Sample records for damage model based

  1. Intelligent-based Structural Damage Detection Model

    NASA Astrophysics Data System (ADS)

    Lee, Eric Wai Ming; Yu, Kin Fung

    2010-05-01

    This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.

  2. Flood damage modeling based on expert knowledge: Insights from French damage model for agricultural sector

    NASA Astrophysics Data System (ADS)

    Grelot, Frédéric; Agenais, Anne-Laurence; Brémond, Pauline

    2015-04-01

    In France, since 2011, it is mandatory for local communities to conduct cost-benefit analysis (CBA) of their flood management projects, to make them eligible for financial support from the State. Meanwhile, as a support, the French Ministry in charge of Environment proposed a methodology to fulfill CBA. Like for many other countries, this methodology is based on the estimation of flood damage. However, existing models to estimate flood damage were judged not convenient for a national-wide use. As a consequence, the French Ministry in charge of Environment launched studies to develop damage models for different sectors, such as: residential sector, public infrastructures, agricultural sector, and commercial and industrial sector. In this presentation, we aim at presenting and discussing methodological choices of those damage models. They all share the same principle: no sufficient data from past events were available to build damage models on a statistical analysis, so modeling was based on expert knowledge. We will focus on the model built for agricultural activities and more precisely for agricultural lands. This model was based on feedback from 30 agricultural experts who experienced floods in their geographical areas. They were selected to have a representative experience of crops and flood conditions in France. The model is composed of: (i) damaging functions, which reveal physiological vulnerability of crops, (ii) action functions, which correspond to farmers' decision rules for carrying on crops after a flood, and (iii) economic agricultural data, which correspond to featured characteristics of crops in the geographical area where the flood management project studied takes place. The two first components are generic and the third one is specific to the area studied. It is, thus, possible to produce flood damage functions adapted to different agronomic and geographical contexts. In the end, the model was applied to obtain a pool of damage functions giving

  3. Flood damage modeling based on expert knowledge: Insights from French damage model for agricultural sector

    NASA Astrophysics Data System (ADS)

    Grelot, Frédéric; Agenais, Anne-Laurence; Brémond, Pauline

    2014-05-01

    In France, since 2011, it is mandatory for local communities to conduct cost-benefit analysis (CBA) of their flood management projects, to make them eligible for financial support from the State. Meanwhile, as a support, the French Ministry in charge of Environment proposed a methodology to fulfill CBA. Like for many other countries, this methodology is based on the estimation of flood damage. Howerver, existing models to estimate flood damage were judged not convenient for a national-wide use. As a consequence, the French Ministry in charge of Environment launched studies to develop damage models for different sectors, such as: residential sector, public infrastructures, agricultural sector, and commercial and industrial sector. In this presentation, we aim at presenting and discussing methodological choices of those damage models. They all share the same principle: no sufficient data from past events were available to build damage models on a statistical analysis, so modeling was based on expert knowledge. We will focus on the model built for agricultural activities and more precisely for agricultural lands. This model was based on feedback from 30 agricultural experts who experienced floods in their geographical areas. They were selected to have a representative experience of crops and flood conditions in France. The model is composed of: (i) damaging functions, which reveal physiological vulnerability of crops, (ii) action functions, which correspond to farmers' decision rules for carrying on crops after a flood, and (iii) economic agricultural data, which correspond to featured characteristics of crops in the geographical area where the flood management project studied takes place. The two first components are generic and the third one is specific to the area studied. It is, thus, possible to produce flood damage functions adapted to different agronomic and geographical contexts. In the end, the model was applied to obtain a pool of damage functions giving

  4. Multiple Damage Progression Paths in Model-Based Prognostics

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Goebel, Kai Frank

    2011-01-01

    Model-based prognostics approaches employ domain knowledge about a system, its components, and how they fail through the use of physics-based models. Component wear is driven by several different degradation phenomena, each resulting in their own damage progression path, overlapping to contribute to the overall degradation of the component. We develop a model-based prognostics methodology using particle filters, in which the problem of characterizing multiple damage progression paths is cast as a joint state-parameter estimation problem. The estimate is represented as a probability distribution, allowing the prediction of end of life and remaining useful life within a probabilistic framework that supports uncertainty management. We also develop a novel variance control mechanism that maintains an uncertainty bound around the hidden parameters to limit the amount of estimation uncertainty and, consequently, reduce prediction uncertainty. We construct a detailed physics-based model of a centrifugal pump, to which we apply our model-based prognostics algorithms. We illustrate the operation of the prognostic solution with a number of simulation-based experiments and demonstrate the performance of the chosen approach when multiple damage mechanisms are active

  5. Model-based damage evaluation of layered CFRP structures

    NASA Astrophysics Data System (ADS)

    Munoz, Rafael; Bochud, Nicolas; Rus, Guillermo; Peralta, Laura; Melchor, Juan; Chiachío, Juan; Chiachío, Manuel; Bond, Leonard J.

    2015-03-01

    An ultrasonic evaluation technique for damage identification of layered CFRP structures is presented. This approach relies on a model-based estimation procedure that combines experimental data and simulation of ultrasonic damage-propagation interactions. The CFPR structure, a [0/90]4s lay-up, has been tested in an immersion through transmission experiment, where a scan has been performed on a damaged specimen. Most ultrasonic techniques in industrial practice consider only a few features of the received signals, namely, time of flight, amplitude, attenuation, frequency contents, and so forth. In this case, once signals are captured, an algorithm is used to reconstruct the complete signal waveform and extract the unknown damage parameters by means of modeling procedures. A linear version of the data processing has been performed, where only Young modulus has been monitored and, in a second nonlinear version, the first order nonlinear coefficient β was incorporated to test the possibility of detection of early damage. The aforementioned physical simulation models are solved by the Transfer Matrix formalism, which has been extended from linear to nonlinear harmonic generation technique. The damage parameter search strategy is based on minimizing the mismatch between the captured and simulated signals in the time domain in an automated way using Genetic Algorithms. Processing all scanned locations, a C-scan of the parameter of each layer can be reconstructed, obtaining the information describing the state of each layer and each interface. Damage can be located and quantified in terms of changes in the selected parameter with a measurable extension. In the case of the nonlinear coefficient of first order, evidence of higher sensitivity to damage than imaging the linearly estimated Young Modulus is provided.

  6. Tree-based flood damage modeling of companies: Damage processes and model performance

    NASA Astrophysics Data System (ADS)

    Sieg, Tobias; Vogel, Kristin; Merz, Bruno; Kreibich, Heidi

    2017-07-01

    Reliable flood risk analyses, including the estimation of damage, are an important prerequisite for efficient risk management. However, not much is known about flood damage processes affecting companies. Thus, we conduct a flood damage assessment of companies in Germany with regard to two aspects. First, we identify relevant damage-influencing variables. Second, we assess the prediction performance of the developed damage models with respect to the gain by using an increasing amount of training data and a sector-specific evaluation of the data. Random forests are trained with data from two postevent surveys after flood events occurring in the years 2002 and 2013. For a sector-specific consideration, the data set is split into four subsets corresponding to the manufacturing, commercial, financial, and service sectors. Further, separate models are derived for three different company assets: buildings, equipment, and goods and stock. Calculated variable importance values reveal different variable sets relevant for the damage estimation, indicating significant differences in the damage process for various company sectors and assets. With an increasing number of data used to build the models, prediction errors decrease. Yet the effect is rather small and seems to saturate for a data set size of several hundred observations. In contrast, the prediction improvement achieved by a sector-specific consideration is more distinct, especially for damage to equipment and goods and stock. Consequently, sector-specific data acquisition and a consideration of sector-specific company characteristics in future flood damage assessments is expected to improve the model performance more than a mere increase in data.

  7. Distributed Damage Estimation for Prognostics based on Structural Model Decomposition

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil

    2011-01-01

    Model-based prognostics approaches capture system knowledge in the form of physics-based models of components, and how they fail. These methods consist of a damage estimation phase, in which the health state of a component is estimated, and a prediction phase, in which the health state is projected forward in time to determine end of life. However, the damage estimation problem is often multi-dimensional and computationally intensive. We propose a model decomposition approach adapted from the diagnosis community, called possible conflicts, in order to both improve the computational efficiency of damage estimation, and formulate a damage estimation approach that is inherently distributed. Local state estimates are combined into a global state estimate from which prediction is performed. Using a centrifugal pump as a case study, we perform a number of simulation-based experiments to demonstrate the approach.

  8. Search-based model identification of smart-structure damage

    NASA Technical Reports Server (NTRS)

    Glass, B. J.; Macalou, A.

    1991-01-01

    This paper describes the use of a combined model and parameter identification approach, based on modal analysis and artificial intelligence (AI) techniques, for identifying damage or flaws in a rotating truss structure incorporating embedded piezoceramic sensors. This smart structure example is representative of a class of structures commonly found in aerospace systems and next generation space structures. Artificial intelligence techniques of classification, heuristic search, and an object-oriented knowledge base are used in an AI-based model identification approach. A finite model space is classified into a search tree, over which a variant of best-first search is used to identify the model whose stored response most closely matches that of the input. Newly-encountered models can be incorporated into the model space. This adaptativeness demonstrates the potential for learning control. Following this output-error model identification, numerical parameter identification is used to further refine the identified model. Given the rotating truss example in this paper, noisy data corresponding to various damage configurations are input to both this approach and a conventional parameter identification method. The combination of the AI-based model identification with parameter identification is shown to lead to smaller parameter corrections than required by the use of parameter identification alone.

  9. Metamodel-based inverse method for parameter identification: elastic-plastic damage model

    NASA Astrophysics Data System (ADS)

    Huang, Changwu; El Hami, Abdelkhalak; Radi, Bouchaïb

    2017-04-01

    This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic-plastic damage model parameter identification. An elastic-plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic-plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.

  10. Model-Based Fatigue Prognosis of Fiber-Reinforced Laminates Exhibiting Concurrent Damage Mechanisms

    NASA Technical Reports Server (NTRS)

    Corbetta, M.; Sbarufatti, C.; Saxena, A.; Giglio, M.; Goebel, K.

    2016-01-01

    Prognostics of large composite structures is a topic of increasing interest in the field of structural health monitoring for aerospace, civil, and mechanical systems. Along with recent advancements in real-time structural health data acquisition and processing for damage detection and characterization, model-based stochastic methods for life prediction are showing promising results in the literature. Among various model-based approaches, particle-filtering algorithms are particularly capable in coping with uncertainties associated with the process. These include uncertainties about information on the damage extent and the inherent uncertainties of the damage propagation process. Some efforts have shown successful applications of particle filtering-based frameworks for predicting the matrix crack evolution and structural stiffness degradation caused by repetitive fatigue loads. Effects of other damage modes such as delamination, however, are not incorporated in these works. It is well established that delamination and matrix cracks not only co-exist in most laminate structures during the fatigue degradation process but also affect each other's progression. Furthermore, delamination significantly alters the stress-state in the laminates and accelerates the material degradation leading to catastrophic failure. Therefore, the work presented herein proposes a particle filtering-based framework for predicting a structure's remaining useful life with consideration of multiple co-existing damage-mechanisms. The framework uses an energy-based model from the composite modeling literature. The multiple damage-mode model has been shown to suitably estimate the energy release rate of cross-ply laminates as affected by matrix cracks and delamination modes. The model is also able to estimate the reduction in stiffness of the damaged laminate. This information is then used in the algorithms for life prediction capabilities. First, a brief summary of the energy-based damage model

  11. Stiffness degradation-based damage model for RC members and structures using fiber-beam elements

    NASA Astrophysics Data System (ADS)

    Guo, Zongming; Zhang, Yaoting; Lu, Jiezhi; Fan, Jian

    2016-12-01

    To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforced concrete (RC) members and structures was developed using fiber beam-column elements. In this model, damage indices for concrete and steel fibers were defined by the degradation of the initial reloading modulus and the low-cycle fatigue law. Then, section, member, story and structure damage was evaluated by the degradation of the sectional bending stiffness, rod-end bending stiffness, story lateral stiffness and structure lateral stiffness, respectively. The damage model was realized in Matlab by reading in the outputs of OpenSees. The application of the damage model to RC columns and a RC frame indicates that the damage model is capable of accurately predicting the magnitude, position, and evolutionary process of damage, and estimating story damage more precisely than inter-story drift. Additionally, the damage model establishes a close connection between damage indices at various levels without introducing weighting coefficients or force-displacement relationships. The development of the model has perfected the damage assessment function of OpenSees, laying a solid foundation for damage estimation at various levels of a large-scale structure subjected to seismic loading.

  12. Life prediction modeling based on cyclic damage accumulation

    NASA Technical Reports Server (NTRS)

    Nelson, Richard S.

    1988-01-01

    A high temperature, low cycle fatigue life prediction method was developed. This method, Cyclic Damage Accumulation (CDA), was developed for use in predicting the crack initiation lifetime of gas turbine engine materials, where initiation was defined as a 0.030 inch surface length crack. A principal engineering feature of the CDA method is the minimum data base required for implementation. Model constants can be evaluated through a few simple specimen tests such as monotonic loading and rapic cycle fatigue. The method was expanded to account for the effects on creep-fatigue life of complex loadings such as thermomechanical fatigue, hold periods, waveshapes, mean stresses, multiaxiality, cumulative damage, coatings, and environmental attack. A significant data base was generated on the behavior of the cast nickel-base superalloy B1900+Hf, including hundreds of specimen tests under such loading conditions. This information is being used to refine and extend the CDA life prediction model, which is now nearing completion. The model is also being verified using additional specimen tests on wrought INCO 718, and the final version of the model is expected to be adaptable to most any high-temperature alloy. The model is currently available in the form of equations and related constants. A proposed contract addition will make the model available in the near future in the form of a computer code to potential users.

  13. A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels

    NASA Astrophysics Data System (ADS)

    Sun, Bin; Li, Zhaoxia

    2018-05-01

    A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.

  14. A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels

    NASA Astrophysics Data System (ADS)

    Sun, Bin; Li, Zhaoxia

    2018-04-01

    A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.

  15. Rock Failure Analysis Based on a Coupled Elastoplastic-Logarithmic Damage Model

    NASA Astrophysics Data System (ADS)

    Abdia, M.; Molladavoodi, H.; Salarirad, H.

    2017-12-01

    The rock materials surrounding the underground excavations typically demonstrate nonlinear mechanical response and irreversible behavior in particular under high in-situ stress states. The dominant causes of irreversible behavior are plastic flow and damage process. The plastic flow is controlled by the presence of local shear stresses which cause the frictional sliding. During this process, the net number of bonds remains unchanged practically. The overall macroscopic consequence of plastic flow is that the elastic properties (e.g. the stiffness of the material) are insensitive to this type of irreversible change. The main cause of irreversible changes in quasi-brittle materials such as rock is the damage process occurring within the material. From a microscopic viewpoint, damage initiates with the nucleation and growth of microcracks. When the microcracks length reaches a critical value, the coalescence of them occurs and finally, the localized meso-cracks appear. The macroscopic and phenomenological consequence of damage process is stiffness degradation, dilatation and softening response. In this paper, a coupled elastoplastic-logarithmic damage model was used to simulate the irreversible deformations and stiffness degradation of rock materials under loading. In this model, damage evolution & plastic flow rules were formulated in the framework of irreversible thermodynamics principles. To take into account the stiffness degradation and softening on post-peak region, logarithmic damage variable was implemented. Also, a plastic model with Drucker-Prager yield function was used to model plastic strains. Then, an algorithm was proposed to calculate the numerical steps based on the proposed coupled plastic and damage constitutive model. The developed model has been programmed in VC++ environment. Then, it was used as a separate and new constitutive model in DEM code (UDEC). Finally, the experimental Oolitic limestone rock behavior was simulated based on the developed

  16. A continuous damage model based on stepwise-stress creep rupture tests

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.

    1985-01-01

    A creep damage accumulation model is presented that makes use of the Kachanov damage rate concept with a provision accounting for damage that results from a variable stress history. This is accomplished through the introduction of an additional term in the Kachanov rate equation that is linear in the stress rate. Specification of the material functions and parameters in the model requires two types of constituting a data base: (1) standard constant-stress creep rupture tests, and (2) a sequence of two-step creep rupture tests.

  17. Damage evaluation by a guided wave-hidden Markov model based method

    NASA Astrophysics Data System (ADS)

    Mei, Hanfei; Yuan, Shenfang; Qiu, Lei; Zhang, Jinjin

    2016-02-01

    Guided wave based structural health monitoring has shown great potential in aerospace applications. However, one of the key challenges of practical engineering applications is the accurate interpretation of the guided wave signals under time-varying environmental and operational conditions. This paper presents a guided wave-hidden Markov model based method to improve the damage evaluation reliability of real aircraft structures under time-varying conditions. In the proposed approach, an HMM based unweighted moving average trend estimation method, which can capture the trend of damage propagation from the posterior probability obtained by HMM modeling is used to achieve a probabilistic evaluation of the structural damage. To validate the developed method, experiments are performed on a hole-edge crack specimen under fatigue loading condition and a real aircraft wing spar under changing structural boundary conditions. Experimental results show the advantage of the proposed method.

  18. A physically-based continuum damage mechanics model for numerical prediction of damage growth in laminated composite plates

    NASA Astrophysics Data System (ADS)

    Williams, Kevin Vaughan

    Rapid growth in use of composite materials in structural applications drives the need for a more detailed understanding of damage tolerant and damage resistant design. Current analytical techniques provide sufficient understanding and predictive capabilities for application in preliminary design, but current numerical models applicable to composites are few and far between and their development into well tested, rigorous material models is currently one of the most challenging fields in composite materials. The present work focuses on the development, implementation, and verification of a plane-stress continuum damage mechanics based model for composite materials. A physical treatment of damage growth based on the extensive body of experimental literature on the subject is combined with the mathematical rigour of a continuum damage mechanics description to form the foundation of the model. The model has been implemented in the LS-DYNA3D commercial finite element hydrocode and the results of the application of the model are shown to be physically meaningful and accurate. Furthermore it is demonstrated that the material characterization parameters can be extracted from the results of standard test methodologies for which a large body of published data already exists for many materials. Two case studies are undertaken to verify the model by comparison with measured experimental data. The first series of analyses demonstrate the ability of the model to predict the extent and growth of damage in T800/3900-2 carbon fibre reinforced polymer (CFRP) plates subjected to normal impacts over a range of impact energy levels. The predicted force-time and force-displacement response of the panels compare well with experimental measurements. The damage growth and stiffness reduction properties of the T800/3900-2 CFRP are derived using published data from a variety of sources without the need for parametric studies. To further demonstrate the physical nature of the model, a IM6

  19. Oxidative DNA damage background estimated by a system model of base excision repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokhansanj, B A; Wilson, III, D M

    Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level based on measuring 8-oxoguanine lesions as a biomarker have led to estimates varying over 3-4 orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parametersmore » from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our results show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.« less

  20. Novel SHM method to locate damages in substructures based on VARX models

    NASA Astrophysics Data System (ADS)

    Ugalde, U.; Anduaga, J.; Martínez, F.; Iturrospe, A.

    2015-07-01

    A novel damage localization method is proposed, which is based on a substructuring approach and makes use of Vector Auto-Regressive with eXogenous input (VARX) models. The substructuring approach aims to divide the monitored structure into several multi-DOF isolated substructures. Later, each individual substructure is modelled as a VARX model, and the health of each substructure is determined analyzing the variation of the VARX model. The method allows to detect whether the isolated substructure is damaged, and besides allows to locate and quantify the damage within the substructure. It is not necessary to have a theoretical model of the structure and only the measured displacement data is required to estimate the isolated substructure's VARX model. The proposed method is validated by simulations of a two-dimensional lattice structure.

  1. A model based bayesian solution for characterization of complex damage scenarios in aerospace composite structures.

    PubMed

    Reed, H; Leckey, Cara A C; Dick, A; Harvey, G; Dobson, J

    2018-01-01

    Ultrasonic damage detection and characterization is commonly used in nondestructive evaluation (NDE) of aerospace composite components. In recent years there has been an increased development of guided wave based methods. In real materials and structures, these dispersive waves result in complicated behavior in the presence of complex damage scenarios. Model-based characterization methods utilize accurate three dimensional finite element models (FEMs) of guided wave interaction with realistic damage scenarios to aid in defect identification and classification. This work describes an inverse solution for realistic composite damage characterization by comparing the wavenumber-frequency spectra of experimental and simulated ultrasonic inspections. The composite laminate material properties are first verified through a Bayesian solution (Markov chain Monte Carlo), enabling uncertainty quantification surrounding the characterization. A study is undertaken to assess the efficacy of the proposed damage model and comparative metrics between the experimental and simulated output. The FEM is then parameterized with a damage model capable of describing the typical complex damage created by impact events in composites. The damage is characterized through a transdimensional Markov chain Monte Carlo solution, enabling a flexible damage model capable of adapting to the complex damage geometry investigated here. The posterior probability distributions of the individual delamination petals as well as the overall envelope of the damage site are determined. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Damage identification of a reinforced concrete frame by finite element model updating using damage parameterization

    NASA Astrophysics Data System (ADS)

    Fang, Sheng-En; Perera, Ricardo; De Roeck, Guido

    2008-06-01

    This paper develops a sensitivity-based updating method to identify the damage in a tested reinforced concrete (RC) frame modeled with a two-dimensional planar finite element (FE) by minimizing the discrepancies of modal frequencies and mode shapes. In order to reduce the number of unknown variables, a bidimensional damage (element) function is proposed, resulting in a considerable improvement of the optimization performance. For damage identification, a reference FE model of the undamaged frame divided into a few damage functions is firstly obtained and then a rough identification is carried out to detect possible damage locations, which are subsequently refined with new damage functions to accurately identify the damage. From a design point of view, it would be useful to evaluate, in a simplified way, the remaining bending stiffness of cracked beam sections or segments. Hence, an RC damage model based on a static mechanism is proposed to estimate the remnant stiffness of a cracked RC beam segment. The damage model is based on the assumption that the damage effect spreads over a region and the stiffness in the segment changes linearly. Furthermore, the stiffness reduction evaluated using this damage model is compared with the FE updating result. It is shown that the proposed bidimensional damage function is useful in producing a well-conditioned optimization problem and the aforementioned damage model can be used for an approximate stiffness estimation of a cracked beam segment.

  3. Modeling damage in concrete pavements and bridges.

    DOT National Transportation Integrated Search

    2010-09-01

    This project focused on micromechanical modeling of damage in concrete under general, multi-axial loading. A : continuum-level, three-dimensional constitutive model based on micromechanics was developed. The model : accounts for damage in concrete by...

  4. A Micromechanics-Based Elastoplastic Damage Model for Rocks with a Brittle-Ductile Transition in Mechanical Response

    NASA Astrophysics Data System (ADS)

    Hu, Kun; Zhu, Qi-zhi; Chen, Liang; Shao, Jian-fu; Liu, Jian

    2018-06-01

    As confining pressure increases, crystalline rocks of moderate porosity usually undergo a transition in failure mode from localized brittle fracture to diffused damage and ductile failure. This transition has been widely reported experimentally for several decades; however, satisfactory modeling is still lacking. The present paper aims at modeling the brittle-ductile transition process of rocks under conventional triaxial compression. Based on quantitative analyses of experimental results, it is found that there is a quite satisfactory linearity between the axial inelastic strain at failure and the confining pressure prescribed. A micromechanics-based frictional damage model is then formulated using an associated plastic flow rule and a strain energy release rate-based damage criterion. The analytical solution to the strong plasticity-damage coupling problem is provided and applied to simulate the nonlinear mechanical behaviors of Tennessee marble, Indiana limestone and Jinping marble, each presenting a brittle-ductile transition in stress-strain curves.

  5. A multi-damages identification method for cantilever beam based on mode shape curvatures and Kriging surrogate model

    NASA Astrophysics Data System (ADS)

    Xie, Fengle; Jiang, Zhansi; Jiang, Hui

    2018-05-01

    This paper presents a multi-damages identification method for Cantilever Beam. First, the damage location is identified by using the mode shape curvatures. Second, samples of varying damage severities at the damage location and their corresponding natural frequencies are used to construct the initial Kriging surrogate model. Then a particle swarm optimization (PSO) algorithm is employed to identify the damage severities based on Kriging surrogate model. The simulation study of a double-damaged cantilever beam demonstrated that the proposed method is effective.

  6. Electrical Resistance Based Damage Modeling of Multifunctional Carbon Fiber Reinforced Polymer Matrix Composites

    NASA Astrophysics Data System (ADS)

    Hart, Robert James

    In the current thesis, the 4-probe electrical resistance of carbon fiber-reinforced polymer (CFRP) composites is utilized as a metric for sensing low-velocity impact damage. A robust method has been developed for recovering the directionally dependent electrical resistivities using an experimental line-type 4-probe resistance method. Next, the concept of effective conducting thickness was uniquely applied in the development of a brand new point-type 4-probe method for applications with electrically anisotropic materials. An extensive experimental study was completed to characterize the 4-probe electrical resistance of CFRP specimens using both the traditional line-type and new point-type methods. Leveraging the concept of effective conducting thickness, a novel method was developed for building 4-probe electrical finite element (FE) models in COMSOL. The electrical models were validated against experimental resistance measurements and the FE models demonstrated predictive capabilities when applied to CFRP specimens with varying thickness and layup. These new models demonstrated a significant improvement in accuracy compared to previous literature and could provide a framework for future advancements in FE modeling of electrically anisotropic materials. FE models were then developed in ABAQUS for evaluating the influence of prescribed localized damage on the 4-probe resistance. Experimental data was compiled on the impact response of various CFRP laminates, and was used in the development of quasi- static FE models for predicting presence of impact-induced delamination. The simulation-based delamination predictions were then integrated into the electrical FE models for the purpose of studying the influence of realistic damage patterns on electrical resistance. When the size of the delamination damage was moderate compared to the electrode spacing, the electrical resistance increased by less than 1% due to the delamination damage. However, for a specimen with large

  7. Dam-Break Flooding and Structural Damage in a Residential Neighborhood: Performance of a coupled hydrodynamic-damage model

    NASA Astrophysics Data System (ADS)

    Sanders, B. F.; Gallegos, H. A.; Schubert, J. E.

    2011-12-01

    The Baldwin Hills dam-break flood and associated structural damage is investigated in this study. The flood caused high velocity flows exceeding 5 m/s which destroyed 41 wood-framed residential structures, 16 of which were completed washed out. Damage is predicted by coupling a calibrated hydrodynamic flood model based on the shallow-water equations to structural damage models. The hydrodynamic and damage models are two-way coupled so building failure is predicted upon exceedance of a hydraulic intensity parameter, which in turn triggers a localized reduction in flow resistance which affects flood intensity predictions. Several established damage models and damage correlations reported in the literature are tested to evaluate the predictive skill for two damage states defined by destruction (Level 2) and washout (Level 3). Results show that high-velocity structural damage can be predicted with a remarkable level of skill using established damage models, but only with two-way coupling of the hydrodynamic and damage models. In contrast, when structural failure predictions have no influence on flow predictions, there is a significant reduction in predictive skill. Force-based damage models compare well with a subset of the damage models which were devised for similar types of structures. Implications for emergency planning and preparedness as well as monetary damage estimation are discussed.

  8. Probabilistic flood damage modelling at the meso-scale

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2014-05-01

    Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.

  9. The evaluation of distributed damage in concrete based on sinusoidal modeling of the ultrasonic response.

    PubMed

    Sepehrinezhad, Alireza; Toufigh, Vahab

    2018-05-25

    Ultrasonic wave attenuation is an effective descriptor of distributed damage in inhomogeneous materials. Methods developed to measure wave attenuation have the potential to provide an in-site evaluation of existing concrete structures insofar as they are accurate and time-efficient. In this study, material classification and distributed damage evaluation were investigated based on the sinusoidal modeling of the response from the through-transmission ultrasonic tests on polymer concrete specimens. The response signal was modeled as single or the sum of damping sinusoids. Due to the inhomogeneous nature of concrete materials, model parameters may vary from one specimen to another. Therefore, these parameters are not known in advance and should be estimated while the response signal is being received. The modeling procedure used in this study involves a data-adaptive algorithm to estimate the parameters online. Data-adaptive algorithms are used due to a lack of knowledge of the model parameters. The damping factor was estimated as a descriptor of the distributed damage. The results were compared in two different cases as follows: (1) constant excitation frequency with varying concrete mixtures and (2) constant mixture with varying excitation frequencies. The specimens were also loaded up to their ultimate compressive strength to investigate the effect of distributed damage in the response signal. The results of the estimation indicated that the damping was highly sensitive to the change in material inhomogeneity, even in comparable mixtures. In addition to the proposed method, three methods were employed to compare the results based on their accuracy in the classification of materials and the evaluation of the distributed damage. It is shown that the estimated damping factor is not only sensitive to damage in the final stages of loading, but it is also applicable in evaluating micro damages in the earlier stages providing a reliable descriptor of damage. In addition

  10. Cross-country transferability of multi-variable damage models

    NASA Astrophysics Data System (ADS)

    Wagenaar, Dennis; Lüdtke, Stefan; Kreibich, Heidi; Bouwer, Laurens

    2017-04-01

    Flood damage assessment is often done with simple damage curves based only on flood water depth. Additionally, damage models are often transferred in space and time, e.g. from region to region or from one flood event to another. Validation has shown that depth-damage curve estimates are associated with high uncertainties, particularly when applied in regions outside the area where the data for curve development was collected. Recently, progress has been made with multi-variable damage models created with data-mining techniques, i.e. Bayesian Networks and random forest. However, it is still unknown to what extent and under which conditions model transfers are possible and reliable. Model validations in different countries will provide valuable insights into the transferability of multi-variable damage models. In this study we compare multi-variable models developed on basis of flood damage datasets from Germany as well as from The Netherlands. Data from several German floods was collected using computer aided telephone interviews. Data from the 1993 Meuse flood in the Netherlands is available, based on compensations paid by the government. The Bayesian network and random forest based models are applied and validated in both countries on basis of the individual datasets. A major challenge was the harmonization of the variables between both datasets due to factors like differences in variable definitions, and regional and temporal differences in flood hazard and exposure characteristics. Results of model validations and comparisons in both countries are discussed, particularly in respect to encountered challenges and possible solutions for an improvement of model transferability.

  11. Damage Model of Reinforced Concrete Members under Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Wei, Bo Chen; Zhang, Jing Shu; Zhang, Yin Hua; Zhou, Jia Lai

    2018-06-01

    Based on the Kumar damage model, a new damage model for reinforced concrete members is established in this paper. According to the damage characteristics of reinforced concrete members subjected to cyclic loading, four judgment conditions for determining the rationality of damage models are put forward. An ideal damage index (D) is supposed to vary within a scale of zero (no damage) to one (collapse). D should be a monotone increasing function which tends to increase in the case of the same displacement amplitude. As for members under large displacement amplitude loading, the growth rate of D should be greater than that of D under small amplitude displacement loading. Subsequently, the Park-Ang damage model, the Niu-Ren damage model, the Lu-Wang damage model and the proposed damage model are analyzed for 30 experimental reinforced concrete members, including slabs, walls, beams and columns. The results show that current damage models do not fully matches the reasonable judgment conditions, but the proposed damage model does. Therefore, a conclusion can be drawn that the proposed damage model can be used for evaluating and predicting damage performance of RC members under cyclic loading.

  12. Improving Flood Damage Assessment Models in Italy

    NASA Astrophysics Data System (ADS)

    Amadio, M.; Mysiak, J.; Carrera, L.; Koks, E.

    2015-12-01

    The use of Stage-Damage Curve (SDC) models is prevalent in ex-ante assessments of flood risk. To assess the potential damage of a flood event, SDCs describe a relation between water depth and the associated potential economic damage over land use. This relation is normally developed and calibrated through site-specific analysis based on ex-post damage observations. In some cases (e.g. Italy) SDCs are transferred from other countries, undermining the accuracy and reliability of simulation results. Against this background, we developed a refined SDC model for Northern Italy, underpinned by damage compensation records from a recent flood event. Our analysis considers both damage to physical assets and production losses from business interruptions. While the first is calculated based on land use information, production losses are measured through the spatial distribution of Gross Value Added (GVA). An additional component of the model assesses crop-specific agricultural losses as a function of flood seasonality. Our results show an overestimation of asset damage from non-calibrated SDC values up to a factor of 4.5 for tested land use categories. Furthermore, we estimate that production losses amount to around 6 per cent of the annual GVA. Also, maximum yield losses are less than a half of the amount predicted by the standard SDC methods.

  13. Damage-Based Time-Dependent Modeling of Paraglacial to Postglacial Progressive Failure of Large Rock Slopes

    NASA Astrophysics Data System (ADS)

    Riva, Federico; Agliardi, Federico; Amitrano, David; Crosta, Giovanni B.

    2018-01-01

    Large alpine rock slopes undergo long-term evolution in paraglacial to postglacial environments. Rock mass weakening and increased permeability associated with the progressive failure of deglaciated slopes promote the development of potentially catastrophic rockslides. We captured the entire life cycle of alpine slopes in one damage-based, time-dependent 2-D model of brittle creep, including deglaciation, damage-dependent fluid occurrence, and rock mass property upscaling. We applied the model to the Spriana rock slope (Central Alps), affected by long-term instability after Last Glacial Maximum and representing an active threat. We simulated the evolution of the slope from glaciated conditions to present day and calibrated the model using site investigation data and available temporal constraints. The model tracks the entire progressive failure path of the slope from deglaciation to rockslide development, without a priori assumptions on shear zone geometry and hydraulic conditions. Complete rockslide differentiation occurs through the transition from dilatant damage to a compacting basal shear zone, accounting for observed hydraulic barrier effects and perched aquifer formation. Our model investigates the mechanical role of deglaciation and damage-controlled fluid distribution in the development of alpine rockslides. The absolute simulated timing of rock slope instability development supports a very long "paraglacial" period of subcritical rock mass damage. After initial damage localization during the Lateglacial, rockslide nucleation initiates soon after the onset of Holocene, whereas full mechanical and hydraulic rockslide differentiation occurs during Mid-Holocene, supporting a key role of long-term damage in the reported occurrence of widespread rockslide clusters of these ages.

  14. Investigating the Effect of Damage Progression Model Choice on Prognostics Performance

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Roychoudhury, Indranil; Narasimhan, Sriram; Saha, Sankalita; Saha, Bhaskar; Goebel, Kai

    2011-01-01

    The success of model-based approaches to systems health management depends largely on the quality of the underlying models. In model-based prognostics, it is especially the quality of the damage progression models, i.e., the models describing how damage evolves as the system operates, that determines the accuracy and precision of remaining useful life predictions. Several common forms of these models are generally assumed in the literature, but are often not supported by physical evidence or physics-based analysis. In this paper, using a centrifugal pump as a case study, we develop different damage progression models. In simulation, we investigate how model changes influence prognostics performance. Results demonstrate that, in some cases, simple damage progression models are sufficient. But, in general, the results show a clear need for damage progression models that are accurate over long time horizons under varied loading conditions.

  15. A Thermodynamically Consistent Damage Model for Advanced Composites

    NASA Technical Reports Server (NTRS)

    Maimi, Pere; Camanho, Pedro P.; Mayugo, Joan-Andreu; Davila, Carlos G.

    2006-01-01

    A continuum damage model for the prediction of damage onset and structural collapse of structures manufactured in fiber-reinforced plastic laminates is proposed. The principal damage mechanisms occurring in the longitudinal and transverse directions of a ply are represented by a damage tensor that is fixed in space. Crack closure under load reversal effects are taken into account using damage variables established as a function of the sign of the components of the stress tensor. Damage activation functions based on the LaRC04 failure criteria are used to predict the different damage mechanisms occurring at the ply level. The constitutive damage model is implemented in a finite element code. The objectivity of the numerical model is assured by regularizing the dissipated energy at a material point using Bazant's Crack Band Model. To verify the accuracy of the approach, analyses of coupon specimens were performed, and the numerical predictions were compared with experimental data.

  16. A Micromechanics-Based Damage Model for [+/- Theta/90n]s Composite Laminates

    NASA Technical Reports Server (NTRS)

    Mayugo, Joan-Andreu; Camanho, Pedro P.; Maimi, Pere; Davila, Carlos G.

    2006-01-01

    A new damage model based on a micromechanical analysis of cracked [+/- Theta/90n]s laminates subjected to multiaxial loads is proposed. The model predicts the onset and accumulation of transverse matrix cracks in uniformly stressed laminates, the effect of matrix cracks on the stiffness of the laminate, as well as the ultimate failure of the laminate. The model also accounts for the effect of the ply thickness on the ply strength. Predictions relating the elastic properties of several laminates and multiaxial loads are presented.

  17. Continuum Fatigue Damage Modeling for Use in Life Extending Control

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.

    1994-01-01

    This paper develops a simplified continuum (continuous wrp to time, stress, etc.) fatigue damage model for use in Life Extending Controls (LEC) studies. The work is based on zero mean stress local strain cyclic damage modeling. New nonlinear explicit equation forms of cyclic damage in terms of stress amplitude are derived to facilitate the continuum modeling. Stress based continuum models are derived. Extension to plastic strain-strain rate models are also presented. Application of these models to LEC applications is considered. Progress toward a nonzero mean stress based continuum model is presented. Also, new nonlinear explicit equation forms in terms of stress amplitude are also derived for this case.

  18. 3D Progressive Damage Modeling for Laminated Composite Based on Crack Band Theory and Continuum Damage Mechanics

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Pineda, Evan J.; Ranatunga, Vipul; Smeltzer, Stanley S.

    2015-01-01

    A simple continuum damage mechanics (CDM) based 3D progressive damage analysis (PDA) tool for laminated composites was developed and implemented as a user defined material subroutine to link with a commercially available explicit finite element code. This PDA tool uses linear lamina properties from standard tests, predicts damage initiation with an easy-to-implement Hashin-Rotem failure criteria, and in the damage evolution phase, evaluates the degradation of material properties based on the crack band theory and traction-separation cohesive laws. It follows Matzenmiller et al.'s formulation to incorporate the degrading material properties into the damaged stiffness matrix. Since nonlinear shear and matrix stress-strain relations are not implemented, correction factors are used for slowing the reduction of the damaged shear stiffness terms to reflect the effect of these nonlinearities on the laminate strength predictions. This CDM based PDA tool is implemented as a user defined material (VUMAT) to link with the Abaqus/Explicit code. Strength predictions obtained, using this VUMAT, are correlated with test data for a set of notched specimens under tension and compression loads.

  19. Interacting damage models mapped onto ising and percolation models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toussaint, Renaud; Pride, Steven R.

    The authors introduce a class of damage models on regular lattices with isotropic interactions between the broken cells of the lattice. Quasistatic fiber bundles are an example. The interactions are assumed to be weak, in the sense that the stress perturbation from a broken cell is much smaller than the mean stress in the system. The system starts intact with a surface-energy threshold required to break any cell sampled from an uncorrelated quenched-disorder distribution. The evolution of this heterogeneous system is ruled by Griffith's principle which states that a cell breaks when the release in potential (elastic) energy in themore » system exceeds the surface-energy barrier necessary to break the cell. By direct integration over all possible realizations of the quenched disorder, they obtain the probability distribution of each damage configuration at any level of the imposed external deformation. They demonstrate an isomorphism between the distributions so obtained and standard generalized Ising models, in which the coupling constants and effective temperature in the Ising model are functions of the nature of the quenched-disorder distribution and the extent of accumulated damage. In particular, they show that damage models with global load sharing are isomorphic to standard percolation theory, that damage models with local load sharing rule are isomorphic to the standard ising model, and draw consequences thereof for the universality class and behavior of the autocorrelation length of the breakdown transitions corresponding to these models. they also treat damage models having more general power-law interactions, and classify the breakdown process as a function of the power-law interaction exponent. Last, they also show that the probability distribution over configurations is a maximum of Shannon's entropy under some specific constraints related to the energetic balance of the fracture process, which firmly relates this type of quenched-disorder based

  20. Repairable-conditionally repairable damage model based on dual Poisson processes.

    PubMed

    Lind, B K; Persson, L M; Edgren, M R; Hedlöf, I; Brahme, A

    2003-09-01

    The advent of intensity-modulated radiation therapy makes it increasingly important to model the response accurately when large volumes of normal tissues are irradiated by controlled graded dose distributions aimed at maximizing tumor cure and minimizing normal tissue toxicity. The cell survival model proposed here is very useful and flexible for accurate description of the response of healthy tissues as well as tumors in classical and truly radiobiologically optimized radiation therapy. The repairable-conditionally repairable (RCR) model distinguishes between two different types of damage, namely the potentially repairable, which may also be lethal, i.e. if unrepaired or misrepaired, and the conditionally repairable, which may be repaired or may lead to apoptosis if it has not been repaired correctly. When potentially repairable damage is being repaired, for example by nonhomologous end joining, conditionally repairable damage may require in addition a high-fidelity correction by homologous repair. The induction of both types of damage is assumed to be described by Poisson statistics. The resultant cell survival expression has the unique ability to fit most experimental data well at low doses (the initial hypersensitive range), intermediate doses (on the shoulder of the survival curve), and high doses (on the quasi-exponential region of the survival curve). The complete Poisson expression can be approximated well by a simple bi-exponential cell survival expression, S(D) = e(-aD) + bDe(-cD), where the first term describes the survival of undamaged cells and the last term represents survival after complete repair of sublethal damage. The bi-exponential expression makes it easy to derive D(0), D(q), n and alpha, beta values to facilitate comparison with classical cell survival models.

  1. Evaluation of a threshold-based model of fatigue in gamma titanium aluminide following impact damage

    NASA Astrophysics Data System (ADS)

    Harding, Trevor Scott

    2000-10-01

    Recent interest in gamma titanium aluminide (gamma-TiAl) for use in gas turbine engine applications has centered on the low density and good elevated temperature strength retention of gamma-TiAl compared to current materials. However, the relatively low ductility and fracture toughness of gamma-TiAl leads to serious concerns regarding its ability to resist impact damage. Furthermore, the limited fatigue crack growth resistance of gamma-TiAl means that the potential for fatigue failures resulting from impact damage is real if a damage tolerant design approach is used. A threshold-based design approach may be required if fatigue crack growth from potential impact sites is to be avoided. The objective of the present research is to examine the feasibility of a threshold-based approach for the design of a gamma-TiAl low-pressure turbine blade subjected to both assembly-related impact damage and foreign object damage. Specimens of three different gamma-TiAl alloys were damaged in such a way as to simulate anticipated impact damage for a turbine blade. Step-loading fatigue tests were conducted at both room temperature and 600°C. In terms of the assembly-related impact damage, the results indicate that there is reasonably good agreement between the threshold-based predictions of the fatigue strength of damaged specimens and the measured data. However, some discrepancies do exist. In the case of very lightly damaged specimens, prediction of the resulting fatigue strength requires that a very conservative small-crack fatigue threshold be used. Consequently, the allowable design conditions are significantly reduced. For severely damaged specimens, an analytical approach found that the potential effects of residual stresses may be related to the discrepancies observed between the threshold-based model and measured fatigue strength data. In the case of foreign object damage, a good correlation was observed between impacts resulting in large cracks and a long-crack threshold-based

  2. Experimental verification of a progressive damage model for composite laminates based on continuum damage mechanics. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Coats, Timothy William

    1994-01-01

    Progressive failure is a crucial concern when using laminated composites in structural design. Therefore the ability to model damage and predict the life of laminated composites is vital. The purpose of this research was to experimentally verify the application of the continuum damage model, a progressive failure theory utilizing continuum damage mechanics, to a toughened material system. Damage due to tension-tension fatigue was documented for the IM7/5260 composite laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables, respectively, to predict stiffness loss. A damage dependent finite element code qualitatively predicted trends in transverse matrix cracking, axial splits and local stress-strain distributions for notched quasi-isotropic laminates. The predictions were similar to the experimental data and it was concluded that the continuum damage model provided a good prediction of stiffness loss while qualitatively predicting damage growth in notched laminates.

  3. A two-scale model for dynamic damage evolution

    NASA Astrophysics Data System (ADS)

    Keita, Oumar; Dascalu, Cristian; François, Bertrand

    2014-03-01

    This paper presents a new micro-mechanical damage model accounting for inertial effect. The two-scale damage model is fully deduced from small-scale descriptions of dynamic micro-crack propagation under tensile loading (mode I). An appropriate micro-mechanical energy analysis is combined with homogenization based on asymptotic developments in order to obtain the macroscopic evolution law for damage. Numerical simulations are presented in order to illustrate the ability of the model to describe known behaviors like size effects for the structural response, strain-rate sensitivity, brittle-ductile transition and wave dispersion.

  4. Shell-NASA Vibration-Based Damage Characterization

    NASA Technical Reports Server (NTRS)

    Rollins, John M.

    2014-01-01

    This article describes collaborative research between Shell International Exploration and Production (IE&P) scientists and ISAG personnel to investigate the feasibility of ultrasonic-based characterization of spacecraft tile damage for in-space inspection applications. The approach was proposed by Shell personnel in a Shell-NASA "speed-matching" session in early 2011 after ISAG personnel described challenges inherent in the inspection of MMOD damage deep within spacecraft thermal protection system (TPS) tiles. The approach leveraged Shell's relevant sensor and analytical expertise. The research addressed the difficulties associated with producing 3D models of MMOD damage cavities under the surface of a TPS tile, given that simple image-based sensing is constrained by line of sight through entry holes that have diameters considerably smaller than the underlying damage cavities. Damage cavity characterization is needed as part of a vehicle inspection and risk reduction capability for long-duration, human-flown space missions. It was hoped that cavity characterization could be accomplished through the use of ultrasonic techniques that allow for signal penetration through solid material.

  5. A Progressive Damage Model for Predicting Permanent Indentation and Impact Damage in Composite Laminates

    NASA Astrophysics Data System (ADS)

    Ji, Zhaojie; Guan, Zhidong; Li, Zengshan

    2017-10-01

    In this paper, a progressive damage model was established on the basis of ABAQUS software for predicting permanent indentation and impact damage in composite laminates. Intralaminar and interlaminar damage was modelled based on the continuum damage mechanics (CDM) in the finite element model. For the verification of the model, low-velocity impact tests of quasi-isotropic laminates with material system of T300/5228A were conducted. Permanent indentation and impact damage of the laminates were simulated and the numerical results agree well with the experiments. It can be concluded that an obvious knee point can be identified on the curve of the indentation depth versus impact energy. Matrix cracking and delamination develops rapidly with the increasing impact energy, while considerable amount of fiber breakage only occurs when the impact energy exceeds the energy corresponding to the knee point. Predicted indentation depth after the knee point is very sensitive to the parameter μ which is proposed in this paper, and the acceptable value of this parameter is in range from 0.9 to 1.0.

  6. Study on quantitative risk assessment model of the third party damage for natural gas pipelines based on fuzzy comprehensive assessment

    NASA Astrophysics Data System (ADS)

    Qiu, Zeyang; Liang, Wei; Wang, Xue; Lin, Yang; Zhang, Meng

    2017-05-01

    As an important part of national energy supply system, transmission pipelines for natural gas are possible to cause serious environmental pollution, life and property loss in case of accident. The third party damage is one of the most significant causes for natural gas pipeline system accidents, and it is very important to establish an effective quantitative risk assessment model of the third party damage for reducing the number of gas pipelines operation accidents. Against the third party damage accident has the characteristics such as diversity, complexity and uncertainty, this paper establishes a quantitative risk assessment model of the third party damage based on Analytic Hierarchy Process (AHP) and Fuzzy Comprehensive Evaluation (FCE). Firstly, risk sources of third party damage should be identified exactly, and the weight of factors could be determined via improved AHP, finally the importance of each factor is calculated by fuzzy comprehensive evaluation model. The results show that the quantitative risk assessment model is suitable for the third party damage of natural gas pipelines and improvement measures could be put forward to avoid accidents based on the importance of each factor.

  7. Formability prediction for AHSS materials using damage models

    NASA Astrophysics Data System (ADS)

    Amaral, R.; Santos, Abel D.; José, César de Sá; Miranda, Sara

    2017-05-01

    Advanced high strength steels (AHSS) are seeing an increased use, mostly due to lightweight design in automobile industry and strict regulations on safety and greenhouse gases emissions. However, the use of these materials, characterized by a high strength to weight ratio, stiffness and high work hardening at early stages of plastic deformation, have imposed many challenges in sheet metal industry, mainly their low formability and different behaviour, when compared to traditional steels, which may represent a defying task, both to obtain a successful component and also when using numerical simulation to predict material behaviour and its fracture limits. Although numerical prediction of critical strains in sheet metal forming processes is still very often based on the classic forming limit diagrams, alternative approaches can use damage models, which are based on stress states to predict failure during the forming process and they can be classified as empirical, physics based and phenomenological models. In the present paper a comparative analysis of different ductile damage models is carried out, in order numerically evaluate two isotropic coupled damage models proposed by Johnson-Cook and Gurson-Tvergaard-Needleman (GTN), each of them corresponding to the first two previous group classification. Finite element analysis is used considering these damage mechanics approaches and the obtained results are compared with experimental Nakajima tests, thus being possible to evaluate and validate the ability to predict damage and formability limits for previous defined approaches.

  8. Micromechanics Modeling of Composites Subjected to Multiaxial Progressive Damage in the Constituents

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Amold, Steven M.

    2010-01-01

    The high-fidelity generalized method of cells composite micromechanics model is extended to include constituent-scale progressive damage via a proposed damage model. The damage model assumes that all material nonlinearity is due to damage in the form of reduced stiffness, and it uses six scalar damage variables (three for tension and three for compression) to track the damage. Damage strains are introduced that account for interaction among the strain components and that also allow the development of the damage evolution equations based on the constituent material uniaxial stress strain response. Local final-failure criteria are also proposed based on mode-specific strain energy release rates and total dissipated strain energy. The coupled micromechanics-damage model described herein is applied to a unidirectional E-glass/epoxy composite and a proprietary polymer matrix composite. Results illustrate the capability of the coupled model to capture the vastly different character of the monolithic (neat) resin matrix and the composite in response to far-field tension, compression, and shear loading.

  9. Damage-based life prediction model for uniaxial low-cycle stress fatigue of super-elastic NiTi shape memory alloy microtubes

    NASA Astrophysics Data System (ADS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-08-01

    Based on the experimental observations for the uniaxial low-cycle stress fatigue failure of super-elastic NiTi shape memory alloy microtubes (Song et al 2015 Smart Mater. Struct. 24 075004) and a new definition of damage variable corresponding to the variation of accumulated dissipation energy, a phenomenological damage model is proposed to describe the damage evolution of the NiTi microtubes during cyclic loading. Then, with a failure criterion of Dc = 1, the fatigue lives of the NiTi microtubes are predicted by the damage-based model, the predicted lives are in good agreement with the experimental ones, and all of the points are located within an error band of 1.5 times.

  10. A nonlinear CDM based damage growth law for ductile materials

    NASA Astrophysics Data System (ADS)

    Gautam, Abhinav; Priya Ajit, K.; Sarkar, Prabir Kumar

    2018-02-01

    A nonlinear ductile damage growth criterion is proposed based on continuum damage mechanics (CDM) approach. The model is derived in the framework of thermodynamically consistent CDM assuming damage to be isotropic. In this study, the damage dissipation potential is also derived to be a function of varying strain hardening exponent in addition to damage strain energy release rate density. Uniaxial tensile tests and load-unload-cyclic tensile tests for AISI 1020 steel, AISI 1030 steel and Al 2024 aluminum alloy are considered for the determination of their respective damage variable D and other parameters required for the model(s). The experimental results are very closely predicted, with a deviation of 0%-3%, by the proposed model for each of the materials. The model is also tested with predictabilities of damage growth by other models in the literature. Present model detects the state of damage quantitatively at any level of plastic strain and uses simpler material tests to find the parameters of the model. So, it should be useful in metal forming industries to assess the damage growth for the desired deformation level a priori. The superiority of the new model is clarified by the deviations in the predictability of test results by other models.

  11. Assessment of compressive failure process of cortical bone materials using damage-based model.

    PubMed

    Ng, Theng Pin; R Koloor, S S; Djuansjah, J R P; Abdul Kadir, M R

    2017-02-01

    The main failure factors of cortical bone are aging or osteoporosis, accident and high energy trauma or physiological activities. However, the mechanism of damage evolution coupled with yield criterion is considered as one of the unclear subjects in failure analysis of cortical bone materials. Therefore, this study attempts to assess the structural response and progressive failure process of cortical bone using a brittle damaged plasticity model. For this reason, several compressive tests are performed on cortical bone specimens made of bovine femur, in order to obtain the structural response and mechanical properties of the material. Complementary finite element (FE) model of the sample and test is prepared to simulate the elastic-to-damage behavior of the cortical bone using the brittle damaged plasticity model. The FE model is validated in a comparative method using the predicted and measured structural response as load-compressive displacement through simulation and experiment. FE results indicated that the compressive damage initiated and propagated at central region where maximum equivalent plastic strain is computed, which coincided with the degradation of structural compressive stiffness followed by a vast amount of strain energy dissipation. The parameter of compressive damage rate, which is a function dependent on damage parameter and the plastic strain is examined for different rates. Results show that considering a similar rate to the initial slope of the damage parameter in the experiment would give a better sense for prediction of compressive failure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Damage evaluation of reinforced concrete frame based on a combined fiber beam model

    NASA Astrophysics Data System (ADS)

    Shang, Bing; Liu, ZhanLi; Zhuang, Zhuo

    2014-04-01

    In order to analyze and simulate the impact collapse or seismic response of the reinforced concrete (RC) structures, a combined fiber beam model is proposed by dividing the cross section of RC beam into concrete fiber and steel fiber. The stress-strain relationship of concrete fiber is based on a model proposed by concrete codes for concrete structures. The stress-strain behavior of steel fiber is based on a model suggested by others. These constitutive models are implemented into a general finite element program ABAQUS through the user defined subroutines to provide effective computational tools for the inelastic analysis of RC frame structures. The fiber model proposed in this paper is validated by comparing with experiment data of the RC column under cyclical lateral loading. The damage evolution of a three-dimension frame subjected to impact loading is also investigated.

  13. Irreversible entropy model for damage diagnosis in resistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuadras, Angel, E-mail: angel.cuadras@upc.edu; Crisóstomo, Javier; Ovejas, Victoria J.

    2015-10-28

    We propose a method to characterize electrical resistor damage based on entropy measurements. Irreversible entropy and the rate at which it is generated are more convenient parameters than resistance for describing damage because they are essentially positive in virtue of the second law of thermodynamics, whereas resistance may increase or decrease depending on the degradation mechanism. Commercial resistors were tested in order to characterize the damage induced by power surges. Resistors were biased with constant and pulsed voltage signals, leading to power dissipation in the range of 4–8 W, which is well above the 0.25 W nominal power to initiate failure. Entropymore » was inferred from the added power and temperature evolution. A model is proposed to understand the relationship among resistance, entropy, and damage. The power surge dissipates into heat (Joule effect) and damages the resistor. The results show a correlation between entropy generation rate and resistor failure. We conclude that damage can be conveniently assessed from irreversible entropy generation. Our results for resistors can be easily extrapolated to other systems or machines that can be modeled based on their resistance.« less

  14. An enhanced version of a bone-remodelling model based on the continuum damage mechanics theory.

    PubMed

    Mengoni, M; Ponthot, J P

    2015-01-01

    The purpose of this work was to propose an enhancement of Doblaré and García's internal bone remodelling model based on the continuum damage mechanics (CDM) theory. In their paper, they stated that the evolution of the internal variables of the bone microstructure, and its incidence on the modification of the elastic constitutive parameters, may be formulated following the principles of CDM, although no actual damage was considered. The resorption and apposition criteria (similar to the damage criterion) were expressed in terms of a mechanical stimulus. However, the resorption criterion is lacking a dimensional consistency with the remodelling rate. We propose here an enhancement to this resorption criterion, insuring the dimensional consistency while retaining the physical properties of the original remodelling model. We then analyse the change in the resorption criterion hypersurface in the stress space for a two-dimensional (2D) analysis. We finally apply the new formulation to analyse the structural evolution of a 2D femur. This analysis gives results consistent with the original model but with a faster and more stable convergence rate.

  15. Micromechanics based phenomenological damage modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muju, S.; Anderson, P.M.; Popelar, C.H.

    A model is developed for the study of process zone effects on dominant cracks. The model proposed here is intended to bridge the gap between the micromechanics based and the phenomenological models for the class of problems involving microcracking, transforming inclusions etc. It is based on representation of localized eigenstrains using dislocation dipoles. The eigenstrain (fitting strain) is represented as the strength (Burgers vector) of the dipole which obeys a certain phenomenological constitutive relation.

  16. Adaptive Finite Element Methods for Continuum Damage Modeling

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Tworzydlo, W. W.; Xiques, K. E.

    1995-01-01

    The paper presents an application of adaptive finite element methods to the modeling of low-cycle continuum damage and life prediction of high-temperature components. The major objective is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and adaptive time-stepping methods. The damage modeling methodology is implemented in an usual way by embedding damage evolution in the transient nonlinear solution of elasto-viscoplastic deformation problems. This nonlinear boundary-value problem is discretized by adaptive finite element methods. The automated h-adaptive mesh refinements are driven by error indicators, based on selected principal variables in the problem (stresses, non-elastic strains, damage, etc.). In the time domain, adaptive time-stepping is used, combined with a predictor-corrector time marching algorithm. The time selection is controlled by required time accuracy. In order to take into account strong temperature dependency of material parameters, the nonlinear structural solution a coupled with thermal analyses (one-way coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in accurate prediction of damage levels and failure time.

  17. Lamb Wave Damage Quantification Using GA-Based LS-SVM.

    PubMed

    Sun, Fuqiang; Wang, Ning; He, Jingjing; Guan, Xuefei; Yang, Jinsong

    2017-06-12

    Lamb waves have been reported to be an efficient tool for non-destructive evaluations (NDE) for various application scenarios. However, accurate and reliable damage quantification using the Lamb wave method is still a practical challenge, due to the complex underlying mechanism of Lamb wave propagation and damage detection. This paper presents a Lamb wave damage quantification method using a least square support vector machine (LS-SVM) and a genetic algorithm (GA). Three damage sensitive features, namely, normalized amplitude, phase change, and correlation coefficient, were proposed to describe changes of Lamb wave characteristics caused by damage. In view of commonly used data-driven methods, the GA-based LS-SVM model using the proposed three damage sensitive features was implemented to evaluate the crack size. The GA method was adopted to optimize the model parameters. The results of GA-based LS-SVM were validated using coupon test data and lap joint component test data with naturally developed fatigue cracks. Cases of different loading and manufacturer were also included to further verify the robustness of the proposed method for crack quantification.

  18. Lamb Wave Damage Quantification Using GA-Based LS-SVM

    PubMed Central

    Sun, Fuqiang; Wang, Ning; He, Jingjing; Guan, Xuefei; Yang, Jinsong

    2017-01-01

    Lamb waves have been reported to be an efficient tool for non-destructive evaluations (NDE) for various application scenarios. However, accurate and reliable damage quantification using the Lamb wave method is still a practical challenge, due to the complex underlying mechanism of Lamb wave propagation and damage detection. This paper presents a Lamb wave damage quantification method using a least square support vector machine (LS-SVM) and a genetic algorithm (GA). Three damage sensitive features, namely, normalized amplitude, phase change, and correlation coefficient, were proposed to describe changes of Lamb wave characteristics caused by damage. In view of commonly used data-driven methods, the GA-based LS-SVM model using the proposed three damage sensitive features was implemented to evaluate the crack size. The GA method was adopted to optimize the model parameters. The results of GA-based LS-SVM were validated using coupon test data and lap joint component test data with naturally developed fatigue cracks. Cases of different loading and manufacturer were also included to further verify the robustness of the proposed method for crack quantification. PMID:28773003

  19. Uncertainty in urban flood damage assessment due to urban drainage modelling and depth-damage curve estimation.

    PubMed

    Freni, G; La Loggia, G; Notaro, V

    2010-01-01

    Due to the increased occurrence of flooding events in urban areas, many procedures for flood damage quantification have been defined in recent decades. The lack of large databases in most cases is overcome by combining the output of urban drainage models and damage curves linking flooding to expected damage. The application of advanced hydraulic models as diagnostic, design and decision-making support tools has become a standard practice in hydraulic research and application. Flooding damage functions are usually evaluated by a priori estimation of potential damage (based on the value of exposed goods) or by interpolating real damage data (recorded during historical flooding events). Hydraulic models have undergone continuous advancements, pushed forward by increasing computer capacity. The details of the flooding propagation process on the surface and the details of the interconnections between underground and surface drainage systems have been studied extensively in recent years, resulting in progressively more reliable models. The same level of was advancement has not been reached with regard to damage curves, for which improvements are highly connected to data availability; this remains the main bottleneck in the expected flooding damage estimation. Such functions are usually affected by significant uncertainty intrinsically related to the collected data and to the simplified structure of the adopted functional relationships. The present paper aimed to evaluate this uncertainty by comparing the intrinsic uncertainty connected to the construction of the damage-depth function to the hydraulic model uncertainty. In this way, the paper sought to evaluate the role of hydraulic model detail level in the wider context of flood damage estimation. This paper demonstrated that the use of detailed hydraulic models might not be justified because of the higher computational cost and the significant uncertainty in damage estimation curves. This uncertainty occurs mainly

  20. Development of damage probability matrices based on Greek earthquake damage data

    NASA Astrophysics Data System (ADS)

    Eleftheriadou, Anastasia K.; Karabinis, Athanasios I.

    2011-03-01

    A comprehensive study is presented for empirical seismic vulnerability assessment of typical structural types, representative of the building stock of Southern Europe, based on a large set of damage statistics. The observational database was obtained from post-earthquake surveys carried out in the area struck by the September 7, 1999 Athens earthquake. After analysis of the collected observational data, a unified damage database has been created which comprises 180,945 damaged buildings from/after the near-field area of the earthquake. The damaged buildings are classified in specific structural types, according to the materials, seismic codes and construction techniques in Southern Europe. The seismic demand is described in terms of both the regional macroseismic intensity and the ratio α g/ a o, where α g is the maximum peak ground acceleration (PGA) of the earthquake event and a o is the unique value PGA that characterizes each municipality shown on the Greek hazard map. The relative and cumulative frequencies of the different damage states for each structural type and each intensity level are computed in terms of damage ratio. Damage probability matrices (DPMs) and vulnerability curves are obtained for specific structural types. A comparison analysis is fulfilled between the produced and the existing vulnerability models.

  1. An integrated physiology model to study regional lung damage effects and the physiologic response

    PubMed Central

    2014-01-01

    Background This work expands upon a previously developed exercise dynamic physiology model (DPM) with the addition of an anatomic pulmonary system in order to quantify the impact of lung damage on oxygen transport and physical performance decrement. Methods A pulmonary model is derived with an anatomic structure based on morphometric measurements, accounting for heterogeneous ventilation and perfusion observed experimentally. The model is incorporated into an existing exercise physiology model; the combined system is validated using human exercise data. Pulmonary damage from blast, blunt trauma, and chemical injury is quantified in the model based on lung fluid infiltration (edema) which reduces oxygen delivery to the blood. The pulmonary damage component is derived and calibrated based on published animal experiments; scaling laws are used to predict the human response to lung injury in terms of physical performance decrement. Results The augmented dynamic physiology model (DPM) accurately predicted the human response to hypoxia, altitude, and exercise observed experimentally. The pulmonary damage parameters (shunt and diffusing capacity reduction) were fit to experimental animal data obtained in blast, blunt trauma, and chemical damage studies which link lung damage to lung weight change; the model is able to predict the reduced oxygen delivery in damage conditions. The model accurately estimates physical performance reduction with pulmonary damage. Conclusions We have developed a physiologically-based mathematical model to predict performance decrement endpoints in the presence of thoracic damage; simulations can be extended to estimate human performance and escape in extreme situations. PMID:25044032

  2. Foam-on-Tile Damage Model

    NASA Technical Reports Server (NTRS)

    Koharchik, Michael; Murphy, Lindsay; Parker, Paul

    2012-01-01

    An impact model was developed to predict how three specific foam types would damage the Space Shuttle Orbiter insulating tiles. The inputs needed for the model are the foam type, the foam mass, the foam impact velocity, the foam impact incident angle, the type being impacted, and whether the tile is new or aged (has flown at least one mission). The model will determine if the foam impact will cause damage to the tile. If it can cause damage, the model will output the damage cavity dimensions (length, depth, entry angle, exit angle, and sidewall angles). It makes the calculations as soon as the inputs are entered (less than 1 second). The model allows for the rapid calculation of numerous scenarios in a short time. The model was developed from engineering principles coupled with significant impact testing (over 800 foam impact tests). This model is applicable to masses ranging from 0.0002 up to 0.4 pound (0.09 up to 181 g). A prior tool performed a similar function, but was limited to the assessment of a small range of masses and did not have the large test database for verification. In addition, the prior model did not provide outputs of the cavity damage length, entry angle, exit angle, or sidewall angles.

  3. Study of cumulative fatigue damage detection for used parts with nonlinear output frequency response functions based on NARMAX modelling

    NASA Astrophysics Data System (ADS)

    Huang, Honglan; Mao, Hanying; Mao, Hanling; Zheng, Weixue; Huang, Zhenfeng; Li, Xinxin; Wang, Xianghong

    2017-12-01

    Cumulative fatigue damage detection for used parts plays a key role in the process of remanufacturing engineering and is related to the service safety of the remanufactured parts. In light of the nonlinear properties of used parts caused by cumulative fatigue damage, the based nonlinear output frequency response functions detection approach offers a breakthrough to solve this key problem. First, a modified PSO-adaptive lasso algorithm is introduced to improve the accuracy of the NARMAX model under impulse hammer excitation, and then, an effective new algorithm is derived to estimate the nonlinear output frequency response functions under rectangular pulse excitation, and a based nonlinear output frequency response functions index is introduced to detect the cumulative fatigue damage in used parts. Then, a novel damage detection approach that integrates the NARMAX model and the rectangular pulse is proposed for nonlinear output frequency response functions identification and cumulative fatigue damage detection of used parts. Finally, experimental studies of fatigued plate specimens and used connecting rod parts are conducted to verify the validity of the novel approach. The obtained results reveal that the new approach can detect cumulative fatigue damages of used parts effectively and efficiently and that the various values of the based nonlinear output frequency response functions index can be used to detect the different fatigue damages or working time. Since the proposed new approach can extract nonlinear properties of systems by only a single excitation of the inspected system, it shows great promise for use in remanufacturing engineering applications.

  4. Micromechanical Fatigue Visco-Damage Model for Short Glass Fiber Reinforced Polyamide-66

    NASA Astrophysics Data System (ADS)

    Despringre, N.; Chemisky, Y.; Robert, G.; Meraghni, F.

    This work presents a micromechanical fatigue damage model developed for short glass fiber reinforced PA66. It has been developed to predict the high cycle fatigue behavior of PA66/GF30. The model is based on an extended Mori-Tanaka method which includes coated inclusions, matrix viscoelasticity and the evolution of micro-scale damage. The developed model accounts for the nonlinear matrix viscoelasticity and the reinforcement orientation. The description of the damage processes is based on the experimental investigation of damage mechanisms previously performed through in-situ SEM tests and X-ray micro-computed tomography observations. Damage chronologies have been proposed involving three different processes: interface debonding/coating, matrix micro-cracking and fiber breakages. Their occurrence strongly depends on the microstructure and the relative humidity. Each damage mechanism is introduced through an evolution law coupled to local stress fields. The developed model is implemented using a UMAT subroutine. Its experimental validation is achieved under stress or strain controlled fatigue tests.

  5. Thermal Model of Laser-Induced Eye Damage

    DTIC Science & Technology

    1974-10-08

    Identify by. block ntber) Ocular Damage Laser Effect3 Thermal Model Temperature Rise Prediction Retinal, Corneal, Lenticular Damage 20. ABSTR ACT (CoIfn...routine available to predict retinal or lenticular beam characteristics based on beam de- scripton at the cornea and distance of the last beam waist 5...used are selected for minimal aberrations of the astigmatic kind and that coma is negligible because of nearly axial "illumination. Secondly, the thermal

  6. A LATIN-based model reduction approach for the simulation of cycling damage

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Mainak; Fau, Amelie; Nackenhorst, Udo; Néron, David; Ladevèze, Pierre

    2017-11-01

    The objective of this article is to introduce a new method including model order reduction for the life prediction of structures subjected to cycling damage. Contrary to classical incremental schemes for damage computation, a non-incremental technique, the LATIN method, is used herein as a solution framework. This approach allows to introduce a PGD model reduction technique which leads to a drastic reduction of the computational cost. The proposed framework is exemplified for structures subjected to cyclic loading, where damage is considered to be isotropic and micro-defect closure effects are taken into account. A difficulty herein for the use of the LATIN method comes from the state laws which can not be transformed into linear relations through an internal variable transformation. A specific treatment of this issue is introduced in this work.

  7. Non-model-based damage identification of plates using principal, mean and Gaussian curvature mode shapes

    DOE PAGES

    Xu, Yongfeng F.; Zhu, Weidong D.; Smith, Scott A.

    2017-07-01

    Mode shapes (MSs) have been extensively used to identify structural damage. This paper presents a new non-model-based method that uses principal, mean and Gaussian curvature MSs (CMSs) to identify damage in plates; the method is applicable and robust to MSs associated with low and high elastic modes on dense and coarse measurement grids. A multi-scale discrete differential-geometry scheme is proposed to calculate principal, mean and Gaussian CMSs associated with a MS of a plate, which can alleviate adverse effects of measurement noise on calculating the CMSs. Principal, mean and Gaussian CMSs of a damaged plate and those of an undamagedmore » one are used to yield four curvature damage indices (CDIs), including Maximum-CDIs, Minimum-CDIs, Mean-CDIs and Gaussian-CDIs. Damage can be identified near regions with consistently higher values of the CDIs. It is shown that a MS of an undamaged plate can be well approximated using a polynomial with a properly determined order that fits a MS of a damaged one, provided that the undamaged plate has a smooth geometry and is made of material that has no stiffness and mass discontinuities. New fitting and convergence indices are proposed to quantify the level of approximation of a MS from a polynomial fit to that of a damaged plate and to determine the proper order of the polynomial fit, respectively. A MS of an aluminum plate with damage in the form of a machined thickness reduction area was measured to experimentally investigate the effectiveness of the proposed CDIs in damage identification; the damage on the plate was successfully identified.« less

  8. Non-model-based damage identification of plates using principal, mean and Gaussian curvature mode shapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yongfeng F.; Zhu, Weidong D.; Smith, Scott A.

