhynchus mykiss) fallback and early out-migrating steelhead kelts downstream passage at The Dalles Dam turbines during early spring 2011. The study was conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers, Portland District (USACE) to investigate whether adult steelhead are passing through turbines during early spring before annual sluiceway operations typically begin. The sluiceway surface flow outlet is the optimal non-turbine route for adult steelhead, although operating the sluiceway reduces hydropower production. This is a follow-up study to similar studies of adult steelheadmore » passage at the sluiceway and turbines we conducted in the fall/winter 2008, early spring 2009, fall/winter 2009, and early spring 2010. The goal of the 2011 study was to characterize adult steelhead passage rates at the turbines while the sluiceway was closed so fisheries managers would have additional information to use in decision-making relative to sluiceway operations. Sluiceway operations were not scheduled to begin until April 10, 2011. However, based on a management decision in late February, sluiceway operations commenced on March 1, 2011. Therefore, this study provided estimates of fish passage rates through the turbines, and not the sluiceway, while the sluiceway was open. The study period was March 1 through April 10, 2011 (41 days total). The study objective was to estimate the number and distribution of adult steelhead and kelt-sized targets passing into turbine units. We obtained fish passage data using fixed-location hydroacoustics with transducers deployed at all 22 main turbine units at The Dalles Dam. Adult steelhead passage through the turbines occurred on 9 days during the study (March 9, 12, 30, and 31 and April 2, 3, 5, 7, and 9). We estimated a total of 215 {+-} 98 (95% confidence interval) adult steelhead targets passed through

  18. Interactions between land use, climate and hydropower in Scotland

    NASA Astrophysics Data System (ADS)

    Sample, James

    2015-04-01

    To promote the transition towards a low carbon economy, the Scottish Government has adopted ambitious energy targets, including generating all electricity from renewable sources by 2020. To achieve this, continued investment will be required across a range of sustainable technologies. Hydropower has a long history in Scotland and the present-day operational capacity of ~1.5 GW makes a substantial contribution to the national energy budget. In addition, there remains potential for ~500 MW of further development, mostly in the form of small to medium size run-of-river schemes. Climate change is expected to lead to an intensification of the global hydrological cycle, leading to changes in both the magnitude and seasonality of river flows. There may also be indirect effects, such as changing land use, enhanced evapotranspiration rates and an increased demand for irrigation, all of which could affect the water available for energy generation. Preliminary assessments of hydropower commonly use flow duration curves (FDCs) to estimate the power generation potential at proposed new sites. In this study, we use spatially distributed modelling to generate daily and monthly FDCs on a 1 km by 1 km grid across Scotland, using a variety of future land use and climate change scenarios. Parameter-related uncertainty in the model has been constrained using Bayesian Markov Chain Monte Carlo (MCMC) techniques to derive posterior probability distributions for key model parameters. Our results give an indication of the sensitivity and vulnerability of Scotland's run-of-river hydropower resources to possible changes in climate and land use. The effects are spatially variable and the range of uncertainty is sometimes large, but consistent patterns do emerge. For example, many locations are predicted to experience enhanced seasonality, with significantly lower power generation potential in the summer months and greater potential during the autumn and winter. Some sites may require

  19. Hydroacoustic Evaluation of Overwintering Summer Steelhead Fallback and Kelt Passage at The Dalles Dam 2008-2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Fenton; Johnson, Gary E.; Weiland, Mark A.

    2009-09-01

    This report presents the results of an evaluation of overwintering summer steelhead (Oncorhynchus mykiss) fallback and early out-migrating steelhead kelts downstream passage at The Dalles Dam (TDA) sluiceway and turbines during fall/winter 2008 and early spring 2009, respectively. The study was conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers, Portland District (USACE). Operating the sluiceway reduces the potential for hydropower production. However, this surface flow outlet may be the optimal non-turbine route for fallbacks in late fall after the sluiceway is typically closed for juvenile fish passage and for overwintering summer steelhead andmore » kelt passage in the early spring before the start of the voluntary spill season. The goal of this study was to characterize adult steelhead spatial and temporal distributions and passage rates at the sluiceway and turbines, and their movements in front of the sluiceway at TDA to inform fisheries managers’ and engineers’ decision-making relative to sluiceway operations. The study periods were from November 1 to December 15, 2008 (45 days) and from March 1 to April 9, 2009 (40 days). The study objectives were to 1) estimate the number and distribution of overwintering summer steelhead fallbacks and kelt-sized acoustic targets passing into the sluiceway and turbines at TDA during the two study periods, respectively, and 2) assess the behavior of these fish in front of sluice entrances. We obtained fish passage data using fixed-location hydroacoustics and fish behavior data using acoustic imaging. For the overwintering summer steelhead, fallback occurred throughout the 45-day study period. We estimated that a total of 1790 ± 250 (95% confidence interval) summer steelhead targets passed through the powerhouse intakes and operating sluices during November 1 to December 15, 2008. Ninety five percent of these fish passed through the sluiceway. Therefore, without the

  20. National Program for Inspection of Non-Federal Dams. Ludlow Dam (MA 00547) and Cherry Valley Dam (MA 00548), Chicopee River Basin, Ludlow, Massachusetts. Phase I Inspection Report.

    DTIC Science & Technology

    1978-08-01

    operates to pump water from Settling Basin to Filter * Float Wells Beds above the location of Ludlow Dam. Crane Hoist Elevator Hydraulic Systum Service...outlet Channel beyond Emergency Spillway at Cherry Valley Dam Overflow StutueoBra ro aa atryVe Photogaph #1 P 0 Photograph #12 Contrls forw Slif Gaes ate

  1. Deformation Monitoring and Bathymetry Analyses in Rock-Fill Dams, a Case Study at Ataturk Dam

    NASA Astrophysics Data System (ADS)

    Kalkan, Y.; Bilgi, S.

    2014-12-01

    Turkey has 595 dams constructed between 1936 and 2013 for the purposes of irrigation, flood control, hydroelectric energy and drinking water. A major portion of the dam basins in Turkey are deprived of vegetation and have slope topography on near surrounding area. However, landscaping covered with forest around the dam basin is desirable for erosion control. In fact; the dams, have basins deprived of vegetation, fill up quickly due to sediment transport. Erosion control and forestation are important factors, reducing the sediment, to protect the water basins of the dams and increase the functioning life of the dams. The functioning life of dams is as important as the investment and construction. Nevertheless, in order to provide safety of human life living around, well planned monitoring is essential for dams. Dams are very large and critical structures and they demand the use or application of precise measuring systems. Some basic physical data are very important for assessing the safety and performance of dams. These are movement, water pressure, seepage, reservoir and tail-water elevations, local seismic activities, total pressure, stress and strain, internal concrete temperature, ambient temperature and precipitation. Monitoring is an essential component of the dam after construction and during operation and must en­able the timely detection of any behavior that could deteriorate the dam, potentially result in its shutdown or failure. Considering the time and labor consumed by long-term measurements, processing and analysis of measured data, importance of the small structural motions at regular intervals could be comprehended. This study provides some information, safety and the techniques about the deformation monitoring of the dams, dam safety and related analysis. The case study is the deformation measurements of Atatürk Dam in Turkey which is the 6th largest dam of world considering the filling volume of embankment. Brief information is given about the

  2. Multiple-Purpose Project, Osage River Basin, Osage River, Missouri. Harry S. Truman Dam & Reservoir Operation and Maintenance Manual. Appendix VII. Volume 1. Construction Foundation Report.

    DTIC Science & Technology

    1984-01-01

    RIVER MISSOURI Report from September 1966 HARRY S. TROMAN DAM & RESERVOIR November 1979 OPERATION AND MAINTENANCE MANUAL 6 PERFORMING DRG. REPORT N4040E...Two of this report ) VII- I- xxiv ............................. .... ... .... ... . .2. . . OPERATION AND MAINTENANCE MANUAL HARRY S. TRUMAN DAM AND...RESERVOIR OSAGE RIVER, MISSOURI APPENDIX VII CONSTRUCTION FOUNDATION REPORT CHAPTER 1 INTRODUCTION 1-01. Location and Description of Project: Harry S

  3. Have Large Dams Altered Extreme Precipitation Patterns?

    NASA Astrophysics Data System (ADS)

    Hossain, Faisal; Jeyachandran, Indumathi; Pielke, Roger

    2009-12-01

    Dams and their impounded waters are among the most common civil infrastructures, with a long heritage of modern design and operations experience. In particular, large dams, defined by the International Commission on Large Dams (ICOLD) as having a height greater than 15 meters from the foundation and holding a reservoir volume of more than 3 million cubic meters, have the potential to vastly transform local climate, landscapes, regional economics, and urbanization patterns. In the United States alone, about 75,000 dams are capable of storing a volume of water equaling almost 1 year's mean runoff of the nation [Graf, 1999]. The World Commission on Dams (WCD) reports that at least 45,000 large dams have been built worldwide since the 1930s. These sheer numbers raise the question of the extent to which large dams and their impounded waters alter patterns that would have been pervasive had the dams not been built.

  4. China’s rising hydropower demand challenges water sector

    PubMed Central

    Liu, Junguo; Zhao, Dandan; Gerbens-Leenes, P. W.; Guan, Dabo

    2015-01-01

    Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China based on data from 875 representative reservoirs (209 with power plants). In 2010, the reservoir WF totaled 27.9 × 109 m3 (Gm3), or 22% of China’s total water consumption. Ignoring the reservoir WF seriously underestimates human water appropriation. The reservoir WF associated with industrial, domestic and agricultural WFs caused water scarcity in 6 of the 10 major Chinese river basins from 2 to 12 months annually. The hydropower WF was 6.6 Gm3 yr−1 or 3.6 m3 of water to produce a GJ (109 J) of electricity. Hydropower is a water intensive energy carrier. As a response to global climate change, the Chinese government has promoted a further increase in hydropower energy by 70% by 2020 compared to 2012. This energy policy imposes pressure on available freshwater resources and increases water scarcity. The water-energy nexus requires strategic and coordinated implementations of hydropower development among geographical regions, as well as trade-off analysis between rising energy demand and water use sustainability. PMID:26158871

  5. Simulation of Grouting Process in Rock Masses Under a Dam Foundation Characterized by a 3D Fracture Network

    NASA Astrophysics Data System (ADS)

    Deng, Shaohui; Wang, Xiaoling; Yu, Jia; Zhang, Yichi; Liu, Zhen; Zhu, Yushan

    2018-06-01

    Grouting plays a crucial role in dam safety. Due to the concealment of grouting activities, complexity of fracture distribution in rock masses and rheological properties of cement grout, it is difficult to analyze the effects of grouting. In this paper, a computational fluid dynamics (CFD) simulation approach of dam foundation grouting based on a 3D fracture network model is proposed. In this approach, the 3D fracture network model, which is based on an improved bootstrap sampling method and established by VisualGeo software, can provide a reliable and accurate geometric model for CFD simulation of dam foundation grouting. Based on the model, a CFD simulation is performed, in which the Papanastasiou regularized model is used to express the grout rheological properties, and the volume of fluid technique is utilized to capture the grout fronts. Two sets of tests are performed to verify the effectiveness of the Papanastasiou regularized model. When applying the CFD simulation approach for dam foundation grouting, three technical issues can be solved: (1) collapsing potential of the fracture samples, (2) inconsistencies in the geometric model in actual fractures under complex geological conditions, and (3) inappropriate method of characterizing the rheological properties of cement grout. The applicability of the proposed approach is demonstrated by an illustrative case study—a hydropower station dam foundation in southwestern China.

  6. Systematic high-resolution assessment of global hydropower potential.

    PubMed

    Hoes, Olivier A C; Meijer, Lourens J J; van der Ent, Ruud J; van de Giesen, Nick C

    2017-01-01

    Population growth, increasing energy demand and the depletion of fossil fuel reserves necessitate a search for sustainable alternatives for electricity generation. Hydropower could replace a large part of the contribution of gas and oil to the present energy mix. However, previous high-resolution estimates of hydropower potential have been local, and have yet to be applied on a global scale. This study is the first to formally present a detailed evaluation of the hydropower potential of each location, based on slope and discharge of each river in the world. The gross theoretical hydropower potential is approximately 52 PWh/year divided over 11.8 million locations. This 52 PWh/year is equal to 33% of the annually required energy, while the present energy production by hydropower plants is just 3% of the annually required energy. The results of this study: all potentially interesting locations for hydroelectric power plants, are available online.

  7. Effect of Dam operation on monthly and annual trends of flow discharge in the Qom Rood Watershed, Iran

    NASA Astrophysics Data System (ADS)

    Yaghmaei, Hiva; Sadeghi, Seyed Hamidreza; Moradi, Hamidreza; Gholamalifard, Mehdi

    2018-02-01

    Trends in flow discharge, temperature and rainfall from the Qom Rood Watershed, Iran, for a period of 1979-2016 were analyzed at monthly and annual time scales. Trend analyses were conducted using the Mann-Kendall test, the double-mass curve of mean annual discharge versus rainfall, and rainfall-runoff relationship before and after the 15 Khordad Dam operation. Multiple regression of flow discharge against rainfall and temperature was used to determine the residual trend at four meteorological and hydrological stations located upstream and downstream of the Qom Rood Watershed. Results showed that the temperature at the upstream and downstream stations did not have any significant trend, but a significant decreasing trend (P < .05) in rainfall was detected only in May (z = -1.66) at the downstream stations. There was a significant positive trend (P < .05) in rainfall in February (z = 2.22) and July (z = 2.15) at the upstream stations, and in October (z = 2.3) and November (z = 1.8) at the downstream stations. However, there was a noticeable decrease in monthly and annual flow discharge, and residual trend at 99% significance level at the downstream stations. At the upstream stations, the flow discharges had significant (P < .05) declining trend in all months, but annual flow discharge did not change significantly. Analysis of double mass curve between runoff and rainfall at the downstream stations showed an inconsistency in the line slope concordant with the time of 15 Khordad Dam operation. Annual mean discharge at the upstream stations did not show a significant change before and after 15 Khordad Dam operation. However, annual flow magnitude decreased significantly by 87.5 and 81.7% in Shad Abad and KoohSefid, respectively. These results confirmed that natural driving forces did not affect flow discharge changes and the observed decreasing tendency in flow discharge at the downstream stations was due to 15 Khordad Dam, and at the upstream stations due to diversion

  8. Relation Between Flow and Dissolved Oxygen in the Roanoke River Between Roanoke Rapids and Jamesville, North Carolina, 1998-2005

    USGS Publications Warehouse

    Wehmeyer, Loren L.; Bales, Jerad D.

    2009-01-01

    Understanding the relation between dam release characteristics and downstream water quality in the lower Roanoke River, North Carolina, is important for natural-resource management and ecosystem protection. Data from four raingages, four water-quality monitoring sites, and one streamflow-measurement site were used to identify statistical relations and discernible quantitative or qualitative patterns linking Roanoke River instream dissolved-oxygen (DO) levels to releases at Roanoke Rapids Dam for the period 1998-2005. The time-series DO data, complicated by the occurrence of major hurricanes in the short period of hourly DO data collection at the dam, present a mixed picture of the effects of hydropower peaking (a technique used by hydropower dam operators to produce electricity when consumption is high by passing a large volume of water through the dam turbines, which dramatically increases the volume of flow below the dam) on downstream DO. Other than in 2003 when dissolved-oxygen concentrations in the Roanoke River were likely affected by runoff from Hurricane Isabel rains, there were not consistent, statistically significant differences detected in the annual medians of hourly and(or) daily DO values during peaking versus nonpeaking periods. Along the Roanoke River, downstream of Roanoke Rapids Dam at Oak City, North Carolina, using a 95-percent confidence interval, the median value of the May-November daily mean DO concentrations for each year was lower during peaking periods for 2 years, higher for 2 years, and not significantly different for 4 years. Downstream at Jamesville, North Carolina, also using a 95-percent confidence interval, the median value of the annual May-November daily mean DO concentrations during hydropower peaking was lower for 4 years, higher for 2 years, and not significantly different for 2 years. In summary, the effect of hydropower peaking on downstream DO was inconsistent. Conversely, large precipitation events downstream from the dam

  9. 76 FR 81929 - Small Hydropower Development in the United States; Notice of Small/Low-Impact Hydropower Webinar

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... Development in the United States; Notice of Small/Low-Impact Hydropower Webinar The Federal Energy Regulatory... participants to learn what types of hydropower projects qualify as a 5-megawatt (MW) exemption, how to file a... exemption. Additionally, participants have the opportunity to ask questions and learn how to get more...

  10. Impact of extreme precipitation events in the Miño-Sil river basin

    NASA Astrophysics Data System (ADS)

    Fernández-González, Manuel; Añel, Juan Antonio; de la Torre, Laura

    2015-04-01

    We herein research the impact of extreme rainfall events in the Miño-Sil basin, a heavily dammed basin located in the northwestern Iberian Peninsula. Extreme rainfall events are very important in this basin because with 106 dams it is the most dammed in Spain. These dams are almost exclusively used for hydropower generation, the installed generating capacity reaches more than 2700 MW and represents almost 9% of the total installed electrical generation capacity of the Iberian Peninsula, therefore with a potential impact on the energy market. We research the extreme events of rainfall an their return periods trying to reproduce the past extreme events of rainfall and their time periods to prove the proper functioning of the adapted model, so we can forecast future extreme events of rainfall in the basin. This research tries to optimize the storage of dams and adapt the management to problems as climate change. The results obtained are very relevant for hydroelectric generation because the operation of hydropower system depends primarily on the availability of storaged water.

  11. The Effects of Dams on Downstream Channel Characteristics in Pennsylvania and Maryland: Assessing the Potential Consequences of Dam Removal

    NASA Astrophysics Data System (ADS)

    Skalak, K. J.; Pizzuto, J. E.; Jenkins, P.

    2003-12-01

    The potential downstream effects of dam removal were assessed on fifteen sites of varying dam size and characteristics in Pennsylvania and Maryland. The dams ranged in size from a 30 cm high fish weir to a water supply dam 57 m high. Stream order ranged from 1 to 4. The dams are located in watersheds with varying degrees of human disturbance and urbanization. The dams are also operated differently, with significant consequences for hydraulic residence time and downstream flow variability. Most streams were alluvial, but 6 of the reaches were clearly bedrock channels. We hypothesize that the channel upstream, which is unaffected by the dam, will provide an accurate model for the channel downstream of the dam long after dam removal. Therefore, reaches upstream and downstream of the dam were compared to determine the effects of the dam as well as the condition of the stream that will ultimately develop decades after dam removal. Surprisingly, the dams had no consistent influence on channel morphology. However, the percentage of sand is significantly lower downstream than upstream: the mean % sand downstream is 11.47%, while the mean % sand upstream is 21.39%. The coarser fractions of the bed, as represented by the 84th percentile grain diameter, are unaffected by the presence of the dam. These results imply that decades after dam removal, the percentage of sand on the bed will increase, but the coarse fraction of the bed will remain relatively unchanged.

  12. 106. DAM EARTH DIKE SUBMERSIBLE DAMS & DIKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    106. DAM - EARTH DIKE - SUBMERSIBLE DAMS & DIKE CONN. AT MOVABLE DAM (ML-8-52/2-FS) March 1940 - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 8, On Mississippi River near Houston County, MN, Genoa, Vernon County, WI

  13. DAM Safety and Deformation Monitoring in Dams

    NASA Astrophysics Data System (ADS)

    Kalkan, Y.; Bilgi, S.; Potts, L.; Miiama, J.; Mahgoub, M.; Rahman, S.

    2013-12-01

    Water is the life and necessity to water is increasing day by day with respect to the World population, rising of living standards and destruction of nature. Thus, the importance of water and water structures have been increasing gradually. Dams are among the most important engineering structures used for water supplies, flood controls, agricultural purposes as well as drinking and hydroelectric power. There are about 150.000 large size dams in the World. Especially after the Second World War, higher and larger capacity dams have been constructed. Dams create certain risks like the other manmade structures. No one knows precisely how many dam failures have occurred in the World, whereas hundreds of dam failures have occurred throughout the U.S. history. Some basic physical data are very important for assessing the safety and performance of dams. These are movement, water pressure, seepage, reservoir and tail-water elevations, local seismic activities, total pressure, stress and strain, internal concrete temperature, ambient temperature and precipitation. These physical data are measured and monitored by the instruments and equipment. Dams and their surroundings have to be monitored by using essential methods at periodic time intervals in order to determine the possible changes that may occur over the time. Monitoring programs typically consist of; surveillance or visual observation. These programs on dams provide information for evaluating the dam's performance related to the design intent and expected changes that could affect the safety performance of the dam. Additionally, these programs are used for investigating and evaluating the abnormal or degrading performance where any remedial action is necessary. Geodetic and non-geodetic methods are used for monitoring. Monitoring the performance of the dams is critical for producing and maintaining the safe dams. This study provides some information, safety and the techniques about the deformation monitoring of the

  14. Financial analysis of experimental releases conducted at Glen Canyon Dam during water years 1997 through 2005.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veselka, T. D.; Poch, L. A.; Palmer, C. S.

    2010-04-21

    Because of concerns about the impact that Glen Canyon Dam (GCD) operations were having on downstream ecosystems and endangered species, the Bureau of Reclamation (Reclamation) conducted an Environmental Impact Statement (EIS) on dam operations (DOE 1996). New operating rules and management goals for GCD that had been specified in the Record of Decision (ROD) (Reclamation 1996) were adopted in February 1997. In addition to issuing new operating criteria, the ROD mandated experimental releases for the purpose of conducting scientific studies. This paper examines the financial implications of the experimental flows that were conducted at the GCD from 1997 to 2005.more » An experimental release may have either a positive or negative impact on the financial value of energy production. This study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes operations comply with the ROD operating criteria and experimental releases that actually took place during the study period, and (2) a ''without experiments'' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP power plant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax

  15. Quantification and Multi-purpose Allocation of Water Resources in a Dual-reservoir System

    NASA Astrophysics Data System (ADS)

    Salami, Y. D.

    2017-12-01

    Transboundary rivers that run through separate water management jurisdictions sometimes experience competitive water usage. Where the river has multiple existing or planned dams along its course, quantification and efficient allocation of water for such purposes as hydropower generation, irrigation for agriculture, and water supply can be a challenge. This problem is even more pronounced when large parts of the river basin are located in semi-arid regions known for water insecurity, poor crop yields from irrigation scheme failures, and human population displacement arising from water-related conflict. This study seeks to mitigate the impacts of such factors on the Kainji-Jebba dual-reservoir system located along the Niger River in Africa by seasonally quantifying and efficiently apportioning water to all stipulated uses of both dams thereby improving operational policy and long-term water security. Historical storage fluctuations (18 km3 to 5 km3) and flows into and out of both reservoirs were analyzed for relationships to such things as surrounding catchment contribution, dam operational policies, irrigation and hydropower requirements, etc. Optimum values of the aforementioned parameters were then determined by simulations based upon hydrological contributions and withdrawals and worst case scenarios of natural and anthropogenic conditions (like annual probability of reservoir depletion) affecting water availability and allocation. Finally, quantification and optimized allocation of water was done based on needs for hydropower, irrigation for agriculture, water supply, and storage evacuation for flood control. Results revealed that water supply potential increased by 69%, average agricultural yield improved by 36%, and hydropower generation increased by 54% and 66% at the upstream and downstream dams respectively. Lessons learned from this study may help provide a robust and practical means of water resources management in similar river basins and multi

  16. Dynamic hydrologic economic modeling of tradeoffs in hydroelectric systems

    NASA Astrophysics Data System (ADS)

    Kern, Jordan D.

    Hydropower producers face a future beset by unprecedented changes in the electric power industry, including the rapid growth of installed wind power capacity and a vastly increased supply of natural gas due to horizontal hydraulic fracturing (or "fracking"). There is also increased concern surrounding the potential for climate change to impact the magnitude and frequency of droughts. These developments may significantly alter the financial landscape for hydropower producers and have important ramifications for the environmental impacts of dams. Incorporating wind energy into electric power systems has the potential to affect price dynamics in electricity markets and, in so doing, alter the short-term financial signals on which dam operators rely to schedule reservoir releases. Chapter 1 of this doctoral dissertation develops an integrated reservoir-power system model for assessing the impact of large scale wind power integration of hydropower resources. Chapter 2 explores how efforts to reduce the carbon footprint of electric power systems by using wind energy to displace fossil fuel-based generation may inadvertently yield further impacts to river ecosystems by disrupting downstream flow patterns. Increased concern about the potential for climate change to alter the frequency and magnitude of droughts has led to growing interest in "index insurance" that compensates hydropower producers when values of an environmental variable (or index), such as reservoir inflows, crosses an agreed upon threshold (e.g., low flow conditions). Chapter 3 demonstrates the need for such index insurance contracts to also account for changes in natural gas prices in order to be cost-effective. Chapter 4 of this dissertation analyzes how recent low natural gas prices (partly attributable to fracking) have reduced the cost of implementing ramp rate restrictions at dams, which help restore sub-daily variability in river flows by limiting the flexibility of dam operators in scheduling

  17. Systematic high-resolution assessment of global hydropower potential

    PubMed Central

    van de Giesen, Nick C.

