Science.gov

Sample records for damping mechanisms analisis

  1. On damping mechanisms in beams

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Inman, D. J.

    1989-01-01

    A partial differential equation model of a cantilevered beam with a tip mass at its free end is used to study damping in a composite. Four separate damping mechanisms consisting of air damping, strain rate damping, spatial hysteresis and time hysteresis are considered experimentally. Dynamic tests were performed to produce time histories. The time history data is then used along with an approximate model to form a sequence of least squares problems. The solution of the least squares problem yields the estimated damping coefficients. The resulting experimentally determined analytical model is compared with the time histories via numerical simulation of the dynamic response. The procedure suggested here is compared with a standard modal damping ratio model commonly used in experimental modal analysis.

  2. Spatial versus time hysteresis in damping mechanisms

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Fabiano, R. H.; Wang, Y.; Inman, D. J.; Cudney, H., Jr.

    1988-01-01

    A description is given of continuing investigations on the task of estimating internal damping mechanisms in flexible structures. Specifically, two models for internal damping in Euler-Bernoulli beams are considered: spatial hysteresis and time hysteresis. A theoretically sound computational algorithm for estimation is described, and experimental results are discussed. It is concluded that both models perform well in the sense that they accurately predict response for the experiments conducted.

  3. Damping mechanisms in chemically vapor deposited SiC fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, James A.; Goldsby, Jon C.

    1993-01-01

    Evaluating the damping of reinforcement fibers is important for understanding their microstructures and the vibrational response of their structural composites. In this study the damping capacities of two types of chemically vapor deposited silicon carbide fibers were measured from -200 C to as high as 800 C. Measurements were made at frequencies in the range 50 to 15000 Hz on single cantilevered fibers. At least four sources were identified which contribute to fiber damping, the most significant being thermoelastic damping and grain boundary sliding. The mechanisms controlling all sources and their potential influence on fiber and composite performance are discussed.

  4. Surface contamination and changes of mechanical damping in Berea sandstone

    NASA Astrophysics Data System (ADS)

    Brunner, Will Marlin

    Small changes in the pore fluid chemistry of Berea sandstone cause significant changes in mechanical damping. A method of detecting contaminants in porous rocks is under ongoing development. Here I report several laboratory measurements done in support of this development, including that of a large difference in mechanical damping between clean and chemically treated Berea sandstone. I develop a model of a surface-chemistry related damping mechanism, and qualitatively compare results from calculations to experimental results. I rule out other damping mechanisms, and conclude that the observed damping is due to surface chemistry effects (contact angle hysteresis). To help verify experimental results, an anelastic structure with calculable damping properties was built. Damping of this structure was measured by the same method used for damping measurements on Berea sandstone. Results from these measurements show good agreement to the calculated response of the structure in the frequency range 0.03--1 Hz.* *This dissertation includes a CD that is compound (contains both a paper copy and a D as part of the dissertation. The CD requires the following applications: Adobe Acrobat.

  5. Contaminant-induced mechanical damping in partially saturated Berea sandstone

    NASA Astrophysics Data System (ADS)

    Brunner, W. M.; Spetzler, H. A.

    2002-08-01

    We have measured mechanical damping in partially saturated Berea sandstone that is strongly dependent on the presence of a small amount of oil. This effect is observed as a function of water saturation and average strain amplitude. These observations are presented as evidence of a damping mechanism previously observed and characterized in artificial cracks. We conclude that this damping effect is due to surface chemistry changes in the rock, and infer that seismic attenuation can be used to monitor small changes in pore fluid chemistry under certain conditions.

  6. An investigation of the mechanical damping of ductile iron

    SciTech Connect

    Carpenter, S.H.; Stuch, T.E.; Salzbrenner, R.

    1995-11-01

    Ductile iron has been suggested as a candidate material for a number of practical applications, including turbine casings, automotive components, and transportation and storage casks for hazardous and radioactive materials. The applications require the enhanced ductility resulting from the presence of spherical graphite nodules in the ductile ferrite iron matrix. Proper design of such components requires a knowledge of the mechanical properties, including how energy is absorbed and dissipated (mechanical damping) by the test material. This article is a study of the mechanical damping of a series of well-characterized ductile iron materials (four separate materials) as a function of strain amplitude, temperature over the range of {minus}100 C to + 100 C, and magnetic field. The major sources of damping were found to be dislocation motion in the graphite phase and magnetomechanical damping in the ferrite phase. The magnitude of the magnetomechanical damping was much larger than that due to dislocation motion. An additional goal of the investigation was to determine if any correlation existed between the measured mechanical damping and the fracture toughness of the ductile iron materials; no correlation was found.

  7. Discrete mechanism damping effects in the solar array flight experiment

    NASA Technical Reports Server (NTRS)

    Pinson, E. D.

    1986-01-01

    Accelerometer data were collected during on-orbit structural dynamic testing of the Solar Array Flight Experiment aboard the Space Shuttle, and were analyzed at Lockheed Missile and Space Co. to determine the amount of damping present in the structure. The results of this analysis indicated that the damping present in the fundamental in-plane mode of the structure substantially exceeded that of the fundamental out-of-plane mode. In an effort to determine the source of the higher in-plane damping, a test was performed involving a small device known as a constant-force spring motor or constant-torque mechanism. Results from this test indicate that this discrete device is at least partially responsible for the increased in-plane modal damping of the Solar Array Flight Experiment structure.

  8. Thiol-ene/methacrylate systems for mechanical damping

    NASA Astrophysics Data System (ADS)

    McNair, Olivia; Senyurt, Askim; Wei, Huanyu; Gould, Trent; Piland, Scott; Hoyle, Charles; Savin, Daniel

    2010-03-01

    Ternary thiol-ene-methacrylate (TEMA) networks as materials for mechanical energy damping are unique to the sports world. Using a photoinitiation process, TEMA systems are formed via an initial thiol-ene step-growth mechanism along with traditional radical polymerization of acrylate and ene monomers. Final networks have two-part morphologies: acrylate homopolymer sectors imbedded in a multi-component mesh. Several (TEMA) systems have been synthesized and analyzed via thermal and mechanical probing. Initial studies on these ternary systems have shown excellent properties compared to traditional ethylene vinyl alcohol (EVA) copolymers. For example, PEMA networks exhibit glass transition temperatures 33 K higher than EVA, resulting in improved damping at room temperature. This research will help develop relationships between tan delta, glass transition and their effects on mechanical energy damping for ternary (TEMA) systems.

  9. An Independent Test of a Subresonant Mechanical Damping Spectrometer

    NASA Astrophysics Data System (ADS)

    Brunner, W.; Spetzler, H. A.

    2001-12-01

    To estimate the precision and accuracy of an apparatus built to measure mechanical damping in crustal rocks, we have constructed a structure from aluminum and high-Newtonian-viscosity silicone oil. This structure is similar in design to many shock absorbers, but with no moving piston. Oil is forced from a reservoir, through a capillary, by elastic deformation of the reservoir wall. Oil returns through the capillary as the deformation relaxes under diminished load. The structure can be modeled as a linear set of elastic and viscous elements. The dynamic structural behavior of this structure was analysed mathematically, and its damping as a function of frequency was calculated. Measurements were made of the structure in the damping spectrometer using frequencies in the range 1 mHz - 100 Hz, and both sets of results are compared. The Debye peak predicted by calculation is well resolved in the measurement, and, within uncertainty, experiment and theory agree in the region of the peak. This confirms that the spectrometer is useful in this range. Further use of a calculated structure similar to this could aid in mechanical damping measurements under less favorable conditions such as under confining pressure, and possibly lead to the development of a low-frequency mechanical damping standard.

  10. Negative nonlinear damping of a multilayer graphene mechanical resonator

    NASA Astrophysics Data System (ADS)

    Singh, Vibhor; Shevchuk, Olga; Blanter, Ya. M.; Steele, Gary A.

    2016-06-01

    We experimentally investigate the nonlinear response of a multilayer graphene resonator using a superconducting microwave cavity to detect its motion. The radiation pressure force is used to drive the mechanical resonator in an optomechanically induced transparency configuration. By varying the amplitudes of drive and probe tones, the mechanical resonator can be brought into a nonlinear limit. Using the calibration of the optomechanical coupling, we quantify the mechanical Duffing nonlinearity. By increasing the drive force, we observe a decrease in the mechanical dissipation rate at large amplitudes, suggesting a negative nonlinear damping mechanism in the graphene resonator. Increasing the optomechanical backaction further, we observe instabilities in the mechanical response.

  11. Integrated mechanics for the passive damping of polymer-matrix composites and composite structures

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, Christos C.

    1991-01-01

    Some recent developments on integrated damping mechanics for unidirectional composites, laminates, and composite structures are reviewed. Simplified damping micromechanics relate the damping of on-axis and off-axis composites to constituent properties, fiber volume ratio, fiber orientation, temperature, and moisture. Laminate and structural damping mechanics for thin composites are summarized. Discrete layer damping mechanics for thick laminates, including the effects of interlaminar shear damping, are developed and semianalytical predictions of modal damping in thick simply supported specialty composite plates are presented. Applications show the advantages of the unified mechanics, and illustrate the effect of fiber volume ratio, fiber orientation, structural geometry, and temperature on the damping. Additional damping properties for composite plates of various laminations, aspect ratios, fiber content, and temperature illustrate the merits and ranges of applicability of each theory (thin or thick laminates).

  12. Determining damping mechanisms in a composite beam by experimental modal analysis

    NASA Technical Reports Server (NTRS)

    Cudney, H. H.; Inman, D. J.

    1989-01-01

    A method of estimating the distributed damping parameters of a beam based on measured modal parameters (frequency and damping ratios) is derived. Three different mathematical models were used to model the damping mechanism of a quasi-isotropic pultruded cantilevered beam. These three models were (1) viscous (air) damping, (2) strain-rate damping, and (3) both viscous and strain-rate damping. Values were obtained for each of the damping models as well as the modulus of elasticity of the beam. It is found that the two-parameter damping model provides the best fit to measure modal data. However, the two-parameter damping model can only reproduce the measured damping ratios to within 85 percent.

  13. The physical mechanisms of the perception of dampness in fabrics.

    PubMed

    Li, Y; Plante, A M; Holcombe, B V

    1992-11-01

    The detection of dampness in hygroscopic materials has been investigated both by subjective tests and by the application of a model of the physical mechanisms involved. Subjects were asked to rate the degree of dampness of a range of materials of different moisture contents after a short period of contact with the inner forearm. Skin and fabric inner surface temperatures were recorded. It was found that highly hygroscopic wool fabrics were perceived as being dryer and maintained a higher temperature at the skin surface than polyester, a less hygroscopic fabric, during fabric-skin contact. A physical model of the sorption/desorption process in hygroscopic materials has been developed from knowledge of fibre sorption kinetics and used to study the physical processes which take place at the skin-fabric interface during transient contact. These predictions agree well with the subjective responses and the measured temperatures. PMID:1476564

  14. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene

    NASA Astrophysics Data System (ADS)

    Eichler, A.; Moser, J.; Chaste, J.; Zdrojek, M.; Wilson-Rae, I.; Bachtold, A.

    2011-06-01

    The theory of damping is discussed in Newton's Principia and has been tested in objects as diverse as the Foucault pendulum, the mirrors in gravitational-wave detectors and submicrometre mechanical resonators. In general, the damping observed in these systems can be described by a linear damping force. Advances in nanofabrication mean that it is now possible to explore damping in systems with one or more atomic-scale dimensions. Here we study the damping of mechanical resonators based on carbon nanotubes and graphene sheets. The damping is found to strongly depend on the amplitude of motion, and can be described by a nonlinear rather than a linear damping force. We exploit the nonlinear nature of damping in these systems to improve the figures of merit for both nanotube and graphene resonators. For instance, we achieve a quality factor of 100,000 for a graphene resonator.

  15. Mechanics of damping for fiber composite laminates including hygro-thermal effects

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, Christos C.

    1989-01-01

    An integrated mechanics theory was developed for the modeling of composite damping from the micromechanics to the laminate level. Simplified, design oriented equations based on hysteretic damping are presented for on-axis plies, off-axis plies, and laminates including the effect of temperature, moisture, and interply hysteretic damping. The temperature rise within vibrating composite laminates resulting from strain energy dissipation is also modeled, and their coupled hygro-thermo-mechanical response is predicted. The method correlates well with reported damping measurements. Application examples illustrate the effect of various ply, laminate, and hygro-thermal parameters on the overall damping performance of composite laminates.

  16. Mechanics of damping for fiber composite laminates including hygro-thermal effects

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, C. C.

    1989-01-01

    An integrated mechanics theory has been developed for the modeling of composite damping from the micromechanics to the laminate level. Simplified, design oriented equations based on hysteretic damping are presented for on-axis plies, off-axis plies, and laminates including the effect of temperature, moisture, and interply hysteretic damping. The temperature rise within vibrating composite laminates resulting from strain energy dissipation is also modeled, and their coupled hygro-thermo-mechanical response is predicted. The method correlates well with reported damping measurements. Application examples illustrate the effect of various ply, laminate, and hygro-thermal parameters on the overall damping performance of composite laminates.

  17. Coronal Seismology: Inferring Magnetic Fields and Exploring Damping Mechanisms

    NASA Astrophysics Data System (ADS)

    McAteer, R. T. James; Ireland, Jack

    2015-08-01

    Recent observations in extreme ultra-violet wavelengths have shown that the solar corona oscillates at many different spatial sizes and temporal size scales. However, much remains unknown about many of these oscillations; they are intermittent for unknown reasons, appear on some coronal features and not on other, similar, neighboring features, and may (or may not) be magnetohydrodynamic (MHD) wave modes. Definitive causes of the structure and origins of these oscillations are still largely lacking. Here, we use automated oscillation detection routines to study a large sample of oscillations, inferring physical mechanisms as to how and why the corona varies.First, we measure the oscillation content of different physical regions on the Sun in SDO AIA data, using two different automated oscillation detection algorithms. This shows a power-law distribution in oscillatory frequency, disagreeing with strong historical assumptions about the nature of coronal heating and coronal seismology. We show how such disagreements can be reconciled by using a power-law background for oscillatory signals.Second we use coronal seismology to provide a means to infer coronal plasma parameters and to differentiate between potential damping mechanisms. Recent sets of kink-mode observations (usually 5-8 loops) have come insights into how the coronal is structured and how it evolves. We present a complex set of flare-induced, off-limb, coronal kink-mode oscillations of almost 100 loops. These display a spread of periods, amplitudes, and damping times, allowing us to probe the spatial distribution of these parameters for the first time. Both Fourier and Wavelet routines are used to automatically extract and characterize these oscillations. An initial period of P~500s, results in an inferred coronal magnetic field of B~20G. The decrease in the oscillation period of the loop position corresponds to a drop in number density inside the coronal loop, as predicted by MHD. As the the period drops

  18. Cellular Magnesium Matrix Foam Composites for Mechanical Damping Applications

    NASA Astrophysics Data System (ADS)

    Shunmugasamy, Vasanth Chakravarthy; Mansoor, Bilal; Gupta, Nikhil

    2016-01-01

    The damping characteristics of metal alloys and metal matrix composites are relevant to the automotive, aerospace, and marine structures. Use of lightweight materials can help in increasing payload capacity and in decreasing fuel consumption. Lightweight composite materials possessing high damping capabilities that can be designed as structural members can greatly benefit in addressing these needs. In this context, the damping properties of lightweight metals such as aluminum and magnesium and their respective composites have been studied in the existing literature. This review focuses on analyzing the damping properties of aluminum and magnesium alloys and their cellular composites. The damping properties of various lightweight alloys and composites are compared on the basis of their density to understand the potential for weight saving in structural applications. Magnesium alloys are observed to possess better damping properties in comparison to aluminum. However, aluminum matrix syntactic foams reinforced with silicon carbide hollow particles possess a damping capacity and density comparable to magnesium alloy. By using the data presented in the study, composites with specific compositions and properties can be selected for a given application. In addition, the comparison of the results helps in identifying the areas where attention needs to be focused to address the future needs.

  19. A fundamental mechanism of legged locomotion with hip torque and leg damping.

    PubMed

    Shen, Z H; Seipel, J E

    2012-12-01

    New models and theories of legged locomotion are needed to better explain and predict the robustly stable legged locomotion of animals and some bio-inspired robots. In this paper we observe that a hip-torque and leg-damping mechanism is fundamental to many legged robots and some animals and determine its affect on locomotion dynamics. We discuss why this hip-torque-and-leg-damping mechanism is not so easily understood. We investigate how hip-torque and leg-damping affect the stability and robustness of locomotion using a mathematical model: First, we extend the canonical spring-loaded-inverted-pendulum model to include constant hip torque and leg damping proportional to leg length speed. Then, we calculate the stability and robustness of locomotion as a function of increasing levels of torque and damping, starting from zero-the energy conserving and marginally stable special case-to high levels of torque and damping. We find that the stabilizing effects of hip-torque and leg-damping occur in the context of the piecewise-continuous dynamics of legged locomotion, and so linear intuition does not apply. We discover that adding hip torque and leg damping changes the stability of legged locomotion in an unexpected way. When a small amount of torque and damping are added, legged locomotion is initially destabilized. As more torque and damping are added, legged locomotion turns stable and becomes increasingly more stable and more robust the more torque and damping are added. Also, stable locomotion becomes more probable over the biologically-relevant region of the parameter space, indicating greater prediction and explanatory capabilities of the model. These results provide a more clear understanding of the hip-torque-and-leg-damping mechanism of legged locomotion, and extend existing theory of legged locomotion towards a greater understanding of robustly stable locomotion. PMID:22989956

  20. The ROSETTA PHILAE Lander damping mechanism as probe for the Comet soil strength.

    NASA Astrophysics Data System (ADS)

    Roll, R.

    2015-10-01

    The ROSETTA Lander is equipped with an one axis damping mechanism to dissipate kinetic energy during the touch down. This damping is necessary to avoid damages to the Lander by a hard landing shock and more important to avoid re-bouncing from ground with high velocity. The damping mechanism works best for perpendicular impact, which means the velocity vector is parallel to the damper axis and all three feet touch the ground at the same time. That is usually not the case. Part of the impact energy can be transferred into rotational energy at ground contact if the impact is not perpendicular. This energy will lift up the Lander from the ground if the harpoons and the hold down thruster fail, as happen in mission. The damping mechanism itself is an electrical generator, driven by a spindle inside a telescopic tube. This tube was extended in mission for landing by 200mm. A maximum damping length of 140mm would be usually required to compensate a landing velocity of 1m/s, if the impact happens perpendicular on hard ground. After landing the potentiometer of the telescopic tube reading shows a total damping length of only 42,5mm. The damping mechanism and the overall mechanical behavior of the Lander at touch down are well tested and characterized and transferred to a multi-body computer model. The incoming and outgoing flightpath of PHILAE allow via computer-simulation the reconstruction of the touch down. It turns out, that the outgoing flight direction is dominated by the local ground slope and that the damping length is strongly dependent on the soil strength. Damping of soft comet ground must be included to fit the damping length measured. Scenario variations of the various feet contact with different local surface features (stone or regolith) and of different soil models finally lead to a restricted range for the soil strength at the touch down area.

  1. A semi-active magnetorheological fluid mechanism with variable stiffness and damping

    NASA Astrophysics Data System (ADS)

    Greiner-Petter, Christoph; Suryadi Tan, Aditya; Sattel, Thomas

    2014-10-01

    In this paper a semi-active fluid-mechanism is presented, which offers a variable stiffness and damping by utilizing two magnetorheological fluid valves and two springs. The study incorporates the attributes of variable damping and stiffness into one compact device. A model for the magnetical, rheological, fluidical and mechanical behaviour of the whole system is derived. An experimental setup of the proposed system and an appropriate test bench are built in order to study the variable mechanical impedance behaviour with the corresponding simulations. The results proof that the stiffness of the system can be varied among three different values, while its damping is continuously variable.

  2. Damped Mechanical Oscillator: Experiment and Detailed Energy Analysis

    ERIC Educational Resources Information Center

    Corridoni, Tommaso; D'Anna, Michele; Fuchs, Hans

    2014-01-01

    The damped oscillator is discussed in every high school textbook or introductory physics course, and a large number of papers are devoted to it in physics didactics journals. Papers typically focus on kinematic and dynamic aspects and less often on energy. Among the latter, some are devoted to the peculiar decreasing behavior of energy…

  3. Computational fluid mechanics utilizing the variational principle of modeling damping seals

    NASA Technical Reports Server (NTRS)

    Abernathy, J. M.; Farmer, R.

    1985-01-01

    An analysis for modeling damping seals for use in Space Shuttle main engine turbomachinery is being produced. Development of a computational fluid mechanics code for turbulent, incompressible flow is required.

  4. Computational fluid mechanics utilizing the variational principle of modeling damping seals

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The pressure solution for incompressible flow was investigated in support of a computational fluid mechanics model which simulates the damping seals considered for use in the space shuttle main engine turbomachinery. Future work directions are discussed briefly.

  5. Electroresponsive Aqueous Silk Protein As “Smart” Mechanical Damping Fluid

    PubMed Central

    2015-01-01

    Here we demonstrate the effectiveness of an electroresponsive aqueous silk protein polymer as a smart mechanical damping fluid. The aqueous polymer solution is liquid under ambient conditions, but is reversibly converted into a gel once subjected to an electric current, thereby increasing or decreasing in viscosity. This nontoxic, biodegradable, reversible, edible fluid also bonds to device surfaces and is demonstrated to reduce friction and provide striking wear protection. The friction and mechanical damping coefficients are shown to modulate with electric field exposure time and/or intensity. Damping coefficient can be modulated electrically, and then preserved without continued power for longer time scales than conventional “smart” fluid dampers. PMID:24750065

  6. Application of damping mechanism model and stacking fault probability in Fe-Mn alloy

    SciTech Connect

    Huang, S.K.; Wen, Y.H.; Li, N. Teng, J.; Ding, S.; Xu, Y.G.

    2008-06-15

    In this paper, the damping mechanism model of Fe-Mn alloy was analyzed using dislocation theory. Moreover, as an important parameter in Fe-Mn based alloy, the effect of stacking fault probability on the damping capacity of Fe-19.35Mn alloy after deep-cooling or tensile deformation was also studied. The damping capacity was measured using reversal torsion pendulum. The stacking fault probability of {gamma}-austenite and {epsilon}-martensite was determined by means of X-ray diffraction (XRD) profile analysis. The microstructure was observed using scanning electronic microscope (SEM). The results indicated that with the strain amplitude increasing above a critical value, the damping capacity of Fe-19.35Mn alloy increased rapidly which could be explained using the breakaway model of Shockley partial dislocations. Deep-cooling and suitable tensile deformation could improve the damping capacity owning to the increasing of stacking fault probability of Fe-19.35Mn alloy.

  7. Feasibility study of a large-scale tuned mass damper with eddy current damping mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Zhihao; Chen, Zhengqing; Wang, Jianhui

    2012-09-01

    Tuned mass dampers (TMDs) have been widely used in recent years to mitigate structural vibration. However, the damping mechanisms employed in the TMDs are mostly based on viscous dampers, which have several well-known disadvantages, such as oil leakage and difficult adjustment of damping ratio for an operating TMD. Alternatively, eddy current damping (ECD) that does not require any contact with the main structure is a potential solution. This paper discusses the design, analysis, manufacture and testing of a large-scale horizontal TMD based on ECD. First, the theoretical model of ECD is formulated, then one large-scale horizontal TMD using ECD is constructed, and finally performance tests of the TMD are conducted. The test results show that the proposed TMD has a very low intrinsic damping ratio, while the damping ratio due to ECD is the dominant damping source, which can be as large as 15% in a proper configuration. In addition, the damping ratios estimated with the theoretical model are roughly consistent with those identified from the test results, and the source of this error is investigated. Moreover, it is demonstrated that the damping ratio in the proposed TMD can be easily adjusted by varying the air gap between permanent magnets and conductive plates. In view of practical applications, possible improvements and feasibility considerations for the proposed TMD are then discussed. It is confirmed that the proposed TMD with ECD is reliable and feasible for use in structural vibration control.

  8. The damped Pinney equation and its applications to dissipative quantum mechanics

    NASA Astrophysics Data System (ADS)

    Haas, F.

    2010-02-01

    The present work considers the damped Pinney equation, defined as the model arising when a linear in velocity damping term is included in the Pinney equation. In the general case, the resulting equation does not admit Lie point symmetries or reduction to a simpler form by any obvious coordinate transformation. In this context, the method of Kuzmak-Luke is applied to derive a perturbation solution, for weak damping and slow time dependence of the frequency function. The perturbative and numerical solutions are shown to be in good agreement. The results are applied to examine the time evolution of Gaussian-shaped wave functions in the Kostin formulation of dissipative quantum mechanics.

  9. Mechanical loading, damping, and load-driven bone formation in mouse tibiae.

    PubMed

    Dodge, Todd; Wanis, Mina; Ayoub, Ramez; Zhao, Liming; Watts, Nelson B; Bhattacharya, Amit; Akkus, Ozan; Robling, Alexander; Yokota, Hiroki

    2012-10-01

    Mechanical loads play a pivotal role in the growth and maintenance of bone and joints. Although loading can activate anabolic genes and induce bone remodeling, damping is essential for preventing traumatic bone injury and fracture. In this study we investigated the damping capacity of bone, joint tissue, muscle, and skin using a mouse hindlimb model of enhanced loading in conjunction with finite element modeling to model bone curvature. Our hypothesis was that loads were primarily absorbed by the joints and muscle tissue, but that bone also contributed to damping through its compression and natural bending. To test this hypothesis, fresh mouse distal lower limb segments were cyclically loaded in axial compression in sequential bouts, with each subsequent bout having less surrounding tissue. A finite element model was generated to model effects of bone curvature in silico. Two damping-related parameters (phase shift angle and energy loss) were determined from the output of the loading experiments. Interestingly, the experimental results revealed that the knee joint contributed to the largest portion of the damping capacity of the limb, and bone itself accounted for approximately 38% of the total phase shift angle. Computational results showed that normal bone curvature enhanced the damping capacity of the bone by approximately 40%, and the damping effect grew at an accelerated pace as curvature was increased. Although structural curvature reduces critical loads for buckling in beam theory, evolution apparently favors maintaining curvature in the tibia. Histomorphometric analysis of the tibia revealed that in response to axial loading, bone formation was significantly enhanced in the regions that were predicted to receive a curvature-induced bending moment. These results suggest that in addition to bone's compressive damping capacity, surrounding tissues, as well as naturally-occurring bone curvature, also contribute to mechanical damping, which may ultimately affect

  10. Transfer function modeling of damping mechanisms in distributed parameter models

    NASA Technical Reports Server (NTRS)

    Slater, J. C.; Inman, D. J.

    1994-01-01

    This work formulates a method for the modeling of material damping characteristics in distributed parameter models which may be easily applied to models such as rod, plate, and beam equations. The general linear boundary value vibration equation is modified to incorporate hysteresis effects represented by complex stiffness using the transfer function approach proposed by Golla and Hughes. The governing characteristic equations are decoupled through separation of variables yielding solutions similar to those of undamped classical theory, allowing solution of the steady state as well as transient response. Example problems and solutions are provided demonstrating the similarity of the solutions to those of the classical theories and transient responses of nonviscous systems.

  11. Damped Mechanical Oscillator: Experiment and Detailed Energy Analysis

    NASA Astrophysics Data System (ADS)

    Corridoni, Tommaso; D'Anna, Michele; Fuchs, Hans

    2014-02-01

    The damped oscillator is discussed in every high school textbook or introductory physics course, and a large number of papers are devoted to it in physics didactics journals. Papers typically focus on kinematic and dynamic aspects and less often on energy. Among the latter, some are devoted to the peculiar decreasing behavior of energy characterized by ripples, which can easily be demonstrated by using a dynamic modeling approach.8 In this note we consider an oscillator consisting of a cart running on a horizontal track, two springs, and a damping device created with magnets and a metal plate attached to the cart (Fig. 1). Using sensors and data-acquisition software,9 we measure kinematic quantities and three forces: those of the springs on the cart and, separately, the force between magnets and the plate. A detailed analysis of the energy exchanges between the cart and the interacting parts is obtained. In particular, we show that only the energy exchanges with the magnets are affected by dissipative processes while over a suitable time interval the net energy exchanged between cart and springs equals zero.

  12. Experimental investigation and CFD simulation of active damping mechanism for propellant slosh in spacecraft launch systems

    NASA Astrophysics Data System (ADS)

    Leuva, Dhawal

    2011-07-01

    Motion of propellant in the liquid propellant tanks due to inertial forces transferred from actions like stage separation and trajectory correction of the launch vehicle is known as propellant slosh. If unchecked, propellant slosh can reach resonance and lead to complete loss of the spacecraft stability, it can change the trajectory of the vehicle or increase consumption of propellant from the calculated requirements, thereby causing starvation of the latter stages of the vehicle. Predicting the magnitude of such slosh events is not trivial. Several passive mechanisms with limited operating range are currently used to mitigate the effects of slosh. An active damping mechanism concept developed here can operate over a large range of slosh frequencies and is much more effective than passive damping devices. Spherical and cylindrical tanks modeled using the ANSYS CFX software package considers the free surface of liquid propellant exposed to atmospheric pressure. Hydrazine is a common liquid propellant and since it is toxic, it cannot be used in experiment. But properties of hydrazine are similar to the properties of water; therefore water is substituted as propellant for experimental study. For close comparison of the data, water is substituted as propellant in CFD simulation. The research is done in three phases. The first phase includes modeling free surface slosh using CFD and validation of the model by comparison to previous experimental results. The second phase includes developing an active damping mechanism and simulating the behavior using a CFD model. The third phase includes experimental development of damping mechanism and comparing the CFD simulation to the experimental results. This research provides an excellent tool for low cost analysis of damping mechanisms for propellant slosh as well as proves that the concept of an active damping mechanism developed here, functions as expected.

  13. Solution Accounts for Structural Damping

    NASA Technical Reports Server (NTRS)

    Roussos, L. A.; Hyer, M. W.; Thornton, E. A.

    1982-01-01

    New analytical technique determines dynamic response of damped structures dominated by internal structural damping mechanisms. Though structural damping is often negligible compared with damping due to air friction and friction in joints, structural damping can be of major importance in structures having heavy damping treatments or in outer-space structures. Finite-element model includes nonlinear, nonviscous internal damping.

  14. Varying chromaticity: A damping mechanism for the transverse head-tail instability

    SciTech Connect

    Cheng, W.; Wurtele, J.S.; Sessler, A.M.; Wurtele, J.S.

    1997-10-01

    A detailed analytical and numerical study of the suppression of the transverse head-tail instability by modulating the chromaticity over a synchrotron period is presented. We find that a threshold can be developed, and it can be increased to a value larger than the strong head-tail instability threshold. The stability criterion derived agrees very well with the simulations. The underlying physical mechanisms of the damping scheme are rotation of the head-tail phase such that the instability does not occur, and Landau damping due to the incoherent betatron tune spread generated by the varying chromaticity. {copyright} {ital 1997} {ital The American Physical Society}

  15. Perturbation analysis of internal balancing for lightly damped mechanical systems with gyroscopic and circulatory forces

    NASA Technical Reports Server (NTRS)

    Blelloch, P. A.; Mingori, D. L.; Wei, J. D.

    1987-01-01

    Approximate expressions are developed for internally balanced singular values corresponding to the modes of mechanical systems with gyroscopic forces, light damping, and small circulatory forces. A brief overview is first given of the balanced realization model reduction method, including a discussion of recent work. The models considered are defined, and a perturbation analysis is used to show that the modal representation becomes asymptotically balanced as damping reduces to zero. The approximate balanced singular values are calculated, and a simple example of a flexible, dual-spin spacecraft is given as an illustration of the results.

  16. Non-Gilbert-damping Mechanism in a Ferromagnetic Heusler Compound Probed by Nonlinear Spin Dynamics.

    PubMed

    Pirro, P; Sebastian, T; Brächer, T; Serga, A A; Kubota, T; Naganuma, H; Oogane, M; Ando, Y; Hillebrands, B

    2014-11-28

    The nonlinear decay of propagating spin waves in the low-Gilbert-damping Heusler film Co_{2}Mn_{0.6}Fe_{0.4}Si is reported. Here, two initial magnons with frequency f_{0} scatter into two secondary magnons with frequencies f_{1} and f_{2}. The most remarkable observation is that f_{1} stays fixed if f_{0} is changed. This indicates, that the f_{1} magnon mode has the lowest instability threshold, which, however, cannot be understood if only Gilbert damping is present. We show that the observed behavior is caused by interaction of the magnon modes f_{1} and f_{2} with the thermal magnon bath. This evidences a significant contribution of the intrinsic magnon-magnon scattering mechanisms to the magnetic damping in high-quality Heusler compounds. PMID:25494091

  17. Bifurcations in autonomous mechanical systems under the influence of joint damping

    NASA Astrophysics Data System (ADS)

    Hetzler, Hartmut

    2014-11-01

    This contribution deals with the impact of joint damping on two classes of stability problems which are often found in engineering problems. In a first part, the principle structure of the equations of motion is derived when joints are modeled using Masing-, Prandtl- and Coulomb-elements. For these general formulations, some fundamental statements concerning stability and attractiveness of steady-state solutions may be given for large amplitudes and configurations which are not too close to the linear stability threshold. The second part focuses on analyzing the behavior at small amplitudes and in the vicinity of the linear stability threshold in more detail: to this end, a static stability problem (buckling) and two oscillatory self-excitation mechanisms (negative damping, non-conservative coupling) are discussed. For all considered problems, adding joint damping transforms the equilibrium points into sets of equilibria and bifurcations of the non-smooth problems occur near the linear stability threshold. Concerning the buckling problem adding joint damping does not alter the behavior fundamentally: still a local bifurcation occurs and attractiveness or instability of equilibrium solutions is preserved. In contrast, the oscillatory instability examples are strongly influenced by joint damping: here, global discontinuous bifurcations may occur. Besides the joint friction also the joint-stiffness may play a crucial role, since it determines whether attractive solutions in or about the equilibrium set exist. It is found that only in some cases a linear stability analysis of the corresponding system without joints may give correct indications on the behavior: consequently, neglecting joint-damping in stability analyses may lead to wrong results concerning self-excitation.

  18. Single-domain wall propagation and damping mechanism during magnetic switching of bistable amorphous microwires.

    PubMed

    Varga, R; Garcia, K L; Vázquez, M; Vojtanik, P

    2005-01-14

    The mechanism of nucleation and propagation of a single-domain wall is studied as a function of temperature in bistable Fe-based amorphous microwire with a unique simple domain structure. An extended nucleation-propagation model is proposed with a negative nucleation field. From quantitative analysis of the propagating wall characteristics, a new damping is theoretically introduced as arising from structural relaxation which dominates in the low temperature regime. PMID:15698124

  19. Effect of microstructure on the mechanical and damping behaviour of dragonfly wing veins.

    PubMed

    Rajabi, H; Shafiei, A; Darvizeh, A; Dirks, J-H; Appel, E; Gorb, S N

    2016-02-01

    Insect wing veins are biological composites of chitin and protein arranged in a complex lamellar configuration. Although these hierarchical structures are found in many 'venous wings' of insects, very little is known about their physical and mechanical characteristics. For the first time, we carried out a systematic comparative study to gain a better understanding of the influence of microstructure on the mechanical characteristics and damping behaviour of the veins. Morphological data have been used to develop a series of three-dimensional numerical models with different material properties and geometries. Finite-element analysis has been employed to simulate the mechanical response of the models under different loading conditions. The modelling strategy used in this study enabled us to determine the effects selectively induced by resilin, friction between layers, shape of the cross section, material composition and layered structure on the stiffness and damping characteristics of wing veins. Numerical simulations suggest that although the presence of the resilin-dominated endocuticle layer results in a much higher flexibility of wing veins, the dumbbell-shaped cross section increases their bending rigidity. Our study further shows that the rubber-like cuticle, friction between layers and material gradient-based design contribute to the higher damping capacity of veins. The results of this study can serve as a reference for the design of novel bioinspired composite structures. PMID:26998340

  20. Effect of microstructure on the mechanical and damping behaviour of dragonfly wing veins

    PubMed Central

    Rajabi, H.; Shafiei, A.; Darvizeh, A.; Dirks, J.-H.; Appel, E.; Gorb, S. N.

    2016-01-01

    Insect wing veins are biological composites of chitin and protein arranged in a complex lamellar configuration. Although these hierarchical structures are found in many ‘venous wings' of insects, very little is known about their physical and mechanical characteristics. For the first time, we carried out a systematic comparative study to gain a better understanding of the influence of microstructure on the mechanical characteristics and damping behaviour of the veins. Morphological data have been used to develop a series of three-dimensional numerical models with different material properties and geometries. Finite-element analysis has been employed to simulate the mechanical response of the models under different loading conditions. The modelling strategy used in this study enabled us to determine the effects selectively induced by resilin, friction between layers, shape of the cross section, material composition and layered structure on the stiffness and damping characteristics of wing veins. Numerical simulations suggest that although the presence of the resilin-dominated endocuticle layer results in a much higher flexibility of wing veins, the dumbbell-shaped cross section increases their bending rigidity. Our study further shows that the rubber-like cuticle, friction between layers and material gradient-based design contribute to the higher damping capacity of veins. The results of this study can serve as a reference for the design of novel bioinspired composite structures. PMID:26998340

  1. Flow aeroacoustic damping using coupled mechanical-electrical impedance in lined pipeline

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Huang, Yi-Yong; Chen, Xiao-Qian; Bai, Yu-Zhu; Tan, Xiao-Dong

    2015-05-01

    We report a new noise-damping concept which utilizes a coupled mechanical-electrical acoustic impedance to attenuate an aeroacoustic wave propagating in a moving gas confined by a cylindrical pipeline. An electrical damper is incorporated to the mechanical impedance, either through the piezoelectric, electrostatic, or electro-magnetic principles. Our numerical study shows the advantage of the proposed methodology on wave attenuation. With the development of the micro-electro-mechanical system and material engineering, the proposed configuration may be promising for noise reduction. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404405, 91216201, 51205403, and 11302253).

  2. On the effect of damping on the stabilization of mechanical systems via parametric excitation

    NASA Astrophysics Data System (ADS)

    Arkhipova, Inga M.; Luongo, Angelo

    2016-06-01

    The effect of damping on the re-stabilization of statically unstable linear Hamiltonian systems, performed via parametric excitation, is studied. A general multi-degree-of-freedom mechanical system is considered, close to a divergence point, at which a mode is incipiently stable and n - 1 modes are (marginally) stable. The asymptotic dynamics of system is studied via the Multiple Scale Method, which supplies amplitude modulation equations ruling the slow flow. Several resonances between the excitation and the natural frequencies, of direct 1:1, 1:2, 2:1, or sum and difference combination types, are studied. The algorithm calls for using integer or fractional asymptotic power expansions and performing nonstandard steps. It is found that a slight damping is able to increase the performances of the control system, but only far from resonance. Results relevant to a sample system are compared with numerical findings based on the Floquet theory.

  3. Thermo-mechanical Response and Damping Behavior of Shape Memory Alloy-MAX Phase Composites

    NASA Astrophysics Data System (ADS)

    Kothalkar, Ankush Dilip; Benitez, Rogelio; Hu, Liangfa; Radovic, Miladin; Karaman, Ibrahim

    2014-05-01

    NiTi/Ti3SiC2 interpenetrating composites that combine two unique material systems—a shape memory alloy (SMA) and a MAX phase—demonstrating two different pseudoelastic mechanisms, were processed using spark plasma sintering. The goal of mixing these two material systems was to enhance the damping behavior and thermo-mechanical response of the composite by combining two pseudoelastic mechanisms, i.e., reversible stress-induced martensitic transformation in SMA and reversible incipient kink band formation in MAX phase. Equal volume fractions of equiatomic NiTi and Ti3SiC2 were used. Microstructural characterization was conducted using scanning electron microscopy to study the distribution of NiTi, Ti3SiC2, and remnant porosity in the composite. Thermo-mechanical testing in the form of thermal cycles under constant stress levels was performed in order to characterize shape memory behavior and thereby introducing residual stresses in the composites. Evolution of two-way shape memory effect was studied and related to the presence of residual stresses in the composites. Damping behavior, implying the energy dissipation per loading-unloading cycle under increasing compressive stresses, of pure NiTi, pure Ti3SiC2, as-sintered, and thermo-mechanically cycled (TC) NiTi/Ti3SiC2 composites, was investigated and compared to the literature data. In this study, the highest energy dissipation was observed for the TC composite followed by the as-sintered (AS) composite, pure NiTi, and pure Ti3SiC2 when compared at the same applied stress levels. Both the AS and TC composites showed higher damping up to 200 MPa stress than any of the metal—MAX phase composites reported in the literature to date. The ability to enhance the performance of the composite by controlling the thermo-mechanical loading paths was further discussed.

  4. Effect of Aging Treatment on the Damping Capacity and Mechanical Properties of Mg-6Al-1Zn Alloy

    PubMed Central

    El-Morsy, Abdel-Wahab; Farahat, Ahmed I. Z.

    2015-01-01

    The damping capacity and mechanical properties of Mg-6Al-1Zn alloy after heat treatment were investigated. The damping characteristics of un-heat-treated, solution treated, and aged Mg-6Al-1Zn specimens were determined by measuring the damping ratio and the logarithmic decrement of free vibrations of a bending beam clamped at one side. The microstructural evaluations confirmed that the β-Mg17Al12 phase was reprecipitated after aging and increased with an increase in aging time. The peak level of damping ratio and logarithmic decrement was obtained after 34 hr of aging time, over which the damping capacity declined according to increasing amount of strong pining points. PMID:25918738

  5. Damping mechanisms in alumina borate whisker-reinforced-aluminum matrix composites with or without SnO{sub 2} coatings

    SciTech Connect

    Hu, J.; Wang, X. F.; Zheng, Z. Z.

    2010-01-15

    SnO{sub 2} was successfully coated on the surface of alumina borate whiskers. The pure aluminum matrix composites reinforced with a SnO{sub 2}-coated alumina borate whisker were fabricated by squeeze casting. The effects of coating contents on the damping properties of the coated composites at various temperatures, frequencies, and strain amplitudes were examined. The microstructures of the coated composites were also investigated through transmission electron microscopy observations. These results indicate that the introduction of Sn at the interface between whisker and matrix in the coated composites during the squeeze casting process alters not only the interface structures but also the dislocation status of the matrices in the vicinity of the interface. The results of damping characterization indicate that the damping capacities of the coated composites strongly depend on the coating contents and strain amplitudes. A damping peak at low temperatures appeared not only in the coated composites but also in the noncoated one, which is related to dislocation motion and interfacial slip caused by Sn. A damping peak at high temperatures appeared only in the coated composites, and the damping mechanisms at high temperature change with the increase in strain amplitudes. Sn played an important role on the damping mechanisms of the coated composites all along.

  6. Nonlinearity of mechanical damping and stiffness of a spring-suspended sectional model system for wind tunnel tests

    NASA Astrophysics Data System (ADS)

    Gao, Guangzhong; Zhu, Ledong

    2015-10-01

    The wind tunnel test of spring-suspended sectional models (SSSM) is an important means in the research of wind engineering, which is very frequently employed to check the performances of flutter and vortex-induced resonance of bridges as well as to identify the various aerodynamic and aeroelastic parameters of bridge components, such as aerodynamic derivatives of self-excited forces. However, in practice, the mechanical damping ratios and natural frequencies of SSSM system are prevailingly supposed to be constant in the whole procedure of a test. This assumption often leads to notable errors of the test results or dispersion of the identified aerodynamic parameters because the mechanical damping ratios and natural frequencies of SSSM system are proved to vary in fact to some extent with the change of oscillating amplitude. On that account, the mechanical nonlinearity of SSSM system is investigated and discussed in this paper by taking a flat-closed box section as a research background. The conventional linear model is firstly proved to fail to predict precisely the long-duration free decay responses of the SSSM system. The formulae of equivalent linearization approximation (ELA) are then derived by using a multiple-scale method to model the mechanical nonlinearities in the first-order approximate sense, and a time-domain system identification method is proposed on this basis to identify equivalent amplitude-dependent (EAD) damping ratio and frequency. The proposed ELA and nonlinear system identification methods are then found to be precise enough to model the mechanical nonlinearities of SSSM system. The characteristics of EAD damping ratio and frequency of both the bending and torsional modes are then discussed in detail. It is then found that the major energy dissipation of SSSM vibrations at both the bending and torsional modes generally comes from the combined effect of viscous damping and quadratic damping. However, for the vibration at the bending mode with

  7. Damped leaf flexure hinge

    NASA Astrophysics Data System (ADS)

    Chen, Zhong; Chen, Guisheng; Zhang, Xianmin

    2015-05-01

    Flexure-based mechanism like compliant actuation system embeds complex dynamics that will reduce the control bandwidth and limits their dynamic positioning precision. This paper presents a theoretical model of a leaf flexure hinge with damping layers using strain energy method and Kelvin damping model. The modified loss factor of the damped leaf flexure hinge is derived, and the equivalent viscous damping coefficient of the damped leaf hinge is obtained, which could be used to improve the pseudo-rigid-model. The free vibration signals of the hinge in three different damping configurations are measured. The experimental modal analysis also is performed on the three kinds of damped leaf flexure hinges in order to evaluate their 1st order bending natural frequency and vibration-suppressing effects. The evaluation of modified loss factor model also is performed. The experimental results indicate that the constrained layer damping can enhance the structure damping of the hinge even if only single damping layer each side, the modified loss factor model can get good predicts of a damped leaf flexure hinge in the frequency range below 1st order natural frequency, and it is necessary that the dimensional parameters of the damping layers and basic layer of the hinge should be optimized for simplification at the mechanism's design stage.

  8. Damped leaf flexure hinge.

    PubMed

    Chen, Zhong; Chen, Guisheng; Zhang, Xianmin

    2015-05-01

    Flexure-based mechanism like compliant actuation system embeds complex dynamics that will reduce the control bandwidth and limits their dynamic positioning precision. This paper presents a theoretical model of a leaf flexure hinge with damping layers using strain energy method and Kelvin damping model. The modified loss factor of the damped leaf flexure hinge is derived, and the equivalent viscous damping coefficient of the damped leaf hinge is obtained, which could be used to improve the pseudo-rigid-model. The free vibration signals of the hinge in three different damping configurations are measured. The experimental modal analysis also is performed on the three kinds of damped leaf flexure hinges in order to evaluate their 1st order bending natural frequency and vibration-suppressing effects. The evaluation of modified loss factor model also is performed. The experimental results indicate that the constrained layer damping can enhance the structure damping of the hinge even if only single damping layer each side, the modified loss factor model can get good predicts of a damped leaf flexure hinge in the frequency range below 1st order natural frequency, and it is necessary that the dimensional parameters of the damping layers and basic layer of the hinge should be optimized for simplification at the mechanism's design stage. PMID:26026549

  9. Simulation of Thin-Film Damping and Thermal Mechanical Noise Spectra for Advanced Micromachined Microphone Structures

    PubMed Central

    Hall, Neal A.; Okandan, Murat; Littrell, Robert; Bicen, Baris; Degertekin, F. Levent

    2008-01-01

    In many micromachined sensors the thin (2–10 μm thick) air film between a compliant diaphragm and backplate electrode plays a dominant role in shaping both the dynamic and thermal noise characteristics of the device. Silicon microphone structures used in grating-based optical-interference microphones have recently been introduced that employ backplates with minimal area to achieve low damping and low thermal noise levels. Finite-element based modeling procedures based on 2-D discretization of the governing Reynolds equation are ideally suited for studying thin-film dynamics in such structures which utilize relatively complex backplate geometries. In this paper, the dynamic properties of both the diaphragm and thin air film are studied using a modal projection procedure in a commonly used finite element software and the results are used to simulate the dynamic frequency response of the coupled structure to internally generated electrostatic actuation pressure. The model is also extended to simulate thermal mechanical noise spectra of these advanced sensing structures. In all cases simulations are compared with measured data and show excellent agreement—demonstrating 0.8 pN/√Hz and 1.8 μPa/√Hz thermal force and thermal pressure noise levels, respectively, for the 1.5 mm diameter structures under study which have a fundamental diaphragm resonance-limited bandwidth near 20 kHz. PMID:19081811

  10. Effect of hot working on the damping capacity and mechanical properties of AZ31 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Lee, K.; Kang, C.; Kim, K.

    2015-04-01

    Magnesium alloys have received much attention for their lightweight and other excellent properties, such as low density, high specific strength, and good castability, for use in several industrial and commercial applications. However, both magnesium and its alloys show limited room-temperature formability owing to the limited number of slip systems associated with their hexagonal close-packed crystal structure. It is well known that crystallographic texture plays an important role in both plastic deformation and macroscopic anisotropy of magnesium alloys. Many authors have concentrated on improving the room- temperature formability of Mg alloys. However, despite having a lot of excellent properties in magnesium alloy, the study for various properties of magnesium alloy have not been clarified enough yet. Mg alloys are known to have a good damping capacity compared to other known metals and their alloys. Also, the damping properties of metals are generally recognized to be dependent on microstructural factors such as grain size and texture. However, there are very few studies on the relationship between the damping capacity and texture of Magnesium alloys. Therefore, in this study, specimens of the AZ31 magnesium alloy, were processed by hot working, and their texture and damping property investigated. A 60 mm × 60 mm × 40 mm rectangular plate was cut out by machining an ingot of AZ31 magnesium alloy (Mg-3Al-1Zn in mass%), and rolling was carried out at 673 K to a rolling reduction of 30%. Then, heat treatment was carried out at temperatures in the range of 573-723 K for durations in the range of 30-180 min. The samples were immediately quenched in oil after heat treatment to prevent any change in the microstructure. Texture was evaluated on the compression planes by the Schulz reflection method using nickel-filtered Cu Kα radiation. Electron backscatter diffraction measurements were conducted to observe the spatial distribution of various orientations. Specimens

  11. Experimental validation and testing of components for active damping control for micromachined mechanical vibration isolation filters using electrostatic actuation

    NASA Astrophysics Data System (ADS)

    Dean, Robert; Flowers, George; Sanders, Nicole; Horvath, Roland; Johnson, Wayne; Kranz, Michael; Whitley, Michael

    2006-03-01

    Missiles, rockets and certain types of industrial machinery are exposed extreme vibration environments, with high frequency/amplitude mechanical vibrations which may be detrimental to components that are sensitive to these high frequency mechanical vibrations, such as MEMS gyroscopes and resonators, oscillators and some micro optics. Exposure to high frequency mechanical vibrations can lead to a variety of problems, from reduced sensitivity and an increased noise floor to the outright mechanical failure of the device. One approach to mitigate such effects is to package the sensitive device on a micromachined vibration isolator tuned to the frequency range of concern. In this regard, passive micromachined silicon lowpass filter structures (spring-mass-damper) have been developed and demonstrated. However, low damping (especially if operated in near-vacuum environments) and a lack of tunability after fabrication has limited the effectiveness and general applicability of such systems. Through the integration of a electrostatic actuator, a relative velocity sensor and the passive filter structure, an active micromachined mechanical lowpass vibration isolation filter can be realized where the damping and resonant frequency can be tuned. This paper presents the development and validation of a key component of the micromachined active filter, a sensor for measuring the relative velocity between micromachined structures.

  12. Direct path from microscopic mechanics to Debye shielding, Landau damping and wave-particle interaction

    NASA Astrophysics Data System (ADS)

    Escande, D. F.; Elskens, Yves; Doveil, F.

    2015-02-01

    The derivation of Debye shielding and Landau damping from the N-body description of plasmas is performed directly by using Newton’s second law for the N-body system. This is done in a few steps with elementary calculations using standard tools of calculus and no probabilistic setting. Unexpectedly, Debye shielding is encountered together with Landau damping. This approach is shown to be justified in the one-dimensional case when the number of particles in a Debye sphere becomes large. The theory is extended to accommodate a correct description of trapping and chaos due to Langmuir waves. On top of their well-known production of collisional transport, the repulsive deflections of electrons are shown to produce shielding, in such a way that each particle is shielded by all other ones, while keeping in uninterrupted motion.

  13. Computational fluid mechanics utilizing the variational principle of modeling damping seals

    NASA Technical Reports Server (NTRS)

    Abernathy, J. M.

    1986-01-01

    A computational fluid dynamics code for application to traditional incompressible flow problems has been developed. The method is actually a slight compressibility approach which takes advantage of the bulk modulus and finite sound speed of all real fluids. The finite element numerical analog uses a dynamic differencing scheme based, in part, on a variational principle for computational fluid dynamics. The code was developed in order to study the feasibility of damping seals for high speed turbomachinery. Preliminary seal analyses have been performed.

  14. Quadratic Damping

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2012-01-01

    Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…

  15. Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms.

    PubMed

    Zorić, Igor; Zäch, Michael; Kasemo, Bengt; Langhammer, Christoph

    2011-04-26

    Localized surface plasmon resonances (LSPR) are collective electronic excitations in metallic nanoparticles. The LSPR spectral peak position, as a function of nanoparticle size and material, is known to depend primarily on dynamic depolarization and electron structure related effects. The former gives rise to the well-known spectral red shift with increasing nanoparticle size. A corresponding understanding of the LSPR spectral line width for a wide range of nanoparticle sizes and different metals does, however, not exist. In this work, the radiative and nonradiative damping contributions to the LSPR line width over a broad nanoparticle size range (40-500 nm) for a selection of three metals with fundamentally different bulk dielectric properties (Au, Pt, and Al) are explored experimentally and theoretically. Excellent agreement was obtained between the observed experimental trends and the predictions based on electrostatic spheroid theory (MLWA), and the obtained results were successfully related to the specific band structure of the respective metal. Moreover, for the first time, a clear transition from a radiation damping dominated to a quenched radiation damping regime (subradiance) in large nanoparticles was observed and probed by varying the electron density through appropriate material choice. To minimize inhomogeneous broadening (commonly present in ensemble-based spectroscopic measurements), a novel, electron-beam lithography (EBL)-based nanofabrication method was developed. The method generates large-area 2D patterns of randomly distributed nanodisks with well-defined size and shape, narrow size distribution, and tunable (minimum) interparticle distance. In order to minimize particle-particle coupling effects, sparse patterns with a large interparticle distance (center-to-center ≥6 particle diameters) were considered. PMID:21438568

  16. Lattice Boltzmann investigation of acoustic damping mechanism and performance of an in-duct circular orifice.

    PubMed

    Ji, Chenzhen; Zhao, Dan

    2014-06-01

    In this work, three-dimensional numerical simulations of acoustically excited flow through a millimeter-size circular orifice are conducted to assess its noise damping performance, with particular emphasis on applying the lattice Boltzmann method (LBM) as an alternative computational aeroacoustics tool. The model is intended to solve the discrete lattice Boltzmann equation (LBE) by using the pseudo-particle based technique. The LBE controls the particles associated with collision and propagation over a discrete lattice mesh. Flow variables such as pressure, density, momentum, and internal energy are determined by performing a local integration of the particle distribution at each time step. This is different from the conventional numerical investigation attempting to solve Navier-Stokes (NS) equations by using high order finite-difference or finite-volume methods. Compared with the conventional NS solvers, one of the main advantages of LBM may be a reduced computational cost. Unlike frequency domain simulations, the present investigation is conducted in time domain, and the orifice damping behavior is quantified over a broad frequency range at a time by forcing an oscillating flow with multiple tones. Comparing the numerical results with those obtained from the theoretical models, large eddy simulation, and experimental measurements, good agreement is observed. PMID:24907789

  17. Turbojet engine blade damping

    NASA Technical Reports Server (NTRS)

    Srinivasan, A. V.; Cutts, D. G.; Sridhar, S.