    Mode shapes (MSs) have been extensively used to identify structural damage. This paper presents a new non-model-based method that uses principal, mean and Gaussian curvature MSs (CMSs) to identify damage in plates; the method is applicable and robust to MSs associated with low and high elastic modes on dense and coarse measurement grids. A multi-scale discrete differential-geometry scheme is proposed to calculate principal, mean and Gaussian CMSs associated with a MS of a plate, which can alleviate adverse effects of measurement noise on calculating the CMSs. Principal, mean and Gaussian CMSs of a damaged plate and those of an undamagedmore » one are used to yield four curvature damage indices (CDIs), including Maximum-CDIs, Minimum-CDIs, Mean-CDIs and Gaussian-CDIs. Damage can be identified near regions with consistently higher values of the CDIs. It is shown that a MS of an undamaged plate can be well approximated using a polynomial with a properly determined order that fits a MS of a damaged one, provided that the undamaged plate has a smooth geometry and is made of material that has no stiffness and mass discontinuities. New fitting and convergence indices are proposed to quantify the level of approximation of a MS from a polynomial fit to that of a damaged plate and to determine the proper order of the polynomial fit, respectively. A MS of an aluminum plate with damage in the form of a machined thickness reduction area was measured to experimentally investigate the effectiveness of the proposed CDIs in damage identification; the damage on the plate was successfully identified.« less

  9. Two-stage damage diagnosis based on the distance between ARMA models and pre-whitening filters

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Mita, A.

    2007-10-01

    This paper presents a two-stage damage diagnosis strategy for damage detection and localization. Auto-regressive moving-average (ARMA) models are fitted to time series of vibration signals recorded by sensors. In the first stage, a novel damage indicator, which is defined as the distance between ARMA models, is applied to damage detection. This stage can determine the existence of damage in the structure. Such an algorithm uses output only and does not require operator intervention. Therefore it can be embedded in the sensor board of a monitoring network. In the second stage, a pre-whitening filter is used to minimize the cross-correlation of multiple excitations. With this technique, the damage indicator can further identify the damage location and severity when the damage has been detected in the first stage. The proposed methodology is tested using simulation and experimental data. The analysis results clearly illustrate the feasibility of the proposed two-stage damage diagnosis methodology.

  10. An elastic failure model of indentation damage. [of brittle structural ceramics

    NASA Technical Reports Server (NTRS)

    Liaw, B. M.; Kobayashi, A. S.; Emery, A. F.

    1984-01-01

    A mechanistically consistent model for indentation damage based on elastic failure at tensile or shear overloads, is proposed. The model accommodates arbitrary crack orientation, stress relaxation, reduction and recovery of stiffness due to crack opening and closure, and interfacial friction due to backward sliding of closed cracks. This elastic failure model was implemented by an axisymmetric finite element program which was used to simulate progressive damage in a silicon nitride plate indented by a tungsten carbide sphere. The predicted damage patterns and the permanent impression matched those observed experimentally. The validation of this elastic failure model shows that the plastic deformation postulated by others is not necessary to replicate the indentation damage of brittle structural ceramics.

  11. A damage mechanics based general purpose interface/contact element

    NASA Astrophysics Data System (ADS)

    Yan, Chengyong

    Most of the microelectronics packaging structures consist of layered substrates connected with bonding materials, such as solder or epoxy. Predicting the thermomechanical behavior of these multilayered structures is a challenging task in electronic packaging engineering. In a layered structure the most complex part is always the interfaces between the strates. Simulating the thermo-mechanical behavior of such interfaces, is the main theme of this dissertation. The most commonly used solder material, Pb-Sn alloy, has a very low melting temperature 180sp°C, so that the material demonstrates a highly viscous behavior. And, creep usually dominates the failure mechanism. Hence, the theory of viscoplasticity is adapted to describe the constitutive behavior. In a multilayered assembly each layer has a different coefficient of thermal expansion. Under thermal cycling, due to heat dissipated from circuits, interfaces and interconnects experience low cycle fatigue. Presently, the state-of-the art damage mechanics model used for fatigue life predictions is based on Kachanov (1986) continuum damage model. This model uses plastic strain as a damage criterion. Since plastic strain is a stress path dependent value, the criterion does not yield unique damage values for the same state of stress. In this dissertation a new damage evolution equation based on the second law of thermodynamic is proposed. The new criterion is based on the entropy of the system and it yields unique damage values for all stress paths to the final state of stress. In the electronics industry, there is a strong desire to develop fatigue free interconnections. The proposed interface/contact element can also simulate the behavior of the fatigue free Z-direction thin film interconnections as well as traditional layered interconnects. The proposed interface element can simulate behavior of a bonded interface or unbonded sliding interface, also called contact element. The proposed element was verified against

  12. An Elasto-Plastic Damage Model for Rocks Based on a New Nonlinear Strength Criterion

    NASA Astrophysics Data System (ADS)

    Huang, Jingqi; Zhao, Mi; Du, Xiuli; Dai, Feng; Ma, Chao; Liu, Jingbo

    2018-05-01

    The strength and deformation characteristics of rocks are the most important mechanical properties for rock engineering constructions. A new nonlinear strength criterion is developed for rocks by combining the Hoek-Brown (HB) criterion and the nonlinear unified strength criterion (NUSC). The proposed criterion takes account of the intermediate principal stress effect against HB criterion, as well as being nonlinear in the meridian plane against NUSC. Only three parameters are required to be determined by experiments, including the two HB parameters σ c and m i . The failure surface of the proposed criterion is continuous, smooth and convex. The proposed criterion fits the true triaxial test data well and performs better than the other three existing criteria. Then, by introducing the Geological Strength Index, the proposed criterion is extended to rock masses and predicts the test data well. Finally, based on the proposed criterion, a triaxial elasto-plastic damage model for intact rock is developed. The plastic part is based on the effective stress, whose yield function is developed by the proposed criterion. For the damage part, the evolution function is assumed to have an exponential form. The performance of the constitutive model shows good agreement with the results of experimental tests.

  13. Fracture-Based Mesh Size Requirements for Matrix Cracks in Continuum Damage Mechanics Models

    NASA Technical Reports Server (NTRS)

    Leone, Frank A.; Davila, Carlos G.; Mabson, Gerald E.; Ramnath, Madhavadas; Hyder, Imran

    2017-01-01

    This paper evaluates the ability of progressive damage analysis (PDA) finite element (FE) models to predict transverse matrix cracks in unidirectional composites. The results of the analyses are compared to closed-form linear elastic fracture mechanics (LEFM) solutions. Matrix cracks in fiber-reinforced composite materials subjected to mode I and mode II loading are studied using continuum damage mechanics and zero-thickness cohesive zone modeling approaches. The FE models used in this study are built parametrically so as to investigate several model input variables and the limits associated with matching the upper-bound LEFM solutions. Specifically, the sensitivity of the PDA FE model results to changes in strength and element size are investigated.

  14. Physically-based Assessment of Tropical Cyclone Damage and Economic Losses

    NASA Astrophysics Data System (ADS)

    Lin, N.

    2012-12-01

    Estimating damage and economic losses caused by tropical cyclones (TC) is a topic of considerable research interest in many scientific fields, including meteorology, structural and coastal engineering, and actuarial sciences. One approach is based on the empirical relationship between TC characteristics and loss data. Another is to model the physical mechanism of TC-induced damage. In this talk we discuss about the physically-based approach to predict TC damage and losses due to extreme wind and storm surge. We first present an integrated vulnerability model, which, for the first time, explicitly models the essential mechanisms causing wind damage to residential areas during storm passage, including windborne-debris impact and the pressure-debris interaction that may lead, in a chain reaction, to structural failures (Lin and Vanmarcke 2010; Lin et al. 2010a). This model can be used to predict the economic losses in a residential neighborhood (with hundreds of buildings) during a specific TC (Yau et al. 2011) or applied jointly with a TC risk model (e.g., Emanuel et al 2008) to estimate the expected losses over long time periods. Then we present a TC storm surge risk model that has been applied to New York City (Lin et al. 2010b; Lin et al. 2012; Aerts et al. 2012), Miami-Dade County, Florida (Klima et al. 2011), Galveston, Texas (Lickley, 2012), and other coastal areas around the world (e.g., Tampa, Florida; Persian Gulf; Darwin, Australia; Shanghai, China). These physically-based models are applicable to various coastal areas and have the capability to account for the change of the climate and coastal exposure over time. We also point out that, although made computationally efficient for risk assessment, these models are not suitable for regional or global analysis, which has been a focus of the empirically-based economic analysis (e.g., Hsiang and Narita 2012). A future research direction is to simplify the physically-based models, possibly through

  15. Acoustic emission based damage localization in composites structures using Bayesian identification

    NASA Astrophysics Data System (ADS)

    Kundu, A.; Eaton, M. J.; Al-Jumali, S.; Sikdar, S.; Pullin, R.

    2017-05-01

    Acoustic emission based damage detection in composite structures is based on detection of ultra high frequency packets of acoustic waves emitted from damage sources (such as fibre breakage, fatigue fracture, amongst others) with a network of distributed sensors. This non-destructive monitoring scheme requires solving an inverse problem where the measured signals are linked back to the location of the source. This in turn enables rapid deployment of mitigative measures. The presence of significant amount of uncertainty associated with the operating conditions and measurements makes the problem of damage identification quite challenging. The uncertainties stem from the fact that the measured signals are affected by the irregular geometries, manufacturing imprecision, imperfect boundary conditions, existing damages/structural degradation, amongst others. This work aims to tackle these uncertainties within a framework of automated probabilistic damage detection. The method trains a probabilistic model of the parametrized input and output model of the acoustic emission system with experimental data to give probabilistic descriptors of damage locations. A response surface modelling the acoustic emission as a function of parametrized damage signals collected from sensors would be calibrated with a training dataset using Bayesian inference. This is used to deduce damage locations in the online monitoring phase. During online monitoring, the spatially correlated time data is utilized in conjunction with the calibrated acoustic emissions model to infer the probabilistic description of the acoustic emission source within a hierarchical Bayesian inference framework. The methodology is tested on a composite structure consisting of carbon fibre panel with stiffeners and damage source behaviour has been experimentally simulated using standard H-N sources. The methodology presented in this study would be applicable in the current form to structural damage detection under varying

  16. A 2D Model of Hydraulic Fracturing, Damage and Microseismicity

    NASA Astrophysics Data System (ADS)

    Wangen, Magnus

    2018-03-01

    We present a model for hydraulic fracturing and damage of low-permeable rock. It computes the intermittent propagation of rock damage, microseismic event locations, microseismic frequency-magnitude distributions, stimulated rock volume and the injection pressure. The model uses a regular 2D grid and is based on ideas from invasion percolation. All damaged and connected cells during a time step constitute a microseismic event, where the size of the event is the number of cells in the cluster. The magnitude of the event is the log _{10} of the event size. The model produces events with a magnitude-frequency distribution having a b value that is approximately 0.8. The model is studied with respect to the physical parameters: permeability of damaged rock and the rock strength. "High" permeabilities of the damaged rock give the same b value ≈ 0.8, but "moderate" permeabilities give higher b values. Another difference is that "high" permeabilities produce a percolation-like fracture network, while "moderate" permeabilities result in damage zones that expand circularly away from the injection point. In the latter case of "moderate" permeabilities, the injection pressure increases substantially beyond the fracturing level. The rock strength and the time step do not change the observed b value of the model for moderate changes.

  17. A continuum damage model for delaminations in laminated composites

    NASA Astrophysics Data System (ADS)

    Zou, Z.; Reid, S. R.; Li, S.

    2003-02-01

    Delamination, a typical mode of interfacial damage in laminated composites, has been considered in the context of continuum damage mechanics in this paper. Interfaces where delaminations could occur are introduced between the constituent layers. A simple but appropriate continuum damage representation is proposed. A single scalar damage parameter is employed and the degradation of the interface stiffness is established. Use has been made of the concept of a damage surface to derive the damage evolution law. The damage surface is constructed so that it combines the conventional stress-based and fracture-mechanics-based failure criteria which take account of mode interaction in mixed-mode delamination problems. The damage surface shrinks as damage develops and leads to a softening interfacial constitutive law. By adjusting the shrinkage rate of the damage surface, various interfacial constitutive laws found in the literature can be reproduced. An incremental interfacial constitutive law is also derived for use in damage analysis of laminated composites, which is a non-linear problem in nature. Numerical predictions for problems involving a DCB specimen under pure mode I delamination and mixed-mode delamination in a split beam are in good agreement with available experimental data or analytical solutions. The model has also been applied to the prediction of the failure strength of overlap ply-blocking specimens. The results have been compared with available experimental and alternative theoretical ones and discussed fully.

  18. Fatigue Damage of Collagenous Tissues: Experiment, Modeling and Simulation Studies

    PubMed Central

    Martin, Caitlin; Sun, Wei

    2017-01-01

    Mechanical fatigue damage is a critical issue for soft tissues and tissue-derived materials, particularly for musculoskeletal and cardiovascular applications; yet, our understanding of the fatigue damage process is incomplete. Soft tissue fatigue experiments are often difficult and time-consuming to perform, which has hindered progress in this area. However, the recent development of soft-tissue fatigue-damage constitutive models has enabled simulation-based fatigue analyses of tissues under various conditions. Computational simulations facilitate highly controlled and quantitative analyses to study the distinct effects of various loading conditions and design features on tissue durability; thus, they are advantageous over complex fatigue experiments. Although significant work to calibrate the constitutive models from fatigue experiments and to validate predictability remains, further development in these areas will add to our knowledge of soft-tissue fatigue damage and will facilitate the design of durable treatments and devices. In this review, the experimental, modeling, and simulation efforts to study collagenous tissue fatigue damage are summarized and critically assessed. PMID:25955007

  19. Damage/fault diagnosis in an operating wind turbine under uncertainty via a vibration response Gaussian mixture random coefficient model based framework

    NASA Astrophysics Data System (ADS)

    Avendaño-Valencia, Luis David; Fassois, Spilios D.

    2017-07-01

    The study focuses on vibration response based health monitoring for an operating wind turbine, which features time-dependent dynamics under environmental and operational uncertainty. A Gaussian Mixture Model Random Coefficient (GMM-RC) model based Structural Health Monitoring framework postulated in a companion paper is adopted and assessed. The assessment is based on vibration response signals obtained from a simulated offshore 5 MW wind turbine. The non-stationarity in the vibration signals originates from the continually evolving, due to blade rotation, inertial properties, as well as the wind characteristics, while uncertainty is introduced by random variations of the wind speed within the range of 10-20 m/s. Monte Carlo simulations are performed using six distinct structural states, including the healthy state and five types of damage/fault in the tower, the blades, and the transmission, with each one of them characterized by four distinct levels. Random vibration response modeling and damage diagnosis are illustrated, along with pertinent comparisons with state-of-the-art diagnosis methods. The results demonstrate consistently good performance of the GMM-RC model based framework, offering significant performance improvements over state-of-the-art methods. Most damage types and levels are shown to be properly diagnosed using a single vibration sensor.

  20. Achilles tendons from decorin- and biglycan-null mouse models have inferior mechanical and structural properties predicted by an image-based empirical damage model

    PubMed Central

    Gordon, J.A.; Freedman, B.R.; Zuskov, A.; Iozzo, R.V.; Birk, D.E.; Soslowsky, L.J.

    2015-01-01

    Achilles tendons are a common source of pain and injury, and their pathology may originate from aberrant structure function relationships. Small leucine rich proteoglycans (SLRPs) influence mechanical and structural properties in a tendon-specific manner. However, their roles in the Achilles tendon have not been defined. The objective of this study was to evaluate the mechanical and structural differences observed in mouse Achilles tendons lacking class I SLRPs; either decorin or biglycan. In addition, empirical modeling techniques based on mechanical and image-based measures were employed. Achilles tendons from decorin-null (Dcn−/−) and biglycan-null (Bgn−/−) C57BL/6 female mice (N=102) were used. Each tendon underwent a dynamic mechanical testing protocol including simultaneous polarized light image capture to evaluate both structural and mechanical properties of each Achilles tendon. An empirical damage model was adapted for application to genetic variation and for use with image based structural properties to predict tendon dynamic mechanical properties. We found that Achilles tendons lacking decorin and biglycan had inferior mechanical and structural properties that were age dependent; and that simple empirical models, based on previously described damage models, were predictive of Achilles tendon dynamic modulus in both decorin- and biglycan-null mice. PMID:25888014

  1. Achilles tendons from decorin- and biglycan-null mouse models have inferior mechanical and structural properties predicted by an image-based empirical damage model.

    PubMed

    Gordon, J A; Freedman, B R; Zuskov, A; Iozzo, R V; Birk, D E; Soslowsky, L J

    2015-07-16

    Achilles tendons are a common source of pain and injury, and their pathology may originate from aberrant structure function relationships. Small leucine rich proteoglycans (SLRPs) influence mechanical and structural properties in a tendon-specific manner. However, their roles in the Achilles tendon have not been defined. The objective of this study was to evaluate the mechanical and structural differences observed in mouse Achilles tendons lacking class I SLRPs; either decorin or biglycan. In addition, empirical modeling techniques based on mechanical and image-based measures were employed. Achilles tendons from decorin-null (Dcn(-/-)) and biglycan-null (Bgn(-/-)) C57BL/6 female mice (N=102) were used. Each tendon underwent a dynamic mechanical testing protocol including simultaneous polarized light image capture to evaluate both structural and mechanical properties of each Achilles tendon. An empirical damage model was adapted for application to genetic variation and for use with image based structural properties to predict tendon dynamic mechanical properties. We found that Achilles tendons lacking decorin and biglycan had inferior mechanical and structural properties that were age dependent; and that simple empirical models, based on previously described damage models, were predictive of Achilles tendon dynamic modulus in both decorin- and biglycan-null mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Creep Tests and Modeling Based on Continuum Damage Mechanics for T91 and T92 Steels

    NASA Astrophysics Data System (ADS)

    Pan, J. P.; Tu, S. H.; Zhu, X. W.; Tan, L. J.; Hu, B.; Wang, Q.

    2017-12-01

    9-11%Cr ferritic steels play an important role in high-temperature and high-pressure boilers of advanced power plants. In this paper, a continuum damage mechanics (CDM)-based creep model was proposed to study the creep behavior of T91 and T92 steels at high temperatures. Long-time creep tests were performed for both steels under different conditions. The creep rupture data and creep curves obtained from creep tests were captured well by theoretical calculation based on the CDM model over a long creep time. It is shown that the developed model is able to predict creep data for the two ferritic steels accurately up to tens of thousands of hours.

  3. Constitutive equations of a tensorial model for strain-induced damage of metals based on three invariants

    NASA Astrophysics Data System (ADS)

    Tutyshkin, Nikolai D.; Lofink, Paul; Müller, Wolfgang H.; Wille, Ralf; Stahn, Oliver

    2017-01-01

    On the basis of the physical concepts of void formation, nucleation, and growth, generalized constitutive equations are formulated for a tensorial model of plastic damage in metals based on three invariants. The multiplicative decomposition of the metric transformation tensor and a thermodynamically consistent formulation of constitutive relations leads to a symmetric second-order damage tensor with a clear physical meaning. Its first invariant determines the damage related to plastic dilatation of the material due to growth of the voids. The second invariant of the deviatoric damage tensor is related to the change in void shape. The third invariant of the deviatoric tensor describes the impact of the stress state on damage (Lode angle), including the effect of rotating the principal axes of the stress tensor (Lode angle change). The introduction of three measures with related physical meaning allows for the description of kinetic processes of strain-induced damage with an equivalent parameter in a three-dimensional vector space, including the critical condition of ductile failure. Calculations were performed by using experimentally determined material functions for plastic dilatation and deviatoric strain at the mesoscale, as well as three-dimensional graphs for plastic damage of steel DC01. The constitutive parameter was determined from tests in tension, compression, and shear by using scanning electron microscopy, which allowed to vary the Lode angle over the full range of its values [InlineEquation not available: see fulltext.]. In order to construct the three-dimensional plastic damage curve for a range of triaxiality parameters -1 ≤ ST ≤ 1 and of Lode angles [InlineEquation not available: see fulltext.], we used our own, as well as systematized published experimental data. A comparison of calculations shows a significant effect of the third invariant (Lode angle) on equivalent damage. The measure of plastic damage, based on three invariants, can be useful

  4. Improvement of Progressive Damage Model to Predicting Crashworthy Composite Corrugated Plate

    NASA Astrophysics Data System (ADS)

    Ren, Yiru; Jiang, Hongyong; Ji, Wenyuan; Zhang, Hanyu; Xiang, Jinwu; Yuan, Fuh-Gwo

    2018-02-01

    To predict the crashworthy composite corrugated plate, different single and stacked shell models are evaluated and compared, and a stacked shell progressive damage model combined with continuum damage mechanics is proposed and investigated. To simulate and predict the failure behavior, both of the intra- and inter- laminar failure behavior are considered. The tiebreak contact method, 1D spot weld element and cohesive element are adopted in stacked shell model, and a surface-based cohesive behavior is used to capture delamination in the proposed model. The impact load and failure behavior of purposed and conventional progressive damage models are demonstrated. Results show that the single shell could simulate the impact load curve without the delamination simulation ability. The general stacked shell model could simulate the interlaminar failure behavior. The improved stacked shell model with continuum damage mechanics and cohesive element not only agree well with the impact load, but also capture the fiber, matrix debonding, and interlaminar failure of composite structure.

  5. Damage Mechanics in the Community Ice Sheet Model

    NASA Astrophysics Data System (ADS)

    Whitcomb, R.; Cathles, L. M. M., IV; Bassis, J. N.; Lipscomb, W. H.; Price, S. F.

    2016-12-01

    Half of the mass that floating ice shelves lose to the ocean comes from iceberg calving, which is a difficult process to simulate accurately. This is especially true in the large-scale ice dynamics models that couple changes in the cryosphere to climate projections. Damage mechanics provide a powerful technique with the potential to overcome this obstacle by describing how fractures in ice evolve over time. Here, we demonstrate the application of a damage model to ice shelves that predicts realistic geometries. We incorporated this solver into the Community Ice Sheet Model, a three dimensional ice sheet model developed at Los Alamos National Laboratory. The damage mechanics formulation that we use comes from a first principles-based evolution law for the depth of basal and surface crevasses and depends on the large scale strain rate, stress state, and basal melt. We show that under idealized conditions it produces ice tongue lengths that match well with observations for a selection of natural ice tongues, including Erebus, Drygalski, and Pine Island in Antarctica, as well as Petermann in Greenland. We also apply the model to more generalized ideal ice shelf geometries and show that it produces realistic calving front positions. Although our results are preliminary, the damage mechanics model that we developed provides a promising first principles method for predicting ice shelf extent and how the calving margins of ice shelves respond to climate change.

  6. Using landscape analysis to assess and model tsunami damage in Aceh province, Sumatra

    Treesearch

    Louis R. Iverson; Anantha Prasad

    2007-01-01

    The nearly unprecedented loss of life resulting from the earthquake and tsunami of December 26,2004, was greatest in the province of Aceh, Sumatra (Indonesia). We evaluated tsunami damage and built empirical vulnerability models of damage/no damage based on elevation, distance from shore, vegetation, and exposure. We found that highly predictive models are possible and...

  7. A Lattice-Misfit-Dependent Damage Model for Non-linear Damage Accumulations Under Monotonous Creep in Single Crystal Superalloys

    NASA Astrophysics Data System (ADS)

    le Graverend, J.-B.

    2018-05-01

    A lattice-misfit-dependent damage density function is developed to predict the non-linear accumulation of damage when a thermal jump from 1050 °C to 1200 °C is introduced somewhere in the creep life. Furthermore, a phenomenological model aimed at describing the evolution of the constrained lattice misfit during monotonous creep load is also formulated. The response of the lattice-misfit-dependent plasticity-coupled damage model is compared with the experimental results obtained at 140 and 160 MPa on the first generation Ni-based single crystal superalloy MC2. The comparison reveals that the damage model is well suited at 160 MPa and less at 140 MPa because the transfer of stress to the γ' phase occurs for stresses above 150 MPa which leads to larger variations and, therefore, larger effects of the constrained lattice misfit on the lifetime during thermo-mechanical loading.

  8. Multilevel modeling of damage accumulation processes in metals

    NASA Astrophysics Data System (ADS)

    Kurmoiartseva, K. A.; Trusov, P. V.; Kotelnikova, N. V.

    2017-12-01

    To predict the behavior of components and constructions it is necessary to develop the methods and mathematical models which take into account the self-organization of microstructural processes and the strain localization. The damage accumulation processes and the evolution of material properties during deformation are important to take into account. The heterogeneity of the process of damage accumulation is due to the appropriate physical mechanisms at the scale levels, which are lower than the macro-level. The purpose of this work is to develop a mathematical model for analyzing the behavior of polycrystalline materials that allows describing the damage accumulation processes. Fracture is the multistage and multiscale process of the build-up of micro- and mesodefects over the wide range of loading rates. The formation of microcracks by mechanisms is caused by the interactions of the dislocations of different slip systems, barriers, boundaries and the inclusions of the secondary phase. This paper provides the description of some of the most well-known models of crack nucleation and also suggests the structure of a mathematical model based on crystal plasticity and dislocation models of crack nucleation.

  9. Sandia/Stanford Unified Creep Plasticity Damage Model for ANSYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, David M.; Vianco, Paul T.; Fossum, Arlo F.

    2006-09-03

    A unified creep plasticity (UCP) model was developed, based upon the time-dependent and time-independent deformation properties of the 95.5Sn-3.9Ag-0.6Cu (wt.%) soldier that were measured at Sandia. Then, a damage parameter, D, was added to the equation to develop the unified creep plasticity damage (UCPD) model. The parameter, D, was parameterized, using data obtained at Sandia from isothermal fatigue experiments on a double-lap shear test. The softwae was validated against a BGA solder joint exposed to thermal cycling. The UCPD model was put into the ANSYS finite element as a subroutine. So, the softwae is the subroutine for ANSYS 8.1.

  10. Thermo-Oxidative Induced Damage in Polymer Composites: Microstructure Image-Based Multi-Scale Modeling and Experimental Validation

    NASA Astrophysics Data System (ADS)

    Hussein, Rafid M.; Chandrashekhara, K.

    2017-11-01

    A multi-scale modeling approach is presented to simulate and validate thermo-oxidation shrinkage and cracking damage of a high temperature polymer composite. The multi-scale approach investigates coupled transient diffusion-reaction and static structural at macro- to micro-scale. The micro-scale shrinkage deformation and cracking damage are simulated and validated using 2D and 3D simulations. Localized shrinkage displacement boundary conditions for the micro-scale simulations are determined from the respective meso- and macro-scale simulations, conducted for a cross-ply laminate. The meso-scale geometrical domain and the micro-scale geometry and mesh are developed using the object oriented finite element (OOF). The macro-scale shrinkage and weight loss are measured using unidirectional coupons and used to build the macro-shrinkage model. The cross-ply coupons are used to validate the macro-shrinkage model by the shrinkage profiles acquired using scanning electron images at the cracked surface. The macro-shrinkage model deformation shows a discrepancy when the micro-scale image-based cracking is computed. The local maximum shrinkage strain is assumed to be 13 times the maximum macro-shrinkage strain of 2.5 × 10-5, upon which the discrepancy is minimized. The microcrack damage of the composite is modeled using a static elastic analysis with extended finite element and cohesive surfaces by considering the modulus spatial evolution. The 3D shrinkage displacements are fed to the model using node-wise boundary/domain conditions of the respective oxidized region. Microcrack simulation results: length, meander, and opening are closely matched to the crack in the area of interest for the scanning electron images.

  11. Influence of Different Yield Loci on Failure Prediction with Damage Models

    NASA Astrophysics Data System (ADS)

    Heibel, S.; Nester, W.; Clausmeyer, T.; Tekkaya, A. E.

    2017-09-01

    Advanced high strength steels are widely used in the automotive industry to simultaneously improve crash performance and reduce the car body weight. A drawback of these multiphase steels is their sensitivity to damage effects and thus the reduction of ductility. For that reason the Forming Limit Curve is only partially suitable for this class of steels. An improvement in failure prediction can be obtained by using damage mechanics. The objective of this paper is to comparatively review the phenomenological damage model GISSMO and the Enhanced Lemaitre Damage Model. GISSMO is combined with three different yield loci, namely von Mises, Hill48 and Barlat2000 to investigate the influence of the choice of the plasticity description on damage modelling. The Enhanced Lemaitre Model is used with Hill48. An inverse parameter identification strategy for a DP1000 based on stress-strain curves and optical strain measurements of shear, uniaxial, notch and (equi-)biaxial tension tests is applied to calibrate the models. A strong dependency of fracture strains on the choice of yield locus can be observed. The identified models are validated on a cross-die cup showing ductile fracture with slight necking.

  12. A response surface methodology based damage identification technique

    NASA Astrophysics Data System (ADS)

    Fang, S. E.; Perera, R.

    2009-06-01

    Response surface methodology (RSM) is a combination of statistical and mathematical techniques to represent the relationship between the inputs and outputs of a physical system by explicit functions. This methodology has been widely employed in many applications such as design optimization, response prediction and model validation. But so far the literature related to its application in structural damage identification (SDI) is scarce. Therefore this study attempts to present a systematic SDI procedure comprising four sequential steps of feature selection, parameter screening, primary response surface (RS) modeling and updating, and reference-state RS modeling with SDI realization using the factorial design (FD) and the central composite design (CCD). The last two steps imply the implementation of inverse problems by model updating in which the RS models substitute the FE models. The proposed method was verified against a numerical beam, a tested reinforced concrete (RC) frame and an experimental full-scale bridge with the modal frequency being the output responses. It was found that the proposed RSM-based method performs well in predicting the damage of both numerical and experimental structures having single and multiple damage scenarios. The screening capacity of the FD can provide quantitative estimation of the significance levels of updating parameters. Meanwhile, the second-order polynomial model established by the CCD provides adequate accuracy in expressing the dynamic behavior of a physical system.

  13. Frequency Response Function Based Damage Identification for Aerospace Structures

    NASA Astrophysics Data System (ADS)

    Oliver, Joseph Acton

    Structural health monitoring technologies continue to be pursued for aerospace structures in the interests of increased safety and, when combined with health prognosis, efficiency in life-cycle management. The current dissertation develops and validates damage identification technology as a critical component for structural health monitoring of aerospace structures and, in particular, composite unmanned aerial vehicles. The primary innovation is a statistical least-squares damage identification algorithm based in concepts of parameter estimation and model update. The algorithm uses frequency response function based residual force vectors derived from distributed vibration measurements to update a structural finite element model through statistically weighted least-squares minimization producing location and quantification of the damage, estimation uncertainty, and an updated model. Advantages compared to other approaches include robust applicability to systems which are heavily damped, large, and noisy, with a relatively low number of distributed measurement points compared to the number of analytical degrees-of-freedom of an associated analytical structural model (e.g., modal finite element model). Motivation, research objectives, and a dissertation summary are discussed in Chapter 1 followed by a literature review in Chapter 2. Chapter 3 gives background theory and the damage identification algorithm derivation followed by a study of fundamental algorithm behavior on a two degree-of-freedom mass-spring system with generalized damping. Chapter 4 investigates the impact of noise then successfully proves the algorithm against competing methods using an analytical eight degree-of-freedom mass-spring system with non-proportional structural damping. Chapter 5 extends use of the algorithm to finite element models, including solutions for numerical issues, approaches for modeling damping approximately in reduced coordinates, and analytical validation using a composite

  14. A continuum model for damage evolution in laminated composites

    NASA Technical Reports Server (NTRS)

    Lo, D. C.; Allen, D. H.; Harris, C. E.

    1991-01-01

    The accumulation of matrix cracking is examined using continuum damage mechanics lamination theory. A phenomenologically based damage evolutionary relationship is proposed for matrix cracking in continuous fiber reinforced laminated composites. The use of material dependent properties and damage dependent laminate averaged ply stresses in this evolutionary relationship permits its application independently of the laminate stacking sequence. Several load histories are applied to crossply laminates using this model, and the results are compared to published experimental data. The stress redistribution among the plies during the accumulation of matrix damage is also examined. It is concluded that characteristics of the stress redistribution process could assist in the analysis of the progressive failure process in laminated composites.

  15. Damage estimation of subterranean building constructions due to groundwater inundation - the GIS-based model approach GRUWAD

    NASA Astrophysics Data System (ADS)

    Schinke, R.; Neubert, M.; Hennersdorf, J.; Stodolny, U.; Sommer, T.; Naumann, T.

    2012-09-01

    The analysis and management of flood risk commonly focuses on surface water floods, because these types are often associated with high economic losses due to damage to buildings and settlements. The rising groundwater as a secondary effect of these floods induces additional damage, particularly in the basements of buildings. Mostly, these losses remain underestimated, because they are difficult to assess, especially for the entire building stock of flood-prone urban areas. For this purpose an appropriate methodology has been developed and lead to a groundwater damage simulation model named GRUWAD. The overall methodology combines various engineering and geoinformatic methods to calculate major damage processes by high groundwater levels. It considers a classification of buildings by building types, synthetic depth-damage functions for groundwater inundation as well as the results of a groundwater-flow model. The modular structure of this procedure can be adapted in the level of detail. Hence, the model allows damage calculations from the local to the regional scale. Among others it can be used to prepare risk maps, for ex-ante analysis of future risks, and to simulate the effects of mitigation measures. Therefore, the model is a multifarious tool for determining urban resilience with respect to high groundwater levels.

  16. A procedure for utilization of a damage-dependent constitutive model for laminated composites

    NASA Technical Reports Server (NTRS)

    Lo, David C.; Allen, David H.; Harris, Charles E.

    1992-01-01

    Described here is the procedure for utilizing a damage constitutive model to predict progressive damage growth in laminated composites. In this model, the effects of the internal damage are represented by strain-like second order tensorial damage variables and enter the analysis through damage dependent ply level and laminate level constitutive equations. The growth of matrix cracks due to fatigue loading is predicted by an experimentally based damage evolutionary relationship. This model is incorporated into a computer code called FLAMSTR. This code is capable of predicting the constitutive response and matrix crack damage accumulation in fatigue loaded laminated composites. The structure and usage of FLAMSTR are presented along with sample input and output files to assist the code user. As an example problem, an analysis of crossply laminates subjected to two stage fatigue loading was conducted and the resulting damage accumulation and stress redistribution were examined to determine the effect of variations in fatigue load amplitude applied during the first stage of the load history. It was found that the model predicts a significant loading history effect on damage evolution.

  17. Research on FBG-Based CFRP Structural Damage Identification Using BP Neural Network

    NASA Astrophysics Data System (ADS)

    Geng, Xiangyi; Lu, Shizeng; Jiang, Mingshun; Sui, Qingmei; Lv, Shanshan; Xiao, Hang; Jia, Yuxi; Jia, Lei

    2018-06-01

    A damage identification system of carbon fiber reinforced plastics (CFRP) structures is investigated using fiber Bragg grating (FBG) sensors and back propagation (BP) neural network. FBG sensors are applied to construct the sensing network to detect the structural dynamic response signals generated by active actuation. The damage identification model is built based on the BP neural network. The dynamic signal characteristics extracted by the Fourier transform are the inputs, and the damage states are the outputs of the model. Besides, damages are simulated by placing lumped masses with different weights instead of inducing real damages, which is confirmed to be feasible by finite element analysis (FEA). At last, the damage identification system is verified on a CFRP plate with 300 mm × 300 mm experimental area, with the accurate identification of varied damage states. The system provides a practical way for CFRP structural damage identification.

  18. Continuum damage model for ferroelectric materials and its application to multilayer actuators

    NASA Astrophysics Data System (ADS)

    Gellmann, Roman; Ricoeur, Andreas

    2016-05-01

    In this paper a micromechanical continuum damage model for ferroelectric materials is presented. As a constitutive law it is implemented into a finite element (FE) code. The model is based on micromechanical considerations of domain switching and its interaction with microcrack growth and coalescence. A FE analysis of a multilayer actuator is performed, showing the initiation of damage zones at the electrode tips during the poling process. Further, the influence of mechanical pre-stressing on damage evolution and actuating properties is investigated. The results provided in this work give useful information on the damage of advanced piezoelectric devices and their optimization.

  19. Multiscale Modeling of Dewetting Damage in Highly Filled Particulate Composites

    NASA Astrophysics Data System (ADS)

    Geubelle, P. H.; Inglis, H. M.; Kramer, J. D.; Patel, J. J.; Kumar, N. C.; Tan, H.

    2008-02-01

    Particle debonding or dewetting constitutes one of the key damage processes in highly filled particulate composites such as solid propellant and other energetic materials. To analyze this failure process, we have developed a multiscale finite element framework that combines, at the microscale, a nonlinear description of the binder response with a cohesive model of the damage process taking place in a representative periodic unit cell (PUC). To relate micro-scale damage to the macroscopic constitutive response of the material, we employ the mathematical theory of homogenization (MTH). After a description of the numerical scheme, we present the results of the damage response of a highly filled particulate composite subjected to a uniaxial macroscopic strain, and show the direct correlation between the complex damage processes taking place in the PUC and the nonlinear macroscopic constitutive response. We also present a detailed study of the PUC size and a comparison between the finite element MTH-based study and a micromechanics model of the dewetting process.

  20. Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation.

    PubMed

    Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-01-02

    Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model.

  1. Fatigue and damage tolerance scatter models

    NASA Astrophysics Data System (ADS)

    Raikher, Veniamin L.

    1994-09-01

    Effective Total Fatigue Life and Crack Growth Scatter Models are proposed. The first of them is based on the power form of the Wohler curve, fatigue scatter dependence on mean life value, cycle stress ratio influence on fatigue scatter, and validated description of the mean stress influence on the mean fatigue life. The second uses in addition are fracture mechanics approach, assumption of initial damage existence, and Paris equation. Simple formulas are derived for configurations of models. A preliminary identification of the parameters of the models is fulfilled on the basis of experimental data. Some new and important results for fatigue and crack growth scatter characteristics are obtained.

  2. Damage detection based on acceleration data using artificial immune system

    NASA Astrophysics Data System (ADS)

    Chartier, Sandra; Mita, Akira

    2009-03-01

    Nowadays, Structural Health Monitoring (SHM) is essential in order to prevent damages occurrence in civil structures. This is a particularly important issue as the number of aged structures is increasing. Damage detection algorithms are often based on changes in the modal properties like natural frequencies, modal shapes and modal damping. In this paper, damage detection is completed by using Artificial Immune System (AIS) theory directly on acceleration data. Inspired from the biological immune system, AIS is composed of several models like negative selection which has a great potential for this study. The negative selection process relies on the fact that T-cells, after their maturation, are sensitive to non self cells and can not detect self cells. Acceleration data were provided by using the numerical model of a 3-story frame structure. Damages were introduced, at particular times, by reduction of story's stiffness. Based on these acceleration data, undamaged data (equivalent to self data) and damaged data (equivalent to non self data) can be obtained and represented in the Hamming shape-space with a binary representation. From the undamaged encoded data, detectors (equivalent to T-cells) are derived and are able to detect damaged encoded data really efficiently by using the rcontiguous bits matching rule. Indeed, more than 95% of detection can be reached when efficient combinations of parameters are used. According to the number of detected data, the localization of damages can even be determined by using the differences between story's relative accelerations. Thus, the difference which presents the highest detection rate, generally up to 89%, is directly linked to the location of damage.

  3. A helium-based model for the effects of radiation damage annealing on helium diffusion kinetics in apatite

    NASA Astrophysics Data System (ADS)

    Willett, Chelsea D.; Fox, Matthew; Shuster, David L.

    2017-11-01

    Widely used to study surface processes and the development of topography through geologic time, (U-Th)/He thermochronometry in apatite depends on a quantitative description of the kinetics of 4He diffusion across a range of temperatures, timescales, and geologic scenarios. Empirical observations demonstrate that He diffusivity in apatite is not solely a function of temperature, but also depends on damage to the crystal structure from radioactive decay processes. Commonly-used models accounting for the influence of thermal annealing of radiation damage on He diffusivity assume the net effects evolve in proportion to the rate of fission track annealing, although the majority of radiation damage results from α-recoil. While existing models adequately quantify the net effects of damage annealing in many geologic scenarios, experimental work suggests different annealing rates for the two damage types. Here, we introduce an alpha-damage annealing model (ADAM) that is independent of fission track annealing kinetics, and directly quantifies the influence of thermal annealing on He diffusivity in apatite. We present an empirical fit to diffusion kinetics data and incorporate this fit into a model that tracks the competing effects of radiation damage accumulation and annealing on He diffusivity in apatite through geologic time. Using time-temperature paths to illustrate differences between models, we highlight the influence of damage annealing on data interpretation. In certain, but not all, geologic scenarios, the interpretation of low-temperature thermochronometric data can be strongly influenced by which model of radiation damage annealing is assumed. In particular, geologic scenarios involving 1-2 km of sedimentary burial are especially sensitive to the assumed rate of annealing and its influence on He diffusivity. In cases such as basement rocks in Grand Canyon and the Canadian Shield, (U-Th)/He ages predicted from the ADAM can differ by hundreds of Ma from those

  4. Unified continuum damage model for matrix cracking in composite rotor blades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollayi, Hemaraju; Harursampath, Dineshkumar

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system undermore » various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.« less

  5. Study of Ground Response Curve (GRC) Based on a Damage Model / Badanie Krzywej Odpowiedzi Gruntu (Grc) W Oparciu O Model Pękania Skał

    NASA Astrophysics Data System (ADS)

    Molladavoodi, H.

    2013-09-01

    Analysis of stresses and displacements around underground openings is necessary in a wide variety of civil, petroleum and mining engineering problems. In addition, an excavation damaged zone (EDZ) is generally formed around underground openings as a result of high stress magnitudes even in the absence of blasting effects. The rock materials surrounding the underground excavations typically demonstrate nonlinear and irreversible mechanical response in particular under high in situ stress states. The dominant cause of irreversible deformations in brittle rocks is damage process. One of the most widely used methods in tunnel design is the convergence-confinement method (CCM) for its practical application. The elastic-plastic models are usually used in the convergence-confinement method as a constitutive model for rock behavior. The plastic models used to simulate the rock behavior, do not consider the important issues such as stiffness degradation and softening. Therefore, the use of damage constitutive models in the convergence-confinement method is essential in the design process of rock structures. In this paper, the basic concepts of continuum damage mechanics are outlined. Then a numerical stepwise procedure for a circular tunnel under hydrostatic stress field, with consideration of a damage model for rock mass has been implemented. The ground response curve and radius of excavation damage zone were calculated based on an isotropic damage model. The convergence-confinement method based on damage model can consider the effects of post-peak rock behavior on the ground response curve and excavation damage zone. The analysis of results show the important effect of brittleness parameter on the tunnel wall convergence, ground response curve and excavation damage radius. Analiza naprężeń i przemieszczeń powstałych wokół otworu podziemnego wymagana jest przy szerokiej gamie projektów z zakresu budownictwa lądowego, inżynierii górniczej oraz naftowej. Ponadto

  6. Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature

    NASA Astrophysics Data System (ADS)

    Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu

    2017-10-01

    A constitutive model of rocks subjected to cyclic stress-temperature was proposed. Based on statistical damage theory, the damage constitutive model with Weibull distribution was extended. Influence of model parameters on the stress-strain curve for rock reloading after stress-temperature cycling was then discussed. The proposed model was initially validated by rock tests for cyclic stress-temperature and only cyclic stress. Finally, the total damage evolution induced by stress-temperature cycling and reloading after cycling was explored and discussed. The proposed constitutive model is reasonable and applicable, describing well the stress-strain relationship during stress-temperature cycles and providing a good fit to the test results. Elastic modulus in the reference state and the damage induced by cycling affect the shape of reloading stress-strain curve. Total damage induced by cycling and reloading after cycling exhibits three stages: initial slow increase, mid-term accelerated increase, and final slow increase.

  7. Structural damage detection based on stochastic subspace identification and statistical pattern recognition: I. Theory

    NASA Astrophysics Data System (ADS)

    Ren, W. X.; Lin, Y. Q.; Fang, S. E.

    2011-11-01

    One of the key issues in vibration-based structural health monitoring is to extract the damage-sensitive but environment-insensitive features from sampled dynamic response measurements and to carry out the statistical analysis of these features for structural damage detection. A new damage feature is proposed in this paper by using the system matrices of the forward innovation model based on the covariance-driven stochastic subspace identification of a vibrating system. To overcome the variations of the system matrices, a non-singularity transposition matrix is introduced so that the system matrices are normalized to their standard forms. For reducing the effects of modeling errors, noise and environmental variations on measured structural responses, a statistical pattern recognition paradigm is incorporated into the proposed method. The Mahalanobis and Euclidean distance decision functions of the damage feature vector are adopted by defining a statistics-based damage index. The proposed structural damage detection method is verified against one numerical signal and two numerical beams. It is demonstrated that the proposed statistics-based damage index is sensitive to damage and shows some robustness to the noise and false estimation of the system ranks. The method is capable of locating damage of the beam structures under different types of excitations. The robustness of the proposed damage detection method to the variations in environmental temperature is further validated in a companion paper by a reinforced concrete beam tested in the laboratory and a full-scale arch bridge tested in the field.

  8. Stochastic output error vibration-based damage detection and assessment in structures under earthquake excitation

    NASA Astrophysics Data System (ADS)

    Sakellariou, J. S.; Fassois, S. D.

    2006-11-01

    A stochastic output error (OE) vibration-based methodology for damage detection and assessment (localization and quantification) in structures under earthquake excitation is introduced. The methodology is intended for assessing the state of a structure following potential damage occurrence by exploiting vibration signal measurements produced by low-level earthquake excitations. It is based upon (a) stochastic OE model identification, (b) statistical hypothesis testing procedures for damage detection, and (c) a geometric method (GM) for damage assessment. The methodology's advantages include the effective use of the non-stationary and limited duration earthquake excitation, the handling of stochastic uncertainties, the tackling of the damage localization and quantification subproblems, the use of "small" size, simple and partial (in both the spatial and frequency bandwidth senses) identified OE-type models, and the use of a minimal number of measured vibration signals. Its feasibility and effectiveness are assessed via Monte Carlo experiments employing a simple simulation model of a 6 storey building. It is demonstrated that damage levels of 5% and 20% reduction in a storey's stiffness characteristics may be properly detected and assessed using noise-corrupted vibration signals.

  9. Categorizing natural disaster damage assessment using satellite-based geospatial techniques

    NASA Astrophysics Data System (ADS)

    Myint, S. W.; Yuan, M.; Cerveny, R. S.; Giri, C.

    2008-07-01

    Remote sensing of a natural disaster's damage offers an exciting backup and/or alternative to traditional means of on-site damage assessment. Although necessary for complete assessment of damage areas, ground-based damage surveys conducted in the aftermath of natural hazard passage can sometimes be potentially complicated due to on-site difficulties (e.g., interaction with various authorities and emergency services) and hazards (e.g., downed power lines, gas lines, etc.), the need for rapid mobilization (particularly for remote locations), and the increasing cost of rapid physical transportation of manpower and equipment. Satellite image analysis, because of its global ubiquity, its ability for repeated independent analysis, and, as we demonstrate here, its ability to verify on-site damage assessment provides an interesting new perspective and investigative aide to researchers. Using one of the strongest tornado events in US history, the 3 May 1999 Oklahoma City Tornado, as a case example, we digitized the tornado damage path and co-registered the damage path using pre- and post-Landsat Thematic Mapper image data to perform a damage assessment. We employed several geospatial approaches, specifically the Getis index, Geary's C, and two lacunarity approaches to categorize damage characteristics according to the original Fujita tornado damage scale (F-scale). Our results indicate strong relationships between spatial indices computed within a local window and tornado F-scale damage categories identified through the ground survey. Consequently, linear regression models, even incorporating just a single band, appear effective in identifying F-scale damage categories using satellite imagery. This study demonstrates that satellite-based geospatial techniques can effectively add spatial perspectives to natural disaster damages, and in particular for this case study, tornado damages.

  10. Categorizing natural disaster damage assessment using satellite-based geospatial techniques

    USGS Publications Warehouse

    Myint, S.W.; Yuan, M.; Cerveny, R.S.; Giri, C.

    2008-01-01

    Remote sensing of a natural disaster's damage offers an exciting backup and/or alternative to traditional means of on-site damage assessment. Although necessary for complete assessment of damage areas, ground-based damage surveys conducted in the aftermath of natural hazard passage can sometimes be potentially complicated due to on-site difficulties (e.g., interaction with various authorities and emergency services) and hazards (e.g., downed power lines, gas lines, etc.), the need for rapid mobilization (particularly for remote locations), and the increasing cost of rapid physical transportation of manpower and equipment. Satellite image analysis, because of its global ubiquity, its ability for repeated independent analysis, and, as we demonstrate here, its ability to verify on-site damage assessment provides an interesting new perspective and investigative aide to researchers. Using one of the strongest tornado events in US history, the 3 May 1999 Oklahoma City Tornado, as a case example, we digitized the tornado damage path and co-registered the damage path using pre- and post-Landsat Thematic Mapper image data to perform a damage assessment. We employed several geospatial approaches, specifically the Getis index, Geary's C, and two lacunarity approaches to categorize damage characteristics according to the original Fujita tornado damage scale (F-scale). Our results indicate strong relationships between spatial indices computed within a local window and tornado F-scale damage categories identified through the ground survey. Consequently, linear regression models, even incorporating just a single band, appear effective in identifying F-scale damage categories using satellite imagery. This study demonstrates that satellite-based geospatial techniques can effectively add spatial perspectives to natural disaster damages, and in particular for this case study, tornado damages.

  11. Viscoelastic/damage modeling of filament-wound spherical pressure vessels

    NASA Technical Reports Server (NTRS)

    Hackett, Robert M.; Dozier, Jan D.

    1987-01-01

    A model of the viscoelastic/damage response of a filament-wound spherical vessel used for long-term pressure containment is developed. The matrix material of the composite system is assumed to be linearly viscoelastic. Internal accumulated damage based upon a quadratic relationship between transverse modulus and maximum circumferential strain is postulated. The resulting nonlinear problem is solved by an iterative routine. The elastic-viscoelastic correspondence is employed to produce, in the Laplace domain, the associated elastic solution for the maximum circumferential strain which is inverted by the method of collocation to yield the time-dependent solution. Results obtained with the model are compared to experimental observations.

  12. Theoretical model of impact damage in structural ceramics

    NASA Technical Reports Server (NTRS)

    Liaw, B. M.; Kobayashi, A. S.; Emery, A. G.

    1984-01-01

    This paper presents a mechanistically consistent model of impact damage based on elastic failures due to tensile and shear overloading. An elastic axisymmetric finite element model is used to determine the dynamic stresses generated by a single particle impact. Local failures in a finite element are assumed to occur when the primary/secondary principal stresses or the maximum shear stress reach critical tensile or shear stresses, respectively. The succession of failed elements thus models macrocrack growth. Sliding motions of cracks, which closed during unloading, are resisted by friction and the unrecovered deformation represents the 'plastic deformation' reported in the literature. The predicted ring cracks on the contact surface, as well as the cone cracks, median cracks, radial cracks, lateral cracks, and damage-induced porous zones in the interior of hot-pressed silicon nitride plates, matched those observed experimentally. The finite element model also predicted the uplifting of the free surface surrounding the impact site.

  13. Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation

    PubMed Central

    Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-01-01

    ABSTRACT Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model. PMID:27690290

  14. Survey of four damage models for concrete.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leelavanichkul, Seubpong; Brannon, Rebecca Moss

    2009-08-01

    properties. The RHT model appears to similarly support optional uncertainty and automated settings for scale-dependent material parameters. The K&C, RHT, and CSCM models support rate dependence by allowing the strength to be a function of strain rate, whereas the BF1 model uses Duvaut-Lion viscoplasticity theory to give a smoother prediction of transient effects. During softening, all four models require a certain amount of strain to develop before allowing significant damage accumulation. For the K&C, RHT, and CSCM models, the strain-to-failure is tied to fracture energy release, whereas a similar effect is achieved indirectly in the BF1 model by a time-based criterion that is tied to crack propagation speed.« less

  15. Experimental and Modelling Investigations of the Coupled Elastoplastic Damage of a Quasi-brittle Rock

    NASA Astrophysics Data System (ADS)

    Zhang, Jiu-Chang

    2018-02-01

    Triaxial compression tests are conducted on a quasi-brittle rock, limestone. The analyses show that elastoplastic deformation is coupled with damage. Based on the experimental investigation, a coupled elastoplastic damage model is developed within the framework of irreversible thermodynamics. The coupling effects between the plastic and damage dissipations are described by introducing an isotropic damage variable into the elastic stiffness and yield criterion. The novelty of the model is in the description of the thermodynamic force associated with damage, which is formulated as a state function of both elastic and plastic strain energies. The latter gives a full consideration on the comprehensive effects of plastic strain and stress changing processes in rock material on the development of damage. The damage criterion and potential are constructed to determine the onset and evolution of damage variable. The return mapping algorithms of the coupled model are deduced for three different inelastic corrections. Comparisons between test data and numerical simulations show that the coupled elastoplastic damage model is capable of describing the main mechanical behaviours of the quasi-brittle rock.

  16. A grain boundary damage model for delamination

    NASA Astrophysics Data System (ADS)

    Messner, M. C.; Beaudoin, A. J.; Dodds, R. H.

    2015-07-01

    Intergranular failure in metallic materials represents a multiscale damage mechanism: some feature of the material microstructure triggers the separation of grain boundaries on the microscale, but the intergranular fractures develop into long cracks on the macroscale. This work develops a multiscale model of grain boundary damage for modeling intergranular delamination—a failure of one particular family of grain boundaries sharing a common normal direction. The key feature of the model is a physically-consistent and mesh independent, multiscale scheme that homogenizes damage at many grain boundaries on the microscale into a single damage parameter on the macroscale to characterize material failure across a plane. The specific application of the damage framework developed here considers delamination failure in modern Al-Li alloys. However, the framework may be readily applied to other metals or composites and to other non-delamination interface geometries—for example, multiple populations of material interfaces with different geometric characteristics.

  17. A new multi-layer approach for progressive damage simulation in composite laminates based on isogeometric analysis and Kirchhoff-Love shells. Part II: impact modeling

    NASA Astrophysics Data System (ADS)

    Pigazzini, M. S.; Bazilevs, Y.; Ellison, A.; Kim, H.

    2017-11-01

    In this two-part paper we introduce a new formulation for modeling progressive damage in laminated composite structures. We adopt a multi-layer modeling approach, based on isogeometric analysis, where each ply or lamina is represented by a spline surface, and modeled as a Kirchhoff-Love thin shell. Continuum damage mechanics is used to model intralaminar damage, and a new zero-thickness cohesive-interface formulation is introduced to model delamination as well as permitting laminate-level transverse shear compliance. In Part I of this series we focus on the presentation of the modeling framework, validation of the framework using standard Mode I and Mode II delamination tests, and assessment of its suitability for modeling thick laminates. In Part II of this series we focus on the application of the proposed framework to modeling and simulation of damage in composite laminates resulting from impact. The proposed approach has significant accuracy and efficiency advantages over existing methods for modeling impact damage. These stem from the use of IGA-based Kirchhoff-Love shells to represent the individual plies of the composite laminate, while the compliant cohesive interfaces enable transverse shear deformation of the laminate. Kirchhoff-Love shells give a faithful representation of the ply deformation behavior, and, unlike solids or traditional shear-deformable shells, do not suffer from transverse-shear locking in the limit of vanishing thickness. This, in combination with higher-order accurate and smooth representation of the shell midsurface displacement field, allows us to adopt relatively coarse in-plane discretizations without sacrificing solution accuracy. Furthermore, the thin-shell formulation employed does not use rotational degrees of freedom, which gives additional efficiency benefits relative to more standard shell formulations.

  18. Multiaxial Fatigue Life Prediction Based on Nonlinear Continuum Damage Mechanics and Critical Plane Method

    NASA Astrophysics Data System (ADS)

    Wu, Z. R.; Li, X.; Fang, L.; Song, Y. D.

    2018-04-01

    A new multiaxial fatigue life prediction model has been proposed in this paper. The concepts of nonlinear continuum damage mechanics and critical plane criteria were incorporated in the proposed model. The shear strain-based damage control parameter was chosen to account for multiaxial fatigue damage under constant amplitude loading. Fatigue tests were conducted on nickel-based superalloy GH4169 tubular specimens at the temperature of 400 °C under proportional and nonproportional loading. The proposed method was checked against the multiaxial fatigue test data of GH4169. Most of prediction results are within a factor of two scatter band of the test results.

  19. Bottom-up modeling of damage in heterogeneous quasi-brittle solids

    NASA Astrophysics Data System (ADS)

    Rinaldi, Antonio

    2013-03-01

    The theoretical modeling of multisite cracking in quasi-brittle materials is a complex damage problem, hard to model with traditional methods of fracture mechanics due to its multiscale nature and to strain localization induced by microcracks interaction. Macroscale "effective" elastic models can be conveniently applied if a suitable Helmholtz free energy function is identified for a given material scenario. Del Piero and Truskinovsky (Continuum Mech Thermodyn 21:141-171, 2009), among other authors, investigated macroscale continuum solutions capable of matching—in a top-down view—the phenomenology of the damage process for quasi-brittle materials regardless of the microstructure. On the contrary, this paper features a physically based solution method that starts from the direct consideration of the microscale properties and, in a bottom-up view, recovers a continuum elastic description. This procedure is illustrated for a simple one-dimensional problem of this type, a bar modeled stretched by an axial displacement, where the bar is modeled as a 2D random lattice of decohesive spring elements of finite strength. The (microscale) data from simulations are used to identify the "exact" (macro-) damage parameter and to build up the (macro-) Helmholtz function for the equivalent elastic model, bridging the macroscale approach by Del Piero and Truskinovsky. The elastic approach, coupled with microstructural knowledge, becomes a more powerful tool to reproduce a broad class of macroscopic material responses by changing the convexity-concavity of the Helmholtz energy. The analysis points out that mean-field statistics are appropriate prior to damage localization but max-field statistics are better suited in the softening regime up to failure, where microstrain fluctuation needs to be incorporated in the continuum model. This observation is of consequence to revise mean-field damage models from literature and to calibrate Nth gradient continuum models.

  20. Flood damage: a model for consistent, complete and multipurpose scenarios

    NASA Astrophysics Data System (ADS)

    Menoni, Scira; Molinari, Daniela; Ballio, Francesco; Minucci, Guido; Mejri, Ouejdane; Atun, Funda; Berni, Nicola; Pandolfo, Claudia

    2016-12-01

    Effective flood risk mitigation requires the impacts of flood events to be much better and more reliably known than is currently the case. Available post-flood damage assessments usually supply only a partial vision of the consequences of the floods as they typically respond to the specific needs of a particular stakeholder. Consequently, they generally focus (i) on particular items at risk, (ii) on a certain time window after the occurrence of the flood, (iii) on a specific scale of analysis or (iv) on the analysis of damage only, without an investigation of damage mechanisms and root causes. This paper responds to the necessity of a more integrated interpretation of flood events as the base to address the variety of needs arising after a disaster. In particular, a model is supplied to develop multipurpose complete event scenarios. The model organizes available information after the event according to five logical axes. This way post-flood damage assessments can be developed that (i) are multisectoral, (ii) consider physical as well as functional and systemic damage, (iii) address the spatial scales that are relevant for the event at stake depending on the type of damage that has to be analyzed, i.e., direct, functional and systemic, (iv) consider the temporal evolution of damage and finally (v) allow damage mechanisms and root causes to be understood. All the above features are key for the multi-usability of resulting flood scenarios. The model allows, on the one hand, the rationalization of efforts currently implemented in ex post damage assessments, also with the objective of better programming financial resources that will be needed for these types of events in the future. On the other hand, integrated interpretations of flood events are fundamental to adapting and optimizing flood mitigation strategies on the basis of thorough forensic investigation of each event, as corroborated by the implementation of the model in a case study.

  1. Electromagnetomechanical elastodynamic model for Lamb wave damage quantification in composites

    NASA Astrophysics Data System (ADS)

    Borkowski, Luke; Chattopadhyay, Aditi

    2014-03-01

    Physics-based wave propagation computational models play a key role in structural health monitoring (SHM) and the development of improved damage quantification methodologies. Guided waves (GWs), such as Lamb waves, provide the capability to monitor large plate-like aerospace structures with limited actuators and sensors and are sensitive to small scale damage; however due to the complex nature of GWs, accurate and efficient computation tools are necessary to investigate the mechanisms responsible for dispersion, coupling, and interaction with damage. In this paper, the local interaction simulation approach (LISA) coupled with the sharp interface model (SIM) solution methodology is used to solve the fully coupled electro-magneto-mechanical elastodynamic equations for the piezoelectric and piezomagnetic actuation and sensing of GWs in fiber reinforced composite material systems. The final framework provides the full three-dimensional displacement as well as electrical and magnetic potential fields for arbitrary plate and transducer geometries and excitation waveform and frequency. The model is validated experimentally and proven computationally efficient for a laminated composite plate. Studies are performed with surface bonded piezoelectric and embedded piezomagnetic sensors to gain insight into the physics of experimental techniques used for SHM. The symmetric collocation of piezoelectric actuators is modeled to demonstrate mode suppression in laminated composites for the purpose of damage detection. The effect of delamination and damage (i.e., matrix cracking) on the GW propagation is demonstrated and quantified. The developed model provides a valuable tool for the improvement of SHM techniques due to its proven accuracy and computational efficiency.

  2. Optical damage performance of conductive widegap semiconductors: spatial, temporal, and lifetime modeling

    DOE PAGES

    Elhadj, Selim; Yoo, Jae-hyuck; Negres, Raluca A.; ...

    2016-12-19

    The optical damage performance of electrically conductive gallium nitride (GaN) and indium tin oxide (ITO) films is addressed using large area, high power laser beam exposures at 1064 nm sub-bandgap wavelength. Analysis of the laser damage process assumes that onset of damage (threshold) is determined by the absorption and heating of a nanoscale region of a characteristic size reaching a critical temperature. We use this model to rationalize semi-quantitatively the pulse width scaling of the damage threshold from picosecond to nanosecond timescales, along with the pulse width dependence of the damage threshold probability derived by fitting large beam damage densitymore » data. Multi-shot exposures were used to address lifetime performance degradation described by an empirical expression based on the single exposure damage model. A damage threshold degradation of at least 50% was observed for both materials. Overall, the GaN films tested had 5-10 × higher optical damage thresholds than the ITO films tested for comparable transmission and electrical conductivity. This route to optically robust, large aperture transparent electrodes and power optoelectronics may thus involve use of next generation widegap semiconductors such as GaN.« less

  3. Towards Industrial Application of Damage Models for Sheet Metal Forming

    NASA Astrophysics Data System (ADS)

    Doig, M.; Roll, K.

    2011-05-01

    Due to global warming and financial situation the demand to reduce the CO2-emission and the production costs leads to the permanent development of new materials. In the automotive industry the occupant safety is an additional condition. Bringing these arguments together the preferable approach for lightweight design of car components, especially for body-in-white, is the use of modern steels. Such steel grades, also called advanced high strength steels (AHSS), exhibit a high strength as well as a high formability. Not only their material behavior but also the damage behavior of AHSS is different compared to the performances of standard steels. Conventional methods for the damage prediction in the industry like the forming limit curve (FLC) are not reliable for AHSS. Physically based damage models are often used in crash and bulk forming simulations. The still open question is the industrial application of these models for sheet metal forming. This paper evaluates the Gurson-Tvergaard-Needleman (GTN) model and the model of Lemaitre within commercial codes with a goal of industrial application.

  4. A Computationally-Efficient Inverse Approach to Probabilistic Strain-Based Damage Diagnosis

    NASA Technical Reports Server (NTRS)

    Warner, James E.; Hochhalter, Jacob D.; Leser, William P.; Leser, Patrick E.; Newman, John A

    2016-01-01

    This work presents a computationally-efficient inverse approach to probabilistic damage diagnosis. Given strain data at a limited number of measurement locations, Bayesian inference and Markov Chain Monte Carlo (MCMC) sampling are used to estimate probability distributions of the unknown location, size, and orientation of damage. Substantial computational speedup is obtained by replacing a three-dimensional finite element (FE) model with an efficient surrogate model. The approach is experimentally validated on cracked test specimens where full field strains are determined using digital image correlation (DIC). Access to full field DIC data allows for testing of different hypothetical sensor arrangements, facilitating the study of strain-based diagnosis effectiveness as the distance between damage and measurement locations increases. The ability of the framework to effectively perform both probabilistic damage localization and characterization in cracked plates is demonstrated and the impact of measurement location on uncertainty in the predictions is shown. Furthermore, the analysis time to produce these predictions is orders of magnitude less than a baseline Bayesian approach with the FE method by utilizing surrogate modeling and effective numerical sampling approaches.

  5. Using Non-linear Homogenization to Improve the Performance of Macroscopic Damage Models of Trabecular Bone.

    PubMed

    Levrero-Florencio, Francesc; Pankaj, Pankaj

    2018-01-01

    Realistic macro-level finite element simulations of the mechanical behavior of trabecular bone, a cellular anisotropic material, require a suitable constitutive model; a model that incorporates the mechanical response of bone for complex loading scenarios and includes post-elastic phenomena, such as plasticity (permanent deformations) and damage (permanent stiffness reduction), which bone is likely to experience. Some such models have been developed by conducting homogenization-based multiscale finite element simulations on bone micro-structure. While homogenization has been fairly successful in the elastic regime and, to some extent, in modeling the macroscopic plastic response, it has remained a challenge with respect to modeling damage. This study uses a homogenization scheme to upscale the damage behavior from the tissue level (microscale) to the organ level (macroscale) and assesses the suitability of different damage constitutive laws. Ten cubic specimens were each subjected to 21 strain-controlled load cases for a small range of macroscopic post-elastic strains. Isotropic and anisotropic criteria were considered, density and fabric relationships were used in the formulation of the damage law, and a combined isotropic/anisotropic law with tension/compression asymmetry was formulated, based on the homogenized results, as a possible alternative to the currently used single scalar damage criterion. This computational study enhances the current knowledge on the macroscopic damage behavior of trabecular bone. By developing relationships of damage progression with bone's micro-architectural indices (density and fabric) the study also provides an aid for the creation of more precise macroscale continuum models, which are likely to improve clinical predictions.

  6. Cumulative Damage Model for Advanced Composite Materials.

    DTIC Science & Technology

    1984-03-09

    Masters, J.L., "Investigation of Characteristic Damage States in Composites Laminat -s," ASME Paper No. 79-WA-AERO-4, 1978. [26] Jivinall, R.C., "Stress...AD-A144 84e CUMULATIVE DAMAGE MODEL FOR RDVRNCED COMPOSITE 1/2 MATERIRLS(U) DYNA EAST CORP PHILADELPHIA PA P C CHOU ET AL. 09 MAR 84 RFWRL-TR-84-4084...MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS- 1963-A AFWAL-TR-84-4004 •S CUMULATIVE DAMAGE MODEL FOR ADVANCED COMPOSITE MATERIALS PHASE II 0

  7. Real-time sensing of fatigue crack damage for information-based decision and control

    NASA Astrophysics Data System (ADS)

    Keller, Eric Evans

    Information-based decision and control for structures that are subject to failure by fatigue cracking is based on the following notion: Maintenance, usage scheduling, and control parameter tuning can be optimized through real time knowledge of the current state of fatigue crack damage. Additionally, if the material properties of a mechanical structure can be identified within a smaller range, then the remaining life prediction of that structure will be substantially more accurate. Information-based decision systems can rely one physical models, estimation of material properties, exact knowledge of usage history, and sensor data to synthesize an accurate snapshot of the current state of damage and the likely remaining life of a structure under given assumed loading. The work outlined in this thesis is structured to enhance the development of information-based decision and control systems. This is achieved by constructing a test facility for laboratory experiments on real-time damage sensing. This test facility makes use of a methodology that has been formulated for fatigue crack model parameter estimation and significantly improves the quality of predictions of remaining life. Specifically, the thesis focuses on development of an on-line fatigue crack damage sensing and life prediction system that is built upon the disciplines of Systems Sciences and Mechanics of Materials. A major part of the research effort has been expended to design and fabricate a test apparatus which allows: (i) measurement and recording of statistical data for fatigue crack growth in metallic materials via different sensing techniques; and (ii) identification of stochastic model parameters for prediction of fatigue crack damage. To this end, this thesis describes the test apparatus and the associated instrumentation based on four different sensing techniques, namely, traveling optical microscopy, ultrasonic flaw detection, Alternating Current Potential Drop (ACPD), and fiber

  8. Watson-Crick Base Pair Radical Cation as a Model for Oxidative Damage in DNA.

    PubMed

    Feketeová, Linda; Chan, Bun; Khairallah, George N; Steinmetz, Vincent; Maitre, Philippe; Radom, Leo; O'Hair, Richard A J

    2017-07-06

    The deleterious cellular effects of ionizing radiation are well-known, but the mechanisms causing DNA damage are poorly understood. The accepted molecular events involve initial oxidation and deprotonation at guanine sites, triggering hydrogen atom abstraction reactions from the sugar moieties, causing DNA strand breaks. Probing the chemistry of the initially formed radical cation has been challenging. Here, we generate, spectroscopically characterize, and examine the reactivity of the Watson-Crick nucleobase pair radical cation in the gas phase. We observe rich chemistry, including proton transfer between the bases and propagation of the radical site in deoxyguanosine from the base to the sugar, thus rupturing the sugar. This first example of a gas-phase model system providing molecular-level details on the chemistry of an ionized DNA base pair paves the way toward a more complete understanding of molecular processes induced by radiation. It also highlights the role of radical propagation in chemistry, biology, and nanotechnology.

  9. A Microstructurally Inspired Damage Model for Early Venous Thrombus

    PubMed Central

    Rausch, Manuel K.; Humphrey, Jay D.