    2017-01-01

    Population growth, increasing energy demand and the depletion of fossil fuel reserves necessitate a search for sustainable alternatives for electricity generation. Hydropower could replace a large part of the contribution of gas and oil to the present energy mix. However, previous high-resolution estimates of hydropower potential have been local, and have yet to be applied on a global scale. This study is the first to formally present a detailed evaluation of the hydropower potential of each location, based on slope and discharge of each river in the world. The gross theoretical hydropower potential is approximately 52 PWh/year divided over 11.8 million locations. This 52 PWh/year is equal to 33% of the annually required energy, while the present energy production by hydropower plants is just 3% of the annually required energy. The results of this study: all potentially interesting locations for hydroelectric power plants, are available online. PMID:28178329

  18. What tools do we have to study the morphological effects of hydroelectric plants in developing countries? The Chilean case

    NASA Astrophysics Data System (ADS)

    Alcayaga, Hernan; Caamaño, Diego; Palma, Sebastian; Contreras, Karla

    2017-04-01

    Countries growing rates are directly related to energy production. Therefore, developed and developing nations are focused on hydropower and dam construction; on the contrary dam removal practices are significantly different among nations, demonstrating the former group a lesser interest on removing structures. Chiles hydropower generation corresponds to 50% of the current grid, having a potential capacity to double the current situation. Thus: ¿What tools can we apply to assess the potential impacts on our rivers? The goal of this project is to study two different reaches located in two separates streams in Central Chile. The Aconcagua River represents a mountain stream (i.e. steep, narrow, and confined) subject to the operation of a hydroelectric system composed by five diversion hydropower plants built during the 90`s. The Rapel River reach corresponds to the last 10km upstream to the outlet; it is a mild and wide stream that includes the gravel-sand transition. The Rapel dam operates about 25km upstream this second reach that is characterized by an 112m wall built in 1968. The Aconcagua hydropower system was characterized within a GIS environment and a morphological response conceptual model applied. The model uses two indexes to evaluate changes in i) channel forming discharge and ii) sediment supply. The provided response shows the trends and magnitudes of the changes, based in eighth possible directions for ten morphological responsible variables. The Rapel river system was evaluated differently and sampling of sediments characteristics (D50 and armour index), discharge index for both before and after the dam operation, Morphological Quality Index (IQM) and an analysis of aerial photography time series were performed. Results showed that the hydrology indicator impacts for the Aconcagua system were more severe than the impacts on sediments transport (typically the case for diversion type hydropower). A fine armour layer was found within the Rapel river site

  19. Study on optimization of the short-term operation of cascade hydropower stations by considering output error

    NASA Astrophysics Data System (ADS)

    Wang, Liping; Wang, Boquan; Zhang, Pu; Liu, Minghao; Li, Chuangang

    2017-06-01

    The study of reservoir deterministic optimal operation can improve the utilization rate of water resource and help the hydropower stations develop more reasonable power generation schedules. However, imprecise forecasting inflow may lead to output error and hinder implementation of power generation schedules. In this paper, output error generated by the uncertainty of the forecasting inflow was regarded as a variable to develop a short-term reservoir optimal operation model for reducing operation risk. To accomplish this, the concept of Value at Risk (VaR) was first applied to present the maximum possible loss of power generation schedules, and then an extreme value theory-genetic algorithm (EVT-GA) was proposed to solve the model. The cascade reservoirs of Yalong River Basin in China were selected as a case study to verify the model, according to the results, different assurance rates of schedules can be derived by the model which can present more flexible options for decision makers, and the highest assurance rate can reach 99%, which is much higher than that without considering output error, 48%. In addition, the model can greatly improve the power generation compared with the original reservoir operation scheme under the same confidence level and risk attitude. Therefore, the model proposed in this paper can significantly improve the effectiveness of power generation schedules and provide a more scientific reference for decision makers.

  20. Multicriteria decision analysis applied to Glen Canyon Dam

    USGS Publications Warehouse

    Flug, M.; Seitz, H.L.H.; Scott, J.F.

    2000-01-01

    Conflicts in water resources exist because river-reservoir systems are managed to optimize traditional benefits (e.g., hydropower and flood control), which are historically quantified in economic terms, whereas natural and environmental resources, including in-stream and riparian resources, are more difficult or impossible to quantify in economic terms. Multicriteria decision analysis provides a quantitative approach to evaluate resources subject to river basin management alternatives. This objective quantification method includes inputs from special interest groups, the general public, and concerned individuals, as well as professionals for each resource considered in a trade-off analysis. Multicriteria decision analysis is applied to resources and flow alternatives presented in the environmental impact statement for Glen Canyon Dam on the Colorado River. A numeric rating and priority-weighting scheme is used to evaluate 29 specific natural resource attributes, grouped into seven main resource objectives, for nine flow alternatives enumerated in the environmental impact statement.

  1. Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V.

    2007-11-13

    This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snakemore » River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach

  2. Standard Modular Hydropower Technology Acceleration Workshop: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Brennan T.; DeNeale, Scott T.; Witt, Adam M.

    In support of the Department of Energy (DOE) funded Standard Modular Hydropower (SMH) Technology Acceleration project, Oak Ridge National Laboratory (ORNL) staff convened with five small hydropower technology entrepreneurs on June 14 and 15, 2017 to discuss gaps, challenges, and opportunities for small modular hydropower development. The workshop was designed to walk through SMH concepts, discuss the SMH research vision, assess how each participant’s technology aligns with SMH concepts and research, and identify future pathways for mutually beneficial collaboration that leverages ORNL expertise and entrepreneurial industry experience. The goal coming out of the workshop is to advance standardized, scalable, modularmore » hydropower technologies and development approaches with sustained and open dialogue among diverse stakeholder groups.« less

  3. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of the...

  4. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of the...

  5. Revised financial analysis of experimental releases conducted at Glen Canyon Dam during water years 1997 through 2005.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veselka, T. D.; Poch, L. A.; Palmer, C. S.

    2011-01-11

    Because of concerns about the impact that Glen Canyon Dam (GCD) operations were having on downstream ecosystems and endangered species, the Bureau of Reclamation (Reclamation) conducted an Environmental Impact Statement (EIS) on dam operations (DOE 1996). New operating rules and management goals for GCD that had been specified in the Record of Decision (ROD) (Reclamation 1996) were adopted in February 1997. In addition to issuing new operating criteria, the ROD mandated experimental releases for the purpose of conducting scientific studies. This paper examines the financial implications of the experimental flows that were conducted at the GCD from 1997 to 2005.more » An experimental release may have either a positive or negative impact on the financial value of energy production. This study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes operations comply with the ROD operating criteria and experimental releases that actually took place during the study period, and (2) a 'without experiments' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP power plant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax

  6. Risk Perception Analysis Related To Existing Dams In Italy

    NASA Astrophysics Data System (ADS)

    Solimene, Pellegrino

    2013-04-01

    In the first part of this work, the progress of Italian National Rules about dams design, construction and operation are presented to highlight the strong connection existing between the promulgation of new decrees, as a consequence of a dam accidents, and the necessity to prevent further loss of lives and goods downstream. Following the Gleno Dam failure (1923), a special Ministerial Committee wrote out the first Regulations and made the proposal to establish, within the High Council of Public Works, a special department that become soon the "Dam Service", with the tasks of control and supervision about construction and operation phases of the dams and their reservoirs. A different definition of tasks and the structure of Dam Service were provided in accordance with law n° 183/1989, which transferred all the technical services to the Office of the Prime Minister; the aim was to join the Dam Office with the Department for National Technical Services, with the objective of increasing the knowledge of the territory and promoting the study on flood propagation downstream in case of operations on bottom outlet or hypothetical dam-break. In fact, population living downstream is not ready to accept any amount of risk because has not a good knowledge of the efforts of experts involved in dam safety, both from the operators and from the safety Authority. So it's important to optimize all the activities usually performed in a dam safety program and improve the emergency planning as a response to people's primary needs and feeling about safety from Civil Protection Authority. In the second part of the work, a definition of risk is provided as the relationship existing between probability of occurrence and loss, setting out the range within to plan for prevention (risk mitigation), thanks to the qualitative assessment of the minimum safety level that is suited to assign funds to plan for Civil Protection (loss mitigation). The basic meaning of the reliability of a zoned

  7. Analysis on regulation strategies for extending service life of hydropower turbines

    NASA Astrophysics Data System (ADS)

    Yang, W.; Norrlund, P.; Yang, J.

    2016-11-01

    Since a few years, there has been a tendency that hydropower turbines experience fatigue to a greater extent, due to increasingly more regulation movements of governor actuators. The aim of this paper is to extend the service life of hydropower turbines, by reasonably decreasing the guide vane (GV) movements with appropriate regulation strategies, e.g. settings of PI (proportional-integral) governor parameters and controller filters. The accumulated distance and number of GV movements are the two main indicators of this study. The core method is to simulate the long-term GV opening of Francis turbines with MATLAB/Simulink, based on a sequence of one-month measurements of the Nordic grid frequency. Basic theoretical formulas are also discussed and compared to the simulation results, showing reasonable correspondence. Firstly, a model of a turbine governor is discussed and verified, based on on-site measurements of a Swedish hydropower plant. Then, the influence of governor parameters is discussed. Effects of different settings of controller filters (e.g. dead zone, floating dead zone and linear filter) are also examined. Moreover, a change in GV movement might affect the quality of the frequency control. This is also monitored via frequency deviation characteristics, determined by elementary simulations of the Nordic power system. The results show how the regulation settings affect the GV movements and frequency quality, supplying suggestions for optimizing the hydropower turbine operation for decreasing the wear and tear.

  8. Thayer Lake Hydropower Development -- Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matousek, Mark

    The Thayer Lake Hydropower Development (THLD) has been under study since the late 1970’s as Angoon explored opportunities to provide lower cost renewable power to the Community and avoid the high cost of diesel generation. Kootznoowoo Inc. (Kootznoowoo), the tribal corporation for Angoon’s current and past residents, was provided the rights by Congress to develop a hydropower project within the Admiralty Island National Monument. This grant (DE-EE0002504) by the Department of Energy’s (DOE’s) Office of Indian Energy and a matching grant from the Alaska Energy Authority (AEA) were provided to Kootznoowoo to enable the design, engineering and permitting of thismore » hydropower project on Thayer Creek. Prior to the grant, the USFS had performed a final environmental impact statement (FEIS) and issued a Record of Decision (ROD) in 2009 for a 1.2 MW hydropower project on Thayer Creek that would Angoon’s needs with substantial excess capacity for growth. Kootznoowoo hired Alaska Power & Telephone (AP&T) in 2013 to manage this project and oversee its development. AP&T and its subcontractors under Kootznoowoo’s guidance performed several activities, aligned with the task plan defined in the grant.« less

  9. Management plan for White Oak Dam. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, S.B.

    1997-03-01

    The purpose is to provide operation and maintenance, periodic inspection, and emergency action plans for White Oak Dam in general accordance with the Federal Emergency Management Agency (FEMA) guidelines for dam safety. It must be understood that operations at the site are primarily for purposes of environmental monitoring, environmental protection and waste management operations control. Effluent is generally allowed to flow from the lake at its natural rate by rising above the broad crested weir notch elevation of 744 feet m.s.l.

  10. Mathematical Modeling in Systems for Operational Evaluation of the Stress-Strain State of the Arch-Gravity Dam at the Sayano-Shushenskaya Hydroelectric Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellendir, E. N.; Gordon, L. A., E-mail: lev-gordon@mail.ru; Khrapkov, A. A.

    Current studies of the stress-strain state of the dam at the Sayano-Shushenskaya Hydroelectric Power Plant at VNIIG based on mathematical modeling including full scale and experimental data are described. Applications and programs intended for automatic operational evaluation of the stress-strain state of the dam for optimizing control of the upper race level in the course of the annual filling-drawdown cycle and during seismic events are examined. Improvements in systems for monitoring the stress-strain state of concrete dams are proposed.

  11. Osage River Basin, Osage River, Missouri, Harry S. Trumman Dam & Reservoir. Multiple-Purpose Project. Operation and Maintenance Manual. Appendix 7, Volume 2. Construction Foundation Report.

    DTIC Science & Technology

    1984-01-01

    PROJECT S TYPE OF REPORT & PERIOD COVEREDOSAGE RIVER BASIN ConStruction Foundation OSAGE RIVER MISSOURI Report from September 1966 HARRY S. TRUMAN DAM...OPERATION AND MAINTENANCE MANUAL HARRY S. TRUMAN DAM AND RESERVOIR OSAGE RIVER, MISSOURI APPENDIX VII CONSTRUCTION FOUNDATION REPORT VOLUME II TABLE OF...09r IWNI’(ANSAS CITY M?5OU ....... 11 1 O IA R, MISSOURI HARRY S TRUMA DAM & 1K5(V01 = CONSTRUCT"ON FOUNDATION REPORT IGEOLOGIC UNIT DESCRIPTIONS

  12. China’s Role in Counter-Piracy Operations

    DTIC Science & Technology

    2015-06-01

    Jinrong Shibao Online is website of China’s leading financial daily, published by People’s Bank of China. 137 “China Economic Update – June 2014,” The...has also been involved in Africa’s energy sector , including hydropower dams in Ethiopia and Uganda; solar and wind power plants in Ethiopia, Morocco...and South Africa; and biogas development in Guinea, Sudan, and Tunisia.142 Other Chinese economic sectors are actively involved in agriculture

  13. Optimizing Water Use and Hydropower Production in Operational Reservoir System Scheduling with RiverWare

    NASA Astrophysics Data System (ADS)

    Magee, T. M.; Zagona, E. A.

    2017-12-01

    Practical operational optimization of multipurpose reservoir systems is challenging for several reasons. Each purpose has its own constraints which may conflict with those of other purposes. While hydropower generation typically provides the bulk of the revenue, it is also among the lowest priority purposes. Each river system has important details that are specific to the location such as hydrology, reservoir storage capacity, physical limitations, bottlenecks, and the continuing evolution of operational policy. In addition, reservoir operations models include discrete, nonlinear, and nonconvex physical processes and if-then operating policies. Typically, the forecast horizon for scheduling needs to be extended far into the future to avoid near term (e.g., a few hours or a day) scheduling decisions that result in undesirable future states; this makes the computational effort much larger than may be expected. Put together, these challenges lead to large and customized mathematical optimization problems which must be solved efficiently to be of practical use. In addition, the solution process must be robust in an operational setting. We discuss a unique modeling approach in RiverWare that meets these challenges in an operational setting. The approach combines a Preemptive Linear Goal Programming optimization model to handle prioritized policies complimented by preprocessing and postprocessing with Rulebased Simulation to improve the solution with regard to nonlinearities, discrete issues, and if-then logic. An interactive policy language with a graphical user interface allows modelers to customize both the optimization and simulation based on the unique aspects of the policy for their system while the routine physical aspect of operations are modeled automatically. The modeler is aided by a set of compiled predefined functions and functions shared by other modelers. We illustrate the success of the approach with examples from daily use at the Tennessee Valley

  14. Hydropower: A Regulatory Guide to Permitting and Licensing in Idaho, Montana, Oregon, and Washington.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Gilbert A.

    1992-12-01

    The design, construction and operation of a hydropower project can result in many potential impacts. These potential impacts are of concern to a host of federal, state, and local authorities. Early consultation with land and water management, fish and wildlife resource protection, and health and human safety-oriented agencies should occur to determine specific concerns and study requirements for each proposed project. This Guide to Permitting and Licensing outlines the characteristic features of attractive hydropower sites; summarizes an array of developmental constraints; illustrates potential environmental impacts and concerns; and summarizes all federal, state, and local permitting and licensing requirements.

  15. Hydropower : A Regulatory Guide to Permitting and Licensing in Idaho, Montana, Oregon, and Washington.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Gilbert A.

    1992-12-01

    The design, construction and operation of a hydropower project can result in many potential impacts. These potential impacts are of concern to a host of federal, state, and local authorities. Early consultation with land and water management, fish and wildlife resource protection, and health and human safety-oriented agencies should occur to determine specific concerns and study requirements for each proposed project. This Guide to Permitting and Licensing outlines the characteristic features of attractive hydropower sites; summarizes an array of developmental constraints; illustrates potential environmental impacts and concerns; and summarizes all federal, state, and local permitting and licensing requirements.

  16. An evaluation of the accuracy of modeled and computed streamflow time-series data for the Ohio River at Hannibal Lock and Dam and at a location upstream from Sardis, Ohio

    USGS Publications Warehouse

    Koltun, G.F.

    2015-01-01

    Streamflow hydrographs were plotted for modeled/computed time series for the Ohio River near the USGS Sardis gage and the Ohio River at the Hannibal Lock and Dam. In general, the time series at these two locations compared well. Some notable differences include the exclusive presence of short periods of negative streamflows in the USGS 15-minute time-series data for the gage on the Ohio River above Sardis, Ohio, and the occurrence of several peak streamflows in the USACE gate/hydropower time series for the Hannibal Lock and Dam that were appreciably larger than corresponding peaks in the other time series, including those modeled/computed for the downstream Sardis gage

  17. The role of glaciers for Swiss hydropower production

    NASA Astrophysics Data System (ADS)

    Schaefli, Bettina; Manso, Pedro; Fischer, Mauro; Huss, Matthias

    2016-04-01

    with the role of glacier sediment delivery for hydropower operation.

  18. 107. DAM EARTH DIKE SUBMERSIBLE DAMS PLANS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    107. DAM - EARTH DIKE - SUBMERSIBLE DAMS - PLANS & SECTIONS (ML-8-52/3-FS) March 1940 - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 8, On Mississippi River near Houston County, MN, Genoa, Vernon County, WI

  19. EPRI-DOE Conference on Environmentally-Enhanced Hydropower Turbines: Technical Papers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, T.

    2011-12-01

    The EPRI-DOE Conference on Environmentally-Enhanced Hydropower Turbines was a component of a larger project. The goal of the overall project was to conduct the final developmental engineering required to advance the commercialization of the Alden turbine. As part of this effort, the conference provided a venue to disseminate information on the status of the Alden turbine technology as well as the status of other advanced turbines and research on environmentally-friendly hydropower turbines. The conference was also a product of a federal Memorandum of Understanding among DOE, USBR, and USACE to share technical information on hydropower. The conference was held inmore » Washington, DC on May 19 and 20, 2011 and welcomed over 100 attendees. The Conference Organizing Committee included the federal agencies with a vested interest in hydropower in the U.S. The Committee collaboratively assembled this conference, including topics from each facet of the environmentally-friendly conventional hydropower research community. The conference was successful in illustrating the readiness of environmentally-enhanced hydropower technologies. Furthermore, the topics presented illustrated the need for additional deployment and field testing of these technologies in an effort to promote the growth of environmentally sustainable hydropower in the U.S. and around the world.« less

  20. From "E-flows" to "Sed-flows": Managing the Problem of Sediment in High Altitude Hydropower Systems

    NASA Astrophysics Data System (ADS)

    Gabbud, C.; Lane, S. N.

    2017-12-01

    The connections between stream hydraulics, geomorphology and ecosystems in mountain rivers have been substantially perturbed by humans, for example through flow regulation related to hydropower activities. It is well known that the ecosystem impacts downstream of hydropower dams may be managed by a properly designed compensation release or environmental flows ("e-flows"), and such flows may also include sediment considerations (e.g. to break up bed armor). However, there has been much less attention given to the ecosystem impacts of water intakes (where water is extracted and transferred for storage and/or power production), even though in many mountain systems such intakes may be prevalent. Flow intakes tend to be smaller than dams and because they fill quickly in the presence of sediment delivery, they often need to be flushed, many times within a day in Alpine glaciated catchments with high sediment yields. The associated short duration "flood" flow is characterised by very high sediment concentrations, which may drastically modify downstream habitat, both during the floods but also due to subsequent accumulation of "legacy" sediment. The impacts on flora and fauna of these systems have not been well studied. In addition, there are no guidelines established that might allow the design of "e-flows" that also treat this sediment problem, something we call "sed-flows". Through an Alpine field example, we quantify the hydrological, geomorphological, and ecosystem impacts of Alpine water transfer systems. The high sediment concentrations of these flushing flows lead to very high rates of channel disturbance downstream, superimposed upon long-term and progressive bed sediment accumulation. Monthly macroinvertebrate surveys over almost a two-year period showed that reductions in the flushing rate reduced rates of disturbance substantially, and led to rapid macroinvertebrate recovery, even in the seasons (autumn and winter) when biological activity should be reduced

  1. Seasonal variation of water quality in a lateral hyporheic zone with response to dam operations

    NASA Astrophysics Data System (ADS)

    Chen, X.; Chen, L.; Zhao, J.

    2015-12-01

    Aquatic environment of lateral hyporheic zone in a regulated river were investigated seasonally under fluctuated water levels induced by dam operations. Groundwater levels variations in preassembled wells and changes in electronic conductivity (EC), dissolved oxygen (DO) concentration, water temperature and pH in the hyporheic zone were examined as environmental performance indicators for the water quality. Groundwater tables in wells were highly related to the river water levels that showed a hysteresis pattern, and the lag time is associated with the distances from wells to the river bank. The distribution of DO and EC were strongly related to the water temperature, indicating that the cold water released from up-reservoir could determine the biochemistry process in the hyporheic zone. Results also showed that the hyporheic water was weakly alkaline in the study area but had a more or less uniform spatial distribution. Dam release-storage cycles were the dominant factor in changing lateral hyporheic flow and water quality.

  2. Improving real-time inflow forecasting into hydropower reservoirs through a complementary modelling framework

    NASA Astrophysics Data System (ADS)

    Gragne, A. S.; Sharma, A.; Mehrotra, R.; Alfredsen, K.

    2015-08-01

    Accuracy of reservoir inflow forecasts is instrumental for maximizing the value of water resources and benefits gained through hydropower generation. Improving hourly reservoir inflow forecasts over a 24 h lead time is considered within the day-ahead (Elspot) market of the Nordic exchange market. A complementary modelling framework presents an approach for improving real-time forecasting without needing to modify the pre-existing forecasting model, but instead formulating an independent additive or complementary model that captures the structure the existing operational model may be missing. We present here the application of this principle for issuing improved hourly inflow forecasts into hydropower reservoirs over extended lead times, and the parameter estimation procedure reformulated to deal with bias, persistence and heteroscedasticity. The procedure presented comprises an error model added on top of an unalterable constant parameter conceptual model. This procedure is applied in the 207 km2 Krinsvatn catchment in central Norway. The structure of the error model is established based on attributes of the residual time series from the conceptual model. Besides improving forecast skills of operational models, the approach estimates the uncertainty in the complementary model structure and produces probabilistic inflow forecasts that entrain suitable information for reducing uncertainty in the decision-making processes in hydropower systems operation. Deterministic and probabilistic evaluations revealed an overall significant improvement in forecast accuracy for lead times up to 17 h. Evaluation of the percentage of observations bracketed in the forecasted 95 % confidence interval indicated that the degree of success in containing 95 % of the observations varies across seasons and hydrologic years.

  3. Hydropower Regulatory and Permitting Information Desktop (RAPID) Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Aaron L

    Hydropower Regulatory and Permitting Information Desktop (RAPID) Toolkit presentation from the WPTO FY14-FY16 Peer Review. The toolkit is aimed at regulatory agencies, consultants, project developers, the public, and any other party interested in learning more about the hydropower regulatory process.

  4. JEDI Conventional Hydropower Model | Jobs and Economic Development Impact

    Science.gov Websites

    Economic Development Impacts (JEDI) Conventional Hydropower Model allows users to estimate economic development impacts from conventional hydropower projects and includes default information that can be

  5. The effects of Glen Canyon Dam operations on early life stages of rainbow trout in the Colorado River

    USGS Publications Warehouse

    Korman, Josh; Melis, Theodore S.

    2011-01-01

    The Lees Ferry reach of the Colorado River-a 16-mile segment from Glen Canyon Dam to the confluence with the Paria River-supports an important recreational rainbow trout (Oncorhynchus mykiss) fishery. In Grand Canyon, nonnative rainbow trout prey on and compete for habitat and food with native fish, such as the endangered humpback chub (Gila cypha). Experimental flow fluctuations from the dam during winter and spring 2003-5 dewatered and killed a high proportion of rainbow trout eggs in gravel spawning bars, but this mortality had no measurable effect on the abundance of juvenile fish. Flow fluctuations during summer months reduced growth of juvenile trout relative to steadier flows. A high-flow experiment in March 2008 increased both trout survival rates for early life stages and fish abundance. These findings demonstrate that Glen Canyon Dam operations directly affect the trout population in the Lees Ferry reach and could be used to regulate nonnative fish abundance to limit potential negative effects of trout on native fish in Grand Canyon.