    1981-01-01

    The potentials of various sources of nonaerodynamic damping in engine blading are evaluated through a combination of advanced analysis and testing. The sources studied include material hysteresis, dry friction at shroud and root disk interfaces as well as at platform type external dampers. A limited seris of tests was conducted to evaluate damping capacities of composite materials (B/AL, B/AL/Ti) and thermal barrier coatings. Further, basic experiments were performed on titanium specimens to establish the characteristics of sliding friction and to determine material damping constants J and n. All the tests were conducted on single blades. Mathematical models were develthe several mechanisms of damping. Procedures to apply this data to predict damping levels in an assembly of blades are developed and discussed.

  18. A sub-Angstrom Sample Scanner for Magnetic Resonance Force Microscopy (MRFM): Contact Mechanics and Controlled Damping

    NASA Astrophysics Data System (ADS)

    Chao, Shih-Hui; Dougherty, William; Garbini, Joseph; Sidles, John; MacBeth, Melissa

    2001-03-01

    A 3-D scan head for MRFM faces three challenges: 1) Experiments are conducted under ultrahigh vacuum and cryogenic conditions; 2) The scanner must achieve sub-Angstrom resolution; 3) Interferometric detection requires a stiff, compact mechanism. Our strategy is to use a piezoceramic tube to actuate two modes of positioning: "coarse positioning" to generate large range motion, and "fine positioning" to create high-resolution linear actuation. Inertial stick-slip friction is used for coarse positioning. We have applied contact mechanics to solve for the deflection and friction forces between the slider and piezoceramic actuator. Simulation combining classical contact theory with the reset integrator friction model of Hassig agrees closely with our experiments. The use of feedback control to damp piezoceramic tube oscillation during stick-slip cycles is an innovation in our design. Coarse steps as small as 2 nm are consistently achieved.

  19. Landau damping

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2010-10-01

    Section 2.5.8 of the Handbook of Accelerator Physics and Engineering on Landau damping is rewritten. An solvable example is first given to demonstrate the interplay between Landau damping and decoherence. This example is an actual one when the beam oscillatory motion is driven by a wake force. The dispersion relation is derived and its implication on Landau damping is illustrated. The rest of the article touches on the Landau damping of transverse and longitudinal beam oscillations. The stability criteria are given for a bunched beam and the changes of the criteria when the beam is lengthened and becomes unbunched.

  20. Coulomb Damping

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2012-01-01

    Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…

  1. Damping of nanomechanical resonators.

    PubMed

    Unterreithmeier, Quirin P; Faust, Thomas; Kotthaus, Jörg P

    2010-07-01

    We study the transverse oscillatory modes of nanomechanical silicon nitride strings under high tensile stress as a function of geometry and mode index m≤9. Reproducing all observed resonance frequencies with classical elastic theory we extract the relevant elastic constants. Based on the oscillatory local strain we successfully predict the observed mode-dependent damping with a single frequency-independent fit parameter. Our model clarifies the role of tensile stress on damping and hints at the underlying microscopic mechanisms. PMID:20867737

  2. Evaluation of Nanomaterial Approaches to Damping in Epoxy Resin and Carbon Fiber/Epoxy Composite Structures by Dynamic Mechanical Analysis

    NASA Technical Reports Server (NTRS)

    Miller, G.; Heimann, Paula J.; Scheiman, Daniel A.; Duffy, Kirsten P.; Johnston, J. Chris; Roberts, Gary D.

    2013-01-01

    Vibration mitigation in composite structures has been demonstrated through widely varying methods which include both active and passive damping. Recently, nanomaterials have been investigated as a viable approach to composite vibration damping due to the large surface available to generate energy dissipation through friction. This work evaluates the influence of dispersed nanoparticles on the damping ratio of an epoxy matrix. Limited benefit was observed through dispersion methods, however nanoparticle application as a coating resulting in up to a three-fold increase in damping.

  3. Damping, thermal, and mechanical properties of polyurethane based on poly(tetramethylene glycol)/epoxy interpenetrating polymer networks: effects of composition and isocyanate index

    NASA Astrophysics Data System (ADS)

    Wang, Qihua; Chen, Shoubing; Wang, Tingmei; Zhang, Xinrui

    2011-07-01

    A series of polyurethane (PU) samples based on poly(tetramethylene glycol)/epoxy resin (EP) graft interpenetrating polymer networks (IPNs) were prepared and their damping, thermal, and mechanical properties were systematically studied in terms of composition and the value of the PU isocyanate index ( R). The damping properties and thermal stability measurements revealed that the formation of PU/EP IPN could improve not only the damping capacity but also the thermal stability. Meanwhile, mechanical tests showed that the tensile strengths of the IPNs decreased while their impact strengths increased with increasing PU content. The value of R also had significant impacts on the properties of the IPNs when the PU and EP ratio was fixed, which could be an effective means for manipulating the fabrication of PU/EP IPNs. The morphologies of the PU/EP IPNs were observed by SEM and AFM characterization and the relationship between the morphologies and properties is discussed. With the results in hand, the PU/EP IPNs hold promise for use in structural damping materials.

  4. Mechanical characteristics of rat vibrissae: resonant frequencies and damping in isolated whiskers and in the awake behaving animal

    NASA Technical Reports Server (NTRS)

    Hartmann, Mitra J.; Johnson, Nicholas J.; Towal, R. Blythe; Assad, Christopher

    2003-01-01

    We investigated the natural resonance properties and damping characteristics of rat macrovibrissae (whiskers). Isolated whiskers rigidly fixed at the base showed first-mode resonance peaks between 27 and 260 Hz, principally depending on whisker length. These experimentally measured resonant frequencies were matched using a theoretical model of the whisker as a conical cantilever beam, with Young's modulus as the only free parameter. The best estimate for Young's modulus was approximately 3-4 GPa. Results of both vibration and impulse experiments showed that the whiskers are strongly damped, with damping ratios between 0.11 and 0.17. In the behaving animal, whiskers that deflected past an object were observed to resonate but were damped significantly more than isolated whiskers. The time course of damping varied depending on the individual whisker and the phase of the whisking cycle, which suggests that the rat may modulate biomechanical parameters that affect damping. No resonances were observed for whiskers that did not contact the object or during free whisking in air. Finally, whiskers on the same side of the face were sometimes observed to move in opposite directions over the full duration of a whisk. We discuss the potential roles of resonance during natural exploratory behavior and specifically suggest that resonant oscillations may be important in the rat's tactile detection of object boundaries.

  5. Surge-damping vacuum valve

    DOEpatents

    Bullock, Jack C.; Kelly, Benjamin E.

    1980-01-01

    A valve having a mechanism for damping out flow surges in a vacuum system which utilizes a slotted spring-loaded disk positioned adjacent the valve's vacuum port. Under flow surge conditions, the differential pressure forces the disk into sealing engagement with the vacuum port, thereby restricting the flow path to the slots in the disk damping out the flow surge.

  6. Structural damping studies at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Buehrle, Ralph D.

    1994-01-01

    Results of an engineering study to measure changes in structural damping properties of two cryogenic wind tunnel model systems and two metallic test specimens at cryogenic temperatures are presented. Data are presented which indicate overall, a trend toward reduced structural damping at cryogenic temperatures (-250 degrees F) when compared with room temperature damping properties. The study was focused on structures and materials used for model systems tested in the National Transonic Facility (NTF). The study suggests that the significant reductions in damping at extremely cold temperatures are most likely associated with changes in mechanical joint compliance damping rather than changes in material (solid) damping.

  7. Development of the novel ferrous-based stainless steel for biomedical applications, part I: high-temperature microstructure, mechanical properties and damping behavior.

    PubMed

    Wu, Ching-Zong; Chen, Shih-Chung; Shih, Yung-Hsun; Hung, Jing-Ming; Lin, Chia-Cheng; Lin, Li-Hsiang; Ou, Keng-Liang

    2011-10-01

    This research investigated the high-temperature microstructure, mechanical properties, and damping behavior of Fe-9 Al-30 Mn-1C-5 Co (wt.%) alloy by means of electron microscopy, experimental model analysis, and hardness and tensile testing. Subsequent microstructural transformation occurred when the alloy under consideration was subjected to heat treatment in the temperature range of 1000-1150 °C: γ → (γ+κ). The κ-phase carbides had an ordered L'1(2)-type structure with lattice parameter a = 0.385 nm. The maximum yield strength (σ(y)), hardness, elongation, and damping coefficient of this alloy are 645 MPa, Hv 292, ~54%, and 178.5 × 10(-4), respectively. These features could be useful in further understanding the relationship between the biocompatibility and the wear and corrosion resistance of the alloy, so as to allow the development of a promising biomedical material. PMID:21783164

  8. Superconductive material and magnetic field for damping and levitation support and damping of cryogenic instruments

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin P. (Inventor)

    1994-01-01

    A superconductive load bearing support without a mechanical contact and vibration damping for cryogenic instruments in space is presented. The levitation support and vibration damping is accomplished by the use of superconducting magnets and the 'Meissner' effect. The assembly allows for transfer of vibration energy away from the cryogenic instrument which then can be damped by the use of either an electronic circuit or conventional vibration damping mean.

  9. General decay rates for the wave equation with mixed-type damping mechanisms on unbounded domain with finite measure

    NASA Astrophysics Data System (ADS)

    Dias Silva, Flávio R.; Nascimento, Flávio A. F.; Rodrigues, José H.

    2015-12-01

    This paper is concerned with the study of the uniform decay rates of the energy associated with the wave equation subject to a locally distributed viscoelastic dissipation and a nonlinear frictional damping u_{tt}- Δ u+ int_0^t g(t-s)div[a(x)nabla u(s)] ds + b(x) f(u_t)=0 quad on quad Ω×]0,infty[, where {Ωsubset{R}^n, n≥ 2} is an unbounded open set with finite measure and unbounded smooth boundary {partialΩ = Γ}. Supposing that the localization functions satisfy the "competitive" assumption {a(x)+b(x)≥δ>0} for all {xin Ω} and the relaxation function g satisfies certain nonlinear differential inequalities introduced by Lasiecka et al. (J Math Phys 54(3):031504, 2013), we extend to our considered domain the prior results of Cavalcanti and Oquendo (SIAM J Control Optim 42(4):1310-1324, 2003). In addition, while in Cavalcanti and Oquendo (2003) the authors just consider exponential and polynomial decay rate estimates, in the present article general decay rate estimates are obtained.

  10. Identification and evaluation of linear damping models in beam vibrations

    NASA Technical Reports Server (NTRS)

    Boers, B. L.; Rosenberg, G. S.; Wambsganss, M. W., Jr.

    1969-01-01

    Sensitive method, identifying effective damping mechanisms, involves comparing experimentally determined ratio of first to second mode magnification factors related to common point on beam. Cluster size has little effect on frequencies of elements, magnification factor decreases with cluster size, and viscous and stress damping are dominant damping mechanisms.

  11. Understanding the damped SHM without ODEs

    NASA Astrophysics Data System (ADS)

    Ng, Chiu-king

    2016-03-01

    Instead of solving ordinary differential equations (ODEs), the damped simple harmonic motion (SHM) is surveyed qualitatively from basic mechanics and quantitatively by the instrumentality of a graph of velocity against displacement. In this way, the condition b≥slant \\sqrt{4mk}~ for the occurrence of the non-oscillating critical damping and heavy-damping is derived. Besides, we prove in the under-damping, the oscillation is isochronous and the diminishing amplitude satisfies a rule of ‘constant ratio’. All are done on a non-ODE basis.

  12. Phenomenology of chiral damping in noncentrosymmetric magnets

    NASA Astrophysics Data System (ADS)

    Akosa, Collins Ashu; Miron, Ioan Mihai; Gaudin, Gilles; Manchon, Aurélien

    2016-06-01

    A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective "s-d" Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.

  13. Understanding the Damped SHM without ODEs

    ERIC Educational Resources Information Center

    Ng, Chiu-king

    2016-01-01

    Instead of solving ordinary differential equations (ODEs), the damped simple harmonic motion (SHM) is surveyed qualitatively from basic mechanics and quantitatively by the instrumentality of a graph of velocity against displacement. In this way, the condition b ? [square root]4mk for the occurrence of the non-oscillating critical damping and…

  14. Magnetic Damping For Maglev

    DOE PAGESBeta

    Zhu, S.; Cai, Y.; Rote, D. M.; Chen, S. S.

    1998-01-01

    Magnetic damping is one of the important parameters that control the response and stability of maglev systems. An experimental study to measure magnetic damping directly is presented. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters, such as conductivity, gap, excitation frequency, and oscillation amplitude, on magnetic damping. The experimental technique is capable of measuring all of the magnetic damping coefficients, some of which cannot be measured indirectly.

  15. Passive damping in EDS maglev systems.

    SciTech Connect

    Rote, D. M.

    2002-05-03

    There continues to be strong interest in the subjects of damping and drag forces associated with electrodynamic suspension (EDS) systems. While electromagnetic drag forces resist the forward motion of a vehicle and therefore consume energy, damping forces control, at least in part, the response of the vehicle to disturbances. Ideally, one would like to reduce the drag forces as much as possible while retaining adequate damping forces to insure dynamic stability and satisfactory ride quality. These two goals turn out to be difficult to achieve in practice. It is well known that maglev systems tend to be intrinsically under damped. Consequently it is often necessary in a practical system design to enhance the damping passively or actively. For reasons of cost and simplicity, it is desirable to rely as much as possible on passive damping mechanisms. In this paper, rough estimates are made of the passive damping and drag forces caused by various mechanisms in EDS systems. No attention will be given to active control systems or secondary suspension systems which are obvious ways to augment passive damping mechanisms if the latter prove to be inadequate.

  16. Timoshenko systems with indefinite damping

    NASA Astrophysics Data System (ADS)

    Muñoz Rivera, Jaime E.; Racke, Reinhard

    2008-05-01

    We consider the Timoshenko system in a bounded domain . The system has an indefinite damping mechanism, i.e. with a damping function a=a(x) possibly changing sign, present only in the equation for the rotation angle. We shall prove that the system is still exponentially stable under the same conditions as in the positive constant damping case, and provided and , for [epsilon] small enough. The decay rate will be described explicitly. In the arguments, we shall also give a new proof of exponential stability for the constant case . Moreover, we give a precise description of the decay rate and demonstrate that the system has the spectrum determined growth (SDG) property, i.e. the type of the induced semigroup coincides with the spectral bound for its generator.

  17. Damping constant estimation in magnetoresistive readers

    SciTech Connect

    Stankiewicz, Andrzej Hernandez, Stephanie

    2015-05-07

    The damping constant is a key design parameter in magnetic reader design. Its value can be derived from bulk or sheet film ferromagnetic resonance (FMR) line width. However, dynamics of nanodevices is usually defined by presence of non-uniform modes. It triggers new damping mechanisms and produces stronger damping than expected from traditional FMR. This work proposes a device-level technique for damping evaluation, based on time-domain analysis of thermally excited stochastic oscillations. The signal is collected using a high bandwidth oscilloscope, by direct probing of a biased reader. Recorded waveforms may contain different noise signals, but free layer FMR is usually a dominating one. The autocorrelation function is a reflection of the damped oscillation curve, averaging out stochastic contributions. The damped oscillator formula is fitted to autocorrelation data, producing resonance frequency and damping constant values. Restricting lag range allows for mitigation of the impact of other phenomena (e.g., reader instability) on the damping constant. For a micromagnetically modeled reader, the technique proves to be much more accurate than the stochastic FMR line width approach. Application to actual reader waveforms yields a damping constant of ∼0.03.

  18. Damping constant estimation in magnetoresistive readers

    NASA Astrophysics Data System (ADS)

    Stankiewicz, Andrzej; Hernandez, Stephanie

    2015-05-01

    The damping constant is a key design parameter in magnetic reader design. Its value can be derived from bulk or sheet film ferromagnetic resonance (FMR) line width. However, dynamics of nanodevices is usually defined by presence of non-uniform modes. It triggers new damping mechanisms and produces stronger damping than expected from traditional FMR. This work proposes a device-level technique for damping evaluation, based on time-domain analysis of thermally excited stochastic oscillations. The signal is collected using a high bandwidth oscilloscope, by direct probing of a biased reader. Recorded waveforms may contain different noise signals, but free layer FMR is usually a dominating one. The autocorrelation function is a reflection of the damped oscillation curve, averaging out stochastic contributions. The damped oscillator formula is fitted to autocorrelation data, producing resonance frequency and damping constant values. Restricting lag range allows for mitigation of the impact of other phenomena (e.g., reader instability) on the damping constant. For a micromagnetically modeled reader, the technique proves to be much more accurate than the stochastic FMR line width approach. Application to actual reader waveforms yields a damping constant of ˜0.03.

  19. Mechanical Resonance and Damping Properties of Gallium Nitride Nanowires in Selected-Area Growth Arrays Measured via Optical Bragg Scattering

    NASA Astrophysics Data System (ADS)

    Houlton, John; Brubaker, M. D.; Bertness, K. A.; Rogers, C. T.

    We report the use of optical Bragg scattering to measure the mechanical resonance frequencies and quality factors (Q) of gallium nitride (GaN) nanowires (NWs) in selected-area growth arrays. The GaN NWs are grown by catalyst-free molecular beam epitaxy on silicon (111) wafers. Hexagonal arrays of approximately 100 GaN NWs with pitch spacings of 400 - 1000 nm have been prepared. The NWs contained in such arrays have diameters ranging from 100-300 nm and lengths from 3 - 10 μm. A diode laser operating at 640 nm and 2 mW of optical power is used to perform Bragg scattering homodyne detection to passively read out the thermally induced Brownian mechanical motion of the NWs. The first order cantilever-mode mechanical resonance frequencies of these NWs have been measured to be between 2 - 12 MHz. We find that the optical readout via Bragg scattered light allows the simultaneous detection of all lowest order mechanical resonances in a given array. Q factors ranging from 1,000 - 12,000 have been seen at room temperature and 10-5 Torr pressures. Qs as high as 25,000 have been seen at temperatures of 80 K. These results show that the narrow mechanical resonances observed in freely-grown GaN NWs can also be seen in NWs prepared via selected-area growth. We gratefully acknowledge funding via NIST MSE Grant # 1553451.

  20. Landau damping of auroral hiss

    NASA Technical Reports Server (NTRS)

    Morgan, D. D.; Gurnett, D. A.; Menietti, J. D.; Winningham, J. D.; Burch, J. L.

    1994-01-01

    Auroral hiss is observed to propagate over distances comparable to an Earth radius from its source in the auroral oval. The role of Landau damping is investigated for upward propagating auroral hiss. By using a ray tracing code and a simplified model of the distribution function, the effect of Landau damping is calculated for auroral hiss propagation through the environment around the auroral oval. Landau damping is found to be the likely mechanism for explaining some of the one-sided auroral hiss funnels observed by Dynamics Explorer 1. It is also found that Landau damping puts a lower limit on the wavelength of auroral hiss. Poleward of the auroral oval, Landau damping is found in a typical case to limit omega/k(sub parallel) to values of 3.4 x 10(exp 4) km/s or greater, corresponding to resonance energies of 3.2 keV or greater and wavelengths of 2 km or greater. For equatorward propagation, omega/k(sub parallel) is limited to values greater than 6.8 x 10(exp 4) km/s, corresponding to resonance energies greater than 13 keV and wavelengths greater than 3 km. Independent estimates based on measured ratios of the magnetic to electric field intensity also show that omega/k(sub parallel) corresponds to resonance energies greater than 1 keV and wavelengths greater than 1 km. These results lead to the difficulty that upgoing electron beams sufficiently energetic to directly generate auroral hiss of the inferred wavelength are not usually observed. A partial transmission mechanism utilizing density discontinuities oblique to the magnetic field is proposed for converting auroral hiss to wavelengths long enough to avoid damping of the wave over long distances. Numerous reflections of the wave in an upwardly flared density cavity could convert waves to significantly increased wavelengths and resonance velocities.

  1. Landau damping of auroral hiss

    SciTech Connect

    Morgan, D.D.; Gurnett, D.A.; Menietti, J.D.; Winningham, J.D.; Burch, J.L.

    1994-02-01

    Auroral hiss is observed to propagate over distances comparable to an Earth radius from its source in the auroral oval. The role of Landau damping is investigated for upward propagating auroral hiss. By using a ray tracing code and a simplified model of the distribution function, the effect of Landau damping is calculated for auroral hiss propagation through the environment around the auroral oval. Landau damping is found to be the likely mechanism for explaining some of the one-sided auroral hiss funnels observed by Dynamics Explorer 1. It is also found that Landau damping puts a lower limit on the wavelength of auroral hiss. Poleward of the auroral oval, Landau damping is found in a typical case to limit {omega}/k{parallel} to values of 3.4 x 10{sup 4} km/s or greater, corresponding to resonance energies of 3.2 keV or greater and wavelengths of 2 km or greater. For equatorward propagation, {omega}/k{parallel} is limited to values greater than 6.8 x 10{sup 4} km/s, corresponding to resonance energies greater than 13 keV and wavelengths greater than 3 km. Independent estimates based on measured ratios of the magnetic to electric field intensity also show that {omega}/k{parallel} corresponds to resonance energies greater than 1 keV and wavelengths greater than 1 km. These results lead to the difficulty that upgoing electron beams sufficiently energetic to directly generate auroral hiss of the inferred wavelength are not usually observed. A partial transmission mechanism utilizing density discontinuities oblique to the magnetic field is proposed for converting auroral hiss to wavelengths long enough to avoid damping of the wave over long distances. Numerous reflections of the wave in an upwardly flared density cavity could convert waves to significantly increased wavelengths and resonance velocities. 36 refs., 12 figs., 4 tabs.

  2. The effects of interply damping layers on the dynamic response of composite structures

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, C. C.

    1991-01-01

    Integrated damping mechanics for composite laminates with constrained interlaminar layers of polymer damping materials are developed. Discrete layer damping mechanics are presented for composite materials with damping layers, in connection with a semi-analytical method for predicting the modal damping in simply-supported specialty composite plates. Several application cases are used to demonstrate the advantages of the method. Damping predictions for graphite-epoxy composite plates of various laminations demonstrate the potential for higher damping than geometrically equivalent aluminum plates. The effects of aspect ratio, damping layer thickness, and fiber volume ratio on static and dynamic characteristics of the composite plate are also investigated.

  3. The effects of interply damping layers on the dynamic response of composite structures

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.

    1991-01-01

    Integrated damping mechanics for composite laminates with interlaminar constrained layers of damping polymer materials are developed. Discrete layer damping mechanics for composite laminates with damping layers, in connection with a semi-analytical method for predicting the modal damping in simply-supported specialty composite plates are presented. Application cases demonstrate the advantages of the method. Damping predictions for graphite/epoxy composite plates of various laminations demonstrate the potential for higher damping than geometrically equivalent aluminum plates. The effects of aspect ratio, damping layer thickness, and fiber volume ratio on static and dynamic characteristics of the composite plate are also investigated.

  4. The DAMPE mission

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Guo, Jianhua; Chang, Jin; Cai, Mingsheng

    2016-07-01

    The DArk Matter Particle Explorer (DAMPE) was launched into space on Dec.17, 2015 to a 500km dawn-to-dusk sun-synchronous orbit aiming at detecting high energy electron(gamma) as well as cosmic heavy ions up to 10TeV and 1PeV respectively to try to understand the mechanisms of particle acceleration in celestial sources and the propagation of cosmic rays in the Galaxy, to probe the nature of dark matter, a form of matter necessary to account for gravitational effects observed in very large scale structures such as anomalies in the rotation of galaxies and the gravitational lensing of light by galaxy clusters that cannot be accounted for by the quantity of observed matter , and to study the high-energy behavior of gamma-ray bursts, pulsars, Active Galaxy Nuclei and other transients,etc. After months' commissioning, DAMPE has been in the observational mode. This paper reports the status of its detectors and latest results collected so far.

  5. Nonclassical non-Gaussian state of a mechanical resonator via selectively incoherent damping in a three-mode optomechanical system

    NASA Astrophysics Data System (ADS)

    Huang, Kang-jing; Yan, Yan; Zhu, Jia-pei; Xiao, Yun-feng; Li, Gao-xiang

    2016-03-01

    In this paper we propose a scheme for the generation of a nonclassical non-Gaussian motional state of a mechanical resonator (MR) in the three-mode optomechanical system in which two linearly coupled single-mode cavities interact dispersively with the mechanical oscillator simultaneously. With one cavity driven by a weak laser field and by properly tuning the driving frequency, a desirable phononic Liouvillian superoperator can be obtained by engineering the selective interaction Hamiltonian confined to Fock subspaces. It is shown that the MR can be driven dissipatively into a steady non-Gaussian nonclassical state, which possesses sub-Poisson statistics, although its Wigner function is positive. The present scheme can be useful for obtaining single phonons.

  6. Damping Mechanisms for Microgravity Vibration Isolation (MSFC Center Director's Discretionary Fund Final Report, Project No. 94-07)

    NASA Technical Reports Server (NTRS)

    Whorton, M. S.; Eldridge, J. T.; Ferebee, R. C.; Lassiter, J. O.; Redmon, J. W., Jr.

    1998-01-01

    As a research facility for microgravity science, the International Space Station (ISS) will be used for numerous investigations such as protein crystal growth, combustion, and fluid mechanics experiments which require a quiescent acceleration environment across a broad spectrum of frequencies. These experiments are most sensitive to low-frequency accelerations and can tolerate much higher accelerations at higher frequency. However, the anticipated acceleration environment on ISS significantly exceeds the required acceleration level. The ubiquity and difficulty in characterization of the disturbance sources precludes source isolation, requiring vibration isolation to attenuate the anticipated disturbances to an acceptable level. This memorandum reports the results of research in active control methods for microgravity vibration isolation.

  7. Nucleon exchange in damped nuclear reactions

    SciTech Connect

    Randrup, J.

    1986-04-01

    Starting from the general context of one-body nuclear dynamics, the nucleon-exchange mechanism in damped nuclear reactions is discussed. Some of its characteristic effects on various dinuclear observables are highlighted and a few recent advances are described.

  8. Red cell DAMPs and inflammation.

    PubMed

    Mendonça, Rafaela; Silveira, Angélica A A; Conran, Nicola

    2016-09-01

    Intravascular hemolysis, or the destruction of red blood cells in the circulation, can occur in numerous diseases, including the acquired hemolytic anemias, sickle cell disease and β-thalassemia, as well as during some transfusion reactions, preeclampsia and infections, such as those caused by malaria or Clostridium perfringens. Hemolysis results in the release of large quantities of red cell damage-associated molecular patterns (DAMPs) into the circulation, which, if not neutralized by innate protective mechanisms, have the potential to activate multiple inflammatory pathways. One of the major red cell DAMPs, heme, is able to activate converging inflammatory pathways, such as toll-like receptor signaling, neutrophil extracellular trap formation and inflammasome formation, suggesting that this DAMP both activates and amplifies inflammation. Other potent DAMPs that may be released by the erythrocytes upon their rupture include heat shock proteins (Hsp), such as Hsp70, interleukin-33 and Adenosine 5' triphosphate. As such, hemolysis represents a major inflammatory mechanism that potentially contributes to the clinical manifestations that have been associated with the hemolytic diseases, such as pulmonary hypertension and leg ulcers, and likely plays a role in specific complications of sickle cell disease such as endothelial activation, vaso-occlusive processes and tissue injury. PMID:27251171

  9. Dynamical analysis of fluid lines coupled to mechanical systems taking into account fluid frequency-dependent damping and non-conventional constitutive models: Part 2 - Coupling with mechanical systems

    NASA Astrophysics Data System (ADS)

    Catania, Giuseppe; Sorrentino, Silvio

    2015-01-01

    The design of hydraulic transmission systems for control and actuation requires accurate knowledge of their dynamic response: some standard techniques are known to obtain a consistent dynamic model of a fluid line, including the contribution of inertia, compressibility and friction. In this study an efficient procedure is developed for simulating the dynamic response of a fluid line coupled with mechanical systems, in both the frequency and time domains. A bi-dimensional approach is adopted for the fluid line, and the laminar flow frequency-dependent friction is modeled using non-integer order differential laws, which may improve the accuracy in comparison with more traditional Newtonian models. The coupling problem with mechanical systems is studied by means of both continuous models of the fluid line (yielding frequency response functions in exact analytical form), and discretized models of the fluid line (to express time response functions in approximate analytical form), focusing on the damping properties of the resulting vibrating systems.

  10. Liquid-induced damping of mechanical feedback effects in single electron tunneling through a suspended carbon nanotube

    SciTech Connect

    Schmid, D. R.; Stiller, P. L.; Strunk, Ch.; Hüttel, A. K.

    2015-09-21

    In single electron tunneling through clean, suspended carbon nanotube devices at low temperature, distinct switching phenomena have regularly been observed. These can be explained via strong interaction of single electron tunneling and vibrational motion of the nanotube. We present measurements on a highly stable nanotube device, subsequently recorded in the vacuum chamber of a dilution refrigerator and immersed in the {sup 3}He/ {sup 4}He mixture of a second dilution refrigerator. The switching phenomena are absent when the sample is kept in the viscous liquid, additionally supporting the interpretation of dc-driven vibration. Transport measurements in liquid helium can thus be used for finite bias spectroscopy where otherwise the mechanical effects would dominate the current.

  11. Fatty acid competition as a mechanism by which Enterobacter cloacae suppresses Pythium ultimum sporangium germination and damping-off.

    PubMed

    van Dijk, K; Nelson, E B

    2000-12-01

    Interactions between plant-associated microorganisms play important roles in suppressing plant diseases and enhancing plant growth and development. While competition between plant-associated bacteria and plant pathogens has long been thought to be an important means of suppressing plant diseases microbiologically, unequivocal evidence supporting such a mechanism has been lacking. We present evidence here that competition for plant-derived unsaturated long-chain fatty acids between the biological control bacterium Enterobacter cloacae and the seed-rotting oomycete, Pythium ultimum, results in disease suppression. Since fatty acids from seeds and roots are required to elicit germination responses of P. ultimum, we generated mutants of E. cloacae to evaluate the role of E. cloacae fatty acid metabolism on the suppression of Pythium sporangium germination and subsequent plant infection. Two mutants of E. cloacae EcCT-501R3, Ec31 (fadB) and EcL1 (fadL), were reduced in beta-oxidation and fatty acid uptake, respectively. Both strains failed to metabolize linoleic acid, to inactivate the germination-stimulating activity of cottonseed exudate and linoleic acid, and to suppress Pythium seed rot in cotton seedling bioassays. Subclones containing fadBA or fadL complemented each of these phenotypes in Ec31 and EcL1, respectively. These data provide strong evidence for a competitive exclusion mechanism for the biological control of P. ultimum-incited seed infections by E. cloacae where E. cloacae prevents the germination of P. ultimum sporangia by the efficient metabolism of fatty acid components of seed exudate and thus prevents seed infections. PMID:11097912

  12. Eigensolutions of non-proportionally damped systems based on continuous damping sensitivity

    NASA Astrophysics Data System (ADS)

    Lázaro, Mario

    2016-02-01

    The viscous damping model has been widely used to represent dissipative forces in structures under mechanical vibrations. In multiple degree of freedom systems, such behavior is mathematically modeled by a damping matrix, which in general presents non-proportionality, that is, it does not become diagonal in the modal space of the undamped problem. Eigensolutions of non-proportional systems are usually estimated assuming that the modal damping matrix is diagonally dominant (neglecting the off-diagonal terms) or, in the general case, using the state-space approach. In this paper, a new closed-form expression for the complex eigenvalues of non-proportionally damped system is proposed. The approach is derived assuming small damping and involves not only the diagonal terms of the modal damping matrix, but also the off-diagonal terms, which appear under higher order. The validity of the proposed approach is illustrated through a numerical example.

  13. RMS active damping augmentation

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Scott, Michael A.; Demeo, Martha E.

    1992-01-01

    The topics are presented in viewgraph form and include: RMS active damping augmentation; potential space station assembly benefits to CSI; LaRC/JSC bridge program; control law design process; draper RMS simulator; MIMO acceleration control laws improve damping; potential load reduction benefit; DRS modified to model distributed accelerations; accelerometer location; Space Shuttle aft cockpit simulator; simulated shuttle video displays; SES test goals and objectives; and SES modifications to support RMS active damping augmentation.

  14. Magnetic damping for maglev

    SciTech Connect

    Chen, S.S.; Zhu, S.; Cai, Y.; Rote, D.M.

    1994-12-31

    Magnetic damping is one of the important parameters to control the response and stability of maglev systems. An experimental study is presented to measure the magnetic damping using a direct method. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters on magnetic damping such as conductivity, gap, excitation frequency, and oscillation amplitude. The experimental technique is capable of measuring all magnetic damping coefficients, some of which can not be measured by an indirect method.

  15. Decoherence and Landau-Damping

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2005-12-01

    The terminologies, decoherence and Landau damping, are often used concerning the damping of a collective instability. This article revisits the difference and relation between decoherence and Landau damping. A model is given to demonstrate how Landau damping affects the rate of damping coming from decoherence.

  16. Continuum damping of ideal toroidal Alfven eigenmodes

    SciTech Connect

    Zhang, X.D.; Zhang, Y.Z.; Mahajan, S.M.

    1993-08-01

    A perturbation theory based on the two dimensional (2D) ballooning transform is systematically developed for ideal toroidal Alfven eigenmodes (TAEs). A formula, similar to the Fermi golden rule for decaying systems in quantum mechanics, is derived for the continuum damping rate of the TAE; the decay (damping) rate is expressed explicitly in terms of the coupling of the TAE to the continuum spectrum. Numerical results are compared with previous calculations. It is found that in some narrow intervals of the parameter m{cflx {epsilon}} the damping rate varies very rapidly. These regions correspond precisely to the root missing intervals of the numerical solution by Rosenbluth et al.

  17. Turbine blade damping study

    NASA Technical Reports Server (NTRS)

    Dominic, R. J.

    1984-01-01

    Research results and progress on the performance of bladed systems is reported the different topics discussed include: the study of turbine blade damping; forced vibrations of friction damped beam moistures in two dimensions; and a users manual for a computer program for dynamic analysis of bladed systems.

  18. Damped acceleration cavities

    SciTech Connect

    Palmer, R.B.

    1988-07-01

    Structures with slots to strongly damp higher order longitudinal and transverse modes should allow the use, in linear colliders, of multiple bunches, and thus attain luminosities of over 10/sup 34/cm/sup /minus/2/sec/sup /minus/1/. Preliminary measurements on model structures suggest that such damping can be achieved. 10 refs., 9 figs.

  19. Damping behavior of Discontinuous Fiber Reinforced Thermoplastic Composites

    NASA Astrophysics Data System (ADS)

    Haldar, Amit Kumar; Aggarwal, Ishan; Batra, N. K.

    2010-11-01

    Discontinuous fiber reinforced composites are being used in many antivibration applications due to their time and temperature dependent specific mechanical properties. For utilization of this material to specific engineering applications there is a need to understand the damping behavior of composites under dynamic loading. For this work, unreinforced and 20% long and short reinforced glass fiber polypropylene composite materials were tested for free transverse vibration damping characteristics under static as well as fatigue loading conditions. The damping characteristics are quantified by decay pattern and natural frequency. Presence of reinforced fibers increases the damping capacity. Among reinforcements, short fiber reinforced polypropylene shows increased damping capacity then long glass fiber reinforced polypropylene.

  20. Vibration damping of mechanical seals

    NASA Technical Reports Server (NTRS)

    Hammond, R. R.

    1970-01-01

    Bellows seal filled with spherical powder reacts to vibration inputs by absorbing displacement energy through inertia and friction of the particle masses acting on the inside surface of the cylinders.

  1. Damping models in elastography

    NASA Astrophysics Data System (ADS)

    McGarry, Matthew D. J.; Berger, Hans-Uwe; Van Houten, Elijah E. W.

    2007-03-01

    Current optimization based Elastography reconstruction algorithms encounter difficulties when the motion approaches resonant conditions, where the model does a poor job of approximating the real behavior of the material. Model accuracy can be improved through the addition of damping effects. These effects occur in-vivo due to the complex interaction between microstructural elements of the tissue; however reconstruction models are typically formulated at larger scales where the structure can be treated as a continuum. Attenuation behavior in an elastic continuum can be described as a mixture of inertial and viscoelastic damping effects. In order to develop a continuum damping model appropriate for human tissue, the behavior of each aspect of this proportional, or Rayleigh damping needs to be characterized. In this paper we investigate the nature of these various damping representations with a goal of best describing in-vivo behavior of actual tissue in order to improve the accuracy and performance of optimization based elastographic reconstruction. Inertial damping effects are modelled using a complex density, where the imaginary part is equivalent to a damping coefficient, and the effects of viscoelasticity are modelled through the use of complex shear moduli, where the real and imaginary parts represent the storage and loss moduli respectively. The investigation is carried out through a combination of theoretical analysis, numerical experiment, investigation of gelatine phantoms and comparison with other continua such as porous media models.

  2. Spatial cyclotron damping

    NASA Technical Reports Server (NTRS)

    Olson, C. L.

    1970-01-01

    To examine spatial electron cyclotron damping in a uniform Vlasov plasma, it is noted that the plasma response to a steady-state transverse excitation consists of several terms (dielectric-pole, free-streaming, and branch-cut), but that the cyclotron-damped pole term is the dominant term for z l = c/w sub ce provided (w sub pe/w sub ce) squared (c/a) is much greater than 1. If the latter inequality does not hold, then the free-streaming and branch-cut terms persist well past z = c/w sub ce as w sub 1 approaches w sub ce, making experimental measurement of cyclotron damping essentially impossible. Considering only (w sub pe/w sub ce) squared (c/a) is much greater than 1, it is shown how collisional effects should be estimated and how a finite-width excitation usually has little effect on the cyclotron-damped part of the response. Criteria is established concerning collisional damping, measurable damping length sizes, and allowed uncertainty in the magnetic field Beta. Results of numerical calculations, showing the regions in the appropriate parameter spaces that meet these criteria, are presented. From these results, one can determine the feasibility of, or propose parameter values for, an experiment designed to measure spatial cyclotron damping. It is concluded that the electron temperature T sub e should be at least 1 ev., and preferably 10 ev. or higher, for a successful experiment.

  3. Concepts and effects of damping in isolators

    NASA Technical Reports Server (NTRS)

    Kerley, J.

    1984-01-01

    A series of innovative designs and inventions which led to the solution of many aerospace vibration and shock problems through damping techniques is presented. The design of damped airborne structures has presented a need for such creative innovation. The primary concern was to discover what concepts were necessary for good structural damping. Once these concepts are determined and converted into basic principles, the design of hardware follows. The following hardware and techniques were developed in support of aerospace program requirements: shipping containers, alignment cables for precision mechanisms, isolation of small components such as relays and flight instruments, isolation for heavy flight equipment, coupling devices, universal joints, use of wire mesh to replace cable, isolation of 16-dB, 5000 lb horn, and compound damping devices to get better isolation from shock and vibration in a high steady environment.

  4. Active damping and compensation of satellite appendages

    NASA Astrophysics Data System (ADS)

    Charon, W.; Baier, H.

    1993-10-01

    Future space missions will employ large and, for lightweight reasons, extremely flexible structures with very high performance requirements such as high pointing accuracy and stability, and high shape precision. This requires actively damping out vibrations induced by spacecraft maneuvers. The damping of the solar array vibrations is a characteristic task for such active interface devices. The example of an active interface for damping the bending vibrations of large conventional solar arrays is addressed. Other typical active components are active tube sections for damping the vibrations of large booms, and interfaces between satellite and vibrating large masts carrying high precision reflectors or measurement systems. The mechanical properties of the interfaces and the technological requirements related to their development are determined. New 'smart' materials are prominent among current concerns. Piezoelectric polymer foils bonded to structural shell surfaces, embedded thin piezoceramics plates, and embedded fiber optics sensors, as well as the implementation of materials such as memory alloys, are here addressed.

  5. STREAK damping. Technical report

    SciTech Connect

    Baker, J.; Peyton, S.; Freiberg, H.

    1989-12-01

    This report documents a study aimed at improving the damping in STREAK. A form and value for an artificial viscosity is recommended which appears to control ringing and overshoots without overdamping.

  6. DAMPs, ageing, and cancer: The 'DAMP Hypothesis'.

    PubMed

    Huang, Jin; Xie, Yangchun; Sun, Xiaofang; Zeh, Herbert J; Kang, Rui; Lotze, Michael T; Tang, Daolin

    2015-11-01

    Ageing is a complex and multifactorial process characterized by the accumulation of many forms of damage at the molecular, cellular, and tissue level with advancing age. Ageing increases the risk of the onset of chronic inflammation-associated diseases such as cancer, diabetes, stroke, and neurodegenerative disease. In particular, ageing and cancer share some common origins and hallmarks such as genomic instability, epigenetic alteration, aberrant telomeres, inflammation and immune injury, reprogrammed metabolism, and degradation system impairment (including within the ubiquitin-proteasome system and the autophagic machinery). Recent advances indicate that damage-associated molecular pattern molecules (DAMPs) such as high mobility group box 1, histones, S100, and heat shock proteins play location-dependent roles inside and outside the cell. These provide interaction platforms at molecular levels linked to common hallmarks of ageing and cancer. They can act as inducers, sensors, and mediators of stress through individual plasma membrane receptors, intracellular recognition receptors (e.g., advanced glycosylation end product-specific receptors, AIM2-like receptors, RIG-I-like receptors, and NOD1-like receptors, and toll-like receptors), or following endocytic uptake. Thus, the DAMP Hypothesis is novel and complements other theories that explain the features of ageing. DAMPs represent ideal biomarkers of ageing and provide an attractive target for interventions in ageing and age-associated diseases. PMID:25446804

  7. Damping modeling in Timoshenko beams

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Wang, Y.

    1992-01-01

    Theoretical and numerical results of damping model studies for composite material beams using the Timoshenko theory is presented. Based on the damping models developed for Euler-Bernoulli beams, the authors develop damping methods for both bending and shear in investigation of Timoshenko beams. A computational method for the estimation of the damping parameters is given. Experimental data with high-frequency excitation were used to test Timoshenko beam equations with different types of damping models for bending and shear in various combinations.

  8. Non-Linear Slosh Damping Model Development and Validation

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Propellant tank slosh dynamics are typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control (GN&C) analysis. For a partially-filled smooth wall propellant tank, the critical damping based on classical empirical correlation is as low as 0.05%. Due to this low value of damping, propellant slosh is potential sources of disturbance critical to the stability of launch and space vehicles. It is postulated that the commonly quoted slosh damping is valid only under the linear regime where the slosh amplitude is small. With the increase of slosh amplitude, the critical damping value should also increase. If this nonlinearity can be verified and validated, the slosh stability margin can be significantly improved, and the level of conservatism maintained in the GN&C analysis can be lessened. The purpose of this study is to explore and to quantify the dependence of slosh damping with slosh amplitude. Accurately predicting the extremely low damping value of a smooth wall tank is very challenging for any Computational Fluid Dynamics (CFD) tool. One must resolve thin boundary layers near the wall and limit numerical damping to minimum. This computational study demonstrates that with proper grid resolution, CFD can indeed accurately predict the low damping physics from smooth walls under the linear regime. Comparisons of extracted damping values with experimental data for different tank sizes show very good agreements. Numerical simulations confirm that slosh damping is indeed a function of slosh amplitude. When slosh amplitude is low, the damping ratio is essentially constant, which is consistent with the empirical correlation. Once the amplitude reaches a critical value, the damping ratio becomes a linearly increasing function of the slosh amplitude. A follow-on experiment validated the developed nonlinear damping relationship. This discovery can

  9. Experiments with particle damping

    NASA Astrophysics Data System (ADS)

    Hollkamp, Joseph J.; Gordon, Robert W.

    1998-06-01

    High cycle fatigue in jet engines is a current military concern. The vibratory stresses that cause fatigue can be reduced by adding damping. However, the high temperatures that occur in the gas turbine greatly hinder the application of mature damping technologies. One technology which may perform in the harsh environment is particle damping. Particle damping involves placing metallic or ceramic particles inside structural cavities. As the cavity vibrates, energy is dissipated through particle collisions. Performance is influenced by many parameters including the type, shape, and size of the particles; the amount of free volume for the particles to move in; density of the particles; and the level of vibration. This paper presents results from a series of experiments designed to gain an appreciation of the important parameters. The experimental setup consists of a cantilever beam with drilled holes. These holes are partially filled with particles. The types of particles, location of the particles, fill level, and other parameters are varied. Damping is estimated for each configuration. Trends in the results are studied to determine the influence of the varied parameter.

  10. Damped flexible seal

    DOEpatents

    DuBois, Neil J.; Amaral, Antonio M.

    1992-10-27

    A damped flexible seal assembly for a torpedo isolates the tailcone thereof rom vibrational energy present in the drive shaft assembly. A pair of outside flanges, each of which include an inwardly facing groove and an O-ring constrained therein, provide a watertight seal against the outer non-rotating surface of the drive shaft assembly. An inside flange includes an outwardly-facing groove and an O-ring constrained therein, and provides a watertight seal against the inner surface of the tail cone. Two cast-in-place elastomeric seals provide a watertight seal between the flanges and further provide a damping barrier between the outside flanges and the inside flanges for damping vibrational energy present in the drive shaft assembly before the energy can reach the tailcone through the seal assembly.

  11. DAMPs and autophagy

    PubMed Central

    Zhang, Qiuhong; Kang, Rui; Zeh, III, Herbert J.; Lotze, Michael T.; Tang, Daolin

    2013-01-01

    Autophagy is a lysosome-mediated catabolic process involving the degradation of intracellular contents (e.g., proteins and organelles) as well as invading microbes (e.g., parasites, bacteria and viruses). Multiple forms of cellular stress can stimulate this pathway, including nutritional imbalances, oxygen deprivation, immunological response, genetic defects, chromosomal anomalies and cytotoxic stress. Damage-associated molecular pattern molecules (DAMPs) are released by stressed cells undergoing autophagy or injury, and act as endogenous danger signals to regulate the subsequent inflammatory and immune response. A complex relationship exists between DAMPs and autophagy in cellular adaption to injury and unscheduled cell death. Since both autophagy and DAMPs are important for pathogenesis of human disease, it is crucial to understand how they interplay to sustain homeostasis in stressful or dangerous environments. PMID:23388380

  12. Process Damping Parameters

    NASA Astrophysics Data System (ADS)

    Turner, Sam

    2011-12-01

    The phenomenon of process damping as a stabilising effect in milling has been encountered by machinists since milling and turning began. It is of great importance when milling aerospace alloys where maximum surface speed is limited by excessive tool wear and high speed stability lobes cannot be attained. Much of the established research into regenerative chatter and chatter avoidance has focussed on stability lobe theory with different analytical and time domain models developed to expand on the theory first developed by Trusty and Tobias. Process damping is a stabilising effect that occurs when the surface speed is low relative to the dominant natural frequency of the system and has been less successfully modelled and understood. Process damping is believed to be influenced by the interference of the relief face of the cutting tool with the waveform traced on the cut surface, with material properties and the relief geometry of the tool believed to be key factors governing performance. This study combines experimental trials with Finite Element (FE) simulation in an attempt to identify and understand the key factors influencing process damping performance in titanium milling. Rake angle, relief angle and chip thickness are the variables considered experimentally with the FE study looking at average radial and tangential forces and surface compressive stress. For the experimental study a technique is developed to identify the critical process damping wavelength as a means of measuring process damping performance. For the range of parameters studied, chip thickness is found to be the dominant factor with maximum stable parameters increased by a factor of 17 in the best case. Within the range studied, relief angle was found to have a lesser effect than expected whilst rake angle had an influence.

  13. Note: Tesla transformer damping

    NASA Astrophysics Data System (ADS)

    Reed, J. L.

    2012-07-01

    Unexpected heavy damping in the two winding Tesla pulse transformer is shown to be due to small primary inductances. A small primary inductance is a necessary condition of operability, but is also a refractory inefficiency. A 30% performance loss is demonstrated using a typical "spiral strip" transformer. The loss is investigated by examining damping terms added to the transformer's governing equations. A significant alteration of the transformer's architecture is suggested to mitigate these losses. Experimental and simulated data comparing the 2 and 3 winding transformers are cited to support the suggestion.

  14. Damping seals for turbomachinery

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L.

    1985-01-01

    Rotor whirl stabilization of high performance turbomachinery which operates at supercritical speed is discussed. Basic whirl driving forces are reviewed. Stabilization and criteria are discussed. Damping seals are offered as a solution to whirl and high vibration problems. Concept, advantages, retrofitting, and limits of damping seals are explained. Dynamic and leakage properties are shown to require a rough stator surface for stability and efficiency. Typical seal characteristics are given for the case of the high pressure oxidizer turbopump of the Space Shuttle. Ways of implementation and bearing load effects are discussed.

  15. Observations of TCRVβ Gene Expression in Rats with Dampness Syndrome

    PubMed Central

    Chen, Yan; Sun, Bao-Guo; Zhang, Shi-Jun; Chen, Ze-Xiong; Hardi, Carlini Fan; Xiang, Ting

    2014-01-01

    Environmental dampness is one factor which can cause human diseases. The effects of exposure to humidity on human immune function are diverse and numerous. In the theory of traditional Chinese medicine (TCM), dampness is defined as one of the major pathogenic factors in the human body. It is divided into “external dampness” and “internal dampness.” However the molecular mechanism leading to humidity-induced immunosuppression is obscure. In the present study, we investigated the expression of the T-cell antigen receptor variable β (TCRVβ) subfamilies in rats which were fed in different humid environment. And the expression levels of the TCRVβ subfamilies were detected using FQ-PCR. We found that the dampness might reduce the immunological recognition function of rats. And the obstruction of the immunological recognition function might be caused by internal dampness rather than external dampness. PMID:24976850

  16. The Study of Damped Harmonic Oscillations Using an Electronic Counter

    ERIC Educational Resources Information Center

    Wadhwa, Ajay

    2009-01-01

    We study damped harmonic oscillations in mechanical systems like the loaded spring and simple pendulum with the help of an oscillation measuring electronic counter. The experimental data are used in a software program that solves the differential equation for damped vibrations of any system and determines its position, velocity and acceleration as…

  17. Damping seal for turbomachinery

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L. (Inventor)

    1985-01-01

    A damping seal between a high speed rotor member and stator member that separates pressurized fluid compartments is described. It is characterized by the rotor member having a smooth outer surface and the stator member having its bore surface roughened by a plurality of pockets or depressions.

  18. Exotic damping ring lattices

    SciTech Connect

    Palmer, R.B.

    1987-05-01

    This paper looks at, and compares three types of damping ring lattices: conventional, wiggler lattice with finite ..cap alpha.., wiggler lattice with ..cap alpha.. = 0, and observes the attainable equilibrium emittances for the three cases assuming a constraint on the attainable longitudinal impedance of 0.2 ohms. The emittance obtained are roughly in the ratio 4:2:1 for these cases.

  19. Spin-orbit damping in transition metals

    NASA Astrophysics Data System (ADS)

    Gilmore, Keith

    2008-03-01

    Magnetization dynamics are routinely described with the Landau-Lifshitz-Gilbert (LLG) equation. However, it is expected that the LLG equation fails to properly describe the large amplitude dynamics that occur during magnetization reversal. Improving switching speeds in nanoscale devices by tailoring materials requires both a qualitative understanding of the relaxation processes that contribute to damping and the ability to quantitatively calculate the resulting damping rates. We consider small amplitude LLG damping in transition metals as a prelude to approaching the more complicated mechanisms expected in complete reversal events. LLG damping rates in pure transition metal systems have non-monotonic temperature dependencies that have been empirically shown by Heinrich et al. [1] to have one part proportional to the conductivity and one part proportional to the resistivity. Kambersky [2] postulated that both contributions result from a torque between the spin and orbital moments. We have conducted first-principles calculations that validate this claim for single element systems [3]. Our calculations for Fe, Co, and Ni both qualitatively match the two trends observed in measurements and quantitatively agree with the observed damping rates. We will discuss how the spin-orbit interaction produces two contributions to damping with nearly opposite temperature dependencies and compare calculations of the damping rate versus resistivity with experimental results. [1] B. Heinrich, D.J. Meredith, and J.F. Cochran, J. Appl. Phys., 50(11), 7726 (1979). [2] V. Kambersky, Czech. J. Phys. B, 26, 1366 (1976). [3] K. Gilmore, Y.U. Idzerda, and M.D. Stiles, Phys. Rev. Lett., 99, 027204 (2007).

  20. Damping formulas and experimental values of damping in flutter models

    NASA Technical Reports Server (NTRS)

    Coleman, Robert P

    1940-01-01

    The problem of determining values of structural damping for use in flutter calculations is discussed. The concept of equivalent viscous damping is reviewed and its relation to the structural damping coefficient g introduced in NACA Technical Report No. 685 is shown. The theory of normal modes is reviewed and a number of methods are described for separating the motions associated with different modes. Equations are developed for use in evaluating the damping parameters from experimental data. Experimental results of measurements of damping in several flutter models are presented.

  1. Radiative Damping and Functional Differential Equations

    NASA Astrophysics Data System (ADS)

    Raju, Suvrat; Raju, C. K.

    We propose a general technique to solve the classical many-body problem with radiative damping. We modify the short-distance structure of Maxwell electrodynamics. This allows us to avoid runaway solutions as if we had a covariant model of extended particles. The resulting equations of motion are functional differential equations (FDEs) rather than ordinary differential equations (ODEs). Using recently developed numerical techniques for stiff, retarded FDEs, we solve these equations for the one-body central force problem with radiative damping. Our results indicate that locally the magnitude of radiation damping may be well approximated by the standard third-order expression but the global properties of our solutions are dramatically different. We comment on the two-body problem and applications to quantum field theory and quantum mechanics.

  2. Highly damped kinematic coupling for precision instruments

    DOEpatents

    Hale, Layton C.; Jensen, Steven A.

