Science.gov

Sample records for damage calculations upstream

  1. Upstream Dysfunction of Somatomotor Functional Connectivity after Corticospinal Damage in Stroke

    PubMed Central

    Carter, Alex R.; Patel, Kevin R.; Astafiev, Serguei V.; Snyder, Abraham Z.; Rengachary, Jennifer; Strube, Michael J.; Pope, Daniel L. W.; Shimony, Joshua S.; Lang, Catherine E.; Shulman, Gordon L.; Corbetta, Maurizio

    2013-01-01

    Background Recent studies have shown that focal injuries can have remote effects on network function that impact behavior but these network-wide repercussions are poorly understood. Objective This study tested the hypothesis that lesions specifically to the outflow tract of a distributed network can result in upstream dysfunction in structurally intact portions of the network. In the somatomotor system this upstream dysfunction hypothesis predicted that lesions of the corticospinal tract might be associated with functional disruption within the system. Motor impairment might then reflect the dual contribution of corticospinal damage and altered network functional connectivity. Methods Twenty-three subacute stroke patients and thirteen healthy controls participated in the study. Corticospinal tract damage was quantified using a template of the tract generated from diffusion tensor imaging in healthy controls. Somatomotor network functional integrity was determined by resting state functional connectivity magnetic resonance imaging. Results The extent of corticospinal damage was negatively correlated with inter-hemispheric resting functional connectivity, in particular with connectivity between the left and right central sulcus. While corticospinal damage accounted for much of the variance in motor performance, the behavioral impact of resting connectivity was greater in subjects with mild or moderate corticospinal damage, and less in those with severe corticospinal damage. Conclusions Our results demonstrated that dysfunction of cortical functional connectivity can occur after interruption of corticospinal outflow tracts, and can contribute to impaired motor performance. Recognition of these secondary effects from a focal lesion is essential for understanding brain-behavior relationships after injury, and may have important implications for neurorehabilitation. PMID:21803932

  2. Application of a monotonic upstream-biased transport scheme to three-dimensional constituent transport calculations

    NASA Technical Reports Server (NTRS)

    Allen, Dale J.; Douglass, Anne R.; Rood, Richard B.; Guthrie, Paul D.

    1991-01-01

    The application of van Leer's scheme, a monotonic, upstream-biased differencing scheme, to three-dimensional constituent transport calculations is shown. The major disadvantage of the scheme is shown to be a self-limiting diffusion. A major advantage of the scheme is shown to be its ability to maintain constituent correlations. The scheme is adapted for a spherical coordinate system with a hybrid sigma-pressure coordinate in the vertical. Special consideration is given to cross-polar flow. The vertical wind calculation is shown to be extremely sensitive to the method of calculating the divergence. This sensitivity implies that a vertical wind formulation consistent with the transport scheme is essential for accurate transport calculations. The computational savings of the time-splitting method used to solve this equation are shown. Finally, the capabilities of this scheme are illustrated by an ozone transport and chemistry model simulation.

  3. SPECTER: neutron damage calculations for materials irradiations

    SciTech Connect

    Greenwood, L.R.; Smither, R.K.

    1985-01-01

    Neutron displacement damage-energy cross sections have been calculated for 41 isotopes in the energy range from 10/sup -10/ to 20 MeV. Calculations were performed on a 100-point energy grid using nuclear cross sections from ENDF/B-V and the DISCS computer code. Elastic scattering is treated exactly including angular distributions from ENDF/B-V. Inelastic scattering calculations consider both discrete and continuous nuclear level distributions. Multiple (n,xn) reactions use a Monte Carlo technique to derive the recoil distributions. The (n,d) and (n,t) reactions are treated as (n,p) and (n,/sup 3/He) as (n,/sup 4/He). The (n,..gamma..) reaction and subsequent ..beta..-decay are also included, using a new treatment of ..gamma..-..gamma.. coincidences, angular correlations, ..beta..-neutrino correlations, and the incident neutron energy. The Lindhard model was used to compute the energy available for nuclear displacement at each recoil energy. The SPECTER computer code has been developed to simplify damage calculations. The user need only specify a neutron energy spectrum. SPECTER will then calculate spectral-averaged displacements, recoil spectra, gas production, and total damage energy (Kerma). The SPECTER computer code package is readily accessible to the fusion community via the National Magnetic Fusion Energy Computer Center (NMFECC) at Lawrence Livermore National laboratory.

  4. Radiation damage calculations for the LANSCE degrader

    SciTech Connect

    Ferguson, P.D.; Sommer, W.F.; Dudziak, D.J.; Wechsler, M.S.; Barnett, M.H.; Corzine, R.K.

    1998-09-01

    The A-6 water degrader at the Los Alamos Neutron Science Center (LANSCE) linear proton accelerator has an outer shell of Inconel 718. The degrader was irradiated by 800-MeV protons during 1988--1993 to an exposure of 5.3 ampere-hours (A h). As described in Ref. 1, material from the Inconel is currently being cut into specimens for microhardness, three-point bending, ball punch, microscopy, and corrosion tests. This paper is devoted to calculations of radiation damage, particularly displacement and He production, sustained by the degrader Inconel.

  5. WRNIP1 functions upstream of DNA polymerase η in the UV-induced DNA damage response

    SciTech Connect

    Yoshimura, Akari; Kobayashi, Yume; Tada, Shusuke; Seki, Masayuki; Enomoto, Takemi

    2014-09-12

    Highlights: • The UV sensitivity of POLH{sup −/−} cells was suppressed by disruption of WRNIP1. • In WRNIP1{sup −/−/−}/POLH{sup −/−} cells, mutation frequencies and SCE after irradiation reduced. • WRNIP1 defect recovered rate of fork progression after irradiation in POLH{sup −/−} cells. • WRNIP1 functions upstream of Polη in the translesion DNA synthesis pathway. - Abstract: WRNIP1 (WRN-interacting protein 1) was first identified as a factor that interacts with WRN, the protein that is defective in Werner syndrome (WS). WRNIP1 associates with DNA polymerase η (Polη), but the biological significance of this interaction remains unknown. In this study, we analyzed the functional interaction between WRNIP1 and Polη by generating knockouts of both genes in DT40 chicken cells. Disruption of WRNIP1 in Polη-disrupted (POLH{sup −/−}) cells suppressed the phenotypes associated with the loss of Polη: sensitivity to ultraviolet light (UV), delayed repair of cyclobutane pyrimidine dimers (CPD), elevated frequency of mutation, elevated levels of UV-induced sister chromatid exchange (SCE), and reduced rate of fork progression after UV irradiation. These results suggest that WRNIP1 functions upstream of Polη in the response to UV irradiation.

  6. Calculation of complex DNA damage induced by ions

    NASA Astrophysics Data System (ADS)

    Surdutovich, Eugene; Gallagher, David C.; Solov'yov, Andrey V.

    2011-11-01

    This paper is devoted to the analysis of the complex damage of DNA irradiated by ions. The assessment of complex damage is important because cells in which it occurs are less likely to survive because the DNA repair mechanisms may not be sufficiently effective. We study the flux of secondary electrons through the surface of nucleosomes and calculate the radial dose and the distribution of clustered damage around the ion's path. The calculated radial dose distribution is compared to simulations. The radial distribution of the complex damage is found to be different from that of the dose. A comparison with experiments may solve the question of what is more lethal for the cell, damage complexity or absorbed energy. We suggest a way to calculate the probability of cell death based on the complexity of the damage. This work is done within the framework of the phenomenon-based multiscale approach to radiation damage by ions.

  7. Calculation of complex DNA damage induced by ions

    SciTech Connect

    Surdutovich, Eugene; Gallagher, David C.; Solov'yov, Andrey V.

    2011-11-15

    This paper is devoted to the analysis of the complex damage of DNA irradiated by ions. The assessment of complex damage is important because cells in which it occurs are less likely to survive because the DNA repair mechanisms may not be sufficiently effective. We study the flux of secondary electrons through the surface of nucleosomes and calculate the radial dose and the distribution of clustered damage around the ion's path. The calculated radial dose distribution is compared to simulations. The radial distribution of the complex damage is found to be different from that of the dose. A comparison with experiments may solve the question of what is more lethal for the cell, damage complexity or absorbed energy. We suggest a way to calculate the probability of cell death based on the complexity of the damage. This work is done within the framework of the phenomenon-based multiscale approach to radiation damage by ions.

  8. 46 CFR 172.170 - Damage stability calculations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Damage stability calculations. 172.170 Section 172.170 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES... Under Subchapter O of This Chapter § 172.170 Damage stability calculations. (a) Each tankship must...

  9. 46 CFR 172.170 - Damage stability calculations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Damage stability calculations. 172.170 Section 172.170 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES... Under Subchapter O of This Chapter § 172.170 Damage stability calculations. (a) Each tankship must...

  10. Mesoscale polycrystal calculations of damage in spallation in metals

    SciTech Connect

    Tonks, Davis L; Bingert, John F; Livescu, Veronica; Luo, Shengnian; Bronkhorst, C A

    2010-01-01

    The goal of this project is to produce a damage model for spallation in metals informed by the polycrystalline grain structure at the mesoscale. Earlier damage models addressed the continuwn macroscale in which these effects were averaged out. In this work we focus on cross sections from recovered samples examined with EBSD (electron backscattered diffraction), which reveal crystal grain orientations and voids. We seek to understand the loading histories of specific sample regions by meshing up the crystal grain structure of these regions and simulating the stress, strain, and damage histories in our hydro code, FLAG. The stresses and strain histories are the fundamental drivers of damage and must be calculated. The calculated final damage structures are compared with those from the recovered samples to validate the simulations.

  11. Damage calculation in fusion ceramics: comparing neutrons and light ions

    NASA Astrophysics Data System (ADS)

    Vladimirov, P. V.; Lizunov, D.; Ryazanov, Yu. A. I.; Möslang, A.

    1998-03-01

    A method developed earlier for displacement damage calculations in compound materials is applied to fusion ceramics irradiated by various neutron sources and light ion accelerators. For protons up to 40 MeV and alpha-particles up to 100 MeV, as well as for several neutron environments (EEF, ITER, HFIR, FFTF), sublattice-specific primary recoil spectra and displacement damage rates have been calculated for α-Al 2O 3, AlN, BeO, MgO, MgAl 2O 4 and SiC. Although the primary recoil spectra can vary significantly for different neutron sources and light ions, the ratios of sublattice-specific damage rates are the same within 5% for BeO, MgO and SiC in all considered environments. For ceramics containing Al, the damage ratio differs up to about 40% between neutron and light ion irradiations.

  12. Neutron dosimetry and radiation damage calculations for HFBR

    SciTech Connect

    Greenwood, L.R.; Ratner, R.T.

    1998-03-01

    Neutron dosimetry measurements have been conducted for various positions of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) in order to measure the neutron flux and energy spectra. Neutron dosimetry results and radiation damage calculations are presented for positions V10, V14, and V15.

  13. Calculated concrete target damage by multiple rod impact and penetration

    SciTech Connect

    Pincosy, P A; Murphy, M J

    2006-12-29

    The effect of enhanced crater formation has been demonstrated experimentally when multiple and delayed shaped charge jets impact and penetrate concrete. The concept for enhancement utilizes a single follow-on jet at the centerline of holes produced by multiple precursor jets penetrating the surrounding the region. Calculations of the 3D crater enhancement phenomena have been conducted with multiple rods to simulate the steady state portion of the multiple jet penetration process. It is expected that this analysis methodology will be beneficial for optimization of the multiple jet crater enhancement application. We present calculated results using ALE3D where the model uses the standard Gruneisen equation of state combined with a rate dependent strength model including material damage parameters. This study focuses on the concrete material damage model as a representation of the portion of the target that would eventually be ejected creating a large bore-hole. The calculations are compared with the experimental evidence and limitations of the modeling approach are discussed.

  14. 46 CFR 170.290 - Free surface correction for damage stability calculations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Free surface correction for damage stability...) SUBDIVISION AND STABILITY STABILITY REQUIREMENTS FOR ALL INSPECTED VESSELS Free Surface § 170.290 Free surface correction for damage stability calculations. (a) When doing the damage stability calculations required...

  15. Calculation and analysis of the non-point source pollution in the upstream watershed of the Panjiakou Reservoir, People's Republic of China

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Tang, L.

    2007-05-01

    Panjiakou Reservoir is an important drinking water resource in Haihe River Basin, Hebei Province, People's Republic of China. The upstream watershed area is about 35,000 square kilometers. Recently, the water pollution in the reservoir is becoming more serious owing to the non-point pollution as well as point source pollution on the upstream watershed. To effectively manage the reservoir and watershed and develop a plan to reduce pollutant loads, the loading of non-point and point pollution and their distribution on the upstream watershed must be understood fully. The SWAT model is used to simulate the production and transportation of the non-point source pollutants in the upstream watershed of the Panjiakou Reservoir. The loadings of non-point source pollutants are calculated for different hydrologic years and the spatial and temporal characteristics of non-point source pollution are studied. The stream network and topographic characteristics of the stream network and sub-basins are all derived from the DEM by ArcGIS software. The soil and land use data are reclassified and the soil physical properties database file is created for the model. The SWAT model was calibrated with observed data of several hydrologic monitoring stations in the study area. The results of the calibration show that the model performs fairly well. Then the calibrated model was used to calculate the loadings of non-point source pollutants for a wet year, a normal year and a dry year respectively. The time and space distribution of flow, sediment and non-point source pollution were analyzed depending on the simulated results. The comparison of different hydrologic years on calculation results is dramatic. The loading of non-point source pollution in the wet year is relatively larger but smaller in the dry year since the non-point source pollutants are mainly transported through the runoff. The pollution loading within a year is mainly produced in the flood season. Because SWAT is a

  16. Radiation damage calculations for the APT materials test program

    SciTech Connect

    Corzine, R.K.; Wechsler, M.S.; Dudziak, D.J.; Ferguson, P.D.; James, M.R.

    1999-09-01

    A materials irradiation was performed at the Los Alamos Neutron Science Center (LANSCE) in the fall of 1996 and spring of 1997 in support of the Accelerator Production of Tritium (APT) program. Testing of the irradiated materials is underway. In the proposed APT design, materials in the target and blanket are to be exposed to protons and neutrons over a wide range of energies. The irradiation and testing program was undertaken to enlarge the very limited direct knowledge presently available of the effects of medium-energy protons ({approximately}1 GeV) on the properties of engineering materials. APT candidate materials were placed in or near the LANSCE accelerator 800-MeV, 1-mA proton beam and received roughly the same proton current density in the center of the beam as would be the case for the APT facility. As a result, the proton fluences achieved in the irradiation were expected to approach the APT prototypic full-power-year values. To predict accurately the performance of materials in APT, radiation damage parameters for the materials experiment must be determined. By modeling the experiment, calculations for atomic displacement, helium and hydrogen cross sections and for proton and neutron fluences were done for representative samples in the 17A, 18A, and 18C areas. The LAHET code system (LCS) was used to model the irradiation program, LAHET 2.82 within LCS transports protons > 1 MeV, and neutrons >20 MeV. A modified version of MCNP for use in LCS, HMCNP 4A, was employed to tally neutrons of energies <20 MeV.

  17. Continuous damage parameter calculation under thermo-mechanical random loading

    PubMed Central

    Nagode, Marko

    2014-01-01

    The paper presents a method on how the mean stress effect on fatigue damage can be taken into account under an arbitrary low cycle thermo-mechanical loading. From known stress, elastoplastic strain and temperature histories the cycle amplitudes and cycle mean values are extracted and the damage parameter is computed. In contrast to the existing methods the proposed method enables continuous damage parameter computation without the need of waiting for the cycles to close. The limitations of the standardized damage parameters are thus surpassed. The damage parameters derived initially for closed and isothermal cycles assuming that the elastoplastic stress–strain response follows the Masing and memory rules can now be used to take the mean stress effect into account under an arbitrary low cycle thermo-mechanical loading. The method includes:•stress and elastoplastic strain history transformation into the corresponding amplitude and mean values;•stress and elastoplastic strain amplitude and mean value transformation into the damage parameter amplitude history;•damage parameter amplitude history transformation into the damage parameter history. PMID:26150939

  18. Incorporating Uncertainty in Ground Motion into Damage Estimation Calculations

    NASA Astrophysics Data System (ADS)

    Latchman, S.; Simic, M.

    2012-04-01

    It is well known that a ground motion prediction equation produces not just a point estimate but a variation around this point estimate. This variation in ground motion is given by a standard deviation and ground motions can be said to be lognormally distributed. When estimating the damage to a property from an earthquake, for a given fixed ground motion intensity of say 0.5g there would be a variation in damage modelled. Therefore, there are two properties varying - the intensity of the earthquake and the vulnerability of the structure. Typically, combining the two probability distributions would be computationally expensive and possibly unrealistic if a large number of locations were being modelled. This paper seeks to investigate theoretically how the two distributions can be combined to give a single probability distribution of damage and we also investigate methods which allow this computation to be speeded up through approximations. Finally the change in mean damage amount and standard deviation after accounting for uncertainty in the ground motion (as opposed to using a point estimate) is also investigated.

  19. Comparison of Measured Dark Current Distributions with Calculated Damage Energy Distributions in HgCdTe

    NASA Technical Reports Server (NTRS)

    Marshall, C. J.; Marshall, P. W.; Howe, C. L.; Reed, R. A.; Weller, R. A.; Mendenhall, M.; Waczynski, A.; Ladbury, R.; Jordan, T. M.

    2007-01-01

    This paper presents a combined Monte Carlo and analytic approach to the calculation of the pixel-to-pixel distribution of proton-induced damage in a HgCdTe sensor array and compares the results to measured dark current distributions after damage by 63 MeV protons. The moments of the Coulombic, nuclear elastic and nuclear inelastic damage distributions were extracted from Monte Carlo simulations and combined to form a damage distribution using the analytic techniques first described in [1]. The calculations show that the high energy recoils from the nuclear inelastic reactions (calculated using the Monte Carlo code MCNPX [2]) produce a pronounced skewing of the damage energy distribution. While the nuclear elastic component (also calculated using the MCNPX) contributes only a small fraction of the total nonionizing damage energy, its inclusion in the shape of the damage across the array is significant. The Coulombic contribution was calculated using MRED [3-5], a Geant4 [4,6] application. The comparison with the dark current distribution strongly suggests that mechanisms which are not linearly correlated with nonionizing damage produced according to collision kinematics are responsible for the observed dark current increases. This has important implications for the process of predicting the on-orbit dark current response of the HgCdTe sensor array.

  20. Comparison of Measured Leakage Current Distributions with Calculated Damage Energy Distributions in HgCdTe

    NASA Technical Reports Server (NTRS)

    Marshall, C. J.; Ladbury, R.; Marshall, P. W.; Reed, R. A.; Howe, C.; Weller, B.; Mendenhall, M.; Waczynski, A.; Jordan, T. M.; Fodness, B.

    2006-01-01

    This paper presents a combined Monte Carlo and analytic approach to the calculation of the pixel-to-pixel distribution of proton-induced damage in a HgCdTe sensor array and compares the results to measured dark current distributions after damage by 63 MeV protons. The moments of the Coulombic, nuclear elastic and nuclear inelastic damage distribution were extracted from Monte Carlo simulations and combined to form a damage distribution using the analytic techniques first described in [I]. The calculations show that the high energy recoils from the nuclear inelastic reactions (calculated using the Monte Car10 code MCNPX [2]) produce a pronounced skewing of the damage energy distribution. The nuclear elastic component (also calculated using the MCNPX) has a negligible effect on the shape of the damage distribution. The Coulombic contribution was calculated using MRED [3,4], a Geant4 [4,5] application. The comparison with the dark current distribution strongly suggests that mechanisms which are not linearly correlated with nonionizing damage produced according to collision kinematics are responsible for the observed dark current increases. This has important implications for the process of predicting the on-orbit dark current response of the HgCdTe sensor array.

  1. Reference data file for neutron spectrum adjustment and related radiation damage calculations

    SciTech Connect

    Zsolnay, E.M. ); Nolthenius, H.J.; Greenwood, L.R.; Szondi, E.J. )

    1990-08-01

    The REAL-88 interlaboratory exercise organized by IAEA resulted in a neutron metrology file. (NMF-90) comprising problem dependent data for benchmark neutron fields, furthermore, nuclear data and computer programs for neutron spectrum adjustment and radiation damage parameter calculations for the service life assessment of nuclear facilities. Calculation results of some experienced laboratories are also present. This paper describes and analyses the content of the neutron metrology file and outlines the most important problems and tasks to be solved in the field of radiation damage parameter calculations. 14 refs., 2 figs., 1 tab.

  2. Monte Carlo Techniques for Calculations of Charge Deposition and Displacement Damage from Protons in Visible and Infrared Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Marshall, Paul; Reed, Robert; Fodness, Bryan; Jordan, Tom; Pickel, Jim; Xapsos, Michael; Burke, Ed

    2004-01-01

    This slide presentation examines motivation for Monte Carlo methods, charge deposition in sensor arrays, displacement damage calculations, and future work. The discussion of charge deposition sensor arrays includes Si active pixel sensor APS arrays and LWIR HgCdTe FPAs. The discussion of displacement damage calculations includes nonionizing energy loss (NIEL), HgCdTe NIEL calculation results including variance, and implications for damage in HgCdTe detector arrays.

  3. A non-traditional methodology for flood stage-damage calculations

    SciTech Connect

    Das, S.; Lee, R.

    1986-01-01

    This paper presents a new methodology to calculate economic losses from hypothetical, extreme flood events, such as the Probable Maximum Flood. The methodology uses economic data compiled from already-available secondary sources, such as US Census data on magnetic tapes, utilizing microcomputer and other electronic media. Estimates of land elevations are obtained from topographic maps, and flood elevations are estimated using the dam breach and flood routing (DAMBRK) model. The calculations are performed at a disaggregate spatial scale by various land use and industrial classification categories. The basic areal units are city blocks for urbanized areas, enumeration districts, and Census tracts. Depth-damage functions, which provide an estimate of damages as a proportion of the existing value of the structure, are estimated statistically. Computer software called DAMAGE is used to combine the economic, flood elevation, and depth-damage information to compute economic losses for different possible flood stages and for different inflow events. Two case studies are presented as illustrations of the method. 19 refs., 7 figs., 1 tab.

  4. Neutron dosimetry and damage calculations for the ATR-A1 irradiation

    SciTech Connect

    Greenwood, L.R.; Ratner, R.T.

    1998-09-01

    Neutron fluence measurements and radiation damage calculations are reported for the collaborative US/Japan ATR-A1 irradiation in the Advanced Test Reactor (ATR) at Idaho National Engineering Laboratory (INEL). The maximum total neutron fluence at midplane was 9.4 {times} 10{sup 21} n/cm{sup 2} (5.5 {times} 10{sup 21} n/cm{sup 2} above 0.1 MeV), resulting in about 4.6 dpa in vanadium.

  5. Neutron dosimetry and damage calculations for the HFIR-JP-23 irradiations

    SciTech Connect

    Greenwood, L.R.; Ratner, R.T.

    1996-10-01

    Neutron fluence measurements and radiation damage calculations are reported for the joint US-Japanese experiment JP-23, which was conducted in target position G6 of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). The maximum neutron fluence at midplane was 4.4E+22 n/cm{sup 2} resulting in about 9.0 dpa in type 316 stainless steel.

  6. Neutron dosimetry and damage calculations for the EBRII COBRA-1A irradiations

    SciTech Connect

    Greenwood, L.R.; Ratner, R.T.

    1997-04-01

    Neutron fluence measurements and radiation damage calculations are reported for the joint U.S. and Japanese COBRA-1A1 and 1A2 irradiations in the Experimental Breeder Reactor II. The maximum total neutron fluences at midplane were 2.0E+22 and 7.5E+22 n/cm{sup 2}, for the 1A1 and 1A2 irradiations, respectively, resulting in about 8.0 and 30.3 dpa in stainless steel.

  7. Neutron dosimetry and damage calculations for the HFIR-JP-23 irradiations

    SciTech Connect

    Greenwood, L.R.; Ratner, R.T.

    1997-04-01

    Neutron fluence measurements and radiation damage calculations are reported for the joint U.S. Japanese experiment JP-23, which was conducted in target position G6 of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). The maximum neutron fluence at midplanes was 4.4E+22 n/cm{sup 2} resulting in about 9.0 dpa in type 316 stainless steel.

  8. Neutron dosimetry and damage calculations for the HFIR-MFE-200J-1 irradiation

    SciTech Connect

    Greenwood, L.R.; Baldwin, C.A.

    1998-03-01

    Neutron fluence measurements and radiation damage calculations are reported for the joint US-Japanese experiment MFE-200-J-, which was conducted in the removable beryllium (RB) position of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). The maximum neutron fluence at midplane was 4.1 {times} 10{sup 22} n/cm{sup 2} (1.9 {times} 10{sup 22} n/cm{sup 2} above 0.1 MeV), resulting in about 12 dpa and 28 appm helium in type 316 stainless steel.

  9. Neutron dosimetry and damage calculations for the HFIR-JP-20 irradiation

    SciTech Connect

    Greenwood, L.R.; Baldwin, C.A.

    1998-03-01

    Neutron fluence measurements and radiation damage calculations are reported for the joint US-Japanese experiment JP-20, which was conducted in a target position of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). The maximum total neutron fluence at midplane was 4.2 {times} 10{sup 22} n/cm{sup 2} (1.0 {times} 10{sup 22} n/cm{sup 2} above 0.1 MeV), resulting in about 8.4 dpa and 388 appm helium in type 316 stainless steel.

  10. Neutron dosimetry and damage calculations for the HFIR-JP-9, -12, and -15 irradiations

    SciTech Connect

    Greenwood, L.R.; Baldwin, C.A.

    1998-03-01

    Neutron fluence measurements and radiation damage calculations are reported for the joint US-Japanese experiments JP-9, -12, and -15. These experiments were conducted in target positions of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) for a period of nearly four years. The maximum neutron fluence at midplane was 2.6 {times} 10{sup 23} n/cm{sup 2} (7.1 {times} 10{sup 22} n/cm{sup 2} above 0.1 MeV), resulting in about 60 dpa and 3900 appm helium in type 316 stainless steel.

  11. Neutron dosimetry and damage calculation for the JP-10, 11, 13, and 16 experiments in HFIR

    SciTech Connect

    Greenwood, L.R.; Ratner, R.T.

    1996-04-01

    Neutron fluence measurements and radiation damage calculations are reported for the joint U.S./Japanese experiments JP-10, 11, 13, and 16 in the target of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL). These experiments were irradiated at 85 MW for 238.5 EFPD. The maximum fast neutron fluence >0.1 MeV was about 2.1E + 22 n/cm{sup 2} for all of the experiments resulting in about 17.3 dpa in 316 stainless steel.

  12. Neutron dosimetry and damage calculations for the JP-17, 18 and 19 experiments in HFIR

    SciTech Connect

    Greenwood, L.R.; Baldwin, C.A.

    1996-04-01

    Neutron fluence measurements and radiation damage calculations are reported for the joint US-Japanese experiments JP-17, 18, and 19 in the target of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). These experiments were irradiated at 85 MW for two cycles resulting in 43.55 EFPD for JP-17 and 42.06 EFPD for JP-18 and 19. The maximum fast neutron fluence > 0.1 MeV was about 3.7E + 21 n/cm{sup 2} for all three irradiations, resulting in about 3 dpa in 316 stainless steel.

  13. Correlation of theoretical calculations and experimental measurements of damage around a shaft in salt

    SciTech Connect

    Munson, D.E.; Holcomb, D.J.; DeVries, K.L.; Brodsky, N.S.

    1994-12-31

    Cross-hole ultrasonic measurements were made in the immediate wall of the Air Intake Shaft of the Waste Isolation Pilot Plant facility. These measurements show that compressional wave speed markedly decreases at the shaft wall and then increases with radial distance from the shaft to eventually become that of solid or undamaged salt. This behavior is indicative of deformation damage or microfractures in the salt. These in situ data are compared to both laboratory measurements of wave speed as a function of volume dilatancy and to calculations based on the Multimechanism Deformation Coupled Fracture model, with reasonable agreement.

  14. Energy-Deposition and Damage Calculations in Core-Vessel Inserts at the Spallation Neutron Source

    SciTech Connect

    Murphy, B.D.

    2002-06-25

    Heat-deposition and damage calculations are described for core-vessel inserts in the target area of the Spallation Neutron Source. Two separate designs for these inserts (or neutron beam tubes) were studied; a single-unit insert and a multi-unit insert. The single unit contains a neutron guide; the multi unit does not. Both units are constructed of stainless steel. For the single unit, separate studies were carried out with the guide composed of stainless steel, glass, and aluminum. Results are also reported for an aluminum window on the front of the insert, a layer of nickel on the guide, a cadmium shield surrounding the guide, and a stainless steel plug in the beam-tube opening. The locations of both inserts were the most forward positions to be occupied by each design respectively thus ensuring that the calculations are conservative.

  15. Comparison of Model Calculations of Biological Damage from Exposure to Heavy Ions with Measurements

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Hada, Megumi; Cucinotta, Francis A.; Wu, Honglu

    2014-01-01

    The space environment consists of a varying field of radiation particles including high-energy ions, with spacecraft shielding material providing the major protection to astronauts from harmful exposure. Unlike low-LET gamma or X rays, the presence of shielding does not always reduce the radiation risks for energetic charged-particle exposure. Dose delivered by the charged particle increases sharply at the Bragg peak. However, the Bragg curve does not necessarily represent the biological damage along the particle path since biological effects are influenced by the track structures of both primary and secondary particles. Therefore, the ''biological Bragg curve'' is dependent on the energy and the type of the primary particle and may vary for different biological end points. Measurements of the induction of micronuclei (MN) have made across the Bragg curve in human fibroblasts exposed to energetic silicon and iron ions in vitro at two different energies, 300 MeV/nucleon and 1 GeV/nucleon. Although the data did not reveal an increased yield of MN at the location of the Bragg peak, the increased inhibition of cell progression, which is related to cell death, was found at the Bragg peak location. These results are compared to the calculations of biological damage using a stochastic Monte-Carlo track structure model, Galactic Cosmic Ray Event-based Risk Model (GERM) code (Cucinotta, et al., 2011). The GERM code estimates the basic physical properties along the passage of heavy ions in tissue and shielding materials, by which the experimental set-up can be interpreted. The code can also be used to describe the biophysical events of interest in radiobiology, cancer therapy, and space exploration. The calculation has shown that the severely damaged cells at the Bragg peak are more likely to go through reproductive death, the so called "overkill".

  16. SPENVIS Implementation of End-of-Life Solar Cell Calculations Using the Displacement Damage Dose Methodology

    NASA Technical Reports Server (NTRS)

    Walters, Robert; Summers, Geoffrey P.; Warmer. Keffreu J/; Messenger, Scott; Lorentzen, Justin R.; Morton, Thomas; Taylor, Stephen J.; Evans, Hugh; Heynderickx, Daniel; Lei, Fan

    2007-01-01

    This paper presents a method for using the SPENVIS on-line computational suite to implement the displacement damage dose (D(sub d)) methodology for calculating end-of-life (EOL) solar cell performance for a specific space mission. This paper builds on our previous work that has validated the D(sub d) methodology against both measured space data [1,2] and calculations performed using the equivalent fluence methodology developed by NASA JPL [3]. For several years, the space solar community has considered general implementation of the D(sub d) method, but no computer program exists to enable this implementation. In a collaborative effort, NRL, NASA and OAI have produced the Solar Array Verification and Analysis Tool (SAVANT) under NASA funding, but this program has not progressed beyond the beta-stage [4]. The SPENVIS suite with the Multi Layered Shielding Simulation Software (MULASSIS) contains all of the necessary components to implement the Dd methodology in a format complementary to that of SAVANT [5]. NRL is currently working with ESA and BIRA to include the Dd method of solar cell EOL calculations as an integral part of SPENVIS. This paper describes how this can be accomplished.

  17. Neutron dosimetry and damage calculations for the TRIGA MARK-II reactor in Vienna

    NASA Astrophysics Data System (ADS)

    Weber, H. W.; Böck, H.; Unfried, E.; Greenwood, L. R.

    1986-02-01

    In order to improve the source characterization of the reactor, especially for recent irradiation experiments in the central irradiation thimble, neutron activation experiments were made on 16 nuclides and the neutron flux spectrum was adjusted using the computer code STAY'SL. The results for the total, thermal and fast neutron flux density at a reactor power of 250 kW are as follows: 2.1 × 10 17, 6.1 × 10 16 ( E < 0.55 eV), 7.6 × 10 16 ( E > 0.1 MeV) and 4.0 × 10 16 ( E > 1 MeV) m -2 s -1. respectively. Calculated damage energy cross sections and gas production rates are presented for selected elements.

  18. Comparison of Model Calculations of Biological Damage from Exposure to Heavy Ions with Measurements

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee Y.; Wu, Honglu; Hada, Megumi; Cucinotta, Francis

    The space environment consists of a varying field of radiation particles including high-energy ions, with spacecraft shielding material providing the major protection to astronauts from harmful exposure. Unlike low-LET g or X rays, the presence of shielding does not always reduce the radiation risks for energetic charged-particle exposure. Dose delivered by the charged particle increases sharply at the Bragg peak. However, the Bragg curve does not necessarily represent the biological damage along the particle path since biological effects are influenced by the track structures of both primary and secondary particles. Therefore, the ‘‘biological Bragg curve’’ is dependent on the energy and the type of the primary particle and may vary for different biological end points. Measurements of the induction of micronuclei (MN) have made across the Bragg curve in human fibroblasts exposed to energetic silicon and iron ions in vitro at two different energies, 300 MeV/nucleon and 1 GeV/nucleon. Although the data did not reveal an increased yield of MN at the location of the Bragg peak, the increased inhibition of cell progression, which is related to cell death, was found at the Bragg peak location. These results are compared to the calculations of biological damage using a stochastic Monte-Carlo track structure model, Galactic Cosmic Ray Event-based Risk Model (GERM) code (Cucinotta et al., 2011). The GERM code estimates the basic physical properties along the passage of heavy ions in tissue and shielding materials, by which the experimental set-up can be interpreted. The code can also be used to describe the biophysical events of interest in radiobiology, cancer therapy, and space exploration. The calculation has shown that the severely damaged cells at the Bragg peak are more likely to go through reproductive death, the so called “overkill”. F. A. Cucinotta, I. Plante, A. L. Ponomarev, and M. Y. Kim, Nuclear Interactions in Heavy Ion Transport and Event

  19. Upstream waves at Uranus

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Lepping, R. P.; Smith, C. W.

    1990-01-01

    Since the Mach number of the solar wind increases with increasing heliocentric distance, the ratio of thermal to magnetic pressure, or beta, of the Uranian magnetosheath is expected to be much higher than in the terrestrial magnetosheath. Consistent with this expectation, the magnetosheat is observed to be extremely turbulent, and many particles may leak back upstream into the solar wind and/or be scattered from the bow shock. In accord with the expected presence of backstreaming particles, waves of the type associated with terrestrial backstreaming particles are seen outbound along the trajectory of Voyager in the preshock solar wind with frequencies close to 0.001 Hz. The wave frequency is close to that expected for upstream waves based on measurements closer to the sun. Upstream from the bow shock, the magnetic field was found to be much weaker than expected from observations in the inner solar system. The cause of this depression is unlikely to be the upstream particles; rather, the cause is probably intrinsic to the solar wind such as reconnection across the heliospheric current sheet.

  20. Damping and spectral formation of upstream whistlers

    SciTech Connect

    Orlowski, D.S.; Russell, C.T.; Krauss-Varban, D.

    1995-09-01

    Previous studies have indicated that damping rates of upstream whistlers strongly depend on the details of the electron distribution function. Moreover, detailed analysis of Doppler shift and the whistler dispersion relation indicate that upstream whistlers propagate obliquely in a finite band of frequencies. In this paper we present results of a kinetic calculation of damping lengths of wideband whistlers using the sum of seven drifting bi-Maxwellian electron distributions as a best fit to the ISEE 1 electron data. For two cases, when upstream whistlers are observed, convective damping lengths derived from ISEE magnetic field and ephemeris data are compared with theoretical results. We find that the calculated convective damping lengths are consistent with the data and that upstream whistlers remain marginally stable. We also show that the slope of plasma frame spectra of upstream whistlers, obtained by direct fitting of the observed spectra, is between 5 and 7. The overall spectral, wave, and particle characteristics, proximity to the shock, as well as propagation and damping properties indicated that these waves cannot be generated locally. Instead, the observed upstream whistlers arise in the shock ramp, most likely by a variety of cross-field drift and/or anisotropy driven instabilities. 57 refs., 11 figs.

  1. Upstream waves at Mars

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Luhmann, J. G.; Schwingenschuh, K.; Riedler, W.; Eroshenko, E.

    1992-01-01

    Weak, about 0.15 nT, narrow band emissions at the proton gyro frequency are observed by the Phobos magnetometer MAGMA, upstream from the bow shock of Mars. These waves are left-hand elliptically polarized. They may be associated with the pick up of protons from the Martian hydrogen exosphere. Strong turbulence, similar to that observed at the terrestrial bow shock, is found on occasion in the upstream region when the IMF connects to the bow shock. On two occasions this turbulence occurred when the spacecraft crossed the orbit of Phobos. This coincidence raises the possibility that material in the orbits of Phobos interacts with the solar wind in such a way to either affect the direction of the IMF or to cause instabilities in the solar wind plasma. However, since on a third occasion these waves did not occur, these waves may be shock associated rather than Phobos associated.

  2. Upstream health law.

    PubMed

    Sage, William M; McIlhattan, Kelley

    2014-01-01

    For the first time, entrepreneurs are aggressively developing new technologies and business models designed to improve individual and population health, not just to deliver specialized medical care. Consumers of these goods and services are not yet "patients"; they are simply people. As this sector of the health care industry expands, it is likely to require new forms of legal governance, which we term "upstream health law." PMID:25565619

  3. Determination of ultra-short laser induced damage threshold of KH2PO4 crystal: Numerical calculation and experimental verification

    NASA Astrophysics Data System (ADS)

    Cheng, Jian; Chen, Mingjun; Kafka, Kyle; Austin, Drake; Wang, Jinghe; Xiao, Yong; Chowdhury, Enam

    2016-03-01

    Rapid growth and ultra-precision machining of large-size KDP (KH2PO4) crystals with high laser damage resistance are tough challenges in the development of large laser systems. It is of high interest and practical significance to have theoretical models for scientists and manufacturers to determine the laser-induced damage threshold (LIDT) of actually prepared KDP optics. Here, we numerically and experimentally investigate the laser-induced damage on KDP crystals in ultra-short pulse laser regime. On basis of the rate equation for free electron generation, a model dedicated to predicting the LIDT is developed by considering the synergistic effect of photoionization, impact ionization and decay of electrons. Laser damage tests are performed to measure the single-pulse LIDT with several testing protocols. The testing results combined with previously reported experimental data agree well with those calculated by the model. By taking the light intensification into consideration, the model is successfully applied to quantitatively evaluate the effect of surface flaws inevitably introduced in the preparation processes on the laser damage resistance of KDP crystals. This work can not only contribute to further understanding of the laser damage mechanisms of optical materials, but also provide available models for evaluating the laser damage resistance of exquisitely prepared optical components used in high power laser systems.

  4. Three-Dimensional Monte Carlo Computer Code System for Calculating Radiation Damage from Ion Beams.

    Energy Science and Technology Software Center (ESTSC)

    1983-06-01

    Version 00 HERAD was developed to study the effect of the microstructure on the range and damage of implanted ions in materials. Helpful to those looking at differences between theory and experiment, it predicts the range and damage in homogeneous or inhomogeneous materials, e.g., materials which contain voids, precipitates or bubbles.

  5. Propagation and damping of broadband upstream whistlers

    NASA Technical Reports Server (NTRS)

    Orlowski, D. S.; Russell, C. T.; Krauss-Varban, D.; Omidi, N.; Thomsen, M. F.

    1995-01-01

    Previous studies indicated that damping rates of upstream whistlers strongly depend on the details of the electron distribution function. Moreover, detailed analysis of Doppler-shift and whistler dispersion relation indicated that upstream whistlers propagate obliquely in a broad band. In this paper we present results of a kinetic calculation of damping lengths of wide-band whistlers using the sum of 7-drifting bi-Maxwellian electron distributions as a best fit to the International Sun Earth Explorer (ISEE) 1 electron data. For 2 cases, when upstream whistlers are observed, convective damping lengths derived from ISEE magnetic field and ephemeris data are compared with theoretical results. We find that the calculated convective damping lengths are consistent with the data and that upstream whistlers remain marginally stable. We also show that the slope of plasma frame spectra of upstream whistlers, obtained by direct fitting of the observed spectra is between 5 and 7 with a sharp lower frequency cutoff corresponding to a wavelength of about one ion inertial length. When the solar wind velocity is directed largely along the wave normal of the upstream whistlers the polariztion of the right hand waves becomes reversed and low frequencies are switched to high resulting in a peaked spectrum with a strong high frequency cutoff. The overall spectral, wave and particle characteristics, proximity to the shock as well as propagation and damping properties indicate that these waves cannot be generated locally. Instead the observed upstream whistlers arise in the shock ramp most likely by a variety of cross-field drift and/or anisotropy driven instabilities.

  6. Development of an analytic procedure to calculate damage accumulation in composites during low velocity impact

    NASA Technical Reports Server (NTRS)

    Humphreys, E. A.; Goering, J.

    1983-01-01

    A computerized procedure was developed to model the response of a laminated composite plate subjected to low velocity impact. The methodology incorporated transient dynamics finite element analysis coupled with composite layer and interlaminar stress predictions. Damage was predicted using a stress based failure criteria and incorporated into the solution as stiffness modifications. The force-displacement relation between the impactor and plate was modelled with a nonlinear contact spring similar to Hertzian contact. Analyses performed predicted ply damage early in the impact event when the displacement fields were characteristic of high frequency flexurable response.

  7. Brine release based on structural calculations of damage around an excavation at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect

    Munson, D.E.; Jensen, A.L.; Webb, S.W.; DeVries, K.L.

    1996-02-01

    In a large in situ experimntal circular room, brine inflow was measured over 5 years. After correcting for evaporation losses into mine ventilation air, the measurements gave data for a period of nearly 3 years. Predicted brine accumulation based on a mechanical ``snow plow`` model of the volume swept by creep-induced damage as calculated with the Multimechanism Deformation Coupled Fracture model was found to agree with experiment. Calculation suggests the damage zone at 5 years effectively exends only some 0.7 m into the salt around the room. Also, because the mecahnical model of brine release gives an adequate explanation of the measured data, the hydrological process of brine flow appears to be rapid compared to the mechanical process of brine release.

  8. 46 CFR 170.290 - Free surface correction for damage stability calculations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... this subchapter, the virtual increase in the vessel's vertical center of gravity due to liquids in... from the vertical; or (2) Calculating the shift of the center of gravity of the liquid in the tank...

  9. 46 CFR 170.290 - Free surface correction for damage stability calculations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... this subchapter, the virtual increase in the vessel's vertical center of gravity due to liquids in... from the vertical; or (2) Calculating the shift of the center of gravity of the liquid in the tank...

  10. 46 CFR 170.290 - Free surface correction for damage stability calculations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... this subchapter, the virtual increase in the vessel's vertical center of gravity due to liquids in... from the vertical; or (2) Calculating the shift of the center of gravity of the liquid in the tank...

  11. Escape of heated ions upstream of quasi-parallel shocks

    NASA Technical Reports Server (NTRS)

    Edmiston, J. P.; Kennel, C. F.; Eichler, D.

    1982-01-01

    A simple theoretical criterion by which quasi-parallel and quasi-perpendicular collisionless shocks may be distinguished is proposed on the basis of an investigation of the free escape of ions from the post-shock plasma into the region upstream of a fast collisionless shock. It was determined that the accessibility of downstream ions to the upstream region depends on upstream magnetic field shock normal angle, in addition to the upstream plasma parameters, with post-shock ions escaping upstream for shock normal angles of less than 45 deg, in agreement with the observed transition between quasi-parallel and quasi-perpendicular shock structure. Upstream ion distribution functions resembling those of observed intermediate ions and beams are also calculated.

  12. Radiation damage in NaCl: Calculations with an extended Jain-Lidiard model

    SciTech Connect

    Soppe, W.J.; Prij, J.

    1993-12-31

    The colloid growth due to irradiation in a rock salt formation is calculated with an extended version of the Jain-Lidiard model. The extensions of the model comprise a description of the nucleation stage of the colloids and the role of impurities on the formation of defect centers. Results of model calculations are shown for a representative design for a high-level radioactive waste repository in a rock salt formation. It is concluded that it is unlikely that, near the waste containers, the fraction of NaCl that will be converted to metallic Na and molecular Cl centers will exceed a few mole percent.

  13. Radiation Damage Calculations for the FUBR and BEATRIX Irradiations of Lithium Compounds in EBR-II and FFTF

    SciTech Connect

    LR Greenwood

    1999-06-17

    The Fusion Breeder Reactor (FUBR) and Breeder Exchange Matrix (BEATRIX) experiments were cooperative efforts by members of the International Energy Agency to investigate the irradiation behavior of solid breeder materials for tritium production to support future fusion reactors. Lithium ceramic materials including Li{sub 2}O, LiAlO{sub 2}, Li{sub 4}SiO{sub 4}, and Li{sub 2}ZrO{sub 3} with varying {sup 6}Li enrichments from 0 to 95% were irradiated in a series of experiments in the Experimental Breeder Reactor (EBR II) and in the Fast Flux Test Facility (FFTF) over a period of about 10 years from 1982 to 1992. These experiments were characterized in terms of the nominal fast neutron fluences and measured {sup 6}Li burnup factors, as determined by either mass spectrometry or helium measurements. Radiation damage in these compounds is caused by both the {sup 6}Li-burnup reaction and by all other possible neutron reactions with the atoms in the compound materials. In this report, displacements per atom (dpa) values have been calculated for each type of material in each of the various irradiations that were conducted. Values up to 11% {sup 6}Li-burnup and 130 dpa are predicted for the longest irradiations. The dpa cross sections were calculated for each compound using the SPECOMP computer code. Details of the dpa calculations are presented in the report. Total dpa factors were determined with the SPECTER computer code by averaging the dpa cross sections over the measured or calculated neutron flux spectra for each series of irradiations. Using these new calculations, previously measured radiation damage effects in these lithium compounds can be compared or correlated with other irradiation data on the basis of the dpa factor as well as {sup 6}Li-burnup.

  14. Admissible upstream conditions for slender compressible vortices

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Krause, E.; Menne, S.

    1986-01-01

    The influence of the compressibility on the flow in slender vortices is being studied. The dependence of the breakdown of the slender-vortex approximation on the upstream conditions is demonstrated for various Reynolds numbers and Mach numbers. Compatibility conditions, which have to be satisfied if the vortex is to remain slender, are discussed in detail. The general discussions are supplemented by several sample calculations.

  15. Hydraulic jumps with upstream shear

    NASA Astrophysics Data System (ADS)

    Ogden, Kelly; Helfrich, Karl

    2013-11-01

    Hydraulic jumps in flows with background shear are investigated, motivated by applications such as the flow over sills in Knight Inlet and the Pre-Bosphorus Channel. The full solution space and allowable solutions to several two-layer theories for hydraulic jumps with upstream shear are identified. The two-layer theories considered, including a recent theory by Borden et al. (JFM, 2012), are distinguished by how dissipation is partitioned between the layers. It is found that upstream shear with a faster and thinner lower layer causes an increase in bore speed, for a given jump height. Further, these two-layer solutions only exist for a limited range of upstream shear. 2D numerical simulations are conducted, guided by the two-layer theory solution space, and the results are compared to the theories. The simulations show the qualitative types of hydraulic transitions that occur, including undular bores, fully turbulent jumps, and conjugate state-like solutions; the type depends on the jump height and upstream shear for fixed upstream layer depths. Numerical simulations are used to investigate the mixing. Finally, a few 3D numerical simulations were made and are found to be consistent with the 2D results.

  16. The electron distribution function upstream from the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1987-01-01

    A general analytic theory for the distribution function of particles backstreaming from an arbitrary shock in a magnetized plasma is presented. Particle motions are shown to be restricted to two-dimensional planes. A general form for the source term describing upstreaming particles accelerated at the shock is presented along with explicit source terms for planar and parabolic shocks. The origin and form of the escape velocity cutoff for a shock in a magnetized plasma are discussed. The distribution function upstream of a finite planar shock and a parabolic shock in two dimensions is calculated, and an analytic approximation of the cutoff velocity at points in the upstream region is derived. The theory is then applied to the earth's bow shock, calculating distribution functions and the nature and spatial variation of the cutoff velocity. The theory for the particle distribution upstream of the bow shock is compared with the model of Filbert and Kellogg (1979).

  17. 10. View to west from Jacob Meyer Park, showing upstream ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. View to west from Jacob Meyer Park, showing upstream (east) side of truss span. Bend is visible in lower portion of damaged vertical compression member third from right. - Stanislaus River Bridge, Atchison, Topeka & Santa Fe Railway at Stanislaus River, Riverbank, Stanislaus County, CA

  18. 42. VIEW OF STAGE RECORDER AT END OF UPSTREAM GUIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. VIEW OF STAGE RECORDER AT END OF UPSTREAM GUIDE WALL, LOOKING NORTHEAST. (Several hours after this view was taken, the stage recorder was hit a~d heavily damaged by a grain barge.) - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 9, Lynxville, Crawford County, WI

  19. Upstream Swimming in Microbiological Flows.

    PubMed

    Mathijssen, Arnold J T M; Shendruk, Tyler N; Yeomans, Julia M; Doostmohammadi, Amin

    2016-01-15

    Interactions between microorganisms and their complex flowing environments are essential in many biological systems. We develop a model for microswimmer dynamics in non-Newtonian Poiseuille flows. We predict that swimmers in shear-thickening (-thinning) fluids migrate upstream more (less) quickly than in Newtonian fluids and demonstrate that viscoelastic normal stress differences reorient swimmers causing them to migrate upstream at the centerline, in contrast to well-known boundary accumulation in quiescent Newtonian fluids. Based on these observations, we suggest a sorting mechanism to select microbes by swimming speed. PMID:26824571

  20. Upstream Swimming in Microbiological Flows

    NASA Astrophysics Data System (ADS)

    Mathijssen, Arnold J. T. M.; Shendruk, Tyler N.; Yeomans, Julia M.; Doostmohammadi, Amin

    2016-01-01

    Interactions between microorganisms and their complex flowing environments are essential in many biological systems. We develop a model for microswimmer dynamics in non-Newtonian Poiseuille flows. We predict that swimmers in shear-thickening (-thinning) fluids migrate upstream more (less) quickly than in Newtonian fluids and demonstrate that viscoelastic normal stress differences reorient swimmers causing them to migrate upstream at the centerline, in contrast to well-known boundary accumulation in quiescent Newtonian fluids. Based on these observations, we suggest a sorting mechanism to select microbes by swimming speed.

  1. Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania.

    PubMed

    Jupé, Marco; Jensen, Lars; Melninkaitis, Andrius; Sirutkaitis, Valdas; Ristau, Detlev

    2009-07-20

    Laser damage phenomena are governed by a number of different effects for the respective operation modes and pulse durations. In the ultra short pulse regime the electronic structure in the dielectric coating and the substrate material set the prerequisite for the achieved laser damage threshold of an optical component. Theoretical considerations have been done to assess the impact of contributing ionization phenomena in order to find a valid description for laser-induced damage in the femtosecond (fs) domain. Subsequently, a special set of sample has been designed to verify these considerations via ISO certified laser damage testing. Examining the theoretical and experimental data reveals the importance of multi-photon absorption for the optical breakdown. For titania, the influence of multi-photon absorption has been clearly shown by a quantized wavelength characteristic of the laser damage threshold. PMID:19654628

  2. Upstream/downstream: Issues in environmental ethics

    SciTech Connect

    Scherer, D.

    1991-01-01

    Upstream/Downstream reminds us that there are four issues that are more or less distinctive to environmental ethics. First, and most distinctively, environmental issues involve the standing of nonhuman living things and systems. Thus, environmental politics is only partly a clash among the interest of the parties involved; it often involves actions on behalf of the existence rights of nonhuman life forms. Second, environmental ethics concern the intergenerational distribution of benefits more explicitly than do most other ethical issues, which brings out serious weaknesses in legal frameworks that rely on claims for damages. Third, the complexity and indirectness of many environmental impacts introduces a high degree of uncertainty and thus technical as well as ethical issues of prudent behavior. Specifically, where science may not fully reveal environmental risks, should development proceed; should analysis proceed if it is known to have a Pollyanna bias Fourth, insofar as environmental damage is typically done to common property, and thus its regulation is generally a matter for governmental regulation, the obligations of private actors to make sacrifices beyond what government requires is at issue - an issue that one would expect to be taken up at length in the other volumes.

  3. Upstream waves in Saturn's foreshock

    NASA Technical Reports Server (NTRS)

    Bavassano Cattaneo, M. B.; Cattaneo, P.; Moreno, G.; Lepping, R. P.

    1991-01-01

    An analysis based on plasma and magnetic-field data obtained from Voyager 1 during its Saturn encounter is reported. The plasma data provided every 96 sec and magnetic-field data averaged over 48 sec are utilized. The evidence of upstream waves at Saturn are detected. The waves have a period, in the spacecraft frame, of about 550 sec and a relative amplitude larger than 0.3, are left- and right-hand elliptically polarized, and propagate at about 30 deg with respect to the average magnetic field. The appearance of the waves is correlated with the spacecraft being magnetically connected to the bow shock.

  4. A study of pump cavitation damage

    NASA Astrophysics Data System (ADS)

    Brophy, M. C.; Stinebring, D. R.; Billet, M. L.

    1983-11-01

    The cavitation assessment for the space shuttle main engine high pressure oxidizer turbopump is documented. A model of the flow through the pump was developed. Initially, a computational procedure was used to analyze the flow through the inlet casing including the prediction of wakes downstream of the casing vanes. From these flow calculations, cavitation patterns on the inducer blades were approximated and the damage rate estimated. The model correlates the heavy damage on the housing and over the inducer with unsteady blade surface cavitation. The unsteady blade surface cavitation is due to the large incidence changes caused by the wakes of the upstream vanes. Very high cavitation damage rates are associated with this type of cavitation. Design recommendations for reducing the unsteady cavitation include removing the set of vanes closest to the inducer and modifying the remaining vanes.