  6. 43 CFR 418.23 - Diversion of Rock Dam Ditch water.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Diversion of Rock Dam Ditch water. 418.23... Operations and Management § 418.23 Diversion of Rock Dam Ditch water. Project water may be diverted directly to Rock Dam Ditch from the Truckee Canal only when diversions cannot be made from the outlet works of...

  7. 43 CFR 418.23 - Diversion of Rock Dam Ditch water.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Diversion of Rock Dam Ditch water. 418.23... Operations and Management § 418.23 Diversion of Rock Dam Ditch water. Project water may be diverted directly to Rock Dam Ditch from the Truckee Canal only when diversions cannot be made from the outlet works of...

  8. 43 CFR 418.23 - Diversion of Rock Dam Ditch water.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Diversion of Rock Dam Ditch water. 418.23... Operations and Management § 418.23 Diversion of Rock Dam Ditch water. Project water may be diverted directly to Rock Dam Ditch from the Truckee Canal only when diversions cannot be made from the outlet works of...

  9. Trade-offs of water use for hydropower generation and biofuel production in the Zambezi basin in Mozambique

    NASA Astrophysics Data System (ADS)

    Stanzel, Philipp; Kling, Harald; Nicholson, Kit

    2014-05-01

    Hydropower is the most important energy source in Mozambique, as in many other southern African countries. In the Zambezi basin, it is one of the major economic resources, and substantial hydropower development is envisaged for the next decades. In Mozambique, the extension of the large Cahora Bassa hydropower plant and the construction of several new facilities downstream are planned. Irrigated agriculture currently plays a minor role, but has a large potential due to available land and water resources. Irrigation development, especially for the production of biofuels, is an important government policy goal in Mozambique. This contribution assesses interrelations and trade-offs between these two development options with high dependence on water availability. Potential water demand for large-scale irrigated agriculture is estimated for a mix of possible biofuel crops in three scenarios with different irrigated area sizes. Impacts on river discharge and hydropower production in the Lower Zambezi and its tributaries under two projected future climates are simulated with a hydrological model and a reservoir operation and hydropower model. Trade-offs of increasing biofuel production with decreasing hydropower generation due to diminished discharge in the Zambezi River are investigated based on potential energy production, from hydropower and biofuels, and resulting gross revenues and net benefits. Results show that the impact of irrigation withdrawal on hydropower production is rather low due to the generally high water availability in the Zambezi River. In simulations with substantial irrigated areas, hydropower generation decreases by -2% as compared to a scenario with only small irrigated areas. The economic analyses suggest that the use of water for cultivation of biofuel crops in the Zambezi basin can generate higher economic benefits than the use of water for hydroelectric power production. If world oil prices stay at more than about 80 USD/barrel, then the

  10. Dams and Levees: Safety Risks

    NASA Astrophysics Data System (ADS)

    Carter, N. T.

    2017-12-01

    The nation's flood risk is increasing. The condition of U.S. dams and levees contributes to that risk. Dams and levee owners are responsible for the safety, maintenance, and rehabilitation of their facilities. Dams-Of the more than 90,000 dams in the United States, about 4% are federally owned and operated; 96% are owned by state and local governments, public utilities, or private companies. States regulate dams that are not federally owned. The number of high-hazard dams (i.e., dams whose failure would likely result in the loss of human life) has increased in the past decade. Roughly 1,780 state-regulated, high-hazard facilities with structural ratings of poor or unsatisfactory need rehabilitation. Levees-There are approximately 100,000 miles of levees in the nation; most levees are owned and maintained by municipalities and agricultural districts. Few states have levee safety programs. The U.S. Army Corps of Engineers (Corps) inspects 15,000 miles of levees, including levees that it owns and local levees participating in a federal program to assist with certain post-flood repairs. Information is limited on how regularly other levees are inspected. The consequence of a breach or failure is another aspect of risk. State and local governments have significant authority over land use and development, which can shape the social and economic impacts of a breach or failure; they also lead on emergency planning and related outreach. To date, federal dam and levee safety efforts have consisted primarily of (1) support for state dam safety standards and programs, (2) investments at federally owned dams and levees, and (3) since 2007, creation of a national levee database and enhanced efforts and procedures for Corps levee inspections and assessments. In Public Law 113-121, enacted in 2014, Congress (1) directed the Corps to develop voluntary guidelines for levee safety and an associated hazard potential classification system for levees, and (2) authorized support for the

  11. National Dam Safety Program. Lake Sonoma Dam (NJ 0193), Passaic River Basin, Branch of Burnt Meadow Brook, Passaic County, New Jersey. Phase I Inspection Report.

    DTIC Science & Technology

    1980-03-01

    iron pipe through the dam approximately 42 feet right of the spillway. The flow through the pipe is controlled by a manually operated gate valve located...NATIONAL DAM SAFETY PROGRAM. LAKE SONOMA DAM (NJ 0193). PASSAIC-ETC(U) MAR 80 J P TALERICO DACW MI-T9-C-0011 UNCLASSIFIED NLmhhIEIIIEEEEEI...IIIIIIIIIIEEEE EIIIEEEEEIIEI IIIIEEEEEEEEEE PASS~AIC RIVER BASIN BRANCH OF BURNT MEADOW BROOK PASSAIC COUNTY, NEW JERSEY LA0 O0IM DAM NJi 00193 PHASE 1 INPCTO

  12. Project Planning for Cougar Dam during 2010

    USGS Publications Warehouse

    Haskell, Craig A.; Tiffan, Kenneth F.

    2011-01-01

    Cougar Dam is a 158 m-tall, rock fill dam located about 63 km east of Springfield, Oregon. Completed in 1963, the dam is owned and operated by the U.S. Army Corps of Engineers (USACE). It impounds Cougar Reservoir, which is 9.7 km long, has a surface area of 518 ha, and is predominately used for flood control. The pool elevation typically ranges from a maximum conservation pool of 515 m (1,690 ft) National Geodetic Vertical Datum (NGVD) in summer to a minimum flood control elevation of 467 m (1,532 ft NGVD) in winter. The reservoir thermally stratifies in the summer, has an average depth of 37 m, and holds 153,500 acre-feet when full. Cougar Dam is located on the South Fork of the McKenzie River 7 km upstream from the mainstem McKenzie River, a tributary of the Willamette River. The McKenzie River Basin basin supports the largest remaining population of wild spawning spring Chinook salmon in the Willamette River Basin (National Oceanic and Atmospheric Administration; NOAA, 2008). Cougar Dam and others were collectively deemed to cause jeopardy to the sustainability of anadromous fish stocks in the Willamette River Basin (NOAA, 2008). Prior to dam construction, as many as 805 redds were observed in the South Fork of the McKenzie River (Willis and others, 1960) and it is estimated that 40 km of spawning habitat were lost when access was blocked after dam construction. The 2008 Willamette Biological Opinion (BIOP) requires improvements to operations and structures to reduce impacts on Upper Willamette River (UWR) Chinook salmon (Oncorhynchus tshawytscha) and UWR steelhead (O. mykiss; NOAA, 2008). In 2010, an adult fish collection facility was completed below Cougar Dam to collect returning adult salmon for transport to spawning habitats above the dam. Before that time, returning adult spring Chinook salmon were transported to upstream spawning areas as part of a trap-and-haul program with adults passed ranging annually from 0 to 1,038 (Taylor, 2000). The progeny of

  13. An Evaluation of the Success Rate of Sermo Dam Management in Daerah Istimewa Yogyakarta

    NASA Astrophysics Data System (ADS)

    Andriawan, A.; Sobriyah; Ikhsan, C.

    2017-11-01

    In dam operating and maintaining activities, there are some activities becoming the main function: the assessment of dam condition to keep monitoring and safeguarding the condition of dam as the main building. To achieve the maximum service, the maximal dam management is required as well and it should be followed with management evaluation. This case study was taken place in Sermo Dam of Daerah Istimewa Yogyakarta during 2015 - 2017. The method applied in this study was descriptive quantitative one, conducting a research using primary and secondary data. In this research, the assessment of dam condition was viewed from 1 (one) component, dam body, so that the component weight was 100%. The value of dam body condition was obtained from data of Sermo Dam monitoring in 2015-2016 and from the result of field survey in 2017. The result of research showed that the condition values of Sermo Dam with dam body component were 92.66% in 2015, 92.99% in 2016, and 93.99% in 2017. The result also showed that the value of dam body condition tended to increase during 2015-2017. To maintain the condition, the maximal operation and maintenance of dam was recommended.

  14. Coupled dam safety analysis using WinDAM

    USDA-ARS?s Scientific Manuscript database

    Windows® Dam Analysis Modules (WinDAM) is a set of modular software components that can be used to analyze overtopping and internal erosion of embankment dams. Dakota is an extensive software framework for design exploration and simulation. These tools can be coupled to create a powerful framework...

  15. National Hydropower Plant Dataset, Version 1 (Update FY18Q2)

    DOE Data Explorer

    Samu, Nicole; Kao, Shih-Chieh; O'Connor, Patrick; Johnson, Megan; Uria-Martinez, Rocio; McManamay, Ryan

    2016-09-30

    The National Hydropower Plant Dataset, Version 1, Update FY18Q2, includes geospatial point-level locations and key characteristics of existing hydropower plants in the United States that are currently online. These data are a subset extracted from NHAAP’s Existing Hydropower Assets (EHA) dataset, which is a cornerstone of NHAAP’s EHA effort that has supported multiple U.S. hydropower R&D research initiatives related to market acceleration, environmental impact reduction, technology-to-market activities, and climate change impact assessment.

  16. Financial analysis of experimental releases conducted at Glen Canyon Dam during water years 2006 through 2010.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poch, L. A.; Veselka, T. D.; Palmer, C. S.

    2011-08-22

    Because of concerns about the impact that Glen Canyon Dam (GCD) operations were having on downstream ecosystems and endangered species, the Bureau of Reclamation (Reclamation) conducted an Environmental Impact Statement (EIS) on dam operations (DOE 1996). New operating rules and management goals for GCD that had been specified in the Record of Decision (ROD) (Reclamation 1996) were adopted in February 1997. In addition to issuing new operating criteria, the ROD mandated experimental releases for the purpose of conducting scientific studies. A report released in January 2011 examined the financial implications of the experimental flows that were conducted at the GCDmore » from 1997 to 2005. This report continues the analysis and examines the financial implications of the experimental flows conducted at the GCD from 2006 to 2010. An experimental release may have either a positive or negative impact on the financial value of energy production. This study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes both that operations comply with the ROD operating criteria and the experimental releases that actually took place during the study period, and (2) a 'without experiments' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP powerplant characteristics, hydrologic conditions, and Western

  17. Numerical and in-situ investigations of water hammer effects in Drava river Kaplan turbine hydropower plants

    NASA Astrophysics Data System (ADS)

    Bergant, A.; Gregorc, B.; Gale, J.

    2012-11-01

    This paper deals with critical flow regimes that may induce unacceptable water hammer in Kaplan turbine hydropower plants. Water hammer analysis should be performed for normal, emergency and catastrophic operating conditions. Hydropower plants with Kaplan turbines are usually comprised of relatively short inlet and outlet conduits. The rigid water hammer theory can be used for this case. For hydropower plants with long penstocks the elastic water hammer should be used. Some Kaplan turbine units are installed in systems with long open channels. In this case, water level oscillations in the channels should be carefully investigated. Computational results are compared with results of measurements in recently rehabilitated seven Drava river hydroelectric power plants in Slovenia. Water hammer in the six power plants is controlled by appropriate adjustment of the wicket gates and runner blades closing/opening manoeuvres. Due to very long inflow and outflow open channels in Zlatoličje HPP a special vaned pressure regulating device attenuates extreme pressures in Kaplan turbine flow-passage system and controls unsteady flow in both open channels. Comparisons of results include normal operating regimes. The agreement between computed and measured results is reasonable.

  18. 30 CFR 717.18 - Dams constructed of or impounding waste material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... shall design, locate, construct, operate, maintain, modify, and abandon or remove all dams (used either... design. (ix) A permanent identification marker, at least 6 feet high that shows the dam number assigned... located on or immediately adjacent to each dam within 30 days of certification of design pursuant to this...

  19. 33 CFR 208.28 - Foss Dam and Reservoir, Washita River, Oklahoma.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Foss Dam and Reservoir, Washita... THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.28 Foss Dam and Reservoir, Washita River, Oklahoma. The Bureau of Reclamation shall operate the Foss Dam and Reservoir in the interest of...

  20. 33 CFR 208.28 - Foss Dam and Reservoir, Washita River, Oklahoma.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Foss Dam and Reservoir, Washita... THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.28 Foss Dam and Reservoir, Washita River, Oklahoma. The Bureau of Reclamation shall operate the Foss Dam and Reservoir in the interest of...

  1. 43 CFR 418.18 - Diversions at Derby Dam.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Operations and Management § 418.18 Diversions at Derby Dam. (a) Diversions of Truckee River water at Derby Dam must be managed to maintain minimum terminal flow to Lahontan Reservoir or the Carson River except... achieve an average terminal flow of 20 cfs or less during times when diversions to Lahontan Reservoir are...

  2. Dam operations may improve aquatic habitat and offset negative effects of climate change.

    PubMed

    Benjankar, Rohan; Tonina, Daniele; McKean, James A; Sohrabi, Mohammad M; Chen, Quiwen; Vidergar, Dmitri

    2018-05-01

    Dam operation impacts on stream hydraulics and ecological processes are well documented, but their effect depends on geographical regions and varies spatially and temporally. Many studies have quantified their effects on aquatic ecosystem based mostly on flow hydraulics overlooking stream water temperature and climatic conditions. Here, we used an integrated modeling framework, an ecohydraulics virtual watershed, that links catchment hydrology, hydraulics, stream water temperature and aquatic habitat models to test the hypothesis that reservoir management may help to mitigate some impacts caused by climate change on downstream flows and temperature. To address this hypothesis we applied the model to analyze the impact of reservoir operation (regulated flows) on Bull Trout, a cold water obligate salmonid, habitat, against unregulated flows for dry, average, and wet climatic conditions in the South Fork Boise River (SFBR), Idaho, USA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Evaluating the Mosul Dam's Instability after Resumption of Maintenance

    NASA Astrophysics Data System (ADS)

    Al-husseinawi, Y.; Li, Z.; Clarke, P. J.; Edwards, S.

    2017-12-01

    There is serious concern about the safety of Mosul dam in the north of Iraq. Millions of people in the downstream area are exposed to risk of catastrophic collapse of this dam due to its soluble foundation. Recent study (Milillo et al., 2016, Scientific Report/10.1038/srep37408) reported that the dam deformation has accelerated since August 2014, when grouting operations were interrupted due to the conflict in the region. In this study, we investigate the health of Mosul dam since Jun 2016 using three independent datasets: Sentinel-1A/B SAR images, levelling, and GPS measurement. The latter are based on three epochs of terrestrial observation for levelling and GPS data: March 2016, December 2016 and July 2017. During this period, maintenance operations are being recovered to keep the dam stable. The monitoring network, on which the levelling and GPS observations are based, consists of eighty-seven pillars distributed on the dam surface. The results from InSAR and leveling data show that the dam crest is settling by 9 mm/yr. In contrast to previous studies, our results show a deceleration in the settlement. This may be due to the maintenance operations performed in the last few months. InSAR time series analysis was performed using the in-house tool TM-SBAS. When using the small baseline Sentinel-1 constellation, all possibilities of image choice are taken into consideration and the SRTM DEM accuracy is sufficient to generate the differential interferograms. Data from both Sentinel-1A and -1B images are used, and these results can be compared with multi-platform (Envisat, Sentinel-1, Cosmo-SkyMed, and TerraSar-X) data collected during the period between March 2003 and September 2016.

  4. Climate Vulnerability of Hydro-power infrastructure in the Eastern African Power Pool

    NASA Astrophysics Data System (ADS)

    Sridharan, Vignesh

    2017-04-01

    At present there is around 6000 MW of installed hydropower capacity in the Eastern African power pool (EAPP)[1]. With countries aggressively planning to achieve the Sustainable development goal (SDG) of ensuring access to affordable electricity for all, a three-fold increase in hydropower capacity is expected by 2040 [1]. Most of the existing and planned infrastructure lie inside the Nile River Basin. The latest assessment report (AR 5) from the Intergovernmental Panel on Climate Change (IPCC) indicates a high level of climatic uncertainty in the Nile Basin. The Climate Moisture index (CMI) for the Eastern Nile region and the Nile Equatorial lakes varies significantly across the different General Circulation Models (GCM)[2]. Such high uncertainty casts a shadow on the plans to expand hydropower capacity, doubting whether hydropower expansion can contribute to the goal of improving access to electricity or end up as sunk investments. In this assessment, we analyze adaptation strategies for national energy systems in the Eastern African Power Pool (EAPP), which minimize the regret that could potentially arise from impacts of a changed climate. An energy systems model of the EAPP is developed representing national electricity supply infrastructure. Cross border transmission and hydropower infrastructure is defined at individual project level. The energy systems model is coupled with a water systems management model of the Nile River Basin that calculates the water availability at different hydropower infrastructures under a range of climate scenarios. The results suggest that a robust adaptation strategy consisting of investments in cross border electricity transmission infrastructure and diversifying sources of electricity supply will require additional investments of USD 4.2 billion by 2050. However, this leads to fuel and operational cost savings of up to USD 22.6 billion, depending on the climate scenario. [1] "Platts, 2016. World Electric Power Plants Database

  5. Addressing biogenic greenhouse gas emissions from hydropower in LCA.

    PubMed

    Hertwich, Edgar G

    2013-09-03

    The ability of hydropower to contribute to climate change mitigation is sometimes questioned, citing emissions of methane and carbon dioxide resulting from the degradation of biogenic carbon in hydropower reservoirs. These emissions are, however, not always addressed in life cycle assessment, leading to a bias in technology comparisons, and often misunderstood. The objective of this paper is to review and analyze the generation of greenhouse gas emissions from reservoirs for the purpose of technology assessment, relating established emission measurements to power generation. A literature review, data collection, and statistical analysis of methane and CO2 emissions are conducted. In a sample of 82 measurements, methane emissions per kWh hydropower generated are log-normally distributed, ranging from micrograms to 10s of kg. A multivariate regression analysis shows that the reservoir area per kWh electricity is the most important explanatory variable. Methane emissions flux per reservoir area are correlated with the natural net primary production of the area, the age of the power plant, and the inclusion of bubbling emissions in the measurement. Even together, these factors fail to explain most of the variation in the methane flux. The global average emissions from hydropower are estimated to be 85 gCO2/kWh and 3 gCH4/kWh, with a multiplicative uncertainty factor of 2. GHG emissions from hydropower can be largely avoided by ceasing to build hydropower plants with high land use per unit of electricity generated.

  6. River flow availability for environmental flow allocation downstream of hydropower facilities in the Kafue Basin of Zambia

    NASA Astrophysics Data System (ADS)

    Kalumba, Mulenga; Nyirenda, Edwin

    2017-12-01

    The Government of the Republic Zambia (GRZ) will install a new hydropower station Kafue Gorge Lower downstream of the existing Kafue Gorge Station (KGS) and plans to start operating the Itezhi-Tezhi (ITT) hydropower facility in the Kafue Basin. The Basin has significant biodiversity hot spots such as the Luangwa National park and Kafue Flats. It is described as a Man-Biosphere reserve and the National Park is a designated World Heritage Site hosting a variety of wildlife species. All these natural reserves demand special protection, and environmental flow requirements (e-flows) have been identified as a necessary need to preserve these ecosystems. Implementation of e-flows is therefore a priority as Zambia considers to install more hydropower facilities. However before allocation of e-flows, it is necessary to first assess the river flow available for allocation at existing hydropower stations in the Kafue Basin. The river flow availability in the basin was checked by assessing the variability in low and high flows since the timing, frequency and duration of extreme droughts and floods (caused by low and high flows) are all important hydrological characteristics of a flow regime that affects e-flows. The river flows for a 41 year monthly time series data (1973-2014) were used to extract independent low and high flows using the Water Engineering Time Series Processing Tool (WETSPRO). The low and high flows were used to construct cumulative frequency distribution curves that were compared and analysed to show their variation over a long period. A water balance of each hydropower station was used to check the river flow allocation aspect by comparing the calculated water balance outflow (river flow) with the observed river flow, the hydropower and consumptive water rights downstream of each hydropower station. In drought periods about 50-100 m3/s of riverflow is available or discharged at both ITT and KGS stations while as in extreme flood events about 1300-1500 m3/s

  7. Dynamic analysis of a pumped-storage hydropower plant with random power load

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Chen, Diyi; Xu, Beibei; Patelli, Edoardo; Tolo, Silvia

    2018-02-01

    This paper analyzes the dynamic response of a pumped-storage hydropower plant in generating mode. Considering the elastic water column effects in the penstock, a linearized reduced order dynamic model of the pumped-storage hydropower plant is used in this paper. As the power load is always random, a set of random generator electric power output is introduced to research the dynamic behaviors of the pumped-storage hydropower plant. Then, the influences of the PI gains on the dynamic characteristics of the pumped-storage hydropower plant with the random power load are analyzed. In addition, the effects of initial power load and PI parameters on the stability of the pumped-storage hydropower plant are studied in depth. All of the above results will provide theoretical guidance for the study and analysis of the pumped-storage hydropower plant.

  8. National Program for Inspection of Non-Federal Dams. Bird Pond Dam (MA 00804), Neponset River Basin, Walpole, Massachusetts. Phase I Inspection Report.

    DTIC Science & Technology

    1980-04-01

    generally fair condition because of the seepage through the left spillway training wall and because the low level outlet has not been operated in many...that a dam of this class which does not have sufficient spillway capacity to discharge fifty percent of the PKF , should be adjudged as having a...2,070 cfs or about 14 percent of the test flood outflow without overtopping the dam. The dam is judged to be in generally fair condition because of the

  9. National Program for Inspection of Non-Federal Dams. Pattaconk Reservoir Dam (CT 00398), Connecticut River Basin, Chester, Connecticut. Phase I inspection Report

    DTIC Science & Technology

    1979-03-01

    approximately 824 acre-feet of water with the reservoir level at the top of the dam, which is approximately 23 feet above the bed of Pattaconk Brook. According...Pattaconk Brook, from 2 to 4 feet above the water level. Should the dam breach, there is potential for loss of life at this downstream development. e...under the jurisdiction of the Water Resources Commission as af State Park in 1959. f. Operator - None. g. Purpose of the Dam - Recreational; Part of

  10. Hydro-power production and fish habitat suitability: Assessing impact and effectiveness of ecological flows at regional scale

    NASA Astrophysics Data System (ADS)

    Ceola, Serena; Pugliese, Alessio; Ventura, Matteo; Galeati, Giorgio; Montanari, Alberto; Castellarin, Attilio

    2018-06-01

    Anthropogenic activities along streams and rivers may be of major concern for fluvial ecosystems, e.g. abstraction and impoundment of surface water resources may profoundly alter natural streamflow regimes. An established approach aimed at preserving the behavior and distribution of fluvial species relies on the definition of ecological flows (e-flows) downstream of dams and diversion structures. E-flow prescriptions are usually set by basin authorities at regional scale, often without a proper assessment of their impact and effectiveness. On the contrary, we argue that e-flows should be identified on the basis of (i) regional and (ii) quantitative assessments. We focus on central Italy and evaluate the effects on habitat suitability of two near-threatened fish species (i.e. Barbel and Chub) and an existing hydro-power network when shifting from the current time-invariant e-flow policy to a tighter and seasonally-varying soon-to-be-enforced one. Our example clearly shows that: (a) quantitative regional scale assessments are viable even when streamflow observations are entirely missing at study sites; (b) aprioristic e-flows policies may impose releases that exceed natural streamflows for significantly long time intervals (weeks, or months); (c) unduly tightening e-flow policies may heavily impact regional hydro-power productivity (15% and 42% losses on annual and seasonal basis, respectively), yet resulting in either marginal or negligible improvements of fluvial ecosystem.