    2015-01-01

    Accumulative damage may be an important contributor to many cases of thrombotic disease progression. Thus, a complete understanding of the pathological role of thrombus requires an understanding of its mechanics and in particular mechanical consequences of damage. In the current study, we introduce a novel microstructurally inspired constitutive model for thrombus that considers a non-uniform distribution of microstructural fibers at various crimp levels and employs one of the distribution parameters to incorporate stretch-driven damage on the microscopic level. To demonstrate its ability to represent the mechanical behavior of thrombus, including a recently reported Mullins type damage phenomenon, we fit our model to uniaxial tensile test data of early venous thrombus. Our model shows an agreement with these data comparable to previous models for damage in elastomers with the added advantages of a microstructural basis and fewer model parameters. We submit that our novel approach marks another important step toward modeling the evolving mechanics of intraluminal thrombus, specifically its damage, and hope it will aid in the study of physiological and pathological thrombotic events. PMID:26523784

  10. Research on Damage Identification of Bridge Based on Digital Image Measurement

    NASA Astrophysics Data System (ADS)

    Liang, Yingjing; Huan, Shi; Tao, Weijun

    2017-12-01

    In recent years, the number of the damage bridge due to excessive deformation gradually increased, which caused significant property damage and casualties. Hence health monitoring and the damage detection of the bridge structure based on the deflection measurement are particularly important. The current conventional deflection measurement methods, such as total station, connected pipe, GPS, etc., have many shortcomings as low efficiency, heavy workload, low degree of automation, operating frequency and working time constrained. GPS has a low accuracy in the vertical displacement measurement and cannot meet the dynamic measured requirements of the current bridge engineering. This paper presents a bridge health monitoring and damage detection technology based on digital image measurement method in which the measurement accuracy is sub-millimeter level and can achieve the 24-hour automatic non-destructive monitoring for the deflection. It can be concluded from this paper that it is feasible to use digital image measurement method for identification of the damage in the bridge structure, because it has been validated by the theoretical analysis, the laboratory model and the application of the real bridge.

  11. Progressive Damage Modeling of Notched Composites

    NASA Technical Reports Server (NTRS)

    Aitharaju, Venkat; Aashat, Satvir; Kia, Hamid; Satyanarayana, Arunkumar; Bogert, Philip

    2016-01-01

    There is an increased interest in using non-crimp fabric reinforced composites for primary and secondary structural weight savings in high performance automobile applications. However, one of the main challenges in implementing these composites is the lack of understanding of damage progression under a wide variety of loading conditions for general configurations. Towards that end, researchers at GM and NASA are developing new damage models to predict accurately the progressive failure of these composites. In this investigation, the developed progressive failure analysis model was applied to study damage progression in center-notched and open-hole tension specimens for various laminate schemes. The results of a detailed study with respect to the effect of element size on the analysis outcome are presented.

  12. Simulation of meso-damage of refractory based on cohesion model and molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Zhao, Jiuling; Shang, Hehao; Zhu, Zhaojun; Zhang, Guoxing; Duan, Leiguang; Sun, Xinya

    2018-06-01

    In order to describe the meso-damage of the refractories more accurately, and to study of the relationship between the mesostructured of the refractories and the macro-mechanics, this paper takes the magnesia-carbon refractories as the research object and uses the molecular dynamics method to instead the traditional sequential algorithm to establish the meso-particles filling model including small and large particles. Finally, the finite element software-ABAQUS is used to conducts numerical simulation on the meso-damage evolution process of refractory materials. From the results, the process of initiation and propagation of microscopic interface cracks can be observed intuitively, and the macroscopic stress-strain curve of the refractory material is obtained. The results show that the combination of molecular dynamics modeling and the use of Python in the interface to insert the cohesive element numerical simulation, obtaining of more accurate interface parameters through parameter inversion, can be more accurate to observe the interface of the meso-damage evolution process and effective to consider the effect of the mesostructured of the refractory material on its macroscopic mechanical properties.

  13. Elastic-plastic models for multi-site damage

    NASA Technical Reports Server (NTRS)

    Actis, Ricardo L.; Szabo, Barna A.

    1994-01-01

    This paper presents recent developments in advanced analysis methods for the computation of stress site damage. The method of solution is based on the p-version of the finite element method. Its implementation was designed to permit extraction of linear stress intensity factors using a superconvergent extraction method (known as the contour integral method) and evaluation of the J-integral following an elastic-plastic analysis. Coarse meshes are adequate for obtaining accurate results supported by p-convergence data. The elastic-plastic analysis is based on the deformation theory of plasticity and the von Mises yield criterion. The model problem consists of an aluminum plate with six equally spaced holes and a crack emanating from each hole. The cracks are of different sizes. The panel is subjected to a remote tensile load. Experimental results are available for the panel. The plasticity analysis provided the same limit load as the experimentally determined load. The results of elastic-plastic analysis were compared with the results of linear elastic analysis in an effort to evaluate how plastic zone sizes influence the crack growth rates. The onset of net-section yielding was determined also. The results show that crack growth rate is accelerated by the presence of adjacent damage, and the critical crack size is shorter when the effects of plasticity are taken into consideration. This work also addresses the effects of alternative stress-strain laws: The elastic-ideally-plastic material model is compared against the Ramberg-Osgood model.

  14. Modelling earthquake ruptures with dynamic off-fault damage

    NASA Astrophysics Data System (ADS)

    Okubo, Kurama; Bhat, Harsha S.; Klinger, Yann; Rougier, Esteban

    2017-04-01

    Earthquake rupture modelling has been developed for producing scenario earthquakes. This includes understanding the source mechanisms and estimating far-field ground motion with given a priori constraints like fault geometry, constitutive law of the medium and friction law operating on the fault. It is necessary to consider all of the above complexities of a fault systems to conduct realistic earthquake rupture modelling. In addition to the complexity of the fault geometry in nature, coseismic off-fault damage, which is observed by a variety of geological and seismological methods, plays a considerable role on the resultant ground motion and its spectrum compared to a model with simple planer fault surrounded by purely elastic media. Ideally all of these complexities should be considered in earthquake modelling. State of the art techniques developed so far, however, cannot treat all of them simultaneously due to a variety of computational restrictions. Therefore, we adopt the combined finite-discrete element method (FDEM), which can effectively deal with pre-existing complex fault geometry such as fault branches and kinks and can describe coseismic off-fault damage generated during the dynamic rupture. The advantage of FDEM is that it can handle a wide range of length scales, from metric to kilometric scale, corresponding to the off-fault damage and complex fault geometry respectively. We used the FDEM-based software tool called HOSSedu (Hybrid Optimization Software Suite - Educational Version) for the earthquake rupture modelling, which was developed by Los Alamos National Laboratory. We firstly conducted the cross-validation of this new methodology against other conventional numerical schemes such as the finite difference method (FDM), the spectral element method (SEM) and the boundary integral equation method (BIEM), to evaluate the accuracy with various element sizes and artificial viscous damping values. We demonstrate the capability of the FDEM tool for

  15. Experimental Study on Damage Detection in Timber Specimens Based on an Electromechanical Impedance Technique and RMSD-Based Mahalanobis Distance

    PubMed Central

    Wang, Dansheng; Wang, Qinghua; Wang, Hao; Zhu, Hongping

    2016-01-01

    In the electromechanical impedance (EMI) method, the PZT patch performs the functions of both sensor and exciter. Due to the high frequency actuation and non-model based characteristics, the EMI method can be utilized to detect incipient structural damage. In recent years EMI techniques have been widely applied to monitor the health status of concrete and steel materials, however, studies on application to timber are limited. This paper will explore the feasibility of using the EMI technique for damage detection in timber specimens. In addition, the conventional damage index, namely root mean square deviation (RMSD) is employed to evaluate the level of damage. On that basis, a new damage index, Mahalanobis distance based on RMSD, is proposed to evaluate the damage severity of timber specimens. Experimental studies are implemented to detect notch and hole damage in the timber specimens. Experimental results verify the availability and robustness of the proposed damage index and its superiority over the RMSD indexes. PMID:27782088

  16. Experimental Study on Damage Detection in Timber Specimens Based on an Electromechanical Impedance Technique and RMSD-Based Mahalanobis Distance.

    PubMed

    Wang, Dansheng; Wang, Qinghua; Wang, Hao; Zhu, Hongping

    2016-10-22

    In the electromechanical impedance (EMI) method, the PZT patch performs the functions of both sensor and exciter. Due to the high frequency actuation and non-model based characteristics, the EMI method can be utilized to detect incipient structural damage. In recent years EMI techniques have been widely applied to monitor the health status of concrete and steel materials, however, studies on application to timber are limited. This paper will explore the feasibility of using the EMI technique for damage detection in timber specimens. In addition, the conventional damage index, namely root mean square deviation (RMSD) is employed to evaluate the level of damage. On that basis, a new damage index, Mahalanobis distance based on RMSD, is proposed to evaluate the damage severity of timber specimens. Experimental studies are implemented to detect notch and hole damage in the timber specimens. Experimental results verify the availability and robustness of the proposed damage index and its superiority over the RMSD indexes.

  17. DAMAGE MODELING OF INJECTION-MOLDED SHORT- AND LONG-FIBER THERMOPLASTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.

    2009-10-30

    This article applies the recent anisotropic rotary diffusion – reduced strain closure (ARD-RSC) model for predicting fiber orientation and a new damage model for injection-molded long-fiber thermoplastics (LFTs) to analyze progressive damage leading to total failure of injection-molded long-glass-fiber/polypropylene (PP) specimens. The ARD-RSC model was implemented in a research version of the Autodesk Moldflow Plastics Insight (MPI) processing code, and it has been used to simulate injection-molding of a long-glass-fiber/PP plaque. The damage model combines micromechanical modeling with a continuum damage mechanics description to predict the nonlinear behavior due to plasticity coupled with damage in LFTs. This model has beenmore » implemented in the ABAQUS finite element code via user-subroutines and has been used in the damage analyses of tensile specimens removed from the injection-molded long-glass-fiber/PP plaques. Experimental characterization and mechanical testing were performed to provide input data to support and validate both process modeling and damage analyses. The predictions are in agreement with the experimental results.« less

  18. Creep-Fatigue Damage Investigation and Modeling of Alloy 617 at High Temperatures

    NASA Astrophysics Data System (ADS)

    Tahir, Fraaz

    imaging analysis showed that the microstructural damage features (cracks and voids) are correlated with a new mechanical driving force parameter. The results from this image-based damage analysis were used to develop a phenomenological life-prediction methodology called the effective time fraction approach. Finally, the constitutive creep-fatigue response of the material at 950°C was modeled using a unified viscoplastic model coupled with a damage accumulation model. The simulation results were used to validate an energy-based constitutive life-prediction model, as a mechanistic model for potential component and structure level creep-fatigue analysis.

  19. Aircraft ground damage and the use of predictive models to estimate costs

    NASA Astrophysics Data System (ADS)

    Kromphardt, Benjamin D.

    Aircraft are frequently involved in ground damage incidents, and repair costs are often accepted as part of doing business. The Flight Safety Foundation (FSF) estimates ground damage to cost operators $5-10 billion annually. Incident reports, documents from manufacturers or regulatory agencies, and other resources were examined to better understand the problem of ground damage in aviation. Major contributing factors were explained, and two versions of a computer-based model were developed to project costs and show what is possible. One objective was to determine if the models could match the FSF's estimate. Another objective was to better understand cost savings that could be realized by efforts to further mitigate the occurrence of ground incidents. Model effectiveness was limited by access to official data, and assumptions were used if data was not available. However, the models were determined to sufficiently estimate the costs of ground incidents.

  20. Aerodynamic Effects and Modeling of Damage to Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Shah, Gautam H.

    2008-01-01

    A wind tunnel investigation was conducted to measure the aerodynamic effects of damage to lifting and stability/control surfaces of a commercial transport aircraft configuration. The modeling of such effects is necessary for the development of flight control systems to recover aircraft from adverse, damage-related loss-of-control events, as well as for the estimation of aerodynamic characteristics from flight data under such conditions. Damage in the form of partial or total loss of area was applied to the wing, horizontal tail, and vertical tail. Aerodynamic stability and control implications of damage to each surface are presented, to aid in the identification of potential boundaries in recoverable stability or control degradation. The aerodynamic modeling issues raised by the wind tunnel results are discussed, particularly the additional modeling requirements necessitated by asymmetries due to damage, and the potential benefits of such expanded modeling.

  1. Nonlinear Fatigue Damage Model Based on the Residual Strength Degradation Law

    NASA Astrophysics Data System (ADS)

    Yongyi, Gao; Zhixiao, Su

    In this paper, a logarithmic expression to describe the residual strength degradation process is developed in order to fatigue test results for normalized carbon steel. The definition and expression of fatigue damage due to symmetrical stress with a constant amplitude are also given. The expression of fatigue damage can also explain the nonlinear properties of fatigue damage. Furthermore, the fatigue damage of structures under random stress is analyzed, and an iterative formula to describe the fatigue damage process is deduced. Finally, an approximate method for evaluating the fatigue life of structures under repeated random stress blocking is presented through various calculation examples.

  2. Modeling damage evolution in a hybrid ceramic matrix composite under static tensile load

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonora, N.; Newaz, G.

    In this investigation, damage evolution in a unidirectional hybrid ceramic composite made from Nicalon and SiC fibers in a Lithium Aluminosilicate (LAS) glass matrix was studied. The static stress-strain response of the composite exhibited a linear response followed by load drop in a progressive manner. Careful experiments were conducted stopping the tests at various strain levels and using replication technique, scanning and optical microscopy to monitor the evolution of damage in these composites. It was observed that the constituents of the composite failed in a sequential manner at increasing strain levels. The matrix cracks were followed by SiC fiber failuresmore » near ultimate tensile stress. After that, the load drop was associated with progressive failure of the Nicalon fibers. Identification of these failure modes were critical to the development of a concentric cylinder model representing all three constituent phases to predict the constitutive response of the CMC computationally. The strain-to-failure of the matrix and fibers were used to progressively fail the constituents in the model and the overall experimental constitutive response of the CMC was recovered. A strain based analytical representation was developed relating stiffness loss to applied strain. Based on this formulation, damage evolution and its consequence on tensile stress-strain response was predicted for room temperature behavior of hybrid CMCs. The contribution of the current work is that the proposed strain-damage phenomenological model can capture the damage evolution and the corresponding material response for continuous fiber-reinforced CMCs. The modeling approach shows much promise for the complex damage processes observed in hybrid CMCs.« less

  3. Alpha-Recoil Damage Annealing Effecfs on Zircon Crystallinity and He Diffusivity: Improving Damage-Diffusivity Models

    NASA Astrophysics Data System (ADS)

    Thurston, O. G.; Guenthner, W.; Garver, J. I.

    2017-12-01

    The effects of radiation damage on He diffusion in zircon has been a major research focus in thermochronology over the past decade. In the zircon-He system, alpha-recoil damage effects He diffusivity in two ways: a decrease in He diffusivity at low radiation damage levels, and an increase in He diffusivity at high radiation damage levels. The radiation damage accumulation process within zircon is well understood; however, the kinetics of annealing of alpha-recoil damage at geologic timescales as they pertain to damage-diffusivity models, and for metamict zircon (i.e. transition from crystalline to amorphous glass via damage accumulation), has not been well constrained. This study aims to develop a more complete model that describes the annealing kinetics for zircon grains with a broad range of pre-annealing, alpha-induced radiation damage. A suite of zircon grains from the Lucerne pluton, ME were chosen for this study due to their simple thermal history (monotonic cooling), notable range of effective uranium (eU, eU = [U] +0.235*[Th]) (15 - 34,239 ppm eU), and large range of radiation damage as measured by Raman shift from crystalline (>1005 cm-1) to metamict (<1000 cm-1). The zircon grains selected represent the full range of eU and radiation damage present in the pluton. The zircon grains were first mapped for overall crystallinity using Raman spectroscopy, then annealed at different time-temperature (t-T) schedules from 1 hr to 24 hrs at temperatures ranging from 700-1100 °C, followed by remapping with Raman spectroscopy to track the total Raman shift for each t-T step. The temperature window selected is at the "roll-over" point established in prior studies (Zhang et al., 2000), at which most laboratory annealing occurs. Our data show that high radiation damage zircon grains show larger Raman shifts than low radiation damage zircon grains when exposed to the same t-T step. The high damage zircon grains typically show a Raman shift of 4 cm-1 toward crystalline

  4. Modelling low velocity impact induced damage in composite laminates

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Soutis, Constantinos

    2017-12-01

    The paper presents recent progress on modelling low velocity impact induced damage in fibre reinforced composite laminates. It is important to understand the mechanisms of barely visible impact damage (BVID) and how it affects structural performance. To reduce labour intensive testing, the development of finite element (FE) techniques for simulating impact damage becomes essential and recent effort by the composites research community is reviewed in this work. The FE predicted damage initiation and propagation can be validated by Non Destructive Techniques (NDT) that gives confidence to the developed numerical damage models. A reliable damage simulation can assist the design process to optimise laminate configurations, reduce weight and improve performance of components and structures used in aircraft construction.

  5. Mesh Convergence Requirements for Composite Damage Models

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.

    2016-01-01

    The ability of the finite element method to accurately represent the response of objects with intricate geometry and loading renders the finite element method as an extremely versatile analysis technique for structural analysis. Finite element analysis is routinely used in industry to calculate deflections, stress concentrations, natural frequencies, buckling loads, and much more. The method works by discretizing complex problems into smaller, simpler approximations that are valid over small uniform domains. For common analyses, the maximum size of the elements that can be used is often be determined by experience. However, to verify the quality of a solution, analyses with several levels of mesh refinement should be performed to ensure that the solution has converged. In recent years, the finite element method has been used to calculate the resistance of structures, and in particular that of composite structures. A number of techniques such as cohesive zone modeling, the virtual crack closure technique, and continuum damage modeling have emerged that can be used to predict cracking, delaminations, fiber failure, and other composite damage modes that lead to structural collapse. However, damage models present mesh refinement requirements that are not well understood. In this presentation, we examine different mesh refinement issues related to the representation of damage in composite materials. Damage process zone sizes and their corresponding mesh requirements will be discussed. The difficulties of modeling discontinuities and the associated need for regularization techniques will be illustrated, and some unexpected element size constraints will be presented. Finally, some of the difficulties in constructing models of composite structures capable of predicting transverse matrix cracking will be discussed. It will be shown that to predict the initiation and propagation of transverse matrix cracks, their density, and their saturation may require models that are

  6. Analysis of shape memory alloy sensory particles for damage detection via substructure and continuum damage modeling

    NASA Astrophysics Data System (ADS)

    Bielefeldt, Brent R.; Benzerga, A. Amine; Hartl, Darren J.

    2016-04-01

    The ability to monitor and predict the structural health of an aircraft is of growing importance to the aerospace industry. Currently, structural inspections and maintenance are based upon experiences with similar aircraft operating in similar conditions. While effective, these methods are time-intensive and unnecessary if the aircraft is not in danger of structural failure. It is imagined that future aircraft will utilize non-destructive evaluation methods, allowing for the near real-time monitoring of structural health. A particularly interesting method involves utilizing the unique transformation response of shape memory alloy (SMA) particles embedded in an aircraft structure. By detecting changes in the mechanical and/or electromagnetic responses of embedded particles, operators could detect the formation or propagation of fatigue cracks in the vicinity of these particles. This work focuses on a finite element model of SMA particles embedded in an aircraft wing using a substructure modeling approach in which degrees of freedom are retained only at specified points of connection to other parts or the application of boundary conditions, greatly reducing computational cost. Previous work evaluated isolated particle response to a static crack to numerically demonstrate and validate this damage detection method. This paper presents the implementation of a damage model to account for crack propagation and examine for the first time the effect of particle configuration and/or relative placement with respect to the ability to detect damage.

  7. Model-Based Structural Health Monitoring of Fatigue Damage Test-Bed Specimens

    DTIC Science & Technology

    2011-11-15

    the hull welds or notches along component edges are good initial candidates for the hypothetical damage initiation areas. The branching process adds...to it off-center. The base plate and the stiffener plate are rigidly welded by a tungsten inert gas ( TIG ) weld . Three different crack paths...shown in Figure 9(a), an 18 in long stiffener plate has been welded to each of the tested plates with 0.625 in long discrete TIG welds at 5 locations

  8. Modeling damaged wings: Element selection and constraint specification

    NASA Technical Reports Server (NTRS)

    Stronge, W. J.

    1975-01-01

    The NASTRAN analytical program was used for structural design, and no problems were anticipated in applying this program to a damaged structure as long as the deformations were small and the strains remained within the elastic range. In this context, NASTRAN was used to test three-dimensional analytical models of a damaged aircraft wing under static loads. A comparison was made of calculated and experimentally measured strains on primary structural components of an RF-84F wing. This comparison brought out two sensitive areas in modeling semimonocoque structures. The calculated strains were strongly affected by the type of elements used adjacent to the damaged region and by the choice of multipoint constraints sets on the damaged boundary.

  9. Detection of damaged DNA bases by DNA glycosylase enzymes.

    PubMed

    Friedman, Joshua I; Stivers, James T

    2010-06-22

    A fundamental and shared process in all forms of life is the use of DNA glycosylase enzymes to excise rare damaged bases from genomic DNA. Without such enzymes, the highly ordered primary sequences of genes would rapidly deteriorate. Recent structural and biophysical studies are beginning to reveal a fascinating multistep mechanism for damaged base detection that begins with short-range sliding of the glycosylase along the DNA chain in a distinct conformation we call the search complex (SC). Sliding is frequently punctuated by the formation of a transient "interrogation" complex (IC) where the enzyme extrahelically inspects both normal and damaged bases in an exosite pocket that is distant from the active site. When normal bases are presented in the exosite, the IC rapidly collapses back to the SC, while a damaged base will efficiently partition forward into the active site to form the catalytically competent excision complex (EC). Here we review the unique problems associated with enzymatic detection of rare damaged DNA bases in the genome and emphasize how each complex must have specific dynamic properties that are tuned to optimize the rate and efficiency of damage site location.

  10. Detection of Damaged DNA Bases by DNA Glycosylase Enzymes†

    PubMed Central

    Friedman, Joshua I.; Stivers, James T.

    2010-01-01

    A fundamental and shared process in all forms of life is the use of DNA glycosylase enzymes to excise rare damaged bases from genomic DNA. Without such enzymes, the highly-ordered primary sequences of genes would rapidly deteriorate. Recent structural and biophysical studies are beginning to reveal a fascinating multistep mechanism for damaged base detection that begins with short-range sliding of the glycosylase along the DNA chain in a distinct conformation we refer to as the search complex (SC). Sliding is frequently punctuated by the formation of a transient “interrogation” complex (IC) where the enzyme extrahelically inspects both normal and damaged bases in an exosite pocket that is distant from the active site. When normal bases are presented in the exosite, the IC rapidly collapses back to the SC, while a damaged base will efficiently partition forward into the active site to form the catalytically competent excision complex (EC). Here we review the unique problems associated with enzymatic detection of rare damaged DNA bases in the genome, and emphasize how each complex must have specific dynamic properties that are tuned to optimize the rate and efficiency of damage site location. PMID:20469926

  11. MRAC Control with Prior Model Knowledge for Asymmetric Damaged Aircraft

    PubMed Central

    Zhang, Jing

    2015-01-01

    This paper develops a novel state-tracking multivariable model reference adaptive control (MRAC) technique utilizing prior knowledge of plant models to recover control performance of an asymmetric structural damaged aircraft. A modification of linear model representation is given. With prior knowledge on structural damage, a polytope linear parameter varying (LPV) model is derived to cover all concerned damage conditions. An MRAC method is developed for the polytope model, of which the stability and asymptotic error convergence are theoretically proved. The proposed technique reduces the number of parameters to be adapted and thus decreases computational cost and requires less input information. The method is validated by simulations on NASA generic transport model (GTM) with damage. PMID:26180839

  12. A flexural crack model for damage detection in reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Hamad, W. I.; Owen, J. S.; Hussein, M. F. M.

    2011-07-01

    The use of changes in vibration data for damage detection of reinforced concrete structures faces many challenges that obstruct its transition from a research topic to field applications. Among these is the lack of appropriate damage models that can be deployed in the damage detection methods. In this paper, a model of a simply supported reinforced concrete beam with multiple cracks is developed to examine its use for damage detection and structural health monitoring. The cracks are simulated by a model that accounts for crack formation, propagation and closure. The beam model is studied under different dynamic excitations, including sine sweep and single excitation frequency, for various damage levels. The changes in resonant frequency with increasing loads are examined along with the nonlinear vibration characteristics. The model demonstrates that the resonant frequency reduces by about 10% at the application of 30% of the ultimate load and then drops gradually by about 25% at 70% of the ultimate load. The model also illustrates some nonlinearity in the dynamic response of damaged beams. The appearance of super-harmonics shows that the nonlinearity is higher when the damage level is about 35% and then decreases with increasing damage. The restoring force-displacement relationship predicted the reduction in the overall stiffness of the damaged beam. The model quantitatively predicts the experimental vibration behaviour of damaged RC beams and also shows the damage dependency of nonlinear vibration behaviour.

  13. Analysis and Characterization of Damage Utilizing an Orthotropic Generalized Composite Material Model Suitable for Use in Impact Problems

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther

    2016-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive communities. In order to address a series of issues identified by the aerospace community as being desirable to include in a next generation composite impact model, an orthotropic, macroscopic constitutive model incorporating both plasticity and damage suitable for implementation within the commercial LS-DYNA computer code is being developed. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain hardening-based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used in which a load in one direction results in a stiffness reduction in multiple material coordinate directions. A detailed analysis is carried out to ensure that the strain equivalence assumption is appropriate for the derived plasticity and damage formulations that are employed in the current model. Procedures to develop the appropriate input curves for the damage model are presented and the process required to develop an appropriate characterization test matrix is discussed

  14. Analysis and Characterization of Damage Utilizing an Orthotropic Generalized Composite Material Model Suitable for Use in Impact Problems

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther

    2016-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive communities. In order to address a series of issues identified by the aerospace community as being desirable to include in a next generation composite impact model, an orthotropic, macroscopic constitutive model incorporating both plasticity and damage suitable for implementation within the commercial LS-DYNA computer code is being developed. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain hardening-based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used in which a load in one direction results in a stiffness reduction in multiple material coordinate directions. A detailed analysis is carried out to ensure that the strain equivalence assumption is appropriate for the derived plasticity and damage formulations that are employed in the current model. Procedures to develop the appropriate input curves for the damage model are presented and the process required to develop an appropriate characterization test matrix is discussed.

  15. Analysis and Characterization of Damage and Failure Utilizing a Generalized Composite Material Model Suitable for Use in Impact Problems

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Khaled, Bilal; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther

    2016-01-01

    A material model which incorporates several key capabilities which have been identified by the aerospace community as lacking in state-of-the art composite impact models is under development. In particular, a next generation composite impact material model, jointly developed by the FAA and NASA, is being implemented into the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage, and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters (such as modulus and strength). The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. For the damage model, a strain equivalent formulation is utilized to allow for the uncoupling of the deformation and damage analyses. In the damage model, a semi-coupled approach is employed where the overall damage in a particular coordinate direction is assumed to be a multiplicative combination of the damage in that direction resulting from the applied loads in the various coordinate directions. Due to the fact that the plasticity and damage models are uncoupled, test procedures and methods to both characterize the damage model and to covert the material stress-strain curves from the true (damaged) stress space to the effective (undamaged) stress space have been developed. A methodology has been developed to input the experimentally determined composite failure surface in a tabulated manner. An analytical approach is then utilized to track how close the current stress state is to the failure surface.

  16. Progressive Damage Modeling of Durable Bonded Joint Technology

    NASA Technical Reports Server (NTRS)

    Leone, Frank A.; Davila, Carlos G.; Lin, Shih-Yung; Smeltzer, Stan; Girolamo, Donato; Ghose, Sayata; Guzman, Juan C.; McCarville, Duglas A.

    2013-01-01

    The development of durable bonded joint technology for assembling composite structures for launch vehicles is being pursued for the U.S. Space Launch System. The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology applicable to a wide range of sandwich structures for a Heavy Lift Launch Vehicle. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented Durable Redundant Joint. Both designs involve a honeycomb sandwich with carbon/epoxy facesheets joined with adhesively bonded doublers. Progressive damage modeling allows for the prediction of the initiation and evolution of damage. For structures that include multiple materials, the number of potential failure mechanisms that must be considered increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The joints were modeled using Abaqus parametric finite element models, in which damage was modeled with user-written subroutines. Each ply was meshed discretely, and layers of cohesive elements were used to account for delaminations and to model the adhesive layers. Good correlation with experimental results was achieved both in terms of load-displacement history and predicted failure mechanisms.

  17. Process compensated resonance testing modeling for damage evolution and uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Biedermann, Eric; Heffernan, Julieanne; Mayes, Alexander; Gatewood, Garrett; Jauriqui, Leanne; Goodlet, Brent; Pollock, Tresa; Torbet, Chris; Aldrin, John C.; Mazdiyasni, Siamack

    2017-02-01

    Process Compensated Resonance Testing (PCRT) is a nondestructive evaluation (NDE) method based on the fundamentals of Resonant Ultrasound Spectroscopy (RUS). PCRT is used for material characterization, defect detection, process control and life monitoring of critical gas turbine engine and aircraft components. Forward modeling and model inversion for PCRT have the potential to greatly increase the method's material characterization capability while reducing its dependence on compiling a large population of physical resonance measurements. This paper presents progress on forward modeling studies for damage mechanisms and defects in common to structural materials for gas turbine engines. Finite element method (FEM) models of single crystal (SX) Ni-based superalloy Mar-M247 dog bones and Ti-6Al-4V cylindrical bars were created, and FEM modal analyses calculated the resonance frequencies for the samples in their baseline condition. Then the frequency effects of superalloy creep (high-temperature plastic deformation) and macroscopic texture (preferred crystallographic orientation of grains detrimental to fatigue properties) were evaluated. A PCRT sorting module for creep damage in Mar-M247 was trained with a virtual database made entirely of modeled design points. The sorting module demonstrated successful discrimination of design points with as little as 1% creep strain in the gauge section from a population of acceptable design points with a range of material and geometric variation. The resonance frequency effects of macro-scale texture in Ti-6Al-4V were quantified with forward models of cylinder samples. FEM-based model inversion was demonstrated for Mar-M247 bulk material properties and variations in crystallographic orientation. PCRT uncertainty quantification (UQ) was performed using Monte Carlo studies for Mar-M247 that quantified the overall uncertainty in resonance frequencies resulting from coupled variation in geometry, material properties, crystallographic

  18. FRF-based structural damage detection of controlled buildings with podium structures: Experimental investigation

    NASA Astrophysics Data System (ADS)

    Xu, Y. L.; Huang, Q.; Zhan, S.; Su, Z. Q.; Liu, H. J.

    2014-06-01

    How to use control devices to enhance system identification and damage detection in relation to a structure that requires both vibration control and structural health monitoring is an interesting yet practical topic. In this study, the possibility of using the added stiffness provided by control devices and frequency response functions (FRFs) to detect damage in a building complex was explored experimentally. Scale models of a 12-storey main building and a 3-storey podium structure were built to represent a building complex. Given that the connection between the main building and the podium structure is most susceptible to damage, damage to the building complex was experimentally simulated by changing the connection stiffness. To simulate the added stiffness provided by a semi-active friction damper, a steel circular ring was designed and used to add the related stiffness to the building complex. By varying the connection stiffness using an eccentric wheel excitation system and by adding or not adding the circular ring, eight cases were investigated and eight sets of FRFs were measured. The experimental results were used to detect damage (changes in connection stiffness) using a recently proposed FRF-based damage detection method. The experimental results showed that the FRF-based damage detection method could satisfactorily locate and quantify damage.

  19. Direct Detection and Sequencing of Damaged DNA Bases

    PubMed Central

    2011-01-01

    Products of various forms of DNA damage have been implicated in a variety of important biological processes, such as aging, neurodegenerative diseases, and cancer. Therefore, there exists great interest to develop methods for interrogating damaged DNA in the context of sequencing. Here, we demonstrate that single-molecule, real-time (SMRT®) DNA sequencing can directly detect damaged DNA bases in the DNA template - as a by-product of the sequencing method - through an analysis of the DNA polymerase kinetics that are altered by the presence of a modified base. We demonstrate the sequencing of several DNA templates containing products of DNA damage, including 8-oxoguanine, 8-oxoadenine, O6-methylguanine, 1-methyladenine, O4-methylthymine, 5-hydroxycytosine, 5-hydroxyuracil, 5-hydroxymethyluracil, or thymine dimers, and show that these base modifications can be readily detected with single-modification resolution and DNA strand specificity. We characterize the distinct kinetic signatures generated by these DNA base modifications. PMID:22185597

  20. Direct detection and sequencing of damaged DNA bases.

    PubMed

    Clark, Tyson A; Spittle, Kristi E; Turner, Stephen W; Korlach, Jonas

    2011-12-20

    Products of various forms of DNA damage have been implicated in a variety of important biological processes, such as aging, neurodegenerative diseases, and cancer. Therefore, there exists great interest to develop methods for interrogating damaged DNA in the context of sequencing. Here, we demonstrate that single-molecule, real-time (SMRT®) DNA sequencing can directly detect damaged DNA bases in the DNA template - as a by-product of the sequencing method - through an analysis of the DNA polymerase kinetics that are altered by the presence of a modified base. We demonstrate the sequencing of several DNA templates containing products of DNA damage, including 8-oxoguanine, 8-oxoadenine, O6-methylguanine, 1-methyladenine, O4-methylthymine, 5-hydroxycytosine, 5-hydroxyuracil, 5-hydroxymethyluracil, or thymine dimers, and show that these base modifications can be readily detected with single-modification resolution and DNA strand specificity. We characterize the distinct kinetic signatures generated by these DNA base modifications.

  1. Modeling Lightning Impact Thermo-Mechanical Damage on Composite Materials

    NASA Astrophysics Data System (ADS)

    Muñoz, Raúl; Delgado, Sofía; González, Carlos; López-Romano, Bernardo; Wang, De-Yi; LLorca, Javier

    2014-02-01

    Carbon fiber-reinforced polymers, used in primary structures for aircraft due to an excellent strength-to-weight ratio when compared with conventional aluminium alloy counterparts, may nowadays be considered as mature structural materials. Their use has been extended in recent decades, with several aircraft manufacturers delivering fuselages entirely manufactured with carbon composites and using advanced processing technologies. However, one of the main drawbacks of using such composites entails their poor electrical conductivity when compared with aluminium alloy competitors that leads to lightning strikes being considered a significant threat during the service life of the aircraft. Traditionally, this problem was overcome with the use of a protective copper/bronze mesh that added additional weight and reduced the effectiveness of use of the material. Moreover, this traditional sizing method is based on vast experimental campaigns carried out by subjecting composite panels to simulated lightning strike events. While this method has proven its validity, and is necessary for certification of the structure, it may be optimized with the aid provided by physically based numerical models. This paper presents a model based on the finite element method that includes the sources of damage observed in a lightning strike, such as thermal damage caused by Joule overheating and electromagnetic/acoustic pressures induced by the arc around the attachment points. The results of the model are compared with lightning strike experiments carried out in a carbon woven composite.

  2. Probabilistic models to estimate fire-induced cable damage at nuclear power plants

    NASA Astrophysics Data System (ADS)

    Valbuena, Genebelin R.

    Even though numerous PRAs have shown that fire can be a major contributor to nuclear power plant risk, there are some specific areas of knowledge related to this issue, such as the prediction of fire-induced damage to electrical cables and circuits, and their potential effects in the safety of the nuclear power plant, that still constitute a practical enigma, particularly for the lack of approaches/models to perform consistent and objective assessments. This report contains a discussion of three different models to estimate fire-induced cable damage likelihood given a specified fire profile: the kinetic, the heat transfer and the IR "K Factor" model. These models not only are based on statistical analysis of data available in the open literature, but to the greatest extent possible they use physics based principles to describe the underlying mechanism of failures that take place among the electrical cables upon heating due to external fires. The characterization of cable damage, and consequently the loss of functionality of electrical cables in fire is a complex phenomenon that depends on a variety of intrinsic factors such as cable materials and dimensions, and extrinsic factors such as electrical and mechanical loads on the cables, heat flux severity, and exposure time. Some of these factors are difficult to estimate even in a well-characterized fire, not only for the variability related to the unknown material composition and physical arrangements, but also for the lack of objective frameworks and theoretical models to study the behavior of polymeric wire cable insulation under dynamic external thermal insults. The results of this research will (1) help to develop a consistent framework to predict fire-induced cable failure modes likelihood, and (2) develop some guidance to evaluate and/or reduce the risk associated with these failure modes in existing and new power plant facilities. Among the models evaluated, the physics-based heat transfer model takes into

  3. Enhancement of global flood damage assessments using building material based vulnerability curves

    NASA Astrophysics Data System (ADS)

    Englhardt, Johanna; de Ruiter, Marleen; de Moel, Hans; Aerts, Jeroen

    2017-04-01

    This study discusses the development of an enhanced approach for flood damage and risk assessments using vulnerability curves that are based on building material information. The approach draws upon common practices in earthquake vulnerability assessments, and is an alternative for land-use or building occupancy approach in flood risk assessment models. The approach is of particular importance for studies where there is a large variation in building material, such as large scale studies or studies in developing countries. A case study of Ethiopia is used to demonstrate the impact of the different methodological approaches on direct damage assessments due to flooding. Generally, flood damage assessments use damage curves for different land-use or occupancy types (i.e. urban or residential and commercial classes). However, these categories do not necessarily relate directly to vulnerability of damage by flood waters. For this, the construction type and building material may be more important, as is used in earthquake risk assessments. For this study, we use building material classification data of the PAGER1 project to define new building material based vulnerability classes for flood damage. This approach will be compared to the widely applied land-use based vulnerability curves such as used by De Moel et al. (2011). The case of Ethiopia demonstrates and compares the feasibility of this novel flood vulnerability method on a country level which holds the potential to be scaled up to a global level. The study shows that flood vulnerability based on building material also allows for better differentiation between flood damage in urban and rural settings, opening doors to better link to poverty studies when such exposure data is available. Furthermore, this new approach paves the road to the enhancement of multi-risk assessments as the method enables the comparison of vulnerability across different natural hazard types that also use material-based vulnerability curves

  4. Discrete Element Modeling of Impact Damage on Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Minor, Peter Michel

    Natural gas turbines have become an increasingly important part of the energy landscape in the United States, currently accounting for 19% of all electricity production. Efforts to increase thermal efficiency in gas turbines has led to the adoption of highly porous ceramic thermal barrier coatings (TBCs), which are susceptible to erosion and foreign object impact damage. Despite significant investment to improve the design of TBCs, few numerical tools exist which are capable of both accurately capturing the specific failure mechanisms inherent to TBCs and iterating design parameters without the requirement for coupled experimental data. To overcome these limitations, a discrete element model (DEM) was created to simulate the microstructure of a TBC using a large-scale assembly of bonded particles. Acting as Lagrangian nodes, the particles can be combined to create accurate representations of TBC geometry and porosity. The inclusion of collision-driven particle dynamics and bonds derived from displacement-dependent force functions endow the microstructure model with the ability to deform and reproduce damage in a highly physical manner. Typical TBC damage mechanisms such as compaction, fracture and spallation occur automatically, without having to tune the model based on experimental observation. Therefore, the first order performance of novel TBC designs and materials can be determined numerically, greatly decreasing the cost of development. To verify the utility and effectiveness of the proposed damage model framework, a nanoindentation materials test simulation was developed to serve as a test case. By varying model parameters, such as the porosity of the TBC and maximum applied indenter force, nanoindentation data from more than one hundred distinct permutations was gathered and analyzed. This data was used to calculate the elastic modulus (E) and hardness (H) of the simulated microstructure, which could then be compared to known experimental material property

  5. Research on Damage Models for Continuous Fiber Composites

    DTIC Science & Technology

    1988-07-01

    r ~.F (~ Mechanics and Materials Center TEXAS A&M UNIVERSITY College Station, Texas RESEARCH ON DAMAGE MODELS FOR CONTINUOUS FIBER COMPOSITES Final...Washington, DC 20332 11. TITLE (Include Security Clas=fication) Research on Damage Models for Continuous Fiber Composites - Final Technical Report 1...GROUP SUB-GROU ::=, COMPOsites ) continuum mechanics , ~ idamage, internal state variables V experimental mechanics, laminated composites o 19. ABSTRACT

  6. Chewing as a forming application: A viscoplastic damage law in modelling food oral breakdown

    NASA Astrophysics Data System (ADS)

    Skamniotis, C. G.; Charalambides, M. N.; Elliott, M.

    2017-10-01

    The first bite mechanical response of a food item resembles compressive forming processes, where a tool is pressed into a workpiece. The present study addresses ongoing interests in the deformations and damage of food products, particularly during the first bite, in relation to their mechanical properties. Uniaxial tension, compression and shear tests on a starch based food reveal stress-strain response and fracture strains strongly dependent on strain rate and stress triaxiality, while damage mechanisms are identified in the form of stress softening. A pressure dependent viscoplastic constitutive law reproduces the behavior with the aid of ABAQUS subroutines, while a ductile damage initiation and evolution framework based on fracture toughness data enables accurate predictions of the product breakdown. The material model is implemented in a Finite Element (FE) chewing model based on digital pet teeth geometry where the first bite of molar teeth against a food item is simulated. The FE force displacement results match the experimental data obtained by a physical replicate of the bite model, lending weight to the approach as a powerful tool in understanding of food breakdown and product development.

  7. A prediction and damage assessment model for snowmelt flood events in middle and high latitudes Region

    NASA Astrophysics Data System (ADS)

    Qiao, C.; Huang, Q.; Chen, T.; Zhang, X.

    2017-12-01

    In the context of global warming, the snowmelt flood events in the mountainous area of the middle and high latitudes are increasingly frequent and create severe casualties and property damages. Carrying out the prediction and risk assessment of the snowmelt flood is of great importance in the water resources management, the flood warning and prevention. Based on the remote sensing and GIS techniques, the relationships of the variables influencing the snowmelt flood such as the snow area, the snow depth, the air temperature, the precipitation, the land topography and land covers are analyzed and a prediction and damage assessment model for snowmelt floods is developed. This model analyzes and predicts the flood submerging area, flood depth, flood grade, and the damages of different underlying surfaces in the study area in a given time period based on the estimation of snowmelt amount, the snowmelt runoff, the direction and velocity of the flood. Then it was used to predict a snowmelt flood event in the Ertis River Basin in northern Xinjiang, China, during March and June, 2005 and to assess its damages including the damages of roads, transmission lines, settlements caused by the floods and the possible landslides using the hydrological and meteorological data, snow parameter data, DEM data and land use data. A comparison was made between the prediction results from this model and observation data including the flood measurement and its disaster loss data, which suggests that this model performs well in predicting the strength and impact area of snowmelt flood and its damage assessment. This model will be helpful for the prediction and damage assessment of snowmelt flood events in the mountainous area in the middle and high latitudes in spring, which has great social and economic significance because it provides a relatively reliable method for snowmelt flood prediction and reduces the possible damages caused by snowmelt floods.

  8. Quasi-brittle damage modeling based on incremental energy relaxation combined with a viscous-type regularization

    NASA Astrophysics Data System (ADS)

    Langenfeld, K.; Junker, P.; Mosler, J.

    2018-05-01

    This paper deals with a constitutive model suitable for the analysis of quasi-brittle damage in structures. The model is based on incremental energy relaxation combined with a viscous-type regularization. A similar approach—which also represents the inspiration for the improved model presented in this paper—was recently proposed in Junker et al. (Contin Mech Thermodyn 29(1):291-310, 2017). Within this work, the model introduced in Junker et al. (2017) is critically analyzed first. This analysis leads to an improved model which shows the same features as that in Junker et al. (2017), but which (i) eliminates unnecessary model parameters, (ii) can be better interpreted from a physics point of view, (iii) can capture a fully softened state (zero stresses), and (iv) is characterized by a very simple evolution equation. In contrast to the cited work, this evolution equation is (v) integrated fully implicitly and (vi) the resulting time-discrete evolution equation can be solved analytically providing a numerically efficient closed-form solution. It is shown that the final model is indeed well-posed (i.e., its tangent is positive definite). Explicit conditions guaranteeing this well-posedness are derived. Furthermore, by additively decomposing the stress rate into deformation- and purely time-dependent terms, the functionality of the model is explained. Illustrative numerical examples confirm the theoretical findings.

  9. Micromechanical Modeling of Anisotropic Damage-Induced Permeability Variation in Crystalline Rocks

    NASA Astrophysics Data System (ADS)

    Chen, Yifeng; Hu, Shaohua; Zhou, Chuangbing; Jing, Lanru

    2014-09-01

    This paper presents a study on the initiation and progress of anisotropic damage and its impact on the permeability variation of crystalline rocks of low porosity. This work was based on an existing micromechanical model considering the frictional sliding and dilatancy behaviors of microcracks and the recovery of degraded stiffness when the microcracks are closed. By virtue of an analytical ellipsoidal inclusion solution, lower bound estimates were formulated through a rigorous homogenization procedure for the damage-induced effective permeability of the microcracks-matrix system, and their predictive limitations were discussed with superconducting penny-shaped microcracks, in which the greatest lower bounds were obtained for each homogenization scheme. On this basis, an empirical upper bound estimation model was suggested to account for the influences of anisotropic damage growth, connectivity, frictional sliding, dilatancy, and normal stiffness recovery of closed microcracks, as well as tensile stress-induced microcrack opening on the permeability variation, with a small number of material parameters. The developed model was calibrated and validated by a series of existing laboratory triaxial compression tests with permeability measurements on crystalline rocks, and applied for characterizing the excavation-induced damage zone and permeability variation in the surrounding granitic rock of the TSX tunnel at the Atomic Energy of Canada Limited's (AECL) Underground Research Laboratory (URL) in Canada, with an acceptable agreement between the predicted and measured data.

  10. Recent changes in flood damage in the United States from observations and ACME model

    NASA Astrophysics Data System (ADS)

    Leng, G.; Leung, L. R.

    2017-12-01

    Despite efforts to mitigate flood hazards in flood-prone areas, survey- and report-based flood databases show that flood damage has increased and emerged as one of the most costly disaster in the United States since the 1990s. Understanding the mechanism driving the changes in flood damage is therefore critical for reducing flood risk. In this study, we first conduct a comprehensive analysis of the changing characteristics of flood damage at local, state and country level. Results show a significant increasing trend in the number of flood hazards, causing economic losses of up to $7 billion per year. The ratio of flood events that caused tangible economical cost to the total flood events has exhibited a non-significant increasing trend before 2007 followed by a significant decrease, indicating a changing vulnerability to floods. Analysis also reveals distinct spatial and temporal patterns in the threshold intensity of flood hazards with tangible economical cost. To understand the mechanism behind the increasing flood damage, we develop a flood damage economic model coupled with the integrated hydrological modeling system of ACME that features a river routing model with an inundation parameterization and a water use and regulation model. The model is evaluated over the country against historical records. Several numerical experiments are then designed to explore the mechanisms behind the recent changes in flood damage from the perspective of flood hazard, exposure and vulnerability, which constitute flood damage. The role of human activities such as reservoir operations and water use in modifying regional floods are also explored using the new tool, with the goal of improving understanding and modeling of vulnerability to flood hazards.

  11. Bullet trajectory predicts the need for damage control: an artificial neural network model.

    PubMed

    Hirshberg, Asher; Wall, Matthew J; Mattox, Kenneth L

    2002-05-01

    Effective use of damage control in trauma hinges on an early decision to use it. Bullet trajectory has never been studied as a marker for damage control. We hypothesize that this decision can be predicted by an artificial neural network (ANN) model based on the bullet trajectory and the patient's blood pressure. A multilayer perceptron ANN predictive model was developed from a data set of 312 patients with single abdominal gunshot injuries. Input variables were the bullet path, trajectory patterns, and admission systolic pressure. The output variable was either a damage control laparotomy or intraoperative death. The best performing ANN was implemented on prospectively collected data from 34 patients. The model achieved a correct classification rate of 0.96 and area under the receiver operating characteristic curve of 0.94. External validation showed the model to have a sensitivity of 88% and specificity of 96%. Model implementation on the prospectively collected data had a correct classification rate of 0.91. Sensitivity analysis showed that systolic pressure, bullet path across the midline, and trajectory involving the right upper quadrant were the three most important input variables. Bullet trajectory is an important, hitherto unrecognized, factor that should be incorporated into the decision to use damage control.

  12. Continuum damage modeling and simulation of hierarchical dental enamel

    NASA Astrophysics Data System (ADS)

    Ma, Songyun; Scheider, Ingo; Bargmann, Swantje

    2016-05-01

    Dental enamel exhibits high fracture toughness and stiffness due to a complex hierarchical and graded microstructure, optimally organized from nano- to macro-scale. In this study, a 3D representative volume element (RVE) model is adopted to study the deformation and damage behavior of the fibrous microstructure. A continuum damage mechanics model coupled to hyperelasticity is developed for modeling the initiation and evolution of damage in the mineral fibers as well as protein matrix. Moreover, debonding of the interface between mineral fiber and protein is captured by employing a cohesive zone model. The dependence of the failure mechanism on the aspect ratio of the mineral fibers is investigated. In addition, the effect of the interface strength on the damage behavior is studied with respect to geometric features of enamel. Further, the effect of an initial flaw on the overall mechanical properties is analyzed to understand the superior damage tolerance of dental enamel. The simulation results are validated by comparison to experimental data from micro-cantilever beam testing at two hierarchical levels. The transition of the failure mechanism at different hierarchical levels is also well reproduced in the simulations.

  13. 3D Microstructures for Materials and Damage Models

    DOE PAGES

    Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan

    2017-02-01

    Many challenges exist with regard to understanding and representing complex physical processes involved with ductile damage and failure in polycrystalline metallic materials. Currently, the ability to accurately predict the macroscale ductile damage and failure response of metallic materials is lacking. Research at Los Alamos National Laboratory (LANL) is aimed at building a coupled experimental and computational methodology that supports the development of predictive damage capabilities by: capturing real distributions of microstructural features from real material and implementing them as digitally generated microstructures in damage model development; and, distilling structure-property information to link microstructural details to damage evolution under a multitudemore » of loading states.« less

  14. Stochastic filtering for damage identification through nonlinear structural finite element model updating

    NASA Astrophysics Data System (ADS)

    Astroza, Rodrigo; Ebrahimian, Hamed; Conte, Joel P.

    2015-03-01

    This paper describes a novel framework that combines advanced mechanics-based nonlinear (hysteretic) finite element (FE) models and stochastic filtering techniques to estimate unknown time-invariant parameters of nonlinear inelastic material models used in the FE model. Using input-output data recorded during earthquake events, the proposed framework updates the nonlinear FE model of the structure. The updated FE model can be directly used for damage identification and further used for damage prognosis. To update the unknown time-invariant parameters of the FE model, two alternative stochastic filtering methods are used: the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). A three-dimensional, 5-story, 2-by-1 bay reinforced concrete (RC) frame is used to verify the proposed framework. The RC frame is modeled using fiber-section displacement-based beam-column elements with distributed plasticity and is subjected to the ground motion recorded at the Sylmar station during the 1994 Northridge earthquake. The results indicate that the proposed framework accurately estimate the unknown material parameters of the nonlinear FE model. The UKF outperforms the EKF when the relative root-mean-square error of the recorded responses are compared. In addition, the results suggest that the convergence of the estimate of modeling parameters is smoother and faster when the UKF is utilized.

  15. Near Real-Time Probabilistic Damage Diagnosis Using Surrogate Modeling and High Performance Computing

    NASA Technical Reports Server (NTRS)

    Warner, James E.; Zubair, Mohammad; Ranjan, Desh

    2017-01-01

    This work investigates novel approaches to probabilistic damage diagnosis that utilize surrogate modeling and high performance computing (HPC) to achieve substantial computational speedup. Motivated by Digital Twin, a structural health management (SHM) paradigm that integrates vehicle-specific characteristics with continual in-situ damage diagnosis and prognosis, the methods studied herein yield near real-time damage assessments that could enable monitoring of a vehicle's health while it is operating (i.e. online SHM). High-fidelity modeling and uncertainty quantification (UQ), both critical to Digital Twin, are incorporated using finite element method simulations and Bayesian inference, respectively. The crux of the proposed Bayesian diagnosis methods, however, is the reformulation of the numerical sampling algorithms (e.g. Markov chain Monte Carlo) used to generate the resulting probabilistic damage estimates. To this end, three distinct methods are demonstrated for rapid sampling that utilize surrogate modeling and exploit various degrees of parallelism for leveraging HPC. The accuracy and computational efficiency of the methods are compared on the problem of strain-based crack identification in thin plates. While each approach has inherent problem-specific strengths and weaknesses, all approaches are shown to provide accurate probabilistic damage diagnoses and several orders of magnitude computational speedup relative to a baseline Bayesian diagnosis implementation.

  16. A robust operational model for predicting where tropical cyclone waves damage coral reefs

    NASA Astrophysics Data System (ADS)

    Puotinen, Marji; Maynard, Jeffrey A.; Beeden, Roger; Radford, Ben; Williams, Gareth J.

    2016-05-01

    Tropical cyclone (TC) waves can severely damage coral reefs. Models that predict where to find such damage (the ‘damage zone’) enable reef managers to: 1) target management responses after major TCs in near-real time to promote recovery at severely damaged sites; and 2) identify spatial patterns in historic TC exposure to explain habitat condition trajectories. For damage models to meet these needs, they must be valid for TCs of varying intensity, circulation size and duration. Here, we map damage zones for 46 TCs that crossed Australia’s Great Barrier Reef from 1985-2015 using three models - including one we develop which extends the capability of the others. We ground truth model performance with field data of wave damage from seven TCs of varying characteristics. The model we develop (4MW) out-performed the other models at capturing all incidences of known damage. The next best performing model (AHF) both under-predicted and over-predicted damage for TCs of various types. 4MW and AHF produce strikingly different spatial and temporal patterns of damage potential when used to reconstruct past TCs from 1985-2015. The 4MW model greatly enhances both of the main capabilities TC damage models provide to managers, and is useful wherever TCs and coral reefs co-occur.

  17. A robust operational model for predicting where tropical cyclone waves damage coral reefs.

    PubMed

    Puotinen, Marji; Maynard, Jeffrey A; Beeden, Roger; Radford, Ben; Williams, Gareth J

    2016-05-17

    Tropical cyclone (TC) waves can severely damage coral reefs. Models that predict where to find such damage (the 'damage zone') enable reef managers to: 1) target management responses after major TCs in near-real time to promote recovery at severely damaged sites; and 2) identify spatial patterns in historic TC exposure to explain habitat condition trajectories. For damage models to meet these needs, they must be valid for TCs of varying intensity, circulation size and duration. Here, we map damage zones for 46 TCs that crossed Australia's Great Barrier Reef from 1985-2015 using three models - including one we develop which extends the capability of the others. We ground truth model performance with field data of wave damage from seven TCs of varying characteristics. The model we develop (4MW) out-performed the other models at capturing all incidences of known damage. The next best performing model (AHF) both under-predicted and over-predicted damage for TCs of various types. 4MW and AHF produce strikingly different spatial and temporal patterns of damage potential when used to reconstruct past TCs from 1985-2015. The 4MW model greatly enhances both of the main capabilities TC damage models provide to managers, and is useful wherever TCs and coral reefs co-occur.

  18. Numerical Modeling of S-Wave Generation by Fracture Damage in Underground Nuclear Explosions

    DTIC Science & Technology

    2009-09-30

    Element Package, ABAQUS. A user -defined subroutine , VUMAT, was written that incorporates the micro-mechanics based damage constitutive law described...dynamic damage evolution on the elastic and anelastic response. 2) whereas the Ashby/Sammis model was only applicable to the case where the initial cracks ...are all parallel and the same size, we can now include a specified distribution of initial crack sizes with random azimuthal orientation about the

  19. UAV-based urban structural damage assessment using object-based image analysis and semantic reasoning

    NASA Astrophysics Data System (ADS)

    Fernandez Galarreta, J.; Kerle, N.; Gerke, M.

    2015-06-01

    Structural damage assessment is critical after disasters but remains a challenge. Many studies have explored the potential of remote sensing data, but limitations of vertical data persist. Oblique imagery has been identified as more useful, though the multi-angle imagery also adds a new dimension of complexity. This paper addresses damage assessment based on multi-perspective, overlapping, very high resolution oblique images obtained with unmanned aerial vehicles (UAVs). 3-D point-cloud assessment for the entire building is combined with detailed object-based image analysis (OBIA) of façades and roofs. This research focuses not on automatic damage assessment, but on creating a methodology that supports the often ambiguous classification of intermediate damage levels, aiming at producing comprehensive per-building damage scores. We identify completely damaged structures in the 3-D point cloud, and for all other cases provide the OBIA-based damage indicators to be used as auxiliary information by damage analysts. The results demonstrate the usability of the 3-D point-cloud data to identify major damage features. Also the UAV-derived and OBIA-processed oblique images are shown to be a suitable basis for the identification of detailed damage features on façades and roofs. Finally, we also demonstrate the possibility of aggregating the multi-perspective damage information at building level.

  20. Track structure model of cell damage in space flight

    NASA Technical Reports Server (NTRS)

    Katz, Robert; Cucinotta, Francis A.; Wilson, John W.; Shinn, Judy L.; Ngo, Duc M.

    1992-01-01

    The phenomenological track-structure model of cell damage is discussed. A description of the application of the track-structure model with the NASA Langley transport code for laboratory and space radiation is given. Comparisons to experimental results for cell survival during exposure to monoenergetic, heavy-ion beams are made. The model is also applied to predict cell damage rates and relative biological effectiveness for deep-space exposures.

  1. Numerical Implementation of a Multiple-ISV Thermodynamically-Based Work Potential Theory for Modeling Progressive Damage and Failure in Fiber-Reinforced Laminates

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Waas, Anthony M.

    2011-01-01

    A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Damage is considered to be the effect of any structural changes in a material that manifest as pre-peak non-linearity in the stress versus strain response. Conversely, failure is taken to be the effect of the evolution of any mechanisms that results in post-peak strain softening. It is assumed that matrix microdamage is the dominant damage mechanism in continuous fiber-reinforced polymer matrix laminates, and its evolution is controlled with a single ISV. Three additional ISVs are introduced to account for failure due to mode I transverse cracking, mode II transverse cracking, and mode I axial failure. Typically, failure evolution (i.e., post-peak strain softening) results in pathologically mesh dependent solutions within a finite element method (FEM) setting. Therefore, consistent character element lengths are introduced into the formulation of the evolution of the three failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs is derived. The theory is implemented into commercial FEM software. Objectivity of total energy dissipated during the failure process, with regards to refinements in the FEM mesh, is demonstrated. The model is also verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared to the experiments.

  2. Spectral algorithm for non-destructive damage localisation: Application to an ancient masonry arch model

    NASA Astrophysics Data System (ADS)

    Masciotta, Maria-Giovanna; Ramos, Luís F.; Lourenço, Paulo B.; Vasta, Marcello

    2017-02-01

    Structural monitoring and vibration-based damage identification methods are fundamental tools for condition assessment and early-stage damage identification, especially when dealing with the conservation of historical constructions and the maintenance of strategic civil structures. However, although the substantial advances in the field, several issues must still be addressed to broaden the application range of such tools and to assert their reliability. This study deals with the experimental validation of a novel method for non-destructive damage identification purposes. This method is based on the use of spectral output signals and has been recently validated by the authors through a numerical simulation. After a brief insight into the basic principles of the proposed approach, the spectral-based technique is applied to identify the experimental damage induced on a masonry arch through statically increasing loading. Once the direct and cross spectral density functions of the nodal response processes are estimated, the system's output power spectrum matrix is built and decomposed in eigenvalues and eigenvectors. The present study points out how the extracted spectral eigenparameters contribute to the damage analysis allowing to detect the occurrence of damage and to locate the target points where the cracks appear during the experimental tests. The sensitivity of the spectral formulation to the level of noise in the modal data is investigated and discussed. As a final evaluation criterion, the results from the spectrum-driven method are compared with the ones obtained from existing non-model based damage identification methods.

  3. Damages detection in cylindrical metallic specimens by means of statistical baseline models and updated daily temperature profiles

    NASA Astrophysics Data System (ADS)

    Villamizar-Mejia, Rodolfo; Mujica-Delgado, Luis-Eduardo; Ruiz-Ordóñez, Magda-Liliana; Camacho-Navarro, Jhonatan; Moreno-Beltrán, Gustavo

    2017-05-01

    In previous works, damage detection of metallic specimens exposed to temperature changes has been achieved by using a statistical baseline model based on Principal Component Analysis (PCA), piezodiagnostics principle and taking into account temperature effect by augmenting the baseline model or by using several baseline models according to the current temperature. In this paper a new approach is presented, where damage detection is based in a new index that combine Q and T2 statistical indices with current temperature measurements. Experimental tests were achieved in a carbon-steel pipe of 1m length and 1.5 inches diameter, instrumented with piezodevices acting as actuators or sensors. A PCA baseline model was obtained to a temperature of 21º and then T2 and Q statistical indices were obtained for a 24h temperature profile. Also, mass adding at different points of pipe between sensor and actuator was used as damage. By using the combined index the temperature contribution can be separated and a better differentiation of damages respect to undamaged cases can be graphically obtained.

  4. Modeling Progressive Damage Using Local Displacement Discontinuities Within the FEAMAC Multiscale Modeling Framework

    NASA Technical Reports Server (NTRS)

    Ranatunga, Vipul; Bednarcyk, Brett A.; Arnold, Steven M.

    2010-01-01

    A method for performing progressive damage modeling in composite materials and structures based on continuum level interfacial displacement discontinuities is presented. The proposed method enables the exponential evolution of the interfacial compliance, resulting in unloading of the tractions at the interface after delamination or failure occurs. In this paper, the proposed continuum displacement discontinuity model has been used to simulate failure within both isotropic and orthotropic materials efficiently and to explore the possibility of predicting the crack path, therein. Simulation results obtained from Mode-I and Mode-II fracture compare the proposed approach with the cohesive element approach and Virtual Crack Closure Techniques (VCCT) available within the ABAQUS (ABAQUS, Inc.) finite element software. Furthermore, an eccentrically loaded 3-point bend test has been simulated with the displacement discontinuity model, and the resulting crack path prediction has been compared with a prediction based on the extended finite element model (XFEM) approach.

  5. Structural damage diagnostics via wave propagation-based filtering techniques

    NASA Astrophysics Data System (ADS)

    Ayers, James T., III

    Structural health monitoring (SHM) of aerospace components is a rapidly emerging field due in part to commercial and military transport vehicles remaining in operation beyond their designed life cycles. Damage detection strategies are sought that provide real-time information of the structure's integrity. One approach that has shown promise to accurately identify and quantify structural defects is based on guided ultrasonic wave (GUW) inspections, where low amplitude attenuation properties allow for long range and large specimen evaluation. One drawback to GUWs is that they exhibit a complex multi-modal response, such that each frequency corresponds to at least two excited modes, and thus intelligent signal processing is required for even the simplest of structures. In addition, GUWs are dispersive, whereby the wave velocity is a function of frequency, and the shape of the wave packet changes over the spatial domain, requiring sophisticated detection algorithms. Moreover, existing damage quantification measures are typically formulated as a comparison of the damaged to undamaged response, which has proven to be highly sensitive to changes in environment, and therefore often unreliable. As a response to these challenges inherent to GUW inspections, this research develops techniques to locate and estimate the severity of the damage. Specifically, a phase gradient based localization algorithm is introduced to identify the defect position independent of excitation frequency and damage size. Mode separation through the filtering technique is central in isolating and extracting single mode components, such as reflected, converted, and transmitted modes that may arise from the incident wave impacting a damage. Spatially-integrated single and multiple component mode coefficients are also formulated with the intent to better characterize wave reflections and conversions and to increase the signal to noise ratios. The techniques are applied to damaged isotropic finite

  6. Multi-physics modeling of multifunctional composite materials for damage detection

    NASA Astrophysics Data System (ADS)

    Sujidkul, Thanyawalai

    This study presents a modeling of multifunction composite materials for damage detection with its verification and validation to mechanical behavior predictions of Carbon Fibre Reinforced Polymer composites (CFRPs), CFRPs laminated composites, and woven SiC/SiC matrix composites that are subjected to fracture damage. Advantages of those materials are low cost, low density, high strength-to-weight ratio, and comparable specific tensile properties, the special of SiC/SiC is good environmental stability at high temperature. Resulting in, the composite has been used for many important structures such as helicopter rotors, aerojet engines, gas turbines, hot control surfaces, sporting goods, and windmill blades. Damage or material defect detection in a mechanical component can provide vital information for the prediction of remaining useful life, which will result in the prevention of catastrophic failures. Thus the understanding of the mechanical behavior have been challenge to the prevent damage and failure of composites in different scales. The damage detection methods in composites have been investigated widely in recent years. Non-destructive techniques are the traditional methods to detect the damage such as X-ray, acoustic emission and thermography. However, due to the invisible damage in composite can be occurred, to prevent the failure in composites. The developments of damage detection methods have been considered. Due to carbon fibers are conductive materials, in resulting CFRPs can be self-sensing to detect damage. As is well known, the electrical resistance has been shown to be a sensitive measure of internal damage, and also this work study in thermal resistance can detect damage in composites. However, there is a few number of different micromechanical modeling schemes has been proposed in the published literature for various types of composites. This works will provide with a numerical, analytical, and theoretical failure models in different damages to

  7. Physics-based Modeling of Material Behavior and Damage Initiation in Nanoengineered Composites

    NASA Astrophysics Data System (ADS)

    Subramanian, Nithya

    damage captures the effects of applied loading and damage precursor and provides insight into the safety of nanoengineered composites under service loads. The validated modeling methodology is expected to be a step in the direction of computationally-assisted design and certification of novel materials, thus liberating the pace of their implementation in future applications.

  8. Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model

    NASA Astrophysics Data System (ADS)

    Flowers, Rebecca M.; Ketcham, Richard A.; Shuster, David L.; Farley, Kenneth A.

    2009-04-01

    damage accumulation followed by reheating and partial helium loss. Under common circumstances the RDAAM predicts (U-Th)/He dates that are older, sometimes much older, than corresponding fission-track dates. Nonlinear positive correlations between apatite (U-Th)/He date and eU in apatites subjected to the same temperature history are a diagnostic signature of the RDAAM for many but not all thermal histories. Observed date-eU correlations in four different localities can be explained with the RDAAM using geologically reasonable thermal histories consistent with independent fission-track datasets. The existence of date-eU correlations not only supports a radiation damage based kinetic model, but can significantly limit the range of acceptable time-temperature paths that account for the data. In contrast, these datasets are inexplicable using the Durango diffusion model. The RDAAM helps reconcile enigmatic data in which apatite (U-Th)/He dates are older than expected using the Durango model when compared with thermal histories based on apatite fission-track data or other geological constraints. It also has the potential to explain at least some cases in which (U-Th)/He dates are actually older than the corresponding fission-track dates.

  9. Damage severity assessment in wind turbine blade laboratory model through fuzzy finite element model updating

    NASA Astrophysics Data System (ADS)

    Turnbull, Heather; Omenzetter, Piotr

    2017-04-01

    The recent shift towards development of clean, sustainable energy sources has provided a new challenge in terms of structural safety and reliability: with aging, manufacturing defects, harsh environmental and operational conditions, and extreme events such as lightning strikes wind turbines can become damaged resulting in production losses and environmental degradation. To monitor the current structural state of the turbine, structural health monitoring (SHM) techniques would be beneficial. Physics based SHM in the form of calibration of a finite element model (FEMs) by inverse techniques is adopted in this research. Fuzzy finite element model updating (FFEMU) techniques for damage severity assessment of a small-scale wind turbine blade are discussed and implemented. The main advantage is the ability of FFEMU to account in a simple way for uncertainty within the problem of model updating. Uncertainty quantification techniques, such as fuzzy sets, enable a convenient mathematical representation of the various uncertainties. Experimental frequencies obtained from modal analysis on a small-scale wind turbine blade were described by fuzzy numbers to model measurement uncertainty. During this investigation, damage severity estimation was investigated through addition of small masses of varying magnitude to the trailing edge of the structure. This structural modification, intended to be in lieu of damage, enabled non-destructive experimental simulation of structural change. A numerical model was constructed with multiple variable additional masses simulated upon the blades trailing edge and used as updating parameters. Objective functions for updating were constructed and minimized using both particle swarm optimization algorithm and firefly algorithm. FFEMU was able to obtain a prediction of baseline material properties of the blade whilst also successfully predicting, with sufficient accuracy, a larger magnitude of structural alteration and its location.

  10. Estimation of vulnerability functions based on a global earthquake damage database

    NASA Astrophysics Data System (ADS)

    Spence, R. J. S.; Coburn, A. W.; Ruffle, S. J.

    2009-04-01

    Developing a better approach to the estimation of future earthquake losses, and in particular to the understanding of the inherent uncertainties in loss models, is vital to confidence in modelling potential losses in insurance or for mitigation. For most areas of the world there is currently insufficient knowledge of the current building stock for vulnerability estimates to be based on calculations of structural performance. In such areas, the most reliable basis for estimating vulnerability is performance of the building stock in past earthquakes, using damage databases, and comparison with consistent estimates of ground motion. This paper will present a new approach to the estimation of vulnerabilities using the recently launched Cambridge University Damage Database (CUEDD). CUEDD is based on data assembled by the Martin Centre at Cambridge University since 1980, complemented by other more-recently published and some unpublished data. The database assembles in a single, organised, expandable and web-accessible database, summary information on worldwide post-earthquake building damage surveys which have been carried out since the 1960's. Currently it contains data on the performance of more than 750,000 individual buildings, in 200 surveys following 40 separate earthquakes. The database includes building typologies, damage levels, location of each survey. It is mounted on a GIS mapping system and links to the USGS Shakemaps of each earthquake which enables the macroseismic intensity and other ground motion parameters to be defined for each survey and location. Fields of data for each building damage survey include: · Basic earthquake data and its sources · Details of the survey location and intensity and other ground motion observations or assignments at that location · Building and damage level classification, and tabulated damage survey results · Photos showing typical examples of damage. In future planned extensions of the database information on human

  11. Micromechanics-Based Damage Analysis of Fracture in Ti5553 Alloy with Application to Bolted Sectors

    NASA Astrophysics Data System (ADS)

    Bettaieb, Mohamed Ben; Van Hoof, Thibaut; Minnebo, Hans; Pardoen, Thomas; Dufour, Philippe; Jacques, Pascal J.; Habraken, Anne Marie

    2015-03-01

    A physics-based, uncoupled damage model is calibrated using cylindrical notched round tensile specimens made of Ti5553 and Ti-6Al-4V alloys. The fracture strain of Ti5553 is lower than for Ti-6Al-4V in the full range of stress triaxiality. This lower ductility originates from a higher volume fraction of damage sites. By proper heat treatment, the fracture strain of Ti5553 increases by almost a factor of two, as a result of a larger damage nucleation stress. This result proves the potential for further optimization of the damage resistance of the Ti5553 alloy. The damage model is combined with an elastoviscoplastic law in order to predict failure in a wide range of loading conditions. In particular, a specific application involving bolted sectors is addressed in order to determine the potential of replacing the Ti-6Al-4V by the Ti5553 alloy.