    2001-01-01

    A highly damped kinematic coupling for precision instruments. The kinematic coupling provides support while causing essentially no influence to its nature shape, with such influences coming, for example, from manufacturing tolerances, temperature changes, or ground motion. The coupling uses three ball-cone constraints, each combined with a released flexural degree of freedom. This arrangement enables a gain of higher load capacity and stiffness, but can also significantly reduce the friction level in proportion to the ball radius divided by the distance between the ball and the hinge axis. The blade flexures reduces somewhat the stiffness of the coupling and provides an ideal location to apply constrained-layer damping which is accomplished by attaching a viscoelastic layer and a constraining layer on opposite sides of each of the blade flexures. The three identical ball-cone flexures provide a damped coupling mechanism to kinematically support the projection optics system of the extreme ultraviolet lithography (EUVL) system, or other load-sensitive apparatus.

  3. Passively damped vibration welding system and method

    DOEpatents

    Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao

    2013-04-02

    A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.

  4. Fluid damping of cylindrical liquid storage tanks.

    PubMed

    Habenberger, Joerg

    2015-01-01

    A method is proposed in order to calculate the damping effects of viscous fluids in liquid storage tanks subjected to earthquakes. The potential equation of an ideal fluid can satisfy only the boundary conditions normal to the surface of the liquid. To satisfy also the tangential interaction conditions between liquid and tank wall and tank bottom, the potential flow is superimposed by a one-dimensional shear flow. The shear flow in this boundary layer yields to a decrease of the mechanical energy of the shell-liquid-system. A damping factor is derived from the mean value of the energy dissipation in time. Depending on shell geometry and fluid viscosity, modal damping ratios are calculated for the convective component. PMID:26405635

  5. Biomimetic Gradient Polymers with Enhanced Damping Capacities.

    PubMed

    Wang, Dong; Zhang, Huan; Guo, Jing; Cheng, Beichen; Cao, Yuan; Lu, Shengjun; Zhao, Ning; Xu, Jian

    2016-04-01

    Designing gradient structures, mimicking biological materials, such as pummelo peels and tendon, is a promising strategy for developing advanced materials with superior energy damping capacities. Here a facile and effective approach for fabricating polymers with composition gradients at millimeter length scale is presented. The gradient thiol-ene polymers (TEPs) are created by the use of density difference of ternary thiol-ene-ene precursors and the subsequent photo-crosslinking via thiol-ene reaction. The compositional gradients are analyzed via differential scanning calorimeter (DSC), compressive modulus testing, atomic force microscopy (AFM) indentation, and swelling measurements. In contrast to homogeneous TEPs networks, the resultant gradient polymer shows a broader effective damping temperature range combining with good mechanical properties. The present result provides an effective route toward high damping materials by the fabrication of gradient structures. PMID:26776353

  6. Effect of Ti addition on the structural, mechanical and damping properties of magnetron sputtered Ni-Mn-Sn ferromagnetic shape memory alloy thin films

    NASA Astrophysics Data System (ADS)

    Choudhary, Nitin; Kaur, Davinder

    2012-12-01

    Titanium (Ti) co-sputtered Ni50.4Mn34.7Sn14.9 films deposited by magnetron sputtering onto Si(1 0 0) substrates at 823 K were investigated. X-ray diffraction profiles revealed the formation of highly (2 2 0)-oriented Ni-Mn-Sn-Ti austenite phase with significant decrease in grain size with increasing Ti power. Hardness (H), elastic modulus (Er), damping (tan δ), figure of merit (FOM) and coefficient of restitution (e) of the films were evaluated using nanoindentation tests. A significant improvement in the hardness (10.5 GPa) and toughness H^3/E_r^2 (0.040) was observed in the Ni51.0Mn28.2Sn11.0Ti9.7 nanocomposite film as compared with pure Ni50.4Mn34.7Sn14.9films. An impact model, which incorporates material behaviour, is presented that predicts the experimentally observed material quantities, including energy dissipation metrics such as the coefficient of restitution e with high accuracy. The highest damping factor (tan δ = 0.061), high FOM (0.79) with low coefficient of restitution (e = 0.28) quantifies excellent energy dissipation capacity in the Ni51.0Mn28.2Sn11.0Ti9.7 nanocomposite. Temperature dependence of magnetization (M-T) curves showed an increase in martensitic transformation temperatures with increasing Ti content. The Ni-Mn-Sn-Ti composite films exhibit ferromagnetic behaviour at room temperature.

  7. Design of passive piezoelectric damping for space structures

    NASA Astrophysics Data System (ADS)

    Hagood, Nesbitt W., IV; Aldrich, Jack B.; Vonflotow, Andreas H.

    1994-09-01

    Passive damping of structural dynamics using piezoceramic electromechanical energy conversion and passive electrical networks is a relatively recent concept with little implementation experience base. This report describes an implementation case study, starting from conceptual design and technique selection, through detailed component design and testing to simulation on the structure to be damped. About 0.5kg. of piezoelectric material was employed to damp the ASTREX testbed, a 500kg structure. Emphasis was placed upon designing the damping to enable high bandwidth robust feedback control. Resistive piezoelectric shunting provided the necessary broadband damping. The piezoelectric element was incorporated into a mechanically-tuned vibration absorber in order to concentrate damping into the 30 to 40 Hz frequency modes at the rolloff region of the proposed compensator. A prototype of a steel flex-tensional motion amplification device was built and tested. The effective stiffness and damping of the flex-tensional device was experimentally verified. When six of these effective springs are placed in an orthogonal configuration, strain energy is absorbed from all six degrees of freedom of a 90kg. mass. A NASTRAN finite element model of the testbed was modified to include the six-spring damping system. An analytical model was developed for the spring in order to see how the flex-tensional device and piezoelectric dimensions effect the critical stress and strain energy distribution throughout the component. Simulation of the testbed demonstrated the damping levels achievable in the completed system.

  8. Cu-Al-Ni-SMA-Based High-Damping Composites

    NASA Astrophysics Data System (ADS)

    López, Gabriel A.; Barrado, Mariano; San Juan, Jose; Nó, María Luisa

    2009-08-01

    Recently, absorption of vibration energy by mechanical damping has attracted much attention in several fields such as vibration reduction in aircraft and automotive industries, nanoscale vibration isolations in high-precision electronics, building protection in civil engineering, etc. Typically, the most used high-damping materials are based on polymers due to their viscoelastic behavior. However, polymeric materials usually show a low elastic modulus and are not stable at relatively low temperatures (≈323 K). Therefore, alternative materials for damping applications are needed. In particular, shape memory alloys (SMAs), which intrinsically present high-damping capacity thanks to the dissipative hysteretic movement of interfaces under external stresses, are very good candidates for high-damping applications. A completely new approach was applied to produce high-damping composites with relatively high stiffness. Cu-Al-Ni shape memory alloy powders were embedded with metallic matrices of pure In, a In-10wt.%Sn alloy and In-Sn eutectic alloy. The production methodology is described. The composite microstructures and damping properties were characterized. A good particle distribution of the Cu-Al-Ni particles in the matrices was observed. The composites exhibit very high damping capacities in relatively wide temperature ranges. The methodology introduced provides versatility to control the temperature of maximum damping by adjusting the shape memory alloy composition.

  9. Damping seals for turbomachinery

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L.

    1982-01-01

    A rotor seal is proposed that restricts leakage like a labyrinth seal, but extends the stabilizing speed range beyond twice the first critical speed. The dynamic parameters were derived from bulk flow equations without requiring a dominant axial flow. The flow is considered incompressible and turbulent. Damping seals are shown to be feasible for extending the speed range of high performance turbomachinery beyond the limit imposed by conventional seals.

  10. Dependence of kink oscillation damping on the amplitude

    NASA Astrophysics Data System (ADS)

    Goddard, C. R.; Nakariakov, V. M.

    2016-05-01

    Context. Kink oscillations of coronal loops are one of the most intensively studied oscillatory phenomena in the solar corona. In the large-amplitude rapidly damped regime, these oscillations are observed to have a low quality factor with only a few cycles of oscillation detected before they are damped. The specific mechanism responsible for rapid damping is commonly accepted to be associated with the linear coupling between collective kink oscillations and localised torsional oscillations, the phenomenon of resonant absorption of the kink mode. The role of finite amplitude effects, however, is still not clear. Aims: We investigated the empirical dependence of the kink oscillation damping time and its quality factor, which is defined as the ratio of damping time to oscillation period, on the oscillation amplitude. Methods: We analysed decaying kink oscillation events detected previously with TRACE, SDO/AIA and and STEREO/EUVI in the extreme ultraviolet (EUV) 171 Å band. Results: We found that the ratio of the kink oscillation damping time to the oscillation period systematically decreases with the oscillation amplitude. We approximated the quality factor dependence on the oscillation displacement amplitude via the power-law dependence with the exponent of -1/2, however we stress that this is a by-eye estimate, and a more rigorous estimation of the scaling law requires more accurate measurements and increased statistics. We conclude that damping of kink oscillations of coronal loops depends on the oscillation amplitude, indicating the possible role of non-linear mechanisms for damping.

  11. Characteristics and computer model simulation of magnetic damping forces in maglev systems

    SciTech Connect

    He, J.L.; Rote, D.M.; Chen, S.S.

    1994-05-01

    This report discusses the magnetic damping force in electrodynamic suspension (EDS) maglev systems. The computer model simulations, which combine electrical system equations with mechanical motion equations on the basis of dynamic circuit theory, were conducted for a loop-shaped coil guideway. The intrinsic damping characteristics of the EDS-type guideway are investigated, and the negative damping phenomenon is confirmed by the computer simulations. The report also presents a simple circuit model to aid in understanding damping-force characteristics.

  12. The moment problem and vibrations damping of beams and plates

    NASA Astrophysics Data System (ADS)

    Atamuratov, Andrey G.; Mikhailov, Igor E.; Muravey, Leonid A.

    2016-06-01

    Beams and plates are the elements of different complex mechanical structures, for example, pipelines and aerospace platforms. That is why the problem of damping of their vibrations caused by unwanted perturbations is actual task.

  13. Chiral damping of magnetic domain walls.

    PubMed

    Jué, Emilie; Safeer, C K; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles

    2016-03-01

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics, current-induced spin-orbit torques and some topological magnetic structures. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii-Moriya interaction (DMI) exhibit identical spatial symmetry. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. ). PMID:26689141

  14. Chiral damping of magnetic domain walls

    NASA Astrophysics Data System (ADS)

    Jué, Emilie; Safeer, C. K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles

    2016-03-01

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics, current-induced spin-orbit torques and some topological magnetic structures. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii-Moriya interaction (DMI) exhibit identical spatial symmetry. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. ).

  15. Methods for improving damping. Part 3: Damping material data

    NASA Astrophysics Data System (ADS)

    1992-12-01

    ESDU 92001 presents modulus and loss factor for 27 damping materials in the form of reduced temperature nomograms which allow the effects of frequency and temperature on those properties to be considered simultaneously. The data were supplied by 5 manufacturers, and their addresses in the UK and US are provided. The information is a necessary input in computational procedures, described in ESDU 91013, dealing with the application of layered damping treatments to beam- and plate-like structures. Notes are included on the measurement and reliability of the damping quantities that affect the variability allowances to be made when assessing a damping treatment for a particular application. Factors to be considered when selecting a damping material are discussed. Approximate relationships between the elastic properties of damping materials are given.

  16. Nonlinear damping and quasi-linear modelling.

    PubMed

    Elliott, S J; Ghandchi Tehrani, M; Langley, R S

    2015-09-28

    The mechanism of energy dissipation in mechanical systems is often nonlinear. Even though there may be other forms of nonlinearity in the dynamics, nonlinear damping is the dominant source of nonlinearity in a number of practical systems. The analysis of such systems is simplified by the fact that they show no jump or bifurcation behaviour, and indeed can often be well represented by an equivalent linear system, whose damping parameters depend on the form and amplitude of the excitation, in a 'quasi-linear' model. The diverse sources of nonlinear damping are first reviewed in this paper, before some example systems are analysed, initially for sinusoidal and then for random excitation. For simplicity, it is assumed that the system is stable and that the nonlinear damping force depends on the nth power of the velocity. For sinusoidal excitation, it is shown that the response is often also almost sinusoidal, and methods for calculating the amplitude are described based on the harmonic balance method, which is closely related to the describing function method used in control engineering. For random excitation, several methods of analysis are shown to be equivalent. In general, iterative methods need to be used to calculate the equivalent linear damper, since its value depends on the system's response, which itself depends on the value of the equivalent linear damper. The power dissipation of the equivalent linear damper, for both sinusoidal and random cases, matches that dissipated by the nonlinear damper, providing both a firm theoretical basis for this modelling approach and clear physical insight. Finally, practical examples of nonlinear damping are discussed: in microspeakers, vibration isolation, energy harvesting and the mechanical response of the cochlea. PMID:26303921

  17. Flow damping due to stochastization of the magnetic field

    PubMed Central

    Ida, K.; Yoshinuma, M.; Tsuchiya, H.; Kobayashi, T.; Suzuki, C.; Yokoyama, M.; Shimizu, A.; Nagaoka, K.; Inagaki, S.; Itoh, K.; Akiyama, T.; Emoto, M.; Evans, T.; Dinklage, A.; Du, X.; Fujii, K.; Goto, M.; Goto, T.; Hasuo, M.; Hidalgo, C.; Ichiguchi, K.; Ishizawa, A.; Jakubowski, M.; Kamiya, K.; Kasahara, H.; Kawamura, G.; Kato, D.; Kobayashi, M.; Morita, S.; Mukai, K.; Murakami, I.; Murakami, S.; Narushima, Y.; Nunami, M.; Ohdach, S.; Ohno, N.; Osakabe, M.; Pablant, N.; Sakakibara, S.; Seki, T.; Shimozuma, T.; Shoji, M.; Sudo, S.; Tanaka, K.; Tokuzawa, T.; Todo, Y.; Wang, H.; Yamada, H.; Takeiri, Y.; Mutoh, T.; Imagawa, S.; Mito, T.; Nagayama, Y.; Watanabe, K. Y.; Ashikawa, N.; Chikaraishi, H.; Ejiri, A.; Furukawa, M.; Fujita, T.; Hamaguchi, S.; Igami, H.; Isobe, M.; Masuzaki, S.; Morisaki, T.; Motojima, G.; Nagasaki, K.; Nakano, H.; Oya, Y.; Suzuki, Y.; Sakamoto, R.; Sakamoto, M.; Sanpei, A.; Takahashi, H.; Tokitani, M.; Ueda, Y.; Yoshimura, Y.; Yamamoto, S.; Nishimura, K.; Sugama, H.; Yamamoto, T.; Idei, H.; Isayama, A.; Kitajima, S.; Masamune, S.; Shinohara, K.; Bawankar, P. S.; Bernard, E.; von Berkel, M.; Funaba, H.; Huang, X. L.; Ii, T.; Ido, T.; Ikeda, K.; Kamio, S.; Kumazawa, R.; Moon, C.; Muto, S.; Miyazawa, J.; Ming, T.; Nakamura, Y.; Nishimura, S.; Ogawa, K.; Ozaki, T.; Oishi, T.; Ohno, M.; Pandya, S.; Seki, R.; Sano, R.; Saito, K.; Sakaue, H.; Takemura, Y.; Tsumori, K.; Tamura, N.; Tanaka, H.; Toi, K.; Wieland, B.; Yamada, I.; Yasuhara, R.; Zhang, H.; Kaneko, O.; Komori, A.

    2015-01-01

    The driving and damping mechanism of plasma flow is an important issue because flow shear has a significant impact on turbulence in a plasma, which determines the transport in the magnetized plasma. Here we report clear evidence of the flow damping due to stochastization of the magnetic field. Abrupt damping of the toroidal flow associated with a transition from a nested magnetic flux surface to a stochastic magnetic field is observed when the magnetic shear at the rational surface decreases to 0.5 in the large helical device. This flow damping and resulting profile flattening are much stronger than expected from the Rechester–Rosenbluth model. The toroidal flow shear shows a linear decay, while the ion temperature gradient shows an exponential decay. This observation suggests that the flow damping is due to the change in the non-diffusive term of momentum transport. PMID:25569268

  18. Vibrational modes and damping in the cochlear partition

    NASA Astrophysics Data System (ADS)

    O'Maoiléidigh, Dáibhid; Hudspeth, A. J.

    2015-12-01

    It has been assumed in models of cochlear mechanics that the primary role of the cochlear active process is to counteract the damping of the basilar membrane, the vibration of which is much larger in a living animal than post mortem. Recent measurements of the relative motion between the reticular lamina and basilar membrane imply that this assumption is incorrect. We propose that damping is distributed throughout the cochlear partition rather than being concentrated in the basilar membrane. In the absence of significant damping, the cochlear partition possesses three modes of vibration, each associated with its own locus of Hopf bifurcations. Hair-cell activity can amplify any of these modes if the system's operating point lies near the corresponding bifurcation. The distribution of damping determines which mode of vibration predominates. For physiological levels of damping, only one mode produces a vibration pattern consistent with experimental measurements of relative motion and basilar-membrane motion.

  19. Passively Damped Laminated Piezoelectric Shell Structures with Integrated Electric Networks

    NASA Technical Reports Server (NTRS)

    Saravanos, Dimitris A.

    1999-01-01

    Multi-field mechanics are presented for curvilinear piezoelectric laminates interfaced with distributed passive electric components. The equations of motion for laminated piezoelectric shell structures with embedded passive electric networks are directly formulated and solved using a finite element methodology. The modal damping and frequencies of the piezoelectric shell are calculated from the poles of the system. Experimental and numerical results are presented for the modal damping and frequency of composite beams with a resistively shunted piezoceramic patch. The modal damping and frequency of plates, cylindrical shells and cylindrical composite blades with piezoelectric-resistor layers are predicted. Both analytical and experimental studies illustrate a unique dependence of modal damping and frequencies on the shunting resistance and show the effect of structural shape and curvature on piezoelectric damping.

  20. Damping measurements in flowing water

    NASA Astrophysics Data System (ADS)

    Coutu, A.; Seeley, C.; Monette, C.; Nennemann, B.; Marmont, H.

    2012-11-01

    Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Water added mass and damping are both critical quantities in evaluating the dynamic response of the turbine component. Although the effect of fluid added mass is well documented, fluid damping, a critical quantity to limit vibration amplitudes during service, and therefore to help avoiding possible failure of the turbines, has received much less attention in the literature. This paper presents an experimental investigation of damping due to FSI. The experimental setup, designed to create dynamic characteristics similar to the ones of Francis turbine blades is discussed, together with the experimental protocol and examples of measurements obtained. The paper concludes with the calculated damping values and a discussion on the impact of the observed damping behaviour on the response of hydraulic turbine blades to FSI.

  1. Magnetically Damped Furnace (MDF)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Magnetically Damped Furnace (MDF) breadboard is being developed in response to NASA's mission and goals to advance the scientific knowledge of microgravity research, materials science, and related technologies. The objective of the MDF is to dampen the fluid flows due to density gradients and surface tension gradients in conductive melts by introducing a magnetic field during the sample processing. The MDF breadboard will serve as a proof of concept that the MDF performance requirements can be attained within the International Space Station resource constraints.

  2. The Joint Damping Experiment (JDX)

    NASA Technical Reports Server (NTRS)

    Folkman, Steven L.; Bingham, Jeff G.; Crookston, Jess R.; Dutson, Joseph D.; Ferney, Brook D.; Ferney, Greg D.; Rowsell, Edwin A.

    1997-01-01

    The Joint Damping Experiment (JDX), flown on the Shuttle STS-69 Mission, is designed to measure the influence of gravity on the structural damping of a high precision three bay truss. Principal objectives are: (1) Measure vibration damping of a small-scale, pinjointed truss to determine how pin gaps give rise to gravity-dependent damping rates; (2) Evaluate the applicability of ground and low-g aircraft tests for predicting on-orbit behavior; and (3) Evaluate the ability of current nonlinear finite element codes to model the dynamic behavior of the truss. Damping of the truss was inferred from 'Twang' tests that involve plucking the truss structure and recording the decay of the oscillations. Results are summarized as follows. (1) Damping, rates can change by a factor of 3 to 8 through changing the truss orientation; (2) The addition of a few pinned joints to a truss structure can increase the damping by a factor as high as 30; (3) Damping is amplitude dependent; (4) As gravity induced preloads become large (truss long axis perpendicular to gravity vector) the damping is similar to non-pinjointed truss; (5) Impacting in joints drives higher modes in structure; (6) The torsion mode disappears if gravity induced preloads are low.

  3. New concepts for damping rings

    SciTech Connect

    Raimondi, P.; Wolski, A.

    2002-05-30

    The requirements for very low emittance and short damping time in the damping rings of future linear colliders, naturally lead to very small beta functions and dispersion in the ring arcs. This makes it difficult to make chromatic correction while maintaining good dynamics. We have therefore developed a lattice with very simple arcs (designed to give the best product of emittance and damping time), and with separate chromatic correction in a dedicated section. The chromatic correction is achieved using a series of non-interleaved sextupole pairs. The performance of such a solution is comparable to that of current damping ring designs, while there are a number of potential advantages.

  4. Rheology behavior and optimal damping effect of granular particles in a non-obstructive particle damper

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Chen, Tianning; Wang, Xiaopeng; Fang, Jianglong

    2016-03-01

    To explore the optimal damping mechanism of non-obstructive particle dampers (NOPDs), research on the relationship between the damping performance of NOPDs and the motion mode of damping particles in NOPDs was carried out based on the rheological properties of vibrated granular particles. Firstly, the damping performance of NOPDs under different excitation intensity and gap clearance was investigated via cantilever system experiments, and an approximate evaluation of the effective mass and effective damping of NOPDs was performed by fitting the experimental data to an equivalent single-degree-of-freedom (SDOF) system with no damping particles. Then the phase diagrams which could show the motion mode of damping particles under different excitation intensity and gap clearance were obtained via a series of vibration table tests. Moreover, the dissipation characteristic of damping particles was explored by the discrete element method (DEM). The study results indicate that when NOPDs play the optimal damping effect the granular Leidenfrost effect whereby the entire particle bed in NOPDs is levitated above the vibrating base by a layer of highly energetic particles is observed. Finally, the damping characteristics of NOPDs was explained by collisions and frictions between particle-particle and particle-wall based on the rheology behavior of damping particles and a new dissipation mechanism was first proposed for the optimal damping performance of NOPDs.

  5. Active Damping Using Distributed Anisotropic Actuators

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Cabell, Randolph H.; Quinones, Juan D.; Wier, Nathan C.

    2010-01-01

    A helicopter structure experiences substantial high-frequency mechanical excitation from powertrain components such as gearboxes and drive shafts. The resulting structure-borne vibration excites the windows which then radiate sound into the passenger cabin. In many cases the radiated sound power can be reduced by adding damping. This can be accomplished using passive or active approaches. Passive treatments such as constrained layer damping tend to reduce window transparency. Therefore this paper focuses on an active approach utilizing compact decentralized control units distributed around the perimeter of the window. Each control unit consists of a triangularly shaped piezoelectric actuator, a miniature accelerometer, and analog electronics. Earlier work has shown that this type of system can increase damping up to approximately 1 kHz. However at higher frequencies the mismatch between the distributed actuator and the point sensor caused control spillover. This paper describes new anisotropic actuators that can be used to improve the bandwidth of the control system. The anisotropic actuators are composed of piezoelectric material sandwiched between interdigitated electrodes, which enables the application of the electric field in a preferred in-plane direction. When shaped correctly the anisotropic actuators outperform traditional isotropic actuators by reducing the mismatch between the distributed actuator and point sensor at high frequencies. Testing performed on a Plexiglas panel, representative of a helicopter window, shows that the control units can increase damping at low frequencies. However high frequency performance was still limited due to the flexible boundary conditions present on the test structure.

  6. Damping capacity measurements for characterization of degradation in advanced materials

    SciTech Connect

    Mantena, R.; Gibson, R.F.; Place, T.A.

    1986-01-01

    This paper describes the application of damping capacity measurements for characterization of degradation in advanced materials. A recently developed impulse-frequency response technique was used to obtain damping capacity measurements on crossplied E-glass/epoxy laminates which had been subjected to four-point bending and cantilever bending to produce matrix cracking in the transverse plies. The size and location of the damage zone were correlated with changes in damping. With the expected introduction of Rapidly Solidified Alloys (RSA) as effective alternatives to conventional materials, the applicability of damping capacity measurements as a nondestructive means of evaluating degradation in these materials was also studied. A conventional A710 structural steel having three different microstructures was used for developing the methodology to be used later on RSA specimens. It is shown that damping is more sensitive to matrix cracking than stiffness is in E-glass/epoxy composite specimens. In the case of A710 steel, the damping changes at low strain, though significant, do not correlate with the mechanical property data. Damping data at high strains does correlate with the mechanical property data, however.

  7. The Influence of Damping on Waves and Vibrations

    NASA Astrophysics Data System (ADS)

    Gaul, L.

    1999-01-01

    SummaryThis paper provides a unified approach for conventional and generalised linear models of viscoelastic constitutive behaviour. Creep, relaxation and hysteresis effects of materials and structures are described consistently. Advantages of the fractional derivative concept are outlined. Mathematical consequences resulting from operator non-locality in time domain and uniqueness questions arising in frequency domain are addressed. The elastic-viscoelastic correspondence principle serves as a tool to obtain as well analytical and numerical BEM and FEM solutions of wave propagation and vibration problems by transform methods. Characteristics of viscoelastic waves and vibrations are discussed. The paper focusses on material damping but includes aspects of radiation damping description by discretisation methods as well. Important aspects of damping description are beyond the scope of selected topics of this survey paper. This is why additional reading is recommended on the following subjects: Thermo-viscoelasticity and non-linear viscoelasticity [3, 4, 21], determination of mechanical properties by experimental methods [2, 4, 38, 43], damping devices and surface damping treatment [31, 38, 43], material damping data [3, 31] and structural damping [45] including the nonlinear dissipation in mechanical joints such as bolted or riveted connections [46-48]. A list which is by far not complete.

  8. SAR image quality effects of damped phase and amplitude errors

    NASA Astrophysics Data System (ADS)

    Zelenka, Jerry S.; Falk, Thomas

    The effects of damped multiplicative, amplitude, or phase errors on the image quality of synthetic-aperture radar systems are considered. These types of errors can result from aircraft maneuvers or the mechanical steering of an antenna. The proper treatment of damped multiplicative errors can lead to related design specifications and possibly an enhanced collection capability. Only small, high-frequency errors are considered. Expressions for the average intensity and energy associated with a damped multiplicative error are presented and used to derive graphic results. A typical example is used to show how to apply the results of this effort.

  9. Damping Vibration at an Impeller

    NASA Technical Reports Server (NTRS)

    Hager, J. A.; Rowan, B. F.

    1982-01-01

    Vibration of pump shaft is damped at impeller--where vibration-induced deflections are greatest--by shroud and seal. Damping reduces vibrational motion of shaft at bearings and load shaft places on them. Flow through clearance channel absorbs vibration energy.

  10. The Latest Results from DAMPE

    NASA Astrophysics Data System (ADS)

    Chang, Jin

    2016-07-01

    DArk Matter Particle Explorer (DAMPE) successfully launched on Dec.17, 2015 is the first Chinese astronomical satellite that can measure 2 GeV-10 TeV electrons and gamma-rays with unprecedented energy resolution. In this talk I will introduce the design, the beam-test, the on-orbit calibration and some preliminary results of DAMPE.

  11. Gilbert-like damping caused by time retardation in atomistic magnetization dynamics

    NASA Astrophysics Data System (ADS)

    Thonig, Danny; Henk, Jürgen; Eriksson, Olle

    2015-09-01

    Gilbert-like damping in magnetization dynamics is commonly attributed to the interplay of the spin, the electron, and the phonon reservoirs. Spatial correlations within the spin reservoir itself, for example magnons, mediate damping as well. We show theoretically that temporal correlations within the spin reservoir cause a similar effect. We investigate the role of time retardation in the atomistic Landau-Lifshitz-Gilbert equation using two different retardation kernels. Although viscous damping is explicitly excluded, we find both analytically and numerically that damping and higher-order effects emerge due to time retardation. Thus, our results establish a mechanism for damping and inertia in magnetic systems.

  12. Random Response of Linear Hysteretic Damping

    SciTech Connect

    Floris, Claudio

    2008-07-08

    The probabilistic characterization of the response of a single-degree-of-freedom (SDOF) oscillator with linear hysteretic damping excited by ground motion described by zero mean stationary Gaussian processes is achieved by profiting from a steady-state solution of the motion equation, valid when the excitation is given by the superposition of harmonics. The model of linear hysteretic damping has been introduced to fit damping mechanisms in which the dissipation rate is independent of frequency, and mathematically it is described by the Hilbert transform of the response. Though this model is debated since it violates the principle of causality, its intrinsic simplicity makes it preferable to other models. The steady-state solution of the motion equation proposed in this paper allows a closed form evaluation of the respone mean square value. However, the numerical examples show that this quantity is affected by the mechanism of energy dissipation only when this is large. On the contrary, for a low capacity of dissipation the response mean square value is rather insensitive to the dissipation mechanism.

  13. Damping seal verification setup

    NASA Technical Reports Server (NTRS)

    Cappel, K. L.

    1985-01-01

    The heart of the Space Shuttle Main Engine (SSME) is a set of turbopumps that propel cryogenic fluids at very high pressures and flow rates, at rotor speeds up to 37,000 rpm. Bushing seals that cause the flow in the fluid film to become turbulent, by means of a multiplicity of pockets, were shown theoretically not only to inhibit subsynchronous whirl, but to reduce leakage as well. However, experimental data that relate these two desirable characteristics to such parameters as pocket depth, Reynolds number (based on clearance and axial flow rate), and rotating speed are limited. To obtain the required data, NASA's Marshall Space Flight Center (MSFC) commissioned Wyle Laboratories to design, build and operate a test rig in which the damping efficacy and leakage reduction of typical candidate seals are to be evaluated.

  14. Damping measurements using operational data

    SciTech Connect

    James, G.H.; Carne, T.G.; Veers, P.S.

    1996-08-01

    The authors have measured modal damping using strain-gauge data from an operating wind turbine. This new technique for measuring modal damping is easier and less expensive than previously used methods. Auto-correlation and cross-correlation functions of the strain-gauge data have been shown to consist of decaying sinusoids which correspond to the modal frequencies and damping ratios of the wind turbine. The authors have verified the method by extracting damping values from an analytically generated data set. Actual operating response data from the DOE/Sandia 34-m Test Bed has been used to calculate modal damping ratios as a function of rotor rotation rate. This capability will allow more accurate fatigue life prediction and control.

  15. Damping Bearings In High-Speed Turbomachines

    NASA Technical Reports Server (NTRS)

    Von Pragenau, George L.

    1994-01-01

    Paper presents comparison of damping bearings with traditional ball, roller, and hydrostatic bearings in high-speed cryogenic turbopumps. Concept of damping bearings described in "Damping Seals and Bearings for a Turbomachine" (MFS-28345).

  16. Viscous damping of toroidal angular momentum in tokamaks

    SciTech Connect

    Stacey, W. M.

    2014-09-15

    The Braginskii viscous stress tensor formalism was generalized to accommodate non-axisymmetric 3D magnetic fields in general toroidal flux surface geometry in order to provide a representation for the viscous damping of toroidal rotation in tokamaks arising from various “neoclassical toroidal viscosity” mechanisms. In the process, it was verified that the parallel viscosity contribution to damping toroidal angular momentum still vanishes even in the presence of toroidal asymmetries, unless there are 3D radial magnetic fields.

  17. Flux-driven algebraic damping of diocotron modes

    SciTech Connect

    Chim, Chi Yung; O’Neil, Thomas M.

    2015-06-29

    Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 and m = 2 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius R{sub m}, where there is a matching of ω{sub m} = mω{sub E} (R{sub m}) for the mode frequency ω{sub m} and E × B-drift rotation frequency ω{sub E}. The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from, spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This new mechanism of damping is due to transfer of canonical angular momentum from the mode to halo particles, as they are swept around the “cat’s eye” orbits of the resonant wave-particle interaction. This paper provides a simple derivation of the time dependence of the mode amplitudes.

  18. Flux-driven algebraic damping of diocotron modes

    NASA Astrophysics Data System (ADS)

    Chim, Chi Yung; O'Neil, Thomas M.

    2015-06-01

    Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 and m = 2 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius Rm, where there is a matching of ωm = mωE (Rm) for the mode frequency ωm and E × B-drift rotation frequency ωE. The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from, spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This new mechanism of damping is due to transfer of canonical angular momentum from the mode to halo particles, as they are swept around the "cat's eye" orbits of the resonant wave-particle interaction. This paper provides a simple derivation of the time dependence of the mode amplitudes.

  19. Nonlinear damping calculation in cylindrical gear dynamic modeling

    NASA Astrophysics Data System (ADS)

    Guilbault, Raynald; Lalonde, Sébastien; Thomas, Marc

    2012-04-01

    The nonlinear dynamic problem posed by cylindrical gear systems has been extensively covered in the literature. Nonetheless, a significant proportion of the mechanisms involved in damping generation remains to be investigated and described. The main objective of this study is to contribute to this task. Overall, damping is assumed to consist of three sources: surrounding element contribution, hysteresis of the teeth, and oil squeeze damping. The first two contributions are considered to be commensurate with the supported load; for its part however, squeeze damping is formulated using expressions developed from the Reynolds equation. A lubricated impact analysis between the teeth is introduced in this study for the minimum film thickness calculation during contact losses. The dynamic transmission error (DTE) obtained from the final model showed close agreement with experimental measurements available in the literature. The nonlinear damping ratio calculated at different mesh frequencies and torque amplitudes presented average values between 5.3 percent and 8 percent, which is comparable to the constant 8 percent ratio used in published numerical simulations of an equivalent gear pair. A close analysis of the oil squeeze damping evidenced the inverse relationship between this damping effect and the applied load.

  20. Beliaev damping in quasi-two-dimensional dipolar condensates

    NASA Astrophysics Data System (ADS)

    Wilson, Ryan M.; Natu, Stefan

    2016-05-01

    We study the effects of quasiparticle interactions in a quasi-two-dimensional (quasi-2D), zero-temperature Bose-Einstein condensate of dipolar atoms, which can exhibit a roton-maxon feature in its quasiparticle spectrum. Our focus is the Beliaev damping process, in which a quasiparticle collides with the condensate and resonantly decays into a pair of quasiparticles. Remarkably, the rate for this process exhibits a highly nontrivial dependence on the quasiparticle momentum and the dipolar interaction strength. For weak interactions, low-energy phonons experience no damping, and higher-energy quasiparticles undergo anomalously weak damping. In contrast, the Beliaev damping rates become anomalously large for stronger dipolar interactions, as rotons become energetically accessible as final states. When the dipoles are tilted off the axis of symmetry, the damping rates acquire an anisotropic character. Surprisingly, this anisotropy does not simply track the anisotropy of the dipolar interactions, rather, the mechanisms for damping are qualitatively modified in the anisotropic case. Our study reveals the unconventional nature of Beliaev damping in dipolar condensates, and has important implications for ongoing studies of equilibrium and nonequilibrium dynamics in these systems. Further, our results are relevant for other 2D superfluids with roton excitations, including spin-orbit-coupled Bose gases, magnon condensates, and 4He films.

  1. Reducing extrinsic damping of surface acoustic waves at gigahertz frequencies

    NASA Astrophysics Data System (ADS)

    Gelda, Dhruv; Sadhu, Jyothi; Ghossoub, Marc G.; Ertekin, Elif; Sinha, Sanjiv

    2016-04-01

    High-frequency surface acoustic waves (SAWs) in the gigahertz range can be generated using absorption from an ultrafast laser in a patterned metallic grating on a substrate. Reducing the attenuation at these frequencies can yield better sensors as well as enable them to better probe phonon and electron-phonon interactions near surfaces. It is not clear from existing experiments which mechanisms dominate damping at high frequencies. We calculate damping times of SAWs due to various mechanisms in the 1-100 GHz range to find that mechanical loading of the grating on the substrate dominates dissipation by radiating energy from the surface into the bulk. To overcome this and enable future measurements to probe intrinsic damping, we propose incorporating distributed acoustic Bragg reflectors in the experimental structure. Layers of alternating materials with contrasting acoustic impedances embedded a wavelength away from the surface serve to reflect energy back to the surface. Using numerical simulations, we show that a single Bragg reflector is sufficient to increase the energy density at the surface by more than five times. We quantify the resulting damping time to find that it is longer than the intrinsic damping time. The proposed structure can enable future measurements of intrinsic damping in SAWs at ˜100 GHz.

  2. Damped Modes in Plasma Microturbulence: Saturation, Regulation, and Energy Partition

    NASA Astrophysics Data System (ADS)

    Makwana, Kiritkumar D.

    Plasma microturbulence at the scale of the ion gyroradius and smaller is considered to be the primary cause of heat loss in tokamaks. Damped modes are stable roots of the plasma dispersion relation and form an inseparable part of the microturbulent spectrum. We study several microturbulence models that describe vastly different fusion plasmas. All of them show saturation by damped modes that dissipate energy at almost the same rate as the energy injection rate of the unstable modes. Dissipation by damped modes peaks at low wavenumbers where the instability also peaks, distinguishing it from the traditional viscous dissipation mechanism at large wavenumbers. Damped modes are typically found to be important in saturation when their damping rate is not much larger than the instability growth rate. Until now, the regulation of ion temperature gradient driven (ITG) turbulence by zonal flows has been explained using the zonal flow-drift wave shearing paradigm: zonal flow shearing enhances energy transfer from large scale drift waves to smaller, dissipative scales. However, we show, in both fluid and gyrokinetic simulations, that the zonal flows help transfer a majority of the energy injected by the unstable modes to the damped modes, leading to saturation. Although the transfer to damped modes simultaneously excites smaller scales, a significant fraction of the injected energy is dissipated by damped modes in the large-scale, unstable region. This transfer occurs via three-wave interactions that include a zonal flow, an unstable mode and a damped mode. Such interactions dominate due to their coupling coefficients, the strong zonal flow amplitude and their minimum frequency sum that leads to the largest correlation time and enhanced energy transfer. The slew of damped modes in gyrokinetic simulations is analyzed using proper orthogonal decomposition (POD) modes and linear eigenmodes. Spectra of energy and amplitude attenuation rates of damped modes are calculated, showing

  3. Relativity damps OPEP in nuclear matter

    SciTech Connect

    Banerjee, M.K.

    1998-06-01

    Using a relativistic Dirac-Brueckner analysis the OPEP contribution to the ground state energy of nuclear matter is studied. In the study the pion is derivative-coupled. The author finds that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual nonrelativistic treatment. He shows that the damping of derivative-coupled OPEP is actually due to the decrease of M{sup *}/M with increasing density. He points out that if derivative-coupled OPEP is the preferred form of nuclear effective lagrangian nonrelativistic treatment of nuclear matter is in trouble. Lacking the notion of M{sup *} it cannot replicate the damping. He suggests an examination of the feasibility of using pseudoscalar coupled {pi}N interaction before reaching a final conclusion about nonrelativistic treatment of nuclear matter.

  4. Plasmon damping in graphene out of equilibrium

    NASA Astrophysics Data System (ADS)

    Sun, Zhiyuan; Basov, Dimitri; Fogler, Michael

    Motivated by recent experiments with graphene under high photoexcitation, we study theoretically plasmons of graphene in the two-temperature regime, i.e., the regime where electrons are much hotter than the lattice. We calculate the plasmon damping due to scattering of electrons by acoustic phonons, which is the dominant intrinsic contribution in clean graphene. As the system relaxes to equilibrium, the plasmon frequency adiabatically changes with time. We show that this causes a partial compensation of the plasmon damping. A similar mechanism may apply to another collective mode (the energy wave) predicted to exist in graphene in the low-frequency hydrodynamic regime. Implications for infrared and THz pump-probe experiments are discussed.

  5. Self-Damping Sprung Wheel

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce

    1993-01-01

    Self-damping sprung wheel provides shock-absorbing suspension for wheelchair, reducing user's discomfort when traversing rough terrain or obstacles. Pair of self-damping sprung wheels installed in place of conventional large rear wheels of standard wheelchair, which user operates in conventional manner. Rim deflects in vicinity of contact with ground or floor. Includes inner and outer hoops bending when obstacle encountered. Shear deformation of elastomeric hoop between them absorbs energy. Thus, three hoops act together as damping spring. Alternative version of wheel designed for bicycle.

  6. A study of material damping in large space structures

    NASA Technical Reports Server (NTRS)

    Highsmith, A. L.; Allen, D. H.

    1989-01-01

    A constitutive model was developed for predicting damping as a function of damage in continuous fiber reinforced laminated composites. The damage model is a continuum formulation, and uses internal state variables to quantify damage and its subsequent effect on material response. The model is sensitive to the stacking sequence of the laminate. Given appropriate baseline data from unidirectional material, and damping as a function of damage in one crossply laminate, damage can be predicted as a function of damage in other crossply laminates. Agreement between theory and experiment was quite good. A micromechanics model was also developed for examining the influence of damage on damping. This model explicitly includes crack surfaces. The model provides reasonable predictions of bending stiffness as a function of damage. Damping predictions are not in agreement with the experiment. This is thought to be a result of dissipation mechanisms such as friction, which are not presently included in the analysis.

  7. Indirect evidence for Levy walks in squeeze film damping

    SciTech Connect

    Schlamminger, S.; Hagedorn, C. A.; Gundlach, J. H.

    2010-06-15

    Molecular flow gas damping of mechanical motion in confined geometries, and its associated noise, is important in a variety of fields, including precision measurement, gravitational wave detection, and microelectromechanical systems devices. We used two torsion balance instruments to measure the strength and distance-dependence of 'squeeze film' damping. Measured quality factors derived from free decay of oscillation are consistent with gas particle superdiffusion in Levy walks and inconsistent with those expected from traditional Gaussian random walk particle motion. The distance-dependence of squeeze film damping observed in our experiments is in agreement with a parameter-free Monte Carlo simulation. The squeeze film damping of the motion of a plate suspended a distance d away from a parallel surface scales with a fractional power between d{sup -1} and d{sup -2}.

  8. Dynamical analysis of fluid lines coupled to mechanical systems taking into account fluid frequency-dependent damping and non-conventional constitutive models: part 1 - Modeling fluid lines

    NASA Astrophysics Data System (ADS)

    Catania, Giuseppe; Sorrentino, Silvio

    2015-01-01

    The design of hydraulic transmission systems for control and actuation requires accurate knowledge of their dynamic response: some standard techniques are known to obtain a consistent dynamic model of a fluid line, including the contribution of inertia, compressibility and friction. In this paper an efficient procedure is developed for simulating the dynamic response of a fluid line in both the frequency and time domains, focusing the attention on the modal analysis of a discretized model, in view of coupling with mechanical systems. A bi-dimensional approach is adopted, and the laminar flow frequency-dependent friction is modeled using non-integer order differential laws, which may improve the accuracy of the simulated responses in comparison with more traditional Newtonian models.

  9. Gilbert damping in noncollinear ferromagnets.

    PubMed

    Yuan, Zhe; Hals, Kjetil M D; Liu, Yi; Starikov, Anton A; Brataas, Arne; Kelly, Paul J

    2014-12-31

    The precession and damping of a collinear magnetization displaced from its equilibrium are well described by the Landau-Lifshitz-Gilbert equation. The theoretical and experimental complexity of noncollinear magnetizations is such that it is not known how the damping is modified by the noncollinearity. We use first-principles scattering theory to investigate transverse domain walls (DWs) of the important ferromagnetic alloy Ni80Fe20 and show that the damping depends not only on the magnetization texture but also on the specific dynamic modes of Bloch and Néel DWs in ways that were not theoretically predicted. Even in the highly disordered Ni80Fe20 alloy, the damping is found to be remarkably nonlocal. PMID:25615368

  10. Damping measurements using operational data

    SciTech Connect

    James, G.H.; Carne, T.G.; Veers, P.S.

    1991-01-01

    We have measured modal damping using strain-gauge data from an operating wind turbine. Previously, such measurements were difficult and expensive. Auto-correlation and cross-correlation functions of the strain-gauge data have been shown to consist of decaying sinusoids which correspond to the modal frequencies and damping ratios of the wind turbine. We have verified the method by extracting damping values from an analytically generated data set. Actual operating response data from the DOE/Sandia 34-meter Test Bed has been used to calculate modal damping ratios as a function of rotor rotation rate. This capability will allow more accurate fatigue life prediction and control. 16 refs., 3 figs., 2 tabs.

  11. Enhancing the damping of wind turbine rotor blades, the DAMPBLADE project

    NASA Astrophysics Data System (ADS)

    Chaviaropoulos, P. K.; Politis, E. S.; Lekou, D. J.; Sørensen, N. N.; Hansen, M. H.; Bulder, B. H.; Winkelaar, D.; Lindenburg, C.; Saravanos, D. A.; Philippidis, T. P.; Galiotis, C.; Hansen, M. O. L.; Kossivas, T.

    2006-01-01

    A research programme enabling the development of damped wind turbine blades, having the acronym DAMPBLADE, has been supported by the EC under its 5th Framework Programme. In DAMPBLADE the following unique composite damping mechanisms were exploited aiming to increase the structural damping: tailoring of laminate damping anisotropy, damping layers and damped polymer matrices. Additional objectives of the project were the development of the missing critical analytical technologies enabling the explicit modelling of composite structural damping and a novel composite blade design capacity enabling the direct prediction of aeroelastic stability and fatigue life; the development and characterization of damped composite materials; and the evaluation of new technology via the design and fabrication of damped prototype blades and their full-scale laboratory testing. After 4 years of work a 19 m glass/polyester damped blade was designed, manufactured and tested using the know-how acquired. Modal analysis of this blade at the testing facility of CRES showed a nearly 80% increase in the damping ratio of both the first flap and lag modes compared with the earlier, standard, design practice. Copyright

  12. Vibration damping method and apparatus

    DOEpatents

    Redmond, James M.; Barney, Patrick S.; Parker, Gordon G.; Smith, David A.

    1999-01-01

    The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof.

  13. Vibration damping method and apparatus

    DOEpatents

    Redmond, J.M.; Barney, P.S.; Parker, G.G.; Smith, D.A.

    1999-06-22

    The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof. 38 figs.

  14. The effects of the space environment on damping materials and damping designs on flexible structures

    NASA Technical Reports Server (NTRS)

    Kluesener, M. F.

    1984-01-01

    The effects of space environments on damping materials and damping designs on flexible structures were investigated. The following items were examined: damping of flexible spacecraft appendages; composite loss factor (n sub s) vs. time in high vacuum for damped test beams and damping of flexible structures. The STEP experiments show inherent damping of flexible structures in space effective possible damping design configurations for space structures, effects of passively damped components on the system loss factor of flexible structures and the effect of space environment on properties of damping materials.

  15. The frictionless damping of a piston in thermodynamics

    NASA Astrophysics Data System (ADS)

    Bringuier, E.

    2015-09-01

    The paper revisits Rüchardt’s experiment and the two-chamber variant of Clark and Katz, where the oscillating motion of a freely sliding piston involves the adiabatic exponent of the gas enclosed in a thermally isolated chamber. While the common theoretical account of the experiment correctly predicts the frequency of the oscillation, the damping is usually ascribed to a linear frictional force of an undetermined mechanical nature. In this paper, we argue that the irreversibility of the damped motion calls for a thermodynamical treatment involving dissipation (entropy production). The theory of Rüchardt’s experiment is reworked at the undergraduate level by allowing entropy to change owing to heat transfer into or out of the chamber. It is calculated that a linear heat transfer can explain the observed damping without assuming any mechanical friction. The calculation is quantitatively supported by an experiment. It is also calculated that the mechanical and thermal equilibrations occur at the same rate. Besides possibly improving Rüchardt and Clark-and-Katz apparatuses by shedding light on the damping, the paper helps to better grasp thermodynamics, and how to use entropy, by constrasting the mechanical and thermodynamical reasonings on the example of the damped motion of a piston.

  16. Damping filter method for obtaining spatially localized solutions.

    PubMed

    Teramura, Toshiki; Toh, Sadayoshi

    2014-05-01

    Spatially localized structures are key components of turbulence and other spatiotemporally chaotic systems. From a dynamical systems viewpoint, it is desirable to obtain corresponding exact solutions, though their existence is not guaranteed. A damping filter method is introduced to obtain variously localized solutions and adapted in two typical cases. This method introduces a spatially selective damping effect to make a good guess at the exact solution, and we can obtain an exact solution through a continuation with the damping amplitude. The first target is a steady solution to the Swift-Hohenberg equation, which is a representative of bistable systems in which localized solutions coexist and a model for spanwise-localized cases. Not only solutions belonging to the well-known snaking branches but also those belonging to isolated branches known as "isolas" are found with continuation paths between them in phase space extended with the damping amplitude. This indicates that this spatially selective excitation mechanism has an advantage in searching spatially localized solutions. The second target is a spatially localized traveling-wave solution to the Kuramoto-Sivashinsky equation, which is a model for streamwise-localized cases. Since the spatially selective damping effect breaks Galilean and translational invariances, the propagation velocity cannot be determined uniquely while the damping is active, and a singularity arises when these invariances are recovered. We demonstrate that this singularity can be avoided by imposing a simple condition, and a localized traveling-wave solution is obtained with a specific propagation speed. PMID:25353864

  17. Comparative study of medium damped and detuned linear accelerator structures

    SciTech Connect

    Jean-Francois Ostiguy et al.

    2001-08-22

    Long range wakefields are a serious concern for a future linear collider based on room temperature accelerating structures. They can be suppressed either by detuning and or local damping or with some combination of both strategies. Detuning relies on precisely phasing the contributions of the dipole modes excited by the passage of a single bunch. This is accomplished by controlling individual mode frequencies, a process which dictates individual cell dimensional tolerances. Each mode must be excited with the correct strength; this in turn, determines cell-to-cell alignment tolerances. In contrast, in a locally damped structure, the modes are attenuated at the cell level. Clearly, mode frequencies and relative excitation become less critical in that context; mechanical fabrication tolerances can be relaxed. While local damping is ideal from the stand-point of long range wakefield suppression, this comes at the cost of reducing the shunt impedance and possibly unacceptable localized heating. Recently, the Medium Damped Structure (MDS), a compromise between detuning and local damping, has generated some interest. In this paper, we compare a hypothetical MDS to the NLC Rounded Damped Detuned Structure (RDDS) and investigate possible advantages from the standpoint fabrication tolerances and their relation to beam stability and emittance preservation.

  18. A generalized interpolation inequality and its application to the stabilization of damped equations

    NASA Astrophysics Data System (ADS)

    Bégout, Pascal; Soria, Fernando

    In this paper, we establish a generalized Hölder's or interpolation inequality for weighted spaces in which the weights are non-necessarily homogeneous. We apply it to the stabilization of some damped wave-like evolution equations. This allows obtaining explicit decay rates for smooth solutions for more general classes of damping operators. In particular, for 1-d models, we can give an explicit decay estimate for pointwise damping mechanisms supported on any strategic point.

  19. Damped population oscillation in a spontaneously decaying two-level atom coupled to a monochromatic field

    NASA Astrophysics Data System (ADS)

    Lee, Sun Kyung; Lee, Hai-Woong

    2006-12-01

    We investigate the time evolution of atomic population in a two-level atom driven by a monochromatic radiation field, taking spontaneous emission into account. The Rabi oscillation exhibits amplitude damping in time caused by spontaneous emission. We show that the semiclassical master equation leads in general to an overestimation of the damping rate and that a correct quantitative description of the damped Rabi oscillation can thus be obtained only with a full quantum mechanical theory.

  20. Transport description of damped nuclear reactions

    SciTech Connect

    Randrup, J.

    1983-04-01

    Part I is an elementary introduction to the general transport theory of nuclear dynamics. It can be read without any special knowledge of the field, although basic quantum mechanics is required for the formal derivation of the general expression for the transport coefficients. The results can also be used in a wider context than the present one. Part II gives the student an up-to-date orientation about recent progress in the understanding of the angular-momentum variables in damped reactions. The emphasis is here on the qualitative understanding of the physics rather than the, at times somewhat tedious, formal derivations. (WHK)

  1. Analytical modeling of squeeze air film damping of biomimetic MEMS directional microphone

    NASA Astrophysics Data System (ADS)

    Ishfaque, Asif; Kim, Byungki

    2016-08-01

    Squeeze air film damping is introduced in microelectromechanical systems due to the motion of the fluid between two closely spaced oscillating micro-structures. The literature is abundant with different analytical models to address the squeeze air film damping effects, however, there is a lack of work in modeling the practical sensors like directional microphones. Here, we derive an analytical model of squeeze air film damping of first two fundamental vibration modes, namely, rocking and bending modes, of a directional microphone inspired from the fly Ormia ochracea's ear anatomy. A modified Reynolds equation that includes compressibility and rarefaction effects is used in the analysis. Pressure distribution under the vibrating diaphragm is derived by using Green's function. From mathematical modeling of the fly's inspired mechanical model, we infer that bringing the damping ratios of both modes in the critical damping range enhance the directional sensitivity cues. The microphone parameters are varied in derived damping formulas to bring the damping ratios in the vicinity of critical damping, and to show the usefulness of the analytical model in tuning the damping ratios of both modes. The accuracy of analytical damping results are also verified by finite element method (FEM) using ANSYS. The FEM results are in full compliance with the analytical results.

  2. Aerodynamic pitching damping of vehicle-inspired bluff bodies

    NASA Astrophysics Data System (ADS)

    Tsubokura, Makoto; Cheng, Seeyuan; Nakashima, Takuji; Nouzawa, Takahide; Okada, Yoshihiro

    2010-11-01

    Aerodynamic damping mechanism of road vehicles subjected to pitching oscillation was investigated by using large-eddy simulation technique. The study was based on two kinds of simplified vehicle models, which represent real sedan-type vehicles with different pitching stability in the on-road test. The simplified vehicle modes were developed so as to reproduce the characteristic flow structures above the trunk deck of the real vehicles measured in a wind-tunnel at the static case without oscillation. The forced sinusoidal pitching oscillation was imposed on the models and their pitching damping factors were evaluated through the phase-averaged pitching moment. Then flow structures in the wake of the models were extracted and its contribution to the damping mechanism was discussed. It was found that slight difference of the front and rear pillars' shape drastically affects the flow structures in the wake of the models, which enhance or restrain the vehicles' pitching instability.

  3. Damped vacuum states of light

    NASA Astrophysics Data System (ADS)

    Philbin, T. G.

    2016-09-01

    We consider one-dimensional propagation of quantum light in the presence of a block of material, with a full account of dispersion and absorption. The electromagnetic zero-point energy for some frequencies is damped (suppressed) by the block below the free-space value, while for other frequencies it is increased. We also calculate the regularized (Casimir) zero-point energy at each frequency and find that it too is damped below the free-space value (zero) for some frequencies. The total Casimir energy is positive.

  4. Resolving the controversy of a possible relationship between perpendicular magnetic anisotropy and the magnetic damping parameter

    SciTech Connect

    Shaw, Justin M.; Nembach, Hans T.; Silva, T. J.