  11. The influence of climate change on Tanzania's hydropower sustainability

    NASA Astrophysics Data System (ADS)

    Sperna Weiland, Frederiek; Boehlert, Brent; Meijer, Karen; Schellekens, Jaap; Magnell, Jan-Petter; Helbrink, Jakob; Kassana, Leonard; Liden, Rikard

    2015-04-01

    Economic costs induced by current climate variability are large for Tanzania and may further increase due to future climate change. The Tanzanian National Climate Change Strategy addressed the need for stabilization of hydropower generation and strengthening of water resources management. Increased hydropower generation can contribute to sustainable use of energy resources and stabilization of the national electricity grid. To support Tanzania the World Bank financed this study in which the impact of climate change on the water resources and related hydropower generation capacity of Tanzania is assessed. To this end an ensemble of 78 GCM projections from both the CMIP3 and CMIP5 datasets was bias-corrected and down-scaled to 0.5 degrees resolution following the BCSD technique using the Princeton Global Meteorological Forcing Dataset as a reference. To quantify the hydrological impacts of climate change by 2035 the global hydrological model PCR-GLOBWB was set-up for Tanzania at a resolution of 3 minutes and run with all 78 GCM datasets. From the full set of projections a probable (median) and worst case scenario (95th percentile) were selected based upon (1) the country average Climate Moisture Index and (2) discharge statistics of relevance to hydropower generation. Although precipitation from the Princeton dataset shows deviations from local station measurements and the global hydrological model does not perfectly reproduce local scale hydrographs, the main discharge characteristics and precipitation patterns are represented well. The modeled natural river flows were adjusted for water demand and irrigation within the water resources model RIBASIM (both historical values and future scenarios). Potential hydropower capacity was assessed with the power market simulation model PoMo-C that considers both reservoir inflows obtained from RIBASIM and overall electricity generation costs. Results of the study show that climate change is unlikely to negatively affect the

  12. State-discharge relations at dams on the Illinois and Des Plaines rivers in Illinois

    USGS Publications Warehouse

    Mades, Dean M.

    1981-01-01

    Stage-discharge relations were developed for the Brandon Road Dam on the Des Plainse River and the Dresden Island, Marseilles, Starved Rock, Peoria, and La Grange Dams on the Illinois River. At Brandon Road Dam, streamflow is regulated by the operation of tainter gates and headgates. Tainter gates are operated to regulate streamflow at the Dresden Island, Marseilles, and Starved Rock Dams. Peoria Dam and La Grange Dam comprise timber Chanoine wickets which are lowered to a horizontal position on the streambed when used for streamflow regulation. Both dams have concrete abutments housing butterfly valves that are also used for regulation. A total of 50 discharge measurements ranging from 49.0 to 2,450 cubic meter per second were used to determine discharge coefficients in equations expressing discharge as a function of headwater depth, tailwater depth, and gate opening. A stage-discharge relation for Chanoine wicket dams developed from a U.S. Army Corps of Engineers hydraulic model study in 1937 and 1938 was verified with discharge measurements made downstream from the Peoria and La Grange Dams. (USGS)

  13. Water Management Models in Practice: A Case Study of the Aswan High Dam

    NASA Astrophysics Data System (ADS)

    El-Ashry, M. T.; Alford, D. L.

    1984-04-01

    The stated purpose of this volume is the development and evaluation of operating policies for the Aswan High Dam and their relation to the development of water resources policy in Egypt. That objective is admirably fulfilled through discussions of water use in Egypt and the operation objectives of the High Dam, the behavior of the physical system and simulation of the reservoir, a realtime management model of the dam, management of water shortages and trade-offs between major uses, and coordinated operation of the dam with new upstream as well as downstream developments.The High Dam has been a source of controversy, particularly with regard to its environmental impacts. Its adverse effects include changes in the water table and attendant salt buildup in irrigated areas, excessive growth of aquatic plants below the dam, shoreline erosion, and increases in water-borne diseases such as schistosomiasis (bilharzia). The dam was intended to offset rapid population growth by increasing food supplies through the transformation of irrigated land in southern Egypt from seasonal to perennial cultivation and by providing water for the reclamation of desert land. Unfortunately, such benefits have been outstripped by the rapidly growing population, and water shortages will be experienced by the end of the century.

  14. National Dam Safety Program. Grindstone-Lost-Muddy Creek Dam F-20 (MO 11220), Grand - Chariton Basin, Daviess County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1980-06-01

    for a small dam having a high hazard potential. Considering the small volume of water im- pounded and the downstream channel from the dam, one-half of...flood at damsite - Mr. Wesley Lee reported that the highest water he had seen was approximately 4 inches over the riser. (3) The principal spillway...operation. It was reported by Mr. Wesley Lee that the emergency spillway has never operated. 2.4 EVALUATION a. Availabilit X . The data in Appendix C

  15. Project Operations: Flood Control Operations and Maintenance Policies

    DTIC Science & Technology

    1996-10-30

    President and an internal review performed by the Corps task group shortly after failure of the Teton Dam , we have undertaken numerous actions to modify our...practice for design, construction and operation of Corps reservoir projects. One important item as a result of the Teton Dam failure and the review...1 Glossary 1-4 1-2 CHAPTER 2 - Dam Operations Management Purpose 2-1 2-1 Policy 2-2 2-1 Emergency Plan 2-3 2-1 Dam Safety Training 2-4 2-2

  16. 18 CFR 141.14 - Form No. 80, Licensed Hydropower Development Recreation Report.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Form No. 80, Licensed Hydropower Development Recreation Report. 141.14 Section 141.14 Conservation of Power and Water Resources... Hydropower Development Recreation Report. The form of the report, Licensed Hydropower Development Recreation...

  17. Sensitivity of Regional Hydropower Generation to the Projected Changes in Future Watershed Hydrology

    NASA Astrophysics Data System (ADS)

    Kao, S. C.; Naz, B. S.; Gangrade, S.

    2015-12-01

    Hydropower is a key contributor to the renewable energy portfolio due to its established development history and the diverse benefits it provides to the electric power systems. With the projected change in the future watershed hydrology, including shift of snowmelt timing, increasing occurrence of extreme precipitation, and change in drought frequencies, there is a need to investigate how the regional hydropower generation may change correspondingly. To evaluate the sensitivity of watershed storage and hydropower generation to future climate change, a lumped Watershed Runoff-Energy Storage (WRES) model is developed to simulate the annual and seasonal hydropower generation at various hydropower areas in the United States. For each hydropower study area, the WRES model use the monthly precipitation and naturalized (unregulated) runoff as inputs to perform a runoff mass balance calculation for the total monthly runoff storage in all reservoirs and retention facilities in the watershed, and simulate the monthly regulated runoff release and hydropower generation through the system. The WRES model is developed and calibrated using the historic (1980-2009) monthly precipitation, runoff, and generation data, and then driven by a large set of dynamically- and statistically-downscaled Coupled Model Intercomparison Project Phase 5 climate projections to simulate the change of watershed storage and hydropower generation under different future climate scenarios. The results among different hydropower regions, storage capacities, emission scenarios, and timescales are compared and discussed in this study.

  18. IMPLEMENTING PRACTICAL PICO-HYDROPOWER

    EPA Science Inventory

    Deliverables for this proposal will be energy output data modeled from experimental testing of the hydropower unit and monitoring of the stormwater handling infrastructure in the GIS building; along with a design and engineering plan for implementation and building integrat...

  19. Hydro-dam - A nature-based solution or an ecological problem: The fate of the Tonlé Sap Lake.

    PubMed

    Lin, Zihan; Qi, Jiaguo

    2017-10-01

    Recent proliferation of hydro-dams was one of the nature-based solutions to meet the increasing demand for energy and food in the Lower Mekong River Basin (LMRB). While construction of these hydro-dams generated some hydropower and facilitated expansion of irrigated lands, it also significantly altered the basin-wide hydrology and subsequently impacted wetland ecosystems. Unintended adverse consequences of ecosystem services from lakes and wetlands offset the intended gains in hydroelectricity and irrigated agriculture. The trade-offs between gains in energy and food production and losses in aquatic ecosystem services were perceived to be significant but knowledge of the magnitude, spatial extent, and type of ecosystem services change is lacking and, therefore, the question whether the hydro-dam is an optimized solution or a potential ecological problem remains unanswered. In this study, as the first step to answer this question and using the Tonlé Sap Lake as an example, we quantified one of the impacts of hydro-dams on lake ecosystem's phenology in terms of open water area, a critical ecological characteristic that affects lake systems' fish production, biodiversity, and livelihoods of the local communities. We used the MODIS-NDVI time series, forecast function and the Mann-Kendall trend test method to first quantify the open water area, analyzed its changes over time, and then performed correlation analysis with climate variables to disentangle dam impacts. The results showed reduced hydro-periods, diminishing lake seasonality and a declining trend in Tonlé Sap Lake open water area over the past 15 years. These changes were insignificantly related to climatic influence during the same period. It is concluded that basin-wide hydro-dam construction and associated agricultural irrigation were deemed to be the primary cause of these ecological changes. Further analyses of changes in the lake's ecosystem services, including provision and cultural services, need to

  20. 1. GORGE HIGH DAM. THIS THIN ARCH DAM WITH A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GORGE HIGH DAM. THIS THIN ARCH DAM WITH A GRAVITY SECTION IS THE THIRD DAM BUILT BY SEATTLE CITY LIGHT TO PROVIDE WATER FOR GORGE POWERHOUSE AND WAS COMPLETED IN 1961, 1989. - Skagit Power Development, Gorge High Dam, On Skagit River, 2.9 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  1. DOE Hydropower Program biennial report 1996-1997 (with an updated annotated bibliography)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinehart, B.N.; Francfort, J.E.; Sommers, G.L.

    1997-06-01

    This report, the latest in a series of biennial Hydropower Program reports sponsored by the US Department of Energy, summarizes the research and development and technology transfer activities of fiscal years 1996 and 1997. The report discusses the activities in the six areas of the hydropower program: advanced hydropower turbine systems; environmental research; hydropower research and development; renewable Indian energy resources; resource assessment; and technology transfer. The report also includes an annotated bibliography of reports pertinent to hydropower, written by the staff of the Idaho National Engineering and Environmental Laboratory, Oak Ridge National Laboratory, Federal and state agencies, cities, metropolitanmore » water districts, irrigation companies, and public and independent utilities. Most reports are available from the National Technical Information Service.« less

  2. Hydropower in the Southeast: Balancing Lakeview and Production Optimization

    NASA Astrophysics Data System (ADS)

    Engstrom, J.

    2017-12-01

    Hydropower is the most important source of renewable electricity in Southeastern U.S. However, the region is repeatedly struck by droughts, and there are many conflicting interests in the limited water resource. This study takes a historical perspective and investigates how hydropower production patterns have changed over time, considering both natural drivers and human dimensions. Hydropower production is strongly tied to the natural variability of large-scale atmospheric drivers (teleconnections) as they affect the water availability in the whole river system and partly also the market demand. To balance the water resource between different interests is a complex task, and the conflicting interests vary by basin, sometimes over a relatively small geographic area. Here road networks adjacent to the hydropower reservoirs are used as an indicator of human development and recreational activities. Through a network analysis of the historical development of road networks surrounding the reservoir, the local and regional conflicting interests are identified and the influence on renewable electricity production quantified.

  3. A modeling tool to support decision making in future hydropower development in Chile

    NASA Astrophysics Data System (ADS)

    Vicuna, S.; Hermansen, C.; Cerda, J. P.; Olivares, M. A.; Gomez, T. I.; Toha, E.; Poblete, D.; Mao, L.; Falvey, M. J.; Pliscoff, P.; Melo, O.; Lacy, S.; Peredo, M.; Marquet, P. A.; Maturana, J.; Gironas, J. A.

    2017-12-01

    Modeling tools support planning by providing transparent means to assess the outcome of natural resources management alternatives within technical frameworks in the presence of conflicting objectives. Such tools, when employed to model different scenarios, complement discussion in a policy-making context. Examples of practical use of this type of tool exist, such as the Canadian public forest management, but are not common, especially in the context of developing countries. We present a tool to support the selection from a portfolio of potential future hydropower projects in Chile. This tool, developed by a large team of researchers under the guidance of the Chilean Energy Ministry, is especially relevant in the context of evident regionalism, skepticism and change in societal values in a country that has achieved a sustained growth alongside increased demands from society. The tool operates at a scale of a river reach, between 1-5 km long, on a domain that can be defined according to the scale needs of the related discussion, and its application can vary from river basins to regions or other spatial configurations that may be of interest. The tool addresses both available hydropower potential and the existence (inferred or observed) of other ecological, social, cultural and productive characteristics of the territory which are valuable to society, and provides a means to evaluate their interaction. The occurrence of each of these other valuable characteristics in the territory is measured by generating a presence-density score for each. Considering the level of constraint each characteristic imposes on hydropower development, they are weighted against each other and an aggregate score is computed. With this information, optimal trade-offs are computed between additional hydropower capacity and valuable local characteristics over the entire domain, using the classical knapsack 0-1 optimization algorithm. Various scenarios of different weightings and hydropower

  4. Adult chinook salmon passage at Little Goose Dam in relation to spill operations

    USGS Publications Warehouse

    Jepson, M.A.; Caudill , C.C.; Clabough, T.S.; Peery, C.A.; Beeman, J.W.; Fielding, S.

    2009-01-01

    Spill patterns at Little Goose Dam in 2007 were modified in anticipation of a spillway weir installation intended to improve downstream passage of juvenile salmonids. However, in spill pattern was associated with reduced daily counts of adult salmon passing the dam. Consequently, the behaviors and upstream passage times of radio-tagged adult spring–summer Chinook salmon were evaluated in response to three spillway discharge patterns at Little Goose Dam during 2008. Simultaneously, tailrace conditions were characterized by monitoring the downstream paths of GPS-equipped drogues. Two of the spill treatments (i.e., Bulk and Alternate) were variations of patterns thought to mimic those produced if a spillway weir was installed. The third treatment (Uniform) was characterized by spilling similar volumes of water through most spillbays.

  5. Impacts of Climate Change on Regulated Streamflow, Hydrologic Extremes, Hydropower Production, and Sediment Discharge in the Skagit River Basin

    USGS Publications Warehouse

    Lee, Se-Yeun; Hamlet, Alan F.; Grossman, Eric E.

    2016-01-01

    Previous studies have shown that the impacts of climate change on the hydrologic response of the Skagit River are likely to be substantial under natural (i.e. unregulated) conditions. To assess the combined effects of changing natural flow and dam operations that determine impacts to regulated flow, a new integrated daily-time-step reservoir operations model was constructed for the Skagit River Basin. The model was used to simulate current reservoir operating policies for historical flow conditions and for projected flows for the 2040s (2030–2059) and 2080s (2070–2099). The results show that climate change is likely to cause substantial seasonal changes in both natural and regulated flow, with more flow in the winter and spring, and less in summer. Hydropower generation in the basin follows these trends, increasing (+ 19%) in the winter/ spring, and decreasing (- 29%) in the summer by the 2080s. The regulated 100-year flood is projected to increase by 23% by the 2040s and 49% by the 2080s. Peak winter sediment loading in December is projected to increase by 335% by the 2080s in response to increasing winter flows, and average annual sediment loading increases from 2.3 to 5.8 teragrams (+ 149%) per year by the 2080s. Regulated extreme low flows (7Q10) are projected to decrease by about 30% by the 2080s, but remain well above natural low flows. Both current and proposed alternative flood control operations are shown to be largely ineffective in mitigating increasing flood risks in the lower Skagit due to the distribution of flow in the basin during floods.

  6. An R package for the design, analysis and operation of reservoir systems

    NASA Astrophysics Data System (ADS)

    Turner, Sean; Ng, Jia Yi; Galelli, Stefano

    2016-04-01

    We present a new R package - named "reservoir" - which has been designed for rapid and easy routing of runoff through storage. The package comprises well-established tools for capacity design (e.g., the sequent peak algorithm), performance analysis (storage-yield-reliability and reliability-resilience-vulnerability analysis) and release policy optimization (Stochastic Dynamic Programming). Operating rules can be optimized for water supply, flood control and amenity objectives, as well as for maximum hydropower production. Storage-depth-area relationships are in-built, allowing users to incorporate evaporation from the reservoir surface. We demonstrate the capabilities of the software for global studies using thousands of reservoirs from the Global Reservoir and Dam (GRanD) database fed by historical monthly inflow time series from a 0.5 degree gridded global runoff dataset. The package is freely available through the Comprehensive R Archive Network (CRAN).

  7. Deer Creek Dam, Dam, 1,204 feet/238 degrees from intersection of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Deer Creek Dam, Dam, 1,204 feet/238 degrees from intersection of dam complex access road and U.S. Highway 189 to center of dam, 874 feet/352 degrees from Hydroelectric Powerplant (HAER UT-93-B) to center of dam, Charleston, Wasatch County, UT

  8. Estimation of pollutant loads considering dam operation in Han River Basin by BASINS/Hydrological Simulation Program-FORTRAN.

    PubMed

    Jung, Kwang-Wook; Yoon, Choon-G; Jang, Jae-Ho; Kong, Dong-Soo

    2008-01-01

    Effective watershed management often demands qualitative and quantitative predictions of the effect of future management activities as arguments for policy makers and administration. The BASINS geographic information system was developed to compute total maximum daily loads, which are helpful to establish hydrological process and water quality modeling system. In this paper the BASINS toolkit HSPF model is applied in 20,271 km(2) large watershed of the Han River Basin is used for applicability of HSPF and BMPs scenarios. For proper evaluation of watershed and stream water quality, comprehensive estimation methods are necessary to assess large amounts of point source and nonpoint-source (NPS) pollution based on the total watershed area. In this study, The Hydrological Simulation Program-FORTRAN (HSPF) was estimated to simulate watershed pollutant loads containing dam operation and applied BMPs scenarios for control NPS pollution. The 8-day monitoring data (about three years) were used in the calibration and verification processes. Model performance was in the range of "very good" and "good" based on percent difference. The water-quality simulation results were encouraging for this large sizable watershed with dam operation practice and mixed land uses; HSPF proved adequate, and its application is recommended to simulate watershed processes and BMPs evaluation. IWA Publishing 2008.

  9. Hydropower and water supply: competing water uses under a future drier climate modeling scenarios for the Tagus River basin, Portugal

    NASA Astrophysics Data System (ADS)

    Alexandre Diogo, Paulo; Nunes, João Pedro; Carmona Rodrigues, António; João Cruz, Maria; Grosso, Nuno

    2014-05-01

    Climate change in the Mediterranean region is expected to affect existing water resources, both in quantity and quality, as decreased mean annual precipitation and more frequent extreme precipitation events are likely to occur. Also, energy needs tend to increase, together with growing awareness that fossil fuels emissions are determinately responsible for global temperature rise, enhancing renewable energy use and reinforcing the importance of hydropower. When considered together, these facts represent a relevant threat to multipurpose reservoir operations. Great Lisbon main water supply (for c.a. 3 million people), managed by EPAL, is located in Castelo de Bode Reservoir, in the Tagus River affluent designated as Zêzere River. Castelo de Bode is a multipurpose infrastructure as it is also part of the hydropower network system of EDP, the main power company in Portugal. Facing the risk of potential climate change impacts on water resources availability, and as part of a wider project promoted by EPAL (designated as ADAPTACLIMA), climate change impacts on the Zêzere watershed where evaluated based on climate change scenarios for the XXI century. A sequential modeling approach was used and included downscaling climate data methodologies, hydrological modeling, volume reservoir simulations and water quality modeling. The hydrological model SWAT was used to predict the impacts of the A2 and B2 scenarios in 2010-2100, combined with changes in socio-economic drivers such as land use and water demands. Reservoir storage simulations where performed according to hydrological modeling results, water supply needs and dam operational requirements, such as minimum and maximum operational pool levels and turbine capacity. The Ce-Qual-W2 water quality model was used to assess water quality impacts. According to climate scenarios A2 and B2, rainfall decreases between 10 and 18% are expected by 2100, leading to drier climatic conditions and increased frequency and magnitude of

  10. Impact of Different Time Series Streamflow Data on Energy Generation of a Run-of-River Hydropower Plant

    NASA Astrophysics Data System (ADS)

    Kentel, E.; Cetinkaya, M. A.

    2013-12-01

    Global issues such as population increase, power supply crises, oil prices, social and environmental concerns have been forcing countries to search for alternative energy sources such as renewable energy to satisfy the sustainable development goals. Hydropower is the most common form of renewable energy in the world. Hydropower does not require any fuel, produces relatively less pollution and waste and it is a reliable energy source with relatively low operating cost. In order to estimate the average annual energy production of a hydropower plant, sufficient and dependable streamflow data is required. The goal of this study is to investigate impact of streamflow data on annual energy generation of Balkusan HEPP which is a small run-of-river hydropower plant at Karaman, Turkey. Two different stream gaging stations are located in the vicinity of Balkusan HEPP and these two stations have different observation periods: one from 1986 to 2004 and the other from 2000 to 2009. These two observation periods show different climatic characteristics. Thus, annual energy estimations based on data from these two different stations differ considerably. Additionally, neither of these stations is located at the power plant axis, thus streamflow observations from these two stream gaging stations need to be transferred to the plant axis. This requirement introduces further errors into energy estimations. Impact of different streamflow data and transfer of streamflow observations to plant axis on annual energy generation of a small hydropower plant is investigated in this study.

  11. Modeling Changes in Bed Surface Texture and Aquatic Habitat Caused by Run-of-River Hydropower Development

    NASA Astrophysics Data System (ADS)

    Fuller, T. K.; Venditti, J. G.; Nelson, P. A.; Popescu, V.; Palen, W.

    2014-12-01

    Run-of-river (RoR) hydropower has emerged as an important alternative to large reservoir-based dams in the renewable energy portfolios of China, India, Canada, and other areas around the globe. RoR projects generate electricity by diverting a portion of the channel discharge through a large pipe for several kilometers downhill where it is used to drive turbines before being returned to the channel. Individual RoR projects are thought to be less disruptive to local ecosystems than large hydropower because they involve minimal water storage, more closely match the natural hydrograph downstream of the project, and are capable of bypassing trapped sediment. However, there is concern that temporary sediment supply disruption may degrade the productivity of salmon spawning habitat downstream of the dam by causing changes in the grain size distribution of bed surface sediment. We hypothesize that salmon populations will be most susceptible to disruptions in sediment supply in channels where; 1) sediment supply is high relative to transport capacity prior to RoR development, and 2) project design creates substantial sediment storage volume. Determining the geomorphic effect of RoR development on aquatic habitat requires many years of field data collection, and even then it can be difficult to link geomorphic change to RoR development alone. As an alternative, we used a one-dimensional morphodynamic model to test our hypothesis across a range of pre-development sediment supply conditions and sediment storage volumes. Our results confirm that coarsening of the median surface grain-size is greatest in cases where pre-development sediment supply was highest and sediment storage volumes were large enough to disrupt supply over the course of the annual hydrograph or longer. In cases where the pre-development sediment supply is low, coarsening of the median surface grain-size is less than 2 mm over a multiple-year disruption period. When sediment supply is restored, our results

  12. National Dam Safety Program. Highland Park Reservoir Dam (Inventory Number N.Y. 790), Genesee River Basin, Monroe County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1981-09-14

    34 rga Highland Park Reservoir Dam Vi’.sual I. .. ’. •Genesee River Basin, ’!ydrolozy. ". ". . . Scabi tyMo r e C u t.,.- Js eps’ •; ::or.ation -3 :..i :n...dam impounds a municipal water storage reservoir. g. Design and Construction History The dam was designed and built around 1875. h. Normal Operating... History : Date Constructed Around 1875 Date(s) Reconstructed N/A Designer Unknown Constructed by Unknown Owner Water Department, City of Rochester, New

  13. Thermal effects of dams in the Willamette River basin, Oregon

    USGS Publications Warehouse

    Rounds, Stewart A.

    2010-01-01

    Methods were developed to assess the effects of dams on streamflow and water temperature in the Willamette River and its major tributaries. These methods were used to estimate the flows and temperatures that would occur at 14 dam sites in the absence of upstream dams, and river models were applied to simulate downstream flows and temperatures under a no-dams scenario. The dams selected for this study include 13 dams built and operated by the U.S. Army Corps of Engineers (USACE) as part of the Willamette Project, and 1 dam on the Clackamas River owned and operated by Portland General Electric (PGE). Streamflows in the absence of upstream dams for 2001-02 were estimated for USACE sites on the basis of measured releases, changes in reservoir storage, a correction for evaporative losses, and an accounting of flow effects from upstream dams. For the PGE dam, no-project streamflows were derived from a previous modeling effort that was part of a dam-relicensing process. Without-dam streamflows were characterized by higher peak flows in winter and spring and much lower flows in late summer, as compared to with-dam measured flows. Without-dam water temperatures were estimated from measured temperatures upstream of the reservoirs (the USACE sites) or derived from no-project model results (the PGE site). When using upstream data to estimate without-dam temperatures at dam sites, a typical downstream warming rate based on historical data and downstream river models was applied over the distance from the measurement point to the dam site, but only for conditions when the temperature data indicated that warming might be expected. Regressions with measured temperatures from nearby or similar sites were used to extend the without-dam temperature estimates to the entire 2001-02 time period. Without-dam temperature estimates were characterized by a more natural seasonal pattern, with a maximum in July or August, in contrast to the measured patterns at many of the tall dam sites

  14. A hydro-economic model for water level fluctuations: combining limnology with economics for sustainable development of hydropower.