  12. Vibration-based damage detection in a concrete beam under temperature variations using AR models and state-space approaches

    NASA Astrophysics Data System (ADS)

    Clément, A.; Laurens, S.

    2011-07-01

    The Structural Health Monitoring of civil structures subjected to ambient vibrations is very challenging. Indeed, the variations of environmental conditions and the difficulty to characterize the excitation make the damage detection a hard task. Auto-regressive (AR) models coefficients are often used as damage sensitive feature. The presented work proposes a comparison of the AR approach with a state-space feature formed by the Jacobian matrix of the dynamical process. Since the detection of damage can be formulated as a novelty detection problem, Mahalanobis distance is applied to track new points from an undamaged reference collection of feature vectors. Data from a concrete beam subjected to temperature variations and damaged by several static loading are analyzed. It is observed that the damage sensitive features are effectively sensitive to temperature variations. However, the use of the Mahalanobis distance makes possible the detection of cracking with both of them. Early damage (before cracking) is only revealed by the AR coefficients with a good sensibility.

  13. Vibration Based Sun Gear Damage Detection

    NASA Technical Reports Server (NTRS)

    Hood, Adrian; LaBerge, Kelsen; Lewicki, David; Pines, Darryll

    2013-01-01

    Seeded fault experiments were conducted on the planetary stage of an OH-58C helicopter transmission. Two vibration based methods are discussed that isolate the dynamics of the sun gear from that of the planet gears, bearings, input spiral bevel stage, and other components in and around the gearbox. Three damaged sun gears: two spalled and one cracked, serve as the focus of this current work. A non-sequential vibration separation algorithm was developed and the resulting signals analyzed. The second method uses only the time synchronously averaged data but takes advantage of the signal/source mapping required for vibration separation. Both algorithms were successful in identifying the spall damage. Sun gear damage was confirmed by the presence of sun mesh groups. The sun tooth crack condition was inconclusive.

  14. Differential continuum damage mechanics models for creep and fatigue of unidirectional metal matrix composites

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Kruch, S.

    1991-01-01

    Three multiaxial isothermal continuum damage mechanics models for creep, fatigue, and creep/fatigue interaction of a unidirectional metal matrix composite volume element are presented, only one of which will be discussed in depth. Each model is phenomenological and stress based, with varying degrees of complexity to accurately predict the initiation and propagation of intergranular and transgranular defects over a wide range of loading conditions. The development of these models is founded on the definition of an initially transversely isotropic fatigue limit surface, static fracture surface, normalized stress amplitude function and isochronous creep damage failure surface, from which both fatigue and creep damage evolutionary laws can be obtained. The anisotropy of each model is defined through physically meaningful invariants reflecting the local stress and material orientation. All three transversely isotropic models have been shown, when taken to their isotropic limit, to directly simplify to previously developed and validated creep and fatigue continuum damage theories. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation when attempting to characterize a large class of composite materials, and (2) its ability to predict anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Additionally, the potential for the inclusion of various micromechanical effects (e.g., fiber/matrix bond strength, fiber volume fraction, etc.), into the phenomenological anisotropic parameters is noted, as well as a detailed discussion regarding the necessary exploratory and characterization experiments needed to utilize the featured damage theories.

  15. On-Line Multi-Damage Scanning Spatial-Wavenumber Filter Based Imaging Method for Aircraft Composite Structure.

    PubMed

    Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Bao, Qiao

    2017-05-11

    Structural health monitoring (SHM) of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF) based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT) sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures.

  16. On-Line Multi-Damage Scanning Spatial-Wavenumber Filter Based Imaging Method for Aircraft Composite Structure

    PubMed Central

    Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Bao, Qiao

    2017-01-01

    Structural health monitoring (SHM) of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF) based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT) sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures. PMID:28772879

  17. Fractal dimension based damage identification incorporating multi-task sparse Bayesian learning

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Li, Hui; Wu, Stephen; Yang, Yongchao

    2018-07-01

    Sensitivity to damage and robustness to noise are critical requirements for the effectiveness of structural damage detection. In this study, a two-stage damage identification method based on the fractal dimension analysis and multi-task Bayesian learning is presented. The Higuchi’s fractal dimension (HFD) based damage index is first proposed, directly examining the time-frequency characteristic of local free vibration data of structures based on the irregularity sensitivity and noise robustness analysis of HFD. Katz’s fractal dimension is then presented to analyze the abrupt irregularity change of the spatial curve of the displacement mode shape along the structure. At the second stage, the multi-task sparse Bayesian learning technique is employed to infer the final damage localization vector, which borrow the dependent strength of the two fractal dimension based damage indication information and also incorporate the prior knowledge that structural damage occurs at a limited number of locations in a structure in the absence of its collapse. To validate the capability of the proposed method, a steel beam and a bridge, named Yonghe Bridge, are analyzed as illustrative examples. The damage identification results demonstrate that the proposed method is capable of localizing single and multiple damages regardless of its severity, and show superior robustness under heavy noise as well.

  18. Multiscale Fiber Kinking: Computational Micromechanics and a Mesoscale Continuum Damage Mechanics Models

    NASA Technical Reports Server (NTRS)

    Herraez, Miguel; Bergan, Andrew C.; Gonzalez, Carlos; Lopes, Claudio S.

    2017-01-01

    In this work, the fiber kinking phenomenon, which is known as the failure mechanism that takes place when a fiber reinforced polymer is loaded under longitudinal compression, is studied. A computational micromechanics model is employed to interrogate the assumptions of a recently developed mesoscale continuum damage mechanics (CDM) model for fiber kinking based on the deformation gradient decomposition (DGD) and the LaRC04 failure criteria.

  19. Coupling crystal plasticity and phase-field damage to simulate β-HMX-based polymer-bonded explosive under shock load

    NASA Astrophysics Data System (ADS)

    Grilli, Nicolo; Dandekar, Akshay; Koslowski, Marisol

    2017-06-01

    The development of high explosive materials requires constitutive models that are able to predict the influence of microstructure and loading conditions on shock sensitivity. In this work a model at the continuum-scale for the polymer-bonded explosive constituted of β-HMX particles embedded in a Sylgard matrix is developed. It includes a Murnaghan equation of state, a crystal plasticity model, based on power-law slip rate and hardening, and a phase field damage model based on crack regularization. The temperature increase due to chemical reactions is introduced by a heat source term, which is validated using results from reactive molecular dynamics simulations. An initial damage field representing pre-existing voids and cracks is used in the simulations to understand the effect of these inhomogeneities on the damage propagation and shock sensitivity. We show the predictions of the crystal plasticity model and the effect of the HMX crystal orientation on the shock initiation and on the dissipated plastic work and damage propagation. The simulation results are validated with ultra-fast dynamic transmission electron microscopy experiments and x-ray experiments carried out at Purdue University. Membership Pending.

  20. Multiscale modelling of Flow-Induced Blood Cell Damage

    NASA Astrophysics Data System (ADS)

    Liu, Yaling; Sohrabi, Salman

    2017-11-01

    We study red blood cell (RBC) damage and hemolysis at cellular level. Under high shear rates, pores form on RBC membranes through which hemoglobin (Hb) leaks out and increases free Hb content of plasma leading to hemolysis. By coupling lattice Boltzmann and spring connected network models through immersed boundary method, we estimate hemolysis of a single RBC under various shear rates. The developed cellular damage model can be used as a predictive tool for hydrodynamic and hematologic design optimization of blood-wetting medical devices.

  1. Incorporation of Damage and Failure into an Orthotropic Elasto-Plastic Three-Dimensional Model with Tabulated Input Suitable for Use in Composite Impact Problems

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Hoffarth, Canio; Khaled, Bilal; Rajan, Subramaniam; Blankenhorn, Gunther

    2016-01-01

    A material model which incorporates several key capabilities which have been identified by the aerospace community as lacking in the composite impact models currently available in LS-DYNA(Registered Trademark) is under development. In particular, the material model, which is being implemented as MAT 213 into a tailored version of LS-DYNA being jointly developed by the FAA and NASA, incorporates both plasticity and damage within the material model, utilizes experimentally based tabulated input to define the evolution of plasticity and damage as opposed to specifying discrete input parameters (such as modulus and strength), and is able to analyze the response of composites composed with a variety of fiber architectures. The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. The capability to account for the rate and temperature dependent deformation response of composites has also been incorporated into the material model. For the damage model, a strain equivalent formulation is utilized to allow for the uncoupling of the deformation and damage analyses. In the damage model, a diagonal damage tensor is defined to account for the directionally dependent variation of damage. However, in composites it has been found that loading in one direction can lead to damage in multiple coordinate directions. To account for this phenomena, the terms in the damage matrix are semi-coupled such that the damage in a particular coordinate direction is a function of the stresses and plastic strains in all of the coordinate directions. The onset of material failure, and thus element deletion, is being developed to be a function of the stresses and plastic strains in the various coordinate directions. Systematic procedures are being developed to generate the required input parameters based on the results of

  2. An experimental validation of a statistical-based damage detection approach.

    DOT National Transportation Integrated Search

    2011-01-01

    In this work, a previously-developed, statistical-based, damage-detection approach was validated for its ability to : autonomously detect damage in bridges. The damage-detection approach uses statistical differences in the actual and : predicted beha...

  3. Modeling of two-phase porous flow with damage

    NASA Astrophysics Data System (ADS)

    Cai, Z.; Bercovici, D.

    2009-12-01

    Two-phase dynamics has been broadly studied in Earth Science in a convective system. We investigate the basic physics of compaction with damage theory and present preliminary results of both steady state and time-dependent transport when melt migrates through porous medium. In our simple 1-D model, damage would play an important role when we consider the ascent of melt-rich mixture at constant velocity. Melt segregation becomes more difficult so that porosity is larger than that in simple compaction in the steady-state compaction profile. Scaling analysis for compaction equation is performed to predict the behavior of melt segregation with damage. The time-dependent of the compacting system is investigated by looking at solitary wave solutions to the two-phase model. We assume that the additional melt is injected to the fracture material through a single pulse with determined shape and velocity. The existence of damage allows the pulse to keep moving further than that in simple compaction. Therefore more melt could be injected to the two-phase mixture and future application such as carbon dioxide injection is proposed.

  4. Simulating damage for wind storms in the land surface model ORCHIDEE-CAN (revision 4262)

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ying; Gardiner, Barry; Pasztor, Ferenc; Blennow, Kristina; Ryder, James; Valade, Aude; Naudts, Kim; Otto, Juliane; McGrath, Matthew J.; Planque, Carole; Luyssaert, Sebastiaan

    2018-03-01

    Earth system models (ESMs) are currently the most advanced tools with which to study the interactions among humans, ecosystem productivity, and the climate. The inclusion of storm damage in ESMs has long been hampered by their big-leaf approach, which ignores the canopy structure information that is required for process-based wind-throw modelling. Recently the big-leaf assumptions in the large-scale land surface model ORCHIDEE-CAN were replaced by a three-dimensional description of the canopy structure. This opened the way to the integration of the processes from the small-scale wind damage risk model ForestGALES into ORCHIDEE-CAN. The integration of ForestGALES into ORCHIDEE-CAN required, however, developing numerically efficient solutions to deal with (1) landscape heterogeneity, i.e. account for newly established forest edges for the parameterization of gusts; (2) downscaling spatially and temporally aggregated wind fields to obtain more realistic wind speeds that would represents gusts; and (3) downscaling storm damage within the 2500 km2 pixels of ORCHIDEE-CAN. This new version of ORCHIDEE-CAN was parameterized over Sweden. Subsequently, the performance of the model was tested against data for historical storms in southern Sweden between 1951 and 2010 and south-western France in 2009. In years without big storms, here defined as a storm damaging less than 15 × 106 m3 of wood in Sweden, the model error is 1.62 × 106 m3, which is about 100 % of the observed damage. For years with big storms, such as Gudrun in 2005, the model error increased to 5.05 × 106 m3, which is between 10 and 50 % of the observed damage. When the same model parameters were used over France, the model reproduced a decrease in leaf area index and an increase in albedo, in accordance with SPOT-VGT and MODIS records following the passing of Cyclone Klaus in 2009. The current version of ORCHIDEE-CAN (revision 4262) is therefore expected to have the capability to capture the dynamics of

  5. A new multi-layer approach for progressive damage simulation in composite laminates based on isogeometric analysis and Kirchhoff-Love shells. Part I: basic theory and modeling of delamination and transverse shear

    NASA Astrophysics Data System (ADS)

    Bazilevs, Y.; Pigazzini, M. S.; Ellison, A.; Kim, H.

    2017-11-01

    In this two-part paper we introduce a new formulation for modeling progressive damage in laminated composite structures. We adopt a multi-layer modeling approach, based on Isogeometric Analysis (IGA), where each ply or lamina is represented by a spline surface, and modeled as a Kirchhoff-Love thin shell. Continuum Damage Mechanics is used to model intralaminar damage, and a new zero-thickness cohesive-interface formulation is introduced to model delamination as well as permitting laminate-level transverse shear compliance. In Part I of this series we focus on the presentation of the modeling framework, validation of the framework using standard Mode I and Mode II delamination tests, and assessment of its suitability for modeling thick laminates. In Part II of this series we focus on the application of the proposed framework to modeling and simulation of damage in composite laminates resulting from impact. The proposed approach has significant accuracy and efficiency advantages over existing methods for modeling impact damage. These stem from the use of IGA-based Kirchhoff-Love shells to represent the individual plies of the composite laminate, while the compliant cohesive interfaces enable transverse shear deformation of the laminate. Kirchhoff-Love shells give a faithful representation of the ply deformation behavior, and, unlike solids or traditional shear-deformable shells, do not suffer from transverse-shear locking in the limit of vanishing thickness. This, in combination with higher-order accurate and smooth representation of the shell midsurface displacement field, allows us to adopt relatively coarse in-plane discretizations without sacrificing solution accuracy. Furthermore, the thin-shell formulation employed does not use rotational degrees of freedom, which gives additional efficiency benefits relative to more standard shell formulations.

  6. Selection of experimental modal data sets for damage detection via model update

    NASA Technical Reports Server (NTRS)

    Doebling, S. W.; Hemez, F. M.; Barlow, M. S.; Peterson, L. D.; Farhat, C.

    1993-01-01

    When using a finite element model update algorithm for detecting damage in structures, it is important that the experimental modal data sets used in the update be selected in a coherent manner. In the case of a structure with extremely localized modal behavior, it is necessary to use both low and high frequency modes, but many of the modes in between may be excluded. In this paper, we examine two different mode selection strategies based on modal strain energy, and compare their success to the choice of an equal number of modes based merely on lowest frequency. Additionally, some parameters are introduced to enable a quantitative assessment of the success of our damage detection algorithm when using the various set selection criteria.

  7. A Coupled Thermal–Hydrological–Mechanical Damage Model and Its Numerical Simulations of Damage Evolution in APSE

    PubMed Central

    Wei, Chenhui; Zhu, Wancheng; Chen, Shikuo; Ranjith, Pathegama Gamage

    2016-01-01

    This paper proposes a coupled thermal–hydrological–mechanical damage (THMD) model for the failure process of rock, in which coupling effects such as thermally induced rock deformation, water flow-induced thermal convection, and rock deformation-induced water flow are considered. The damage is considered to be the key factor that controls the THM coupling process and the heterogeneity of rock is characterized by the Weibull distribution. Next, numerical simulations on excavation-induced damage zones in Äspö pillar stability experiments (APSE) are carried out and the impact of in situ stress conditions on damage zone distribution is analysed. Then, further numerical simulations of damage evolution at the heating stage in APSE are carried out. The impacts of in situ stress state, swelling pressure and water pressure on damage evolution at the heating stage are simulated and analysed, respectively. The simulation results indicate that (1) the v-shaped notch at the sidewall of the pillar is predominantly controlled by the in situ stress trends and magnitude; (2) at the heating stage, the existence of confining pressure can suppress the occurrence of damage, including shear damage and tensile damage; and (3) the presence of water flow and water pressure can promote the occurrence of damage, especially shear damage. PMID:28774001

  8. A Progressive Damage Model for unidirectional Fibre Reinforced Composites with Application to Impact and Penetration Simulation

    NASA Astrophysics Data System (ADS)

    Kerschbaum, M.; Hopmann, C.

    2016-06-01

    The computationally efficient simulation of the progressive damage behaviour of continuous fibre reinforced plastics is still a challenging task with currently available computer aided engineering methods. This paper presents an original approach for an energy based continuum damage model which accounts for stress-/strain nonlinearities, transverse and shear stress interaction phenomena, quasi-plastic shear strain components, strain rate effects, regularised damage evolution and consideration of load reversal effects. The physically based modelling approach enables experimental determination of all parameters on ply level to avoid expensive inverse analysis procedures. The modelling strategy, implementation and verification of this model using commercially available explicit finite element software are detailed. The model is then applied to simulate the impact and penetration of carbon fibre reinforced cross-ply specimens with variation of the impact speed. The simulation results show that the presented approach enables a good representation of the force-/displacement curves and especially well agreement with the experimentally observed fracture patterns. In addition, the mesh dependency of the results were assessed for one impact case showing only very little change of the simulation results which emphasises the general applicability of the presented method.

  9. Detection of damaged supports under railway track based on frequency shift

    NASA Astrophysics Data System (ADS)

    Wang, Longqi; Zhang, Yao; Lie, Seng Tjhen

    2017-03-01

    In railway transportation systems, the tracks are usually fastened on sleepers which are supported by the ballast. A lot of research has been conducted to guarantee the safety of railway track because of its importance, and more concern is expressed about monitoring of track itself such as railway level and alignment. The ballast and fasteners which provide strong support to the railway track are important as well whereas the detection of loose or missing fasteners and damaged ballast mainly relies on visual inspection. Although it is reliable when the fastener is missing and the damaged ballast is on the surface, it provides less help if the fastener is only loose and the damaged ballast is under the sleepers, which are however frequently observed in practice. This paper proposes an approach based on frequency shift to identify the damaged supports including the loose or missing fasteners and damaged ballast. In this study, the rail-sleeper-ballast system is modeled as an Euler beam evenly supported by a series of springs, the stiffness of which are reduced when the fastener is loose or missing and the ballast under the sleepers is damaged. An auxiliary mass is utilized herein and when it is mounted on the beam, the natural frequencies of the whole system will change with respect to the location of the auxiliary mass. The auxiliary mass induced frequency shift is analyzed and it is found the natural frequencies change periodically when the supports are undamaged, whereas the periodicity will be broken due to damaged supports. In fact, the natural frequencies drop clearly when the auxiliary mass moves over the damaged support. A special damage index only using the information of the damaged states is proposed and both numerical and experimental examples are carried out to validate the proposed method.

  10. Lightning Strike Ablation Damage Influence Factors Analysis of Carbon Fiber/Epoxy Composite Based on Coupled Electrical-Thermal Simulation

    NASA Astrophysics Data System (ADS)

    Yin, J. J.; Chang, F.; Li, S. L.; Yao, X. L.; Sun, J. R.; Xiao, Y.

    2017-10-01

    According to the mathematical analysis model constructed on the basis of energy-balance relationship in lightning strike, and accompany with the simplified calculation strategy of composite resin pyrolysis degree dependent electrical conductivity, an effective three dimensional thermal-electrical coupling analysis finite element model of composite laminate suffered from lightning current was established based on ABAQUS, to elucidate the effects of lighting current waveform parameters and thermal/electrical properties of composite laminate on the extent of ablation damage. Simulated predictions agree well with the composite lightning strike directed effect experimental data, illustrating the potential accuracy of the constructed model. The analytical results revealed that extent of composite lightning strike ablation damage can be characterized by action integral validly, there exist remarkable power function relationships between action integral and visual damage area, projected damage area, maximum damage depth and damage volume of ablation damage, and enhancing the electrical conductivity and specific heat of composite, ablation damage will be descended obviously, power function relationships also exist between electrical conductivity, specific heat and ablation damage, however, the impact of thermal conductivity on the extent of ablation damage is not notable. The conclusions obtained provide some guidance for composite anti-lightning strike structure-function integration design.

  11. Modeling electrical power absorption and thermally-induced biological tissue damage.

    PubMed

    Zohdi, T I

    2014-01-01

    This work develops a model for thermally induced damage from high current flow through biological tissue. Using the first law of thermodynamics, the balance of energy produced by the current and the energy absorbed by the tissue are investigated. The tissue damage is correlated with an evolution law that is activated upon exceeding a temperature threshold. As an example, the Fung material model is used. For certain parameter choices, the Fung material law has the ability to absorb relatively significant amounts of energy, due to its inherent exponential response character, thus, to some extent, mitigating possible tissue damage. Numerical examples are provided to illustrate the model's behavior.

  12. Visualizing the Search for Radiation-damaged DNA Bases in Real Time.

    PubMed

    Lee, Andrea J; Wallace, Susan S

    2016-11-01

    The Base Excision Repair (BER) pathway removes the vast majority of damages produced by ionizing radiation, including the plethora of radiation-damaged purines and pyrimidines. The first enzymes in the BER pathway are DNA glycosylases, which are responsible for finding and removing the damaged base. Although much is known about the biochemistry of DNA glycosylases, how these enzymes locate their specific damage substrates among an excess of undamaged bases has long remained a mystery. Here we describe the use of single molecule fluorescence to observe the bacterial DNA glycosylases, Nth, Fpg and Nei, scanning along undamaged and damaged DNA. We show that all three enzymes randomly diffuse on the DNA molecule and employ a wedge residue to search for and locate damage. The search behavior of the Escherichia coli DNA glycosylases likely provides a paradigm for their homologous mammalian counterparts.

  13. Visualizing the search for radiation-damaged DNA bases in real time

    NASA Astrophysics Data System (ADS)

    Lee, Andrea J.; Wallace, Susan S.

    2016-11-01

    The Base Excision Repair (BER) pathway removes the vast majority of damages produced by ionizing radiation, including the plethora of radiation-damaged purines and pyrimidines. The first enzymes in the BER pathway are DNA glycosylases, which are responsible for finding and removing the damaged base. Although much is known about the biochemistry of DNA glycosylases, how these enzymes locate their specific damage substrates among an excess of undamaged bases has long remained a mystery. Here we describe the use of single molecule fluorescence to observe the bacterial DNA glycosylases, Nth, Fpg and Nei, scanning along undamaged and damaged DNA. We show that all three enzymes randomly diffuse on the DNA molecule and employ a wedge residue to search for and locate damage. The search behavior of the Escherichia coli DNA glycosylases likely provides a paradigm for their homologous mammalian counterparts.

  14. Modelling blast induced damage from a fully coupled explosive charge

    PubMed Central

    Onederra, Italo A.; Furtney, Jason K.; Sellers, Ewan; Iverson, Stephen

    2015-01-01

    This paper presents one of the latest developments in the blasting engineering modelling field—the Hybrid Stress Blasting Model (HSBM). HSBM includes a rock breakage engine to model detonation, wave propagation, rock fragmentation, and muck pile formation. Results from two controlled blasting experiments were used to evaluate the code’s ability to predict the extent of damage. Results indicate that the code is capable of adequately predicting both the extent and shape of the damage zone associated with the influence of point-of-initiation and free-face boundary conditions. Radial fractures extending towards a free face are apparent in the modelling output and matched those mapped after the experiment. In the stage 2 validation experiment, the maximum extent of visible damage was of the order of 1.45 m for the fully coupled 38-mm emulsion charge. Peak radial velocities were predicted within a relative difference of only 1.59% at the nearest history point at 0.3 m from the explosive charge. Discrepancies were larger further away from the charge, with relative differences of −22.4% and −42.9% at distances of 0.46 m and 0.61 m, respectively, meaning that the model overestimated particle velocities at these distances. This attenuation deficiency in the modelling produced an overestimation of the damage zone at the corner of the block due to excessive stress reflections. The extent of visible damage in the immediate vicinity of the blasthole adequately matched the measurements. PMID:26412978

  15. Mathematical modeling of damage in unidirectional composites

    NASA Technical Reports Server (NTRS)

    Goree, J. G.; Dharani, L. R.; Jones, W. F.

    1983-01-01

    Extending the work of Goree and Gross (1979), solutions are given for a two-dimensional region of unidirectional fibers embedded in an elastic matrix whose initial flaw may take the form of a transverse notch, a rectangular cutout, or a circular hole. Subsequent flaw-induced damage is generated by remote stresses acting parallel to the fibers. For the case of such ductile matrix composites as boron/aluminum, present results indicate that both longitudinal matrix yielding and transverse notch extension must be included in order for the model to agree with experimental results. Little difference is found for the three types of initial damage considered. In all cases, the presence of additional damage changes the nature of stress distribution through the unbroken fibers.

  16. Meso-Scale Modelling of Deformation, Damage and Failure in Dual Phase Steels

    NASA Astrophysics Data System (ADS)

    Sari Sarraf, Iman

    Advanced high strength steels (AHSS), such as dual phase (DP) and transformation induced plasticity (TRIP) steels, offer high ductility, formability, and strength, as well as high strength-to-weight ratio and improved crash resistance. Dual phase steels belong to a family of high strength grades which consist of martensite, responsible for strengthening, distributed in a ductile ferrite matrix which accommodates the deformation throughout the forming process. It has been shown that the predominant damage mechanism and failure in DP steels depends on the ferrite and martensite grain sizes and their morphology, and can range from a mixture of brittle and ductile rupture to completely ductile rupture in a quasi-static uniaxial tension test. In this study, a hybrid finite element cellular automata model, initially proposed by Anton Shterenlikht (2003), was developed to evaluate the forming behaviour and predict the onset of instability and damage evolution in a dual phase steel. In this model, the finite element constitutive model is used to represent macro-level strain gradients and a damage variable, and two different cell arrays are designed to represent the ductile and brittle fracture modes in meso-scale. In the FE part of the model, a modified Rousselier ductile damage model is developed to account for nucleation, growth and coalescence of voids. Also, several rate-dependent hardening models were developed and evaluated to describe the work hardening flow curve of DP600. Based on statistical analysis and simulation results, a modified Johnson-Cook (JC) model and a multiplicative combination of the Voce-modified JC functions were found to be the most accurate hardening models. The developed models were then implemented in a user-defined material subroutine (VUMAT) for ABAQUS/Explicit finite element simulation software to simulate uniaxial tension tests at strain rates ranging from 0.001 1/s to 1000 1/s, Marciniak tests, and electrohydraulic free-forming (EHFF

  17. Hyper-elastoplastic/damage modeling of rock with application to porous limestone

    DOE PAGES

    Bennett, Kane C.; Borja, Ronaldo I.

    2018-03-13

    Relations between porosity, damage, and bulk plasticity are examined in the context of continuum damage and hyper-elastoplasticity of porous rocks. Attention is given to a thermodynamically consistent derivation of the damage evolution equations and their role in the constitutive equations, for which the Eshelby stress is found to be important. The provided phenomenological framework allows for volumetric damage associated with pore growth to be distinguished from the isochoric damage associated with distributed microcracks, and a novel Drucker-Prager/cap type material model that includes damage evolution is presented. The model is shown to capture well the hardening/softening behavior and pressure dependence ofmore » the so-called brittle-ductile transition by comparison with confined triaxial compression measurements from the literature. Non-linear finite element simulations are also provided of the prediction of damage within porous limestone around a horizontal borehole wall.« less

  18. Hyper-elastoplastic/damage modeling of rock with application to porous limestone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Kane C.; Borja, Ronaldo I.

    Relations between porosity, damage, and bulk plasticity are examined in the context of continuum damage and hyper-elastoplasticity of porous rocks. Attention is given to a thermodynamically consistent derivation of the damage evolution equations and their role in the constitutive equations, for which the Eshelby stress is found to be important. The provided phenomenological framework allows for volumetric damage associated with pore growth to be distinguished from the isochoric damage associated with distributed microcracks, and a novel Drucker-Prager/cap type material model that includes damage evolution is presented. The model is shown to capture well the hardening/softening behavior and pressure dependence ofmore » the so-called brittle-ductile transition by comparison with confined triaxial compression measurements from the literature. Non-linear finite element simulations are also provided of the prediction of damage within porous limestone around a horizontal borehole wall.« less

  19. Identification of structural damage using wavelet-based data classification

    NASA Astrophysics Data System (ADS)

    Koh, Bong-Hwan; Jeong, Min-Joong; Jung, Uk

    2008-03-01

    Predicted time-history responses from a finite-element (FE) model provide a baseline map where damage locations are clustered and classified by extracted damage-sensitive wavelet coefficients such as vertical energy threshold (VET) positions having large silhouette statistics. Likewise, the measured data from damaged structure are also decomposed and rearranged according to the most dominant positions of wavelet coefficients. Having projected the coefficients to the baseline map, the true localization of damage can be identified by investigating the level of closeness between the measurement and predictions. The statistical confidence of baseline map improves as the number of prediction cases increases. The simulation results of damage detection in a truss structure show that the approach proposed in this study can be successfully applied for locating structural damage even in the presence of a considerable amount of process and measurement noise.

  20. Towards a Universal Calving Law: Modeling Ice Shelves Using Damage Mechanics

    NASA Astrophysics Data System (ADS)

    Whitcomb, M.; Bassis, J. N.; Price, S. F.; Lipscomb, W. H.

    2017-12-01

    Modeling iceberg calving from ice shelves and ice tongues is a particularly difficult problem in glaciology because of the wide range of observed calving rates. Ice shelves naturally calve large tabular icebergs at infrequent intervals, but may instead calve smaller bergs regularly or disintegrate due to hydrofracturing in warmer conditions. Any complete theory of iceberg calving in ice shelves must be able to generate realistic calving rate values depending on the magnitudes of the external forcings. Here we show that a simple damage evolution law, which represents crevasse distributions as a continuum field, produces reasonable estimates of ice shelf calving rates when added to the Community Ice Sheet Model (CISM). Our damage formulation is based on a linear stability analysis and depends upon the bulk stress and strain rate in the ice shelf, as well as the surface and basal melt rates. The basal melt parameter in our model enhances crevasse growth near the ice shelf terminus, leading to an increased iceberg production rate. This implies that increasing ocean temperatures underneath ice shelves will drive ice shelf retreat, as has been observed in the Amundsen and Bellingshausen Seas. We show that our model predicts broadly correct calving rates for ice tongues ranging in length from 10 km (Erebus) to over 100 km (Drygalski), by matching the computed steady state lengths to observations. In addition, we apply the model to idealized Antarctic ice shelves and show that we can also predict realistic ice shelf extents. Our damage mechanics model provides a promising, computationally efficient way to compute calving fluxes and links ice shelf stability to climate forcing.

  1. Apparent Explosion Moments from Rg Waves Recorded on SPE: Implications for the Late-Time Damage Source Model

    NASA Astrophysics Data System (ADS)

    Patton, H. J.; Larmat, C. S.; Rougier, E.

    2016-12-01

    Seismic moments for chemical shots making up Phase I of the Source Physics Experiments (SPE) are estimated from 6 Hz Rg waves under the assumption that the shots are pure explosions. These apparent explosion moments are compared to moments determined using the Reduced Displacement Potential (RDP) method applied to free field data. LIDAR/photogrammetry observations, strong ground motions on the free surface near ground zero, and moment tensor inversion results are evidence in support of the fourth shot SPE-4P being essentially a pure explosion. The apparent moment for SPE-4P is 9 × 1010 Nm in good agreement with the RDP moment 8 × 1010 Nm. In stark contrast, apparent moments for the first three shots are three to four times smaller than RDP moments. Data show that spallation occurred on these shots, as well as permanent deformations detected with ground-based LIDAR. As such, the source medium suffered late-time damage. The late-time damage source model predicts destructive interference between Rg waves radiated by explosion and damage sources, which reduces amplitudes and explains why apparent moments are smaller than RDP moments based on compressional energy emitted directly from the source. SPE-5 was conducted at roughly the same yield-scaled burial depth as SPE-2 and -3, but with five times the yield. As such, the damage source model predicts less reduction of apparent moment. At this writing, preliminary results from Rg interferometry and RDP moments confirm this prediction. SPE-6 is scheduled for the fall of 2016, and it should have the strongest damage source of all SPE shots. The damage model predicts that the polarity of Rg waves could be reversed. Realization of this prediction will be strong confirmation of the late-time damage source model. This abstract has a Los Alamos National Laboratory Unlimited Release Number LA-UR-16-25709.

  2. Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach.

    PubMed

    Rausch, M K; Karniadakis, G E; Humphrey, J D

    2017-02-01

    Biological soft tissues experience damage and failure as a result of injury, disease, or simply age; examples include torn ligaments and arterial dissections. Given the complexity of tissue geometry and material behavior, computational models are often essential for studying both damage and failure. Yet, because of the need to account for discontinuous phenomena such as crazing, tearing, and rupturing, continuum methods are limited. Therefore, we model soft tissue damage and failure using a particle/continuum approach. Specifically, we combine continuum damage theory with Smoothed Particle Hydrodynamics (SPH). Because SPH is a meshless particle method, and particle connectivity is determined solely through a neighbor list, discontinuities can be readily modeled by modifying this list. We show, for the first time, that an anisotropic hyperelastic constitutive model commonly employed for modeling soft tissue can be conveniently implemented within a SPH framework and that SPH results show excellent agreement with analytical solutions for uniaxial and biaxial extension as well as finite element solutions for clamped uniaxial extension in 2D and 3D. We further develop a simple algorithm that automatically detects damaged particles and disconnects the spatial domain along rupture lines in 2D and rupture surfaces in 3D. We demonstrate the utility of this approach by simulating damage and failure under clamped uniaxial extension and in a peeling experiment of virtual soft tissue samples. In conclusion, SPH in combination with continuum damage theory may provide an accurate and efficient framework for modeling damage and failure in soft tissues.

  3. Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach

    PubMed Central

    Rausch, M. K.; Karniadakis, G. E.; Humphrey, J. D.

    2016-01-01

    Biological soft tissues experience damage and failure as a result of injury, disease, or simply age; examples include torn ligaments and arterial dissections. Given the complexity of tissue geometry and material behavior, computational models are often essential for studying both damage and failure. Yet, because of the need to account for discontinuous phenomena such as crazing, tearing, and rupturing, continuum methods are limited. Therefore, we model soft tissue damage and failure using a particle/continuum approach. Specifically, we combine continuum damage theory with Smoothed Particle Hydrodynamics (SPH). Because SPH is a meshless particle method, and particle connectivity is determined solely through a neighbor list, discontinuities can be readily modeled by modifying this list. We show, for the first time, that an anisotropic hyperelastic constitutive model commonly employed for modeling soft tissue can be conveniently implemented within a SPH framework and that SPH results show excellent agreement with analytical solutions for uniaxial and biaxial extension as well as finite element solutions for clamped uniaxial extension in 2D and 3D. We further develop a simple algorithm that automatically detects damaged particles and disconnects the spatial domain along rupture lines in 2D and rupture surfaces in 3D. We demonstrate the utility of this approach by simulating damage and failure under clamped uniaxial extension and in a peeling experiment of virtual soft tissue samples. In conclusion, SPH in combination with continuum damage theory may provide an accurate and efficient framework for modeling damage and failure in soft tissues. PMID:27538848

  4. Three job stress models/concepts and oxidative DNA damage in a sample of workers in Japan.

    PubMed

    Inoue, Akiomi; Kawakami, Norito; Ishizaki, Masao; Tabata, Masaji; Tsuchiya, Masao; Akiyama, Miki; Kitazume, Akiko; Kuroda, Mitsuyo; Shimazu, Akihito

    2009-04-01

    Three job stress models/concepts (the job demands-control [DC] model, the effort-reward imbalance [ERI] model, and organizational justice) have been linked to coronary heart disease (CHD) at work. In recent years, oxidative DNA damage has been identified as a new risk factor for CHD. However, evidence for the association between these job stressors and oxidative DNA damage is limited. The present cross-sectional study investigated the association between these job stress models/concepts and oxidative DNA damage as a possible mediator of the adverse health effects of job stress. A total of 166 male and 51 female workers of a manufacturing factory in Japan were surveyed using a mailed questionnaire regarding job stressors and demographic, occupational, and lifestyle variables. Urinary concentrations of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of oxidative DNA damage, were also measured. In male subjects, the urinary concentrations of 8-OHdG were significantly higher among the group with lower interactional justice, one of the two components of organizational justice; however, no association was observed with the DC model or the ERI model. In female subjects, high job demands/control ratio was significantly and positively associated with the urinary concentrations of 8-OHdG. Interactional justice among male workers and the DC model-based strain among female workers may be associated with increased urinary concentrations of 8-OHdG which possibly reflects oxidative DNA damage.

  5. Feasibility study of modeling liver thermal damage using minimally invasive optical method adequate for in situ measurement.

    PubMed

    Zhao, Jinzhe; Zhao, Qi; Jiang, Yingxu; Li, Weitao; Yang, Yamin; Qian, Zhiyu; Liu, Jia

    2018-06-01

    Liver thermal ablation techniques have been widely used for the treatment of liver cancer. Kinetic model of damage propagation play an important role for ablation prediction and real-time efficacy assessment. However, practical methods for modeling liver thermal damage are rare. A minimally invasive optical method especially adequate for in situ liver thermal damage modeling is introduced in this paper. Porcine liver tissue was heated by water bath under different temperatures. During thermal treatment, diffuse reflectance spectrum of liver was measured by optical fiber and used to deduce reduced scattering coefficient (μ ' s ). Arrhenius parameters were obtained through non-isothermal heating approach with damage marker of μ ' s . Activation energy (E a ) and frequency factor (A) was deduced from these experiments. A pair of averaged value is 1.200 × 10 5  J mol -1 and 4.016 × 10 17  s -1 . The results were verified for their reasonableness and practicality. Therefore, it is feasible to modeling liver thermal damage based on minimally invasive measurement of optical property and in situ kinetic analysis of damage progress with Arrhenius model. These parameters and this method are beneficial for preoperative planning and real-time efficacy assessment of liver ablation therapy. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Modeling extreme hurricane damage in the United States using generalized Pareto distribution

    NASA Astrophysics Data System (ADS)

    Dey, Asim Kumer

    Extreme value distributions are used to understand and model natural calamities, man made catastrophes and financial collapses. Extreme value theory has been developed to study the frequency of such events and to construct a predictive model so that one can attempt to forecast the frequency of a disaster and the amount of damage from such a disaster. In this study, hurricane damages in the United States from 1900-2012 have been studied. The aim of the paper is three-fold. First, normalizing hurricane damage and fitting an appropriate model for the normalized damage data. Secondly, predicting the maximum economic damage from a hurricane in future by using the concept of return period. Finally, quantifying the uncertainty in the inference of extreme return levels of hurricane losses by using a simulated hurricane series, generated by bootstrap sampling. Normalized hurricane damage data are found to follow a generalized Pareto distribution. tion. It is demonstrated that standard deviation and coecient of variation increase with the return period which indicates an increase in uncertainty with model extrapolation.

  7. Output-Based Structural Damage Detection by Using Correlation Analysis Together with Transmissibility

    PubMed Central

    Cao, Hongyou; Liu, Quanmin; Wahab, Magd Abdel

    2017-01-01

    Output-based structural damage detection is becoming increasingly appealing due to its potential in real engineering applications without any restriction regarding excitation measurements. A new transmissibility-based damage detection approach is presented in this study by combining transmissibility with correlation analysis in order to strengthen its performance in discriminating damaged from undamaged scenarios. From this perspective, damage detection strategies are hereafter established by constructing damage-sensitive indicators from a derived transmissibility. A cantilever beam is numerically analyzed to verify the feasibility of the proposed damage detection procedure, and an ASCE (American Society of Civil Engineers) benchmark is henceforth used in the validation for its application in engineering structures. The results of both studies reveal a good performance of the proposed methodology in identifying damaged states from intact states. The comparison between the proposed indicator and the existing indicator also affirms its applicability in damage detection, which might be adopted in further structural health monitoring systems as a discrimination criterion. This study contributed an alternative criterion for transmissibility-based damage detection in addition to the conventional ones. PMID:28773218

  8. Automated 3D Damaged Cavity Model Builder for Lower Surface Acreage Tile on Orbiter

    NASA Technical Reports Server (NTRS)

    Belknap, Shannon; Zhang, Michael

    2013-01-01

    The 3D Automated Thermal Tool for Damaged Acreage Tile Math Model builder was developed to perform quickly and accurately 3D thermal analyses on damaged lower surface acreage tiles and structures beneath the damaged locations on a Space Shuttle Orbiter. The 3D model builder created both TRASYS geometric math models (GMMs) and SINDA thermal math models (TMMs) to simulate an idealized damaged cavity in the damaged tile(s). The GMMs are processed in TRASYS to generate radiation conductors between the surfaces in the cavity. The radiation conductors are inserted into the TMMs, which are processed in SINDA to generate temperature histories for all of the nodes on each layer of the TMM. The invention allows a thermal analyst to create quickly and accurately a 3D model of a damaged lower surface tile on the orbiter. The 3D model builder can generate a GMM and the correspond ing TMM in one or two minutes, with the damaged cavity included in the tile material. A separate program creates a configuration file, which would take a couple of minutes to edit. This configuration file is read by the model builder program to determine the location of the damage, the correct tile type, tile thickness, structure thickness, and SIP thickness of the damage, so that the model builder program can build an accurate model at the specified location. Once the models are built, they are processed by the TRASYS and SINDA.

  9. Flood damage curves for consistent global risk assessments

    NASA Astrophysics Data System (ADS)

    de Moel, Hans; Huizinga, Jan; Szewczyk, Wojtek

    2016-04-01

    Assessing potential damage of flood events is an important component in flood risk management. Determining direct flood damage is commonly done using depth-damage curves, which denote the flood damage that would occur at specific water depths per asset or land-use class. Many countries around the world have developed flood damage models using such curves which are based on analysis of past flood events and/or on expert judgement. However, such damage curves are not available for all regions, which hampers damage assessments in those regions. Moreover, due to different methodologies employed for various damage models in different countries, damage assessments cannot be directly compared with each other, obstructing also supra-national flood damage assessments. To address these problems, a globally consistent dataset of depth-damage curves has been developed. This dataset contains damage curves depicting percent of damage as a function of water depth as well as maximum damage values for a variety of assets and land use classes (i.e. residential, commercial, agriculture). Based on an extensive literature survey concave damage curves have been developed for each continent, while differentiation in flood damage between countries is established by determining maximum damage values at the country scale. These maximum damage values are based on construction cost surveys from multinational construction companies, which provide a coherent set of detailed building cost data across dozens of countries. A consistent set of maximum flood damage values for all countries was computed using statistical regressions with socio-economic World Development Indicators from the World Bank. Further, based on insights from the literature survey, guidance is also given on how the damage curves and maximum damage values can be adjusted for specific local circumstances, such as urban vs. rural locations, use of specific building material, etc. This dataset can be used for consistent supra

  10. A comparative assessment of different frequency based damage detection in unidirectional composite plates using MFC sensors

    NASA Astrophysics Data System (ADS)

    de Medeiros, Ricardo; Sartorato, Murilo; Vandepitte, Dirk; Tita, Volnei

    2016-11-01

    The basic concept of the vibration based damage identification methods is that the dynamic behaviour of a structure can change if damage occurs. Damage in a structure can alter the structural integrity, and therefore, the physical properties like stiffness, mass and/or damping may change. The dynamic behaviour of a structure is a function of these physical properties and will, therefore, directly be affected by the damage. The dynamic behaviour can be described in terms of time, frequency and modal domain parameters. The changes in these parameters (or properties derived from these parameters) are used as indicators of damage. Hence, this work has two main objectives. The first one is to provide an overview of the structural vibration based damage identification methods. For this purpose, a fundamental description of the structural vibration based damage identification problem is given, followed by a short literature overview of the damage features, which are commonly addressed. The second objective is to create a damage identification method for detection of the damage in composite structures. To aid in this process, two basic principles are discussed, namely the effect of the potential damage case on the dynamic behaviour, and the consequences involved with the information reduction in the signal processing. Modal properties from the structural dynamic output response are obtained. In addition, experimental and computational results are presented for the application of modal analysis techniques applied to composite specimens with and without damage. The excitation of the structures is performed using an impact hammer and, for measuring the output data, accelerometers as well as piezoelectric sensors. Finite element models are developed by shell elements, and numerical results are compared to experimental data, showing good correlation for the response of the specimens in some specific frequency range. Finally, FRFs are analysed using suitable metrics, including a

  11. Two-time scale fatigue modelling: application to damage

    NASA Astrophysics Data System (ADS)

    Devulder, Anne; Aubry, Denis; Puel, Guillaume

    2010-05-01

    A temporal multiscale modelling applied to fatigue damage evolution in cortical bone is presented. Microdamage accumulation in cortical bone, ensued from daily activities, leads to impaired mechanical properties, in particular by reducing the bone stiffness and inducing fatigue. However, bone damage is also known as a stimulus to bone remodelling, whose aim is to repair and generate new bone, adapted to its environment. This biological process by removing fatigue damage seems essential to the skeleton lifetime. As daily activities induce high frequency cycles (about 10,000 cycles a day), identifying two-time scale is very fruitful: a fast one connected with the high frequency cyclic loading and a slow one related to a quasi-static loading. A scaling parameter is defined between the intrinsic time (bone lifetime of several years) and the high frequency loading (few seconds). An asymptotic approach allows to decouple the two scales and to take into account history effects (Guennouni and Aubry in CR Acad Sci Paris Ser II 20:1765-1767, 1986). The method is here applied to a simple case of fatigue damage and a real cortical bone microstructure. A significant reduction in the amount of computation time in addition to a small computational error between time homogenized and non homogenized models are obtained. This method seems thus to give new perspectives to assess fatigue damage and, with regard to bone, to give a better understanding of bone remodelling.

  12. Method development of damage detection in asymmetric buildings

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Thambiratnam, David P.; Chan, Tommy H. T.; Nguyen, Andy

    2018-01-01

    Aesthetics and functionality requirements have caused most buildings to be asymmetric in recent times. Such buildings exhibit complex vibration characteristics under dynamic loads as there is coupling between the lateral and torsional components of vibration, and are referred to as torsionally coupled buildings. These buildings require three dimensional modelling and analysis. In spite of much recent research and some successful applications of vibration based damage detection methods to civil structures in recent years, the applications to asymmetric buildings has been a challenging task for structural engineers. There has been relatively little research on detecting and locating damage specific to torsionally coupled asymmetric buildings. This paper aims to compare the difference in vibration behaviour between symmetric and asymmetric buildings and then use the vibration characteristics for predicting damage in them. The need for developing a special method to detect damage in asymmetric buildings thus becomes evident. Towards this end, this paper modifies the traditional modal strain energy based damage index by decomposing the mode shapes into their lateral and vertical components and to form component specific damage indices. The improved approach is then developed by combining the modified strain energy based damage indices with the modal flexibility method which was modified to suit three dimensional structures to form a new damage indicator. The procedure is illustrated through numerical studies conducted on three dimensional five-story symmetric and asymmetric frame structures with the same layout, after validating the modelling techniques through experimental testing of a laboratory scale asymmetric building model. Vibration parameters obtained from finite element analysis of the intact and damaged building models are then applied into the proposed algorithms for detecting and locating the single and multiple damages in these buildings. The results

  13. Structural damage detection based on stochastic subspace identification and statistical pattern recognition: II. Experimental validation under varying temperature

    NASA Astrophysics Data System (ADS)

    Lin, Y. Q.; Ren, W. X.; Fang, S. E.

    2011-11-01

    Although most vibration-based damage detection methods can acquire satisfactory verification on analytical or numerical structures, most of them may encounter problems when applied to real-world structures under varying environments. The damage detection methods that directly extract damage features from the periodically sampled dynamic time history response measurements are desirable but relevant research and field application verification are still lacking. In this second part of a two-part paper, the robustness and performance of the statistics-based damage index using the forward innovation model by stochastic subspace identification of a vibrating structure proposed in the first part have been investigated against two prestressed reinforced concrete (RC) beams tested in the laboratory and a full-scale RC arch bridge tested in the field under varying environments. Experimental verification is focused on temperature effects. It is demonstrated that the proposed statistics-based damage index is insensitive to temperature variations but sensitive to the structural deterioration or state alteration. This makes it possible to detect the structural damage for the real-scale structures experiencing ambient excitations and varying environmental conditions.

  14. Combined meso-scale modeling and experimental investigation of the effect of mechanical damage on the transport properties of cementitious composites

    NASA Astrophysics Data System (ADS)

    Raghavan, Balaji; Niknezhad, Davood; Bernard, Fabrice; Kamali-Bernard, Siham

    2016-09-01

    The transport properties of cementitious composites such as concrete are important indicators of their durability, and are known to be heavily influenced by mechanical loading. In the current work, we use meso-scale hygro-mechanical modeling with a morphological 3D two phase mortar-aggregate model, in conjunction with experimentally obtained properties, to investigate the coupling between mechanical loading and damage and the permeability of the composite. The increase in permeability of a cylindrical test specimen at 28% aggregate fraction during a uniaxial displacement-controlled compression test at 85% of the peak load was measured using a gas permeameter. The mortar's mechanical behavior is assumed to follow the well-known compression damaged plasticity (CDP) model with isotropic damage, at varying thresholds, and obtained from different envelope curves. The damaged intrinsic permeability of the mortar evolves according to a logarithmic matching law with progressive loading. We fit the matching law parameters to the experimental result for the test specimen by inverse identification using our meso-scale model. We then subject a series of virtual composite specimens to quasi-static uniaxial compressive loading with varying boundary conditions to obtain the simulated damage and strain evolutions, and use the damage data and the previously identified parameters to determine the evolution of the macroscopic permeability tensor for the specimens, using a network model. We conduct a full parameter study by varying aggregate volume fraction, granulometric distribution, loading/boundary conditions and "matching law" parameters, as well as for different strain-damage thresholds and uniaxial loading envelope curves. Based on this study, we propose Avrami equation-based upper and lower bounds for the evolution of the damaged permeability of the composite.

  15. A methodology to predict damage initiation, damage growth and residual strength in titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Bakuckas, J. G., Jr.; Johnson, W. S.

    1994-01-01

    In this research, a methodology to predict damage initiation, damage growth, fatigue life, and residual strength in titanium matrix composites (TMC) is outlined. Emphasis was placed on micromechanics-based engineering approaches. Damage initiation was predicted using a local effective strain approach. A finite element analysis verified the prevailing assumptions made in the formulation of this model. Damage growth, namely, fiber-bridged matrix crack growth, was evaluated using a fiber bridging (FB) model which accounts for thermal residual stresses. This model combines continuum fracture mechanics and micromechanics analyses yielding stress-intensity factor solutions for fiber-bridged matrix cracks. It is assumed in the FB model that fibers in the wake of the matrix crack are idealized as a closure pressure, and an unknown constant frictional shear stress is assumed to act along the debond length of the bridging fibers. This frictional shear stress was used as a curve fitting parameter to the available experimental data. Fatigue life and post-fatigue residual strength were predicted based on the axial stress in the first intact 0 degree fiber calculated using the FB model and a three-dimensional finite element analysis.

  16. Building damage assessment from PolSAR data using texture parameters of statistical model

    NASA Astrophysics Data System (ADS)

    Li, Linlin; Liu, Xiuguo; Chen, Qihao; Yang, Shuai

    2018-04-01

    Accurate building damage assessment is essential in providing decision support for disaster relief and reconstruction. Polarimetric synthetic aperture radar (PolSAR) has become one of the most effective means of building damage assessment, due to its all-day/all-weather ability and richer backscatter information of targets. However, intact buildings that are not parallel to the SAR flight pass (termed oriented buildings) and collapsed buildings share similar scattering mechanisms, both of which are dominated by volume scattering. This characteristic always leads to misjudgments between assessments of collapsed buildings and oriented buildings from PolSAR data. Because the collapsed buildings and the intact buildings (whether oriented or parallel buildings) have different textures, a novel building damage assessment method is proposed in this study to address this problem by introducing texture parameters of statistical models. First, the logarithms of the estimated texture parameters of different statistical models are taken as a new texture feature to describe the collapse of the buildings. Second, the collapsed buildings and intact buildings are distinguished using an appropriate threshold. Then, the building blocks are classified into three levels based on the building block collapse rate. Moreover, this paper also discusses the capability for performing damage assessment using texture parameters from different statistical models or using different estimators. The RADARSAT-2 and ALOS-1 PolSAR images are used to present and analyze the performance of the proposed method. The results show that using the texture parameters avoids the problem of confusing collapsed and oriented buildings and improves the assessment accuracy. The results assessed by using the K/G0 distribution texture parameters estimated based on the second moment obtain the highest extraction accuracies. For the RADARSAT-2 and ALOS-1 data, the overall accuracy (OA) for these three types of

  17. Integrating Machine Learning into a Crowdsourced Model for Earthquake-Induced Damage Assessment

    NASA Technical Reports Server (NTRS)

    Rebbapragada, Umaa; Oommen, Thomas

    2011-01-01

    On January 12th, 2010, a catastrophic 7.0M earthquake devastated the country of Haiti. In the aftermath of an earthquake, it is important to rapidly assess damaged areas in order to mobilize the appropriate resources. The Haiti damage assessment effort introduced a promising model that uses crowdsourcing to map damaged areas in freely available remotely-sensed data. This paper proposes the application of machine learning methods to improve this model. Specifically, we apply work on learning from multiple, imperfect experts to the assessment of volunteer reliability, and propose the use of image segmentation to automate the detection of damaged areas. We wrap both tasks in an active learning framework in order to shift volunteer effort from mapping a full catalog of images to the generation of high-quality training data. We hypothesize that the integration of machine learning into this model improves its reliability, maintains the speed of damage assessment, and allows the model to scale to higher data volumes.

  18. Incorporation of Plasticity and Damage Into an Orthotropic Three-Dimensional Model with Tabulated Input Suitable for Use in Composite Impact Problems

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blackenhorn, Gunther

    2015-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within commercial transient dynamic finite element codes, several features have been identified as being lacking in the currently available material models that could substantially enhance the predictive capability of the impact simulations. A specific desired feature pertains to the incorporation of both plasticity and damage within the material model. Another desired feature relates to using experimentally based tabulated stress-strain input to define the evolution of plasticity and damage as opposed to specifying discrete input properties (such as modulus and strength) and employing analytical functions to track the response of the material. To begin to address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed for implementation within the commercial code LS-DYNA. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain-hardening based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. The effective plastic strain is computed by using the non-associative flow rule in combination with appropriate numerical methods. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used, in which a load in one direction results in a stiffness reduction in multiple coordinate directions. A specific laminated composite is examined to demonstrate the process of characterizing and analyzing the response of a composite using the developed

  19. Identification of damage in composite structures using Gaussian mixture model-processed Lamb waves

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Ma, Shuxian; Yue, Dong

    2018-04-01

    Composite materials have comprehensively better properties than traditional materials, and therefore have been more and more widely used, especially because of its higher strength-weight ratio. However, the damage of composite structures is usually varied and complicated. In order to ensure the security of these structures, it is necessary to monitor and distinguish the structural damage in a timely manner. Lamb wave-based structural health monitoring (SHM) has been proved to be effective in online structural damage detection and evaluation; furthermore, the characteristic parameters of the multi-mode Lamb wave varies in response to different types of damage in the composite material. This paper studies the damage identification approach for composite structures using the Lamb wave and the Gaussian mixture model (GMM). The algorithm and principle of the GMM, and the parameter estimation, is introduced. Multi-statistical characteristic parameters of the excited Lamb waves are extracted, and the parameter space with reduced dimensions is adopted by principal component analysis (PCA). The damage identification system using the GMM is then established through training. Experiments on a glass fiber-reinforced epoxy composite laminate plate are conducted to verify the feasibility of the proposed approach in terms of damage classification. The experimental results show that different types of damage can be identified according to the value of the likelihood function of the GMM.

  20. Evaluation of microcrack thermal shock damage in ceramics: Modeling and experiment

    NASA Technical Reports Server (NTRS)

    Chu, Y. C.; Hefetz, M.; Rokhlin, S. I.

    1992-01-01

    In this paper we present an experimental and theoretical study of the effect of microcrack damage on ceramic properties. For the experimental investigation, ceramic samples of aluminum oxide and reaction bonded silicon nitride (RBSN) are used. Thermal shock treatment from different temperatures up to 1000 C is applied to produce the microcracks. Both surface and bulk ultrasonic wave methods are used to correlate the change of elastic constants to microstructural degradation and to determine the change in elastic anisotropy induced by microcrack damage. For the theoretical investigation, damage mechanics, which relates microstructural damage to material service life and mechanical failure, is used. The change in elastic properties due to microcrack damage calculated from the theoretical model is compared with the experimental results for determination of the applicability of damage theory. It is shown that two independent experimental methods (bulk wave and surface wave) give the same results for shear moduli of damaged ceramics. The experimental results aagree reasonably well with the moduli predicted from the cracked solid model.

  1. Nonlinear finite element model updating for damage identification of civil structures using batch Bayesian estimation

    NASA Astrophysics Data System (ADS)

    Ebrahimian, Hamed; Astroza, Rodrigo; Conte, Joel P.; de Callafon, Raymond A.

    2017-02-01

    This paper presents a framework for structural health monitoring (SHM) and damage identification of civil structures. This framework integrates advanced mechanics-based nonlinear finite element (FE) modeling and analysis techniques with a batch Bayesian estimation approach to estimate time-invariant model parameters used in the FE model of the structure of interest. The framework uses input excitation and dynamic response of the structure and updates a nonlinear FE model of the structure to minimize the discrepancies between predicted and measured response time histories. The updated FE model can then be interrogated to detect, localize, classify, and quantify the state of damage and predict the remaining useful life of the structure. As opposed to recursive estimation methods, in the batch Bayesian estimation approach, the entire time history of the input excitation and output response of the structure are used as a batch of data to estimate the FE model parameters through a number of iterations. In the case of non-informative prior, the batch Bayesian method leads to an extended maximum likelihood (ML) estimation method to estimate jointly time-invariant model parameters and the measurement noise amplitude. The extended ML estimation problem is solved efficiently using a gradient-based interior-point optimization algorithm. Gradient-based optimization algorithms require the FE response sensitivities with respect to the model parameters to be identified. The FE response sensitivities are computed accurately and efficiently using the direct differentiation method (DDM). The estimation uncertainties are evaluated based on the Cramer-Rao lower bound (CRLB) theorem by computing the exact Fisher Information matrix using the FE response sensitivities with respect to the model parameters. The accuracy of the proposed uncertainty quantification approach is verified using a sampling approach based on the unscented transformation. Two validation studies, based on realistic

  2. Modelling of Dynamic Rock Fracture Process with a Rate-Dependent Combined Continuum Damage-Embedded Discontinuity Model Incorporating Microstructure

    NASA Astrophysics Data System (ADS)

    Saksala, Timo

    2016-10-01

    This paper deals with numerical modelling of rock fracture under dynamic loading. For this end, a combined continuum damage-embedded discontinuity model is applied in finite element modelling of crack propagation in rock. In this model, the strong loading rate sensitivity of rock is captured by the rate-dependent continuum scalar damage model that controls the pre-peak nonlinear hardening part of rock behaviour. The post-peak exponential softening part of the rock behaviour is governed by the embedded displacement discontinuity model describing the mode I, mode II and mixed mode fracture of rock. Rock heterogeneity is incorporated in the present approach by random description of the rock mineral texture based on the Voronoi tessellation. The model performance is demonstrated in numerical examples where the uniaxial tension and compression tests on rock are simulated. Finally, the dynamic three-point bending test of a semicircular disc is simulated in order to show that the model correctly predicts the strain rate-dependent tensile strengths as well as the failure modes of rock in this test. Special emphasis is laid on modelling the loading rate sensitivity of tensile strength of Laurentian granite.

  3. Damage detection in rotating machinery by means of entropy-based parameters

    NASA Astrophysics Data System (ADS)

    Tocarciuc, Alexandru; Bereteu, Liviu; ǎgǎnescu, Gheorghe Eugen, Dr

    2014-11-01

    The paper is proposing two new entropy-based parameters, namely Renyi Entropy Index (REI) and Sharma-Mittal Entropy Index (SMEI), for detecting the presence of failures (or damages) in rotating machinery, namely: belt structural damage, belt wheels misalignment, failure of the fixing bolt of the machine to its baseplate and eccentricities (i.e.: due to detaching a small piece of material or bad mounting of the rotating components of the machine). The algorithms to obtain the proposed entropy-based parameters are described and test data is used in order to assess their sensitivity. A vibration test bench is used for measuring the levels of vibration while artificially inducing damage. The deviation of the two entropy-based parameters is compared in two states of the vibration test bench: not damaged and damaged. At the end of the study, their sensitivity is compared to Shannon Entropic Index.

  4. Modelling single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources.

    PubMed

    Loch, R A; Sobierajski, R; Louis, E; Bosgra, J; Bijkerk, F

    2012-12-17

    The single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly used multilayer optics and propose new material combinations selected for a high damage threshold. Our study demonstrates that the damage thresholds of multilayer optics can vary over a large range of incidence fluences and can be as high as several hundreds of mJ/cm(2). This strongly suggests that multilayer mirrors are serious candidates for damage resistant optics. Especially, multilayer optics based on Li(2)O spacers are very promising for use in current and future short-wavelength radiation sources.

  5. A Continuum Damage Mechanics Model for the Static and Cyclic Fatigue of Cellular Composites

    PubMed Central

    Huber, Otto

    2017-01-01

    The fatigue behavior of a cellular composite with an epoxy matrix and glass foam granules is analyzed and modeled by means of continuum damage mechanics. The investigated cellular composite is a particular type of composite foam, and is very similar to syntactic foams. In contrast to conventional syntactic foams constituted by hollow spherical particles (balloons), cellular glass, mineral, or metal place holders are combined with the matrix material (metal or polymer) in the case of cellular composites. A microstructural investigation of the damage behavior is performed using scanning electron microscopy. For the modeling of the fatigue behavior, the damage is separated into pure static and pure cyclic damage and described in terms of the stiffness loss of the material using damage models for cyclic and creep damage. Both models incorporate nonlinear accumulation and interaction of damage. A cycle jumping procedure is developed, which allows for a fast and accurate calculation of the damage evolution for constant load frequencies. The damage model is applied to examine the mean stress effect for cyclic fatigue and to investigate the frequency effect and the influence of the signal form in the case of static and cyclic damage interaction. The calculated lifetimes are in very good agreement with experimental results. PMID:28809806

  6. Guide to the Stand-Damage Model interface management system

    Treesearch

    George Racin; J. J. Colbert

    1995-01-01

    This programmer's support document describes the Gypsy Moth Stand-Damage Model interface management system. Management of stand-damage data made it necessary to define structures to store data and provide the mechanisms to manipulate these data. The software provides a user-friendly means to manipulate files, graph and manage outputs, and edit input data. The...

  7. Mathematical modeling of damage in unidirectional composites

    NASA Technical Reports Server (NTRS)

    Goree, J. G.; Dharani, L. R.; Jones, W. F.

    1981-01-01

    A review of some approximate analytical models for damaged, fiber reinforced composite materials is presented. Using the classical shear lag stress displacement assumption, solutions are presented for a unidirectional laminate containing a notch, a rectangular cut-out, and a circular hole. The models account for longitudinal matrix yielding and splitting as well as transverse matrix yielding and fiber breakage. The constraining influence of a cover sheet on the unidirectional laminate is also modeled.

  8. Modeling and Characterization of Damage Processes in Metallic Materials

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Saether, E.; Smith, S. W.; Hochhalter, J. D.; Yamakov, V. I.; Gupta, V.

    2011-01-01

    This paper describes a broad effort that is aimed at understanding the fundamental mechanisms of crack growth and using that understanding as a basis for designing materials and enabling predictions of fracture in materials and structures that have small characteristic dimensions. This area of research, herein referred to as Damage Science, emphasizes the length scale regimes of the nanoscale and the microscale for which analysis and characterization tools are being developed to predict the formation, propagation, and interaction of fundamental damage mechanisms. Examination of nanoscale processes requires atomistic and discrete dislocation plasticity simulations, while microscale processes can be examined using strain gradient plasticity, crystal plasticity and microstructure modeling methods. Concurrent and sequential multiscale modeling methods are being developed to analytically bridge between these length scales. Experimental methods for characterization and quantification of near-crack tip damage are also being developed. This paper focuses on several new methodologies in these areas and their application to understanding damage processes in polycrystalline metals. On-going and potential applications are also discussed.

  9. Comparative study of performance of neutral axis tracking based damage detection

    NASA Astrophysics Data System (ADS)

    Soman, R.; Malinowski, P.; Ostachowicz, W.

    2015-07-01

    This paper presents a comparative study of a novel SHM technique for damage isolation. The performance of the Neutral Axis (NA) tracking based damage detection strategy is compared to other popularly used vibration based damage detection methods viz. ECOMAC, Mode Shape Curvature Method and Strain Flexibility Index Method. The sensitivity of the novel method is compared under changing ambient temperature conditions and in the presence of measurement noise. Finite Element Analysis (FEA) of the DTU 10 MW Wind Turbine was conducted to compare the local damage identification capability of each method and the results are presented. Under the conditions examined, the proposed method was found to be robust to ambient condition changes and measurement noise. The damage identification in some is either at par with the methods mentioned in the literature or better under the investigated damage scenarios.

  10. Persistent damaged bases in DNA allow mutagenic break repair in Escherichia coli

    PubMed Central

    Moore, Jessica M.; Correa, Raul; Rosenberg, Susan M.

    2017-01-01

    Bacteria, yeast and human cancer cells possess mechanisms of mutagenesis upregulated by stress responses. Stress-inducible mutagenesis potentially accelerates adaptation, and may provide important models for mutagenesis that drives cancers, host pathogen interactions, antibiotic resistance and possibly much of evolution generally. In Escherichia coli repair of double-strand breaks (DSBs) becomes mutagenic, using low-fidelity DNA polymerases under the control of the SOS DNA-damage response and RpoS general stress response, which upregulate and allow the action of error-prone DNA polymerases IV (DinB), II and V to make mutations during repair. Pol IV is implied to compete with and replace high-fidelity DNA polymerases at the DSB-repair replisome, causing mutagenesis. We report that up-regulated Pol IV is not sufficient for mutagenic break repair (MBR); damaged bases in the DNA are also required, and that in starvation-stressed cells, these are caused by reactive-oxygen species (ROS). First, MBR is reduced by either ROS-scavenging agents or constitutive activation of oxidative-damage responses, both of which reduce cellular ROS levels. The ROS promote MBR other than by causing DSBs, saturating mismatch repair, oxidizing proteins, or inducing the SOS response or the general stress response. We find that ROS drive MBR through oxidized guanines (8-oxo-dG) in DNA, in that overproduction of a glycosylase that removes 8-oxo-dG from DNA prevents MBR. Further, other damaged DNA bases can substitute for 8-oxo-dG because ROS-scavenged cells resume MBR if either DNA pyrimidine dimers or alkylated bases are induced. We hypothesize that damaged bases in DNA pause the replisome and allow the critical switch from high fidelity to error-prone DNA polymerases in the DSB-repair replisome, thus allowing MBR. The data imply that in addition to the indirect stress-response controlled switch to MBR, a direct cis-acting switch to MBR occurs independently of DNA breakage, caused by ROS

  11. Persistent damaged bases in DNA allow mutagenic break repair in Escherichia coli.

    PubMed

    Moore, Jessica M; Correa, Raul; Rosenberg, Susan M; Hastings, P J

    2017-07-01

    Bacteria, yeast and human cancer cells possess mechanisms of mutagenesis upregulated by stress responses. Stress-inducible mutagenesis potentially accelerates adaptation, and may provide important models for mutagenesis that drives cancers, host pathogen interactions, antibiotic resistance and possibly much of evolution generally. In Escherichia coli repair of double-strand breaks (DSBs) becomes mutagenic, using low-fidelity DNA polymerases under the control of the SOS DNA-damage response and RpoS general stress response, which upregulate and allow the action of error-prone DNA polymerases IV (DinB), II and V to make mutations during repair. Pol IV is implied to compete with and replace high-fidelity DNA polymerases at the DSB-repair replisome, causing mutagenesis. We report that up-regulated Pol IV is not sufficient for mutagenic break repair (MBR); damaged bases in the DNA are also required, and that in starvation-stressed cells, these are caused by reactive-oxygen species (ROS). First, MBR is reduced by either ROS-scavenging agents or constitutive activation of oxidative-damage responses, both of which reduce cellular ROS levels. The ROS promote MBR other than by causing DSBs, saturating mismatch repair, oxidizing proteins, or inducing the SOS response or the general stress response. We find that ROS drive MBR through oxidized guanines (8-oxo-dG) in DNA, in that overproduction of a glycosylase that removes 8-oxo-dG from DNA prevents MBR. Further, other damaged DNA bases can substitute for 8-oxo-dG because ROS-scavenged cells resume MBR if either DNA pyrimidine dimers or alkylated bases are induced. We hypothesize that damaged bases in DNA pause the replisome and allow the critical switch from high fidelity to error-prone DNA polymerases in the DSB-repair replisome, thus allowing MBR. The data imply that in addition to the indirect stress-response controlled switch to MBR, a direct cis-acting switch to MBR occurs independently of DNA breakage, caused by ROS

  12. Flight dynamics and control modelling of damaged asymmetric aircraft

    NASA Astrophysics Data System (ADS)

    Ogunwa, T. T.; Abdullah, E. J.