    2014-08-11

    We use broadband ferromagnetic resonance spectroscopy to systematically measure the Landau-Lifshitz damping parameter, perpendicular anisotropy, and the orbital moment asymmetry in Co{sub 90}Fe{sub 10}/Ni multilayers. No relationship is found between perpendicular magnetic anisotropy and the damping parameter in this material. However, inadequate accounting for inhomogeneous linewidth broadening, spin-pumping, and two-magnon scattering could give rise to an apparent relationship between anisotropy and damping. In contrast, the orbital-moment asymmetry and the perpendicular anisotropy are linearly proportional to each other. These results demonstrate a fundamental mechanism by which perpendicular anisotropy can be varied independently of the damping parameter.

  5. Theoretical prediction of the damping of a railway wheel with sandwich-type dampers

    NASA Astrophysics Data System (ADS)

    Merideno, Inaki; Nieto, Javier; Gil-Negrete, Nere; Giménez Ortiz, José Germán; Landaberea, Aitor; Iartza, Jon

    2014-09-01

    This paper presents a procedure for predicting the damping added to a railway wheel when sandwich-type dampers are installed. Although there are different ways to reduce the noise generated by a railway wheel, most devices are based on the mechanism of increasing wheel damping. This is why modal damping ratios are a clear indicator of the efficiency of the damping device and essential when a vibro-acoustic study of a railway wheel is carried out. Based on a number of output variables extracted from the wheel and damper models, the strategy explained herein provides the final damping ratios of the damped wheel. Several different configurations are designed and experimentally tested. Theoretical and experimental results agree adequately, and it is demonstrated that this procedure is a good tool for qualitative comparison between different solutions in the design stages.

  6. Dealing with damping-off

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Damping-off is a common disease that rots and kills both seeds and recently germinated seedlings. The disease is caused by number of different soilborne pathogens, including true fungi (Botrytis, Fusarium, and Rhizoctonia species) and oomycetes (Phytophthora and Pythium species). The seedlings of mo...

  7. Damped Oscillator with Delta-Kicked Frequency

    NASA Technical Reports Server (NTRS)

    Manko, O. V.

    1996-01-01

    Exact solutions of the Schrodinger equation for quantum damped oscillator subject to frequency delta-kick describing squeezed states are obtained. The cases of strong, intermediate, and weak damping are investigated.

  8. A Look at Damped Harmonic Oscillators through the Phase Plane

    ERIC Educational Resources Information Center

    Daneshbod, Yousef; Latulippe, Joe

    2011-01-01

    Damped harmonic oscillations appear naturally in many applications involving mechanical and electrical systems as well as in biological systems. Most students are introduced to harmonic motion in an elementary ordinary differential equation (ODE) course. Solutions to ODEs that describe simple harmonic motion are usually found by investigating the…

  9. The One-Dimensional Damped Forced Harmonic Oscillator Revisited

    ERIC Educational Resources Information Center

    Flores-Hidalgo, G.; Barone, F. A.

    2011-01-01

    In this paper we give a general solution to the problem of the damped harmonic oscillator under the influence of an arbitrary time-dependent external force. We employ simple methods accessible for beginners and useful for undergraduate students and professors in an introductory course of mechanics.

  10. Six degree of freedom active vibration damping for space application

    NASA Technical Reports Server (NTRS)

    Haynes, Leonard S.

    1993-01-01

    Work performed during the period 1 Jan. - 31 Mar. 1993 on six degree of freedom active vibration damping for space application is presented. A performance and cost report is included. Topics covered include: actuator testing; mechanical amplifier design; and neural network control system development and experimental evaluation.

  11. Magnetization damping in noncollinear spin valves with antiferromagnetic interlayer couplings

    NASA Astrophysics Data System (ADS)

    Chiba, Takahiro; Bauer, Gerrit E. W.; Takahashi, Saburo

    2015-08-01

    We study the magnetic damping in the simplest of synthetic antiferromagnets, i.e., antiferromagnetically exchange-coupled spin valves, in the presence of applied magnetic fields that enforce noncolliear magnetic configurations. We formulate the dynamic exchange of spin currents in a noncollinear texture based on the spin-diffusion theory with quantum mechanical boundary conditions at the ferrromagnet/normal-metal interfaces and derive the Landau-Lifshitz-Gilbert equations coupled by the interlayer static and dynamic exchange interactions. We predict noncollinearity-induced additional damping that is modulated by an applied magnetic field. We compare theoretical results with published experiments.

  12. Squeezed states of damped oscillator chain

    NASA Technical Reports Server (NTRS)

    Manko, O. V.

    1993-01-01

    The Caldirola-Kanai model of one-dimensional damped oscillator is extended to the chain of coupled parametric oscillators with damping. The correlated and squeezed states for the chain of coupled parametric oscillators with damping are constructed. Based on the concept of the integrals of motion, it is demonstrated how squeezing phenomenon arises due to parametric excitation.

  13. Prognostic and Predictive Value of DAMPs and DAMP-Associated Processes in Cancer

    PubMed Central

    Fucikova, Jitka; Moserova, Irena; Urbanova, Linda; Bezu, Lucillia; Kepp, Oliver; Cremer, Isabelle; Salek, Cyril; Strnad, Pavel; Kroemer, Guido; Galluzzi, Lorenzo; Spisek, Radek

    2015-01-01

    It is now clear that human neoplasms form, progress, and respond to therapy in the context of an intimate crosstalk with the host immune system. In particular, accumulating evidence demonstrates that the efficacy of most, if not all, chemo- and radiotherapeutic agents commonly employed in the clinic critically depends on the (re)activation of tumor-targeting immune responses. One of the mechanisms whereby conventional chemotherapeutics, targeted anticancer agents, and radiotherapy can provoke a therapeutically relevant, adaptive immune response against malignant cells is commonly known as “immunogenic cell death.” Importantly, dying cancer cells are perceived as immunogenic only when they emit a set of immunostimulatory signals upon the activation of intracellular stress response pathways. The emission of these signals, which are generally referred to as “damage-associated molecular patterns” (DAMPs), may therefore predict whether patients will respond to chemotherapy or not, at least in some settings. Here, we review clinical data indicating that DAMPs and DAMP-associated stress responses might have prognostic or predictive value for cancer patients. PMID:26300886

  14. Atomistic simulations of material damping in amorphous silicon nanoresonators

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sankha; Song, Jun; Vengallatore, Srikar

    2016-06-01

    Atomistic simulations using molecular dynamics (MD) are emerging as a valuable tool for exploring dissipation and material damping in nanomechanical resonators. In this study, we used isothermal MD to simulate the dynamics of the longitudinal-mode oscillations of an amorphous silicon nanoresonator as a function of frequency (2 GHz–50 GHz) and temperature (15 K–300 K). Damping was characterized by computing the loss tangent with an estimated uncertainty of 7%. The dissipation spectrum displays a sharp peak at 50 K and a broad peak at around 160 K. Damping is a weak function of frequency at room temperature, and the loss tangent has a remarkably high value of ~0.01. In contrast, at low temperatures (15 K), the loss tangent increases monotonically from 4× {{10}-4} to 4× {{10}-3} as the frequency increases from 2 GHz to 50 GHz. The mechanisms of dissipation are discussed.

  15. Spin-Damping in an RF atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Alem, Orang; Romalis, Michael V.; Sauer, Karen L.

    2009-05-01

    Optically pumped atomic magnetometers have demonstrated an improved sensitivity over standard tuned coils for frequencies less than 50 MHz, making these radio-frequency (RF) magnetometers attractive for low-field NMR (for example, Budker and Romalis, Nature Physics 3, April 2007). Such magnetometers are often plagued by transient effects resulting in decreased sensitivity. The decay time of these transients, or ringing, can last for milliseconds, which is particularly detrimental for rapidly decaying NMR signals. We have found that actively damping the ringing of the atomic spins can significantly reduce such dead time. This spin-damping of the atomic transients is achieved through a negative feedback mechanism in which part of the optical signal during ringing is used to apply an RF field forcing the realignment of the atomic spins with the static magnetic field. We have successfully implemented spin-damping in 100 μs and recovered our femto-Tesla signal previously obscured by the ringing.

  16. Active damping performance of the KAGRA seismic attenuation system prototype

    NASA Astrophysics Data System (ADS)

    Fujii, Yoshinori; Sekiguchi, Takanori; Takahashi, Ryutaro; Aso, Yoichi; Barton, Mark; Erasmo Peña Arellano, Fabián; Shoda, Ayaka; Akutsu, Tomotada; Miyakawa, Osamu; Kamiizumi, Masahiro; Ishizaki, Hideharu; Tatsumi, Daisuke; Hirata, Naoatsu; Hayama, Kazuhiro; Okutomi, Koki; Miyamoto, Takahiro; Ishizuka, Hideki; DeSalvo, Riccardo; Flaminio, Raffaele

    2016-05-01

    The Large-scale Cryogenic Gravitational wave Telescope (formerly LCGT now KAGRA) is presently under construction in Japan. This May we assembled a prototype of the seismic attenuation system (SAS) for the beam splitter and the signal recycling mirrors of KAGRA, which we call Type-B SAS, and evaluated its performance at NAOJ (Mitaka, Toyko). We investigated its frequency response, active damping performance, vibration isolation performance and long-term stability both in and out of vacuum. From the frequency response test and the active damping performance test, we confirmed that the SAS worked as we designed and that all mechanical resonances which could disturb lock acquisition and observation are damped within 1 minute, which is required for KAGRA, by the active controls.

  17. Magnetomechanical damping in cryogenic TbDy

    NASA Technical Reports Server (NTRS)

    Dooley, J.; Good, N.; White, C.; Leland, S.; Fultz, B.

    2002-01-01

    Vibration damping in polycrystalline TbDy alloys was studied at cryogenic temperatures. The material was prepared by cold-rolling to induce crystallographic texture, and was then heat-treated to relieve internal stress. Mechanical hysteretic losses were measured at various strains, frequencies, and loading configurations at 77 K. Some textured TbDy materials demonstrated 22.6% energy dissipation in mechanical measurements at low frequency (0.01 Hz) and a mean logarithmic decrement of 0.23 at a higher frequency (25 kHz). Ultrasonic velocities of longitudinal and shear elastic waves were measured on single and polycrystalline TbDy; little variation in ultrasonic velocities was found evenfor samples with large variation in crystallographic texture and magnetomechanical properties.

  18. Design of passive piezoelectric damping for space structures. Final Report Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hagood, Nesbitt W., IV; Aldrich, Jack B.; Vonflotow, Andreas H.

    1994-01-01

    Passive damping of structural dynamics using piezoceramic electromechanical energy conversion and passive electrical networks is a relatively recent concept with little implementation experience base. This report describes an implementation case study, starting from conceptual design and technique selection, through detailed component design and testing to simulation on the structure to be damped. About 0.5kg. of piezoelectric material was employed to damp the ASTREX testbed, a 500kg structure. Emphasis was placed upon designing the damping to enable high bandwidth robust feedback control. Resistive piezoelectric shunting provided the necessary broadband damping. The piezoelectric element was incorporated into a mechanically-tuned vibration absorber in order to concentrate damping into the 30 to 40 Hz frequency modes at the rolloff region of the proposed compensator. A prototype of a steel flex-tensional motion amplification device was built and tested. The effective stiffness and damping of the flex-tensional device was experimentally verified. When six of these effective springs are placed in an orthogonal configuration, strain energy is absorbed from all six degrees of freedom of a 90kg. mass. A NASTRAN finite element model of the testbed was modified to include the six-spring damping system. An analytical model was developed for the spring in order to see how the flex-tensional device and piezoelectric dimensions effect the critical stress and strain energy distribution throughout the component. Simulation of the testbed demonstrated the damping levels achievable in the completed system.

  19. Research on the damping properties of Fe12O19Sr/the polyurethane elastomer composite

    NASA Astrophysics Data System (ADS)

    Li, Y.; Qin, Yan; Sun, P. C.; Huang, Z. X.

    2016-07-01

    Magnetic elastomer composite is a promising damping material. In this paper, both strontium ferrite (Fe12O19Sr) powders and polyurethane elastomer which were mixed by mechanical blending method were used as the magnetic filler and as the matrix respectively, the properties of the magnetic damping composite materials were studied. The results show that the magnetic properties of the magnetic elastomers composite are enhanced with the ferrite loading. The mechanical properties and Shore hardness are highly influenced by mass fraction of ferrite particles. The damping properties of magnetic elastomer composite reach best when the strontium ferrite loading is 15phr, and the damping properties deteriorate when the loading continue increasing. The damping properties of the composites with the X direction of magnetization are better than that with Y direction of magnetization.

  20. Passive damping for space truss structures

    NASA Technical Reports Server (NTRS)

    Chen, Gun-Shing; Wada, Ben K.

    1988-01-01

    Theoretical and experimental studies of passive damping techniques in truss-type structures are presented, with emphasis on the use of viscoelastic damping in the parallel load path. The constraining member length is shown to be a convenient design variable for enhancing damping performance. Results are presented for integral damping members made of thin-wall aluminum tubes, concentric constraining members, and viscoelastic materials in a six-bay truss structure at low frequency and low dynamic strain conditions. Integral members with graphite/epoxy constraining members exhibited relatively low damping values due to the possible polymer interaction during the cocure stage.

  1. Forced oscillations with linear and nonlinear damping

    NASA Astrophysics Data System (ADS)

    Li, Aijun; Ma, Li; Keene, David; Klingel, Joshua; Payne, Marvin; Wang, Xiao-jun

    2016-01-01

    A general solution is derived for the differential equations of forced oscillatory motion with both linear damping ( ˜v ) and nonlinear damping ( ˜v2 ). Experiments with forced oscillators are performed using a flat metal plate with a drag force due to eddy currents and a flat piece of stiffened cardboard with a drag force due to air resistance serving as the linear and nonlinear damping, respectively. Resonance of forced oscillations for different damping forces and quality factors is demonstrated. The experimental measurements and theoretical calculations are in good agreement, and damping constants are determined.

  2. Integrated analysis and design of thick composite structures for optimal passive damping characteristics

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.

    1993-01-01

    The development of novel composite mechanics for the analysis of damping in composite laminates and structures and the more significant results of this effort are summarized. Laminate mechanics based on piecewise continuous in-plane displacement fields are described that can represent both intralaminar stresses and interlaminar shear stresses and the associated effects on the stiffness and damping characteristics of a composite laminate. Among other features, the mechanics can accurately model the static and damped dynamic response of either thin or thick composite laminates, as well as, specialty laminates with embedded compliant damping layers. The discrete laminate damping theory is further incorporated into structural analysis methods. In this context, an exact semi-analytical method for the simulation of the damped dynamic response of composite plates was developed. A finite element based method and a specialty four-node plate element were also developed for the analysis of composite structures of variable shape and boundary conditions. Numerous evaluations and applications demonstrate the quality and superiority of the mechanics in predicting the damped dynamic characteristics of composite structures. Finally, additional development was focused on the development of optimal tailoring methods for the design of thick composite structures based on the developed analytical capability. Applications on composite plates illustrated the influence of composite mechanics in the optimal design of composites and the potential for significant deviations in the resultant designs when more simplified (classical) laminate theories are used.

  3. Clipped viscous damping with negative stiffness for semi-active cable damping

    NASA Astrophysics Data System (ADS)

    Weber, F.; Boston, C.

    2011-04-01

    This paper investigates numerically and experimentally clipped viscous damping with negative stiffness for semi-active cable damping. From simulations it is concluded that unclipped and clipped viscous damping with negative stiffness is equivalent to unclipped and clipped LQR. It is shown that optimized unclipped viscous damping with negative stiffness generates critical cable damping by an anti-node at the actuator position. The resulting curvature at the actuator position is larger than the curvature close to the anchors due to the disturbance forces which may lead to premature cable fatigue at the actuator position. Optimized clipped viscous damping with negative stiffness does not show this drawback, can be implemented using a semi-active damper and produces twice as much cable damping as optimal viscous damping. Close to the optimal tuning, it leads to approximately the same control force as optimal semi-active friction damping with negative stiffness, which explains the superior cable damping. The superior damping results from the negative stiffness that increases the damper motion. Clipped viscous damping with negative stiffness is validated on a strand cable with a magneto-rheological damper. The measured cable damping is twice that achieved by emulated viscous damping, which confirms the numerical results. A tuning rule for clipped viscous damping with negative stiffness of real cables with flexural rigidity is given.

  4. Electromagnetic induction and damping: Quantitative experiments using a PC interface

    NASA Astrophysics Data System (ADS)

    Singh, Avinash; Mohapatra, Y. N.; Kumar, Satyendra

    2002-04-01

    A bar magnet, attached to an oscillating system, passes through a coil periodically, generating a series of electromotive force pulses. A novel method for the quantitative verification of Faraday's law is described which eliminates all errors associated with angular measurements, thereby revealing subtle features of the underlying mechanics. When electromagnetic damping is activated by short-circuiting the coil, a distinctly linear decay of the oscillation amplitude is observed. A quantitative analysis reveals an interesting interplay of the electromagnetic and mechanical time scales.

  5. Simultaneously high stiffness and damping in nanoengineered microtruss composites.

    PubMed

    Meaud, Julien; Sain, Trisha; Yeom, Bongjun; Park, Sei Jin; Shoultz, Anna Brieland; Hulbert, Gregory; Ma, Zheng-Dong; Kotov, Nicholas A; Hart, A John; Arruda, Ellen M; Waas, Anthony M

    2014-04-22

    Materials combining high stiffness and mechanical energy dissipation are needed in automotive, aviation, construction, and other technologies where structural elements are exposed to dynamic loads. In this paper we demonstrate that a judicious combination of carbon nanotube engineered trusses held in a dissipative polymer can lead to a composite material that simultaneously exhibits both high stiffness and damping. Indeed, the combination of stiffness and damping that is reported is quite high in any single monolithic material. Carbon nanotube (CNT) microstructures grown in a novel 3D truss topology form the backbone of these nanocomposites. The CNT trusses are coated by ceramics and by a nanostructured polymer film assembled using the layer-by-layer technique. The crevices of the trusses are then filled with soft polyurethane. Each constituent of the composite is accurately modeled, and these models are used to guide the manufacturing process, in particular the choice of the backbone topology and the optimization of the mechanical properties of the constituent materials. The resulting composite exhibits much higher stiffness (80 times) and similar damping (specific damping capacity of 0.8) compared to the polymer. Our work is a step forward in implementing the concept of materials by design across multiple length scales. PMID:24620996

  6. Gravitational damping of Alfven waves in stellar atmospheres and winds

    NASA Technical Reports Server (NTRS)

    Khabibrakhmanov, I. K.; Mullan, D. J.

    1994-01-01

    We consider how gravity affects the propagation of Alfven waves in a stellar atmosphere. We show that when the ion gyrofrequency exceeds the collision rate, the waves are absorbed at a rate proportional to the gravitational acceleration g. Estimates show that this mechanism can readily account for the observed energy losses in the solar chromosphere. The mechanism predicts that the pressure at the top of the chromosphere P(sub Tc) should scale with g as P(sub Tc) proportional to g(exp delta), where delta approximately equals 2/3; this is close to empirical results which suggest delta approximately equals 0.6. Gravitational damping leads to deposition of energy at a rate proportional to the mass of the particles. Hence, heavier ion are heated more effectively than protons. This is consistent with the observed proportionality between ion temperature and mass in the solar wind. Gravitational damping causes the local g to be effectively decreased by an amount proportional to the wave energy. This feature affects the acceleration of the solar wind. Gravitational damping may also lead to self-regulation of the damping of Alfven waves in stellar winds: this is relevant in the context of slow massive winds in cool giants.

  7. Experimental Vibration Damping Characteristics of the Third-stage Rotor of a Three-stage Transonic Axial-flow Compressor

    NASA Technical Reports Server (NTRS)

    Newman, Frederick A.

    1988-01-01

    Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gage output power spectra. The combined damping consists of the aerodynamic damping and the structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given corrected speed, weight flow, and pressure ratio while the structural and mechanical damping is assumed to remain constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third-stage rotor blade aerodynamic damping is presented and discussed for the design equivalent speed with the stator blades reset for maximum efficiency. The compressor overall preformance and experimental Campbell diagrams for the third-stage rotor blade row are also presented.

  8. Experimental vibration damping characteristics of the third-stage rotor of a three-stage transonic axial-flow compressor

    NASA Technical Reports Server (NTRS)

    Newman, Frederick A.

    1988-01-01

    Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gage output power spectra. The combined damping consists of the aerodynanmic damping and the structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given corrected speed, weight flow, and pressure ratio while the structural and mechanical damping is assumed to remain constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third-stage rotor blade aerodynamic damping is presented and discussed for the design equivalent speed with the stator blades reset for maximum efficiency. The compressor overall performance and experimental Campbell diagrams for the third-stage rotor blade row are also presented.

  9. State protection under collective damping and diffusion

    SciTech Connect

    Ponte, M. A. de; Mizrahi, S. S.; Moussa, M. H. Y.

    2011-07-15

    In this paper we provide a recipe for state protection in a network of oscillators under collective damping and diffusion. Our strategy is to manipulate the network topology, i.e., the way the oscillators are coupled together, the strength of their couplings, and their natural frequencies, in order to create a relaxation-diffusion-free channel. This protected channel defines a decoherence-free subspace (DFS) for nonzero-temperature reservoirs. Our development also furnishes an alternative approach to build up DFSs that offers two advantages over the conventional method: it enables the derivation of all the network-protected states at once, and also reveals, through the network normal modes, the mechanism behind the emergence of these protected domains.

  10. Targeting damage-associated molecular pattern molecules (DAMPs) and DAMP receptors in melanoma.

    PubMed

    Boone, Brian A; Lotze, Michael T

    2014-01-01

    Damage-associated molecular pattern molecules (DAMPs) are proteins released from cells under stress due to nutrient deprivation, hypoxia, trauma, or treatment with chemotherapy, among a variety of other causes. When released, DAMPs activate innate immunity, providing a pathway to a systemic inflammatory response in the absence of infection. By regulating inflammation in the tumor microenvironment, promoting angiogenesis, and increasing autophagy with evasion of apoptosis, DAMPs facilitate cancer growth. DAMPs and DAMP receptors have a key role in melanoma pathogenesis. Due to their crucial role in the development of melanoma and chemoresistance, DAMPs represent intriguing targets at a time when novel treatments are desperately needed. PMID:24258998

  11. A procedure for the evaluation of damping effects in composite laminated structures

    NASA Astrophysics Data System (ADS)

    Vescovini, Riccardo; Bisagni, Chiara

    2015-10-01

    The paper presents an approach based on experimental tests and numerical simulations for taking into account damping effects during the design and the analysis of composite structures. The experiments are conducted using the Dynamic Mechanical Analysis (DMA) and unidirectional coupons are tested to characterize the damping properties of the plies. Starting from these results, first order shear deformation theory is applied to determine the damping properties of the laminate, which are then used in the context of a numerical procedure based on finite element analyses and strain energy method. The results are presented for an aircraft stiffened panel, illustrating the evaluation of the specific damping capacities of the structure, and performing direct transient analyses to investigate the effect of damping on the panel response to pulse loadings.

  12. Dynamic Stiffness and Damping Characteristics of a High-Temperature Air Foil Journal Bearing

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; DellaCorte, Christopher; Valco, Mark J.; Prahl, Joseph M.; Heshmat, Hooshang

    2001-01-01

    Using a high-temperature optically based displacement measurement system, a foil air bearing's stiffness and damping characteristics were experimentally determined. Results were obtained over a range of modified Sommerfeld Number from 1.5E6 to 1.5E7, and at temperatures from 25 to 538 C. An Experimental procedure was developed comparing the error in two curve fitting functions to reveal different modes of physical behavior throughout the operating domain. The maximum change in dimensionless stiffness was 3.0E-2 to 6.5E-2 over the Sommerfeld Number range tested. Stiffness decreased with temperature by as much as a factor of two from 25 to 538 C. Dimensionless damping was a stronger function of Sommerfeld Number ranging from 20 to 300. The temperature effect on damping being more qualitative, showed the damping mechanism shifted from viscous type damping to frictional type as temperature increased.

  13. Damping of prominence longitudinal oscillations due to mass accretion

    NASA Astrophysics Data System (ADS)

    Ruderman, Michael S.; Luna, Manuel

    2016-06-01

    thread at the moment when it is perturbed. First we consider small amplitude oscillations and use the linear description. Then we consider nonlinear oscillations and assume that the damping is slow, meaning that the damping time is much larger that the characteristic oscillation time. The thread oscillations are described by the solution of the nonlinear pendulum problem with slowly varying amplitude. The nonlinearity reduces the damping time, however this reduction is small. Again the damping time is inversely proportional to the accretion rate. We also obtain that the oscillation periods decrease with time. However even for the largest initial oscillation amplitude considered in our article the period reduction does not exceed 20%. We conclude that the mass accretion can damp the motion of the threads rapidly. Thus, this mechanism can explain the observed strong damping of large-amplitude longitudinal oscillations. In addition, the damping time can be used to determine the mass accretion rate and indirectly the coronal heating.

  14. Introduction to DAMPE event reconstruction (On behalf of DAMPE collaboration)

    NASA Astrophysics Data System (ADS)

    Zang, Jingjing

    2016-07-01

    The Dark Matter Particle Explorer (DAMPE) is a high energy particle physics experiment satellite, launched on 17 Dec 2015. To measure basic attributes of cosmic ray particles, DAMPE is equipped with four sub-detectors, BGO calorimeter (BGO), plastic scintillator detector (PSD), silicon tungsten tracker (STK) and neutron detector (NUD). On orbit, the high energy particle data are acquired and recorded by well-designed Data Acquisition system. After that, a series of elaborate event reconstruction algorithms are implemented to determine the energy, direction and particle ID of each event. The energy reconstruction algorithm firstly treats the sum of the BGO crystal energy as the overall energy estimator and various corrections are performed to calculate energy leakage from side and back of the calorimeter. The track reconstruction starts with cluster finding in STK, then shower axis of BGO and barycentre of clusters are used to extract seed of tracks. These seeds will be projected on the next layer by Kalman Filter method which will finally give location and direction of particle tracks. Based on shower development in BGO and tracks reconstructed by STK, we also combine data from PSD and NUD and developed a series of algorithms to evaluate particle's charge and identification. In this talk, we will describe technical strategies of event reconstruction and provide their basic performance.

  15. ICAN/DAMP-integrated composite analyzer with damping analysis capabilities: User's manual

    NASA Technical Reports Server (NTRS)

    Saravanos, Dimitrious A.; Sanfeliz, Jose G.

    1992-01-01

    This manual describes the use of the computer code ICAN/DAMP (Integrated Composite Analyzer with Damping Analysis Capabilities) for the prediction of damping in polymer-matrix composites. The code is written in FORTRAN 77 and is a version of the ICAN (Integrated Composite ANalyzer) computer program. The code incorporates a new module for synthesizing the material damping from micromechanics to laminate level. Explicit micromechanics equations based on hysteretic damping are programmed relating the on-axis damping capacities to the fiber and matrix properties and fiber volume ratio. The damping capacities of unidirectional composites subjected to off-axis loading are synthesized from on-axis damping values. The hygrothermal effect on the damping performance of unidirectional composites caused by temperature and moisture variation is modeled along with the damping contributions from interfacial friction between broken fibers and matrix. The temperature rise is continuously vibrating composite plies and composite laminates is also estimated. The ICAN/DAMP user's manual provides descriptions of the damping analysis module's functions, structure, input requirements, output interpretation, and execution requirements. It only addresses the changes required to conduct the damping analysis and is used in conjunction with the 'Second Generation Integrated Composite Analyzer (ICAN) Computer Code' user's manual (NASA TP-3290).

  16. Dampness in buildings and health. Nordic interdisciplinary review of the scientific evidence on associations between exposure to "dampness" in buildings and health effects (NORDDAMP).

    PubMed

    Bornehag, C G; Blomquist, G; Gyntelberg, F; Järvholm, B; Malmberg, P; Nordvall, L; Nielsen, A; Pershagen, G; Sundell, J

    2001-06-01

    Several epidemiological investigations concerning indoor environments have indicated that "dampness" in buildings is associated to health effects such as respiratory symptoms, asthma and allergy. The aim of the present interdisciplinary review is to evaluate this association as shown in the epidemiological literature. A literature search identified 590 peer-reviewed articles of which 61 have been the foundation for this review. The review shows that "dampness" in buildings appears to increase the risk for health effects in the airways, such as cough, wheeze and asthma. Relative risks are in the range of OR 1.4-2.2. There also seems to be an association between "dampness" and other symptoms such as tiredness, headache and airways infections. It is concluded that the evidence for a causal association between "dampness" and health effects is strong. However, the mechanisms are unknown. Several definitions of dampness have been used in the studies, but all seems to be associated with health problems. Sensitisation to mites may be one but obviously not the only mechanism. Even if the mechanisms are unknown, there is sufficient evidence to take preventive measures against dampness in buildings. PMID:11394014

  17. Viscous damping for base isolated structures

    SciTech Connect

    Lee, D.; Hussain, S.; Retamal, E.

    1995-12-01

    Seismic Base Isolation can use elastomeric pads, sliding plates or inverted pendulums. Each method can include an energy dissipation means, but only as some kind of hysteretic damping. Hysteretic damping has limitations in terms of energy absorption and may tend to excite higher modes in some cases. It`s possible to avoid these problems with viscous dampers. Viscous damping adds energy dissipation through loads that are 900 out of phase with bending and shear loads so even with damping levels as high as 40% of critical adverse side effects tend to be minimal. This paper presents basic theory of viscous damping, and also describes a sample project. Viscous dampers being built for the new San Bernardino Medical Center reduce both deflections and loads by 50% compared with high damping elastomer base isolation bearings by themselves.

  18. CHARACTERIZATION OF DAMPING IN BOLTED LAP JOINTS

    SciTech Connect

    C. MALONEY; D. PEAIRS; ET AL

    2000-08-01

    The dynamic response of a jointed beam was measured in laboratory experiments. The data were analyzed and the system was mathematically modeled to establish plausible representations of joint damping behavior. Damping is examined in an approximate, local linear framework using log decrement and half power bandwidth approaches. in addition, damping is modeled in a nonlinear framework using a hybrid surface irregularities model that employs a bristles-construct. Experimental and analytical results are presented.

  19. The next linear collider damping ring lattices

    SciTech Connect

    Wolski, Andrzej; Corlett, John N.

    2001-06-20

    We report on the lattice design of the Next Linear Collider (NLC) damping rings. The damping rings are required to provide low emittance electron and positron bunch trains to the NLC linacs, at a rate of 120 Hz. We present an optical design, based on a theoretical minimum emittance (TME) lattice, to produce the required normalized extracted beam emittances gex = 3 mm-mrad and gey = 0.02 mm mrad. An assessment of dynamic aperture and non-linear effects is given. The positron pre-damping ring, required to reduce the emittance of the positron beam such that it may be accepted by a main damping ring, is also described.

  20. Viscous damped space structure for reduced jitter

    NASA Technical Reports Server (NTRS)

    Wilson, James F.; Davis, L. Porter

    1987-01-01

    A technique to provide modal vibration damping in high performance space structures was developed which uses less than one once of incompressible fluid. Up to 50 percent damping can be achieved which can reduce the settling times of the lowest structural mode by as much as 50 to 1. This concept allows the designers to reduce the weight of the structure while improving its dynamic performance. Damping by this technique is purely viscous and has been shown by test to be linear over 5 orders of input magnitude. Amplitudes as low as 0.2 microinch were demonstrated. Damping in the system is independent of stiffness and relatively insensitive to temperature.

  1. Acoustic transducer with damping means

    DOEpatents

    Smith, Richard W.; Adamson, Gerald E.

    1976-11-02

    An ultrasonic transducer specifically suited to high temperature sodium applications is described. A piezoelectric active element is joined to the transducer faceplate by coating the faceplate and juxtaposed active element face with wetting agents specifically compatible with the bonding procedure employed to achieve the joint. The opposite face of the active element is fitted with a backing member designed to assure continued electrical continuity during adverse operating conditions which can result in the fracturing of the active element. The fit is achieved employing a spring-loaded electrode operably arranged to electrically couple the internal transducer components, enclosed in a hermetically sealed housing, to accessory components normally employed in transducer applications. Two alternative backing members are taught for assuring electrical continuity. The first employs a resilient, discrete multipoint contact electrode in electrical communication with the active element face. The second employs a resilient, elastomeric, electrically conductive, damped member in electrical communication with the active element face in a manner to effect ring-down of the transducer. Each embodiment provides continued electrical continuity within the transducer in the event the active element fractures, while the second provides the added benefit of damping.

  2. Relaxation damping in oscillating contacts

    PubMed Central

    Popov, M.; Popov, V.L.; Pohrt, R.

    2015-01-01

    If a contact of two purely elastic bodies with no sliding (infinite coefficient of friction) is subjected to superimposed oscillations in the normal and tangential directions, then a specific damping appears, that is not dependent on friction or dissipation in the material. We call this effect “relaxation damping”. The rate of energy dissipation due to relaxation damping is calculated in a closed analytic form for arbitrary axially-symmetric contacts. In the case of equal frequency of normal and tangential oscillations, the dissipated energy per cycle is proportional to the square of the amplitude of tangential oscillation and to the absolute value of the amplitude of normal oscillation, and is dependent on the phase shift between both oscillations. In the case of low frequency tangential oscillations with superimposed high frequency normal oscillations, the dissipation is proportional to the ratio of the frequencies. Generalization of the results for macroscopically planar, randomly rough surfaces as well as for the case of finite friction is discussed. PMID:26549011

  3. Relaxation damping in oscillating contacts

    NASA Astrophysics Data System (ADS)

    Popov, M.; Popov, V. L.; Pohrt, R.

    2015-11-01

    If a contact of two purely elastic bodies with no sliding (infinite coefficient of friction) is subjected to superimposed oscillations in the normal and tangential directions, then a specific damping appears, that is not dependent on friction or dissipation in the material. We call this effect “relaxation damping”. The rate of energy dissipation due to relaxation damping is calculated in a closed analytic form for arbitrary axially-symmetric contacts. In the case of equal frequency of normal and tangential oscillations, the dissipated energy per cycle is proportional to the square of the amplitude of tangential oscillation and to the absolute value of the amplitude of normal oscillation, and is dependent on the phase shift between both oscillations. In the case of low frequency tangential oscillations with superimposed high frequency normal oscillations, the dissipation is proportional to the ratio of the frequencies. Generalization of the results for macroscopically planar, randomly rough surfaces as well as for the case of finite friction is discussed.

  4. A Method for Determination of Damping for Edgewise Blade Vibrations

    NASA Astrophysics Data System (ADS)

    Thomsen, K.; Petersen, J. T.; Nim, E.; Øye, S.; Petersen, B.

    2000-10-01

    Violent edgewise blade vibrations have in recent years been a large problem for some stall-regulated wind turbines. Owing to the complexity of the phenomenon, it has been difficult to predict the risk of these vibrations with aeroelastic load prediction tools. One problem is the choice of parameters in the aeroelastic model, e.g. structural damping and aerodynamic aerofoil characteristics. In many cases a high degree of uncertainty in the predicted response exists and the need for experimental verification methods is obvious. In this work a new method to identify the effective damping for the edgewise blade mode shape for wind turbines has been developed. The method consists of an exciter mechanism which makes it possible to excite the edgewise blade mode shapes from the wind turbine nacelle. Furthermore, the method consists of an analysis method which enables a straightforward determination of the damping. The analysis method is based on a local blade whirl description of the edgewise blade vibrations. The method is verified on a Bonus wind turbine, and for this specific turbine the effective damping for edgewise blade vibrations has been determined. The results support the further development of aeroelastic models and show potential for fine-tuning of parameters of importance for the edgewise blade vibration problem. Furthermore, the method can be used for experimental investigation of the risk of edgewise blade vibrations for a specific turbine.

  5. Flexural self-damping in overhead electrical transmission conductors

    NASA Astrophysics Data System (ADS)

    Rawlins, Charles B.

    2009-06-01

    Internal damping of tensioned cables during flexure by transverse vibration is analyzed. The flexure causes relative movements between the wires or strands of the cable, movements which are constrained by friction between them. Under conditions common to vibration of overhead transmission line conductors the friction is great enough to prevent gross sliding. However, there is microslip at the edges of the interstrand contacts, so there is frictional dissipation. In addition, the frictional forces cause shear strains at the contacts with resulting material damping. An analysis is presented that connects the bodily flexure of the conductor with the internal interstrand movements and forces, and with the amounts of dissipation that occur—self-damping. Comparison of estimates based on the analysis with measured data on self-damping reveals reasonable agreement, for a limited range. Cases lying outside that range appear to be associated with treatments applied to cable samples involved in the measurements prior to testing. Possible mechanisms activated by these treatments are discussed.

  6. Spin current control of damping in YIG/Pt nanowires

    NASA Astrophysics Data System (ADS)

    Safranski, Christopher; Barsukov, Igor; Lee, Han Kyu; Schneider, Tobias; Jara, Alejandro; Smith, Andrew; Chang, Houchen; Tserkovnyak, Yaroslav; Wu, Mingzhong; Krivorotov, Ilya

    Understanding of spin transport at ferromagnet/normal metal interfaces is of great importance for spintronics applications. We report the effect of pure spin currents in YIG(30 nm)/Pt(6 nm) nanowires. The samples show magneto-resistance from two distinct mechanisms: (i) spin Hall magnetoresistance (SMR) and (ii) inverse spin Hall effect (iSHE) along with spin Seebeck current (SSC) induced by Ohmic heating of the Pt layer. Using the SMR and iSHE effects, we measure the spin wave eigenmodes by spin-torque ferromagnetic resonance (ST-FMR). Direct current applied to the Pt layer results in injection of spin Hall current into YIG that acts as damping or anti-damping spin torque depending on the polarity. In addition, Ohmic heating gives rise to a SSC acting as anti-damping regardless of current polarity. ST-FMR reveals current-induced variation of the spin wave mode linewidth that is asymmetric in the bias current and decreases to zero for anti-damping spin Hall current. Near this current, we observe complex interaction among the spin wave eigenmodes that we asses using micromagnetic simulations. Our results advance understanding of magnetization dynamics driven by pure spin currents.

  7. Tuned vibration absorbers with nonlinear viscous damping for damped structures under random load

    NASA Astrophysics Data System (ADS)

    Shum, K. M.

    2015-06-01

    The classical problem for the application of a tuned vibration absorber is to minimize the response of a structural system, such as displacement, velocity, acceleration or to maximize the energy dissipated by tuned vibration absorber. The development of explicit optimal absorber parameters is challenging for a damped structural system since the fixed points no longer exist in the frequency response curve. This paper aims at deriving a set of simple design formula of tuned vibration absorber with nonlinear viscous damping based on the frequency tuning for harmonic load for a damped structural system under white noise excitation. The vibration absorbers being considered include tuned mass damper (TMD) and liquid column vibration absorber (LCVA). Simple approximate expression for the standard deviation velocity response of tuned vibration absorber for damped primary structure is also derived in this study to facilitate the estimation of the damping coefficient of TMD with nonlinear viscous damping and the head loss coefficient of LCVA. The derived results indicate that the higher the structural inherent damping the smaller the supplementary damping provided by a tuned vibration absorber. Furthermore, the optimal damping of tuned vibration absorber is shown to be independent of structural damping when it is tuned using the frequency tuning for harmonic load. Finally, the derived closed-form expressions are demonstrated to be capable of predicting the optimal parameters of tuned vibration absorbers with sufficient accuracy for preliminary design of tuned vibration absorbers with nonlinear viscous damping for a damped primary structure.

  8. Application of viscous and Iwan modal damping models to experimental measurements from bolted structures

    SciTech Connect

    Deaner, Brandon J.; Allen, Matthew S.; Starr, Michael James; Segalman, Daniel J.; Sumali, Hartono

    2015-01-20

    Measurements are presented from a two-beam structure with several bolted interfaces in order to characterize the nonlinear damping introduced by the joints. The measurements (all at force levels below macroslip) reveal that each underlying mode of the structure is well approximated by a single degree-of-freedom (SDOF) system with a nonlinear mechanical joint. At low enough force levels, the measurements show dissipation that scales as the second power of the applied force, agreeing with theory for a linear viscously damped system. This is attributed to linear viscous behavior of the material and/or damping provided by the support structure. At larger force levels, the damping is observed to behave nonlinearly, suggesting that damping from the mechanical joints is dominant. A model is presented that captures these effects, consisting of a spring and viscous damping element in parallel with a four-parameter Iwan model. As a result, the parameters of this model are identified for each mode of the structure and comparisons suggest that the model captures the stiffness and damping accurately over a range of forcing levels.

  9. Application of viscous and Iwan modal damping models to experimental measurements from bolted structures

    DOE PAGESBeta

    Deaner, Brandon J.; Allen, Matthew S.; Starr, Michael James; Segalman, Daniel J.; Sumali, Hartono

    2015-01-20

    Measurements are presented from a two-beam structure with several bolted interfaces in order to characterize the nonlinear damping introduced by the joints. The measurements (all at force levels below macroslip) reveal that each underlying mode of the structure is well approximated by a single degree-of-freedom (SDOF) system with a nonlinear mechanical joint. At low enough force levels, the measurements show dissipation that scales as the second power of the applied force, agreeing with theory for a linear viscously damped system. This is attributed to linear viscous behavior of the material and/or damping provided by the support structure. At larger forcemore » levels, the damping is observed to behave nonlinearly, suggesting that damping from the mechanical joints is dominant. A model is presented that captures these effects, consisting of a spring and viscous damping element in parallel with a four-parameter Iwan model. As a result, the parameters of this model are identified for each mode of the structure and comparisons suggest that the model captures the stiffness and damping accurately over a range of forcing levels.« less

  10. Passive vibration damping of carbon fiber reinforced plastic with PZT particles and SMA powder

    NASA Astrophysics Data System (ADS)

    Jung, Jaemin; Lee, Woo Il; Lee, Dasom; Park, Sungho; Moon, Sungnam

    2016-04-01

    Carbon fiber reinforced plastic (CFRP) has been used various industrial fields, because of high strength, light weight, corrosion resistance and other properties. In this study, lead zirconate titanate (PZT) ceramic particles which is one of typical piezoelectric material and shape memory alloy powder dispersed in CFRP laminate in order to improve the vibration damping by dissipating vibration energy quickly. The loss factor (tanδ) is measured in Dynamic mechanical analyzer (DMA) which is used to measure the viscoelastic behavior of a material to verify the change in vibration damping. The results show that there exists difference on vibration damping ability between CFRP with PZT ceramic particles and CFRP with SMA powder.

  11. Protecting entanglement from correlated amplitude damping channel using weak measurement and quantum measurement reversal

    NASA Astrophysics Data System (ADS)

    Xiao, Xing; Yao, Yao; Xie, Ying-Mao; Wang, Xing-Hua; Li, Yan-Ling

    2016-06-01

    Based on the quantum technique of weak measurement, we propose a scheme to protect the entanglement from correlated amplitude damping decoherence. In contrast to the results of memoryless amplitude damping channel, we show that the memory effects play a significant role in the suppression of entanglement sudden death and protection of entanglement under severe decoherence. Moreover, we find that the initial entanglement could be drastically amplified by the combination of weak measurement and quantum measurement reversal even under the correlated amplitude damping channel. The underlying mechanism can be attributed to the probabilistic nature of weak measurements.

  12. Estimation on nonlinear damping in second order distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1989-01-01

    An approximation and convergence theory for the identification of nonlinear damping in abstract wave equations is developed. It is assumed that the unknown dissipation mechanism to be identified can be described by a maximal monotone operator acting on the generalized velocity. The stiffness is assumed to be linear and symmetric. Functional analytic techniques are used to establish that solutions to a sequence of finite dimensional (Galerkin) approximating identification problems in some sense approximate a solution to the original infinite dimensional inverse problem.

  13. Damping device for a stationary labyrinth seal

    NASA Technical Reports Server (NTRS)

    El-Aini, Yehia M. (Inventor); Mitchell, William S. (Inventor); Roberts, Lawrence P. (Inventor); Montgomery, Stuart K. (Inventor); Davis, Gary A. (Inventor)

    2010-01-01

    A stationary labyrinth seal system includes a seal housing having an annular cavity, a plurality of damping devices, and a retaining ring. The damping devices are positioned within the annular cavity and are maintained within the annular cavity by the retaining ring.

  14. HOME DAMPNESS AND RESPIRATORY MORBIDITY IN CHILDREN

    EPA Science Inventory

    This study examined the relationship between measures of home dampness and respiratory illness and symptoms in a cohort of 4,625 eight- to 12-year old children in six U.S. cities. ome dampness was characterized from questionnaire reports of mold or mildew damage inside the home, ...

  15. Study for ILC Damping Ring at KEKB

    SciTech Connect

    Flanagan, J.W.; Fukuma, H.; Kanazawa, K.I.; Koiso, H.; Masuzawa, M.; Ohmi, Kazuhito; Ohnishi, Y.; Oide, Katsunobu; Suetsugu, Y.; Tobiyama, M.; Pivi, M.; /SLAC

    2011-11-04

    ILC damping ring consists of very low emittance electron and positron storage rings. It is necessary for ILC damping ring to study electron cloud effects in such low emittance positron ring. We propose a low emittance operation of KEKB to study the effects.

  16. Status report of RMS active damping augmentation

    NASA Technical Reports Server (NTRS)

    Gilbert, Mike; Demeo, Martha E.

    1993-01-01

    A status report of Remote Manipulator System (RMS) active damping augmentation is presented. Topics covered include: active damping augmentation; benefits of RMS ADA; simulated payload definition; sensor and actuator definition; ADA control law design; Shuttle Engineering Simulator (SES) real-time simulation; and astronaut evaluation.

  17. Analytical Solution and Physics of a Propellant Damping Device

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Peugeot, John

    2011-01-01

    NASA design teams have been investigating options for "detuning" Ares I to prevent oscillations originating in the vehicle solid-rocket main stage from synching up with the natural resonance of the rest of the vehicle. An experimental work started at NASA MSFC center in 2008 using a damping device showed great promise in damping the vibration level of an 8 resonant tank. However, the mechanisms of the vibration damping were not well understood and there were many unknowns such as the physics, scalability, technology readiness level (TRL), and applicability for the Ares I vehicle. The objectives of this study are to understand the physics of intriguing slosh damping observed in the experiments, to further validate a Computational Fluid Dynamics (CFD) software in propellant sloshing against experiments with water, and to study the applicability and efficiency of the slosh damper to a full scale propellant tank and to cryogenic fluids. First a 2D fluid-structure interaction model is built to model the system resonance of liquid sloshing and structure vibration. A damper is then added into the above model to simulate experimentally observed system damping phenomena. Qualitative agreement is found. An analytical solution is then derived from the Newtonian dynamics for the thrust oscillation damper frequency, and a slave mass concept is introduced in deriving the damper and tank interaction dynamics. The paper will elucidate the fundamental physics behind the LOX damper success from the derivation of the above analytical equation of the lumped Newtonian dynamics. Discussion of simulation results using high fidelity multi-phase, multi-physics, fully coupled CFD structure interaction model will show why the LOX damper is unique and superior compared to other proposed mitigation techniques.

  18. Satellite Dynamic Damping via Active Force Control Augmentation

    NASA Astrophysics Data System (ADS)

    Varatharajoo, Renuganth

    2012-07-01

    An approach that incorporates the Active Force Control (AFC) technique into a conventional Proportional-Derivative (PD) controller is proposed for a satellite active dynamic damping towards a full attitude control. The AFC method has been established to facilitate a robust motion control of dynamical systems in the presence of disturbances, parametric uncertainties and changes that are commonly prevalent in the real-world environment. The usefulness of the method can be extended by introducing intelligent mechanisms to approximate the mass or inertia matrix of the dynamic system to trigger the compensation effect of the controller. AFC is a technique that relies on the appropriate estimation of the inertial or mass parameters of the dynamic system and the measurements of the acceleration and force signals induced by the system if practical implementation is ever considered. In AFC, it is shown that the system subjected to a number of disturbances remains stable and robust via the compensating action of the control strategy. We demonstrate that it is possible to design a spacecraft attitude feedback controller that will ensure the system dynamics set point remains unchanged even in the presence of the disturbances provided that the actual disturbances can be modeled effectively. In order to further facilitate this analysis, a combined energy and attitude control system (CEACS) is proposed as a model satellite attitude control actuator. All the governing equations are established and the proposed satellite attitude control architecture is made amenable to numerical treatments. The results show that the PD-AFC attitude damping performances are superiorly better than that of the solely PD type. It is also shown that the tunings of the AFC system gains are crucial to ensure a better attitude damping performance and this process is mandatory for AFC systems. Finally, the results demonstrate an important satellite dynamic damping enhancement capability using the AFC

  19. Optimization of SMA layers in composite structures to enhance damping

    NASA Astrophysics Data System (ADS)

    Haghdoust, P.; Cinquemani, S.; Lecis, N.; Bassani, P.

    2016-04-01

    The performance of lightweight structures can be severely affected by vibration. New design concepts leading to lightweight, slender structural components can increase the vulnerability of the components to failure due to excessive vibration. The intelligent approach to address the problem would be the use of materials which are more capable in dissipating the energy due to their high value of loss factor. Among the different materials available to achieve damping, much attention has been attached to the use of shape memory alloys (SMAs) because of their unique microstructure, leading to good damping capacity. This work describes the design and optimization of a hybrid layered composite structure for the passive suppression of flexural vibrations in slender and light structures. Embedding the SMA layers in composite structure allows to combine different properties: the lightness of the base composite (e.g. fiber glass), the mechanical strength of the insert of metallic material and the relevant damping properties of SMA, in the martensitic phase. In particular, we put our attention on embedding the CuZnAl in the form of thin sheet in a layered composite made by glass fiber reinforced epoxy. By appropriately positioning of the SMA sheets so that they are subjected to the maximum curvature, the damping of the hybrid system can be considerably enhanced. Accordingly analytical method for evaluating the energy dissipation of the thin sheets with different shapes and patterns is developed and is followed by a shape optimization based on genetic algorithm. Eventually different configurations of the hybrid beam structure with different patterns of SMA layer are proposed and compared in the term of damping capacity.

  20. Micromechanical analysis of damping performance of piezoelectric structural fiber composites

    NASA Astrophysics Data System (ADS)

    Dai, Qingli; Ng, Kenny

    2010-04-01

    Recent studies showed that the active piezoelectric structural fiber (PSF) composites may achieve significant and simultaneous improvements in sensing/actuating, stiffness, fracture toughness and vibration damping. These characteristics can be of particular importance in various civil, mechanical and aerospace structures. This study firstly conducted the micromechanical finite element analysis to predict the elastic properties and piezoelectrical coupling parameters of a special type of an active PSF composite laminate. The PSF composite laminates are made of longitudinally poled PSFs that are unidirectionally deployed in the polymer binding matrix. The passive damping performance of these active composites was studied under the cyclic force loadings with different frequencies. It was found that the passive electric-mechanical coupling behavior can absorb limited dynamic energy and delay the structure responses with minimum viscoelastic damping. The actuating function of piezoelectric materials was then applied to reduce the dynamic mechanical deformation. The step voltage inputs were imposed to the interdigital electrodes of PSF laminate transducer along the poled direction. The cyclic pressure loading was applied transversely to the composite laminate. The electromechnical interaction with the 1-3 coupling parameter generated the transverse expansion, which can reduce the cyclic deformation evenly by shifting the response waves. This study shows the promise in using this type of active composites as actuators to improve stability of the structure dynamic.

  1. Large space structure damping design

    NASA Technical Reports Server (NTRS)

    Pilkey, W. D.; Haviland, J. K.

    1983-01-01

    Several FORTRAN subroutines and programs were developed which compute complex eigenvalues of a damped system using different approaches, and which rescale mode shapes to unit generalized mass and make rigid bodies orthogonal to each other. An analytical proof of a Minimum Constrained Frequency Criterion (MCFC) for a single damper is presented. A method to minimize the effect of control spill-over for large space structures is proposed. The characteristic equation of an undamped system with a generalized control law is derived using reanalysis theory. This equation can be implemented in computer programs for efficient eigenvalue analysis or control quasi synthesis. Methods to control vibrations in large space structure are reviewed and analyzed. The resulting prototype, using electromagnetic actuator, is described.

  2. VIBRATION DAMPING AND SHOCK MOUNT

    DOEpatents

    Stevens, D.J.; Forman, G.W.

    1963-12-10

    A shock absorbing mount in which vibrations are damped by an interference fit between relatively movable parts of the mount is described. A pair of generally cup-shaped parts or members have skirt portions disposed in an oppositely facing nesting relationship with the skirt of one member frictionally engaging the skirt of the other. The outermost skirt may be slotted to provide spring-like segments which embrace the inner skirt for effecting the interference fit. Belleville washers between the members provide yieldable support for a load carried by the mount. When a resonant frequency of vibration forces acting upon the moumt attains a certain level the kinetic energy of these forces is absorbed by sliding friction between the parts. (AEC)

  3. Landau damping in a turbulent setting

    SciTech Connect

    Plunk, G. G.

    2013-03-15

    To address the problem of Landau damping in kinetic turbulence, we consider the forcing of the linearized Vlasov equation by a stationary random source. It is found that the time-asymptotic density response is dominated by resonant particle interactions that are synchronized with the source. The energy consumption of this response is calculated, implying an effective damping rate, which is the main result of this paper. Evaluating several cases, it is found that the effective damping rate can differ from the Landau damping rate in magnitude and also, remarkably, in sign. A limit is demonstrated in which the density and current become phase-locked, which causes the effective damping to be negligible; this result offers a fresh perspective from which to reconsider recent observations of kinetic turbulence satisfying critical balance.

  4. Damping characteristics of damaged fiber composite components

    NASA Technical Reports Server (NTRS)

    Eberle, K.

    1986-01-01

    Defects in fiber composite components produce changes with respect to the vibrational characteristics of the material. These changes can be recognized in the form of a frequency shift or an alteration of the damping process. The present investigation is concerned with questions regarding the possibility of a utilization of the changes in suitable defect-detecting inspection procedures. A description is given of a method for measuring the damping characteristics of a specimen. This method provides a spectrum of the damping coefficients of the sample as a basis for a comprehensive evaluation of the damping behavior. The correlation between defects and change in the damping characteristics is demonstrated with the aid of results obtained in measurements involving specimens of carbon-fiber composites and a component consisting of glass-fiber-reinforced plastics.