  5. Calculating the shrapnel generation and subsequent damage to first wall and optics components for the National Ignition Facility

    SciTech Connect

    Tokheim, R.E.; Seaman, L.; Cooper, T.; Lew, B.; Curran, D.R.; Sanchez, J.; Anderson, A.; Tobin, M.

    1996-08-06

    The purpose of this work is to computationally assess the threat from shrapnel generation on the National Ignition Facility (NIF) first wall, final optics, and ultimately other target chamber components. Shrapnel is defined as material.that is in a solid, liquid, or clustered-vapor phase with sufficient velocity to become a threat to exposed surfaces as a consequence of its impact. Typical NIF experiments will be of two types, low neutron yield shots in which the capsule is not cryogenically cooled, and high yield shots for which cryogenic cooling of the capsule is required. For non-cryogenic shots, shrapnel would be produced by spaIIing, melting and vaporizing of ``shine shields`` by absorption and shock wave loading following 1-{omega} and 2-{omega} laser radiation. For cryogenic shots, shrapnel would be generated through shock wave splitting, spalling, and droplet formation of the cryogenic tubes following neutron energy deposition. Motion of the shrapnel is determined not only by particle velocities resulting from the neutron deposition, but also by both x-ray and debris loading arising from explosion of the hohlraum. Material responses of different target area components are computed from one- dimensional and two-dimensional stress wave propagation codes. Well developed rate-dependent spall computational models are used for stainless steel spall and splitting,. Severe cell distortion is accounted for in shine-shield and hohlraum-loading computations. Resulting distributions of shrapnel particles are traced to the first wall and optics and damage is estimated for candidate materials. First wall and optical material damage from shrapnel includes crater formation and associated extended cracking.

  6. Upstream Waves and Particles at the Moon

    NASA Astrophysics Data System (ADS)

    Harada, Y.; Halekas, J. S.

    2016-02-01

    This chapter presents an up-to-date catalog of Moon-related particle populations and lunar upstream waves obtained from in situ measurements at low (<˜100 km) and high altitudes, aimed at organizing and clarifying the currently available information on this complex region, where multiple categories of waves and particles coexist. It then briefly outlines the observed properties of a variety of classes of lunar upstream waves, as well as their generation mechanisms currently proposed, in association with the lunar upstream particle distributions. The lunar upstream region magnetically connected to the Moon and its wake, the fore-moon, represents a remarkably rich zoo of different classes of waves and different types of particles. Although recent observations have substantially enhanced our knowledge by revealing a number of new categories of upstream particles and waves at the Moon, many fundamental questions remain unanswered, and these are outlined in the chapter.

  7. Neutron dosimetry, damage calculations, and helium measurements for the HFIR-MFE-60J-1 and MFE-330J-1 spectral tailoring experiments

    SciTech Connect

    Greenwood, L.R.; Baldwin, C.A.; Oliver, B.M.

    1995-04-01

    The objective is to provide dosimetry and damage analysis for fusion materials irradiation experiments. Neutron fluence measurements and radiation damage calculations are reported for the joint US -Japanese MFE-60J-1 and MFE-330J-1 experiments in the hafnium-lined removable beryllium (RB{sup *}) position of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory. These experiments were continuations of the ORR-6J and 7J irradiations performed in the Oak Ridge Research Reactor. The combination of irradiations was designed to tailor the neutron spectrum in order to achieve fusion reactor helium/dpa levels in stainless steel. These experiments produced maximum helium (appm)/dpa(displacement per atom) levels of 10.2 at 18.5 dpa for the ORR-6J and HFIR-MFE-60J-1 combination and 11.8 at 19.0 dpa for the ORR-7J and HFIR-MFE-330J-1 combination. A helium measurement in one JPCA sample was in good agreement with helium calculations.

  8. Upstream Structural Management Measures for an Urban Area Flooding in Turkey and their Consequences on Flood Risk Management

    NASA Astrophysics Data System (ADS)

    Akyurek, Z.; Bozoglu, B.; Girayhan, T.

    2015-12-01

    Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. In this study the flood modelling in an urbanized area, namely Samsun-Terme in Blacksea region of Turkey is done. MIKE21 with flexible grid is used in 2- dimensional shallow water flow modelling. 1/1000 scaled maps with the buildings for the urbanized area and 1/5000 scaled maps for the rural parts are used to obtain DTM needed in the flood modelling. The bathymetry of the river is obtained from additional surveys. The main river passing through the urbanized area has a capacity of Q5 according to the design discharge obtained by simple ungauged discharge estimation depending on catchment area only. The effects of the available structures like bridges across the river on the flooding are presented. The upstream structural measures are studied on scenario basis. Four sub-catchments of Terme River are considered as contributing the downstream flooding. The existing circumstance of the Terme River states that the meanders of the river have a major effect on the flood situation and lead to approximately 35% reduction in the peak discharge between upstream and downstream of the river. It is observed that if the flow from the upstream catchments can be retarded through a detention pond constructed in at least two of the upstream catchments, estimated Q100 flood can be conveyed by the river without overtopping from the river channel. The operation of the upstream detention ponds and the scenarios to convey Q500 without causing flooding are also presented. Structural management measures to address changes in flood characteristics in water management planning are discussed. Flood risk is obtained by using the flood hazard maps and water depth-damage functions plotted for a variety of building types and occupancies

  9. UPSTREAM MOTIONS IN STRATIFIED FLOW (JOURNAL VERSION)

    EPA Science Inventory

    In the paper experimental measurements of the time-dependent velocity and density perturbations upstream of obstacles in linearly stratified flow are presented. Attention is concentrated on obstacles which generate turbulent separated wakes at Froude numbers, based on velocity an...

  10. Direct Upstream Motility in Escherichia coli

    PubMed Central

    Kaya, Tolga; Koser, Hur

    2012-01-01

    We provide an experimental demonstration of positive rheotaxis (rapid and continuous upstream motility) in wild-type Escherichia coli freely swimming over a surface. This hydrodynamic phenomenon is dominant below a critical shear rate and robust against Brownian motion and cell tumbling. We deduce that individual bacteria entering a flow system can rapidly migrate upstream (>20 μm/s) much faster than a gradually advancing biofilm. Given a bacterial population with a distribution of sizes and swim speeds, local shear rate near the surface determines the dominant hydrodynamic mode for motility, i.e., circular or random trajectories for low shear rates, positive rheotaxis for moderate flow, and sideways swimming at higher shear rates. Faster swimmers can move upstream more rapidly and at higher shear rates, as expected. Interestingly, we also find on average that both swim speed and upstream motility are independent of cell aspect ratio. PMID:22500751

  11. Catalytic Ignition and Upstream Reaction Propagation in Monolith Reactors

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.

    2007-01-01

    Using numerical simulations, this work demonstrates a concept called back-end ignition for lighting-off and pre-heating a catalytic monolith in a power generation system. In this concept, a downstream heat source (e.g. a flame) or resistive heating in the downstream portion of the monolith initiates a localized catalytic reaction which subsequently propagates upstream and heats the entire monolith. The simulations used a transient numerical model of a single catalytic channel which characterizes the behavior of the entire monolith. The model treats both the gas and solid phases and includes detailed homogeneous and heterogeneous reactions. An important parameter in the model for back-end ignition is upstream heat conduction along the solid. The simulations used both dry and wet CO chemistry as a model fuel for the proof-of-concept calculations; the presence of water vapor can trigger homogenous reactions, provided that gas-phase temperatures are adequately high and there is sufficient fuel remaining after surface reactions. With sufficiently high inlet equivalence ratio, back-end ignition occurs using the thermophysical properties of both a ceramic and metal monolith (coated with platinum in both cases), with the heat-up times significantly faster for the metal monolith. For lower equivalence ratios, back-end ignition occurs without upstream propagation. Once light-off and propagation occur, the inlet equivalence ratio could be reduced significantly while still maintaining an ignited monolith as demonstrated by calculations using complete monolith heating.

  12. Calculations of the displacement damage and short-circuit current degradation in proton irradiated (AlGa)As-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Yeh, C. S.; Li, S. S.; Loo, R. Y.

    1987-01-01

    A theoretical model for computing the displacement damage defect density and the short-circuit current (I sub sc) degradation in proton-irradiated (AlGa)As-GaAs p-n junction solar cells is presented. Assumptions were made with justification that the radiation induced displacement defects form an effective recombination center which controls the electron and hole lifetimes in the junction space charge region and in the n-GaAs active layer of the irradiated GaAs p-n junction cells. The degradation of I sub sc in the (AlGa)As layer was found to be negligible compared to the total degradation. In order to determine the I sub sc degradation, the displacement defect density, path length, range, reduced energy after penetrating a distance x, and the average number of displacements formed by one proton scattering event were first calculated. The I sub sc degradation was calculated by using the electron capture cross section in the p-diffused layer and the hole capture cross section in the n-base layer as well as the wavelength dependent absorption coefficients. Excellent agreement was found between the researchers calculated values and the measured I sub sc in the proton irradiated GaAs solar cells for proton energies of 100 KeV to 10 MeV and fluences from 10 to the 10th power p/square cm to 10 to the 12th power p/square cm.

  13. Shock Excursion Due to Fluctuations in the Solar Wind Upstream Conditions

    NASA Technical Reports Server (NTRS)

    Ratkiewicz, Romana E.; Barnes, A.; Molvik, G. A.; Spreiter, J. R.; Stahara, S. S.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    Large-scale fluctuations in the solar wind upstream of the termination shock will cause inward and outward motions of the shock. In earlier work, Barnes analyzed such motion by calculating of the response of a planar gasdynamic shock to upstream disturbances. We now generalize this analysis to the case of a spherically symmetric shock. Our procedure is first to solve numerically the set of gasdynamic equations describing the interaction between the solar wind and the interstellar medium to establish a dynamic equilibrium. The next step is to impose upstream fluctuations of the solar wind dynamical pressure on this equilibrium state at an inner boundary, and then to follow the subsequent shock motion.

  14. Whistler waves observed upstream from collisionless shocks

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.

    1973-01-01

    Waves in the frequency range 0.5 - 4 Hz were studied in the region upstream of the earth's bow shock using data from the fluxgate magnetic field experiment on IMP-6. Analysis of 150 examples of these waves during a three month interval indicates that amplitudes are generally less than 1 or 2 gammas and propagation directions generally make angles of between 20 and 40 degrees with the field direction. The waves as measured in the spacecraft frame of reference are either left or right hand polarized with respect to the average field direction. It is concluded that the observed waves are right handed waves in the plasma frame of reference with wavelengths of approximately 100 km propagating upstream in the whistler mode. Doppler shifting reduces the observed frequencies in the spacecraft frame and reverses the observed polarization for those waves propagating more directly upstream. Similar waves are seen ahead of most interplanetary shocks.

  15. Real-Time Continuous Response Spectra Exceedance Calculation Displayed in a Web-Browser Enables Rapid and Robust Damage Evaluation by First Responders

    NASA Astrophysics Data System (ADS)

    Franke, M.; Skolnik, D. A.; Harvey, D.; Lindquist, K.

    2014-12-01

    A novel and robust approach is presented that provides near real-time earthquake alarms for critical structures at distributed locations and large facilities using real-time estimation of response spectra obtained from near free-field motions. Influential studies dating back to the 1980s identified spectral response acceleration as a key ground motion characteristic that correlates well with observed damage in structures. Thus, monitoring and reporting on exceedance of spectra-based thresholds are useful tools for assessing the potential for damage to facilities or multi-structure campuses based on input ground motions only. With as little as one strong-motion station per site, this scalable approach can provide rapid alarms on the damage status of remote towns, critical infrastructure (e.g., hospitals, schools) and points of interests (e.g., bridges) for a very large number of locations enabling better rapid decision making during critical and difficult immediate post-earthquake response actions. Details on the novel approach are presented along with an example implementation for a large energy company. Real-time calculation of PSA exceedance and alarm dissemination are enabled with Bighorn, an extension module based on the Antelope software package that combines real-time spectral monitoring and alarm capabilities with a robust built-in web display server. Antelope is an environmental data collection software package from Boulder Real Time Technologies (BRTT) typically used for very large seismic networks and real-time seismic data analyses. The primary processing engine produces continuous time-dependent response spectra for incoming acceleration streams. It utilizes expanded floating-point data representations within object ring-buffer packets and waveform files in a relational database. This leads to a very fast method for computing response spectra for a large number of channels. A Python script evaluates these response spectra for exceedance of one or more

  16. High time resolution studies of upstream ions

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Levedahl, W. K.; Lin, R. P.; Parks, G. K.

    1984-01-01

    The influence of phi, the angle between the interplanetary magnetic field and the earth-sun vector on ions and electrons in the earth's bow shock, was investigated in terms of ISEE 2 data. A small phi was associated with intermediate energy upstream ions and reduced populations of low energy, about 1.6 keV, ion fluxes. The magnitude of phi was closely related to particular, constant energy levels, e.g., a phi of 40 deg and an energy of 30 keV and a phi of 75 deg and an energy of 6 keV. Ion fluxes are high in the angles form 60-80 deg and feature energies of 55-280 keV. The acceleration process up to the high energy levels in the 1-3 min interval from upstream to downstream occurs more rapidly than could be accounted for by a first-order Fermi process.

  17. Evolution of Advection Upstream Splitting Method Schemes

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    2010-01-01

    This paper focuses on the evolution of advection upstream splitting method(AUSM) schemes. The main ingredients that have led to the development of modern computational fluid dynamics (CFD) methods have been reviewed, thus the ideas behind AUSM. First and foremost is the concept of upwinding. Second, the use of Riemann problem in constructing the numerical flux in the finite-volume setting. Third, the necessity of including all physical processes, as characterised by the linear (convection) and nonlinear (acoustic) fields. Fourth, the realisation of separating the flux into convection and pressure fluxes. The rest of this review briefly outlines the technical evolution of AUSM and more details can be found in the cited references. Keywords: Computational fluid dynamics methods, hyperbolic systems, advection upstream splitting method, conservation laws, upwinding, CFD

  18. Upgrade of the Upstream Tracker at LHCb

    NASA Astrophysics Data System (ADS)

    Andrews, Jason; LHCb Collaboration

    2015-04-01

    The LHCb detector will be upgraded to allow it operate at higher collider luminosity without the need for a hardware trigger stage. Flavor enriched events will be selected in a software based, high level trigger, using fully reconstructed events. This presentation will describe the design, optimization and the expected performance of the Upstream Tracker (UT), which has a critical role in high level trigger scheme.

  19. Physical models implemented in the GEANT4-DNA extension of the GEANT-4 toolkit for calculating initial radiation damage at the molecular level.

    PubMed

    Villagrasa, C; Francis, Z; Incerti, S

    2011-02-01

    The ROSIRIS project aims to study the radiobiology of integrated systems for medical treatment optimisation using ionising radiations and evaluate the associated risk. In the framework of this project, one research focus is the interpretation of the initial radio-induced damage in DNA created by ionising radiation (and detected by γ-H2AX foci analysis) from the track structure of the incident particles. In order to calculate the track structure of ionising particles at a nanometric level, the Geant4 Monte Carlo toolkit was used. Geant4 (Object Oriented Programming Architecture in C++) offers a common platform, available free to all users and relatively easy to use. Nevertheless, the current low-energy threshold for electromagnetic processes in GEANT4 is set to 1 keV (250 eV using the Livermore processes), which is an unsuitable value for nanometric applications. To lower this energy threshold, the necessary interaction processes and models were identified, and the corresponding available cross sections collected from the literature. They are mostly based on the plane-wave Born approximation (first Born approximation, or FBA) for inelastic interactions and on semi-empirical models for energies where the FBA fails (at low energies). In this paper, the extensions that have been introduced into the 9.3 release of the Geant4 toolkit are described, the so-called Geant4-DNA extension, including a set of processes and models adapted in this study and permitting the simulation of electron (8 eV-1 MeV), proton (100 eV-100 MeV) and alpha particle (1 keV-10 MeV) interactions in liquid water. PMID:21186212

  20. Forest damage and snow avalanche flow regime

    NASA Astrophysics Data System (ADS)

    Feistl, T.; Bebi, P.; Christen, M.; Margreth, S.; Diefenbach, L.; Bartelt, P.

    2015-06-01

    Snow avalanches break, uproot and overturn trees causing damage to forests. The extent of forest damage provides useful information on avalanche frequency and intensity. However, impact forces depend on avalanche flow regime. In this paper, we define avalanche loading cases representing four different avalanche flow regimes: powder, intermittent, dry and wet. Using a numerical model that simulates both powder and wet snow avalanches, we study documented events with forest damage. First we show that in the powder regime, although the applied impact pressures can be small, large bending moments in the tree stem can be produced due to the torque action of the blast. The impact area of the blast extends over the entire tree crown. We find that, powder clouds with velocities over 20 m s-1 can break tree stems. Second we demonstrate that intermittent granular loadings are equivalent to low-density uniform dry snow loadings under the assumption of homogeneous particle distributions. The intermittent regime seldom controls tree breakage. Third we calculate quasi-static pressures of wet snow avalanches and show that they can be much higher than pressures calculated using dynamic pressure formulas. Wet snow pressure depends both on avalanche volume and terrain features upstream of the tree.

  1. Forest damage and snow avalanche flow regime

    NASA Astrophysics Data System (ADS)

    Feistl, T.; Bebi, P.; Christen, M.; Margreth, S.; Diefenbach, L.; Bartelt, P.

    2015-01-01

    Snow avalanches break, uproot and overturn trees causing damage to forests. The extent of forest damage provides useful information on avalanche frequency and intensity. However, impact forces depend on avalanche flow regime. In this paper, we define avalanche loading cases representing four different avalanche flow regimes: powder, intermittent, dry and wet. In the powder regime, the blast of the cloud can produce large bending moments in the tree stem because of the impact area extending over the entire tree crown. We demonstrate that intermittent granular loadings are equivalent to low-density uniform dry snow loadings under the assumption of homogeneous particle distributions. In the wet snow case, avalanche pressure is calculated using a quasi-static model accounting for the motion of plug-like wet snow flows. Wet snow pressure depends both on avalanche volume and terrain features upstream of the tree. Using a numerical model that simulates both powder and wet snow avalanches, we study documented events with forest damage. We find (1) powder clouds with velocities over 20 m s-1 can break tree stems, (2) the intermittent regime seldom controls tree breakage and (3) quasi-static pressures of wet snow avalanches can be much higher than pressures calculated using dynamic pressure formulas.

  2. 8. GENERAL EXTERIOR VIEW LOOKING SOUTH, SHOWING UPSTREAM FACE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. GENERAL EXTERIOR VIEW LOOKING SOUTH, SHOWING UPSTREAM FACE OF DAM/SPILLWAY; THE VIEW HIGHLIGHTS THE UPSTREAM APPEARANCE OF THE PIERS SUPPORTING THE MOVABLE STONEY GATES. - Bonneville Project, Bonneville Dam, Columbia River, Bonneville, Multnomah County, OR

  3. Upstream waves at Mars - Phobos observations

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Luhmann, J. G.; Schwingenschuh, K.; Riedler, W.; Eroshenko, E.

    1990-01-01

    The region upstream from the Mars subsolar bow shock is surveyed for the presence of MHD wave phenomena using the high temporal resolution data from the Magma magnetometer. Strong turbulence is observed when the magnetic field is connected to the Mars bow shock in such a way as to allow diffuse ions to reach the spacecraft. Also weak waves are observed at the proton gyro frequency. These waves are left-hand elliptically polarized and may be associated with the pick-up of protons from the Mars hydrogen exosphere.

  4. Whistler waves observed upstream from collisionless shocks

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.

    1974-01-01

    Waves in the frequency range 0.5-4. Hz have been studied in the region upstream of the earth's bow shock with data from the flux-gate magnetic field experiment on Imp 6. Such waves are invariably detected adjacent to the shock, persisting upstream for intervals often less than a minute but occasionally of the order of many hours. Analysis of 150 examples of these waves during a 3-month interval indicates that propagation directions generally make angles of between 20 and 40 deg with the field direction. The waves as measured in the spacecraft frame of reference are either left- or right-hand-polarized with respect to the average field direction. The left-handed waves generally have lower frequencies than the right-handed waves, and the left-handed frequencies never exceed 2.5 Hz. The measured sense of polarization is found to depend on the propagation direction (or alternatively, the field direction) relative to the solar wind direction.

  5. Internal hydraulic jumps with large upstream shear

    NASA Astrophysics Data System (ADS)

    Ogden, Kelly; Helfrich, Karl

    2015-11-01

    Internal hydraulic jumps in approximately two-layered flows with large upstream shear are investigated using numerical simulations. The simulations allow continuous density and velocity profiles, and a jump is forced to develop by downstream topography, similar to the experiments conducted by Wilkinson and Wood (1971). High shear jumps are found to exhibit significantly more entrainment than low shear jumps. Furthermore, the downstream structure of the flow has an important effect on the jump properties. Jumps with a slow upper (inactive) layer exhibit a velocity minimum downstream of the jump, resulting in a sub-critical downstream state, while flows with the same upstream vertical shear and a larger barotropic velocity remain super-critical downstream of the jump. A two-layer theory is modified to account for the vertical structure of the downstream density and velocity profiles and entrainment is allowed through a modification of the approach of Holland et al. (2002). The resulting theory can be matched reasonably well with the numerical simulations. However, the results are very sensitive to how the downstream vertical profiles of velocity and density are incorporated into the layered model, highlighting the difficulty of the two layer approximation when the shear is large.

  6. Solar wind flow upstream of the coronal slow shock

    NASA Technical Reports Server (NTRS)

    Whang, Y. C.

    1986-01-01

    Slow shocks have been predicted to exist embedded in large coronal holes at low altitude. Two or more curved slow shocks may link together to form a composite discontinuity surface around the sun which may be called the coronal slow shock (CSS). Here a solar-wind model is studied under the assumption that a standing CSS exists and cororates with the sun at a constant angular velocity. A steady, axisymmetrical one-fluid model is introduced to study the expansion of solar wind in the open-field region upstream of the CSS. The model requires that the conditions downstream of the CSS near the equatorial plane can produce a solar wind agreeable with the observations made near the earth's orbit. The paper presents an illustrative calculation in which the polar caps within 60 deg of the polar angle are assumed to be the source region of the solar wind.

  7. Biotic integrity of the Boise River upstream and downstream from two municipal wastewater treatment facilities, Boise, Idaho, 1995-96

    USGS Publications Warehouse

    Mullins, William H.

    1999-01-01

    Aquatic biological communities were used to assess the biotic integrity of the Boise River upstream and downstream from the Lander Street and West Boise municipal wastewater treatment facilities (WTFs) in Boise, Idaho. Samples of epilithic periphyton, benthic macroinvertebrates, and fish were collected in late February and early March 1995, in late October 1996, and in early December 1996. Epilithic periphyton biomass, expressed as chlorophyll-a and ash-free dry weight, declined substantially between 1995 and 1996. Chlorophyll-a concentrations were higher at sites downstream from WTFs in both years, but differences in concentrations between sites upstream and downstream from WTFs were not statistically significant. High withinsite variance suggests that greater sampling intensity would improve statistical comparison. Index of Biotic Integrity (IBI) scores calculated for benthic macroinvertebrates were higher for the sites upstream from WTFs in 1995 and were the same for all sites in 1996. Similarly, IBI scores calculated for fish were higher for the sites upstream from WTFs in 1995, were higher for the site upstream from the Lander Street WTF in 1996, and were the same for sites upstream and downstream from the West Boise WTF in 1996. Two species of sculpin (Cottus) were abundant at the site upstream from both WTFs but were absent at all other sites downstream from WTFs in 1995 and composed only 2 percent of the total number of fish collected downstream from the Lander Street WTF in 1996.

  8. Moving stormwater P management upstream (Invited)

    NASA Astrophysics Data System (ADS)

    Baker, L. A.; Hobbie, S. E.; Finlay, J. C.; Kalinosky, P.; Janke, B.

    2013-12-01

    Reducing stormwater phosphorus loading using current approaches, which focus on treatment at the end of the pipe, is unlikely to reduce P loads enough to restore nutrient-impaired urban lakes. An indication of this is that of the nearly 150 nutrient impaired lakes in the Twin Cities region, only one has been restored. We hypothesize that substantial reduction of eutrophication will require reductions of P inputs upstream from storm drains. Developing source reduction strategies will required a shift in thinking about system boundaries, moving upstream from the storm drain to the curb, and from the curb to the watershed. Our Prior Lake Street Sweeping Project, a 2-year study of enhanced street sweeping, will be used to illustrate the idea of moving the system boundary to the curb. This study showed that P load recovery from sweeping increases with both sweeping frequency and overhead tree canopy cover. For high canopy streets, coarse organic material (tree leaves; seed pods, etc.) comprised 42% of swept material. We estimate that P inputs from trees may be half of measured storm P yields in 8 urban catchments in St. Paul, MN. Moreover, the cost of removing P during autumn was often < 100/pound P, compared with > 1000/lb P for stormwater ponds. We can also move further upstream, to the watershed boundary. P inputs to urban watersheds that enter lawns include lawn fertilizer, polyphosphates added to water supplies (and hence to lawns via irrigation), and pet food (transformed to pet waste). Minnesota enacted a lawn P fertilizer restriction in 2003, but early reductions in stormwater P loads were modest, probably reflecting reduction in direct wash-off of applied fertilizer. Because urban soils are enriched in P, growing turf has continued to extract available soil P. When turf is mowed, cut grass decomposes, generating P in runoff. As soil P becomes depleted, P concentrations in lawn runoff will gradually decline. Preliminary modeling suggests that substantial

  9. Suprathermal ions upstream from interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Gosling, J. T.; Bame, S. J.; Feldman, W. C.; Paschmann, G.; Sckopke, N.; Russell, C. T.

    1984-07-01

    Low energy (10 eV-30 keV) observations of suprathermal ions ahead of outward propagating interplanetary shock waves (ISQ) are reported. The data were taken with the fast plasma experiment on ISEE 1 and 2 during 17 events. Structure was more evident in the suprathermal ion distribution in the earth bow shock region than in the upstream region. Isotropic distributions were only observed ahead of ISW, although field alignment, kidney-bean distributions, ion shells in velocity space and bunches of gyrating ions were not. The data suggest that the solar wind ions are accelerated to suprathermal energies in the vicinity of the shocks, which feature low and subcritical Mach numbers at 1 AU.

  10. Structural polymers in upstream production service

    SciTech Connect

    Dismukes, J.P.; Lustiger, A.; Chang, J.; Abrams, P.I.; Chiu, A.S.

    1993-12-31

    Polymers in the form of coatings, seals and composites for corrosion resistant and secondary load-bearing applications have been used in oilfield production operations for a number of years in specialty applications. The increasing needs of the industry for corrosion resistant piping, and for structural components combining corrosion resistance with high specific strength and weight, have now made the potential for use of polymer composites of increasing interest, for pipe and tubing and for load-bearing structural members. The purpose of this paper is to review the current status of structural polymer usage in the upstream, and to highlight major application areas where there is a strong economic incentive to evaluate the benefits for applying polymer composite. In addition, the underlying science and technology affecting composite properties, application life, environmental resistance and economics are assessed, since these issues need to be addressed in considering the decision to design-in composites, as compared to commonly used metals and alloys.

  11. Suprathermal ions upstream from interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Bame, S. J.; Feldman, W. C.; Paschmann, G.; Sckopke, N.; Russell, C. T.

    1984-01-01

    Low energy (10 eV-30 keV) observations of suprathermal ions ahead of outward propagating interplanetary shock waves (ISQ) are reported. The data were taken with the fast plasma experiment on ISEE 1 and 2 during 17 events. Structure was more evident in the suprathermal ion distribution in the earth bow shock region than in the upstream region. Isotropic distributions were only observed ahead of ISW, although field alignment, kidney-bean distributions, ion shells in velocity space and bunches of gyrating ions were not. The data suggest that the solar wind ions are accelerated to suprathermal energies in the vicinity of the shocks, which feature low and subcritical Mach numbers at 1 AU.

  12. Water Stress in Global Transboundary River Basins: Significance of Upstream Water Use on Downstream Stress

    NASA Technical Reports Server (NTRS)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka,M.; Wada, Yoshihide; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analyzed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world's transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. Wefound that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  13. Water stress in global transboundary river basins: significance of upstream water use on downstream stress

    NASA Astrophysics Data System (ADS)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka, M.; Wada, Y.; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world’s transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. We found that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  14. Developmental Origins, Epigenetics, and Equity: Moving Upstream.

    PubMed

    Wallack, Lawrence; Thornburg, Kent

    2016-05-01

    The Developmental Origins of Health and Disease and the related science of epigenetics redefines the meaning of what constitutes upstream approaches to significant social and public health problems. An increasingly frequent concept being expressed is "When it comes to your health, your zip code may be more important than your genetic code". Epigenetics explains how the environment-our zip code-literally gets under our skin, creates biological changes that increase our vulnerability for disease, and even children's prospects for social success, over their life course and into future generations. This science requires us to rethink where disease comes from and the best way to promote health. It identifies the most fundamental social equity issue in our society: that initial social and biological disadvantage, established even prior to birth, and linked to the social experience of prior generations, is made worse by adverse environments throughout the life course. But at the same time, it provides hope because it tells us that a concerted focus on using public policy to improve our social, physical, and economic environments can ultimately change our biology and the trajectory of health and social success into future generations. PMID:27029539

  15. A partnership in upstream HSE technology transfer

    SciTech Connect

    Olszewski, R.E. Wahjosoedibjo, A.S.; Hunley, M.; Peargin, J.C.

    1996-11-01

    The oil and gas industry was for nearly two decades the dominant force in the Indonesian economy and the single largest contributor to the nation`s development. Because of the success of Indonesia`s long-term development and diversification program, this once-dominant sector today occupies a more equal but still vital position in a better-balanced economy. The Indonesian government understands the danger to the environment posed by rapid industrial expansion and has enacted laws and regulations to ensure the sustainable development of its resources while protecting its rain forest environment. In 1992, the government oil company approached Chevron and Texaco for assistance in training its Health, Safety, and Environment (HSE) professionals. The upstream environment, health and safety training program was developed to transfer HSE knowledge and technology to PERTAMINA, PT Caltex Pacific Indonesia, a C&T affiliate, and indirectly, to the entire Indonesian oil and gas industry and government ministries. The four companies have demonstrated the effectiveness of a partnership approach in developing and carrying out HSE training. During 1994 and 1995, four groups, each consisting of about twenty representatives from PERTAMINA, the Directorate of Oil and Gas (MIGAS), the Indonesian Environmental Impact Management Agency (BAPEDAL), CPI, and Chevron and Texaco worldwide subsidiaries, traveled to the United States for an intensive four-month program of study in HSE best practices and technology conducted by Chevron and Texaco experts. This paper describes the development and realization of The PERTAMINA/CPI Health, Safety and Environment Training Program, outlines subjects covered and explains the methodology used to ensure the effective transfer of HSE knowledge and technology. The paper also offers an evaluation of the sessions and presents the plans developed by participant-teams for follow up on their return to Indonesia.

  16. Iteration SSII cancellation in DD-OFDM PON upstream scheme

    NASA Astrophysics Data System (ADS)

    Ju, Cheng; Liu, Na; Chen, Xue

    2016-04-01

    Iteration interference cancellation algorithm is proposed in direct detection OFDM PON upstream scheme to mitigate subcarrier to subcarrier intermixing interference (SSII) caused by dispersion and square-law photo-detection. The receiver sensitivity is improved by 1 dB in 20-Gbps, 16-QAM OFDM PON upstream experiment after 100-km standard single mode fiber (SSMF) transmission.

  17. Low Frequency Waves at and Upstream of Collisionless Shocks

    NASA Astrophysics Data System (ADS)

    Wilson, L. B.

    2016-02-01

    This chapter focuses on the range of low frequency electromagnetic modes observed at and upstream of collisionless shocks in the heliosphere. It discusses a specific class of whistler mode wave observed immediately upstream of collisionless shock ramps, called a whistler precursor. Though these modes have been (and are often) observed upstream of quasi-parallel shocks, the authors limit their discussion to those observed upstream of quasi-perpendicular shocks. The chapter discusses the various ion velocity distributions observed at and upstream of collisionless shocks. It also introduces some terminology and relevant instabilities for ion foreshock waves. The chapter discusses the most common ultra-low frequency (ULF) wave types, their properties, and their free energy sources. It discusses modes that are mostly Alfvénic (i.e., mostly transverse but can be compressive) in nature.

  18. A study of pump cavitation damage. [space shuttle main engine high pressure oxidizer turbopump

    NASA Technical Reports Server (NTRS)

    Brophy, M. C.; Stinebring, D. R.; Billet, M. L.

    1983-01-01

    The cavitation assessment for the space shuttle main engine high pressure oxidizer turbopump is documented. A model of the flow through the pump was developed. Initially, a computational procedure was used to analyze the flow through the inlet casing including the prediction of wakes downstream of the casing vanes. From these flow calculations, cavitation patterns on the inducer blades were approximated and the damage rate estimated. The model correlates the heavy damage on the housing and over the inducer with unsteady blade surface cavitation. The unsteady blade surface cavitation is due to the large incidence changes caused by the wakes of the upstream vanes. Very high cavitation damage rates are associated with this type of cavitation. Design recommendations for reducing the unsteady cavitation include removing the set of vanes closest to the inducer and modifying the remaining vanes.

  19. Developing building-damage scales for lahars: application to Merapi volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Jenkins, Susanna F.; Phillips, Jeremy C.; Price, Rebecca; Feloy, Kate; Baxter, Peter J.; Hadmoko, Danang Sri; de Bélizal, Edouard

    2015-09-01

    Lahar damage to buildings can include burial by sediment and/or failure of walls, infiltration into the building and subsequent damage to contents. The extent to which a building is damaged will be dictated by the dynamic characteristics of the lahar, i.e. the velocity, depth, sediment concentration and grain size, as well as the structural characteristics and setting of the building in question. The focus of this paper is on quantifying how buildings may respond to impact by lahar. We consider the potential for lahar damage to buildings on Merapi volcano, Indonesia, as a result of the voluminous deposits produced during the large (VEI 4) eruption in 2010. A building-damage scale has been developed that categorises likely lahar damage levels and, through theoretical calculations of expected building resistance to impact, approximate ranges of impact pressures. We found that most weak masonry buildings on Merapi would be destroyed by dilute lahars with relatively low velocities (ca. 3 m/s) and pressures (ca. 5 kPa); however, the majority of stronger rubble stone buildings may be expected to withstand higher velocities (to 6 m/s) and pressures (to 20 kPa). We applied this preliminary damage scale to a large lahar in the Putih River on 9 January 2011, which inundated and caused extensive building damage in the village of Gempol, 16 km southwest of Merapi. The scale was applied remotely through the use of public satellite images and through field studies to categorise damage and estimate impact pressures and velocities within the village. Results were compared with those calculated independently from Manning's calculations for flow velocity and depth within Gempol village using an estimate of flow velocity at one upstream site as input. The results of this calculation showed reasonable agreement with an average channel velocity derived from travel time observations. The calculated distribution of flow velocities across the area of damaged buildings was consistent with

  20. Suprathermal ions observed upstream of the Venus bow shock

    NASA Technical Reports Server (NTRS)

    Moore, K. R.; Mccomas, D. J.; Russell, C. T.; Mihalov, J. D.

    1989-01-01

    Suprathermal ions with arrival directions quite distinct from those of the solar wind have been detected upstream of the Venus bow shock. The possibility that these events could be caused by instrumental or spacecraft effects or that they could be either solar wind disturbances, planetary pickup ions, or suprethermal ions upstream of the Venus bow shock is examined. It is concluded that they are consistent with upstream suprathermal ions associated with the bow shock that are observed downstream from the points of intersection of their extrapolated trajectories with the shock.

  1. The Upstream Hospital Leader: Taking Action to Improve Population Health.

    PubMed

    Graham, Ross; Meili, Ryan

    2016-01-01

    Canadian hospital leaders face numerous barriers when they seek to work upstream in an effort to improve population health. A noted challenge is lack of role clarity. We introduce the concept of an "upstream hospital leader" in an attempt to address this challenge, and suggest behaviours for how this role can advance population health at the individual, organizational and health system levels. These suggestions aim to contribute to the ongoing conversation and growing interest in the role of hospitals in population health improvement. We invite feedback on these suggestions and encourage leaders to explore opportunities where greater upstream action by their hospital and health system can improve population health. PMID:27009704

  2. 4. VIEW SHOWING UPSTREAM FACE OF DAM, LOOKING NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW SHOWING UPSTREAM FACE OF DAM, LOOKING NORTHEAST - High Mountain Dams in Upalco Unit, Kidney Lake Dam, Ashley National Forest, 4.7 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT

  3. 3. OVERALL VIEW OF DAM, SHOWING UPSTREAM FACE, LOOKING EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. OVERALL VIEW OF DAM, SHOWING UPSTREAM FACE, LOOKING EAST - High Mountain Dams in Upalco Unit, Kidney Lake Dam, Ashley National Forest, 4.7 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT

  4. OVERALL VIEW OF CASCADE CANAL COMPANY CRIB DAM, LOOKING UPSTREAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERALL VIEW OF CASCADE CANAL COMPANY CRIB DAM, LOOKING UPSTREAM FROM DIRECTION OF KACHESS DAM. VIEW TO NORTH - Kachess Dam, 1904 Cascade Canal Company Crib Dam, Kachess River, 1.5 miles north of Interstate 90, Easton, Kittitas County, WA

  5. 10. UPSTREAM EXTENSION TO 60' INFILTRATION PIPE: MISCELLANEOUS METAL DETAILS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. UPSTREAM EXTENSION TO 60' INFILTRATION PIPE: MISCELLANEOUS METAL DETAILS. Sheet A-22, November, 1940. File no. SA 342/31. - Prado Dam, Embankment, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  6. 2. UPSTREAM SIDE OF DIVERSION DAM ON THE SNAKE RIVER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. UPSTREAM SIDE OF DIVERSION DAM ON THE SNAKE RIVER, LOOKING SOUTH-SOUTHWEST. NOTE BANK REINFORCEMENT ON LEFT AND SPILLWAY ON RIGHT. - Snake River Ditch, Headgate on north bank of Snake River, Dillon, Summit County, CO

  7. 63. INTERIOR VIEW OF UPSTREAM LOCKKEEPER'S HOUSE, SHOWING FIRST FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. INTERIOR VIEW OF UPSTREAM LOCKKEEPER'S HOUSE, SHOWING FIRST FLOOR DINING ROOM, WITH ENTRY FRENCH DOORS IN RIGHT FOREGROUND, LOOKING NORTH - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 10, Guttenberg, Clayton County, IA

  8. 5. VIEW FROM THE SOUTHEAST, LOOKING UPSTREAM (NORTHWEST), ACROSS THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW FROM THE SOUTHEAST, LOOKING UPSTREAM (NORTHWEST), ACROSS THE ROADWAY OF BRIDGE 808 - Wagamon Pond Dam & Bridge, Spanning Broadkill River at State Road No. 197 (Mulberry Street), Milton, Sussex County, DE

  9. 14. VIEW NORTHEASTWARD OF THE UPSTREAM (WEST) SIDE OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW NORTHEASTWARD OF THE UPSTREAM (WEST) SIDE OF THE PENSTOCK (HEADRACE) BRIDGE - Wagamon Pond Dam & Bridge, Spanning Broadkill River at State Road No. 197 (Mulberry Street), Milton, Sussex County, DE

  10. 2. OVERALL VIEW OF LOWWATER DAM, LOOKING UPSTREAM. CHAIN OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. OVERALL VIEW OF LOW-WATER DAM, LOOKING UPSTREAM. CHAIN OF ROCKS BRIDGE AND ST. LOUIS WATER DEPARTMENT INTAKE IN BACKGROUND, LOOKING NORTHWEST - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL

  11. 46. INTAKE DAM NO. 2, VIEW LOOKING UPSTREAM. THIS WAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. INTAKE DAM NO. 2, VIEW LOOKING UPSTREAM. THIS WAS FORMERLY THE MAIN INTAKE FOR THE SYSTEM. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  12. 10. DETAIL OF UPSTREAM FACE OF NEW YORK CANAL HEADWORKS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL OF UPSTREAM FACE OF NEW YORK CANAL HEADWORKS, SHOWING GATE LIFTING GEARS (TOP), WORM GEAR SHAFTS (CENTER) AND SLIDE GATES (BOTTOM). VIEW TO NORTHWEST. - Boise Project, Boise River Diversion Dam, Across Boise River, Boise, Ada County, ID

  13. DOG HOUSE AT UPSTREAM LOCK GATE. ALSO SEEN AT LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DOG HOUSE AT UPSTREAM LOCK GATE. ALSO SEEN AT LEFT IN PHOTO NO. IL-164-A-23. - Illinois Waterway, La Grange Lock and Dam, 3/4 mile south of Country 795N at Illinois River, Versailles, Brown County, IL

  14. UPSTREAM LOCK GATE DETAIL AND DOG HOUSE. NOTE ARM AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    UPSTREAM LOCK GATE DETAIL AND DOG HOUSE. NOTE ARM AND GEARING FOR CONTROLLING LOCK GATE. LOOKING WEST SOUTHWEST. - Illinois Waterway, Brandon Road Lock and Dam , 1100 Brandon Road, Joliet, Will County, IL

  15. 23. UPSTREAM DETAIL OF PIER NO. 2 AND THROUGH AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. UPSTREAM DETAIL OF PIER NO. 2 AND THROUGH AND DECK TRUSS END PANELS. VIEW TO SOUTHEAST. - MacArthur Bridge, Spanning Mississippi River on Highway 34 between IA & IL, Burlington, Des Moines County, IA

  16. 43. Photocopied August 1978. ICE RACK, VIEW FROM UPSTREAM, OCTOBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. Photocopied August 1978. ICE RACK, VIEW FROM UPSTREAM, OCTOBER 9, 1902. NOTE TIMBERED FLOOR ABOVE RACK, THE UNTIMBERED FLOOR TO THE REAR. (284) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  17. 20. VIEW OF LE CLAIRE LOCK (19211925), SHOWING UPSTREAM GATES, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW OF LE CLAIRE LOCK (1921-1925), SHOWING UPSTREAM GATES, DOWNSTREAM SIDE AND SOUTH LOCKWALL - Mississippi River 9-Foot Channel, Lock & Dam No. 14, Upper Mississippi River, Le Claire, Scott County, IA

  18. EVALUATING THE EFFECT OF UPSTREAM WATERSHED ACTIVITIES TO DOWNSTREAM STREAMFLOW

    EPA Science Inventory

    Linking the impacts of upstream activities such as urban development to changes in downstream streamflow is critical to achieving a balance between economic development and environmental protection as a basis for sustainable watershed development. This paper presents a modeling a...

  19. 11. OBLIQUE VIEW OF BRIDGE, LOOKING SOUTHEAST OF UPSTREAM SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. OBLIQUE VIEW OF BRIDGE, LOOKING SOUTHEAST OF UPSTREAM SIDE OF BRIDGE FROM YOLO COUNTY SIDE OF SACRAMENTO RIVER - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  20. 3. CONTEXTUAL VIEW FROM UPSTREAM OF BRIDGE IN ITS SETTING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. CONTEXTUAL VIEW FROM UPSTREAM OF BRIDGE IN ITS SETTING, LOOKING SOUTHWEST FROM ROOF OF CALIFORNIA STATE RAILROAD MUSEUM - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  1. 7. DETAIL CENTRAL PIER (SKEWBACK) WITH BREAKWATER, UPSTREAM (EAST) SIDE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL CENTRAL PIER (SKEWBACK) WITH BREAKWATER, UPSTREAM (EAST) SIDE. NOTE FRACTURES ALONG BARREL ARCH EXTRADOS. - Roaring Creek Bridge, State Road 2005 spanning Roaring Creek in Locust Township, Slabtown, Columbia County, PA

  2. 16. VIEW EASTERLY ALONG THE UPSTREAM SIDE OF THE OGEE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW EASTERLY ALONG THE UPSTREAM SIDE OF THE OGEE SECTION OF THE SPILLWAY.... Volume XVIII, No. 13, January 29, 1940. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  3. 26. UPSTREAM VIEW OF DISCHARGE END OF OUTLET STRUCTURE.... Volume ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. UPSTREAM VIEW OF DISCHARGE END OF OUTLET STRUCTURE.... Volume XVI, No. 17, September 29, 1939. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  4. 24. UPSTREAM VIEW OF A PORTION OF THE CLOSED CONDUIT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. UPSTREAM VIEW OF A PORTION OF THE CLOSED CONDUIT SECTION OF OUTLET WORKS.... Volume XVI, No. 15, August 16, 1939. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  5. 7. VIEW WEST ALONG THE UPSTREAM SLOPE OF THE EMBANKMENT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW WEST ALONG THE UPSTREAM SLOPE OF THE EMBANKMENT, SHOWING ROCK PAVING IN PROGRESS.... Volume XIX, No. 7, June 24, 1940. - Prado Dam, Embankment, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  6. 22. UPSTREAM VIEW OF THE OUTLET CONTROL STRUCTURE AND THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. UPSTREAM VIEW OF THE OUTLET CONTROL STRUCTURE AND THE PIER FOR THE SERVICE BRIDGE.... Volume XVIII, No. 12, January 29, 1940. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  7. 14. Detail, upper chord connection point on upstream side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Detail, upper chord connection point on upstream side of truss, showing connection of upper chord, laced vertical compression member, strut, counters, and laterals. - Dry Creek Bridge, Spanning Dry Creek at Cook Road, Ione, Amador County, CA

  8. 15. OVERALL VIEW OF UPSTREAM FACE OF LIFT GATE SECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. OVERALL VIEW OF UPSTREAM FACE OF LIFT GATE SECTION WITH TAINTER GATE SECTION OF SPILLWAY TO THE LEFT. VIEW TO SOUTHWEST. - Starved Rock Locks & Dam, Illinois Waterway River mile 231, Peru, La Salle County, IL

  9. 10. UPSTREAM SIDE OF UPPER MITER GATES SHOWING STOWED LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. UPSTREAM SIDE OF UPPER MITER GATES SHOWING STOWED LEFT WING OF UPPER GUARD GATE (FAR LEFT). VIEW TO NORTHWEST. - Starved Rock Locks & Dam, Illinois Waterway River mile 231, Peru, La Salle County, IL

  10. 1. OVERALL VIEW OF UPSTREAM FACE OF DAM; SPILLWAY IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERALL VIEW OF UPSTREAM FACE OF DAM; SPILLWAY IN FOREGROUND, LOCK IN BACKGROUND ON NORTH RIVER BANK. VIEW TO NORTH. - Starved Rock Locks & Dam, Illinois Waterway River mile 231, Peru, La Salle County, IL

  11. 7. Detail view of reinforced concrete archrings comprising dam's upstream ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail view of reinforced concrete arch-rings comprising dam's upstream face. Impressions of the wooden formwork used in construction are visible in the concrete. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  12. View of upstream face of Lake Sabrina Dam showing the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of upstream face of Lake Sabrina Dam showing the redwood planks and base of dam from Lake Sabrina Basin, view north - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  13. View of upstream face of Lake Sabrina Dam showing redwood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of upstream face of Lake Sabrina Dam showing redwood planks and boulders in Lake Sabrina Basin, view north - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  14. View of Lake Sabrina Dam upstream face from ridge showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Lake Sabrina Dam upstream face from ridge showing spillway at lower right of photo, view southwest - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  15. 4. SPILLWAY DRUM GATES AND CHANNEL, LOOKING NORTHEAST (upstream face ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. SPILLWAY DRUM GATES AND CHANNEL, LOOKING NORTHEAST (upstream face and Control House in background) - Tieton Dam, Spillway & Drum Gates, South & East side of State Highway 12, Naches, Yakima County, WA

  16. VIEW OF COLUMBIA SOUTHERN CANAL (UPSTREAM) AND THE WEST BRANCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF COLUMBIA SOUTHERN CANAL (UPSTREAM) AND THE WEST BRANCH COLUMBIA SOUTHERN CANAL DIVERSION STRUCTURE. LOOKING SOUTHWEST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR

  17. VIEW OF BEGINNING (UPSTREAM) OF THE COLUMBIA SOUTHERN CANAL'S "BIG ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF BEGINNING (UPSTREAM) OF THE COLUMBIA SOUTHERN CANAL'S "BIG CUT" BETWEEN CONSTRUCTION CAMP ROCK FEATURE AND THE COLUMBIA SOUTHERN DIVERSION STRUCTURE. LOOKING SOUTH/SOUTHEAST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR

  18. View of upstream face of Grand Coulee Dam, looking west. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of upstream face of Grand Coulee Dam, looking west. - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA

  19. View of upstream face of Grand Coulee Dam, looking northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of upstream face of Grand Coulee Dam, looking northeast from the Pumping Plant. - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA

  20. View of upstream face of Grand Coulee Dam, looking northeast. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of upstream face of Grand Coulee Dam, looking northeast. This image features a cloudless sky.) - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA

  1. 51. VIEW, LOOKING UPSTREAM, SHOWING THE REINFORCING FOR APRON BELOW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. VIEW, LOOKING UPSTREAM, SHOWING THE REINFORCING FOR APRON BELOW MAIN LOCK Photograph No. 1856. December 22, 1936 - Upper Mississippi River Nine-Foot Channel Project, Lock & Dam No. 25, Cap au Gris, Lincoln County, MO

  2. 8. VIEW LOOKING UPSTREAM FROM THE RIVER ARM OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW LOOKING UPSTREAM FROM THE RIVER ARM OF THE COFFERDAM NEAR STATION (September 1936) - Mississippi River 9-Foot Channel Project, Lock & Dam No. 13, Upper Mississippi River, Fulton, Whiteside County, IL

  3. STEEL ERECTION. View of upstream side of bridge, looking north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STEEL ERECTION. View of upstream side of bridge, looking north from the old suspension bridge at unjoined cantilever arms - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA

  4. 23. VIEW LOOKING UPSTREAM FROM WEST BANK OF HEADRACE SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. VIEW LOOKING UPSTREAM FROM WEST BANK OF HEAD-RACE SHOWING RECONSTRUCTED MAIN AND DIVERSION DAMS; HEAD-RACE IS JUST OUT OF PICTURE AT LEFT. - Forge Creek Dam-John Cable Mill, Townsend, Blount County, TN

  5. DETAIL ELEVATION OF UPSTREAM PARAPET. NOTE THE CLOSED SPANDRELS WHERE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL ELEVATION OF UPSTREAM PARAPET. NOTE THE CLOSED SPANDRELS WHERE THE BEAM BEARINGS CONTACT THE SLENDER CONCRETE PIERS. VIEW FACING SOUTH. - Waikele Canal Bridge and Highway Overpass, Farrington Highway and Waikele Stream, Waipahu, Honolulu County, HI

  6. 65. VIEW LOOKING UPSTREAM FROM FLUME SUBSTRUCTURE, SHOWING COLUMBIA IMPROVEMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. VIEW LOOKING UPSTREAM FROM FLUME SUBSTRUCTURE, SHOWING COLUMBIA IMPROVEMENT COMPANY'S NEISSON CREEK SAWMILL. Print No. 177, November 1903 - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  7. 18. VIEW OF SETTLING BASIN FROM UPSTREAM TRESTLE, SHOWING BULKHEAD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF SETTLING BASIN FROM UPSTREAM TRESTLE, SHOWING BULKHEAD ON RIGHT AND SAND BANK ON LEFT, LOOKING NORTHWEST - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  8. 6. CREST ROAD ON UPPER EMBANKMENT, SHOWING MASONRY UPSTREAM PARAPET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. CREST ROAD ON UPPER EMBANKMENT, SHOWING MASONRY UPSTREAM PARAPET WALL (LEFT) AND ENTRANCE TO DEER FLAT NAMPA CANAL HEADWORKS (ALSO LEFT). VIEW TO WEST. - Boise Project, Deer Flat Embankments, Lake Lowell, Nampa, Canyon County, ID

  9. 3. General view of upstream face, looking northwest. Spillway is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. General view of upstream face, looking northwest. Spillway is at the far end of the dam. The Antelope Valley is visible in center background. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  10. 2. VIEW OF MAIN STORAGE RESERVOIR, SHOWING UPSTREAM SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF MAIN STORAGE RESERVOIR, SHOWING UPSTREAM SIDE OF DAM AND DISCHARGE GATE (LEFT), LOOKING SOUTHWEST (October 1991) - Bonanza Hydraulic Mining Site, Main Storage Reservoir, Swamp Gulch, Salmon, Lemhi County, ID

  11. 6. GENERAL EXTERIOR VIEW LOOKING SOUTHWEST, SHOWING UPSTREAM FACE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. GENERAL EXTERIOR VIEW LOOKING SOUTHWEST, SHOWING UPSTREAM FACE OF DAM/SPILLWAY; FOLIAGE IN FOREGROUND IS ON WASHINGTON SHORELINE. - Bonneville Project, Bonneville Dam, Columbia River, Bonneville, Multnomah County, OR

  12. 10. GENERAL EXTERIOR VIEW LOOKING SOUTH, SHOWING UPSTREAM FACE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. GENERAL EXTERIOR VIEW LOOKING SOUTH, SHOWING UPSTREAM FACE OF DAM/SPILLWAY; ELECTRICALLY-OPERATED GATE MECHANISMS ARE ON RIGHT; GANTRY CRANES ARE VISIBLE IN CENTER/LEFT. - Bonneville Project, Bonneville Dam, Columbia River, Bonneville, Multnomah County, OR

  13. 6. VIEW OF UPSTREAM FACE OF HORSE MESA, SHOWING CONCRETE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF UPSTREAM FACE OF HORSE MESA, SHOWING CONCRETE BEING PLACED. PENSTOCK OPENINGS ARE VISIBLE AT CENTER LEFT. August 24, 1926 - Horse Mesa Dam, Salt River, 65 miles East of Phoenix, Phoenix, Maricopa County, AZ

  14. 7. Chandler Falls, looking upstream (from north). Golf tee of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Chandler Falls, looking upstream (from north). Golf tee of the Mesa Country Club on right. Photographer: Mark Durben, February 1989. Source: SRPA - Tempe Canal, South Side Salt River in Tempe, Mesa & Phoenix, Tempe, Maricopa County, AZ

  15. 1. UPSTREAM VIEW OF THE SOUTH CHANNEL DAM, LOOKING EAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. UPSTREAM VIEW OF THE SOUTH CHANNEL DAM, LOOKING EAST. - Washington Water Power Company Post Falls Power Plant, South Channel Dam, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  16. 56. Upstream face of diversion dam looking east. Headgates are ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. Upstream face of diversion dam looking east. Headgates are partially visible at far left. Photographer Mark Durben, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  17. 30. Upstream face of construction effort. Photographer unknown, January 29, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Upstream face of construction effort. Photographer unknown, January 29, 1927. Source: Fritz Seifritz. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  18. 23. Upstream view of buttress and arch form work and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Upstream view of buttress and arch form work and construction. Photographer unknown, 1927. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  19. 19. Upstream face of arches and buttresses at west end. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Upstream face of arches and buttresses at west end. Photographer unknown, January 29, 1927. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  20. 41. Upstream end of emergency spillway excavation. Photographer unknown, 1929. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Upstream end of emergency spillway excavation. Photographer unknown, 1929. Source: Arizona Department of Water Resources (ADWR). - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  1. 50. Upstream face of Humbug Creek Diversion Dam showing sluice ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. Upstream face of Humbug Creek Diversion Dam showing sluice opening. Photographer James Eastwood, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  2. 11. Close up view of construction on the upstream face. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Close up view of construction on the upstream face. Photographer unknown, October 15, 1924. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  3. Oscillation of circular shock waves with upstream nonuniformity

    NASA Astrophysics Data System (ADS)

    Park, Myeong-Kwan; Oshima, Shuzo; Yamane, Ryuichiro

    1992-01-01

    Up to previous reports by Park et al. on the oscillation of the circular shock waves, the investigations have been concerned with situations where the upstream flow is uniform, and oscillation and deformation were induced by only downstream conditions. But in the centrifugal diffuser of a centrifugal compressor, the flow into the diffuser becomes nonuniform due to the impeller wake and the stall in the upstream impeller, which causes deformation and oscillation of the shock wave. Here, the above effects are considered, and the upstream disturbance is generated by cylindrical bars. The imperfect circular shock wave was induced by the effect of the wake, and the oscillation state, along with the oscillation modes caused by forced oscillation, is investigated experimentally. It was found that the basic mode of the oscillation is predominant and that the oscillation is weaker than in the case of uniform upstream.