    2016-10-01

    This research investigates the use of a Linear Quadratic Regulator (LQR) controller to assist commercial Boeing 747-200 aircraft regains its stability in the event of damage. Damages cause an aircraft to become asymmetric and in the case of damage to a fraction (33%) of its left wing or complete loss of its vertical stabilizer, the loss of stability may lead to a fatal crash. In this study, aircraft models for the two damage scenarios previously mentioned are constructed using stability derivatives. LQR controller is used as a direct adaptive control design technique for the observable and controllable system. Dynamic stability analysis is conducted in the time domain for all systems in this study.

  13. Modeled changes in 100 year Flood Risk and Asset Damages within Mapped Floodplains of the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Wobus, C. W.; Gutmann, E. D.; Jones, R.; Rissing, M.; Mizukami, N.; Lorie, M.; Mahoney, H.; Wood, A.; Mills, D.; Martinich, J.

    2017-12-01

    A growing body of recent work suggests that the extreme weather events that drive inland flooding are likely to increase in frequency and magnitude in a warming climate, thus increasing monetary damages from flooding in the future. We use hydrologic projections based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) to estimate changes in the frequency of modeled 1% annual exceedance probability flood events at 57,116 locations across the contiguous United States (CONUS). We link these flood projections to a database of assets within mapped flood hazard zones to model changes in inland flooding damages throughout the CONUS over the remainder of the 21st century, under two greenhouse gas (GHG) emissions scenarios. Our model generates early 21st century flood damages that reasonably approximate the range of historical observations, and trajectories of future damages that vary substantially depending on the GHG emissions pathway. The difference in modeled flood damages between higher and lower emissions pathways approaches $4 billion per year by 2100 (in undiscounted 2014 dollars), suggesting that aggressive GHG emissions reductions could generate significant monetary benefits over the long-term in terms of reduced flood risk. Although the downscaled hydrologic data we used have been applied to flood impacts studies elsewhere, this research expands on earlier work to quantify changes in flood risk by linking future flood exposure to assets and damages at a national scale. Our approach relies on a series of simplifications that could ultimately affect damage estimates (e.g., use of statistical downscaling, reliance on a nationwide hydrologic model, and linking damage estimates only to 1% AEP floods). Although future work is needed to test the sensitivity of our results to these methodological choices, our results suggest that monetary damages from inland flooding could be substantially reduced through more aggressive GHG mitigation policies.

  14. Promoting evidence-based practice: managing change in the assessment of pressure damage risk.

    PubMed

    Gerrish, K; Clayton, J; Nolan, M; Parker, K; Morgan, L

    1999-11-01

    This study set out to facilitate the development of evidence-based practice in the assessment of pressure damage risk to patients within a large acute hospital. The importance of nursing practice being based on the best available evidence is emphasized in recent health policy. Meeting this objective is not easy as both individual and organizational factors create barriers to the implementation of research findings and the achievement of change. The study was based on an action research model. It comprised three stages: a review of the research evidence; a survey of qualified nurses' knowledge of risk assessment of pressure damage and an audit of record keeping, and a multifaceted approach to achieving change in which researchers, managers, practitioners and clinical nurse specialists worked together collaboratively. The findings from the survey and audit indicated a shortfall in nurses' knowledge of risk assessment of pressure damage and in their record keeping. The researchers, with the help of the clinical nurse specialist, built upon these findings by assisting practitioners and managers to take ownership of the need to base practice on the appropriate evidence. Achieving evidence-based practice is a complex undertaking that requires the development of an evaluative culture and a commitment by practitioners and managers to change practice. Researchers can play a valuable role in facilitating this process.

  15. Improved Strength and Damage Modeling of Geologic Materials

    NASA Astrophysics Data System (ADS)

    Stewart, Sarah; Senft, Laurel

    2007-06-01

    Collisions and impact cratering events are important processes in the evolution of planetary bodies. The time and length scales of planetary collisions, however, are inaccessible in the laboratory and require the use of shock physics codes. We present the results from a new rheological model for geological materials implemented in the CTH code [1]. The `ROCK' model includes pressure, temperature, and damage effects on strength, as well as acoustic fluidization during impact crater collapse. We demonstrate that the model accurately reproduces final crater shapes, tensile cracking, and damaged zones from laboratory to planetary scales. The strength model requires basic material properties; hence, the input parameters may be benchmarked to laboratory results and extended to planetary collision events. We show the effects of varying material strength parameters, which are dependent on both scale and strain rate, and discuss choosing appropriate parameters for laboratory and planetary situations. The results are a significant improvement in models of continuum rock deformation during large scale impact events. [1] Senft, L. E., Stewart, S. T. Modeling Impact Cratering in Layered Surfaces, J. Geophys. Res., submitted.

  16. Artificial Boundary Conditions for Finite Element Model Update and Damage Detection

    DTIC Science & Technology

    2017-03-01

    BOUNDARY CONDITIONS FOR FINITE ELEMENT MODEL UPDATE AND DAMAGE DETECTION by Emmanouil Damanakis March 2017 Thesis Advisor: Joshua H. Gordis...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE ARTIFICIAL BOUNDARY CONDITIONS FOR FINITE ELEMENT MODEL UPDATE AND DAMAGE DETECTION...release. Distribution is unlimited. 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) In structural engineering, a finite element model is often

  17. LS-DYNA Simulation of Hemispherical-punch Stamping Process Using an Efficient Algorithm for Continuum Damage Based Elastoplastic Constitutive Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salajegheh, Nima; Abedrabbo, Nader; Pourboghrat, Farhang

    An efficient integration algorithm for continuum damage based elastoplastic constitutive equations is implemented in LS-DYNA. The isotropic damage parameter is defined as the ratio of the damaged surface area over the total cross section area of the representative volume element. This parameter is incorporated into the integration algorithm as an internal variable. The developed damage model is then implemented in the FEM code LS-DYNA as user material subroutine (UMAT). Pure stretch experiments of a hemispherical punch are carried out for copper sheets and the results are compared against the predictions of the implemented damage model. Evaluation of damage parameters ismore » carried out and the optimized values that correctly predicted the failure in the sheet are reported. Prediction of failure in the numerical analysis is performed through element deletion using the critical damage value. The set of failure parameters which accurately predict the failure behavior in copper sheets compared to experimental data is reported as well.« less

  18. Unusual plastic deformation and damage features in titanium: Experimental tests and constitutive modeling

    NASA Astrophysics Data System (ADS)

    Revil-Baudard, Benoit; Cazacu, Oana; Flater, Philip; Chandola, Nitin; Alves, J. L.

    2016-03-01

    In this paper, we present an experimental study on plastic deformation and damage of polycrystalline pure HCP Ti, as well as modeling of the observed behavior. Mechanical characterization data were conducted, which indicate that the material is orthotropic and displays tension-compression asymmetry. The ex-situ and in-situ X-ray tomography measurements conducted reveal that damage distribution and evolution in this HCP Ti material is markedly different than in a typical FCC material such as copper. Stewart and Cazacu (2011) anisotropic elastic/plastic damage model is used to describe the behavior. All the parameters involved in this model have a clear physical significance, being related to plastic properties, and are determined from very few simple mechanical tests. It is shown that this model predicts correctly the anisotropy in plastic deformation, and its strong influence on damage distribution and damage accumulation. Specifically, for a smooth axisymmetric specimen subject to uniaxial tension, damage initiates at the center of the specimen, and is diffuse; the level of damage close to failure being very low. On the other hand, for a notched specimen subject to the same loading the model predicts that damage initiates at the outer surface of the specimen, and further grows from the outer surface to the center of the specimen, which corroborates with the in-situ tomography data.

  19. Modelling Pre-eruptive Progressive Damage in Basaltic Volcanoes: Consequences for the Pre-eruptive Process

    NASA Astrophysics Data System (ADS)

    Got, J. L.; Amitrano, D.; Carrier, A.; Marsan, D.; Jouanne, F.; Vogfjord, K. S.

    2017-12-01

    At Grimsvötn volcano, high-quality earthquake and continuous GPS data were recorded by the Icelandic Meteorological Office during its 2004-2011 inter-eruptive period and exhibited remarkable patterns : acceleration of the cumulated earthquake number, and a 2-year exponential decrease in displacement rate followed by a 4-year constant inflation rate. We proposed a model with one magma reservoir in a non-linear elastic damaging edifice, with incompressible magma and a constant pressure at the base of the magma conduit. We first modelled seismicity rate and damage as a function of time, and show that Kachanov's elastic brittle damage law may be used to express the decrease of the effective shear modulus with time. We then derived simple analytical expressions for the magma reservoir overpressure and the surface displacement as a function of time. We got a very good fit of the seismicity and surface displacement data by adjusting only three phenomenological parameters and computed magma reservoir overpressure, magma flow and strain power as a function of time. Overpressure decrease is controlled by damage and shear modulus decrease. Displacement increases, although overpressure is decreasing, because shear modulus decreases more than overpressure. Normalized strain power reaches a maximum 0.25 value. This maximum is a physical limit, after which the elasticity laws are no longer valid, earthquakes cluster, cumulative number of earthquakes departs from the model. State variable extrema provide four reference times that may be used to assess the mechanical state and dynamics of the volcanic edifice. We also performed the spatial modelling of the progressive damage and strain localization around a pressurized magma reservoir. We used Kachanov's damage law and finite element modelling of an initially elastic volcanic edifice pressurized by a spherical magma reservoir, with a constant pressure in the reservoir and various external boundary conditions. At each node of the

  20. Inspection of the Math Model Tools for On-Orbit Assessment of Impact Damage Report

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Raju, Ivatury S.; Piascik, Robert S> ; KramerWhite, Julie A.; KramerWhite, Julie A.; Labbe, Steve G.; Rotter, Hank A.

    2007-01-01

    In Spring of 2005, the NASA Engineering Safety Center (NESC) was engaged by the Space Shuttle Program (SSP) to peer review the suite of analytical tools being developed to support the determination of impact and damage tolerance of the Orbiter Thermal Protection Systems (TPS). The NESC formed an independent review team with the core disciplines of materials, flight sciences, structures, mechanical analysis and thermal analysis. The Math Model Tools reviewed included damage prediction and stress analysis, aeroheating analysis, and thermal analysis tools. Some tools are physics-based and other tools are empirically-derived. Each tool was created for a specific use and timeframe, including certification, real-time pre-launch assessments. In addition, the tools are used together in an integrated strategy for assessing the ramifications of impact damage to tile and RCC. The NESC teams conducted a peer review of the engineering data package for each Math Model Tool. This report contains the summary of the team observations and recommendations from these reviews.

  1. A damage mechanics based approach to structural deterioration and reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattcharya, B.; Ellingwood, B.

    1998-02-01

    Structural deterioration often occurs without perceptible manifestation. Continuum damage mechanics defines structural damage in terms of the material microstructure, and relates the damage variable to the macroscopic strength or stiffness of the structure. This enables one to predict the state of damage prior to the initiation of a macroscopic flaw, and allows one to estimate residual strength/service life of an existing structure. The accumulation of damage is a dissipative process that is governed by the laws of thermodynamics. Partial differential equations for damage growth in terms of the Helmholtz free energy are derived from fundamental thermodynamical conditions. Closed-form solutions tomore » the equations are obtained under uniaxial loading for ductile deformation damage as a function of plastic strain, for creep damage as a function of time, and for fatigue damage as function of number of cycles. The proposed damage growth model is extended into the stochastic domain by considering fluctuations in the free energy, and closed-form solutions of the resulting stochastic differential equation are obtained in each of the three cases mentioned above. A reliability analysis of a ring-stiffened cylindrical steel shell subjected to corrosion, accidental pressure, and temperature is performed.« less

  2. Molecular Data for a Biochemical Model of DNA Radiation Damage: Electron Impact Ionization and Dissociative Ionization of DNA Bases and Sugar-Phosphate Backbone

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.; Fletcher, Graham D.

    2004-01-01

    As part of the database for building up a biochemical model of DNA radiation damage, electron impact ionization cross sections of sugar-phosphate backbone and DNA bases have been calculated using the improved binary-encounter dipole (iBED) model. It is found that the total ionization cross sections of C3'- and C5'-deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3'- and C5'-deoxyribose-phospate cross sections, differing by less than 10%. Of the four DNA bases, the ionization cross section of guanine is the largest, then in decreasing order, adenine, thymine, and cytosine. The order is in accordance with the known propensity of oxidation of the bases by ionizing radiation. Dissociative ionization (DI), a process that both ionizes and dissociates a molecule, is investigated for cytosine. The DI cross section for the formation of H and (cytosine-Hl)(+), with the cytosine ion losing H at the 1 position, is also reported. The threshold of this process is calculated to be 17.1 eV. Detailed analysis of ionization products such as in DI is important to trace the sequential steps in the biochemical process of DNA damage.

  3. Modelling radiation damage to ESA's Gaia satellite CCDs

    NASA Astrophysics Data System (ADS)

    Seabroke, George; Holland, Andrew; Cropper, Mark

    2008-07-01

    The Gaia satellite is a high-precision astrometry, photometry and spectroscopic ESA cornerstone mission, currently scheduled for launch in late 2011. Its primary science drivers are the composition, formation and evolution of the Galaxy. Gaia will not achieve its scientific requirements without detailed calibration and correction for radiation damage. Microscopic models of Gaia's CCDs are being developed to simulate the effect of radiation damage, charge trapping, which causes charge transfer inefficiency. The key to calculating the probability of a photoelectron being captured by a trap is the 3D electron density within each CCD pixel. However, this has not been physically modelled for Gaia CCD pixels. In this paper, the first of a series, we motivate the need for such specialised 3D device modelling and outline how its future results will fit into Gaia's overall radiation calibration strategy.

  4. Deformation and reperfusion damages and their accumulation in subcutaneous tissues during loading and unloading: a theoretical modeling of deep tissue injuries.

    PubMed

    Mak, Arthur F T; Yu, Yanyan; Kwan, Linda P C; Sun, Lei; Tam, Eric W C

    2011-11-21

    Deep tissue injuries (DTI) involve damages in the subcutaneous tissues under intact skin incurred by prolonged excessive epidermal loadings. This paper presents a new theoretical model for the development of DTI, broadly based on the experimental evidence in the literatures. The model covers the loading damages implicitly inclusive of both the direct mechanical and ischemic injuries, and the additional reperfusion damages and the competing healing processes during the unloading phase. Given the damage accumulated at the end of the loading period, the relative strength of the reperfusion and the healing capacity of the involved tissues system, the model provides a description of the subsequent damage evolution during unloading. The model is used to study parametrically the scenario when reperfusion damage dominates over healing upon unloading and the opposite scenario when the loading and subsequent reperfusion damages remain small relative to the healing capacity of the tissues system. The theoretical model provides an integrated understanding of how tissue damage may further build-up paradoxically even with unloading, how long it would take for the loading and reperfusion damages in the tissues to become fully recovered, and how such loading and reperfusion damages, if not given sufficient time for recovery, may accumulate over multiple loading and unloading cycles, leading to clinical deep tissues ulceration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. An automatic damage detection algorithm based on the Short Time Impulse Response Function

    NASA Astrophysics Data System (ADS)

    Auletta, Gianluca; Carlo Ponzo, Felice; Ditommaso, Rocco; Iacovino, Chiara

    2016-04-01

    Structural Health Monitoring together with all the dynamic identification techniques and damage detection techniques are increasing in popularity in both scientific and civil community in last years. The basic idea arises from the observation that spectral properties, described in terms of the so-called modal parameters (eigenfrequencies, mode shapes, and modal damping), are functions of the physical properties of the structure (mass, energy dissipation mechanisms and stiffness). Damage detection techniques traditionally consist in visual inspection and/or non-destructive testing. A different approach consists in vibration based methods detecting changes of feature related to damage. Structural damage exhibits its main effects in terms of stiffness and damping variation. Damage detection approach based on dynamic monitoring of structural properties over time has received a considerable attention in recent scientific literature. We focused the attention on the structural damage localization and detection after an earthquake, from the evaluation of the mode curvature difference. The methodology is based on the acquisition of the structural dynamic response through a three-directional accelerometer installed on the top floor of the structure. It is able to assess the presence of any damage on the structure providing also information about the related position and severity of the damage. The procedure is based on a Band-Variable Filter, (Ditommaso et al., 2012), used to extract the dynamic characteristics of systems that evolve over time by acting simultaneously in both time and frequency domain. In this paper using a combined approach based on the Fourier Transform and on the seismic interferometric analysis, an useful tool for the automatic fundamental frequency evaluation of nonlinear structures has been proposed. Moreover, using this kind of approach it is possible to improve some of the existing methods for the automatic damage detection providing stable results

  6. A procedure for damage detection and localization of framed buildings based on curvature variation

    NASA Astrophysics Data System (ADS)

    Ditommaso, Rocco; Carlo Ponzo, Felice; Auletta, Gianluca; Iacovino, Chiara; Mossucca, Antonello; Nigro, Domenico; Nigro, Antonella

    2014-05-01

    Structural Health Monitoring and Damage Detection are topics of current interest in civil, mechanical and aerospace engineering. Damage Detection approach based on dynamic monitoring of structural properties over time has received a considerable attention in recent scientific literature of the last years. The basic idea arises from the observation that spectral properties, described in terms of the so-called modal parameters (eigenfrequencies, mode shapes, and modal damping), are functions of the physical properties of the structure (mass, energy dissipation mechanisms and stiffness). Structural damage exhibits its main effects in terms of stiffness and damping variation. As a consequence, a permanent dynamic monitoring system makes it possible to detect and, if suitably concentrated on the structure, to localize structural and non-structural damage occurred on the structure during a strong earthquake. In the last years many researchers are working to set-up new methodologies for Non-destructive Damage Evaluation (NDE) based on the variation of the dynamic behaviour of structures under seismic loads. Pandey et al. (1991) highlighted on the possibility to use the structural mode shapes to extract useful information for structural damage localization. In this paper a new procedure for damage detection on framed structures based on changes in modal curvature is proposed. The proposed approach is based on the use of Stockwell Transform, a special kind of integral transformation that become a powerful tool for nonlinear signal analysis and then to analyse the nonlinear behaviour of a general structure. Using this kind of approach, it is possible to use a band-variable filter (Ditommaso et al., 2012) to extract from a signal recorded on a structure (excited by an earthquake) the response related to a single mode of vibration for which the related frequency changes over time (if the structure is being damaged). İn general, by acting simultaneously in both frequency and

  7. Damage-plasticity model of the host rock in a nuclear waste repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koudelka, Tomáš; Kruis, Jaroslav, E-mail: kruis@fsv.cvut.cz

    The paper describes damage-plasticity model for the modelling of the host rock environment of a nuclear waste repository. Radioactive Waste Repository Authority in Czech Republic assumes the repository to be in a granite rock mass which exhibit anisotropic behaviour where the strength in tension is lower than in compression. In order to describe this phenomenon, the damage-plasticity model is formulated with the help of the Drucker-Prager yield criterion which can be set to capture the compression behaviour while the tensile stress states is described with the help of scalar isotropic damage model. The concept of damage-plasticity model was implemented inmore » the SIFEL finite element code and consequently, the code was used for the simulation of the Äspö Pillar Stability Experiment (APSE) which was performed in order to determine yielding strength under various conditions in similar granite rocks as in Czech Republic. The results from the performed analysis are presented and discussed in the paper.« less

  8. An anisotropic thermomechanical damage model for concrete at transient elevated temperatures.

    PubMed

    Baker, Graham; de Borst, René

    2005-11-15

    The behaviour of concrete at elevated temperatures is important for an assessment of integrity (strength and durability) of structures exposed to a high-temperature environment, in applications such as fire exposure, smelting plants and nuclear installations. In modelling terms, a coupled thermomechanical analysis represents a generalization of the computational mechanics of fracture and damage. Here, we develop a fully coupled anisotropic thermomechanical damage model for concrete under high stress and transient temperature, with emphasis on the adherence of the model to the laws of thermodynamics. Specific analytical results are given, deduced from thermodynamics, of a novel interpretation on specific heat, evolution of entropy and the identification of the complete anisotropic, thermomechanical damage surface. The model is also shown to be stable in a computational sense, and to satisfy the laws of thermodynamics.

  9. An Extended Damage Plasticity Model for Shotcrete: Formulation and Comparison with Other Shotcrete Models

    PubMed Central

    Neuner, Matthias; Gamnitzer, Peter; Hofstetter, Günter

    2017-01-01

    The aims of the present paper are (i) to briefly review single-field and multi-field shotcrete models proposed in the literature; (ii) to propose the extension of a damage-plasticity model for concrete to shotcrete; and (iii) to evaluate the capabilities of the proposed extended damage-plasticity model for shotcrete by comparing the predicted response with experimental data for shotcrete and with the response predicted by shotcrete models, available in the literature. The results of the evaluation will be used for recommendations concerning the application and further improvements of the investigated shotcrete models and they will serve as a basis for the design of a new lab test program, complementing the existing ones. PMID:28772445

  10. Full-scale testing and progressive damage modeling of sandwich composite aircraft fuselage structure

    NASA Astrophysics Data System (ADS)

    Leone, Frank A., Jr.

    A comprehensive experimental and computational investigation was conducted to characterize the fracture behavior and structural response of large sandwich composite aircraft fuselage panels containing artificial damage in the form of holes and notches. Full-scale tests were conducted where panels were subjected to quasi-static combined pressure, hoop, and axial loading up to failure. The panels were constructed using plain-weave carbon/epoxy prepreg face sheets and a Nomex honeycomb core. Panel deformation and notch tip damage development were monitored during the tests using several techniques, including optical observations, strain gages, digital image correlation (DIC), acoustic emission (AE), and frequency response (FR). Additional pretest and posttest inspections were performed via thermography, computer-aided tap tests, ultrasound, x-radiography, and scanning electron microscopy. The framework to simulate damage progression and to predict residual strength through use of the finite element (FE) method was developed. The DIC provided local and full-field strain fields corresponding to changes in the state-of-damage and identified the strain components driving damage progression. AE was monitored during loading of all panels and data analysis methodologies were developed to enable real-time determination of damage initiation, progression, and severity in large composite structures. The FR technique has been developed, evaluating its potential as a real-time nondestructive inspection technique applicable to large composite structures. Due to the large disparity in scale between the fuselage panels and the artificial damage, a global/local analysis was performed. The global FE models fully represented the specific geometries, composite lay-ups, and loading mechanisms of the full-scale tests. A progressive damage model was implemented in the local FE models, allowing the gradual failure of elements in the vicinity of the artificial damage. A set of modifications

  11. A new thermo-mechanical coupled DEM model with non-spherical grains for thermally induced damage of rocks

    NASA Astrophysics Data System (ADS)

    Chen, Zhiqiang; Jin, Xu; Wang, Moran

    2018-07-01

    Thermally induced damage often occurs in rocks in geophysical systems. Discrete element method (DEM) is a useful tool to model this thermo-mechanical coupled process owing to its explicit representation of fracture initiation and propagation. However, the previous DEM models for this are mostly based on spherical discrete elements, which are not able to capture all consequences (e.g. high ratio of compressive to tensile strength) of real rocks (e.g. granite) composed of complex-geometry grains. In order to overcome this intrinsic limitation, we present a new model allowing to mimick thermally induced damage of brittle rock with non-spherical grains. After validations, the new model is used to study thermal gradient cracking with a special emphasis on the effects from rock heterogeneity. The obtained fracture initiation and propagation are consistent with experimental observations, which demonstrates the ability of current model to reproduce the thermally induced damage of rocks. Meanwhile, the results show that rock heterogeneity influences thermal gradient cracking significantly, and more micro cracks uniformly scattering around the borehole are induced in the heterogeneous sample, which is not good for applications such as nuclear waste disposal. The present model provides a promising approach at micro-scale to explore mechanisms of thermally induced damage of rocks in geological engineering.

  12. A Tensor-Based Structural Damage Identification and Severity Assessment

    PubMed Central

    Anaissi, Ali; Makki Alamdari, Mehrisadat; Rakotoarivelo, Thierry; Khoa, Nguyen Lu Dang

    2018-01-01

    Early damage detection is critical for a large set of global ageing infrastructure. Structural Health Monitoring systems provide a sensor-based quantitative and objective approach to continuously monitor these structures, as opposed to traditional engineering visual inspection. Analysing these sensed data is one of the major Structural Health Monitoring (SHM) challenges. This paper presents a novel algorithm to detect and assess damage in structures such as bridges. This method applies tensor analysis for data fusion and feature extraction, and further uses one-class support vector machine on this feature to detect anomalies, i.e., structural damage. To evaluate this approach, we collected acceleration data from a sensor-based SHM system, which we deployed on a real bridge and on a laboratory specimen. The results show that our tensor method outperforms a state-of-the-art approach using the wavelet energy spectrum of the measured data. In the specimen case, our approach succeeded in detecting 92.5% of induced damage cases, as opposed to 61.1% for the wavelet-based approach. While our method was applied to bridges, its algorithm and computation can be used on other structures or sensor-data analysis problems, which involve large series of correlated data from multiple sensors. PMID:29301314

  13. Modeling the Non-Linear Response of Fiber-Reinforced Laminates Using a Combined Damage/Plasticity Model

    NASA Technical Reports Server (NTRS)

    Schuecker, Clara; Davila, Carlos G.; Pettermann, Heinz E.

    2008-01-01

    The present work is concerned with modeling the non-linear response of fiber reinforced polymer laminates. Recent experimental data suggests that the non-linearity is not only caused by matrix cracking but also by matrix plasticity due to shear stresses. To capture the effects of those two mechanisms, a model combining a plasticity formulation with continuum damage has been developed to simulate the non-linear response of laminates under plane stress states. The model is used to compare the predicted behavior of various laminate lay-ups to experimental data from the literature by looking at the degradation of axial modulus and Poisson s ratio of the laminates. The influence of residual curing stresses and in-situ effect on the predicted response is also investigated. It is shown that predictions of the combined damage/plasticity model, in general, correlate well with the experimental data. The test data shows that there are two different mechanisms that can have opposite effects on the degradation of the laminate Poisson s ratio which is captured correctly by the damage/plasticity model. Residual curing stresses are found to have a minor influence on the predicted response for the cases considered here. Some open questions remain regarding the prediction of damage onset.

  14. Coupled attenuation and multiscale damage model for composite structures

    NASA Astrophysics Data System (ADS)

    Moncada, Albert M.; Chattopadhyay, Aditi; Bednarcyk, Brett; Arnold, Steven M.

    2011-04-01

    Composite materials are widely used in many applications for their high strength, low weight, and tailorability for specific applications. However, the development of robust and reliable methodologies to detect micro level damage in composite structures has been challenging. For composite materials, attenuation of ultrasonic waves propagating through the media can be used to determine damage within the material. Currently available numerical solutions for attenuation induce arbitrary damage, such as fiber-matrix debonding or inclusions, to show variations between healthy and damaged states. This paper addresses this issue by integrating a micromechanics analysis to simulate damage in the form of a fiber-matrix crack and an analytical model for calculating the attenuation of the waves when they pass through the damaged region. The hybrid analysis is validated by comparison with experimental stress-strain curves and piezoelectric sensing results for attenuation measurement. The results showed good agreement between the experimental stress-strain curves and the results from the micromechanics analysis. Wave propagation analysis also showed good correlation between simulation and experiment for the tested frequency range.

  15. Stochastic-Strength-Based Damage Simulation of Ceramic Matrix Composite Laminates

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Mital, Subodh K.; Murthy, Pappu L. N.; Bednarcyk, Brett A.; Pineda, Evan J.; Bhatt, Ramakrishna T.; Arnold, Steven M.

    2016-01-01

    The Finite Element Analysis-Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program was used to characterize and predict the progressive damage response of silicon-carbide-fiber-reinforced reaction-bonded silicon nitride matrix (SiC/RBSN) composite laminate tensile specimens. Studied were unidirectional laminates [0] (sub 8), [10] (sub 8), [45] (sub 8), and [90] (sub 8); cross-ply laminates [0 (sub 2) divided by 90 (sub 2),]s; angled-ply laminates [plus 45 (sub 2) divided by -45 (sub 2), ]s; doubled-edge-notched [0] (sub 8), laminates; and central-hole laminates. Results correlated well with the experimental data. This work was performed as a validation and benchmarking exercise of the FEAMAC/CARES program. FEAMAC/CARES simulates stochastic-based discrete-event progressive damage of ceramic matrix composite and polymer matrix composite material structures. It couples three software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/Life), and (3) the Abaqus finite element analysis program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating-unit-cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC, and Abaqus is used to model the overall composite structure. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events that incrementally progress until ultimate structural failure.

  16. Heatstroke model for desert dry-heat environment and observed organ damage.

    PubMed

    ou Zhou, Ren; Liu, Jiang Wei; Zhang, Dong; Zhang, Qiong

    2014-06-01

    Heatstroke is one of the most common clinical emergencies. Heatstroke that occurred in a dry-heat environment such as desert is usually more seriously effective and often leads to death. However, the report of the pathophysiologic mechanisms about heatstroke in dry-heat environment of desert has not been seen. Our objectives are to establish a rat model of heatstroke of dry-heat environment of desert, to assess the different degrees of damage of organ, and to preliminarily discuss the mechanism of heatstroke in dry-heat environment of desert. The first step, we have established a rat heatstroke model of dry heat environment of desert. The second step, we have accessed changes in morphology and blood indicators of heatstroke rats in dry-heat environment of desert. The heatstroke rats have expressed the changing characteristics of mean arterial pressure, core temperature, and heart rate. The organ damage changed from mild to serious level, specifically in the morphology and blood enzymology parameters such as alanine aminotransferase, aspartate aminotransferase, creatinine, urea, uric acid, creatine kinase-MB, creatine kinase, and blood gas parameters such as base excess extracellular fluid and bicarbonate ions (HCO3-). We have successfully established the rat heatstroke model of dry-heat environment of desert. We have identified heatstroke rats that presented changing characteristics on physiological indicators and varying degrees of organ damage, which are aggravated by the evolution of heatstroke in dry-heat environment of desert. We have preliminarily discussed the mechanism of heatstroke in dry-heat environment of desert. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Estimated damage from the Cascadia Subduction Zone tsunami: A model comparisons using fragility curves

    NASA Astrophysics Data System (ADS)

    Wiebe, D. M.; Cox, D. T.; Chen, Y.; Weber, B. A.; Chen, Y.

    2012-12-01

    Building damage from a hypothetical Cascadia Subduction Zone tsunami was estimated using two methods and applied at the community scale. The first method applies proposed guidelines for a new ASCE 7 standard to calculate the flow depth, flow velocity, and momentum flux from a known runup limit and estimate of the total tsunami energy at the shoreline. This procedure is based on a potential energy budget, uses the energy grade line, and accounts for frictional losses. The second method utilized numerical model results from previous studies to determine maximum flow depth, velocity, and momentum flux throughout the inundation zone. The towns of Seaside and Canon Beach, Oregon, were selected for analysis due to the availability of existing data from previously published works. Fragility curves, based on the hydrodynamic features of the tsunami flow (inundation depth, flow velocity, and momentum flux) and proposed design standards from ASCE 7 were used to estimate the probability of damage to structures located within the inundations zone. The analysis proceeded at the parcel level, using tax-lot data to identify construction type (wood, steel, and reinforced-concrete) and age, which was used as a performance measure when applying the fragility curves and design standards. The overall probability of damage to civil buildings was integrated for comparison between the two methods, and also analyzed spatially for damage patterns, which could be controlled by local bathymetric features. The two methods were compared to assess the sensitivity of the results to the uncertainty in the input hydrodynamic conditions and fragility curves, and the potential advantages of each method discussed. On-going work includes coupling the results of building damage and vulnerability to an economic input output model. This model assesses trade between business sectors located inside and outside the induction zone, and is used to measure the impact to the regional economy. Results highlight

  18. A Temperature-Dependent Phase-Field Model for Phase Separation and Damage

    NASA Astrophysics Data System (ADS)

    Heinemann, Christian; Kraus, Christiane; Rocca, Elisabetta; Rossi, Riccarda

    2017-07-01

    In this paper we study a model for phase separation and damage in thermoviscoelastic materials. The main novelty of the paper consists in the fact that, in contrast with previous works in the literature concerning phase separation and damage processes in elastic media, in our model we encompass thermal processes, nonlinearly coupled with the damage, concentration and displacement evolutions. More particularly, we prove the existence of "entropic weak solutions", resorting to a solvability concept first introduced in Feireisl (Comput Math Appl 53:461-490, 2007) in the framework of Fourier-Navier-Stokes systems and then recently employed in Feireisl et al. (Math Methods Appl Sci 32:1345-1369, 2009) and Rocca and Rossi (Math Models Methods Appl Sci 24:1265-1341, 2014) for the study of PDE systems for phase transition and damage. Our global-in-time existence result is obtained by passing to the limit in a carefully devised time-discretization scheme.

  19. Structural kinematics based damage zone prediction in gradient structures using vibration database

    NASA Astrophysics Data System (ADS)

    Talha, Mohammad; Ashokkumar, Chimpalthradi R.

    2014-05-01

    To explore the applications of functionally graded materials (FGMs) in dynamic structures, structural kinematics based health monitoring technique becomes an important problem. Depending upon the displacements in three dimensions, the health of the material to withstand dynamic loads is inferred in this paper, which is based on the net compressive and tensile displacements that each structural degree of freedom takes. These net displacements at each finite element node predicts damage zones of the FGM where the material is likely to fail due to a vibration response which is categorized according to loading condition. The damage zone prediction of a dynamically active FGMs plate have been accomplished using Reddy's higher-order theory. The constituent material properties are assumed to vary in the thickness direction according to the power-law behavior. The proposed C0 finite element model (FEM) is applied to get net tensile and compressive displacement distributions across the structures. A plate made of Aluminum/Ziconia is considered to illustrate the concept of structural kinematics-based health monitoring aspects of FGMs.

  20. An accurate fatigue damage model for welded joints subjected to variable amplitude loading

    NASA Astrophysics Data System (ADS)

    Aeran, A.; Siriwardane, S. C.; Mikkelsen, O.; Langen, I.

    2017-12-01

    Researchers in the past have proposed several fatigue damage models to overcome the shortcomings of the commonly used Miner’s rule. However, requirements of material parameters or S-N curve modifications restricts their practical applications. Also, application of most of these models under variable amplitude loading conditions have not been found. To overcome these restrictions, a new fatigue damage model is proposed in this paper. The proposed model can be applied by practicing engineers using only the S-N curve given in the standard codes of practice. The model is verified with experimentally derived damage evolution curves for C 45 and 16 Mn and gives better agreement compared to previous models. The model predicted fatigue lives are also in better correlation with experimental results compared to previous models as shown in earlier published work by the authors. The proposed model is applied to welded joints subjected to variable amplitude loadings in this paper. The model given around 8% shorter fatigue lives compared to Eurocode given Miner’s rule. This shows the importance of applying accurate fatigue damage models for welded joints.

  1. Failure Analysis of a Sheet Metal Blanking Process Based on Damage Coupling Model

    NASA Astrophysics Data System (ADS)

    Wen, Y.; Chen, Z. H.; Zang, Y.

    2013-11-01

    In this paper, a blanking process of sheet metal is studied by the methods of numerical simulation and experimental observation. The effects of varying technological parameters related to the quality of products are investigated. An elastoplastic constitutive equation accounting for isotropic ductile damage is implemented into the finite element code ABAQUS with a user-defined material subroutine UMAT. The simulations of the damage evolution and ductile fracture in a sheet metal blanking process have been carried out by the FEM. In order to guarantee computation accuracy and avoid numerical divergence during large plastic deformation, a specified remeshing technique is successively applied when severe element distortion occurs. In the simulation, the evolutions of damage at different stage of the blanking process have been evaluated and the distributions of damage obtained from simulation are in proper agreement with the experimental results.

  2. A new surface fractal dimension for displacement mode shape-based damage identification of plate-type structures

    NASA Astrophysics Data System (ADS)

    Shi, Binkai; Qiao, Pizhong

    2018-03-01

    Vibration-based nondestructive testing is an area of growing interest and worthy of exploring new and innovative approaches. The displacement mode shape is often chosen to identify damage due to its local detailed characteristic and less sensitivity to surrounding noise. Requirement for baseline mode shape in most vibration-based damage identification limits application of such a strategy. In this study, a new surface fractal dimension called edge perimeter dimension (EPD) is formulated, from which an EPD-based window dimension locus (EPD-WDL) algorithm for irregularity or damage identification of plate-type structures is established. An analytical notch-type damage model of simply-supported plates is proposed to evaluate notch effect on plate vibration performance; while a sub-domain of notch cases with less effect is selected to investigate robustness of the proposed damage identification algorithm. Then, fundamental aspects of EPD-WDL algorithm in term of notch localization, notch quantification, and noise immunity are assessed. A mathematical solution called isomorphism is implemented to remove false peaks caused by inflexions of mode shapes when applying the EPD-WDL algorithm to higher mode shapes. The effectiveness and practicability of the EPD-WDL algorithm are demonstrated by an experimental procedure on damage identification of an artificially-induced notched aluminum cantilever plate using a measurement system of piezoelectric lead-zirconate (PZT) actuator and scanning laser Doppler vibrometer (SLDV). As demonstrated in both the analytical and experimental evaluations, the new surface fractal dimension technique developed is capable of effectively identifying damage in plate-type structures.

  3. Crack initiation modeling of a directionally-solidified nickel-base superalloy

    NASA Astrophysics Data System (ADS)

    Gordon, Ali Page

    Combustion gas turbine components designed for application in electric power generation equipment are subject to periodic replacement as a result of cracking, damage, and mechanical property degeneration that render them unsafe for continued operation. In view of the significant costs associated with inspecting, servicing, and replacing damaged components, there has been much interest in developing models that not only predict service life, but also estimate the evolved microstructural state of the material. This thesis explains manifestations of microstructural damage mechanisms that facilitate fatigue crack nucleation in a newly-developed directionally-solidified (DS) Ni-base superalloy components exposed to elevated temperatures and high stresses. In this study, models were developed and validated for damage and life prediction using DS GTD-111 as the subject material. This material, proprietary to General Electric Energy, has a chemical composition and grain structure designed to withstand creep damage occurring in the first and second stage blades of gas-powered turbines. The service conditions in these components, which generally exceed 600°C, facilitate the onset of one or more damage mechanisms related to fatigue, creep, or environment. The study was divided into an empirical phase, which consisted of experimentally simulating service conditions in fatigue specimens, and a modeling phase, which entailed numerically simulating the stress-strain response of the material. Experiments have been carried out to simulate a variety of thermal, mechanical, and environmental operating conditions endured by longitudinally (L) and transversely (T) oriented DS GTD-111. Both in-phase and out-of-phase thermo-mechanical fatigue tests were conducted. In some cases, tests in extreme environments/temperatures were needed to isolate one or at most two of the mechanisms causing damage. Microstructural examinations were carried out via SEM and optical microscopy. A continuum

  4. Failure Predictions for VHTR Core Components using a Probabilistic Contiuum Damage Mechanics Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fok, Alex

    2013-10-30

    The proposed work addresses the key research need for the development of constitutive models and overall failure models for graphite and high temperature structural materials, with the long-term goal being to maximize the design life of the Next Generation Nuclear Plant (NGNP). To this end, the capability of a Continuum Damage Mechanics (CDM) model, which has been used successfully for modeling fracture of virgin graphite, will be extended as a predictive and design tool for the core components of the very high- temperature reactor (VHTR). Specifically, irradiation and environmental effects pertinent to the VHTR will be incorporated into the modelmore » to allow fracture of graphite and ceramic components under in-reactor conditions to be modeled explicitly using the finite element method. The model uses a combined stress-based and fracture mechanics-based failure criterion, so it can simulate both the initiation and propagation of cracks. Modern imaging techniques, such as x-ray computed tomography and digital image correlation, will be used during material testing to help define the baseline material damage parameters. Monte Carlo analysis will be performed to address inherent variations in material properties, the aim being to reduce the arbitrariness and uncertainties associated with the current statistical approach. The results can potentially contribute to the current development of American Society of Mechanical Engineers (ASME) codes for the design and construction of VHTR core components.« less

  5. Particle-based simulations of bilayer membranes: self-assembly, structural analysis, and shock-wave damage

    NASA Astrophysics Data System (ADS)

    Steinhauser, Martin O.; Schindler, Tanja

    2017-01-01

    We report on the results of particle-based, coarse-grained molecular dynamics simulations of amphiphilic lipid molecules in aqueous environment where the membrane structures at equilibrium are subsequently exposed to strong shock waves, and their damage is analyzed. The lipid molecules self-assemble from unbiased random initial configurations to form stable bilayer membranes, including closed vesicles. During self-assembly of lipid molecules, we observe several stages of clustering, starting with many small clusters of lipids, gradually merging together to finally form one single bilayer membrane. We find that the clustering of lipids sensitively depends on the hydrophobic interaction h_c of the lipid tails in our model and on temperature T of the system. The self-assembled bilayer membranes are quantitatively analyzed at equilibrium with respect to their degree of order and their local structure. We also show that—by analyzing the membrane fluctuations and using a linearized theory— we obtain area compression moduli K_A and bending stiffnesses κ _B for our bilayer membranes which are within the experimental range of in vivo and in vitro measurements of biological membranes. We also discuss the density profile and the pair correlation function of our model membranes at equilibrium which has not been done in previous studies of particle-based membrane models. Furthermore, we present a detailed phase diagram of our lipid model that exhibits a sol-gel transition between quasi-solid and fluid domains, and domains where no self-assembly of lipids occurs. In addition, we present in the phase diagram the conditions for temperature T and hydrophobicity h_c of the lipid tails of our model to form closed vesicles. The stable bilayer membranes obtained at equilibrium are then subjected to strong shock waves in a shock tube setup, and we investigate the damage in the membranes due to their interaction with shock waves. Here, we find a transition from self

  6. Structural Damage Detection Using Changes in Natural Frequencies: Theory and Applications

    NASA Astrophysics Data System (ADS)

    He, K.; Zhu, W. D.

    2011-07-01

    A vibration-based method that uses changes in natural frequencies of a structure to detect damage has advantages over conventional nondestructive tests in detecting various types of damage, including loosening of bolted joints, using minimum measurement data. Two major challenges associated with applications of the vibration-based damage detection method to engineering structures are addressed: accurate modeling of structures and the development of a robust inverse algorithm to detect damage, which are defined as the forward and inverse problems, respectively. To resolve the forward problem, new physics-based finite element modeling techniques are developed for fillets in thin-walled beams and for bolted joints, so that complex structures can be accurately modeled with a reasonable model size. To resolve the inverse problem, a logistical function transformation is introduced to convert the constrained optimization problem to an unconstrained one, and a robust iterative algorithm using a trust-region method, called the Levenberg-Marquardt method, is developed to accurately detect the locations and extent of damage. The new methodology can ensure global convergence of the iterative algorithm in solving under-determined system equations and deal with damage detection problems with relatively large modeling error and measurement noise. The vibration-based damage detection method is applied to various structures including lightning masts, a space frame structure and one of its components, and a pipeline. The exact locations and extent of damage can be detected in the numerical simulation where there is no modeling error and measurement noise. The locations and extent of damage can be successfully detected in experimental damage detection.

  7. Continuum Damage Mechanics Models for the Analysis of Progressive Failure in Open-Hole Tension Laminates

    NASA Technical Reports Server (NTRS)

    Song, Kyonchan; Li, Yingyong; Rose, Cheryl A.

    2011-01-01

    The performance of a state-of-the-art continuum damage mechanics model for interlaminar damage, coupled with a cohesive zone model for delamination is examined for failure prediction of quasi-isotropic open-hole tension laminates. Limitations of continuum representations of intra-ply damage and the effect of mesh orientation on the analysis predictions are discussed. It is shown that accurate prediction of matrix crack paths and stress redistribution after cracking requires a mesh aligned with the fiber orientation. Based on these results, an aligned mesh is proposed for analysis of the open-hole tension specimens consisting of different meshes within the individual plies, such that the element edges are aligned with the ply fiber direction. The modeling approach is assessed by comparison of analysis predictions to experimental data for specimen configurations in which failure is dominated by complex interactions between matrix cracks and delaminations. It is shown that the different failure mechanisms observed in the tests are well predicted. In addition, the modeling approach is demonstrated to predict proper trends in the effect of scaling on strength and failure mechanisms of quasi-isotropic open-hole tension laminates.

  8. Methodology for a GIS-based damage assessment for researchers following large scale disasters

    NASA Astrophysics Data System (ADS)

    Crawford, Patrick Shane

    The 1990s were designated the International Decade for Natural Disaster Reduction by the United Nations General Assembly. This push for decrease of loss of life, property destruction, and social and economic disruption brought advancements in disaster management, including damage assessment. Damage assessment in the wake of natural and manmade disasters is a useful tool for government agencies, insurance companies, and researchers. As technologies evolve damage assessment processes constantly evolve as well. Alongside the advances in Geographic Information Systems (GIS), remote sensing, and Global Positioning System (GPS) technology, as well as the growing awareness of the needs of a standard operating procedure for GIS-based damage assessment and a need to make the damage assessment process as quick and accurate as possible, damage assessment procedures are becoming easier to execute and the results are becoming more accurate and robust. With these technological breakthroughs, multi-disciplinary damage assessment reconnaissance teams have become more efficient in their assessment methods through better organization and more robust through addition of new datasets. Damage assessment personnel are aided by software tools that offer high-level analysis and increasingly rapid damage assessment methods. GIS software has advanced the damage assessment methods of these teams by combining remotely sensed aerial imagery, GPS, and other technologies to expand the uses of the data. GIS allows researchers to use aerial imagery to show field collected data in the geographic location that it was collected so that information can be revisited, measurements can be taken, and data can be disseminated to other researchers and the public. The GIS-based data available to the reconnaissance team includes photographs of damage, worksheets, calculations, voice messages collected while studying the affected area, and many other datasets which are based on the type of disaster and the

  9. An Integrated Approach to Damage Accommodation in Flight Control

    NASA Technical Reports Server (NTRS)

    Boskovic, Jovan D.; Knoebel, Nathan; Mehra, Raman K.; Gregory, Irene

    2008-01-01

    In this paper we present an integrated approach to in-flight damage accommodation in flight control. The approach is based on Multiple Models, Switching and Tuning (MMST), and consists of three steps: In the first step the main objective is to acquire a realistic aircraft damage model. Modeling of in-flight damage is a highly complex problem since there is a large number of issues that need to be addressed. One of the most important one is that there is strong coupling between structural dynamics, aerodynamics, and flight control. These effects cannot be studied separately due to this coupling. Once a realistic damage model is available, in the second step a large number of models corresponding to different damage cases are generated. One possibility is to generate many linear models and interpolate between them to cover a large portion of the flight envelope. Once these models have been generated, we will implement a recently developed-Model Set Reduction (MSR) technique. The technique is based on parameterizing damage in terms of uncertain parameters, and uses concepts from robust control theory to arrive at a small number of "centered" models such that the controllers corresponding to these models assure desired stability and robustness properties over a subset in the parametric space. By devising a suitable model placement strategy, the entire parametric set is covered with a relatively small number of models and controllers. The third step consists of designing a Multiple Models, Switching and Tuning (MMST) strategy for estimating the current operating regime (damage case) of the aircraft, and switching to the corresponding controller to achieve effective damage accommodation and the desired performance. In the paper present a comprehensive approach to damage accommodation using Model Set Design,MMST, and Variable Structure compensation for coupling nonlinearities. The approach was evaluated on a model of F/A-18 aircraft dynamics under control effector damage

  10. Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement.

    PubMed

    Doblaré, M; García, J M

    2001-09-01

    In this work, a new model for internal anisotropic bone remodelling is applied to the study of the remodelling behaviour of the proximal femur before and after total hip replacement (THR). This model considers bone remodelling under the scope of a general damage-repair theory following the principles of continuum damage mechanics. A "damage-repair" tensor is defined in terms of the apparent density and Cowin's "fabric tensor", respectively, associated with porosity and directionality of the trabeculae. The different elements of a thermodynamically consistent damage theory are established, including resorption and apposition criteria, evolution law and rate of remodelling. All of these elements were introduced and discussed in detail in a previous paper (García, J. M., Martinez, M. A., Doblaré, M., 2001. An anisotrophic internal-external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies. Computer Methods in Biomechanics and Biomedical Engineering 4(4), 355-378.), including the definition of the proposed mechanical stimulus and the qualitative properties of the model. In this paper, the fundamentals of the proposed model are briefly reviewed and the computational aspects of its implementation are discussed. This model is then applied to the analysis of the remodelling behaviour of the intact femur obtaining densities and mass principal values and directions very close to the experimental data. The second application involved the proximal femoral extremity after THR and the inclusion of an Exeter prosthesis. As a result of the simulation process, some well-known features previously detected in medical clinics were recovered, such as the stress yielding effect in the proximal part of the implant or the enlargement of the cortical layer at the distal part of the implant. With respect to the anisotropic properties, bone microstructure and local stiffness are known to tend to align with the stress principal directions. This

  11. Self-reconfigurable ship fluid-network modeling for simulation-based design

    NASA Astrophysics Data System (ADS)

    Moon, Kyungjin

    Our world is filled with large-scale engineering systems, which provide various services and conveniences in our daily life. A distinctive trend in the development of today's large-scale engineering systems is the extensive and aggressive adoption of automation and autonomy that enable the significant improvement of systems' robustness, efficiency, and performance, with considerably reduced manning and maintenance costs, and the U.S. Navy's DD(X), the next-generation destroyer program, is considered as an extreme example of such a trend. This thesis pursues a modeling solution for performing simulation-based analysis in the conceptual or preliminary design stage of an intelligent, self-reconfigurable ship fluid system, which is one of the concepts of DD(X) engineering plant development. Through the investigations on the Navy's approach for designing a more survivable ship system, it is found that the current naval simulation-based analysis environment is limited by the capability gaps in damage modeling, dynamic model reconfiguration, and simulation speed of the domain specific models, especially fluid network models. As enablers of filling these gaps, two essential elements were identified in the formulation of the modeling method. The first one is the graph-based topological modeling method, which will be employed for rapid model reconstruction and damage modeling, and the second one is the recurrent neural network-based, component-level surrogate modeling method, which will be used to improve the affordability and efficiency of the modeling and simulation (M&S) computations. The integration of the two methods can deliver computationally efficient, flexible, and automation-friendly M&S which will create an environment for more rigorous damage analysis and exploration of design alternatives. As a demonstration for evaluating the developed method, a simulation model of a notional ship fluid system was created, and a damage analysis was performed. Next, the models

  12. Multi-level damage identification with response reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Chao-Dong; Xu, You-Lin

    2017-10-01

    Damage identification through finite element (FE) model updating usually forms an inverse problem. Solving the inverse identification problem for complex civil structures is very challenging since the dimension of potential damage parameters in a complex civil structure is often very large. Aside from enormous computation efforts needed in iterative updating, the ill-condition and non-global identifiability features of the inverse problem probably hinder the realization of model updating based damage identification for large civil structures. Following a divide-and-conquer strategy, a multi-level damage identification method is proposed in this paper. The entire structure is decomposed into several manageable substructures and each substructure is further condensed as a macro element using the component mode synthesis (CMS) technique. The damage identification is performed at two levels: the first is at macro element level to locate the potentially damaged region and the second is over the suspicious substructures to further locate as well as quantify the damage severity. In each level's identification, the damage searching space over which model updating is performed is notably narrowed down, not only reducing the computation amount but also increasing the damage identifiability. Besides, the Kalman filter-based response reconstruction is performed at the second level to reconstruct the response of the suspicious substructure for exact damage quantification. Numerical studies and laboratory tests are both conducted on a simply supported overhanging steel beam for conceptual verification. The results demonstrate that the proposed multi-level damage identification via response reconstruction does improve the identification accuracy of damage localization and quantization considerably.

  13. A neuroanatomical model of space-based and object-centered processing in spatial neglect.

    PubMed

    Pedrazzini, Elena; Schnider, Armin; Ptak, Radek

    2017-11-01

    Visual attention can be deployed in space-based or object-centered reference frames. Right-hemisphere damage may lead to distinct deficits of space- or object-based processing, and such dissociations are thought to underlie the heterogeneous nature of spatial neglect. Previous studies have suggested that object-centered processing deficits (such as in copying, reading or line bisection) result from damage to retro-rolandic regions while impaired spatial exploration reflects damage to more anterior regions. However, this evidence is based on small samples and heterogeneous tasks. Here, we tested a theoretical model of neglect that takes in account the space- and object-based processing and relates them to neuroanatomical predictors. One hundred and one right-hemisphere-damaged patients were examined with classic neuropsychological tests and structural brain imaging. Relations between neglect measures and damage to the temporal-parietal junction, intraparietal cortex, insula and middle frontal gyrus were examined with two structural equation models by assuming that object-centered processing (involved in line bisection and single-word reading) and space-based processing (involved in cancelation tasks) either represented a unique latent variable or two distinct variables. Of these two models the latter had better explanatory power. Damage to the intraparietal sulcus was a significant predictor of object-centered, but not space-based processing, while damage to the temporal-parietal junction predicted space-based, but not object-centered processing. Space-based processing and object-centered processing were strongly intercorrelated, indicating that they rely on similar, albeit partly dissociated processes. These findings indicate that object-centered and space-based deficits in neglect are partly independent and result from superior parietal and inferior parietal damage, respectively.

  14. Modeling variability in air pollution-related health damages from individual airport emissions.

    PubMed

    Penn, Stefani L; Boone, Scott T; Harvey, Brian C; Heiger-Bernays, Wendy; Tripodis, Yorghos; Arunachalam, Sarav; Levy, Jonathan I

    2017-07-01

    In this study, we modeled concentrations of fine particulate matter (PM 2.5 ) and ozone (O 3 ) attributable to precursor emissions from individual airports in the United States, developing airport-specific health damage functions (deaths per 1000t of precursor emissions) and physically-interpretable regression models to explain variability in these functions. We applied the Community Multiscale Air Quality model using the Decoupled Direct Method to isolate PM 2.5 - or O 3 -related contributions from precursor pollutants emitted by 66 individual airports. We linked airport- and pollutant-specific concentrations with population data and literature-based concentration-response functions to create health damage functions. Deaths per 1000t of primary PM 2.5 emissions ranged from 3 to 160 across airports, with variability explained by population patterns within 500km of the airport. Deaths per 1000t of precursors for secondary PM 2.5 varied across airports from 0.1 to 2.7 for NOx, 0.06 to 2.9 for SO 2 , and 0.06 to 11 for VOCs, with variability explained by population patterns and ambient concentrations influencing particle formation. Deaths per 1000t of O 3 precursors ranged from -0.004 to 1.0 for NOx and 0.03 to 1.5 for VOCs, with strong seasonality and influence of ambient concentrations. Our findings reinforce the importance of location- and source-specific health damage functions in design of health-maximizing emissions control policies. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Micromechanical modeling of short glass-fiber reinforced thermoplastics-Isotropic damage of pseudograins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammoun, S.; Brassart, L.; Doghri, I.

    A micromechanical damage modeling approach is presented to predict the overall elasto-plastic behavior and damage evolution in short fiber reinforced composite materials. The practical use of the approach is for injection molded thermoplastic parts reinforced with short glass fibers. The modeling is proceeded as follows. The representative volume element is decomposed into a set of pseudograins, the damage of which affects progressively the overall stiffness and strength up to total failure. Each pseudograin is a two-phase composite with aligned inclusions having same aspect ratio. A two-step mean-field homogenization procedure is adopted. In the first step, the pseudograins are homogenized individuallymore » according to the Mori-Tanaka scheme. The second step consists in a self-consistent homogenization of homogenized pseudograins. An isotropic damage model is applied at the pseudograin level. The model is implemented as a UMAT in the finite element code ABAQUS. Model is shown to reproduce the strength and the anisotropy (Lankford coefficient) during uniaxial tensile tests on samples cut under different directions relative to the injection flow direction.« less

  16. Micromechanical modeling of short glass-fiber reinforced thermoplastics-Isotropic damage of pseudograins

    NASA Astrophysics Data System (ADS)

    Kammoun, S.; Brassart, L.; Robert, G.; Doghri, I.; Delannay, L.

    2011-05-01

    A micromechanical damage modeling approach is presented to predict the overall elasto-plastic behavior and damage evolution in short fiber reinforced composite materials. The practical use of the approach is for injection molded thermoplastic parts reinforced with short glass fibers. The modeling is proceeded as follows. The representative volume element is decomposed into a set of pseudograins, the damage of which affects progressively the overall stiffness and strength up to total failure. Each pseudograin is a two-phase composite with aligned inclusions having same aspect ratio. A two-step mean-field homogenization procedure is adopted. In the first step, the pseudograins are homogenized individually according to the Mori-Tanaka scheme. The second step consists in a self-consistent homogenization of homogenized pseudograins. An isotropic damage model is applied at the pseudograin level. The model is implemented as a UMAT in the finite element code ABAQUS. Model is shown to reproduce the strength and the anisotropy (Lankford coefficient) during uniaxial tensile tests on samples cut under different directions relative to the injection flow direction.

  17. Cisplatin intrastrand adducts sensitize DNA to base damage by hydrated electrons.

    PubMed

    Behmand, B; Wagner, J R; Sanche, L; Hunting, D J

    2014-05-08

    The oligonucleotide TTTTTGTGTTT with or without a cisplatin adduct was reacted with hydrated electrons generated by ionizing radiation. Hydroxyl radicals were quenched with ethylenediaminetetraacetic acid (EDTA), and the solutions were bubbled with wet nitrogen to eliminate oxygen, a scavenger of hydrated electrons. Prior to irradiation, the structure of the initial cisplatin adduct was identified by mass spectrometry as G-cisplatin-G. Radiation damage to DNA bases was quantified by high-performance liquid chromatography (HPLC), after enzymatic digestion of the TTTTTGTGTTT-cisplatin complex to deoxyribonucleosides. The masses of the platinum adducts following digestion and separation by HPLC were measured by mass spectrometry. Our results demonstrate that hydrated electrons induce damage to thymines as well as detachment of the cisplatin moiety from both guanines in the oligonucleotide. This detachment regenerates both unmodified guanine and damaged guanine, in equimolar amounts. At 1000 Gy, a net average of 2.5 thymines and 1 guanine are damaged for each platinum lost from the oligonucleotide. Given the extensive base damage that occurs for each cisplatin adduct lost, it is clear that, prior to undergoing detachment, these adducts must catalyze several cycles of reactions of hydrated electrons with DNA bases. It is likely that a single reaction leads to the loss of the cisplatin adduct and the damage observed on the guanine base; however, the damage to the thymine bases must require the continued presence of the cisplatin adduct, acting as a catalyst. To our knowledge, this is the first time that platinum-DNA adducts have been shown to have catalytic activity. We propose two pathways for the interaction of hydrated electrons with TTTTTGTGTTT-cisplatin: (1) the hydrated electron is initially captured by a thymine base and transferred by base to base electron hopping to the guanine site, where the cisplatin moiety detaches from the oligonucleotide via dissociative

  18. Cisplatin Intrastrand Adducts Sensitize DNA to Base Damage by Hydrated Electrons

    PubMed Central

    Behmand, B.; Wagner, J. R.; Sanche, L.; Hunting, D. J.

    2015-01-01

    The oligonucleotide TTTTTGTGTTT with or without a cisplatin adduct was reacted with hydrated electrons generated by ionizing radiation. Hydroxyl radicals were quenched with ethylenediaminetetraacetic acid (EDTA), and the solutions were bubbled with wet nitrogen to eliminate oxygen, a scavenger of hydrated electrons. Prior to irradiation, the structure of the initial cisplatin adduct was identified by mass spectrometry as G-cisplatin-G. Radiation damage to DNA bases was quantified by high-performance liquid chromatography (HPLC), after enzymatic digestion of the TTTTTGTGTTT-cisplatin complex to deoxyribonucleosides. The masses of the platinum adducts following digestion and separation by HPLC were measured by mass spectrometry. Our results demonstrate that hydrated electrons induce damage to thymines as well as detachment of the cisplatin moiety from both guanines in the oligonucleotide. This detachment regenerates both unmodified guanine and damaged guanine, in equimolar amounts. At 1000 Gy, a net average of 2.5 thymines and 1 guanine are damaged for each platinum lost from the oligonucleotide. Given the extensive base damage that occurs for each cisplatin adduct lost, it is clear that, prior to undergoing detachment, these adducts must catalyze several cycles of reactions of hydrated electrons with DNA bases. It is likely that a single reaction leads to the loss of the cisplatin adduct and the damage observed on the guanine base; however, the damage to the thymine bases must require the continued presence of the cisplatin adduct, acting as a catalyst. To our knowledge, this is the first time that platinum-DNA adducts have been shown to have catalytic activity. We propose two pathways for the interaction of hydrated electrons with TTTTTGTGTTT-cisplatin: (1) the hydrated electron is initially captured by a thymine base and transferred by base to base electron hopping to the guanine site, where the cisplatin moiety detaches from the oligonucleotide via dissociative

  19. Flight Dynamics Modeling and Simulation of a Damaged Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Shah, Gautam H.; Hill, Melissa A.

    2012-01-01

    A study was undertaken at NASA Langley Research Center to establish, demonstrate, and apply methodology for modeling and implementing the aerodynamic effects of MANPADS damage to a transport aircraft into real-time flight simulation, and to demonstrate a preliminary capability of using such a simulation to conduct an assessment of aircraft survivability. Key findings from this study include: superpositioning of incremental aerodynamic characteristics to the baseline simulation aerodynamic model proved to be a simple and effective way of modeling damage effects; the primary effect of wing damage rolling moment asymmetry may limit minimum airspeed for adequate controllability, but this can be mitigated by the use of sideslip; combined effects of aerodynamics, control degradation, and thrust loss can result in significantly degraded controllability for a safe landing; and high landing speeds may be required to maintain adequate control if large excursions from the nominal approach path are allowed, but high-gain pilot control during landing can mitigate this risk.

  20. Damage Propagation Modeling for Aircraft Engine Prognostics

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Goebel, Kai; Simon, Don; Eklund, Neil

    2008-01-01

    This paper describes how damage propagation can be modeled within the modules of aircraft gas turbine engines. To that end, response surfaces of all sensors are generated via a thermo-dynamical simulation model for the engine as a function of variations of flow and efficiency of the modules of interest. An exponential rate of change for flow and efficiency loss was imposed for each data set, starting at a randomly chosen initial deterioration set point. The rate of change of the flow and efficiency denotes an otherwise unspecified fault with increasingly worsening effect. The rates of change of the faults were constrained to an upper threshold but were otherwise chosen randomly. Damage propagation was allowed to continue until a failure criterion was reached. A health index was defined as the minimum of several superimposed operational margins at any given time instant and the failure criterion is reached when health index reaches zero. Output of the model was the time series (cycles) of sensed measurements typically available from aircraft gas turbine engines. The data generated were used as challenge data for the Prognostics and Health Management (PHM) data competition at PHM 08.

  1. Computational Modeling and Experimental Validation of Shock Induced Damage in Woven E-Glass/Vinylester Laminates

    NASA Astrophysics Data System (ADS)

    Hufner, D. R.; Augustine, M. R.

    2018-05-01

    A novel experimental method was developed to simulate underwater explosion pressure pulses within a laboratory environment. An impact-based experimental apparatus was constructed; capable of generating pressure pulses with basic character similar to underwater explosions, while also allowing the pulse to be tuned to different intensities. Having the capability to vary the shock impulse was considered essential to producing various levels of shock-induced damage without the need to modify the fixture. The experimental apparatus and test method are considered ideal for investigating the shock response of composite material systems and/or experimental validation of new material models. One such test program is presented herein, in which a series of E-glass/Vinylester laminates were subjected to a range of shock pulses that induced varying degrees of damage. Analysis-test correlations were performed using a rate-dependent constitutive model capable of representing anisotropic damage and ultimate yarn failure. Agreement between analytical predictions and experimental results was considered acceptable.

  2. Cutting Modeling of Hybrid CFRP/Ti Composite with Induced Damage Analysis

    PubMed Central

    Xu, Jinyang; El Mansori, Mohamed

    2016-01-01

    In hybrid carbon fiber reinforced polymer (CFRP)/Ti machining, the bi-material interface is the weakest region vulnerable to severe damage formation when the tool cutting from one phase to another phase and vice versa. The interface delamination as well as the composite-phase damage is the most serious failure dominating the bi-material machining. In this paper, an original finite element (FE) model was developed to inspect the key mechanisms governing the induced damage formation when cutting this multi-phase material. The hybrid composite model was constructed by establishing three disparate physical constituents, i.e., the Ti phase, the interface, and the CFRP phase. Different constitutive laws and damage criteria were implemented to build up the entire cutting behavior of the bi-material system. The developed orthogonal cutting (OC) model aims to characterize the dynamic mechanisms of interface delamination formation and the affected interface zone (AIZ). Special focus was made on the quantitative analyses of the parametric effects on the interface delamination and composite-phase damage. The numerical results highlighted the pivotal role of AIZ in affecting the formation of interface delamination, and the significant impacts of feed rate and cutting speed on delamination extent and fiber/matrix failure. PMID:28787824

  3. Satellite imagery-based monitoring of archaeological site damage in the Syrian civil war

    PubMed Central

    Laugier, Elise Jakoby

    2017-01-01

    Since the start of the Syrian civil war in 2011, the rich archaeological heritage of Syria and northern Iraq has faced severe threats, including looting, combat-related damage, and intentional demolition of monuments. However, the inaccessibility of the conflict zone to archaeologists or cultural heritage specialists has made it difficult to produce accurate damage assessments, impeding efforts to develop mitigation strategies and policies. This paper presents results of a project, undertaken in collaboration with the American Schools of Oriental Research (ASOR) and the US Department of State, to monitor damage to archaeological sites in Syria, northern Iraq, and southern Turkey using recent, high-resolution satellite imagery. Leveraging a large database of archaeological and heritage sites throughout the region, as well as access to continually updated satellite imagery from DigitalGlobe, this project has developed a flexible and efficient methodology to log observations of damage in a manner that facilitates spatial and temporal queries. With nearly 5000 sites carefully evaluated, analysis reveals unexpected patterns in the timing, severity, and location of damage, helping us to better understand the evolving cultural heritage crisis in Syria and Iraq. Results also offer a model for future remote sensing-based archaeological and heritage monitoring efforts in the Middle East and beyond. PMID:29190783

  4. Satellite imagery-based monitoring of archaeological site damage in the Syrian civil war.

    PubMed

    Casana, Jesse; Laugier, Elise Jakoby

    2017-01-01

    Since the start of the Syrian civil war in 2011, the rich archaeological heritage of Syria and northern Iraq has faced severe threats, including looting, combat-related damage, and intentional demolition of monuments. However, the inaccessibility of the conflict zone to archaeologists or cultural heritage specialists has made it difficult to produce accurate damage assessments, impeding efforts to develop mitigation strategies and policies. This paper presents results of a project, undertaken in collaboration with the American Schools of Oriental Research (ASOR) and the US Department of State, to monitor damage to archaeological sites in Syria, northern Iraq, and southern Turkey using recent, high-resolution satellite imagery. Leveraging a large database of archaeological and heritage sites throughout the region, as well as access to continually updated satellite imagery from DigitalGlobe, this project has developed a flexible and efficient methodology to log observations of damage in a manner that facilitates spatial and temporal queries. With nearly 5000 sites carefully evaluated, analysis reveals unexpected patterns in the timing, severity, and location of damage, helping us to better understand the evolving cultural heritage crisis in Syria and Iraq. Results also offer a model for future remote sensing-based archaeological and heritage monitoring efforts in the Middle East and beyond.

  5. Decision making model for Foreign Object Debris/Damage (FOD) elimination in aeronautics using quantitative modeling approach

    NASA Astrophysics Data System (ADS)

    Lafon, Jose J.

    (FOD) Foreign Object Debris/Damage has been a costly issue for the commercial and military aircraft manufacturers at their production lines every day. FOD can put pilots, passengers and other crews' lives into high-risk. FOD refers to any type of foreign object, particle, debris or agent in the manufacturing environment, which could contaminate/damage the product or otherwise undermine quality standards. Nowadays, FOD is currently addressed with prevention programs, elimination techniques, and designation of FOD areas, controlled access to FOD areas, restrictions of personal items entering designated areas, tool accountability, etc. All of the efforts mentioned before, have not shown a significant reduction in FOD occurrence in the manufacturing processes. This research presents a Decision Making Model approach based on a logistic regression predictive model that was previously made by other researchers. With a general idea of the FOD expected, elimination plans can be put in place and start eradicating the problem minimizing the cost and time spend on the prediction, detection and/or removal of FOD.

  6. Bread dough rheology: Computing with a damage function model

    NASA Astrophysics Data System (ADS)

    Tanner, Roger I.; Qi, Fuzhong; Dai, Shaocong

    2015-01-01

    We describe an improved damage function model for bread dough rheology. The model has relatively few parameters, all of which can easily be found from simple experiments. Small deformations in the linear region are described by a gel-like power-law memory function. A set of large non-reversing deformations - stress relaxation after a step of shear, steady shearing and elongation beginning from rest, and biaxial stretching, is used to test the model. With the introduction of a revised strain measure which includes a Mooney-Rivlin term, all of these motions can be well described by the damage function described in previous papers. For reversing step strains, larger amplitude oscillatory shearing and recoil reasonable predictions have been found. The numerical methods used are discussed and we give some examples.

  7. User's guide to the stand-damage model: a component of the gypsy moth life system model

    Treesearch

    J. J. Colbert; George Racin

    1995-01-01

    The Stand-Damage Model (a component of the Gypsy Moth Life System Model) simulates the growth of a mixed hardwood forest and incorporates the effects of defoliation by gypsy moth or tree harvesting as prescribed by the user. It can be used to assess the damage from expected defoliation, view the differences between various degrees of defoliation, and describe the...

  8. Assessment of mean annual flood damage using simple hydraulic modeling and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Oubennaceur, K.; Agili, H.; Chokmani, K.; Poulin, J.; Marceau, P.