  5. Experimental Investigation of the Damping Behavior of the Particle Damping in the Transient Vibrations

    NASA Astrophysics Data System (ADS)

    Chavan, Shrirang Pandurang; Kale, Arvind Kamalakar; Mulla, Faiz Abdulkadar

    2016-01-01

    Particle damping is a non linear type of damping in which energy of the vibratory system is dissipated by the impact and the frictional losses made by the particles used for the damping purposes. The particle damping technique is useful over other types of damping as it is temperature independent. So it is reliable over wide temperature range and hence is essentially used in the cryogenic and the gas turbine related applications. For experimentation, cantilever beam with particle enclosure attached to its free end has been extensively used and the effect of the particle material, particle size, mass ratio and enclosure height on the damping performance has been studied [1]. For a small weight penalty, rather large amounts of damping can be achieved [2].

  6. Collisionless damping of geodesic acoustic mode in plasma with nonextensive distribution

    SciTech Connect

    Qiu, Hui-Bin; Song, Hai-Ying; Liu, Shi-Bing

    2014-06-15

    Geodesic acoustic mode (GAM) in collisionless toroidal plasmas with a constant electrostatic potential around a magnetic surface is investigated based on the linear gyrokinetic theory in context of nonextensive statistics mechanics. The damping rate of GAM is shown to be dependent on the nonextensive parameters of ions, and in the extensive limit, the result in Maxwellian distribution plasma is recovered. The damping rate is found to be enhanced as the nonextensive parameter of ion decreases.

  7. Damping Rate of n=1 EAEs as a Function of Plasma Elongation

    NASA Astrophysics Data System (ADS)

    Boswell, C. J.; Fasoli, A.

    2005-10-01

    Fast particles can resonate with Alfv'en eigenmodes (AEs) and drive them unstable up to amplitudes at which they cause rapid radial transport of the fast particles. Knowing the mechanisms that damp the AEs may allow the ability to control the impact they have on the radial transport of the fast particles. Detailed studies of the damping rate of the n=1 toroidally-induced Alfv'en eigenmodes (TAEs) on JET have shown that in limiter discharges as the elongation and triangularity of the plasma shape is increased the damping rate of the TAEs also increases. New studies, presented here, of the damping rate of the n=1 elliptically-induced Alfv'en eigenmodes (EAEs) localized at the edge of the plasma, show that as the plasma elongation, κ, increases the damping rate decreases to γ/φ= 0.7% at κ= 1.55, less than 1/4 the TAE damping rate at the same elongation. This may be due to the widening of the EAE gap as elongation increases and therefore less interaction with the shear Alfv'en continuum, an effect that does not occur for the TAE gap. This difference in behavior between the n=1 TAEs and the n=1 EAEs may help in the understanding of the processes that lead to the total damping rate of AEs in general.

  8. Combined action of phase-mixing and Landau damping causing strong decay of geodesic acoustic modes

    NASA Astrophysics Data System (ADS)

    Palermo, F.; Biancalani, A.; Angioni, C.; Zonca, F.; Bottino, A.

    2016-07-01

    We report evidence of a new mechanism able to damp very efficiently geodesic acoustic mode (GAM) in the presence of a nonuniform temperature profile in a toroidally confined plasma. This represents a particular case of a general mechanism that we have found and that can be observed whenever the phase-mixing acts in the presence of a damping effect that depends on the wave number k r . Here, in particular, the combined effect of the Landau and continuum damping is found to quickly redistribute the GAM energy in phase-space, due to the synergy of the finite orbit width of the passing ions and the cascade in wave number given by the phase-mixing. This damping mechanism is investigated analytically and numerically by means of global gyrokinetic simulations. When realistic parameter values of plasmas at the edge of a tokamak are used, damping rates up to 2 orders of magnitude higher than the Landau damping alone are obtained. We find in particular that, for temperature and density profiles characteristic of the high confinement mode, the so-called H-mode, the GAM decay time becomes comparable to or lower than the nonlinear drive time, consistently with experimental observations (Conway G. D. et al., Phys. Rev. Lett., 106 (2011) 065001).

  9. The effect of microstructure at interface between coating and substrate on damping capacity of coating systems

    NASA Astrophysics Data System (ADS)

    Wang, Xueqin; Pei, Yanling; Ma, Yue

    2013-10-01

    Samples with various interface microstructures between the coating and the substrate were designed and fabricated in this paper. Dynamic mechanical thermal analyzer (DMTA) was utilized to investigate the dynamic mechanical properties of the samples and scanning electron microscopy (SEM) was used to observe the interface microstructure between the substrate and coating. The effect of the interface microstructure on damping was studied, and results indicated that the larger the coating/substrate interface thickness was and the more interface defects were, the higher interface system damping was. When the micro-hardness ratio of substrate to coating was increased, the damping of coating system was enhanced. The effect of the APS and EB-PVD coating on damping capacity was investigated. There was a dramatic increase in the damping value of the APS coating when the strain was higher than 20 ppm, while the damping amplitude effect of the EB-PVD coating was not so obvious, which could mainly be caused by the different energy dissipation mechanisms of the two coatings.

  10. Validation Of Equivalent Viscous Damping Methodologies

    NASA Astrophysics Data System (ADS)

    Vaquer Araujo, Xavier; Fransen, S. H. J. A.; Germes, S.; Thiry, N.

    2012-07-01

    An important step in the design and verification process of spacecraft structures is the coupled dynamic analysis with the launch vehicle in the low-frequency domain. To obtain accurate predictions of the satellite’s dynamic environment it is essential that the damping of the system is correctly defined and taken into account within the resolution methodologies for the Coupled Loads Analysis (CLA). When working with finite element models, the materials’ damping is characterized by structural damping ratios. In addition, most of the load cases present in the CLA are transient excitations so the resolution of the equations of motion must be done in the time domain. Unfortunately, transient analyses cannot be carried out using structural damping models. Thus, a transformation from a structural to a viscous damping characterization is necessary. Nevertheless, this transformation is not trivial. There exist many methodologies aiming at computing an equivalent viscous damping matrix of the system so it can be used in transient analyses. This paper describes the results obtained in the validation of equivalent viscous damping methodologies used in the European Space Agency. This work permitted to identify the limitations of these methodologies and to come up with an enhanced methodology that predicts more reliable results.

  11. Bounce harmonic Landau damping of plasma waves

    NASA Astrophysics Data System (ADS)

    Anderegg, F.; Affolter, M.; Kabantsev, A. A.; Dubin, D. H. E.; Ashourvan, A.; Driscoll, C. F.

    2016-05-01

    We present measurements of bounce harmonic Landau damping due to z-variations in the plasma potential, created by an azimuthally symmetric "squeeze" voltage Vs applied to the cylindrical wall. Traditional Landau damping on spatially uniform plasma is weak in regimes where the wave phase velocity vp h≡ω/k is large compared to the thermal velocity. However, z-variations in plasma density and potential create higher spatial harmonics, which enable resonant wave damping by particles with bounce-averaged velocities vp h/n , where n is an integer. In our geometry, the applied squeeze predominantly generates a resonance at vp h/3 . Wave-coherent laser induced fluorescence measurements of particle velocities show a distinctive Landau damping signature at vp h/3 , with amplitude proportional to the applied Vs. The measured (small amplitude) wave damping is then proportional to Vs2 , in quantitative agreement with theory over a range of 20 in temperature. Significant questions remain regarding "background" bounce harmonic damping due to ubiquitous confinement fields and regarding the saturation of this damping at large wave amplitudes.

  12. COLLISIONLESS DAMPING AT ELECTRON SCALES IN SOLAR WIND TURBULENCE

    SciTech Connect

    TenBarge, J. M.; Howes, G. G.; Dorland, W.

    2013-09-10

    The dissipation of turbulence in the weakly collisional solar wind plasma is governed by unknown kinetic mechanisms. Two candidates have been suggested to play an important role in the dissipation, collisionless damping via wave-particle interactions and dissipation in small-scale current sheets. High resolution spacecraft measurements of the turbulent magnetic energy spectrum provide important constraints on the dissipation mechanism. The limitations of popular fluid and hybrid numerical schemes for simulation of the dissipation of solar wind turbulence are discussed, and instead a three-dimensional kinetic approach is recommended. We present a three-dimensional nonlinear gyrokinetic simulation of solar wind turbulence at electron scales that quantitatively reproduces the exponential form of the turbulent magnetic energy spectrum measured in the solar wind. A weakened cascade model that accounts for nonlocal interactions and collisionless Landau damping also quantitatively agrees with the observed exponential form. These results establish that a turbulent cascade of kinetic Alfven waves that is terminated by collisionless Landau damping is sufficient to explain the observed magnetic energy spectrum in the dissipation range of solar wind turbulence.

  13. Sound transmission loss of integrally damped, curved panels

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Reed, Samuel A.

    1989-01-01

    Results are reported from acoustic transmission-loss measurements on 13 curved Al and composite aircraft-type panels (height 0.81 m, arc length 1.32 m, and curvature radius 2.29 m) without and with integral damping of various types. The fabrication of the panels and the test procedures are described and illustrated with photographs, and the results are presented in graphs. It is found that the loss of a curved panel exceeds the mass-law-predicted loss for a flat panel of the same material and thickness at frequencies below the ring frequency. At higher frequencies, the curved-panel loss is lower than the mass-law loss, being proportional to 20 time the log of thickness. Integral damping is found to be effective both below and above the ring frequency, but different mechanisms are responsible in each case.

  14. Secondary metabolites from Penicillium corylophilum isolated from damp buildings.

    PubMed

    McMullin, David R; Nsiama, Tienabe K; Miller, J David

    2014-01-01

    Indoor exposure to the spores and mycelial fragments of fungi that grow on damp building materials can result in increased non-atopic asthma and upper respiratory disease. The mechanism appears to involve exposure to low doses of fungal metabolites. Penicillium corylophilum is surprisingly common in damp buildings in USA, Canada and western Europe. We examined isolates of P. corylophilum geographically distributed across Canada in the first comprehensive study of secondary metabolites of this fungus. The sesquiterpene phomenone, the meroterpenoids citreohybridonol and andrastin A, koninginin A, E and G, three new alpha pyrones and four new isochromans were identified from extracts of culture filtrates. This is the first report of koninginins, meroterpenoids and alpha pyrones from P. corylophilum. These secondary metabolite data support the removal of P. corylophilum from Penicillium section Citrina and suggest that further taxonomic studies are required on this species. PMID:24891425

  15. Proposed emittance upgrade for the SLC damping rings

    SciTech Connect

    Early, R.; Limberg, T.; Moshammer, H.; Raubenheimer, T.; Skarpaas, K.; Spencer, J.

    1994-06-01

    One way to improve luminosity is to reduce transverse emittance by changing damping partitions. We consider the options in relation to the constraints. Besides modifications of the basic DR configuration the options include closed-orbit offsets in the quadrupoles, addition of strong multipoles and replacement of existing rectangular nosepieces on the dipoles (shim angles {phi}{equivalent_to}{theta}/2) with rotatable inserts. Measurements indicate the possibility of dynamically tuning {phi}>{ge}45{degrees} with decreases in {tau}{sub x} and {epsilon}{sub x} of {ge}50%. We discuss damping mechanisms to motivate the desirable field characteristics as well as nonlinear contours to cancel dipole harmonic errors (B>2T here) or to provide chromatic corrections. Such inserts could also be used to make cheaper, more compact rings with better impedance by reducing the number of conventional multipoles without impairing the stability. Estimated hardware costs are 250$/dipole end or multipole equivalent.

  16. A Resonant Damping Study Using Piezoelectric Materials

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Duffy, K. P.; Choi, B. B.; Morrison, C. R.; Jansen, R. H.; Provenza, A. J.

    2008-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue (HCF) problems requiring damping treatments to mitigate vibration levels. Based on the technical challenges and requirements learned from previous turbomachinery blade research, a feasibility study of resonant damping control using shunted piezoelectric patches with passive and active control techniques has been conducted on cantilever beam specimens. Test results for the passive damping circuit show that the optimum resistive shunt circuit reduces the third bending resonant vibration by almost 50%, and the optimum inductive circuit reduces the vibration by 90%. In a separate test, active control reduced vibration by approximately 98%.

  17. Saturation of Gyrokinetic Turbulence through Damped Eigenmodes

    SciTech Connect

    Hatch, D. R.; Terry, P. W.; Jenko, F.; Merz, F.; Nevins, W. M.

    2011-03-18

    In the context of toroidal gyrokinetic simulations, it is shown that a hierarchy of damped modes is excited in the nonlinear turbulent state. These modes exist at the same spatial scales as the unstable eigenmodes that drive the turbulence. The larger amplitude subdominant modes are weakly damped and exhibit smooth, large-scale structure in velocity space and in the direction parallel to the magnetic field. Modes with increasingly fine-scale structure are excited to decreasing amplitudes. In aggregate, damped modes define a potent energy sink. This leads to an overlap of the spatial scales of energy injection and peak dissipation, a feature that is in contrast with more traditional turbulent systems.

  18. Oscillation damped movement of suspended objects

    SciTech Connect

    Jones, J.F.; Petterson, B.J.

    1988-01-01

    Transportation of objects using overhead cranes or manipulators can induce pendulum motion of the object. Residual oscillation from transportation typically must be damped or allowed to decay before the next process can take place. By properly programming the acceleration of the transporting device (e.g., crane) an oscillation damped transport and swing free stop is obtainable. This paper reviews the theory associated with oscillation damped trajectories for simply suspended objects and describes a particular implementation using a CIMCORP XR 6100 gantry robot. 8 refs., 7 figs., 1 tab.

  19. Development of damped metal-matrix composites for advanced structural applications. Technical report

    SciTech Connect

    Updike, C.A.; Bhagat, R.B.

    1990-04-01

    The development of damped metal matrix composite structures for advanced applications has been investigated by the use of two different approaches: (1) the development of metal matrix composites with high intrinsic damping compared to that of the matrix material, and (2) the development of coated metal matrix composites with high structural damping compared to that of the composite substrates. The two different approaches are analyzed in terms of their potential for improved damping and feasibility for structural applications. Damping was measured by the transverse vibration of free-free beams using the bandwidth technique by a laser vibrometer under ambient conditions. The damping measurements were made over a wide range of frequencies (.7 kHz to 25.6 kHz) at low strain amplitudes (10 to the -10 power to 10 to the -7 power). Materials investigated for their tensile stiffness, strength, and damping performance include mechanically alloyed (MA) Aluminum-Magnesium, SiC(p)/Aluminum-Copper (MA), SiC(p)/AL, AL2O3(p)/AL, SiC(W)/AL, planar random Gr/AL, unidirectional Gr/AL and unidirectional SiC(Nicalon)/AL composites. The effects of coatings of high damping metals (nitinol and incramute) on 6061-T6 AL and AL2O3(p)/AL substrates have also been studied. The AL-Mg (MA), SiC(p)/AL (MA), SiC(W)/AL and th AL2O3(p)/AL composites show no significant improvement in damping compared with that of the 6061-T6 AL.

  20. Turbine blade friction damping study

    NASA Technical Reports Server (NTRS)

    Dominic, R. J.

    1985-01-01

    A lumped parameter method, implemented on a VAX 11/780 computer shows that the primary parameters affecting the performance of the friction damper of the first stage turbine of the SSME high pressure fuel pump are: the damper-blade coefficient of friction; the normal force applied to the friction interface; the amplitude of the periodic forcing function; the relative phase angle of the forcing functions for adjacent blades bridged by a damper (effectively, the engine order of the forcing function); and the amount of hysteretic damping that acts to limit the vibration amplitude of the blade in its resonance modes. The low order flexural resonance vibration modes of HPFTP blades without dampers, with production dampers, and with two types of lightweight experimental dampers were evaluated in high speed spin pit tests. Results agree with those of the analytical study in that blades fitted with production friction dampers experienced the airfoil-alone flexural resonance mode, while those without dampers or with lighter weight dampers did not. No blades fitted with dampers experienced the whole blade flexural resonance mode during high speed tests, while those without dampers did.

  1. Artificial Compressibility with Entropic Damping

    NASA Astrophysics Data System (ADS)

    Clausen, Jonathan; Roberts, Scott

    2012-11-01

    Artificial Compressibility (AC) methods relax the strict incompressibility constraint associated with the incompressible Navier-Stokes equations. Instead, they rely on an artificial equation of state relating pressure and density fluctuations through a numerical Mach number. Such methods are not new: the first AC methods date back to Chorin (1967). More recent applications can be found in the lattice-Boltzmann method, which is a kinetic/mesoscopic method that converges to an AC form of the Navier-Stokes equations. With computing hardware trending towards massively parallel architectures in order to achieve high computational throughput, AC style methods have become attractive due to their local information propagation and concomitant parallelizable algorithms. In this work, we examine a damped form of AC in the context of finite-difference and finite-element methods, with a focus on achieving time-accurate simulations. Also, we comment on the scalability of the various algorithms. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Turbulent Damping without Eddy Viscosity

    NASA Astrophysics Data System (ADS)

    Thalabard, Simon

    2015-11-01

    The intrinsic Non-Gaussianity of turbulence may explain why the standard Quasi-Normal cumulant discard closures can fail dramatically, an example being the development of negative energy spectra in Millionshtchikov's 1941 Quasi-Normal (QN) theory. While Orszag's 1977 EDQNM provides an ingenious patch to the issue, the reason why QN fails so badly is not so clear. Is it because of the Gaussian Ansatz itself? Or rather its inconsistent use? The purpose of the talk is to argue in favor of the latter option, using the lights of a new ``optimal closure'' recently exposed by [Turkington,2013], which allows Gaussians to be used consistently with an intrinsic damping. The key to this apparent paradox lies in a clear distinction between the ensemble averages and their proxies, most easily grasped provided one uses the Liouville equation rather than the cumulant hierarchy as a starting point. Schematically said, closure is achieved by minimizing a lack-of-fit residual, that retains the intrinsic features of the dynamics. For the sake of clarity, I will discuss the optimal closure on a problem where it can be entirely implemented and compared to DNS: the relaxation of an arbitrarily far from equilibrium energy shell towards the Gibbs equilibrium for truncated Euler dynamics.

  3. On damping characteristics of frictional hysteresis in pre-sliding range

    NASA Astrophysics Data System (ADS)

    Ruderman, Michael; Iwasaki, Makoto

    2016-06-01

    Frictional hysteresis at relative motion in the pre-sliding range is considered. This effect is characterized by an elasto-plastic interaction, and that on the micro-scale, between two rubbing surfaces in contact that gives rise to nonlinear friction force. The pre-sliding friction force yields hysteresis in displacement. In this study, the damping characteristics of frictional hysteresis are analyzed. It is worth noting that we exclude the viscous damping mechanisms and focus on the pure hysteresis damping to be accounted in the friction modeling. The general properties of pre-sliding friction hysteresis are demonstrated and then compared with the limit case of discontinuous Coulomb friction. Further we consider two advanced dynamic friction models, LuGre and Maxwell-slip, so as demonstrate their damping properties and convergence of the motion system to equilibrium state. Experimental observations of the free motion in pre-sliding range are also shown and discussed.

  4. Damping of electron center-of-mass oscillation in ultracold plasmas

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Ting; Witte, Craig; Roberts, Jacob L.

    2016-05-01

    Applying a short electric field pulse to an ultracold plasma induces an electron plasma oscillation. This manifests itself as an oscillation of the electron center of mass around the ion center of mass in the ultracold plasma. In general, the oscillation can damp due to either collisionless or collisional mechanisms, or a combination of the both. To investigate the nature of oscillation damping in ultracold plasmas, we developed a molecular dynamics model of the ultracold plasma electrons. Through this model, we found that depending on the neutrality of the ultracold plasma and the size of an applied DC electric field, there are some parameter ranges where the damping is primarily collisional and some primarily collisionless. We conducted experiments to compare the measured damping rate with theory predictions and found them to be in good agreement. Extension of our measurements to different parameter ranges should enable studies for strong-coupling influence on electron-ion collision rates.

  5. High Temperature Damping Behavior of Plasma-Sprayed Thermal Barrier and Protective Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Duffy, Kirsten P.; Ghosn, Louis J.

    2010-01-01

    A high temperature damping test apparatus has been developed using a high heat flux CO 2 laser rig in conjunction with a TIRA S540 25 kHz Shaker and Polytec OFV 5000 Vibrometer system. The test rig has been successfully used to determine the damping performance of metallic and ceramic protective coating systems at high temperature for turbine engine applications. The initial work has been primarily focused on the microstructure and processing effects on the coating temperature-dependence damping behavior. Advanced ceramic coatings, including multicomponent tetragonal and cubic phase thermal barrier coatings, along with composite bond coats, have also been investigated. The coating high temperature damping mechanisms will also be discussed.

  6. Numerical design and test on an assembled structure of a bolted joint with viscoelastic damping

    NASA Astrophysics Data System (ADS)

    Hammami, Chaima; Balmes, Etienne; Guskov, Mikhail

    2016-03-01

    Mechanical assemblies are subjected to many dynamic loads and modifications are often needed to achieve acceptable vibration levels. While modifications on mass and stiffness are well mastered, damping modifications are still considered difficult to design. The paper presents a case study on the design of a bolted connection containing a viscoelastic damping layer. The notion of junction coupling level is introduced to ensure that sufficient energy is present in the joints to allow damping. Static performance is then addressed and it is shown that localization of metallic contact can be used to meet objectives, while allowing the presence of viscoelastic materials. Numerical prediction of damping then illustrates difficulties in optimizing for robustness. Modal test results of three configurations of an assembled structure, inspired by aeronautic fuselages, are then compared to analyze the performance of the design. While validity of the approach is confirmed, the effect of geometric imperfections is shown and stresses the need for robust design.

  7. Study of the effect of bolt diameter and washer on damping in layered and jointed structures

    NASA Astrophysics Data System (ADS)

    Nanda, B. K.

    2006-03-01

    In the present work, the mechanism of damping in layered and jointed structures with connecting bolts and washers have been extensively studied. A lot of experiments have been conducted on a number of specimens with connecting bolts of various diameters to study its effect on the damping capacity of the layered and jointed structures and to establish the authenticity of the theory developed. Intensity of interface pressure, diameter of the connecting bolts, washers, number of layers, kinematic coefficient of friction at the interfaces and frequency and amplitude of excitation are found to play a major role on the damping capacity of such structures. It is established that the damping capacity of structures jointed with connecting bolts can be improved substantially by increasing the number of layers connected with bolts of smaller diameters along with use of washers.

  8. Linear collisionless Landau damping in Hilbert space

    NASA Astrophysics Data System (ADS)

    Zocco, Alessandro

    2015-08-01

    The equivalence between the Laplace transform (Landau, J. Phys. USSR 10 (1946), 25) and Hermite transform (Zocco and Schekochihin, Phys. Plasmas 18, 102309 (2011)) solutions of the linear collisionless Landau damping problem is proven.

  9. Magnetic Damping in Ferromagnetic Thin Films

    NASA Astrophysics Data System (ADS)

    Oogane, Mikihiko; Wakitani, Takeshi; Yakata, Satoshi; Yilgin, Resul; Ando, Yasuo; Sakuma, Akimasa; Miyazaki, Terunobu

    2006-05-01

    We determined the Gilbert damping constants of Fe-Co-Ni and Co-Fe-B alloys with various compositions and half-metallic Co2MnAl Heusler alloy films prepared by magnetron sputtering. The ferromagnetic resonance (FMR) technique was used to determine the damping constants of the prepared films. The out-of-plane angular dependences of the resonance field (HR) and line width (Δ Hpp) of FMR spectra were measured and fitted using the Landau-Lifshitz-Gilbert (LLG) equation. The experimental results fitted well, considering the inhomogeneities of the films in the fitting. The damping constants of the metallic films were much larger than those of bulk ferrimagnetic insulators and were roughly proportional to (g-2)2, where g is the Lande g factor. We discuss the origin of magnetic damping, considering spin-orbit and s-d interactions.

  10. Damping Wiggler Study at KEK-ATF

    SciTech Connect

    Naito, T.; Hayano, H.; Honda, Y.; Kubo, K.; Kuriki, M.; Kuroda, S.; Muto, T.; Terunuma, N.; Urakawa, J.; Sakai, H.; Nakamura, N.; Korostelev, M.; Zimmermann, F.; Ross, Marc; /SLAC

    2006-02-07

    The effects of damping wiggler magnets have been studied at KEK-ATF damping ring, which is a 1.3 GeV storage ring capable of producing ultra-low emittance electron beams. The fast beam damping is a significant issue for the damping ring. The tuning method with 4 sets of wiggler magnets was investigated for the ultra-low emittance beam. The effect on the beam quality, which is related to the transverse (x and y) and the longitudinal (z and {Delta}p/p), has been measured by the wire scanner, SR monitor, the laser wire, streak camera and the energy spread monitor. We report on the operational condition and the measurement results.

  11. Simplified Model of Nonlinear Landau Damping

    SciTech Connect

    N. A. Yampolsky and N. J. Fisch

    2009-07-16

    The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the electron distribution function close to the phase velocity of the plasma wave. As a result, Landau damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts. However, this simple picture is invalid when the external driving force changes the plasma wave fast enough so that the plateau cannot be fully developed. A new model to describe amplification of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift is proposed. The proposed model takes into account the change of the plasma wave amplitude and describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.

  12. Coarse-graining Landau-Lifshitz damping

    NASA Astrophysics Data System (ADS)

    Feng, Xuebing; Visscher, P. B.

    2001-06-01

    High speed switching in magnetic materials is usually studied with the Landau-Lifshitz (LL) equation, which describes damping through a phenomenological coefficient. The results of micromagnetic calculations based on the LL equation have been observed to depend strongly on the cell size. We take a coarse-graining or renormalization-group approach to this cell size dependence: from a simulation using cell size L, we look at the dynamics of a cell of size 2L and determine an effective damping coefficient that describes the larger-scale dynamics. This can be thought of as a Green-Kubo calculation of the effective damping coefficient. In principle, this makes it possible to coarse grain from the atomic scale to determine the micromagnetic damping coefficient.

  13. Oscillation damping means for magnetically levitated systems

    DOEpatents

    Post, Richard F.

    2009-01-20

    The present invention presents a novel system and method of damping rolling, pitching, or yawing motions, or longitudinal oscillations superposed on their normal forward or backward velocity of a moving levitated system.

  14. Random vibrations of quadratic damping systems. [optimum damping analysis for automobile suspension system

    NASA Technical Reports Server (NTRS)

    Sireteanu, T.

    1974-01-01

    An oscillating system with quadratic damping subjected to white noise excitation is replaced by a nonlinear, statistically equivalent system for which the associated Fokker-Planck equation can be exactly solved. The mean square responses are calculated and the optimum damping coefficient is determined with respect to the minimum mean square acceleration criteria. An application of these results to the optimization of automobile suspension damping is given.

  15. Quantum damped oscillator I: Dissipation and resonances

    SciTech Connect

    Chruscinski, Dariusz

    2006-04-15

    Quantization of a damped harmonic oscillator leads to so called Bateman's dual system. The corresponding Bateman's Hamiltonian, being a self-adjoint operator, displays the discrete family of complex eigenvalues. We show that they correspond to the poles of energy eigenvectors and the corresponding resolvent operator when continued to the complex energy plane. Therefore, the corresponding generalized eigenvectors may be interpreted as resonant states which are responsible for the irreversible quantum dynamics of a damped harmonic oscillator.

  16. Effect of material damping on bone remodelling.

    PubMed

    Misra, J C; Samanta, S

    1987-01-01

    This paper considers the effect of internal material damping on the stresses, strains, and surface and internal remodelling behaviour in a section of axisymmetrical bone with a force-fitted axially oriented medullary pin. The bone response to several loading situations is modelled using visco-elastic equations. An approximate method is developed to analyse the proposed mathematical model. By considering a numerical example, the effect of material damping on the remodelling stresses is quantified. PMID:3584150

  17. Turbine blade with tuned damping structure

    SciTech Connect

    Campbell, Christian X.; Messmann, Stephen J.

    2015-09-01

    A turbine blade is provided comprising: a root; an airfoil comprising an external wall extending radially from the root and having a radially outermost portion; and a damping structure. The external wall may comprise first and second side walls joined together to define an inner cavity of the airfoil. The damping structure may be positioned within the airfoil inner cavity and coupled to the airfoil so as to define a tuned mass damper.

  18. Embedded absorbers for helicopter rotor lag damping

    NASA Astrophysics Data System (ADS)

    Byers, Lynn; Gandhi, Farhan

    2009-09-01

    Radial and chordwise damped vibration absorbers embedded in the rotor blade are compared for rotor lag damping augmentation. Results show that the radial absorber is more effective in transferring damping to the rotor blade lag mode. The chordwise absorber needs to be at a more outboard location and have a larger mass to introduce levels of lag damping comparable to that introduced by the radial absorber. The 1/rev amplitude of a chordwise absorber at the blade tip, per degree of blade lead-lag motion in forward flight, is of the order of 35% of the blade chord, and such a stroke might be difficult to accommodate. The 1/rev amplitude of a radial absorber at 70% span (having significantly lower mass than the chordwise absorber and producing comparable lag damping) is of the order of 4% of the rotor blade span. The static displacement of the radial absorber under centrifugal load needs to be limited using a frequency-dependent (high static stiffness, low dynamic stiffness) or nonlinear spring. The chordwise absorber can also undergo a large static displacement under the chordwise component of the centrifugal load if there is an offset from the feather axis, and this would again have to be limited using a strategy such as a frequency-dependent spring. Significant advantages of the radial absorber are—higher lag damping, lower absorber mass, space for absorber mass travel, and no chordwise travel of blade center of gravity reducing susceptibility to aeroelastic instability and dynamic pitch-link loads.

  19. Damping of Sound Waves in Strong Centrifugal Field

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    A method for numerical calculation of the sound wave damping and dispersion law in a strong centrifugal field of the order of 106 g is considered. The damping is defined from the width of the resonance peak for different wave vectors. In the strong centrifugal field damping of the sound waves essentially exceeds the damping in the quiescent gas.

  20. Landau damping in relativistic plasmas

    NASA Astrophysics Data System (ADS)

    Young, Brent

    2016-02-01

    We examine the phenomenon of Landau damping in relativistic plasmas via a study of the relativistic Vlasov-Poisson (rVP) system on the torus for initial data sufficiently close to a spatially uniform steady state. We find that if the steady state is regular enough (essentially in a Gevrey class of degree in a specified range) and if the deviation of the initial data from this steady state is small enough in a certain norm, the evolution of the system is such that its spatial density approaches a uniform constant value quasi-exponentially fast (i.e., like exp ( - C |" separators=" t | ν ¯ ) for ν ¯ ∈ ( 0 , 1 ) ). We take as a priori assumptions that solutions launched by such initial data exist for all times (by no means guaranteed with rVP, but a reasonable assumption since we are close to a spatially uniform state) and that the various norms in question are continuous in time (which should be a consequence of an abstract version of the Cauchy-Kovalevskaya theorem). In addition, we must assume a kind of "reverse Poincaré inequality" on the Fourier transform of the solution. In spirit, this assumption amounts to the requirement that there exists 0 < ϰ < 1 so that the mass in the annulus ϰ ≤ |" separators=" v | < 1 for the solution launched by the initial data is uniformly small for all t. Typical velocity bounds for solutions to rVP launched by small initial data (at least on ℝ6) imply this bound. We note that none of our results require spherical symmetry (a crucial assumption for many current results on rVP).

  1. Magnetoelastic vibration damping properties of TbDy alloys

    NASA Technical Reports Server (NTRS)

    Dooley, J. A.; Good, N. R.; White, C. V.; Leland, R. S.

    2002-01-01

    Damping of axial and bending mode vibrations in giant magnetoelastic polycrystalline TbDy alloys was studied at cryogenic temperatures. All specimens of TbDy were arc-melted in the proper composition ratio and dropped into a chilled copper mold. Additional treatments consisted of cold plane-rolling to induce crystallographic texture and then heat-treating to relieve internal stress. Mechanical hysteretic losses were measured at various strains, frequencies, and loading configurations down to 77 K. Both as-cast and textured polycrystalline TbDy samples were tested along with an aluminum specimen for comparison. Loss factors at multiple natural vibration frequencies of the samples were measured for axial modes. Larger damping rates were measured for axial mode vibrations than for bending mode vibrations, possibly reflecting the larger specimen volume contributing to magnetoelastic damping. At LN2 temperatures TbDy materials demonstrated q > 0.05 at 0.01 Hz and q > 0.1 at higher frequencies from 0.6-1.5 kHz.

  2. Damping of Quasi-stationary Waves Between Two Miscible Liquids

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.

    2002-01-01

    Two viscous miscible liquids with an initially sharp interface oriented vertically inside a cavity become unstable against oscillatory external forcing due to Kelvin-Helmholtz instability. The instability causes growth of quasi-stationary (q-s) waves at the interface between the two liquids. We examine computationally the dynamics of a four-mode q-s wave, for a fixed energy input, when one of the components of the external forcing is suddenly ceased. The external forcing consists of a steady and oscillatory component as realizable in a microgravity environment. Results show that when there is a jump discontinuity in the oscillatory excitation that produced the four-mode q-s wave, the interface does not return to its equilibrium position, the structure of the q-s wave remains imbedded between the two fluids over a long time scale. The damping characteristics of the q-s wave from the time history of the velocity field show overdamped and critically damped response; there is no underdamped oscillation as the flow field approaches steady state. Viscous effects serve as a dissipative mechanism to effectively damp the system. The stability of the four-mode q-s wave is dependent on both a geometric length scale as well as the level of background steady acceleration.

  3. Resonance damping and optical susceptibilities (Critical Review Lecture)

    NASA Astrophysics Data System (ADS)

    Andrews, David L.; Davila Romero, Luciana C.

    2003-07-01

    In the formal development of optical response theory in terms of susceptibilities, proper representation of the optical frequency dependence necessitates modeling both the discrete linewidth and the finite signal enhancement associated with the onset of resonance. Such dispersion behavior is generally accommodated by damping factors, featured in both resonant and non-resonant susceptibility terms. For the resonant terms, the sign of such damping corrections is unequivocal; however the correct choice of sign for non-resonant terms has become a matter of debate, heightened by the discovery that entirely opposite conventions are applied in mainstream literature on Raman scattering and nonlinear optics. Where the two conventions are applied to electro-optical processes in fluids there are significant and potentially verifiable differences between the associated results. Through a full thorough quantum electrodynamical treatment the universal correctness of one convention can be ascertained and flaws in the counter-convention identified. Resolution of the central issue requires consideration of a number of fundamental questions concerning the nature of dissipation in quantum mechanical systems. It is concluded that optical susceptibilities formulated with correct signing of the damping corrections must fulfill several fundamental tests: satisfaction of a new sum rule; invariance of the associated quantum amplitudes under time-reversal symmetry, and a resilience to canonical transformation.

  4. Unimodal optimal passive electromechanical damping of elastic structures

    NASA Astrophysics Data System (ADS)

    Ben Mekki, O.; Bourquin, F.; Maceri, F.; Merliot, E.

    2013-08-01

    In this paper, a new electromechanical damper is presented and used, made of a pendulum oscillating around an alternator axis and connected by a gear to the vibrating structure. In this way, the mechanical energy of the oscillating mass can be transformed into electrical energy to be dissipated when the alternator is branched on a resistor. This damping device is intrinsically non-linear, and the problem of the optimal parameters and of the best placement of this damper on the structure is studied. The optimality criterion chosen here is the maximum exponential time decay rate (ETDR) of the structural response. This criterion leads to new design formulas. The case of a bridge under construction is considered and the analytical results are compared with experimental ones, obtained on a mock-up made of a vertical tower connected to a free-end horizontal beam, to simulate the behavior of a cable-stayed bridge during the erection phase. Up to three electromechanical dampers are placed in order to study the multi-modal damping. The satisfactory agreement between the theoretical model and the experiments suggests that a multi-modal passive damping of electromagnetic type could be effective on lightweight flexible structures, when dampers are suitably placed.

  5. Hybrid Damping System for an Electronic Equipment Mounting Shelf

    NASA Technical Reports Server (NTRS)

    Voracek, David; Kolkailah, Faysal A.; Cavalli, J. R.; Elghandour, Eltahry

    1997-01-01

    The objective of this study was to design and construct a vibration control system for an electronic equipment shelf to be evaluated in the NASA Dryden FTF-11. The vibration control system was a hybrid system which included passive and active damping techniques. Passive damping was fabricated into the equipment shelf using ScothDamp(trademark) damping film and aluminum constraining layers. Active damping was achieved using a two channel active control circuit employing QuickPack(trademark) sensors and actuators. Preliminary Chirp test results indicated passive damping smoothed the frequency response while active damping reduced amplitudes of the frequency response for most frequencies below 500Hz.

  6. Hybrid Damping System for an Electronic Equipment Mounting Shelf

    NASA Technical Reports Server (NTRS)

    Voracek, David; Kolkailah, Faysal A.; Cavalli, J. R.; Elghandour, Eltahry

    1997-01-01

    The objective of this study was to design and construct a vibration control system for an electronic equipment shelf to be evaluated in the NASA Dryden FTF-II. The vibration control system was a hybrid system which included passive and active damping techniques. Passive damping was fabricated into the equipment shelf using ScothDamp(trademark) damping film and aluminum constraining layers. Active damping was achieved using a two channel active control circuit employing QuickPack(trademark) sensors and actuators. Preliminary Chirp test results indicated passive damping smoothed the frequency response while active damping reduced amplitudes of the frequency response for most frequencies below 500Hz.

  7. Backscattering and Nonparaxiality Arrest Collapse of Damped Nonlinear Waves

    NASA Technical Reports Server (NTRS)

    Fibich, G.; Ilan, B.; Tsynkov, S.

    2002-01-01

    The critical nonlinear Schrodinger equation (NLS) models the propagation of intense laser light in Kerr media. This equation is derived from the more comprehensive nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. It is known that if the input power of the laser beam (i.e., L(sub 2) norm of the initial solution) is sufficiently high, then the NLS model predicts that the beam will self-focus to a point (i.e.. collapse) at a finite propagation distance. Mathematically, this behavior corresponds to the formation of a singularity in the solution of the NLS. A key question which has been open for many years is whether the solution to the NLH, i.e., the 'parent' equation, may nonetheless exist and remain regular everywhere, in particular for those initial conditions (input powers) that lead to blowup in the NLS. In the current study, we address this question by introducing linear damping into both models and subsequently comparing the numerical solutions of the damped NLH (boundary-value problem) with the corresponding solutions of the damped NLS (initial-value problem). Linear damping is introduced in much the same way as done when analyzing the classical constant-coefficient Helmholtz equation using the limiting absorption principle. Numerically, we have found that it provides a very efficient tool for controlling the solutions of both the NLH and NHS. In particular, we have been able to identify initial conditions for which the NLS solution does become singular. whereas the NLH solution still remains regular everywhere. We believe that our finding of a larger domain of existence for the NLH than that for the NLS is accounted for by precisely those mechanisms, that have been neglected when deriving the NLS from the NLH, i.e., nonparaxiality and backscattering.

  8. Human-in-the-loop evaluation of RMS Active Damping Augmentation

    NASA Technical Reports Server (NTRS)

    Demeo, Martha E.; Gilbert, Michael G.; Scott, Michael A.; Lepanto, Janet A.; Bains, Elizabeth M.; Jensen, Mary C.

    1993-01-01

    Active Damping Augmentation is the insertion of Controls-Structures Integration Technology to benefit the on-orbit performance of the Space Shuttle Remote Manipulator System. The goal is to reduce the vibration decay time of the Remote Manipulator System following normal payload maneuvers and operations. Simulation of Active Damping Augmentation was conducted in the realtime human-in-the-loop Systems Engineering Simulator at the NASA Johnson Space Center. The objective of this study was to obtain a qualitative measure of operational performance improvement from astronaut operators and to obtain supporting quantitative performance data. Sensing of vibratory motions was simulated using a three-axis accelerometer mounted at the end of the lower boom of the Remote Manipulator System. The sensed motions were used in a feedback control law to generate commands to the joint servo mechanisms which reduced the unwanted oscillations. Active damping of the Remote Manipulator System with an attached 3990 lb. payload was successfully demonstrated. Six astronaut operators examined the performance of an Active Damping Augmentation control law following single-joint and coordinated six-joint translational and rotational maneuvers. Active Damping Augmentation disturbance rejection of Orbiter thruster firings was also evaluated. Significant reductions in the dynamic response of the 3990 lb. payload were observed. Astronaut operators recommended investigation of Active Damping Augmentation benefits to heavier payloads where oscillations are a bigger problem (e.g. Space Station Freedom assembly operators).

  9. Viscous damping and spring force calculation of regularly perforated MEMS microstructures in the Stokes' approximation

    PubMed Central

    Homentcovschi, Dorel; Murray, Bruce T.; Miles, Ronald N.

    2013-01-01

    There are a number of applications for microstructure devices consisting of a regular pattern of perforations, and many of these utilize fluid damping. For the analysis of viscous damping and for calculating the spring force in some cases, it is possible to take advantage of the regular hole pattern by assuming periodicity. Here a model is developed to determine these quantities based on the solution of the Stokes' equations for the air flow. Viscous damping is directly related to thermal-mechanical noise. As a result, the design of perforated microstructures with minimal viscous damping is of real practical importance. A method is developed to calculate the damping coefficient in microstructures with periodic perforations. The result can be used to minimize squeeze film damping. Since micromachined devices have finite dimensions, the periodic model for the perforated microstructure has to be associated with the calculation of some frame (edge) corrections. Analysis of the edge corrections has also been performed. Results from analytical formulas and numerical simulations match very well with published measured data. PMID:24058267

  10. Damping parameter study of a perforated plate with bias flow

    NASA Astrophysics Data System (ADS)

    Mazdeh, Alireza

    One of the main impediments to successful operation of combustion systems in industrial and aerospace applications including gas turbines, ramjets, rocket motors, afterburners (augmenters) and even large heaters/boilers is the dynamic instability also known as thermo-acoustic instability. Concerns with this ongoing problem have grown with the introduction of Lean Premixed Combustion (LPC) systems developed to address the environmental concerns associated with the conventional combustion systems. The most common way to mitigate thermo-acoustic instability is adding acoustic damping to the combustor using acoustic liners. Recently damping properties of bias flow initially introduced to liners only for cooling purposes have been recognized and proven to be an asset in enhancing the damping effectiveness of liners. Acoustic liners are currently being designed using empirical design rules followed by build-test-improve steps; basically by trial and error. There is growing concerns on the lack of reliability associated with the experimental evaluation of the acoustic liners with small size apertures. The development of physics-based tools in assisting the design of such liners has become of great interest to practitioners recently. This dissertation focuses primarily on how Large-Eddy Simulations (LES) or similar techniques such as Scaled Adaptive Simulation (SAS) can be used to characterize damping properties of bias flow. The dissertation also reviews assumptions made in the existing analytical, semi-empirical, and numerical models, provides a criteria to rank order the existing models, and identifies the best existing theoretical model. Flow field calculations by LES provide good insight into the mechanisms that led to acoustic damping. Comparison of simulation results with empirical and analytical studies shows that LES simulation is a viable alternative to the empirical and analytical methods and can accurately predict the damping behavior of liners. Currently the

  11. High order mode damping in the NSLS accelerating RF cavities by the use of damping antennae

    NASA Astrophysics Data System (ADS)

    Fewell, N.; Wen, Z.

    High order modes were successfully damped in the existing NSLS accelerating cavities by the insertion of damping antennae. The location of the antennae was aided by cavity field plots using superfish and their lengths determined experimentally. A description of their construction is presented together with the results of their insertion upon higher order cavity modes and beam stability.

  12. Collisional damping of the geodesic acoustic mode with toroidal rotation. I. Viscous damping

    NASA Astrophysics Data System (ADS)

    Gong, Xueyu; Xie, Baoyi; Guo, Wenfeng; Chen, You; Yu, Jiangmei; Yu, Jun

    2016-03-01

    With the dispersion relation derived for the geodesic acoustic mode in toroidally rotating tokamak plasmas using the fluid model, the effect of the toroidal rotation on the collisional viscous damping of the geodesic acoustic mode is investigated. It is found that the collisional viscous damping of the geodesic acoustic mode has weak increase with respect to the toroidal Mach number.

  13. Introduction to the scientific application system of DAMPE (On behalf of DAMPE collaboration)

    NASA Astrophysics Data System (ADS)

    Zang, Jingjing

    2016-07-01

    The Dark Matter Particle Explorer (DAMPE) is a high energy particle physics experiment satellite, launched on 17 Dec 2015. The science data processing and payload operation maintenance for DAMPE will be provided by the DAMPE Scientific Application System (SAS) at the Purple Mountain Observatory (PMO) of Chinese Academy of Sciences. SAS is consisted of three subsystems - scientific operation subsystem, science data and user management subsystem and science data processing subsystem. In cooperation with the Ground Support System (Beijing), the scientific operation subsystem is responsible for proposing observation plans, monitoring the health of satellite, generating payload control commands and participating in all activities related to payload operation. Several databases developed by the science data and user management subsystem of DAMPE methodically manage all collected and reconstructed science data, down linked housekeeping data, payload configuration and calibration data. Under the leadership of DAMPE Scientific Committee, this subsystem is also responsible for publication of high level science data and supporting all science activities of the DAMPE collaboration. The science data processing subsystem of DAMPE has already developed a series of physics analysis software to reconstruct basic information about detected cosmic ray particle. This subsystem also maintains the high performance computing system of SAS to processing all down linked science data and automatically monitors the qualities of all produced data. In this talk, we will describe all functionalities of whole DAMPE SAS system and show you main performances of data processing ability.

  14. Necessary and sufficient conditions for the entanglement sudden death under amplitude damping and phase damping

    SciTech Connect

    Huang Jiehui; Zhu Shiyao

    2007-12-15

    By using principal minor method, which is developed from the Peres-Horodecki criterion for the separability of a quantum state, we derive the necessary and sufficient conditions for the entanglement sudden death of a two-qubit state under amplitude damping and phase damping.

  15. Improving the damping ability by the addition of Nano SiO2 to the concrete materials

    NASA Astrophysics Data System (ADS)

    Zou, Dujian; Liu, Tiejun; Teng, Jun

    2009-07-01

    Damping in structures is commonly provided by viscoelastic nonstructural materials. Due to the large volume of structural materials in a structure, the contribution of a structural material to damping can be substantial. In this paper, the experimental investigation on damping ability of concrete materials and its members with Nana SiO2 was carried out by the method of 3-point bending beam damping measurement and cantilever beam free vibration respectively. The microstructure of concrete mix with Nano SiO2 was observed by XRD and SEM, then damping mechanism was discussed. The experimental results show that the damping reinforced effect achieved best with the 4% mixture ratio of Nana SiO2, but the optimal adulteration quantity of Nano SiO2 was 3% of cement weight by the comprehensive consideration of cost, workability, strength and dynamic properties. Nano materials as a mixture increase interfaces, and the non-uniform stress distribution under external force improves frictional damping energy consumption ability of concrete. The experimental results on the damping ratio and the loss tangent of the concrete materials with Nano materials are consistent.

  16. Experimental and analytical estimation of damping in beams and plates with damping treatments

    NASA Astrophysics Data System (ADS)

    Liu, Wanbo

    The research presented in this dissertation is devoted to the problem of damping estimation in engineering structures, especially beams and plates with passive damping treatments. In structural design and/or optimization, knowledge about damping is essential. However, due to the complexity of the dynamic interaction of system components, the determination of damping, by either analysis or experiments, has never been straightforward. In this research, currently-used methods are reviewed and gaps are identified first. Then both analytical and experimental studies on the damping estimation are conducted and possibilities of improvement are explored. Various passive damping treatments using ViscoElastic Materials (VEMs) are designed, manufactured and then added to aluminum and composite beams and plates. Experiments on these damped structures are conducted. Currently used experimental methods, namely, the free-decay method, the modal curve-fitting method and the Power Input Method (PIM), are used to process the experimental data and investigate the damping characteristics. Especially, (1) experimental procedures of the power input method are carefully identified and investigated; (2) the power input method is applied to non-uniformly damped structures; (3) the power input method is applied in an extended frequency range (from 0 to 5000 Hz) to meet emerging needs of the transportation industries. A new analytical power input method is proposed for evaluating the loss factor of builtup structures, based on the finite element model with assigned properties of the constituents. Finite Element (FE) models of beams and plates with various damping configurations are developed so a frequency response solution suffices to provide mobility and energy results needed by the new analytical power input method. The analytical power input method is evaluated by comparison with the commonly used Modal Strain Energy (MSE) method. Instead of making an approximate correction of the

  17. Damping and spectral formation of upstream whistlers

    SciTech Connect

    Orlowski, D.S.; Russell, C.T.; Krauss-Varban, D.

    1995-09-01

    Previous studies have indicated that damping rates of upstream whistlers strongly depend on the details of the electron distribution function. Moreover, detailed analysis of Doppler shift and the whistler dispersion relation indicate that upstream whistlers propagate obliquely in a finite band of frequencies. In this paper we present results of a kinetic calculation of damping lengths of wideband whistlers using the sum of seven drifting bi-Maxwellian electron distributions as a best fit to the ISEE 1 electron data. For two cases, when upstream whistlers are observed, convective damping lengths derived from ISEE magnetic field and ephemeris data are compared with theoretical results. We find that the calculated convective damping lengths are consistent with the data and that upstream whistlers remain marginally stable. We also show that the slope of plasma frame spectra of upstream whistlers, obtained by direct fitting of the observed spectra, is between 5 and 7. The overall spectral, wave, and particle characteristics, proximity to the shock, as well as propagation and damping properties indicated that these waves cannot be generated locally. Instead, the observed upstream whistlers arise in the shock ramp, most likely by a variety of cross-field drift and/or anisotropy driven instabilities. 57 refs., 11 figs.

  18. Noise Transmission Characteristics of Damped Plexiglas Windows

    NASA Technical Reports Server (NTRS)

    Gibbs, Gary P.; Buehrle, Ralph D.; Klos, Jacob; Brown, Sherilyn A.

    2002-01-01

    Most general aviation aircraft utilize single layer plexiglas material for the windshield and side windows. Adding noise control treatments to transparent panels is a challenging problem. In this paper, damped plexiglas windows are evaluated for replacement of conventional windows in general aviation aircraft to reduce the structure-borne and airborne noise transmitted into the interior. In contrast to conventional solid windows, the damped plexiglas window panels are fabricated using two or three layers of plexiglas with transparent viscoelastic damping material sandwiched between the layers. Results from acoustic tests conducted in the NASA Langley Structural Acoustic Loads and Transmission (SALT) facility are used to compare different designs of the damped plexiglas panels with solid windows of the same nominal thickness. Comparisons of the solid and damped plexiglas panels show reductions in the radiated sound power of up to 8 dB at low frequency resonances and as large as 4.5 dB over a 4000 Hz bandwidth. The weight of the viscoelastic treatment was approximately 1% of the panel mass. Preliminary FEM/BEM modeling shows good agreement with experimental results for radiated sound power.

  19. Damped Windows for Aircraft Interior Noise Control

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Klos, Jacob; Gibbs, Gary P.

    2004-01-01

    Windows are a significant path for structure-borne and air-borne noise transmission into aircraft. To improve the acoustical performance, damped windows were fabricated using two or three layers of plexiglas with transparent viscoelastic damping material sandwiched between the layers. In this paper, numerical and experimental results are used to evaluate the acoustic benefits of damped windows. Tests were performed in the Structural Acoustic Loads and Transmission Facility at NASA Langley Research Center to measure the transmission loss for diffuse acoustic excitation and radiated sound power for point force excitation. Comparisons between uniform and damped plexiglas windows showed increased transmission loss of 6 dB at the first natural frequency, 6 dB at coincidence, and 4.5 dB over a 50 to 4k Hz range. Radiated sound power was reduced up to 7 dB at the lower natural frequencies and 3.7 dB over a 1000 Hz bandwidth. Numerical models are presented for the prediction of radiated sound power for point force excitation and transmission loss for diffuse acoustic excitation. Radiated sound power and transmission loss predictions are in good agreement with experimental data. A parametric study is presented that evaluates the optimum configuration of the damped plexiglas windows for reducing the radiated sound power.

  20. Characterization of damped structural connections for multi-component systems

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Huckelbridge, Arthur A.

    1989-01-01

    The inability to model connections adequately has historically limited the ability to predict overall system dynamic response. Connections between structural components are often mechanically complex and difficult to accurataely model analytically. Improved analytical models for connections are needed to improve system dynamic predictions. This study explores combining Component Mode Synthesis methods for coupling structural components with Parameter Identification procedures for improving the analytical modeling of the connections. Improvements in the connection stiffness and damping properties are computed in terms of physical parameters so the physical characteristics of the connections can be better understood, in addition to providing improved input for the system model.

  1. Characterization of damped structural connections for multi-component systems

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Huckelbridge, Arthur A.

    1988-01-01

    The inability to model connections adequately has historically limited the ability to predict overall system dynamic response. Connections between structural components are often mechanically complex and difficult to accurately model analytically. Improved analytical models for connections are needed to improve system dynamic predictions. This study explores combining Component Mode Synthesis methods for coupling structural components with Parameter Identification procedures for improving the analytical modeling of the connections. Improvements in the connection stiffness and damping properties are computed in terms of physical parameters so the physical characteristics of the connections can be better understood, in addition to providing improved input for the system model.

  2. Damping and fluidelastic instability in two-phase cross-flow heat exchanger tube arrays

    NASA Astrophysics Data System (ADS)

    Moran, Joaquin E.

    flux, and its dependency is a function of void fraction. A dimensional analysis was carried out to investigate the relationship between damping and two-phase flow related parameters. As a result, the inclusion of surface tension in the form of the Capillary number appears to be useful when combined with the two-phase component of the damping ratio (interfacial damping). A strong dependence of damping on flow regime was observed when plotting the interfacial damping versus the void fraction, introducing an improvement over the previous result obtained by normalizing the two-phase damping, which does not exhibit this behaviour. The interfacial velocity model was selected to represent the fluidelastic data in two-phase experiments, due to the inclusion of the tube array geometry and density ratio effects, which does not exist for the pitch velocity approach. An essential component in reliably establishing the velocity threshold for fluidelastic instability, is a measure of the energy dissipation available in the system to balance the energy input from the flow. The present analysis argues that the damping in-flow is not an appropriate measure and demonstrates that the use of quiescent fluid damping provides a better measure of the energy dissipation, which produces a much more logical trend in the stability behaviour. This value of damping, combined with the RAD density and the interfacial velocity, collapses the available data well and provides the expected trend of two-phase flow stability data over the void fraction range from liquid to gas flows. The resulting stability maps represent a significant improvement over existing maps for predicting fluidelastic instability of tube bundles in two-phase flows. This result also tends to confirm the hypothesis that the basic mechanism of fluidelastic instability is the same for single and two-phase flows.

  3. Passive damping concepts for slender columns in space structures

    NASA Technical Reports Server (NTRS)

    Razzaq, Z.; Ekhelikar, R. K.