  4. 75. PALMDALE WATER COMPANY, LITTLEROCK DAM, EASTWOOD MULTIPLEARCHED TYPE: UPSTREAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    75. PALMDALE WATER COMPANY, LITTLEROCK DAM, EASTWOOD MULTIPLE-ARCHED TYPE: UPSTREAM ELEVATION, SHEET 2; OCTOBER 2, 1919. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  5. Particles and waves Upstream of ICME Driven Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Kajdic, P.; Blanco-Cano, X.; Aguilar-Rodriguez, E.; Russell, C. T.; Jian, L.; Opitz, A.; Luhmann, J. G.; Galvin, A. B.

    2011-12-01

    We use STEREO data to study interplanetary shocks driven by coronal mass ejections. We have found ultra-low frequency (ULF, f ~ 0.01 - 0.2 Hz) waves and high-frequency (HF, f ~ 1 Hz) fluctuations in regions upstream and downstream of these shocks. Some of the upstream HF fluctuations were classified as whistler waves. In the past whistler origin has been explained in terms of shock generation. The variety of waves found in the studied regions suggests that some of them may be generated by particle populations (electrons, ions) that can be unstable to different types of instabilities. In this work we study ions and electrons in regions immediately upstream of ten IP shocks of our sample. We use the STEREO SWEA data for electrons and STEREO PLASTIC data for ions. We study particle distributions in different points upstream of the shocks (anisotropies, temperatures, etc.) and investigate which of the observed waves can be generated by backstreaming particles.

  6. GENERAL VIEW OF CHECK DAM (UPSTREAM SIDE), CONCRETE LINED TUMALO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF CHECK DAM (UPSTREAM SIDE), CONCRETE LINED TUMALO RESERVOIR FEED CANAL, AND UPPER TUMALO RESERVOIR (IN BACKGROUND) NEAR COLLINS ROAD. LOOKING WEST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR

  7. Emergence of Upstream Swimming via a Hydrodynamic Transition

    NASA Astrophysics Data System (ADS)

    Tung, Chih-kuan; Ardon, Florencia; Roy, Anubhab; Koch, Donald L.; Suarez, Susan S.; Wu, Mingming

    2015-03-01

    We demonstrate that upstream swimming of sperm emerges via an orientation disorder-order transition. The order parameter, the average orientation of the sperm head against the flow, follows a 0.5 power law with the deviation from the critical flow shear rate (γ -γc ). This transition is successfully explained by a hydrodynamic bifurcation theory, which extends the sperm upstream swimming to a broad class of near surface microswimmers that possess front-back asymmetry and circular motion.

  8. ULF waves upstream of the Venus bow shock - Properties of one-hertz waves

    NASA Technical Reports Server (NTRS)

    Orlowski, D. S.; Russell, C. T.

    1991-01-01

    Pioneer Venus Orbiter data are used here to study the properties of a class of ULF upstream waves with relatively high observed frequencies. These waves show significant similarity to 'one-Hz' waves identified at earth in the ISEE 1 and 2 observations and the whistler waves identified earlier by IMP 6 observations. The waves appear almost immediately after the spacecraft crosses the magnetic field tangent line to the bow shock surface into the region of connected field lines. The wave amplitude decreases with distance from the shock measured along the magnetic field line. Group velocities calculated using the cold plasma dispersion relation indicate that the waves have sufficient upstream velocities to propagate form the shock into the solar wind. The totality of observations seem best explained by a source of right-handed whistler mode waves at the bow shock.

  9. Microdosimetry of DNA conformations: relation between direct effect of (60)Co gamma rays and topology of DNA geometrical models in the calculation of A-, B- and Z-DNA radiation-induced damage yields.

    PubMed

    Semsarha, Farid; Raisali, Gholamreza; Goliaei, Bahram; Khalafi, Hossein

    2016-05-01

    In order to obtain the energy deposition pattern of ionizing radiation in the nanometric scale of genetic material and to investigate the different sensitivities of the DNA conformations, direct effects of (60)Co gamma rays on the three A, B and Z conformations of DNA have been studied. For this purpose, single-strand breaks (SSB), double-strand breaks (DSB), base damage (BD), hit probabilities and three microdosimetry quantities (imparted energy, mean chord length and lineal energy) in the mentioned DNA conformations have been calculated and compared by using GEometry ANd Tracking 4 (Geant4) toolkit. The results show that A-, B- and Z-DNA conformations have the highest yields of DSB (1.2 Gy(-1) Gbp(-1)), SSB (25.2 Gy(-1) Gbp(-1)) and BD (4.81 Gy(-1) Gbp(-1)), respectively. Based on the investigation of direct effects of radiation, it can be concluded that the DSB yield is largely correlated to the topological characteristics of DNA models, although the SSB yield is not. Moreover, according to the comparative results of the present study, a reliable candidate parameter for describing the relationship between DNA damage yields and geometry of DNA models in the theoretical radiation biology research studies would be the mean chord length (4 V/S) of the models. PMID:26984469

  10. Barriers impede upstream spawning migration of flathead chub

    USGS Publications Warehouse

    Walters, David M.; Zuellig, Robert E.; Crockett, Harry J.; Bruce, James F.; Lukacs, Paul M.; Fitzpatrick, Ryan M.

    2014-01-01

    Many native cyprinids are declining throughout the North American Great Plains. Some of these species require long reaches of contiguous, flowing riverine habitat for drifting eggs or larvae to develop, and their declining populations have been attributed to habitat fragmentation or barriers (e.g., dams, dewatered channels, and reservoirs) that restrict fish movement. Upstream dispersal is also needed to maintain populations of species with passively drifting eggs or larvae, and prior researchers have suggested that these fishes migrate upstream to spawn. To test this hypothesis, we conducted a mark–recapture study of Flathead Chub Platygobio gracilis within a 91-km reach of continuous riverine habitat in Fountain Creek, Colorado. We measured CPUE, spawning readiness (percent of Flathead Chub expressing milt), and fish movement relative to a channel-spanning dam. Multiple lines of evidence indicate that Flathead Chub migrate upstream to spawn during summer. The CPUE was much higher at the base of the dam than at downstream sites; the seasonal increases in CPUE at the dam closely tracked seasonal increases in spawning readiness, and marked fish moved upstream as far as 33 km during the spawning run. The upstream migration was effectively blocked by the dam. The CPUE of Flathead Chub was much lower upstream of the OHDD than at downstream sites, and <0.2% of fish marked at the dam were recaptured upstream. This study provides the first direct evidence of spawning migration for Flathead Chub and supports the general hypothesis that barriers limit adult dispersal of these and other plains fishes.

  11. Health and safety in small workplaces: refocusing upstream.

    PubMed

    Eakin, Joan M; Champoux, Danièle; MacEachen, Ellen

    2010-01-01

    Small workplaces have particular injury risks and are enduringly difficult for the occupational health and safety (OHS) system to reach. This paper puts forward an "upstream" perspective on OHS in small workplaces that moves beyond the attributes of the workplace and those who work there. The paper draws on and synthesizes ideas and findings from emerging upstream OHS research, our own empirical investigations in Ontario and Quebec, and our collected research experience in small workplace health. Upstream structures and processes (regulations, policies, services, interventions, professional practices) are often misaligned with the conditions of work and social relations of small workplaces. Key upstream factors include regulatory exemption, subcontracting, unionization levels, the changing character of small enterprise, joint management, service and inspection constraints, competing institutional accountabilities, institutional orientation to large business, and inappropriate service and policy. Misalignment of the OHS system with the nature and practical realities of small workplaces can undermine prevention and the management of ill health and injury. To address such misalignments, the paper calls for: 1) restructuring of data collection and consultation processes to increase the visibility, voice and credibility of small workplaces; 2) "audits" of OHS-related legislation, policy and interventions to assess and address implications for small workplaces; 3) reflection on current terms and concepts that render workers invisible and capture poorly the essence and (increasing) diversity of these workplaces; and 4) extension of the upstream gaze to the global level. PMID:20629444

  12. Tachykinin acts upstream of autocrine Hedgehog signaling during nociceptive sensitization in Drosophila

    PubMed Central

    Im, Seol Hee; Takle, Kendra; Jo, Juyeon; Babcock, Daniel T; Ma, Zhiguo; Xiang, Yang; Galko, Michael J

    2015-01-01

    Pain signaling in vertebrates is modulated by neuropeptides like Substance P (SP). To determine whether such modulation is conserved and potentially uncover novel interactions between nociceptive signaling pathways we examined SP/Tachykinin signaling in a Drosophila model of tissue damage-induced nociceptive hypersensitivity. Tissue-specific knockdowns and genetic mutant analyses revealed that both Tachykinin and Tachykinin-like receptor (DTKR99D) are required for damage-induced thermal nociceptive sensitization. Electrophysiological recording showed that DTKR99D is required in nociceptive sensory neurons for temperature-dependent increases in firing frequency upon tissue damage. DTKR overexpression caused both behavioral and electrophysiological thermal nociceptive hypersensitivity. Hedgehog, another key regulator of nociceptive sensitization, was produced by nociceptive sensory neurons following tissue damage. Surprisingly, genetic epistasis analysis revealed that DTKR function was upstream of Hedgehog-dependent sensitization in nociceptive sensory neurons. Our results highlight a conserved role for Tachykinin signaling in regulating nociception and the power of Drosophila for genetic dissection of nociception. DOI: http://dx.doi.org/10.7554/eLife.10735.001 PMID:26575288

  13. Comparison of properties of upstream whistlers at different planets

    NASA Technical Reports Server (NTRS)

    Orlowski, D. S.; Russell, C. T.

    1995-01-01

    Whistler mode waves have been recorded in the upstream region of Mercury, Venus, Earth and Saturn. They are elliptically polarized and observed typically at frequencies between 0.1 to 4 Hz. These intrinsically right handed waves can be left-handed polarized in the spaceframe as a result of strong negative Doppler shift. The waves propagate at an angle between 10 and 60 deg to the background magnetic field, with (Delta B)/B rarely exceeding 0.1. Comprehensive studies of these waves at Earth and Venus indicate that upstream whistlers are generated at the shock rather than locally in the foreshock. In this paper, we compare properties of upstream whistlers at all these planets. We also discuss the utilization of selected properties of these waves to evaluate the effective Alfvenic Mach number and the shock thickness at Mercury where solar wind measurements are not available.

  14. MESSENGER Observations of Upstream Whistler Waves in Mercury's Foreshock Region

    NASA Astrophysics Data System (ADS)

    Le, G.; Chi, P. J.; Blanco-Cano, X.; Boardsen, S. A.; Slavin, J. A.; Anderson, B. J.; Korth, H.

    2012-12-01

    The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth's is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury's bow shock is unique in our solar system as it is produced by low Mach number and low plasma beta solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study upstream waves in the Mercury's foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury's foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. A preliminary study has shown the existence of at least three types of upstream waves: 1) whistler waves at frequencies near 2 Hz, similar to 1-Hz waves at the Earth; 2) waves with frequencies ~ 0.1 Hz, similar to the large-amplitude 30-s waves at the Earth; 3) fluctuations with broad spectral peaks centered at ~ 0.6 Hz. Unlike the Earth's foreshock where the most prominent upstream wave phenomenon is locally generated large-amplitude 30-s waves, the most common foreshock waves are whistler waves generated at the bow shock, with properties similar to the 1-Hz waves in the Earth's foreshock. These "one-Hz" waves are present in both the flyby data and in every orbit of the orbital data we have surveyed. We will discuss their properties, spatial variations, and propagation and occurrence characteristics in this paper.

  15. Transition duct with divided upstream and downstream portions

    SciTech Connect

    McMahan, Kevin Weston; LeBegue, Jeffrey Scott; Maldonado, Jaime Javier; Dillard, Daniel Jackson; Flanagan, James Scott

    2015-07-14

    Turbine systems are provided. In one embodiment, a turbine system includes a transition duct comprising an inlet, an outlet, and a duct passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The duct passage includes an upstream portion extending from the inlet and a downstream portion extending from the outlet. The turbine system further includes a rib extending from an outer surface of the duct passage, the rib dividing the upstream portion and the downstream portion.

  16. Emergence of upstream swimming through a hydrodynamic transition

    PubMed Central

    Tung, Chih-kuan; Ardon, Florencia; Roy, Anubhab; Koch, Donald L.; Suarez, Susan S.; Wu, Mingming

    2015-01-01

    We demonstrate that upstream swimming of sperm emerges via an orientation disorder-order transition. The order parameter, the average orientation of the sperm head against the flow, follows a 0.5 power law with the deviation from the critical flow shear rate (γ − γc). This transition is successfully explained by a hydrodynamic bifurcation theory, which extends the sperm upstream swimming to a broad class of near surface micro-swimmers that possess front-back asymmetry and circular motion. PMID:25815969

  17. The Martian escape rate as a function of upstream solar conditions

    NASA Astrophysics Data System (ADS)

    Ramstad, R.; Barabash, S.; Futaana, Y.; Nilsson, H.; Holmstrom, M.

    2014-12-01

    We investigate potential factors for influence on the Martian heavy ion escape rate (Q) by integrating Mars Express ASPERA-3/IMA heavy ion flux measurements in the Martian tail, taken at similar (binned) solar wind density (n), velocity (v) and EUV radiation flux (FEUV) upstream conditions. In the best sampled cases, with v and FEUV constrained, we find a statistically significant decrease in heavy ion escape rate with increased solar wind density. An empirical-analytical model for atmospheric escape is developed by fitting calculated escape rates to all sufficiently sampled solar conditions, indicating an overall negative dependence on solar wind density.

  18. Upstream particle events close to the bow shock and 200 earth radii upstream - ISEE-1 and ISEE-3 observations

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Hovestadt, D.; Klecker, B.; Ipavich, F. M.; Gloeckler, G.

    1980-01-01

    Two energetic particle events (28 keV - 145 keV) upstream of the earth's bow shock have been investigated with two identical experiments of the Max-Planck-Institut/University of Maryland on ISEE-1 and ISEE-3. Close to the bow shock the particle distribution is more or less isotropic and indicates strong scattering of these particles in the upstream wave field. At ISEE-3 the particles move essentially scatter-free from the general bow shock direction. The temporal evolution of the particle bursts is discussed in terms of the interplanetary magnetic field topology and the scattering conditions.

  19. Sampling the potential energy surface of a DNA duplex damaged by a food carcinogen: Force field parameterization by ab initio quantum calculations and conformational searching using molecular mechanics computations

    NASA Astrophysics Data System (ADS)

    Wu, Xiangyang

    1999-07-01

    The heterocyclic amine 2-amino-3-methylimidazo (4, 5-f) quinoline (IQ) is one of a number of carcinogens found in barbecued meat and fish. It induces tumors in mammals and is probably involved in human carcinogenesis, because of great exposure to such food carcinogens. IQ is biochemically activated to a derivative which reacts with DNA to form a covalent adduct. This adduct may deform the DNA and consequently cause a mutation. which may initiate carcinogenesis. To understand this cancer initiating event, it is necessary to obtain atomic resolution structures of the damaged DNA. No such structures are available experimentally due to synthesis difficulties. Therefore, we employ extensive molecular mechanics and dynamics calculations for this purpose. The major IQ-DNA adduct in the specific DNA sequence d(5'G1G2C G3CCA3') - d(5'TGGCGCC3') with IQ modified at G3 is studied. The d(5'G1G2C G3CC3') sequence has recently been shown to be a hot-spot for mutations when IQ modification is at G3. Although this sequence is prone to -2 deletions via a ``slippage mechanism'' even when unmodified, a key question is why IQ increases the mutation frequency of the unmodified DNA by about 104 fold. Is there a structural feature imposed by IQ that is responsible? The molecular mechanics and dynamics program AMBER for nucleic acids with the latest force field was chosen for this work. This force field has been demonstrated to reproduce well the B-DNA structure. However, some parameters, the partial charges, bond lengths and angles, dihedral parameters of the modified residue, are not available in the AMBER database. We parameterized the force field using high level ab initio quantum calculations. We created 800 starting conformations which uniformly sampled in combination at 18° intervals three torsion angles that govern the IQ-DNA orientations, and energy minimized them. The most important structures are abnormal; the IQ damaged guanine is rotated out of its standard B

  20. Laser Doppler velocity measurements of swirling flows with upstream influence

    NASA Technical Reports Server (NTRS)

    Rloff, K. L.; Bossel, H. H.

    1973-01-01

    Swirling flow in a rotating tube is studied by flow visualization at a moderate Reynolds number, and its velocity field is measured by laser-Doppler anemometry. The tube has constant diameter, and approximately uniform initial rigid rotation of the flow is assured by passing the flow through a rotating plug of porous metal before it enters the test section. At moderate swirl values, an object mounted on the tube centerline causes a closed bubble to form upstream of the obstacle, with a clearly defined stagnation point on the axis, and recirculating flow inside the bubble. The bubble length grows upstream as the swirl is increased, until it breaks up into a Taylor column reaching all the way upstream and downstream at swirl values above a certain critical value. A vortex jump (in the sense of Benjamin) occurs downstream of the obstacle except when the Taylor column is present. Using a laser-Doppler anemometer, axial and swirl velocity profiles are obtained at several stations upstream and downstream of the bubble, and in and around the bubble.

  1. 9. Detail, typical bearing, upstream side of west end of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Detail, typical bearing, upstream side of west end of Bridge Number 301.85, view to east, 210mm lens with electronic flash fill. - Southern Pacific Railroad Shasta Route, Bridge No. 301.85, Milepost 301.85, Pollard Flat, Shasta County, CA

  2. 9. UPSTREAM EXTENSION TO 60' INFILTRATION PIPE: REINFORCEMENT DETAILS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. UPSTREAM EXTENSION TO 60' INFILTRATION PIPE: REINFORCEMENT DETAILS OF VALVE CONTROL STRUCTURE. Sheet A-20, July, 1939. File no. SA 342/29. - Prado Dam, Embankment, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  3. 68. VIEW, LOOKING NORTH (UPSTREAM) FROM LOWER ARM OF COFFERDAM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. VIEW, LOOKING NORTH (UPSTREAM) FROM LOWER ARM OF COFFERDAM, SHOWING STATUS OF CONSTRUCTION. NOTE CONCRETE FORMS IN DISTANCE, TIMBER PILES FOR INTERMEDIATE WALL IN CENTER, AND CONCRETE MIXING PLANT ON RIGHT. Taken September 4, 1934. - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 10, Guttenberg, Clayton County, IA

  4. 23. VIEW LOOKING UPSTREAM AND TOWARD LEFT ABUTMENT OF DAM. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. VIEW LOOKING UPSTREAM AND TOWARD LEFT ABUTMENT OF DAM. NOTE FORMS FOR LEFT GRAVITY ABUTMENT AT UPPER RIGHT CORNER OF PICTURE. ARCHES 3, 4, 5, AND 7 COMPLETED TO ELEVATION 1795. 5 OR 7.5 FEET BELOW TOP OF PARAPET WALL. November 29, 1938 - Bartlett Dam, Verde River, Phoenix, Maricopa County, AZ

  5. 25. UPSTREAM VIEW OF LOWER END OF OUTLET STRUCTURE SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. UPSTREAM VIEW OF LOWER END OF OUTLET STRUCTURE SHOWING FORMS IN PLACE FOR GRAVITY WALL SECTIONS.... Volume XVI, No. 16, August 16, 1939. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  6. PHOTO OF THE BOAT HOUSE, GATE HOUSE, UPSTREAM SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PHOTO OF THE BOAT HOUSE, GATE HOUSE, UPSTREAM SIDE OF SPILLWAYS LOOKING EAST; WATER INTAKE AND LOG BOOMS ARE SEEN ON RESERVOIR. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Glines Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  7. 3. FORMER INTAKE DAM NO. 2, VIEW LOOKING UPSTREAM AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. FORMER INTAKE DAM NO. 2, VIEW LOOKING UPSTREAM AT LEFT IS RUBBLE MASONRY COVERING INTERSECTION OF THE TWO IRON PIPES FROM NEW DAM ENTERING OLD INTAKE OPENING AT RIGHT IS BOX FLUME LEADING TO AERATOR. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  8. 1. OVERALL VIEW OF WHITE MILLER LAKE AND UPSTREAM FACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERALL VIEW OF WHITE MILLER LAKE AND UPSTREAM FACE OF DAM, LOOKING NORTH - High Mountain Dams in Upalco Unit, White Miller Lake Dam, Ashley National Forest, 6.9 miles North of Swift Creek Campground, Mountain Home, Duchesne County, UT

  9. 8. GENERAL EXTERIOR VIEW LOOKING NORTHWEST TOWARD UPSTREAM END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. GENERAL EXTERIOR VIEW LOOKING NORTHWEST TOWARD UPSTREAM END OF NAVIGATION LOCK #1; SOUTH END OF POWERHOUSE #1 IS VISIBLE ON RIGHT; BRADFORD SLOUGH IS VISIBLE IN FOREGROUND. - Bonneville Project, Navigation Lock No. 1, Oregon shore of Columbia River near first Powerhouse, Bonneville, Multnomah County, OR

  10. View of upstream face of the forebay dam of Grand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of upstream face of the forebay dam of Grand Coulee Dam, looking southwest. Note the trash racks at the entrance to the penstocks. - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA

  11. 6. AERATOR VIEWED UPSTREAM. DETAIL OF FLUSH VALVE AND VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. AERATOR VIEWED UPSTREAM. DETAIL OF FLUSH VALVE AND VIEW INTO BOX FLUME. NOTE WRENCH TO OPEN VALVE AND REMAINS OF OLD SHOVEL USED FOR MAINTENANCE. TRASH SCREEN MESH IS SEEN AT BOTTOM LEFT. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  12. 1. VIEW NORTH FROM UPSTREAM WITH IMPOUNDED LAKE AND (LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW NORTH FROM UPSTREAM WITH IMPOUNDED LAKE AND (LEFT TO RIGHT): EARTHEN DIKE, HYDROELECTRIC GENERATING FACILITY, AND DAM - Middle Creek Hydroelectric Dam, On Middle Creek, West of U.S. Route 15, 3 miles South of Selinsgrove, Selinsgrove, Snyder County, PA

  13. 2. CONTEXTUAL VIEW FROM UPSTREAM OF BRIDGE IN ITS SETTING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CONTEXTUAL VIEW FROM UPSTREAM OF BRIDGE IN ITS SETTING, LOOKING SOUTH-SOUTHWEST FROM LOWER (RAILROAD) DECK OF SOUTHERN PACIFIC TRANSPORTATION COMPANY'S I STREET BRIDGE - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  14. 10. VIEW UPSTREAM OF PIPELINE SECTION AT JUNCTION OF HUME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW UPSTREAM OF PIPELINE SECTION AT JUNCTION OF HUME CEMENT PIPE AND CAST-IRON (460'). NOTE CYLINDRICAL COLLAR OF CEMENT SECTIONS AND BELL JUNCTIONS OF IRON PIPE. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  15. 32. AERIAL VIEW OF TIETON DAM, UPSTREAM FACE OF DAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. AERIAL VIEW OF TIETON DAM, UPSTREAM FACE OF DAM (Trashrack-structure for outlet at lower left in reservoir, spillway at upper left. Reservoir nearly empty due to drought.) - Tieton Dam, South & East of State Highway 12, Naches, Yakima County, WA

  16. 43. View of log boom (upstream) protecting fish screens at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. View of log boom (upstream) protecting fish screens at Dingle Basin, looking southwest from north side of basin. Photo by Brian C. Morris, PUget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  17. 45. View of upstream face of fish screens at Dingle ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. View of upstream face of fish screens at Dingle Basin, looking northwest from south side of basin. Photo by Brian C. Morris, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  18. 2. VIEW OF UPSTREAM SIDE OF HISTORIC OUTLET WORKS TAKEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF UPSTREAM SIDE OF HISTORIC OUTLET WORKS TAKEN FROM CENTER OF THE CHANNEL FROM TWIN LAKES. VIEW LOOKING EAST. - Twin Lakes Dam & Outlet Works, Beneath Twin Lakes Reservoir, T11S, R80W, S22, Twin Lakes, Lake County, CO

  19. View of Stehr Lake from FS 502 looking upstream (northeast). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Stehr Lake from FS 502 looking upstream (northeast). Vehicle at right center is parked on earthen Upper Stehr Lake Dam. - Childs-Irving Hydroelectric Project, Childs System, Stehr Lake & Dams, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  20. 13. Detail, upper chord connection point on upstream side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Detail, upper chord connection point on upstream side of truss, showing connection of upper chord, laced vertical compression member, knee-braced strut, counters, and laterals. - Red Bank Creek Bridge, Spanning Red Bank Creek at Rawson Road, Red Bluff, Tehama County, CA

  1. 12. Upstream view showing thelower log pond log chute in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Upstream view showing thelower log pond log chute in the main channel of the Hudson River. The log chute in the dam can be seen in the background. Facing southwest. - Glens Falls Dam, 100' to 450' West of U.S. Route 9 Bridge Spanning Hudson River, Glens Falls, Warren County, NY

  2. 18. View to southwest. Detail, bearing shoe, upstream side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. View to southwest. Detail, bearing shoe, upstream side of east pier. Copy negative made from 35mm color transparency made with with 135mm lens by John Snyder, due to lack of sufficiently long lens for 4x5 camera. - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA

  3. DESCHUTES PROJECT – WICKIUP DAM – VIEW OF UPSTREAM FACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DESCHUTES PROJECT – WICKIUP DAM – VIEW OF UPSTREAM FACE FROM RIGHT ABUTMENT. CPS CREW PLACING RIPRAP. Photocopy of historic photographs (original photograph on file at National Archives, Rocky Mountain Region, Denver, CO). Unknown USBR Photographer, July 26, 1944 - Wickiup Dam, Deschutes River, La Pine, Deschutes County, OR

  4. VIEW OF UPSTREAM SIDE OF TUMALO RESERVOIR FEED CANAL INTAKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF UPSTREAM SIDE OF TUMALO RESERVOIR FEED CANAL INTAKE STRUCTURE, OLD COLUMBIA SOUTHERN CANAL POND OUTLET (FAR LEFT), AND NEW COLUMBIA SOUTHERN CANAL INTAKE STRUCTURES (FAR RIGHT). LOOKING NORTH - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR

  5. DESCHUTES. WICKIUP DAM OUTLET WORKS. GENERAL VIEW LOOKING UPSTREAM FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DESCHUTES. WICKIUP DAM OUTLET WORKS. GENERAL VIEW LOOKING UPSTREAM FROM LEFT BANK OF DESCHUTES RIVER. Photocopy of historic photograph (original photograph on file at National Archives, Rocky Mountain Region, Denver, CO). Unknown USBR photographer, August 5, 1940 - Wickiup Dam, Outlet Works, Deschutes River, La Pine, Deschutes County, OR

  6. DESCHUTES PROJECT – WICKIUP DAM – RIPRAP ON UPSTREAM FACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DESCHUTES PROJECT – WICKIUP DAM – RIPRAP ON UPSTREAM FACE OF DAM. Photocopy of historic photographs (original photograph on file at National Archives, Rocky Mountain Region, Denver, CO). Unknown USBR Photographer, October 1, 1942 - Wickiup Dam, Deschutes River, La Pine, Deschutes County, OR

  7. DESCHUTES. WICKIUP DAM OUTLET WORKS. GENERAL VIEW LOOKING UPSTREAM FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DESCHUTES. WICKIUP DAM OUTLET WORKS. GENERAL VIEW LOOKING UPSTREAM FROM LEFT BANK OF DESCHUTES RIVER. MONTAG & SONS, CONTRACTOR. Photocopy of historic photograph (original photograph on file at National Archives, Rocky Mountain Region, Denver, CO). Unknown USBR photographer, November 24, 1940 - Wickiup Dam, Outlet Works, Deschutes River, La Pine, Deschutes County, OR

  8. DESCHUTES PROJECT, WICKIUP RESERVOIR, UPSTREAM SIDE OF COMPLETED EAST DIKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DESCHUTES PROJECT, WICKIUP RESERVOIR, UPSTREAM SIDE OF COMPLETED EAST DIKE FROM RIGHT ABUTMENT. Photocopy of historic photograph (original photograph on file at National Archives, Rocky Mountain Region, Denver, CO). R.A. Baker, photographer, August 29, 1947 - Wickiup Dam, Dikes and Spillway, Deschutes River, La Pine, Deschutes County, OR

  9. DESCHUTES PROJECT – VIEW OF RIPRAP ON UPSTREAM FACE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DESCHUTES PROJECT – VIEW OF RIPRAP ON UPSTREAM FACE OF WICKIUP DAM FROM RIGHT BANK. Photocopy of historic photographs (original photograph on file at National Archives, Rocky Mountain Region, Denver, CO). Unknown USBR Photographer, August 31, 1943 - Wickiup Dam, Deschutes River, La Pine, Deschutes County, OR

  10. DESCHUTES, WICKIUP DAM OUTLET WORKS. STILLING BASIN LOOKING UPSTREAM. MONTAG ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DESCHUTES, WICKIUP DAM OUTLET WORKS. STILLING BASIN LOOKING UPSTREAM. MONTAG & SONS, CONTRACTOR. Photocopy of historic photograph (original photograph on file at National Archives, Rocky Mountain Region, Denver, CO). Unknown USBR photographer, April 18, 1940 - Wickiup Dam, Outlet Works, Deschutes River, La Pine, Deschutes County, OR

  11. DESCHUTES. WICKIUP DAM OUTLET WORKS. LOOKING UPSTREAM FROM VALVE HOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DESCHUTES. WICKIUP DAM OUTLET WORKS. LOOKING UPSTREAM FROM VALVE HOUSE TOWARD GATE CHAMBER. Photocopy of historic photograph (original photograph on file at National Archives, Rocky Mountain Region, Denver, CO). Unknown USBR photographer, October 22, 1940 - Wickiup Dam, Outlet Works, Deschutes River, La Pine, Deschutes County, OR

  12. DESCHUTES. WICKIUP DAM OUTLET WORKS, LOOKING UPSTREAM. REINFORCING STEEL IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DESCHUTES. WICKIUP DAM OUTLET WORKS, LOOKING UPSTREAM. REINFORCING STEEL IN PLACE FOR FLOOR OF STILLING BASIN IN FOREGROUND. Photocopy of historic photograph (original photograph on file at National Archives, Rocky Mountain Region, Denver, CO). Unknown USBR photographer, June 17, 1940 - Wickiup Dam, Outlet Works, Deschutes River, La Pine, Deschutes County, OR

  13. DESCHUTES. WICKIUP DAM OUTLET WORKS. LOOKING UPSTREAM, THROUGH STILL BASIN, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DESCHUTES. WICKIUP DAM OUTLET WORKS. LOOKING UPSTREAM, THROUGH STILL BASIN, MONTAG & SONS, CONTRACTOR, POURING CONCRETE IN CENTER WALL. Photocopy of historic photograph (original photograph on file at National Archives, Rocky Mountain Region, Denver, CO). Unknown USBR photographer, August 24, 1940 - Wickiup Dam, Outlet Works, Deschutes River, La Pine, Deschutes County, OR

  14. View of upstream face of Grand Coulee Dam, looking northeast. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of upstream face of Grand Coulee Dam, looking northeast. This image features a partially cloudy sky.) - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA

  15. View of upstream face of the forebay dam of Grand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of upstream face of the forebay dam of Grand Coulee Dam, looking west. Construction of the forebay dam, which replaced the eastern end of the original Grand Coulee Dam, was completed in 1974. - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA

  16. 4. AERATOR AT 525, CONSTRUCTED 19371938, VIEW FROM UPSTREAM (TRASH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. AERATOR AT 525, CONSTRUCTED 1937-1938, VIEW FROM UPSTREAM (TRASH SCREEN REMOVED FOR CLARITY), WATER FROM INTAKE FLOWS THROUGH FLUME, THEN DAMS, AND SPILLS OVER STEPS TO MIX WITH OXYGEN, THUS REDUCING ACIDITY LEVELS. ACID INDUCES FASTER CORROSION OF PIPES AND SPOILS TASTE. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  17. VIEW OF UPSTREAM (EAST) SIDES OF UPPER (EAST) END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF UPSTREAM (EAST) SIDES OF UPPER (EAST) END OF LOCK, SOUTHEAST AND NORTHEAST CONTROL HOUSES, LOCK UNDER REPAIR, BUILDING NOS. 51, 52 AND SOUTHWEST CONTROL HOUSE IN BACKGROUND, VIEW TOWARDS WEST-NORTHWEST - Ortona Lock, Lock No. 2, Machinery and Control Houses, Caloosahatchee River, Cross-State Canal, Okeechobee Intracoastal Waterway, Ortona, Glades County, FL

  18. Multispacecraft observations of diffuse ions upstream of Earth's bow shock

    NASA Astrophysics Data System (ADS)

    Kis, A.; Scholer, M.; Klecker, B.; Moebius, E.; Lucek, E.; Reme, H.

    We present observations of upstream ions at times of large separation distance between the Cluster spacecraft (~5000 km). On 18 February, 2003, during particulary quiet interplanetary conditions, the Cluster spacecraft were moving inbound through the foreshock region, where for more than 12 hours they simultaneously observed a continuous presence of a diffuse ion population. Using the HIA and CODIF sensors of the CIS plasma instrument onboard SC-1 and -3, we were able to directly measure the upstream ion density gradients in the energy range 10-32 keV in several energy bands. During this time period, the spacecraft distance from the bow shock parallel to the local magnetic field varies considerably (between 0 and 15 Re). The distance to the bow shock has been determined by using upstream magnetic field and plasma parameters and a bow shock model. We find up to 10 Re from the bow shock an exponential decrease of the upstream ion density, with an e-folding distance increasing from 3.1 to 5.6 Re at energies from 10 keV to 32 keV, respectively. From the e-folding distance the parallel diffusion coefficient and its energy dependence can be determined. At distances more than 10 Re the gradient is close to zero.

  19. 2. UPSTREAM SIDE OF DAM AND BRIDGE WITH ABANDONED SAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. UPSTREAM SIDE OF DAM AND BRIDGE WITH ABANDONED SAN TAN FLOOD-WATER HEADGATE IN FOREGROUND. TAKEN FROM NORTH END OF DAM - San Carlos Irrigation Project, Sacaton Dam & Bridge, Gila River, T4S R6E S12/13, Coolidge, Pinal County, AZ

  20. 14. VIEW SHOWING UPSTREAM FACE OF HORSE MESA. TRACK FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW SHOWING UPSTREAM FACE OF HORSE MESA. TRACK FROM AGGREGATE BARGES TO MIXING PLANT IS AT LOWER LEFT, RIGHT SPILLWAY CHUTE IS TAKING FORM AT UPPER RIGHT April 29, 1927 - Horse Mesa Dam, Salt River, 65 miles East of Phoenix, Phoenix, Maricopa County, AZ

  1. 6. UPSTREAM VIEW OF THE SPILLWAY OF THE POST FALLS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. UPSTREAM VIEW OF THE SPILLWAY OF THE POST FALLS POWERHOUSE, WITH A PARTIAL VIEW OF THE MODERN TRANSFORMER IN THE FOREGROUND, AND THE OLD SWITCHING BUILDING IN THE LEFT BACKGROUND, LOOKING SOUTHEAST. - Washington Water Power Company Post Falls Power Plant, Middle Channel Powerhouse & Dam, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  2. 5. UPSTREAM VIEW OF THE TRASH RAKES, GATES AND GATELIFTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. UPSTREAM VIEW OF THE TRASH RAKES, GATES AND GATE-LIFTING MECHANISMS FOR THE POST FALLS DAM AND POWERHOUSE, LOOKING NORTHWEST. - Washington Water Power Company Post Falls Power Plant, Middle Channel Powerhouse & Dam, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  3. 18. Upstream face of arches, concrete placing tower is at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Upstream face of arches, concrete placing tower is at far right. Tower at center was used to convey material. Photographer unknown, January 29, 1927. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  4. 63. Upstream face of Waddell Dam as viewed from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. Upstream face of Waddell Dam as viewed from the west abutment. Crane at center is used to service the penstock intake. Photographer Mark Durben. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  5. 14. Close up view of upstream side of Taintor gates ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Close up view of upstream side of Taintor gates being installed. Placement tower chute is at upper right. Photographer unknown, January 6, 1925. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  6. 1. View looking upstream (southwest) at diversion dam. Water enters ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View looking upstream (southwest) at diversion dam. Water enters half-round flume on right. Break in diversion structure provides a view of water flow in flume during the high water runoff in June. - Rock Creek Hydroelectric Project, Rock Creek, Baker County, OR

  7. 11. VIEW OF UPSTREAM ELEVATION OF BIG DALTON DAM SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF UPSTREAM ELEVATION OF BIG DALTON DAM SHOWING CONSTRUCTION OF THE ARCH WALLS, TAKEN ON SEPTEMBER 11, 1928 (PHOTOGRAPHER UNKNOWN). PICTURE WAS DEVELOPED FROM COPY NEGATIVES WHICH WERE TAKEN ON 6/5/1973 BY PHOTOGRAPHER GATSON OF L.A. COUNTY PUBLIC WORKS. - Big Dalton Dam, 2600 Big Dalton Canyon Road, Glendora, Los Angeles County, CA

  8. "Upstream"-The Case for Professional Counseling in Residence Halls.

    ERIC Educational Resources Information Center

    Rickgarn, Ralph L.

    1985-01-01

    Presents "upstream", a model for the utilization of professional counseling services in the residence halls, encompassing developmental, preventive, and remedial approaches. Suggests that the professional counselor can assist in four capacities in the actualization of these approaches: as a therapist, as a consultant, as a change agent, and as a…

  9. Detecting floodplain inundation based on the upstream-downstream relationship

    NASA Astrophysics Data System (ADS)

    Zhao, Tongtiegang; Shao, Quanxi

    2015-11-01

    The rise in river stage (water depth) can lead to disastrous floodplain inundation. On the basis of hydraulic simulation data, this study proposes novel data-analytical methods to infer the threshold river stage and detect floodplain inundation. A quasi-Muskingum model is derived from the classical Muskingum model to characterise the relationship between upstream and downstream river stages. Based on this model, F-test and modified Akaike information criterion AICc are introduced to test if there is a change of the upstream-downstream relationship. Furthermore, a bootstrap-based calibration-validation experiment is set up to evaluate the performance of the quasi-Muskingum model. The proposed methods are applied to a case study of the 1991 and 2001 floods in the Flinders and Norman Rivers in Northern Australia. The results show that floodplain inundation does change the upstream-downstream relationship as it drastically alters the stage-discharge relationship. To combine the quasi-Muskingum model with F-test and AICc facilitates an efficient approach to detect the change and infer the threshold river stage. The analytical testing is in concert with visual examination - the time when the river stage becomes higher than the detected threshold coincides with the beginning of floodplain inundation. Despite the change, the quasi-Muskingum model effectively captures the upstream-downstream relationship and requires a small number of samples in calibration. This study highlights the effectiveness of the data-analytical methods in dealing with the change of the upstream-downstream relationship.

  10. Cumulative fatigue damage models

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1988-01-01

    The problem of calculating expected component life under fatigue loading conditions is complicated by the fact that component loading histories contain, in many cases, cyclic loads of widely varying amplitudes. In such a case a cumulative damage model is required, in addition to a fatigue damage criterion, or life relationship, in order to compute the expected fatigue life. The traditional cumulative damage model used in design is the linear damage rule. This model, while being simple to use, can yield grossly unconservative results under certain loading conditions. Research at the NASA Lewis Research Center has led to the development of a nonlinear cumulative damage model, named the double damage curve approach (DDCA), that has greatly improved predictive capability. This model, which considers the life (or loading) level dependence of damage evolution, was applied successfully to two polycrystalline materials, 316 stainless steel and Haynes 188. The cumulative fatigue behavior of the PWA 1480 single-crystal material is currently being measured to determine the applicability of the DDCA for this material.

  11. Potential Upstream Strategies for the Mitigation of Pharmaceuticals in the Aquatic Environment: a Brief Review.

    PubMed

    Blair, Benjamin D

    2016-06-01

    Active pharmaceutical ingredients represent a class of pollutants of emerging concern, and there is growing evidence that these pollutants can cause damage to the aquatic environment. As regulations to address these concerns are expected in developed nations, decision-makers are looking to the scientific community for potential solutions. To inform these regulatory efforts, further information on the potential strategies to reduce the levels of pharmaceuticals entering the aquatic environment is needed. End-of-pipe (i.e., wastewater treatment) technologies that can remove pharmaceuticals exist; however, they are costly to install and operate. Thus, the goal of this brief review is to look beyond end-of-pipe solutions and present various upstream mitigation strategies discussed within the scientific literature. Programs such as pharmaceutical take-back programs currently exist to attempt to reduce pharmaceutical concentrations in the environment, although access and coverage are often limited for many programs. Other potential strategies include redesigning pharmaceuticals to minimize aquatic toxicity, increasing the percent of the pharmaceuticals metabolized in the body, selecting less harmful pharmaceuticals for use, starting new prescriptions at lower dosages, selecting pharmaceuticals with lower excretion rates, and implementing source treatment such as urine separating toilets. Overall, this brief review presents a summary of the upstream preventative recommendations to mitigate pharmaceuticals from entering the aquatic environment with an emphasis on regulatory efforts in the USA and concludes with priorities for further research. PMID:27068434

  12. Extreme floods in the Mekong River Delta under climate change: combined impacts of upstream hydrological changes and sea level rise

    NASA Astrophysics Data System (ADS)

    Hoang, Long; Nguyen Viet, Dung; Kummu, Matti; Lauri, Hannu; Koponen, Jorma; van Vliet, Michelle T. H.; Supit, Iwan; Leemans, Rik; Kabat, Pavel; Ludwig, Fulco

    2016-04-01

    Extreme floods cause huge damages to human lives and infrastructure, and hamper socio-economic development in the Mekong River Delta in Vietnam. Induced by climate change, upstream hydrological changes and sea level rise are expected to further exacerbate future flood hazard and thereby posing critical challenges for securing safety and sustainability. This paper provides a probabilistic quantification of future flood hazard for the Mekong Delta, focusing on extreme events under climate change. We developed a model chain to simulate separate and combined impacts of two drivers, namely upstream hydrological changes and sea level rise on flood magnitude and frequency. Simulation results show that upstream changes and sea level rise substantially increase flood hazard throughout the whole Mekong Delta. Due to differences in their nature, two drivers show different features in their impacts on floods. Impacts of upstream changes are more dominant in floodplains in the upper delta, causing an increase of up to +0.80 m in flood depth. Sea level rise introduces flood hazard to currently safe areas in the middle and coastal delta zones. A 0.6 m rise in relative sea level causes an increase in flood depth between 0.10 and 0.70 m, depending on location by 2050s. Upstream hydrological changes and sea level rise tend to intensify each other's impacts on floods, resulting in stronger combined impacts than linearly summed impacts of each individual driver. Substantial increase of future flood hazard strongly requires better flood protection and more flood resilient development for the Mekong Delta. Findings from this study can be used as quantified physical boundary conditions to develop flood management strategies and strategic delta management plans.

  13. Wave phenomena in the upstream region of Saturn

    NASA Technical Reports Server (NTRS)

    Orlowski, D. S.; Russell, C. T.; Lepping, R. P.

    1992-01-01

    A search was carried out for the signatures of waves associated with both the electron and the ion foreshocks in the upstream region of Saturn, using magnetic-field data obtained by Voyager 1 and 2 during transit through this region. Two distinct bands of wave activity were found at frequencies around 0.5-mHz and 2-mHz in the upstream region. The two classes of waves differ considerably in their properties: the 0.5-mHz waves are righthanded and strongly elliptically polarized, while the 2-mHz waves are elliptically or circularly polarized in the left-handed sense. It is suggested that the two waves may be associated with two different backstreaming particle distributions, possibly those reflected from the shock and those leaking from the hot magnetic field at frequencies between 90 and 150 mHz.

  14. Turbulence analysis of the Jovian upstream 'wave' phenomenon

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Goldstein, M. L.; Matthaeus, W. H.

    1983-01-01

    As Voyager 2 approached Jupiter's bow shock, large-amplitude fluctuations were seen in both the magnetic field and plasma fluid velocity. These fluctuations generally coincided with the occurrence of long-lived energetic particle events similar to the upstream waves often observed near the earth's bow shock. In this paper an analysis of the magnetic field and plasma observations using spectral methods is presented. The characteristic spectral features related to the upstream waves are generally seen near 1 mHz. The measured correlation lengths of these fluctuations suggest that they are coherent over only a few wavelengths. The analysis is consistent with the hypothesis that these fluctuations are driven by streaming ions, possibly protons. No evidence for the existence of whistler waves is found. It is argued that some of the observed spectral features suggest that dynamical turbulent processes are occurring in the uptream wave region, including a possible observation of an inverse cascade of magnetic helicity to large spatial scales.

  15. Coherence lengths of upstream ULF waves - Dual ISEE observations

    NASA Technical Reports Server (NTRS)

    Le, G.; Russell, C. T.; Orlowski, D. S.

    1993-01-01

    We have used high time resolution simultaneous magnetic field data from the dual ISEE spacecraft to study the coherence lengths of upstream ULF waves. We examine the cross-correlation between ISEE 1 and 2 observations for different spacecraft separations and determine the coherence lengths for upstream 30-second waves, 3-second waves, and one-Hz waves. We find that the observed coherence lengths are consistent with those estimated from the bandwidth of the spectral peak and that these lengths vary markedly from less than 100 km to over 1 R(E). In order to study all these wave phenomena, a multiple spacecraft mission such as the upcoming ESA Cluster mission would need to be capable of assuming a wide variety of possible separations.

  16. Vaccine production: upstream processing with adherent or suspension cell lines.

    PubMed

    Genzel, Yvonne; Rödig, Jana; Rapp, Erdmann; Reichl, Udo

    2014-01-01

    The production of viral vaccines in cell culture can be accomplished with primary, diploid, or continuous (transformed) cell lines. Each cell line, each virus type, and each vaccine preparation require the specific design of upstream and downstream processing. Media have to be selected as well as production vessels, cultivation conditions, and modes of operation. Many viruses only replicate to high titers in adherently growing cells, but similar to processes established for recombinant protein production, an increasing number of suspension cell lines is being evaluated for future use. Here, we describe key issues to be considered for the establishment of large-scale virus production in bioreactors. As an example upstream processing of cell culture-derived influenza virus production is described in more detail for adherently growing and for suspension cells. In particular, use of serum-containing, serum-free, and chemically defined media as well as choice of cultivation vessel are considered. PMID:24297427

  17. Torque fluctuations caused by upstream mean flow and turbulence

    NASA Astrophysics Data System (ADS)

    Farr, T. D.; Hancock, P. E.

    2014-12-01

    A series of studies are in progress investigating the effects of turbine-array-wake interactions for a range of atmospheric boundary layer states by means of the EnFlo meteorological wind tunnel. The small, three-blade model wind turbines drive 4-quadrant motor-generators. Only a single turbine in neutral flow is considered here. The motor-generator current can be measured with adequate sensitivity by means of a current sensor allowing the mean and fluctuating torque to be inferred. Spectra of torque fluctuations and streamwise velocity fluctuations ahead of the rotor, between 0.1 and 2 diameters, show that only the large-scale turbulent motions contribute significantly to the torque fluctuations. Time-lagged cross-correlation between upstream velocity and torque fluctuations are largest over the inner part of the blade. They also show the turbulence to be frozen in behaviour over the 2 diameters upstream of the turbine.

  18. Design of a subsonic airfoil with upstream blowing

    NASA Astrophysics Data System (ADS)

    Il'Inskii, N. B.; Mardanov, R. F.

    2007-10-01

    The problem is solved of designing a symmetric airfoil with upstream blowing opposite to subsonic irrotational steady flow of an inviscid incompressible fluid. The solution relies on Sedov’s idea of a stagnation region developing in the neighborhood of the stagnation point. An iterative solution process is developed, and examples of airfoils are constructed. The numerical results are analyzed, and conclusions are drawn about the effect of blowing parameters on the airfoil geometry and the resultant force acting on the airfoil.

  19. Steepened channels upstream of knickpoints: Controls on relict landscape response

    NASA Astrophysics Data System (ADS)

    Berlin, Maureen M.; Anderson, Robert S.

    2009-09-01

    The morphology of a relict landscape provides important insight into erosion rates and processes prior to base level fall. Fluvial knickpoints are commonly thought to form a leak-proof moving boundary between a rejuvenated landscape below and a relict landscape above. We argue that fluvial rejuvenation may leak farther upstream, depending on the rate and style of knickpoint migration. The outer margin of a relict landscape should therefore be used with caution in tectonic geomorphology studies, as channel steepening upstream of knickpoints could reduce the relict area. We explore the response of the Roan Plateau to knickpoint retreat triggered by late Cenozoic upper Colorado River incision. Multiple knickpoints (100-m waterfalls) separate a low-relief, upper landscape from incised canyons below. Two digital elevation model data sets (10-m U.S. Geological Survey and 1-m Airborne Laser Swath Mapping) indicate steeper channels above waterfalls relative to concave channels farther upstream. The steepened reaches are several kilometers long, correspond to doubling of slope, and exhibit channel narrowing and an increase in hillslope angle. We compare two mechanisms for generating steepened reaches. The first uses a recent model for erosion amplification due to flow acceleration at the waterfall lip. The second acknowledges that waterfall lips may be limited to the outcrop of a resistant formation. Subtle structural warping of the stratigraphy can lead to lowering of the waterfall lip as it retreats, thus lowering base level for upstream channels. Results of numerical modeling experiments suggest the latter mechanism is more consistent with our observations of long, mildly steepened reaches.

  20. 12. Detail, lower chord connection point on upstream side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Detail, lower chord connection point on upstream side of truss, showing pinned connection of lower chord eye bars, laced vertical compression member, diagonal eye bar tension members, turnbuckled diagonal counters, and floor beam. Note also timber floor stringers supported by floor beam, and exposed ends of timber deck members visible at left above lower chord eye bar. View to northwest. - Red Bank Creek Bridge, Spanning Red Bank Creek at Rawson Road, Red Bluff, Tehama County, CA

  1. VIEW SOUTH SOUTHWEST LOOKING UPSTREAM FROM ENTRANCE TO LOCKS 35 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW SOUTH SOUTHWEST LOOKING UPSTREAM FROM ENTRANCE TO LOCKS 35 AND 71. THE BRIDGE IN THE VIEW IS NOTED FOR ITS EXTRAORDINARY WIDTH (475 FT.) RELATIVE TO ITS MODEST SPAN (116 FT. 10 IN.). WHEN CONSTRUCTED IN 1914 IT WAS CLAIMED TO BE THE WIDEST BRIDGE IN THE WORLD. MAIN STREET CROSSES IT DIAGONALLY, ALONG WITH TWO CROSS STREETS. - New York State Barge Canal, Lockport Locks, Richmond Avenue, Lockport, Niagara County, NY

  2. Comparison of upstream phenomena at Venus and Earth

    NASA Technical Reports Server (NTRS)

    Strangeway, R. J.; Crawford, G. K.