    PubMed

    Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia

    2014-01-01

    Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands.

  15. A Hydro-Economic Model for Water Level Fluctuations: Combining Limnology with Economics for Sustainable Development of Hydropower

    PubMed Central

    Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia

    2014-01-01

    Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands. PMID:25526619

  16. On Dams in the Amazon Basin, Teleconnected Impacts, and Neighbors Unaware of the Damage to their Natural Resources and Assets.

    NASA Astrophysics Data System (ADS)

    Latrubesse, E. M.; Park, E.

    2017-12-01

    In a recent study, Latrubesse et al., (2017) demonstrated that the accumulated negative environmental effects of more than one hundred existing dams and at least 288 proposed dams, if constructed, will trigger massive hydrophysical and biotic disturbances that will affect the Amazon basin's floodplains, estuary and sediment plume. The authors introduced a Dam Environmental Vulnerability Index (DEVI) to quantify the current and potential impacts of dams in the basin. The current and potential vulnerabilities of different regions of the Amazon basin was assessed, and the results highlighted the need for a more efficient and integrative legal framework involving all nine countries of the basin in an anticipatory assessment to minimize the negative socio-environmental and biotic impacts of hydropower developments. Here we present expanded information on the potential impacts of dams in the lower Amazon and the northeast Atlantic coast of South America, and revisit our proposed integrative strategies for basin management which are based on the adaptation and functionality of the institutional and legal framework already existing in the Amazon countries. Participative strategies involving members from the Amazon Cooperation Treaty Organization (ACTO) countries, and additional members (for example, France), such as the creation of a basin committee -as defined by the Brazilian Law of Waters of Brazil-, and the creation of an Amazon Basin Panel allowing the participation of scientists that could have a policy-relevant role but should be not policy-prescriptive, are also discussed. ReferencesLatrubesse, E., Arima E. Dunne T., Park E., Baker V, Horta F.,Wight, C., Wittmann F., Zuanon, J., Baker P., Ribas C, Norgaard R., Filizola N., Ansar A., Flyvbjerg B., Stevaux, J. 2017. Damming the rivers of the Amazon basin. Nature, 546, 363-369.

  17. 88. AVALON DAM Photographic copy of construction drawing dated ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    88. AVALON DAM - Photographic copy of construction drawing dated February 9, 1912 (from Record Group 115, Box 17, Denver Branch of the National Archives, Denver) METHOD OF CLOSING UP OLD GATE OPENINGS IN SPILLWAY AND ARRANGEMENT OF TURBINES, OPERATING CYLINDER GATES - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM

  18. 75 FR 65620 - Inglis Hydropower, LLC; Notice of Application Ready for Environmental Analysis and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... Hydropower, LLC; Notice of Application Ready for Environmental Analysis and Soliciting Comments...: Inglis Hydropower, LLC. e. Name of Project: Inglis Hydropower Project. f. Location: The project would be... ready for environmental analysis at this time. l. The proposed 2.0-megawatt Inglis Hydropower Project...

  19. CO 2 is dominant greenhouse gas emitted from six hydropower reservoirs in southeastern United States during peak summer emissions

    DOE PAGES

    Bevelhimer, Mark S.; Stewart, Aurthur J.; Fortner, Allison M.; ...

    2016-01-06

    During August-September 2012, we sampled six hydropower reservoirs in southeastern United States. for CO 2 and CH 4 emissions via three pathways: diffusive emissions from water surface; ebullition in the water column; and losses from dam tailwaters during power generation. Average total emission rates of CO 2 for the six reservoirs ranged from 1,127 to 2,051 mg m -2 d -1, which is low to moderate compared to CO 2 emissions rates reported for tropical hydropower reservoirs and boreal ponds and lakes, and similar to rates reported for other temperate reservoirs. Similar average rates for CH 4 were also relativelymore » low, ranging from 5 to 83 mg m -2 d -1. On a whole-reservoir basis, total emissions of CO 2 ranged nearly 10-fold, from ~51,000 kg per day for Fontana to ~486,000 kg per day for Guntersville, and total emissions of CH 4 ranged nearly 20-fold, from ~5 kg per day for Fontana to ~83 kg per day for Allatoona. Emissions through the tailwater pathway varied among reservoirs, comprising from 20 to 50% of total CO 2 emissions and 0 to 90% of CH 4 emissions, depending on the reservoir. Furthermore, several explanatory factors related to reservoir morphology and water quality were considered for observed differences among reservoirs.« less

  20. ECHETA DAM SPILLWAY. COMING OUT BELOW THE DAM. AT CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ECHETA DAM SPILLWAY. COMING OUT BELOW THE DAM. AT CENTER OF PHOTO. VIEW TO NORTHEAST. - Echeta Dam & Reservoir, 2.9 miles east of Echeta Road at Echeta Railroad Siding at County Road 293, Echeta, Campbell County, WY

  1. Development activities, challenges and prospects for the hydropower sector in Austria

    NASA Astrophysics Data System (ADS)

    Wagner, Beatrice; Hauer, Christoph; Habersack, Helmut

    2017-04-01

    This contribution intends to give an overview of hydropower development activities in Austria and deepen the knowledge on actual strategies and planning documents. Thereby, the focus is on a climate and energy policy based perspective, also analyzing economic trends at the hydropower sector due to energy market changes in the last years. This includes a comparison with other political strategies and programs dealing with hydropower exploitation based on selected countries. With respect to technology developments, a concise review on technological innovations, such as hydrokinetic energy conversion systems, and new constructive designs of conventional hydropower plants in Austria will be given. Moreover, potential impacts on environment and aquatic ecosystems are described. Finally, key challenges and prospects will be identified and discussed.

  2. ECHETA DAM RIPRAP ON RESERVOIR SIDE OF THE DAM AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ECHETA DAM RIP-RAP ON RESERVOIR SIDE OF THE DAM AT BREACH. VIEW TO NORTH-NORTHEAST. - Echeta Dam & Reservoir, 2.9 miles east of Echeta Road at Echeta Railroad Siding at County Road 293, Echeta, Campbell County, WY

  3. The Dams and Monitoring Systems and Case Study: Ataturk and Karakaya Dams

    NASA Astrophysics Data System (ADS)

    Kalkan, Y.; Bilgi, S.; Gülnerman, A. G.

    2017-12-01

    Dams are among the most important engineering structures used for flood controls, agricultural purposes as well as drinking and hydroelectric power. Especially after the Second World War, developments on the construction technology, increase the construction of larger capacity dams. There are more than 150.000 dams in the world and almost 1000 dams in Turkey, according to international criteria. Although dams provide benefits to humans, they possess structural risks too. To determine the performance of dams on structural safety, assessing the spatial data is very important. These are movement, water pressure, seepage, reservoir and tail-water elevations, local seismic activities, total pressure, stress and strain, internal concrete temperature, ambient temperature and precipitation. These physical data are measured and monitored by the instruments and equipment. Dams and their surroundings have to be monitored by using essential methods at periodic time intervals in order to determine the possible changes that may occur over the time. Monitoring programs typically consist of; surveillance or visual observation. These programs on dams provide information for evaluating the dam's performance related to the design intent and expected changes that could affect the safety performance of the dam. Additionally, these programs are used for investigating and evaluating the abnormal or degrading performance where any remedial action is necessary. Geodetic and non-geodetic methods are used for monitoring. Monitoring the performance of the dams is critical for producing and maintaining the safe dams. This study provides some general information on dams and their different monitoring systems by taking into account two different dams and their structural specifications with the required information. The case study in this paper depends on a comparison of the monitoring surveys on Atatürk Dam and Karakaya Dam, which are constructed on Firat River with two different structural

  4. Integrating Disciplines, Sectors, and Societies to Improve the Definition and Implementation of Environmental Flows for Dammed Amazonian Rivers

    NASA Astrophysics Data System (ADS)

    Kaplan, D. A.; Livino, A.; Arias, M. E.; Crouch, T. D.; Anderson, E.; Marques, E.; Dutka-Gianelli, J.

    2017-12-01

    The Amazon River watershed is the world's largest river basin and provides US$30 billion/yr in ecosystem services to local populations, national societies, and humanity at large. The Amazon is also a relatively untapped source of hydroelectricity for Latin America, and construction of >30 large hydroelectric dams and >170 small dams is currently underway. Hydropower development will have a cascade of physical, ecological, and social effects at local to global scales. While Brazil has well-defined environmental impact assessment and mitigation programs, these efforts often fail to integrate data and knowledge across disciplines, sectors, and societies throughout the dam planning process. Resulting failures of science, policy, and management have had widespread environmental, economic, and social consequences, highlighting the need for an improved theoretical and practical framework for understanding the impacts of Amazon dams and guiding improved management that respects the needs and knowledge of diverse set of stakeholders. We present a conceptual framework that links four central goals: 1) connecting research in different disciplines (interdisciplinarity); 2) incorporating new knowledge into decision making (adaptive management); 3) including perspectives and participation of non-academic participants in knowledge generation (transdisciplinarity); and 4) extending the idea of environmental flows ("how much water does a river need?") to better consider human uses and users through the concept of fluvial anthropology ("how much water does a society need?"). We use this framework to identify opportunities for improved integration strategies within the (Brazilian) hydroelectric power plant planning and implementation "lifecycle." We applied this approach to the contentious Belo Monte dam, where compliance with regulatory requirements, including monitoring for environmental flows, exemplifies the opportunity for applying adaptive management, but also highlights an

  5. National Program for Inspection of Non-Federal Dams. Batterson Park Pond Dam (CT 00262), Connecticut River Basin, Farmington/New Britain, Connecticut. Phase I Inspection Report.

    DTIC Science & Technology

    1978-12-01

    Division to inspect and report on selected dams in the State of Connecticut. Authorization and notice to proceed were issued to Storch Engineers under a...operable however. c. Size Classification - The size classification of I the dam is intermediate. The storage (2,520 acre-feet) governs the...Landscape Architects Planners - Environental Consultants 13ATFRMN ?ARtK P*Nr3 DAm CAPAC MlY CUR~VE ELEV .DP/ R AvJQ ATkrp oi .V0i 30-70 31 F q * .7 CO

  6. Developing and Testing TernCOLONY 1.0: An Individual-based Model of Least Tern Reproduction

    DTIC Science & Technology

    2013-06-01

    interior population of the Least Tern nests primarily on riverine sandbars (U.S. Fish and Wildlife Service (USFWS) 1990, Lott 2006). Consequently...Fish and Wildlife Service (USFWS). 1990. Recovery plan for the interior population of the Least Tern (~Sterna antillarum~). Twin Cities, MN. ERDC/EL...colony sites in the Keystone reach. The flow occurring in normal hydropower operations (both turbines at Keystone Dam operating at capacity for

  7. 78 FR 61987 - Corbett Water District; Notice of Preliminary Determination of a Qualifying Conduit Hydropower...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-09

    ...), as amended by HREA.... The facility is constructed, operated, or maintained Y for the generation of... Conduit Hydropower Facility Satisfies (Y/ Statutory provision Description N) FPA 30(a)(3)(A), as amended by HREA....... The conduit the facility uses is a tunnel, canal, Y pipeline, aqueduct, flume, ditch...

  8. 9. Excavation work at Pleasant Dam (now called Waddell Dam). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Excavation work at Pleasant Dam (now called Waddell Dam). Photographer unknown, July, 22, 1926. Source: Maricopa County Municipal Water Conservation District Number One (MWD). - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  9. 32. AERIAL VIEW OF TIETON DAM, UPSTREAM FACE OF DAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. AERIAL VIEW OF TIETON DAM, UPSTREAM FACE OF DAM (Trashrack-structure for outlet at lower left in reservoir, spillway at upper left. Reservoir nearly empty due to drought.) - Tieton Dam, South & East of State Highway 12, Naches, Yakima County, WA

  10. 33 CFR 208.82 - Hetch Hetchy, Cherry Valley, and Don Pedro Dams and Reservoirs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Don Pedro Dams and Reservoirs. 208.82 Section 208.82 Navigation and Navigable Waters CORPS OF..., Cherry Valley, and Don Pedro Dams and Reservoirs. The Turlock Irrigation District and Modesto Irrigation District, acting jointly, hereinafter called the Districts, shall operate Don Pedro Dam and Reservoir in...

  11. 33 CFR 208.82 - Hetch Hetchy, Cherry Valley, and Don Pedro Dams and Reservoirs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Don Pedro Dams and Reservoirs. 208.82 Section 208.82 Navigation and Navigable Waters CORPS OF..., Cherry Valley, and Don Pedro Dams and Reservoirs. The Turlock Irrigation District and Modesto Irrigation District, acting jointly, hereinafter called the Districts, shall operate Don Pedro Dam and Reservoir in...

  12. Managing Financial Risk to Hydropower in Snow Dominated Systems: A Hetch Hetchy Case Study

    NASA Astrophysics Data System (ADS)

    Hamilton, A. L.; Characklis, G. W.; Reed, P. M.

    2017-12-01

    Hydropower generation in snow dominated systems is vulnerable to severe shortfalls in years with low snowpack. Meanwhile, generators are also vulnerable to variability in electricity demand and wholesale electricity prices, both of which can be impacted by factors such as temperature and natural gas price. Year-to-year variability in these underlying stochastic variables leads to financial volatility and the threat of low revenue periods, which can be highly disruptive for generators with large fixed operating costs and debt service. In this research, the Hetch Hetchy Power system is used to characterize financial risk in a snow dominated hydropower system. Owned and operated by the San Francisco Public Utilities Commission, Hetch Hetchy generates power for its own municipal operations and sells excess power to irrigation districts, as well as on the wholesale market. This investigation considers the effects of variability in snowpack, temperature, and natural gas price on Hetch Hetchy Power's yearly revenues. This information is then used to evaluate the effectiveness of various financial risk management tools for hedging against revenue variability. These tools are designed to mitigate against all three potential forms of financial risk (i.e. low hydropower generation, low electricity demand, and low/high electricity price) and include temperature-based derivative contracts, natural gas price-based derivative contracts, and a novel form of snowpack-based index insurance contract. These are incorporated into a comprehensive risk management portfolio, along with self-insurance in which the utility buffers yearly revenue volatility using a contingency fund. By adaptively managing the portfolio strategy, a utility can efficiently spread yearly risks over a multi-year time horizon. The Borg Multiobjective Evolutionary Algorithm is used to generate a set of Pareto optimal portfolio strategies, which are used to compare the tradeoffs in objectives such as expected

  13. Bridging the Information Gap: Remote Sensing and Micro Hydropower Feasibility in Data-Scarce Regions

    NASA Astrophysics Data System (ADS)

    Muller, Marc Francois

    nature of rainfall, and proposes a novel geostatistical method to regionalize its parameters across the stream network. Although motivated by the needs of micro hydropower design in Nepal, these techniques represent contributions to the broader international challenge of PUB and can be applied worldwide. The economic drivers of rural electrification are then considered by presenting an econometric technique to estimate the cost function and demand curve of micro hydropower in Nepal. The empirical strategy uses topography-based instrumental variables to identify price elasticities. All developed methods are assembled in a computer tool, along with a search algorithm that uses a digital elevation model to optimize the placement of micro hydropower infrastructure. The tool---Micro Hydro [em]Power---is an open source application that can be accessed and operated on a web-browser (http://mfmul.shinyapps.io/mhpower). Its purpose is to assist local communities in the design and evaluation of micro hydropower alternatives in their locality, while using cost and demand information provided by local users to generate accurate feasibility maps at the national level, thus bridging the information gap.

  14. Behavior and dam passage of juvenile Chinook salmon at Cougar Reservoir and Dam, Oregon, March 2011 - February 2012

    USGS Publications Warehouse

    Beeman, John W.; Hansel, Hal C.; Hansen, Amy C.; Haner, Philip V.; Sprando, Jamie M.; Smith, Collin D.; Evans, Scott D.; Hatton, Tyson W.

    2013-01-01

    passive integrated transponder detectors at various locations downstream of the dam, indicating some tagged fish passed the dam undetected. The rate of dam passage was affected by diel period, discharge, and reservoir elevation. Diel period was the most influential factor of those examined, with nighttime dam passage rates about 9 times greater than daytime rates, depending on the distance of fish from the dam outlet. Dam passage rates also were positively related to dam discharge, and negatively related to reservoir elevation. In the operational condition used as an example, fish approached the dam outlet at the temperature control tower from the south and east and, when most fish got near the tower, they were directly in front of it. In many cases, the results for wild and hatchery fish were similar, or the results suggested hatchery fish could be reasonable surrogates for wild fish. Hatchery-origin and wild-origin fish behaved similarly in the following ways: their general movements in the reservoir; the timing of their dam passage; and the effects of diel period, discharge, and elevation on their passage rates. Parasitic copepods were present on most wild fish examined, and the mortality of wild fish during capture, handling and tagging was much greater than that of hatchery fish. This suggests that the ability of wild fish to cope with stressors may be less than that of fish directly from the hatchery.

  15. Mid and long-term optimize scheduling of cascade hydro-power stations based on modified GA-POA method

    NASA Astrophysics Data System (ADS)

    Li, Jiqing; Yang, Xiong

    2018-06-01

    In this paper, to explore the efficiency and rationality of the cascade combined generation, a cascade combined optimal model with the maximum generating capacity is established, and solving the model by the modified GA-POA method. It provides a useful reference for the joint development of cascade hydro-power stations in large river basins. The typical annual runoff data are selected to calculate the difference between the calculated results under different representative years. The results show that the cascade operation of cascaded hydro-power stations can significantly increase the overall power generation of cascade and ease the flood risk caused by concentration of flood season.

  16. 78 FR 53494 - Dam Safety Modifications at Cherokee, Fort Loudoun, Tellico, and Watts Bar Dams

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... fundamental part of this mission was the construction and operation of an integrated system of dams and... by the Federal Emergency Management Agency, TVA prepares for the worst case flooding event in order... appropriate best management practices during all phases of construction and maintenance associated with the...

  17. Evaluating financial risk management strategies under climate change for hydropower producers on the Great Lakes

    NASA Astrophysics Data System (ADS)

    Meyer, Eliot S.; Characklis, Gregory W.; Brown, Casey

    2017-03-01

    Hydropower on the Great Lakes makes up a substantial fraction of regional electricity generation capacity. Hydropower producers on the Niagara River (flowing between lakes Erie and Ontario) operate as run-of-river, and changing lake levels alter interlake flows reducing both generation and revenues. Index-based insurance contracts, wherein contract payouts are linked to lake levels, offer a tool for mitigating this risk. As a potentially useful tool, pricing of financial insurance is typically based on historical behavior of the index. However, uncertainty with respect to the impacts of climate change on lake level behavior and how this might translate to increased (or decreased) risk for those selling or buying the insurance remains unexplored. Portfolios of binary index-insurance contracts are developed for hydropower producers on the Niagara River, and their performance is evaluated under a range of climate scenarios. Climate Informed Decision Analysis is used to inform the sensitivity of these portfolios to potential shifts in long-term, climatological variations in water level behavior. Under historical conditions, hydropower producers can use portfolios costing 0.5% of mean revenues to increase their minimum revenue threshold by approximately 18%. However, a one standard deviation decrease in the 50 year mean water level potentially doubles the frequency with which these portfolios would underperform from the perspective of a potential insurer. Trade-offs between portfolio cost and the frequency of underperformance are investigated over a range of climate futures.

  18. High-resolution assessment of global technical and economic hydropower potential

    NASA Astrophysics Data System (ADS)

    Gernaat, David E. H. J.; Bogaart, Patrick W.; Vuuren, Detlef P. van; Biemans, Hester; Niessink, Robin

    2017-10-01

    Hydropower is the most important renewable energy source to date, providing over 72% of all renewable electricity globally. Yet, only limited information is available on the global potential supply of hydropower and the associated costs. Here we provide a high-resolution assessment of the technical and economic potential of hydropower at a near-global scale. Using 15"×15" discharge and 3"×3" digital elevation maps, we built virtual hydropower installations at >3.8 million sites across the globe and calculated their potential using cost optimization methods. This way we identified over 60,000 suitable sites, which together represent a remaining global potential of 9.49 PWh yr-1 below US0.50 kWh-1. The largest remaining potential is found in Asia Pacific (39%), South America (25%) and Africa (24%), of which a large part can be produced at low cost (

  19. Data-Based Performance Assessments for the DOE Hydropower Advancement Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    March, Patrick; Wolff, Dr. Paul; Smith, Brennan T

    2012-01-01

    The U. S. Department of Energy s Hydropower Advancement Project (HAP) was initiated to characterize and trend hydropower asset conditions across the U.S.A. s existing hydropower fleet and to identify and evaluate the upgrading opportunities. Although HAP includes both detailed performance assessments and condition assessments of existing hydropower plants, this paper focuses on the performance assessments. Plant performance assessments provide a set of statistics and indices that characterize the historical extent to which each plant has converted the potential energy at a site into electrical energy for the power system. The performance metrics enable benchmarking and trending of performance acrossmore » many projects in a variety contexts (e.g., river systems, power systems, and water availability). During FY2011 and FY2012, assessments will be performed on ten plants, with an additional fifty plants scheduled for FY2013. This paper focuses on the performance assessments completed to date, details the performance assessment process, and describes results from the performance assessments.« less

  20. 5. LOOKING WEST ALONG THE AXIS OF THE DAM TOWARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. LOOKING WEST ALONG THE AXIS OF THE DAM TOWARD THE OUTLET STRUCTURE. HAND OPERATED MECHANICAL TAMPERS ARE COMPACTING THE FILL ALONG THE STEEL SHEET PILING CUTOFF WALL IN THE FOREGROUND. Volume XIX, No. 6, April 12, 1940. - Prado Dam, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  1. Greenhouse gas emissions of hydropower in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Räsänen, Timo A.; Varis, Olli; Scherer, Laura; Kummu, Matti

    2018-03-01

    The Mekong River Basin in Southeast Asia is undergoing extensive hydropower development, but the magnitudes of related greenhouse gas emissions (GHG) are not well known. We provide the first screening of GHG emissions of 141 existing and planned reservoirs in the basin, with a focus on atmospheric gross emissions through the reservoir water surface. The emissions were estimated using statistical models that are based on global emission measurements. The hydropower reservoirs (119) were found to have an emission range of 0.2-1994 kg CO2e MWh-1 over a 100 year lifetime with a median of 26 kg CO2e MWh-1. Hydropower reservoirs facilitating irrigation (22) had generally higher emissions reaching over 22 000 kg CO2e MWh-1. The emission fluxes for all reservoirs (141) had a range of 26-1813 000 t CO2e yr-1 over a 100 year lifetime with a median of 28 000 t CO2e yr-1. Altogether, 82% of hydropower reservoirs (119) and 45% of reservoirs also facilitating irrigation (22) have emissions comparable to other renewable energy sources (<190 kg CO2e MWh-1), while the rest have higher emissions equalling even the emission from fossil fuel power plants (>380 kg CO2e MWh-1). These results are tentative and they suggest that hydropower in the Mekong Region cannot be considered categorically as low-emission energy. Instead, the GHG emissions of hydropower should be carefully considered case-by-case together with the other impacts on the natural and social environment.

  2. Sharing the opportunity cost among power companies to support hydropower-to-environment water transfers

    NASA Astrophysics Data System (ADS)

    Tilmant, Amaury; Marques, Guilherme

    2016-04-01

    Among the environmental impacts caused by dams, the alteration of flow regimes is one of the most critical to river ecosystems given its influence in long river reaches and its continuous pattern. Provided it is technically feasible, the reoperation of hydroelectric reservoir systems can, in principle, mitigate the impacts on degraded freshwater ecosystems by recovering some of the natural flow regime. The typical approach to implement hydropower-to-environment water transfers focuses on the reoperation of the dam located immediately upstream of the environmentally sensitive area, meaning that only one power station will bear the brunt of the benefits forgone for the power sector. By ignoring the contribution of upstream infrastructures to the alteration of the flow regime, the opportunity cost associated with the restoration of a flow regime is not equitably distributed among the power companies in the river basin, therefore slowing the establishment of environmental flow programs. Yet, there is no criterion, nor institutional mechanisms, to ensure a fair distribution of the opportunity cost among power stations. This paper addresses this issue by comparing four rules to redistribute the costs faced by the power sector when environmental flows must be implemented in a multireservoir system. The rules are based on the the installed capacity of the power plants, the live storage capacity of the reservoirs, the ratio between the incremental flows and the live storage capacity, and the extent of the storage services; that is, the volume of water effectively transferred by each reservoir. The analysis is carried out using the Parana River Basin (Brazil) as a case study.