    1985-01-01

    An experimental and theoretical study of three different passive damping concepts is conducted for a slender member with partial rotational end restraints. Over a hundred full-scale natural vibration experiments were conducted to evaluate the effectiveness of mass-string, polyethylene tubing, and chain damping concepts. The damping properties obtained from the experiments were used in the approximate analyses based on the partial differential equation of motion for the problem. The comparison of the experimental and the theoretical deflection-time relations shows that the velocity-dependent damping model used in the theory is adequate. From the experimental results, the effect of end connection friction and induced axial forces on damping is identified. The definition of an efficiency index is proposed based on the damping ratio and the mass of a given passive damping device. Using this definition, the efficiencies of the three damping devices are compared. The polyethylene tubing concept resulted into a low damping efficiency.

  4. Resolving photons from cosmic ray in DAMPE

    NASA Astrophysics Data System (ADS)

    Xu, Zunlei; Chang, Jin; Li, Xiang; Dong, TieKuang; Zang, Jingjing

    2016-07-01

    The Dark Matter Particle Explorer(DAMPE), which took to the skies on 17 December, is designed for high energy cosmic ray ion detection. The proportion of photons in the cosmic ray is very small, so it's difficult to distinguish between photons and 'background', but necessary for any DAMPE gamma-ray science goals.The paper present a algorithm to identify photons from 'background' mainly by the tracker/converter, which promote pair conversion and measure the directions of incident particles, and an anticoincidence detector,featuring an array of plastic scintillator to detect the charged particles.The method has been studied by simulating using the GEANT4 Monte Carlo simulation code and adjusted by the BeamTest at CERN in December,2014.In addition,DAMPE photon detection capabilities can be checked using the flight data.

  5. Turbine blade damping device with controlled loading

    SciTech Connect

    Marra, John J.

    2015-09-29

    A damping structure for a turbomachine rotor. The damping structure including an elongated snubber element including a first snubber end rigidly attached to a first blade and extending toward an adjacent second blade, and an opposite second snubber end positioned adjacent to a cooperating surface associated with the second blade. The snubber element has a centerline extending radially inwardly in a direction from the first blade toward the second blade along at least a portion of the snubber element between the first and second snubber ends. Rotational movement of the rotor effects relative movement between the second snubber end and the cooperating surface to position the second snubber end in frictional engagement with the cooperating surface with a predetermined damping force determined by a centrifugal force on the snubber element.

  6. Saturation of gyrokinetic turbulence through damped eigenmodes.

    PubMed

    Hatch, D R; Terry, P W; Jenko, F; Merz, F; Nevins, W M

    2011-03-18

    In the context of toroidal gyrokinetic simulations, it is shown that a hierarchy of damped modes is excited in the nonlinear turbulent state. These modes exist at the same spatial scales as the unstable eigenmodes that drive the turbulence. The larger amplitude subdominant modes are weakly damped and exhibit smooth, large-scale structure in velocity space and in the direction parallel to the magnetic field. Modes with increasingly fine-scale structure are excited to decreasing amplitudes. In aggregate, damped modes define a potent energy sink. This leads to an overlap of the spatial scales of energy injection and peak dissipation, a feature that is in contrast with more traditional turbulent systems. PMID:21469869

  7. Viscous damping of perforated planar micromechanical structures

    PubMed Central

    Homentcovschi, D.; Miles, R.N.

    2008-01-01

    The paper gives an analytical approximation to the viscous damping coefficient due to the motion of a gas between a pair of closely spaced fluctuating plates in which one of the plates contains a regular system of circular holes. These types of structures are important parts of many microelectromechanical devices realized in MEMS technology as microphones, microaccelerometers, resonators, etc. The pressure satisfies a Reynolds’ type equation with coefficients accounting for all the important effects: compressibility of the gas, inertia and possibly slip of the gas on the plates. An analytical expression for the optimum number of circular holes which assure a minimum value of the total damping coefficient is given. This value realizes an equilibrium between the squeeze-film damping and the viscous resistance of the holes. The paper also provides analytical design formulas to be used in the case of regular circular perforated plates. PMID:19365579

  8. Turbine blade damping device with controlled loading

    SciTech Connect

    Marra, John J

    2013-09-24

    A damping structure for a turbomachine rotor. The damping structure including an elongated snubber element including a first snubber end rigidly attached to a first blade and extending toward an adjacent second blade, and an opposite second snubber end positioned adjacent to a cooperating surface associated with the second blade. The snubber element has a centerline extending radially inwardly in a direction from the first blade toward the second blade along at least a portion of the snubber element between the first and second snubber ends. Rotational movement of the rotor effects relative movement between the second snubber end and the cooperating surface to position the second snubber end in frictional engagement with the cooperating surface with a predetermined damping force determined by a centrifugal force on the snubber element.

  9. Measurement of damping of graphite epoxy materials

    NASA Technical Reports Server (NTRS)

    Crocker, M. J.

    1985-01-01

    The design of an experiment to measure the damping of a cylindrical graphite-epoxy specimen with a three point support and a knife edge support is described as well as equipment used in tests conducted to determine the influence of the support at the two ends of the specimen and to simulate an idealized free-free boundary condition at the two edges. A curve fitting technique is being used to process the frequency response data obtained. Experiments conducted on the thin plate specimen also reveal the influence of the end support condition on the damping ratio of the specimen. The damping ratio values measured for both specimens appear to be strongly influenced by the shape of the specimen and appear to depend on length and fiber orientation as well as the presence of discontinuities such as sharp bends, corners, and notches.

  10. Identification of civil structures with nonproportional damping

    NASA Astrophysics Data System (ADS)

    Yang, Jann N.; Lei, Ying

    2000-04-01

    Recently, the method of Hilbert transform has been used successfully by the authors to identify parameters of linear structures with real eigenvalues and eigenvectors, e.g., structures with proportional damping. Frequently, linear structures may not have proportional damping so that normal modes do not exist. In this case, all the eigenvalues, eigenvectors and modeshapes are complex. In this paper, the Hilbert transform and the method of Empirical Mode Decomposition are used to identify the parameters of structures with nonproportional damping using the impulse response data. Measured impulse response signals are first decomposed into Intrinsic Mode Functions using the method of Empirical Mode Decomposition with intermittency criteria. An Intrinsic Mode Function (IMF) contains only one characteristic time scale (frequency), which may involve the contribution of a complex conjugate pair of modes with a unique frequency and a damping ratio, referred to as the modal response. It is shown that all the modal responses can be obtained from IMFs. Then, each modal response is decomposed in the frequency-time domain to yield instantaneous phase angle and amplitude as functions of time using the Hilbert transform. Based on only a single measurement of the impulse response time history at one location, the complex eigenvalues of the linear structure can be identified using a simple analysis procedure. When the response time histories are measured at all locations, the proposed methodology is capable of identifying the complex modeshapes as well as the mass, damping and stiffness matrices of the structure. The effectiveness and accuracy of the methodology presented are demonstrated through numerical simulations. It is shown that complete dynamic characteristics of linear structures with nonproportional damping can be identified effectively using the Hilbert transform and the Empirical Mode Decomposition method.

  11. Spider-silk-like shape memory polymer fiber for vibration damping

    NASA Astrophysics Data System (ADS)

    Yang, Qianxi; Li, Guoqiang

    2014-10-01

    In this study, the static and dynamic properties of shape memory polyurethane (SMPU) fiber are reported and compared to those of spider dragline silk. Although the polymeric fiber has a lower strength compared to spider dragline silks (0.2-0.3 GPa versus 1.1 GPa), it possesses much higher toughness (276-289 MJ m-3 versus 160 MJ m-3), due to its excellent extensibility. The dynamic mechanical tests reveal that SMPU fiber has a high damping capacity (tan δ = 0.10-0.35) which is comparable to or even higher than that of spider silks (tan δ = 0.15). In addition, we found that, different programming methods change the shape memory and damping properties of the fiber in different ways and cold-drawing programming is more advocated in structural applications. These results suggest that the SMPU fiber has similar vibration damping and mechanical properties as spider silk, and may find applications in lightweight engineering structures.

  12. Validation of High-Resolution CFD Method for Slosh Damping Extraction of Baffled Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff

    2016-01-01

    Propellant slosh is a potential source of disturbance critical to the stability of space vehicles. The slosh dynamics are typically represented by a mechanical model of a spring-mass-damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. A Volume-Of-Fluid (VOF) based Computational Fluid Dynamics (CFD) program developed at MSFC was applied to extract slosh damping in the baffled tank from the first principle. First the experimental data using water with sub-scale smooth wall tank were used as the baseline validation. It is demonstrated that CFD can indeed accurately predict low damping values from the smooth wall at different fill levels. The damping due to a ring baffles at different depths from the free surface was then simulated, and fairly good agreement with experimental measurement was observed. Comparison with an empirical correlation of Miles equation is also made.

  13. Particle systems and nonlinear Landau damping

    SciTech Connect

    Villani, Cédric

    2014-03-15

    Some works dealing with the long-time behavior of interacting particle systems are reviewed and put into perspective, with focus on the classical Kolmogorov–Arnold–Moser theory and recent results of Landau damping in the nonlinear perturbative regime, obtained in collaboration with Clément Mouhot. Analogies are discussed, as well as new qualitative insights in the theory. Finally, the connection with a more recent work on the inviscid Landau damping near the Couette shear flow, by Bedrossian and Masmoudi, is briefly discussed.

  14. Inertia-Wheel Vibration-Damping System

    NASA Technical Reports Server (NTRS)

    Fedor, Joseph V.

    1990-01-01

    Proposed electromechanical system would damp vibrations in large, flexible structure. In active vibration-damping system motors and reaction wheels at tips of appendages apply reaction torques in response to signals from accelerometers. Velocity signal for vibrations about one axis processes into control signal to oppose each of n vibrational modes. Various modes suppressed one at a time. Intended primarily for use in spacecraft that has large, flexible solar panels and science-instrument truss assembly, embodies principle of control interesting in its own right and adaptable to terrestrial structures, vehicles, and instrument platforms.

  15. Delay of Transition Using Forced Damping

    NASA Technical Reports Server (NTRS)

    Exton, Reginald J.

    2014-01-01

    Several experiments which have reported a delay of transition are analyzed in terms of the frequencies of the induced disturbances generated by different flow control elements. Two of the experiments employed passive stabilizers in the boundary layer, one leading-edge bluntness, and one employed an active spark discharge in the boundary layer. It is found that the frequencies generated by the various elements lie in the damping region of the associated stability curve. It is concluded that the creation of strong disturbances in the damping region stabilizes the boundary-layer and delays the transition from laminar to turbulent flow.

  16. Damping of Bogoliubov excitations at finite temperatures

    NASA Astrophysics Data System (ADS)

    Pastukhov, Volodymyr

    2015-10-01

    We present a simple and efficient method to calculate the damping for the excitation spectrum of a uniform D-dimensional Bose gas. Starting from the original Popov’s hydrodynamic description and integrating out phase variables, we obtained the effective action of amplitude fluctuations. Within this approach, the lifetime of quasi-particles with a finite momentum is calculated at a wide temperature range. It is shown that the correct use of the hydrodynamic approach leads to the damping rate, which coincides with results obtained by means of the perturbation theory.

  17. Minimal energy damping in an axisymmetric flow

    NASA Astrophysics Data System (ADS)

    Sachs, Alexander

    2008-05-01

    The method of Lagrange's undetermined multipliers is used to find the velocity field which minimizes the energy damping for a viscous incompressible fluid described by the Navier- Stoke equation. The vorticity of this velocity field obeys a Helmholtz equation with an undetermined parameter. This Helmholtz equation is used to determine the axisymmetric velocity field in a cylinder. This velocity field is slightly different from the Poiseuille velocity field. The rate of energy damping per unit energy is calculated as a function of the parameter. It is a minimum when the parameter is equal to the root of a Bessel function.

  18. Damping Goes the Distance in Golf

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In the late 1980s, Dr. Benjamin Dolgin of NASA s Jet Propulsion Laboratory developed a concept for a high-damping graphite/viscoelastic material for the Strategic Defense Initiative (popularly referred to as "Star Wars"), as part of a space-based laser anti-missile program called "Asterix." Dolgin drummed up this concept with the intention of stabilizing weapons launch platforms in space, where there is no solid ground to firmly support these structures. Without the inclusion of high-damping material, the orbital platforms were said to vibrate for 20 minutes after force was applied - a rate deemed "unacceptable" by leaders of the Strategic Defense Initiative.

  19. Assessing Equivalent Viscous Damping Using Piping System test Results

    SciTech Connect

    Nie, J.; Morante, R.

    2010-07-18

    The specification of damping for nuclear piping systems subject to seismic-induced motions has been the subject of many studies and much controversy. Damping estimation based on test data can be influenced by numerous factors, consequently leading to considerable scatter in damping estimates in the literature. At present, nuclear industry recommendations and nuclear regulatory guidance are not consistent on the treatment of damping for analysis of nuclear piping systems. Therefore, there is still a need to develop a more complete and consistent technical basis for specification of appropriate damping values for use in design and analysis. This paper summarizes the results of recent damping studies conducted at Brookhaven National Laboratory.

  20. Subzone based multi-frequency magnetic resonance elastography using a Rayleigh damped material model.

    PubMed

    Petrov, Andrii; Chase, Geoffrey; Sellier, Mathieu; Latta, Peter; Gruwel, Marco; McGarry, Matthew; Van Houten, Elijah

    2012-01-01

    MR Elastography (MRE) is a relatively novel imaging technique using conventional MRI methods to assess the mechanical properties of tissues. In time-harmonic MRE, a Rayleigh, or proportional, Damping (RD) model incorporates attenuation behavior proportionally related to both elastic and inertial forces, thus providing a more sophisticated description of the elastic energy dissipation occurring in the biological tissue. The overall damping ratio can be extracted from the combined effect of these two components, while an additional measure, called Rayleigh Composition, can be calculated by the ratio between the two components. Thus, RD elastography is capable of not only reconstructing the viscoelastic properties of the material, but also providing additional information about damping behavior and structure. A 3D subzone based reconstruction algorithm using a RD material model has been developed and optimized to reconstruct the viscoelastic properties, damping behavior and elastic energy attenuation mechanism of tissue-simulating damping phantoms across multiple frequencies. Results have shown that all three iterative reconstructed parameters are in relatively close agreement for both the tofu and gelatin materials in both phantom configurations across the frequency range. Preliminary results from in-vivo healthy brain are also presented and discussed. PMID:23365922

  1. Experimental determination of aerodynamic damping in a three-stage transonic axial-flow compressor. M.S. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Newman, Frederick A.

    1988-01-01

    Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gauge output power spectra. The combined damping consists of aerodynamic and structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given equivalent speed, equivalent mass flow, and pressure ratio while structural and mechanical damping are assumed to be constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third stage rotor blade aerodynamic damping is presented and discussed for 70, 80, 90, and 100 percent design equivalent speed. The compressor overall performance and experimental Campbell diagrams for the third stage rotor blade row are also presented.

  2. Contact stiffness and damping of liquid films in dynamic atomic force microscope.

    PubMed

    Xu, Rong-Guang; Leng, Yongsheng

    2016-04-21

    The mechanical properties and dissipation behaviors of nanometers confined liquid films have been long-standing interests in surface force measurements. The correlation between the contact stiffness and damping of the nanoconfined film is still not well understood. We establish a novel computational framework through molecular dynamics (MD) simulation for the first time to study small-amplitude dynamic atomic force microscopy (dynamic AFM) in a simple nonpolar liquid. Through introducing a tip driven dynamics to mimic the mechanical oscillations of the dynamic AFM tip-cantilever assembly, we find that the contact stiffness and damping of the confined film exhibit distinct oscillations within 6-7 monolayer distances, and they are generally out-of-phase. For the solid-like film with integer monolayer thickness, further compression of the film before layering transition leads to higher stiffness and lower damping, while much lower stiffness and higher damping occur at non-integer monolayer distances. These two alternating mechanisms dominate the mechanical properties and dissipation behaviors of simple liquid films under cyclic elastic compression and inelastic squeeze-out. Our MD simulations provide a direct picture of correlations between the structural property, mechanical stiffness, and dissipation behavior of the nanoconfined film. PMID:27389229

  3. Contact stiffness and damping of liquid films in dynamic atomic force microscope

    NASA Astrophysics Data System (ADS)

    Xu, Rong-Guang; Leng, Yongsheng

    2016-04-01

    The mechanical properties and dissipation behaviors of nanometers confined liquid films have been long-standing interests in surface force measurements. The correlation between the contact stiffness and damping of the nanoconfined film is still not well understood. We establish a novel computational framework through molecular dynamics (MD) simulation for the first time to study small-amplitude dynamic atomic force microscopy (dynamic AFM) in a simple nonpolar liquid. Through introducing a tip driven dynamics to mimic the mechanical oscillations of the dynamic AFM tip-cantilever assembly, we find that the contact stiffness and damping of the confined film exhibit distinct oscillations within 6-7 monolayer distances, and they are generally out-of-phase. For the solid-like film with integer monolayer thickness, further compression of the film before layering transition leads to higher stiffness and lower damping, while much lower stiffness and higher damping occur at non-integer monolayer distances. These two alternating mechanisms dominate the mechanical properties and dissipation behaviors of simple liquid films under cyclic elastic compression and inelastic squeeze-out. Our MD simulations provide a direct picture of correlations between the structural property, mechanical stiffness, and dissipation behavior of the nanoconfined film.

  4. Damping of the wrist joint during voluntary movement.

    PubMed

    Milner, T E; Cloutier, C

    1998-10-01

    Damping characteristics of the musculoskeletal system were investigated during rapid voluntary wrist flexion movements. Oscillations about the final position were induced by introducing a load with the characteristics of negative damping, which artificially reduced the damping of the wrist. Subjects responded to increases in the negatively damped load by stronger cocontraction of wrist flexor and extensor muscles during the stabilization phase of the movement. However, their ability to counteract the effects of the negatively damped load diminished as the negative damping increased. Consequently, the number and frequency of oscillations increased. The oscillations were accompanied by phase-locked muscle activity superimposed on underlying tonic muscle activation. The wrist stiffness and damping coefficient increased with the increased cocontraction that accompanied more negatively damped loads, although changes in the damping coefficient were less systematic than the stiffness. Analysis of successive half-cycles of the oscillation revealed that the wrist stiffness and damping coefficient increased, despite decreasing muscle activation, as oscillation amplitude and velocity declined. This indicates that the inverse dependence of the damping coefficient on oscillation velocity contributes significantly to damping of joint motion. It is suggested that this property helps to offset a negative contribution to damping from the stretch reflex. PMID:9808304

  5. Selective spatial damping of propagating kink waves due to resonant absorption

    NASA Astrophysics Data System (ADS)

    Terradas, J.; Goossens, M.; Verth, G.

    2010-12-01

    Context. There is observational evidence of propagating kink waves driven by photospheric motions. These disturbances, interpreted as kink magnetohydrodynamic (MHD) waves are attenuated as they propagate upwards in the solar corona. Aims: We show that resonant absorption provides a simple explanation to the spatial damping of these waves. Methods: Kink MHD waves are studied using a cylindrical model of solar magnetic flux tubes, which includes a non-uniform layer at the tube boundary. Assuming that the frequency is real and the longitudinal wavenumber complex, the damping length and damping per wavelength produced by resonant absorption are analytically calculated in the thin tube (TT) approximation, valid for coronal waves. This assumption is relaxed in the case of chromospheric tube waves and filament thread waves. Results: The damping length of propagating kink waves due to resonant absorption is a monotonically decreasing function of frequency. For kink waves with low frequencies, the damping length is exactly inversely proportional to frequency, and we denote this as the TGV relation. When moving to high frequencies, the TGV relation continues to be an exceptionally good approximation of the actual dependency of the damping length on frequency. This dependency means that resonant absorption is selective as it favours low-frequency waves and can efficiently remove high-frequency waves from a broad band spectrum of kink waves. The efficiency of the damping due to resonant absorption depends on the properties of the equilibrium model, in particular on the width of the non-uniform layer and the steepness of the variation in the local Alfvén speed. Conclusions: Resonant absorption is an effective mechanism for the spatial damping of propagating kink waves. It is selective because the damping length is inversely proportional to frequency so that the damping becomes more severe with increasing frequency. This means that radial inhomogeneity can cause solar

  6. Damping properties of fiber reinforced composite suitable for stayed cable

    NASA Astrophysics Data System (ADS)

    Li, Jianzhi; Sun, Baochen; Du, Yanliang

    2011-11-01

    Carbon fiber reinforced plastics (CFRP) cables were initially most investigated to replace steel cables. To further explore the advantages of FRP cables, the potential ability of vibration control is studied in this paper emphasizing the designable characteristic of hybrid FRP cables. Fiber reinforced vinyl ester composites and fiber reinforced epoxy composites were prepared by the pultrusion method. Due to the extensive application of fiber reinforced composites, the temperature spectrum and frequency spectrum of loss factor for the composite were tested using dynamic mechanical analysis (DMA) equipment. The damping properties and damping mechanism of the composite were investigated and discussed at different temperatures and frequencies. The result indicates that the loss factor of the composites is increasing with the increase of the frequency from 0.1Hz to 2 Hz and decreasing with the decrease of the temperature from -20°C to 60°C. The loss factor of the carbon fiber composite is higher than that of the glass fiber for the same matrix. The loss factor of the vinyl ester composite is higher than that of the epoxy composite for the same fiber.

  7. Damping properties of fiber reinforced composite suitable for stayed cable

    NASA Astrophysics Data System (ADS)

    Li, Jianzhi; Sun, Baochen; Du, Yanliang

    2012-04-01

    Carbon fiber reinforced plastics (CFRP) cables were initially most investigated to replace steel cables. To further explore the advantages of FRP cables, the potential ability of vibration control is studied in this paper emphasizing the designable characteristic of hybrid FRP cables. Fiber reinforced vinyl ester composites and fiber reinforced epoxy composites were prepared by the pultrusion method. Due to the extensive application of fiber reinforced composites, the temperature spectrum and frequency spectrum of loss factor for the composite were tested using dynamic mechanical analysis (DMA) equipment. The damping properties and damping mechanism of the composite were investigated and discussed at different temperatures and frequencies. The result indicates that the loss factor of the composites is increasing with the increase of the frequency from 0.1Hz to 2 Hz and decreasing with the decrease of the temperature from -20°C to 60°C. The loss factor of the carbon fiber composite is higher than that of the glass fiber for the same matrix. The loss factor of the vinyl ester composite is higher than that of the epoxy composite for the same fiber.

  8. Dynamic Stall in Pitching Airfoils: Aerodynamic Damping and Compressibility Effects

    NASA Astrophysics Data System (ADS)

    Corke, Thomas C.; Thomas, Flint O.

    2015-01-01

    Dynamic stall is an incredibly rich fluid dynamics problem that manifests itself on an airfoil during rapid, transient motion in which the angle of incidence surpasses the static stall limit. It is an important element of many manmade and natural flyers, including helicopters and supermaneuverable aircraft, and low-Reynolds number flapping-wing birds and insects. The fluid dynamic attributes that accompany dynamic stall include an eruption of vorticity that organizes into a well-defined dynamic stall vortex and massive excursions in aerodynamic loads that can couple with the airfoil structural dynamics. The dynamic stall process is highly sensitive to surface roughness that can influence turbulent transition and to local compressibility effects that occur at free-stream Mach numbers that are otherwise incompressible. Under some conditions, dynamic stall can result in negative aerodynamic damping that leads to limit-cycle growth of structural vibrations and rapid mechanical failure. The mechanisms leading to negative damping have been a principal interest of recent experiments and analysis. Computational fluid dynamic simulations and low-order models have not been good predictors so far. Large-eddy simulation could be a viable approach although it remains computationally intensive. The topic is technologically important owing to the desire to develop next-generation rotorcraft that employ adaptive rotor dynamic stall control.

  9. Some approaches to substructure coupling with damping

    NASA Technical Reports Server (NTRS)

    Craig, R. R., Jr.; Bachmeyer, R. C.; Howsman, T. G.

    1986-01-01

    Time-domain and frequency-domain methods for coupling substructures with general linear damping are discussed. A time-domain method is presented which employs a state variable representation of each substructure. Also presented is a method which employs frequency-domain coupling together with DFT and FFT transformations to obtain transient response solutions.

  10. Bunch lengthening in the SLC damping ring

    SciTech Connect

    Rivkin, L.; Bane, K.; Chen, P.; Gabella, W.; Higo, T.; Hofmann, A.; Linebarger, W.; Kheifets, S.; Knight, T.; Morton, P.

    1988-05-01

    In this paper we present the results of measurements of bunch length and bunch shape as a function of current in the SLC e/sup /minus//damping ring. After extraction, the SLC bunch is compressed by means of an RF compressor and a subsequent high dispersion section. By inserting a video screen at a point of large dispersion and by using the correlation between bunch length and energy spread induced by the compressor, we have measured not only the bunch length but also the longitudinal charge distribution of the bunch in the damping ring as a function of beam intensity. At 3 /times/ 10/sup 10/ particles per bunch with a peak ring RF voltage of 800 KV, the FWHM of the bunch length in the ring doubles over the nominal value. To measure the energy spread of the bunch in the damping ring, the optics of the extraction lines was modified to produce a large dispersion but small horizontal ..beta.. function at the video screen. At 3 /times/ 10/sup 10/ particles per bunch, the relative energy spread in the rings is increased by about 30%. Finally, these data are compared with calculations of bunch lengthening in the SLC damping rings. 8 refs., 6 figs.,

  11. DAMP signaling in fungal infections and diseases

    PubMed Central

    Cunha, Cristina; Carvalho, Agostinho; Esposito, Antonella; Bistoni, Francesco; Romani, Luigina

    2012-01-01

    Fungal infections and diseases predominantly affect patients with deregulated immunity. Compelling experimental and clinical evidence indicate that severe fungal diseases belong to the spectrum of fungus-related inflammatory diseases. Some degree of inflammation is required for protection during the transitional response occurring temporally between the rapid innate and slower adaptive response. However, progressive inflammation worsens disease and ultimately prevents pathogen eradication. The challenge now is to elucidate cellular and molecular pathways distinguishing protective vs. pathogenic inflammation to fungi. In addition to fungal ligands of pattern recognition receptors (pathogen-associated molecular patterns, PAMPs), several host-encoded proteins, the damage-associated molecular patterns (DAMPs), are released during tissue injury and activate innate recognition receptors. DAMPs have been shown to regulate inflammation in fungal diseases. The DAMP/receptor for advanced glycation end-products axis integrated with the PAMP/Toll-like receptors axis in the generation of the inflammatory response in experimental and clinical fungal pneumonia. These emerging themes better accommodate fungal pathogenesis in the face of high-level inflammation seen in several clinical settings and point to DAMP targeting as a novel immunomodulatory strategy in fungal diseases. PMID:22973279

  12. Vibration damping for the Segmented Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Maly, Joseph R.; Yingling, Adam J.; Griffin, Steven F.; Agrawal, Brij N.; Cobb, Richard G.; Chambers, Trevor S.

    2012-09-01

    The Segmented Mirror Telescope (SMT) at the Naval Postgraduate School (NPS) in Monterey is a next-generation deployable telescope, featuring a 3-meter 6-segment primary mirror and advanced wavefront sensing and correction capabilities. In its stowed configuration, the SMT primary mirror segments collapse into a small volume; once on location, these segments open to the full 3-meter diameter. The segments must be very accurately aligned after deployment and the segment surfaces are actively controlled using numerous small, embedded actuators. The SMT employs a passive damping system to complement the actuators and mitigate the effects of low-frequency (<40 Hz) vibration modes of the primary mirror segments. Each of the six segments has three or more modes in this bandwidth, and resonant vibration excited by acoustics or small disturbances on the structure can result in phase mismatches between adjacent segments thereby degrading image quality. The damping system consists of two tuned mass dampers (TMDs) for each of the mirror segments. An adjustable TMD with passive magnetic damping was selected to minimize sensitivity to changes in temperature; both frequency and damping characteristics can be tuned for optimal vibration mitigation. Modal testing was performed with a laser vibrometry system to characterize the SMT segments with and without the TMDs. Objectives of this test were to determine operating deflection shapes of the mirror and to quantify segment edge displacements; relative alignment of λ/4 or better was desired. The TMDs attenuated the vibration amplitudes by 80% and reduced adjacent segment phase mismatches to acceptable levels.

  13. Sampling considerations for modal analysis with damping

    NASA Astrophysics Data System (ADS)

    Park, Jae Young; Wakin, Michael B.; Gilbert, Anna C.

    2015-03-01

    Structural health monitoring (SHM) systems are critical for monitoring aging infrastructure (such as buildings or bridges) in a cost-effective manner. Wireless sensor networks that sample vibration data over time are particularly appealing for SHM applications due to their flexibility and low cost. However, in order to extend the battery life of wireless sensor nodes, it is essential to minimize the amount of vibration data these sensors must collect and transmit. In recent work, we have studied the performance of the Singular Value Decomposition (SVD) applied to the collection of data and provided new finite sample analysis characterizing conditions under which this simple technique{also known as the Proper Orthogonal Decomposition (POD){can correctly estimate the mode shapes of the structure. Specifically, we provided theoretical guarantees on the number and duration of samples required in order to estimate a structure's mode shapes to a desired level of accuracy. In that previous work, however, we considered simplified Multiple-Degree-Of-Freedom (MDOF) systems with no damping. In this paper we consider MDOF systems with proportional damping and show that, with sufficiently light damping, the POD can continue to provide accurate estimates of a structure's mode shapes. We support our discussion with new analytical insight and experimental demonstrations. In particular, we study the tradeoffs between the level of damping, the sampling rate and duration, and the accuracy to which the structure's mode shapes can be estimated.

  14. Active damping of spacecraft structural appendage vibrations

    NASA Technical Reports Server (NTRS)

    Fedor, Joseph V. (Inventor)

    1990-01-01

    An active vibration damper system, for bending in two orthogonal directions and torsion, in each of three mutually perpendicular axes is located at the extremities of the flexible appendages of a space platform. The system components for each axis includes: an accelerometer, filtering and signal processing apparatus, and a DC motor-inertia wheel torquer. The motor torquer, when driven by a voltage proportional to the relative vibration tip velocity, produces a reaction torque for opposing and therefore damping a specific modal velocity of vibration. The relative tip velocity is obtained by integrating the difference between the signal output from the accelerometer located at the end of the appendage with the output of a usually carried accelerometer located on a relatively rigid body portion of the space platform. A selector switch, with sequential stepping logic or highest modal vibration energy logic, steps to another modal tip velocity channel and receives a signal voltage to damp another vibration mode. In this manner, several vibration modes can be damped with a single sensor/actuator pair. When a three axis damper is located on each of the major appendages of the platform, then all of the system vibration modes can be effectively damped.

  15. Damping of liquid sloshing by foams

    NASA Astrophysics Data System (ADS)

    Sauret, A.; Boulogne, F.; Cappello, J.; Dressaire, E.; Stone, H. A.

    2015-02-01

    When a container is set in motion, the free surface of the liquid starts to oscillate or slosh. Such effects can be observed when a glass of water is handled carelessly and the fluid sloshes or even spills over the rims of the container. However, beer does not slosh as readily as water, which suggests that foam could be used to damp sloshing. In this work, we study experimentally the effect on sloshing of a liquid foam placed on top of a liquid bath. We generate a monodisperse two-dimensional liquid foam in a rectangular container and track the motion of the foam. The influence of the foam on the sloshing dynamics is experimentally characterized: only a few layers of bubbles are sufficient to significantly damp the oscillations. We rationalize our experimental findings with a model that describes the foam contribution to the damping coefficient through viscous dissipation on the walls of the container. Then we extend our study to confined three-dimensional liquid foam and observe that the behavior of 2D and confined 3D systems are very similar. Thus, we conclude that only the bubbles close to the walls have a significant impact on the dissipation of energy. The possibility to damp liquid sloshing using foam is promising in numerous industrial applications such as the transport of liquefied gas in tankers or for propellants in rocket engines.

  16. Measurement of damping of graphite expoxy materials

    NASA Technical Reports Server (NTRS)

    Crocker, M. J.

    1985-01-01

    During this period damping measurements were made on the cylindrical graphite epoxy specimen using the forced-vibration test method. The specimen was carefully mounted directly on the shaker through the supporting ring and the impedance head. This was done to simulate an idealized free-free boundary condition at the two edges. The damping ratio value and the natural frequency (first mode) obtained in this experiment were 0.13% and 508.75 Hz respectively. In order to check the damping induced by the supporting ring, measurements were made with the top half of the ring removed. The specimen then was supported only by the bottom half of the ring (half ring). It was observed that the natural frequency of the specimen (first mode) increased of a value of 552.5 Hz due to the influence of the reduced mass of the supporting ring. But the damping ratio value obtained was the same as that obtained with full supporting ring, namely 0.13%.

  17. Experimental study on the damping of FAST cabin suspension system

    NASA Astrophysics Data System (ADS)

    Li, Hui; Sun, Jing-hai; Zhang, Xin-yu; Zhu, Wen-bai; Pan, Gao-feng; Yang, Qing-ge

    2012-09-01

    The focus cabin suspension of the FAST telescope has structurally weak-stiffness dynamics with low damping performance, which makes it quite sensitive to wind-induced vibrations. A reasonable estimation about the damping is very important for the control performance evaluation of the prototype. It is a quite difficult task as the telescope is no at available yet. In the paper, a preliminary analysis is first made on the aerodynamic damping. Then a series of experimental models are tested for measuring the total damping. The scales of these models range from 10m to 50m in diameter while 6 test parameters are specially designed to check the damping sensitivity. The Ibrahim time domain (ITD) method is employed to identify the damping from the measured cabin response. The identification results indicate that the lowest damping ratio of the models is about 0.2%~0.4%. Friction-type cabin-cable joint seems to have main influence on the system damping.

  18. Vibration damping composition has flush-away feature

    NASA Technical Reports Server (NTRS)

    Fellin, J. F.

    1967-01-01

    Vibration damping compound nullifies resonant frequencies in structures that support critical components undergoing vibration testing. The main feature of this damping composition is the ability to remove it with a flush of plain tap water.

  19. Apparatus and method of preloading vibration-damping bellows

    DOEpatents

    Cutburth, Ronald W.

    1988-01-01

    An improved vibration damping bellows mount or interconnection is disclosed. In one aspect, the bellows is compressively prestressed along its length to offset vacuum-generated tensile loads and thereby improve vibration damping characteristics.

  20. Damping at high homologous temperature in pure Cd, In, Pb, and Sn

    SciTech Connect

    Cook, L.S.; Lakes, R.S. )

    1995-03-01

    Typically, if a material possesses the stiffness necessary to be considered a structural material, its damping is low. Conversely, materials with high damping usually do not possess the stiffness necessary to be considered a structural material. Candidate materials for the high stiffness-low damping phase exist in abundance, whereas candidate materials for the moderate stiffness-high damping phase remain to be identified. One possible class of candidate materials for the moderate stiffness-high damping phase is metals at high homologous temperatures. Shear moduli of the specimens at 100 Hz are as follows: 4.1 GPa for indium, 5.7 GPa for lead, 15.7 GPa for tin, and 20.7 GPa for cadmium. Considering the behavior typical of metals, one may think of In and Pb as relatively compliant, while Sn and Cd could be called moderately stiff. The results are of some technological interest in view of the utility of materials with moderately high stiffness and damping. The combination of moderate stiffness and reasonably high loss tangent makes Cd the most promising metal tested with respect to technological applications. The shear modulus of Cd was highest of the metals tested (and very near that of aluminum (G = 27 GPa), which exhibits a loss tangent of about 0.001 at room temperature). The loss tangent of Cd at audio-frequencies was as high or higher than that of the other metals. In addition, frequency dependence of loss tangent was not as large as that observed in the other metals. No clear pattern relating damping to melting point emerged. An understanding in terms of viscoelastic mechanisms is not forthcoming at this time. Among the metal studied, cadmium exhibited a substantial loss tangent of 0.03 to 0.04 over much of the audio range, combined with a moderate stiffness, G = 20.7 GPa.

  1. Prediction of Liquid Slosh Damping Using a High Resolution CFD Tool

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Purandare, Ravi; Peugeot, John; West, Jeff

    2012-01-01

    Propellant slosh is a potential source of disturbance critical to the stability of space vehicles. The slosh dynamics are typically represented by a mechanical model of a spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. Our previous effort has demonstrated the soundness of a CFD approach in modeling the detailed fluid dynamics of tank slosh and the excellent accuracy in extracting mechanical properties (slosh natural frequency, slosh mass, and slosh mass center coordinates). For a practical partially-filled smooth wall propellant tank with a diameter of 1 meter, the damping ratio is as low as 0.0005 (or 0.05%). To accurately predict this very low damping value is a challenge for any CFD tool, as one must resolve a thin boundary layer near the wall and must minimize numerical damping. This work extends our previous effort to extract this challenging parameter from first principles: slosh damping for smooth wall and for ring baffle. First the experimental data correlated into the industry standard for smooth wall were used as the baseline validation. It is demonstrated that with proper grid resolution, CFD can indeed accurately predict low damping values from smooth walls for different tank sizes. The damping due to ring baffles at different depths from the free surface and for different sizes of tank was then simulated, and fairly good agreement with experimental correlation was observed. The study demonstrates that CFD technology can be applied to the design of future propellant tanks with complex configurations and with smooth walls or multiple baffles, where previous experimental data is not available.

  2. Damping Parameters for flow-induced vibration

    NASA Astrophysics Data System (ADS)

    Vandiver, J. Kim

    2012-11-01

    A dimensionless damping parameter, c*=2cω/ρU, is defined for cylinders experiencing flow-induced vibration. It overcomes the limitations of "mass-damping" parameters, which first came into use in 1955. A review of the history of mass-damping parameters reveals that they have been used in three principal variations, commonly expressed as Sc, SG and α. For spring-mounted rigid cylinders all three forms reduce to a constant times the following dimensionless group, 2c/πρDωn, where 'c' is the structural damping constant per unit length of cylinder and ωnis the natural frequency of the oscillator, including, when so specified, the fluid added mass. All have been used to predict A*max=Amax/D, the peak response amplitude for VIV. None are useful at organizing response at reduced velocities away from the peak in response. The proposed alternative, c*, may be used to characterize VIV at all reduced velocities in the lock-in range. The simple product of A* and c* is shown to equal CL, the lift coefficient, thus providing a simple method for compiling CL data from free response measurements. Mass-damping parameters are not well-suited to the organization of the response of flexible cylinders in sheared flows or for cylinders equipped with strakes or fairings. c* is well-suited for use with sheared flows or for cylinders with partial coverage of strakes or fairings. Data from three independent sources are used to illustrate the applications of c*. It is shown that the method of modal analysis may be used to generalize the application of c* to flexible risers. An example for a riser with partial fairing coverage is presented.

  3. Propagation and damping of broadband upstream whistlers

    NASA Technical Reports Server (NTRS)

    Orlowski, D. S.; Russell, C. T.; Krauss-Varban, D.; Omidi, N.; Thomsen, M. F.

    1995-01-01

    Previous studies indicated that damping rates of upstream whistlers strongly depend on the details of the electron distribution function. Moreover, detailed analysis of Doppler-shift and whistler dispersion relation indicated that upstream whistlers propagate obliquely in a broad band. In this paper we present results of a kinetic calculation of damping lengths of wide-band whistlers using the sum of 7-drifting bi-Maxwellian electron distributions as a best fit to the International Sun Earth Explorer (ISEE) 1 electron data. For 2 cases, when upstream whistlers are observed, convective damping lengths derived from ISEE magnetic field and ephemeris data are compared with theoretical results. We find that the calculated convective damping lengths are consistent with the data and that upstream whistlers remain marginally stable. We also show that the slope of plasma frame spectra of upstream whistlers, obtained by direct fitting of the observed spectra is between 5 and 7 with a sharp lower frequency cutoff corresponding to a wavelength of about one ion inertial length. When the solar wind velocity is directed largely along the wave normal of the upstream whistlers the polariztion of the right hand waves becomes reversed and low frequencies are switched to high resulting in a peaked spectrum with a strong high frequency cutoff. The overall spectral, wave and particle characteristics, proximity to the shock as well as propagation and damping properties indicate that these waves cannot be generated locally. Instead the observed upstream whistlers arise in the shock ramp most likely by a variety of cross-field drift and/or anisotropy driven instabilities.

  4. Chatter, process damping, and chip segmentation in turning: A signal processing approach

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher M.; Turner, Sam; Sims, Neil D.

    2010-11-01

    An increasing number of aerospace components are manufactured from titanium and nickel alloys that are difficult to machine due to their thermal and mechanical properties. This limits the metal removal rates that can be achieved from the production process. However, under these machining conditions the phenomenon of process damping can be exploited to help avoid self-excited vibrations known as regenerative chatter. This means that greater widths of cut can be taken so as to increase the metal removal rate, and hence offset the cutting speed restrictions that are imposed by the thermo-mechanical properties of the material. However, there is little or no consensus as to the underlying mechanisms that cause process damping. The present study investigates two process damping mechanisms that have previously been proposed in the machining literature: the tool flank/workpiece interference effect, and the short regenerative effect. A signal processing procedure is employed to identify flank/workpiece interference from experimental data. Meanwhile, the short regenerative model is solved using a new frequency domain approach that yields additional insight into its stabilising effect. However, analysis and signal processing of the experimentally obtained data reveals that neither of these models can fully explain the increases in stability that are observed in practice. Meanwhile, chip segmentation effects were observed in a number of measurements, and it is suggested that segmentation could play an important role in the process-damped chatter stability of these materials.

  5. Damped and zero-damped quasinormal modes of charged, nearly extremal black holes

    NASA Astrophysics Data System (ADS)

    Zimmerman, Aaron; Mark, Zachary

    2016-02-01

    Despite recent progress, the complete understanding of the perturbations of charged, rotating black holes as described by the Kerr-Newman metric remains an open and fundamental problem in relativity. In this study, we explore the existence of families of quasinormal modes of Kerr-Newman black holes whose decay rates limit to zero at extremality, called zero-damped modes in past studies. We review the nearly extremal and WKB approximation methods for spin-weighted scalar fields (governed by the Dudley-Finley equation) and give an accounting of the regimes where scalar zero-damped and damped modes exist. Using Leaver's continued fraction method, we verify that these approximations give accurate predictions for the frequencies in their regimes of validity. In the nonrotating limit, we argue that gravito-electromagnetic perturbations of nearly extremal Reissner-Nordström black holes have zero-damped modes in addition to the well-known spectrum of damped modes. We provide an analytic formula for the frequencies of these modes, verify their existence using a numerical search, and demonstrate the accuracy of our formula. These results, along with recent numerical studies, point to the existence of a simple universal equation for the frequencies of zero-damped gravito-electromagnetic modes of Kerr-Newman black holes, whose precise form remains an open question.

  6. Damping of dust-acoustic waves due to dust-dust interactions in dusty plasmas

    NASA Astrophysics Data System (ADS)

    de Angelis, U.; Shukla, P. K.

    1998-08-01

    The results of a kinetic model are presented which includes dust-dust collisions as a damping mechanism for the low-phase velocity dust-acoustic waves which have been observed [Pieper and Goree, Phys. Rev. Lett. 77 (1976) 3137] in a dusty plasma device. A comparison of our theoretical results with those of observations exhibits a good agreement, and it also leads to quantitative estimates that are close to the predictions of the modified fluid theory, which has introduced a damping rate in an ad hoc manner.

  7. Dynamic elastic modulus and vibration damping behavior of porous silicon carbide ceramics at elevated temperatures

    SciTech Connect

    Wolfenden, A.; Proffitt, C.B.; Singh, M.

    1999-10-01

    The piezoelectric ultrasonic composite oscillator technique (PUCOT) has been used to measure the Young's modulus, E, the mechanical damping, Q{sup {minus}1}, and the strain amplitude, {epsilon}, of a sintered silicon carbide containing pores (Hexoloy-SP). The silicon carbide material used in this study had at least 14 vol% porosity. Young's modulus was found to have a linear temperature dependence from room temperature to 740 C. The damping was near 10{sup {minus}4} and was independent of strain amplitude above room temperature.

  8. Effect of heat treatment on stiffness and damping of SiC/Ti-15-3

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Lerch, Bradley A.

    1992-01-01

    The effect of heat treatment on material properties of SiC/Ti-15-3 was measured by vibration tests. Heat treatment changes the microstructure, which was found to stiffen the matrix and reduce its damping capacity. Test results indicate how these changes in the matrix affect the corresponding properties of the composite. Measurements show that heat treatment affects damping properties of the composite to a greater extent than stiffness properties. The extent of change in mechanical properties is shown to depend on heat treatment temperature and exposure time.

  9. Passive damping concepts for slender columns in space structures

    NASA Technical Reports Server (NTRS)

    Razzaq, Z.

    1985-01-01

    Research into the identification of potential passive damping concepts for use in very slender structural members was continued. The following damping concepts are under investigation: mass-string dampers; bright zinc chain; polyethylene tubing; external viscoelastic tape; brushes for electrostatic and frictional damping; suspended chambers with oil and discs; and hybrid concepts. Each of these concepts are briefly discussed.

  10. Damping of confined excitation modes of one-dimensional condensates in an optical lattice

    NASA Astrophysics Data System (ADS)

    Trallero-Giner, C.; Santiago-Pérez, Darío G.; Chung, Ming-Chiang; Marques, G. E.; Cipolatti, R.

    2015-10-01

    We study the damping of the collective excitations of Bose-Einstein condensates in a harmonic trap potential loaded in an optical lattice. In the presence of a confining potential the system is inhomogeneous and the collective excitations are characterized by a set of discrete confined phononlike excitations. We derive a general convenient analytical description for the damping rate, which takes into account the trapping potential and the optical lattice for the Landau and Beliaev processes at any temperature T . At high temperature or weak spatial confinement, we show that both mechanisms display a linear dependence on T . In the quantum limit, we find that the Landau damping is exponentially suppressed at low temperatures and the total damping is independent of T . Our theoretical predictions for the damping rate under the thermal regime is in complete correspondence with the experimental values reported for the one-dimensional (1D) condensate of sodium atoms. We show that the laser intensity can tune the collision process, allowing a resonant effect for the condensate lifetime. Also, we study the influence of the attractive or repulsive nonlinear terms on the decay rate of the collective excitations. A general expression for the renormalized Goldstone frequency is obtained as a function of the 1D nonlinear self-interaction parameter, laser intensity, and temperature.

  11. High temperature damping behavior of plasma sprayed NiCoCrAlY coatings

    NASA Astrophysics Data System (ADS)

    Khor, K. A.; Chia, C. T.; Gu, Y. W.; Boey, F. Y. C.

    2002-09-01

    There is a trend to design the turbine coating and the substrate as in integral, layered, engineering assembly. Under the harsh environment of the turbine engine, a failure in one component can quickly lead to failure in other components. Materials that are used in structural applications are prone to mechanical vibration, which, when not attenuated, will lead to fatigue of components and shortening of life cycle. Therefore, it is necessary to examine the thermal stability and dynamic mechanical properties of coatings under dynamic conditions. In addition to these noise reduction and vibration amplitude control motivated objectives, however, mechanical energy dissipation processes also find intrinsic applications in cases for which a thorough understanding of the mechanisms responsible for the damping response of the material is required. This article describes the damping behavior and mechanisms that exist in plasma sprayed NiCoCrAlY coatings.

  12. STUD Pulse performance comparisons between weak and strong damping limits of SBS

    NASA Astrophysics Data System (ADS)

    Huller, Stefan; Afeyan, Bedros

    2012-10-01

    The physical mechanisms that make STUD pulses (spike trains of uneven duration and delay) optimal rely, among other physical effects, on damping of the driven waves in between spikes. By varying the damping of ion acoustic waves in inhomogeneously flowing plasma regions ranging from -8 to -2 of the Mach number, we can establish to what extent STUD pulses can be effective to control SBS growth in various damping levels. By changing the duty cycle of the chain of spikes, by changing their modulation period, by adding random inter spike phase kicks and by changing the spatial hot spot profile scrambling rate, we establish bounds on how much Brillouin backscattering Rosenbluth gain can be tolerated at the average intensity and still have STUD pulses control SBS as compared to RPP or SSD or ISI. The situation is complicated by the implication of the strong coupling regime in hot spots, by pump depletion and by initial noise level dependencies which we also examine.

  13. Silica-coated carbonyl iron microsphere based magnetorheological fluid and its damping force characteristics

    NASA Astrophysics Data System (ADS)

    Liu, Y. D.; Lee, J.; Choi, S. B.; Choi, H. J.

    2013-06-01

    Silica-coated soft magnetic carbonyl iron (CI) particles with a reduced density and enhanced anti-corrosion properties compared to pristine CI were synthesized and applied as magneto-responsive particles in a magnetorheological (MR) fluid in this study. The MR fluids containing both pristine CI and silica-coated CI particles were injected into a custom-designed MR damper, and their damping characteristics, such as damping force as a function of time, displacement and velocity, were investigated, since vibration attenuation using mechanical damper systems is one of the main applications of MR fluids. Under the same magnetic field strength applied, the damping characteristics of the two MR fluids were observed to be directly related to their yield stresses.

  14. Geometric reasoning about damped and forced harmonic motion in the complex plane

    NASA Astrophysics Data System (ADS)

    Close, Hunter G.

    2015-09-01

    Complex-valued functions are commonly used to solve differential equations for one-dimensional motion of a harmonic oscillator with linear damping, a sinusoidal driving force, or both. However, the usual approach treats complex functions as an algebraic shortcut, neglecting geometrical representations of those functions and discarding imaginary parts. This article emphasizes the benefit of using diagrams in the complex plane for such systems, in order to build intuition about harmonic motion and promote spatial reasoning and the use of varied representations. Examples include the analysis of exact time sequences of various kinematic events in damped harmonic motion, sense-making about the phase difference between a driving force and the resulting motion, and understanding the discrepancy between the resonant frequency and the natural undamped frequency for forced, damped harmonic motion. The approach is suitable for supporting instruction in undergraduate upper-division classical mechanics.

  15. Temperature dependence of spin pumping and Gilbert damping in thin Co/Pt bilayers.

    PubMed

    Verhagen, T G A; Tinkey, H N; Overweg, H C; van Son, M; Huber, M; van Ruitenbeek, J M; Aarts, J

    2016-02-10

    We report on the temperature dependence of the spin-pumping effect and the Gilbert damping in Co/Pt bilayers grown on Silicon oxide by measuring the change of the linewidth in a ferromagnetic resonance (FMR) experiment. By varying the Co thickness d(Co) between 1.5 nm and 50 nm we find that the damping increases inversely proportional to d(Co) at all temperatures between 300 K and 5 K, showing that the spin pumping effect does not depend on temperature. We also find that the linewidth increases with decreasing temperature for all thicknesses down to about 30 K, before leveling off to a constant, or even decreasing again. This behavior is similar to what is found in bulk ferromagnets, leading to the conclusion that in thin films a conductivity-like damping mechanism is present similar to what is known in crystals. PMID:26759959

  16. Temperature dependence of spin pumping and Gilbert damping in thin Co/Pt bilayers

    NASA Astrophysics Data System (ADS)

    Verhagen, T. G. A.; Tinkey, H. N.; Overweg, H. C.; van Son, M.; Huber, M.; van Ruitenbeek, J. M.; Aarts, J.

    2016-02-01

    We report on the temperature dependence of the spin-pumping effect and the Gilbert damping in Co/Pt bilayers grown on Silicon oxide by measuring the change of the linewidth in a ferromagnetic resonance (FMR) experiment. By varying the Co thickness {{d}\\text{Co}} between 1.5 nm and 50 nm we find that the damping increases inversely proportional to {{d}\\text{Co}} at all temperatures between 300 K and 5 K, showing that the spin pumping effect does not depend on temperature. We also find that the linewidth increases with decreasing temperature for all thicknesses down to about 30 K, before leveling off to a constant, or even decreasing again. This behavior is similar to what is found in bulk ferromagnets, leading to the conclusion that in thin films a conductivity-like damping mechanism is present similar to what is known in crystals.

  17. Modification and damping of Alfven waves in a magnetized dusty plasma

    NASA Astrophysics Data System (ADS)

    Salimullah, M.; Dasgupta, B.; Watanabe, K.; Sato, T.

    1994-10-01

    The dispersion characteristics of the circularly polarized electromagnetic waves along a homogeneous magnetic field in a dusty plasma have been investigated theoretically. The Vlasov equation has been employed to find the response of the magnetized plasma particles where the dust grains form a static background of highly charged and massive centers having certain correlations. It is found that in addition to the unusual Landau damping, which is negligible in the low temperature approximation, a novel mechanism of damping of the Alfven waves due to the dust comes into play. The modification and damping of the Alfven waves depend on the dust perturbation parameters, unequal densities of plasma particles, the average correlation length of the dust grains, temperature of the plasma and the magnetic field.

  18. Temperature dependent elasticity and damping in dehydrated sandstone

    NASA Astrophysics Data System (ADS)

    Darling, T. W.; Struble, W.

    2013-12-01

    Work reported previously at this conference, outlining our observation of anomalously large elastic softening and damping in dehydrated Berea sandstone at elevated temperatures, has been analysed to study shear and compressional effects separately. Modeling of the sample using COMSOL software was necessary to identify modes, as the vibration spectrum of the sample is poorly approximated by a uniform isotropic solid. The first torsional mode of our evacuated, dry, core softens at nearly twice the rate of Young's modulus modes (bending and compressional) and is also damped nearly twice as strongly as temperature increases. We consider two possible models for explaining this behavior, based on the assumption that the mechanical properties of the sandstone are dominated by the framework of quartz grains and polycrystalline cementation, neglecting initially the effects of clay and feldspar inclusions. The 20cm x 2.54cm diameter core is dry such that the pressure of water vapor in the experiment chamber is below 1e-6 Torr at 70C, suggesting that surface water beyond a small number of monolayers is negligible. Our models consider (1) enhanced sliding of grain boundaries in the cementation at elevated temperature and reduced internal water content, and (2) strain microcracking of the cementatioin at low water content due to anisotropic expansion in the quartz grains. In model (1) interfaces parallel to polyhedral grain surfaces were placed in the cement bonds and assigned frictional properties. Model (2) has not yet been implemented. The overall elasticity of a 3-D several-grain model network was determined by modeling quasistatic loading and measuring displacements. Initial results with a small number of grains/bonds suggests that only the first model provides softening and damping for all the modes, however the details of the effects of defect motioin at individual interfaces as the source for the frictional properties is still being evaluated. Nonlinear effects are

  19. Numerical and Experimental Characterizations of Damping Properties of SMAs Composite for Vibration Control Systems

    NASA Astrophysics Data System (ADS)

    Biffi, Carlo Alberto; Bassani, P.; Tuissi, A.; Carnevale, M.; Lecis, N.; LoConte, A.; Previtali, B.