    2016-12-01

    Floods are the most frequent and the most damaging natural disaster in Canada. The issue of assessing and managing the risk related to this disaster has become increasingly crucial for both local and national authorities. Brigham, a municipality located in southern Quebec Province, is one of the heavily affected regions by this disaster because of frequent overflows of the Yamaska River reaching two to three times per year. Since Irene Hurricane which struck the region in 2011, causing considerable socio-economic damage, the implementation of mitigation measures has become a major priority for this municipality. To do this, a preliminary study to evaluate the risk to which this region is exposed is essential. Conventionally, approaches only based on the characterization of the hazard (e.g. floodplains extensive, flood depth) are generally adopted to study the risk of flooding. In order to improve the knowledge of this risk, a Monte Carlo simulation approach combining information on the hazard with vulnerability-related aspects has been developed. This approach integrates three main components: (1) hydrologic modelling aiming to establish a probability-discharge function which associate each measured discharge to its probability of occurrence (2) hydraulic modeling that aims to establish the relationship between the discharge and the water stage at each building (3) damage study that aims to assess the buildings damage using damage functions. The damage is estimated according to the water depth defined as the difference between the water level and the elevation of the building's first floor. The application of the proposed approach allows estimating the annual average cost of damage caused by floods on buildings. The obtained results will be useful for authorities to support their decisions on risk management and prevention against this disaster.

  9. Indentation experiments and simulation of ovine bone using a viscoelastic-plastic damage model

    PubMed Central

    Zhao, Yang; Wu, Ziheng; Turner, Simon; MacLeay, Jennifer; Niebur, Glen L.; Ovaert, Timothy C.

    2015-01-01

    Indentation methods have been widely used to study bone at the micro- and nanoscales. It has been shown that bone exhibits viscoelastic behavior with permanent deformation during indentation. At the same time, damage due to microcracks is induced due to the stresses beneath the indenter tip. In this work, a simplified viscoelastic-plastic damage model was developed to more closely simulate indentation creep data, and the effect of the model parameters on the indentation curve was investigated. Experimentally, baseline and 2-year postovariectomized (OVX-2) ovine (sheep) bone samples were prepared and indented. The damage model was then applied via finite element analysis to simulate the bone indentation data. The mechanical properties of yielding, viscosity, and damage parameter were obtained from the simulations. The results suggest that damage develops more quickly for OVX-2 samples under the same indentation load conditions as the baseline data. PMID:26136623

  10. Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization

    PubMed Central

    Teichtmeister, S.; Aldakheel, F.

    2016-01-01

    This work outlines a novel variational-based theory for the phase-field modelling of ductile fracture in elastic–plastic solids undergoing large strains. The phase-field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modelling. It is linked to a formulation of gradient plasticity at finite strains. The framework includes two independent length scales which regularize both the plastic response as well as the crack discontinuities. This ensures that the damage zones of ductile fracture are inside of plastic zones, and guarantees on the computational side a mesh objectivity in post-critical ranges. PMID:27002069

  11. Damage modeling of small-scale experiments on dental enamel with hierarchical microstructure.

    PubMed

    Scheider, I; Xiao, T; Yilmaz, E; Schneider, G A; Huber, N; Bargmann, S

    2015-03-01

    Dental enamel is a highly anisotropic and heterogeneous material, which exhibits an optimal reliability with respect to the various loads occurring over years. In this work, enamel's microstructure of parallel aligned rods of mineral fibers is modeled and mechanical properties are evaluated in terms of strength and toughness with the help of a multiscale modeling method. The established model is validated by comparing it with the stress-strain curves identified by microcantilever beam experiments extracted from these rods. Moreover, in order to gain further insight in the damage-tolerant behavior of enamel, the size of crystallites below which the structure becomes insensitive to flaws is studied by a microstructural finite element model. The assumption regarding the fiber strength is verified by a numerical study leading to accordance of fiber size and flaw tolerance size, and the debonding strength is estimated by optimizing the failure behavior of the microstructure on the hierarchical level above the individual fibers. Based on these well-grounded properties, the material behavior is predicted well by homogenization of a representative unit cell including damage, taking imperfections (like microcracks in the present case) into account. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Stand-Damage Model with Java (Version 3.0)

    Treesearch

    George Racin; J.J. Colbert

    2004-01-01

    NOTE: Instructions for ordering the cd-rom with the software are included on the front cover of the linked publication. The Stand-Damage Model with Java is a distance-independent tree-growth simulator. The model follows the life of a forest stand represented by species and diameter-class widths. The user supplies the initial state of the stand along with management...

  13. Two-dimensional strain gradient damage modeling: a variational approach

    NASA Astrophysics Data System (ADS)

    Placidi, Luca; Misra, Anil; Barchiesi, Emilio

    2018-06-01

    In this paper, we formulate a linear elastic second gradient isotropic two-dimensional continuum model accounting for irreversible damage. The failure is defined as the condition in which the damage parameter reaches 1, at least in one point of the domain. The quasi-static approximation is done, i.e., the kinetic energy is assumed to be negligible. In order to deal with dissipation, a damage dissipation term is considered in the deformation energy functional. The key goal of this paper is to apply a non-standard variational procedure to exploit the damage irreversibility argument. As a result, we derive not only the equilibrium equations but, notably, also the Karush-Kuhn-Tucker conditions. Finally, numerical simulations for exemplary problems are discussed as some constitutive parameters are varying, with the inclusion of a mesh-independence evidence. Element-free Galerkin method and moving least square shape functions have been employed.

  14. Damage localization of marine risers using time series of vibration signals

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Yang, Hezhen; Liu, Fushun

    2014-10-01

    Based on dynamic response signals a damage detection algorithm is developed for marine risers. Damage detection methods based on numerous modal properties have encountered issues in the researches in offshore oil community. For example, significant increase in structure mass due to marine plant/animal growth and changes in modal properties by equipment noise are not the result of damage for riser structures. In an attempt to eliminate the need to determine modal parameters, a data-based method is developed. The implementation of the method requires that vibration data are first standardized to remove the influence of different loading conditions and the autoregressive moving average (ARMA) model is used to fit vibration response signals. In addition, a damage feature factor is introduced based on the autoregressive (AR) parameters. After that, the Euclidean distance between ARMA models is subtracted as a damage indicator for damage detection and localization and a top tensioned riser simulation model with different damage scenarios is analyzed using the proposed method with dynamic acceleration responses of a marine riser as sensor data. Finally, the influence of measured noise is analyzed. According to the damage localization results, the proposed method provides accurate damage locations of risers and is robust to overcome noise effect.

  15. A new leakage measurement method for damaged seal material

    NASA Astrophysics Data System (ADS)

    Wang, Shen; Yao, Xue Feng; Yang, Heng; Yuan, Li; Dong, Yi Feng

    2018-07-01

    In this paper, a new leakage measurement method based on the temperature field and temperature gradient field is proposed for detecting the leakage location and measuring the leakage rate in damaged seal material. First, a heat transfer leakage model is established, which can calculate the leakage rate based on the temperature gradient field near the damaged zone. Second, a finite element model of an infinite plate with a damaged zone is built to calculate the leakage rate, which fits the simulated leakage rate well. Finally, specimens in a tubular rubber seal with different damage shapes are used to conduct the leakage experiment, validating the correctness of this new measurement principle for the leakage rate and the leakage position. The results indicate the feasibility of the leakage measurement method for damaged seal material based on the temperature gradient field from infrared thermography.

  16. Kinetic Modeling of the X-ray-induced Damage to a Metalloprotein

    PubMed Central

    Davis, Katherine M.; Kosheleva, Irina; Henning, Robert W.; Seidler, Gerald T.; Pushkar, Yulia

    2013-01-01

    It is well known that biological samples undergo x-ray-induced degradation. One of the fastest occurring x-ray-induced processes involves redox modifications (reduction or oxidation) of redox-active cofactors in proteins. Here we analyze room temperature data on the photoreduction of Mn ions in the oxygen evolving complex (OEC) of photosystem II, one of the most radiation damage sensitive proteins and a key constituent of natural photosynthesis in plants, green algae and cyanobacteria. Time-resolved x-ray emission spectroscopy with wavelength-dispersive detection was used to collect data on the progression of x-ray-induced damage. A kinetic model was developed to fit experimental results, and the rate constant for the reduction of OEC MnIII/IV ions by solvated electrons was determined. From this model, the possible kinetics of x-ray-induced damage at variety of experimental conditions, such as different rates of dose deposition as well as different excitation wavelengths, can be inferred. We observed a trend of increasing dosage threshold prior to the onset of x-ray-induced damage with increasing rates of damage deposition. This trend suggests that experimentation with higher rates of dose deposition is beneficial for measurements of biological samples sensitive to radiation damage, particularly at pink beam and x-ray FEL sources. PMID:23815809

  17. Detection of Earthquake-Induced Damage in a Framed Structure Using a Finite Element Model Updating Procedure

    PubMed Central

    Kim, Seung-Nam; Park, Taewon; Lee, Sang-Hyun

    2014-01-01

    Damage of a 5-story framed structure was identified from two types of measured data, which are frequency response functions (FRF) and natural frequencies, using a finite element (FE) model updating procedure. In this study, a procedure to determine the appropriate weightings for different groups of observations was proposed. In addition, a modified frame element which included rotational springs was used to construct the FE model for updating to represent concentrated damage at the member ends (a formulation for plastic hinges in framed structures subjected to strong earthquakes). The results of the model updating and subsequent damage detection when the rotational springs (RS model) were used were compared with those obtained using the conventional frame elements (FS model). Comparisons indicated that the RS model gave more accurate results than the FS model. That is, the errors in the natural frequencies of the updated models were smaller, and the identified damage showed clearer distinctions between damaged and undamaged members and was more consistent with observed damage. PMID:24574888

  18. A study on thermal damage during hyperthermia treatment based on DPL model for multilayer tissues using finite element Legendre wavelet Galerkin approach.

    PubMed

    Kumar, Dinesh; Rai, K N

    2016-12-01

    Hyperthermia is a process that uses heat from the spatial heat source to kill cancerous cells without damaging the surrounding healthy tissues. Efficacy of hyperthermia technique is related to achieve temperature at the infected cells during the treatment process. A mathematical model on heat transfer in multilayer tissues in finite domain is proposed to predict the control temperature profile at hyperthermia position. The treatment technique uses dual-phase-lag model of heat transfer in multilayer tissues with modified Gaussian distribution heat source subjected to the most generalized boundary condition and interface at the adjacent layers. The complete dual-phase-lag model of bioheat transfer is solved using finite element Legendre wavelet Galerkin approach. The present solution has been verified with exact solution in a specific case and provides a good accuracy. The effect of the variability of different parameters such as lagging times, external heat source, metabolic heat source and the most generalized boundary condition on temperature profile in multilayer tissues is analyzed and also discussed the effective approach of hyperthermia treatment. Furthermore, we studied the modified thermal damage model with regeneration of healthy tissues as well. For viewpoint of thermal damage, the least thermal damage has been observed in boundary condition of second kind. The article concludes with a discussion of better opportunities for future clinical application of hyperthermia treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Eye-Directed Overpressure Airwave-Induced Trauma Causes Lasting Damage to the Anterior and Posterior Globe: A Model for Testing Cell-Based Therapies

    PubMed Central

    Bricker-Anthony, Courtney; Hines-Beard, Jessica

    2016-01-01

    Abstract Purpose: Characterization of the response of the Balb/c mouse to an eye-directed overpressure airwave, with the hypothesis that this mouse strain and model is useful for testing potential therapeutics for the treatment of traumatic eye injury. Methods: The left eyes of adult Balb/c mice were exposed to an eye-directed overpressure airwave. Intraocular pressure (IOP) was measured and eyes were inspected for gross pathology changes. Optical coherence tomography and histology were used to examine the structural integrity of the retina and optic nerve. Immunohistochemistry, in vivo molecular fluorophores, and a multiplex enzyme-linked immunosorbent assay were utilized to identify changes in cell death, neuroinflammation, and oxidative stress. Results: This model induced a transient increase in IOP, corneal injuries, infrequent large retinal detachments, retinal pigment epithelium (RPE) vacuolization, glial reactivity, and retinal cell death. Both the corneal damage and RPE vacuolization persisted with time. Optic nerve degeneration occurred as early as 7 days postinjury and persisted out to 60 days. Retinal cell death, increased levels of reactive oxygen species, and neuroinflammation were detected at 7 days postinjury. Conclusions: The injury profile of the Balb/c mouse is consistent with commonly observed pathologies in blast-exposed patients. The damage is throughout the eye and persistent, making this mouse model useful for testing cell-based therapies. PMID:26982447

  20. Investigation and Modeling of Damage Growth in Composite Laminates.

    DTIC Science & Technology

    1988-09-25

    6t 27 51 FqTIRTION-At MODELING 1WF DAKA0GEtOTW#TN COMPOSITE LAMINATES..(U) VIRGINIA POLYTECHNIC INST AND STATE UV BLACKSBIJRG MATERIALS. UNCLASSIFIED...yiodeling of Damage Growth in Composite Lamina es :12. PERSONAL AUTHORIS) i K.L. Reifsnider, W.W. Stinchcomb, C.E. Bakis, H.R. Yih, Doron Shalev - - 13...boundary layer near a hole in composite laminates has been completed. And a brief study of the applicability of chaos theory to damage development

  1. Fuselage Versus Subcomponent Panel Response Correlation Based on ABAQUS Explicit Progressive Damage Analysis Tools

    NASA Technical Reports Server (NTRS)

    Gould, Kevin E.; Satyanarayana, Arunkumar; Bogert, Philip B.

    2016-01-01

    Analysis performed in this study substantiates the need for high fidelity vehicle level progressive damage analyses (PDA) structural models for use in the verification and validation of proposed sub-scale structural models and to support required full-scale vehicle level testing. PDA results are presented that capture and correlate the responses of sub-scale 3-stringer and 7-stringer panel models and an idealized 8-ft diameter fuselage model, which provides a vehicle level environment for the 7-stringer sub-scale panel model. Two unique skin-stringer attachment assumptions are considered and correlated in the models analyzed: the TIE constraint interface versus the cohesive element (COH3D8) interface. Evaluating different interfaces allows for assessing a range of predicted damage modes, including delamination and crack propagation responses. Damage models considered in this study are the ABAQUS built-in Hashin procedure and the COmplete STress Reduction (COSTR) damage procedure implemented through a VUMAT user subroutine using the ABAQUS/Explicit code.

  2. Damage modeling and statistical analysis of optics damage performance in MJ-class laser systems.

    PubMed

    Liao, Zhi M; Raymond, B; Gaylord, J; Fallejo, R; Bude, J; Wegner, P

    2014-11-17

    Modeling the lifetime of a fused silica optic is described for a multiple beam, MJ-class laser system. This entails combining optic processing data along with laser shot data to account for complete history of optic processing and shot exposure. Integrating with online inspection data allows for the construction of a performance metric to describe how an optic performs with respect to the model. This methodology helps to validate the damage model as well as allows strategic planning and identifying potential hidden parameters that are affecting the optic's performance.

  3. Simulation of Intergranular Ductile Cracking in β Titanium Alloys Based on a Micro-Mechanical Damage Model

    PubMed Central

    Li, Huan; Li, Jinshan; Tang, Bin; Fan, Jiangkun; Yuan, Huang

    2017-01-01

    The intergranular crack propagation of the lamellar structure β titanium alloys is investigated by using a modified Gurson-type damage model. The representative microstructure of the lamellar alloy, which consists of the soft α phase layer surrounding the hard grain interiors, is generated based on an advanced Voronoi algorithm. Both the normal fracture due to void growth and the shear fracture associated with void shearing are considered for the grain boundary α layer. The individual phase properties are determined according to the experimental nanoindentation result and the macroscopic stress–strain curve from a uni-axial tensile test. The effects of the strain hardening exponent of the grain interiors and the void shearing mechanism of the grain boundary α layer on fracture toughness and the intergranular crack growth behavior are emphatically studied. The computational predictions indicate that fracture toughness can be increased with increasing the strain hardening ability of the grain interiors and void shearing can be deleterious to fracture toughness. Based on the current simulation technique, qualitative understanding of relationships between the individual phase features and the fracture toughness of the lamellar alloys can be obtained, which provides useful suggestions to the heat treatment process of the β titanium alloys. PMID:29084171

  4. Simulation of Intergranular Ductile Cracking in β Titanium Alloys Based on a Micro-Mechanical Damage Model.

    PubMed

    Li, Huan; Li, Jinshan; Tang, Bin; Fan, Jiangkun; Yuan, Huang

    2017-10-30

    The intergranular crack propagation of the lamellar structure β titanium alloys is investigated by using a modified Gurson-type damage model. The representative microstructure of the lamellar alloy, which consists of the soft α phase layer surrounding the hard grain interiors, is generated based on an advanced Voronoi algorithm. Both the normal fracture due to void growth and the shear fracture associated with void shearing are considered for the grain boundary α layer. The individual phase properties are determined according to the experimental nanoindentation result and the macroscopic stress-strain curve from a uni-axial tensile test. The effects of the strain hardening exponent of the grain interiors and the void shearing mechanism of the grain boundary α layer on fracture toughness and the intergranular crack growth behavior are emphatically studied. The computational predictions indicate that fracture toughness can be increased with increasing the strain hardening ability of the grain interiors and void shearing can be deleterious to fracture toughness. Based on the current simulation technique, qualitative understanding of relationships between the individual phase features and the fracture toughness of the lamellar alloys can be obtained, which provides useful suggestions to the heat treatment process of the β titanium alloys.

  5. A gradient enhanced plasticity-damage microplane model for concrete

    NASA Astrophysics Data System (ADS)

    Zreid, Imadeddin; Kaliske, Michael

    2018-03-01

    Computational modeling of concrete poses two main types of challenges. The first is the mathematical description of local response for such a heterogeneous material under all stress states, and the second is the stability and efficiency of the numerical implementation in finite element codes. The paper at hand presents a comprehensive approach addressing both issues. Adopting the microplane theory, a combined plasticity-damage model is formulated and regularized by an implicit gradient enhancement. The plasticity part introduces a new microplane smooth 3-surface cap yield function, which provides a stable numerical solution within an implicit finite element algorithm. The damage part utilizes a split, which can describe the transition of loading between tension and compression. Regularization of the model by the implicit gradient approach eliminates the mesh sensitivity and numerical instabilities. Identification methods for model parameters are proposed and several numerical examples of plain and reinforced concrete are carried out for illustration.

  6. On multi-site damage identification using single-site training data

    NASA Astrophysics Data System (ADS)

    Barthorpe, R. J.; Manson, G.; Worden, K.

    2017-11-01

    This paper proposes a methodology for developing multi-site damage location systems for engineering structures that can be trained using single-site damaged state data only. The methodology involves training a sequence of binary classifiers based upon single-site damage data and combining the developed classifiers into a robust multi-class damage locator. In this way, the multi-site damage identification problem may be decomposed into a sequence of binary decisions. In this paper Support Vector Classifiers are adopted as the means of making these binary decisions. The proposed methodology represents an advancement on the state of the art in the field of multi-site damage identification which require either: (1) full damaged state data from single- and multi-site damage cases or (2) the development of a physics-based model to make multi-site model predictions. The potential benefit of the proposed methodology is that a significantly reduced number of recorded damage states may be required in order to train a multi-site damage locator without recourse to physics-based model predictions. In this paper it is first demonstrated that Support Vector Classification represents an appropriate approach to the multi-site damage location problem, with methods for combining binary classifiers discussed. Next, the proposed methodology is demonstrated and evaluated through application to a real engineering structure - a Piper Tomahawk trainer aircraft wing - with its performance compared to classifiers trained using the full damaged-state dataset.

  7. Testing and numerical modeling of hypervelocity impact damaged Space Station multilayer insulation

    NASA Technical Reports Server (NTRS)

    Rule, William K.

    1992-01-01

    Results are presented of experiments measuring the degradation of the insulating capabilities of the multilayer insulation (MLI) of the Space Station Freedom, when subjected to hypervelocity impact damage. A simple numerical model was developed for use in an engineering design environment for quick assessment of thermal effect of the impact. The model was validated using results from thermal vacuum tests on MLI with simulated damage. The numerical model results agreed with experimental data.

  8. Damage detection on sudden stiffness reduction based on discrete wavelet transform.

    PubMed

    Chen, Bo; Chen, Zhi-wei; Wang, Gan-jun; Xie, Wei-ping

    2014-01-01

    The sudden stiffness reduction in a structure may cause the signal discontinuity in the acceleration responses close to the damage location at the damage time instant. To this end, the damage detection on sudden stiffness reduction of building structures has been actively investigated in this study. The signal discontinuity of the structural acceleration responses of an example building is extracted based on the discrete wavelet transform. It is proved that the variation of the first level detail coefficients of the wavelet transform at damage instant is linearly proportional to the magnitude of the stiffness reduction. A new damage index is proposed and implemented to detect the damage time instant, location, and severity of a structure due to a sudden change of structural stiffness. Numerical simulation using a five-story shear building under different types of excitation is carried out to assess the effectiveness and reliability of the proposed damage index for the building at different damage levels. The sensitivity of the damage index to the intensity and frequency range of measurement noise is also investigated. The made observations demonstrate that the proposed damage index can accurately identify the sudden damage events if the noise intensity is limited.

  9. A thermochemical model of radiation damage and annealing applied to GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Conway, E. J.; Walker, G. H.; Heinbockel, J. H.

    1981-01-01

    Calculations of the equilibrium conditions for continuous radiation damage and thermal annealing are reported. The calculations are based on a thermochemical model developed to analyze the incorporation of point imperfections in GaAs, and modified by introducing the radiation to produce native lattice defects rather than high-temperature and arsenic atmospheric pressure. The concentration of a set of defects, including vacancies, divacancies, and impurity vacancy complexes, are calculated as a function of temperature. Minority carrier lifetimes, short circuit current, and efficiency are deduced for a range of equilibrium temperatures. The results indicate that GaAs solar cells could have a mission life which is not greatly limited by radiation damage.

  10. Modelling of Damage Evolution in Braided Composites: Recent Developments

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Roy, Anish; Silberschmidt, Vadim V.; Chen, Zhong

    2017-12-01

    Composites reinforced with woven or braided textiles exhibit high structural stability and excellent damage tolerance thanks to yarn interlacing. With their high stiffness-to-weight and strength-to-weight ratios, braided composites are attractive for aerospace and automotive components as well as sports protective equipment. In these potential applications, components are typically subjected to multi-directional static, impact and fatigue loadings. To enhance material analysis and design for such applications, understanding mechanical behaviour of braided composites and development of predictive capabilities becomes crucial. Significant progress has been made in recent years in development of new modelling techniques allowing elucidation of static and dynamic responses of braided composites. However, because of their unique interlacing geometric structure and complicated failure modes, prediction of damage initiation and its evolution in components is still a challenge. Therefore, a comprehensive literature analysis is presented in this work focused on a review of the state-of-the-art progressive damage analysis of braided composites with finite-element simulations. Recently models employed in the studies on mechanical behaviour, impact response and fatigue analyses of braided composites are presented systematically. This review highlights the importance, advantages and limitations of as-applied failure criteria and damage evolution laws for yarns and composite unit cells. In addition, this work provides a good reference for future research on FE simulations of braided composites.

  11. Capacitance-based damage detection sensing for aerospace structural composites

    NASA Astrophysics Data System (ADS)

    Bahrami, P.; Yamamoto, N.; Chen, Y.; Manohara, H.

    2014-04-01

    Damage detection technology needs improvement for aerospace engineering application because detection within complex composite structures is difficult yet critical to avoid catastrophic failure. Damage detection is challenging in aerospace structures because not all the damage detection technology can cover the various defect types (delamination, fiber fracture, matrix crack etc.), or conditions (visibility, crack length size, etc.). These defect states are expected to become even more complex with future introduction of novel composites including nano-/microparticle reinforcement. Currently, non-destructive evaluation (NDE) methods with X-ray, ultrasound, or eddy current have good resolutions (< 0.1 mm), but their detection capabilities is limited by defect locations and orientations and require massive inspection devices. System health monitoring (SHM) methods are often paired with NDE technologies to signal out sensed damage, but their data collection and analysis currently requires excessive wiring and complex signal analysis. Here, we present a capacitance sensor-based, structural defect detection technology with improved sensing capability. Thin dielectric polymer layer is integrated as part of the structure; the defect in the structure directly alters the sensing layer's capacitance, allowing full-coverage sensing capability independent of defect size, orientation or location. In this work, capacitance-based sensing capability was experimentally demonstrated with a 2D sensing layer consisting of a dielectric layer sandwiched by electrodes. These sensing layers were applied on substrate surfaces. Surface indentation damage (~1mm diameter) and its location were detected through measured capacitance changes: 1 to 250 % depending on the substrates. The damage detection sensors are light weight, and they can be conformably coated and can be part of the composite structure. Therefore it is suitable for aerospace structures such as cryogenic tanks and rocket

  12. Stochastic damage evolution in textile laminates

    NASA Technical Reports Server (NTRS)

    Dzenis, Yuris A.; Bogdanovich, Alexander E.; Pastore, Christopher M.

    1993-01-01

    A probabilistic model utilizing random material characteristics to predict damage evolution in textile laminates is presented. Model is based on a division of each ply into two sublaminas consisting of cells. The probability of cell failure is calculated using stochastic function theory and maximal strain failure criterion. Three modes of failure, i.e. fiber breakage, matrix failure in transverse direction, as well as matrix or interface shear cracking, are taken into account. Computed failure probabilities are utilized in reducing cell stiffness based on the mesovolume concept. A numerical algorithm is developed predicting the damage evolution and deformation history of textile laminates. Effect of scatter of fiber orientation on cell properties is discussed. Weave influence on damage accumulation is illustrated with the help of an example of a Kevlar/epoxy laminate.

  13. A simple nonlocal damage model for predicting failure of notched laminates

    NASA Technical Reports Server (NTRS)

    Kennedy, T. C.; Nahan, M. F.

    1995-01-01

    The ability to predict failure loads in notched composite laminates is a requirement in a variety of structural design circumstances. A complicating factor is the development of a zone of damaged material around the notch tip. The objective of this study was to develop a computational technique that simulates progressive damage growth around a notch in a manner that allows the prediction of failure over a wide range of notch sizes. This was accomplished through the use of a relatively simple, nonlocal damage model that incorporates strain-softening. This model was implemented in a two-dimensional finite element program. Calculations were performed for two different laminates with various notch sizes under tensile loading, and the calculations were found to correlate well with experimental results.

  14. Neighboring base damage induced by permanganate oxidation of 8-oxoguanine in DNA.

    PubMed Central

    Koizume, S; Inoue, H; Kamiya, H; Ohtsuka, E

    1998-01-01

    We found that single-stranded DNA oligomers containing a 7, 8-dihydro-8-oxoguanine (8-oxo-G) residue have high reactivity toward KMnO4; the oxidation of 8-oxo-G induces damage to the neighboring nucleotide residues. This paper describes the novel reaction in detail, including experiments that demonstrate the mechanism involved in the induction of DNA damage. The results using DNAs of various base compositions indicated that damaged G, T and C (but not A) sites caused strand scissions after hot piperidine treatment and that the damage around the 8-oxo-G occurred at G sites in both single and double strands with high frequency. The latter substrates were less sensitive to damage. Further, kinetic studies of the KMnO4reaction of single-stranded oligomers suggested that thereactivity of the DNA bases at the site 5'-adjacent to the 8-oxo-G was in the order G >A >T, C. This preference correlates with the electron donating abilities of the bases. In addition, we found that the DNA damage at the G site, which was connected with the 8-oxo-G by a long abasic chain, was inhibited in the above order by the addition of dG, dA or dC. On the other hand, the damage reactions proceeded even after the addition of scavengers for active oxygen species. This study suggests the involvement of a redox process in the unique DNA damage initiated by the oxidation of the 8-oxo-G. PMID:9671825

  15. Pressure damage prevention: basing practice on evidence.

    PubMed

    Parker, K; Morgan, L; Clayton, J; Gerrish, K; Nolan, M

    As part of an initiative to develop evidence-based practice at the Northern General Hospital, Sheffield, a three-part project was undertaken. The aims were to identify barriers to using research in nursing, establish a baseline of nurses' knowledge and its influence on their practice in one essential area of nursing care--pressure damage prevention--and develop a strategy for change which took account of the findings from the first two parts of the project. In this article, the authors describe the second part of the project which examined nursing knowledge and practice with reference to the management of pressure damage prevention. The findings are discussed and the authors recommend that nurses integrate into their practice evidence from sources such as systematic reviews.

  16. Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization.

    PubMed

    Miehe, C; Teichtmeister, S; Aldakheel, F

    2016-04-28

    This work outlines a novel variational-based theory for the phase-field modelling of ductile fracture in elastic-plastic solids undergoing large strains. The phase-field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modelling. It is linked to a formulation of gradient plasticity at finite strains. The framework includes two independent length scales which regularize both the plastic response as well as the crack discontinuities. This ensures that the damage zones of ductile fracture are inside of plastic zones, and guarantees on the computational side a mesh objectivity in post-critical ranges. © 2016 The Author(s).

  17. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling

    NASA Astrophysics Data System (ADS)

    Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard

    2016-08-01

    Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.

  18. A Computational Efficient Physics Based Methodology for Modeling Ceramic Matrix Composites (Preprint)

    DTIC Science & Technology

    2011-11-01

    elastic range, and with some simple forms of progressing damage . However, a general physics-based methodology to assess the initial and lifetime... damage evolution in the RVE for all possible load histories. Microstructural data on initial configuration and damage progression in CMCs were...the damaged elements will have changed, hence, a progressive damage model. The crack opening for each crack type in each element is stored as a

  19. Large-scale application of the flood damage model RAilway Infrastructure Loss (RAIL)

    NASA Astrophysics Data System (ADS)

    Kellermann, Patric; Schönberger, Christine; Thieken, Annegret H.

    2016-11-01

    Experience has shown that river floods can significantly hamper the reliability of railway networks and cause extensive structural damage and disruption. As a result, the national railway operator in Austria had to cope with financial losses of more than EUR 100 million due to flooding in recent years. Comprehensive information on potential flood risk hot spots as well as on expected flood damage in Austria is therefore needed for strategic flood risk management. In view of this, the flood damage model RAIL (RAilway Infrastructure Loss) was applied to estimate (1) the expected structural flood damage and (2) the resulting repair costs of railway infrastructure due to a 30-, 100- and 300-year flood in the Austrian Mur River catchment. The results were then used to calculate the expected annual damage of the railway subnetwork and subsequently analysed in terms of their sensitivity to key model assumptions. Additionally, the impact of risk aversion on the estimates was investigated, and the overall results were briefly discussed against the background of climate change and possibly resulting changes in flood risk. The findings indicate that the RAIL model is capable of supporting decision-making in risk management by providing comprehensive risk information on the catchment level. It is furthermore demonstrated that an increased risk aversion of the railway operator has a marked influence on flood damage estimates for the study area and, hence, should be considered with regard to the development of risk management strategies.

  20. Modeling the roles of damage accumulation and mechanical healing on rainfall-induced landslides

    NASA Astrophysics Data System (ADS)

    Fan, Linfeng; Lehmann, Peter; Or, Dani

    2014-05-01

    The abrupt release of rainfall-induced shallow landslides is preceded by local failures that may abruptly coalesce and form a continuous failure plane within a hillslope. The mechanical status of hillslopes reflects a competition between the extent of severity of accumulated local damage during prior rainfall events and the rates of mechanically healing (i.e. regaining of strength) by closure of micro-cracks, regrowth of roots, etc. The interplay of these processes affects the initial conditions for landslide modeling and shapes potential failure patterns during future rainfall events. We incorporated these competing mechanical processes in a hydro-mechanical landslide triggering model subjected to a sequence of rainfall scenarios. The model employs the Fiber Bundle Model (FBM) with bonds (fiber bundle) with prescribed threshold linking adjacent soil columns and soil to bedrock. Prior damage was represented by a fraction of broken fibers during previous rainfall events, and the healing of broken fibers was described by strength regaining models for soil and roots at different characteristic time scales. Results show that prior damage and healing introduce highly nonlinear response to landslide triggering. For small prior damage, mechanical bonds at soil-bedrock interface may fail early in next rainfall event but lead to small perturbations onto lateral bonds without triggering a landslide. For more severe damage weakening lateral bonds, excess load due to failure at soil-bedrock interface accumulates at downslope soil columns resulting in early soil failure with patterns strongly correlated with prior damage distribution. Increasing prior damage over the hillslope decreases the volume of first landslide and prolongs the time needed to trigger the second landslide due to mechanical relaxation of the system. The mechanical healing of fibers diminishes effects of prior damage on the time of failure, and shortens waiting time between the first and second landslides

  1. Cellular track model of biological damage to mammalian cell cultures from galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.; Townsend, Lawrence W.; Nealy, John E.; Shinn, Judy L.

    1991-01-01

    The assessment of biological damage from the galactic cosmic rays (GCR) is a current interest for exploratory class space missions where the highly ionizing, high-energy, high-charge ions (HZE) particles are the major concern. The relative biological effectiveness (RBE) values determined by ground-based experiments with HZE particles are well described by a parametric track theory of cell inactivation. Using the track model and a deterministic GCR transport code, the biological damage to mammalian cell cultures is considered for 1 year in free space at solar minimum for typical spacecraft shielding. Included are the effects of projectile and target fragmentation. The RBE values for the GCR spectrum which are fluence-dependent in the track model are found to be more severe than the quality factors identified by the International Commission on Radiological Protection publication 26 and seem to obey a simple scaling law with the duration period in free space.

  2. Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection

    NASA Astrophysics Data System (ADS)

    Magalhães, F.; Cunha, A.; Caetano, E.

    2012-04-01

    In order to evaluate the usefulness of approaches based on modal parameters tracking for structural health monitoring of bridges, in September of 2007, a dynamic monitoring system was installed in a concrete arch bridge at the city of Porto, in Portugal. The implementation of algorithms to perform the continuous on-line identification of modal parameters based on structural responses to ambient excitation (automated Operational Modal Analysis) has permitted to create a very complete database with the time evolution of the bridge modal characteristics during more than 2 years. This paper describes the strategy that was followed to minimize the effects of environmental and operational factors on the bridge natural frequencies, enabling, in a subsequent stage, the identification of structural anomalies. Alternative static and dynamic regression models are tested and complemented by a Principal Components Analysis. Afterwards, the identification of damages is tried with control charts. At the end, it is demonstrated that the adopted processing methodology permits the detection of realistic damage scenarios, associated with frequency shifts around 0.2%, which were simulated with a numerical model.

  3. Modelling multi-hazard hurricane damages on an urbanized coast with a Bayesian Network approach

    USGS Publications Warehouse

    van Verseveld, H.C.W.; Van Dongeren, A. R.; Plant, Nathaniel G.; Jäger, W.S.; den Heijer, C.

    2015-01-01

    Hurricane flood impacts to residential buildings in coastal zones are caused by a number of hazards, such as inundation, overflow currents, erosion, and wave attack. However, traditional hurricane damage models typically make use of stage-damage functions, where the stage is related to flooding depth only. Moreover, these models are deterministic and do not consider the large amount of uncertainty associated with both the processes themselves and with the predictions. This uncertainty becomes increasingly important when multiple hazards (flooding, wave attack, erosion, etc.) are considered simultaneously. This paper focusses on establishing relationships between observed damage and multiple hazard indicators in order to make better probabilistic predictions. The concept consists of (1) determining Local Hazard Indicators (LHIs) from a hindcasted storm with use of a nearshore morphodynamic model, XBeach, and (2) coupling these LHIs and building characteristics to the observed damages. We chose a Bayesian Network approach in order to make this coupling and used the LHIs ‘Inundation depth’, ‘Flow velocity’, ‘Wave attack’, and ‘Scour depth’ to represent flooding, current, wave impacts, and erosion related hazards.The coupled hazard model was tested against four thousand damage observations from a case site at the Rockaway Peninsula, NY, that was impacted by Hurricane Sandy in late October, 2012. The model was able to accurately distinguish ‘Minor damage’ from all other outcomes 95% of the time and could distinguish areas that were affected by the storm, but not severely damaged, 68% of the time. For the most heavily damaged buildings (‘Major Damage’ and ‘Destroyed’), projections of the expected damage underestimated the observed damage. The model demonstrated that including multiple hazards doubled the prediction skill, with Log-Likelihood Ratio test (a measure of improved accuracy and reduction in uncertainty) scores between 0.02 and 0

  4. Deep particle bed dryout model based on flooding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuan, P.

    1987-01-01

    Examination of the damaged Three Mile island Unit 2 (TMI-2) reactor indicates that a deep (approx. 1-m) bed of relatively large (approx. 1-mm) particles was formed in the core. Cooling of such beds is crucial to the arrest of core damage progression. The Lipinski model, based on flows in the bed, has been used to predict the coolability, but uncertainties exist in the turbulent permeability. Models based on flooding at the top of the bed either have a dimensional viscosity term, or no viscosity dependence, thus limiting their applicability. This paper presents a dimensionless correlation based on flooding data thatmore » involves a liquid Reynolds number. The derived dryout model from this correlation is compared with data for deep beds of large particles at atmospheric pressure, and with other models over a wide pressure range. It is concluded that the present model can give quite accurate predictions for the dryout heat flux of particle beds formed during a light water reactor accident and it is easy to use and agrees with the Lipinski n = 5 model, which requires iterative calculations.« less

  5. Rotor damage detection by using piezoelectric impedance

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Tao, Y.; Mao, Y. F.

    2016-04-01

    Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.

  6. The segmentation of Thangka damaged regions based on the local distinction

    NASA Astrophysics Data System (ADS)

    Xuehui, Bi; Huaming, Liu; Xiuyou, Wang; Weilan, Wang; Yashuai, Yang

    2017-01-01

    Damaged regions must be segmented before digital repairing Thangka cultural relics. A new segmentation algorithm based on local distinction is proposed for segmenting damaged regions, taking into account some of the damaged area with a transition zone feature, as well as the difference between the damaged regions and their surrounding regions, combining local gray value, local complexity and local definition-complexity (LDC). Firstly, calculate the local complexity and normalized; secondly, calculate the local definition-complexity and normalized; thirdly, calculate the local distinction; finally, set the threshold to segment local distinction image, remove the over segmentation, and get the final segmentation result. The experimental results show that our algorithm is effective, and it can segment the damaged frescoes and natural image etc.

  7. Failure Mechanisms and Damage Model of Ductile Cast Iron Under Low-Cycle Fatigue Conditions

    NASA Astrophysics Data System (ADS)

    Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Sloss, Clayton

    2014-10-01

    Strain-controlled low-cycle fatigue (LCF) tests were conducted on ductile cast iron (DCI) at strain rates of 0.02, 0.002, and 0.0002/s in the temperature range from room temperature to 1073 K (800 °C). A constitutive-damage model was developed within the integrated creep-fatigue theory (ICFT) framework on the premise of strain decomposition into rate-independent plasticity and time-dependent creep. Four major damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement (IE), (iii) creep, and (iv) oxidation were considered in a nonlinear creep-fatigue interaction model which represents the overall damage accumulation process consisting of oxidation-assisted fatigue crack nucleation and propagation in coalescence with internally distributed damage ( e.g., IE and creep), leading to final fracture. The model was found to agree with the experimental observations of the complex DCI-LCF phenomena, for which the linear damage summation rule would fail.

  8. Baseline-free damage detection in composite plates based on the reciprocity principle

    NASA Astrophysics Data System (ADS)

    Huang, Liping; Zeng, Liang; Lin, Jing

    2018-01-01

    Lamb wave based damage detection techniques have been widely used in composite structures. In particular, these techniques usually rely on reference signals, which are significantly influenced by the operational and environmental conditions. To solve this issue, this paper presents a baseline-free damage inspection method based on the reciprocity principle. If a localized nonlinear scatterer exists along the wave path, the reciprocity breaks down. Through estimating the loss of reciprocity, the delamination could be detected. A reciprocity index (RI), which compares the discrepancy between the signal received in transducer B when emitting from transducer A and the signal received in A when the same source is located in B, is established to quantitatively analyze the reciprocity. Experimental results show that the RI value of a damaged path is much higher than that of a healthy path. In addition, the effects of the parameters of excitation signal (i.e., central frequency and bandwidth) and the position of delamination on the RI value are discussed. Furthermore, a RI based probabilistic imaging algorithm is proposed for detecting delamination damage of composite plates without reference signals. Finally, the effectiveness of this baseline-free damage detection method is validated by an experimental example.

  9. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY STYRENE OXIDE

    EPA Science Inventory

    A rapid and simple assay to detect DNA damage to calf thymus DNA caused by styrene oxide (SO) is reported. This assay is based on changes observed in the melting and annealing behavior of the damaged DNA. The melting annealing process was monitored using a fluorescence indicat...

  10. Progressive Damage Analysis of Laminated Composite (PDALC)-A Computational Model Implemented in the NASA COMET Finite Element Code

    NASA Technical Reports Server (NTRS)

    Lo, David C.; Coats, Timothy W.; Harris, Charles E.; Allen, David H.

    1996-01-01

    A method for analysis of progressive failure in the Computational Structural Mechanics Testbed is presented in this report. The relationship employed in this analysis describes the matrix crack damage and fiber fracture via kinematics-based volume-averaged variables. Damage accumulation during monotonic and cyclic loads is predicted by damage evolution laws for tensile load conditions. The implementation of this damage model required the development of two testbed processors. While this report concentrates on the theory and usage of these processors, a complete list of all testbed processors and inputs that are required for this analysis are included. Sample calculations for laminates subjected to monotonic and cyclic loads were performed to illustrate the damage accumulation, stress redistribution, and changes to the global response that occur during the load history. Residual strength predictions made with this information compared favorably with experimental measurements.

  11. Experimental Validation of Model Updating and Damage Detection via Eigenvalue Sensitivity Methods with Artificial Boundary Conditions

    DTIC Science & Technology

    2017-09-01

    VALIDATION OF MODEL UPDATING AND DAMAGE DETECTION VIA EIGENVALUE SENSITIVITY METHODS WITH ARTIFICIAL BOUNDARY CONDITIONS by Matthew D. Bouwense...VALIDATION OF MODEL UPDATING AND DAMAGE DETECTION VIA EIGENVALUE SENSITIVITY METHODS WITH ARTIFICIAL BOUNDARY CONDITIONS 5. FUNDING NUMBERS 6. AUTHOR...unlimited. EXPERIMENTAL VALIDATION OF MODEL UPDATING AND DAMAGE DETECTION VIA EIGENVALUE SENSITIVITY METHODS WITH ARTIFICIAL BOUNDARY

  12. A study on MFL based wire rope damage detection

    NASA Astrophysics Data System (ADS)

    Park, J.; Kim, J.-W.; Kim, J.; Park, S.

    2017-04-01

    Non-destructive testing on wire rope is in great demand to prevent safety accidents at sites where many heavy equipment using ropes are installed. In this paper, a research on quantification of magnetic flux leakage (MFL) signals were carried out to detect damages on wire rope. First, a simulation study was performed with a steel rod model using a finite element analysis (FEA) program. The leakage signals from the simulation study were obtained and it was compared for parameter: depth of defect. Then, an experiment on same conditions was conducted to verify the results of the simulation. Throughout the results, the MFL signal was quantified and a wire rope damage detection was then confirmed to be feasible. In further study, it is expected that the damage characterization of an entire specimen will be visualized as well.

  13. Anisotropic constitutive model incorporating multiple damage mechanisms for multiscale simulation of dental enamel.

    PubMed

    Ma, Songyun; Scheider, Ingo; Bargmann, Swantje

    2016-09-01

    An anisotropic constitutive model is proposed in the framework of finite deformation to capture several damage mechanisms occurring in the microstructure of dental enamel, a hierarchical bio-composite. It provides the basis for a homogenization approach for an efficient multiscale (in this case: multiple hierarchy levels) investigation of the deformation and damage behavior. The influence of tension-compression asymmetry and fiber-matrix interaction on the nonlinear deformation behavior of dental enamel is studied by 3D micromechanical simulations under different loading conditions and fiber lengths. The complex deformation behavior and the characteristics and interaction of three damage mechanisms in the damage process of enamel are well captured. The proposed constitutive model incorporating anisotropic damage is applied to the first hierarchical level of dental enamel and validated by experimental results. The effect of the fiber orientation on the damage behavior and compressive strength is studied by comparing micro-pillar experiments of dental enamel at the first hierarchical level in multiple directions of fiber orientation. A very good agreement between computational and experimental results is found for the damage evolution process of dental enamel. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Modelling and Holographic Visualization of Space Radiation-Induced DNA Damage

    NASA Technical Reports Server (NTRS)

    Plante, Ianik

    2017-01-01

    Space radiation is composed by a mixture of ions of different energies. Among these, heavy inos are of particular importance because their health effects are poorly understood. In. the recent years, a software named RITRACKS (Relativistic Ion Tracks) was developed to simulate the detailed radiation track structure, several DNA models and DNA damage. As the DNA structure is complex due to packing, it is difficult to the damage using a regular computer screen.

  15. Environmental Barrier Coating Fracture, Fatigue and High-Heat-Flux Durability Modeling and Stochastic Progressive Damage Simulation

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Nemeth, Noel N.

    2017-01-01

    Advanced environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect emerging light-weight SiC/SiC ceramic matrix composite (CMC) engine components, further raising engine operating temperatures and performance. Because the environmental barrier coating systems are critical to the performance, reliability and durability of these hot-section ceramic engine components, a prime-reliant coating system along with established life design methodology are required for the hot-section ceramic component insertion into engine service. In this paper, we have first summarized some observations of high temperature, high-heat-flux environmental degradation and failure mechanisms of environmental barrier coating systems in laboratory simulated engine environment tests. In particular, the coating surface cracking morphologies and associated subsequent delamination mechanisms under the engine level high-heat-flux, combustion steam, and mechanical creep and fatigue loading conditions will be discussed. The EBC compostion and archtechture improvements based on advanced high heat flux environmental testing, and the modeling advances based on the integrated Finite Element Analysis Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program will also be highlighted. The stochastic progressive damage simulation successfully predicts mud flat damage pattern in EBCs on coated 3-D specimens, and a 2-D model of through-the-thickness cross-section. A 2-parameter Weibull distribution was assumed in characterizing the coating layer stochastic strength response and the formation of damage was therefore modeled. The damage initiation and coalescence into progressively smaller mudflat crack cells was demonstrated. A coating life prediction framework may be realized by examining the surface crack initiation and delamination propagation in conjunction with environmental

  16. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Abdeljaber, Osama; Avci, Onur; Kiranyaz, Serkan; Gabbouj, Moncef; Inman, Daniel J.

    2017-02-01

    Structural health monitoring (SHM) and vibration-based structural damage detection have been a continuous interest for civil, mechanical and aerospace engineers over the decades. Early and meticulous damage detection has always been one of the principal objectives of SHM applications. The performance of a classical damage detection system predominantly depends on the choice of the features and the classifier. While the fixed and hand-crafted features may either be a sub-optimal choice for a particular structure or fail to achieve the same level of performance on another structure, they usually require a large computation power which may hinder their usage for real-time structural damage detection. This paper presents a novel, fast and accurate structural damage detection system using 1D Convolutional Neural Networks (CNNs) that has an inherent adaptive design to fuse both feature extraction and classification blocks into a single and compact learning body. The proposed method performs vibration-based damage detection and localization of the damage in real-time. The advantage of this approach is its ability to extract optimal damage-sensitive features automatically from the raw acceleration signals. Large-scale experiments conducted on a grandstand simulator revealed an outstanding performance and verified the computational efficiency of the proposed real-time damage detection method.

  17. Characteristics of Creep Damage for 60Sn-40Pb Solder Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Y.; Chow, C.L.; Fang, H.E.

    This paper presents a viscoplasticity model taking into account the effects of change in grain or phase size and damage on the characterization of creep damage in 60Sn-40Pb solder. Based on the theory of damage mechanics, a two-scalar damage model is developed for isotropic materials by introducing the free energy equivalence principle. The damage evolution equations are derived in terms of the damage energy release rates. In addition, a failure criterion is developed based on the postulation that a material element is said to have ruptured when the total damage accumulated in the element reaches a critical value. The damagemore » coupled viscoplasticity model is discretized and coded in a general-purpose finite element program known as ABAQUS through its user-defined material subroutine UMAT. To illustrate the application of the model, several example cases are introduced to analyze, both numerically and experimentally, the tensile creep behaviors of the material at three stress levels. The model is then applied to predict the deformation of a notched specimen under monotonic tension at room temperature (22 C). The results demonstrate that the proposed model can successfully predict the viscoplastic behavior of the solder material.« less

  18. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Torres, S.; Truong, T.; Moyer, E. L.; Kumar, A.; Tahimic, Candice C. G.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2016-01-01

    Bone loss can occur due to many challenges such age, radiation, microgravity, and Reactive Oxygen Species (ROS) play a critical role in bone resorption by osteoclasts (Bartell et al. 2014). We hypothesize that suppression of excess ROS in skeletal cells, both osteoblasts and osteoclasts, regulates skeletal growth and remodeling. To test our hypothesis, we used transgenic mCAT mice which overexpress the human anti-oxidant catalase gene targeted to the mitochondria, the main site for endogenous ROS production. mCAT mice have a longer life-span than wildtype controls and have been used to study various age-related disorders. To stimulate remodeling, 16 week old mCAT mice or wildtype mice were exposed to treatment (hindlimb-unloading and total body-irradiation) or sham treatment conditions (control). Tissues were harvested 2 weeks later for skeletal analysis (microcomputed tomography), biochemical analysis (gene expression and oxidative damage measurements), and ex vivo bone marrow derived cell culture (osteoblastogenesis and osteoclastogenesis). mCAT mice expressed the transgene and displayed elevated catalase activity in skeletal tissue and marrow-derived osteoblasts and osteoclasts grown ex vivo. In addition, when challenged with treatment, bone tissues from wildtype mice showed elevated levels of malondialdehyde (MDA), indicating oxidative damage) whereas mCAT mice did not. Correlation analysis revealed that increased catalase activity significantly correlated with decreased MDA levels and that increased oxidative damage correlated with decreased percent bone volume (BVTV). In addition, ex-vivo cultured osteoblast colony growth correlated with catalase activity in the osteoblasts. Thus, we showed that these transgenic mice can be used as a model to study the relationship between markers of oxidative damage and skeletal properties. mCAT mice displayed reduced BVTV and trabecular number relative to wildtype mice, as well as increased structural model index in the

  19. Synthetic Modifications In the Frequency Domain for Finite Element Model Update and Damage Detection

    DTIC Science & Technology

    2017-09-01

    Sensitivity-based finite element model updating and structural damage detection has been limited by the number of modes available in a vibration test and...increase the number of modes and corresponding sensitivity data by artificially constraining the structure under test, producing a large number of... structural modifications to the measured data, including both springs-to-ground and mass modifications. This is accomplished with frequency domain

  20. Guided wave localization of damage via sparse reconstruction

    NASA Astrophysics Data System (ADS)

    Levine, Ross M.; Michaels, Jennifer E.; Lee, Sang Jun

    2012-05-01

    Ultrasonic guided waves are frequently applied for structural health monitoring and nondestructive evaluation of plate-like metallic and composite structures. Spatially distributed arrays of fixed piezoelectric transducers can be used to detect damage by recording and analyzing all pairwise signal combinations. By subtracting pre-recorded baseline signals, the effects due to scatterer interactions can be isolated. Given these residual signals, techniques such as delay-and-sum imaging are capable of detecting flaws, but do not exploit the expected sparse nature of damage. It is desired to determine the location of a possible flaw by leveraging the anticipated sparsity of damage; i.e., most of the structure is assumed to be damage-free. Unlike least-squares methods, L1-norm minimization techniques favor sparse solutions to inverse problems such as the one considered here of locating damage. Using this type of method, it is possible to exploit sparsity of damage by formulating the imaging process as an optimization problem. A model-based damage localization method is presented that simultaneously decomposes all scattered signals into location-based signal components. The method is first applied to simulated data to investigate sensitivity to both model mismatch and additive noise, and then to experimental data recorded from an aluminum plate with artificial damage. Compared to delay-and-sum imaging, results exhibit a significant reduction in both spot size and imaging artifacts when the model is reasonably well-matched to the data.

  1. A robust damage-detection technique with environmental variability combining time-series models with principal components

    NASA Astrophysics Data System (ADS)

    Lakshmi, K.; Rama Mohan Rao, A.

    2014-10-01

    In this paper, a novel output-only damage-detection technique based on time-series models for structural health monitoring in the presence of environmental variability and measurement noise is presented. The large amount of data obtained in the form of time-history response is transformed using principal component analysis, in order to reduce the data size and thereby improve the computational efficiency of the proposed algorithm. The time instant of damage is obtained by fitting the acceleration time-history data from the structure using autoregressive (AR) and AR with exogenous inputs time-series prediction models. The probability density functions (PDFs) of damage features obtained from the variances of prediction errors corresponding to references and healthy current data are found to be shifting from each other due to the presence of various uncertainties such as environmental variability and measurement noise. Control limits using novelty index are obtained using the distances of the peaks of the PDF curves in healthy condition and used later for determining the current condition of the structure. Numerical simulation studies have been carried out using a simply supported beam and also validated using an experimental benchmark data corresponding to a three-storey-framed bookshelf structure proposed by Los Alamos National Laboratory. Studies carried out in this paper clearly indicate the efficiency of the proposed algorithm for damage detection in the presence of measurement noise and environmental variability.

  2. Probabilistic Fatigue Damage Prognosis Using a Surrogate Model Trained Via 3D Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Leser, Patrick E.; Hochhalter, Jacob D.; Newman, John A.; Leser, William P.; Warner, James E.; Wawrzynek, Paul A.; Yuan, Fuh-Gwo

    2015-01-01

    Utilizing inverse uncertainty quantification techniques, structural health monitoring can be integrated with damage progression models to form probabilistic predictions of a structure's remaining useful life. However, damage evolution in realistic structures is physically complex. Accurately representing this behavior requires high-fidelity models which are typically computationally prohibitive. In the present work, a high-fidelity finite element model is represented by a surrogate model, reducing computation times. The new approach is used with damage diagnosis data to form a probabilistic prediction of remaining useful life for a test specimen under mixed-mode conditions.

  3. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  4. Strain-Based Damage Determination Using Finite Element Analysis for Structural Health Management

    NASA Technical Reports Server (NTRS)

    Hochhalter, Jacob D.; Krishnamurthy, Thiagaraja; Aguilo, Miguel A.

    2016-01-01

    A damage determination method is presented that relies on in-service strain sensor measurements. The method employs a gradient-based optimization procedure combined with the finite element method for solution to the forward problem. It is demonstrated that strains, measured at a limited number of sensors, can be used to accurately determine the location, size, and orientation of damage. Numerical examples are presented to demonstrate the general procedure. This work is motivated by the need to provide structural health management systems with a real-time damage characterization. The damage cases investigated herein are characteristic of point-source damage, which can attain critical size during flight. The procedure described can be used to provide prognosis tools with the current damage configuration.

  5. Inspection of the Math Model Tools for On-Orbit Assessment of Impact Damage Report. Version 1.0

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Raju, Ivatury S.; Piascik, Robert S.; Kramer White, Julie; Labbe, Steve G.; Rotter, Hank A.

    2005-01-01

    In Spring of 2005, the NASA Engineering Safety Center (NESC) was engaged by the Space Shuttle Program (SSP) to peer review the suite of analytical tools being developed to support the determination of impact and damage tolerance of the Orbiter Thermal Protection Systems (TPS). The NESC formed an independent review team with the core disciplines of materials, flight sciences, structures, mechanical analysis and thermal analysis. The Math Model Tools reviewed included damage prediction and stress analysis, aeroheating analysis, and thermal analysis tools. Some tools are physics-based and other tools are empirically-derived. Each tool was created for a specific use and timeframe, including certification, real-time pre-launch assessments, and real-time on-orbit assessments. The tools are used together in an integrated strategy for assessing the ramifications of impact damage to tile and RCC. The NESC teams conducted a peer review of the engineering data package for each Math Model Tool. This report contains the summary of the team observations and recommendations from these reviews.

  6. Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix and Polymer Matrix Composite Structures

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.

    2016-01-01

    Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.

  7. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.

    PubMed

    Natali, Arturo N; Carniel, Emanuele L; Pavan, Piero G; Sander, Franz G; Dorow, Christina; Geiger, Martin

    2008-06-01

    The periodontal ligament (PDL), as other soft biological tissues, shows a strongly non-linear and time-dependent mechanical response and can undergo large strains under physiological loads. Therefore, the characterization of the mechanical behavior of soft tissues entails the definition of constitutive models capable of accounting for geometric and material non-linearity. The microstructural arrangement determines specific anisotropic properties. A hyperelastic anisotropic formulation is adopted as the basis for the development of constitutive models for the PDL and properly arranged for investigating the viscous and damage phenomena as well to interpret significant aspects pertaining to ordinary and degenerative conditions. Visco-hyperelastic models are used to analyze the time-dependent mechanical response, while elasto-damage models account for the stiffness and strength decrease that can develop under significant loading or degenerative conditions. Experimental testing points out that damage response is affected by the strain rate associated with loading, showing a decrease in the damage limits as the strain rate increases. These phenomena can be investigated by means of a model capable of accounting for damage phenomena in relation to viscous effects. The visco-hyperelastic-damage model developed is defined on the basis of a Helmholtz free energy function depending on the strain-damage history. In particular, a specific damage criterion is formulated in order to evaluate the influence of the strain rate on damage. The model can be implemented in a general purpose finite element code. The accuracy of the formulation is evaluated by using results of experimental tests performed on animal model, accounting for different strain rates and for strain states capable of inducing damage phenomena. The comparison shows a good agreement between numerical results and experimental data.

  8. Internal state variable plasticity-damage modeling of AISI 4140 steel including microstructure-property relations: temperature and strain rate effects

    NASA Astrophysics Data System (ADS)

    Nacif el Alaoui, Reda

    Mechanical structure-property relations have been quantified for AISI 4140 steel. under different strain rates and temperatures. The structure-property relations were used. to calibrate a microstructure-based internal state variable plasticity-damage model for. monotonic tension, compression and torsion plasticity, as well as damage evolution. Strong stress state and temperature dependences were observed for the AISI 4140 steel. Tension tests on three different notched Bridgman specimens were undertaken to study. the damage-triaxiality dependence for model validation purposes. Fracture surface. analysis was performed using Scanning Electron Microscopy (SEM) to quantify the void. nucleation and void sizes in the different specimens. The stress-strain behavior exhibited. a fairly large applied stress state (tension, compression dependence, and torsion), a. moderate temperature dependence, and a relatively small strain rate dependence.

  9. Modeling and Measuring the Effects of Radiation Damage Annealing on Helium Diffusion Kinetics in Apatite

    NASA Astrophysics Data System (ADS)

    Willett, C. D.; Fox, M.; Shuster, D. L.

    2016-12-01

    Understanding helium diffusion kinetics in apatite is critical for the accurate interpretation of (U-Th)/He thermochronometric data. This problem is complicated by the observation that helium diffusivity is not a simple function of temperature, but may evolve as a function of damage to the apatite crystal lattice resulting from alpha recoil. This `radiation damage' increases as a function of the amount of radiometric parent products, or effective uranium concentration, and time, but decreases due to thermal annealing of damage, necessitating a detailed understanding of radiation damage production and annealing in cases of burial heating over geologic timescales. Published observations [1,2] suggest that annealing rates of damage caused by alpha recoil and fission tracks in apatite differ. Existing models, however, assume the diffusion kinetics resulting from the two sources of damage are identical [3], demonstrating the need for further investigation of these damage sources. We present modeling and experimental work designed to interrogate the effects of radiation damage and its annealing on helium diffusion kinetics in apatite. Using previously published results [4] that investigated the effects of annealing temperature and duration on measured helium diffusivity, we fit a set of functions that are then integrated into a numerical model that tracks the evolution of radiation damage and apparent (U-Th)/He age. We compare the results of this model calibration to existing models [3]. In addition, we present data from two suites of diffusion experiments. The first suite, intended to test the published methodology and results, uses Durango apatite, while the second uses Sierran (CA) granite as a first test to determine if apatite of varying chemistry and age responds differently to the thermal annealing of radiation damage. Ultimately, the updated model and experimental results will benefit the interpretation of the effects of radiation damage accumulation and

  10. Modeling pluvial flooding damage in urban environments: spatial relationships between citizens' complaints and overland catchment areas

    NASA Astrophysics Data System (ADS)

    Gaitan, Santiago; ten Veldhuis, Marie-Claire; van de Giesen, Nick

    2013-04-01

    Extreme weather events such as floods and storms are expected to cause severe economic losses in The Netherlands. Cumulative damage due to pluvial flooding can be considerable, especially in lowland areas where this type of floods occurs relatively frequently. Currently, in The Netherlands, water-related damages to property and contents are covered through private insurance. As pluvial flooding is becoming heavier and more likely to occur, sound modelling of damages is required to ensure that insurance systems are able to stand as an adaptation measure. Current damage models based on rainfall intensity, registries of insurance claims, and classifications of building types are unable to fully explain damage variability. Further developments assessing additional explanatory factors and reducing uncertainties, are required in order to significantly explain damage. In this study, urban topography is used as an explanatory factor for modelling of urban pluvial flooding. Flood damage is evaluated based on complaints data, a valuable resource for assessing vulnerability to urban pluvial flooding. Though previous research has shown coincidences between the localization of high complaint counts and large size catchments areas in Rotterdam, additional research is needed to establish the precise spatial relationship of those two variables. This additional task is the focus of the presented work. To that end a data base of complaints, that was made available by the Municipality Administration of the City, will be analysed. It comprises close to 36800 complaints from 2004 to 2011. The geographical position of the registries is aggregated into 4 to 6-digit Postal Code zones, which represents entire streets or relative positions along a street, respectively. The Municipality also provided the DEM, characterized by a spatial resolution of 0.5 m × 0.5 m, a vertical precision of 5 cm, and an accuracy better than two standard deviations of 15 cm. First the localization of complaints

  11. Interfacial damage identification of steel and concrete composite beams based on piezoceramic wave method.

    PubMed

    Yan, Shi; Dai, Yong; Zhao, Putian; Liu, Weiling

    2018-01-01

    Steel-concrete composite structures are playing an increasingly important role in economic construction because of a series of advantages of great stiffness, good seismic performance, steel material saving, cost efficiency, convenient construction, etc. However, in service process, due to the long-term effects of environmental impacts and dynamic loading, interfaces of a composite structure might generate debonding cracks, relative slips or separations, and so on, lowering the composite effect of the composite structure. In this paper, the piezoceramics (PZT) are used as transducers to perform experiments on interface debonding slips and separations of composite beams, respectively, aimed at proposing an interface damage identification model and a relevant damage detection innovation method based on PZT wave technology. One part of various PZT patches was embedded in concrete as "smart aggregates," and another part of the PZT patches was pasted on the surface of the steel beam flange, forming a sensor array. A push-out test for four specimens was carried out and experimental results showed that, under the action of the external loading, the received signal amplitudes will increasingly decrease with increase of debonding slips along the interface. The proposed signal energy-based interface damage detection algorithm is highly efficient in surface state evaluations of composite beams.

  12. Characterizing Fracturing of Clay-Rich Lower Watrous Rock: From Laboratory Experiments to Nonlocal Damage-Based Simulations

    NASA Astrophysics Data System (ADS)

    Guy, N.; Seyedi, D. M.; Hild, F.

    2018-06-01

    The work presented herein aims at characterizing and modeling fracturing (i.e., initiation and propagation of cracks) in a clay-rich rock. The analysis is based on two experimental campaigns. The first one relies on a probabilistic analysis of crack initiation considering Brazilian and three-point flexural tests. The second one involves digital image correlation to characterize crack propagation. A nonlocal damage model based on stress regularization is used for the simulations. Two thresholds both based on regularized stress fields are considered. They are determined from the experimental campaigns performed on Lower Watrous rock. The results obtained with the proposed approach are favorably compared with the experimental results.

  13. A comprehensive analysis of earthquake damage patterns using high dimensional model representation feature selection

    NASA Astrophysics Data System (ADS)

    Taşkin Kaya, Gülşen

    2013-10-01

    Recently, earthquake damage assessment using satellite images has been a very popular ongoing research direction. Especially with the availability of very high resolution (VHR) satellite images, a quite detailed damage map based on building scale has been produced, and various studies have also been conducted in the literature. As the spatial resolution of satellite images increases, distinguishability of damage patterns becomes more cruel especially in case of using only the spectral information during classification. In order to overcome this difficulty, textural information needs to be involved to the classification to improve the visual quality and reliability of damage map. There are many kinds of textural information which can be derived from VHR satellite images depending on the algorithm used. However, extraction of textural information and evaluation of them have been generally a time consuming process especially for the large areas affected from the earthquake due to the size of VHR image. Therefore, in order to provide a quick damage map, the most useful features describing damage patterns needs to be known in advance as well as the redundant features. In this study, a very high resolution satellite image after Iran, Bam earthquake was used to identify the earthquake damage. Not only the spectral information, textural information was also used during the classification. For textural information, second order Haralick features were extracted from the panchromatic image for the area of interest using gray level co-occurrence matrix with different size of windows and directions. In addition to using spatial features in classification, the most useful features representing the damage characteristic were selected with a novel feature selection method based on high dimensional model representation (HDMR) giving sensitivity of each feature during classification. The method called HDMR was recently proposed as an efficient tool to capture the input

  14. FEM modeling and histological analyses on thermal damage induced in facial skin resurfacing procedure with different CO2 laser pulse duration

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Zingoni, Tiziano; Di Cicco, Emiliano; Manetti, Leonardo; Pini, Roberto; Fortuna, Damiano

    2011-07-01

    Laser light is nowadays routinely used in the aesthetic treatments of facial skin, such as in laser rejuvenation, scar removal etc. The induced thermal damage may be varied by setting different laser parameters, in order to obtain a particular aesthetic result. In this work, it is proposed a theoretical study on the induced thermal damage in the deep tissue, by considering different laser pulse duration. The study is based on the Finite Element Method (FEM): a bidimensional model of the facial skin is depicted in axial symmetry, considering the different skin structures and their different optical and thermal parameters; the conversion of laser light into thermal energy is modeled by the bio-heat equation. The light source is a CO2 laser, with different pulse durations. The model enabled to study the thermal damage induced into the skin, by calculating the Arrhenius integral. The post-processing results enabled to study in space and time the temperature dynamics induced in the facial skin, to study the eventual cumulative effects of subsequent laser pulses and to optimize the procedure for applications in dermatological surgery. The calculated data where then validated in an experimental measurement session, performed in a sheep animal model. Histological analyses were performed on the treated tissues, evidencing the spatial distribution and the entity of the thermal damage in the collageneous tissue. Modeling and experimental results were in good agreement, and they were used to design a new optimized laser based skin resurfacing procedure.

  15. Interaction of 1.319 μm laser with skin: an optical-thermal-damage model and experimental validation

    NASA Astrophysics Data System (ADS)

    Jiao, Luguang; Yang, Zaifu; Wang, Jiarui

    2014-09-01

    With the widespread use of high-power laser systems operating within the wavelength region of approximately 1.3 to 1.4 μm, it becomes very necessary to refine the laser safety guidelines setting the exposure limits for the eye and skin. In this paper, an optical-thermal-damage model was developed to simulate laser propagation, energy deposition, heat transfer and thermal damage in the skin for 1.319 μm laser irradiation. Meanwhile, an experiment was also conducted in vitro to measure the tempreture history of a porcine skin specimen irradiated by a 1.319 μm laser. Predictions from the model included light distribution in the skin, temperature response and thermal damge level of the tissue. It was shown that the light distribution region was much larger than that of the incident laser at the wavelength of 1.319 μm, and the maximum value of the fluence rate located on the interior region of the skin, not on the surface. By comparing the calculated temperature curve with the experimentally recorded temperautre data, good agreement was shown betweeen them, which validated the numerical model. The model also indicated that the damage integral changed little when the temperature of skin tissue was lower than about 55 °C, after that, the integral increased rapidly and denatunation of the tissue would occur. Based on this model, we can further explore the damage mechanisms and trends for the skin and eye within the wavelength region of 1.3 μm to 1.4 μm, incorporating with in vivo experimental investigations.

  16. Phenomenological approach to mechanical damage growth analysis.

    PubMed

    Pugno, Nicola; Bosia, Federico; Gliozzi, Antonio S; Delsanto, Pier Paolo; Carpinteri, Alberto

    2008-10-01

    The problem of characterizing damage evolution in a generic material is addressed with the aim of tracing it back to existing growth models in other fields of research. Based on energetic considerations, a system evolution equation is derived for a generic damage indicator describing a material system subjected to an increasing external stress. The latter is found to fit into the framework of a recently developed phenomenological universality (PUN) approach and, more specifically, the so-called U2 class. Analytical results are confirmed by numerical simulations based on a fiber-bundle model and statistically assigned local strengths at the microscale. The fits with numerical data prove, with an excellent degree of reliability, that the typical evolution of the damage indicator belongs to the aforementioned PUN class. Applications of this result are briefly discussed and suggested.

  17. An Improved Gaussian Mixture Model for Damage Propagation Monitoring of an Aircraft Wing Spar under Changing Structural Boundary Conditions.

    PubMed

    Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Fang, Fang

    2016-02-26

    Structural Health Monitoring (SHM) technology is considered to be a key technology to reduce the maintenance cost and meanwhile ensure the operational safety of aircraft structures. It has gradually developed from theoretic and fundamental research to real-world engineering applications in recent decades. The problem of reliable damage monitoring under time-varying conditions is a main issue for the aerospace engineering applications of SHM technology. Among the existing SHM methods, Guided Wave (GW) and piezoelectric sensor-based SHM technique is a promising method due to its high damage sensitivity and long monitoring range. Nevertheless the reliability problem should be addressed. Several methods including environmental parameter compensation, baseline signal dependency reduction and data normalization, have been well studied but limitations remain. This paper proposes a damage propagation monitoring method based on an improved Gaussian Mixture Model (GMM). It can be used on-line without any structural mechanical model and a priori knowledge of damage and time-varying conditions. With this method, a baseline GMM is constructed first based on the GW features obtained under time-varying conditions when the structure under monitoring is in the healthy state. When a new GW feature is obtained during the on-line damage monitoring process, the GMM can be updated by an adaptive migration mechanism including dynamic learning and Gaussian components split-merge. The mixture probability distribution structure of the GMM and the number of Gaussian components can be optimized adaptively. Then an on-line GMM can be obtained. Finally, a best match based Kullback-Leibler (KL) divergence is studied to measure the migration degree between the baseline GMM and the on-line GMM to reveal the weak cumulative changes of the damage propagation mixed in the time-varying influence. A wing spar of an aircraft is used to validate the proposed method. The results indicate that the crack

  18. Modelling the influence of predicted future climate change on the risk of wind damage within New Zealand's planted forests.