    1995-01-01

    The region upstream of a planetary bow shock, known as the foreshock, contains a variety of phenomena. Electrons and ions are reflected and energized at the shock. As these stream back upstream, they generate both VLF and ULF waves. Studies of the terrestrial foreshock have provided most of our understanding of these phenomena. However, comparisons with other planetary foreshocks are beneficial, even though the instrumentation used to provide the data may be less sophisticated than that flown on Earth orbiting spacecraft. In particular, maps of the VLF emissions upstream of the Venus bow shock, using data acquired by the Pioneer Venus Orbiter are particularly illuminating. These maps show that the tangent field line is clearly marked by the presence of plasma oscillations. Of additional interest is evidence that the emissions only extend some 15 Venus radii away from the shock, indicating that the emissions are controlled by the shock scale size. Lower frequency ion acoustic waves are observed deep in the ion foreshock. Only close to the shock do both the ion acoustic waves and ULF waves occur simultaneously. The ULF waves mark the ion foreshock boundary where ion beams should be present. The ion acoustic waves tend to be observed further downstream, where diffuse ion distributions are expected to occur. A similar mapping of the terrestrial foreshock, using data from the ISEE-3 spacecraft shows similar results for the electron foreshock. An extensions of this study to include ULF and ion acoustic waves would be helpful.

  3. Density Fluctuations Upstream and Downstream of Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L.; Chen, C. H. K.; Zastenker, G. N.

    2016-03-01

    Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream-stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those in the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.

  4. Interaction of upstream flow distortions with high Mach number cascades

    NASA Technical Reports Server (NTRS)

    Englert, G. W.

    1981-01-01

    Features of the interaction of flow distortions, such as gusts and wakes with blade rows of advance type fans and compressors having high tip Mach numbers are modeled. A typical disturbance was assumed to have harmonic time dependence and was described, at a far upstream location, in three orthogonal spatial coordinates by a double Fourier series. It was convected at supersonic relative to a linear cascade described as an unrolled annulus. Conditions were selected so that the component of this velocity parallel to the axis of the turbomachine was subsonic, permitting interaction between blades through the upstream as well as downstream flow media. A strong, nearly normal shock was considered in the blade passages which was allowed curvature and displacement. The flows before and after the shock were linearized relative to uniform mean velocities in their respective regions. Solution of the descriptive equations was by adaption of the Wiener-Hopf technique, enabling a determination of distortion patterns through and downstream of the cascade as well as pressure distributions on the blade and surfaces. Details of interaction of the disturbance with the in-passage shock were discussed. Infuences of amplitude, wave length, and phase of the disturbance on lifts and moments of cascade configurations are presented. Numerical results are clarified by reference to an especially orderly pattern of upstream vertical motion in relation to the cascade parameters.

  5. Upstream versus downstream control of meltwater plumes under ice shelves

    NASA Astrophysics Data System (ADS)

    Wells, Andrew

    2013-11-01

    In many locations the Greenland and Antarctic ice sheets discharge into the ocean through ice shelves floating on top of a warm salty ocean. The turbulent buoyancy-driven flow of meltwater beneath the sloping ice-shelf base enhances heat transfer and provides a feedback on ice melting rates, with consequences for ice sheet dynamics and predictions of sea-level rise. Previous steady-state models of meltwater plumes under ice shelves have solved for the development of flow along the slope from an initial source, corresponding to solely upstream control of the plume dynamics. I re-interpret the plume dynamics embedded within the framework of a time-dependent model, and show that the flow exhibits distinct regimes depending on the source conditions. Solutions with upstream control are physically consistent for certain source conditions, but the plume is influenced by a combination of upstream and downstream conditions in other regions of parameter space. The dynamics are illustrated for flow underneath a two-dimensional ice shelf of initially constant basal slope, and stable attracting states are determined. The implications for modelling meltwater flow under ice shelves are discussed.

  6. Upstream waves simultaneously observed by ISEE and UKS

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Luhmann, J. G.; Elphic, R. C.; Southwood, D. J.; Smith, M. F.

    1987-01-01

    Measurements obtained in the solar wind by ISEE-2 and the United Kingdom Subsatellite (UKS) have been examined for observations of upstream waves. These data reveal that the waves in the foreshock region are enhanced at all frequencies from at least 0.003 Hz to 0.5 Hz. The wave spectra generally have a spectral peak, but this peak is usually broad and the peak frequency depends on the position of the spacecraft. Generally, the spectra seen at the two spacecraft are most similar at high frequencies and least similar at low frequencies. The geometry of the interaction is displayed in the plane containing the magnetic field, the solar wind velocity, and the spacecraft location. However, this coordinate system does not order all the observed wave properties. It does not clearly explain or order the handedness of the waves, or their direction of propagation. It is clear that the upstream region is inherently three-dimensional. The position-dependent nature of the upstream waves indicates that comparisons between ground-based measurements and in-situ observations must be undertaken with some caution.

  7. Hydraulics of floods upstream of horseshoe canyons and waterfalls

    NASA Astrophysics Data System (ADS)

    Lapotre, Mathieu G. A.; Lamb, Michael P.

    2015-07-01

    Horseshoe waterfalls are ubiquitous in natural streams, bedrock canyons, and engineering structures. Nevertheless, water flow patterns upstream of horseshoe waterfalls are poorly known and likely differ from the better studied case of a one-dimensional linear step because of flow focusing into the horseshoe. This is a significant knowledge gap because the hydraulics at waterfalls controls sediment transport and bedrock incision, which can compromise the integrity of engineered structures and influence the evolution of river canyons on Earth and Mars. Here we develop new semiempirical theory for the spatial acceleration of water upstream of, and the cumulative discharge into, horseshoe canyons and waterfalls. To this end, we performed 110 numerical experiments by solving the 2-D depth-averaged shallow-water equations for a wide range of flood depths, widths and discharges, and canyon lengths, widths and bed gradients. We show that the upstream, normal flow Froude number is the dominant control on lateral flow focusing and acceleration into the canyon head and that focusing is limited when the flood width is small compared to a cross-stream backwater length scale. In addition, for sheet floods much wider than the canyon, flow focusing into the canyon head leads to reduced discharge (and drying in cases) across the canyon sidewalls, which is especially pronounced for canyons that are much longer than they are wide. Our results provide new expectations for morphodynamic feedbacks between floods and topography, and thus canyon formation.

  8. Energetic Particles and Upstream Waves at Co-rotating Shocks

    NASA Astrophysics Data System (ADS)

    Smith, Edward J.; Zhou, Xiaoyan

    2010-03-01

    We report a study of energetic ion acceleration at shocks bounding co-rotating interaction regions (CIRs). Archived data obtained by Ulysses magnetic field, solar wind and energetic particle investigations at low latitude CIRs have been assembled and analyzed. The statistical relations between various properties of 22 Forward shocks, energetic particles and upstream heliospheric magnetic field fluctuations are presented. No statistically significant correlations are found between the shock compression ratio, r, or the particle intensity, jp, or the energetic particle spectral index, s, and the shock normal-upstream field angle, θBn. Furthermore, a theoretical relation between the particle spectral index and shock compression is not consistent with the observed values of s and r. The particle intensities are poorly correlated with the power in upstream heliospheric magnetic field fluctuations contrary to our preliminary study of fewer shocks. We conclude that many of the expectations of Diffusive Shock Theory are not supported by this data set but it is too early to decide whether some key measurement is missing or the theory needs reconsideration.

  9. Whistler wave bursts upstream of the Uranian bow shock

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Wong, Hung K.

    1989-01-01

    Observations of magnetic field wave bursts upstream of the Uranian bow shock are reported which were recorded prior to the inbound shock crossing. Three wave types are identified. One exhibits a broad spectral enhancement from a few millihertz to about 50 mHz and is seen from 17 to 10 hr prior to the inbound shock crossing. It is argued that these waves are whistler waves that have propagated upstream from the shock. A second wave type has a spacecraft frame frequency between 20 and 40 mHz, is seen only within or immediately upstream of the shock pedestal, is right-hand polarized in the spacecraft frame, and has a typical burst duration of 90 s. The third wave type has a spacecraft frame frequency of about 0.15 Hz, is seen exclusively within the shock pedestal, is left-hand polarized in the spacecraft frame, and has a burst duration lasting up to 4 min. It is argued that the low-frequency bursts are whistler waves with phase speed comparable to, but in excess of, the solar wind speed.

  10. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options.

    PubMed

    Uttara, Bayani; Singh, Ajay V; Zamboni, Paolo; Mahajan, R T

    2009-03-01

    Free radicals are common outcome of normal aerobic cellular metabolism. In-built antioxidant system of body plays its decisive role in prevention of any loss due to free radicals. However, imbalanced defense mechanism of antioxidants, overproduction or incorporation of free radicals from environment to living system leads to serious penalty leading to neuro-degeneration. Neural cells suffer functional or sensory loss in neurodegenerative diseases. Apart from several other environmental or genetic factors, oxidative stress (OS) leading to free radical attack on neural cells contributes calamitous role to neuro-degeneration. Though, oxygen is imperative for life, imbalanced metabolism and excess reactive oxygen species (ROS) generation end into a range of disorders such as Alzheimer's disease, Parkinson's disease, aging and many other neural disorders. Toxicity of free radicals contributes to proteins and DNA injury, inflammation, tissue damage and subsequent cellular apoptosis. Antioxidants are now being looked upon as persuasive therapeutic against solemn neuronal loss, as they have capability to combat by neutralizing free radicals. Diet is major source of antioxidants, as well as medicinal herbs are catching attention to be commercial source of antioxidants at present. Recognition of upstream and downstream antioxidant therapy to oxidative stress has been proved an effective tool in alteration of any neuronal damage as well as free radical scavenging. Antioxidants have a wide scope to sequester metal ions involved in neuronal plaque formation to prevent oxidative stress. In addition, antioxidant therapy is vital in scavenging free radicals and ROS preventing neuronal degeneration in post-oxidative stress scenario. PMID:19721819

  11. Upstream blockage effect on the thrust force of a marine hydrokinetic device

    NASA Astrophysics Data System (ADS)

    Soliani, Giulio; Beninati, Maria Laura; Krane, Michael; Fontaine, Arnold

    2013-11-01

    The study evaluates the interaction of two model marine devices axially arranged one in front of the other, in a tandem configuration. Particular focus is given to the change that occurs in the thrust of the downstream marine hydrokinetic (MHK) device when the spatial arrangement of the two elements is varied. At critical spacing there is no thrust generation. The study is motivated by the need to predict the thrust behavior of MHK devices and determine the minimum separation distance to avoid the no thrust condition. The downstream element is a two-bladed, horizontal axis turbine, while the upstream blockage is a perforated disk with similar geometric properties intended to approximate the wake of the MHK device. Testing is conducted in the flume facility at Bucknell University. Experiments are performed for a fixed range of spacing between the perforated disk and the turbine. For each separation distance, the span-wise velocity profile upstream and downstream of the turbine is measured, as well as the device's rotational speed. The turbine's thrust coefficient is calculated. Plots of the thrust coefficient as a function of spacing depict the minimum separation distance to avoid the no thrust condition.

  12. Grade agricultural soil loss amount by integrating GIS and USLE in upstream of Yangtze River, China

    NASA Astrophysics Data System (ADS)

    Fang, Shi-bo; Liu, Shi-liang; Gao, Zhiqiang

    2005-09-01

    Natural Forest Conservation Program (NFCP) was established in China in 1998. As a nationwide engineering project, one of the most important tasks was to mandate conversion of marginal farmlands to forestland or grassland (reforestation or afforestation in farmlands) where topographical slope steepness was more than 25 degree. In order to quantitatively grade agriculture soil loss amount and assess spatio-temporal variation of soil erosion volume, as well as to guide the process of the conversion of farmlands to forest in upstream of Yangtze Rivers. The research analyzed how to calculate K, S, L, C and P factors of Universal Soil Loss Equation (USLE) on the base of considering terrain, climate and characters of agricultural soil using GIS technology. The methods can adapt to the variation terrain of the dry valley region in upstream of Yangtze Rivers. As believed the reforestation was a long-term engineering, the planning of reforest farmlands should be a temporal decision process, which should be considered that where should be afforested at once and where should afforested in abeyance on the basis of grading soil loss amount and the others conditions of farmland. Grading agricultural soil loss amount would be beneficial to program a feasible plan in the conversation of farmlands to forest.

  13. Electron distributions upstream of the Comet Halley bow shock - Evidence for adiabatic heating

    NASA Technical Reports Server (NTRS)

    Larson, D. E.; Anderson, K. A.; Lin, R. P.; Carlson, C. W.; Reme, H.; Glassmeier, K. H.; Neubauer, F. M.

    1992-01-01

    Three-dimensional plasma electron (22 eV to 30 keV) observations upstream of Comet Halley bow shock, obtained by the RPA-1 COPERNIC (Reme Plasma Analyzer - Complete Positive Ion, Electron and Ram Negative Ion Measurements near Comet Halley) experiment on the Giotto spacecraft are reported. Besides electron distributions typical of the undisturbed solar wind and backstreaming electrons observed when the magnetic field line intersects the cometary bow shock, a new type of distribution, characterized by enhanced low energy (less than 100 eV) flux which peaks at 90-deg pitch angles is found. These are most prominent when the spacecraft is on field lines which pass close to but are not connected to the bow shock. The 90-deg pitch angle electrons appear to have been adiabatically heated by the increase in the magnetic field strength resulting from the compression of the upstream solar wind plasma by the cometary mass loading. A model calculation of this effect which agrees qualitatively with the observed 90-deg flux enhancements is presented.

  14. Increased risk of oesophageal adenocarcinoma among upstream petroleum workers

    PubMed Central

    Kirkeleit, Jorunn; Riise, Trond; Bjørge, Tone; Moen, Bente E; Bråtveit, Magne; Christiani, David C

    2013-01-01

    Objectives To investigate cancer risk, particularly oesophageal cancer, among male upstream petroleum workers offshore potentially exposed to various carcinogenic agents. Methods Using the Norwegian Registry of Employers and Employees, 24 765 male offshore workers registered from 1981 to 2003 was compared with 283 002 male referents from the general working population matched by age and community of residence. The historical cohort was linked to the Cancer Registry of Norway and the Norwegian Cause of Death Registry. Results Male offshore workers had excess risk of oesophageal cancer (RR 2.6, 95% CI 1.4 to 4.8) compared with the reference population. Only the adenocarcinoma type had a significantly increased risk (RR 2.7, 95% CI 1.0 to 7.0), mainly because of an increased risk among upstream operators (RR 4.3, 95% CI 1.3 to 14.5). Upstream operators did not have significant excess of respiratory system or colon cancer or mortality from any other lifestyle-related diseases investigated. Conclusion We found a fourfold excess risk of oesophageal adenocarcinoma among male workers assumed to have had the most extensive contact with crude oil. Due to the small number of cases, and a lack of detailed data on occupational exposure and lifestyle factors associated with oesophageal adenocarcinoma, the results must be interpreted with caution. Nevertheless, given the low risk of lifestyle-related cancers and causes of death in this working group, the results add to the observations in other low-powered studies on oesophageal cancer, further suggesting that factors related to the petroleum stream or carcinogenic agents used in the production process might be associated with risk of oesophageal adenocarcinoma. PMID:19858535

  15. Electron plasma oscillations upstream of the solar wind termination shock.

    PubMed

    Gurnett, D A; Kurth, W S

    2005-09-23

    Electron plasma oscillations have been detected upstream of the solar wind termination shock by the plasma wave instrument on the Voyager 1 spacecraft. These waves were first observed on 11 February 2004, at a heliocentric radial distance of 91.0 astronomical units, and continued sporadically with a gradually increasing occurrence rate for nearly a year. The last event occurred on 15 December 2004, at 94.1 astronomical units, just before the spacecraft crossed the termination shock. Since then, no further electron plasma oscillations have been observed, consistent with the spacecraft having crossed the termination shock into the heliosheath. PMID:16179470

  16. POSTRANSLATIONAL MODIFICATIONS OF P53: UPSTREAM SIGNALING PATHWAYS.

    SciTech Connect

    ANDERSON,C.W.APPELLA,E.

    2003-10-23

    The p53 tumor suppressor is a tetrameric transcription factor that is posttranslational modified at >20 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review recent progress in characterizing the upstream signaling pathways whose activation in response to various genotoxic and non-genotoxic stresses result in p53 posttranslational modifications.

  17. 2. View of Potomac River at Great Falls looking upstream ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of Potomac River at Great Falls looking upstream from Observation Tower. The majestic character of this wild and untrammeled spot is vividly shown. Scanty flow is evidenced by light colored normal water line markings on rock formation. Washington Agueduct Dam is shown in upper portion. Maryland on right and Virginia on left. Natives quoted as saying the water was as low or lower than during the drought conditions of 1930. Mr. Horyduzak, Photographer, 1943. - Potowmack Company: Great Falls Canal & Locks, Great Falls, Fairfax County, VA

  18. Hybrid simulation codes with application to shocks and upstream waves

    NASA Technical Reports Server (NTRS)

    Winske, D.

    1985-01-01

    Hybrid codes in which part of the plasma is represented as particles and the rest as a fluid are discussed. In the past few years such codes with particle ions and massless, fluid electrons have been applied to space plasmas, especially to collisionless shocks. All of these simulation codes are one-dimensional and similar in structure, except for how the field equations are solved. The various approaches that are used (resistive Ohm's law, predictor-corrector, Hamiltonian) are described in detail and results from the various codes are compared with examples taken from collisionless shocks and low frequency wave phenomena upstream of shocks.

  19. Swimming upstream: the strengths of women who survive homelessness.

    PubMed

    Montgomery, C

    1994-03-01

    A study of the strengths and personal resources of women who had overcome homelessness revealed that the experience of homelessness for these women was a temporary state of disruption resulting from an effort to free themselves from conditions associated with despair, such as abuse or addictions, and to search for a better life. Personal, interpersonal, and transpersonal categories of strengths were identified that enabled these women to move in a positive direction toward health and self-actualization. The synthesizing metaphor "swimming upstream" describes the stoic determination required to go against the overwhelming negative forces of their environment. PMID:7515608

  20. Rho1 GTPase and PKC Ortholog Pck1 Are Upstream Activators of the Cell Integrity MAPK Pathway in Fission Yeast

    PubMed Central

    Sánchez-Mir, Laura; Soto, Teresa; Franco, Alejandro; Madrid, Marisa; Viana, Raúl A.; Vicente, Jero; Gacto, Mariano; Pérez, Pilar; Cansado, José

    2014-01-01

    In the fission yeast Schizosaccharomyces pombe the cell integrity pathway (CIP) orchestrates multiple biological processes like cell wall maintenance and ionic homeostasis by fine tuning activation of MAPK Pmk1 in response to various environmental conditions. The small GTPase Rho2 positively regulates the CIP through protein kinase C ortholog Pck2. However, Pmk1 retains some function in mutants lacking either Rho2 or Pck2, suggesting the existence of additional upstream regulatory elements to modulate its activity depending on the nature of the environmental stimulus. The essential GTPase Rho1 is a candidate to control the activity of the CIP by acting upstream of Pck2, whereas Pck1, a second PKC ortholog, appears to negatively regulate Pmk1 activity. However, the exact regulatory nature of these two proteins within the CIP has remained elusive. By exhaustive characterization of strains expressing a hypomorphic Rho1 allele (rho1-596) in different genetic backgrounds we show that both Rho1 and Pck1 are positive upstream regulatory members of the CIP in addition to Rho2 and Pck2. In this new model Rho1 and Rho2 control Pmk1 basal activity during vegetative growth mainly through Pck2. Notably, whereas Rho2-Pck2 elicit Pmk1 activation in response to most environmental stimuli, Rho1 drives Pmk1 activation through either Pck2 or Pck1 exclusively in response to cell wall damage. Our study reveals the intricate and complex functional architecture of the upstream elements participating in this signaling pathway as compared to similar routes from other simple eukaryotic organisms. PMID:24498240

  1. 46 CFR 172.103 - Damage stability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Damage stability. 172.103 Section 172.103 Shipping COAST... Subchapter O of This Chapter § 172.103 Damage stability. Each tank barge must be shown by design calculations to meet the survival conditions in § 172.110 assuming the damage specified in § 172.104 to the...

  2. 46 CFR 172.205 - Local damage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Local damage. 172.205 Section 172.205 Shipping COAST... Subchapter O of This Chapter § 172.205 Local damage. (a) Each tankship must be shown by design calculations... operation assuming that local damage extending 30 inches (76 cm) normal to the hull shell is applied at...

  3. 46 CFR 172.103 - Damage stability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Damage stability. 172.103 Section 172.103 Shipping COAST... Subchapter O of This Chapter § 172.103 Damage stability. Each tank barge must be shown by design calculations to meet the survival conditions in § 172.110 assuming the damage specified in § 172.104 to the...

  4. 46 CFR 172.103 - Damage stability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Damage stability. 172.103 Section 172.103 Shipping COAST... Subchapter O of This Chapter § 172.103 Damage stability. Each tank barge must be shown by design calculations to meet the survival conditions in § 172.110 assuming the damage specified in § 172.104 to the...

  5. Computational sciences in the upstream oil and gas industry.

    PubMed

    Halsey, Thomas C

    2016-10-13

    The predominant technical challenge of the upstream oil and gas industry has always been the fundamental uncertainty of the subsurface from which it produces hydrocarbon fluids. The subsurface can be detected remotely by, for example, seismic waves, or it can be penetrated and studied in the extremely limited vicinity of wells. Inevitably, a great deal of uncertainty remains. Computational sciences have been a key avenue to reduce and manage this uncertainty. In this review, we discuss at a relatively non-technical level the current state of three applications of computational sciences in the industry. The first of these is seismic imaging, which is currently being revolutionized by the emergence of full wavefield inversion, enabled by algorithmic advances and petascale computing. The second is reservoir simulation, also being advanced through the use of modern highly parallel computing architectures. Finally, we comment on the role of data analytics in the upstream industry.This article is part of the themed issue 'Energy and the subsurface'. PMID:27597785

  6. Growing 'Alfvenic' modes in the upstream region of Saturn

    NASA Technical Reports Server (NTRS)

    Orlowski, D. S.; Russell, C. T.; Krauss-Varban, D.; Omidi, N.

    1994-01-01

    Recent studies of low-frequency electromagnetic waves upstream of the Saturn bow shock have shown that these waves, in contrast to those at Earth, are observed not in one, but in at least two, distinct frequency bands. The results of wave mode identification based on the Hall-magnetohydrodynamic (MHD) model of plasma and observed wave polarization suggested that these waves propagate in the high beta intermediate mode. However, the underlying instability was not unambiguously determined. In the present paper we use the full electromagnetic dispersion relation derived from linear Vlasov theory in order to examine which of the plasma modes, with observed properties, are unstable in an isotropic Maxwellian plasma in the presence of backstreaming proton beams consistent with Voyager 2 observations at Saturn. As a result we find that the unstable 'Alfvenic' beam mode, as well as resonant and non-resonant fast magnetosonic modes have properties consistent with the data. Moreover, we find that in contrast to the Earth's upstream waves, at Saturn no 'kinetic' normal mode can account for the observed magnetic polarization.

  7. Right Hemisphere Brain Damage

    MedlinePlus

    ... Language and Swallowing / Disorders and Diseases Right Hemisphere Brain Damage [ en Español ] What is right hemisphere brain ... right hemisphere brain damage ? What is right hemisphere brain damage? Right hemisphere brain damage (RHD) is damage ...

  8. 14. DETAIL VIEW OF BRIDGE, LOOKING NORTH, SHOWING DAMAGE TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. DETAIL VIEW OF BRIDGE, LOOKING NORTH, SHOWING DAMAGE TO FLOOR BEAMS AND DECK OF WEST APPROACH SPAN, CAUSED WHEN CONTRACTOR'S FORCES, WORKING ON ADJACENT ABUTMENT FOR REPLACEMENT BRIDGE, DYNAMITED GRANITE BOULDERS INTO UPSTREAM SIDE OF HISTORIC BRIDGE - Middle Fork Stanislaus River Bridge, Spans Middle Fork Stanislaus River at State Highway 108, Dardanelle, Tuolumne County, CA

  9. Improved surface volume estimates for surface irrigation balance calculations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volume balance calculations used in surface irrigation engineering analysis require estimates of surface storage. Typically, these calculations use the Manning formula and normal depth assumption to calculate upstream flow depth (and thus flow area), and a constant shape factor to describe the rela...

  10. Shape and shear guide sperm cells spiraling upstream

    NASA Astrophysics Data System (ADS)

    Kantsler, Vasily; Dunkel, Jorn; Goldstein, Raymond E.

    2014-11-01

    A major puzzle in biology is how mammalian sperm determine and maintain the correct swimming direction during the various phases of the sexual reproduction process. Currently debated mechanisms for sperm long range travel vary from peristaltic pumping to temperature sensing (thermotaxis) and direct response to fluid flow (rheotaxis), but little is known quantitatively about their relative importance. Here, we report the first quantitative experimental study of mammalian sperm rheotaxis. Using microfluidic devices, we investigate systematically the swimming behavior of human and bull sperm over a wide range of physiologically relevant shear rates and viscosities. Our measurements show that the interplay of fluid shear, steric surface-interactions and chirality of the flagellar beat leads to a stable upstream spiraling motion of sperm cells, thus providing a generic and robust rectification mechanism to support mammalian fertilization. To rationalize these findings, we identify a minimal mathematical model that is capable of describing quantitatively the experimental observations.

  11. Upstream solutions for price-gouging on critical generic medicines.

    PubMed

    Houston, Adam R; Beall, Reed F; Attaran, Amir

    2016-01-01

    Exorbitant price increases for critical off-patent medicines have received considerable media attention in recent months, leading to an investigation by the U.S. Senate. However, much of this attention has focused upon the companies that initiated the price increases, all of whom had recently acquired the drugs in question. Overlooked are upstream interventions with the originators of these drugs to prevent generics trolling in the first place. Using the particular example of Eli Lilly and Company's efforts to divest itself of cycloserine, a flawed process that paved the way for the recent price hike by Rodelis Therapeutics, this article highlights the responsibilities of drug originators, and safeguards to ensure similar rights transfers do not affect ongoing affordable access. PMID:27141308

  12. Upstream and downstream strategies to economize biodiesel production.

    PubMed

    Hasheminejad, Meisam; Tabatabaei, Meisam; Mansourpanah, Yaghoub; Khatami far, Mahdi; Javani, Azita

    2011-01-01

    In recent years biodiesel has drawn considerable amount of attention as a clean and renewable fuel. Biodiesel is produced from renewable sources such as vegetable oils and animal fat mainly through catalytic or non-catalytic transesterification method as well as supercritical method. However, as a consequence of disadvantages of these methods, the production cost increases dramatically. This article summarizes different biodiesel production methods with a focus on their advantages and disadvantages. The downstream and upstream strategies such as using waste cooking oils, application of non-edible plant oils, plant genetic engineering, using membrane separation technology for biodiesel production, separation and purification, application of crude glycerin as an energy supplement for ruminants, glycerin ultra-purification and their consequent roles in economizing the production process are fully discussed in this article. PMID:20974530

  13. From worker health to citizen health: moving upstream.

    PubMed

    Sepulveda, Martin-Jose

    2013-12-01

    New rapid growth economies, urbanization, health systems crises, and "big data" are causing fundamental changes in social structures and systems, including health. These forces for change have significant consequences for occupational and environmental medicine and will challenge the specialty to think beyond workers and workplaces as the principal locus of innovation for health and performance. These trends are placing great emphasis on upstream strategies for addressing the complex systems dynamics of the social determinants of health. The need to engage systems in communities for healthier workforces is a shift in orientation from worker and workplace centric to citizen and community centric. This change for occupational and environmental medicine requires extending systems approaches in the workplace to communities that are systems of systems and that require different skills, data, tools, and partnerships. PMID:24284749

  14. 5. Looking west upstream, towards the location of the erstwhile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Looking west upstream, towards the location of the erstwhile intake flume into canal from the upper reaches of the Potomac River above the Great Falls, on the old Potowmack Canal built by George Washington. The plan contemplated canal navigation around the Great Falls of the Potomac River, located on the Virginia side of the Potomac, about 15 miles above Washington, D.C. The Company was organized in 1785, and by 1802, this and three or four smaller canals were substantially completed and raft-like boats began operation with materials from the west to the city of Georgetown. 'Although the canals and locks of the Potomac Canal were considered a great engineering accomplishment, the improvements to the river channel were inadequate. Disappointment ... - Potowmack Company: Great Falls Canal & Locks, Great Falls, Fairfax County, VA

  15. Upstream Swirl Effects on the Flow Inside a Labyrinth Seal

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Johnson, Mark C.

    1997-01-01

    The flow field inside a seven cavity tooth on rotor labyrinth seal was measured using a 3D laser Doppler anemometer system. The seal was operated at a Reynolds number of 24,000 and a Taylor number of 6,600 using water as the working fluid. Swirl vanes were placed upstream of the seal to produce positive, negative, and no preswirl. It was found that the axial and radial velocities were minimally effected. The tangential velocity, both in the clearance region and the seal cavities on the rotor, were greatly altered by the preswirl. By applying negative preswirl, the tangential velocity was suppressed, even in the seventh cavity. The turbulence levels decreased as the preswirl varied from negative to positive.

  16. Interaction of Energetic Particles with Discontinuities Upstream of Strong Shocks

    NASA Astrophysics Data System (ADS)

    Malkov, Mikhail; Diamond, Patrick

    2008-11-01

    Acceleration of particles in strong astrophysical shocks is known to be accompanied and promoted by a number of instabilities which are driven by the particles themselves. One of them is an acoustic (also known as Drury's) instability driven by the pressure gradient of accelerated particles upstream. The generated sound waves naturally steepen into shocks thus forming a shocktrain. Similar magnetoacoustic or Alfven type structures may be driven by pick-up ions, for example. We consider the solutions of kinetic equation for accelerated particles within the shocktrain. The accelerated particles are assumed to be coupled to the flow by an intensive pitch-angle scattering on the self-generated Alfven waves. The implications for acceleration and confinement of cosmic rays in this shock environment will be discussed.

  17. Upstream Structures and Their Effects on the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.

    2011-01-01

    Kinetic processes within the Earth's foreshock generate a profusion of plasma and magnetic field structures with sizes and durations ranging from the microscale (e.g. SLAMs, solitons, and density holes) to the mesoscale (e.g. foreshock cavities or boundaries, hot flow anomalies, and bubbles). Swept into the bow shock by the solar wind flow, the perturbations associated with these features batter the magnetosphere, driving a wide variety of magnetospheric effects, including large amplitude magnetopause motion, bursty reconnection and the generation of flux transfer events, enhanced pulsation activity within the magnetosphere, diffusion and energization of radiation belt particles, enhanced particle precipitation resulting in dayside aurora and riometer absorption, and the generation of field-aligned currents and magnetic impulse events in high-latitude ground magnetometers. This talk reviews the ever growing menagery of structures observed upstream from the bow shock, examines their possible interrelationships, and considers their magnetospheric consequences.

  18. From Worker Health To Citizen Health: Moving Upstream

    PubMed Central

    Sepulveda, Martin-Jose

    2014-01-01

    New rapid growth economies, urbanization, health systems crises and “big data” are causing fundamental changes in social structures and systems including health. These forces for change have significant consequences for occupational and environmental medicine and will challenge the specialty to think beyond workers and workplaces as the principal locus of innovation for health and performance. These trends are placing great emphasis on upstream strategies for addressing the complex systems dynamics of the social determinants of health. The need to engage systems in communities for healthier workforces is a shift in orientation from worker and workplace centric to citizen and community centric. This change for occupational and environmental medicine requires extending systems approaches in the workplace to communities which are systems of systems and which require different skills, data, tools and partnerships. PMID:24284749

  19. Upstream open reading frames: Molecular switches in (patho)physiology

    PubMed Central

    Wethmar, Klaus; Smink, Jeske J; Leutz, Achim

    2010-01-01

    Conserved upstream open reading frames (uORFs) are found within many eukaryotic transcripts and are known to regulate protein translation. Evidence from genetic and bioinformatic studies implicates disturbed uORF-mediated translational control in the etiology of human diseases. A genetic mouse model has recently provided proof-of-principle support for the physiological relevance of uORF-mediated translational control in mammals. The targeted disruption of the uORF initiation codon within the transcription factor CCAAT/enhancer binding protein β (C/EBPβ) gene resulted in deregulated C/EBPβ protein isoform expression, associated with defective liver regeneration and impaired osteoclast differentiation. The high prevalence of uORFs in the human transcriptome suggests that intensified search for mutations within 5′ RNA leader regions may reveal a multitude of alterations affecting uORFs, causing pathogenic deregulation of protein expression. PMID:20726009

  20. Hypersonic Flow Control Using Upstream Focused Energy Deposition

    NASA Technical Reports Server (NTRS)

    Riggins David W.; Nelson, H. F.

    1999-01-01

    A numerical study of centerline and off-centerline power deposition at a point upstream of a two-dimensional blunt body at Mach 6.5 at 30 km altitude are presented. The full Navier-Stokes equations are used. Wave drag, lift, and pitching moment are presented as a function of amount of power absorbed in the flow and absorption point location. It is shown that wave drag is considerably reduced. Modifications to the pressure distribution in the flow field due to the injected energy create lift and a pitching moment when the injection is off-centerline. This flow control concept may lead to effective ways to improve the performance and to stabilize and control hypersonic vehicles.

  1. Explosion Clad for Upstream Oil and Gas Equipment

    SciTech Connect

    Banker, John G.; Massarello, Jack; Pauly, Stephane

    2011-01-17

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO{sub 2} and/or H{sub 2}S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  2. Corporation-induced Diseases, Upstream Epidemiologic Surveillance, and Urban Health

    PubMed Central

    2008-01-01

    Corporation-induced diseases are defined as diseases of consumers, workers, or community residents who have been exposed to disease agents contained in corporate products. To study the epidemiology and to guide expanded surveillance of these diseases, a new analytical framework is proposed. This framework is based on the agent–host–environment model and the upstream multilevel epidemiologic approach and posits an epidemiologic cascade starting with government-sanctioned corporate profit making and ending in a social cost, i.e., harm to population health. Each of the framework’s levels addresses a specific level of analysis, including government, corporations, corporate conduits, the environment of the host, and the host. The explained variable at one level is also the explanatory variable at the next lower level. In this way, a causal chain can be followed along the epidemiologic cascade from the site of societal power down to the host. The framework thus describes the pathways by which corporate decisions filter down to disease production in the host and identifies opportunities for epidemiologic surveillance. Since the environment of city dwellers is strongly shaped by corporations that are far upstream and several levels away, the framework has relevance for the study of urban health. Corporations that influence the health of urban populations include developers and financial corporations that determine growth or decay of urban neighborhoods, as well as companies that use strategies based on neighborhood characteristics to sell products that harm consumer health. Epidemiological inquiry and surveillance are necessary at all levels to provide the knowledge needed for action to protect the health of the population. To achieve optimal inquiry and surveillance at the uppermost levels, epidemiologists will have to work with political scientists and other social scientists and to utilize novel sources of information. PMID:18437580

  3. Upstream Disaster Management to Support People Experiencing Homelessness.

    PubMed

    Sundareswaran, Madura; Ghazzawi, Andrea; O'Sullivan, Tracey L

    2015-01-01

    The unique context of day-to-day living for people who are chronically homeless or living with housing insecurity puts them at high risk during community disasters. The impacts of extreme events, such as flooding, storms, riots, and other sources of community disruption, underscore the importance of preparedness efforts and fostering community resilience. This study is part of larger initiative focused on enhancing resilience and preparedness among high risk populations. The purpose of this study was to explore critical issues and strategies to promote resilience and disaster preparedness among people who are homeless in Canada. A sample of interviews (n=21) from key informants across Canada was analyzed to explore existing programs and supports for homeless populations. The data was selected from a larger sample of (n=43) interviews focused on programs and supports for people who are at heightened risk for negative impacts during disasters. Qualitative content analysis was used to extract emergent themes and develop a model of multi-level collaboration to support disaster resilience among people who are homeless. The results indicate there is a need for more upstream continuity planning, collaboration and communication between the emergency management sector and community service organizations that support people who are homeless. Prioritization and investment in the social determinants of health and community supports is necessary to promote resilience among this high-risk population. The findings from this study highlight the importance of acknowledging community support organizations as assets in disaster preparedness. Day-to-day resilience is an ongoing theme for people who are chronically homeless or living with housing insecurity. Upstream investment to build adaptive capacity and collaborate with community organizations is an important strategy to enhance community resilience. PMID:26346842

  4. Upstream Disaster Management to Support People Experiencing Homelessness

    PubMed Central

    Sundareswaran, Madura; Ghazzawi, Andrea; O'Sullivan, Tracey L.

    2015-01-01

    The unique context of day-to-day living for people who are chronically homeless or living with housing insecurity puts them at high risk during community disasters. The impacts of extreme events, such as flooding, storms, riots, and other sources of community disruption, underscore the importance of preparedness efforts and fostering community resilience. This study is part of larger initiative focused on enhancing resilience and preparedness among high risk populations. The purpose of this study was to explore critical issues and strategies to promote resilience and disaster preparedness among people who are homeless in Canada. A sample of interviews (n=21) from key informants across Canada was analyzed to explore existing programs and supports for homeless populations. The data was selected from a larger sample of (n=43) interviews focused on programs and supports for people who are at heightened risk for negative impacts during disasters. Qualitative content analysis was used to extract emergent themes and develop a model of multi-level collaboration to support disaster resilience among people who are homeless. The results indicate there is a need for more upstream continuity planning, collaboration and communication between the emergency management sector and community service organizations that support people who are homeless. Prioritization and investment in the social determinants of health and community supports is necessary to promote resilience among this high-risk population. The findings from this study highlight the importance of acknowledging community support organizations as assets in disaster preparedness. Day-to-day resilience is an ongoing theme for people who are chronically homeless or living with housing insecurity. Upstream investment to build adaptive capacity and collaborate with community organizations is an important strategy to enhance community resilience. PMID:26346842

  5. Explosion Clad for Upstream Oil and Gas Equipment

    NASA Astrophysics Data System (ADS)

    Banker, John G.; Massarello, Jack; Pauly, Stephane

    2011-01-01

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO2 and/or H2S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  6. Correlation between upstream human activities and riverine antibiotic resistance genes.

    PubMed

    Pruden, Amy; Arabi, Mazdak; Storteboom, Heather N

    2012-11-01

    Antimicrobial resistance remains a serious and growing human health challenge. The water environment may represent a key dissemination pathway of resistance elements to and from humans. However, quantitative relationships between landscape features and antibiotic resistance genes (ARGs) have not previously been identified. The objective of this study was to examine correlations between ARGs and putative upstream anthropogenic sources in the watershed. sul1 (sulfonamide) and tet(W) (tetracycline) were measured using quantitative polymerase chain reaction in bed and suspended sediment within the South Platte River Basin, which originates from a pristine region in the Rocky Mountains and runs through a gradient of human activities. A geospatial database was constructed to delineate surface water pathways from animal feeding operations, wastewater treatment plants, and fish hatchery and rearing units to river monitoring points. General linear regression models were compared. Riverine sul1 correlated with upstream capacities of animal feeding operations (R(2) = 0.35, p < 0.001) and wastewater treatment plants (R(2) = 0.34, p < 0.001). Weighting for the inverse distances from animal feeding operations along transport pathways strengthened the observed correlations (R(2) = 0.60-0.64, p < 0.001), suggesting the importance of these pathways in ARG dissemination. Correlations were upheld across the four sampling events during the year, and averaging sul1 measurements in bed and suspended sediments over all events yielded the strongest correlation (R(2) = 0.92, p < 0.001). Conversely, a significant relationship with landscape features was not evident for tet(W), which, in contrast to sul1, is broadly distributed in the pristine region and also relatively more prevalent in animal feeding operation lagoons. The findings highlight the need to focus attention on quantifying the contribution of water pathways to the antibiotic resistance disease burden in humans and offer insight

  7. Upstream migration of two pre-spawning shortnose sturgeon passed upstream of Pinopolis Dam, Cooper River, South Carolina

    USGS Publications Warehouse

    Finney, S.T.; Isely, J.J.; Cooke, D.W.

    2006-01-01

    Two shortnose sturgeon were artificially passed above the Pinopolis Lock and Dam into the Santee-Cooper Lakes in order to simulate the use of a fish-passage mechanism. Movement patterns and spawning behavior were studied to determine the potential success of future shortnose sturgeon migrations if and when a fish-migration bypass structure is installed. In addition to movement patterns, water temperature was monitored in areas that shortnose sturgeons utilized. Shortnose sturgeon migrated through a large static system to a known shortnose sturgeon spawning area more than 160 km upstream where water temperatures were consistent with known shortnose sturgeon spawning temperatures. No specific movement patterns in the reservoir system were recorded during downstream migrations.

  8. Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options

    PubMed Central

    Uttara, Bayani; Singh, Ajay V.; Zamboni, Paolo; Mahajan, R.T

    2009-01-01

    Free radicals are common outcome of normal aerobic cellular metabolism. In-built antioxidant system of body plays its decisive role in prevention of any loss due to free radicals. However, imbalanced defense mechanism of antioxidants, overproduction or incorporation of free radicals from environment to living system leads to serious penalty leading to neuro-degeneration. Neural cells suffer functional or sensory loss in neurodegenerative diseases. Apart from several other environmental or genetic factors, oxidative stress (OS) leading to free radical attack on neural cells contributes calamitous role to neuro-degeneration. Though, oxygen is imperative for life, imbalanced metabolism and excess reactive oxygen species (ROS) generation end into a range of disorders such as Alzheimer’s disease, Parkinson’s disease, aging and many other neural disorders. Toxicity of free radicals contributes to proteins and DNA injury, inflammation, tissue damage and subsequent cellular apoptosis. Antioxidants are now being looked upon as persuasive therapeutic against solemn neuronal loss, as they have capability to combat by neutralizing free radicals. Diet is major source of antioxidants, as well as medicinal herbs are catching attention to be commercial source of antioxidants at present. Recognition of upstream and downstream antioxidant therapy to oxidative stress has been proved an effective tool in alteration of any neuronal damage as well as free radical scavenging. Antioxidants have a wide scope to sequester metal ions involved in neuronal plaque formation to prevent oxidative stress. In addition, antioxidant therapy is vital in scavenging free radicals and ROS preventing neuronal degeneration in post-oxidative stress scenario. PMID:19721819

  9. An unsteady vortex lattice method model of a horizontal axis wind turbine operating in an upstream rotor wake

    NASA Astrophysics Data System (ADS)

    Hankin, D.; Graham, J. M. R.

    2014-12-01

    An unsteady formulation of the vortex lattice method, VLM, is presented that uses a force- free representation of the wake behind a horizontal axis wind turbine, HAWT, to calculate the aerodynamic loading on a turbine operating in the wake of an upstream rotor. A Cartesian velocity grid is superimposed over the computational domain to facilitate the representation of the atmospheric turbulence surrounding the turbine and wind shear. The wake of an upstream rotor is modelled using two methods: a mean velocity deficit with superimposed turbulence, based on experimental observations, and a purely numeric periodic boundary condition. Both methods are treated as frozen and propagated with the velocity grid. Measurements of the mean thrust and blade root bending moment on a three bladed horizontal axis rotor modelling a 5 MW HAWT at 1:250 scale were carried out in a wind tunnel. Comparisons are made between operation in uniform flow and in the wake of a similarly loaded rotor approximately 6.5 diameters upstream. The measurements were used to validate the output from the VLM simulations, assuming a completely rigid rotor. The trends in the simulation thrust predictions are found to compare well with the uniform flow case, except at low tip speed ratios where there are losses due to stall which are yet to be included in the model. The simple wake model predicts the mean deficit, whilst the periodic boundary condition captures more of the frequency content of the loading in an upstream wake. However, all the thrust loads are over-predicted. The simulation results severely overestimate the bending moment, which needs addressing. However, the reduction in bending due to the simple wake model is found to reflect the experimental data reasonably well.

  10. Innovation and performance: The case of the upstream petroleum sector

    NASA Astrophysics Data System (ADS)

    Persaud, A. C. Jai

    This thesis investigates innovation in the upstream crude oil and natural gas sector, a strategic part of the Canadian economy and a vital industry for North American energy trade and security. Significant interest exists in understanding innovation in this sector from a private and public policy perspective. Interest in the sector has intensified recently due to concerns about world oil supply, Canada's oil sands development, and the potential that Canada may become an "energy superpower." The study examines the factors that drive companies involved in exploration, development, and production in the upstream petroleum sector to innovate and the impact of their innovation activities through major technologies on their performance. The thesis focuses on process innovation, which involves the adoption of new or significantly improved production processes, and is distinct from product innovation, which is based on the development and commercialization of a product with improved product characteristics to deliver new services to the consumer. The thesis provides a comprehensive review of the literature and develops an investigative model framework to examine the drivers of innovation and the impact of innovation on performance in the upstream petroleum sector. The research employs a survey questionnaire that was developed to obtain data and information, which was missing in the literature or not publicly available to test key relationships of innovation and performance indicators. In addition to the survey questionnaire, a number of knowledgeable experts in the industry were also interviewed. A total of 68 respondents completed the survey questionnaire, accounting for 40 percent of the firms in the industry. This percentage goes up to over 50 percent when account is taken of extremely small firms who could not fill out the survey. Further, the 68 respondents account for most of the industry revenues, production, and employment. The respondents include most of the key

  11. Shock Initiation of Damaged Explosives

    SciTech Connect

    Chidester, S K; Vandersall, K S; Tarver, C M

    2009-10-22

    Explosive and propellant charges are subjected to various mechanical and thermal insults that can increase their sensitivity over the course of their lifetimes. To quantify this effect, shock initiation experiments were performed on mechanically and thermally damaged LX-04 (85% HMX, 15% Viton by weight) and PBX 9502 (95% TATB, 5% Kel-F by weight) to obtain in-situ manganin pressure gauge data and run distances to detonation at various shock pressures. We report the behavior of the HMX-based explosive LX-04 that was damaged mechanically by applying a compressive load of 600 psi for 20,000 cycles, thus creating many small narrow cracks, or by cutting wedge shaped parts that were then loosely reassembled, thus creating a few large cracks. The thermally damaged LX-04 charges were heated to 190 C for long enough for the beta to delta solid - solid phase transition to occur, and then cooled to ambient temperature. Mechanically damaged LX-04 exhibited only slightly increased shock sensitivity, while thermally damaged LX-04 was much more shock sensitive. Similarly, the insensitive explosive PBX 9502 was mechanically damaged using the same two techniques. Since PBX 9502 does not undergo a solid - solid phase transition but does undergo irreversible or 'rachet' growth when thermally cycled, thermal damage to PBX 9502 was induced by this procedure. As for LX-04, the thermally damaged PBX 9502 demonstrated a greater shock sensitivity than mechanically damaged PBX 9502. The Ignition and Growth reactive flow model calculated the increased sensitivities by igniting more damaged LX-04 and PBX 9502 near the shock front based on the measured densities (porosities) of the damaged charges.

  12. Effects of fuel injection on mixing and upstream interactions in supersonic flow

    NASA Astrophysics Data System (ADS)

    Tu, Qiuya

    Scramjet engine performance has been studied experimentally and computationally almost under steady-state conditions. Transients of the airflow and fueling in the scramjet's isolator or combustor create important fluid-dynamic/ combustion interactions. Spark schlieren photography was employed to study the effects of pressure rise in the combustion chamber on the isolator flow at three conditions with isolator entrance Mach number of 1.6, 1.9 and 2.5, covering the range of dual-mode combustion and transition to full scramjet operation. Heat release through combustion in the model scramjet was simulated by incrementally blocking the flow exit until upstream-interaction was induced and a shock train formed in the isolator. Theoretical predictions of the pressure rise in the isolator under separated flow conditions were calculated, which agreed well with the experimental data. The prediction is sensitive to the accurate modeling of the isolator inlet conditions and the correct selection of wall friction coefficient. Gaseous helium and argon have been transversely injected into a Mach 1.6 airflow simulating a light and a heavy fuel injection behind a thin triangular pylon placed upstream, in the isolator, which has a negligible impact on pressure losses. Planar laser-induced fluorescence (PLIF) was used to observe the penetration and mixing in the test section at three cross-sections including the recirculation region and beyond. Results were compared to the no-pylon cases, which showed the presence of the pylon resulted in improving both penetration and spreading of the jet. Simulation for shock wave/ boundary-layer interaction was conducted in Fluent for case of M=1.9 at 60% blockage by using k-ε RNG model with two different near wall treatments. In both cases, the shock ran out of isolator before the computation converged, this is different from experimental results. Proper actual wall friction force may have a very important effect on the computation, which needs

  13. Nutrient spatial pattern of the upstream, mainstream and tributaries of the Three Gorges Reservoir in China.

    PubMed

    Huang, YuLing; Zhang, Ping; Liu, DeFu; Yang, ZhengJian; Ji, DaoBin

    2014-10-01

    A comprehensive monitoring program was conducted to investigate the nutrient spatial pattern in the mainstream of the Yangtze River from the Baihetan Dam down to the Three Gorges Dam located at the upper region of the Yangtze River in China. Samples were taken from 33 different sites from July 30 to August 19, 2011. The nutrient patterns of the three representative tributaries of the Three Gorges Reservoir (TGR)--the Modao, the Daning, and the Xiangxi Rivers--were also investigated. The results show that the mainstream of the TGR has a higher concentration of nitrogen and a lower concentration of phosphorus than that of the upper mainstream before the TGR. Moreover, it was found that nitrate-nitrogen (NO₃-N) is the main nitrogen component, while particulate phosphorus predominates the total phosphorus (TP). It was found that the three representative tributaries of the TGR have lower total nitrogen (TN) concentrations compared to the corresponding sections of the mainstream TGR. Based on the nutrient spatial pattern, the nutrient flux was calculated. The total fluxes of TN, NO₃-N, TP, and orthophosphate (PO₄-P) from the upstream reach into the TGR are 2,155.06, 1,674.97, 212.98, and 83.42 t day(-1), respectively. The amount of nutrients imported from the TGR into its tributaries is more than the amount exported. It was determined that the Xiangxi River has the largest net rate of imported nitrogen at 7.66 t day(-1), whereas the Daning River has the largest net rate of imported phosphorus at 1.75 t day(-1). In addition, compared with the nutrients imported from the TGR into its tributaries, the nutrient flux from the upstream reach into the TGR contributes approximately less than 3 %. PMID:24990348

  14. Reattachment heating upstream of short compression ramps in hypersonic flow

    NASA Astrophysics Data System (ADS)

    Estruch-Samper, David

    2016-05-01

    Hypersonic shock-wave/boundary-layer interactions with separation induce unsteady thermal loads of particularly high intensity in flow reattachment regions. Building on earlier semi-empirical correlations, the maximum heat transfer rates upstream of short compression ramp obstacles of angles 15° ⩽ θ ⩽ 135° are here discretised based on time-dependent experimental measurements to develop insight into their transient nature (Me = 8.2-12.3, Re_h= 0.17× 105-0.47× 105). Interactions with an incoming laminar boundary layer experience transition at separation, with heat transfer oscillating between laminar and turbulent levels exceeding slightly those in fully turbulent interactions. Peak heat transfer rates are strongly influenced by the stagnation of the flow upon reattachment close ahead of obstacles and increase with ramp angle all the way up to θ =135°, whereby rates well over two orders of magnitude above the undisturbed laminar levels are intermittently measured (q'_max>10^2q_{u,L}). Bearing in mind the varying degrees of strength in the competing effect between the inviscid and viscous terms—namely the square of the hypersonic similarity parameter (Mθ )^2 for strong interactions and the viscous interaction parameter bar{χ } (primarily a function of Re and M)—the two physical factors that appear to most globally encompass the effects of peak heating for blunt ramps (θ ⩾ 45°) are deflection angle and stagnation heat transfer, so that this may be fundamentally expressed as q'_max∝ {q_{o,2D}} θ ^2 with further parameters in turn influencing the interaction to a lesser extent. The dominant effect of deflection angle is restricted to short obstacle heights, where the rapid expansion at the top edge of the obstacle influences the relaxation region just downstream of reattachment and leads to an upstream displacement of the separation front. The extreme heating rates result from the strengthening of the reattaching shear layer with the increase in

  15. Upstream pressure variations associated with the bow shock and their effects on the magnetosphere

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.; Baumjohann, W.; Paschmann, G.; Luehr, H.; Sibeck, D. G.

    1990-01-01

    The AMPTE IRM solar wind data are analyzed to determine the relationship between upstream pressure fluctuations and magnetospheric perturbations. It is argued that the upstream pressure variations are not inherent in the solar wind but rather are associated with the bow shock. This conclusion follows from the fact that the upstream field strength and density associated with perturbations are highly correlated with each other, while they tend to be anticorrelated in the undisturbed solar wind, and that the upstream perturbations occur within the foreshock or at its boundary. The results imply a mode of interaction between the solar wind upstream and the magnetosphere whereby density changes produced in the foreshock subsequently convect through the bow shock and impinge on the magnetosphere. Upstream pressure perturbations should create significant effects on the magnetopause and at the foot of nearby field lines that lead to the polar cusp ionosphere.

  16. A simple model for the formation of 'reflected', 'intermediate', and 'diffuse' ion distributions upstream of earth's bow shock

    NASA Technical Reports Server (NTRS)

    Lee, M. A.; Skadron, G.

    1985-01-01

    Detailed energetic ion and low-frequency wave experiments on ISEE 1, 2, and 3, have established correlations between the types of ion populations and waves observed to exist in the earth's foreshock region. The present calculation has the objective to quantitatively test the picture obtained for the earth's foreshock region. An analysis is conducted of the coupled spatial and temporal evolution of upstream protons and hydromagnetic waves by means of a simple model in which the protons are represented by counterstreaming beams which resonate with hydromagnetic waves, exciting the outward propagating modes and damping the inward propagating modes at a single wave number.

  17. Large amplitude MHD waves upstream of the Jovian bow shock

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Smith, C. W.; Matthaeus, W. H.

    1983-01-01

    Observations of large amplitude magnetohydrodynamics (MHD) waves upstream of Jupiter's bow shock are analyzed. The waves are found to be right circularly polarized in the solar wind frame which suggests that they are propagating in the fast magnetosonic mode. A complete spectral and minimum variance eigenvalue analysis of the data was performed. The power spectrum of the magnetic fluctuations contains several peaks. The fluctuations at 2.3 mHz have a direction of minimum variance along the direction of the average magnetic field. The direction of minimum variance of these fluctuations lies at approximately 40 deg. to the magnetic field and is parallel to the radial direction. We argue that these fluctuations are waves excited by protons reflected off the Jovian bow shock. The inferred speed of the reflected protons is about two times the solar wind speed in the plasma rest frame. A linear instability analysis is presented which suggests an explanation for many of the observed features of the observations.