  3. National Dam Safety Program. Wappingers Falls Dam (I.D. Number N.Y. 3, D.E.C. 613A), Hudson River Basin, Dutchess County, New York. Phase 1 Inspection Report

    DTIC Science & Technology

    1980-09-30

    Classification 2I e. Ownership 2f. Purpose of Dam 2 g. Design and Construction History 2h. Normal Operating Procedure 2 1.3 PERTINENT DATA 2 a. Drainage...4 2.2 SUBSURFACE INVESTIGATION 4 2.3 DAM AND APPURTENANT STRUCTURES 4 2.4 CONSTRUCTION RECORDS 4 2.5 OPERATION RECORDS 2.6 EVALUATION OF DATA 5 4...12 a. Visual Observations 12 b. Design and Construction Data 12 c. Stability Analysis 12 d. Operating Records 13 e. Post- Construction Changes 13 f

  4. Analysis of Jure Landslide DAM, Sindhupalchowk Using GIS and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Acharya, T. D.; Mainali, S. C.; Yang, I. T.; Lee, D. H.

    2016-06-01

    On 2nd August 2014, a rainfall-induced massive landslide hit Jure village, Sindhupalchowk killing 156 people at a distance of 70 km North-East of Kathmandu, Nepal. The landslide was a typical slope failure with massive rock fragments, sand and soil. A total of estimated 6 million cubic meters debris raised more than 100 m from the water level and affected opposite side of the bank. The landslide blocked the Sunkoshi River completely forming an estimated 8 million cubic meter lake of 3km length and 300-350m width upstream. It took nearly 12 hour to fill the lake and overflow the debris dam. The lake affected five Village Development Committees (VDC) including highway, school, health post, postal service, police station, VDC office and temple upstream. The bottom of the dam was composed of highly cemented material and the derbies affected Sunkoshi hydropower downstream. Moreover, it caused the potential threat of Lake Outburst Flood. The lake was released by blasting off part of the landslide blockade and facilitated release of water from the lake. With the help of Remote Sensing (RS), series satellite images were used to identified, compared with previous state and quick estimation of potential treat was analysed. Using geographic information System (GIS) technology, estimation of volume, affected households, service centres, parcels etc. in the area was possible. In such hilly regions where disaster are very frequent, using GIS and RS technology comes very handy for immediate planning and response.

  5. A cabled acoustic telemetry system for detecting and tracking juvenile salmon: Part 1. Engineering design and instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, Mark A.; Deng, Zhiqun; Seim, Thomas A.

    2011-05-26

    The U.S. Army Corps of Engineers-Portland District started development of the Juvenile Salmon Acoustic Telemetry System (JSATS), a nonproprietary technology, in 2001 to meet the needs for monitoring the survival of juvenile salmonids through the 31 federal dams in the Federal Columbia River Power System (FCRPS). Initial development focused on coded acoustic microtransmitters, and autonomous receivers that could be deployed in open reaches of the river for detection of the juvenile salmonids implanted with microtransmitters as they passed the autonomous receiver arrays. In 2006 the Pacific Northwest National Laboratory (PNNL) was tasked with development of an acoustic receiver system formore » deployment at hydropower facilities (cabled receiver) for detecting fish tagged with microtransmitters as well as tracking them in 2 or 3-dimensions as the fish passed at the facility for determining route of passage. The additional route of passage information, combined with survival estimates, is used by the dam operators and managers to make structural and operational changes at the hydropower facilities to improve survival of fish as they pass the facilities and through the FCRPS.« less

  6. Dam removal: Listening in

    NASA Astrophysics Data System (ADS)

    Foley, M. M.; Bellmore, J. R.; O'Connor, J. E.; Duda, J. J.; East, A. E.; Grant, G. E.; Anderson, C. W.; Bountry, J. A.; Collins, M. J.; Connolly, P. J.; Craig, L. S.; Evans, J. E.; Greene, S. L.; Magilligan, F. J.; Magirl, C. S.; Major, J. J.; Pess, G. R.; Randle, T. J.; Shafroth, P. B.; Torgersen, C. E.; Tullos, D.; Wilcox, A. C.

    2017-07-01

    Dam removal is widely used as an approach for river restoration in the United States. The increase in dam removals—particularly large dams—and associated dam-removal studies over the last few decades motivated a working group at the USGS John Wesley Powell Center for Analysis and Synthesis to review and synthesize available studies of dam removals and their findings. Based on dam removals thus far, some general conclusions have emerged: (1) physical responses are typically fast, with the rate of sediment erosion largely dependent on sediment characteristics and dam-removal strategy; (2) ecological responses to dam removal differ among the affected upstream, downstream, and reservoir reaches; (3) dam removal tends to quickly reestablish connectivity, restoring the movement of material and organisms between upstream and downstream river reaches; (4) geographic context, river history, and land use significantly influence river restoration trajectories and recovery potential because they control broader physical and ecological processes and conditions; and (5) quantitative modeling capability is improving, particularly for physical and broad-scale ecological effects, and gives managers information needed to understand and predict long-term effects of dam removal on riverine ecosystems. Although these studies collectively enhance our understanding of how riverine ecosystems respond to dam removal, knowledge gaps remain because most studies have been short (< 5 years) and do not adequately represent the diversity of dam types, watershed conditions, and dam-removal methods in the U.S.

  7. Dam removal: Listening in

    USGS Publications Warehouse

    Foley, Melissa M.; Bellmore, James; O'Connor, James E.; Duda, Jeff; East, Amy E.; Grant, Gordon G.; Anderson, Chauncey; Bountry, Jennifer A.; Collins, Mathias J.; Connolly, Patrick J.; Craig, Laura S.; Evans, James E.; Greene, Samantha; Magilligan, Francis J.; Magirl, Christopher S.; Major, Jon J.; Pess, George R.; Randle, Timothy J.; Shafroth, Patrick B.; Torgersen, Christian E.; Tullos, Desiree D.; Wilcox, Andrew C.

    2017-01-01

    Dam removal is widely used as an approach for river restoration in the United States. The increase in dam removals—particularly large dams—and associated dam-removal studies over the last few decades motivated a working group at the USGS John Wesley Powell Center for Analysis and Synthesis to review and synthesize available studies of dam removals and their findings. Based on dam removals thus far, some general conclusions have emerged: (1) physical responses are typically fast, with the rate of sediment erosion largely dependent on sediment characteristics and dam-removal strategy; (2) ecological responses to dam removal differ among the affected upstream, downstream, and reservoir reaches; (3) dam removal tends to quickly reestablish connectivity, restoring the movement of material and organisms between upstream and downstream river reaches; (4) geographic context, river history, and land use significantly influence river restoration trajectories and recovery potential because they control broader physical and ecological processes and conditions; and (5) quantitative modeling capability is improving, particularly for physical and broad-scale ecological effects, and gives managers information needed to understand and predict long-term effects of dam removal on riverine ecosystems. Although these studies collectively enhance our understanding of how riverine ecosystems respond to dam removal, knowledge gaps remain because most studies have been short (< 5 years) and do not adequately represent the diversity of dam types, watershed conditions, and dam-removal methods in the U.S.

  8. Valuing trade-offs of river ecosystem services in large hydropower development in Tibet, China

    NASA Astrophysics Data System (ADS)

    Yu, B.; Xu, L.

    2015-12-01

    Hydropower development can be considered as a kind of trade-offs of ecosystem services generated by human activity for their economic and energy demand, because it can increase some river ecosystem services but decrease others. In this context, an ecosystem service trade-off framework in hydropower development was proposed in this paper. It aims to identify the ecological cost of river ecosystem and serve for the ecological compensation during hydropower development, for the hydropower services cannot completely replace the regulating services of river ecosystem. The valuing trade-offs framework was integrated by the influenced ecosystem services identification and ecosystem services valuation, through ecological monitoring and ecological economic methods, respectively. With a case study of Pondo hydropower project in Tibet, China, the valuing trade-offs of river ecosystem services in large hydropower development was illustrated. The typical ecological factors including water, sediment and soil were analyzed in this study to identify the altered river ecosystem services by Pondo hydropower project. Through the field monitoring and valuation, the results showed that the Lhasa River ecosystem services value could be changed annually by Pondo hydropower project with the increment of 5.7E+8CNY, and decrement of 5.1E+7CNY. The ecological compensation for river ecosystem should be focus on water and soil conservation, reservoir dredging and tributaries habitat protection.

  9. Migratory delay leads to reduced passage success of Atlantic salmon smolts at a hydroelectric dam

    USGS Publications Warehouse

    Nyqvist, Daniel; Greenberg, L.; Goerig, E.; Calles, O.; Bergman, E.; Ardren, William R.; Castro-Santos, Theodore R.

    2017-01-01

    Passage of fish through hydropower dams is associated with mortality, delay, increased energy expenditure and migratory failure for migrating fish and the need for remedial measures for both upstream and downstream migration is widely recognised. A functional fish passage must ensure safe and timely passage routes that a substantial portion of migrating fish will use. Passage solutions must address not only the number or percentage of fish that successfully pass a barrier, but also the time it takes to pass. Here, we used radiotelemetry to study the functionality of a fish bypass for downstream-migrating wild-caught and hatchery-released Atlantic salmon smolts. We used time-to-event analysis to model the influence of fish characteristics and environmental variables on the rates of a series of events associated with dam passage. Among the modelled events were approach rate to the bypass entry zone, retention rates in both the forebay and the entry zone and passage rates. Despite repeated attempts, only 65% of the tagged fish present in the forebay passed the dam. Fish passed via the bypass (33%), via spill (18%) and via turbines (15%). Discharge was positively related to approach, passage and retention rates. We did not detect any differences between wild and hatchery fish. Even though individual fish visited the forebay and the entry zone on multiple occasions, most fish passed during the first exposures to these zones. This study underscores the importance of timeliness to passage success and the usefulness of time-to-event analysis for understanding factors governing passage performance.

  10. Hydrograph variances over different timescales in hydropower production networks

    NASA Astrophysics Data System (ADS)

    Zmijewski, Nicholas; Wörman, Anders

    2016-08-01

    The operation of water reservoirs involves a spectrum of timescales based on the distribution of stream flow travel times between reservoirs, as well as the technical, environmental, and social constraints imposed on the operation. In this research, a hydrodynamically based description of the flow between hydropower stations was implemented to study the relative importance of wave diffusion on the spectrum of hydrograph variance in a regulated watershed. Using spectral decomposition of the effluence hydrograph of a watershed, an exact expression of the variance in the outflow response was derived, as a function of the trends of hydraulic and geomorphologic dispersion and management of production and reservoirs. We show that the power spectra of involved time-series follow nearly fractal patterns, which facilitates examination of the relative importance of wave diffusion and possible changes in production demand on the outflow spectrum. The exact spectral solution can also identify statistical bounds of future demand patterns due to limitations in storage capacity. The impact of the hydraulic description of the stream flow on the reservoir discharge was examined for a given power demand in River Dalälven, Sweden, as function of a stream flow Peclet number. The regulation of hydropower production on the River Dalälven generally increased the short-term variance in the effluence hydrograph, whereas wave diffusion decreased the short-term variance over periods of <1 week, depending on the Peclet number (Pe) of the stream reach. This implies that flow variance becomes more erratic (closer to white noise) as a result of current production objectives.

  11. Dam removal: Listening in

    Treesearch

    M. M. Foley; J. R. Bellmore; J. E. O' Connor; J. J. Duda; A. E. East; G. E. Grant; C. W. Anderson; J. A. Bountry; M. J. Collins; P. J. Connolly; L. S. Craig; J. E. Evans; S. L. Greene; F. J. Magilligan; C. S. Magirl; J. J. Major; G. R. Pess; T. J. Randle; P. B. Shafroth; C. E. Torgersen; D. Tullos; A. C. Wilcox

    2017-01-01

    Dam removal is widely used as an approach for river restoration in the United States. The increase in dam removals—particularly large dams—and associated dam-removal studies over the last few decades motivated a working group at the USGS John Wesley Powell Center for Analysis and Synthesis to review and synthesize available studies of dam removals and their findings....

  12. Dynamic analysis of an inflatable dam subjected to a flood

    NASA Astrophysics Data System (ADS)

    Lowery, K.; Liapis, S.

    A dynamic simulation of the response of an inflatable dam subjected to a flood is carried out to determine the survivability envelope of the dam where it can operate without rupture, or overflow. The free-surface flow problem is solved in two dimensions using a fully nonlinear mixed Eulerian-Lagrangian formulation. The dam is modeled as an elastic shell inflated with air and simply supported from two points. The finite element method is employed to determine the dynamic response of the structure using ABAQUS with a shell element. The problem is solved in the time domain which allows the prediction of a number of transient phenomena such as the generation of upstream advancing waves, the dynamic structural response and structural failure. Failure takes place when the dam either ruptures or overflows. Stresses in the dam material were monitored to determine when rupture occurs. An iterative study was performed to find the serviceability envelope of the dam in terms of the internal pressure and the flood Froude number for two flood depths. It was found that existing inflatable dams are quite effective in suppressing floods for a relatively wide range of flood velocities.

  13. Identifying high energy density stream-reaches through refined geospatial resolution in hydropower resource assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasha, M. Fayzul K.; Yang, Majntxov; Yeasmin, Dilruba

    Benefited from the rapid development of multiple geospatial data sets on topography, hydrology, and existing energy-water infrastructures, the reconnaissance level hydropower resource assessment can now be conducted using geospatial models in all regions of the US. Furthermore, the updated techniques can be used to estimate the total undeveloped hydropower potential across all regions, and may eventually help identify further hydropower opportunities that were previously overlooked. To enhance the characterization of higher energy density stream-reaches, this paper explored the sensitivity of geospatial resolution on the identification of hydropower stream-reaches using the geospatial merit matrix based hydropower resource assessment (GMM-HRA) model. GMM-HRAmore » model simulation was conducted with eight different spatial resolutions on six U.S. Geological Survey (USGS) 8-digit hydrologic units (HUC8) located at three different terrains; Flat, Mild, and Steep. The results showed that more hydropower potential from higher energy density stream-reaches can be identified with increasing spatial resolution. Both Flat and Mild terrains exhibited lower impacts compared to the Steep terrain. Consequently, greater attention should be applied when selecting the discretization resolution for hydropower resource assessments in the future study.« less

  14. Identifying high energy density stream-reaches through refined geospatial resolution in hydropower resource assessment

    DOE PAGES

    Pasha, M. Fayzul K.; Yang, Majntxov; Yeasmin, Dilruba; ...

    2016-01-07

    Benefited from the rapid development of multiple geospatial data sets on topography, hydrology, and existing energy-water infrastructures, the reconnaissance level hydropower resource assessment can now be conducted using geospatial models in all regions of the US. Furthermore, the updated techniques can be used to estimate the total undeveloped hydropower potential across all regions, and may eventually help identify further hydropower opportunities that were previously overlooked. To enhance the characterization of higher energy density stream-reaches, this paper explored the sensitivity of geospatial resolution on the identification of hydropower stream-reaches using the geospatial merit matrix based hydropower resource assessment (GMM-HRA) model. GMM-HRAmore » model simulation was conducted with eight different spatial resolutions on six U.S. Geological Survey (USGS) 8-digit hydrologic units (HUC8) located at three different terrains; Flat, Mild, and Steep. The results showed that more hydropower potential from higher energy density stream-reaches can be identified with increasing spatial resolution. Both Flat and Mild terrains exhibited lower impacts compared to the Steep terrain. Consequently, greater attention should be applied when selecting the discretization resolution for hydropower resource assessments in the future study.« less

  15. 78 FR 61985 - City of Astoria, Oregon; Notice of Preliminary Determination of a Qualifying Conduit Hydropower...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-09

    ...), as amended by HREA.... The facility is constructed, operated, or maintained Y for the generation of... Conduit Hydropower Facility Satisfies Statutory provision Description (Y/N) FPA 30(a)(3)(A), as amended by HREA....... The conduit the facility uses is a tunnel, canal, Y pipeline, aqueduct, flume, ditch, or...

  16. A new framework for sustainable hydropower development project

    NASA Astrophysics Data System (ADS)

    Johan, Kartina; Turan, Faiz Mohd; Gani, Nur Syazwani Abdul

    2018-03-01

    This project studies on the establishment of a new framework for sustainable hydropower development. A hydropower development is listed as one of the prescribed activities under the Environmental Quality Order 1987. Thus, Environmental Impact Assessment (EIA) guidelines must be referred to comply with the Department of Environment (DoE) requirements. In order to execute EIA, an assessment tool that will be utilized in the final evaluation phase must be determined. The selected assessment tool that will be used is Systematic Sustainability Assessment(SSA) which is a new integrated tool to evaluate the sustainability performance. A pilot run is conducted in five different departments within the Energy Company to validate the efficiency of the SSA tool. The parameters to be evaluated are constructed aligned with the Sustainable Development Goals (SDG) to maintain the sustainability features. Consequently, the performance level of the sustainability with respect to People, Planet and Profit (3P’s) is able to be discovered during evaluation phase in the hydropower development for continuous improvement.

  17. Rubber dam use less stressful for children and dentists.

    PubMed

    Innes, Nicola

    2012-06-01

    Randomised controlled trial, single centre and operator. 72 patients (6-16 years) assessed as compliant, with no allergies, not on significant medication were divided into two groups by 'drawing sealed lots'. 234 fully erupted teeth were sealed. Molars and/or premolars were sealed dependant on age. Teeth were pre-cleaned with prophy paste. In the controls, teeth were isolated with buccal and lingual cotton rolls and salivary ejector in the intervention group a rubber dam was used. The same etching, rinsing and placement protocol was used in both arms. Outcomes were: patients' subjective measures of pain using a visual analogue scale; blood pressure (before and after treatment), breath rate, pulse rate and skin resistance at five time points. The operator's pulse rate was measured and they completed a questionnaire on subjective mental and physical stress following treatment. Treatment times were recorded. The breath rate was significantly (P < 0.05) lower and the skin resistance level was significantly higher during treatment with rubber dam compared to the control group. Subjective pain perception was significantly lower for the test group. The treatment time needed for the fissure sealing procedure was 12.4% less in the test group. The authors state; '... in the hands of an experienced dentist, isolation with rubber dam is less stressful for children and adolescents than isolation with cotton rolls, and can save valuable treatment time.' The operator's stress measures were lower with rubber dam and treatment time was reduced.

  18. Water-quality data for the Ohio River from New Cumberland Dam to Pike Island Dam, West Virginia and Ohio, June-November 1992

    USGS Publications Warehouse

    Miller, Kimberly F.; Faulkenburg, C.W.; Chambers, D.B.; Waldron, M.C.

    1995-01-01

    This report contains water-quality data for the Ohio River, collected during the summer and fall of 1992, from river mile 51.1 (3.3 miles upstream from New Cumberland Dam) to river mile 84.0 (0.2 miles upstream from Pike Island Dam). The data were collected to assess the effects of hydropower development on water quality. Water quality was determined by a combination of repeated synoptic field measurements and laboratory analyses. Synoptic measurements were made along a longitudinal transect with 18 mid-channel sampling sites; cross-sectional transects of water quality were measured at 5 of these sites. Water-quality measurements also were made at two sites located on the back-channel (Ohio) side of Browns Island. Water temperature, dissolved oxygen concentration, pH, and specific conductance were measured at each longitudinal-transect and back-channel sampling site. Longitudinal-transect and back-channel stations were sampled at three depths (about 3.3 feet below the surface of the water, middle of the water column, and near the bottom of the river). Cross-sectional transects consisted of three or four detailed vertical pro- files of the same characteristics. Water samples were collected from three depths at the mid-channel vertical profile in each cross-sectional transect and were analyzed for concentrations of phyto- plankton photosynthetic pigments chlorophyll a and chlorophyll b. Estimates of the depth of light penetration (Secchi disk transparency) were made at pigment-sampling locations whenever light and river-surface conditions were appropriate. Synoptic sampling usually was completed in 12 hours or less and was repeated seven times between June 25 and November 6, 1992.

  19. Dam failure analysis for the Lago El Guineo Dam, Orocovis, Puerto Rico

    USGS Publications Warehouse

    Gómez-Fragoso, Julieta; Heriberto Torres-Sierra,

    2016-08-09

    The U.S. Geological Survey, in cooperation with the Puerto Rico Electric Power Authority, completed hydrologic and hydraulic analyses to assess the potential hazard to human life and property associated with the hypothetical failure of the Lago El Guineo Dam. The Lago El Guineo Dam is within the headwaters of the Río Grande de Manatí and impounds a drainage area of about 4.25 square kilometers.The hydrologic assessment was designed to determine the outflow hydrographs and peak discharges for Lago El Guineo and other subbasins in the Río Grande de Manatí hydrographic basin for three extreme rainfall events: (1) a 6-hour probable maximum precipitation event, (2) a 24-hour probable maximum precipitation event, and (3) a 24-hour, 100-year recurrence rainfall event. The hydraulic study simulated a dam failure of Lago El Guineo Dam using flood hydrographs generated from the hydrologic study. The simulated dam failure generated a hydrograph that was routed downstream from Lago El Guineo Dam through the lower reaches of the Río Toro Negro and the Río Grande de Manatí to determine water-surface profiles developed from the event-based hydrologic scenarios and “sunny day” conditions. The Hydrologic Engineering Center’s Hydrologic Modeling System (HEC–HMS) and Hydrologic Engineering Center’s River Analysis System (HEC–RAS) computer programs, developed by the U.S. Army Corps of Engineers, were used for the hydrologic and hydraulic modeling, respectively. The flow routing in the hydraulic analyses was completed using the unsteady flow module available in the HEC–RAS model.Above the Lago El Guineo Dam, the simulated inflow peak discharges from HEC–HMS resulted in about 550 and 414 cubic meters per second for the 6- and 24-hour probable maximum precipitation events, respectively. The 24-hour, 100-year recurrence storm simulation resulted in a peak discharge of about 216 cubic meters per second. For the hydrologic analysis, no dam failure conditions are

  20. Influence of peak flow changes on the macroinvertebrate drift downstream of a Brazilian hydroelectric dam.

    PubMed

    Castro, D M P; Hughes, R M; Callisto, M

    2013-11-01

    Successive daily peak flows from hydropower plants can disrupt aquatic ecosystems and alter the composition and structure of macroinvertebrates downstream. We evaluated the influence of peak flow changes on macroinvertebrate drift downstream of a hydroelectric plant as a basis for determining ecological flows that might reduce the disturbance of aquatic biota. The aim of this study was to assess the influence of flow fluctuations on the seasonal and daily drift patterns of macroinvertebrates. We collected macroinvertebrates during fixed flow rates (323 m3.s-1 in the wet season and 111 m3.s-1 in the dry season) and when peak flows fluctuated (378 to 481 m3.s-1 in the wet season, and 109 to 173 m3.s-1 in the dry season) in 2010. We collected 31,924 organisms belonging to 46 taxa in the four sampling periods. Taxonomic composition and densities of drifting invertebrates differed between fixed and fluctuating flows, in both wet and dry seasons, but family richness varied insignificantly. We conclude that macroinvertebrate assemblages downstream of dams are influenced by daily peak flow fluctuations. When making environmental flow decisions for dams, it would be wise to consider drifting macroinvertebrates because they reflect ecological changes in downstream biological assemblages.

  1. 77 FR 47628 - Archon Energy 1, Inc.; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ...), proposing to study the feasibility of the DaGuerre Point Dam Hydropower Project (DaGuerre Point Dam Project or project) to be located at the U.S. Army Corps of Engineers' (USACE) DaGuerre Point Dam, on the...

  2. Improving inflow forecasting into hydropower reservoirs through a complementary modelling framework

    NASA Astrophysics Data System (ADS)

    Gragne, A. S.; Sharma, A.; Mehrotra, R.; Alfredsen, K.

    2014-10-01

    Accuracy of reservoir inflow forecasts is instrumental for maximizing the value of water resources and benefits gained through hydropower generation. Improving hourly reservoir inflow forecasts over a 24 h lead-time is considered within the day-ahead (Elspot) market of the Nordic exchange market. We present here a new approach for issuing hourly reservoir inflow forecasts that aims to improve on existing forecasting models that are in place operationally, without needing to modify the pre-existing approach, but instead formulating an additive or complementary model that is independent and captures the structure the existing model may be missing. Besides improving forecast skills of operational models, the approach estimates the uncertainty in the complementary model structure and produces probabilistic inflow forecasts that entrain suitable information for reducing uncertainty in the decision-making processes in hydropower systems operation. The procedure presented comprises an error model added on top of an un-alterable constant parameter conceptual model, the models being demonstrated with reference to the 207 km2 Krinsvatn catchment in central Norway. The structure of the error model is established based on attributes of the residual time series from the conceptual model. Deterministic and probabilistic evaluations revealed an overall significant improvement in forecast accuracy for lead-times up to 17 h. Season based evaluations indicated that the improvement in inflow forecasts varies across seasons and inflow forecasts in autumn and spring are less successful with the 95% prediction interval bracketing less than 95% of the observations for lead-times beyond 17 h.