    PubMed

    Moore, John R; Watt, Michael S

    2015-08-01

    Wind is the major abiotic disturbance in New Zealand's planted forests, but little is known about how the risk of wind damage may be affected by future climate change. We linked a mechanistic wind damage model (ForestGALES) to an empirical growth model for radiata pine (Pinus radiata D. Don) and a process-based growth model (cenw) to predict the risk of wind damage under different future emissions scenarios and assumptions about the future wind climate. The cenw model was used to estimate site productivity for constant CO2 concentration at 1990 values and for assumed increases in CO2 concentration from current values to those expected during 2040 and 2090 under the B1 (low), A1B (mid-range) and A2 (high) emission scenarios. Stand development was modelled for different levels of site productivity, contrasting silvicultural regimes and sites across New Zealand. The risk of wind damage was predicted for each regime and emission scenario combination using the ForestGALES model. The sensitivity to changes in the intensity of the future wind climate was also examined. Results showed that increased tree growth rates under the different emissions scenarios had the greatest impact on the risk of wind damage. The increase in risk was greatest for stands growing at high stand density under the A2 emissions scenario with increased CO2 concentration. The increased productivity under this scenario resulted in increased tree height, without a corresponding increase in diameter, leading to more slender trees that were predicted to be at greater risk from wind damage. The risk of wind damage was further increased by the modest increases in the extreme wind climate that are predicted to occur. These results have implications for the development of silvicultural regimes that are resilient to climate change and also indicate that future productivity gains may be offset by greater losses from disturbances. © 2015 John Wiley & Sons Ltd.

  19. Seismic behavior of an Italian Renaissance Sanctuary: Damage assessment by numerical modelling

    NASA Astrophysics Data System (ADS)

    Clementi, Francesco; Nespeca, Andrea; Lenci, Stefano

    2016-12-01

    The paper deals with modelling and analysis of architectural heritage through the discussion of an illustrative case study: the Medieval Sanctuary of Sant'Agostino (Offida, Italy). Using the finite element technique, a 3D numerical model of the sanctuary is built, and then used to identify the main sources of the damages. The work shows that advanced numerical analyses could offer significant information for the understanding of the causes of existing damage and, more generally, on the seismic vulnerability.

  20. Simulation of Anisotropic Rock Damage for Geologic Fracturing

    NASA Astrophysics Data System (ADS)

    Busetti, S.; Xu, H.; Arson, C. F.

    2014-12-01

    A continuum damage model for differential stress-induced anisotropic crack formation and stiffness degradation is used to study geologic fracturing in rocks. The finite element-based model solves for deformation in the quasi-linear elastic domain and determines the six component damage tensor at each deformation increment. The model permits an isotropic or anisotropic intact or pre-damaged reference state, and the elasticity tensor evolves depending on the stress path. The damage variable, similar to Oda's fabric tensor, grows when the surface energy dissipated by three-dimensional opened cracks exceeds a threshold defined at the appropriate scale of the representative elementary volume (REV). At the laboratory or wellbore scale (<1m) brittle continuum damage reflects microcracking, grain boundary separation, grain crushing, or fine delamination, such as in shale. At outcrop (1m-100m), seismic (10m-1000m), and tectonic (>1000m) scales the damaged REV reflects early natural fracturing (background or tectonic fracturing) or shear strain localization (fault process zone, fault-tip damage, etc.). The numerical model was recently benchmarked against triaxial stress-strain data from laboratory rock mechanics tests. However, the utility of the model to predict geologic fabric such as natural fracturing in hydrocarbon reservoirs was not fully explored. To test the ability of the model to predict geological fracturing, finite element simulations (Abaqus) of common geologic scenarios with known fracture patterns (borehole pressurization, folding, faulting) are simulated and the modeled damage tensor is compared against physical fracture observations. Simulated damage anisotropy is similar to that derived using fractured rock-mass upscaling techniques for pre-determined fracture patterns. This suggests that if model parameters are constrained with local data (e.g., lab, wellbore, or reservoir domain), forward modeling could be used to predict mechanical fabric at the relevant

  1. Characteristics of shear damage for 60Sn-40Pb solder material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, H.E.; Chow, C.L.; Wei, Y.

    This paper presents an investigation of the development of a continuum damage model capable of accurately analyzing shear damage in 60Sn-40Pb solder material. Based on the theory of damage mechanics, an internal state variable known as the damage variable is introduced to characterize material degradation caused by the change of material microstructures under load. A damage surface in stress space is proposed to quantify damage initiation and its successive expanding surfaces to represent damage hardening. With the aid of irreversible thermodynamics, the damage-coupled constitutive equations and the damage evolution equations are established. A failure criterion is proposed based on themore » accumulation of overall damage in the material. The damage model is implemented in a general purpose finite element program ABAQUS through its user-defined material subroutine UMAT. The program is applied to predict shear deformation in a notched specimen. The predicted failure mode and maximum load agree well with those measured experimentally. The effect of finite element meshing on the numerical results is also examined and discussed.« less

  2. Damage Identification of Piles Based on Vibration Characteristics

    PubMed Central

    Zhang, Xiaozhong; Yao, Wenjuan; Chen, Bo; Liu, Dewen

    2014-01-01

    A method of damage identification of piles was established by using vibration characteristics. The approach focused on the application of the element strain energy and sensitive modals. A damage identification equation of piles was deduced using the structural vibration equation. The equation contained three major factors: change rate of element modal strain energy, damage factor of pile, and sensitivity factor of modal damage. The sensitive modals of damage identification were selected by using sensitivity factor of modal damage firstly. Subsequently, the indexes for early-warning of pile damage were established by applying the change rate of strain energy. Then the technology of computational analysis of wavelet transform was used to damage identification for pile. The identification of small damage of pile was completely achieved, including the location of damage and the extent of damage. In the process of identifying the extent of damage of pile, the equation of damage identification was used in many times. Finally, a stadium project was used as an example to demonstrate the effectiveness of the proposed method of damage identification for piles. The correctness and practicability of the proposed method were verified by comparing the results of damage identification with that of low strain test. The research provided a new way for damage identification of piles. PMID:25506062

  3. Finite element model updating and damage detection for bridges using vibration measurement.

    DOT National Transportation Integrated Search

    2013-12-01

    In this report, the results of a study on developing a damage detection methodology based on Statistical Pattern Recognition are : presented. This methodology uses a new damage sensitive feature developed in this study that relies entirely on modal :...

  4. Improved damage imaging in aerospace structures using a piezoceramic hybrid pin-force wave generation model

    NASA Astrophysics Data System (ADS)

    Ostiguy, Pierre-Claude; Quaegebeur, Nicolas; Masson, Patrice

    2014-03-01

    In this study, a correlation-based imaging technique called "Excitelet" is used to monitor an aerospace grade aluminum plate, representative of an aircraft component. The principle is based on ultrasonic guided wave generation and sensing using three piezoceramic (PZT) transducers, and measurement of reflections induced by potential defects. The method uses a propagation model to correlate measured signals with a bank of signals and imaging is performed using a roundrobin procedure (Full-Matrix Capture). The formulation compares two models for the complex transducer dynamics: one where the shear stress at the tip of the PZT is considered to vary as a function of the frequency generated, and one where the PZT is discretized in order to consider the shear distribution under the PZT. This method allows taking into account the transducer dynamics and finite dimensions, multi-modal and dispersive characteristics of the material and complex interactions between guided wave and damages. Experimental validation has been conducted on an aerospace grade aluminum joint instrumented with three circular PZTs of 10 mm diameter. A magnet, acting as a reflector, is used in order to simulate a local reflection in the structure. It is demonstrated that the defect can be accurately detected and localized. The two models proposed are compared to the classical pin-force model, using narrow and broad-band excitations. The results demonstrate the potential of the proposed imaging techniques for damage monitoring of aerospace structures considering improved models for guided wave generation and propagation.

  5. Fukunaga-Koontz feature transformation for statistical structural damage detection and hierarchical neuro-fuzzy damage localisation

    NASA Astrophysics Data System (ADS)

    Hoell, Simon; Omenzetter, Piotr

    2017-07-01

    Considering jointly damage sensitive features (DSFs) of signals recorded by multiple sensors, applying advanced transformations to these DSFs and assessing systematically their contribution to damage detectability and localisation can significantly enhance the performance of structural health monitoring systems. This philosophy is explored here for partial autocorrelation coefficients (PACCs) of acceleration responses. They are interrogated with the help of the linear discriminant analysis based on the Fukunaga-Koontz transformation using datasets of the healthy and selected reference damage states. Then, a simple but efficient fast forward selection procedure is applied to rank the DSF components with respect to statistical distance measures specialised for either damage detection or localisation. For the damage detection task, the optimal feature subsets are identified based on the statistical hypothesis testing. For damage localisation, a hierarchical neuro-fuzzy tool is developed that uses the DSF ranking to establish its own optimal architecture. The proposed approaches are evaluated experimentally on data from non-destructively simulated damage in a laboratory scale wind turbine blade. The results support our claim of being able to enhance damage detectability and localisation performance by transforming and optimally selecting DSFs. It is demonstrated that the optimally selected PACCs from multiple sensors or their Fukunaga-Koontz transformed versions can not only improve the detectability of damage via statistical hypothesis testing but also increase the accuracy of damage localisation when used as inputs into a hierarchical neuro-fuzzy network. Furthermore, the computational effort of employing these advanced soft computing models for damage localisation can be significantly reduced by using transformed DSFs.

  6. Progressive Damage Analysis of Laminated Composite (PDALC) (A Computational Model Implemented in the NASA COMET Finite Element Code). 2.0

    NASA Technical Reports Server (NTRS)

    Coats, Timothy W.; Harris, Charles E.; Lo, David C.; Allen, David H.

    1998-01-01

    A method for analysis of progressive failure in the Computational Structural Mechanics Testbed is presented in this report. The relationship employed in this analysis describes the matrix crack damage and fiber fracture via kinematics-based volume-averaged damage variables. Damage accumulation during monotonic and cyclic loads is predicted by damage evolution laws for tensile load conditions. The implementation of this damage model required the development of two testbed processors. While this report concentrates on the theory and usage of these processors, a complete listing of all testbed processors and inputs that are required for this analysis are included. Sample calculations for laminates subjected to monotonic and cyclic loads were performed to illustrate the damage accumulation, stress redistribution, and changes to the global response that occurs during the loading history. Residual strength predictions made with this information compared favorably with experimental measurements.

  7. Damage Evaluation of Concrete Column under Impact Load Using a Piezoelectric-Based EMI Technique.

    PubMed

    Fan, Shuli; Zhao, Shaoyu; Qi, Baoxin; Kong, Qingzhao

    2018-05-17

    One of the major causes of damage to column-supported concrete structures, such as bridges and highways, are collisions from moving vehicles, such as cars and ships. It is essential to quantify the collision damage of the column so that appropriate actions can be taken to prevent catastrophic events. A widely used method to assess structural damage is through the root-mean-square deviation (RMSD) damage index established by the collected data; however, the RMSD index does not truly provide quantitative information about the structure. Conversely, the damage volume ratio that can only be obtained via simulation provides better detail about the level of damage in a structure. Furthermore, as simulation can also provide the RMSD index relating to that particular damage volume ratio, the empirically obtained RMSD index can thus be related to the structural damage degree through comparison of the empirically obtained RMSD index to numerically-obtained RMSD. Thus, this paper presents a novel method in which the impact-induced damage to a structure is simulated in order to obtain the relationship between the damage volume ratio to the RMSD index, and the relationship can be used to predict the true damage degree by comparison to the empirical RMSD index. In this paper, the collision damage of a bridge column by moving vehicles was simulated by using a concrete beam model subjected to continuous impact loadings by a freefalling steel ball. The variation in admittance signals measured by the surface attached lead zirconate titanate (PZT) patches was used to establish the RMSD index. The results demonstrate that the RMSD index and the damage ratio of concrete have a linear relationship for the particular simulation model.

  8. Modeling of beam-induced damage of the LHC tertiary collimators

    NASA Astrophysics Data System (ADS)

    Quaranta, E.; Bertarelli, A.; Bruce, R.; Carra, F.; Cerutti, F.; Lechner, A.; Redaelli, S.; Skordis, E.; Gradassi, P.

    2017-09-01

    Modern hadron machines with high beam intensity may suffer from material damage in the case of large beam losses and even beam-intercepting devices, such as collimators, can be harmed. A systematic method to evaluate thresholds of damage owing to the impact of high energy particles is therefore crucial for safe operation and for predicting possible limitations in the overall machine performance. For this, a three-step simulation approach is presented, based on tracking simulations followed by calculations of energy deposited in the impacted material and hydrodynamic simulations to predict the thermomechanical effect of the impact. This approach is applied to metallic collimators at the CERN Large Hadron Collider (LHC), which in standard operation intercept halo protons, but risk to be damaged in the case of extraction kicker malfunction. In particular, tertiary collimators protect the aperture bottlenecks, their settings constrain the reach in β* and hence the achievable luminosity at the LHC experiments. Our calculated damage levels provide a very important input on how close to the beam these collimators can be operated without risk of damage. The results of this approach have been used already to push further the performance of the present machine. The risk of damage is even higher in the upgraded high-luminosity LHC with higher beam intensity, for which we quantify existing margins before equipment damage for the proposed baseline settings.

  9. Preliminary Results of Earthquake-Induced Building Damage Detection with Object-Based Image Classification

    NASA Astrophysics Data System (ADS)

    Sabuncu, A.; Uca Avci, Z. D.; Sunar, F.

    2016-06-01

    Earthquakes are the most destructive natural disasters, which result in massive loss of life, infrastructure damages and financial losses. Earthquake-induced building damage detection is a very important step after earthquakes since earthquake-induced building damage is one of the most critical threats to cities and countries in terms of the area of damage, rate of collapsed buildings, the damage grade near the epicenters and also building damage types for all constructions. Van-Ercis (Turkey) earthquake (Mw= 7.1) was occurred on October 23th, 2011; at 10:41 UTC (13:41 local time) centered at 38.75 N 43.36 E that places the epicenter about 30 kilometers northern part of the city of Van. It is recorded that, 604 people died and approximately 4000 buildings collapsed or seriously damaged by the earthquake. In this study, high-resolution satellite images of Van-Ercis, acquired by Quickbird-2 (Digital Globe Inc.) after the earthquake, were used to detect the debris areas using an object-based image classification. Two different land surfaces, having homogeneous and heterogeneous land covers, were selected as case study areas. As a first step of the object-based image processing, segmentation was applied with a convenient scale parameter and homogeneity criterion parameters. As a next step, condition based classification was used. In the final step of this preliminary study, outputs were compared with streetview/ortophotos for the verification and evaluation of the classification accuracy.

  10. Material damage modeling and detection in a thin metallic sheet and sandwich panel using passive acoustic transmission

    NASA Astrophysics Data System (ADS)

    Jiang, Hao

    A method is developed for modeling, detecting, and locating material damage in homogeneous thin metallic sheets and sandwich panels. Analytical and numerical models are used along with non-contact, passive acoustic transmission measurements. It is shown that global and local damage mechanisms characterized by both material and geometrical changes in structural components can be detected using passive acoustic transmission measurements. Theoretical models of a flat sheet and sandwich panel are developed to describe the effects of global material damage due to density, modulus, or thickness changes on backplane radiated sound pressure level distributions. To describe the effects of local material damage, a three-segment stepped beam model and finite element beam, plate, and sandwich panel models are developed and analyzed using the acoustic transmission approach. It is shown that increases or decreases in transmitted sound energy occur behind a damaged material component that exhibits changes in thickness or other geometric or material properties. The damage due to thickness and density changes can be detected from the acoustic transmission, but modulus changes cannot. If the damage is located at an anti-node of a certain forced vibration pattern, the damage can be more readily observed in the data. Higher excitation frequencies within the operating spectrum are preferred to lower frequencies for damage detection. With the finite element beam, plate, and sandwich panel models, local damage detection has been performed in simulations. Experiments on a baffled homogeneous sheet and sandwich panel subjected to broadband acoustic energy show that transmitted intensity measurements with non-contact probes can be used to identify and locate material defects in the sheet and sandwich panel. Material damage is most readily identified where the changes in transmitted sound intensity are largest in the resonant frequency range of the panel. The three main contributions of this

  11. Analysis of dynamic accumulative damage about the lining structure of high speed railway’s tunnel based on ultrasonic testing technology

    NASA Astrophysics Data System (ADS)

    Wang, Xiang-qiu; Zhang, Huojun; Xie, Wen-xi

    2017-08-01

    Based on the similar material model test of full tunnel, the theory of elastic wave propagation and the testing technology of intelligent ultrasonic wave had been used to research the dynamic accumulative damage characteristics of tunnel’s lining structure under the dynamic loads of high speed train. For the more, the dynamic damage variable of lining structure of high speed railway’s tunnel was obtained. The results shown that the dynamic cumulative damage of lining structure increases nonlinearly with the times of cumulative vibration, the weakest part of dynamic cumulative damage is the arch foot of tunnel. Much more attention should be paid to the design and operation management of high speed railway’s tunnel.

  12. Vibration-based damage detection in wind turbine blades using Phase-based Motion Estimation and motion magnification

    NASA Astrophysics Data System (ADS)

    Sarrafi, Aral; Mao, Zhu; Niezrecki, Christopher; Poozesh, Peyman

    2018-05-01

    Vibration-based Structural Health Monitoring (SHM) techniques are among the most common approaches for structural damage identification. The presence of damage in structures may be identified by monitoring the changes in dynamic behavior subject to external loading, and is typically performed by using experimental modal analysis (EMA) or operational modal analysis (OMA). These tools for SHM normally require a limited number of physically attached transducers (e.g. accelerometers) in order to record the response of the structure for further analysis. Signal conditioners, wires, wireless receivers and a data acquisition system (DAQ) are also typical components of traditional sensing systems used in vibration-based SHM. However, instrumentation of lightweight structures with contact sensors such as accelerometers may induce mass-loading effects, and for large-scale structures, the instrumentation is labor intensive and time consuming. Achieving high spatial measurement resolution for a large-scale structure is not always feasible while working with traditional contact sensors, and there is also the potential for a lack of reliability associated with fixed contact sensors in outliving the life-span of the host structure. Among the state-of-the-art non-contact measurements, digital video cameras are able to rapidly collect high-density spatial information from structures remotely. In this paper, the subtle motions from recorded video (i.e. a sequence of images) are extracted by means of Phase-based Motion Estimation (PME) and the extracted information is used to conduct damage identification on a 2.3-m long Skystream® wind turbine blade (WTB). The PME and phased-based motion magnification approach estimates the structural motion from the captured sequence of images for both a baseline and damaged test cases on a wind turbine blade. Operational deflection shapes of the test articles are also quantified and compared for the baseline and damaged states. In addition

  13. Hide and seek: How do DNA glycosylases locate oxidatively damaged DNA bases amidst a sea of undamaged bases?

    PubMed

    Lee, Andrea J; Wallace, Susan S

    2017-06-01

    The first step of the base excision repair (BER) pathway responsible for removing oxidative DNA damage utilizes DNA glycosylases to find and remove the damaged DNA base. How glycosylases find the damaged base amidst a sea of undamaged bases has long been a question in the BER field. Single molecule total internal reflection fluorescence microscopy (SM TIRFM) experiments have allowed for an exciting look into this search mechanism and have found that DNA glycosylases scan along the DNA backbone in a bidirectional and random fashion. By comparing the search behavior of bacterial glycosylases from different structural families and with varying substrate specificities, it was found that glycosylases search for damage by periodically inserting a wedge residue into the DNA stack as they redundantly search tracks of DNA that are 450-600bp in length. These studies open up a wealth of possibilities for further study in real time of the interactions of DNA glycosylases and other BER enzymes with various DNA substrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Damage percolation during stretch flange forming of aluminum alloy sheet

    NASA Astrophysics Data System (ADS)

    Chen, Zengtao; Worswick, Michael J.; Keith Pilkey, A.; Lloyd, David J.

    2005-12-01

    A multi-scale finite element (FE)-damage percolation model was employed to simulate stretch flange forming of aluminum alloys AA5182 and AA5754. Material softening and strain gradients were captured using a Gurson-based FE model. FE results were then fed into the so-called damage percolation code, from which the damage development was modelled within measured microstructures. The formability of the stretch flange samples was predicted based upon the onset of catastrophic failure triggered by profuse void coalescence within the measured second-phase particle field. Damage development is quantified in terms of crack and void areal fractions, and compared to metallographic results obtained from interrupted stretch flange specimens. Parametric study is conducted on the effect of void nucleation strain in the prediction of formability of stretch flanges to "calibrate" proper nucleation strains for both alloys.

  15. Heat transfer in damaged material

    NASA Astrophysics Data System (ADS)

    Kruis, J.

    2013-10-01

    Fully coupled thermo-mechanical analysis of civil engineering problems is studied. The mechanical analysis is based on damage mechanics which is useful for modeling of behaviour of quasi-brittle materials, especially in tension. The damage is assumed to be isotropic. The heat transfer is assumed in the form of heat conduction governed by the Fourier law and heat radiation governed by the Stefan-Boltzmann law. Fully coupled thermo-mechanical problem is formulated.

  16. A new scenario-based approach to damage detection using operational modal parameter estimates

    NASA Astrophysics Data System (ADS)

    Hansen, J. B.; Brincker, R.; López-Aenlle, M.; Overgaard, C. F.; Kloborg, K.

    2017-09-01

    In this paper a vibration-based damage localization and quantification method, based on natural frequencies and mode shapes, is presented. The proposed technique is inspired by a damage assessment methodology based solely on the sensitivity of mass-normalized experimental determined mode shapes. The present method differs by being based on modal data extracted by means of Operational Modal Analysis (OMA) combined with a reasonable Finite Element (FE) representation of the test structure and implemented in a scenario-based framework. Besides a review of the basic methodology this paper addresses fundamental theoretical as well as practical considerations which are crucial to the applicability of a given vibration-based damage assessment configuration. Lastly, the technique is demonstrated on an experimental test case using automated OMA. Both the numerical study as well as the experimental test case presented in this paper are restricted to perturbations concerning mass change.

  17. Evaluating the Human Damage of Tsunami at Each Time Frame in Aggregate Units Based on GPS data

    NASA Astrophysics Data System (ADS)

    Ogawa, Y.; Akiyama, Y.; Kanasugi, H.; Shibasaki, R.; Kaneda, H.

    2016-06-01

    Assessments of the human damage caused by the tsunami are required in order to consider disaster prevention at such a regional level. Hence, there is an increasing need for the assessments of human damage caused by earthquakes. However, damage assessments in japan currently usually rely on static population distribution data, such as statistical night time population data obtained from national census surveys. Therefore, human damage estimation that take into consideration time frames have not been assessed yet. With these backgrounds, the objectives of this study are: to develop a method for estimating the population distribution of the for each time frame, based on location positioning data observed with mass GPS loggers of mobile phones, to use a evacuation and casualties models for evaluating human damage due to the tsunami, and evaluate each time frame by using the data developed in the first objective, and 3) to discuss the factors which cause the differences in human damage for each time frame. By visualizing the results, we clarified the differences in damage depending on time frame, day and area. As this study enables us to assess damage for any time frame in and high resolution, it will be useful to consider provision for various situations when an earthquake may hit, such as during commuting hours or working hours and week day or holiday.

  18. Dissimilar effect of perming and bleaching treatments on cuticles: advanced hair damage model based on elution and oxidation of S100A3 protein.

    PubMed

    Kizawa, Kenji; Inoue, Takafumi; Yamaguchi, Masahito; Kleinert, Peter; Troxler, Heinz; Heizmann, Claus W; Iwamoto, Yoshimichi

    2005-01-01

    Hair treatment chemicals induce sudden and severe hair damage. In this study, we examined cuticles from untreated, permed, and bleached hair that were mechanically discriminated by shaking in water. Both perming and bleaching treatments are prone to easily delaminate cuticles. Confocal microscopy revealed that the cuticles of permed hair were delaminated with larger pieces than untreated ones. On the other hand, the cuticles of bleached hair tend to fragment into small peptides. At the minimum concentration of thioglycolate required to elute S100A3 protein from the endocuticle into the reductive permanent waving lotion, enlarged delaminated cuticle fragments were observed. Although S100A3 is retained in bleached hair, S100A3 is irreversibly oxidized upon bleaching treatment. It is likely that the oxidative cleavage of disulfide bonds between cuticle-constituting proteins, including S100A3, results in the fragile property of cuticles. Here we present a more comprehensive model of hair damage based on a diverse mechanism of cuticle delamination.

  19. Laser-based structural sensing and surface damage detection

    NASA Astrophysics Data System (ADS)

    Guldur, Burcu

    Damage due to age or accumulated damage from hazards on existing structures poses a worldwide problem. In order to evaluate the current status of aging, deteriorating and damaged structures, it is vital to accurately assess the present conditions. It is possible to capture the in situ condition of structures by using laser scanners that create dense three-dimensional point clouds. This research investigates the use of high resolution three-dimensional terrestrial laser scanners with image capturing abilities as tools to capture geometric range data of complex scenes for structural engineering applications. Laser scanning technology is continuously improving, with commonly available scanners now capturing over 1,000,000 texture-mapped points per second with an accuracy of ~2 mm. However, automatically extracting meaningful information from point clouds remains a challenge, and the current state-of-the-art requires significant user interaction. The first objective of this research is to use widely accepted point cloud processing steps such as registration, feature extraction, segmentation, surface fitting and object detection to divide laser scanner data into meaningful object clusters and then apply several damage detection methods to these clusters. This required establishing a process for extracting important information from raw laser-scanned data sets such as the location, orientation and size of objects in a scanned region, and location of damaged regions on a structure. For this purpose, first a methodology for processing range data to identify objects in a scene is presented and then, once the objects from model library are correctly detected and fitted into the captured point cloud, these fitted objects are compared with the as-is point cloud of the investigated object to locate defects on the structure. The algorithms are demonstrated on synthetic scenes and validated on range data collected from test specimens and test-bed bridges. The second objective of

  20. Base Excision Repair of Oxidative DNA Damage

    PubMed Central

    David, Sheila S.; O’Shea, Valerie L.; Kundu, Sucharita

    2010-01-01

    Base excision repair plays an important role in preventing mutations associated with the common product of oxidative damage, 8-oxoguanine. Recent structural studies have shown that 8-oxoguanine glycosylases use an intricate series of steps to efficiently search and locate 8-oxoguanine lesions within the multitude of undamaged bases. The importance of prevention of mutations associated with 8-oxoguanine has also been illustrated by direct connections between defects in the BER glycosylase MUTYH and colorectal cancer. In addition, the properties of other guanine oxidation products and the BER glycosylases that remove them are being uncovered. This work is providing surprising and intriguing new insights into the process of base excision repair. PMID:17581577

  1. Experimental Verification of a Progressive Damage Model for IM7/5260 Laminates Subjected to Tension-Tension Fatigue

    NASA Technical Reports Server (NTRS)

    Coats, Timothy W.; Harris, Charles E.

    1995-01-01

    The durability and damage tolerance of laminated composites are critical design considerations for airframe composite structures. Therefore, the ability to model damage initiation and growth and predict the life of laminated composites is necessary to achieve structurally efficient and economical designs. The purpose of this research is to experimentally verify the application of a continuum damage model to predict progressive damage development in a toughened material system. Damage due to monotonic and tension-tension fatigue was documented for IM7/5260 graphite/bismaleimide laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables to predict stiffness loss in unnotched laminates. A damage dependent finite element code predicted the stiffness loss for notched laminates with good agreement to experimental data. It was concluded that the continuum damage model can adequately predict matrix damage progression in notched and unnotched laminates as a function of loading history and laminate stacking sequence.

  2. Adaptive model-based control systems and methods for controlling a gas turbine

    NASA Technical Reports Server (NTRS)

    Brunell, Brent Jerome (Inventor); Mathews, Jr., Harry Kirk (Inventor); Kumar, Aditya (Inventor)

    2004-01-01

    Adaptive model-based control systems and methods are described so that performance and/or operability of a gas turbine in an aircraft engine, power plant, marine propulsion, or industrial application can be optimized under normal, deteriorated, faulted, failed and/or damaged operation. First, a model of each relevant system or component is created, and the model is adapted to the engine. Then, if/when deterioration, a fault, a failure or some kind of damage to an engine component or system is detected, that information is input to the model-based control as changes to the model, constraints, objective function, or other control parameters. With all the information about the engine condition, and state and directives on the control goals in terms of an objective function and constraints, the control then solves an optimization so the optimal control action can be determined and taken. This model and control may be updated in real-time to account for engine-to-engine variation, deterioration, damage, faults and/or failures using optimal corrective control action command(s).

  3. A homogenized localizing gradient damage model with micro inertia effect

    NASA Astrophysics Data System (ADS)

    Wang, Zhao; Poh, Leong Hien

    2018-07-01

    The conventional gradient enhancement regularizes structural responses during material failure. However, it induces a spurious damage growth phenomenon, which is shown here to persist in dynamics. Similar issues were reported with the integral averaging approach. Consequently, the conventional nonlocal enhancement cannot adequately describe the dynamic fracture of quasi-brittle materials, particularly in the high strain rate regime, where a diffused damage profile precludes the development of closely spaced macrocracks. To this end, a homogenization theory is proposed to translate the micro processes onto the macro scale. Starting with simple elementary models at the micro scale to describe the fracture mechanisms, an additional kinematic field is introduced to capture the variations in deformation and velocity within a unit cell. An energetic equivalence between micro and macro is next imposed to ensure consistency at the two scales. The ensuing homogenized microforce balance resembles closely the conventional gradient expression, albeit with an interaction domain that decreases with damage, complemented by a micro inertia effect. Considering a direct single pressure bar example, the homogenized model is shown to resolve the non-physical responses obtained with conventional nonlocal enhancement. The predictive capability of the homogenized model is furthermore demonstrated by considering the spall tests of concrete, with good predictions on failure characteristics such as fragmentation profiles and dynamic tensile strengths, at three different loading rates.

  4. Object-based classification of earthquake damage from high-resolution optical imagery using machine learning

    NASA Astrophysics Data System (ADS)

    Bialas, James; Oommen, Thomas; Rebbapragada, Umaa; Levin, Eugene

    2016-07-01

    Object-based approaches in the segmentation and classification of remotely sensed images yield more promising results compared to pixel-based approaches. However, the development of an object-based approach presents challenges in terms of algorithm selection and parameter tuning. Subjective methods are often used, but yield less than optimal results. Objective methods are warranted, especially for rapid deployment in time-sensitive applications, such as earthquake damage assessment. Herein, we used a systematic approach in evaluating object-based image segmentation and machine learning algorithms for the classification of earthquake damage in remotely sensed imagery. We tested a variety of algorithms and parameters on post-event aerial imagery for the 2011 earthquake in Christchurch, New Zealand. Results were compared against manually selected test cases representing different classes. In doing so, we can evaluate the effectiveness of the segmentation and classification of different classes and compare different levels of multistep image segmentations. Our classifier is compared against recent pixel-based and object-based classification studies for postevent imagery of earthquake damage. Our results show an improvement against both pixel-based and object-based methods for classifying earthquake damage in high resolution, post-event imagery.

  5. Damage Detection for Historical Architectures Based on Tls Intensity Data

    NASA Astrophysics Data System (ADS)

    Li, Q.; Cheng, X.

    2018-04-01

    TLS (Terrestrial Laser Scanner) has long been preferred in the cultural heritage field for 3D documentation of historical sites thanks to its ability to acquire the geometric information without any physical contact. Besides the geometric information, most TLS systems also record the intensity information, which is considered as an important measurement of the spectral property of the scanned surface. Recent studies have shown the potential of using intensity for damage detection. However, the original intensity is affected by scanning geometry such as range and incidence angle and other factors, thus making the results less accurate. Therefore, in this paper, we present a method to detect certain damage areas using the corrected intensity data. Firstly, two data-driven models have been developed to correct the range and incidence angle effect. Then the corrected intensity is used to generate 2D intensity images for classification. After the damage areas being detected, they are re-projected to the 3D point cloud for better visual representation and further investigation. The experiment results indicate the feasibility and validity of the corrected intensity for damage detection.

  6. The Gist of Juries: Testing a Model of Damage Award Decision Making

    PubMed Central

    Reyna, Valerie F.; Hans, Valerie P.; Corbin, Jonathan C.; Yeh, Ryan; Lin, Kelvin; Royer, Caisa

    2017-01-01

    Despite the importance of damage awards, juries are often at sea about the amounts that should be awarded, with widely differing awards for cases that seem comparable. We tested a new model of damage award decision making by systematically varying the size, context, and meaningfulness of numerical comparisons or anchors. As a result, we were able to elicit large differences in award amounts that replicated for 2 different cases. Although even arbitrary dollar amounts (unrelated to the cases) influenced the size of award judgments, the most consistent effects of numerical anchors were achieved when the amounts were meaningful in the sense that they conveyed the gist of numbers as small or large. Consistent with the model, the ordinal gist of the severity of plaintiff’s damages and defendant’s liability predicted damage awards, controlling for other factors such as motivation for the award-judgment task and perceived economic damages. Contrary to traditional dual-process approaches, numeracy and cognitive style (e.g., need for cognition and cognitive reflection) were not significant predictors of these numerical judgments, but they were associated with lower levels of variability once the gist of the judgments was taken into account. Implications for theory and policy are discussed. PMID:29075092

  7. A coupled/uncoupled deformation and fatigue damage algorithm utilizing the finite element method

    NASA Technical Reports Server (NTRS)

    Wilt, Thomas E.; Arnold, Steven M.

    1994-01-01

    A fatigue damage computational algorithm utilizing a multiaxial, isothermal, continuum based fatigue damage model for unidirectional metal matrix composites has been implemented into the commercial finite element code MARC using MARC user subroutines. Damage is introduced into the finite element solution through the concept of effective stress which fully couples the fatigue damage calculations with the finite element deformation solution. An axisymmetric stress analysis was performed on a circumferentially reinforced ring, wherein both the matrix cladding and the composite core were assumed to behave elastic-perfectly plastic. The composite core behavior was represented using Hill's anisotropic continuum based plasticity model, and similarly, the matrix cladding was represented by an isotropic plasticity model. Results are presented in the form of S-N curves and damage distribution plots.

  8. Mechanical Damage Detection of Indonesia Local Citrus Based on Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Siregar, T. H.; Ahmad, U.; Sutrisno; Maddu, A.

    2018-05-01

    Citrus experienced physical damage in peel will produce essential oils that contain polymethoxylated flavone. Polymethoxylated flavone is fluorescence substance; thus can be detected by fluorescence imaging. This study aims to study the fluorescence spectra characteristic and to determine the damage region in citrus peel based on fluorescence image. Pulung citrus from Batu district, East Java, as a famous citrus production area in Indonesia, was used in the experiment. It was observed that the image processing could detect the mechanical damage region. Fluorescence imaging can be used to classify the citrus into two categories, sound and defect citruses.

  9. Numerical Predictions of Damage and Failure in Carbon Fiber Reinforced Laminates Using a Thermodynamically-Based Work Potential Theory

    NASA Technical Reports Server (NTRS)

    Pineda, Evan Jorge; Waas, Anthony M.

    2013-01-01

    A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, referred to as enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Consistent characteristic lengths are introduced into the formulation to govern the evolution of the failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs are derived. The theory is implemented into a commercial finite element code. The model is verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared against the experimental results.

  10. Flood damage estimation of companies: A comparison of Stage-Damage-Functions and Random Forests

    NASA Astrophysics Data System (ADS)

    Sieg, Tobias; Kreibich, Heidi; Vogel, Kristin; Merz, Bruno

    2017-04-01

    The development of appropriate flood damage models plays an important role not only for the damage assessment after an event but also to develop adaptation and risk mitigation strategies. So called Stage-Damage-Functions (SDFs) are often applied as a standard approach to estimate flood damage. These functions assign a certain damage to the water depth depending on the use or other characteristics of the exposed objects. Recent studies apply machine learning algorithms like Random Forests (RFs) to model flood damage. These algorithms usually consider more influencing variables and promise to depict a more detailed insight into the damage processes. In addition they provide an inherent validation scheme. Our study focuses on direct, tangible damage of single companies. The objective is to model and validate the flood damage suffered by single companies with SDFs and RFs. The data sets used are taken from two surveys conducted after the floods in the Elbe and Danube catchments in the years 2002 and 2013 in Germany. Damage to buildings (n = 430), equipment (n = 651) as well as goods and stock (n = 530) are taken into account. The model outputs are validated via a comparison with the actual flood damage acquired by the surveys and subsequently compared with each other. This study investigates the gain in model performance with the use of additional data and the advantages and disadvantages of the RFs compared to SDFs. RFs show an increase in model performance with an increasing amount of data records over a comparatively large range, while the model performance of the SDFs is already saturated for a small set of records. In addition, the RFs are able to identify damage influencing variables, which improves the understanding of damage processes. Hence, RFs can slightly improve flood damage predictions and provide additional insight into the underlying mechanisms compared to SDFs.

  11. Multi-scale finite element model of growth plate damage during the development of slipped capital femoral epiphysis.

    PubMed

    Farzaneh, S; Paseta, O; Gómez-Benito, M J

    2015-04-01

    Slipped capital femoral epiphysis (SCFE) is one of the most common disorders of adolescent hips. A number of works have related the development of SCFE to mechanical factors. Due to the difficulty of diagnosing SCFE in its early stages, the disorder often progresses over time, resulting in serious side effects. Therefore, the development of a tool to predict the initiation of damage in the growth plate is needed. Because the growth plate is a heterogeneous structure, to develop a precise and reliable model, it is necessary to consider this structure from both macro- and microscale perspectives. Thus, the main objective of this work is to develop a numerical multi-scale model that links damage occurring at the microscale to damage occurring at the macroscale. The use of this model enables us to predict which regions of the growth plate are at high risk of damage. First, we have independently analyzed the microscale to simulate the microstructure under shear and tensile tests to calibrate the damage model. Second, we have employed the model to simulate damage occurring in standardized healthy and affected femurs during the heel-strike stage of stair climbing. Our results indicate that on the macroscale, damage is concentrated in the medial region of the growth plate in both healthy and affected femurs. Furthermore, damage to the affected femur is greater than damage to the healthy femur from both the micro- and macrostandpoints. Maximal damage is observed in territorial matrices. Furthermore, simulations illustrate that little damage occurs in the reserve zone. These findings are consistent with previous findings reported in well-known experimental works.

  12. Fatigue damage prognosis using affine arithmetic

    NASA Astrophysics Data System (ADS)

    Gbaguidi, Audrey; Kim, Daewon

    2014-02-01

    Among the essential steps to be taken in structural health monitoring systems, damage prognosis would be the field that is least investigated due to the complexity of the uncertainties. This paper presents the possibility of using Affine Arithmetic for uncertainty propagation of crack damage in damage prognosis. The structures examined are thin rectangular plates made of titanium alloys with central mode I cracks and a composite plate with an internal delamination caused by mixed mode I and II fracture modes, under a harmonic uniaxial loading condition. The model-based method for crack growth rates are considered using the Paris Erdogan law model for the isotropic plates and the delamination growth law model proposed by Kardomateas for the composite plate. The parameters for both models are randomly taken and their uncertainties are considered as defined by an interval instead of a probability distribution. A Monte Carlo method is also applied to check whether Affine Arithmetic (AA) leads to tight bounds on the lifetime of the structure.

  13. On the relation between phase-field crack approximation and gradient damage modelling

    NASA Astrophysics Data System (ADS)

    Steinke, Christian; Zreid, Imadeddin; Kaliske, Michael

    2017-05-01

    The finite element implementation of a gradient enhanced microplane damage model is compared to a phase-field model for brittle fracture. Phase-field models and implicit gradient damage models share many similarities despite being conceived from very different standpoints. In both approaches, an additional differential equation and a length scale are introduced. However, while the phase-field method is formulated starting from the description of a crack in fracture mechanics, the gradient method starts from a continuum mechanics point of view. At first, the scope of application for both models is discussed to point out intersections. Then, the analysis of the employed mathematical methods and their rigorous comparison are presented. Finally, numerical examples are introduced to illustrate the findings of the comparison which are summarized in a conclusion at the end of the paper.

  14. Comparison of Damage Models for Predicting the Non-Linear Response of Laminates Under Matrix Dominated Loading Conditions

    NASA Technical Reports Server (NTRS)

    Schuecker, Clara; Davila, Carlos G.; Rose, Cheryl A.

    2010-01-01

    Five models for matrix damage in fiber reinforced laminates are evaluated for matrix-dominated loading conditions under plane stress and are compared both qualitatively and quantitatively. The emphasis of this study is on a comparison of the response of embedded plies subjected to a homogeneous stress state. Three of the models are specifically designed for modeling the non-linear response due to distributed matrix cracking under homogeneous loading, and also account for non-linear (shear) behavior prior to the onset of cracking. The remaining two models are localized damage models intended for predicting local failure at stress concentrations. The modeling approaches of distributed vs. localized cracking as well as the different formulations of damage initiation and damage progression are compared and discussed.

  15. Development of a GCR Event-based Risk Model

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Ponomarev, Artem L.; Plante, Ianik; Carra, Claudio; Kim, Myung-Hee

    2009-01-01

    A goal at NASA is to develop event-based systems biology models of space radiation risks that will replace the current dose-based empirical models. Complex and varied biochemical signaling processes transmit the initial DNA and oxidative damage from space radiation into cellular and tissue responses. Mis-repaired damage or aberrant signals can lead to genomic instability, persistent oxidative stress or inflammation, which are causative of cancer and CNS risks. Protective signaling through adaptive responses or cell repopulation is also possible. We are developing a computational simulation approach to galactic cosmic ray (GCR) effects that is based on biological events rather than average quantities such as dose, fluence, or dose equivalent. The goal of the GCR Event-based Risk Model (GERMcode) is to provide a simulation tool to describe and integrate physical and biological events into stochastic models of space radiation risks. We used the quantum multiple scattering model of heavy ion fragmentation (QMSFRG) and well known energy loss processes to develop a stochastic Monte-Carlo based model of GCR transport in spacecraft shielding and tissue. We validated the accuracy of the model by comparing to physical data from the NASA Space Radiation Laboratory (NSRL). Our simulation approach allows us to time-tag each GCR proton or heavy ion interaction in tissue including correlated secondary ions often of high multiplicity. Conventional space radiation risk assessment employs average quantities, and assumes linearity and additivity of responses over the complete range of GCR charge and energies. To investigate possible deviations from these assumptions, we studied several biological response pathway models of varying induction and relaxation times including the ATM, TGF -Smad, and WNT signaling pathways. We then considered small volumes of interacting cells and the time-dependent biophysical events that the GCR would produce within these tissue volumes to estimate how

  16. Micro-Macro Analysis and Phenomenological Modelling of Salt Viscous Damage and Application to Salt Caverns

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Pouya, Ahmad; Arson, Chloé

    2015-11-01

    This paper aims to gain fundamental understanding of the microscopic mechanisms that control the transition between secondary and tertiary creep around salt caverns in typical geological storage conditions. We use a self-consistent inclusion-matrix model to homogenize the viscoplastic deformation of halite polycrystals and predict the number of broken grains in a Representative Elementary Volume of salt. We use this micro-macro modeling framework to simulate creep tests under various axial stresses, which gives us the critical viscoplastic strain at which grain breakage (i.e., tertiary creep) is expected to occur. The comparison of simulation results for short-term and long-term creep indicates that the initiation of tertiary creep depends on the stress and the viscoplastic strain. We use the critical viscoplastic deformation as a yield criterion to control the transition between secondary and tertiary creep in a phenomenological viscoplastic model, which we implement into the Finite Element Method program POROFIS. We model a 850-m-deep salt cavern of irregular shape, in axis-symmetric conditions. Simulations of cavern depressurization indicate that a strain-dependent damage evolution law is more suitable than a stress-dependent damage evolution law, because it avoids high damage concentrations and allows capturing the formation of a damaged zone around the cavity. The modeling framework explained in this paper is expected to provide new insights to link grain breakage to phenomenological damage variables used in Continuum Damage Mechanics.

  17. Damage Assessment of Aerospace Structural Components by Impedance Based Health Monitoring

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Martin, Richard E.; Sawicki, Jerzy T.; Baaklini, George Y.

    2005-01-01

    This paper addresses recent efforts at the NASA Glenn Research Center at Lewis Field relating to the set-up and assessment of electro-mechanical (E/M) impedance based structural health monitoring. The overall aim is the application of the impedance based technique to aeronautic and space based structural components. As initial steps, a laboratory was created, software written, and experiments conducted on aluminum plates in undamaged and damaged states. A simulated crack, in the form of a narrow notch at various locations, was analyzed using piezoelectric-ceramic (PZT: lead, zirconate, titarate) patches as impedance measuring transducers. Descriptions of the impedance quantifying hardware and software are provided as well as experimental results. In summary, an impedance based health monitoring system was assembled and tested. The preliminary data showed that the impedance based technique was successful in recognizing the damage state of notched aluminum plates.

  18. Predicting neutron damage using TEM with in situ ion irradiation and computer modeling

    NASA Astrophysics Data System (ADS)

    Kirk, Marquis A.; Li, Meimei; Xu, Donghua; Wirth, Brian D.

    2018-01-01

    We have constructed a computer model of irradiation defect production closely coordinated with TEM and in situ ion irradiation of Molybdenum at 80 °C over a range of dose, dose rate and foil thickness. We have reexamined our previous ion irradiation data to assign appropriate error and uncertainty based on more recent work. The spatially dependent cascade cluster dynamics model is updated with recent Molecular Dynamics results for cascades in Mo. After a careful assignment of both ion and neutron irradiation dose values in dpa, TEM data are compared for both ion and neutron irradiated Mo from the same source material. Using the computer model of defect formation and evolution based on the in situ ion irradiation of thin foils, the defect microstructure, consisting of densities and sizes of dislocation loops, is predicted for neutron irradiation of bulk material at 80 °C and compared with experiment. Reasonable agreement between model prediction and experimental data demonstrates a promising direction in understanding and predicting neutron damage using a closely coordinated program of in situ ion irradiation experiment and computer simulation.

  19. Modeling of displacement damage in silicon carbide detectors resulting from neutron irradiation

    NASA Astrophysics Data System (ADS)

    Khorsandi, Behrooz

    There is considerable interest in developing a power monitor system for Generation IV reactors (for instance GT-MHR). A new type of semiconductor radiation detector is under development based on silicon carbide (SiC) technology for these reactors. SiC has been selected as the semiconductor material due to its superior thermal-electrical-neutronic properties. Compared to Si, SiC is a radiation hard material; however, like Si, the properties of SiC are changed by irradiation by a large fluence of energetic neutrons, as a consequence of displacement damage, and that irradiation decreases the life-time of detectors. Predictions of displacement damage and the concomitant radiation effects are important for deciding where the SiC detectors should be placed. The purpose of this dissertation is to develop computer simulation methods to estimate the number of various defects created in SiC detectors, because of neutron irradiation, and predict at what positions of a reactor, SiC detectors could monitor the neutron flux with high reliability. The simulation modeling includes several well-known---and commercial---codes (MCNP5, TRIM, MARLOWE and VASP), and two kinetic Monte Carlo codes written by the author (MCASIC and DCRSIC). My dissertation will highlight the displacement damage that may happen in SiC detectors located in available positions in the OSURR, GT-MHR and IRIS. As extra modeling output data, the count rates of SiC for the specified locations are calculated. A conclusion of this thesis is SiC detectors that are placed in the thermal neutron region of a graphite moderator-reflector reactor have a chance to survive at least one reactor refueling cycle, while their count rates are acceptably high.

  20. Damage Model and Progressive Failure Analyses for Filament Wound Composite Laminates

    NASA Astrophysics Data System (ADS)

    Ribeiro, Marcelo Leite; Vandepitte, Dirk; Tita, Volnei

    2013-10-01

    Recent improvements in manufacturing processes and materials properties associated with excellent mechanical characteristics and low weight have made composite materials very attractive for application on civil aircraft structures. However, even new designs are still very conservative, because the composite failure phenomenon is very complex. Several failure criteria and theories have been developed to describe the damage process and how it evolves, but the solution of the problem is still open. Moreover, modern filament winding techniques have been used to produce a wide variety of structural shapes not only cylindrical parts, but also “flat” laminates. Therefore, this work presents the development of a damage model and its application to simulate the progressive failure of flat composite laminates made using a filament winding process. The damage model was implemented as a UMAT (User Material Subroutine), in ABAQUSTM Finite Element (FE) framework. Progressive failure analyses were carried out using FE simulation in order to simulate the failure of flat filament wound composite structures under different loading conditions. In addition, experimental tests were performed in order to identify parameters related to the material model, as well as to evaluate both the potential and the limitations of the model. The difference between numerical and the average experimental results in a four point bending set-up is only 1.6 % at maximum load amplitude. Another important issue is that the model parameters are not so complicated to be identified. This characteristic makes this model very attractive to be applied in an industrial environment.

  1. Radiation damage-He diffusivity models applied to deep-time thermochronology: Zircon and titanite (U-Th)/He datasets from cratonic settings

    NASA Astrophysics Data System (ADS)

    Guenthner, W.; DeLucia, M. S.; Marshak, S.; Reiners, P. W.; Drake, H.; Thomson, S.; Ault, A. K.; Tillberg, M.

    2017-12-01

    Advances in understanding the effects of radiation damage on He diffusion in uranium-bearing accessory minerals have shown the utility of damage-diffusivity models for interpreting datasets from geologic settings with long-term, low-temperature thermal histories. Craton interiors preserve a billion-year record of long-term, long-wavelength vertical motions of the lithosphere. Prior thermochronologic work in these settings has focused on radiation damage models used in conjunction with apatite (U-Th)/He dates to constrain Phanerozoic thermal histories. Owing to the more complex damage-diffusivity relationship in zircon, the zircon (U-Th)/He system yields both higher and, in some cases, lower temperature sensitivities than the apatite system, and this greater range in turn allows researchers to access deeper time (i.e., Proterozoic) segments of craton time-temperature histories. Here, we show two examples of this approach by focusing on zircon (U-Th)/He datasets from 1.8 Ga granitoids of the Fennoscandian Shield in southeastern Sweden, and 1.4 Ga granites and rhyolites of the Ozark Plateau in southeastern Missouri. In the Ozark dataset, the zircon (U-Th)/He data, combined with a damage-diffusivity model, predict negative correlations between date and effective uranium (eU) concentration (a measurement proportional to radiation damage) from thermal histories that include an episode of Proterozoic cooling (interpreted as exhumation) following reheating (interpreted as burial) to temperature of 260°C at 850-680 Ma. In the Fennoscandian Shield, a similar damage model-based approach yields time-temperature constraints with burial to 217°C between 944 Ma and 851 Ma, followed by exhumation from 850 to 500 Ma, and burial to 154°C between 366 Ma and 224 Ma. Our Fennoscandian Shield samples also include titanite (U-Th)/He dates that span a wide range (945-160 Ma) and are negatively correlated with eU concentration, analogous to our zircon He dataset. These results support

  2. Cumulative Damage Model for Advanced Composite Materials.

    DTIC Science & Technology

    1982-07-01

    STANDARS 963-A AFWAL- TR- 82-4094 CUMULATIVE DAMAGE MODEL FOR ADVANCED COMPOSITE MATERIALS GENERAL DYNAMICS FORT WORTH DIVISION P. 0. BOX 748 FORT...WORTH, TEXAS 76101 July 1982 Final Report for Period 23 February 1981 to 23 May 19k2. Approved. for public rel ts ; dA.st ? ,* -i; .c- ,. a-. LJ ( MAR 2... procurement operation, the United Scat-.s Government thereby Incurr no responsibility nor any obligation whatsoever; and the fact t.’at the government may

  3. The Finite Strain Johnson Cook Plasticity and Damage Constitutive Model in ALEGRA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Jason James

    A finite strain formulation of the Johnson Cook plasticity and damage model and it's numerical implementation into the ALEGRA code is presented. The goal of this work is to improve the predictive material failure capability of the Johnson Cook model. The new implementation consists of a coupling of damage and the stored elastic energy as well as the minimum failure strain criteria for spall included in the original model development. This effort establishes the necessary foundation for a thermodynamically consistent and complete continuum solid material model, for which all intensive properties derive from a common energy. The motivation for developingmore » such a model is to improve upon ALEGRA's present combined model framework. Several applications of the new Johnson Cook implementation are presented. Deformation driven loading paths demonstrate the basic features of the new model formulation. Use of the model produces good comparisons with experimental Taylor impact data. Localized deformation leading to fragmentation is produced for expanding ring and exploding cylinder applications.« less

  4. Local-based damage detection of cyclically loaded bridge piers using wireless sensing units

    NASA Astrophysics Data System (ADS)

    Hou, Tsung-Chin; Lynch, Jerome P.; Parra-Montesinos, Gustavo

    2005-05-01

    Concrete bridge piers are a common structural element employed in the design of bridges and elevated roadways. In order to ensure adequate behavior under earthquake-induced displacements, extensive reinforcement detailing in the form of closely spaced ties or spirals is necessary, leading to congestion problems and difficulties during concrete casting. Further, costly repairs are often necessary in bridge piers after a major earthquake which in some cases involve the total or partial shutdown of the bridge. In order to increase the damage tolerance while relaxing the transverse reinforcement requirements of bridge piers, the use of high-performance fiber reinforced cementitious composites (HPFRCC) in earthquake-resistant bridge piers is explored. HPFRCCs are a relatively new class of cementitious material for civil structures with tensile strain-hardening behavior and high damage tolerance. To monitor the behavior of this new class of material in the field, low-cost wireless monitoring technologies will be adopted to provide HPFRCC structural elements the capability to accurately monitor their performance and health. In particular, the computational core of a wireless sensing unit can be harnessed to screen HPFRCC components for damage in real-time. A seismic damage index initially proposed for flexure dominated reinforced concrete elements is modified to serve as an algorithmic tool for the rapid assessment of damage (due to flexure and shear) in HPFRCC bridge piers subjected to large shear reversals. Traditional and non-traditional sensor strategies of an HPFRCC bridge pier are proposed to optimize the correlation between the proposed damage index model and the damage observed in a circular pier test specimen. Damage index models are shown to be a sufficiently accurate rough measure of the degree of local-area damage that can then be wirelessly communicated to bridge officials.

  5. Hashin Failure Theory Based Damage Assessment Methodology of Composite Tidal Turbine Blades and Implications for the Blade Design

    NASA Astrophysics Data System (ADS)

    Yu, Guo-qing; Ren, Yi-ru; Zhang, Tian-tian; Xiao, Wan-shen; Jiang, Hong-yong

    2018-04-01

    A damage assessment methodology based on the Hashin failure theory for glass fiber reinforced polymer (GFRP) composite blade is proposed. The typical failure mechanisms including the fiber tension/compression and matrix tension/compression are considered to describe the damage behaviors. To give the flapwise and edgewise loading along the blade span, the Blade Element Momentum Theory (BEMT) is adopted. In conjunction with the hydrodynamic analysis, the structural analysis of the composite blade is cooperatively performed with the Hashin damage model. The damage characteristics of the composite blade, under normal and extreme operational conditions, are comparatively analyzed. Numerical results demonstrate that the matrix tension damage is the most significant failure mode which occurs in the mid-span of the blade. The blade internal configurations including the box-beam, Ibeam, left-C beam and right-C beam are compared and analyzed. The GFRP and carbon fiber reinforced polymer (CFRP) are considered and combined. Numerical results show that the I-beam is the best structural type. The structural performance of composite tidal turbine blades could be improved by combining the GFRP and CFRP structure considering the damage and cost-effectiveness synthetically.

  6. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.

    1981-01-01

    Simple procedures are given for treating cumulative fatigue damage under complex loading history using either the damage curve concept or the double linear damage rule. A single equation is given for use with the damage curve approach; each loading event providing a fraction of damage until failure is presumed to occur when the damage sum becomes unity. For the double linear damage rule, analytical expressions are given for determining the two phases of life. The procedure comprises two steps, each similar to the conventional application of the commonly used linear damage rule. Once the sum of cycle ratios based on Phase I lives reaches unity, Phase I is presumed complete, and further loadings are summed as cycle ratios based on Phase II lives. When the Phase II sum attains unity, failure is presumed to occur. It is noted that no physical properties or material constants other than those normally used in a conventional linear damage rule analysis are required for application of either of the two cumulative damage methods described. Illustrations and comparisons are discussed for both methods.

  7. Seismic damage analysis of the outlet piers of arch dams using the finite element sub-model method

    NASA Astrophysics Data System (ADS)

    Song, Liangfeng; Wu, Mingxin; Wang, Jinting; Xu, Yanjie

    2016-09-01

    This study aims to analyze seismic damage of reinforced outlet piers of arch dams by the nonlinear finite element (FE) sub-model method. First, the dam-foundation system is modeled and analyzed, in which the effects of infinite foundation, contraction joints, and nonlinear concrete are taken into account. The detailed structures of the outlet pier are then simulated with a refined FE model in the sub-model analysis. In this way the damage mechanism of the plain (unreinforced) outlet pier is analyzed, and the effects of two reinforcement measures (i.e., post-tensioned anchor cables and reinforcing bar) on the dynamic damage to the outlet pier are investigated comprehensively. Results show that the plain pier is damaged severely by strong earthquakes while implementation of post-tensioned anchor cables strengthens the pier effectively. In addition, radiation damping strongly alleviates seismic damage to the piers.

  8. A 3-D SPH model for simulating water flooding of a damaged floating structure

    NASA Astrophysics Data System (ADS)

    Guo, Kai; Sun, Peng-nan; Cao, Xue-yan; Huang, Xiao

    2017-10-01

    With the quasi-static analysis method, the terminal floating state of a damaged ship is usually evaluated for the risk assessment. But this is not enough since the ship has the possibility to lose its stability during the transient flooding process. Therefore, an enhanced smoothed particle hydrodynamics (SPH) model is applied in this paper to investigate the response of a simplified cabin model under the condition of the transient water flooding. The enhanced SPH model is presented firstly including the governing equations, the diffusive terms, the boundary implementations and then an algorithm regarding the coupling motions of six degrees of freedom (6-DOF) between the structure and the fluid is described. In the numerical results, a non-damaged cabin floating under the rest condition is simulated. It is shown that a stable floating state can be reached and maintained by using the present SPH scheme. After that, three-dimensional (3-D) test cases of the damaged cabin with a hole at different locations are simulated. A series of model tests are also carried out for the validation. Fairly good agreements are achieved between the numerical results and the experimental data. Relevant conclusions are drawn with respect to the mechanism of the responses of the damaged cabin model under water flooding conditions.

  9. Comparison of Model Calculations of Biological Damage from Exposure to Heavy Ions with Measurements

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee Y.; Wu, Honglu; Hada, Megumi; Cucinotta, Francis

    The space environment consists of a varying field of radiation particles including high-energy ions, with spacecraft shielding material providing the major protection to astronauts from harmful exposure. Unlike low-LET g or X rays, the presence of shielding does not always reduce the radiation risks for energetic charged-particle exposure. Dose delivered by the charged particle increases sharply at the Bragg peak. However, the Bragg curve does not necessarily represent the biological damage along the particle path since biological effects are influenced by the track structures of both primary and secondary particles. Therefore, the ‘‘biological Bragg curve’’ is dependent on the energy and the type of the primary particle and may vary for different biological end points. Measurements of the induction of micronuclei (MN) have made across the Bragg curve in human fibroblasts exposed to energetic silicon and iron ions in vitro at two different energies, 300 MeV/nucleon and 1 GeV/nucleon. Although the data did not reveal an increased yield of MN at the location of the Bragg peak, the increased inhibition of cell progression, which is related to cell death, was found at the Bragg peak location. These results are compared to the calculations of biological damage using a stochastic Monte-Carlo track structure model, Galactic Cosmic Ray Event-based Risk Model (GERM) code (Cucinotta et al., 2011). The GERM code estimates the basic physical properties along the passage of heavy ions in tissue and shielding materials, by which the experimental set-up can be interpreted. The code can also be used to describe the biophysical events of interest in radiobiology, cancer therapy, and space exploration. The calculation has shown that the severely damaged cells at the Bragg peak are more likely to go through reproductive death, the so called “overkill”. F. A. Cucinotta, I. Plante, A. L. Ponomarev, and M. Y. Kim, Nuclear Interactions in Heavy Ion Transport and Event-based

  10. Multiscale Modeling of Damage Processes in Aluminum Alloys: Grain-Scale Mechanisms

    NASA Technical Reports Server (NTRS)

    Hochhalter, J. D.; Veilleux, M. G.; Bozek, J. E.; Glaessgen, E. H.; Ingraffea, A. R.

    2008-01-01

    This paper has two goals related to the development of a physically-grounded methodology for modeling the initial stages of fatigue crack growth in an aluminum alloy. The aluminum alloy, AA 7075-T651, is susceptible to fatigue cracking that nucleates from cracked second phase iron-bearing particles. Thus, the first goal of the paper is to validate an existing framework for the prediction of the conditions under which the particles crack. The observed statistics of particle cracking (defined as incubation for this alloy) must be accurately predicted to simulate the stochastic nature of microstructurally small fatigue crack (MSFC) formation. Also, only by simulating incubation of damage in a statistically accurate manner can subsequent stages of crack growth be accurately predicted. To maintain fidelity and computational efficiency, a filtering procedure was developed to eliminate particles that were unlikely to crack. The particle filter considers the distributions of particle sizes and shapes, grain texture, and the configuration of the surrounding grains. This filter helps substantially reduce the number of particles that need to be included in the microstructural models and forms the basis of the future work on the subsequent stages of MSFC, crack nucleation and microstructurally small crack propagation. A physics-based approach to simulating fracture should ultimately begin at nanometer length scale, in which atomistic simulation is used to predict the fundamental damage mechanisms of MSFC. These mechanisms include dislocation formation and interaction, interstitial void formation, and atomic diffusion. However, atomistic simulations quickly become computationally intractable as the system size increases, especially when directly linking to the already large microstructural models. Therefore, the second goal of this paper is to propose a method that will incorporate atomistic simulation and small-scale experimental characterization into the existing multiscale

  11. Automatic Building Damage Detection Method Using High-Resolution Remote Sensing Images and 3d GIS Model

    NASA Astrophysics Data System (ADS)

    Tu, Jihui; Sui, Haigang; Feng, Wenqing; Song, Zhina

    2016-06-01

    In this paper, a novel approach of building damaged detection is proposed using high resolution remote sensing images and 3D GIS-Model data. Traditional building damage detection method considers to detect damaged building due to earthquake, but little attention has been paid to analyze various building damaged types(e.g., trivial damaged, severely damaged and totally collapsed.) Therefore, we want to detect the different building damaged type using 2D and 3D feature of scenes because the real world we live in is a 3D space. The proposed method generalizes that the image geometric correction method firstly corrects the post-disasters remote sensing image using the 3D GIS model or RPC parameters, then detects the different building damaged types using the change of the height and area between the pre- and post-disasters and the texture feature of post-disasters. The results, evaluated on a selected study site of the Beichuan earthquake ruins, Sichuan, show that this method is feasible and effective in building damage detection. It has also shown that the proposed method is easily applicable and well suited for rapid damage assessment after natural disasters.

  12. Oxidative damage in DNA bases revealed by UV resonant Raman spectroscopy.

    PubMed

    D'Amico, Francesco; Cammisuli, Francesca; Addobbati, Riccardo; Rizzardi, Clara; Gessini, Alessandro; Masciovecchio, Claudio; Rossi, Barbara; Pascolo, Lorella

    2015-03-07

    We report on the use of the UV Raman technique to monitor the oxidative damage of deoxynucleotide triphosphates (dATP, dGTP, dCTP and dTTP) and DNA (plasmid vector) solutions. Nucleotide and DNA aqueous solutions were exposed to hydrogen peroxide (H2O2) and iron containing carbon nanotubes (CNTs) to produce Fenton's reaction and induce oxidative damage. UV Raman spectroscopy is shown to be maximally efficient to reveal changes in the nitrogenous bases during the oxidative mechanisms occurring on these molecules. The analysis of Raman spectra, supported by numerical computations, revealed that the Fenton's reaction causes an oxidation of the nitrogenous bases in dATP, dGTP and dCTP solutions leading to the production of 2-hydroxyadenine, 8-hydroxyguanine and 5-hydroxycytosine. No thymine change was revealed in the dTTP solution under the same conditions. Compared to single nucleotide solutions, plasmid DNA oxidation has resulted in more radical damage that causes the breaking of the adenine and guanine aromatic rings. Our study demonstrates the advantage of using UV Raman spectroscopy for rapidly monitoring the oxidation changes in DNA aqueous solutions that can be assigned to specific nitrogenous bases.

  13. Predicting knee replacement damage in a simulator machine using a computational model with a consistent wear factor.

    PubMed

    Zhao, Dong; Sakoda, Hideyuki; Sawyer, W Gregory; Banks, Scott A; Fregly, Benjamin J

    2008-02-01

    Wear of ultrahigh molecular weight polyethylene remains a primary factor limiting the longevity of total knee replacements (TKRs). However, wear testing on a simulator machine is time consuming and expensive, making it impractical for iterative design purposes. The objectives of this paper were first, to evaluate whether a computational model using a wear factor consistent with the TKR material pair can predict accurate TKR damage measured in a simulator machine, and second, to investigate how choice of surface evolution method (fixed or variable step) and material model (linear or nonlinear) affect the prediction. An iterative computational damage model was constructed for a commercial knee implant in an AMTI simulator machine. The damage model combined a dynamic contact model with a surface evolution model to predict how wear plus creep progressively alter tibial insert geometry over multiple simulations. The computational framework was validated by predicting wear in a cylinder-on-plate system for which an analytical solution was derived. The implant damage model was evaluated for 5 million cycles of simulated gait using damage measurements made on the same implant in an AMTI machine. Using a pin-on-plate wear factor for the same material pair as the implant, the model predicted tibial insert wear volume to within 2% error and damage depths and areas to within 18% and 10% error, respectively. Choice of material model had little influence, while inclusion of surface evolution affected damage depth and area but not wear volume predictions. Surface evolution method was important only during the initial cycles, where variable step was needed to capture rapid geometry changes due to the creep. Overall, our results indicate that accurate TKR damage predictions can be made with a computational model using a constant wear factor obtained from pin-on-plate tests for the same material pair, and furthermore, that surface evolution method matters only during the initial

  14. A Simulation Model to Evaluate Aircraft Survivability and Target Damage during Offensive Counterair Operations.

    DTIC Science & Technology

    1984-03-01

    D-R14i 324 A SIMULATION MODEL TO EVALUATE AIRCRAFT SURVIVABILITY V/3 AND TARGET DAMAGE 0.. (U) AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL...MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS- 1963-A J.1 AFIT/GST/0S/84-18 TS I°TI w ’ i A SIMULATION MODEL TO E’VALLUATE AIRCRAFT...numberp Title: A SIMULATION MODEL TO EVALUATE AIRCRAFT SURVIVABILITY AND jARGET DAMAGE DURING OFFENSIVE COUNTERAIR OPERATIONS Thesis Chairma#: James R

  15. Parameter Calibration of GTN Damage Model and Formability Analysis of 22MnB5 in Hot Forming Process

    NASA Astrophysics Data System (ADS)

    Ying, Liang; Liu, Wenquan; Wang, Dantong; Hu, Ping

    2017-11-01

    Hot forming of high strength steel at elevated temperatures is an attractive technology to achieve the lightweight of vehicle body. The mechanical behavior of boron steel 22MnB5 strongly depends on the variation of temperature which makes the process design more difficult. In this paper, the Gurson-Tvergaard-Needleman (GTN) model is used to study the formability of 22MnB5 sheet at different temperatures. Firstly, the rheological behavior of 22MnB5 is analyzed through a series of hot tensile tests at a temperature range of 600-800 °C. Then, a detailed process to calibrate the damage parameters is given based on the response surface methodology and genetic algorithm method. The GTN model together with the damage parameters calibrated is then implemented to simulate the deformation and damage evolution of 22MnB5 in the process of high-temperature Nakazima test. The capability of the GTN model as a suitable tool to evaluate the sheet formability is confirmed by comparing experimental and calculated results. Finally, as a practical application, the forming limit diagram of 22MnB5 at 700 °C is constructed using the Nakazima simulation and Marciniak-Kuczynski (M-K) model, respectively. And the simulation integrated GTN model shows a higher reliability by comparing the predicted results of these two approaches with the experimental ones.

  16. Damage identification via asymmetric active magnetic bearing acceleration feedback control

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; DeSmidt, Hans; Yao, Wei

    2015-04-01

    A Floquet-based damage detection methodology for cracked rotor systems is developed and demonstrated on a shaft-disk system. This approach utilizes measured changes in the system natural frequencies to estimate the severity and location of shaft structural cracks during operation. The damage detection algorithms are developed with the initial guess solved by least square method and iterative damage parameter vector by updating the eigenvector updating. Active Magnetic Bearing is introduced to break the symmetric structure of rotor system and the tuning range of proper stiffness/virtual mass gains is studied. The system model is built based on energy method and the equations of motion are derived by applying assumed modes method and Lagrange Principle. In addition, the crack model is based on the Strain Energy Release Rate (SERR) concept in fracture mechanics. Finally, the method is synthesized via harmonic balance and numerical examples for a shaft/disk system demonstrate the effectiveness in detecting both location and severity of the structural damage.