  18. Streamwise Vortex Formation Upstream of a Rectangular Nozzle

    NASA Astrophysics Data System (ADS)

    Hsu, T. Y.; Wei, T.

    2001-11-01

    High resolution DPIV measurements were made to examine the hydrodynamic stability of initially laminar flow passing through a sudden contraction. This motivation for this study was understanding the effects of nozzle geometry and turbulence on papermaking. Experiments were conducted with water using a simplified two-dimensional rectangular nozzle constructed to match the Reynolds number of industrial papermaking machines. The nozzle consisted of a 60 cm wide x 10 cm high channel whose downstream end could be blocked by as much as 50orthogonal planes at various positions upstream of the nozzle exit. The Reynolds number range, based on the jet height and the free stream velocity (1-2 m/s), was 10,000 to 100,000. An unsteady spanwise vortex 1.6 cm in diameter was found at the corner of the vertical solid wall and the top wall of the contraction. Further, unsteady streamwise vortices with 2 cm in diameter were identified both visually and by using spectrum analysis. These findings will be related to the streaks found in a sheet of paper.

  19. Rating Curve Estimation from Local Levels and Upstream Discharges

    NASA Astrophysics Data System (ADS)

    Franchini, M.; Mascellani, G.

    2003-04-01

    Current technology allows for low cost and easy level measurements while the discharge measurements are still difficult and expensive. Thus, these are rarely performed and usually not in flood conditions because of lack of safety and difficulty in activating the measurement team in due time. As a consequence, long series of levels are frequently available without the corresponding discharge values. However, for the purpose of planning, management of water resources and real time flood forecasting, discharge is needed and it is therefore essential to convert local levels into discharge values by using the appropriate rating curve. Over this last decade, several methods have been proposed to relate local levels at a site of interest to data recorded at a river section located upstream where a rating curve is available. Some of these methods are based on a routing approach which uses the Muskingum model structure in different ways; others are based on the entropy concepts. Lately, fuzzy logic has been applied more and more frequently in the framework of hydraulic and hydrologic problems and this has prompted to the authors to use it for synthesising the rating curves. A comparison between all these strategies is performed, highlighting the difficulties and advantages of each of them, with reference to a long reach of the Po river in Italy, where several hydrometers and the relevant rating curves are available, thus allowing for both a parameterization and validation of the different strategies.

  20. Rapid acceleration of protons upstream of earthward propagating dipolarization fronts

    PubMed Central

    Ukhorskiy, AY; Sitnov, MI; Merkin, VG; Artemyev, AV

    2013-01-01

    [1] Transport and acceleration of ions in the magnetotail largely occurs in the form of discrete impulsive events associated with a steep increase of the tail magnetic field normal to the neutral plane (Bz), which are referred to as dipolarization fronts. The goal of this paper is to investigate how protons initially located upstream of earthward moving fronts are accelerated at their encounter. According to our analytical analysis and simplified two-dimensional test-particle simulations of equatorially mirroring particles, there are two regimes of proton acceleration: trapping and quasi-trapping, which are realized depending on whether the front is preceded by a negative depletion in Bz. We then use three-dimensional test-particle simulations to investigate how these acceleration processes operate in a realistic magnetotail geometry. For this purpose we construct an analytical model of the front which is superimposed onto the ambient field of the magnetotail. According to our numerical simulations, both trapping and quasi-trapping can produce rapid acceleration of protons by more than an order of magnitude. In the case of trapping, the acceleration levels depend on the amount of time particles stay in phase with the front which is controlled by the magnetic field curvature ahead of the front and the front width. Quasi-trapping does not cause particle scattering out of the equatorial plane. Energization levels in this case are limited by the number of encounters particles have with the front before they get magnetized behind it. PMID:26167430

  1. Thyroid-Disrupting Chemicals: Interpreting Upstream Biomarkers of Adverse Outcomes

    PubMed Central

    Miller, Mark D.; Crofton, Kevin M.; Rice, Deborah C.; Zoeller, R. Thomas

    2009-01-01

    Background There is increasing evidence in humans and in experimental animals for a relationship between exposure to specific environmental chemicals and perturbations in levels of critically important thyroid hormones (THs). Identification and proper interpretation of these relationships are required for accurate assessment of risk to public health. Objectives We review the role of TH in nervous system development and specific outcomes in adults, the impact of xenobiotics on thyroid signaling, the relationship between adverse outcomes of thyroid disruption and upstream causal biomarkers, and the societal implications of perturbations in thyroid signaling by xenobiotic chemicals. Data sources We drew on an extensive body of epidemiologic, toxicologic, and mechanistic studies. Data synthesis THs are critical for normal nervous system development, and decreased maternal TH levels are associated with adverse neuropsychological development in children. In adult humans, increased thyroid-stimulating hormone is associated with increased blood pressure and poorer blood lipid profiles, both risk factors for cardiovascular disease and death. These effects of thyroid suppression are observed even within the “normal” range for the population. Environmental chemicals may affect thyroid homeostasis by a number of mechanisms, and multiple chemicals have been identified that interfere with thyroid function by each of the identified mechanisms. Conclusions Individuals are potentially vulnerable to adverse effects as a consequence of exposure to thyroid-disrupting chemicals. Any degree of thyroid disruption that affects TH levels on a population basis should be considered a biomarker of adverse outcomes, which may have important societal outcomes. PMID:19654909

  2. Long conserved fragments upstream of Mammalian polyadenylation sites.

    PubMed

    Ho, Eric S; Gunderson, Samuel I

    2011-01-01

    Polyadenylation is a cotranscriptional nuclear RNA processing event involving endonucleolytic cleavage of the nascent, emerging pre-messenger RNA (pre-mRNA) from the RNA polymerase, immediately followed by the polymerization of adenine ribonucleotides, called the poly(A) tail, to the cleaved 3' end of the polyadenylation site (PAS). This apparently simple molecular processing step has been discovered to be connected to transcription and splicing therefore increasing its potential for regulation of gene expression. Here, through a bioinformatic analysis of cis-PAS-regulatory elements in mammals that includes taking advantage of multiple evolutionary time scales, we find unexpected selection pressure much further upstream, up to 200 nt, from the PAS than previously thought. Strikingly, close to 3,000 long (30-500 nt) noncoding conserved fragments (CFs) were discovered in the PAS flanking region of three remotely related mammalian species, human, mouse, and cow. When an even more remote transitional mammal, platypus, was included, still over a thousand CFs were found in the proximity of the PAS. Even though the biological function of these CFs remains unknown, their considerable sizes makes them unlikely to serve as protein recognition sites, which are typically ≤15 nt. By harnessing genome wide DNaseI hypersensitivity data, we have discovered that the presence of CFs correlates with chromatin accessibility. Our study is important in highlighting novel experimental targets, which may provide new understanding about the regulatory aspects of polyadenylation. PMID:21705472

  3. Energy diffusion of pickup ions upstream of comets

    NASA Technical Reports Server (NTRS)

    Isenberg, Philip A.

    1987-01-01

    A steady state model of pickup ion energization upstream of a cometary bow wave is presented in order to investigate the effects of quasi-linear energy diffusion in the turbulence there. The model assumes that the ions are immediately isotropized at pickup, and it includes the effects of adiabatic acceleration in the slowing solar wind and of continual pickup of ions as the comet is approached. By taking all physical quantities to fall off as power laws with distance from the comet, an analytical expression is obtained for the distribution function of pickup ions in the reference frame moving with the solar wind. To illustrate the application of this model, the model results are compared to the observations of pickup ions at comet Giacobini-Zinner. At present, this is the only cometary encounter for which sufficient quantitative information is available. The model does not compare well with these observations, but it is not clear whether the differences are due to artificial problems in the model or the data analysis or to the action of other energization processes at this comet. Preliminary results from the Halley encounters appear to agree more closely with this model.

  4. Harbor seal whiskers synchronize with frequency of upstream wake

    NASA Astrophysics Data System (ADS)

    Beem, Heather; Triantafyllou, Michael

    2013-11-01

    Harbor seals are able to use their whiskers to track minute water movements, such as those left in the wake of a fish. The current study is a simple representation of what the whiskers experience as the seal chases a fish. A scaled whisker model (average cross-flow diameter: dw) is first tested in a towing tank by itself and then towed behind a larger cylinder (dc = 2 . 5dw), which serves as a wake generator. A flexing plate attached to the model base allows the whisker to freely vibrate in response to the flow. Measurements from strain gages on the plate are calibrated to tip deflections. While in the cylinder wake, the whisker vibrates with an amplitude up to ten times higher than it does on its own (A /dw = 0 . 15). Also, the whisker synchronizes with the vortex shedding frequency (fs =0/. 2 U dc) of the upstream cylinder over the range of reduced velocities tested, whereas on its own, the whisker oscillates around its own natural frequency in water. Seals may use the difference in vibration amplitude and frequency between these two cases to help detect the presence of a vortex wake.

  5. Immunochemical characterization and transacting properties of upstream stimulatory factor isoforms.

    PubMed

    Viollet, B; Lefrançois-Martinez, A M; Henrion, A; Kahn, A; Raymondjean, M; Martinez, A

    1996-01-19

    The ubiquitous upstream stimulatory factor (USF) transcription factors encoded by two distinct genes (USF1 and USF2) exist under the form of various dimers able to bind E-boxes. We report the molecular cloning and functional characterization of USF2 isoforms, corresponding to a 44-kDa subunit, USF2a, and a new 38-kDa subunit, USF2b, generated by differential splicing. Using specific anti-USF antibodies, we define the different binding complexes in various nuclear extracts. In vivo, the USF1/USF2a heterodimer represents over 66% of the USF binding activity whereas the USF1 and USF2a homodimers represent less than 10%, which strongly suggests an in vivo preferential association in heterodimers. In particular, an USF1/USF2b heterodimer accounted for almost 15% of the USF species in some cells. The preferential heterodimerization of USF subunits was reproduced ex vivo, while the in vitro association of cotranslated subunits, or recombinant USF proteins, appeared to be random. In transiently transfected HeLa or hepatoma cells, USF2a and USF1 homodimers transactivated a minimal promoter with similar efficiency, whereas USF2b, which lacks an internal 67-amino acid domain, was a poor transactivator. Additionally, USF2b was an efficient as USF1 and USF2a homodimers in transactivating the liver-specific pyruvate kinase gene promoter. PMID:8576131

  6. Role of upstream stimulatory factor 2 in diabetic nephropathy

    PubMed Central

    Wang, Shuxia

    2015-01-01

    Diabetic nephropathy (DN) is the most common cause of end-stage renal disease (ESRD). About 20%–30% of people with type 1 and type 2 diabetes develop DN. DN is characterized by both glomerulosclerosis with thickening of the glomerular basement membrane and mesangial matrix expansion, and tubulointerstitial fibrosis. Hyperglycemia and the activation of the intra-renal renin-angiotensin system (RAS) in diabetes have been suggested to play a critical role in the pathogenesis of DN. However, the mechanisms are not well known. Studies from our laboratory demonstrated that the transcription factor—upstream stimulatory factor 2 (USF2) is an important regulator of DN. Moreover, the renin gene is a downstream target of USF2. Importantly, USF2 transgenic (Tg) mice demonstrate a specific increase in renal renin expression and angiotensin II (AngII) levels in kidney and exhibit increased urinary albumin excretion and extracellular matrix deposition in glomeruli, supporting a role for USF2 in the development of diabetic nephropathy. In this review, we summarize our findings of the mechanisms by which diabetes regulates USF2 in kidney cells and its role in regulation of renal renin-angiotensin system and the development of diabetic nephropathy. PMID:26494984

  7. Upstream ORFs are prevalent translational repressors in vertebrates.

    PubMed

    Johnstone, Timothy G; Bazzini, Ariel A; Giraldez, Antonio J

    2016-04-01

    Regulation of gene expression is fundamental in establishing cellular diversity and a target of natural selection. UntranslatedmRNAregions (UTRs) are key mediators of post-transcriptional regulation. Previous studies have predicted thousands ofORFs in 5'UTRs, the vast majority of which have unknown function. Here, we present a systematic analysis of the translation and function of upstream open reading frames (uORFs) across vertebrates. Using high-resolution ribosome footprinting, we find that (i)uORFs are prevalent within vertebrate transcriptomes, (ii) the majority show signatures of active translation, and (iii)uORFs act as potent regulators of translation andRNAlevels, with a similar magnitude to miRNAs. Reporter experiments reveal clear repression of downstream translation byuORFs/oORFs.uORFnumber, intercistronic distance, overlap with theCDS, and initiation context most strongly influence translation. Evolution has targeted these features to favoruORFs amenable to regulation over constitutively repressiveuORFs/oORFs. Finally, we observe that the regulatory potential ofuORFs on individual genes is conserved across species. These results provide insight into the regulatory code withinmRNAleader sequences and their capacity to modulate translation across vertebrates. PMID:26896445

  8. Dynamic meandering in response to upstream perturbations and floodplain formation

    NASA Astrophysics Data System (ADS)

    Schuurman, F.; Shimizu, Y.; Iwasaki, T.; Kleinhans, M. G.

    2016-01-01

    River meandering results from spatially alternating bank erosion and bar growth. Recent flume experiments and theory suggest that a continuous inflow perturbation is a requirement for sustained meandering. Furthermore, flume experiments suggest that bar-floodplain conversion is an additional requirement. Here, we tested the effects of continuous inflow perturbation and bar-floodplain conversion on meander migration using three numerical morphodynamic models: a 1D-model, and two 2D-models with one of them using adaptive moving grid. We focused on the interaction between bars and bends that leads to meander initiation, and the effect of different methods to model bank erosion and floodplain accretion processes on meander migration. The results showed that inflow perturbations have large effects on meander dynamics of high-sinuosity channels, with strong excitation when the inflow is periodically perturbed. In contrast, inflow perturbations have rather small effect in low-sinuosity channels. Steady alternate bars alone are insufficient to cause high-sinuosity meandering. For high-sinuosity meandering, bar-floodplain conversion is required that prevents chute-cutoffs and enhances flow asymmetry, whilst meandering with chute-cutoffs requires merely weak floodplain formation, and braiding occurs without floodplain formation. Thus, this study demonstrated that both dynamic upstream inflow perturbation and bar-floodplain conversion are required for sustained high-sinuosity meandering.

  9. 46 CFR 172.105 - Extent of damage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Extent of damage. 172.105 Section 172.105 Shipping COAST... Subchapter O of This Chapter § 172.105 Extent of damage. For the purpose of § 172.103, design calculations must include both side and bottom damage, applied separately. Damage must consist of the most...

  10. Deceleration of the solar wind upstream from the earth's bow shock and the origin of diffuse upstream ions

    NASA Technical Reports Server (NTRS)

    Bame, S. J.; Asbridge, J. R.; Feldman, W. C.; Gosling, J. T.; Paschmann, G.; Skopke, N.

    1980-01-01

    Observations with the Los Alamos Scientific Laboratory/Max-Planck-Institut crossed-fan solar wind ion experiment on ISEE I reveal that the solar wind is decelerated and deflected away from the direction of the earth's bow shock as it enters that portion of the upstream region populated by diffuse bow shock ions and long-period (10-60 s) waves. Typically, the average directed velocity vector changes by 7-10 km/s as it enters the wave region. At times, average speed changes as large as 25-40 km/s are observed. Superposed upon these changes in average flow speed are large amplitude (+ or - 15) fluctuations in flow speed associated with the waves themselves. The observations suggest that the solar wind deceleration is the result of momentum transfer from reflected bow shock ions to the wind via the long-period waves as the reflected ion beams go unstable. The broad angular distributions of the diffuse ions thus appear to be produced as a consequence of the disruption of reflected ion beams.

  11. "Upstream Thinking": the catchment management approach of a water provider

    NASA Astrophysics Data System (ADS)

    Grand-Clement, E.; Ross, M.; Smith, D.; Anderson, K.; Luscombe, D.; Le Feuvre, N.; Brazier, R. E.

    2012-04-01

    Human activities have large impacts on water quality and provision. Water companies throughout the UK are faced with the consequences of poor land management and need to find appropriate solutions to decreasing water quality. This is particularly true in the South West of England, where 93% of the drinking water is sourced from rivers and reservoirs: large areas of drained peatlands (i.e. Exmoor and Dartmoor National Parks) are responsible for a significant input of dissolved organic carbon (DOC) discolouring the water, whilst poorly managed farming activities can lead to diffuse pollution. Alongside the direct environmental implications, poor water quality is partly increasing water treatment costs and will drive significant future investment in additional water treatment, with further repercussions on customers. This highlights the need for water companies throughout the UK, and further afield, to be more involved in catchment management. "Upstream Thinking" is South West Water's (SWW) approach to catchment management, where working with stakeholders to improve water quality upstream aims to avoid increasingly costly solutions downstream. This approach has led the company to invest in two major areas of work: (1) The Farmland programme where problematic farm management practices and potential solutions are identified, typically 40% of the required investment is then offered in exchange for a legal undertaking to maintain the new farm assets in good condition for 25 years; (2) The Mires programme which involves heavy investment in peatland restoration through the blocking of open ditches in order to improve water storage and quality in the long term. From these two projects, it has been clear that stakeholder involvement of groups such as local farmers, the Westcountry Rivers Trust, the Exmoor National Park Authority, the Environment Agency, Natural England and the Exmoor Society is essential, first because it draws in catchment improvement expertise which is not

  12. Viscous flow calculations in turbomachinery

    NASA Astrophysics Data System (ADS)

    Moore, J.; Moore, J. G.

    The development of the computer program is reviewed which has been written to include many, but not all, of the physical processes occurring in centrifugal impellers. The program has been developed to calculate flows with progressively more complex physics and in progressively more complex geometries. Three flows in particular are described: these are flows in the rotating channel of Moore, the 90 deg accelerating elbow of Stanitz, and the centrifugal compressor of Eckardt. All three flows are steady and subsonic, and all three exhibit only small influences due to reverse flow and upstream viscous transport.

  13. Poroelastic loading of an aquifer due to upstream dam releases.

    PubMed

    Boutt, David F

    2010-01-01

    Short-term changes in the hydraulic head of surface water bodies are known to influence the shallow response of hydraulically connected groundwaters. Associated with these fluctuations is the physical increase in stream water creating a mechanical load on the ground surface. This load is supported by the geologic materials (sediment or rock) and the pore fluid contained within the pores. Changes in this surface load have a direct effect on the total stress of the aquifer causing either a change in effective stress or fluid pressure. This response, predicted by the framework of linear poroelasticity, is a well-understood phenomenon in geologic materials. Currently, field measurements of the hydraulic response (i.e., fluid pressure) of aquifer materials are undergoing poroelastic loading due to dam releases in the Deerfield River Watershed in Massachusetts. An increase in stream stage from upstream dam releases causes an instantaneous pore fluid pressure increase at multiple depths and locations in the aquifer. This increase lasts anywhere from 15 to 40 minutes depending on the magnitude of the rise in the stream stage. Pore-pressure changes are well correlated to stream stage fluctuations for all of the recorded events. Poroelastic models created using basin stratigraphy and hydraulic properties of the aquifer response match the field observations well. Model results suggest that the overall stratigraphy is important in controlling the magnitude and duration of the poroelastic response. An improved understanding of responses such as these can be used to constrain uncertainties in model calibration and simulations of the contaminant migration in low permeability fine-grained (compressive) materials. PMID:20665952

  14. Augmented reality graphic interface for upstream dam inspection

    NASA Astrophysics Data System (ADS)

    Cote, Jean; Lavallee, Jean

    1995-12-01

    This paper presents a 3D graphic interface for the inspection of cracks along a dam. The monitoring of concrete dams is restricted by the accessibility of the various parts of the structure. Since the upstream face of a dam is not usually exposed, as in our case at Hydro- Quebec, a systematic and even ad hoc inspection become extremely complex. The piloting of a ROV (Remotely Operated Vehicle) underwater is like driving in a snowstorm. The view from the camera is similar to the visibility a driver would have in a snowstorm. Sensor fusion has to be performed by the operator since each sensor is specialized for its task. Even with a 2D positioning system or sonar scan, the approach to the inspection area is very tedious. A new 3D interface has been developed using augmented reality since the position and orientation of the vehicle are known. The point of view of the observer can easily be changed during a manipulation of the ROV. A shared memory based server can access the position data of the ROV and update the graphics in real time. The graphic environment can be used as well to drive the ROV with computer generated trajectories. A video card will be added to the Silicon Graphics workstation to display the view of the camera fixed to the ROV. This visual feedback will only be available when the ROV is close enough to the dam. The images will be calibrated since the position of the camera is known. The operator interface also includes a set of stereoscopic camera, hydrophonic (sound) feedback and imaging tools for measuring cracks.

  15. Catalytic Ignition and Upstream Reaction Propagation in a Platinum Tube

    NASA Technical Reports Server (NTRS)

    Struk, P. M.; Dietrich, D. L.; Mellish, B. P.; Miller, F. J.; T'ien, J. S.

    2007-01-01

    A challenge for catalytic combustion in monolithic reactors at elevated temperatures is the start-up or "light-off" from a cold initial condition. In this work, we demonstrate a concept called "back-end catalytic ignition that potentially can be utilized in the light-off of catalytic monoliths. An external downstream flame or Joule heating raises the temperature of a small portion of the catalyst near the outlet initiating a localized catalytic reaction that propagates upstream heating the entire channel. This work uses a transient numerical model to demonstrate "back-end" ignition within a single channel which can characterize the overall performance of a monolith. The paper presents comparisons to an experiment using a single non-adiabatic channel but the concept can be extended to the adiabatic monolith case. In the model, the time scales associated with solid heat-up are typically several orders of magnitude larger than the gas-phase and chemical kinetic time-scales. Therefore, the model assumes a quasi-steady gas-phase with respect to a transient solid. The gas phase is one-dimensional. Appropriate correlations, however, account for heat and mass transfer in a direction perpendicular to the flow. The thermally-thin solid includes axial conduction. The gas phase, however, does not include axial conduction due to the high Peclet number flows. The model includes both detailed gas-phase and catalytic surface reactions. The experiment utilizes a pure platinum circular channel oriented horizontally though which a CO/O2 mixture (equivalence ratios ranging from 0.6 to 0.9) flows at 2 m/s.

  16. Relict landscape resistance to dissection by upstream migrating knickpoints

    NASA Astrophysics Data System (ADS)

    Brocard, Gilles Y.; Willenbring, Jane K.; Miller, Thomas E.; Scatena, Frederik N.

    2016-06-01

    Expanses of subdued topographies are common at high elevation in mountain ranges. They are often interpreted as relict landscapes and are expected to be replaced by steeper topography as erosion proceeds. Preservation of such relict fragments can merely reflect the fact that it takes time to remove any preexisting topography. However, relict fragments could also possess intrinsic characteristics that make them resilient to dissection. We document here the propagation of a wave of dissection across an uplifted relict landscape in Puerto Rico. Using 10Be-26Al burial dating on cave sediments, we show that uplift started 4 Ma and that river knickpoints have since migrated very slowly across the landscape. Modern detrital 10Be erosion rates are consistent with these long-term rates of knickpoint retreat. Analysis of knickpoint distribution, combined with visual observations along the streambeds, indicates that incision by abrasion and plucking is so slow that bedrock weathering becomes a competing process of knickpoint retreat. The studied rivers flow over a massive stock of quartz diorite surrounded by an aureole of metavolcanic rocks. Earlier studies have shown that vegetation over the relict topography efficiently limits erosion, allowing for the formation of a thick saprolite underneath. Such slow erosion reduces streambed load fluxes delivered to the knickpoints, as well as bed load grain size. Both processes limit abrasion. Compounding the effect of slow abrasion, wide joint spacing in the bedrock makes plucking infrequent. Thus, the characteristics of the relict upstream landscape have a direct effect on stream incision farther downstream, reducing the celerity at which the relict, subdued landscape is dissected. We conclude that similar top-down controls on river incision rate may help many relict landscapes to persist amidst highly dissected topographies.

  17. Innovation and performance: The case of the upstream petroleum sector

    NASA Astrophysics Data System (ADS)

    Persaud, A. C. Jai

    This thesis investigates innovation in the upstream crude oil and natural gas sector, a strategic part of the Canadian economy and a vital industry for North American energy trade and security. Significant interest exists in understanding innovation in this sector from a private and public policy perspective. Interest in the sector has intensified recently due to concerns about world oil supply, Canada's oil sands development, and the potential that Canada may become an "energy superpower." The study examines the factors that drive companies involved in exploration, development, and production in the upstream petroleum sector to innovate and the impact of their innovation activities through major technologies on their performance. The thesis focuses on process innovation, which involves the adoption of new or significantly improved production processes, and is distinct from product innovation, which is based on the development and commercialization of a product with improved product characteristics to deliver new services to the consumer. The thesis provides a comprehensive review of the literature and develops an investigative model framework to examine the drivers of innovation and the impact of innovation on performance in the upstream petroleum sector. The research employs a survey questionnaire that was developed to obtain data and information, which was missing in the literature or not publicly available to test key relationships of innovation and performance indicators. In addition to the survey questionnaire, a number of knowledgeable experts in the industry were also interviewed. A total of 68 respondents completed the survey questionnaire, accounting for 40 percent of the firms in the industry. This percentage goes up to over 50 percent when account is taken of extremely small firms who could not fill out the survey. Further, the 68 respondents account for most of the industry revenues, production, and employment. The respondents include most of the key

  18. Energetic-ion acceleration and transport in the upstream region of Jupiter: Voyager 1 and 2

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Zwickl, R. D.; Carbary, J. F.; Krimigis, S. M.; Lepping, R. P.

    1982-01-01

    Long-lived upstream energetic ion events at Jupiter appear to be very similar in nearly all respects to upstream ion events at Earth. A notable difference between the two planetary systems is the enhanced heavy ion compositional signature reported for the Jovian events. This compositional feature has suggested that ions escaping from the Jovian magnetosphere play an important role in forming upstream ion populations at Jupiter. In contrast, models of energetic upstream ions at Earth emphasize in situ acceleration of reflected solar wind ions within the upstream region itself. Using Voyager 1 and 2 energetic ( approximately 30 keV) ion measurements near the magnetopause, in the magnetosheath, and immediately upstream of the bow shock, the compositional patterns are examined together with typical energy spectra in each of these regions. A model involving upstream Fermi acceleration early in events and emphasizing energetic particle escape in the prenoon part of the Jovian magnetosphere late in events is presented to explain many of the features in the upstream region of Jupiter.

  19. 4. Oblique view of upstream side of Bridge Number 324.99, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Oblique view of upstream side of Bridge Number 324.99, view to northeast, 90mm lens. Heavy vegetation cover, steep banks, and lack of streamside footing precluded full elevation views of the upstream and downstream sides of this bridge. - Southern Pacific Railroad Shasta Route, Bridge No. 324.99, Milepost 324.99, Shasta Springs, Siskiyou County, CA

  20. 3. Oblique view of upstream side of Bridge Number 301.85, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Oblique view of upstream side of Bridge Number 301.85, view to east-northeast, 135mm lens. Heavy vegetation cover, steep banks, and lack of streamside footing precluded full elevation views of the upstream and downstream sides of this bridge. - Southern Pacific Railroad Shasta Route, Bridge No. 301.85, Milepost 301.85, Pollard Flat, Shasta County, CA

  1. Toxic effects of wastewaters collected at upstream and downstream sites of a purification station in cultures of rainbow trout hepatocytes.

    PubMed

    Risso-de Faverney, C; Devaux, A; Lafaurie, M; Girard, J P; Rahmani, R

    2001-08-01

    The toxic effects of wastewater samples, collected in December 1998, from upstream (U) and downstream (D) sites of the purification station of the town of Nice (South-East France on the coast of the Mediterranean Sea) were assessed undiluted and at various dilutions (75%, 50%, and 25% of collected water sample), on trout hepatocyte cultures treated for 48 or 72 h. Chemical contamination (PCBs, PAHs, Cd, Cu, Pb, and Zn) was also evaluated by chemical analysis. The water samples from the upstream site were more cytotoxic than those from the downstream site. The induction of CYP1A enzyme and metallothioneins (MTs) were selected as specific indicators of exposure to organic contaminants and metals, respectively. CYP1A-related EROD activity as well as protein expression were found to be greatly induced after 72 h exposure of the hepatocytes to the undiluted water samples (U(100%) and D(100%)), but CYP1A1 mRNA was significantly overexpressed only by samples from the upstream site. Maximal MT levels were reached after 48 h of treatment with the least concentrated water samples (U(25%) and D(25%)). Glutathione S-transferase (GST) activities were similarly increased under the same conditions. On the other hand, there was no significant glutathione peroxidase (GPx) activity response. Induction of apoptosis was analyzed by using as markers both the fragmentation of the nuclear DNA into oligonucleosomal-length fragments recognized as a "DNA ladder" and the activation of DEVD (Asp-Glu-Val-Asp)-dependent protease considered as the central mediator of programmed cell death. Significant DNA cleavage was only detectable after 72-h exposure to the most concentrated water samples from upstream sites (U(75%) and U(100%)). DEVD-dependent protease activities were significantly increased, mainly in cells exposed to U(75%) and D(25%) for 72 h. In addition, pollution-related DNA damage assessed by using the Comet assay was approximatively 1.5 times greater than that of the control level

  2. An Investigation of the Flow Structure Upstream of Slowly Moving Blunt Bows.

    NASA Astrophysics Data System (ADS)

    Strayer, T. Darton

    The structure of two dimensional bow waves generated by blunt bows is investigated experimentally, analytically, and numerically. In tow tank experiments, bow wave profiles ahead of cylindrical and box shaped bow models, having drafts of 0.136m and 0.11m respectively, are measured using a capacitance type probe for flows in the 0.21 to 0.74 Froude number range. Far upstream several waves are observed, and using linear wave theory they are shown to be transient in nature, generated during the initial acceleration of the bow models. Measured profiles closer to the towed model show a non-breaking bow wave characterized by a sharp monotonic free surface rise to a relatively flat elevated plateau region located adjacent of the bow. In addition small scale waves are shed from the bow and at moderate Froude numbers these waves completely dissipate inside the plateau region, while at lower Froude numbers they propagate further upstream. Using regular perturbation methods first and second order asymptotic solutions are derived for small draft Froude numbers and their subsequent comparison with experimental results shows that both the double body (leading order) and higher order flow solutions poorly approximate the actual flow near the bow. It is found, however, that if the bow geometry is modified to include a triangular shaped separation region the leading order solution mimics measured wave profiles. This non-negligible region located beneath the plateau region is found to extend upstream to the plateau's leading edge. Moreover, results indicate that the location of the so-called separation point, the point at which the flow separates from the free surface and passes beneath the recirculating flow, coincides with the plateau's leading edge and that the sharp free surface rise is an inviscid flow phenomenon. The generation of a free surface shear layer and the flow separation phenomenon are examined as well as a possible cause and effect relationship between them

  3. Upstream proton cyclotron waves at Venus near solar maximum

    NASA Astrophysics Data System (ADS)

    Delva, M.; Bertucci, C.; Volwerk, M.; Lundin, R.; Mazelle, C.; Romanelli, N.

    2015-01-01

    magnetometer data of Venus Express are analyzed for the occurrence of waves at the proton cyclotron frequency in the spacecraft frame in the upstream region of Venus, for conditions of rising solar activity. The data of two Venus years up to the time of highest sunspot number so far (1 Mar 2011 to 31 May 2012) are studied to reveal the properties of the waves and the interplanetary magnetic field (IMF) conditions under which they are observed. In general, waves generated by newborn protons from exospheric hydrogen are observed under quasi- (anti)parallel conditions of the IMF and the solar wind velocity, as is expected from theoretical models. The present study near solar maximum finds significantly more waves than a previous study for solar minimum, with an asymmetry in the wave occurrence, i.e., mainly under antiparallel conditions. The plasma data from the Analyzer of Space Plasmas and Energetic Atoms instrument aboard Venus Express enable analysis of the background solar wind conditions. The prevalence of waves for IMF in direction toward the Sun is related to the stronger southward tilt of the heliospheric current sheet for the rising phase of Solar Cycle 24, i.e., the "bashful ballerina" is responsible for asymmetric background solar wind conditions. The increase of the number of wave occurrences may be explained by a significant increase in the relative density of planetary protons with respect to the solar wind background. An exceptionally low solar wind proton density is observed during the rising phase of Solar Cycle 24. At the same time, higher EUV increases the ionization in the Venus exosphere, resulting in higher supply of energy from a higher number of newborn protons to the wave. We conclude that in addition to quasi- (anti)parallel conditions of the IMF and the solar wind velocity direction, the higher relative density of Venus exospheric protons with respect to the background solar wind proton density is the key parameter for the higher number of

  4. 46 CFR 172.205 - Local damage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Subchapter O of This Chapter § 172.205 Local damage. (a) Each tankship must be shown by design calculations... heel beyond the smaller of the following angles in the final stage of flooding: (1) 30 degrees. (2)...

  5. 46 CFR 172.205 - Local damage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Subchapter O of This Chapter § 172.205 Local damage. (a) Each tankship must be shown by design calculations... heel beyond the smaller of the following angles in the final stage of flooding: (1) 30 degrees. (2)...

  6. Impact Cratering Calculations

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    2001-01-01

    We examined the von Mises and Mohr-Coulomb strength models with and without damage effects and developed a model for dilatancy. The models and results are given in O'Keefe et al. We found that by incorporating damage into the models that we could in a single integrated impact calculation, starting with the bolide in the atmosphere produce final crater profiles having the major features found in the field measurements. These features included a central uplift, an inner ring, circular terracing and faulting. This was accomplished with undamaged surface strengths of approximately 0.1 GPa and at depth strengths of approximately 1.0 GPa. We modeled the damage in geologic materials using a phenomenological approach, which coupled the Johnson-Cook damage model with the CTH code geologic strength model. The objective here was not to determine the distribution of fragment sizes, but rather to determine the effect of brecciated and comminuted material on the crater evolution, fault production, ejecta distribution, and final crater morphology.

  7. Rotor damage detection by using piezoelectric impedance

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Tao, Y.; Mao, Y. F.

    2016-04-01

    Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.

  8. Prediction of turbine blade vibratory response due to upstream vane distress

    SciTech Connect

    Panovsky, J.; Carson, S.M.

    1998-07-01

    Turbine blades and vanes operate in a hostile environment, which leads to deterioration of these components over time. This paper describes detailed calculations to predict the vibratory response of a high-pressure turbine blade due to the excitation produced by a single distressed upstream vane in a modern turbofan engine. The approach includes detailed computational fluid dynamics (CFD) analysis of the steady flowfield produced by the distressed vane, Fourier decomposition of the flow variables to determine the harmonic content, unsteady CFD analysis to determine the resulting vibratory response of the blade, and crack propagation analysis to determine blade life. Predictions of vibratory stress and threshold crack size are summarized as functions of vane distress level. The results, which indicate that this type of vane distress can indeed be a significant excitation source for the blades, are shown to be in good agreement with engine experience. The method provides, for the first time, a quantitative approach to setting limits for acceptable levels of vane distress in the field.

  9. MEMS Calculator

    National Institute of Standards and Technology Data Gateway

    SRD 166 MEMS Calculator (Web, free access)   This MEMS Calculator determines the following thin film properties from data taken with an optical interferometer or comparable instrument: a) residual strain from fixed-fixed beams, b) strain gradient from cantilevers, c) step heights or thicknesses from step-height test structures, and d) in-plane lengths or deflections. Then, residual stress and stress gradient calculations can be made after an optical vibrometer or comparable instrument is used to obtain Young's modulus from resonating cantilevers or fixed-fixed beams. In addition, wafer bond strength is determined from micro-chevron test structures using a material test machine.

  10. Effects of salinity on upstream-migrating, spawning sea lamprey, Petromyzon marinus

    PubMed Central

    Ferreira-Martins, D.; Coimbra, J.; Antunes, C.; Wilson, J. M.

    2016-01-01

    The sea lamprey, Petromyzon marinus, is an anadromous, semelparous species that is vulnerable to endangered in parts of its native range due in part to loss of spawning habitat because of man-made barriers. The ability of lampreys to return to the ocean or estuary and search out alternative spawning river systems would be limited by their osmoregulatory ability in seawater. A reduction in tolerance to salinity has been documented in migrants, although the underlying mechanisms have not been characterized. We examined the capacity for marine osmoregulation in upstream spawning migrants by characterizing the physiological effects of salinity challenge from a molecular perspective. Estuarine-captured migrants held in freshwater (FW) for ∼1 week (short-term acclimation) or 2 months (long-term acclimation) underwent an incremental salinity challenge until loss of equilibrium occurred and upper thresholds of 25 and 17.5, respectively, occurred. Regardless of salinity tolerance, all lamprey downregulated FW ion-uptake mechanisms [gill transcripts of Na+:Cl− cotransporter (NCC/slc12a3) and epithelial Na+ channel (ENaC/scnn1) and kidney Na+/K+-ATPase (NKA) protein and activity but not transcript]. At their respective salinity limits, lamprey displayed a clear osmoregulatory failure and were unable to regulate [Na+] and [Cl−] in plasma and intestinal fluid within physiological limits, becoming osmocompromised. A >90% drop in haematocrit indicated haemolysis, and higher plasma concentrations of the cytosolic enzymes alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase indicated damage to other tissues, including liver. However, >80% of short-term FW-acclimated fish were able to osmoregulate efficiently, with less haemolysis and tissue damage. This osmoregulatory ability was correlated with significant upregulation of the secretory form of Na+:K+:2Cl− cotransporter (NKCC1/slc12a2) transcript levels and the re-emergence of seawater

  11. Effects of salinity on upstream-migrating, spawning sea lamprey, Petromyzon marinus.

    PubMed

    Ferreira-Martins, D; Coimbra, J; Antunes, C; Wilson, J M

    2016-01-01

    The sea lamprey, Petromyzon marinus, is an anadromous, semelparous species that is vulnerable to endangered in parts of its native range due in part to loss of spawning habitat because of man-made barriers. The ability of lampreys to return to the ocean or estuary and search out alternative spawning river systems would be limited by their osmoregulatory ability in seawater. A reduction in tolerance to salinity has been documented in migrants, although the underlying mechanisms have not been characterized. We examined the capacity for marine osmoregulation in upstream spawning migrants by characterizing the physiological effects of salinity challenge from a molecular perspective. Estuarine-captured migrants held in freshwater (FW) for ∼1 week (short-term acclimation) or 2 months (long-term acclimation) underwent an incremental salinity challenge until loss of equilibrium occurred and upper thresholds of 25 and 17.5, respectively, occurred. Regardless of salinity tolerance, all lamprey downregulated FW ion-uptake mechanisms [gill transcripts of Na(+):Cl(-) cotransporter (NCC/slc12a3) and epithelial Na(+) channel (ENaC/scnn1) and kidney Na(+)/K(+)-ATPase (NKA) protein and activity but not transcript]. At their respective salinity limits, lamprey displayed a clear osmoregulatory failure and were unable to regulate [Na(+)] and [Cl(-)] in plasma and intestinal fluid within physiological limits, becoming osmocompromised. A >90% drop in haematocrit indicated haemolysis, and higher plasma concentrations of the cytosolic enzymes alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase indicated damage to other tissues, including liver. However, >80% of short-term FW-acclimated fish were able to osmoregulate efficiently, with less haemolysis and tissue damage. This osmoregulatory ability was correlated with significant upregulation of the secretory form of Na(+):K(+):2Cl(-) cotransporter (NKCC1/slc12a2) transcript levels and the re-emergence of

  12. The 'upstream wake' of swimming and flying animals and its correlation with propulsive efficiency.

    PubMed

    Peng, Jifeng; Dabiri, John O

    2008-08-01

    The interaction between swimming and flying animals and their fluid environments generates downstream wake structures such as vortices. In most studies, the upstream flow in front of the animal is neglected. In this study, we demonstrate the existence of upstream fluid structures even though the upstream flow is quiescent or possesses a uniform incoming velocity. Using a computational model, the flow generated by a swimmer (an oscillating flexible plate) is simulated and a new fluid mechanical analysis is applied to the flow to identify the upstream fluid structures. These upstream structures show the exact portion of fluid that is going to interact with the swimmer. A mass flow rate is then defined based on the upstream structures, and a metric for propulsive efficiency is established using the mass flow rate and the kinematics of the swimmer. We propose that the unsteady mass flow rate defined by the upstream fluid structures can be used as a metric to measure and objectively compare the efficiency of locomotion in water and air. PMID:18689420

  13. The Impact of Upstream Flow on the Atmospheric Boundary Layer in a Valley on a Mountainous Island

    NASA Astrophysics Data System (ADS)

    Adler, Bianca; Kalthoff, Norbert

    2016-03-01

    Comprehensive measurements on the mountainous island of Corsica were used to investigate how the mountain atmospheric boundary layer (mountain ABL) in a valley downstream of the main mountain ridge was influenced by the upstream flow. The data used were mainly collected with the mobile observation platform KITcube during the first special observation period of the Hydrological cycle in the Mediterranean Experiment (HyMeX) in 2012 and were based on various in situ, remote sensing and aircraft measurements. Two days in autumn 2012 were analyzed in detail. On these days the mountain ABL evolution was a result of convection and thermally-driven circulations as well as terrain-induced dynamically-driven flows. During periods when dynamically-driven flows were dominant, warm and dry air from aloft with a large-scale westerly wind component was transported downwards into the valley. On one day, these flows controlled the mountain ABL characteristics in a large section of the valley for several hours, while on the other day their impact was observed in a smaller section of the valley for about 1 h only. To explain the observations we considered a theoretical concept based on uniform upstream stratification and wind speed, and calculated the non-dimensional mountain height and the horizontal aspect ratio of the barrier to relate the existing conditions to diagnosed regimes of stratified flow past a ridge. On both days, wave breaking, flow splitting and lee vortices were likely to occur. Besides the upstream conditions, a reduction of stability in the valley seemed to be important for the downward transport to reach the ground. The spatio-temporal structure of such a mountain ABL over complex terrain, which was affected by various interacting flows, differed a lot from that of the classical ABL over homogeneous, flat terrain and it is stressed that the traditional ABL definitions need to be revised when applying them to complex terrain.

  14. Field-aligned ion beams upstream of the earth's bow shock Evidence for a magnetosheath source

    NASA Technical Reports Server (NTRS)

    Thomsen, M. F.; Gosling, J. T.; Bame, S. J.; Feldman, W. C.; Paschmann, G.; Sckopke, N.

    1983-01-01

    High time resolution ISEE-1 and -2 observations of upstream field-aligned ion beams at several crossings of the earth's bow shock indicate that some beams are due to high energy magnetosheath particles leaking through the shock into the upstream region. The distribution immediately downstream of these oblique shocks consists of a 'core' of directly transmitted, slightly heated ions, plus a crescent-shaped, high-velocity distribution, centered roughly on the magnetic field in the direction toward the upstream region, with a fairly well defined low velocity cutoff.

  15. Upstream-influence scaling of fin-generated shock wave boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Lu, Frank K.; Settles, Gary S.

    1990-01-01

    An upstream-influence scaling law, previously formulated through analysis of Mach 3 data, has been extended to Mach numbers from 2.5 through 4. For adiabatic, equilibrium, turbulent boundary layers, there is no Mach number effect on the constants in the Reynolds number parameters of this law. In addition, based on local similarity, a new Mach number parameter, namely, the Mach number component of the incoming stream normal to the farfield upstream influence, is proposed. Scaling by either the incoming Mach number normal to the inviscid shock or by the incoming Mach number normal to the farfield upstream influence is equivalent to scaling by the hypersonic similarity parameter.

  16. Method for assaying clustered DNA damages

    DOEpatents

    Sutherland, Betsy M.

    2004-09-07

    Disclosed is a method for detecting and quantifying clustered damages in DNA. In this method, a first aliquot of the DNA to be tested for clustered damages with one or more lesion-specific cleaving reagents under conditions appropriate for cleavage of the DNA to produce single-strand nicks in the DNA at sites of damage lesions. The number average molecular length (Ln) of double stranded DNA is then quantitatively determined for the treated DNA. The number average molecular length (Ln) of double stranded DNA is also quantitatively determined for a second, untreated aliquot of the DNA. The frequency of clustered damages (.PHI..sub.c) in the DNA is then calculated.

  17. 8. UPSTREAM EXTENSION TO 60' INFILTRATION PIPE. Sheet A19, November, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. UPSTREAM EXTENSION TO 60' INFILTRATION PIPE. Sheet A-19, November, 1940. File no. SA 342/13. - Prado Dam, Embankment, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  18. Upstream Financial Review of the Global Oil and Natural Gas Industry

    EIA Publications

    2016-01-01

    This analysis focuses on financial and operating trends of the oil and natural gas production business segment, often referred to as upstream operations, of 42 global oil and natural gas producing companies

  19. Measurement of Emissions from Produced Water Ponds: Upstream Oil and Gas Study #1; Final Report

    EPA Science Inventory

    Significant uncertainty exists regarding air pollutant emissions from upstream oil and gas production operations. Oil and gas operations present unique and challenging emission testing issues due to the large variety and quantity of potential emissions sources. This report summ...

  20. Regulation of the human. beta. -actin promoter by upstream and intron domains

    SciTech Connect

    Ng, Sunyu )); Gunning, P.; Kedes, L. ); Liu, Shuhui National Tsing Hua Univ., Hsinchu ); Leavitt, J. )

    1989-01-25

    The authors have identified three regulatory domains of the complex human {beta}-actin gene promoter. They span a region of about 3,000 bases, from not more than {minus}2,011 bases upstream of the mRNA cap site to within the 5{prime} intron (832 bases long). A distal upstream domain contains at least one enhancer-like element. A proximal upstream domain, with a CArG (for CC(A+T rich){sub 6}GG) motif found in all known mammalian actin genes, seems to confer serum, but not growth factor, inducibility. The third domain is within the evolutionarily conserved 3{prime} region of the first intron and contains a 13 base-pair sequence, identical to the upstream sequence with the CArG motif. This domain also contains sequences that are both serum and fibroblast growth inducible.

  1. Energetic particle diffusion coefficients upstream of quasi-parallel interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Tan, L. C.; Mason, G. M.; Gloeckler, G.; Ipavich, F. M.

    1989-01-01

    The properties of about 30 to 130-keV/e protons and alpha particles upstream of six quasi-parallel interplanetary shocks that passed by the ISEE 3 spacecraft during 1978-1979 were analyzed, and the values for the upstream energegic particle diffusion coefficient, kappa, in these six events were deduced for a number of energies and upstream positions. These observations were compared with predictions of Lee's (1983) theory of shock acceleration. It was found that the observations verified the prediction of the A/Q dependence (where A and Q are the particle atomic mass and ionization state, respectively) of kappa for alpha and proton particles upstream of the quasi-parallel shocks.

  2. Multispacecraft observations of energetic ions upstream and downstream of the bow shock

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Moebius, E.; Kistler, L. M.; Klecker, B.; Ipavich, F. M.

    1989-01-01

    Simultaneous measurements of energetic protons and alpha particles were obtained inside and outside of the magnetopause and upstream and downstream of the bow shock. In the magnetosheath, no gradient or streaming is found in the upstream direction. The present results are consistent with first-order Fermi acceleration at the bow shock and subsequent downstream convection, and exclude the possibility of a magnetospheric source for these particles.

  3. Wake turbulence observed behind an upstream “extra” particle in a complex (dusty) plasma

    NASA Astrophysics Data System (ADS)

    Zhdanov, S.; Du, C.-R.; Schwabe, M.; Nosenko, V.; Thomas, H. M.; Morfill, G. E.

    2016-06-01

    An interaction of upstream extra particles with a monolayer highly ordered complex plasma is studied. A principally new abnormal turbulent wake formed behind the supersonic upstream particle is discovered. An anomalous type of the turbulence wake clearly manifests in anomalously low thermal diffusivity and two orders of magnitude larger particle kinetic temperature compared to that of the “normal” wake (Mach cone) observed by Du et al. (EPL, 99 (2012) 55001).

  4. Pollutant discharges to coastal areas: Improving upstream source estimates. Final report

    SciTech Connect

    Rohmann, S.O.

    1989-10-01

    The report describes a project NOAA's Strategic Environmental Assessments Division began to improve the estimates of pollutant discharges carried into coastal areas by rivers and streams. These estimates, termed discharges from upstream sources, take into account all pollution discharged by industries, sewage treatment plants, farms, cities, and other pollution-generating operations, as well as natural phenomena such as erosion and weathering which occur inland or upstream of the coastal US.

  5. Power efficient and colorless PON upstream system using asymmetric clipping optical OFDM and TDMA technologies

    NASA Astrophysics Data System (ADS)

    Zhao, Yuan; Qiao, Yaojun; Ji, Yuefeng

    2012-04-01

    Asymmetric clipping optical orthogonal frequency division multiplexing (ACO-OFDM) based time division multiple access (TDMA) Passive Optical Network (PON) upstream transmission architecture is proposed. The system features low power consumption, colorless, and cost effectiveness. Performance and validity of 10 Gb/s upstream transmission are studied and confirmed by simulation. Performance degradation due to interference from rogue Optical Network Unit (ONU) is also studied.

  6. Propagation characteristics of waves upstream and downstream of quasi-parallel shocks

    NASA Technical Reports Server (NTRS)

    Krauss-Varban, D.; Omidi, N.

    1993-01-01

    The propagation characteristics of waves upstream and downstream of quasi-parallel shocks are investigated by using 2D hybrid simulations. At low Alfven Mach numbers, M(A) below about 2, the shock is initially associated with upstream phase-standing whistlers. At later times, backstreaming ions excite longer-wavelength whistlers via the right-hand resonant ion/ion instability. These waves propagate along the magnetic field at a group velocity no smaller than the upstream flow speed, so that the waves remain in the upstream region. At higher MA (above about 3), these waves are convected back into the shock, causing its reformation and downstream perturbations. Shock transmitted waves mode-convert into Alfven/ion-cyclotron waves which have a wave vector along the shock normal (pointing upstream) and convect downstream. The 2D simulation results confirm our earlier suggestion that the upstream waves should be field aligned, and that their convection into the downstream is associated with linear mode conversion into the Alfven/ion-cyclotron branch.

  7. A general strategy to inhibiting viral -1 frameshifting based on upstream attenuation duplex formation.

    PubMed

    Hu, Hao-Teng; Cho, Che-Pei; Lin, Ya-Hui; Chang, Kung-Yao

    2016-01-01

    Viral -1 programmed ribosomal frameshifting (PRF) as a potential antiviral target has attracted interest because many human viral pathogens, including human immunodeficiency virus (HIV) and coronaviruses, rely on -1 PRF for optimal propagation. Efficient eukaryotic -1 PRF requires an optimally placed stimulator structure downstream of the frameshifting site and different strategies targeting viral -1 PRF stimulators have been developed. However, accessing particular -1 PRF stimulator information represents a bottle-neck in combating the emerging epidemic viral pathogens such as Middle East respiratory syndrome coronavirus (MERS-CoV). Recently, an RNA hairpin upstream of frameshifting site was shown to act as a cis-element to attenuate -1 PRF with mechanism unknown. Here, we show that an upstream duplex formed in-trans, by annealing an antisense to its complementary mRNA sequence upstream of frameshifting site, can replace an upstream hairpin to attenuate -1 PRF efficiently. This finding indicates that the formation of a proximal upstream duplex is the main determining factor responsible for -1 PRF attenuation and provides mechanistic insight. Additionally, the antisense-mediated upstream duplex approach downregulates -1 PRF stimulated by distinct -1 PRF stimulators, including those of MERS-CoV, suggesting its general application potential as a robust means to evaluating viral -1 PRF inhibition as soon as the sequence information of an emerging human coronavirus is available. PMID:26612863

  8. Upstream capacity upgrade in TDM-PON using RSOA based tunable fiber ring laser.

    PubMed

    Yi, Lilin; Li, Zhengxuan; Dong, Yi; Xiao, Shilin; Chen, Jian; Hu, Weisheng

    2012-04-23

    An upstream multi-wavelength shared (UMWS) time division multiplexing passive optical network (TDM-PON) is presented by using a reflective semiconductor amplifier (RSOA) and tunable optical filter (TOF) based directly modulated fiber ring laser as upstream laser source. The stable laser operation is easily achieved no matter what the bandwidth and shape of the TOF is and it can be directly modulated when the RSOA is driven at its saturation region. In this UMWS TDM-PON system, an individual wavelength can be assigned to the user who has a high bandwidth demand by tuning the central wavelength of the TOF in its upgraded optical network unit (ONU), while others maintain their traditional ONU structure and share the bandwidth via time slots, which greatly and dynamically upgrades the upstream capacity. We experimentally demonstrated the bidirectional transmission of downstream data at 10-Gb/s and upstream data at 1.25-Gb/s per wavelength over 25-km single mode fiber (SMF) with almost no power penalty at both ends. A stable performance is observed for the upstream wavelength tuned from 1530 nm to 1595 nm. Moreover, due to the high extinction ratio (ER) of the upstream signal, the burst-mode transmitting is successfully presented and a better time-division multiplexing performance can be obtained by turning off the unused lasers thanks to the rapid formation of the laser in the fiber ring. PMID:22535132

  9. A general strategy to inhibiting viral −1 frameshifting based on upstream attenuation duplex formation

    PubMed Central

    Hu, Hao-Teng; Cho, Che-Pei; Lin, Ya-Hui; Chang, Kung-Yao

    2016-01-01

    Viral −1 programmed ribosomal frameshifting (PRF) as a potential antiviral target has attracted interest because many human viral pathogens, including human immunodeficiency virus (HIV) and coronaviruses, rely on −1 PRF for optimal propagation. Efficient eukaryotic −1 PRF requires an optimally placed stimulator structure downstream of the frameshifting site and different strategies targeting viral −1 PRF stimulators have been developed. However, accessing particular −1 PRF stimulator information represents a bottle-neck in combating the emerging epidemic viral pathogens such as Middle East respiratory syndrome coronavirus (MERS-CoV). Recently, an RNA hairpin upstream of frameshifting site was shown to act as a cis-element to attenuate −1 PRF with mechanism unknown. Here, we show that an upstream duplex formed in-trans, by annealing an antisense to its complementary mRNA sequence upstream of frameshifting site, can replace an upstream hairpin to attenuate −1 PRF efficiently. This finding indicates that the formation of a proximal upstream duplex is the main determining factor responsible for −1 PRF attenuation and provides mechanistic insight. Additionally, the antisense-mediated upstream duplex approach downregulates −1 PRF stimulated by distinct −1 PRF stimulators, including those of MERS-CoV, suggesting its general application potential as a robust means to evaluating viral −1 PRF inhibition as soon as the sequence information of an emerging human coronavirus is available. PMID:26612863

  10. Determination of upstream boundary points on southeastern Washington streams and rivers under the requirements of the Shoreline Management Act of 1971

    USGS Publications Warehouse

    Higgins, Johnna L.