  3. Investigating passage of ESA-listed juvenile fall Chinook salmon at Lower Granite Dam during winter when the fish bypass system is not operated. 2006 Annual Report

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Connor, William P.

    2007-01-01

    During the winter of 2005-06, we radio and PIT tagged and released 48 juvenile fall Chinook salmon to evaluate over-wintering behavior and dam passage in the lower Snake River, Washington. Fish were released at the upstream end of the Lower Granite Dam forebay in November and December 2005. Fixed radio telemetry detection sites located in forebay and tailrace areas of Lower Granite, Little Goose, Lower Monumental and Ice Harbor dams were used to monitor fish movements and dam passage through early-May 2006. Of the 48 fish released during our study, 39 (81 %) passed Lower Granite Dam and were detected at downstream detection sites, 29 (60%) passed Little Goose Dam, 25 (52%) passed Lower Monumental Dam, and 15 (31%) passed Ice Harbor Dam. Thirty-seven (95%), 23 (79%), 16 (64%), and 9 (60%) of the fish that passed Lower Granite, Little Goose, Lower Monumental, and Ice Harbor dams respectively, did so when the fish bypass system was not operated. Passage of tagged fish past lower Snake River dams generally declined during the winter, but increased again after bypass began in April. Fish residence times in reservoirs and forebays was lengthy during the winter (up to 118 d), and varied by reservoir and time of year. We observed no diel passage trends. Only 15 of the 48 fish were subsequently detected at a PIT-tag interrogation site the following spring. We believe that passage of overwintering juvenile fall Chinook salmon during winter is due more to chance than directed downstream movement. Since the primary route of passage during the winter is through powerhouse turbines, the potential exists for increased mortality for over-wintering juvenile fall Chinook salmon in the Snake River. Our findings also have implications for transportation studies of subyearling fall Chinook salmon in the Snake River. Specifically, the finding that some fish can pass undetected during the winter may bias smolt-to-adult return rate calculations that are typically used to measure the

  4. Complementing hydropower with PV and wind: optimal energy mix in a fully renewable Switzerland

    NASA Astrophysics Data System (ADS)

    Dujardin, Jérôme; Kahl, Annelen; Kruyt, Bert; Lehning, Michael

    2017-04-01

    Like several other countries, Switzerland plans to phase out its nuclear power production and will replace most or all of it by renewables. Switzerland has the chance to benefit from a large hydropower potential and has already exploited almost all of it. Currently about 60% of the Swiss electricity consumption is covered by hydropower, which will eventually leave a gap of about 40% to the other renewables mainly composed of photovoltaics (PV) and wind. With its high flexibility, storage hydropower will play a major role in the future energy mix, providing valuable power and energy balance. Our work focuses on the interplay between PV, wind and storage hydropower, to analyze the dynamics of this complex system and to identify the best PV-wind mixing ratio. Given the current electricity consumption and the currently installed pumping capacity of the storage hydropower plants, it appears that the Swiss hydropower system can completely alleviate the intermittency of PV and wind. However, some seasonal mismatch between production and demand will remain, but we show that oversizing the production from PV and wind or enlarging the reservoir capacity can be a solution to keep it to an acceptable level or even eliminate it. We found that PV, wind and hydropower performs the best together when the share of PV in the solar - wind mix is between 20 and 60%. These findings are quantitatively specific for Switzerland but qualitatively transferable to similar mountainous environments with abundant hydropower resources.

  5. 78 FR 62351 - North Side Canal Company; Notice of Preliminary Determination of a Qualifying Conduit Hydropower...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-18

    ... The facility is Y HREA. constructed, operated, or maintained for the generation of electric power and... Conduit Hydropower Facility Satisfies Statutory provision Description (Y/N) FPA 30(a)(3)(A), as amended by The conduit the facility Y HREA. uses is a tunnel, canal, pipeline, aqueduct, flume, ditch, or similar...

  6. A Methodology for Protective Vibration Monitoring of Hydropower Units Based on the Mechanical Properties.

    PubMed

    Nässelqvist, Mattias; Gustavsson, Rolf; Aidanpää, Jan-Olov

    2013-07-01

    It is important to monitor the radial loads in hydropower units in order to protect the machine from harmful radial loads. Existing recommendations in the standards regarding the radial movements of the shaft and bearing housing in hydropower units, ISO-7919-5 (International Organization for Standardization, 2005, "ISO 7919-5: Mechanical Vibration-Evaluation of Machine Vibration by Measurements on Rotating Shafts-Part 5: Machine Sets in Hydraulic Power Generating and Pumping Plants," Geneva, Switzerland) and ISO-10816-5 (International Organization for Standardization, 2000, "ISO 10816-5: Mechanical Vibration-Evaluation of Machine Vibration by Measurements on Non-Rotating Parts-Part 5: Machine Sets in Hydraulic Power Generating and Pumping Plants," Geneva, Switzerland), have alarm levels based on statistical data and do not consider the mechanical properties of the machine. The synchronous speed of the unit determines the maximum recommended shaft displacement and housing acceleration, according to these standards. This paper presents a methodology for the alarm and trip levels based on the design criteria of the hydropower unit and the measured radial loads in the machine during operation. When a hydropower unit is designed, one of its design criteria is to withstand certain loads spectra without the occurrence of fatigue in the mechanical components. These calculated limits for fatigue are used to set limits for the maximum radial loads allowed in the machine before it shuts down in order to protect itself from damage due to high radial loads. Radial loads in hydropower units are caused by unbalance, shape deviations, dynamic flow properties in the turbine, etc. Standards exist for balancing and manufacturers (and power plant owners) have recommendations for maximum allowed shape deviations in generators. These standards and recommendations determine which loads, at a maximum, should be allowed before an alarm is sent that the machine needs maintenance. The radial

  7. Development of Sustainability Assessment Framework in Hydropower sector

    NASA Astrophysics Data System (ADS)

    Soliha Sahimi, Nur; Turan, Faiz Mohd; Johan, Kartina

    2017-08-01

    Nowadays, Malaysian demand in energy sector was drastically increase due to technological developments. Since, hydropower is one of potential renewable energy source in Malaysia. The largest electricity utility company, Tenaga Nasional Berhad was provide an electricity to more than seven million people via independent suppliers in peninsular Malaysia and Sabah by intended a potential sustainable hydropower system. In order to increasingly the power capacity from current use, 1882 MW to more than 3000 MW by years 2020. In this study, the environmental issues and also the penalty to the responsible company especially on Tenaga Nasional Berhad (TNB) towards their project or business are one of the problems. Other than that, every project or business has to prepare a sustainability statement or sustainability report as vital to Bursa Malaysia Securities Berhad under their listing requirements. Next, the sustainability performance on their project cannot be determined to achieve the key performance indicators (KPI) satisfaction from Government, stakeholder or any responsible agencies. This study presents an exhaustive review of these studies and suggests a direction for future developments. Sustainability Assessment framework or self-assessment is decidedly as a significant framework to assist towards sustainability reporting and to produce a Sustainability index for Hydropower sector using a mathematical model study. The results reveal that, the quantitative measurement from Sustainability Assessment framework to Systematic Sustainability Asssesment tool can be produce. In doing so, it is possible to improve the performance of the project especially in hydropower planner.

  8. Small Hydropower Development in Rwanda: Trends, Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Geoffrey, Gasore; Zimmerle, Daniel; Ntagwirumugara, Etienne

    2018-04-01

    The Rift Valley region of Sub-Saharan Africa represents a promising area for the development of small (<5MW) hydropower resources. This study compiles data from government and UN agency reports to analyze different development outlooks. The study found that there has been a rapid deployment of small hydropower in the last 10 years. From the current total deployed small hydro of 47.5 MW, 16.5MW (35%) were deployed from 1957 to 1984 while the remaining 31 MW (65%) were deployed from 2007 to 2017. While all systems constructed prior to 1985 are grid-connected, one third of the 24 facilities constructed after 2007 are connected to off-grid systems. The study provides an overview of the economic incentives for developing small hydropower systems in Rwanda and the potential contribution of that development to Rwanda’s electrification goals.

  9. Dam failure analysis for the Lago de Matrullas Dam, Orocovis, Puerto Rico

    USGS Publications Warehouse

    Torres-Sierra, Heriberto; Gómez-Fragoso, Julieta

    2015-01-01

    Results from the simulated dam failure of the Lago de Matrullas Dam using the HEC–RAS model for the 6- and 24-hour PMP events showed peak discharges at the dam of 3,149.33 and 3,604.70 m3/s, respectively. Dam failure during the 100-year-recurrence, 24-hour rainfall event resulted in a peak discharge of 2,103.12 m3/s directly downstream from the dam. Dam failure under sunny day conditions produced a peak discharge of 1,695.91 m3/s at the dam assuming the antecedent lake level was at the morning-glory spillway invert elevation. Flood-inundation maps prepared as part of the study depict the flood extent and provide valuable information for preparing an Emergency Action Plan. Results of the failure analysis indicate that a failure of the Lago de Matrullas Dam could cause flooding to many of the inhabited areas along stream banks from the Lago de Matrullas Dam to the mouth of the Río Grande de Manatí. Among the areas most affected are the low-lying regions in the vicinity of the towns of Ciales, Manatí, and Barceloneta. The delineation of the flood boundaries near the town of Barceloneta considered the effects of a levee constructed during 2000 at Barceloneta in the flood plain of the Río Grande de Manatí to provide protection against flooding to the near-by low-lying populated areas. The results showed overtopping can be expected in the aforementioned levee during 6- and 24-hour probable-maximum-precipitation dam failure scenarios. No overtopping of the levee was simulated, however, during dam failure scenarios under the 100-year recurrence, 24-hour rainfall event or sunny day conditions.

  10. Analysis of Daily Peaking and Run-of-River Operations with Flow Variability Metrics, Considering Subdaily to Seasonal Time Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haas, Nicholas A.; O'Connor, Ben L.; Hayse, John W.

    2014-07-22

      Environmental flows are an important consideration in licensing hydropower projects  because operational flow releases can result in adverse conditions to downstream ecological  communities. Flow variability assessments have typically focused on pre- and post-dam conditions using    metrics based on daily-averaged flow values.  This study used subdaily and daily flow data to assess    environmental flow response to changes in hydropower operations from daily-peaking to run-of-river.  An analysis tool was developed to quantify subdaily to seasonal flow variability metrics and was applied    to four hydropower projects that underwent operational changes based on regulatory requirements.  Results indicate that the distribution of flows is significantly different between daily-peaking and run-of- river operations and that daily-peaking operations are flashier than run-of-river operations; these  differences are seen using hourly-averaged flow datasets and are less pronounced or not noticeable  using daily-averaged flow datasets.  Of all variability metrics analyzed, hydrograph rise and fall rates  were the most sensitive to using daily versus subdaily flow data. This outcome has implications for the    development of flow-ecology relationships that quantify effects of rate of change on processes such as  fish stranding and displacement, along with habitat stability. The quantification of flow variability    statistics should be done using subdaily datasets and metric to accurately represent the nature of  hydropower operations , especially for facilities that utilize daily-peaking operations

  11. A simplified water temperature model for the Colorado River below Glen Canyon Dam

    USGS Publications Warehouse

    Wright, S.A.; Anderson, C.R.; Voichick, N.

    2009-01-01

    Glen Canyon Dam, located on the Colorado River in northern Arizona, has affected the physical, biological and cultural resources of the river downstream in Grand Canyon. One of the impacts to the downstream physical environment that has important implications for the aquatic ecosystem is the transformation of the thermal regime from highly variable seasonally to relatively constant year-round, owing to hypolimnetic releases from the upstream reservoir, Lake Powell. Because of the perceived impacts on the downstream aquatic ecosystem and native fish communities, the Glen Canyon Dam Adaptive Management Program has considered modifications to flow releases and release temperatures designed to increase downstream temperatures. Here, we present a new model of monthly average water temperatures below Glen Canyon Dam designed for first-order, relatively simple evaluation of various alternative dam operations. The model is based on a simplified heat-exchange equation, and model parameters are estimated empirically. The model predicts monthly average temperatures at locations up to 421 km downstream from the dam with average absolute errors less than 0.58C for the dataset considered. The modelling approach used here may also prove useful for other systems, particularly below large dams where release temperatures are substantially out of equilibrium with meteorological conditions. We also present some examples of how the model can be used to evaluate scenarios for the operation of Glen Canyon Dam.

  12. Experience in operating earth dams of the NIVA cascade of the Kola Regional Power administration constructed in 1930-1960

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nosova, O.N.; Margolina, O.G.; Sergeeva, N.S.

    1995-08-01

    This article discusses Russian experiences in monitoring earth-filled dams of the Niva region. These are low and medium head facilities in operation from 30 to 60 years. As shown by the experiences of long-term operation of earth structures in this area and on embankments being constructed by the method of dumping soil into water, it is necessary to impose more stringent requirements with respect to determining the steepness of these slopes to increase their stability, as is done when the structures are constructed dry. To organize successful monitoring of seepage processes in the investigated structures having substantial anisotropy of themore » soil, special recommendations of the disposition of piezometers under such specific conditions should be worked out. Recommendations on the disposition of piezometers under conditions of a noticeable effect of the groundwater regime of the surrounding territory on the seepage regime of the hydro development should be worked out accordingly. Since the calculations made in the work, as a result of which instability of many slopes was detected, are not always confirmed by practice, it is advisable to correct the method of such calculations with consideration of the characteristics of the formation of the seepage flow in the downstream shoulder of dams with pronounced anisotropy of the soil.« less

  13. Wynoochee Hydropower/Fish Hatchery: Feasibility Report and Environmental Impact Statement.

    DTIC Science & Technology

    1982-09-30

    Unresolved Issues. There are no unresolved issues associated with the Wynoochee hydropower/fish hatchery plan. 4. Relationship to Environmental...Requirements.l/ The relationship of the Wynoochee hydropower/fish hatchery plan to environmental requirements is summarized in the following table...Implementation of the plan would I/The relationship of the satellite fish station to the environmental requirements is not included in this discussion. Compliance

  14. Efficiency evaluation of agricultural underground dam in South Korea

    NASA Astrophysics Data System (ADS)

    Myoung, W.; Song, S. H.; Yong, H. H.

    2017-12-01

    Climate change has resulted in severe droughts in a rice-planting season (i.e., April to June) in South Korea since 2012. Therefore, all time high-amount water resources in rice-farming seasons (i.e., April to October) were required against natural crises like droughts. The underground dam, which is able to increase groundwater amounts in the alluvium aquifer, has been considered to be an alternative for securing more groundwater resources. In this study, irrigation efficiencies of five pre-existing agricultural underground dams in South Korea were evaluated during the drought periods. A total amount of groundwater storage capacities in alluvial aquifers of these five ones were estimated approximate 15 × 107 m3: above 4 × 106 m3 for two underground dams (Ian, Namsong), 2 3 × 106 m3, for 2 dams (Oksung, Wooil), below 2 × 106 m3 for 1 dam (Gocheon), respectively. Irrigating amounts of groundwater accounted for three underground dams (Ian, Namsong, Gocheon), supplied in rice-farming season are 8.5 × 105 m3/year, 8.3 × 105 m3/year, 6.3 × 105 m3/year, respectively. The total demand of agricultural water in these underground dams is 2.0 × 106 m3/year, 1.9 × 106 m3/year, 2.2 × 106 m3/year, respectively. Irrigating amounts of groundwater accounted for whole of rice-farming area in South Korea is 4.3 × 108 m3/year whereas total demand of agricultural water is 9.4 × 109 m3/year. Groundwater were pumped from the radial collector wells located in the upstream from the underground dams. Oksung underground dam, one representative underground dam located in Chungnam province in South Korea, irrigated approximate 3 × 105 m3 during a dried rice-planting season (between April to June) in 2017. It was three times more than usual (9 × 104 m3). Groundwater levels during the same period maintained above 5.55 m, which was slightly lower than usual (6.00 m). Results of Oksung underground dam demonstrated that underground dams in South Korea were effectively operated against

  15. Quantifying and Generalizing Hydrologic Responses to Dam Regulation using a Statistical Modeling Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A

    2014-01-01

    Despite the ubiquitous existence of dams within riverscapes, much of our knowledge about dams and their environmental effects remains context-specific. Hydrology, more than any other environmental variable, has been studied in great detail with regard to dam regulation. While much progress has been made in generalizing the hydrologic effects of regulation by large dams, many aspects of hydrology show site-specific fidelity to dam operations, small dams (including diversions), and regional hydrologic regimes. A statistical modeling framework is presented to quantify and generalize hydrologic responses to varying degrees of dam regulation. Specifically, the objectives were to 1) compare the effects ofmore » local versus cumulative dam regulation, 2) determine the importance of different regional hydrologic regimes in influencing hydrologic responses to dams, and 3) evaluate how different regulation contexts lead to error in predicting hydrologic responses to dams. Overall, model performance was poor in quantifying the magnitude of hydrologic responses, but performance was sufficient in classifying hydrologic responses as negative or positive. Responses of some hydrologic indices to dam regulation were highly dependent upon hydrologic class membership and the purpose of the dam. The opposing coefficients between local and cumulative-dam predictors suggested that hydrologic responses to cumulative dam regulation are complex, and predicting the hydrology downstream of individual dams, as opposed to multiple dams, may be more easy accomplished using statistical approaches. Results also suggested that particular contexts, including multipurpose dams, high cumulative regulation by multiple dams, diversions, close proximity to dams, and certain hydrologic classes are all sources of increased error when predicting hydrologic responses to dams. Statistical models, such as the ones presented herein, show promise in their ability to model the effects of dam regulation effects

  16. Dynamic water allocation policies improve the global efficiency of storage systems

    NASA Astrophysics Data System (ADS)

    Niayifar, Amin; Perona, Paolo

    2017-06-01

    Water impoundment by dams strongly affects the river natural flow regime, its attributes and the related ecosystem biodiversity. Fostering the sustainability of water uses e.g., hydropower systems thus implies searching for innovative operational policies able to generate Dynamic Environmental Flows (DEF) that mimic natural flow variability. The objective of this study is to propose a Direct Policy Search (DPS) framework based on defining dynamic flow release rules to improve the global efficiency of storage systems. The water allocation policies proposed for dammed systems are an extension of previously developed flow redistribution rules for small hydropower plants by Razurel et al. (2016).The mathematical form of the Fermi-Dirac statistical distribution applied to lake equations for the stored water in the dam is used to formulate non-proportional redistribution rules that partition the flow for energy production and environmental use. While energy production is computed from technical data, riverine ecological benefits associated with DEF are computed by integrating the Weighted Usable Area (WUA) for fishes with Richter's hydrological indicators. Then, multiobjective evolutionary algorithms (MOEAs) are applied to build ecological versus economic efficiency plot and locate its (Pareto) frontier. This study benchmarks two MOEAs (NSGA II and Borg MOEA) and compares their efficiency in terms of the quality of Pareto's frontier and computational cost. A detailed analysis of dam characteristics is performed to examine their impact on the global system efficiency and choice of the best redistribution rule. Finally, it is found that non-proportional flow releases can statistically improve the global efficiency, specifically the ecological one, of the hydropower system when compared to constant minimal flows.

  17. The potential for dams to impact lowland meandering river floodplain geomorphology.

    PubMed

    Marren, Philip M; Grove, James R; Webb, J Angus; Stewardson, Michael J

    2014-01-01

    The majority of the world's floodplains are dammed. Although some implications of dams for riverine ecology and for river channel morphology are well understood, there is less research on the impacts of dams on floodplain geomorphology. We review studies from dammed and undammed rivers and include influences on vertical and lateral accretion, meander migration and cutoff formation, avulsion, and interactions with floodplain vegetation. The results are synthesized into a conceptual model of the effects of dams on the major geomorphic influences on floodplain development. This model is used to assess the likely consequences of eight dam and flow regulation scenarios for floodplain geomorphology. Sediment starvation downstream of dams has perhaps the greatest potential to impact on floodplain development. Such effects will persist further downstream where tributary sediment inputs are relatively low and there is minimal buffering by alluvial sediment stores. We can identify several ways in which floodplains might potentially be affected by dams, with varying degrees of confidence, including a distinction between passive impacts (floodplain disconnection) and active impacts (changes in geomorphological processes and functioning). These active processes are likely to have more serious implications for floodplain function and emphasize both the need for future research and the need for an "environmental sediment regime" to operate alongside environmental flows.

  18. The Potential for Dams to Impact Lowland Meandering River Floodplain Geomorphology

    PubMed Central

    Marren, Philip M.; Grove, James R.; Webb, J. Angus; Stewardson, Michael J.

    2014-01-01

    The majority of the world's floodplains are dammed. Although some implications of dams for riverine ecology and for river channel morphology are well understood, there is less research on the impacts of dams on floodplain geomorphology. We review studies from dammed and undammed rivers and include influences on vertical and lateral accretion, meander migration and cutoff formation, avulsion, and interactions with floodplain vegetation. The results are synthesized into a conceptual model of the effects of dams on the major geomorphic influences on floodplain development. This model is used to assess the likely consequences of eight dam and flow regulation scenarios for floodplain geomorphology. Sediment starvation downstream of dams has perhaps the greatest potential to impact on floodplain development. Such effects will persist further downstream where tributary sediment inputs are relatively low and there is minimal buffering by alluvial sediment stores. We can identify several ways in which floodplains might potentially be affected by dams, with varying degrees of confidence, including a distinction between passive impacts (floodplain disconnection) and active impacts (changes in geomorphological processes and functioning). These active processes are likely to have more serious implications for floodplain function and emphasize both the need for future research and the need for an “environmental sediment regime” to operate alongside environmental flows. PMID:24587718

  19. Origin of the Colorado River experimental flood in Grand Canyon

    USGS Publications Warehouse

    Andrews, E.D.; Pizzi, L.A.

    2000-01-01

    The Colorado River is one of the most highly regulated and extensively utilized rivers in the world. Total reservoir storage is approximately four times the mean annual runoff of ~17 x 109 m3 year -1. Reservoir storage and regulation have decreased annual peak discharges and hydroelectric power generation has increased daily flow variability. In recent years, the incidental impacts of this development have become apparent especially along the Colorado River through Grand Canyon National Park downstream from Glen Canyon Dam and caused widespread concern. Since the completion of Glen Canyon Dam, the number and size of sand bars, which are used by recreational river runners and form the habitat for native fishes, have decreased substantially. Following an extensive hydrological and geomorphic investigation, an experimental flood release from the Glen Canyon Dam was proposed to determine whether sand bars would be rebuilt by a relatively brief period of flow substantially greater than the normal operating regime. This proposed release, however, was constrained by the Law of the River, the body of law developed over 70 years to control and distribute Colorado River water, the needs of hydropower users and those dependent upon hydropower revenues, and the physical constraints of the dam itself. A compromise was reached following often difficult negotiations and an experimental flood to rebuild sand bars was released in 1996. This flood, and the process by which it came about, gives hope to resolving the difficult and pervasive problem of allocation of water resources among competing interests.The Colorado River is one of the most highly regulated and extensively utilized rivers in the world. Total reservoir storage is approximately four times the mean annual runoff of approximately 17??109 m3 year-1. Reservoir storage and regulation have decreased annual peak discharges and hydroelectric power generation has increased daily flow variability. In recent years, the

  20. Environmental sustainability assessment of hydropower plant in Europe using life cycle assessment

    NASA Astrophysics Data System (ADS)

    Mahmud, M. A. P.; Huda, N.; Farjana, S. H.; Lang, C.

    2018-05-01

    Hydropower is the oldest and most common type of renewable source of electricity available on this planet. The end of life process of hydropower plant have significant environmental impacts, which needs to be identified and minimized to ensure an environment friendly power generation. However, identifying the environmental impacts and health hazards are very little explored in the hydropower processing routes despite a significant quantity of production worldwide. This paper highlight the life-cycle environmental impact assessment of the reservoir based hydropower generation system located in alpine and non-alpine region of Europe, addressing their ecological effects by the ReCiPe and CML methods under several impact-assessment categories such as human health, ecosystems, global warming potential, acidification potential, etc. The Australasian life-cycle inventory database and SimaPro software are utilized to accumulate life-cycle inventory dataset and to evaluate the impacts. The results reveal that plants of alpine region offer superior environmental performance for couple of considered categories: global warming and photochemical oxidation, whilst in the other cases the outcomes are almost similar. Results obtained from this study will take part an important role in promoting sustainable generation of hydropower, and thus towards environment friendly energy production.