  17. A damage analysis for brittle materials using stochastic micro-structural information

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Po; Chen, Jiun-Shyan; Liang, Shixue

    2016-03-01

    In this work, a micro-crack informed stochastic damage analysis is performed to consider the failures of material with stochastic microstructure. The derivation of the damage evolution law is based on the Helmholtz free energy equivalence between cracked microstructure and homogenized continuum. The damage model is constructed under the stochastic representative volume element (SRVE) framework. The characteristics of SRVE used in the construction of the stochastic damage model have been investigated based on the principle of the minimum potential energy. The mesh dependency issue has been addressed by introducing a scaling law into the damage evolution equation. The proposed methods are then validated through the comparison between numerical simulations and experimental observations of a high strength concrete. It is observed that the standard deviation of porosity in the microstructures has stronger effect on the damage states and the peak stresses than its effect on the Young's and shear moduli in the macro-scale responses.

  18. Development of an Image-based Multi-Scale Finite Element Approach to Predict Fatigue Damage in Asphalt Mixtures

    NASA Astrophysics Data System (ADS)

    Arshadi, Amir

    Image-based simulation of complex materials is a very important tool for understanding their mechanical behavior and an effective tool for successful design of composite materials. In this thesis an image-based multi-scale finite element approach is developed to predict the mechanical properties of asphalt mixtures. In this approach the "up-scaling" and homogenization of each scale to the next is critically designed to improve accuracy. In addition to this multi-scale efficiency, this study introduces an approach for consideration of particle contacts at each of the scales in which mineral particles exist. One of the most important pavement distresses which seriously affects the pavement performance is fatigue cracking. As this cracking generally takes place in the binder phase of the asphalt mixture, the binder fatigue behavior is assumed to be one of the main factors influencing the overall pavement fatigue performance. It is also known that aggregate gradation, mixture volumetric properties, and filler type and concentration can affect damage initiation and progression in the asphalt mixtures. This study was conducted to develop a tool to characterize the damage properties of the asphalt mixtures at all scales. In the present study the Viscoelastic continuum damage model is implemented into the well-known finite element software ABAQUS via the user material subroutine (UMAT) in order to simulate the state of damage in the binder phase under the repeated uniaxial sinusoidal loading. The inputs are based on the experimentally derived measurements for the binder properties. For the scales of mastic and mortar, the artificially 2-Dimensional images of mastic and mortar scales were generated and used to characterize the properties of those scales. Finally, the 2D scanned images of asphalt mixtures are used to study the asphalt mixture fatigue behavior under loading. In order to validate the proposed model, the experimental test results and the simulation results were

  19. Prediction Of Formability In Sheet Metal Forming Processes Using A Local Damage Model

    NASA Astrophysics Data System (ADS)

    Teixeira, P.; Santos, Abel; César Sá, J.; Andrade Pires, F.; Barata da Rocha, A.

    2007-05-01

    The formability in sheet metal forming processes is mainly conditioned by ductile fracture resulting from geometric instabilities due to necking and strain localization. The macroscopic collapse associated with ductile failure is a result of internal degradation described throughout metallographic observations by the nucleation, growth and coalescence of voids and micro-cracks. Damage influences and is influenced by plastic deformation and therefore these two dissipative phenomena should be coupled at the constitutive level. In this contribution, Lemaitre's ductile damage model is coupled with Hill's orthotropic plasticity criterion. The coupling between damaging and material behavior is accounted for within the framework of Continuum Damage Mechanics (CDM). The resulting constitutive equations are implemented in the Abaqus/Explicit code, for the prediction of fracture onset in sheet metal forming processes. The damage evolution law takes into account the important effect of micro-crack closure, which dramatically decreases the rate of damage growth under compressive paths.

  20. Radiation damage of gallium arsenide production cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Garlick, G. F. J.

    1987-01-01

    High-efficiency gallium arsenide cells, made by the liquid epitaxy method (LPE), have been irradiated with 1-MeV electrons up to fluences of 10 to the 16th e/sq cm. Measurements have been made of cell spectral response and dark and light-excited current-voltage characteristics and analyzed using computer-based models to determine underlying parameters such as damage coefficients. It is possible to use spectral response to sort out damage effects in the different cell component layers. Damage coefficients are similar to other reported in the literature for the emitter and buffer (base). However, there is also a damage effect in the window layer and possibly at the window emitter interface similar to that found for proton-irradiated liquid-phase epitaxy-grown cells. Depletion layer recombination is found to be less than theoretically expected at high fluence.

  1. Highlighting the DNA damage response with ultrashort laser pulses in the near infrared and kinetic modeling

    PubMed Central

    Ferrando-May, Elisa; Tomas, Martin; Blumhardt, Philipp; Stöckl, Martin; Fuchs, Matthias; Leitenstorfer, Alfred

    2013-01-01

    Our understanding of the mechanisms governing the response to DNA damage in higher eucaryotes crucially depends on our ability to dissect the temporal and spatial organization of the cellular machinery responsible for maintaining genomic integrity. To achieve this goal, we need experimental tools to inflict DNA lesions with high spatial precision at pre-defined locations, and to visualize the ensuing reactions with adequate temporal resolution. Near-infrared femtosecond laser pulses focused through high-aperture objective lenses of advanced scanning microscopes offer the advantage of inducing DNA damage in a 3D-confined volume of subnuclear dimensions. This high spatial resolution results from the highly non-linear nature of the excitation process. Here we review recent progress based on the increasing availability of widely tunable and user-friendly technology of ultrafast lasers in the near infrared. We present a critical evaluation of this approach for DNA microdamage as compared to the currently prevalent use of UV or VIS laser irradiation, the latter in combination with photosensitizers. Current and future applications in the field of DNA repair and DNA-damage dependent chromatin dynamics are outlined. Finally, we discuss the requirement for proper simulation and quantitative modeling. We focus in particular on approaches to measure the effect of DNA damage on the mobility of nuclear proteins and consider the pros and cons of frequently used analysis models for FRAP and photoactivation and their applicability to non-linear photoperturbation experiments. PMID:23882280

  2. An Approach to Risk-Based Design Incorporating Damage Tolerance Analyses

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Glaessgen, Edward H.; Sleight, David W.

    2002-01-01

    Incorporating risk-based design as an integral part of spacecraft development is becoming more and more common. Assessment of uncertainties associated with design parameters and environmental aspects such as loading provides increased knowledge of the design and its performance. Results of such studies can contribute to mitigating risk through a system-level assessment. Understanding the risk of an event occurring, the probability of its occurrence, and the consequences of its occurrence can lead to robust, reliable designs. This paper describes an approach to risk-based structural design incorporating damage-tolerance analysis. The application of this approach to a candidate Earth-entry vehicle is described. The emphasis of the paper is on describing an approach for establishing damage-tolerant structural response inputs to a system-level probabilistic risk assessment.

  3. Three-Dimensional High Fidelity Progressive Failure Damage Modeling of NCF Composites

    NASA Technical Reports Server (NTRS)

    Aitharaju, Venkat; Aashat, Satvir; Kia, Hamid G.; Satyanarayana, Arunkumar; Bogert, Philip B.

    2017-01-01

    Performance prediction of off-axis laminates is of significant interest in designing composite structures for energy absorption. Phenomenological models available in most of the commercial programs, where the fiber and resin properties are smeared, are very efficient for large scale structural analysis, but lack the ability to model the complex nonlinear behavior of the resin and fail to capture the complex load transfer mechanisms between the fiber and the resin matrix. On the other hand, high fidelity mesoscale models, where the fiber tows and matrix regions are explicitly modeled, have the ability to account for the complex behavior in each of the constituents of the composite. However, creating a finite element model of a larger scale composite component could be very time consuming and computationally very expensive. In the present study, a three-dimensional mesoscale model of non-crimp composite laminates was developed for various laminate schemes. The resin material was modeled as an elastic-plastic material with nonlinear hardening. The fiber tows were modeled with an orthotropic material model with brittle failure. In parallel, new stress based failure criteria combined with several damage evolution laws for matrix stresses were proposed for a phenomenological model. The results from both the mesoscale and phenomenological models were compared with the experiments for a variety of off-axis laminates.

  4. Vibration-based health monitoring and model refinement of civil engineering structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, C.R.; Doebling, S.W.

    1997-10-01

    Damage or fault detection, as determined by changes in the dynamic properties of structures, is a subject that has received considerable attention in the technical literature beginning approximately 30 years ago. The basic idea is that changes in the structure`s properties, primarily stiffness, will alter the dynamic properties of the structure such as resonant frequencies and mode shapes, and properties derived from these quantities such as modal-based flexibility. Recently, this technology has been investigated for applications to health monitoring of large civil engineering structures. This presentation will discuss such a study undertaken by engineers from New Mexico Sate University, Sandiamore » National Laboratory and Los Alamos National Laboratory. Experimental modal analyses were performed in an undamaged interstate highway bridge and immediately after four successively more severe damage cases were inflicted in the main girder of the structure. Results of these tests provide insight into the abilities of modal-based damage ID methods to identify damage and the current limitations of this technology. Closely related topics that will be discussed are the use of modal properties to validate computer models of the structure, the use of these computer models in the damage detection process, and the general lack of experimental investigation of large civil engineering structures.« less

  5. A Damage-Dependent Finite Element Analysis for Fiber-Reinforced Composite Laminates

    NASA Technical Reports Server (NTRS)

    Coats, Timothy W.; Harris, Charles E.

    1998-01-01

    A progressive damage methodology has been developed to predict damage growth and residual strength of fiber-reinforced composite structure with through penetrations such as a slit. The methodology consists of a damage-dependent constitutive relationship based on continuum damage mechanics. Damage is modeled using volume averaged strain-like quantities known as internal state variables and is represented in the equilibrium equations as damage induced force vectors instead of the usual degradation and modification of the global stiffness matrix.

  6. Tornado damage risk assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinhold, T.A.; Ellingwood, B.

    1982-09-01

    Several proposed models were evaluated for predicting tornado wind speed probabilities at nuclear plant sites as part of a program to develop statistical data on tornadoes needed for probability-based load combination analysis. A unified model was developed which synthesized the desired aspects of tornado occurrence and damage potential. The sensitivity of wind speed probability estimates to various tornado modeling assumptions are examined, and the probability distributions of tornado wind speed that are needed for load combination studies are presented.

  7. Classification Model for Damage Localization in a Plate Structure

    NASA Astrophysics Data System (ADS)

    Janeliukstis, R.; Ruchevskis, S.; Chate, A.

    2018-01-01

    The present study is devoted to the problem of damage localization by means of data classification. The commercial ANSYS finite-elements program was used to make a model of a cantilevered composite plate equipped with numerous strain sensors. The plate was divided into zones, and, for data classification purposes, each of them housed several points to which a point mass of magnitude 5 and 10% of plate mass was applied. At each of these points, a numerical modal analysis was performed, from which the first few natural frequencies and strain readings were extracted. The strain data for every point were the input for a classification procedure involving k nearest neighbors and decision trees. The classification model was trained and optimized by finetuning the key parameters of both algorithms. Finally, two new query points were simulated and subjected to a classification in terms of assigning a label to one of the zones of the plate, thus localizing these points. Damage localization results were compared for both algorithms and were found to be in good agreement with the actual application positions of point load.

  8. Towards a Fuzzy Bayesian Network Based Approach for Safety Risk Analysis of Tunnel-Induced Pipeline Damage.

    PubMed

    Zhang, Limao; Wu, Xianguo; Qin, Yawei; Skibniewski, Miroslaw J; Liu, Wenli

    2016-02-01

    Tunneling excavation is bound to produce significant disturbances to surrounding environments, and the tunnel-induced damage to adjacent underground buried pipelines is of considerable importance for geotechnical practice. A fuzzy Bayesian networks (FBNs) based approach for safety risk analysis is developed in this article with detailed step-by-step procedures, consisting of risk mechanism analysis, the FBN model establishment, fuzzification, FBN-based inference, defuzzification, and decision making. In accordance with the failure mechanism analysis, a tunnel-induced pipeline damage model is proposed to reveal the cause-effect relationships between the pipeline damage and its influential variables. In terms of the fuzzification process, an expert confidence indicator is proposed to reveal the reliability of the data when determining the fuzzy probability of occurrence of basic events, with both the judgment ability level and the subjectivity reliability level taken into account. By means of the fuzzy Bayesian inference, the approach proposed in this article is capable of calculating the probability distribution of potential safety risks and identifying the most likely potential causes of accidents under both prior knowledge and given evidence circumstances. A case concerning the safety analysis of underground buried pipelines adjacent to the construction of the Wuhan Yangtze River Tunnel is presented. The results demonstrate the feasibility of the proposed FBN approach and its application potential. The proposed approach can be used as a decision tool to provide support for safety assurance and management in tunnel construction, and thus increase the likelihood of a successful project in a complex project environment. © 2015 Society for Risk Analysis.

  9. Physical Biology of Axonal Damage.

    PubMed

    de Rooij, Rijk; Kuhl, Ellen

    2018-01-01

    Excessive physical impacts to the head have direct implications on the structural integrity at the axonal level. Increasing evidence suggests that tau, an intrinsically disordered protein that stabilizes axonal microtubules, plays a critical role in the physical biology of axonal injury. However, the precise mechanisms of axonal damage remain incompletely understood. Here we propose a biophysical model of the axon to correlate the dynamic behavior of individual tau proteins under external physical forces to the evolution of axonal damage. To propagate damage across the scales, we adopt a consistent three-step strategy: First, we characterize the axonal response to external stretches and stretch rates for varying tau crosslink bond strengths using a discrete axonal damage model. Then, for each combination of stretch rates and bond strengths, we average the axonal force-stretch response of n = 10 discrete simulations, from which we derive and calibrate a homogenized constitutive model. Finally, we embed this homogenized model into a continuum axonal damage model of [1-d]-type in which d is a scalar damage parameter that is driven by the axonal stretch and stretch rate. We demonstrate that axonal damage emerges naturally from the interplay of physical forces and biological crosslinking. Our study reveals an emergent feature of the crosslink dynamics: With increasing loading rate, the axonal failure stretch increases, but axonal damage evolves earlier in time. For a wide range of physical stretch rates, from 0.1 to 10 /s, and biological bond strengths, from 1 to 100 pN, our model predicts a relatively narrow window of critical damage stretch thresholds, from 1.01 to 1.30, which agrees well with experimental observations. Our biophysical damage model can help explain the development and progression of axonal damage across the scales and will provide useful guidelines to identify critical damage level thresholds in response to excessive physical forces.

  10. A modal H∞-norm-based performance requirement for damage-tolerant active controller design

    NASA Astrophysics Data System (ADS)

    Genari, Helói F. G.; Mechbal, Nazih; Coffignal, Gérard; Nóbrega, Eurípedes G. O.

    2017-04-01

    Damage-tolerant active control (DTAC) is a recent research area that encompasses control design methodologies resulting from the application of fault-tolerant control methods to vibration control of structures subject to damage. The possibility of damage occurrence is not usually considered in the active vibration control design requirements. Damage changes the structure dynamics, which may produce unexpected modal behavior of the closed-loop system, usually not anticipated by the controller design approaches. A modal H∞ norm and a respective robust controller design framework were recently introduced, and this method is here extended to face a new DTAC strategy implementation. Considering that damage affects each vibration mode differently, this paper adopts the modal H∞ norm to include damage as a design requirement. The basic idea is to create an appropriate energy distribution over the frequency range of interest and respective vibration modes, guaranteeing robustness, damage tolerance, and adequate overall performance, taking into account that it is common to have previous knowledge of the structure regions where damage may occur during its operational life. For this purpose, a structural health monitoring technique is applied to evaluate modal modifications caused by damage. This information is used to create modal weighing matrices, conducting to the modal H∞ controller design. Finite element models are adopted for a case study structure, including different damage severities, in order to validate the proposed control strategy. Results show the effectiveness of the proposed methodology with respect to damage tolerance.

  11. Numerical Simulation of Tension Properties for Al-Cu Alloy Friction Stir-Welded Joints with GTN Damage Model

    NASA Astrophysics Data System (ADS)

    Sun, Guo-Qin; Sun, Feng-Yang; Cao, Fang-Li; Chen, Shu-Jun; Barkey, Mark E.

    2015-11-01

    The numerical simulation of tensile fracture behavior on Al-Cu alloy friction stir-welded joint was performed with the Gurson-Tvergaard-Needleman (GTN) damage model. The parameters of the GTN model were studied in each region of the friction stir-welded joint by means of inverse identification. Based on the obtained parameters, the finite element model of the welded joint was built to predict the fracture behavior and tension properties. Good agreement can be found between the numerical and experimental results in the location of the tensile fracture and the mechanical properties.

  12. Investigation of Micro-Scale Architectural Effects on Damage of Composites

    NASA Technical Reports Server (NTRS)

    Stier, Bertram; Bednarcyk, Brett A.; Simon, Jaan W.; Reese, Stefanie

    2015-01-01

    This paper presents a three-dimensional, energy based, anisotropic, stiffness reduction, progressive damage model for composite materials and composite material constituents. The model has been implemented as a user-defined constitutive model within the Abaqus finite element software package and applied to simulate the nonlinear behavior of a damaging epoxy matrix within a unidirectional composite material. Three different composite microstructures were considered as finite element repeating unit cells, with appropriate periodicity conditions applied at the boundaries. Results representing predicted transverse tensile, longitudinal shear, and transverse shear stress-strain curves are presented, along with plots of the local fields indicating the damage progression within the microstructure. It is demonstrated that the damage model functions appropriately at the matrix scale, enabling localization of the damage to simulate failure of the composite material. The influence of the repeating unit cell geometry and the effect of the directionality of the applied loading are investigated and discussed.

  13. A new EEMD-based scheme for detection of insect damaged wheat kernels using impact acoustics

    USDA-ARS?s Scientific Manuscript database

    Internally feeding insects inside wheat kernels cause significant, but unseen economic damage to stored grain. In this paper, a new scheme based on ensemble empirical mode decomposition (EEMD) using impact acoustics is proposed for detection of insect-damaged wheat kernels, based on its capability t...

  14. An AI-based approach to structural damage identification by modal analysis

    NASA Technical Reports Server (NTRS)

    Glass, B. J.; Hanagud, S.

    1990-01-01

    Flexible-structure damage is presently addressed by a combined model- and parameter-identification approach which employs the AI methodologies of classification, heuristic search, and object-oriented model knowledge representation. The conditions for model-space search convergence to the best model are discussed in terms of search-tree organization and initial model parameter error. In the illustrative example of a truss structure presented, the use of both model and parameter identification is shown to lead to smaller parameter corrections than would be required by parameter identification alone.

  15. Validation Testing of a Peridynamic Impact Damage Model Using NASA's Micro-Particle Gun

    NASA Technical Reports Server (NTRS)

    Baber, Forrest E.; Zelinski, Brian J.; Guven, Ibrahim; Gray, Perry

    2017-01-01

    Through a collaborative effort between the Virginia Commonwealth University and Raytheon, a peridynamic model for sand impact damage has been developed1-3. Model development has focused on simulating impacts of sand particles on ZnS traveling at velocities consistent with aircraft take-off and landing speeds. The model reproduces common features of impact damage including pit and radial cracks, and, under some conditions, lateral cracks. This study focuses on a preliminary validation exercise in which simulation results from the peridynamic model are compared to a limited experimental data set generated by NASA's recently developed micro-particle gun (MPG). The MPG facility measures the dimensions and incoming and rebound velocities of the impact particles. It also links each particle to a specific impact site and its associated damage. In this validation exercise parameters of the peridynamic model are adjusted to fit the experimentally observed pit diameter, average length of radial cracks and rebound velocities for 4 impacts of 300 µm glass beads on ZnS. Results indicate that a reasonable fit of these impact characteristics can be obtained by suitable adjustment of the peridynamic input parameters, demonstrating that the MPG can be used effectively as a validation tool for impact modeling and that the peridynamic sand impact model described herein possesses not only a qualitative but also a quantitative ability to simulate sand impact events.

  16. Towards the damage evaluation using Gurson-Tvergaard-Needleman (GTN) model for hot forming processes

    NASA Astrophysics Data System (ADS)

    Imran, Muhammad; Bambach, Markus

    2018-05-01

    In the production of semi-finished metal products, hot forming is used to eliminate the pores and voids from the casting process under compressive stresses and to modify the microstructure for further processing. In the case of caliber and flat rolling processes, tensile stresses occur at certain roll gap ratios which promote pore formation on nonmetallic inclusion. The formation of new pores contributes to ductile damage and reduces the load carrying capacity of the material. In the literature, the damage nucleation and growth during the hot forming process are not comprehensively described. The aim of this study is to understand the damage initiation and growth mechanism during hot forming processes. Hot tensile tests are performed at different temperatures and strain rates for 16MnCrS5 steel. To investigate the influence of geometrical variations on the damage mechanism, specimens with different stress triaxiality ratios are used. Finite element simulations using the Gurson-Tvergaard-Needleman (GTN) damage model are performed to estimate the critical void fraction for the damage initiation and the evolution of the void volume fraction. The results showed that the GTN model underestimates the softening of the material due to the independence of the temperature and the strain rate.

  17. Intra-articular TSG-6 delivery from heparin-based microparticles reduces cartilage damage in a rat model of osteoarthritis.

    PubMed

    Tellier, Liane E; Treviño, Elda A; Brimeyer, Alexandra L; Reece, David S; Willett, Nick J; Guldberg, Robert E; Temenoff, Johnna S

    2018-05-01

    As a potential treatment for osteoarthritis (OA), we have developed injectable and hydrolytically degradable heparin-based biomaterials with tunable sulfation for the intra-articular delivery of tumor necrosis factor-alpha stimulated gene-6 (TSG-6), a protein known to inhibit plasmin which may degrade extracellular matrix within OA joints. We first assessed the effect of heparin sulfation on TSG-6 anti-plasmin activity and found that while fully sulfated (Hep) and heparin desulfated at only the N position (Hep-N) significantly enhanced TSG-6 bioactivity in vitro, fully desulfated heparin (Hep-) had no effect, indicating that heparin sulfation plays a significant role in modulating TSG-6 bioactivity. Next, TSG-6 loaded, degradable 10 wt% Hep-N microparticles (MPs) were delivered via intra-articular injection into the knee at 1, 7, and 15 days following medial meniscal transection (MMT) injury in a rat model. After 21 days, cartilage thickness, volume, and attenuation were significantly increased with soluble TSG-6, indicating degenerative changes. In contrast, no significant differences were observed with TSG-6 loaded MP treatment, demonstrating that TSG-6 loaded MPs reduced cartilage damage following MMT injury. Ultimately, our results indicate that Hep-N can enhance TSG-6 anti-plasmin activity and that Hep-N-based biomaterials may be an effective method for TSG-6 delivery to treat OA.

  18. Research on the time-temperature-damage superposition principle of NEPE propellant

    NASA Astrophysics Data System (ADS)

    Han, Long; Chen, Xiong; Xu, Jin-sheng; Zhou, Chang-sheng; Yu, Jia-quan

    2015-11-01

    To describe the relaxation behavior of NEPE (Nitrate Ester Plasticized Polyether) propellant, we analyzed the equivalent relationships between time, temperature, and damage. We conducted a series of uniaxial tensile tests and employed a cumulative damage model to calculate the damage values for relaxation tests at different strain levels. The damage evolution curve of the tensile test at 100 mm/min was obtained through numerical analysis. Relaxation tests were conducted over a range of temperature and strain levels, and the equivalent relationship between time, temperature, and damage was deduced based on free volume theory. The equivalent relationship was then used to generate predictions of the long-term relaxation behavior of the NEPE propellant. Subsequently, the equivalent relationship between time and damage was introduced into the linear viscoelastic model to establish a nonlinear model which is capable of describing the mechanical behavior of composite propellants under a uniaxial tensile load. The comparison between model prediction and experimental data shows that the presented model provides a reliable forecast of the mechanical behavior of propellants.

  19. Flood Damage and Loss Estimation for Iowa on Web-based Systems using HAZUS

    NASA Astrophysics Data System (ADS)

    Yildirim, E.; Sermet, M. Y.; Demir, I.

    2016-12-01

    Importance of decision support systems for flood emergency response and loss estimation increases with its social and economic impacts. To estimate the damage of the flood, there are several software systems available to researchers and decision makers. HAZUS-MH is one of the most widely used desktop program, developed by FEMA (Federal Emergency Management Agency), to estimate economic loss and social impacts of disasters such as earthquake, hurricane and flooding (riverine and coastal). HAZUS used loss estimation methodology and implements through geographic information system (GIS). HAZUS contains structural, demographic, and vehicle information across United States. Thus, it allows decision makers to understand and predict possible casualties and damage of the floods by running flood simulations through GIS application. However, it doesn't represent real time conditions because of using static data. To close this gap, an overview of a web-based infrastructure coupling HAZUS and real time data provided by IFIS (Iowa Flood Information System) is presented by this research. IFIS is developed by the Iowa Flood Center, and a one-stop web-platform to access community-based flood conditions, forecasts, visualizations, inundation maps and flood-related data, information, and applications. Large volume of real-time observational data from a variety of sensors and remote sensing resources (radars, rain gauges, stream sensors, etc.) and flood inundation models are staged on a user-friendly maps environment that is accessible to the general public. Providing cross sectional analyses between HAZUS-MH and IFIS datasets, emergency managers are able to evaluate flood damage during flood events easier and more accessible in real time conditions. With matching data from HAZUS-MH census tract layer and IFC gauges, economical effects of flooding can be observed and evaluated by decision makers. The system will also provide visualization of the data by using augmented reality for

  20. Comparing model-based adaptive LMS filters and a model-free hysteresis loop analysis method for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Zhou, Cong; Chase, J. Geoffrey; Rodgers, Geoffrey W.; Xu, Chao

    2017-02-01

    The model-free hysteresis loop analysis (HLA) method for structural health monitoring (SHM) has significant advantages over the traditional model-based SHM methods that require a suitable baseline model to represent the actual system response. This paper provides a unique validation against both an experimental reinforced concrete (RC) building and a calibrated numerical model to delineate the capability of the model-free HLA method and the adaptive least mean squares (LMS) model-based method in detecting, localizing and quantifying damage that may not be visible, observable in overall structural response. Results clearly show the model-free HLA method is capable of adapting to changes in how structures transfer load or demand across structural elements over time and multiple events of different size. However, the adaptive LMS model-based method presented an image of greater spread of lesser damage over time and story when the baseline model is not well defined. Finally, the two algorithms are tested over a simpler hysteretic behaviour typical steel structure to quantify the impact of model mismatch between the baseline model used for identification and the actual response. The overall results highlight the need for model-based methods to have an appropriate model that can capture the observed response, in order to yield accurate results, even in small events where the structure remains linear.

  1. Finite element implementation of a thermo-damage-viscoelastic constitutive model for hydroxyl-terminated polybutadiene composite propellant

    NASA Astrophysics Data System (ADS)

    Xu, Jinsheng; Han, Long; Zheng, Jian; Chen, Xiong; Zhou, Changsheng

    2017-11-01

    A thermo-damage-viscoelastic model for hydroxyl-terminated polybutadiene (HTPB) composite propellant with consideration for the effect of temperature was implemented in ABAQUS. The damage evolution law of the model has the same form as the crack growth equation for viscoelastic materials, and only a single damage variable S is considered. The HTPB propellant was considered as an isotropic material, and the deviatoric and volumetric strain-stress relations are decoupled and described by the bulk and shear relaxation moduli, respectively. The stress update equations were expressed by the principal stresses σ_{ii}R and the rotation tensor M, the Jacobian matrix in the global coordinate system J_{ijkl} was obtained according to the fourth-order tensor transformation rules. Two models having complex stress states were used to verify the accuracy of the constitutive model. The test results showed good agreement with the strain responses of characteristic points measured by a contactless optical deformation test system, which illustrates that the thermo-damage-viscoelastic model perform well at describing the mechanical properties of an HTPB propellant.

  2. Modelling electron distributions within ESA's Gaia satellite CCD pixels to mitigate radiation damage

    NASA Astrophysics Data System (ADS)

    Seabroke, G. M.; Holland, A. D.; Burt, D.; Robbins, M. S.

    2009-08-01

    The Gaia satellite is a high-precision astrometry, photometry and spectroscopic ESA cornerstone mission, currently scheduled for launch in 2012. Its primary science drivers are the composition, formation and evolution of the Galaxy. Gaia will achieve its unprecedented positional accuracy requirements with detailed calibration and correction for radiation damage. At L2, protons cause displacement damage in the silicon of CCDs. The resulting traps capture and emit electrons from passing charge packets in the CCD pixel, distorting the image PSF and biasing its centroid. Microscopic models of Gaia's CCDs are being developed to simulate this effect. The key to calculating the probability of an electron being captured by a trap is the 3D electron density within each CCD pixel. However, this has not been physically modelled for the Gaia CCD pixels. In Seabroke, Holland & Cropper (2008), the first paper of this series, we motivated the need for such specialised 3D device modelling and outlined how its future results will fit into Gaia's overall radiation calibration strategy. In this paper, the second of the series, we present our first results using Silvaco's physics-based, engineering software: the ATLAS device simulation framework. Inputting a doping profile, pixel geometry and materials into ATLAS and comparing the results to other simulations reveals that ATLAS has a free parameter, fixed oxide charge, that needs to be calibrated. ATLAS is successfully benchmarked against other simulations and measurements of a test device, identifying how to use it to model Gaia pixels and highlighting the affect of different doping approximations.

  3. Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Xue, D.; Shi, Y.

    2013-01-01

    A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.

  4. Fracture simulation of restored teeth using a continuum damage mechanics failure model.

    PubMed

    Li, Haiyan; Li, Jianying; Zou, Zhenmin; Fok, Alex Siu-Lun

    2011-07-01

    The aim of this paper is to validate the use of a finite-element (FE) based continuum damage mechanics (CDM) failure model to simulate the debonding and fracture of restored teeth. Fracture testing of plastic model teeth, with or without a standard Class-II MOD (mesial-occusal-distal) restoration, was carried out to investigate their fracture behavior. In parallel, 2D FE models of the teeth are constructed and analyzed using the commercial FE software ABAQUS. A CDM failure model, implemented into ABAQUS via the user element subroutine (UEL), is used to simulate the debonding and/or final fracture of the model teeth under a compressive load. The material parameters needed for the CDM model to simulate fracture are obtained through separate mechanical tests. The predicted results are then compared with the experimental data of the fracture tests to validate the failure model. The failure processes of the intact and restored model teeth are successfully reproduced by the simulation. However, the fracture parameters obtained from testing small specimens need to be adjusted to account for the size effect. The results indicate that the CDM model is a viable model for the prediction of debonding and fracture in dental restorations. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Smart-aggregate-based damage detection of fiber-reinforced-polymer-strengthened columns under reversed cyclic loading

    NASA Astrophysics Data System (ADS)

    Howser, Rachel; Moslehy, Yashar; Gu, Haichang; Dhonde, Hemant; Mo, Y. L.; Ayoub, Ashraf; Song, Gangbing

    2011-07-01

    Structural health monitoring is an important aspect of the maintenance of large civil infrastructures, especially for bridge columns in areas of high seismic activity. In this project, recently developed innovative piezoceramic-based sensors were utilized to perform the health monitoring of a shear-critical reinforced concrete (RC) bridge column subjected to reversed cyclic loading. After the column failed, it was wrapped with fiber reinforced polymer (FRP) sheets, commonly used to retrofit seismically damaged structures. The FRP-strengthened column was retested under the same reversed cyclic loading pattern. Innovative piezoceramic-based sensors, called 'smart aggregates', were utilized as transducers for health monitoring purposes. On the basis of the smart aggregates developed, an active-sensing approach and an impact-hammer-based approach were used to evaluate the health status of the RC column during the loading procedure. Wave transmission energy is attenuated by the existence of cracks during the loading procedure, and this attenuation phenomenon alters the curve of the transfer function between the actuator and sensor. To detect the damage occurrence and evaluate the damage severity, transfer function curves were compared with those obtained during the period of healthy status. A transfer-function-based damage index matrix was developed to demonstrate the damage severity at different locations. Experimental results verified the effectiveness of the smart aggregates in health monitoring of the FRP-strengthened column as well as the unstrengthened column. The experimental results show that the proposed smart-aggregate-based approach can successfully detect damage occurrence and evaluate its severity.

  6. The Estimation Modelling of Damaged Areas by Harmful Animals

    NASA Astrophysics Data System (ADS)

    Jang, R.; Sung, M.; Hwang, J.; Jeon, S. W.

    2017-12-01

    The Republic of Korea has undergone rapid development and urban development without sufficient consideration of the environment. This type of growth is accompanied by a reduction in forest area and wildlife habitat. It is a phenomenon that affects the habitat of large mammals more than small. Especially in Korea, the damage caused by wild boar(Sus scrofa) is harsher than other large mammalian species like water deer(Hydropotes inermis), which also means that the number of these reported cases of this species is higher than ones of other mammals. Wild boar has three to eight cubs per year and it is possible to breed every year, which makes it more populous comparing with the fragmented habitats. It could be regarded as one of the top predators in Korea, which it is inevitable for humans to intervene this creature in population control. In addition, some individuals have been forced to be retreated from other habitats in major habitats, or to invade human activity areas for food activity, thereby destroying crops. Ultimately, this mammal species has been treated as farm pest animals through committing road kills and urban emergences. In this study, we has estimated possible farm pest animal present points from the damage district using 2,505 hazardous wildlife damage areas with four types of geological informations, four kinds of forest information, land cover, and distribution of farmland occurred in Gyeongnam province in Korea. In the estimating model, utilizing MAXENT, information of background point was set to 10,000, 70% of the damaged sites were used to construct the model, 30% was used for verification, and 10 times of crossvalidate were proceeded - verified by AUC of ROC. As a result of analyses, AUC was 0.847, and the percent contribution of the forest information was the distance toward inner-forest areas, 36.1%, the land cover, 16.5%, the distance from the field, 14.9%. Furthermore, the permutation importance was 24.9% of the cover, 12.3% of the height

  7. Calculation on spectrum of direct DNA damage induced by low-energy electrons including dissociative electron attachment.

    PubMed

    Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe

    2017-03-01

    In this work, direct DNA damage induced by low-energy electrons (sub-keV) is simulated using a Monte Carlo method. The characteristics of the present simulation are to consider the new mechanism of DNA damage due to dissociative electron attachment (DEA) and to allow determining damage to specific bases (i.e., adenine, thymine, guanine, or cytosine). The electron track structure in liquid water is generated, based on the dielectric response model for describing electron inelastic scattering and on a free-parameter theoretical model and the NIST database for calculating electron elastic scattering. Ionization cross sections of DNA bases are used to generate base radicals, and available DEA cross sections of DNA components are applied for determining DNA-strand breaks and base damage induced by sub-ionization electrons. The electron elastic scattering from DNA components is simulated using cross sections from different theoretical calculations. The resulting yields of various strand breaks and base damage in cellular environment are given. Especially, the contributions of sub-ionization electrons to various strand breaks and base damage are quantitatively presented, and the correlation between complex clustered DNA damage and the corresponding damaged bases is explored. This work shows that the contribution of sub-ionization electrons to strand breaks is substantial, up to about 40-70%, and this contribution is mainly focused on single-strand break. In addition, the base damage induced by sub-ionization electrons contributes to about 20-40% of the total base damage, and there is an evident correlation between single-strand break and damaged base pair A-T.

  8. Nonlinear damage identification of breathing cracks in Truss system

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; DeSmidt, Hans

    2014-03-01

    The breathing cracks in truss system are detected by Frequency Response Function (FRF) based damage identification method. This method utilizes damage-induced changes of frequency response functions to estimate the severity and location of structural damage. This approach enables the possibility of arbitrary interrogation frequency and multiple inputs/outputs which greatly enrich the dataset for damage identification. The dynamical model of truss system is built using the finite element method and the crack model is based on fracture mechanics. Since the crack is driven by tensional and compressive forces of truss member, only one damage parameter is needed to represent the stiffness reduction of each truss member. Assuming that the crack constantly breathes with the exciting frequency, the linear damage detection algorithm is developed in frequency/time domain using Least Square and Newton Raphson methods. Then, the dynamic response of the truss system with breathing cracks is simulated in the time domain and meanwhile the crack breathing status for each member is determined by the feedback from real-time displacements of member's nodes. Harmonic Fourier Coefficients (HFCs) of dynamical response are computed by processing the data through convolution and moving average filters. Finally, the results show the effectiveness of linear damage detection algorithm in identifying the nonlinear breathing cracks using different combinations of HFCs and sensors.

  9. An Interface Damage Model for the Simulation of Delamination Under Variable-Mode Ratio in Composite Materials

    NASA Technical Reports Server (NTRS)

    Turon, Albert; Camanho, Pedro P.; Costa, Josep; Davila, Carlos G.

    2004-01-01

    A thermodynamically consistent damage model for the simulation of progressive delamination under variable mode ratio is presented. The model is formulated in the context of the Damage Mechanics (DM). The constitutive equations that result from the variation of the free energy with damage are used to model the initiation and propagation of delamination. A new delamination initiation criterion is developed to assure that the formulation can account for changes in the loading mode in a thermodynamically consistent way. Interfacial penetration of two adjacent layers after complete decohesion is prevented by the formulation of the free energy. The model is implemented into the commercial finite element code ABAQUS by means of a user-written decohesion element. Finally, the numerical predictions given by the model are compared with experimental results.

  10. Characterization and damage evaluation of advanced materials

    NASA Astrophysics Data System (ADS)

    Mitrovic, Milan

    Mechanical characterization of advanced materials, namely magnetostrictive and graphite/epoxy composite materials, is studied in this dissertation, with an emphasis on damage evaluation of composite materials. Consequently, the work in this dissertation is divided into two parts, with the first part focusing on characterization of the magneto-elastic response of magnetostrictlve materials, while the second part of this dissertation describes methods for evaluating the fatigue damage in composite materials. The objective of the first part of this dissertation is to evaluate a nonlinear constitutive relation which more closely depict the magneto-elastic response of magnetostrictive materials. Correlation between experimental and theoretical values indicate that the model adequately predicts the nonlinear strain/field relations in specific regimes, and that the currently employed linear approaches are inappropriate for modeling the response of this material in a structure. The objective of the second part of this dissertation is to unravel the complexities associated with damage events associated with polymeric composite materials. The intent is to characterize and understand the influence of impact and fatigue induced damage on the residual thermo-mechanical properties and compressive strength of composite systems. The influence of fatigue generated matrix cracking and micro-delaminations on thermal expansion coefficient (TEC) and compressive strength is investigated for woven graphite/epoxy composite system. Experimental results indicate that a strong correlation exists between TEC and compressive strength measurements, indicating that TEC measurements can be used as a damage metric for this material systems. The influence of delaminations on the natural frequencies and mode shapes of a composite laminate is also investigated. Based on the changes of these parameters as a function of damage, a methodology for determining the size and location of damage is suggested

  11. Oxidative Damage and Cellular Defense Mechanisms in Sea Urchin Models of Aging

    PubMed Central

    Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea

    2013-01-01

    The free radical or oxidative stress theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging due to the existence of species with tremendously different natural life spans including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus and Strongylocentrotus purpuratus which has an intermediate lifespan. Levels of protein carbonyls and 4-hydroxynonenal (HNE) measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2’-deoxyguanosine (8-OHdG) measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age-pigment lipofuscin measured in muscle, nerve and esophagus, increased with age however it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species, however further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage. PMID:23707327

  12. Oxidative damage and cellular defense mechanisms in sea urchin models of aging.

    PubMed

    Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea

    2013-10-01

    The free radical, or oxidative stress, theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging because of the existence of species with tremendously different natural life spans, including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity, and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus, and Strongylocentrotus purpuratus, which has an intermediate life span. Levels of protein carbonyls and 4-hydroxynonenal measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2'-deoxyguanosine measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age pigment lipofuscin, measured in muscle, nerve, and esophagus, increased with age; however, it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species; however, further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age, and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage. Copyright © 2013 Elsevier Inc. All

  13. Postbuckling Investigations of Piezoelectric Microdevices Considering Damage Effects

    PubMed Central

    Sun, Zhigang; Wang, Xianqiao

    2014-01-01

    Piezoelectric material has been emerging as a popular building block in MEMS devices owing to its unique mechanical and electrical material properties. However, the reliability of MEMS devices under buckling deformation environments remains elusive and needs to be further explored. Based on the Talreja's tensor valued internal state damage variables as well as the Helmhotlz free energy of piezoelectric material, a constitutive model of piezoelectric materials with damage is presented. The Kachanvo damage evolution law under in-plane compressive loads is employed. The model is applied to the specific case of the postbuckling analysis of the piezoelectric plate with damage. Then, adopting von Karman's plate theory, the nonlinear governing equations of the piezoelectric plates with initial geometric deflection including damage effects under in-plane compressive loads are established. By using the finite difference method and the Newmark scheme, the damage evolution for damage accumulation is developed and the finite difference procedure for postbuckling equilibrium path is simultaneously employed. Numerical results show the postbuckling behaviors of initial flat and deflected piezoelectric plates with damage or no damage under different sets of electrical loading conditions. The effects of applied voltage, aspect ratio of plate, thick-span ratio of plate, damage as well as initial geometric deflections on the postbuckling behaviors of the piezoelectric plate are discussed. PMID:24618774

  14. Localization and stability in damageable amorphous solids

    NASA Astrophysics Data System (ADS)

    de Tommasi, D.; Marzano, S.; Puglisi, G.; Saccomandi, G.

    2010-01-01

    In the present article, based on a recently proposed model (De Tommasi et al. in J Rheol 50:495-512, 2006; Phys Rev Lett 100:085502, 2008), we analyze the influence of the microstructure properties on the damage behavior of amorphous materials. In accordance with the experimental observations, different scenarios of damage nucleation and evolution are associated to different material distributions at the microscale. In particular, we observe the possibilities of uniform or localized damage and strain geometries with a macroscopic behavior that may range from brittle to ductile or rubber-like. To describe the possibility of extending our stability analysis to three-dimensional damageable amorphous bodies we consider a simple boundary value problem of engineering interest.

  15. Nuclear aggregates of polyamines in a radiation-induced DNA damage model.

    PubMed

    Iacomino, Giuseppe; Picariello, Gianluca; Stillitano, Ilaria; D'Agostino, Luciano

    2014-02-01

    Polyamines (PA) are believed to protect DNA minimizing the effect of radiation damage either by inducing DNA compaction and aggregation or acting as scavengers of free radicals. Using an in vitro pDNA double strand breakage assay based on gel electrophoretic mobility, we compared the protective capability of PA against γ-radiation with that of compounds generated by the supramolecular self-assembly of nuclear polyamines and phosphates, named Nuclear Aggregates of Polyamines (NAPs). Both unassembled PA and in vitro produced NAPs (ivNAPs) were ineffective in conferring pDNA protection at the sub-mM concentration. Single PA showed an appreciable protective effect only at high (mM) concentrations. However, concentrations of spermine (4+) within a critical range (0.481 mM) induced pDNA precipitation, an event that was not observed with NAPs-pDNA interaction. We conclude that the interaction of individual PA is ineffective to assure DNA protection, simultaneously preserving the flexibility and charge density of the double strand. Furthermore, data obtained by testing polyamine and ivNAPS with the current radiation-induced DNA damage model support the concept that PA-phosphate aggregates are the only forms through which PA interact with DNA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Damage detection methodology on beam-like structures based on combined modal Wavelet Transform strategy

    NASA Astrophysics Data System (ADS)

    Serra, Roger; Lopez, Lautaro

    2018-05-01

    Different approaches on the detection of damages based on dynamic measurement of structures have appeared in the last decades. They were based, amongst others, on changes in natural frequencies, modal curvatures, strain energy or flexibility. Wavelet analysis has also been used to detect the abnormalities on modal shapes induced by damages. However the majority of previous work was made with non-corrupted by noise signals. Moreover, the damage influence for each mode shape was studied separately. This paper proposes a new methodology based on combined modal wavelet transform strategy to cope with noisy signals, while at the same time, able to extract the relevant information from each mode shape. The proposed methodology will be then compared with the most frequently used and wide-studied methods from the bibliography. To evaluate the performance of each method, their capacity to detect and localize damage will be analyzed in different cases. The comparison will be done by simulating the oscillations of a cantilever steel beam with and without defect as a numerical case. The proposed methodology proved to outperform classical methods in terms of noisy signals.

  17. Micromechanical modeling of damage growth in titanium based metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Sherwood, James A.; Quimby, Howard M.

    1994-01-01

    The thermomechanical behavior of continuous-fiber reinforced titanium based metal-matrix composites (MMC) is studied using the finite element method. A thermoviscoplastic unified state variable constitutive theory is employed to capture inelastic and strain-rate sensitive behavior in the Timetal-21s matrix. The SCS-6 fibers are modeled as thermoplastic. The effects of residual stresses generated during the consolidation process on the tensile response of the composites are investigated. Unidirectional and cross-ply geometries are considered. Differences between the tensile responses in composites with perfectly bonded and completely debonded fiber/matrix interfaces are discussed. Model simulations for the completely debonded-interface condition are shown to correlate well with experimental results.

  18. Application of Laser Based Ultrasound for NDE of Damage in Thick Stitched Composites

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Friedman, Adam D.; Hinders, Mark K.; Madaras, Eric I.

    1997-01-01

    As design engineers implement new composite systems such as thick, load bearing composite structures, they must have certifiable confidence in structure s durability and worthiness. This confidence builds from understanding the structural response and failure characteristics of simple components loaded in testing machines to tests on full scale sections. Nondestructive evaluation is an important element which can provide quantitative information on the damage initiation, propagation, and final failure modes for the composite structural components. Although ultrasound is generally accepted as a test method, the use of conventional ultrasound for in-situ monitoring of damage during tests of large structures is not practical. The use of lasers to both generate and detect ultrasound extends the application of ultrasound to in- situ sensing of damage in a deformed structure remotely and in a non-contact manner. The goal of the present research is to utilize this technology to monitor damage progression during testing. The present paper describes the application of laser based ultrasound to quantify damage in thick stitched composite structural elements to demonstrate the method. This method involves using a Q-switched laser to generate a rapid, local linear thermal strain on the surface of the structure. This local strain causes the generation of ultrasonic waves into the material. A second laser used with a Fabry-Perot interferometer detects the surface deflections. The use of fiber optics provides for eye safety and a convenient method of delivering the laser over long distances to the specimens. The material for these structural elements is composed of several stacks of composite material assembled together by stitching through the laminate thickness that ranging from 0.5 to 0.8 inches. The specimens used for these nondestructive evaluation studies had either impact damage or skin/stiffener interlaminar failure. Although little or no visible surface damage existed

  19. Finite Element Modelling and Analysis of Damage Detection Methodology in Piezo Electric Sensor and Actuator Integrated Sandwich Cantilever Beam

    NASA Astrophysics Data System (ADS)

    Pradeep, K. R.; Thomas, A. M.; Basker, V. T.

    2018-03-01

    Structural health monitoring (SHM) is an essential component of futuristic civil, mechanical and aerospace structures. It detects the damages in system or give warning about the degradation of structure by evaluating performance parameters. This is achieved by the integration of sensors and actuators into the structure. Study of damage detection process in piezoelectric sensor and actuator integrated sandwich cantilever beam is carried out in this paper. Possible skin-core debond at the root of the cantilever beam is simulated and compared with undamaged case. The beam is actuated using piezoelectric actuators and performance differences are evaluated using Polyvinylidene fluoride (PVDF) sensors. The methodology utilized is the voltage/strain response of the damaged versus undamaged beam against transient actuation. Finite element model of piezo-beam is simulated in ANSYSTM using 8 noded coupled field element, with nodal degrees of freedoms are translations in the x, y directions and voltage. An aluminium sandwich beam with a length of 800mm, thickness of core 22.86mm and thickness of skin 0.3mm is considered. Skin-core debond is simulated in the model as unmerged nodes. Reduction in the fundamental frequency of the damaged beam is found to be negligible. But the voltage response of the PVDF sensor under transient excitation shows significantly visible change indicating the debond. Piezo electric based damage detection system is an effective tool for the damage detection of aerospace and civil structural system having inaccessible/critical locations and enables online monitoring possibilities as the power requirement is minimal.

  20. Simulating Progressive Damage of Notched Composite Laminates with Various Lamination Schemes

    NASA Astrophysics Data System (ADS)

    Mandal, B.; Chakrabarti, A.

    2017-05-01

    A three dimensional finite element based progressive damage model has been developed for the failure analysis of notched composite laminates. The material constitutive relations and the progressive damage algorithms are implemented into finite element code ABAQUS using user-defined subroutine UMAT. The existing failure criteria for the composite laminates are modified by including the failure criteria for fiber/matrix shear damage and delamination effects. The proposed numerical model is quite efficient and simple compared to other progressive damage models available in the literature. The efficiency of the present constitutive model and the computational scheme is verified by comparing the simulated results with the results available in the literature. A parametric study has been carried out to investigate the effect of change in lamination scheme on the failure behaviour of notched composite laminates.

  1. Application of higher order SVD to vibration-based system identification and damage detection

    NASA Astrophysics Data System (ADS)

    Chao, Shu-Hsien; Loh, Chin-Hsiung; Weng, Jian-Huang

    2012-04-01

    Singular value decomposition (SVD) is a powerful linear algebra tool. It is widely used in many different signal processing methods, such principal component analysis (PCA), singular spectrum analysis (SSA), frequency domain decomposition (FDD), subspace identification and stochastic subspace identification method ( SI and SSI ). In each case, the data is arranged appropriately in matrix form and SVD is used to extract the feature of the data set. In this study three different algorithms on signal processing and system identification are proposed: SSA, SSI-COV and SSI-DATA. Based on the extracted subspace and null-space from SVD of data matrix, damage detection algorithms can be developed. The proposed algorithm is used to process the shaking table test data of the 6-story steel frame. Features contained in the vibration data are extracted by the proposed method. Damage detection can then be investigated from the test data of the frame structure through subspace-based and nullspace-based damage indices.

  2. The Involvement of the Oxidative Stress in Murine Blue LED Light-Induced Retinal Damage Model.

    PubMed

    Nakamura, Maho; Kuse, Yoshiki; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2017-01-01

    The aim of study was to establish a mouse model of blue light emitting diode (LED) light-induced retinal damage and to evaluate the effects of the antioxidant N-acetylcysteine (NAC). Mice were exposed to 400 or 800 lx blue LED light for 2 h, and were evaluated for retinal damage 5 d later by electroretinogram amplitude and outer nuclear layer (ONL) thickness. Additionally, we investigated the effect of blue LED light exposure on shorts-wave-sensitive opsin (S-opsin), and rhodopsin expression by immunohistochemistry. Blue LED light induced light intensity dependent retinal damage and led to collapse of S-opsin and altered rhodopsin localization from inner and outer segments to ONL. Conversely, NAC administered at 100 or 250 mg/kg intraperitoneally twice a day, before dark adaptation and before light exposure. NAC protected the blue LED light-induced retinal damage in a dose-dependent manner. Further, blue LED light-induced decreasing of S-opsin levels and altered rhodopsin localization, which were suppressed by NAC. We established a mouse model of blue LED light-induced retinal damage and these findings indicated that oxidative stress was partially involved in blue LED light-induced retinal damage.

  3. Numerical damage models using a structural approach: application in bones and ligaments

    NASA Astrophysics Data System (ADS)

    Arnoux, P. J.; Bonnoit, J.; Chabrand, P.; Jean, M.; Pithioux, M.

    2002-01-01

    The purpose of the present study was to apply knowledge of structural properties to perform numerical simulations with models of bones and knee ligaments exposed to dynamic tensile loading leading to tissue damage. Compact bones and knee ligaments exhibit the same geometrical pattern in their different levels of structural hierarchy from the tropocollagen molecule to the fibre. Nevertheless, their mechanical behaviours differ considerably at the fibril level. These differences are due to the contribution of the joints in the microfibril-fibril-fibre assembly and to the mechanical properties of the structural components. Two finite element models of the fibrous bone and ligament structure were used to describe damage in terms of elastoplastic laws or joint decohesion processes.

  4. Damage detection methodology under variable load conditions based on strain field pattern recognition using FBGs, nonlinear principal component analysis, and clustering techniques

    NASA Astrophysics Data System (ADS)

    Sierra-Pérez, Julián; Torres-Arredondo, M.-A.; Alvarez-Montoya, Joham

    2018-01-01

    Structural health monitoring consists of using sensors integrated within structures together with algorithms to perform load monitoring, damage detection, damage location, damage size and severity, and prognosis. One possibility is to use strain sensors to infer structural integrity by comparing patterns in the strain field between the pristine and damaged conditions. In previous works, the authors have demonstrated that it is possible to detect small defects based on strain field pattern recognition by using robust machine learning techniques. They have focused on methodologies based on principal component analysis (PCA) and on the development of several unfolding and standardization techniques, which allow dealing with multiple load conditions. However, before a real implementation of this approach in engineering structures, changes in the strain field due to conditions different from damage occurrence need to be isolated. Since load conditions may vary in most engineering structures and promote significant changes in the strain field, it is necessary to implement novel techniques for uncoupling such changes from those produced by damage occurrence. A damage detection methodology based on optimal baseline selection (OBS) by means of clustering techniques is presented. The methodology includes the use of hierarchical nonlinear PCA as a nonlinear modeling technique in conjunction with Q and nonlinear-T 2 damage indices. The methodology is experimentally validated using strain measurements obtained by 32 fiber Bragg grating sensors bonded to an aluminum beam under dynamic bending loads and simultaneously submitted to variations in its pitch angle. The results demonstrated the capability of the methodology for clustering data according to 13 different load conditions (pitch angles), performing the OBS and detecting six different damages induced in a cumulative way. The proposed methodology showed a true positive rate of 100% and a false positive rate of 1.28% for a

  5. Life prediction of thermally highly loaded components: modelling the damage process of a rocket combustion chamber hot wall

    NASA Astrophysics Data System (ADS)

    Schwarz, W.; Schwub, S.; Quering, K.; Wiedmann, D.; Höppel, H. W.; Göken, M.

    2011-09-01

    During their operational life-time, actively cooled liners of cryogenic combustion chambers are known to exhibit a characteristic so-called doghouse deformation, pursued by formation of axial cracks. The present work aims at developing a model that quantitatively accounts for this failure mechanism. High-temperature material behaviour is characterised in a test programme and it is shown that stress relaxation, strain rate dependence, isotropic and kinematic hardening as well as material ageing have to be taken into account in the model formulation. From fracture surface analyses of a thrust chamber it is concluded that the failure mode of the hot wall ligament at the tip of the doghouse is related to ductile rupture. A material model is proposed that captures all stated effects. Basing on the concept of continuum damage mechanics, the model is further extended to incorporate softening effects due to material degradation. The model is assessed on experimental data and quantitative agreement is established for all tests available. A 3D finite element thermo-mechanical analysis is performed on a representative thrust chamber applying the developed material-damage model. The simulation successfully captures the observed accrued thinning of the hot wall and quantitatively reproduces the doghouse deformation.

  6. An Energy-Equivalent d+/d− Damage Model with Enhanced Microcrack Closure-Reopening Capabilities for Cohesive-Frictional Materials

    PubMed Central

    Cervera, Miguel; Tesei, Claudia

    2017-01-01

    In this paper, an energy-equivalent orthotropic d+/d− damage model for cohesive-frictional materials is formulated. Two essential mechanical features are addressed, the damage-induced anisotropy and the microcrack closure-reopening (MCR) effects, in order to provide an enhancement of the original d+/d− model proposed by Faria et al. 1998, while keeping its high algorithmic efficiency unaltered. First, in order to ensure the symmetry and positive definiteness of the secant operator, the new formulation is developed in an energy-equivalence framework. This proves thermodynamic consistency and allows one to describe a fundamental feature of the orthotropic damage models, i.e., the reduction of the Poisson’s ratio throughout the damage process. Secondly, a “multidirectional” damage procedure is presented to extend the MCR capabilities of the original model. The fundamental aspects of this approach, devised for generic cyclic conditions, lie in maintaining only two scalar damage variables in the constitutive law, while preserving memory of the degradation directionality. The enhanced unilateral capabilities are explored with reference to the problem of a panel subjected to in-plane cyclic shear, with or without vertical pre-compression; depending on the ratio between shear and pre-compression, an absent, a partial or a complete stiffness recovery is simulated with the new multidirectional procedure. PMID:28772793

  7. Development of a multiaxial viscoelastoplastic continuum damage model for asphalt mixtures.

    DOT National Transportation Integrated Search

    2009-09-01

    This report highlights findings from the FHWA DTFH61-05-H-00019 project, which focused on the development of the multiaxial viscoelastoplastic continuum damage model for asphalt concrete in both compression and tension. Asphalt concrete pavement, one...

  8. Model based defect characterization in composites

    NASA Astrophysics Data System (ADS)

    Roberts, R.; Holland, S.

    2017-02-01

    Work is reported on model-based defect characterization in CFRP composites. The work utilizes computational models of the interaction of NDE probing energy fields (ultrasound and thermography), to determine 1) the measured signal dependence on material and defect properties (forward problem), and 2) an assessment of performance-critical defect properties from analysis of measured NDE signals (inverse problem). Work is reported on model implementation for inspection of CFRP laminates containing multi-ply impact-induced delamination, with application in this paper focusing on ultrasound. A companion paper in these proceedings summarizes corresponding activity in thermography. Inversion of ultrasound data is demonstrated showing the quantitative extraction of damage properties.

  9. Novel high-fidelity realistic explosion damage simulation for urban environments

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqing; Yadegar, Jacob; Zhu, Youding; Raju, Chaitanya; Bhagavathula, Jaya

    2010-04-01

    Realistic building damage simulation has a significant impact in modern modeling and simulation systems especially in diverse panoply of military and civil applications where these simulation systems are widely used for personnel training, critical mission planning, disaster management, etc. Realistic building damage simulation should incorporate accurate physics-based explosion models, rubble generation, rubble flyout, and interactions between flying rubble and their surrounding entities. However, none of the existing building damage simulation systems sufficiently faithfully realize the criteria of realism required for effective military applications. In this paper, we present a novel physics-based high-fidelity and runtime efficient explosion simulation system to realistically simulate destruction to buildings. In the proposed system, a family of novel blast models is applied to accurately and realistically simulate explosions based on static and/or dynamic detonation conditions. The system also takes account of rubble pile formation and applies a generic and scalable multi-component based object representation to describe scene entities and highly scalable agent-subsumption architecture and scheduler to schedule clusters of sequential and parallel events. The proposed system utilizes a highly efficient and scalable tetrahedral decomposition approach to realistically simulate rubble formation. Experimental results demonstrate that the proposed system has the capability to realistically simulate rubble generation, rubble flyout and their primary and secondary impacts on surrounding objects including buildings, constructions, vehicles and pedestrians in clusters of sequential and parallel damage events.

  10. Adhesive Characterization and Progressive Damage Analysis of Bonded Composite Joints

    NASA Technical Reports Server (NTRS)

    Girolamo, Donato; Davila, Carlos G.; Leone, Frank A.; Lin, Shih-Yung

    2014-01-01

    The results of an experimental/numerical campaign aimed to develop progressive damage analysis (PDA) tools for predicting the strength of a composite bonded joint under tensile loads are presented. The PDA is based on continuum damage mechanics (CDM) to account for intralaminar damage, and cohesive laws to account for interlaminar and adhesive damage. The adhesive response is characterized using standard fracture specimens and digital image correlation (DIC). The displacement fields measured by DIC are used to calculate the J-integrals, from which the associated cohesive laws of the structural adhesive can be derived. A finite element model of a sandwich conventional splice joint (CSJ) under tensile loads was developed. The simulations indicate that the model is capable of predicting the interactions of damage modes that lead to the failure of the joint.

  11. Optimum electrode configuration selection for electrical resistance change based damage detection in composites using an effective independence measure

    NASA Astrophysics Data System (ADS)

    Escalona, Luis; Díaz-Montiel, Paulina; Venkataraman, Satchi

    2016-04-01

    Laminated carbon fiber reinforced polymer (CFRP) composite materials are increasingly used in aerospace structures due to their superior mechanical properties and reduced weight. Assessing the health and integrity of these structures requires non-destructive evaluation (NDE) techniques to detect and measure interlaminar delamination and intralaminar matrix cracking damage. The electrical resistance change (ERC) based NDE technique uses the inherent changes in conductive properties of the composite to characterize internal damage. Several works that have explored the ERC technique have been limited to thin cross-ply laminates with simple linear or circular electrode arrangements. This paper investigates a method of optimum selection of electrode configurations for delamination detection in thick cross-ply laminates using ERC. Inverse identification of damage requires numerical optimization of the measured response with a model predicted response. Here, the electrical voltage field in the CFRP composite laminate is calculated using finite element analysis (FEA) models for different specified delamination size and locations, and location of ground and current electrodes. Reducing the number of sensor locations and measurements is needed to reduce hardware requirements, and computational effort needed for inverse identification. This paper explores the use of effective independence (EI) measure originally proposed for sensor location optimization in experimental vibration modal analysis. The EI measure is used for selecting the minimum set of resistance measurements among all possible combinations of selecting a pair of electrodes among the n electrodes. To enable use of EI to ERC required, it is proposed in this research a singular value decomposition SVD to obtain a spectral representation of the resistance measurements in the laminate. The effectiveness of EI measure in eliminating redundant electrode pairs is demonstrated by performing inverse identification of

  12. Dynamic Evolution Of Off-Fault Medium During An Earthquake: A Micromechanics Based Model

    NASA Astrophysics Data System (ADS)

    Thomas, Marion Y.; Bhat, Harsha S.

    2018-05-01

    Geophysical observations show a dramatic drop of seismic wave speeds in the shallow off-fault medium following earthquake ruptures. Seismic ruptures generate, or reactivate, damage around faults that alter the constitutive response of the surrounding medium, which in turn modifies the earthquake itself, the seismic radiation, and the near-fault ground motion. We present a micromechanics based constitutive model that accounts for dynamic evolution of elastic moduli at high-strain rates. We consider 2D in-plane models, with a 1D right lateral fault featuring slip-weakening friction law. The two scenarios studied here assume uniform initial off-fault damage and an observationally motivated exponential decay of initial damage with fault normal distance. Both scenarios produce dynamic damage that is consistent with geological observations. A small difference in initial damage actively impacts the final damage pattern. The second numerical experiment, in particular, highlights the complex feedback that exists between the evolving medium and the seismic event. We show that there is a unique off-fault damage pattern associated with supershear transition of an earthquake rupture that could be potentially seen as a geological signature of this transition. These scenarios presented here underline the importance of incorporating the complex structure of fault zone systems in dynamic models of earthquakes.

  13. Dynamic Evolution Of Off-Fault Medium During An Earthquake: A Micromechanics Based Model

    NASA Astrophysics Data System (ADS)

    Thomas, M. Y.; Bhat, H. S.

    2017-12-01

    Geophysical observations show a dramatic drop of seismic wave speeds in the shallow off-fault medium following earthquake ruptures. Seismic ruptures generate, or reactivate, damage around faults that alter the constitutive response of the surrounding medium, which in turn modifies the earthquake itself, the seismic radiation, and the near-fault ground motion. We present a micromechanics based constitutive model that accounts for dynamic evolution of elastic moduli at high-strain rates. We consider 2D in-plane models, with a 1D right lateral fault featuring slip-weakening friction law. The two scenarios studied here assume uniform initial off-fault damage and an observationally motivated exponential decay of initial damage with fault normal distance. Both scenarios produce dynamic damage that is consistent with geological observations. A small difference in initial damage actively impacts the final damage pattern. The second numerical experiment, in particular, highlights the complex feedback that exists between the evolving medium and the seismic event. We show that there is a unique off-fault damage pattern associated with supershear transition of an earthquake rupture that could be potentially seen as a geological signature of this transition. These scenarios presented here underline the importance of incorporating the complex structure of fault zone systems in dynamic models of earthquakes.

  14. Optimal Battery Charging for Damage Mitigation

    NASA Technical Reports Server (NTRS)

    Hartley, Tom T.; Lorenzo, Carl F.

    2003-01-01

    Our control philosophy is to charge the NiH2 cell in such a way that the damage incurred during the charging period is minimized, thus extending its cycle life. This requires nonlinear dynamic model of NiH2 cell and a damage rate model. We must do this first. This control philosophy is generally considered damage mitigating control or life-extending control. This presentation covers how NiH2 cells function, electrode behavior, an essentialized model, damage mechanisms for NiH2 batteries, battery continuum damage modeling, and battery life models. The presentation includes graphs and a chart illustrating how charging a NiH2 battery with different voltages and currents affects damages the battery and affects its life. The presentation concludes with diagrams of control system architectures for tracking battery recharging.

  15. Evaluation of a Linear Cumulative Damage Failure Model for Epoxy Adhesive

    NASA Technical Reports Server (NTRS)

    Richardson, David E.; Batista-Rodriquez, Alicia; Macon, David; Totman, Peter; McCool, Alex (Technical Monitor)

    2001-01-01

    Recently a significant amount of work has been conducted to provide more complex and accurate material models for use in the evaluation of adhesive bondlines. Some of this has been prompted by recent studies into the effects of residual stresses on the integrity of bondlines. Several techniques have been developed for the analysis of bondline residual stresses. Key to these analyses is the criterion that is used for predicting failure. Residual stress loading of an adhesive bondline can occur over the life of the component. For many bonded systems, this can be several years. It is impractical to directly characterize failure of adhesive bondlines under a constant load for several years. Therefore, alternative approaches for predictions of bondline failures are required. In the past, cumulative damage failure models have been developed. These models have ranged from very simple to very complex. This paper documents the generation and evaluation of some of the most simple linear damage accumulation tensile failure models for an epoxy adhesive. This paper shows how several variations on the failure model were generated and presents an evaluation of the accuracy of these failure models in predicting creep failure of the adhesive. The paper shows that a simple failure model can be generated from short-term failure data for accurate predictions of long-term adhesive performance.

  16. A Hybrid Approach to Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics

    DTIC Science & Technology

    2016-03-31

    fiber distributions. Task 2.1 is concerned with damage evolution in a peridynamic model of poroelastic materials. Initial results for both tasks are...distributions. Task 2.1 is concerned with damage evolution in a peridynamic model of poroelastic materials. Initial results for both tasks are reported and...Task 2.1: Damage evolution in a peridynamic model of poroelastic materials. Background and Motivation In order to model the presence of pores and

  17. Real time damage detection using recursive principal components and time varying auto-regressive modeling

    NASA Astrophysics Data System (ADS)

    Krishnan, M.; Bhowmik, B.; Hazra, B.; Pakrashi, V.

    2018-02-01

    In this paper, a novel baseline free approach for continuous online damage detection of multi degree of freedom vibrating structures using Recursive Principal Component Analysis (RPCA) in conjunction with Time Varying Auto-Regressive Modeling (TVAR) is proposed. In this method, the acceleration data is used to obtain recursive proper orthogonal components online using rank-one perturbation method, followed by TVAR modeling of the first transformed response, to detect the change in the dynamic behavior of the vibrating system from its pristine state to contiguous linear/non-linear-states that indicate damage. Most of the works available in the literature deal with algorithms that require windowing of the gathered data owing to their data-driven nature which renders them ineffective for online implementation. Algorithms focussed on mathematically consistent recursive techniques in a rigorous theoretical framework of structural damage detection is missing, which motivates the development of the present framework that is amenable for online implementation which could be utilized along with suite experimental and numerical investigations. The RPCA algorithm iterates the eigenvector and eigenvalue estimates for sample covariance matrices and new data point at each successive time instants, using the rank-one perturbation method. TVAR modeling on the principal component explaining maximum variance is utilized and the damage is identified by tracking the TVAR coefficients. This eliminates the need for offline post processing and facilitates online damage detection especially when applied to streaming data without requiring any baseline data. Numerical simulations performed on a 5-dof nonlinear system under white noise excitation and El Centro (also known as 1940 Imperial Valley earthquake) excitation, for different damage scenarios, demonstrate the robustness of the proposed algorithm. The method is further validated on results obtained from case studies involving

  18. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY RADIATION, CHEMICAL MUTAGENS AND ENZYMES

    EPA Science Inventory

    A simple and rapid assay to detect DNA damage is reported. This novel assay is based on changes in melting/annealing behavior and facilitated using certain dyes that increase their fluorescence upon association with double stranded (ds)DNA. Damage caused by ultraviolet (UV) ra...

  19. How to use the Stand-Damage Model: Version 2.0. (Computer program)

    Treesearch

    J.J. Colbert; George Racin

    2001-01-01

    The Stand-Damage Model simulates the growth of a forest stand, a spatially homogeneous collection of trees growing on a site. The model simulates growth from an initial inventory, user-prescribed management practices, and the effects of gypsy moth defoliation. Here we provide installation and operating instructions for Version 2.0.

  20. DNA damage induced by the direct effect of radiation

    NASA Astrophysics Data System (ADS)

    Yokoya, A.; Shikazono, N.; Fujii, K.; Urushibara, A.; Akamatsu, K.; Watanabe, R.

    2008-10-01

    We have studied the nature of DNA damage induced by the direct effect of radiation. The yields of single- (SSB) and double-strand breaks (DSB), base lesions and clustered damage were measured using the agarose gel electrophoresis method after exposing to various kinds of radiations to a simple model DNA molecule, fully hydrated closed-circular plasmid DNA (pUC18). The yield of SSB does not show significant dependence on linear energy transfer (LET) values. On the other hand, the yields of base lesions revealed by enzymatic probes, endonuclease III (Nth) and formamidopyrimidine DNA glycosylase (Fpg), which excise base lesions and leave a nick at the damage site, strongly depend on LET values. Soft X-ray photon (150 kVp) irradiation gives a maximum yield of the base lesions detected by the enzymatic probes as SSB and clustered damage, which is composed of one base lesion and proximate other base lesions or SSBs. The clustered damage is visualized as an enzymatically induced DSB. The yields of the enzymatically additional damages strikingly decrease with increasing levels of LET. These results suggest that in higher LET regions, the repair enzymes used as probes are compromised because of the dense damage clustering. The studies using simple plasmid DNA as a irradiation sample, however, have a technical difficulty to detect multiple SSBs in a plasmid DNA. To detect the additional SSBs induced in opposite strand of the first SSB, we have also developed a novel technique of DNA-denaturation assay. This allows us to detect multiply induced SSBs in both strand of DNA, but not induced DSB.