    2003-01-01

    Regulation of the shorelines of the State of Washington, as mandated by the Shoreline Management Act of 1971, requires knowledge of the locations on streams and river reaches where specific regulatory criteria are satisfied. The U.S. Geological Survey conducted a study in 1971 to determine the upstream boundary points of these reaches for many of the State's streams and rivers. Updated upstream boundary points were determined in the current study for all the streams and rivers in southeastern Washington that fall under the jurisdiction of the Shoreline Management Act of 1971. Upstream boundary point locations where the mean annual discharge equals 20 cubic feet per second were determined for 149 streams. In addition, upstream boundary point locations where the mean annual discharge equals 200 cubic feet per second or the drainage area equals 300 square miles were determined for 22 rivers. Boundary point locations were determined by application of multiple-linear-regression equations that relate mean annual discharge to drainage area and mean annual precipitation. Southeastern Washington was divided into five hydrologically distinct regions, and a separate regression equation was developed for each region. The regression equations are based on data for gaging stations with at least 10 years of record. The number of stations in the regression analysis for each of the five regions ranged from 5 to 33. The coefficient of determination, R2, of the regression equations ranged from 0.953 to 0.997. The equation for the Upper Yakima region had the lowest standard error, ranging from -7 to +9 percent for a regression estimate of 20 cubic feet per second. The equation for the Columbia Basin to Palouse region had the highest standard error, ranging from -36 to +55 percent for a regression estimate of 20 cubic feet per second. The approximate error in the location of an upstream boundary point can be calculated using the variables mean annual precipitation of the basin upstream

  11. 46 CFR 172.104 - Character of damage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Character of damage. 172.104 Section 172.104 Shipping... Under Subchapter O of This Chapter § 172.104 Character of damage. (a) Type I barge hull not in an... integrated tow, design calculations must show that the barge can survive damage at any location including...

  12. Creep deformation and buttressing capacity of damaged ice shelves: theory and application to Larsen C ice shelf

    NASA Astrophysics Data System (ADS)

    Borstad, C. P.; Rignot, E.; Mouginot, J.; Schodlok, M. P.

    2013-12-01

    Around the perimeter of Antarctica, much of the ice sheet discharges to the ocean through floating ice shelves. The buttressing provided by ice shelves is critical for modulating the flux of ice into the ocean, and the presently observed thinning of ice shelves is believed to be reducing their buttressing capacity and contributing to the acceleration and thinning of the grounded ice sheet. However, relatively little attention has been paid to the role that fractures play in the ability of ice shelves to sustain and transmit buttressing stresses. Here, we present a new framework for quantifying the role that fractures play in the creep deformation and buttressing capacity of ice shelves. We apply principles of continuum damage mechanics to derive a new analytical relation for the creep of an ice shelf that accounts for the softening influence of fractures on longitudinal deformation using a state damage variable. We use this new analytical relation, combined with a temperature calculation for the ice, to partition an inverse method solution for ice shelf rigidity into independent solutions for softening damage and stabilizing backstress. Using this new approach, field and remote sensing data can be utilized to monitor the structural integrity of ice shelves, their ability to buttress the flow of ice at the grounding line, and thus their indirect contribution to ice sheet mass balance and global sea level. We apply this technique to the Larsen C ice shelf using remote sensing and Operation IceBridge data, finding damage in areas with known crevasses and rifts. Backstress is highest near the grounding line and upstream of ice rises, in agreement with patterns observed on other ice shelves. The ice in contact with the Bawden ice rise is weakened by fractures, and additional damage or thinning in this area could diminish the backstress transmitted upstream. We model the consequences for the ice shelf if it loses contact with this small ice rise, finding that flow speeds

  13. Streamflow variation due to glacier melting and climate change in upstream Heihe River Basin, Northwest China

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Zhan, Jinyan; Wang, Zhan; Zhang, Qian

    Streamflow simulation is often challenging in mountainous watersheds because of incomplete hydrological models, irregular topography, immeasurable snowpack or glacier, and low data resolution. In this study, a semi-distributed conceptual hydrological model (SWAT-Soil Water Assessment Tool) coupled with a glacier melting algorithm was applied to investigate the sensitivity of streamflow to climatic and glacial changes in the upstream Heihe River Basin. The glacier mass balance was calculated at daily time-step using a distributed temperature-index melting and accumulation algorithm embedded in the SWAT model. Specifically, the model was calibrated and validated using daily streamflow data measured at Yingluoxia Hydrological Station and decadal ice volume changes derived from survey maps and remote sensing images between 1960 and 2010. This study highlights the effects of glacier melting on streamflow and their future changes in the mountainous watersheds. We simulate the contribution of glacier melting to streamflow change under different scenarios of climate changes in terms of temperature and precipitation dynamics. The rising temperature positively contributed to streamflow due to the increase of snowmelt and glacier melting. The rising precipitation directly contributes to streamflow and it contributed more to streamflow than the rising temperature. The results show that glacial meltwater has contributed about 3.25 billion m3 to streamflow during 1960-2010. However, the depth of runoff within the watershed increased by about 2.3 mm due to the release of water from glacial storage to supply the intensified evapotranspiration and infiltration. The simulation results indicate that the glacier made about 8.9% contribution to streamflow in 2010. The research approach used in this study is feasible to estimate the glacial contribution to streamflow in other similar mountainous watersheds elsewhere.

  14. Heliospheric Termination Shock Motion Due to Fluctuations in the Solar Wind Upstream Conditions: Spherically Symmetric Model

    NASA Technical Reports Server (NTRS)

    Ratkiewicz, R.; Barnes, A.; Molvik, G. A.; Spreiter, J. R.; Stahara, S. S.; Cuzzi, Jeffery N. (Technical Monitor)

    1995-01-01

    Large-scale fluctuations in the solar wind plasma upstream of the heliospheric termination shock (TS) will cause inward and outward motions of the shock. Using numerical techniques, we extend an earlier strictly one-dimensional (planar) analytic gas dynamic model to spherical symmetry to investigate the features of global behavior of shock motion. Our starting point is to establish a steady numerical solution of the gasdynamic equations describing the interaction between the solar wind and the interstellar medium. We then introduce disturbances of the solar wind dynamic pressure at an inner boundary, and follow the subsequent evolution of the system, especially the motion of the termination shock. Our model solves spherically symmetric gasdynamic equations as an initial-boundary value problem. The equations in conservative form are solved using a fully implicit Total Variation Diminishing (TVD) upwind scheme with Roe-type Riemann solver. Boundary conditions are given by the solar wind parameters on an inner spherical boundary, where they are allowed to vary with time for unsteady calculations, and by a constant pressure (roughly simulating the effect of the local interstellar medium) on an outer boundary. We find that immediately after the interaction, the shock moves with speeds given by the earlier analogous analytic models. However, as the termination shock propagates it begins to slow down, seeking a new equilibrium position. In addition, the disturbance transmitted through the TS, either a shock or rarefaction wave, will encounter the heliopause boundary and be reflected back. The reflected signal will encounter the TS, causing it to oscillate. The phenomenon may be repeated for a number of reflections, resulting in a "ringing" of the outer heliosphere.

  15. ANN modeling for flood prediction in the upstream Eure's catchment (France)

    NASA Astrophysics Data System (ADS)

    Kharroubi, Ouissem; masson, Eric; Blanpain, Olivier; Lallahem, Sami

    2013-04-01

    Rainfall-Runoff relationship at basin scale is strongly depending on the catchment complexity including multi-scale interactions. In extreme events cases (i.e. floods and droughts) this relationship is even more complex and differs from average hydrological conditions making extreme runoff prediction very difficult to achieve. However, flood warning, flood prevention and flood mitigation rely on the possibility to predict both flood peak runoff and lag time. This point is crucial for decision making and flood warning to prevent populations and economical stakes to be damaged by extreme hydrological events. Since 2003 in France, a dedicated state service is in charge of producing flood warning from national level (i.e. SCHAPI) to regional level (i.e. SPC). This flood warning service is combining national weather forecast agency (i.e. Meteo France) together with a fully automated realtime hydrological network (i.e. Rainfall-Runoff) in order to produce a flood warning national map online and provide a set of hydro-meteorological data to the SPC in charge of flood prediction from regional to local scale. The SPC is in fact the flood service delivering hydrological prediction at operational level for decision making about flood alert for municipalities and first help services. Our research in collaboration with the SPC SACN (i.e. "Seine Aval et fleuves Côtiers Normands") is focused on the implementation of an Artificial Neural Network model (ANN) for flood prediction in deferent key points of the Eure's catchment and main subcatchment. Our contribution will focus on the ANN model developed for Saint-Luperce gauging station in the upstream part of the Eure's catchment. Prediction of extreme runoff at Saint-Luperce station is of high importance for flood warning in the Eure's catchment because it gives a good indicator on the extreme status and the downstream propagation of a potential flood event. Despite a good runoff monitoring since 27 years Saint Luperce flood

  16. WBGT Calculator

    Energy Science and Technology Software Center (ESTSC)

    2000-05-22

    This software calculates a Wet Bulb Globe Temperature (WBGT) using standard measurements from a meteorological station. WBGT is used by Industrial Hygenists (IH) to determine heat stress potential to outdoor workers. Through the mid 1990''s, SRS technicians were dispatched several times daily to measure WBGT with a custom hand held instrument and results were dessiminated via telephone. Due to workforce reductions, the WSRC IH Department asked for the development of an automated method to simulatemore » the WBGT measurement using existing real time data from the Atmospheric Technologies Group''s meteorological monitoring network.« less

  17. WBGT Calculator

    SciTech Connect

    Hunter, Charles H.

    2000-05-22

    This software calculates a Wet Bulb Globe Temperature (WBGT) using standard measurements from a meteorological station. WBGT is used by Industrial Hygenists (IH) to determine heat stress potential to outdoor workers. Through the mid 1990''s, SRS technicians were dispatched several times daily to measure WBGT with a custom hand held instrument and results were dessiminated via telephone. Due to workforce reductions, the WSRC IH Department asked for the development of an automated method to simulate the WBGT measurement using existing real time data from the Atmospheric Technologies Group''s meteorological monitoring network.

  18. Femoral nerve damage (image)

    MedlinePlus

    The femoral nerve is located in the leg and supplies the muscles that assist help straighten the leg. It supplies sensation ... leg. One risk of damage to the femoral nerve is pelvic fracture. Symptoms of femoral nerve damage ...

  19. A Model for Jet-Surface Interaction Noise Using Physically Realizable Upstream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Afsar, Mohammed Z.; Leib, Stewart J.; Bozak, Richard F.

    2016-01-01

    This paper is a continuation of previous work in which a generalized Rapid Distortion Theory (RDT) formulation was used to model low-frequency trailing-edge noise. The research was motivated by proposed next-generation aircraft configurations where the exhaust system is tightly integrated with the airframe. Data from recent experiments at NASA on the interaction between high-Reynolds-number subsonic jet flows and an external flat plate showed that the power spectral density (PSD) of the far-field pressure underwent considerable amplification at low frequencies. For example, at the 90deg observation angle, the low-frequency noise could be as much as 10 dB greater than the jet noise itself. In this paper, we present predictions of the noise generated by the interaction of a rectangular jet with the trailing edge of a semi-infinite flat plate. The calculations are based on a formula for the acoustic spectrum of this noise source derived from an exact formal solution of the linearized Euler equations involving (in this case) one arbitrary convected scalar quantity and a Rayleigh equation Green's function. A low-frequency asymptotic approximation for the Green's function based on a two-dimensional mean flow is used in the calculations along with a physically realizable upstream turbulence spectrum, which includes a finite decorrelation region. Numerical predictions of the sound field, based on three-dimensional RANS solutions to determine the mean flow, turbulent kinetic energy and turbulence length and time scales, for a range of subsonic acoustic Mach number jets and nozzle aspect ratios are compared with experimental data. Comparisons of the RANS results with flow data are also presented for selected cases. We find that a finite decorrelation region in the turbulence spectrum increases the low-frequency algebraic decay (the low frequency "roll-off") of the acoustic spectrum with angular frequency thereby producing much closer agreement with noise data for Strouhal

  20. A Model for Jet-Surface Interaction Noise Using Physically Realizable Upstream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Afsar, Mohammed Z.; Leib, Stewart J.; Bozak, Richard F.

    2015-01-01

    This paper is a continuation of previous work in which a generalized Rapid Distortion Theory (RDT) formulation was used to model low-frequency trailing-edge noise. The research was motivated by proposed next-generation aircraft configurations where the exhaust system is tightly integrated with the airframe. Data from recent experiments at NASA on the interaction between high-Reynolds-number subsonic jet flows and an external flat plate showed that the power spectral density (PSD) of the far-field pressure underwent considerable amplification at low frequencies. For example, at the 900 observation angle, the low-frequency noise could be as much as 10dB greater than the jet noise itself. In this paper, we present predictions of the noise generated by the interaction of a rectangular jet with the trailing edge of a semi-infinite flat plate. The calculations are based on a formula for the acoustic spectrum of this noise source derived from an exact formal solution of the linearized Euler equations involving (in this case) one arbitrary convected scalar quantity and a Rayleigh equation Green's function. A low-frequency asymptotic approximation for the Green's function based on a two-dimensional mean flow is used in the calculations along with a physically realizable upstream turbulence spectrum, which includes a finite de-correlation region. Numerical predictions, based on three-dimensional RANS solutions for a range of subsonic acoustic Mach number jets and nozzle aspect ratios are compared with experimental data. Comparisons of the RANS results with flow data are also presented for selected cases. We find that a finite decorrelation region increases the low-frequency algebraic decay (the low frequency "rolloff") of the acoustic spectrum with angular frequency thereby producing much closer agreement with noise data for Strouhal numbers less than 0.1. Secondly, the large-aspectratio theory is able to predict the low-frequency amplification due to the jet

  1. Identification of an essential upstream element in the nopaline synthase promoter by stable and transient assays

    PubMed Central

    Ebert, Paul R.; Ha, Sam Bong; An, Gynheung

    1987-01-01

    We studied the fine structure of the nopaline synthase (nos) promoter, which is active constitutively in a wide range of plant tissues, by both transient and stable transformation expression analyses. 3′ and 5′ deletion fragments were linked to form a set of internal deletion and duplication mutants that scanned the nos promoter. These mutated promoters were linked to the gene for the marker chloramphenicol acetyltransferase (CATase) as a means to readily assay promoter strength. The stable transformation analysis revealed the functional importance of an extended CCAAT box region (-97 to -63). Deletion of an upstream region (-112 to -101) containing an octameric repeated element resulted in a reduction in promoter strength by a factor of 30. A further deletion (-119 to -101) disrupted a potential Z-DNA-forming element as well, totally eliminating promoter function. Thus, a 19-base deletion across a repeated octamer and a potential Z-DNA-forming element identifies an essential upstream activator in the nos promoter. Duplication of the upstream element tripled promoter activity. Electroporation-mediated transient analysis was unable to distinguish downstream promoter elements. However, the upstream element behaved similarly in both assays in that deletion of the entire upstream element resulted in no promoter activity and that duplication of the element significantly enhanced the promoter strength. PMID:16593869

  2. Observations of a new foreshock region upstream of a foreshock bubble's shock

    NASA Astrophysics Data System (ADS)

    Liu, Terry Z.; Hietala, Heli; Angelopoulos, Vassilis; Turner, Drew L.

    2016-05-01

    Earth's foreshock is a region within the solar wind upstream of Earth's bow shock filled with backstreaming solar wind particles reflected at the shock. Within this region, when the interplanetary field is approximately radial, foreshock bubbles (FBs) can be formed when the backstreaming particles interact with approaching discontinuities embedded in the solar wind. Foreshock bubbles can grow to 5-10 RE in scale, well upstream of the bow shock. Having a high concentration of thermalized upstream ions and slow, or even sunward, speeds within them, these transient phenomena deflect the solar wind by forming a new shock ahead of them. Although FBs eventually succumb to solar wind dynamic pressure and crash onto Earth's bow shock and magnetopause, they may last long enough to allow solar wind reflection at their own shocks, which forms a new FB foreshock region upstream of them. The FB shock may be of different obliquity than the parent bow shock providing new and diverse opportunities for particle acceleration. Using a case study from Time History of Events and Macroscale Interactions during Substorms, we demonstrate that ions and electrons are reflected at the FB shock, where they acquire energies consistent with shock acceleration theory. These are the first definitive observations of a new ion and electron foreshock region upstream of the FB shock with implications for shock acceleration in general.

  3. Acoustical interaction between vibrating lips, downstream air column, and upstream airways in trombone performance.

    PubMed

    Fréour, Vincent; Scavone, Gary P

    2013-11-01

    This paper presents experimental results on the acoustical influence of the vocal tract in trombone performance. The experimental approach makes use of measurements at the interface between the player and instrument, allowing a relative comparison between upstream airways and the downstream air column impedances, as well as an estimation of the phase of the impedance of the upstream and downstream systems. Measurements were conducted over the full traditional range of playing, during sustained tones with varying dynamic, as well as in special effects such as pitch bending. Subjects able to play over the full range demonstrated significant upstream influence in the higher register of the instrument. These players were categorized in two groups according to their ability to control the phase of the upstream impedance and their ability to generate powerful downstream acoustic energy. Sustained tones played with varying dynamics showed a general tendency of a decrease in vocal-tract support with increase in loudness. Although pitch bends did not involve significant upstream influence at f0, results suggest modification of the lip behavior during bending. Vocal-tract tuning at tone transitions was also investigated and found to potentially contribute to slur articulations. PMID:24180797

  4. Upstream dispersal of an invasive crayfish aided by a fish passage facility

    USGS Publications Warehouse

    Welsh, Stuart; Loughman, Zachary J.

    2015-01-01

    Fish passage facilities for reservoir dams have been used to restore habitat connectivity within riverine networks by allowing upstream passage for native species. These facilities may also support the spread of invasive species, an unintended consequence and potential downside of upstream passage structures. We documented dam passage of the invasive virile crayfish, Orconectes virilis (Hagen, 1870), at fish ladders designed for upstream passage of American eels, Anguilla rostrata (Lesueur, 1817), in the Shenandoah River drainage, USA. Ladder use and upstream passage of 11 virile crayfish occurred from 2007–2014 during periods of low river discharge (<30 m3s–1) and within a wide range of water temperatures from 9.0–28.6 °C. Virile crayfish that used the eel ladders were large adults with a mean carapace length and width of 48.0 mm and 24.1 mm, respectively. Our data demonstrated the use of species-specific fish ladders by a non-target non-native species, which has conservation and management implications for the spread of aquatic invasive species and upstream passage facilities. Specifically, managers should consider implementing long-term monitoring of fish passage facilities with emphasis on detection of invasive species, as well as methods to reduce or eliminate passage of invasive species. 

  5. Unmasking Upstream Gene Expression Regulators with miRNA-corrected mRNA Data

    PubMed Central

    Bollmann, Stephanie; Bu, Dengpan; Wang, Jiaqi; Bionaz, Massimo

    2015-01-01

    Expressed micro-RNA (miRNA) affects messenger RNA (mRNA) abundance, hindering the accuracy of upstream regulator analysis. Our objective was to provide an algorithm to correct such bias. Large mRNA and miRNA analyses were performed on RNA extracted from bovine liver and mammary tissue. Using four levels of target scores from TargetScan (all miRNA:mRNA target gene pairs or only the top 25%, 50%, or 75%). Using four levels of target scores from TargetScan (all miRNA:mRNA target gene pairs or only the top 25%, 50%, or 75%) and four levels of the magnitude of miRNA effect (ME) on mRNA expression (30%, 50%, 75%, and 83% mRNA reduction), we generated 17 different datasets (including the original dataset). For each dataset, we performed upstream regulator analysis using two bioinformatics tools. We detected an increased effect on the upstream regulator analysis with larger miRNA:mRNA pair bins and higher ME. The miRNA correction allowed identification of several upstream regulators not present in the analysis of the original dataset. Thus, the proposed algorithm improved the prediction of upstream regulators. PMID:27279737

  6. Spatial distribution of upstream magnetospheric geq50 keV ions

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, G. C.; Argyropoulos, G.; Kaliabetsos, G.

    2000-01-01

    We present for the first time a statistical study of geq50 keV ion events of a magnetospheric origin upstream from Earth's bow shock. The statistical analysis of the 50-220 keV ion events observed by the IMP-8 spacecraft shows: (1) a dawn-dusk asymmetry in ion distributions, with most events and lower intensities upstream from the quasi-parallel pre-dawn side (4 LT-6 LT) of the bow shock, (2) highest ion fluxes upstream from the nose/dusk side of the bow shock under an almost radial interplanetary magnetic field (IMF) configuration, and (3) a positive correlation of the ion intensities with the solar wind speed and the index of geomagnetic index Kp, with an average solar wind speed as high as 620 km s-1 and values of the index Kp > 2. The statistical results are consistent with (1) preferential leakage of sim50 keV magnetospheric ions from the dusk magnetopause, (2) nearly scatter free motion of sim50 keV ions within the magnetosheath, and (3) final escape of magnetospheric ions from the quasi-parallel dawn side of the bow shock. An additional statistical analysis of higher energy (290-500 keV) upstream ion events also shows a dawn-dusk asymmetry in the occurrence frequency of these events, with the occurrence frequency ranging between sim16%-sim34% in the upstream region.

  7. Upstream Binding of Idling RNA Polymerase Modulates Transcription Initiation from a Nearby Promoter*

    PubMed Central

    Gerganova, Veneta; Maurer, Sebastian; Stoliar, Liubov; Japaridze, Aleksandre; Dietler, Giovanni; Nasser, William; Kutateladze, Tamara; Travers, Andrew; Muskhelishvili, Georgi

    2015-01-01

    The bacterial gene regulatory regions often demonstrate distinctly organized arrays of RNA polymerase binding sites of ill-defined function. Previously we observed a module of closely spaced polymerase binding sites upstream of the canonical promoter of the Escherichia coli fis operon. FIS is an abundant nucleoid-associated protein involved in adjusting the chromosomal DNA topology to changing cellular physiology. Here we show that simultaneous binding of the polymerase at the canonical fis promoter and an upstream transcriptionally inactive site stabilizes a RNAP oligomeric complex in vitro. We further show that modulation of the upstream binding of RNA polymerase affects the fis promoter activity both in vivo and in vitro. The effect of the upstream RNA polymerase binding on the fis promoter activity depends on the spatial arrangement of polymerase binding sites and DNA supercoiling. Our data suggest that a specific DNA geometry of the nucleoprotein complex stabilized on concomitant binding of RNA polymerase molecules at the fis promoter and the upstream region acts as a topological device regulating the fis transcription. We propose that transcriptionally inactive RNA polymerase molecules can act as accessory factors regulating the transcription initiation from a nearby promoter. PMID:25648898

  8. Observations of a new foreshock region upstream of a foreshock bubble's shock

    NASA Astrophysics Data System (ADS)

    Liu, Terry Z.; Hietala, Heli; Angelopoulos, Vassilis; Turner, Drew L.

    2016-05-01

    Earth's foreshock is a region within the solar wind upstream of Earth's bow shock filled with backstreaming solar wind particles reflected at the shock. Within this region, when the interplanetary field is approximately radial, foreshock bubbles (FBs) can be formed when the backstreaming particles interact with approaching discontinuities embedded in the solar wind. Foreshock bubbles can grow to 5-10 R_E in scale, well upstream of the bow shock. Having a high concentration of thermalized upstream ions and slow, or even sunward, speeds within them, these transient phenomena deflect the solar wind by forming a new shock ahead of them. Although FBs eventually succumb to solar wind dynamic pressure and crash onto Earth's bow shock and magnetopause, they may last long enough to allow solar wind reflection at their own shocks, which forms a new FB foreshock region upstream of them. The FB shock may be of different obliquity than the parent bow shock providing new and diverse opportunities for particle acceleration. Using a case study from Time History of Events and Macroscale Interactions during Substorms, we demonstrate that ions and electrons are reflected at the FB shock, where they acquire energies consistent with shock acceleration theory. These are the first definitive observations of a new ion and electron foreshock region upstream of the FB shock with implications for shock acceleration in general.

  9. Impact damage characterization of composite materials

    NASA Astrophysics Data System (ADS)

    Korkmaz, Yesim

    2002-04-01

    Impact damage in structural composites depends on their material properties, component geometry and a variety of impact parameters and experimental determination of their detailed characteristics requires prohibitively large test matrices. The effects of some of these parameters can be understood through simulation models that complement experimental results. In this dissertation a series of finite element models are developed using MSC/NASTRAN for calculating contact laws and progressive damage (e.g., matrix cracking, delamination and fiber break) in graphite/epoxy laminates subject to low and intermediate velocity impact. The validity of the computational models is supported by theoretical calculations involving idealized cases. The effects of laminate geometry as well as the impact parameters on the nature and degree of damage are studied. The global force-time and displacement-time responses of the laminate during impact are also studied. The results of this research can be used for damage growth prediction in composite structural components subject to impact loads.

  10. The upstream-propagating Alfvénic fluctuations with power law spectra in the upstream region of the Earth's bow shock

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Tu, Chuanyi; Wang, Linghua; He, Jiansen; Marsch, Eckart

    2015-05-01

    Based on theories, the beam instability induced by shock-accelerated ions can generate upstream-propagating Alfvén waves (UPAWs) with a power spectral bump near 0.03 Hz, while the nonlinear wave-wave interaction favors an inverse cascade to create a power law spectrum. Here we present the first observational evidence for the upstream-propagating Alfvénic fluctuations (UPAFs) with power law spectra. We utilize a new criterion to identify the upstream-propagating Alfvénic intervals: the propagation direction is opposite to that of solar wind strahl electron outflow. Besides 35 UPAWs, we find 47 UPAFs with power law spectra, and ˜47% of these UPAFs are associated with energetic ion events (>30 keV). These UPAWs and UPAFs are mostly observed in the slow solar wind. However, their occurrence rate and power behave differently in dependence on the radial distance from the Earth. These results provide new clues on understanding the dynamic equilibrium between the nonlinear inverse cascade and the linear ion beam instability.

  11. Fault damage zones

    NASA Astrophysics Data System (ADS)

    Kim, Young-Seog; Peacock, David C. P.; Sanderson, David J.

    2004-03-01

    Damage zones show very similar geometries across a wide range of scales and fault types, including strike-slip, normal and thrust faults. We use a geometric classification of damage zones into tip-, wall-, and linking-damage zones, based on their location around faults. These classes can be sub-divided in terms of fault and fracture patterns within the damage zone. A variety of damage zone structures can occur at mode II tips of strike-slip faults, including wing cracks, horsetail fractures, antithetic faults, and synthetic branch faults. Wall damage zones result from the propagation of mode II and mode III fault tips through a rock, or from damage associated with the increase in slip on a fault. Wall damage zone structures include extension fractures, antithetic faults, synthetic faults, and rotated blocks with associated triangular openings. The damage formed at the mode III tips of strike-slip faults (e.g. observed in cliff sections) are classified as wall damage zones, because the damage zone structures are distributed along a fault trace in map view. Mixed-mode tips are likely to show characteristics of both mode II and mode III tips. Linking damage zones are developed at steps between two sub-parallel faults, and the structures developed depend on whether the step is extensional or contractional. Extension fractures and pull-aparts typically develop in extensional steps, whilst solution seams, antithetic faults and synthetic faults commonly develop in contractional steps. Rotated blocks, isolated lenses or strike-slip duplexes may occur in both extensional and contractional steps. Damage zone geometries and structures are strongly controlled by the location around a fault, the slip mode at a fault tip, and by the evolutionary stage of the fault. Although other factors control the nature of damage zones (e.g. lithology, rheology and stress system), the three-dimensional fault geometry and slip mode at each tip must be considered to gain an understanding of

  12. An experimental and numerical study of wave motion and upstream influence in a stratified fluid

    NASA Technical Reports Server (NTRS)

    Hurdis, D. A.

    1974-01-01

    A system consisting of two superimposed layers of liquid of different densities, with a thin transition layer at the interface, provides a good laboratory model of an ocean thermocline or of an atmospheric inversion layer. This research was to gain knowledge about the propagation of disturbances within these two geophysical systems. The technique used was to observe the propagation of internal waves and of upstream influence within the density-gradient region between the two layers of liquid. The disturbances created by the motion of a vertical flat plate, which was moved longitudinally through this region, were examined both experimentally and numerically. An upstream influence, which resulted from a balance of inertial and gravitational forces, was observed, and it was possible to predict the behavior of this influence with the numerical model. The prediction included a description of the propagation of the upstream influence to steadily increasing distances from the flat plate and the shapes and magnitudes of the velocity profiles.

  13. Multiple spacecraft observations of interplanetary shocks: Characteristics of the upstream ULF turbulence

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Smith, E. J.; Tsurutani, B. T.; Gosling, J. T.; Bame, S. J.

    1983-01-01

    All interplanetary shocks observed by ISEE-3 and either ISEE-1 or ISEE-2 or both in 1978 and 1979 are examined for evidence of upstream waves. In order to characterize the properties of these shocks it is necessary to determine accurate shock normals. An overdetermined set of equations were inverted to obtain shock normals, velocities and error estimates for all these shocks. Tests of the method indicate it is quite reliable. Using these normals the Mach number and angle were between the interplanetary magnetic field and the shock normal for each shock. The upstream waves were separated into two classes: whistler mode precursors which occur at low Mach numbers and upstream turbulence whose amplitude at Mach numbers greater than 1.5 is controlled by the angle of the field to the shock normal. The former waves are right hand circularly polarized and quite monochromatic. The latter waves are more linearly polarized and have a broadband featureless spectrum.

  14. Integrated upstream parasitic event building architecture for BTeV level 1 pixel trigger system

    SciTech Connect

    Wu, Jin-Yuan; Wang, M.; Gottschalk, E.; Christian, D.; Li, X.; Shi, Z.; Pavlicek, V.; Cancelo, G.; /Fermilab

    2006-03-01

    Contemporary event building approaches use data switches, either homemade or commercial off-the-shelf ones, to merge data from different channels and distribute them among processor nodes. However, in many trigger and DAQ systems, the merging and distributing functions can often be performed in pre-processing stages. By carefully integrating these functions into the upstream pre-processing stages, the events can be built without dedicated switches. In addition to the cost reducing, extra benefits are gain when the event is built early upstream. In this document, an example of the integrated upstream parasitic event building architecture that has been studied for the BTeV level 1 pixel trigger system is described. Several design considerations that experimentalists of other projects might be interested in are also discussed.

  15. Observational evidence on the origin of ions upstream of the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Thomsen, M. F.; Gosling, J. T.; Schwartz, S. J.

    1983-01-01

    The kinematic formalism described by Schwartz et al. (1983) is used to quantitatively compare the zeroth order predicted energies for four different source hypotheses for ions detected upstream of the earth's bow shock with previously published observations of upstream field-aligned beams and gyrating ion events. Specular reflection of a fraction of the incident solar wind is found to be the most credible explanation of gyrating ion events observed upstream of shocks ranging from quasi-parallel to nearly perpendicular. The recent hypothesis that field-aligned beams are the result of leakage from the magnetosheath of ions which were originally specularly reflected at quasi-perpendicular portions of the shock provides good agreement with observed energies of many field-aligned beams. Only magnetic moment conserving reflection of solar wind ions is capable of accounting for two very energetic beam events.

  16. Efficiency and flow structure of vertical-axis turbines with an upstream deflecting plate

    NASA Astrophysics Data System (ADS)

    Kim, Daegyoum; Gharib, Morteza

    2012-11-01

    The power generation and flow structure of straight-bladed vertical-axis turbines with an upstream deflector are investigated experimentally in tunnel facilities. When an upstream deflecting plate is normal to flow direction, a region of low velocity is formed in its near-wake. However, the flow speed outside the near-wake region becomes higher than the free-stream speed. Since blades outside the wake encounter higher flow velocity, they can rotate with higher torque and rotating speed compared to the case without an upstream deflector, which results in power output increase. Here, we study the effect of deflector position and width on the efficiency of vertical turbines. We also discuss the flow structure generated by the deflector system. This research is supported by the Gordon and Betty Moore foundation.

  17. Possible leakage of energetic particles from the magnetosphere into the upstream region on June 7, 1985

    NASA Technical Reports Server (NTRS)

    Kudela, K.; Sibeck, D. G.; Belian, R. D.; Fischer, S.; Lutsenko, V.

    1990-01-01

    Prognoz 10 observed a series of energetic ion (E not less than 10 KeV) and electron (E not less than 30 KeV) bursts whilst upstream of the dusk bow shock from 2000-2200 UT on June 7, 1985. The particles streamed away from the bow shock along the interplanetary magnetic field (IMF) during periods when the IMF connected the spacecraft to the bow shock/magnetosphere. Both ions and electrons were observed when the IMF connected the spacecraft to the subsolar bow shock, but only ions were observed when the IMF connected the spacecraft to the dusk bow shock. Simultaneous ground and magnetospheric observations are presented which indicate the onset of geomagnetic activity and an increase in magnetospheric energetic particle flux levels just prior to the series of particle bursts observed by Prognoz 10 upstream of the bow shock. The combined observations are consistent with a magnetospheric source for these upstream particle events.

  18. CHARACTERIZATION OF DAMAGED MATERIALS

    SciTech Connect

    Hsu, P C; Dehaven, M; McClelland, M; Chidester, S; Maienschein, J L

    2006-06-23

    Thermal damage experiments were conducted on LX-04, LX-10, and LX-17 at high temperatures. Both pristine and damaged samples were characterized for their material properties. A pycnometer was used to determine sample true density and porosity. Gas permeability was measured in a newly procured system (diffusion permeameter). Burn rate was measured in the LLNL strand burner. Weight losses upon thermal exposure were insignificant. Damaged pressed parts expanded, resulting in a reduction of bulk density by up to 10%. Both gas permeabilities and burn rates of the damaged samples increased by several orders of magnitude due to higher porosity and lower density. Moduli of the damaged materials decreased significantly, an indication that the materials became weaker mechanically. Damaged materials were more sensitive to shock initiation at high temperatures. No significant sensitization was observed when the damaged samples were tested at room temperature.

  19. Seismic Radiation from Material Damage During Explosions

    NASA Astrophysics Data System (ADS)

    Rodgers, A. J.; Ben-Zion, Y.

    2010-12-01

    Recent theoretical results on seismic representation from regions undergoing rapid material damage indicate that changes of elastic moduli can produce radiation that may be, in some cases, a significant portion of (or even larger than) the radiation from the standard moment source (Ben-Zion and Ampuero, 2009). The additional radiation is associated with a “damage-related source term” involving the product of the changes in the elasticity tensor and the total elastic strain tensor. The damage source term is non-zero in a certain volume where brittle damage occurs. The generated seismic motion can be computed, as for the classical moment source, by a convolution of the damage density in the affected volume with the spatial derivative of a Green’s functions for an earth model. Here we attempt to provide estimates of the amount and types (isotropic and deviatoric) of the damage related radiation for explosion scenarios. Using both analytic solutions and three-dimensional elastic finite difference calculations, we compute and compare the waves generated by the classical moment and damage related source terms in a full space. We assume a purely isotropic explosion of size corresponding to low-yield nuclear explosions, a granite (hard-rock) whole-space, and that the damage occurs instantaneously. Using a simple iterative approach, we adjust the strain ɛij where it exceeds the yield strength of the rock ɛij_c and reduce the local elastic moduli in proportion to the difference (ɛij - ɛij_c). The calculated adjustments to the strain and reduction of elastic moduli are used to estimate the additional moment contribution due to excess strain (ɛij - ɛij_c) and the associated damage source term in the yielding region. Finally, the seismic radiation from the brittle damage process is computed and compared to the radiation generated by the moment of the explosion source and the additional inelastic relaxation in the yielding region.

  20. Voyager energetic particle observations at interplanetary shocks and upstream of planetary bow shocks - 1977-1990

    NASA Technical Reports Server (NTRS)

    Krimigis, S. M.

    1992-01-01

    The Voyager 1 and 2 vehicles include instrumentation that makes comprehensive electron and ion measurements in several energy channels with good energy, temporal, and compositional resolution. Data gathered from 1977 to 1988, including observations downstream and upstream of four planetary bow shocks (earth, Saturn, Uranus, Jupiter) and numerous interplanetary shocks to about 30 AU, are analyzed in the context of the Fermi and shock drift acceleration models. Overall results indicate that electrons and ions observed upstream of planetary bow shocks have their source inside the parent magnetosphere, with first order Fermi acceleration playing a secondary role at best.

  1. Plasma wave turbulence associated with an interplanetary shock. [wave in solar wind upstream of magnetosphere

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Neubauer, F. M.; Schwenn, R.

    1979-01-01

    The present paper deals with interplanetary shocks, detected and analyzed to date, from the Helios 1 and 2 spacecraft in eccentric solar orbits. The plasma wave turbulence associated with the shock observed on March 30, 1976 is studied in detail. This event is of particular interest because it represents a clearly defined burst of turbulence against a quiet solar wind background both upstream and downstream of the shock. The shock itself is an oblique shock with upstream parameters characterized by a low Mach number, a low beta, and an abnormally large electron to ion temperature ratio. The types of plasma wave detected are discussed.

  2. A profusion of upstream open reading frame mechanisms in polyamine-responsive translational regulation.

    PubMed

    Ivanov, Ivaylo P; Atkins, John F; Michael, Antony J

    2010-01-01

    In many eukaryotic mRNAs one or more short 'upstream' open reading frames, uORFs, precede the initiator of the main coding sequence. Upstream ORFs are functionally diverse as illustrated by their variety of features in polyamine pathway biosynthetic mRNAs. Their propensity to act as sensors for regulatory circuits and to amplify the signals likely explains their occurrence in most polyamine pathway mRNAs. The uORF-mediated polyamine responsive autoregulatory circuits found in polyamine pathway mRNAs exemplify the translationally regulated dynamic interface between components of the proteome and metabolism. PMID:19920120

  3. Effect of a curved duct upstream on performance of small centrifugal compressors for automobile turbochargers

    NASA Astrophysics Data System (ADS)

    Kikuchi, Shigeta; Yamasaki, Nobuhiko; Yamagata, Akihiro

    2013-02-01

    Since the automobile turbochargers are installed in an engine compartment with limited space, the ducts upstream of the turbocharger compressor may be curved in a complex manner. In the present paper, the effect of a curved duct upstream on performance of small centrifugal compressors for automobile turbochargers is discussed. The computational fluid dynamics (CFD) analysis of a turbocharger compressor validated for the compressor model with the straight pipe applied to the compressor with the curved pipe are executed, and the deterioration of the performance for the curved pipe is confirmed. It is also found that the deterioration of compressor performance is caused by the interaction of the secondary flow and the impeller.

  4. Evidence for a previously unidentified upstream exon in the human oestrogen receptor gene.

    PubMed

    Keaveney, M; Klug, J; Dawson, M T; Nestor, P V; Neilan, J G; Forde, R C; Gannon, F

    1991-02-01

    The presence of a previously unidentified exon upstream of the originally described human oestrogen receptor (hOR) gene is demonstrated. This is shown to be spliced to the 5' untranslated region of the previously designated exon I. The resulting genomic structure of the human gene is thus in agreement with the structure of the mouse OR gene and highlights the conservation of an 18 amino acid upstream open-reading frame formed from the above splicing event. Taken in conjunction with previous publications this would suggest that the hOR gene is a complex transcriptional unit that contains two promoters. PMID:2015052

  5. Sound generation and upstream influence due to instability waves interacting with non-uniform mean flows

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.

    1984-01-01

    Attention is given to the sound produced by artificially excited, spatially growing instability waves on subsonic shear layers. Real flows that always diverge in the downstream direction allow sound to be produced by the interaction of the instability waves with the resulting streamwise variations of the flow. The upstream influence, or feedback, can interact with the splitter plate lip to produce a downstream-propagating instability wave that may under certain conditions be the same instability wave that originally generated the upstream influence. The present treatment is restricted to very low Mach number flows, so that compressibility effects can only become important over large distances.

  6. Method and system for control of upstream flowfields of vehicle in supersonic or hypersonic atmospheric flight

    NASA Technical Reports Server (NTRS)

    Daso, Endwell O. (Inventor); Pritchett, II, Victor E. (Inventor); Wang, Ten-See (Inventor); Farr, Rebecca Ann (Inventor)

    2012-01-01

    The upstream flowfield of a vehicle traveling in supersonic or hypersonic atmospheric flight is actively controlled using attribute(s) experienced by the vehicle. Sensed attribute(s) include pressure along the vehicle's outer mold line, temperature along the vehicle's outer mold line, heat flux along the vehicle's outer mold line, and/or local acceleration response of the vehicle. A non-heated, non-plasma-producing gas is injected into an upstream flowfield of the vehicle from at least one surface location along the vehicle's outer mold line. The pressure of the gas so-injected is adjusted based on the attribute(s) so-sensed.

  7. Distributions of electron plasma oscillations upstream from the earth's bow shock.

    NASA Technical Reports Server (NTRS)

    Fredricks, R. W.; Scarf, F. L.; Green, I. M.

    1972-01-01

    Evaluation of data from the 14.5- and 30-kHz plasma-wave detector channels aboard Ogo 5 for the period Dec. 2, 1968, to Apr. 8, 1969, demonstrating the relatively isotropic occurrence of electron plasma oscillations upstream from the bow shock. These plasma oscillations were shown previously to correlate with streams of electrons having energy greater than 700 eV. The present study implies the presence of such streams, most probably electrons reflected by the bow shock, irrespective of spacecraft longitude in the upstream solar wind.

  8. Crack patterning effects in evolution of damage

    SciTech Connect

    Lacy, T.E.; McDowell, D.L.; Taireja, R.

    1995-12-31

    Recent micromechanically inspired phenomenological theories using internal state variable representations of damage have been used to predict the thermomechanical behavior of microcracking solids. These models do not, in an explicit manner, account for distributions of microcracks in a Representative Volume Element (RVE) and have been successfully used only to determine the effective moduli of damaged solids. It has been demonstrated that while the distribution. and interaction of damage entities within a RVE have a minor effect on the effective moduli, they have a significant effect on the evolution of damage and failure at the macroscale. Damage evolution rates cannot, in general, be adequately described by such theories because of their inability to account for interactions between damage entities in an arbitrary distribution. In the present work, finite element solutions to two-dimensional problems with growing microcracks are obtained for both uniform and non-uniform crack arrays. Effective moduli and RVE-averaged driving forces for non-uniformly distributed interacting crack systems are calculated across a range of microcrack distribution parameters. Results are compared to existing solutions. Damage evolution is studied by allowing incremental advance under specified growth criteria of different crack systems within a RVE. Concepts for the inclusion of discrete sub-RVE length scales in the specific Helmholtz free energy and dissipation potentials are outlined. Use of multivariate distribution functions to characterize damage is discussed.

  9. Effects of Upstream Turbulence on Measurement Uncertainty of Flow Rate by Venturi

    NASA Astrophysics Data System (ADS)

    Lee, Jungho; Yoon, Seok Ho; Yu, Cheong-Hwan; Park, Sang-Jin; Chung, Chang-Hwan

    2010-06-01

    Venturi has been widely used for measuring flow rate in a variety of engineering applications since pressure loss is relatively small compared with other measuring method. The current study focuses on making detailed estimation of measured uncertainties as the upstream turbulence affects uncertainty levels of the water flows in the closed-loop testing. Upstream turbulences can be controlled by selecting 9 different swirl generators. Measurement uncertainty of flow rate has been estimated by a quantitative uncertainty analysis which is based on the ANSI/ASME PTC 19.1-2005 standard. The best way to reduce error in measuring flow rate was investigated for evaluating its measurement uncertainty. The results of flow rate uncertainty analysis show that the case with systematic error has higher than that without systematic error. Especially the result with systematic error exhibits that the uncertainty of flow rate was gradually increased by upstream turbulence. Uncertainty of flow rate measurement can be mainly affected by differential pressure and discharge coefficient. Flow disturbance can be also reduced by increasing of the upstream straight length of Venturi.

  10. Asymmetric dispersal allows an upstream region to control population structure throughout a species' range.

    PubMed

    Pringle, James M; Blakeslee, April M H; Byers, James E; Roman, Joe

    2011-09-13

    In a single well-mixed population, equally abundant neutral alleles are equally likely to persist. However, in spatially complex populations structured by an asymmetric dispersal mechanism, such as a coastal population where larvae are predominantly moved downstream by currents, the eventual frequency of neutral haplotypes will depend on their initial spatial location. In our study of the progression of two spatially separate, genetically distinct introductions of the European green crab (Carcinus maenas) along the coast of eastern North America, we captured this process in action. We documented the shift of the genetic cline in this species over 8 y, and here we detail how the upstream haplotypes are beginning to dominate the system. This quantification of an evolving genetic boundary in a coastal system demonstrates that novel genetic alleles or haplotypes that arise or are introduced into upstream retention zones (regions whose export of larvae is not balanced by import from elsewhere) will increase in frequency in the entire system. This phenomenon should be widespread when there is asymmetrical dispersal, in the oceans or on land, suggesting that the upstream edge of a species' range can influence genetic diversity throughout its distribution. Efforts to protect the upstream edge of an asymmetrically dispersing species' range are vital to conserving genetic diversity in the species. PMID:21876126

  11. DESCHUTES. LOOKING UPSTREAM THROUGH OUTLET WORKS FROM STATION 12+55 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DESCHUTES. LOOKING UPSTREAM THROUGH OUTLET WORKS FROM STATION 12+55 - WICKIUP DAM. Photocopy of historic photograph (original photograph on file at National Archives, Rocky Mountain Region, Denver, CO). Unknown USBR photographer, June 2, 1940 - Wickiup Dam, Outlet Works, Deschutes River, La Pine, Deschutes County, OR

  12. Expression2Kinases: mRNA profiling linked to multiple upstream regulatory layers

    PubMed Central

    Gordonov, Simon; Lim, Maribel P.; Perkins, Matthew H.; Ma'ayan, Avi

    2012-01-01

    Motivation: Genome-wide mRNA profiling provides a snapshot of the global state of cells under different conditions. However, mRNA levels do not provide direct understanding of upstream regulatory mechanisms. Here, we present a new approach called Expression2Kinases (X2K) to identify upstream regulators likely responsible for observed patterns in genome-wide gene expression. By integrating chromatin immuno-precipitation (ChIP)-seq/chip and position weight matrices (PWMs) data, protein–protein interactions and kinase–substrate phosphorylation reactions, we can better identify regulatory mechanisms upstream of genome-wide differences in gene expression. We validated X2K by applying it to recover drug targets of food and drug administration (FDA)-approved drugs from drug perturbations followed by mRNA expression profiling; to map the regulatory landscape of 44 stem cells and their differentiating progeny; to profile upstream regulatory mechanisms of 327 breast cancer tumors; and to detect pathways from profiled hepatic stellate cells and hippocampal neurons. The X2K approach can advance our understanding of cell signaling and unravel drugs mechanisms of action. Availability: The software and source code are freely available at: http://www.maayanlab.net/X2K. Contact: avi.maayan@mssm.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22080467

  13. 4. Oblique view of upstream side of Bridge Number 301.85, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Oblique view of upstream side of Bridge Number 301.85, also showing underfloor deck hangers and diagonal bracing, view to east-northeast, 90mm lens. - Southern Pacific Railroad Shasta Route, Bridge No. 301.85, Milepost 301.85, Pollard Flat, Shasta County, CA

  14. Trends in U.S. Oil and Natural Gas Upstream Costs

    EIA Publications

    2016-01-01

    Average 2015 well drilling and completion costs in five onshore areas decline 25% and 30% below their level in 2012 The U.S. Energy Information Administration (EIA) commissioned IHS Global Inc. (IHS) to perform a study of upstream drilling and production costs. The IHS report assesses capital and operating costs associated with drilling, completing, and operating wells and facilities.

  15. Upstream movement of residual hatchery steelhead into areas containing bull trout and cutthroat trout.

    SciTech Connect

    McMichael, Geoffrey A. ); Pearsons, Todd N.

    2000-11-01

    Hatchery-reared steelhead Oncorhynchus mykiss that do not emigrate as smolts shortly after release may negatively impact wild fish communities through ecological interactions. We used systematic, stratified snorkeling surveys to document the relative abundance of wild rainbow trout O. mykiss, bull trout Salvelinus confluentus, and westslope cutthroat trout O. clarki lewisi as well as the upstream limit of residual hatchery steelhead (hatchery-reared steelhead that had failed to emigrate before June 1). Our objective was to determine whether residual hatchery steelhead had migrated upstream from their release point into an area containing a threatened population of bull trout and cutthroat trout. Hatchery steelhead made up a larger portion of the salmonid community in the sites near their release location (mean= 52.5%, range= 29-79%), and constituted a lower proportion (mean= 4.8%, range= 0-14%) of the salmonid community as distance upstream of the release location increased. However, residual hatchery steelhead had migrated over 12 km upstream into an area containing a threatened stock of bull trout and westslope cutthroat trout O. clarki lewisi.

  16. Evaluation of "Operation Upstream" Summer, 1968. Research and Development Report, Volume 2 Number 7.

    ERIC Educational Resources Information Center

    Starnes, Thomas A.

    Described are the program objectives, rationale, and evaluation of an elective, survival oriented, personal development summer program administered by the Atlanta Public Schools. The evaluation was of a quasi-experimental pretest, posttest design. The 34 students were evaluated by the California Test of Personality and "Operation Upstream"…

  17. Damage Tolerance of Composites

    NASA Technical Reports Server (NTRS)

    Hodge, Andy

    2007-01-01

    Fracture control requirements have been developed to address damage tolerance of composites for manned space flight hardware. The requirements provide the framework for critical and noncritical hardware assessment and testing. The need for damage threat assessments, impact damage protection plans, and nondestructive evaluation are also addressed. Hardware intended to be damage tolerant have extensive coupon, sub-element, and full-scale testing requirements in-line with the Building Block Approach concept from the MIL-HDBK-17, Department of Defense Composite Materials Handbook.

  18. Numerical Investigation of Dual-Mode Scramjet Combustor with Large Upstream Interaction

    NASA Technical Reports Server (NTRS)

    Mohieldin, T. O.; Tiwari, S. N.; Reubush, David E. (Technical Monitor)

    2004-01-01

    Dual-mode scramjet combustor configuration with significant upstream interaction is investigated numerically, The possibility of scaling the domain to accelerate the convergence and reduce the computational time is explored. The supersonic combustor configuration was selected to provide an understanding of key features of upstream interaction and to identify physical and numerical issues relating to modeling of dual-mode configurations. The numerical analysis was performed with vitiated air at freestream Math number of 2.5 using hydrogen as the sonic injectant. Results are presented for two-dimensional models and a three-dimensional jet-to-jet symmetric geometry. Comparisons are made with experimental results. Two-dimensional and three-dimensional results show substantial oblique shock train reaching upstream of the fuel injectors. Flow characteristics slow numerical convergence, while the upstream interaction slowly increases with further iterations. As the flow field develops, the symmetric assumption breaks down. A large separation zone develops and extends further upstream of the step. This asymmetric flow structure is not seen in the experimental data. Results obtained using a sub-scale domain (both two-dimensional and three-dimensional) qualitatively recover the flow physics obtained from full-scale simulations. All results show that numerical modeling using a scaled geometry provides good agreement with full-scale numerical results and experimental results for this configuration. This study supports the argument that numerical scaling is useful in simulating dual-mode scramjet combustor flowfields and could provide an excellent convergence acceleration technique for dual-mode simulations.

  19. Upstream structural management measures for an urban area flooding in Turkey

    NASA Astrophysics Data System (ADS)

    Akyurek, Z.; Bozoğlu, B.; Sürer, S.; Mumcu, H.

    2015-06-01

    In recent years, flooding has become an increasing concern across many parts of the world of both the general public and their governments. The climate change inducing more intense rainfall events occurring in short period of time lead flooding in rural and urban areas. In this study the flood modelling in an urbanized area, namely Samsun-Terme in Blacksea region of Turkey is performed. MIKE21 with flexible grid is used in 2-dimensional shallow water flow modelling. 1 × 1000-1 scaled maps with the buildings for the urbanized area and 1 × 5000-1 scaled maps for the rural parts are used to obtain DTM needed in the flood modelling. The bathymetry of the river is obtained from additional surveys. The main river passing through the urbanized area has a capacity of 500 m3 s-1 according to the design discharge obtained by simple ungauged discharge estimation depending on catchment area only. The upstream structural base precautions against flooding are modelled. The effect of four main upstream catchments on the flooding in the downstream urban area are modelled as different scenarios. It is observed that if the flow from the upstream catchments can be retarded through a detention pond constructed in one of the upstream catchments, estimated Q100 flood can be conveyed by the river without overtopping from the river channel. The operation of the upstream detention ponds and the scenarios to convey Q500 without causing flooding are also presented. Structural management measures to address changes in flood characteristics in water management planning are discussed.

  20. Statistical analysis of diffuse ion events upstream of the Earth's bow shock

    NASA Technical Reports Server (NTRS)

    Trattner, K. J.; Mobius, E.; Scholer, M.; Klecker, B.; Hilchenbach, M.; Luehr, H.