    2012-12-01

    Shape memory alloys (SMAs) are very interesting smart materials not only for their shape memory and superelastic effects but also because of their significant intrinsic damping capacity. The latter is exhibited upon martensitic transformations and especially in martensitic state. The combination of these SMA properties with the mechanical and the lightweight of fiberglass-reinforced polymer (FGRP) is a promising solution for manufacturing of innovative composites for vibration suppression in structural applications. CuZnAl sheets, after laser patterning, were embedded in a laminated composite between a thick FGRP core and two thin outer layers with the aim of maximizing the damping capacity of the beam for passive vibration suppression. The selected SMA Cu66Zn24Al10 at.% was prepared by vacuum induction melting; the ingot was subsequently hot-and-cold rolled down to 0.2 mm thickness tape. The choice of a copper alloy is related to some advantages in comparison with NiTiCu SMA alloys, which was tested for the similar presented application in a previous study: lower cost, higher storage modulus and consequently higher damping properties in martensitic state. The patterning of the SMA sheets was performed by means of a pulsed fiber laser. After the laser processing, the SMA sheets were heat treated to obtain the desired martensitic state at room temperature. The transformation temperatures were measured by differential scanning calorimetry (DSC). The damping properties were determined, at room temperature, on full-scale sheet, using a universal testing machine (MTS), with cyclic tensile tests at different deformation amplitudes. Damping properties were also determined as a function of the temperature on miniature samples with a dynamical mechanical analyzer (DMA). Numerical modeling of the laminated composite, done with finite element method analysis and modal strain energy approaches, was performed to estimate the corresponding total damping capacity and then

  20. Effects of damping on mode shapes, volume 1

    NASA Technical Reports Server (NTRS)

    Gates, R. M.

    1977-01-01

    Displacement, velocity, and acceleration admittances were calculated for a realistic NASTRAN structural model of space shuttle for three conditions: liftoff, maximum dynamic pressure and end of solid rocket booster burn. The realistic model of the orbiter, external tank, and solid rocket motors included the representation of structural joint transmissibilities by finite stiffness and damping elements. Methods developed to incorporate structural joints and their damping characteristics into a finite element model of the space shuttle, to determine the point damping parameters required to produce realistic damping in the primary modes, and to calculate the effect of distributed damping on structural resonances through the calculation of admittances.

  1. Extreme damping in composite materials with negative-stiffness inclusions.

    PubMed

    Lakes, R S; Lee, T; Bersie, A; Wang, Y C

    2001-03-29

    When a force deforms an elastic object, practical experience suggests that the resulting displacement will be in the same direction as the force. This property is known as positive stiffness. Less familiar is the concept of negative stiffness, where the deforming force and the resulting displacement are in opposite directions. (Negative stiffness is distinct from negative Poisson's ratio, which refers to the occurrence of lateral expansion upon stretching an object.) Negative stiffness can occur, for example, when the deforming object has stored (or is supplied with) energy. This property is usually unstable, but it has been shown theoretically that inclusions of negative stiffness can be stabilized within a positive-stiffness matrix. Here we describe the experimental realization of this composite approach by embedding negative-stiffness inclusions of ferroelastic vanadium dioxide in a pure tin matrix. The resulting composites exhibit extreme mechanical damping and large anomalies in stiffness, as a consequence of the high local strains that result from the inclusions deforming more than the composite as a whole. Moreover, for certain temperature ranges, the negative-stiffness inclusions are more effective than diamond inclusions for increasing the overall composite stiffness. We expect that such composites could be useful as high damping materials, as stiff structural elements or for actuator-type applications. PMID:11279490

  2. Determination of damping properties in laminated composites via numerical simulation

    SciTech Connect

    Surana, K.S.; Ahmadi, A.R.

    1997-07-01

    This paper presents a numerical simulation procedure based on finite element method which could be utilized for establishing the damping characteristic of laminated composite material. Viscoelastic fluids such as upper convected Maxwell fluid and White Metzner fluids are used as sample problems to illustrate the procedure and its usefulness. For many viscoelastic materials, the damping characteristics are incorporated through what is known as loss factor while simulating dynamic response of structures containing such materials. The loss factor is directly related to the dissipative mechanism in the equations describing the behavior can be accurately obtained. In this paper the authors utilize p-version Least Squares Finite Element Method (LSFEM) to numerically solve the equations and then calculate loss factor in the post processing phase of the computations. The governing differential equations and the constitutive laws describing the material behavior are recast into a system of first order differential equations using auxiliary variables (often the stresses). Both the dependent and the auxiliary variables are interpolated over an element using unequal order C{sup 0} interpolations (element approximation). When the element approximation is substituted into the first order differential equations the authors obtain element error or residual equations. In LSFEM they minimize the integrated sum of squares of these errors over the whole discretization. They utilize Newton`s method with line search to obtain a solution iteratively.

  3. On the uncontrollable damped triple inverted pendulum

    NASA Astrophysics Data System (ADS)

    Su, H.; Woodham, C. A.

    2003-02-01

    In this paper, the controllability of the damped triple inverted pendulum is investigated. The work is concerned with the form of the cancelling pole and zero which appear in the transfer functions of an uncontrollable system, and follows on from earlier work on the damped double inverted pendulum. The investigation considers first the cases where only one of the three arm frictions is non-zero, and then explores the cases when two of the three arm frictions are non-zero. Due to the complexity of this problem, and the difficulties with the symbolic manipulation software, exploratory numerical investigations have been carried out to facilitate the symbolic investigations, all of which are reported here.

  4. Wakefield Damping for the CLIC Crab Cavity

    SciTech Connect

    Ambattu, P.K.; Burt, G.; Dexter, A.C.; Carter, R.G.; Khan, V.; Jones, R.M.; Dolgashev, V.; /SLAC

    2011-12-01

    A crab cavity is required in the CLIC to allow effective head-on collision of bunches at the IP. A high operating frequency is preferred as the deflection voltage required for a given rotation angle and the RF phase tolerance for a crab cavity are inversely proportional to the operating frequency. The short bunch spacing of the CLIC scheme and the high sensitivity of the crab cavity to dipole kicks demand very high damping of the inter-bunch wakes, the major contributor to the luminosity loss of colliding bunches. This paper investigates the nature of the wakefields in the CLIC crab cavity and the possibility of using various damping schemes to suppress them effectively.

  5. Utilising HVDC to damp power oscillations

    SciTech Connect

    Smed, T.; Andersson, G. . Dept. of Electric Power Systems)

    1993-04-01

    In this paper, damping of slow oscillations with active and reactive power modulation of HVDC-links is analyzed with the aim of gaining a physical insight into the problem. The analysis shows that active power modulation is efficient when applied to a short mass-scaled electrical distance from one of the swinging machines, and reactive power modulation is most efficient when there exists a well-defined power flow direction and the modulation is made at a point close to the electrical midpoint between the swinging machines. It is shown that the intuitively appealing feedback signals frequency and derivative of the voltage are appropriate for active and reactive power modulation, respectively. The impact of the constraints imposed by the HVDC equations are analyzed, and it is determined when the implicit reactive power modulation resulting from constant [gamma] control may be detrimental for the damping.

  6. Active Vibration Damping of Solar Arrays

    NASA Astrophysics Data System (ADS)

    Reinicke, Gunar; Baier, Horst; Grillebeck, Anton; Scharfeld, Frank; Hunger, Joseph; Abou-El-Ela, A.; Lohberg, Andreas

    2012-07-01

    Current generations of large solar array panels are lightweight and flexible constructions to reduce net masses. They undergo strong vibrations during launch. The active vibration damping is one convenient option to reduce vibration responses and limit stresses in facesheets. In this study, two actuator concepts are used for vibration damping. A stack interface actuator replaces a panel hold down and is decoupled from bending moments and shear forces. Piezoelectric patch actuators are used as an alternative, where the number, position and size of actuators are mainly driven by controllability analyses. Linear Quadratic Gaussian control is used to attenuate vibrations of selected mode shapes with both actuators. Simulations as well as modal and acoustic tests show the feasibility of selected actuator concepts.

  7. Transverse damping systems in modern synchrotrons

    NASA Astrophysics Data System (ADS)

    Zhabitsky, V. M.

    2006-12-01

    Transverse feedback systems for suppression of transverse coherent beam oscillations are used in modern synchrotrons for preventing the development of transverse instabilities and damping residual beam oscillations after injection. Information on damper systems for the Large Hadron Collider (LHC; CERN, Geneva) and the accelerator complex FAIR (GSI, Darmstadt) is presented. The project for the LHC is being performed at the Laboratory of Particle Physics of the Joint Institute for Nuclear Research in collaboration with CERN. The information concerning the state of the project and the plans of its completion at the LHC is given. The results of the first design activity on transverse damping systems at the SIS100 and SIS300 synchrotrons, to be created in the framework of the new international project FAIR, are presented.

  8. Formation and damping of relativistic strong shocks

    NASA Astrophysics Data System (ADS)

    Anile, A. M.; Miller, J. C.; Motta, S.

    1983-06-01

    Results are presented from a detailed study of the formation of strong relativistic shocks from simple waves and their subsequent damping. Basic results in relativistic hydrodynamics are first reviewed, and the transport equation for the shock amplitude is derived which permits the exact calculation of the characteristic damping time for an arbitrary initial shock profile. A basic formalism for the numerical treatment of the problem is set up using a Lagrangian formulation with the rest mass as a distance coordinate. Some results derived directly from the Rankine-Hugoniot relations are presented, and numerical results are given for the case of a purely compressive initial sine pulse propagating into a static uniform medium. The calculations confirm the qualitative nature of the effect fund by Liang and Baker (1977).

  9. Enthalpy damping for the steady Euler equations

    NASA Technical Reports Server (NTRS)

    Jespersen, D. C.

    1985-01-01

    For inviscid steady flow problems where the enthalpy is constant at steady state, it was previously proposed to use the difference between the local enthalpy and the steady state enthalpy as a driving term to accelerate convergence of iterative schemes. This idea is analyzed, both on the level of the partial differential equation and on the level of a particular finite difference scheme. It is shown that for the two-dimensional unsteady Euler equations, a hyperbolic system with eigenvalues on the imaginary axis, there is no enthalpy damping strategy which moves all the eigenvalues into the open left half plane. For the numerical scheme, however, the analysis shows and examples verify that enthalpy damping is potentially effective in accelerating convergence to steady state.

  10. Enthalpy damping for the steady Euler equations

    NASA Technical Reports Server (NTRS)

    Jespersen, D. C.

    1984-01-01

    For inviscid steady flow problems where the enthalpy is constant at steady state, it was previously proposed to use the difference between the local enthalpy and the steady state enthalpy as a driving term to accelerate convergence of iterative schemes. This idea is analyzed, both on the level of the partial differential equation and on the level of a particular finite difference scheme. It is shown that for the two-dimensional unsteady Euler equations, a hyperbolic system with eigenvalues on the imaginary axis, there is no enthalpy damping strategy which moves all the eigenvalues into the open left half plane. For the numerical scheme, however, the analysis shows and examples verify that enthalpy damping is potentially effective in accelerating convergence to steady state.

  11. Nonlinear Landau damping in the ionosphere

    NASA Technical Reports Server (NTRS)

    Kiwamoto, Y.; Benson, R. F.

    1978-01-01

    A model is presented to explain the non-resonant waves which give rise to the diffuse resonance observed near 3/2 f sub H by the Alouette and ISIS topside sounders, where f sub H is the ambient electron cyclotron frequency. In a strictly linear analysis, these instability driven waves will decay due to Landau damping on a time scale much shorter than the observed time duration of the diffuse resonance. Calculations of the nonlinear wave particle coupling coefficients, however, indicate that the diffuse resonance wave can be maintained by the nonlinear Landau damping of the sounder stimulated 2f sub H wave. The time duration of the diffuse resonance is determined by the transit time of the instability generated and nonlinearly maintained diffuse resonance wave from the remote short lived hot region back to the antenna. The model is consistent with the Alouette/ISIS observations, and clearly demonstrates the existence of nonlinear wave-particle interactions in the ionosphere.

  12. Development of Transverse Modes Damped DLA Structure

    SciTech Connect

    Jing, C.; Kanareykin, A.; Schoessow, P.; Gai, W.; Konecny, R.; Power, J. G.; Conde, M.

    2009-01-22

    As the dimensions of accelerating structures become smaller and beam intensities higher, the transverse wakefields driven by the beam become quite large with even a slight misalignment of the beam from the geometric axis. These deflection modes can cause inter-bunch beam breakup and intra-bunch head-tail instabilities along the beam path, and thus BBU control becomes a critical issue. All new metal based accelerating structures, like the accelerating structures developed at SLAC or power extractors at CLIC, have designs in which the transverse modes are heavily damped. Similarly, minimizing the transverse wakefield modes (here the HEMmn hybrid modes in Dielectric-Loaded Accelerating (DLA) structures) is also very critical for developing dielectric based high energy accelerators. In this paper, we present the design of a 7.8 GHz transverse mode damped DLA structure currently under construction, along with plans for the experimental program.

  13. Damping control of 'smart' piezoelectric shell structures

    NASA Astrophysics Data System (ADS)

    Tzou, H. S.

    Advanced 'smart' structures with self-sensation and control capabilities have attracted much attention in recent years. 'Smart' piezoelectric structures (conventional structures integrated with piezoelectric sensor and actuator elements) possessing self-monitoring and adaptive static and/or dynamic characteristics are very promising in many applications. This paper presents a study on 'smart' piezoelectric shell structures. A generic piezoelastic vibration theory for a thin piezoelectric shell continuum made of a hexagonal piezoelectric material is first derived. Piezoelastic system equation and electrostatic charge equation are formulated using Hamilton's principle and Kirchhoff-Love thin shell assumptions. Dynamic adaptivity, damping control, of a simply supported cylindrical shell structure is demonstrated in a case study. It shows that the system damping increases with the increase of feedback voltage for odd modes. The control scheme is ineffective for all even modes because of the symmetrical boundary conditions.

  14. Joint entropy of quantum damped harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Aguiar, V.; Guedes, I.

    2014-05-01

    We use the dynamical invariant method and a unitary transformation to obtain the exact Schrödinger wave function, ψn(x,t), and calculate for n=0 the time-dependent joint entropy (Leipnik’s entropy) for two classes of quantum damped harmonic oscillators. We observe that the joint entropy does not vary in time for the Caldirola-Kanai oscillator, while it decreases and tends to a constant value (ln({e}/{2})) for asymptotic times for the Lane-Emden ones. This is due to the fact that for the latter, the damping factor decreases as time increases. The results show that the time dependence of the joint entropy is quite complex and does not obey a general trend of monotonously increase with time.

  15. Passive damping of composite blades using embedded piezoelectric modules or shape memory alloy wires: a comparative study

    NASA Astrophysics Data System (ADS)

    Bachmann, F.; de Oliveira, R.; Sigg, A.; Schnyder, V.; Delpero, T.; Jaehne, R.; Bergamini, A.; Michaud, V.; Ermanni, P.

    2012-07-01

    Emission reduction from civil aviation has been intensively addressed in the scientific community in recent years. The combined use of novel aircraft engine architectures such as open rotor engines and lightweight materials offer the potential for fuel savings, which could contribute significantly in reaching gas emissions targets, but suffer from vibration and noise issues. We investigated the potential improvement of mechanical damping of open rotor composite fan blades by comparing two integrated passive damping systems: shape memory alloy wires and piezoelectric shunt circuits. Passive damping concepts were first validated on carbon fibre reinforced epoxy composite plates and then implemented in a 1:5 model of an open rotor blade manufactured by resin transfer moulding (RTM). A two-step process was proposed for the structural integration of the damping devices into a full composite fan blade. Forced vibration measurements of the plates and blade prototypes quantified the efficiency of both approaches, and their related weight penalty.

  16. Unified micromechanics of damping for unidirectional fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, C. C.

    1989-01-01

    An integrated micromechanics methodology for the prediction of damping capacity in fiber-reinforced polymer matrix unidirectional composites has been developed. Explicit micromechanics equations based on hysteretic damping are presented relating the on-axis damping capacities to the fiber and matrix properties and volume fraction. The damping capacities of unidirectional composites subjected to off-axis loading are synthesized from thermal effect on the damping performance of unidirectional composites due to temperature and moisture variations is also modeled. The damping contributions from interfacial friction between broken fibers and matrix are incorporated. Finally, the temperature rise in continuously vibrating composite plies is estimated. Application examples illustrate the significance of various parameters on the damping performance of unidirectional and off-axis fiber reinforced composites.

  17. The impact damped harmonic oscillator in free decay

    NASA Technical Reports Server (NTRS)

    Brown, G. V.; North, C. M.

    1987-01-01

    The impact-damped oscillator in free decay is studied by using time history solutions. A large range of oscillator amplitude is covered. The amount of damping is correlated with the behavior of the impacting mass. There are three behavior regimes: (1) a low amplitude range with less than one impact per cycle and very low damping, (2) a useful middle amplitude range with a finite number of impacts per cycle, and (3) a high amplitude range with an infinite number of impacts per cycle and progressively decreasing damping. For light damping the impact damping in the middle range is: (1) proportional to impactor mass, (2) additive to proportional damping, (3) a unique function of vibration amplitude, (4) proportional to 1-epsilon, where epsilon is the coefficient of restitution, and (5) very roughly inversely proportional to amplitude. The system exhibits jump phenomena and period doublings. An impactor with 2 percent of the oscillator's mass can produce a loss factor near 0.1.

  18. Damped kink oscillations of flowing prominence threads

    NASA Astrophysics Data System (ADS)

    Soler, R.; Ruderman, M. S.; Goossens, M.

    2012-10-01

    Transverse oscillations of thin threads in solar prominences are frequently reported in high-resolution observations. Two typical features of the observations are that the oscillations are damped in time and that simultaneous mass flows along the threads are detected. Flows cause the dense threads to move along the prominence magnetic structure while the threads are oscillating. The oscillations have been interpreted in terms of standing magnetohydrodynamic (MHD) kink waves of the magnetic flux tubes, which support the threads. The damping is most likely due to resonant absorption caused by plasma inhomogeneity. The technique of seismology uses the observations combined with MHD wave theory to estimate prominence physical parameters. This paper presents a theoretical study of the joint effect of flow and resonant absorption on the amplitude of standing kink waves in prominence threads. We find that flow and resonant absorption can either be competing effects on the amplitude or both can contribute to damp the oscillations depending on the instantaneous position of the thread within the prominence magnetic structure. The amplitude profile deviates from the classic exponential profile of resonantly damped kink waves in static flux tubes. Flow also introduces a progressive shift of the oscillation period compared to the static case, although this effect is in general of minor importance. We test the robustness of seismological estimates by using synthetic data aiming to mimic real observations. The effect of the thread flow can significantly affect the estimation of the transverse inhomogeneity length scale. The presence of random background noise adds uncertainty to this estimation. Caution needs to be paid to the seismological estimates that do not take the influence of flow into account.

  19. Lagrangian description of the radiation damping

    NASA Astrophysics Data System (ADS)

    Barone, P. M. V. B.; Mendes, A. C. R.

    2007-05-01

    We present a Lagrangian formalism to the dissipative system of a charge interacting with its own radiation field, which gives rise to the radiation damping [W. Heitler, The Quantum Theory of Radiation, third ed., Dover, New York, 1970; J.D. Jackson, Classical Electrodynamics, second ed., Wiley, New York, 1975 (Chapters 14, 17); G.N. Plass, Rev. Mod. Phys. 33 (1961) 37], by the indirect representation doubling the phase-space dimensions.

  20. Active Compliance And Damping In Telemanipulator Control

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Bejczy, Antal K.; Hannaford, Blake

    1991-01-01

    Experimental telemanipulator system of force-reflecting-hand-controller type provides for active compliance and damping in remote, robotic manipulator hand. Distributed-computing and -control system for research in various combinations of force-reflecting and active-compliance control regimes. Shared compliance control implemented by low-pass-filtered force/torque feedback. Variable simulated springs and shock absorbers soften collisions and increase dexterity.

  1. Driven drops with contact line damping

    NASA Astrophysics Data System (ADS)

    Xia, Yi; Chang, Chun-Ti; Steen, Paul

    2015-11-01

    A water droplet placed on a hydrophobic plate is driven by plate-normal oscillations. Resulting droplet motions are largely inviscid, having Reynolds number >100 (Ohnesorge 0.002). We are interested in isolating the effective damping, sometimes called Davis dissipation, owing to a moving contact line that is not completely mobile. In this talk, we report energy budgets as influenced by contact angle - contact line speed relationships for variously prepared surfaces.

  2. Collisional damping rates for plasma waves

    NASA Astrophysics Data System (ADS)

    Tigik, S. F.; Ziebell, L. F.; Yoon, P. H.

    2016-06-01

    The distinction between the plasma dynamics dominated by collisional transport versus collective processes has never been rigorously addressed until recently. A recent paper [P. H. Yoon et al., Phys. Rev. E 93, 033203 (2016)] formulates for the first time, a unified kinetic theory in which collective processes and collisional dynamics are systematically incorporated from first principles. One of the outcomes of such a formalism is the rigorous derivation of collisional damping rates for Langmuir and ion-acoustic waves, which can be contrasted to the heuristic customary approach. However, the results are given only in formal mathematical expressions. The present brief communication numerically evaluates the rigorous collisional damping rates by considering the case of plasma particles with Maxwellian velocity distribution function so as to assess the consequence of the rigorous formalism in a quantitative manner. Comparison with the heuristic ("Spitzer") formula shows that the accurate damping rates are much lower in magnitude than the conventional expression, which implies that the traditional approach over-estimates the importance of attenuation of plasma waves by collisional relaxation process. Such a finding may have a wide applicability ranging from laboratory to space and astrophysical plasmas.

  3. A comparison of viscoelastic damping models

    NASA Technical Reports Server (NTRS)

    Slater, Joseph C.; Belvin, W. Keith; Inman, Daniel J.

    1993-01-01

    Modern finite element methods (FEM's) enable the precise modeling of mass and stiffness properties in what were in the past overwhelmingly large and complex structures. These models allow the accurate determination of natural frequencies and mode shapes. However, adequate methods for modeling highly damped and high frequency dependent structures did not exist until recently. The most commonly used method, Modal Strain Energy, does not correctly predict complex mode shapes since it is based on the assumption that the mode shapes of a structure are real. Recently, many techniques have been developed which allow the modeling of frequency dependent damping properties of materials in a finite element compatible form. Two of these methods, the Golla-Hughes-McTavish method and the Lesieutre-Mingori method, model the frequency dependent effects by adding coordinates to the existing system thus maintaining the linearity of the model. The third model, proposed by Bagley and Torvik, is based on the Fractional Calculus method and requires fewer empirical parameters to model the frequency dependence at the expense of linearity of the governing equations. This work examines the Modal Strain Energy, Golla-Hughes-McTavish and Bagley and Torvik models and compares them to determine the plausibility of using them for modeling viscoelastic damping in large structures.

  4. Viscoelastic damping in crystalline composites and alloys

    NASA Astrophysics Data System (ADS)

    Ranganathan, Raghavan; Ozisik, Rahmi; Keblinski, Pawel

    We use molecular dynamics simulations to study viscoelastic behavior of model Lennard-Jones (LJ) crystalline composites subject to an oscillatory shear deformation. The two crystals, namely a soft and a stiff phase, individually show highly elastic behavior and a very small loss modulus. On the other hand, when the stiff phase is included within the soft matrix as a sphere, the composite exhibits significant viscoelastic damping and a large phase shift between stress and strain. In fact, the maximum loss modulus in these model composites was found to be about 20 times greater than that given by the theoretical Hashin-Shtrikman upper bound. We attribute this behavior to the fact that in composites shear strain is highly inhomogeneous and mostly accommodated by the soft phase, corroborated by frequency-dependent Grüneisen parameter analysis. Interestingly, the frequency at which the damping is greatest scales with the microstructural length scale of the composite. Finally, a critical comparison between damping properties of these composites with ordered and disordered alloys and superlattice structures is made.

  5. Use of a Rayleigh damping model in elastography.

    PubMed

    McGarry, Matthew D J; Van Houten, Elijah E W

    2008-08-01

    A Rayleigh damping model applied to magnetic resonance elastography incorporates attenuation behavior proportionally related to both elastic and inertial forces, and allows two damping parameters to be extracted from an MRI motion dataset. Under time-harmonic conditions, the model can be implemented by the use of complex shear modulus and density, whereas viscoelastic damping models commonly used in elastography consist of only a complex shear modulus, and model only a single damping effect. Simulation studies reveal that the differences between damped elastic behavior resulting from a purely complex shear modulus (CSM damping) and from a purely complex density (CD damping) become larger as the overall level of damping present (indicated by the damping ratio) increases. A plot of results generated from the finite element (FE) model indicate the relative motion differences estimated for a range of damping ratios and CSM/CD damping combinations increase with damping ratio, and can be up to 15% at a damping ratio of 50% and therefore using the correct model for a Rayleigh damped material becomes increasingly important as damping levels increase. Resonance-related effects cause values from this plot to vary by as much as 3% as parameters such as wave speed, frequency, and problem size are altered. These motion differences can be compared to expected noise levels to estimate the parameter resolution achievable by a reconstruction algorithm. An optimization-based global property reconstruction algorithm was developed, and used for testing Rayleigh damping parameter reconstructions with gaussian noise added to the simulated motion input data. The coherent motion errors resulting from altering the combination of the two damping parameters are large enough to allow accurate determination of both of the Rayleigh damping parameters with incoherent noise levels comparable to MR measurements. The accuracy achieved by the global reconstructions was significantly better than

  6. Damped Rabi wavepacket oscillations and damping time in correlated random ladders

    NASA Astrophysics Data System (ADS)

    Caetano, R. A.; Lyra, M. L.; Schulz, P. A.

    2013-12-01

    In this work, we follow the time evolution of an initially localized one-electron wavepacket in a random ladder model with correlated diagonal disorder. Weak localization of the eigenstates is anticipated for antisymmetric cross-correlations with every base pair having the same average energy. We show that the wavepacket width develops damped Rabi-like oscillations after reaching the ladder's borders. The Rabi-like oscillations are shown to originate from the interference between neighboring energy eigenstates, while its damping is associated with a destructive interference due to the random scattering in the underlying random potential. The typical damping time td is estimated as a function of the ladder size N and shown to increase as td∝Nz with z=0.62(4). The strong localization in the absence of antisymmetric cross-correlations suppresses the oscillations.

  7. Simulated and Experimental Damping Properties of a SMA/Fiber Glass Laminated Composite

    NASA Astrophysics Data System (ADS)

    Arnaboldi, S.; Bassani, P.; Biffi, C. A.; Tuissi, A.; Carnevale, M.; Lecis, N.; Loconte, A.; Previtali, B.

    2011-07-01

    In this article, an advanced laminated composite is developed, combining the high damping properties of shape memory alloy (SMA) with mechanical properties and light weight of a glass-fiber reinforced polymer. The composite is formed by stacking a glass-fiber reinforced epoxy core between two thin patterned strips of SMA alloy, and two further layers of fiber-glass reinforced epoxy. The bars of the laminated composite were assembled and cured in autoclave. The patterning was designed to enhance the interface adhesion between matrix and SMA inserts and optimally exploit the damping capacity of the SMA thin ribbons. The patterned ribbons of the SMA alloy were cut by means of a pulsed fiber laser source. Damping properties at different amplitudes on full scale samples were investigated at room temperature with a universal testing machine through dynamic tension tests, while temperature dependence was investigated by dynamic mechanical analyses (DMA) on smaller samples. Experimental results were used in conjunction with FEM analysis to optimize the geometry of the inserts. Experimental decay tests on the laminated composite have been carried out to identify the adimensional damping value related to their first flexural mode.

  8. Coronal Density Structure and its Role in Wave Damping in Loops

    NASA Astrophysics Data System (ADS)

    Cargill, P. J.; De Moortel, I.; Kiddie, G.

    2016-05-01

    It has long been established that gradients in the Alfvén speed, and in particular the plasma density, are an essential part of the damping of waves in the magnetically closed solar corona by mechanisms such as resonant absorption and phase mixing. While models of wave damping often assume a fixed density gradient, in this paper the self-consistency of such calculations is assessed by examining the temporal evolution of the coronal density. It is shown conceptually that for some coronal structures, density gradients can evolve in a way that the wave-damping processes are inhibited. For the case of phase mixing we argue that (a) wave heating cannot sustain the assumed density structure and (b) inclusion of feedback of the heating on the density gradient can lead to a highly structured density, although on long timescales. In addition, transport coefficients well in excess of classical are required to maintain the observed coronal density. Hence, the heating of closed coronal structures by global oscillations may face problems arising from the assumption of a fixed density gradient, and the rapid damping of oscillations may have to be accompanied by a separate (non-wave-based) heating mechanism to sustain the required density structuring.

  9. A comparative study of the vibration damping capacity of superalloys

    SciTech Connect

    Wang, J.; Chung, D.D.L.

    1999-10-01

    A comparative study of nickel-base, iron-base, and iron-nickel base superalloys showed Inconel MA754 (oxide dispersion strengthened) to be particularly high in vibration damping capacity. Dynamic mechanical testing was performed using a Perkin-Elmer Corp. (Norwalk, Connecticut) DMA7e instrument under dynamic flexure by three-point bending at a frequency of 0.2 Hz, with a displacement in the range of 5 to 9 {micro}m and a temperature of 475 C. The span in three-point bending was 20 mm. The sample length (in the span direction) was in the range of 20 to 25 mm. The sample width was 6 mm or less, and the sample thickness was in the range of 0.5 to 1.2 mm. The loss tangent, tan {delta}, and storage modulus were measured simultaneously.

  10. Check valve with poppet dashpot/frictional damping mechanism

    NASA Technical Reports Server (NTRS)

    Morris, Brian G. (Inventor)

    1993-01-01

    An inline check valve for a flow line where the valve element is guided for inline travel forward and rearward of a valve sealing member and is spring biased to a closed sealing condition is presented. One of the guides for the valve element includes a dashpot housing with a bore and plunger member to control the rate of travel of the valve element in either direction, providing a guiding function. The plunger member is arranged with a dashpot ring to frictionally contact the dashpot bore and has an interior tortuous flow path from one side to the other side of the dashpot ring. The dashpot housing is not anchored to the valve body so that the valve can be functional even if the dashpot ring becomes jammed in the dashpot housing.

  11. Suppression of combustion oscillations with mechanical damping devices

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Nonarray absorbing devices were investigated for use in rocket thrust chambers as instability suppressors. A theory for designing absorbing devices suitable for rocket application is derived, and a nonarray computer program is developed. The experimental program used to verify the theory is discussed. It is concluded that individual acoustical devices can be designed for maximum energy absorption, and it is recommended that single resonators be designed so that the ratio of the aperture diameter to the product of the quarter-wave length and cavity backing depth is less than one.

  12. A new analytical model for vibration of a cylindrical shell and cardboard liner with focus on interfacial distributed damping

    NASA Astrophysics Data System (ADS)

    Plattenburg, Joseph; Dreyer, Jason T.; Singh, Rajendra

    2016-06-01

    This paper proposes a new analytical model for a thin cylindrical shell that utilizes a homogeneous cardboard liner to increase modal damping. Such cardboard liners are frequently used as noise and vibration control devices for cylindrical shell-like structures in automotive drive shafts. However, most prior studies on such lined structures have only investigated the associated damping mechanisms in an empirical manner. Only finite element models and experimental methods have been previously used for characterization, whereas no analytical studies have addressed sliding friction interaction at the shell-liner interface. The proposed theory, as an extension of a prior experimental study, uses the Rayleigh-Ritz method and incorporates material structural damping along with frequency-dependent viscous and Coulomb interfacial damping formulations for the shell-liner interaction. Experimental validation of the proposed model, using a thin cylindrical shell with three different cardboard liner thicknesses, is provided to validate the new model, and to characterize the damping parameters. Finally, the model is used to investigate the effect of the liner and the damping parameters on the modal attenuation of the shell vibration, in particular for the higher-order coupled shell modes.

  13. Nutation damping in viscoelastic tumbling rotators

    NASA Astrophysics Data System (ADS)

    Frouard, Julien; Efroimsky, Michael

    2015-11-01

    Presently, 138 asteroids show signs of being in non-principal spin states (Warner et al. 2009, updated September 2015). Such spin is often called `tumble' or `wobble'. The instantaneous rotation axis of a wobbling body performs nutation about the direction of the (conserved) angular-momentum vector. Incited by collisions and YORP, wobble is mitigated by internal dissipation due to the nutation-caused alternating stresses inside the asteroid.The knowledge of the timescale related to the damping of the nutation angle is complementary to the knowledge of the timescales associated with collisions and YORP. Previous evaluations of the nutation relaxation rate were based on an inherently inconsistent approach that may be called "Q-model". First, the elastic energy in a periodically deforming rotator was calculated in assumption of the deformation being elastic. Therefrom, the energy dissipation rate was determined by introducing an ad hoc quality factor Q. This ignored the fact that friction (and the ensuing existence of Q) is due to deviation from elasticity.We use the viscoelastic Maxwell model which naturally implies dissipation (as any other viscoelastic model would). In this approach, we compute the power and damping time for an oblate ellipsoid and a prism. Now, the viscosity assumes the role of the product μQ in the empirical Q-model, with μ being the rigidity. Contrarily to the Q-model, our model naturally gives a null dissipation for a shape tending to a sphere. We also explore when the constant part of the stress can be ignored in the derivation of the damping time. The neglect of prestressing turns out to be legitimate for the mean viscosity exceeding a certain threshold value.

  14. Damping in high-temperature superconducting levitation systems

    DOEpatents

    Hull, John R.

    2009-12-15

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.

  15. Air damping effect on the air-based CMUT operation

    NASA Astrophysics Data System (ADS)

    Cha, Bu-Sang; Kanashima, Takeshi; Lee, Seung-Mok; Okuyama, Masanori

    2015-08-01

    The vibration amplitude, damping ratio and viscous damping force in capacitive micromachinedultrasonic transducers (CMUTs) with a perforated membrane have been calculated theoretically and compared with the experimental data on its vibration behavior. The electrical bias of the DC and the AC voltages and the operation frequency conditions influence the damping effect because leads to variations in the gap height and the vibration velocity of the membrane. We propose a new estimation method to determine the damping ratio by the decay rate of the vibration amplitudes of the perforated membrane plate are measured using a laser vibrometer at each frequency, and the damping ratios were calculated from those results. The influences of the vibration frequency and the electrostatic force on the damping effect under the various operation conditions have been studied.

  16. Special class of nonlinear damping models in flexible space structures

    NASA Technical Reports Server (NTRS)

    Hu, Anren; Singh, Ramendra P.; Taylor, Lawrence W.

    1991-01-01

    A special class of nonlinear damping models is investigated in which the damping force is proportional to the product of positive integer or the fractional power of the absolute values of displacement and velocity. For a one-degree-of-freedom system, the classical Krylov-Bogoliubov 'averaging' method is used, whereas for a distributed system, both an ad hoc perturbation technique and the finite difference method are employed to study the effects of nonlinear damping. The results are compared with linear viscous damping models. The amplitude decrement of free vibration for a single mode system with nonlinear models depends not only on the damping ratio but also on the initial amplitude, the time to measure the response, the frequency of the system, and the powers of displacement and velocity. For the distributed system, the action of nonlinear damping is found to reduce the energy of the system and to pass energy to lower modes.

  17. Higher order mode damping in an ALS test cavity

    SciTech Connect

    Jacob, A.F.; Lamberston, G.R. ); Barry, W. )

    1990-06-01

    The higher order mode attenuation scheme proposed for the Advanced Light Source accelerating cavities consists of two broad-band dampers placed 90{degrees} apart on the outer edge. In order to assess the damping efficiency a test assembly was built. The HOM damping was obtained by comparing the peak values of the transmission through the cavity for both the damped and the undamped case. Because of the high number of modes and frequency shifts due to the damping gear, the damping was assessed statistically, by averaging over several modes. In the frequency range from 1.5 to 5.5 GHz, average damping greater than 100 was obtained. 1 ref., 6 figs.

  18. Synthesis of shuttle vehicle damping using substructure test results

    NASA Technical Reports Server (NTRS)

    Kana, D. D.; Huzar, S.

    1972-01-01

    An empirical method is developed for predicting the modal damping of a combined parallel-stage shuttle model by means of damping measurements performed on the individual substructures. Correlations are first determined for each component in terms of damping energy as a function of peak kinetic energy and modal amplitude. The results are then used to predict component damping energies corresponding to the respective kinetic energies and amplitudes that occur for the new modes of the combined system. Modal characteristics for the system, other than damping, are obtained by a real eigenvalue solution of dynamic equations developed by Hurty's procedure of substructures. System equations, which include component modal damping, are also solved by a complex eigenvalue approach for comparison with results of the empirical method.

  19. Landau damping in a collisionless dipolar Bose gas

    NASA Astrophysics Data System (ADS)

    Natu, Stefan S.; Wilson, Ryan M.

    2013-12-01

    We present a theory for the Landau damping of low-energy quasiparticles in a collisionless, quasi-two-dimensional dipolar Bose gas and produce expressions for the damping rate in uniform and nonuniform systems. Using simple energy-momentum conservation arguments, we show that in the homogeneous system, the nature of the low-energy dispersion in a dipolar Bose gas severely inhibits Landau damping of long wavelength excitations. For a gas with contact and dipolar interactions, the damping rate for phonons tends to decrease with increasing dipolar interactions; for strong dipole-dipole interactions, phonons are virtually undamped over a broad range of temperature. The damping rate for maxon-roton excitations is found to be significantly larger than the damping rate for phonons.

  20. Nearby Galaxies as Damped Lyman alpha Absorbers

    NASA Astrophysics Data System (ADS)

    Rao, Sandhya

    1993-12-01

    The evolution of the neutral hydrogen content of galaxies as a function of time is an important constraint on processes in galactic evolution. We present a comprehensive, statistical description of the HI content and distribution within galaxies at the present epoch and compare these statistics with the properties of HI associated with ``damped Lyman alpha '' absorption systems at high redshift that are observed in the spectra of QSOs. Omega_ {HI}(z=0), the HI mass density at the present epoch relative to the present critical mass density, is found to be (2.3 +/- 0.6) times 10(-4) h75(-1) , consistent with the decreasing trend of the HI content with time deduced from QSO absorption line statistics for redshifts from about 4 to 0.5 (Lanzetta 1993). Spiral galaxies contain an overwhelming 94% of this neutral hydrogen mass. The rest is contained in irregulars (3%), and S0s plus ellipticals (3%). Spirals also offer the largest cross-section to line-of-sight absorption of light from QSOs. By considering nearby spirals as potential absorbers, the interception probability as a function of the HI column density, N(HI), is derived for comparison with the cross-sections inferred from observations of damped Lyman alpha systems. Consistent with previous studies, the comparison shows that the damped Ly alpha lines are created by absorbers that subtend larger cross-sections than present-day spirals by a factor of 5 implying that galaxies were either larger or more numerous at z ~ 2.5. We are also investigating the statistics of damped Lyman alpha absorbers in the redshift range 0.2 1.5.

  1. Mode damping rates in a protein chromophore

    NASA Astrophysics Data System (ADS)

    Leitner, David M.

    2012-03-01

    A variety of optical studies reveal coherent low-frequency oscillations during photochemical reactions in proteins. We recently argued [New J. Phys. 12, Art. No. 085004 (2010)] that the vibrational eigenstates of an isolated chromophore may be localized, which can give rise to long-lived low-frequency vibrational modes when the chromophore is embedded in a protein. Here we show that, even if vibrational eigenstates are not localized, bottlenecks to vibrational energy flow that are absent in much larger molecules give rise to slow damping of low-frequency modes in many protein chromophores. Examples including rhodopsin, photoactive yellow protein and green fluorescent protein are discussed.

  2. Status of the SLC damping rings

    SciTech Connect

    Hutton, A.M.; Davies-White, W.A.; Delahaye, J.P.; Fieguth, T.H.; Hofmann, A.; Jager, J.; Kloeppel, P.K.; Lee, M.J.; Linebarger, W.A.; Rivkin, L.

    1985-06-01

    Electron beams of full design energy 1.21 GeV and nearly full design intensity 4 x 10/sup 10/ particles/pulse (design 5 x 10/sup 10/) have been extracted from the Stanford Linac and successfully stored in the electron damping ring. Beams of less intensity have been extracted from the ring and reinjected into the Linac. The present intensity limits are not thought to be fundamental. The operating experience with the electron ring and the status of the construction of the positron ring will be discussed. 11 refs., 1 fig., 2 tabs.

  3. System for damping vibrations in a turbine

    SciTech Connect

    Roberts, III, Herbert Chidsey; Johnson, Curtis Alan; Taxacher, Glenn Curtis

    2015-11-24

    A system for damping vibrations in a turbine includes a first rotating blade having a first ceramic airfoil, a first ceramic platform connected to the first ceramic airfoil, and a first root connected to the first ceramic platform. A second rotating blade adjacent to the first rotating blade includes a second ceramic airfoil, a second ceramic platform connected to the second ceramic airfoil, and a second root connected to the second ceramic platform. A non-metallic platform damper has a first position in simultaneous contact with the first and second ceramic platforms.

  4. Shear deformation damping of a double-beam structure

    NASA Astrophysics Data System (ADS)

    Szmidt, Tomasz

    2016-05-01

    The dynamics of twin cantilever beams connected at their free ends by a viscoelastic member is investigated. A series of experiments with damping members made of various materials was conducted. A dynamic model of the structure is proposed. It fits the experimental data well, and allows estimating the Kirchhoff modulus and shear damping coefficient of the member. The influence of geometry of the damping element on oscillatory characteristics of the system is investigated.

  5. Measurement of Damping of Composite Materials for Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Harris, D. L.

    1998-01-01

    The scientific community has felt that ceramic matrix composite (CMC) materials possess more material damping than the superalloys used in the production of rocket engine turbomachinery turbine-end components. The purpose of this NASA/MFSC study is to quantify the damping in CMC's as compared to a typical super-alloy, Inconel 718. It was observed through testing of beam coupons and disk specimens that the CMC's do indeed possess more material damping than the baselined alloy Inconel 718.

  6. The Effects of Nonlinear Damping on Post-flutter Behavior Using Geometrically Nonlinear Reduced Order Modeling

    NASA Astrophysics Data System (ADS)

    Song, Pengchao

    Recent studies of the occurrence of post-flutter limit cycle oscillations (LCO) of the F-16 have provided good support to the long-standing hypothesis that this phenomenon involves a nonlinear structural damping. A potential mechanism for the appearance of nonlinearity in the damping are the nonlinear geometric effects that arise when the deformations become large enough to exceed the linear regime. In this light, the focus of this investigation is first on extending nonlinear reduced order modeling (ROM) methods to include viscoelasticity which is introduced here through a linear Kelvin-Voigt model in the undeformed configuration. Proceeding with a Galerkin approach, the ROM governing equations of motion are obtained and are found to be of a generalized van der Pol-Duffing form with parameters depending on the structure and the chosen basis functions. An identification approach of the nonlinear damping parameters is next proposed which is applicable to structures modeled within commercial finite element software. The effects of this nonlinear damping mechanism on the post-flutter response is next analyzed on the Goland wing through time-marching of the aeroelastic equations comprising a rational fraction approximation of the linear aerodynamic forces. It is indeed found that the nonlinearity in the damping can stabilize the unstable aerodynamics and lead to finite amplitude limit cycle oscillations even when the stiffness related nonlinear geometric effects are neglected. The incorporation of these latter effects in the model is found to further decrease the amplitude of LCO even though the dominant bending motions do not seem to stiffen as the level of displacements is increased in static analyses.

  7. NLSE for quantum plasmas with the radiation damping

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel A.

    2016-05-01

    We consider contribution of the radiation damping in the quantum hydrodynamic (QHD) equations for spinless particles. We discuss possibility of obtaining corresponding nonlinear Schrödinger equation (NLSE) for the macroscopic wave function. We compare contribution of the radiation damping with weakly (or semi-) relativistic effects appearing in the second-order on v/c. The radiation damping appears in the third-order on v/c. So it might be smaller than weakly relativistic effects, but it gives damping of the Langmuir waves which can be considerable.

  8. Dynamic apeerture in damping rings with realistic wigglers

    SciTech Connect

    Cai, Yunhai; /SLAC

    2005-05-04

    The International Linear Collider based on superconducting RF cavities requires the damping rings to have extremely small equilibrium emittance, huge circumference, fast damping time, and large acceptance. To achieve all of these requirements is a very challenging task. In this paper, we will present a systematic approach to designing the damping rings using simple cells and non-interlaced sextupoles. The designs of the damping rings with various circumferences and shapes, including dogbone, are presented. To model realistic wigglers, we have developed a new hybrid symplectic integrator for faster and accurate evaluation of dynamic aperture of the lattices.

  9. Damping factor estimation using spin wave attenuation in permalloy film

    SciTech Connect

    Manago, Takashi; Yamanoi, Kazuto; Kasai, Shinya; Mitani, Seiji

    2015-05-07

    Damping factor of a Permalloy (Py) thin film is estimated by using the magnetostatic spin wave propagation. The attenuation lengths are obtained by the dependence of the transmission intensity on the antenna distance, and decrease with increasing magnetic fields. The relationship between the attenuation length, damping factor, and external magnetic field is derived theoretically, and the damping factor was determined to be 0.0063 by fitting the magnetic field dependence of the attenuation length, using the derived equation. The obtained value is in good agreement with the general value of Py. Thus, this estimation method of the damping factor using spin waves attenuation can be useful tool for ferromagnetic thin films.

  10. Dependence of Kambersky damping on Fermi level and spin orientation

    SciTech Connect

    Qu, T.; Victora, R. H.

    2014-05-07

    Kambersky damping represents the loss of magnetic energy from the electrons to the lattice through the spin orbit interaction. It is demonstrated that, for bcc Fe-based transition metal alloys, the logarithm of the energy loss is proportional to the density of states at the Fermi level. Both inter and intraband damping are calculated for spins at arbitrary angle to the previously examined [001] direction. Although the easy axis 〈100〉 shows isotropic relaxation and achieves the minimum damping value of 0.002, other directions, such as 〈110〉, show substantial anisotropic damping.

  11. Damping element for reducing the vibration of an airfoil

    DOEpatents

    Campbell, Christian X; Marra, John J

    2013-11-12

    An airfoil (10) is provided with a tip (12) having an opening (14) to a center channel (24). A damping element (16) is inserted within the opening of the center channel, to reduce an induced vibration of the airfoil. The mass of the damping element, a spring constant of the damping element within the center channel, and/or a mounting location (58) of the damping element within the center channel may be adjustably varied, to shift a resonance frequency of the airfoil outside a natural operating frequency of the airfoil.

  12. Coulomb-damped resonant generators using piezoelectric transduction

    NASA Astrophysics Data System (ADS)

    Miller, L. M.; Mitcheson, P. D.; Halvorsen, E.; Wright, P. K.

    2012-06-01

    Switching interface circuits employed with piezoelectric energy harvesters can increase the electrical damping considerably over that achievable with passive rectifiers. We show that a piezoelectric harvester coupled to certain types of switching circuits becomes a Coulomb-damped resonant generator. This allows analysis of such harvester systems within a well-known framework and, subject to practical constraints, allows the optimal electrical damping to be achieved. In the piezoelectric pre-biasing technique, the Coulomb damping is set by a pre-bias voltage whose optimal value is derived as a function of piezoelectric harvester parameters.

  13. Significance of modeling internal damping in the control of structures

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Inman, D. J.

    1992-01-01

    Several simple systems are examined to illustrate the importance of the estimation of damping parameters in closed-loop system performance and stability. The negative effects of unmodeled damping are particularly pronounced in systems that do not use collocated sensors and actuators. An example is considered for which even the actuators (a tip jet nozzle and flexible hose) for a simple beam produce significant damping which, if ignored, results in a model that cannot yield a reasonable time response using physically meaningful parameter values. It is concluded that correct damping modeling is essential in structure control.

  14. Modeling vibration response and damping of cables and cabled structures

    NASA Astrophysics Data System (ADS)

    Spak, Kaitlin S.; Agnes, Gregory S.; Inman, Daniel J.

    2015-02-01

    In an effort to model the vibration response of cabled structures, the distributed transfer function method is developed to model cables and a simple cabled structure. The model includes shear effects, tension, and hysteretic damping for modeling of helical stranded cables, and includes a method for modeling cable attachment points using both linear and rotational damping and stiffness. The damped cable model shows agreement with experimental data for four types of stranded cables, and the damped cabled beam model shows agreement with experimental data for the cables attached to a beam structure, as well as improvement over the distributed mass method for cabled structure modeling.

  15. Damping of long-wavelength kinetic alfven fluctuations: linear theory

    SciTech Connect

    Gary, S Peter; Borovsky, Joseph E

    2008-01-01

    The full electromagnetic linear dispersion equation for kinetic Alfven fluctuations in a homogeneous, isotropic, Maxwellian electron-proton plasma is solved numerically in the long wavelength limit. The solutions are summarized by an analytic expression for the damping rate of such modes at propagation sufficiently oblique to the background magnetic field B{sub o} which scales as k{sub {perpendicular}}{sup 2} k{sub {parallel}} where the subscripts denote directions relative to B{sub o}. This damping progressively (although not monotonically) increases with increasing electron {beta}, corresponding to four distinct damping regimes: nonresonant, electron Landau, proton Landau, and proton transit-time damping.

  16. Characterization of damping in microfibrous material

    NASA Astrophysics Data System (ADS)

    Soobramaney, Pregassen; Flowers, George T.; Dean, Robert N.

    2012-04-01

    MEMS gyroscopes are used in many applications including harsh environments such as high-power, high-frequency acoustic noise. If the latter is at the natural frequency of the gyroscope, the proof mass will be overexcited giving rise to a corrupted gyroscope output. To mitigate the effect of the high-power, high-frequency acoustic noise, it is proposed to use nickel microfibrous sheets as an acoustic damper. For this purpose, the characterization of vibration damping in Nickel microfibrous sheets was examined in the present research effort. The sheets were made from nickel fibers with cellulose as a binding agent using a wet-lay papermaking technique. Sintering was done at 1000 °C to remove all the cellulose giving rise to a porous material. Square sheets of 20 cm were made from three diameters of nickel fibers namely 4, 8, and 12 microns. The sheets were cut into smaller pieces to fit the requirements of a fixture specially designed for this study. The fixture was attached to a LDS V408 shaker with a mass resting on a stack of the microfibrous sheets to simulate transmitted vibration by base motion with the sheet stack acting as a damper. A series of experiments was conducted using these 3 fiber diameters, different number of layers of microfibrous sheets and varying the vibration amplitude. From the collected vibration data, the stiffness and damping ratio of the microfibrous material was characterized.

  17. Fisher information of quantum damped harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Aguiar, V.; Guedes, I.

    2015-04-01

    We calculate the time-dependent Fisher information in position ({{F}x}) and momentum ({{F}p}) for the lowest lying state ≤ft( n=0 \\right) of two classes of quantum damped (Lane-Emden (LE) and Caldirola-Kanai (CK)) harmonic oscillators. The expressions of {{F}x} and {{F}p} are written in terms of ρ , a c-number quantity satisfying a nonlinear differential equation. Analytical solutions of ρ were obtained. For the LE and CK oscillators, we observe that {{F}x} increases while {{F}p} decreases with increasing time. The product {{F}x}{{F}p} increases and tends to a constant value in the limit t\\to ∞ for the LE oscillator, while it is time-independent for the CK oscillator. Moreover, for the CK oscillator the product {{F}x}{{F}p} decreases as the damping ≤ft( γ \\right) increases. Relations among the Fisher information, Leipnik and Shannon entropies, and the Stam and Cramer-Rao inequalities are given. A discussion on the squeezing phenomenon in position for the oscillators is presented.

  18. Radiation damping in Einstein-aether theory

    SciTech Connect

    Foster, Brendan Z.

    2006-05-15

    This work concerns the loss of energy of a material system due to gravitational radiation in Einstein-aether theory - an alternative theory of gravity in which the metric couples to a dynamical, timelike, unit-norm vector field. Derived to lowest post-Newtonian order are wave forms for the metric and vector fields far from a nearly Newtonian system and the rate of energy radiated by the system. The expressions depend on the quadrupole moment of the source, as in standard general relativity, but also contain monopolar and dipolar terms. There exists a one-parameter family of Einstein-aether theories for which only the quadrupolar contribution is present, and for which the expression for the damping rate is identical to that of general relativity to the order worked to here. This family cannot yet be declared observationally viable, since effects due to the strong internal fields of bodies in the actual systems used to test the damping rate have not yet been determined.

  19. Intrinsic Josephson Junctions with Intermediate Damping

    NASA Astrophysics Data System (ADS)

    Warburton, Paul A.; Saleem, Sajid; Fenton, Jon C.; Speller, Susie; Grovenor, Chris R. M.

    2011-03-01

    In cuprate superconductors, adjacent cuprate double-planes are intrinsically Josephson-coupled. For bias currents perpendicular to the planes, the current-voltage characteristics correspond to those of an array of underdamped Josephson junctions. We will discuss our experiments on sub-micron Tl-2212 intrinsic Josephson junctions (IJJs). The dynamics of the IJJs at the plasma frequency are moderately damped (Q ~ 8). This results in a number of counter-intuitive observations, including both a suppression of the effect of thermal fluctuations and a shift of the skewness of the switching current distributions from negative to positive as the temperature is increased. Simulations confirm that these phenomena result from repeated phase slips as the IJJ switches from the zero-voltage to the running state. We further show that increased dissipation counter-intuitively increases the maximum supercurrent in the intermediate damping regime (PRL vol. 103, art. no. 217002). We discuss the role of environmental dissipation on the dynamics and describe experiments with on-chip lumped-element passive components in order control the environment seen by the IJJs. Work supported by EPSRC.

  20. Hamiltonian and Lagrangian dynamics of charged particles including the effects of radiation damping

    NASA Astrophysics Data System (ADS)

    Qin, Hong; Burby, Joshua; Davidson, Ronald; Fisch, Nathaniel; Chung, Moses

    2015-11-01

    The effects of radiation damping (radiation reaction) on accelerating charged particles in modern high-intensity accelerators and high-intensity laser beams have becoming increasingly important. Especially for electron accelerators and storage rings, radiation damping is an effective mechanism and technique to achieve high beam luminosity. We develop Hamiltonian and Lagrangian descriptions of the classical dynamics of a charged particle including the effects of radiation damping in the general electromagnetic focusing channels encountered in accelerators. The direct connection between the classical Hamiltonian and Lagrangian theories and the more fundamental QED description of the synchrotron radiation process is also addressed. In addition to their theoretical importance, the classical Hamiltonian and Lagrangian theories of the radiation damping also enable us to numerically integrate the dynamics using advanced structure-preserving geometric algorithms. These theoretical developments can also be applied to runaway electrons and positrons generated during the disruption or startup of tokamak discharges. This research was supported by the U.S. Department of Energy (DE-AC02-09CH11466).

  1. Development of polyurethane/epoxy interpenetrating networks as broad band damping materials

    SciTech Connect

    Coughlin, C.S.; Samuels, M.Q.; Capps, R.N.