  1. Detrimental effects of a novel flow regime on the functional trajectory of an aquatic invertebrate metacommunity.

    PubMed

    Ruhi, Albert; Dong, Xiaoli; McDaniel, Courtney H; Batzer, Darold P; Sabo, John L

    2018-04-17

    Novel flow regimes resulting from dam operations and overallocation of freshwater resources are an emerging consequence of global change. Yet, anticipating how freshwater biodiversity will respond to surging flow regime alteration requires overcoming two challenges in environmental flow science: shifting from local to riverscape-level understanding of biodiversity dynamics, and from static to time-varying characterizations of the flow regime. Here, we used time-series methods (wavelets and multivariate autoregressive models) to quantify flow-regime alteration and to link time-varying flow regimes to the dynamics of multiple local communities potentially connected by dispersal (i.e., a metacommunity). We studied the Chattahoochee River below Buford dam (Georgia, U.S.A.), and asked how flow regime alteration by a large hydropower dam may control the long-term functional trajectory of the downstream invertebrate metacommunity. We found that seasonal variation in hydropeaking synchronized temporal fluctuations in trait abundance among the flow-altered sites. Three biological trait states describing adaptation to fast flows benefitted from flow management for hydropower, but did not compensate for declines in 16 "loser" traits. Accordingly, metacommunity-wide functional diversity responded negatively to hydropeaking intensity, and stochastic simulations showed that the risk of functional diversity collapse within the next 4 years would decrease by 17% if hydropeaking was ameliorated, or by 9% if it was applied every other season. Finally, an analysis of 97 reference and 23 dam-affected river sites across the U.S. Southeast suggested that flow variation at extraneous, human-relevant scales (12-hr, 24-hr, 1-week) is relatively common in rivers affected by hydropower dams. This study advances the notion that novel flow regimes are widespread, and simplify the functional structure of riverine communities by filtering out taxa with nonadaptive traits and by spatially

  2. Biofuel Crops Expansion: Evaluating the Impact on the Agricultural Water Scarcity Costs and Hydropower Production with Hydro Economic Modeling

    NASA Astrophysics Data System (ADS)

    Marques, G.

    2015-12-01

    Biofuels such as ethanol from sugar cane remain an important element to help mitigate the impacts of fossil fuels on the atmosphere. However, meeting fuel demands with biofuels requires technological advancement for water productivity and scale of production. This may translate into increased water demands for biofuel crops and potential for conflicts with incumbent crops and other water uses including domestic, hydropower generation and environmental. It is therefore important to evaluate the effects of increased biofuel production on the verge of water scarcity costs and hydropower production. The present research applies a hydro-economic optimization model to compare different scenarios of irrigated biofuel and hydropower production, and estimates the potential tradeoffs. A case study from the Araguari watershed in Brazil is provided. These results should be useful to (i) identify improved water allocation among competing economic demands, (ii) support water management and operations decisions in watersheds where biofuels are expected to increase, and (iii) identify the impact of bio fuel production in the water availability and economic value. Under optimized conditions, adoption of sugar cane for biofuel production heavily relies on the opportunity costs of other crops and hydropower generation. Areas with a lower value crop groups seem more suitable to adopt sugar cane for biofuel when the price of ethanol is sufficiently high and the opportunity costs of hydropower productions are not conflicting. The approach also highlights the potential for insights in water management from studying regional versus larger scales bundled systems involving water use, food production and power generation.

  3. Financial analysis of experimental releases conducted at Glen Canyon Dam during water year 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poch, L. A.; Veselka, T. D.; Palmer, C. S.

    2012-07-16

    This report examines the financial implications of experimental flows conducted at the Glen Canyon Dam (GCD) in water year 2011. It is the third report in a series examining financial implications of experimental flows conducted since the Record of Decision (ROD) was adopted in February 1997 (Reclamation 1996). A report released in January 2011 examined water years 1997 to 2005 (Veselka et al. 2011), and a report released in August 2011 examined water years 2006 to 2010 (Poch et al. 2011). An experimental release may have either a positive or negative impact on the financial value of energy production. Thismore » study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes both that operations comply with the ROD operating criteria and the experimental releases that actually took place during the study period, and (2) a 'without experiments' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP powerplant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax model was also used to gain insights into the interplay among ROD operating criteria, exceptions that were made to criteria to accommodate the experimental releases

  4. Regulatory Approaches for Adding Capacity to Existing Hydropower Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Aaron L.; Curtis, Taylor L.; Kazerooni, Borna

    In 2015, hydroelectric generation accounted for more than 6 percent of total net electricity generation in the United States and 46 percent of electricity generation from all renewables. The United States has considerable hydroelectric potential beyond what is already being developed. Nearly 7 GW of this potential is found by adding capacity to existing hydropower facilities. To optimize the value of hydroelectric generation, the U.S. Department of Energy's Hydropower Vision Study highlights the importance of adding capacity to existing facilities. This report provides strategic approaches and considerations for Federal Energy Regulatory Commission licensed and exempt hydropower facilities seeking to increasemore » generation capacity, which may include increases from efficiency upgrades. The regulatory approaches reviewed for this report include capacity and non-capacity amendments, adding capacity during relicensing, and adding capacity when converting a license to a 10-MW exemption.« less

  5. Hydropower in Southeast United States, -a Hydroclimatological Perspective

    NASA Astrophysics Data System (ADS)

    Engstrom, J.

    2016-12-01

    Hydropower is unique among renewable energy sources for the ability to store its fuel (water) in reservoirs. The relationship between discharge, macro-scale drivers, and production is complex since production depends not only on water availability, but also upon decisions made by the institution owning the facility that has to consider many competing interests including economics, drinking water supply, recreational uses, etc. This analysis shows that the hydropower plants in Southeast U.S. (AL, GA, NC, SC, and TN) exhibit considerable year to year variability in production. Although the hydroclimatology of the Southeast U.S. has been analyzed partially, no previous study has linked the region's hydroelectricity production to any reported causes of interannual hydroclimatological variability, as has been completed in other regions. Due to the current short-term hydroelectricity production forecasts, the water resource is not optimized from a hydropower perspective as electricity generating potential is not maximized. The results of this study highlight the amount of untapped hydroelectricity that could be produced if long term hydroclimate and large-scale climate drivers were considered in production forecasts.

  6. Power Authority calls for wise investment in hydropower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yould, E.P.

    Wise investment in hydropower is one of the most valuable long-term economic actions the state of Alaska can take. A review of the hydro projects shows that investigations needed for construction of the Susitna hydroelectric project will be initiated, while Green Lake and Solomon Gulch projects at Sitka and Valdez will enter their second construction season. Swan Lake and Terror Lake hydropower construction for Ketchikan and Kodiak will also be initiated in 1980 followed by Tyee Lake hydropower for Petersburg and Wrangell. Projects still under investigation which may prove feasible for construction in the future are at Cordova, Homer, Seward,more » Bristol Bay, the Tlingit-Haida area, the lower Kuskokwim and Yukon area, and at some smaller rural communities. Other communities may be able to develop wood or peat fueled generation, wile still others might be able to develop small tidal or wind power generation. The Alaska Power Authority is attempting to expedite these projects, and the end result should be a significant degree of electrical energy independence by the end of the next decade.« less

  7. Dam break analysis and flood inundation map of Krisak dam for emergency action plan

    NASA Astrophysics Data System (ADS)

    Juliastuti, Setyandito, Oki

    2017-11-01

    The Indonesian Regulation which refers to the ICOLD Regulation (International Committee on Large Dam required have the Emergency Action Plan (EAP) guidelines because of the dams have potential failure. In EAP guidelines there is a management of evacuation where the determination of the inundation map based on flood modeling. The purpose of the EAP is to minimize the risk of loss of life and property in downstream which caused by dam failure. This paper will describe about develop flood modeling and inundation map in Krisak dam using numerical methods through dam break analysis (DBA) using hydraulic model Zhong Xing HY-21. The approaches of dam failure simulation are overtopping and piping. Overtopping simulation based on quadrangular, triangular and trapezium fracture. Piping simulation based on cracks of orifice. Using results of DBA, hazard classification of Krisak dam is very high. The nearest village affected dam failure is Singodutan village (distance is 1.45 kilometer from dam) with inundation depth is 1.85 meter. This result can be used by stakeholders such as emergency responders and the community at risk in formulating evacuation procedure.

  8. Evaluating greenhouse gas emissions from hydropower complexes on large rivers in Eastern Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arntzen, Evan V.; Miller, Benjamin L.; O'Toole, Amanda C.

    2013-03-15

    Water bodies, such as freshwater lakes, are known to be net emitters of carbon dioxide (CO2), and methane (CH4). In recent years, significant greenhouse gas (GHG) emissions from tropical, boreal, and mid-latitude reservoirs have been reported. At a time when hydropower is increasing worldwide, better understanding of seasonal and regional variation in GHG emissions is needed in order to develop a predictive understanding of such fluxes within man-made impoundments. We examined power-producing dam complexes within xeric temperate locations in the northwestern United States. Sampling environments on the Snake (Lower Monumental Dam Complex) and Columbia Rivers (Priest Rapids Dam Complex) includedmore » tributary, mainstem, embayment, forebay, and tailrace areas during winter and summer 2012. At each sampling location, GHG measurement pathways included surface gas flux, degassing as water passed through dams during power generation, ebullition within littoral embayments, and direct sampling of hyporheic pore-water. Measurements were also carried out in a free-flowing reach of the Columbia River to estimate unaltered conditions. Surface flux resulted in very low emissions, with reservoirs acting as a sink for CO2 (up to –262 mg m-2 d-1, which is within the range previously reported for similarly located reservoirs). Surface flux of methane remained below 1 mg CH4 m-2d-1, a value well below fluxes reported previously for temperate reservoirs. Water passing through hydroelectric projects acted as a sink for CO2 during winter and a small source during summer, with mean degassing fluxes of –117 and 4.5 t CO2 d-1, respectively. Degassing of CH4 was minimal, with mean fluxes of 3.1 × 10-6 and –5.6 × 10-4 t CH4 d-1 during winter and summer, respectively. Gas flux due to ebullition was greater in coves located within reservoirs than in coves within the free flowing Hanford Reach–and CH4 flux exceeded that of CO2. Methane emissions varied widely across sampling

  9. How big of an effect do small dams have? Using geomorphological footprints to quantify spatial impact of low-head dams and identify patterns of across-dam variation

    USGS Publications Warehouse

    Fencl, Jane S.; Mather, Martha E.; Costigan, Katie H.; Daniels, Melinda D.

    2015-01-01

    Longitudinal connectivity is a fundamental characteristic of rivers that can be disrupted by natural and anthropogenic processes. Dams are significant disruptions to streams. Over 2,000,000 low-head dams (<7.6 m high) fragment United States rivers. Despite potential adverse impacts of these ubiquitous disturbances, the spatial impacts of low-head dams on geomorphology and ecology are largely untested. Progress for research and conservation is impaired by not knowing the magnitude of low-head dam impacts. Based on the geomorphic literature, we refined a methodology that allowed us to quantify the spatial extent of low-head dam impacts (herein dam footprint), assessed variation in dam footprints across low-head dams within a river network, and identified select aspects of the context of this variation. Wetted width, depth, and substrate size distributions upstream and downstream of six low-head dams within the Upper Neosho River, Kansas, United States of America were measured. Total dam footprints averaged 7.9 km (3.0–15.3 km) or 287 wetted widths (136–437 wetted widths). Estimates included both upstream (mean: 6.7 km or 243 wetted widths) and downstream footprints (mean: 1.2 km or 44 wetted widths). Altogether the six low-head dams impacted 47.3 km (about 17%) of the mainstem in the river network. Despite differences in age, size, location, and primary function, the sizes of geomorphic footprints of individual low-head dams in the Upper Neosho river network were relatively similar. The number of upstream dams and distance to upstream dams, but not dam height, affected the spatial extent of dam footprints. In summary, ubiquitous low-head dams individually and cumulatively altered lotic ecosystems. Both characteristics of individual dams and the context of neighboring dams affected low-head dam impacts within the river network. For these reasons, low-head dams require a different, more integrative, approach for research and management than the individualistic

  10. How Big of an Effect Do Small Dams Have? Using Geomorphological Footprints to Quantify Spatial Impact of Low-Head Dams and Identify Patterns of Across-Dam Variation

    PubMed Central

    Costigan, Katie H.; Daniels, Melinda D.

    2015-01-01

    Longitudinal connectivity is a fundamental characteristic of rivers that can be disrupted by natural and anthropogenic processes. Dams are significant disruptions to streams. Over 2,000,000 low-head dams (<7.6 m high) fragment United States rivers. Despite potential adverse impacts of these ubiquitous disturbances, the spatial impacts of low-head dams on geomorphology and ecology are largely untested. Progress for research and conservation is impaired by not knowing the magnitude of low-head dam impacts. Based on the geomorphic literature, we refined a methodology that allowed us to quantify the spatial extent of low-head dam impacts (herein dam footprint), assessed variation in dam footprints across low-head dams within a river network, and identified select aspects of the context of this variation. Wetted width, depth, and substrate size distributions upstream and downstream of six low-head dams within the Upper Neosho River, Kansas, United States of America were measured. Total dam footprints averaged 7.9 km (3.0–15.3 km) or 287 wetted widths (136–437 wetted widths). Estimates included both upstream (mean: 6.7 km or 243 wetted widths) and downstream footprints (mean: 1.2 km or 44 wetted widths). Altogether the six low-head dams impacted 47.3 km (about 17%) of the mainstem in the river network. Despite differences in age, size, location, and primary function, the sizes of geomorphic footprints of individual low-head dams in the Upper Neosho river network were relatively similar. The number of upstream dams and distance to upstream dams, but not dam height, affected the spatial extent of dam footprints. In summary, ubiquitous low-head dams individually and cumulatively altered lotic ecosystems. Both characteristics of individual dams and the context of neighboring dams affected low-head dam impacts within the river network. For these reasons, low-head dams require a different, more integrative, approach for research and management than the individualistic

  11. 75 FR 18193 - Northern Illinois Hydropower, LLC; Notice of Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... Illinois Hydropower, LLC; Notice of Application Accepted for Filing and Soliciting Motions To Intervene and... No.: 12626-002. c. Date filed: March 31, 2009. d. Applicant: Northern Illinois Hydropower, LLC. e... Power Act, 16 U.S.C. 791(a)-825(r). h. Applicant Contact: Damon Zdunich, Northern Illinois Hydropower...

  12. 75 FR 24937 - Northern Illinois Hydropower, LLC; Notice of Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... Illinois Hydropower, LLC; Notice of Application Accepted for Filing and Soliciting Motions To Intervene and... No.: 12717-002. c. Date filed: May 27, 2009. d. Applicant: Northern Illinois Hydropower, LLC. e. Name... Hydropower, LLC, 801 Oakland Avenue, Joliet, IL 60435, (312) 320-1610. i. FERC Contact: Dr. Nicholas Palso...

  13. Use of the Legal-Institutional Analysis Model to assess hydropower licensing negotiations

    USGS Publications Warehouse

    Burkardt, N.; Lamb, B.L.; Lamb, B.L.; Garcia de Jalon, D.; Sabaton, C.; Souchon, Y.; Tamai, N.; Robinette, H.R.; Waddle, T.J.; Brinson, A.

    2003-01-01

    In the United States, the Federal Energy Regulatory Commission (FERC) is responsible for issuing or renewing licenses for hydropower projects owned and operated by power companies. During the licensing process, these companies are required to consult with agencies and other parties that are affected by project operating regimes. Typical participants include state and federal fish and wildlife agencies, environmental interest groups, and the FERC. One of the most difficult tasks facing participants is to reach agreement about what kinds of environmental conditions should be placed on license. Researchers at the United States Geological Survey developed a model to analyze the institutional context of natural resource disputes. The Legal-Institutional Analysis Model (LIAM) is a computerized model that allows an analyst to determine the likely behavior of each organization in a conflict. The model also analyzes the types and levels of negotiating power held by each organization. Researchers at the USGS have used the model in several cases involving hydropower license applications. To use the model, they facilitate workshops for stakeholder groups in order to develop a shared understanding of the likely obstacles and opportunities for successful resolution of the issues. This allows a systematic workshop analyses to develop strategies for successful negotiations, because they are able to better understand the negotiation problem and work more effectively with both their allies and their competitors.

  14. Effects of small hydropower plants on mercury concentrations in fish.

    PubMed

    Cebalho, Elaine C; Díez, Sergi; Dos Santos Filho, Manoel; Muniz, Claumir Cesar; Lázaro, Wilkinson; Malm, Olaf; Ignácio, Aurea R A

    2017-10-01

    Although the impacts of large dams on freshwater biota are relatively well known, the effects of small hydropower plants (SHP) are not well investigated. In this work, we studied if mercury (Hg) concentrations in fish rise in two tropical SHP reservoirs, and whether similar effects take place during impoundment. Total Hg concentrations in several fish species were determined at two SHP in the Upper Guaporé River basin floodplain, Brazil. In total, 185 specimens were analysed for Hg content in dorsal muscle and none of them reported levels above the safety limit (500 μg kg -1 ) for fish consumption recommended by the World Health Organisation (WHO). The highest levels of Hg (231 and 447 μg kg -1 ) were found in carnivorous species in both reservoirs. Mercury increased as a function of standard length in most of the fish populations in the reservoirs, and higher Hg concentrations were found in fish at the reservoir compared with fish downstream. The high dissolved oxygen concentrations and high transparency of the water column (i.e. oligotrophic reservoir) together with the absence of thermal stratification may explain low Hg methylation and low MeHg levels found in fish after flooding. Overall, according to limnological characteristics of water, we may hypothesise that reservoir conditions are not favourable to high net Hg methylation.

  15. Geomorphology and American dams: The scientific, social, and economic context

    NASA Astrophysics Data System (ADS)

    Graf, William L.

    2005-10-01

    American geomorphologic research related to dams is embedded in a complicated context of science, policy, economics, and culture. Research into the downstream effects of large dams has progressed to the point of theory-building, but generalization and theory-building are from this research because (1) it is highly focused on a few locations, (2) it concerns mostly very large dams rather than a representative sample of sizes, (3) the available record of effects is too short to inform us on long-term changes, (4) the reversibility of changes imposed by dam installation and operation is unknown, and (5) coordinated funding for the needed research is scarce. In the scientific context, present research is embedded in a history of geomorphology in government service, with indistinct boundaries between "basic and applied" research. The federal policy that most strongly influences present geomorphological investigations connected with dams is related to habitat for endangered species, because the biological aspects of ecosystems are directly dependent on the substrate formed by the sediments and landforms that are influenced by dams. The economic context for research includes large amounts of public funds for river restoration, along with substantial private investments in dams; and geomorphology is central to these expensive issues. The cultural context for research is highly contentious and dominated by advocacy procedures that include intense scrutiny of any geomorphologic research related to dams. Advocates are likely to use the products of geomorphological research to make cases for their own positions.

  16. Trade-off Assessment of Simplified Routing Models for Short-Term Hydropower Reservoir Optimization

    NASA Astrophysics Data System (ADS)

    Issao Kuwajima, Julio; Schwanenberg, Dirk; Alvardo Montero, Rodolfo; Mainardi Fan, Fernando; Assis dos Reis, Alberto

    2014-05-01

    Short-term reservoir optimization, also referred to as model predictive control, integrates model-based forecasts and optimization algorithms to meet multiple management objectives such as water supply, navigation, hydroelectricity generation, environmental obligations and flood protection. It is a valuable decision support tool to handle water-stress conditions or flooding events, and supports decision makers to minimize their impact. If the reservoir management includes downstream control, for example for mitigation flood damages in inundation areas downstream of the operated dam, the flow routing between the dam and the downstream inundation area is of major importance. The unsteady open channel flow in river reaches can be described by the one-dimensional Saint-Venant equations. However, owing to the mathematical complexity of those equations, some simplifications may be required to speed up the computation within the optimization procedure. Another strategy to limit the model runtime is a schematization on a course computational grid. In particular the last measure can introduce significant numerical diffusion into the solution. This is a major drawback, in particular if the reservoir release has steep gradients which we often find in hydropower reservoirs. In this work, four different routing models are assessed concerning their implementation in the predictive control of the Três Marias Reservoir located at the Upper River São Francisco in Brazil: i) a fully dynamic model using the software package SOBEK; ii) a semi-distributed rainfall-runoff model with Muskingum-Cunge routing for the flow reaches of interest, the MGB-IPH (Modelo Hidrológico de Grandes Bacias - Instituto de Pesquisas Hidráulicas); iii) a reservoir routing approach; and iv) a diffusive wave model. The last two models are implemented in the RTC-Tool toolbox. The overall model accuracy between the simplified models in RTC-Tools (iii, iv) and the more sophisticated SOBEK model (i) are

  17. Hydropower assessment of Bolivia—A multisource satellite data and hydrologic modeling approach

    USGS Publications Warehouse

    Velpuri, Naga Manohar; Pervez, Shahriar; Cushing, W. Matthew

    2016-11-28

    This study produced a geospatial database for use in a decision support system by the Bolivian authorities to investigate further development and investment potentials in sustainable hydropower in Bolivia. The study assessed theoretical hydropower of all 1-kilometer (km) stream segments in the country using multisource satellite data and a hydrologic modeling approach. With the assessment covering the 2 million square kilometer (km2) region influencing Bolivia’s drainage network, the potential hydropower figures are based on theoretical yield assuming that the systems generating the power are 100 percent efficient. There are several factors to consider when determining the real-world or technical power potential of a hydropower system, and these factors can vary depending on local conditions. Since this assessment covers a large area, it was necessary to reduce these variables to the two that can be modeled consistently throughout the region, streamflow or discharge, and elevation drop or head. First, the Shuttle Radar Topography Mission high-resolution 30-meter (m) digital elevation model was used to identify stream segments with greater than 10 km2 of upstream drainage. We applied several preconditioning processes to the 30-m digital elevation model to reduce errors and improve the accuracy of stream delineation and head height estimation. A total of 316,500 1-km stream segments were identified and used in this study to assess the total theoretical hydropower potential of Bolivia. Precipitation observations from a total of 463 stations obtained from the Bolivian Servicio Nacional de Meteorología e Hidrología (Bolivian National Meteorology and Hydrology Service) and the Brazilian Agência Nacional de Águas (Brazilian National Water Agency) were used to validate six different gridded precipitation estimates for Bolivia obtained from various sources. Validation results indicated that gridded precipitation estimates from the Tropical Rainfall Measuring Mission

  18. Modelling a hydropower plant with reservoir with the micropower optimisation model (HOMER)

    NASA Astrophysics Data System (ADS)

    Canales, Fausto A.; Beluco, Alexandre; Mendes, Carlos André B.

    2017-08-01

    Hydropower with water accumulation is an interesting option to consider in hybrid systems, because it helps dealing with the intermittence characteristics of renewable energy resources. The software HOMER (version Legacy) is extensively used in research works related to these systems, but it does not include a specific option for modelling hydro with reservoir. This paper describes a method for modelling a hydropower plant with reservoir with HOMER by adapting an existing procedure used for modelling pumped storage. An example with two scenarios in southern Brazil is presented for illustrating and validating the method explained in this paper. The results validate the method by showing a direct correspondence between an equivalent battery and the reservoir. The refill of the reservoir, its power output as a function of the flow rate and installed hydropower capacity are effectively simulated, indicating an adequate representation of a hydropower plant with reservoir is possible with HOMER.

  19. Use of multicriteria analysis (MCA) for sustainable hydropower planning and management.

    PubMed

    Vassoney, Erica; Mammoliti Mochet, Andrea; Comoglio, Claudio

    2017-07-01

    Multicriteria analysis (MCA) is a decision-making tool applied to a wide range of environmental management problems, including renewable energy planning and management. An interesting field of application of MCA is the evaluation and analysis of the conflicting aspects of hydropower (HP) exploitation, affecting the three pillars of sustainability and involving several different stakeholders. The present study was aimed at reviewing the state of the art of MCA applications to sustainable hydropower production and related decision-making problems, based on a detailed analysis of the scientific papers published over the last 15 years on this topic. The papers were analysed and compared, focusing on the specific features of the MCA methods applied in the described case studies, highlighting the general aspects of the MCA application (purpose, spatial scale, software used, stakeholders, etc.) and the specific operational/technical features of the selected MCA technique (methodology, criteria, evaluation, approach, sensitivity, etc.). Some specific limitations of the analysed case studies were identified and a set of "quality indexes" of an exhaustive MCA application were suggested as potential improvements for more effectively support decision-making processes in sustainable HP planning and management problems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Hydropower Manufacturing and Supply Chain Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotrell, Jason R

    Hydropower Manufacturing and Supply Chain Analysis presentation from the WPTO FY14-FY16 Peer Review. The project objective is to provide data and insights to inform investment strategies, policy, and other decisions to promote economic growth and manufacturing.