    1994-01-01

    A statistical study of diffuse energetic ion events and their related waves upstream of the Earth's bow shock was performed using data from the Active Magnetospheric Particle Tracer Explorers/Ion Release Module (AMPTE/IRM) satellite over two 5-month periods in 1984 and 1985. The data set was used to test the assumption in the self-consistent model of the upstream wave and particle populations by Lee (1982) that the particle acceleration through hydromagnetic waves and the wave generation are directly coupled. The comparison between the observed wave power and the wave power predicted on the observed energetic particle energy density and solar wind parameters results in a high correlation coefficient of about 0.89. The intensity of diffuse ions falls off approximately exponentially with the distance upstream from the bow shock parallel to the magnetic field with e-folding distances which vary from approximately 3.3 R(sub E) to approximately 11.7 R(sub E) over the energy range from 10 keV/e to 67.3 keV/e for both protons and alpha particles. After normalizing the upstream particle densities to zero bow shock distance by using these exponential variations, a good correlation (0.7) of the density of the diffuse ions with the solar wind density was found. This supports the suggestion that the solar wind is the source of the diffuse ions. Furthermore, the spectral slope of the diffuse ions correlates well with the solar wind velocity component in the direction of the interplanetary magnetic field (0.68 and 0.66 for protons and alpha particles) which concurs with the notion that the solar wind plays an important role in the acceleration of the upstream particles.

  1. Manifold learning-based subspace distance for machinery damage assessment

    NASA Astrophysics Data System (ADS)

    Sun, Chuang; Zhang, Zhousuo; He, Zhengjia; Shen, Zhongjie; Chen, Binqiang

    2016-03-01

    Damage assessment is very meaningful to keep safety and reliability of machinery components, and vibration analysis is an effective way to carry out the damage assessment. In this paper, a damage index is designed by performing manifold distance analysis on vibration signal. To calculate the index, vibration signal is collected firstly, and feature extraction is carried out to obtain statistical features that can capture signal characteristics comprehensively. Then, manifold learning algorithm is utilized to decompose feature matrix to be a subspace, that is, manifold subspace. The manifold learning algorithm seeks to keep local relationship of the feature matrix, which is more meaningful for damage assessment. Finally, Grassmann distance between manifold subspaces is defined as a damage index. The Grassmann distance reflecting manifold structure is a suitable metric to measure distance between subspaces in the manifold. The defined damage index is applied to damage assessment of a rotor and the bearing, and the result validates its effectiveness for damage assessment of machinery component.

  2. Alcohol Calorie Calculator

    MedlinePlus

    ... Alcohol Calorie Calculator Weekly Total 0 Calories Alcohol Calorie Calculator Find out the number of beer and ... Calories College Alcohol Policies Interactive Body Calculators Alcohol Calorie Calculator Alcohol Cost Calculator Alcohol BAC Calculator Alcohol ...

  3. Radiation damage in MINP cells

    NASA Astrophysics Data System (ADS)

    Minahan, J. A.; Green, M. J.

    Experiments have been carried out to examine the effects of exposure to various fluence levels of 1 MeV electrons on 0.2 ohm-cm MINP silicon solar cell characteristics. Fluence levels ranged from 10 to the 14th e/sq cm to 3 x 10 to the 15th e/sq cm. Minority carrier diffusion lengths, Lbase, were derived from short circuit current calculations that included corrections for surface shadowing, reflection and emitter contribution to the short circuit current. From Lbase and fluences, a damage coefficient for diffusion length was calculated (1.4 x 10 to the -9th/electron) and compared with results obtained for other cell designs and base resistivities.

  4. Guest Editorial: Laser Damage

    SciTech Connect

    Vitaly Gruzdev, Michelle D. Shinn

    2012-12-01

    Laser damage of optical materials, first reported in 1964, continues to limit the output energy and power of pulsed and continuous-wave laser systems. In spite of some 48 years of research in this area, interest from the international laser community to laser damage issues remains at a very high level and does not show any sign of decreasing. Moreover, it grows with the development of novel laser systems, for example, ultrafast and short-wavelength lasers that involve new damage effects and specific mechanisms not studied before. This interest is evident from the high level of attendance and presentations at the annual SPIE Laser Damage Symposium (aka, Boulder Damage Symposium) that has been held in Boulder, Colorado, since 1969. This special section of Optical Engineering is the first one devoted to the entire field of laser damage rather than to a specific part. It is prepared in response to growing interest from the international laser-damage community. Some papers in this special section were presented at the Laser Damage Symposium; others were submitted in response to the general call for papers for this special section. The 18 papers compiled into this special section represent many sides of the broad field of laser-damage research. They consider theoretical studies of the fundamental mechanisms of laser damage including laser-driven electron dynamics in solids (O. Brenk and B. Rethfeld; A. Nikiforov, A. Epifanov, and S. Garnov; T. Apostolova et al.), modeling of propagation effects for ultrashort high-intensity laser pulses (J. Gulley), an overview of mechanisms of inclusion-induced damage (M. Koldunov and A. Manenkov), the formation of specific periodic ripples on a metal surface by femtosecond laser pulses (M. Ahsan and M. Lee), and the laser-plasma effects on damage in glass (Y. Li et al). Material characterization is represented by the papers devoted to accurate and reliable measurements of absorption with special emphasis on thin films (C. Mühlig and S

  5. Endobronchial Ultrasound Bronchoscope Damage.

    PubMed

    Patil, Monali; Harris, Kassem; Krishnan, Amita; Alraiyes, Abdul H; Dhillon, Samjot S

    2016-07-01

    Endobronchial ultrasound (EBUS)-guided transbronchial needle aspiration is an effective, safe, and cost-effective diagnostic bronchoscopy technique for the work-up of mediastinal lymphadenopathy. Concern has been raised, however, about the high cost of convex-probe EBUS bronchoscope repairs. The damage is usually due to breakage of the insertion tube (the flexible part that is advanced into the airways), moisture invasion and damages to the working channel, image guide bundle, or umbilical cord. Understanding the root cause of EBUS scope damage is important for its prevention. We describe 2 unusual cases of EBUS scope damage. In the first case, the distal black rubber covering of the EBUS scope insertion tube was damaged due to friction with the edge of an endotracheal tube and in the second case, the EBUS scope insertion tube was angulating laterally instead of vertically during the flexion maneuver, probably due to scope manipulation while wedged tightly in a segmental bronchus. PMID:27077640

  6. A common polymorphism in the 5' UTR of ERCC5 creates an upstream ORF that confers resistance to platinum-based chemotherapy.

    PubMed

    Somers, Joanna; Wilson, Lindsay A; Kilday, John-Paul; Horvilleur, Emilie; Cannell, Ian G; Pöyry, Tuija A A; Cobbold, Laura C; Kondrashov, Alexander; Knight, John R P; Puget, Stéphanie; Grill, Jacques; Grundy, Richard G; Bushell, Martin; Willis, Anne E

    2015-09-15

    We show that a common polymorphic variant in the ERCC5 5' untranslated region (UTR) generates an upstream ORF (uORF) that affects both the background expression of this protein and its ability to be synthesized following exposure to agents that cause bulky adduct DNA damage. Individuals that harbor uORF1 have a marked resistance to platinum-based agents, illustrated by the significantly reduced progression-free survival of pediatric ependymoma patients treated with such compounds. Importantly, inhibition of DNA-PKcs restores sensitivity to platinum-based compounds by preventing uORF1-dependent ERCC5 expression. Our data support a model in which a heritable 5' noncoding mRNA element influences individuals' responses to platinum-based chemotherapy. PMID:26338418

  7. A common polymorphism in the 5′ UTR of ERCC5 creates an upstream ORF that confers resistance to platinum-based chemotherapy

    PubMed Central

    Somers, Joanna; Wilson, Lindsay A.; Kilday, John-Paul; Horvilleur, Emilie; Cannell, Ian G.; Pöyry, Tuija A.A.; Cobbold, Laura C.; Kondrashov, Alexander; Knight, John R.P.; Puget, Stéphanie; Grill, Jacques; Grundy, Richard G.; Bushell, Martin; Willis, Anne E.

    2015-01-01

    We show that a common polymorphic variant in the ERCC5 5′ untranslated region (UTR) generates an upstream ORF (uORF) that affects both the background expression of this protein and its ability to be synthesized following exposure to agents that cause bulky adduct DNA damage. Individuals that harbor uORF1 have a marked resistance to platinum-based agents, illustrated by the significantly reduced progression-free survival of pediatric ependymoma patients treated with such compounds. Importantly, inhibition of DNA-PKcs restores sensitivity to platinum-based compounds by preventing uORF1-dependent ERCC5 expression. Our data support a model in which a heritable 5′ noncoding mRNA element influences individuals’ responses to platinum-based chemotherapy. PMID:26338418

  8. Improving Flood Damage Assessment Models in Italy

    NASA Astrophysics Data System (ADS)

    Amadio, M.; Mysiak, J.; Carrera, L.; Koks, E.

    2015-12-01

    The use of Stage-Damage Curve (SDC) models is prevalent in ex-ante assessments of flood risk. To assess the potential damage of a flood event, SDCs describe a relation between water depth and the associated potential economic damage over land use. This relation is normally developed and calibrated through site-specific analysis based on ex-post damage observations. In some cases (e.g. Italy) SDCs are transferred from other countries, undermining the accuracy and reliability of simulation results. Against this background, we developed a refined SDC model for Northern Italy, underpinned by damage compensation records from a recent flood event. Our analysis considers both damage to physical assets and production losses from business interruptions. While the first is calculated based on land use information, production losses are measured through the spatial distribution of Gross Value Added (GVA). An additional component of the model assesses crop-specific agricultural losses as a function of flood seasonality. Our results show an overestimation of asset damage from non-calibrated SDC values up to a factor of 4.5 for tested land use categories. Furthermore, we estimate that production losses amount to around 6 per cent of the annual GVA. Also, maximum yield losses are less than a half of the amount predicted by the standard SDC methods.

  9. Metabolite Damage and Metabolite Damage Control in Plants.

    PubMed

    Hanson, Andrew D; Henry, Christopher S; Fiehn, Oliver; de Crécy-Lagard, Valérie

    2016-04-29

    It is increasingly clear that (a) many metabolites undergo spontaneous or enzyme-catalyzed side reactions in vivo, (b) the damaged metabolites formed by these reactions can be harmful, and (c) organisms have biochemical systems that limit the buildup of damaged metabolites. These damage-control systems either return a damaged molecule to its pristine state (metabolite repair) or convert harmful molecules to harmless ones (damage preemption). Because all organisms share a core set of metabolites that suffer the same chemical and enzymatic damage reactions, certain damage-control systems are widely conserved across the kingdoms of life. Relatively few damage reactions and damage-control systems are well known. Uncovering new damage reactions and identifying the corresponding damaged metabolites, damage-control genes, and enzymes demands a coordinated mix of chemistry, metabolomics, cheminformatics, biochemistry, and comparative genomics. This review illustrates the above points using examples from plants, which are at least as prone to metabolite damage as other organisms. PMID:26667673

  10. Eco-Design of River Fishways for Upstream Passage: Application for Hanfeng Dam, Pengxi River, China

    SciTech Connect

    Johnson, Gary E.; Rainey, William S.

    2012-05-20

    This paper provides a scientific approach to eco-design of river fishways to allow upstream movement of fish past new and existing dams in China. This eco-design approach integrates principles of fish ecology/behavior and engineering, a scientific field also known as bio-engineering or eco-hydraulics. We define a fishway as a structure or mechanism to convey fish upstream past a dam. Man-made or natural stream beds can be part of the fishway mechanism. Fish include bony and non-bony fishes, and upstream passage is the concern here, not downstream passage. The problem is dams block access to upstream habitat used for spawning, rearing, and refuge, i.e., dams decrease habitat connectivity. A solution to alleviate this problem is to design fishways, preferably while the dam is being designed, but if necessary, as retrofits afterward to provide a route that fish can and will use to pass safely upstream without undue delay. Our eco-design approach for fishways involves eight steps: 1) identify the primary species of importance; 2) understand basic ecology and behavior of these fish; 3) characterize the environmental conditions where passage is or will be blocked; 4 identify fishway alternatives and select a preferred alternative; 5) establish eco-design criteria for the fishway, either from management agencies or, if necessary, developed specifically for the given site; 6) where needed, identify and perform research required to resolve critical uncertainties and finalize the eco-design criteria; 7) apply the eco-design criteria and site-specific considerations to design the fishway, involving peer-review by local stakeholders in the process; 8) build the fishway, monitor its effectiveness, and apply the lessons learned. Example fishways are described showing a range of eco-designs depending on the dam site and fish species of concern. We apply the eco-design principles to recommend an approach and next steps for a fishway to pass fish upstream at Hanfeng Dam, an

  11. Double Linear Damage Rule for Fatigue Analysis

    NASA Technical Reports Server (NTRS)

    Halford, G.; Manson, S.

    1985-01-01

    Double Linear Damage Rule (DLDR) method for use by structural designers to determine fatigue-crack-initiation life when structure subjected to unsteady, variable-amplitude cyclic loadings. Method calculates in advance of service how many loading cycles imposed on structural component before macroscopic crack initiates. Approach eventually used in design of high performance systems and incorporated into design handbooks and codes.

  12. Foreign Object Damage Identification in Turbine Engines

    NASA Technical Reports Server (NTRS)

    Strack, William; Zhang, Desheng; Turso, James; Pavlik, William; Lopez, Isaac

    2005-01-01

    This report summarizes the collective work of a five-person team from different organizations examining the problem of detecting foreign object damage (FOD) events in turbofan engines from gas path thermodynamic and bearing accelerometer sensors, and determining the severity of damage to each component (diagnosis). Several detection and diagnostic approaches were investigated and a software tool (FODID) was developed to assist researchers detect/diagnose FOD events. These approaches include (1) fan efficiency deviation computed from upstream and downstream temperature/ pressure measurements, (2) gas path weighted least squares estimation of component health parameter deficiencies, (3) Kalman filter estimation of component health parameters, and (4) use of structural vibration signal processing to detect both large and small FOD events. The last three of these approaches require a significant amount of computation in conjunction with a physics-based analytic model of the underlying phenomenon the NPSS thermodynamic cycle code for approaches 1 to 3 and the DyRoBeS reduced-order rotor dynamics code for approach 4. A potential application of the FODID software tool, in addition to its detection/diagnosis role, is using its sensitivity results to help identify the best types of sensors and their optimum locations within the gas path, and similarly for bearing accelerometers.

  13. Laser Damage Lab

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Optical Damage Threshold Testing Instrumentation at NASA Langley Research Center. This work was sanctioned and funded by Code Q, R, & AE to develop a new standard for damage testing various types of optical materials and coatings. Laser Induced Damage Threshold (LIDT) testing is a destructive test procedure to determine the minimum applied laser energy level that will result in damage and is referred to as the damage threshold. The damage threshold is often the critical limitation in the section of optical materials for use in high-energy laser systems.The test station consists of diagnostic equipment, beam conditioning optical elements, an inspection microscope and three lasers: a high energy pulsed ND: Yag, which develops 650mJ at 10 hz and outputs three wavelengths which include 1.06m, 532nm and 355 nm; a Ti:sapphire laser which produces a continuum of laser output from 790nm to 900nm; and a alignment HeNe, which looks yellow when mixed with the 2nd harmonic ND:Yag laser. Laser sources are used to perform damage threshold testing at the specific wavelength of interest.

  14. Two-phase damage models of magma-fracturing

    NASA Astrophysics Data System (ADS)

    Cai, Zhengyu; Bercovici, David

    2013-04-01

    Damage and fracturing in two-phase and porous flows are relevant for geological process such as magma-fracturing during melt migration, which is associated with the propagation of a pore-generating damage front ahead of high-pressure fluid injection. We therefore examine the propagation of porous flow in a damageable matrix by applying the two-phase theory for compaction and damage proposed by Bercovici et al. (2001a) and Bercovici and Ricard (2003). The movement of the fluid and the solid is governed by the two-phase flow laws, while damage (void generation and microcracking) is treated by considering the generation of interfacial surface energy by deformational work. Calculations of one-dimensional (1-D) flow of fluid migrating buoyantly through compacting and damageable matrix show that damage is mitigated in steady-state largely because of the loss of the velocity gradient at the fluid front. However, in time-dependent flows, linear stability analysis shows that the propagation velocity of porosity waves is strongly dependent on damage. In the damage-free case porosity waves are dispersive in that wave-speed decreases with wavenumber (inverse wavelength); however with damage the dispersion flattens and beyond a critical damage reverses (the wave speed increases with wavenumber). Since normal dispersive behavior balances breaking in the nonlinear wave case, such reversed dispersion implies that damage has a profound effect in the nonlinear limit by facilitating wave front steepening and higher wave velocities. Nonlinear solitary wave solutions are obtained numerically and show that the transmission of porosity waves induces high stress and damage that can push the damage front forward. With damage the porosity waves sharpen and calculations suggest that they can transform from shape-conserving solitary waves into faster high amplitude waves, which is also predicted by the linear theory. Such pulse-like sharper waves may prove effective at promoting fluid

  15. Observations of a new class of upstream waves with periods near 3 seconds

    NASA Technical Reports Server (NTRS)

    Le, G.; Russell, C. T.; Thomsen, M. F.; Gosling, J. T.

    1992-01-01

    A new class of ULF waves with periods near 3 s in the earth's upstream region is found by examining the high time resolution magnetic field data from the ISEE spacecraft. These waves are observed in the part of the upstream region which is magnetically connected to the bow shock, but only when the solar wind plasma beta is high (greater than 1). The waves are always right-handed, nearly circularly polarized in the spacecraft frame. The directions of the wave vectors are in the general direction of the average magnetic field, and the waves are convected downstream in the spacecraft frame. This study of these waves has shown that they appear to be intrinsically left-handed ion cyclotron waves in the plasma rest frame.

  16. Antibiotic Resistance in Aeromonas Upstream and Downstream of a Water Resource Recovery Facility

    PubMed Central

    Henderson, Samantha K.; Askew, Maegan L.; Risenhoover, Hollie G.; McAndrews, Chrystle R.; Kennedy, S. Dawn; Paine, C. Sue

    2014-01-01

    Aeromonas strains isolated from sediments upstream and downstream of a water resource recovery facility (WRRF) over a two-year time period were tested for susceptibility to thirteen antibiotics. Incidence of resistance to antibiotics, antibiotic resistance phenotypes, and diversity (based on resistance phenotypes) were compared in the two populations. At the beginning of the study, the upstream and downstream Aeromonas populations were different for incidence of antibiotic resistance (p < 0.01), resistance phenotypes (p < 0.005), and diversity. However, these differences declined over time and were not significant at the end of the study. These results (1) indicate that antibiotic resistance in Aeromonas in stream sediments fluctuates considerably over time and (2) suggest that WRRF effluent does not, when examined over the long term, affect antibiotic resistance in Aeromonas in downstream sediment. PMID:25327024

  17. Structure of medium Mach number quasi-parallel shocks - Upstream and downstream waves

    NASA Technical Reports Server (NTRS)

    Krauss-Varban, D.; Omidi, N.

    1991-01-01

    The transition from steady low-Mach-number to unsteady high-Mach-number quasi-parallel shocks was investigated by performing large-scale 1D hybrid code simulations at increasing Mach numbers. It was found that only at very low Mach number shocks the steepening is limited by upstream phase-standing whistlers, as predicted by the classical theory (Tidman and Northrop, 1968). In the intermediate region of Mach numbers between 1.5 and 3.5, a very diverse behavior is observed. Backstreaming ions generate fast magnetosonic waves which dominate the upstream, with wavelengths longer than phase-standing whistlers. At increasing Mach numbers, the phase and group velocities of the dominant waves are reduced until they point back toward the shock; when there is sufficient energy flux in these waves, they lead to unsteady shock behavior and eventually to shock reformation.

  18. Medium energy particle perspective from magnetopause to upstream region: Prognoz-10 data

    NASA Astrophysics Data System (ADS)

    Kudela, K.; Sibeck, D. G.; Slivka, M.; Venkatesan, D.; Fischer, S.; Lutsenko, V. N.

    1994-07-01

    We present typical examples of Prognoz-10 ion (E greater than 15 keV) and electron (E greater than 30 keV) flux observations as the spacecraft crosses the low and mid-latitude magnetosheath and the foreshock. Both leakage from magnetosphere and bow shock acceleration contribute to magnetosheath populations. A statistical survey using 6 months of measurements reveals that the occurrence of high ion and electron fluxes depends upon Kp. For the same Kp, the probability of high ion occurrence is much higher in the magnetosheath than in the upstream region. In the upstream region, the occurrence of high ion fluxes depends upon the distance to the bow shock and on the angle ThetaBn.

  19. Upstream Pathways Controlling Mitochondrial Function in Major Psychosis: A Focus on Bipolar Disorder.

    PubMed

    Machado, Alencar Kolinski; Pan, Alexander Yongshuai; da Silva, Tatiane Morgana; Duong, Angela; Andreazza, Ana Cristina

    2016-08-01

    Mitochondrial dysfunction is commonly observed in bipolar disorder (BD) and schizophrenia (SCZ) and may be a central feature of psychosis. These illnesses are complex and heterogeneous, which is reflected by the complexity of the processes regulating mitochondrial function. Mitochondria are typically associated with energy production; however, dysfunction of mitochondria affects not only energy production but also vital cellular processes, including the formation of reactive oxygen species, cell cycle and survival, intracellular Ca(2+) homeostasis, and neurotransmission. In this review, we characterize the upstream components controlling mitochondrial function, including 1) mutations in nuclear and mitochondrial DNA, 2) mitochondrial dynamics, and 3) intracellular Ca(2+) homeostasis. Characterizing and understanding the upstream factors that regulate mitochondrial function is essential to understand progression of these illnesses and develop biomarkers and therapeutics. PMID:27310240

  20. Shock Characteristics Measured Upstream of Both a Forward-Swept and an Aft-Swept Fan

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.; Krupar, Martin J.; Sutliff, Daniel L.; Horvath, Csaba

    2007-01-01

    Three different types of diagnostic data-blade surface flow visualization, shroud unsteady pressure, and laser Doppler velocimeter (LDV)--were obtained on two fans, one forward-swept and one aft-swept, in order to learn more about the shocks which propagate upstream of these rotors when they are operated at transonic tip speeds. Flow visualization data are presented for the forward-swept fan operating at 13831 rpm(sub c), and for the aft-swept fan operating at 12500 and 13831 rpm(sub c) (corresponding to tip rotational Mach numbers of 1.07 and 1.19, respectively). The flow visualization data identify where the shocks occur on the suction side of the rotor blades. These data show that at the takeoff speed, 13831 rpm(sub c), the shocks occurring in the tip region of the forward-swept fan are further downstream in the blade passage than with the aft-swept fan. Shroud unsteady pressure measurements were acquired using a linear array of 15 equally-spaced pressure transducers extending from two tip axial chords upstream to 0.8 tip axial chords downstream of the static position of the tip leading edge of each rotor. Such data are presented for each fan operating at one subsonic and five transonic tip speeds. The unsteady pressure data show relatively strong detached shocks propagating upstream of the aft-swept rotor at the three lowest transonic tip speeds, and weak, oblique pressure disturbances attached to the tip of the aft-swept fan at the two highest transonic tip speeds. The unsteady pressure measurements made with the forward-swept fan do not show strong shocks propagating upstream of that rotor at any of the tested speeds. A comparison of the forward-swept and aft-swept shroud unsteady pressure measurements indicates that at any given transonic speed the pressure disturbance just upstream of the tip of the forward-swept fan is much weaker than that of the aft-swept fan. The LDV data suggest that at 12500 and 13831 rpm(sub c), the forward-swept fan swallowed the

  1. Manipulation of upstream rotor leading edge vortex and its effects on counter rotating propeller noise

    NASA Technical Reports Server (NTRS)

    Squires, Becky

    1993-01-01

    The leading edge vortex of a counter rotating propeller (CRP) model was altered by using shrouds and by turning the upstream rotors to a forward sweep configuration. Performance, flow, and acoustic data were used to determine the effect of vortex impingement on the noise signature of the CRP system. Forward sweep was found to eliminate the leading edge vortex of the upstream blades. Removal of the vortex had little effect on the tone noise at the forward and rear blade passing frequencies (BPF's) but significantly altered both the sound pressure level and directivity of the interaction tone which occurs at the sum of the two BPF's. A separate manipulation of the leading edge vortex performed by installing shrouds of various inlet length on the CRP verified that diverting the vortex path increases the noise level of the interaction tone. An unexpected link has been established between the interaction tone and the leading edge vortex-blade interaction phenomenon.

  2. Numerical study of an oscillating smaller cylinder in the wake of an upstream larger cylinder

    NASA Astrophysics Data System (ADS)

    Gao, Yangyang; Yu, Dingyong; Wang, Xikun; Tan, Soon Keat

    2012-06-01

    A numerical study of flow around two tandem cylinders with unequal diameters was carried out. The upstream larger cylinder was fixed and the downstream smaller cylinder was allowed to oscillate in the transverse direction only. Comparisons of the experimental and numerical results were made to investigate the effects of the gap ratio on the maximum vibration amplitude and vortex shedding frequency. The results showed that the vibration response of the smaller cylinder was significantly affected by the presence of the upstream larger cylinder, and resulted in greatly reduced vibration amplitudes. With an increasing gap ratio, the vibration amplitude increased. However, the magnitude was lower than that corresponding to a single cylinder (with the same diameter as that of the downstream smaller cylinder) under the same flow conditions.

  3. Suppression of interference in quantum Hall Mach-Zehnder geometry by upstream neutral modes

    NASA Astrophysics Data System (ADS)

    Gefen, Yuval; Goldstein, Moshe

    Mach-Zehnder interferometry has been suggested as a probe for anyonic quasiparticles in fractional quantum Hall states. However, all experimental attempts to measure such an interference signal have failed to date, despite the high visibility of interference fringes in the integer quantum Hall case. In our work we have studied the relation between this null result and another recent surprising experimental finding, namely the detection of upstream neutral modes in virtually all fractional quantum Hall states (including, e.g., filling 1/3), not only in hole-like filling factors (such as 2/3). We have found that the excitation of upstream modes makes the interference visibility in the Mach-Zehnder geometry decay exponentially with the total length of the interferometer arms, even when the lengths are exactly equal. We also suggest ways to overcome this suppression.

  4. Upstream energetic ions and electrons - Bow shock-associated or magnetospheric origin

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Hovestadt, D.; Ipavich, F. M.; Gloeckler, G.

    1981-01-01

    An analysis is made of 35 proton bursts observed with the Max-Planck-Institut/University of Maryland sensor system on ISEE 3 far upstream of the earth's bow shock. These upstream bursts are found to fall into two distinctive groups. The first is accompanied by energetic electrons (more than about 75 keV), and the proton spectrum extends up to energies greater than about 300 keV and higher and bends over toward lower energies (less than about 30 keV). The second group, which is unaccompanied by energetic electron bursts, exhibits spectra which can be represented extremely well by exponentials in energy with a mean e-folding energy of approximately 15 keV. The first group is thought to be of a magnetospheric origin, and the second to be bow-shock associated.

  5. Upstream waves and particles /Tutorial Lecture/. [from shocks in interplanetary space

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Hoppe, M. M.

    1983-01-01

    The plasma waves, MHD waves, energetic electrons and ions associated with the proximity of the region upstream from terrestrial, planetary and interplanetary shocks are discussed in view of observations and current theories concerning their origin. These waves cannot be separated from the study of shock structure. Since the shocks are supersonic, they continually overtake any ULF waves created in the plasma in front of the shock. The upstream particles and waves are also of intrinsic interest because they provide a plasma laboratory for the study of wave-particle interactions in a plasma which, at least at the earth, is accessible to sophisticated probing. Insight may be gained into interstellar medium cosmic ray acceleration through the study of these phenomena.

  6. Absence of upstream energetic ions under turbulent radial interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Sarris, E. T.; Anagnostopoulos, G. C.; Krimigis, S. M.

    1992-01-01

    Two cases of observations on board the IMP 8 spacecraft of upstream energetic ions were used to test the viability of the Fermi mechanism as an efficient accelerator of particles with E not less than 50 keV at the earth's bow shock, under conditions which are more constrained than those applied in all previously published detailed analyses of upstream ion events. In addition to the nearly radial IMF, the following particle and field conditions were present: (1) in situ cyclotron-resonant wave activity, (2) a seed energetic particle population, and (3) small (not above 25 deg) theta(Bn) at the points of connection of the spacecraft to the bow shock. The analysis of data from days 67, 1979 and 303, 1980 showed that, despite these conditions, no ion enhancements attributable to the Fermi process could be detected.

  7. War Damage Assessment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    During and after the Persian Gulf war, hundreds of "oil lakes" were created in Kuwait by oil released from damaged wells. The lakes are a hazard to the Kuwait atmosphere, soil and ground water and must be carefully monitored. Boston University Center for Remote Sensing, assisted by other organizations, has accurately mapped the lakes using Landsat and Spot imagery. The war damage included the formation of over 300 oil lakes, oil pollution and sand dune movement. Total damage area is over 5,400 square kilometers - 30 percent of Kuwait's total surface area.

  8. DNA Damage Response

    PubMed Central

    Giglia-Mari, Giuseppina; Zotter, Angelika; Vermeulen, Wim

    2011-01-01

    Structural changes to DNA severely affect its functions, such as replication and transcription, and play a major role in age-related diseases and cancer. A complicated and entangled network of DNA damage response (DDR) mechanisms, including multiple DNA repair pathways, damage tolerance processes, and cell-cycle checkpoints safeguard genomic integrity. Like transcription and replication, DDR is a chromatin-associated process that is generally tightly controlled in time and space. As DNA damage can occur at any time on any genomic location, a specialized spatio-temporal orchestration of this defense apparatus is required. PMID:20980439

  9. MESSENGER Magnetic Field Observations of Upstream Ultra-Low Frequency Waves at Mercury

    NASA Technical Reports Server (NTRS)

    Le, G.; Chi, P. J.; Boardsen, S.; Blanco-Cano, X.; Anderosn, B. J.; Korth, H.

    2012-01-01

    The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth's is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury's bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury's foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury's foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the I-Hz waves in the Earth's foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth's foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at near 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at near 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper.

  10. The Giant Mottled Eel, Anguilla marmorata, Uses Blue-Shifted Rod Photoreceptors during Upstream Migration

    PubMed Central

    Wang, Feng-Yu; Fu, Wen-Chun; Wang, I-Li

    2014-01-01

    Catadromous fishes migrate between ocean and freshwater during particular phases of their life cycle. The dramatic environmental changes shape their physiological features, e.g. visual sensitivity, olfactory ability, and salinity tolerance. Anguilla marmorata, a catadromous eel, migrates upstream on dark nights, following the lunar cycle. Such behavior may be correlated with ontogenetic changes in sensory systems. Therefore, this study was designed to identify changes in spectral sensitivity and opsin gene expression of A. marmorata during upstream migration. Microspectrophotometry analysis revealed that the tropical eel possesses a duplex retina with rod and cone photoreceptors. The λmax of rod cells are 493, 489, and 489 nm in glass, yellow, and wild eels, while those of cone cells are 508, and 517 nm in yellow, and wild eels, respectively. Unlike European and American eels, Asian eels exhibited a blue-shifted pattern of rod photoreceptors during upstream migration. Quantitative gene expression analyses of four cloned opsin genes (Rh1f, Rh1d, Rh2, and SWS2) revealed that Rh1f expression is dominant at all three stages, while Rh1d is expressed only in older yellow eel. Furthermore, sequence comparison and protein modeling studies implied that a blue shift in Rh1d opsin may be induced by two known (N83, S292) and four putative (S124, V189, V286, I290) tuning sites adjacent to the retinal binding sites. Finally, expression of blue-shifted Rh1d opsin resulted in a spectral shift in rod photoreceptors. Our observations indicate that the giant mottled eel is color-blind, and its blue-shifted scotopic vision may influence its upstream migration behavior and habitat choice. PMID:25101636

  11. New waves at multiples of the plasma frequency upstream of the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.

    1986-01-01

    The first observations of waves at harmonics higher than the second of the electron plasma frequency are reported. The observations were made by the ISEE 1 spacecraft upstream of the earth's bow shock. The waves are interpreted as electromagnetic radiation at the fundamental and up to the fifth harmonic of the plasma frequency, with effective temperatures decreasing from 5 x 10 to the 17th K to 10 billion K over this range. Two models are proposed for the emission of the waves.

  12. Upstream migration of Pacific lampreys in the John Day River, Oregon: Behavior, timing, and habitat use

    USGS Publications Warehouse

    Robinson, T. Craig; Bayer, J.M.

    2005-01-01

    Adult Pacific lamprey migration and habitat preferences for over-winter holding and spawning, and larval rearing in tributaries to the Columbia River are not well understood. The John Day River is one such tributary where larval and adult stages of this species have been documented, and its free-flowing character provided the opportunity to study migration of Pacific lampreys unimpeded by passage constraints. Forty-two adult Pacific lampreys were captured in the John Day River near its mouth during their upstream migration. Pacific lampreys were surgically implanted with radio transmitters and released onsite, and tracked by fixed-site, aerial, and terrestrial telemetry methods for nearly one year. Adults moved upstream exclusively at night, with a mean rate of 11.1 ?? 6.3 km/day. They halted upstream migration by September, and held a single position for approximately six months in the lateral margins of riffles and glides, using boulders for cover. More than half of Pacific lampreys resumed migration in March before ending movement in early May. Pacific lampreys that resumed migration in spring completed a median of 87% of their upstream migration before over-winter holding. Upon completing migration. Pacific lampreys briefly held position before beginning downstream movement at the end of May. Though not directly observed, halting migration and movement downstream were likely the result of spawning and death. Gains in adult Pacific lamprey passage through the Columbia River hydrosystem and tributaries may be made by improvements that would expedite migration during spring and summer and increase the quantity and variety of cover and refuge opportunities. ?? 2005 by the Northwest Scientific Association. All rights reserved.

  13. Upstream to downstream: stormwater quality in Mayagüez, Puerto Rico.

    PubMed

    Wengrove, Meagan E; Ballestero, Thomas P

    2012-08-01

    The focus of this research was upon consequences of urban stormwater runoff entering two streams in Mayagüez, Puerto Rico. Mayagüez is the largest urban area of the western side of the island of Puerto Rico and provides an excellent point of reference to monitor the affects of urban development on water quality in a tropical climate. The two monitored streams were Quebrada del Oro and Cano Majagual. The research hypothesis asks, "Does stormwater runoff from urban development measurably affect the water quality of downstream receiving water by raising the conductivity, temperature, and flow quantity characteristics during storm events in comparison to upstream water quality?" In essence, the results for Quebrada del Oro agreed with the hypothesis of this project, while Cano Majagual produced results different from the hypothesis primarily due to the absence of non-urbanized land use for both upstream and downstream sections as well as the buffering capacity of a large wetland just upstream of the downstream instrument location of Cano Majagual. Both streams showed signs of stream impairment according to the temperature criteria (32°C or 90°F) set by the Junta de Calidad Ambiental and the US Environmental Protection Agency. Dissolved oxygen levels of the streams were severely affected by water temperature and oxygen-consuming matter within these stream systems, making dissolved oxygen and temperature important water quality parameters for tropical climates. PMID:21927787

  14. The influence of upstream boundary conditions on swirling flows undergoing vortex breakdown

    NASA Astrophysics Data System (ADS)

    Rukes, Lothar; Sieber, Moritz; Oberleithner, Kilian; Paschereit, Oliver

    2014-11-01

    Swirling jets undergoing vortex breakdown are common in research and technology. In part this is because swirling jets are widely used to anchor the flame position in gas turbines. Recently, the benefit in terms of flashback safety of axial air injection via a center body in the upstream mixing tube of a simplified premixed burner was demonstrated, Reichel (ASME Turbo Expo 2014). However, the presence of a center body alone alters the upstream boundary conditions for the downstream swirling flow. This study investigates how different upstream conditions modify the downstream swirling jet in a more generic setup. A swirling jet facility is used, consisting of a swirler, a pipe, a nozzle and an unconfined part. The focus lies on two large-scale flow features: the precessing vortex core (PVC) and the recirculation bubble. The flow field is measured with Particle Image Velocimetry and proper orthogonal decomposition is conducted to extract the dominant coherent structures. Additionally, a feature tracking approach is used to track the instantaneous shape and position of the recirculation bubble. We find that different center bodies modify the inflow profiles of the unconfined part of the flow in a specific way. This leads to significant differences in the large scale dynamics. Financial support from the German Science Foundation is gratefully acknowledged.

  15. Environmental correlates of upstream migration of yellow-phase American eels in the Potomac River drainage

    USGS Publications Warehouse

    Welsh, Stuart; Heather L. Liller

    2013-01-01

    Assessing the relationships between upstream migration and environmental variables is important to understanding the ecology of yellow-phase American Eels Anguilla rostrata. During an American Eel migration study within the lower Shenandoah River (Potomac River drainage), we counted and measured American Eels at the Millville Dam eel ladder for three periods: 14 May–23 July 2004, 7–30 September 2004, and 1 June–31 July 2005. Using generalized estimating equations, we modeled each time series of daily American Eel counts by fitting time-varying environmental covariates of lunar illumination (LI), river discharge (RD), and water temperature (WT), including 1-d and 2-d lags of each covariate. Information-theoretic approaches were used for model selection and inference. A total of 4,847 American Eels (19–74 cm total length) used the ladder during the three periods, including 2,622 individuals during a 2-d span following a hurricane-induced peak in river discharge. Additive-effects models of RD + WT, a 2-d lag of LI + RD, and LI + RD were supported for the three periods, respectively. Parameter estimates were positive for river discharge for each time period, negative for lunar illumination for two periods and positive for water temperature during one period. Additive-effects models supported synergistic influences of environmental variables on the upstream migration of yellow-phase American Eels, although river discharge was consistently supported as an influential correlate of upstream migration.

  16. The role of the ionosphere in coupling upstream ULF wave power into the dayside magnetosphere

    NASA Technical Reports Server (NTRS)

    Engebretson, M. J.; Cahill, L. J., Jr.; Arnoldy, R. L.; Anderson, B. J.; Rosenberg, T. J.

    1991-01-01

    A series of recent studies of Pc 3 magnetic pulsations in the dayside outer magnetosphere has given new insights into the possible mechanisms of entry of ULF wave power into the magnetosphere from a bow shock-related upstream source. A comparison is made of data from two 10-hour intervals on successive days in April 1986 and then a possible model for transmission of pulsation signals from the magnetosheath into the dayside magnetosphere is presented. Clear interplanetary magnetic field magnitude control of dayside resonant harmonic pulsations and band-limited very high latitude pulsations, as well as pulsation-modulated precipitation of what appear to be magnetosheath/boundary layer electrons are shown. It is believed that this modulated precipitation may be responsible for the propagation of upstream wave power in the Pc 3 frequency band into the high-latitude ionosphere, from whence it may be transported throughout the dayside outer magnetosphere by means of an 'ionospheric transistor'. In this model, modulations in ionospheric conductivity caused by cusp/cleft precipitation cause varying ionospheric currents with frequency spectra determined by the upstream waves; these modulations will be superimposed on the Birkeland currents, which close via these ionospheric currents. Modulated region 2 Birkeland currents will in turn provide a narrow-band source of wave energy to a wide range of dayside local times in the outer magnetosphere.

  17. MAGNETIC VARIANCES AND PITCH-ANGLE SCATTERING TIMES UPSTREAM OF INTERPLANETARY SHOCKS

    SciTech Connect

    Perri, Silvia; Zimbardo, Gaetano E-mail: gaetano.zimbardo@fis.unical.it

    2012-07-20

    Recent observations of power-law time profiles of energetic particles accelerated at interplanetary shocks have shown the possibility of anomalous, superdiffusive transport for energetic particles throughout the heliosphere. Those findings call for an accurate investigation of the magnetic field fluctuation properties at the resonance frequencies upstream of the shock's fronts. Normalized magnetic field variances, indeed, play a crucial role in the determination of the pitch-angle scattering times and then of the transport regime. The present analysis investigates the time behavior of the normalized variances of the magnetic field fluctuations, measured by the Ulysses spacecraft upstream of corotating interaction region (CIR) shocks, for those events which exhibit superdiffusion for energetic electrons. We find a quasi-constant value for the normalized magnetic field variances from about 10 hr to 100 hr from the shock front. This rules out the presence of a varying diffusion coefficient and confirms the possibility of superdiffusion for energetic electrons. A statistical analysis of the scattering times obtained from the magnetic fluctuations upstream of the CIR events has also been performed; the resulting power-law distributions of scattering times imply long range correlations and weak pitch-angle scattering, and the power-law slopes are in qualitative agreement with superdiffusive processes described by a Levy random walk.

  18. Far upstream element binding protein 1: a commander of transcription, translation and beyond

    PubMed Central

    Zhang, J; Chen, QM

    2016-01-01

    The far upstream binding protein 1 (FBP1) was first identified as a DNA-binding protein that regulates c-Myc gene transcription through binding to the far upstream element (FUSE) in the promoter region 1.5 kb upstream of the transcription start site. FBP1 collaborates with TFIIH and additional transcription factors for optimal transcription of the c-Myc gene. In recent years, mounting evidence suggests that FBP1 acts as an RNA-binding protein and regulates mRNA translation or stability of genes, such as GAP43, p27Kip and nucleophosmin. During retroviral infection, FBP1 binds to and mediates replication of RNA from Hepatitis C and Enterovirus 71. As a nuclear protein, FBP1 may translocate to the cytoplasm in apoptotic cells. The interaction of FBP1 with p38/JTV-1 results in FBP1 ubiquitination and degradation by the proteasomes. Transcriptional and post-transcriptional regulations by FBP1 contribute to cell proliferation, migration or cell death. FBP1 association with carcinogenesis has been reported in c-Myc dependent or independent manner. This review summarizes biochemical features of FBP1, its mechanism of action, FBP family members and the involvement of FBP1 in carcinogenesis. PMID:22926519

  19. Formation Flight: Upstream Influence of a Wing on a Streamwise Vortex

    NASA Astrophysics Data System (ADS)

    McKenna, Chris; Rockwell, Donald; Lehigh University Fluids Lab Team

    2015-11-01

    Aircraft flying together in formation can experience aerodynamic advantages. Impingement of the tip vortex of the leader wing on the trailer wing can increase the lift to drag ratio L/D and the unsteady loading on the trailer wing. These increases are sensitive to the impingement location of the vortex on the wing. Particle image velocimetry is employed to determine patterns of velocity and vorticity on successive crossflow planes along the vortex, which lead to volume representations and thereby characterization of the streamwise evolution of the vortex structure as it approaches the trailer wing. This evolution of the incident vortex is affected by the upstream influence of the trailer wing, and is highly dependent on the location of vortex impingement. As the spanwise impingement location of the vortex moves from outboard of the wing tip to inboard, the upstream influence on the development of the vortex increases. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the in-plane vorticity; decrease the downwash; and increase the root-mean-square of both streamwise velocity and vorticity.

  20. Spatial and temporal patterns of micropollutants upstream and downstream of 24 WWTPs across Switzerland

    NASA Astrophysics Data System (ADS)

    Spycher, Barbara; Deuber, Fabian; Kistler, David; Burdon, Frank; Reyes, Marta; Alder, Alfredo C.; Joss, Adriano; Eggen, Rik; Singer, Heinz; Stamm, Christian

    2015-04-01

    Treated wastewater is an important source of micropollutants in many streams. These chemicals consist of very diverse set of compounds that may vary in space and time. In order to improve our understanding of such spatio-temporal patterns of micropollutants in surface waters, we compared upstream and downstream locations at 24 sites across the Swiss Plateau and Jura (12 sites in the 2013 campaign, 12 sites during the 2014 campaign). Each site represents the most upstream treatment plant in the corresponding catchment. This survey is part of the interdisciplinary, Eawag-wide research project EcoImpact that aims at elucidating the ecological effects of micropollutants on stream ecosystems. In 2013, a broad analytical screening was applied to samples collected during winter (January) and summer conditions (June). Based in these results, the bi-monthly samples obtained in 2014 were analysed for a set of about 60 selected organic micropollutants and 10 heavy metals. The screening results demonstrate that generally pharmaceuticals, artificial sweeteners and corrosion inhibitors make up the largest part of the organic micropollutants. Pesticides including biocides and plant protection products are also regularly found but at lower concentrations. This presentation will analyse the variability of the micropollutant patterns across the different sites and how upstream conditions and the wastewater composition changes with season.

  1. Simulating the effects of upstream turbulence on dispersion around a building

    SciTech Connect

    Zhang, Y.Q.; Arya, S.P.S.; Huber, A.H.; Snyder, W.H.

    1992-01-01

    The effects of high turbulence versus no turbulence in a sheared boundary-layer flow approaching a building are being investigated by a turbulent kinetic energy/dissipation model (TEMPEST). The effects on both the mean flow and the concentration field around a cubical building are presented. The numerical simulations demonstrate significant effects due to the differences in the incident flow. The addition of upstream turbulence results in a reduced size of the cavity directly behind the building. The velocity deficits in the wake strongly depend on the upstream turbulence intensities. The accuracy of numerical simulations is verified by comparing the predicted mean flow and concentration fields with the wind tunnel measurements of Castro and Robins (1977) and Robins and Castro (1977, 1975). Comparing the results with experimental data, the authors show that the TEMPEST model can reasonably simulate the mean flow. The numerical simulations of the concentration fields due to a source on the roof-top of the building are presented. Both the value and the position of the maximum ground-level concentration are changed dramatically due to the effects of the upstream level of turblence.

  2. Local potentiation of stress-responsive genes by upstream noncoding transcription

    PubMed Central

    Takemata, Naomichi; Oda, Arisa; Yamada, Takatomi; Galipon, Josephine; Miyoshi, Tomoichiro; Suzuki, Yutaka; Sugano, Sumio; Hoffman, Charles S.; Hirota, Kouji; Ohta, Kunihiro

    2016-01-01

    It has been postulated that a myriad of long noncoding RNAs (lncRNAs) contribute to gene regulation. In fission yeast, glucose starvation triggers lncRNA transcription across promoter regions of stress-responsive genes including fbp1 (fructose-1,6-bisphosphatase1). At the fbp1 promoter, this transcription promotes chromatin remodeling and fbp1 mRNA expression. Here, we demonstrate that such upstream noncoding transcription facilitates promoter association of the stress-responsive transcriptional activator Atf1 at the sites of transcription, leading to activation of the downstream stress genes. Genome-wide analyses revealed that ∼50 Atf1-binding sites show marked decrease in Atf1 occupancy when cells are treated with a transcription inhibitor. Most of these transcription-enhanced Atf1-binding sites are associated with stress-dependent induction of the adjacent mRNAs or lncRNAs, as observed in fbp1. These Atf1-binding sites exhibit low Atf1 occupancy and high histone density in glucose-rich conditions, and undergo dramatic changes in chromatin status after glucose depletion: enhanced Atf1 binding, histone eviction, and histone H3 acetylation. We also found that upstream transcripts bind to the Groucho-Tup1 type transcriptional corepressors Tup11 and Tup12, and locally antagonize their repressive functions on Atf1 binding. These results reveal a new mechanism in which upstream noncoding transcription locally magnifies the specific activation of stress-inducible genes via counteraction of corepressors. PMID:26945040

  3. Experimental Branch Retinal Vein Occlusion Induces Upstream Pericyte Loss and Vascular Destabilization

    PubMed Central

    Dominguez, Elisa; Raoul, William; Calippe, Bertrand; Sahel, José-Alain; Guillonneau, Xavier; Paques, Michel; Sennlaub, Florian

    2015-01-01

    Aims Branch retinal vein occlusion (BRVO) leads to extensive vascular remodeling and is important cause of visual impairment. Although the vascular morphological changes following experimental vein occlusion have been described in a variety of models using angiography, the underlying cellular events are ill defined. Methods and Results We here show that laser-induced experimental BRVO in mice leads to a wave of TUNEL-positive endothelial cell (EC) apoptosis in the upstream vascular network associated with a transient edema and hemorrhages. Subsequently, we observe an induction of EC proliferation within the dilated vein and capillaries, detected by EdU incorporation, and the edema resolves. However, the pericytes of the upstream capillaries are severely reduced, which was associated with continuing EC apoptosis and proliferation. The vascular remodeling was associated with increased expression of TGFβ, TSP-1, but also FGF2 expression. Exposure of the experimental animals to hypoxia, when pericyte (PC) dropout had occurred, led to a dramatic increase in endothelial cell proliferation, confirming the vascular instability induced by the experimental BRVO. Conclusion Experimental BRVO leads to acute endothelial cells apoptosis and increased permeability. Subsequently the upstream vascular network remains destabilized, characterized by pericyte dropout, un-physiologically high endothelial cells turnover and sensitivity to hypoxia. These early changes might pave the way for capillary loss and subsequent chronic ischemia and edema that characterize the late stage disease. PMID:26208283

  4. Local potentiation of stress-responsive genes by upstream noncoding transcription.

    PubMed

    Takemata, Naomichi; Oda, Arisa; Yamada, Takatomi; Galipon, Josephine; Miyoshi, Tomoichiro; Suzuki, Yutaka; Sugano, Sumio; Hoffman, Charles S; Hirota, Kouji; Ohta, Kunihiro

    2016-06-20

    It has been postulated that a myriad of long noncoding RNAs (lncRNAs) contribute to gene regulation. In fission yeast, glucose starvation triggers lncRNA transcription across promoter regions of stress-responsive genes including fbp1 (fructose-1,6-bisphosphatase1). At the fbp1 promoter, this transcription promotes chromatin remodeling and fbp1 mRNA expression. Here, we demonstrate that such upstream noncoding transcription facilitates promoter association of the stress-responsive transcriptional activator Atf1 at the sites of transcription, leading to activation of the downstream stress genes. Genome-wide analyses revealed that ∼50 Atf1-binding sites show marked decrease in Atf1 occupancy when cells are treated with a transcription inhibitor. Most of these transcription-enhanced Atf1-binding sites are associated with stress-dependent induction of the adjacent mRNAs or lncRNAs, as observed in fbp1 These Atf1-binding sites exhibit low Atf1 occupancy and high histone density in glucose-rich conditions, and undergo dramatic changes in chromatin status after glucose depletion: enhanced Atf1 binding, histone eviction, and histone H3 acetylation. We also found that upstream transcripts bind to the Groucho-Tup1 type transcriptional corepressors Tup11 and Tup12, and locally antagonize their repressive functions on Atf1 binding. These results reveal a new mechanism in which upstream noncoding transcription locally magnifies the specific activation of stress-inducible genes via counteraction of corepressors. PMID:26945040

  5. Numerical simulation of upstream disturbance on flows around a slender body

    NASA Technical Reports Server (NTRS)

    Degani, David; Tobak, Murray

    1993-01-01

    Numerical solutions of the thin-layer approximation of the compressible Navier-Stokes equations have been obtained for flows around an ogive-cylinder body with and without a small fixed disturbance placed upstream of the body tip. Locating the disturbance at positions in the flow field upstream of the tip provokes the same range of behavior of the asymmetric flow that was numerically produced earlier by use of a geometrical disturbance on the body tip. Results remain consistent with the presence of a convective instability mechanism, and demonstrate the potential for a precise mapping of the body's receptivity to fixed disturbances in the flow field. Numerical solutions were also obtained for the flow-field responses to impulsive upstream disturbances to determine whether there is a growing response to an asymmetric impulsive disturbance that is consistent with presence of a convective instability mechanism. Results for surface pressure are interpreted with the aid of a mathematical model. The model suggests that the observed growth of surface pressure gradient with time and distance along a ray in response to an asymmetnc impulsive disturbance is in accord with the solution of a Ginzberg-Landau equation, with distinguishing features of the solution being consistent with the convective instability mode of behavior.

  6. Predicting bulk damage in NIF triple harmonic generators

    SciTech Connect

    De Yoreo, J; Runkel, M; Williams, W

    1998-09-18

    Recently reported experiments have investigated the statistics of laser damage in KDP and KD*P. Automated damage tests have allowed cumulative failure and damage probability distributions to be constructed. Large area tests have investigated the feasibility of on-line laser conditioning and damage evolution for tripler harmonic generation (THG) crystals on the National Ignition Facility (NIF). These tests have shown that there is a nonzero probability of damage at NIF redline fluence (14.3 J/cm2, 351 nm, 3 ns) and that the damage pinpoint density evolves exponentially with fluence. In this paper, the results of these tests are used in conjunction with model spatial profiles of the NIP beam to predict the level of damage created in the THG crystal. A probabilistic calculation based on the overlap of the beam fluence and damage probabiity distribution shows that the overall damage probability is less than 3% for well-conditioned, high quality KDP/KD*P crystals of conventional or rapid growth. The number density of generated pinpoints has been calculated by mapping the damage evolution curves onto the NlF model profile. This shows that the number of damage pinpoints generated in high fluence portions of the NIF beam will be low for well-conditioned THG crystals. In contrast, unconditioned triplers of the same material will exhibit an increase in pinpoint density of greater than 20x. To test the validity of these calculations a 37 cm, conventionally grown KD*P tripler from the Beamlet laser was scatter mapped for bulk damage. The tripler had been exposed to NE-like fluences during its operational lifetime on Beamlet and exhibited very low levels of bulk pinpoint damage, essentially supporting the predictions based on tests and modeling.

  7. Damage Prediction in Sheet Metal Forming

    NASA Astrophysics Data System (ADS)

    Saanouni, Khémais; Badreddine, Houssem

    2007-05-01

    Ductile (or plastic) damage often occurs during sheet metal forming processes due to the large plastic flow localization. Accordingly, it is crucial for numerical tools, used in the simulation of that processes, to use fully coupled constitutive equations accounting for both hardening and damage. This can be used in both cases, namely to overcome the damage initiation during some sheet metal forming processes as deep drawing, … or to enhance the damage initiation and growth as in sheet metal cutting. In this paper, a fully coupled constitutive equations accounting for combined isotropic and kinematic hardening as well as the ductile damage is implemented into the general purpose Finite Element code for metal forming simulation. First, the fully coupled anisotropic constitutive equations in the framework of Continuum Damage Mechanics are presented. Attention is paid to the strong coupling between the main mechanical fields as elasto-viscoplasticity, mixed hardening, ductile isotropic damage and contact with friction. The anisotropy of the plastic flow is taken into account using various kinds of quadratic or non quadratic yield criteria in the framework of non associative finite plasticity theory with two types of normality rules. The associated numerical aspects concerning both the local integration of the coupled constitutive equations as well as the (global) equilibrium integration schemes are presented. The local integration is outlined thanks to the Newton iterative scheme applied to a reduced system of 2 equations. For the global resolution of the initial and boundary value problem, the classical dynamic explicit (DE) scheme with an adaptive time step control is used. The numerical implementation of the damage is made in such a manner that calculations can be executed with or without damage effect, i.e. fully coupled or uncoupled calculations. For the 2D processes an advanced adaptive meshing procedure is used in order to enhance the numerical solution and

  8. Composites Damage Tolerance Workshop

    NASA Technical Reports Server (NTRS)

    Gregg, Wayne

    2006-01-01

    The Composite Damage Tolerance Workshop included participants from NASA, academia, and private industry. The objectives of the workshop were to begin dialogue in order to establish a working group within the Agency, create awareness of damage tolerance requirements for Constellation, and discuss potential composite hardware for the Crew Launch Vehicle (CLV) Upper Stage (US) and Crew Module. It was proposed that a composites damage tolerance working group be created that acts within the framework of the existing NASA Fracture Control Methodology Panel. The working group charter would be to identify damage tolerance gaps and obstacles for implementation of composite structures into manned space flight systems and to develop strategies and recommendations to overcome these obstacles.

  9. LSD and Genetic Damage

    ERIC Educational Resources Information Center

    Dishotsky, Norman I.; And Others

    1971-01-01

    Reviews studies of the effects of lysergic acid diethylamide (LSD) on man and other organisms. Concludes that pure LSD injected in moderate doses does not cause chromosome or detectable genetic damage and is not a teratogen or carcinogen. (JM)

  10. Composite heat damage assessment

    SciTech Connect

    Janke, C.J.; Wachter, E.A.; Philpot, H.E.; Powell, G.L.

    1993-12-31

    The effects of heat damage were determined on the residual mechanical, physical, and chemical properties of IM6/3501-6 laminates, and potential nondestructive techniques to detect and assess material heat damage were evaluated. About one thousand preconditioned specimens were exposed to elevated temperatures, then cooled to room temperature and tested in compression, flexure, interlaminar shear, shore-D hardness, weight loss, and change in thickness. Specimens experienced significant and irreversible reduction in their residual properties when exposed to temperatures exceeding the material upper service temperature of this material (350{degrees}F). The Diffuse Reflectance Infrared Fourier Transform and Laser-Pumped Fluorescence techniques were found to be capable of rapid, in-service, nondestructive detection and quantitation of heat damage in IM6/3501- 6. These techniques also have the potential applicability to detect and assess heat damage effects in other polymer matrix composites.

  11. Diabetes and nerve damage

    MedlinePlus

    ... hot or cold When the nerves that control digestion are affected, you may have trouble digesting food. ... harder to control. Damage to nerves that control digestion almost always occurs in people with severe nerve ...

  12. 46 CFR 174.315 - Extent and character of damage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Extent and character of damage. 174.315 Section 174.315 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES... Extent and character of damage. (a) The calculations required by § 174.310 must show that the dredge...

  13. 46 CFR 174.315 - Extent and character of damage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Extent and character of damage. 174.315 Section 174.315 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES... Extent and character of damage. (a) The calculations required by § 174.310 must show that the dredge...

  14. 46 CFR 172.230 - Character of damage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Character of damage. 172.230 Section 172.230 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES... of damage. (a) Design calculations must show that each vessel can survive damage— (1) To any...

  15. Foam-on-Tile Damage Model

    NASA Technical Reports Server (NTRS)

    Koharchik, Michael; Murphy, Lindsay; Parker, Paul

    2012-01-01

    An impact model was developed to predict how three specific foam types would damage the Space Shuttle Orbiter insulating tiles. The inputs needed for the model are the foam type, the foam mass, the foam impact velocity, the foam impact incident angle, the type being impacted, and whether the tile is new or aged (has flown at least one mission). The model will determine if the foam impact will cause damage to the tile. If it can cause damage, the model will output the damage cavity dimensions (length, depth, entry angle, exit angle, and sidewall angles). It makes the calculations as soon as the inputs are entered (less than 1 second). The model allows for the rapid calculation of numerous scenarios in a short time. The model was developed from engineering principles coupled with significant impact testing (over 800 foam impact tests). This model is applicable to masses ranging from 0.0002 up to 0.4 pound (0.09 up to 181 g). A prior tool performed a similar function, but was limited to the assessment of a small range of masses and did not have the large test database for verification. In addition, the prior model did not provide outputs of the cavity damage length, entry angle, exit angle, or sidewall angles.

  16. Turbulence Analysis Upstream of a Wind Turbine: a LES Approach to Improve Wind LIDAR Technology

    NASA Astrophysics Data System (ADS)

    Calaf, M.

    2015-12-01

    Traditionally wind turbines learn about the incoming wind conditions by means of a wind vane and a cup anemometer. This approach presents two major limitations: 1) because the measurements are done at the nacelle, behind the rotor blades, the wind observations are perturbed inducing potential missalignement and power losses; 2) no direct information of the incoming turbulence is extracted, limiting the capacity to timely adjust the wind turbine against strong turbulent intensity events. Recent studies have explored the possibility of using wind LIDAR (Light Detection and Ranging) to overcome these limitations (Angelou et al. 2010 and Mikelsen et al., 2013). By installing a wind LIDAR at the nacelle of a wind turbine one can learn about the incoming wind and turbulent conditions ahead of time to timely readjust the turbine settings. Yet several questions remain to be answered such as how far upstream one should measure and what is the appropriate averaging time to extract valuable information. In light of recent results showing the relevance of atmospheric stratification in wind energy applications, it is expected that different averaging times and upstream scanning distances are advised for wind LIDAR measurements. A Large Eddy Simulation (LES) study exploring the use of wind LIDAR technology within a wind farm has been developed. The wind farm consists of an infinite array of horizontal axis wind turbines modeled using the actuator disk with rotation. The model also allows the turbines to dynamically adjust their yaw with the incoming wind vector. The flow is forced with a constant geostrophic wind and a time varying surface temperature reproducing a realistic diurnal cycle. Results will be presented showing the relevance of the averaging time for the different flow characteristics as well as the effect of different upstream scanning distances. While it is observed that within a large wind farm there are no-significant gains in power output by scanning further

  17. Use of Displacement Damage Dose in an Engineering Model of GaAs Solar Cell Radiation Damage

    NASA Technical Reports Server (NTRS)

    Morton, T. L.; Chock, R.; Long, K. J.; Bailey, S.; Messenger, S. R.; Walters, R. J.; Summers, G. P.

    2005-01-01

    Current methods for calculating damage to solar cells are well documented in the GaAs Solar Cell Radiation Handbook (JPL 96-9). An alternative, the displacement damage dose (D(sub d)) method, has been developed by Summers, et al. This method is currently being implemented in the SAVANT computer program.

  18. Tyrosine 370 phosphorylation of ATM positively regulates DNA damage response

    PubMed Central

    Lee, Hong-Jen; Lan, Li; Peng, Guang; Chang, Wei-Chao; Hsu, Ming-Chuan; Wang, Ying-Nai; Cheng, Chien-Chia; Wei, Leizhen; Nakajima, Satoshi; Chang, Shih-Shin; Liao, Hsin-Wei; Chen, Chung-Hsuan; Lavin, Martin; Ang, K Kian; Lin, Shiaw-Yih; Hung, Mien-Chie

    2015-01-01

    Ataxia telangiectasia mutated (ATM) mediates DNA damage response by controling irradiation-induced foci formation, cell cycle checkpoint, and apoptosis. However, how upstream signaling regulates ATM is not completely understood. Here, we show that upon irradiation stimulation, ATM associates with and is phosphorylated by epidermal growth factor receptor (EGFR) at Tyr370 (Y370) at the site of DNA double-strand breaks. Depletion of endogenous EGFR impairs ATM-mediated foci formation, homologous recombination, and DNA repair. Moreover, pretreatment with an EGFR kinase inhibitor, gefitinib, blocks EGFR and ATM association, hinders CHK2 activation and subsequent foci formation, and increases radiosensitivity. Thus, we reveal a critical mechanism by which EGFR directly regulates ATM activation in DNA damage response, and our results suggest that the status of ATM Y370 phosphorylation has the potential to serve as a biomarker to stratify patients for either radiotherapy alone or in combination with EGFR inhibition. PMID:25601159

  19. Calculation of shielding parameters

    NASA Astrophysics Data System (ADS)

    Montoya, Zeferino Jorge

    Within the nuclear reaction exists three types of energy producing reactions: (1) radioactive disintegration; (2) fission; and (3) fusion. Besides the radiation produced in these reactions there are radioactive emissions of a different type, and in some of these cases they are of great penetration power and scope. The radiation produces great damage when interacted with materials, in particular the most dangerous are neutrons and gamma photons. For this reason it is necessary to protect people who work in places which operate with radioactive sources from the radiation, in addition to reducing the radiation doses to the most reasonably possible, considering the circumstances of the installations. The three determining factors in the proposition of reducing exposure to radiation are: (1) to maintain control over the reduced exposure in the time of the permanence in the irradiated areas; (2) to increase the distance between the source and the operating personnel as much as possible; and (3) to place an armor-plate between the source and the receptor. The work described in this paper has its objective a calculation of the parameters of an armor-plate in radioactive sources, with the goal of estimating the doses of radiation in protecting people and other biological systems from exposure to radiation produced during the nuclear reactions. The parameters to be principally considered are: (1) characteristics of the source; (2) geometry of the source at the point of exposure; and (3) material and thickness of the armor-plate.

  20. Assessing Tropical Cyclone Damage

    NASA Astrophysics Data System (ADS)

    Done, J.; Czajkowski, J.

    2012-12-01

    Landfalling tropical cyclones impact large coastal and inland areas causing direct damage due to winds, storm-surge flooding, tornadoes, and precipitation; as well as causing substantial indirect damage such as electrical outages and business interruption. The likely climate change impact of increased tropical cyclone intensity, combined with increases in exposure, bring the possibility of increased damage in the future. A considerable amount of research has focused on modeling economic damage due to tropical cyclones, and a series of indices have been developed to assess damages under climate change. We highlight a number of ways this research can be improved through a series of case study analyses. First, historical loss estimates are revisited to properly account for; time, impacted regions, the source of damage by type, and whether the damage was direct/indirect and insured/uninsured. Second, the drivers of loss from both the socio-economic and physical side are examined. A case is made to move beyond the use of maximum wind speed to more stable metrics and the use of other characteristics of the wind field such as direction, degree of gustiness, and duration is explored. A novel approach presented here is the potential to model losses directly as a function of climate variables such as sea surface temperature, greenhouse gases, and aerosols. This work is the first stage in the development of a tropical cyclone loss model to enable projections of losses under scenarios of both socio-economic change (such as population migration or altered policy) and physical change (such as shifts in tropical cyclone activity one from basin to another or within the same basin).

  1. Tunable self-seeding Fabry-Pérot laser diode for upstream multiwavelength shared ethernet passive optical network

    NASA Astrophysics Data System (ADS)

    Zhu, Min; Xiao, Shilin; Zhou, Zhao; Bi, Meihua

    2011-03-01

    We present a novel upstream multiwavelength shared ethernet passive optical network architecture, based on a proposed self-seeding Fabry-Pérot laser diode (FP-LD) at the optical network unit. The performances of the wavelength and power stability, side-mode suppression ratio, and tuning range for the proposed tunable self-seeding laser module are experimentally investigated. The bit-error-rate measurement is performed with direct modulation on FP-LD of 1.25 Gbps upstream data. The performance benefits from the upstream wavelengths sharing are showed via simulations.

  2. Observations on communities of brook and brown trout separated by an upstream movement barrier on the Firehole River

    SciTech Connect

    Kaeding, L.R.

    1980-07-01

    Division of a fluvial fish community by stream impoundment can give rise to dissimilar upstream and downstream assemblages which may themselves differ from the original community. These changes are often ascribed to the modification of physical habitat or water quality. Less well documented are effects on fluvial fish communities of an upstream-1 movement barrier alone. Observations were made on contrasting communities of brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) separated by Kepler Cascades in the Firehole River of Yellowstone National Park, Wyoming, a series of waterfalls that form an upstream-movement barrier. (ACR)

  3. Monte Carlo Treatment of Displacement Damage in Bandgap Engineered HgCdTe Detectors

    NASA Technical Reports Server (NTRS)

    Fodness, Bryan C.; Marshall, Paul W.; Reed, Robert A.; Jordan, Thomas M.; Pickel, James C.; Jun, Insoo; Xapsos, Michael A.; Burke, Edward A.

    2003-01-01

    The conclusion are: 1. Description of NIEL calculation for short, mid, and longwave HgCdTe material compositions. 2. Full recoil spectra details captured and analyzed Importance of variance in high Z materials. 3. Can be applied directly to calculate damage distributions in arrays. 4. Future work will provide comparisons of measured array damage with calculated NIEL and damage energy distributions. 5. Technique to assess the full recoil spectrum behavior is extendable to other materials.

  4. HENRY'S LAW CALCULATOR

    EPA Science Inventory

    On-Site was developed to provide modelers and model reviewers with prepackaged tools ("calculators") for performing site assessment calculations. The philosophy behind OnSite is that the convenience of the prepackaged calculators helps provide consistency for simple calculations,...

  5. Pregnancy Weight Gain Calculator

    MedlinePlus

    ... Newsroom Dietary Guidelines Communicator’s Guide Pregnancy Weight Gain Calculator You are here Home / Online Tools Pregnancy Weight Gain Calculator Print Share Pregnancy Weight Gain Calculator Pregnancy Weight Gain Calculator Pregnancy Weight Gain Intro ...

  6. Self-formed meandering river created in the laboratory using an upstream migrating boundary

    NASA Astrophysics Data System (ADS)

    van Dijk, W. M.; van de Lageweg, W. I.; Kleinhans, M. G.

    2010-12-01

    Braided rivers are relatively easily formed in the laboratory, whereas self-formed meandering rivers in the lab have proven very difficult to form, indicating a lack of understanding of the necessary and sufficient conditions for meandering. Our objective is to create self-formed dynamic meandering rivers and floodplains in a laboratory. Early experiments attempted to initiate meandering with upstream inflow at a fixed angle different from the general flow direction. The resulting bends were fixed at one position, which is not the dynamic meandering observed in nature. Another important condition for meandering is to have banks stronger than the non-cohesive bed sediment, which has been attained by growing vegetation. Furthermore, finer or light-weight sediment has been used to let chute channels fill up where otherwise multi-thread channels would have evolved, which is braiding. Yet the fixed-angle inflow kept meander migration and channel belt width and complexity limited. We accomplished dynamic meandering in the laboratory by using an upstream migrating boundary, which simulates a meander migrating into the flume. Our experiments were conducted in a circulated flume of 11x6 meter, with a constant discharge and sediment feed consisting of a sediment mixture ranging from silt to fine gravel (Kleinhans et al., 2010, this conference). The downstream boundary is a lake into which the river built a branched fan delta (Van de Lageweg et al., 2010, this conference). The morphology was recorded by high-resolution (0.5 mm) line-laser scanning and digital Single Lens Reflex (SLR) camera used for channel-floodplain segmentation and particle size estimation, at an interval of 8 hours. Furthermore a large number of smaller-scale auxiliary experiments were conducted to explore meandering tendency in a large range of parameters. Initial alternate ‘forced’ bars were formed at fixed positions with low sinuosity when the upstream boundary was at one fixed position. Migration

  7. Crumpling Damaged Graphene

    NASA Astrophysics Data System (ADS)

    Giordanelli, I.; Mendoza, M.; Andrade, J. S., Jr.; Gomes, M. A. F.; Herrmann, H. J.

    2016-05-01

    Through molecular mechanics we find that non-covalent interactions modify the fractality of crumpled damaged graphene. Pristine graphene membranes are damaged by adding random vacancies and carbon-hydrogen bonds. Crumpled membranes exhibit a fractal dimension of 2.71 ± 0.02 when all interactions between carbon atoms are considered, and 2.30 ± 0.05 when non-covalent interactions are suppressed. The transition between these two values, obtained by switching on/off the non-covalent interactions of equilibrium configurations, is shown to be reversible and independent on thermalisation. In order to explain this transition, we propose a theoretical model that is compatible with our numerical findings. Finally, we also compare damaged graphene membranes with other crumpled structures, as for instance polymerised membranes and paper sheets, that share similar scaling properties.

  8. Crumpling Damaged Graphene.

    PubMed

    Giordanelli, I; Mendoza, M; Andrade, J S; Gomes, M A F; Herrmann, H J

    2016-01-01

    Through molecular mechanics we find that non-covalent interactions modify the fractality of crumpled damaged graphene. Pristine graphene membranes are damaged by adding random vacancies and carbon-hydrogen bonds. Crumpled membranes exhibit a fractal dimension of 2.71 ± 0.02 when all interactions between carbon atoms are considered, and 2.30 ± 0.05 when non-covalent interactions are suppressed. The transition between these two values, obtained by switching on/off the non-covalent interactions of equilibrium configurations, is shown to be reversible and independent on thermalisation. In order to explain this transition, we propose a theoretical model that is compatible with our numerical findings. Finally, we also compare damaged graphene membranes with other crumpled structures, as for instance polymerised membranes and paper sheets, that share similar scaling properties. PMID:27173442

  9. Damage Tolerance Assessment Branch

    NASA Technical Reports Server (NTRS)

    Walker, James L.

    2013-01-01

    The Damage Tolerance Assessment Branch evaluates the ability of a structure to perform reliably throughout its service life in the presence of a defect, crack, or other form of damage. Such assessment is fundamental to the use of structural materials and requires an integral blend of materials engineering, fracture testing and analysis, and nondestructive evaluation. The vision of the Branch is to increase the safety of manned space flight by improving the fracture control and the associated nondestructive evaluation processes through development and application of standards, guidelines, advanced test and analytical methods. The Branch also strives to assist and solve non-aerospace related NDE and damage tolerance problems, providing consultation, prototyping and inspection services.

  10. Crumpling Damaged Graphene

    PubMed Central

    Giordanelli, I.; Mendoza, M.; Andrade Jr., J. S.; Gomes, M. A. F.; Herrmann, H. J.

    2016-01-01

    Through molecular mechanics we find that non-covalent interactions modify the fractality of crumpled damaged graphene. Pristine graphene membranes are damaged by adding random vacancies and carbon-hydrogen bonds. Crumpled membranes exhibit a fractal dimension of 2.71 ± 0.02 when all interactions between carbon atoms are considered, and 2.30 ± 0.05 when non-covalent interactions are suppressed. The transition between these two values, obtained by switching on/off the non-covalent interactions of equilibrium configurations, is shown to be reversible and independent on thermalisation. In order to explain this transition, we propose a theoretical model that is compatible with our numerical findings. Finally, we also compare damaged graphene membranes with other crumpled structures, as for instance polymerised membranes and paper sheets, that share similar scaling properties. PMID:27173442

  11. Comparative CFD study of the effect of the presence of downstream turbines on upstream ones using a rotational speed control system

    NASA Astrophysics Data System (ADS)

    Breton, S.-P.; Nilsson, K.; Ivanell, S.; Olivares-Espinosa, H.; Masson, C.; Dufresne, L.

    2014-12-01

    The effect of a downstream turbine on the production of a turbine located upstream of the latter is studied in this work. This is done through the use of two CFD simulation codes, namely OpenFOAM and EllipSys3D, which solve the Navier-Stokes equations in their incompressible form using a finite volume approach. In both EllipSys3D and OpenFoam, the LES (Large Eddy Simulation) technique is used for modelling turbulence. The wind turbine rotors are modelled as actuator disks whose loading is determined through the use of tabulated airfoil data by applying the blade-element method. A generator torque controller is used in both simulation methods to ensure that the simulated turbines adapt, in terms of rotational velocity, to the inflow conditions they are submited to. Results from both simulation codes, although they differ slightly, show that the downstream turbine affects the upstream one when the spacing between the turbines is small. This is also suggested to be the case looking at measurements performed at the Lillgrund offshore wind farm, whose turbines are located unusually close to each other. However, for distances used in today's typical wind farms, this effect is shown by our calculations not to be significant.

  12. Subrupture Tendon Fatigue Damage

    PubMed Central

    Laudier, Damien M.; Shine, Jean H.; Basta-Pljakic, Jelena; Jepsen, Karl J.; Schaffler, Mitchell B.; Flatow, Evan L.

    2016-01-01

    The mechanical and microstructural bases of tendon fatigue, by which damage accumulates and contributes to degradation, are poorly understood. To investigate the tendon fatigue process, rat flexor digitorum longus tendons were cyclically loaded (1–16 N) until reaching one of three levels of fatigue damage, defined as peak clamp-to-clamp strain magnitudes representing key intervals in the fatigue life: i) Low (6.0%–7.0%); ii) Moderate (8.5%–9.5%); and iii) High (11.0%–12.0%). Stiffness, hysteresis, and clamp-to-clamp strain were assessed diagnostically (by cyclic loading at 1–8 N) before and after fatigue loading and following an unloaded recovery period to identify mechanical parameters as measures of damage. Results showed that tendon clamp-to-clamp strain increased from pre- to post-fatigue loading significantly and progressively with the fatigue damage level (p≤0.010). In contrast, changes in both stiffness and hysteresis were significant only at the High fatigue level (p≤0.043). Correlative microstructural analyses showed that Low level of fatigue was characterized by isolated, transverse patterns of kinked fiber deformations. At higher fatigue levels, tendons exhibited fiber dissociation and localized ruptures of the fibers. Histomorphometric analysis showed that damage area fraction increased significantly with fatigue level (p≤0.048). The current findings characterized the sequential, microstructural events that underlie the tendon fatigue process and indicate that tendon deformation can be used to accurately assess the progression of damage accumulation in tendons. PMID:18683881

  13. Developmental approach to prevent adolescent suicides: research pathways to effective upstream preventive interventions.

    PubMed

    Wyman, Peter A

    2014-09-01

    The 2012 National Strategy for Suicide Prevention expands the current suicide prevention paradigm by including a strategic direction aimed at promoting healthy populations. Childhood and adolescence are key suicide prevention window periods, yet knowledge of suicide prevention pathways through universal interventions is limited (Aspirational Goal 11). Epidemiologic evidence suggests that prevention programs in normative social systems such as schools are needed for broad suicide prevention impact. Prevention trial results show that current universal prevention programs for children and young adolescents are effective in reducing adolescent emotional and behavioral problems that are risk factors for suicidal behavior, and in the case of the Good Behavior Game, suicide attempts. A developmentally sequenced upstream suicide prevention approach is proposed: (1) childhood programs to strengthen a broad set of self-regulation skills through family and school-based programs, followed by (2) adolescent programs that leverage social influences to prevent emerging risk behaviors such as substance abuse and strengthen relationships and skills. Key knowledge breakthroughs needed are evidence linking specific intervention strategies to reduced suicidal behaviors and mortality and their mechanisms of action. Short- and long-term objectives to achieve these breakthroughs include combining evidence from completed prevention trials, increasing motivators for prevention researchers to assess suicide-related outcome, and conducting new trials of upstream interventions in populations using efficient designs acceptable to communities. In conclusion, effective upstream prevention programs have been identified that modify risk and protective factors for adolescent suicide, and key knowledge breakthroughs can jump-start progress in realizing the suicide prevention potential of specific strategies. PMID:25145747

  14. Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide.

    PubMed Central

    Lowenstein, C J; Alley, E W; Raval, P; Snowman, A M; Snyder, S H; Russell, S W; Murphy, W J

    1993-01-01

    The promoter region of the mouse gene for macrophage-inducible nitric oxide synthase (mac-NOS; EC 1.14.13.39) has been characterized. A putative TATA box is 30 base pairs upstream of the transcription start site. Computer analysis reveals numerous potential binding sites for transcription factors, many of them associated with stimuli that induce mac-NOS expression. To localize functionally important portions of the regulatory region, we constructed deletion mutants of the mac-NOS 5' flanking region and placed them upstream of a luciferase reporter gene. The macrophage cell line RAW 264.7, when transfected with a minimal promoter construct, expresses little luciferase activity when stimulated by lipopolysaccharide (LPS), interferon gamma (IFN-gamma), or both. Maximal expression depends on two discrete regulatory regions upstream of the putative TATA box. Region I (position -48 to -209) increases luciferase activity approximately 75-fold over the minimal promoter construct. Region I contains LPS-related responsive elements, including a binding site for nuclear factor interleukin 6 (NF-IL6) and the kappa B binding site for NF-kappa B, suggesting that this region regulates LPS-induced expression of the mac-NOS gene. Region II (position -913 to -1029) alone does not increase luciferase expression, but together with region I it causes an additional 10-fold increase in expression. Together the two regions increase expression 750-fold over activity obtained from a minimal promoter construct. Region II contains motifs for binding IFN-related transcription factors and thus probably is responsible for IFN-mediated regulation of LPS-induced mac-NOS. Delineation of these two cooperative regions explains at the level of transcription how IFN-gamma and LPS act in concert to induce maximally the mac-NOS gene and, furthermore, how IFN-gamma augments the inflammatory response to LPS. Images Fig. 2 PMID:7692452

  15. Saturn's Magnetosphere and Properties of Upstream Flow at Titan: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Hartle, R. E.; Cooper, J. F.; Lipatov, A.; Bertucci, C.; Coates, A. J.; Arridge, C.; Szego, K.; Shappirio, M.; Simipson, D. G.; Tokar, R.; Young, D. T.

    2009-01-01

    Using Cassini Plasma Spectrometer (CAPS) Ion Mass Spectrometer (IMS) measurements, we present the ion fluid properties and its ion composition of the upstream flow for Titan's interaction with Saturn's magnetosphere. A 3D ion moments algorithm is used which is essentially model independent with only requirement is that ion flow is within the CAPS IMS 2(pi) steradian field-of-view (FOV) and that the ion 'velocity distribution function (VDF) be gyrotropic. These results cover the period from TA flyby (2004 day 300) to T22 flyby (2006 363). Cassini's in situ measurements of Saturn's magnetic field show it is stretched out into a magnetodisc configuration for Saturn Local Times (SLT) centered about midnight local time. Under those circumstances the field is confined near the equatorial plane with Titan either above or below the magnetosphere current sheet. Similar to Jupiter's outer magnetosphere where a magnetodisc configuration applies, one expects the heavy ions within Saturn's outer magnetosphere to be confined within a few degrees of the current sheet while at higher magnetic latitudes protons should dominate. We show that when Cassini is between dusk-midnight-dawn local time and spacecraft is not within the current sheet that light ions (H, 142) tend to dominate the ion composition for the upstream flow. If true, one may expect the interaction between Saturn's magnetosphere, locally devoid of heavy ions and Titan's upper atmosphere and exosphere to be significantly different from that for Voyager 1, TA and TB when heavy ions were present in the upstream flow. We also present observational evidence for Saturn's magnetosphere interaction with Titan's extended H and H2 corona which can extend approx. 1 Rs from Titan.

  16. Free surface height deformation upstream of an array of model marine hydrokinetic devices

    NASA Astrophysics Data System (ADS)

    Riley, D. R.; Beninati, M. L.; Volpe, M. A.; Krane, M.

    2011-12-01

    The changes in flow velocity and free surface height upstream of an array of model marine hydrokinetic (MHK) devices are measured in small-scale flume. These models consist of a stationary perforated plate mounted to a cylinder. The perforated plates mimic the blockage ratio and head loss effects of rotating blades on the flow, and the cylinders represent typical support structures for MHK devices. Experimental results are used to for two purposes. First, they will be used validate numerical simulations being conducted in parallel. Second, they will be used to determine a spatial arrangement for a field testing array that optimizes energy extraction. The operating hypothesis is that the proper spatial arrangement of a MHK array can modify the incident flow so as to increase the fluid energy incident upon some of the MHK devices in the array, increasing the energy produced by the array. The testing is conducted in the hydraulic flume facility (32 ft long, 4 ft wide, and 1.25 ft deep) in the Environmental Fluid Mechanics and Hydraulics Laboratory (EFM&HL) at Bucknell University. Within the facility a small-scale testing platform which consists of a nozzle insert is used to accelerate the flow into a test section (2 ft wide, 2.5 ft long, and 0.75 ft deep), where the cylinder arrays are located. The model MHK devices sizes are scaled using the test section floor turbulent boundary layer thickness. Flow field measurements are performed using an Acoustic Doppler Velocimeter. Mapping of the free surface is accomplished with an ultrasonic liquid level finder. Both devices are positioned using a programmable gantry system that has access to the entire test section. For each array configuration tested, both the free surface height and flow field upstream of the model MHK array are accurately mapped. These measurements are combined with the free surface height measurements to estimate the total fluid energy upstream of the array.

  17. Beyond police crisis intervention: moving "upstream" to manage cases and places of behavioral health vulnerability.

    PubMed

    Wood, Jennifer D; Beierschmitt, Laura

    2014-01-01

    Law enforcement officers continue to serve on the front lines as mental health interventionists, and as such have been subject to a wave of "first generation" reform designed to enhance their crisis response capabilities. Yet, this focus on crisis intervention has not answered recent calls to move "upstream" and bolster early intervention in the name of long-term recovery. This paper reports on findings from an action research project in Philadelphia aimed at exploring opportunities for enhanced upstream engagement. Study methods include spatial analyses of police mental health transportations from an eight year period (2004-2011) and qualitative data from twenty-three "framing conversations" with partners and other stakeholders, seven focus groups with police and outreach workers, five key informant interviews as well as document reviews of the service delivery system in Philadelphia. Recommendations include the need to move beyond a focus on what police can do to a wider conception of city agencies and business stakeholders who can influence vulnerable people and vulnerable spaces of the city. We argue for the need to develop shared principles and rules of engagement that clarify roles and stipulate how best to enlist city resources in a range of circumstances. Since issues of mental health, substance use and disorder are so tightly coupled, we stress the importance of establishing a data-driven approach to crime and disorder reduction in areas of the city we term "hotspots of vulnerability". In line with a recovery philosophy, such an approach should reduce opportunities for anti-social behavior among the "dually labeled" in ways consistent with "procedural justice". Furthermore, crime and disorder data flowing from police and security to behavioral health analysts could contribute to a more focused case management of "repeat utilizers" across the two systems. Our central argument is that a twin emphasis on "case management" and "place management" may provide

  18. Upstream box/TATA box order is the major determinant of the direction of transcription.

    PubMed Central

    Xu, L C; Thali, M; Schaffner, W

    1991-01-01

    Mammalian gene promoters for transcription by RNA polymerase II are typically organized in the following order: upstream sequence motif(s)/TATA box/initiation site. Here we report studies in which the order, orientation and DNA sequences of these three elements are varied to determine how these affect polarity of transcription. We have constructed promoters with an 'octamer' upstream sequence ATTTGCAT (or its complement ATGCAAAT) in combination with several different TATA boxes and initiation (cap) sites, and tested these promoters in transfection experiments with cultured cells. TATA boxes derived from the adenovirus major late promoter (TATAAAA), immunoglobulin kappa light chain (TTATATA) and heavy chain (TAAATATA) promoter functioned equally well or even better when inverted. Only the beta-globin TATA box (CATAAAA) was poorly active when inverted. In addition, a symmetrical TATA box (TATATATA) derived from a casein gene was very active. Our results suggest that the asymmetry of most TATA boxes (consensus TATAAAA) is not a primary determinant of the polarity of transcription. We also found that the initiation (cap) site, which usually consists of an adenine embedded in a pyrimidine-rich region (PyPyCAPyPyPyPyPy), was permissive towards sequence alterations; even a randomly composed sequence worked well. However, an inverted, hence purine-rich, cap site reduced transcript levels to 1/7th, as did an oligo G sequence. Irrespective of the presence of a cap site, the configuration: 'TATA box/octamer' yielded a strong leftward, rather than rightward transcription. From this, we conclude that the polarity of transcription is primarily determined by the linear order of an upstream sequence relative to a TATA box, rather than by the individual orientations of either of these two elements. Images PMID:1762900

  19. 2-D Three Fluid Simulation of Upstreaming Ions Above Auroral Precipitation

    NASA Astrophysics Data System (ADS)

    Danielides, M. A.; Lummerzheim, D.; Otto, A.; Stevens, R. J.

    2006-12-01

    The ionosphere is a rich reservoir of charged particles from which a variable fraction is transported to the magnetosphere. An important transport phenomena is the formation of upward ion flow above auroral structure. A primary region of the outflow is not known, but contributions come from polar cap, dayside cusp/cleft region, auroral oval, or even from mid-latitudes. In the past global magnetospheric models and fluid codes were used to simulate large scale ion outflow above, e.g., the polar-cap aurora. However, satellites orbiting at low- altitudes have repeatingly detected localized ion outflow above the auroral oval. Ionosphere-magnetosphere coupling simulations gave first insides into the small-scale dynamics of aurora. The aim of this study is the investigation of coupled plasma and neutral dynamics in smaller scale aurora to explain the generation, structure, and dynamics of vertical ion upstream. We consider auroral electron precipitation at ionospheric heights in a 2-D three fluid ionospheric-magnetospheric coupling code (Otto and Zhu, 2003). Specially we examine the effects of the electron precipitation, heat conduction and heating in field- aligned current through coulomb collisions or turbulence causing: i) electron heating, ii) electron pressure gradients, and iii) upstreaming of ions through a resulting ambipolar electric field. Our first case studies are performed for different boundary conditions and for different auroral electron precipitation parameters (variation in characteristic auroral energy, auroral energy flux and horizontal scale). The results shall clarify how auroral precipitation can drive ions upwards. Finally we discuss the effect of ion drag and the interaction of the upstreaming ions with a stable neutral constituent. Otto, O. and H. Zhu, Fluid plasma simulation of coupled systems: Ionosphere and magnetosphere, Space Plasma Simulation. Edited by J. Buechner, C. Dum, and M. Scholer., Lecture Notes in Physics, vol. 615, p.193

  20. Metal-dependent SV40 viruses containing inducible enhancers from the upstream region of metallothionein genes.

    PubMed Central

    Serfling, E; Lübbe, A; Dorsch-Häsler, K; Schaffner, W

    1985-01-01

    We have isolated SV40 recombinant viruses which are dependent on heavy metal ions for efficient propagation. They were obtained after-co-transfection of enhancerless SV40 DNA (the so-called enhancer trap) with sonicated DNA from the mouse metallothionein-I (mMT-I) or human metallothionein-IIA (hMT-IIA) upstream regions. To substitute for the SV40 enhancer, these viruses have incorporated a segment of the immediate upstream region of the metallothionein genes. Two recombinant viruses of the SVMT-I type carry segments of the mMT-I gene from positions -73 to -187 and -39 to -194 inverted with respect to their natural configuration. The overlapping segment contains two of the four metal-responsive elements involved in the induction of the mMT-I gene by heavy metal ions. The SVMT-II recombinant virus contains a segment of the hMT-IIA gene from position -39 to -366 which harbors the metal- and hormone-responsive elements of the hMT-IIA gene. Insertion of the mMT-I segment downstream of a rabbit beta-globin test gene enhances beta-globin transcription upon metal ion stimulation. This shows that the immediate upstream region of the mouse metalliothionein-I gene, when detached from its TATA box, can act as an inducible enhancer. It may be generally true that the enhancer/promoters of inducible genes are composed of several regulatory sequence elements which are interspersed with constitutive elements. The number and spatial arrangement of these elements probably determines the basal versus induced level of expression. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:2419129

  1. Passive control of flow-excited acoustic resonance in rectangular cavities using upstream mounted blocks

    NASA Astrophysics Data System (ADS)

    Shaaban, Mahmoud; Mohany, Atef

    2015-04-01

    A passive method for controlling the flow-excited acoustic resonance resulting from subsonic flows over rectangular cavities in channels is investigated. A cavity with length to depth ratio of is tested in air flow of Mach number up to 0.45. When the acoustic resonance is excited, the sound pressure level in the cavity reaches 162 dB. Square blocks are attached to the surface of the channel and centred upstream of the cavity leading edge to suppress the flow-excited acoustic resonance in the cavity. Six blocks of different widths are tested at three different upstream distances. The results show that significant attenuation of up to 30 dB of the excited sound pressure level is achieved using a block with a width to height ratio of 3, while blocks that fill the whole width of the channel amplify the pressure of the excited acoustic resonance. Moreover, it is found that placing the block upstream of the cavity causes the onset of the acoustic resonance to occur at higher flow velocities. In order to investigate the nature of the interactions that lead to suppression of the acoustic resonance and to identify the changes in flow patterns due to the placement of the block, 2D measurements of turbulence intensity in the shear layer and the block wake region are performed. The location of the flow reattachment point downstream of the block relative to the shear layer separation point has a major influence on the suppression level of the excited acoustic resonance. Furthermore, higher attenuation of noise is related to lower span-wise correlation of the shear-layer perturbation.

  2. Effects of an upstream tetrahedron on the circular cylinder-flat plate juncture flow

    NASA Astrophysics Data System (ADS)

    Huang, R. F.; Hsu, C. M.; Chen, C.

    2015-07-01

    A technique of installing a tetrahedron at the upstream corner of the circular cylinder-flat plate juncture is developed to control the characteristic horseshoe vortices appearing in the natural juncture flow. The Reynolds numbers based on the cylinder diameter are within the range of 500-2900. The flow patterns and time-averaged velocity fields in the vertical symmetry plane and a horizontal plane near the flat plate of the natural and tetrahedron-controlled juncture flows are examined by using the laser-assisted particle flow visualization method and particle image velocimetry in a towing water tank. The flow approaching the circular cylinder-flat plate juncture can induce a characteristic horseshoe vortical flow consisting of a single vortex, dual vortex, or triple vortex. These horseshoe vortices appearing in the natural case may be changed to a characteristic mode of vortical flow, reverse flow, or forward flow when a tetrahedron is installed at the upstream corner of the juncture. The appearance of the vortical flow, reverse flow, or forward flow mode depends on the geometric parameters of normalized axial length, expansion angle, and tilt angle as well as the flow parameter of the Reynolds number. The vortical flow mode appears at small axial length of tetrahedron. The forward flow mode appears at the large axial length of tetrahedron. When the forward flow mode appears, the boundary-layer upstream of the circular cylinder does not separate. Therefore, the horseshoe vortices induced in the natural juncture flow disappear. The data bank consists of the design parameters of axial length, tilt angle, and expansion angle of the tetrahedron, which is provided as a figure.

  3. Tolerance of Mach 2.50 axisymmetric mixed-compression inlets to upstream flow variations

    NASA Technical Reports Server (NTRS)

    Choby, D. A.

    1972-01-01

    An investigation of the tolerances of two Mach 2.50 axisymmetric mixed-compression inlets to upstream flow variations was conducted. Tolerances of each inlet to angle of attack as a function of decreasing free-stream Mach number were obtained. A local region of overcompression was formed on the leeward side of the inlet at maximum angle of attack before unstart. This region of overcompression corresponded to local subsonic flow conditions ahead of the geometric throat. A uniform Mach number gradient of 0.10 at the cowl lip plane did not affect the inlet's pressure recovery, mass flow ratio, or diffuser exit total-pressure distortion.

  4. The control of the upstream movement of fish with pulsated direct current

    USGS Publications Warehouse

    McLain, Alberton L.

    1957-01-01

    In the Silver River, 78,648 fish comprising 21 species were taken from the trap of the direct-current diversion device. The total kill of fish moving upstream, including 289 sea lampreys, was 1,016, or 1.3 percent. This river had presented a serious problem in the operation of an alternating-current control device during previous seasons. In 1955, 85.5 percent of three important species of fish were killed at the control structure. During 1956, this mortality was reduced to 8.1 percent by the operation of the direct-current equipment.

  5. Transcription in vivo of an Alu family member upstream from the human epsilon-globin gene.

    PubMed Central

    Allan, M; Paul, J

    1984-01-01

    The more distal Alu repeat flanking the epsilon-globin gene is transcribed in K562 cells to generate transcripts 350-400 nucleotides in length. Initiation occurs at the start of the repeat, upstream of a putative PolIII control signal. These transcripts originate from the strand which does not code epsilon-globin and are oriented in the opposite direction from the gene. They are non-polyadenylated, nucleus-confined and are only detectable in association with expression of the epsilon-globin gene. Images PMID:6320117

  6. Parameter estimation of superdiffusive motion of energetic particles upstream of heliospheric shocks

    NASA Astrophysics Data System (ADS)

    Perri, Silvia; Zimbardo, Gaetano; Effenberger, Frederic; Fichtner, Horst

    2015-06-01

    Context. In-situ spacecraft observations recently suggested that the transport of energetic particles accelerated at heliospheric shocks can be anomalous, i.e. the mean square displacement can grow non-linearly in time. In particular, a new analysis technique has permitted the study of particle transport properties from energetic particle time profiles upstream of interplanetary shocks. Indeed, the time/spatial power laws of the differential intensity upstream of several shocks are indicative of superdiffusion. Aims: A complete determination of the key parameters of superdiffusive transport comprises the power-law index, the superdiffusion coefficient, the related transition scale at which the energetic particle profiles turn to decay as power laws, and the energy spectral index of the shock accelerated particles. Methods: Assuming large-scale spatial homogeneity of the background plasma, the power-law behaviour can been derived from both a (microscopic) propagator formalism and a (macroscopic) fractional transport equation. We compare the two approaches and find a relation between the diffusion coefficients used in the two formalisms. Based on the assumption of superdiffusive transport, we quantitatively derive these parameters by studying energetic particle profiles observed by the Ulysses and Voyager 2 spacecraft upstream of shocks in the heliosphere, for which a superdiffusive particle transport has previously been observed. Further, we have jointly studied the electron energy spectra, comparing the values of the spectral indices observed with those predicted by the standard diffusive shock acceleration theory and by a model based on superdiffusive transport. Results: For a number of interplanetary shocks and for the solar wind termination shock, for the first time we obtain the anomalous diffusion constants and the scale at which the probability of particle free paths changes to a power-law. The investigation of the particle energy spectra indicates that a

  7. Asymmetry Effects in Numerical Simulation of Supersonic Flows with Upstream Separated Regions

    NASA Technical Reports Server (NTRS)

    Rodriguez, C. G.

    2001-01-01

    The present paper studies the numerical simulation of flows with shock/boundary-layer upstream interaction, under conditions of symmetry in geometry, boundary conditions, and grid. For this purpose, a series of two- and three-dimensional numerical test-cases were carried out. The tests showed that standard numerical schemes, which appear to be symmetry-preserving under most flow configurations, produce nonsymmetric perturbations when large separated regions are present. These perturbations are amplified when the core flow is under compression. If the flow-blockage due to separation is sufficiently large, the symmetry of the flow may collapse altogether. Experimental evidence of this numerical behavior is also considered.

  8. The electromagnetic ion beam instability upstream of the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Gosling, J. T.; Forslund, D. W.

    1981-01-01

    The linear theory of the electromagnetic ion beam instability for arbitrary angles of propagation has been studied. The parameters considered in the theory are typical of the solar wind upstream of the earth's bow shock when a 'reflected' proton beam is present. Maximum growth occurs for propagation parallel to the ambient magnetic field B, but this instability also displays significant growth at wave-vectors oblique to B. Oblique, unstable modes seem to be the likely source of the compressive magnetic fluctuations recently observed in conjunction with the 'diffuse' ion population. An energetic ion beam does not directly give rise to linear growth of either ion acoustic or whistler mode instabilities.

  9. Minimum cost maximum flow algorithm for upstream bandwidth allocation in OFDMA passive optical networks

    NASA Astrophysics Data System (ADS)

    Wu, Yating; Kuang, Bin; Wang, Tao; Zhang, Qianwu; Wang, Min

    2015-12-01

    This paper presents a minimum cost maximum flow (MCMF) based upstream bandwidth allocation algorithm, which supports differentiated QoS for orthogonal frequency division multiple access passive optical networks (OFDMA-PONs). We define a utility function as the metric to characterize the satisfaction degree of an ONU on the obtained bandwidth. The bandwidth allocation problem is then formulated as maximizing the sum of the weighted total utility functions of all ONUs. By constructing a flow network graph, we obtain the optimized bandwidth allocation using the MCMF algorithm. Simulation results show that the proposed scheme improves the performance in terms of mean packet delay, packet loss ratio and throughput.

  10. Electron beam excitation of upstream waves in the whistler mode frequency range

    NASA Technical Reports Server (NTRS)

    Wong, Hung K.; Smith, Charles W.

    1994-01-01

    We examine whistler mode instabilities arising from electron beams in interplanetary space at 1 AU. Both parallel and obliquely propagating solutions are considered. We demonstrate that the generation of two simultaneous whistler mode waves is possible, and even reasonably likely, for beam parameters frequently encountered upstream of the Earth's bow shock and at interplanetary shocks. We also explore the generation of left-hand polarized waves at whistler mode frequencies under these same conditions. We offer both parametric variations derived from numerical solutions of the various instabilities as well as an analytical treatment of the problem which succeeds in unifying the various numerical results.

  11. Comparison of picked-up protons and water group ions upstream of Comet Halley's bow shock

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.; Coates, A. J.; Neubauer, F. M.

    1990-01-01

    The similarities and differences between the picked-up cometary protons and water-group (WG) ions upstream of the bow shock of Comet Halley are examined using measurements obtained by the ion mass spectrometer and plasma analyzer experiments on board Giotto. It was found that the dependencies of the pitch angle and the energy diffusion rates of the cometary protons and WG ions on the ion densities and on the angle alpha between the interplanetary field and the solar wind velocity vector were very different. This finding could not be explained in terms of presently available theories and models.

  12. Asymmetry Effects in Numerical Simulation of Supersonic Flows with Upstream Separated Regions

    NASA Technical Reports Server (NTRS)

    Riodriguez, C. G.

    2001-01-01

    The present paper studies the numerical simulation of flows with shock/boundary-layer upstream interaction, under conditions of symmetry in geometry, boundary conditions, and grid. For this purpose, a series of two- and three-dimensional numerical test-cases were carried out. The tests showed that standard numerical schemes, which appear to be symmetry preserving under most flow configurations, produce nonsymmetric perturbations when large separated regions are present. These perturbations are amplified when the core flow is under compression. If the flow-blockage due to separation is sufficiently large, the symmetry of the flow may collapse altogether. Experimental evidence of this numerical behavior is also considered.

  13. Remote radio observations of solar wind parameters upstream of planetary bow shocks

    NASA Technical Reports Server (NTRS)

    Macdowall, R. J.; Stone, R. G.; Gaffey, J. D., Jr.

    1992-01-01

    Radio emission is frequently produced at twice the electron plasma frequency 2fp in the foreshock region upstream of the terrestrial bow shock. Observations of this emission provide a remote diagnostic of solar wind parameters in the foreshock. Using ISEE-3 radio data, we present the first evidence that the radio intensity is proportional to the kinetic energy flux and to other parameters correlated with solar wind density. We provide a qualitative explanation of this intensity behavior and predict the detection of similar emission at Jupiter by the Ulysses spacecraft.

  14. Experimental studies of the properties of 'simulated' upstream turbulence using a statistical multipoint method

    NASA Technical Reports Server (NTRS)

    Orlowski, D. S.; Le, G.; Russell, C. T.; Krauss-Varban, D.; Omidi, N.

    1995-01-01

    In this report we present a different approach to the multipoint measurement of magnetic fields and plasma. This is called the multi-spacecraft ensemble technique (MET), essentially free of process restrictions, such as linearity and stationarity. We comprehensively discuss the other conditions and limitations intrinsic to this statistical method. We also show the results of the application of the ensemble method to the synthetic data obtained from a hybrid simulation in the region upstream of a quasi-parallel shock. The important implications of the above approach for the CLUSTER mission are discussed.

  15. Contaminants of emerging concern: Mass balance and comparison of wastewater effluent and upstream sources in a mixed-use watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the sources, transport, and spatiotemporal variability of contaminants of emerging concern (CECs) is important for understanding risks and developing monitoring and mitigation strategies. This study compared CEC loading and transport from a wastewater treatment plant and upstream areas...

  16. Attenuation Distance of Low Frequency Waves Upstream of the Pre-Dawn Bow Shock: GEOTAIL snd ISEE-3 Comparison

    NASA Technical Reports Server (NTRS)

    Sugiyama, T.; Terasawa, T.; Kawano, H.; Yamamoto, T.; Kokubun, S.; Frank, L.; Ackerson, K.; Tsurutani, B.

    1994-01-01

    This paper presents a statistical study of the spatial distribution of low frequency waves in the region upstream of the pre-dawn to dawn side bow shock using both GEOTAIL and ISEE-3 magnetometer data.

  17. Stochastic damage evolution in textile laminates

    NASA Technical Reports Server (NTRS)

    Dzenis, Yuris A.; Bogdanovich, Alexander E.; Pastore, Christopher M.

    1993-01-01

    A probabilistic model utilizing random material characteristics to predict damage evolution in textile laminates is presented. Model is based on a division of each ply into two sublaminas consisting of cells. The probability of cell failure is calculated using stochastic function theory and maximal strain failure criterion. Three modes of failure, i.e. fiber breakage, matrix failure in transverse direction, as well as matrix or interface shear cracking, are taken into account. Computed failure probabilities are utilized in reducing cell stiffness based on the mesovolume concept. A numerical algorithm is developed predicting the damage evolution and deformation history of textile laminates. Effect of scatter of fiber orientation on cell properties is discussed. Weave influence on damage accumulation is illustrated with the help of an example of a Kevlar/epoxy laminate.

  18. Energetic ion events upstream from the Saturnian bow shock: A multi-instrument study with Cassini measurements

    NASA Astrophysics Data System (ADS)

    Sergis, N.; Krimigis, S. M.; Masters, A.; Arridge, C. S.; Jackman, C. M.; Bertucci, C.; Andres, N.; André, N.; Mitchell, D. G.; Hamilton, D. C.; Krupp, N.; Dougherty, M. K.; Coates, A. J.; Hospodarsky, G. B.; Kurth, W. S.

    2010-12-01

    Energetic particle events associated with IMF fluctuations upstream of Saturn were first seen by Voyager. The extensive spatial coverage of both dawn and dusk upstream regions provided by Cassini offered the possibility to detect, identify, list and statistically study ~30 particle events upstream from the Kronian bow shock for distances ranging between ~10 and 100 Rs. Using the Magnetospheric Imaging Instrument (MIMI) and the Cassini Plasma Spectrometer (CAPS), measurements of H+, O+ and electrons are made in a broad energy range (few eV to MeV), together with plasma wave measurements obtained by the Radio and Plasma Wave Science experiment (RPWS). Magnetic field data (Cassini/MAG) is also utilised to reveal low frequency waves associated with the upstream flux enhancements. A 3D model of the Saturnian bow shock is used to determine the points of magnetic connection. The statistical analysis shows that particle events are strongly correlated with magnetic connection of the spacecraft to the planetary shock, with the onset of the events associated with a change in the IMF direction. The energy extent is >700 keV for O+ ions with particle fluxes usually anisotropic. Upstream plasma waves (electron plasma oscillations) are driven by the free energy in the particle distribution function. It is possible that the O+ events appear in a periodic fashion, as a weak signal near the planetary period is observed in the dawn sector. The unambiguous presence of upstream water-product ions (MIMI/CHEMS compositional data) and the energy spectrum of the observed population strongly supports the magnetospheric origin of these upstream particles (magnetospheric leakage). Typical example of a O+ particle event upstream from the Kronian bow shock, as seen with various Cassini instruments.

  19. A new method to assess damage to RCMRFs from period elongation and Park-Ang damage index using IDA

    NASA Astrophysics Data System (ADS)

    Aghagholizadeh, Mehrdad; Massumi, Ali

    2016-07-01

    Despite a significant progress in loading and design codes of seismic resistant structures and technology improvements in building structures, the field of civil engineering is still facing critical challenges. An example of those challenges is the assessment of the state of damage that has been imposed to a structure after earthquakes of different intensities. To determine the operability of a structure and its resistance to probable future earthquakes, quick assessment of damages and determining the operability of a structure after an earthquake are crucial. Present methods to calculate damage to structures are time consuming and do not accurately provide the rate of damage. Damage estimation is important task in the fields of structural health monitoring and decision-making. This study examines the relationship between period elongation and the Park-Ang damage index. A dynamic non-linear analysis is employed with IDARC program to calculate the amount of damage and period of the current state. This new method is shown to be a quick and accurate technique for damage assessment. It is easy to calculate the period of an existing structure and changes in the period which reflects changes in the stiffness matrix.

  20. Progressive damage state evolution and quantification in composites

    NASA Astrophysics Data System (ADS)

    Patra, Subir; Banerjee, Sourav

    2016-04-01

    Precursor damage state quantification can be helpful for safety and operation of aircraft and defense equipment's. Damage develops in the composite material in the form of matrix cracking, fiber breakages and deboning, etc. However, detection and quantification of the damage modes at their very early stage is not possible unless modifications of the existing indispensable techniques are conceived, particularly for the quantification of multiscale damages at their early stage. Here, we present a novel nonlocal mechanics based damage detection technique for precursor damage state quantification. Micro-continuum physics is used by modifying the Christoffel equation. American society of testing and materials (ASTM) standard woven carbon fiber (CFRP) specimens were tested under Tension-Tension fatigue loading at the interval of 25,000 cycles until 500,000 cycles. Scanning Acoustic Microcopy (SAM) and Optical Microscopy (OM) were used to examine the damage development at the same interval. Surface Acoustic Wave (SAW) velocity profile on a representative volume element (RVE) of the specimen were calculated at the regular interval of 50,000 cycles. Nonlocal parameters were calculated form the micromorphic wave dispersion curve at a particular frequency of 50 MHz. We used a previously formulated parameter called "Damage entropy" which is a measure of the damage growth in the material calculated with the loading cycle. Damage entropy (DE) was calculated at every pixel on the RVE and the mean of DE was plotted at the loading interval of 25,000 cycle. Growth of DE with fatigue loading cycles was observed. Optical Imaging also performed at the interval of 25,000 cycles to investigate the development of damage inside the materials. We also calculated the mean value of the Surface Acoustic Wave (SAW) velocity and plotted with fatigue cycle which is correlated further with Damage Entropy (DE). Statistical analysis of the Surface Acoustic Wave profile (SAW) obtained at different