    1993-12-31

    Several series of polyurethane/epoxy IPN`s were prepared for possible use as broad band damping materials. The polyurethane component contained a poly(caprolactone) soft segment and a carbodiimide-modified MDI hard segment chain extended with trimethylolpropane. The epoxy component was a standard bisphenol-A resin cured with either a BCl{sub 3}-amine complex or BF{sub 3}-etherate. All IPN`s showed apparent true IPN behavior with no or very small scale phase separation. Dynamic mechanical data revealed that the systems prepared with BCl{sub 3} as the epoxy curative are too stiff with a Tg too high for the damping application. BF{sub 3}-etherate cured IPN`s showed good damping ability but the epoxy component was not fully incorporated and could be leached out yielding an unstable system. Ongoing work is focusing on incorporating a more flexible epoxy component and/or a plasticizer to increase damping and lower the Tg.

  2. Measuring Collisionless Damping in Heliospheric Plasmas using Field–Particle Correlations

    NASA Astrophysics Data System (ADS)

    Klein, K. G.; Howes, G. G.

    2016-08-01

    An innovative field–particle correlation technique is proposed that uses single-point measurements of the electromagnetic fields and particle velocity distribution functions to investigate the net transfer of energy from fields to particles associated with the collisionless damping of turbulent fluctuations in weakly collisional plasmas, such as the solar wind. In addition to providing a direct estimate of the local rate of energy transfer between fields and particles, it provides vital new information about the distribution of that energy transfer in velocity space. This velocity-space signature can potentially be used to identify the dominant collisionless mechanism responsible for the damping of turbulent fluctuations in the solar wind. The application of this novel field–particle correlation technique is illustrated using the simplified case of the Landau damping of Langmuir waves in an electrostatic 1D-1V Vlasov–Poisson plasma, showing that the procedure both estimates the local rate of energy transfer from the electrostatic field to the electrons and indicates the resonant nature of this interaction. Modifications of the technique to enable single-point spacecraft measurements of fields and particles to diagnose the collisionless damping of turbulent fluctuations in the solar wind are discussed, yielding a method with the potential to transform our ability to maximize the scientific return from current and upcoming spacecraft missions, such as the Magnetospheric Multiscale (MMS) and Solar Probe Plus missions.

  3. Modeling and evaluation of damping coefficient of eddy current dampers in rotordynamic applications

    NASA Astrophysics Data System (ADS)

    Detoni, J. G.; Cui, Q.; Amati, N.; Tonoli, A.

    2016-07-01

    Eddy current dampers (ECD) can be used to introduce damping in rotordynamic applications. ECDs are contactless in nature and can be made to introduce negligible drag force, thus being a perfect match for passive magnetic bearings such as permanent magnet bearings and superconducting bearings. However, modeling and estimating the amount of damping introduced by an ECD is a difficult task due to complicated geometry and working conditions. The present study presents a novel method for modeling and identification of the damping characteristics of ECDs for rotordynamic applications. The proposed method employs an analytical dynamic model of the ECD and curve fitting with results of electromagnetic finite element (FE) models to obtain the parameters characterizing the ECD's mechanical impedance. The damping coefficient can be obtained with great accuracy from a single FE solution in quasistatic conditions. The validity of the proposed method is limited to the case of ECDs employing an axisymmetric conductor, such as a disc or a cylinder, thus covering most cases in rotordynamic applications. Finally, the accuracy of the identification procedure is verified experimentally by comparing the model's results with experimental tests.

  4. On the efficacy of friction damping in the presence of nonlinear modal interactions

    NASA Astrophysics Data System (ADS)

    Krack, Malte; Bergman, Lawrence A.; Vakakis, Alexander F.

    2016-05-01

    This work addresses friction-induced modal interactions in jointed structures, and their effects on the passive mitigation of vibrations by means of friction damping. Under the condition of (nearly) commensurable natural frequencies, the nonlinear character of friction can cause so-called nonlinear modal interactions. If harmonic forcing near the natural frequency of a specific mode is applied, for instance, another mode may be excited due to nonlinear energy transfer and thus contribute considerably to the vibration response. We investigate how this phenomenon affects the performance of friction damping. To this end, we study the steady-state, periodic forced vibrations of a system of two beams connected via a local mechanical friction joint. The system can be tuned to continuously adjust the ratio between the first two natural frequencies in the range around the 1:3 internal resonance, in order to trigger or suppress the emergence of modal interactions. Due to the re-distribution of the vibration energy, the vibration level can in fact be reduced in certain situations. However, in other situations, the multi-harmonic character of the vibration has detrimental effects on the effective damping provided by the friction joint. The resulting response level can be significantly larger than in the absence of modal interactions. Moreover, it is shown that the vibration behavior is highly sensitive in the neighborhood of internal resonances. It is thus concluded that the condition of internal resonance should be avoided in the design of friction-damped systems.

  5. Study on vibration suppression based on particle damping in centrifugal field of gear transmission

    NASA Astrophysics Data System (ADS)

    Xiao, Wangqiang; Li, Jiani; Wang, Sheng; Fang, Xiaomeng

    2016-03-01

    Though particle damping technology has been applied to vibration suppression in steady state, there are few reports about the study of particle dampers in centrifugal fields because of its nonlinear damping performance and complex mechanism. Introducing particle damping technology into gear transmission will effectively reduce the vibration from gear engaging, especially for harsh working conditions, such as high temperature and oil lubrication. In this paper, we have explored the mechanism of gear excitation and determined the relationship between the rotational speed and gear's modal parameters in centrifugal fields. A mechanical model of the particle damper based on the discrete element method (DEM) in centrifugal fields has been established. Furthermore, the DEM model has been verified by comparing simulation data with experimental data. Based on the model, we have discussed the particle damper's energy dissipation mechanism in centrifugal fields, as well as the calculation method of energy dissipation. Moreover, the influence of the particle size on energy dissipation characteristics has been analyzed. The results can provide theoretical guidance for vibration and noise reduction of the gear transmission.

  6. A New MEMS Gyroscope Used for Single-Channel Damping.

    PubMed

    Zhang, Zengping; Zhang, Wei; Zhang, Fuxue; Wang, Biao

    2015-01-01

    The silicon micromechanical gyroscope, which will be introduced in this paper, represents a novel MEMS gyroscope concept. It is used for the damping of a single-channel control system of rotating aircraft. It differs from common MEMS gyroscopes in that does not have a drive structure, itself, and only has a sense structure. It is installed on a rotating aircraft, and utilizes the aircraft spin to make its sensing element obtain angular momentum. When the aircraft is subjected to an angular rotation, a periodic Coriolis force is induced in the direction orthogonal to both the angular momentum and the angular velocity input axis. This novel MEMS gyroscope can thus sense angular velocity inputs. The output sensing signal is exactly an amplitude-modulation signal. Its envelope is proportional to the input angular velocity, and the carrier frequency corresponds to the spin frequency of the rotating aircraft, so the MEMS gyroscope can not only sense the transverse angular rotation of an aircraft, but also automatically change the carrier frequency over the change of spin frequency, making it very suitable for the damping of a single-channel control system of a rotating aircraft. In this paper, the motion equation of the MEMS gyroscope has been derived. Then, an analysis has been carried to solve the motion equation and dynamic parameters. Finally, an experimental validation has been done based on a precision three axis rate table. The correlation coefficients between the tested data and the theoretical values are 0.9969, 0.9872 and 0.9842, respectively. These results demonstrate that both the design and sensing mechanism are correct. PMID:25942638

  7. A New MEMS Gyroscope Used for Single-Channel Damping

    PubMed Central

    Zhang, Zengping; Zhang, Wei; Zhang, Fuxue; Wang, Biao

    2015-01-01

    The silicon micromechanical gyroscope, which will be introduced in this paper, represents a novel MEMS gyroscope concept. It is used for the damping of a single-channel control system of rotating aircraft. It differs from common MEMS gyroscopes in that does not have a drive structure, itself, and only has a sense structure. It is installed on a rotating aircraft, and utilizes the aircraft spin to make its sensing element obtain angular momentum. When the aircraft is subjected to an angular rotation, a periodic Coriolis force is induced in the direction orthogonal to both the angular momentum and the angular velocity input axis. This novel MEMS gyroscope can thus sense angular velocity inputs. The output sensing signal is exactly an amplitude-modulation signal. Its envelope is proportional to the input angular velocity, and the carrier frequency corresponds to the spin frequency of the rotating aircraft, so the MEMS gyroscope can not only sense the transverse angular rotation of an aircraft, but also automatically change the carrier frequency over the change of spin frequency, making it very suitable for the damping of a single-channel control system of a rotating aircraft. In this paper, the motion equation of the MEMS gyroscope has been derived. Then, an analysis has been carried to solve the motion equation and dynamic parameters. Finally, an experimental validation has been done based on a precision three axis rate table. The correlation coefficients between the tested data and the theoretical values are 0.9969, 0.9872 and 0.9842, respectively. These results demonstrate that both the design and sensing mechanism are correct. PMID:25942638

  8. Bounce-harmonic Landau Damping of Plasma Waves

    NASA Astrophysics Data System (ADS)

    Anderegg, Francois

    2015-11-01

    We present measurement of plasma wave damping, spanning the temperature regimes of direct Landau damping, bounce-harmonic Landau damping, inter-species drag damping, and viscous damping. Direct Landau damping is dominant at high temperatures, but becomes negligible as v damping, controlled by an applied ``squeeze'' potential, which generates harmonics in the wave potential and in the particle dynamics. A particle moving in z experiences a non-sinusoidal mode potential caused by the squeeze, producing high spatial harmonics with lower phase velocity. These harmonics are Landau damped even when the mode phase velocity vph is large compared to the thermal velocity v , since the nth harmonic is resonant with a particle bouncing at velocity vb =vph / n . Here we increase the bounce harmonics through applied squeeze potential; but some harmonics are always present in finite length systems. For our centered squeeze geometry, theory shows that only odd harmonics are generated, and predicts the Landau damping rate from vph / n . Experimentally, the squeeze potential increases the wave damping and reduces its frequency. The frequency shift occurs because the squeeze potential reduces the number of particle where the mode velocity is the largest, therefore reducing the mode frequency. We observe an increase in the damping proportional to Vs2,and a frequency reduction proportional to Vs , in quantitative agreement with theory. Wave-coherent laser induced fluorescence allows direct observation of bounce resonances on the particle distribution, here predominantly at vph / 3 . A clear increase of the bounce harmonics is visible on the particle distribution when the squeeze potential is applied. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693.

  9. Enhanced vibration damping of carbon fibers-ZnO nanorods hybrid composites

    NASA Astrophysics Data System (ADS)

    Alipour Skandani, A.; Masghouni, N.; Case, S. W.; Leo, D. J.; Al-Haik, M.

    2012-08-01

    In this study, ZnO nanorods are grown on the surface of polyacrylonitrile based carbon fibers using a low temperature hydrothermal synthesis technique. Bi-layered carbon fiber-ZnO nanorod hybrid composite with epoxy matrix is prepared and tested for vibrational attenuations using dynamic mechanical analysis. Results revealed that the growth of ZnO nanorods on top of carbon fiber increases the damping performance by 50% while causing a slight decrease (˜7%) on the storage modulus. The enhanced damping of the hybrid composites can be related to the frictional mechanisms between the ZnO nanorod/epoxy and nanorod/nanorod interfaces combined with piezoelectric effect of ZnO.

  10. Exchange anisotropy and spin-wave damping in CoFe/IrMn bilayers

    NASA Astrophysics Data System (ADS)

    Rezende, S. M.; Lucena, M. A.; Azevedo, A.; de Aguiar, F. M.; Fermin, J. R.; Parkin, S. S. P.

    2003-05-01

    The magnetic properties and the spin-wave damping in FM/AF bilayers of CoFe/IrMn have been investigated with magneto-optic Kerr effect magnetometry, ferromagnetic resonance (FMR), and Brillouin light scattering (BLS). As observed in other systems, the values of the interlayer exchange field obtained with different techniques are discrepant, but they all exhibit the expected t-1 dependence with the FM film thickness t. On the other hand the spin-wave relaxation rates measured by BLS and FMR are fit with a t-2 dependence plus a constant term. This is interpreted as the sum of two independent contributions, an intrinsic mechanism dominated by Gilbert damping and an extrinsic mechanism dominated by two-magnon scattering due to fluctuations of the interlayer exchange coupling caused by interface roughness.

  11. Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence

    USGS Publications Warehouse

    Hardebeck, J.L.; Michael, A.J.

    2006-01-01

    We present a new focal mechanism stress inversion technique to produce regional-scale models of stress orientation containing the minimum complexity necessary to fit the data. Current practice is to divide a region into small subareas and to independently fit a stress tensor to the focal mechanisms of each subarea. This procedure may lead to apparent spatial variability that is actually an artifact of overfitting noisy data or nonuniquely fitting data that does not completely constrain the stress tensor. To remove these artifacts while retaining any stress variations that are strongly required by the data, we devise a damped inversion method to simultaneously invert for stress in all subareas while minimizing the difference in stress between adjacent subareas. This method is conceptually similar to other geophysical inverse techniques that incorporate damping, such as seismic tomography. In checkerboard tests, the damped inversion removes the stress rotation artifacts exhibited by an undamped inversion, while resolving sharper true stress rotations than a simple smoothed model or a moving-window inversion. We show an example of a spatially damped stress field for southern California. The methodology can also be used to study temporal stress changes, and an example for the Coalinga, California, aftershock sequence is shown. We recommend use of the damped inversion technique for any study examining spatial or temporal variations in the stress field.

  12. Evaluation of the Contribution of Multiple DAMPs and DAMP Receptors in Cell Death-Induced Sterile Inflammatory Responses

    PubMed Central

    Patel, Zubin; Rock, Kenneth L.

    2014-01-01

    When cells die by necrosis in vivo they stimulate an inflammatory response. It is thought that this response is triggered when the injured cells expose proinflammatory molecules, collectively referred to as damage associated molecular patterns (DAMPs), which are recognized by cells or soluble molecules of the innate or adaptive immune system. Several putative DAMPs and/or their receptors have been identified, but whether and how much they participate in responses in vivo is incompletely understood, and they have not previously been compared side-by-side in the same models. This study focuses on evaluating the contribution of multiple mechanisms that have been proposed to or potentially could participate in cell death-induced inflammation: The third component of complement (C3), ATP (and its receptor P2X7), antibodies, the C-type lectin receptor Mincle (Clec4e), and protease-activated receptor 2 (PAR2). We investigate the role of these factors in cell death-induced inflammation to dead cells in the peritoneum and acetaminophen-induced liver damage. We find that mice deficient in antibody, C3 or PAR2 have impaired inflammatory responses to dying cells. In contrast there was no reduction in inflammation to cell death in the peritoneum or liver of mice that genetically lack Mincle, the P2X7 receptor or that were treated with apyrase to deplete ATP. These results indicate that antibody, complement and PAR2 contribute to cell death-induced inflammation but that Mincle and ATP- P2X7 receptor are not required for this response in at least 2 different in vivo models. PMID:25127469

  13. Turbulence excited frequency domain damping measurement and truncation effects

    NASA Technical Reports Server (NTRS)

    Soovere, J.

    1976-01-01

    Existing frequency domain modal frequency and damping analysis methods are discussed. The effects of truncation in the Laplace and Fourier transform data analysis methods are described. Methods for eliminating truncation errors from measured damping are presented. Implications of truncation effects in fast Fourier transform analysis are discussed. Limited comparison with test data is presented.

  14. Experimental Spin Testing of Integrally Damped Composite Plates

    NASA Technical Reports Server (NTRS)

    Kosmatka, John

    1998-01-01

    The experimental behavior of spinning laminated composite pretwisted plates (turbo-fan blade-like) with small (less than 10% by volume) integral viscoelastic damping patches was investigated at NASA-Lewis Research Center. Ten different plate sets were experimentally spin tested and the resulting data was analyzed. The first-four plate sets investigated tailoring patch locations and definitions to damp specific modes on spinning flat graphite/epoxy plates as a function of rotational speed. The remaining six plate sets investigated damping patch size and location on specific modes of pretwisted (30 degrees) graphite/epoxy plates. The results reveal that: (1) significant amount of damping can be added using a small amount of damping material, (2) the damped plates experienced no failures up to the tested 28,000 g's and 750,000 cycles, (3) centrifugal loads caused an increase in bending frequencies and corresponding reductions in bending damping levels that are proportional to the bending stiffness increase, and (4) the centrifugal loads caused a decrease in torsion natural frequency and increase in damping levels of pretwisted composite plates.

  15. The Dynamics of a Parametrically Driven Damped Pendulum

    NASA Astrophysics Data System (ADS)

    Das, A.; Kumar, K.

    2015-05-01

    Ordered and chaotic states of a parametrically driven planar pendulum with viscous damping are numerically investigated. The damping makes the number of chaotic windows fewer but with larger width. Stroboscopic maps of the chaotic motion of the pendulum, driven either subharmonically or harmonically, show strange attractors with inversion symmetry in the phase plane.

  16. Design of the SLC damping ring to linac transport lines

    SciTech Connect

    Fieguth, T.H.; Murray, J.J.

    1983-07-01

    The first and second order optics for the damping ring to linac transport line are designed to preserve the damped transverse emittance while simultaneously compressing the bunch length of the beam to that length required for reinjection into the linac. This design, including provisions for future control of beam polarization, is described.

  17. Rhizoctonia damping-off stem canker and root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia solani has been reported to cause damping-off and root rot of rhododendrons and azaleas. Damping-off often includes groups of dying and dead seedlings. Decline of rooted plants in containers results from both root rot and stem necrosis below or above the soil line. Root rot is usually no...

  18. Flux-driven algebraic damping of m = 1 diocotron mode

    NASA Astrophysics Data System (ADS)

    Chim, Chi Yung; O'Neil, Thomas M.

    2016-07-01

    Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius r = Rw at the wall of the trap. The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from, spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This paper explains with analytic theory the new algebraic damping due to particle transport by both mobility and diffusion. As electrons are swept around the "cat's eye" orbits of the resonant wave-particle interaction, they form a dipole (m = 1) density distribution. From this distribution, the electric field component perpendicular to the core displacement produces E × B-drift of the core back to the axis, that is, damps the m = 1 mode. The parallel component produces drift in the azimuthal direction, that is, causes a shift in the mode frequency.

  19. Flux-driven algebraic damping of m = 1 diocotron mode

    NASA Astrophysics Data System (ADS)

    Chim, Chi Yung; O'Neil, Thomas

    2015-11-01

    Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 diocotron modes. Transport due to small field asymmetries produce a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius rres, where f = mfE × B (rres) . The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This poster explains with analytic theory and simulations the new algebraic damping due to both mobility and diffusive fluxes. As electrons are swept around the ``cat's eye'' orbits of resonant wave-particle interaction, they form a dipole (m = 1) density distribution, and the electric field from this distribution produces an E × B drift of the core back to the axis, i.e. damps the m = 1 mode. Supported by National Science Foundation Grant PHY-1414570.

  20. Process Damping and Cutting Tool Geometry in Machining

    NASA Astrophysics Data System (ADS)

    Taylor, C. M.; Sims, N. D.; Turner, S.

    2011-12-01

    Regenerative vibration, or chatter, limits the performance of machining processes. Consequences of chatter include tool wear and poor machined surface finish. Process damping by tool-workpiece contact can reduce chatter effects and improve productivity. Process damping occurs when the flank (also known as the relief face) of the cutting tool makes contact with waves on the workpiece surface, created by chatter motion. Tool edge features can act to increase the damping effect. This paper examines how a tool's edge condition combines with the relief angle to affect process damping. An analytical model of cutting with chatter leads to a two-section curve describing how process damped vibration amplitude changes with surface speed for radiussed tools. The tool edge dominates the process damping effect at the lowest surface speeds, with the flank dominating at higher speeds. A similar curve is then proposed regarding tools with worn edges. Experimental data supports the notion of the two-section curve. A rule of thumb is proposed which could be useful to machine operators, regarding tool wear and process damping. The question is addressed, should a tool of a given geometry, used for a given application, be considered as sharp, radiussed or worn regarding process damping.

  1. Photonic tuning of Beliaev damping in a superfluid

    NASA Astrophysics Data System (ADS)

    Kónya, G.; Szirmai, G.; Nagy, D.; Domokos, P.

    2014-05-01

    We show that the Beliaev damping of elementary excitations in a homogeneous Bose-Einstein condensate can undergo resonant enhancement by several orders of magnitude when the superfluid is interacting with a far-detuned radiation field of an optical resonator. The photonic tuning of the quasiparticle damping can be controlled by an external laser drive.

  2. Vortex-induced vibration and damping of thermowells

    SciTech Connect

    Blevins, R.D.; Tilden, B.W.; Martens, D.H.

    1996-12-01

    Thermowells that protect temperature measuring instrumentation are cantilevered into process piping. The thermowells are subject to vortex-induced vibrations by the process fluid. The resonant response is limited by damping. Damping measurements of thermowells were made and used to establish criteria for acceptable design under vortex-induced vibration.

  3. Magneto-induced large deformation and high-damping performance of a magnetorheological plastomer

    NASA Astrophysics Data System (ADS)

    Liu, Taixiang; Gong, Xinglong; Xu, Yangguang; Pang, Haoming; Xuan, Shouhu

    2014-10-01

    A magnetorheological plastomer (MRP) is a new kind of soft magneto-sensitive polymeric composite. This work reports on the large magneto-deforming effect and high magneto-damping performance of MRPs under a quasi-statical shearing condition. We demonstrate that an MRP possesses a magnetically sensitive malleability, and its magneto-mechanical behavior can be analytically described by the magneto-enhanced Bingham fluid-like model. The magneto-induced axial stress, which drives the deformation of the MRP with 70 wt % carbonyl iron powder, can be tuned in a large range from nearly 0.0 kPa to 55.4 kPa by an external 662.6 kA m-1 magnetic field. The damping performance of an MRP has a significant correlation with the magnetic strength, shear rate, carbonyl iron content and shear strain amplitude. For an MRP with 60 wt % carbonyl iron powder, the relative magneto-enhanced damping effect can reach as high as 716.2% under a quasi-statically shearing condition. Furthermore, the related physical mechanism is proposed, and we reveal that the magneto-induced, particle-assembled microstructure directs the magneto-mechanical behavior of the MRP.

  4. Highly compliant shape memory polymer gels for tunable damping and reversible adhesion

    NASA Astrophysics Data System (ADS)

    Mrozek, Randy A.; Berg, Michael C.; Gold, Christopher S.; Leighliter, Brad; Morton, Jeffrey T.; Lenhart, Joseph L.

    2016-02-01

    Materials that can dynamically change their properties to better adapt to the local environment have potential utility in robotics, aerospace, and coatings. For some of these applications, most notably robotics, it is advantageous for these responsive materials to be highly compliant in an effort to provide dynamic changes in adhesion and mechanical damping within a broad temperature operational environment. In this report, non-aqueous, highly compliant shape-memory polymer gels are developed by incorporating a low density of chemical cross-links into a physically cross-linked thermoplastic elastomer gel. Chemical cross-linkers were evaluated by varying there size and degree of functionality to determine the impact on the mechanical and adhesive properties. As a result of the chemical cross-linking, the gels exhibit modulus plateaus around room temperature and at elevated temperatures above 100 °C, where the thermoplastic elastomer gel typically melts. The materials were designed so that moduli in the plateaued regions were above and below the Dahlquist criteria of 4 × 104 Pa, respectively, where materials with a modulus below this value typically exhibit an increase in adhesion. The shape memory polymer gels were also integrated into fiber-reinforced composites to determine the temperature-dependent changes in mechanical damping. It is anticipated that this work will provide insight into materials design to provide dynamic changes in adhesion and damping to improve robotic appendage manipulation and platform mobility.

  5. Eddy-current-damped microelectromechanical switch

    DOEpatents

    Christenson, Todd R.; Polosky, Marc A.

    2007-10-30

    A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).

  6. Eddy-current-damped microelectromechanical switch

    DOEpatents

    Christenson, Todd R.; Polosky, Marc A.

    2009-12-15

    A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).

  7. Vibration damping using four-layer sandwich

    NASA Astrophysics Data System (ADS)

    Yadav, Binod P.

    2008-11-01

    This paper discusses vibration damping using four-layer sandwich beam. The present work deals with the analysis of vibration of the primary system having a mass and rubber spring mounted on a four-layer viscoelastic simply supported symmetrically arranged sandwich beam. The equation of motion of a general four-layer with alternate elastic layer and viscoelastic layer simply supported sandwich beam is first derived using the method of equilibrium of forces and beam theory. The above differential equation has been solved for harmonically force excited sandwich beam by applying suitable boundary conditions to get the impedance of the sandwich beam. This impedance is then combined with the impedance of the primary system to obtain the expression for the response of harmonically excited mass and then the expression for transmissibility is obtained. The effectiveness of geometrical and physical parameters in minimizing response and transmissibility for central mounting of the primary system is evaluated.

  8. OBSERVED DAMPING OF THE SLOW MAGNETOACOUSTIC MODE

    SciTech Connect

    Marsh, M. S.; Walsh, R. W.; De Moortel, I. E-mail: mmarsh@uclan.ac.uk

    2011-06-20

    Spectroscopic and stereoscopic imaging observations of slow magnetoacoustic wave propagation within a coronal loop are investigated to determine the decay length scale of the slow magnetoacoustic mode in three dimensions and the density profile within the loop system. The slow wave is found to have an e-folding decay length scale of 20,000{sup +4000}{sub -3000} km with a uniform density profile along the loop base. These observations place quantitative constraints on the modeling of wave propagation within coronal loops. Theoretical forward modeling suggests that magnetic field line divergence is the dominant damping factor and thermal conduction is insufficient, given the observed parameters of the coronal loop temperature, density, and wave mode period.

  9. Passive damping augmentation for flexible structures

    NASA Technical Reports Server (NTRS)

    Sesak, J. R.; Gronet, M. J.; Marinos, G. M.

    1986-01-01

    The present work concentrates on the application and extension of absorber design and optimization techniques to a multimode, multi-DOF, large space structure, namely the NASA space station. The principal issue addressed is the optimal tuning of several absorbers for the transient response of a multi-DOF system, including the effects of modal coupling, existing structural damping, absorber placement, and adsorber mass. The space station is subject to many transient disturbances such as docking, orbit reboost, crew motion, and payload slewing. A notable steady-state excitation source is the Science Research Centrifuge, which rotates at a frequency in the bandwidth of the primary structural modes. Because of the relatively advanced state of development of steady-state absorber design techniques, only the transient cases are considered in this study.

  10. Active vibration damping using smart material

    NASA Technical Reports Server (NTRS)

    Baras, John S.; Yan, Zhuang

    1994-01-01

    We consider the modeling and active damping of an elastic beam using distributed actuators and sensors. The piezoelectric ceramic material (PZT) is used to build the actuator. The sensor is made of the piezoelectric polymer polyvinylidene fluoride (PVDF). These materials are glued on both sides of the beam. For the simple clamped beam, the closed loop controller has been shown to be able to extract energy from the beam. The shape of the actuator and its influence on the closed loop system performance are discussed. It is shown that it is possible to suppress the selected mode by choosing the appropriate actuator layout. It is also shown that by properly installing the sensor and determining the sensor shape we can further extract and manipulate the sensor signal for our control need.

  11. Vibration damping with active carbon fiber structures

    NASA Astrophysics Data System (ADS)

    Neugebauer, Reimund; Kunze, Holger; Riedel, Mathias; Roscher, Hans-Jürgen

    2007-04-01

    This paper presents a mechatronic strategy for active reduction of vibrations on machine tool struts or car shafts. The active structure is built from a carbon fiber composite with embedded piezofiber actuators that are composed of piezopatches based on the Macro Fiber Composite (MFC) technology, licensed by NASA and produced by Smart Material GmbH in Dresden, Germany. The structure of these actuators allows separate or selectively combined bending and torsion, meaning that both bending and torsion vibrations can be actively absorbed. Initial simulation work was done with a finite element model (ANSYS). This paper describes how state space models are generated out of a structure based on the finite element model and how controller codes are integrated into finite element models for transient analysis and the model-based control design. Finally, it showcases initial experimental findings and provides an outlook for damping multi-mode resonances with a parallel combination of resonant controllers.

  12. Nonlinear damping model for flexible structures. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Zang, Weijian

    1990-01-01

    The study of nonlinear damping problem of flexible structures is addressed. Both passive and active damping, both finite dimensional and infinite dimensional models are studied. In the first part, the spectral density and the correlation function of a single DOF nonlinear damping model is investigated. A formula for the spectral density is established with O(Gamma(sub 2)) accuracy based upon Fokker-Planck technique and perturbation. The spectral density depends upon certain first order statistics which could be obtained if the stationary density is known. A method is proposed to find the approximate stationary density explicitly. In the second part, the spectral density of a multi-DOF nonlinear damping model is investigated. In the third part, energy type nonlinear damping model in an infinite dimensional setting is studied.

  13. Effects of nonlinear damping in flexible space structures

    NASA Technical Reports Server (NTRS)

    Hu, Anren; Taylor, Lawrence W.

    1988-01-01

    The classical Krylov-Bogoliubov "averaging" technique is used to study a class of nonlinear damping models, for which the damping force is proportional to the product of positive integer or fractional power of absolute values of displacement and that of velocity. The results are compared with linear viscous damping models. The amplitude decrement of free vibration for a single mode system with nonlinear models depends not only on damping ratio, but also on the initial amplitude, the time to measure the response, frequency of the system, and the powers of displacement and velocity. For the distributed system, the action of nonlinear damping is found to reduce energy of the system as well as to pass energy to higher modes. Experimental evidence such as in Spacecraft Control Laboratory Experiment seems to support the need for nonlinear models.

  14. Magnetic fields in damped Ly-alpha systems

    NASA Technical Reports Server (NTRS)

    Wolfe, A. M.; Lanzetta, K. M.; Oren, A. L.

    1992-01-01

    The probability of Faraday rotation in various types of metal-line absorbers is computed by combining the incidence of Faraday rotation in a sample of radio-selected QSOs with the incidence of foreground metal-line absorption. The sample is divided into subsets with and without damped Ly-alpha absorption. The probability of Faraday rotation is significantly higher in the damped subset. The probability is higher in the damped subset than in nondamped subsets selected on the basis of Mg II or C IV absorption. From evidence linking damped systems to the progenitors of galactic disks and the Mg II systems to the progenitors of galactic halos, it is concluded that magnetic fields were significantly higher in protogalactic disks than in protogalactic halos. It is estimated that the B fields in two damped Ly-alpha systems with z of about 2 are a few micro-Gauss.

  15. Passively Shunted Piezoelectric Damping of Centrifugally-Loaded Plates

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Provenza, Andrew J.; Trudell, Jeffrey J.; Min, James B.

    2009-01-01

    Researchers at NASA Glenn Research Center have been investigating shunted piezoelectric circuits as potential damping treatments for turbomachinery rotor blades. This effort seeks to determine the effects of centrifugal loading on passively-shunted piezoelectric - damped plates. Passive shunt circuit parameters are optimized for the plate's third bending mode. Tests are performed both non-spinning and in the Dynamic Spin Facility to verify the analysis, and to determine the effectiveness of the damping under centrifugal loading. Results show that a resistive shunt circuit will reduce resonant vibration for this configuration. However, a tuned shunt circuit will be required to achieve the desired damping level. The analysis and testing address several issues with passive shunt circuit implementation in a rotating system, including piezoelectric material integrity under centrifugal loading, shunt circuit implementation, and tip mode damping.

  16. Impact of Damping Uncertainty on SEA Model Response Variance

    NASA Technical Reports Server (NTRS)

    Schiller, Noah; Cabell, Randolph; Grosveld, Ferdinand

    2010-01-01

    Statistical Energy Analysis (SEA) is commonly used to predict high-frequency vibroacoustic levels. This statistical approach provides the mean response over an ensemble of random subsystems that share the same gross system properties such as density, size, and damping. Recently, techniques have been developed to predict the ensemble variance as well as the mean response. However these techniques do not account for uncertainties in the system properties. In the present paper uncertainty in the damping loss factor is propagated through SEA to obtain more realistic prediction bounds that account for both ensemble and damping variance. The analysis is performed on a floor-equipped cylindrical test article that resembles an aircraft fuselage. Realistic bounds on the damping loss factor are determined from measurements acquired on the sidewall of the test article. The analysis demonstrates that uncertainties in damping have the potential to significantly impact the mean and variance of the predicted response.

  17. Comparison of damping treatments for gas turbine blades

    NASA Astrophysics Data System (ADS)

    Gordon, Robert W.; Hollkamp, Joseph J.

    1996-05-01

    High frequency vibration of gas turbine fan blades is a high cycle fatigue concern. Friction damping devices are ineffective in suppressing high frequency vibration modes and external damping treatments are plagued by creep concerns. An alternative approach is to apply viscoelastic material internally in the blades. In this paper, an analytical comparison of internal damping treatments for fan blades is presented. The fan blade is modeled as a solid, flat, cantilevered titanium plate. Internal portions are removed producing cavities that are filled with viscoelastic material. Configurations with one, two, and three cavities are modeled using the modal strain energy method in conjunction with finite element analysis to estimate damping. Results show that appreciable damping levels for high frequency modes are possible with stiff viscoelastic material. Other design criteria are also considered. Results indicate that the hydrostatic load from the viscoelastic material on the cavity walls may be a concern.

  18. Magnetic Damping of Solid Solution Semiconductor Alloys

    NASA Technical Reports Server (NTRS)

    Szofran, Frank R.; Benz, K. W.; Croell, Arne; Dold, Peter; Cobb, Sharon D.; Volz, Martin P.; Motakef, Shariar

    1999-01-01

    The objective of this study is to: (1) experimentally test the validity of the modeling predictions applicable to the magnetic damping of convective flows in electrically conductive melts as this applies to the bulk growth of solid solution semiconducting materials; and (2) assess the effectiveness of steady magnetic fields in reducing the fluid flows occurring in these materials during processing. To achieve the objectives of this investigation, we are carrying out a comprehensive program in the Bridgman and floating-zone configurations using the solid solution alloy system Ge-Si. This alloy system has been studied extensively in environments that have not simultaneously included both low gravity and an applied magnetic field. Also, all compositions have a high electrical conductivity, and the materials parameters permit reasonable growth rates. An important supporting investigation is determining the role, if any, that thermoelectromagnetic convection (TEMC) plays during growth of these materials in a magnetic field. TEMC has significant implications for the deployment of a Magnetic Damping Furnace in space. This effect will be especially important in solid solutions where the growth interface is, in general, neither isothermal nor isoconcentrational. It could be important in single melting point materials, also, if faceting takes place producing a non-isothermal interface. In conclusion, magnetic fields up to 5 Tesla are sufficient to eliminate time-dependent convection in silicon floating zones and possibly Bridgman growth of Ge-Si alloys. In both cases, steady convection appears to be more significant for mass transport than diffusion, even at 5 Tesla in the geometries used here. These results are corroborated in both growth configurations by calculations.

  19. Experimental Observations on Material Damping at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Peng, Chia-Yen; Levine, Marie; Shido, Lillian; Leland, Robert

    2004-01-01

    This paper describes a unique experimental facility designed to measure damping of materials at cryogenic temperatures for the Terrestrial Planet Finder (TPF) mission at the Jet Propulsion Laboratory. The test facility removes other sources of damping in the measurement by avoiding frictional interfaces, decoupling the test specimen from the support system, and by using a non-contacting measurement device. Damping data reported herein are obtained for materials (Aluminum, Aluminum/Terbium/Dysprosium, Titanium, Composites) vibrating in free-free bending modes with low strain levels (< 10(exp -6) ppm). The fundamental frequencies of material samples are ranged from 14 to 202 Hz. To provide the most beneficial data relevant to TPF-like precision optical space missions, the damping data are collected from room temperatures (around 293 K) to cryogenic temperatures (below 40 K) at unevenly-spaced intervals. More data points are collected over any region of interest. The test data shows a significant decrease in viscous damping at cryogenic temperatures. The cryogenic damping can be as low as 10(exp -4) %, but the amount of the damping decrease is a function of frequency and material. However, Titanium 15-3-3-3 shows a remarkable increase in damping at cryogenic temperatures. It demonstrates over one order of magnitude increase in damping in comparison to Aluminum 6061-T6. Given its other properties (e.g., good stiffness and low conductivity) this may prove itself to be a good candidate for the application on TPF. At room temperatures, the test data are correlated well with the damping predicted by the Zener theory. However, large discrepancies at cryogenic temperatures between the Zener theory and the test data are observed.

  20. Damping identification of lightly damped linear dynamic systems using common-base proper orthogonal decomposition

    NASA Astrophysics Data System (ADS)

    Andrianne, T.; Dimitriadis, G.

    2012-04-01

    This paper presents a new technique to identify the damping of linear systems. It is developed from the Proper Orthogonal Decomposition (POD) of the free response of the system and extended to the recently proposed Common-base POD (CPOD). The present application of CPOD considers simultaneously several free responses of the system to different initial conditions. The Eigen-decomposition of the co-variance matrix leads to a unique vector basis which is likely to contain more information about the dynamics of the system than a vector basis obtained by the classic POD technique. The ability of the technique to estimate the mode shapes and the modal damping is demonstrated on a simulated mass-spring-damper system. Two different distributions of masses are considered in order to confront the CPOD analysis to the intrinsic limitation of POD, i.e. that the mode shapes are identified exactly only if the mass matrix is proportional to the identity matrix. It is shown that the identification of the damping is still possible when the modes are not orthonormal. The robustness of the technique is demonstrated in the presence of noise in the responses of the system and through an experimental application with comparison with other identifications techniques.

  1. Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Karami, M. Amin; Inman, Daniel J.

    2011-11-01

    A unified approximation method is derived to illustrate the effect of electro-mechanical coupling on vibration-based energy harvesting systems caused by variations in damping ratio and excitation frequency of the mechanical subsystem. Vibrational energy harvesters are electro-mechanical systems that generate power from the ambient oscillations. Typically vibration-based energy harvesters employ a mechanical subsystem tuned to resonate with ambient oscillations. The piezoelectric or electromagnetic coupling mechanisms utilized in energy harvesters, transfers some energy from the mechanical subsystem and converts it to an electric energy. Recently the focus of energy harvesting community has shifted toward nonlinear energy harvesters that are less sensitive to the frequency of ambient vibrations. We consider the general class of hybrid energy harvesters that use both piezoelectric and electromagnetic energy harvesting mechanisms. Through using perturbation methods for low amplitude oscillations and numerical integration for large amplitude vibrations we establish a unified approximation method for linear, softly nonlinear, and bi-stable nonlinear energy harvesters. The method quantifies equivalent changes in damping and excitation frequency of the mechanical subsystem that resembles the backward coupling from energy harvesting. We investigate a novel nonlinear hybrid energy harvester as a case study of the proposed method. The approximation method is accurate, provides an intuitive explanation for backward coupling effects and in some cases reduces the computational efforts by an order of magnitude.

  2. Comparison of passive inductor designs for piezoelectric shunt damping

    NASA Astrophysics Data System (ADS)

    Lossouarn, Boris; Thierry, Olivier; Aucejo, Mathieu; Deü, Jean-François

    2016-04-01

    Considering piezoelectric damping, a resonant shunt can lead to a significant vibration reduction when tuned to the mechanical mode to control. However, limits appear when looking at practical applications in a low frequency range: the required inductance is often too high to be satisfied with standard passive components. Moreover, even if the inductor is eventually available, the internal resistance of the component generally exceeds the value which is required for a shunt optimization. Suitable inductors can be designed for applications requiring high inductance and low resistance values. Indeed, the permeance of a magnetic circuit can be significantly increased by the use of closed cores made of high permeability materials. In this paper, three designs are described and compared: an inductor from standard series and two handmade inductors involving a ferrite core and a nanocrystalline toroid. The components are successively integrated into a piezoelectric shunt dedicated to the vibration control of a cantilever beam. Depending on the frequency of the target mechanical mode to control, the benefits and the limits of the different inductors are observed. It is shown that custom designs can definitely extend to lower frequency the application of the passive resonant shunt strategy.

  3. Magnetization damping in two-component metal oxide micropowder and nanopowder compacts by broadband ferromagnetic resonance measurements

    NASA Astrophysics Data System (ADS)

    Youssef, Jamal Ben; Brosseau, Christian

    2006-12-01

    The microwave damping mechanisms in magnetic inhomogeneous systems have displayed a richness of phenomenology that has attracted widespread interest over the years. Motivated by recent experiments, we report an extensive experimental study of the Gilbert damping parameter of multicomponent metal oxides micro- and nanophases. We label the former by M samples, and the latter by N samples. The main thrust of this examination is the magnetization dynamics in systems composed of mixtures of magnetic (γ-Fe2O3) and nonmagnetic (ZnO and epoxy resin) materials fabricated via powder processing. Detailed ferromagnetic resonance (FMR) measurements on N and M samples are described so to determine changes in the microwave absorption over the 6-18GHz frequency range as a function of composition and static magnetic field. The FMR linewidth and the field dependent resonance were measured for the M and N samples, at a given volume fraction of the magnetic phase. The asymmetry in the form and change in the linewidth for the M samples are caused by the orientation distribution of the local anisotropy fields, whereas the results for the N samples suggest that the linewidth is very sensitive to details of the spatial magnetic inhomogeneities. For N samples, the peak-to-peak linewidth increases continuously with the volume content of magnetic material. The influence of the volume fraction of the magnetic phase on the static internal field was also investigated. Furthermore, important insights are gleaned through analysis of the interrelationship between effective permeability and Gilbert damping constant. Different mechanisms have been considered to explain the FMR linewidth: the intrinsic Gilbert damping, the broadening induced by the magnetic inhomogeneities, and the extrinsic magnetic relaxation. We observed that the effective Gilbert damping constant of the series of N samples are found to be substantially smaller in comparison to M samples. This effect is attributed to the surface

  4. Characterization of viscoelastic response and damping of composite materials used in flywheel rotors

    NASA Astrophysics Data System (ADS)

    Chen, Jianmin

    The long-term goal for spacecraft flywheel systems with higher energy density at the system level requires new and innovative composite material concepts. Multi-Direction Composite (MDC) offers significant advantages over traditional filament-wound and multi-ring press-fit filament-wound wheels in providing higher energy density (i.e., less mass), better crack resistance, and enhanced safety. However there is a lack of systematic characterization for dynamic properties of MDC composite materials. In order to improve the flywheel materials reliability, durability and life time, it is very important to evaluate the time dependent aging effects and damping properties of MDC material, which are significant dynamic parameter for vibration and sound control, fatigue endurance, and impact resistance. The physical aging effects are quantified based on a set of creep curves measured at different aging time or different aging temperature. One parameter (tau) curve fit was proposed to represent the relationship of aging time and aging temperature between different master curves. The long term mechanical behavior was predicted by obtained master curves. The time and temperature shift factors of matrix were obtained from creep curves and the aging time shift rate were calculated. The aging effects on composite are obtained from experiments and compared with prediction. The mechanical quasi-behavior of MDC composite was analyzed. The correspondence principle was used to relate quasi-static elastic properties of composite materials to time-dependent properties of its constituent materials (i.e., fiber and matrix). The Prony series combined with the multi-data fitting method was applied to inverse Laplace transform and to calculate the time dependent stiffness matrix effectively. Accelerated time-dependent deformation of two flywheel rim designs were studied for a period equivalent to 31 years and are compared with hoop reinforcement only composite. Damping of pure resin and T700

  5. Hybrid modelling and damping collaborative optimisation of Five-suspensions for coupling driver-seat-cab system

    NASA Astrophysics Data System (ADS)

    Zhao, Leilei; Zhou, Changcheng; Yu, Yuewei; Yang, Fuxing

    2016-05-01

    For the complex structure and vibration characteristics of coupling driver-seat-cab system of trucks, there is no damping optimisation theory for its suspensions at present, which seriously restricts the improvement of vehicle ride comfort. Thus, in this paper, the seat suspension was regarded as 'the fifth suspension' of cab, the 'Five-suspensions' for this system was proposed. Based on this, using the mechanism modelling method, a 4 degree-of-freedom coupling driver-seat-cab system model was presented; then, by the tested cab suspensions excitation and seat acceleration response, its parameters identification mathematical model was established. Based on this, taking optimal ride comfort as target, its damping collaborative optimisation mathematical model was built. Combining the tested signals and a simulation model with the mathematical models of parameters identification and damping collaborative optimisation, a complete flow of hybrid modelling and damping collaborative optimisation of Five-suspensions was presented. With a practical example of seat and cab system, the damping parameters were optimised and validated by simulation and bench test. The results show that the model and method proposed are correct and reliable, providing a valuable reference for the design of seat suspension and cab suspensions.

  6. Damper mechanism for nuclear reactor control elements

    DOEpatents

    Taft, William Elwood

    1976-01-01

    A damper mechanism which provides a nuclear reactor control element decelerating function at the end of the scram stroke. The total damping function is produced by the combination of two assemblies, which operate in sequence. First, a tapered dashram assembly decelerates the control element to a lower velocity, after which a spring hydraulic damper assembly takes over to complete the final damping.

  7. Intrinsic Damping of Collective Spin Modes in a Two-Dimensional Fermi Liquid with Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Maiti, Saurabh; Maslov, Dmitrii L.

    2015-04-01

    A Fermi liquid with spin-orbit coupling (SOC) is expected to support a new set of collective modes: oscillations of magnetization in the absence of the magnetic field. We show that these modes are damped by the electron-electron interaction even in the limit of an infinitely long wavelength (q =0 ). The linewidth of the collective mode is on the order of Δ¯ 2/EF , where Δ ¯ is a characteristic spin-orbit energy splitting and EF is the Fermi energy. Such damping is in stark contrast to known damping mechanisms of both charge and spin collective modes in the absence of SOC, all of which disappear at q =0 , and arises because none of the components of total spin is conserved in the presence of SOC.

  8. Higher order mode damping in a five-cell superconducting rf cavity with a photonic band gap coupler cell

    NASA Astrophysics Data System (ADS)

    Arsenyev, Sergey A.; Temkin, Richard J.; Shchegolkov, Dmitry Yu.; Simakov, Evgenya I.; Boulware, Chase H.; Grimm, Terry L.; Rogacki, Adam R.

    2016-08-01

    We present a study of higher order mode (HOM) damping in the first multicell superconducting radio-frequency (SRF) cavity with a photonic band gap (PBG) coupler cell. Achieving higher average beam currents is particularly desirable for future light sources and particle colliders based on SRF energy-recovery linacs (ERLs). Beam current in ERLs is limited by the beam breakup instability, caused by parasitic HOMs interacting with the beam in accelerating cavities. A PBG cell incorporated in an accelerating cavity can reduce the negative effect of HOMs by providing a frequency selective damping mechanism, thus allowing significantly higher beam currents. The five-cell cavity with a PBG cell was designed and optimized for HOM damping. Monopole and dipole HOMs were simulated. The SRF cavity was fabricated and tuned. External quality factors for some HOMs were measured in a cold test. The measurements agreed well with the simulations.

  9. A current-type PWM rectifier with active damping function

    SciTech Connect

    Sato, Yukihiko; Kataoka, Teruo

    1996-05-01

    A new control method for current-type pulse-width modulation (PWM) rectifiers which can provide active damping function is presented. This damping function is effective only on the harmonic components of ac input current selectively. Thus steady-state waveform distortion and transient oscillation of the input current are reduced by the active damping effects. The active damping function can be realized by feedback control of an LC filter connected to the ac side of the rectifier, and it does not require any additional components in the main circuits, permitting a simple circuit configuration. The control system of the proposed PWM rectifier is analyzed by using a simple block diagram developed in the present paper. From the analytical results, the influence of the circuit parameters and control delay on the active damping effects and the stability of the operation are clarified to establish the design method. To confirm the effectiveness of the active damping function, some results of basic experiments are included. As an example of application of the active damping function, the proposed rectifier is applied to reduce the harmonic currents generated by conventional rectifiers operating in parallel with the proposed rectifier. Some experimental results in this application are also included.

  10. Material damping in aluminum and metal matrix composites

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Van Schoor, Marthinus C.

    1987-01-01

    The material damping in beam-like specimens of aluminum and metal matrix composites was measured. A unique apparatus to determine damping by free decay while the specimens are in free fall in a vacuum was used. The specimens tested include 2024-T3 and 6061-T4 aluminum, and unidirectional graphite/metal matrix specimens with P55 and P100 fibers and 6061 Aluminum and AZ91C Magnesium as matrix materials. Tests were conducted to determine the dependence of damping on frequency and stress level. For the aluminum specimens, the material damping followed the Zener model at very low stress levels. Below the Zener relaxation frequency, a strong dependence of damping on stress was found for even moderate stress levels. Damping for the aluminum matrix materials was slightly above that predicted by the Zener model for a homogeneous bar of the matrix aluminum. For the magnesium matrix specimens, damping significantly above the Zener prediction for the homogeneous matrix material was observed.

  11. Modal damping estimates of MOS-1 solar array paddle

    NASA Astrophysics Data System (ADS)

    Fujimori, Yoshinori; Kato, Junichi; Toda, Susumu

    The modal damping coefficients of MOS-1 solar array paddle have been estimated, based on experimental results of the paddle substrate—a prime load carrying component of the paddle structure—and on theoretical extrapolation. The damping coefficient values of 1st, 2nd, 3rd and 4th substrate modes are 0.69% (14.5 Hz), 0.07% (49.7 Hz), 0.27% (61.2 Hz) and 0.07% (96.7 Hz) respectively. Also this substrate experiment reveals that the effect of the air vanishes at the level of 0.01 Torr and that the relative alignment of fibers in CFRP skin vs the lines of principal stresses in the deformed state is strongly correlated with the damping level. Zener theory of thermo-elasticity coupling model has been applied to derive the damping coefficients of the plate. Then the modal damping coefficients of MOS-1 solar array paddle whose resonances lie in the range of 0.2-2 Hz are estimated by making use of the fitted curves to the experimental data. Next, the estimate is improved by considering the additional contribution from the solar cells and adhesive. Supplementing the foregoing estimates, quantitative assessment on the damping effect due to interface friction somewhere in the structure is made leading to the final estimate that the modal damping coefficients of MOS-1 solar array paddle would not be lower than 0.003.

  12. Structural dynamics and vibrations of damped, aircraft-type structures

    NASA Technical Reports Server (NTRS)

    Young, Maurice I.

    1992-01-01

    Engineering preliminary design methods for approximating and predicting the effects of viscous or equivalent viscous-type damping treatments on the free and forced vibration of lightly damped aircraft-type structures are developed. Similar developments are presented for dynamic hysteresis viscoelastic-type damping treatments. It is shown by both engineering analysis and numerical illustrations that the intermodal coupling of the undamped modes arising from the introduction of damping may be neglected in applying these preliminary design methods, except when dissimilar modes of these lightly damped, complex aircraft-type structures have identical or nearly identical natural frequencies. In such cases, it is shown that a relatively simple, additional interaction calculation between pairs of modes exhibiting this 'modal response' phenomenon suffices in the prediction of interacting modal damping fractions. The accuracy of the methods is shown to be very good to excellent, depending on the normal natural frequency separation of the system modes, thereby permitting a relatively simple preliminary design approach. This approach is shown to be a natural precursor to elaborate finite element, digital computer design computations in evaluating the type, quantity, and location of damping treatment.

  13. Design, analysis, and testing of high frequency passively damped struts

    NASA Technical Reports Server (NTRS)

    Yiu, Y. C.; Davis, L. Porter; Napolitano, Kevin; Ninneman, R. Rory

    1993-01-01

    Objectives of the research are: (1) to develop design requirements for damped struts to stabilize control system in the high frequency cross-over and spill-over range; (2) to design, fabricate and test viscously damped strut and viscoelastically damped strut; (3) to verify accuracy of design and analysis methodology of damped struts; and (4) to design and build test apparatus, and develop data reduction algorithm to measure strut complex stiffness. In order to meet the stringent performance requirements of the SPICE experiment, the active control system is used to suppress the dynamic responses of the low order structural modes. However, the control system also inadvertently drives some of the higher order modes unstable in the cross-over and spill-over frequency range. Passive damping is a reliable and effective way to provide damping to stabilize the control system. It also improves the robustness of the control system. Damping is designed into the SPICE testbed as an integral part of the control-structure technology.

  14. Perceptual studies of violin body damping and vibrato.

    PubMed

    Fritz, Claudia; Woodhouse, Jim; Cheng, Felicia P-H; Cross, Ian; Blackwell, Alan F; Moore, Brian C J

    2010-01-01

    This work explored how the perception of violin notes is influenced by the magnitude of the applied vibrato and by the level of damping of the violin resonance modes. Damping influences the "peakiness" of the frequency response, and vibrato interacts with this peakiness by producing fluctuations in spectral content as well as in frequency and amplitude. Initially, it was shown that thresholds for detecting a change in vibrato amplitude were independent of body damping, and thresholds for detecting a change in body damping were independent of vibrato amplitude. A study of perceptual similarity using triadic comparison showed that vibrato amplitude and damping were largely perceived as independent dimensions. A series of listening tests was conducted employing synthesized, recorded, or live performance to probe perceptual responses in terms of "liveliness" and preference. The results do not support the conclusion that liveliness results from the combination of the use of vibrato and a "peaky" violin response. Judgments based on listening to single notes showed inconsistent patterns for liveliness, while preferences were highest for damping that was slightly less than for a reference (real) violin. In contrast, judgments by players based on many notes showed preference for damping close to the reference value. PMID:20058996

  15. Novel Slide-Ring Material/Natural Rubber Composites with High Damping Property.

    PubMed

    Wang, Wencai; Zhao, Detao; Yang, Jingna; Nishi, Toshio; Ito, Kohzo; Zhao, Xiuying; Zhang, Liqun

    2016-01-01

    A novel class of polymers called "slide-ring" (SR) materials with slideable junctions were used for high damping composites for the first time. The SR acts as the high damping phase dispersed in the natural rubber (NR) matrix, and epoxidized natural rubber (ENR) acts as the compatibilizer. The morphological, structural, and mechanical properties of the composites were investigated by atomic force microscope (AFM), transmission electron microscope (TEM), dynamic mechanical thermal analyzer (DMTA), rubber processing analyzer (RPA), and tensile tester. AFM and TEM results showed that the SR phase was uniformly dispersed in the composites, in a small size that is a function of ENR. DMTA and RPA results showed that the damping factor of the composites is much higher than that of NR, especially at room temperatures. Stretch hysteresis was used to study the energy dissipation of the composites at large strains. The results showed that SR and ENR can significantly improve the dissipation efficiency at strains lower than 200% strain. Wide-angle X-ray diffraction was used to study the strain-induced crystallization of the composites. The results indicated that the impact of the SR on the crystallization of NR is mitigated by the insulating effect of ENR. PMID:26949077

  16. Novel Slide-Ring Material/Natural Rubber Composites with High Damping Property

    NASA Astrophysics Data System (ADS)

    Wang, Wencai; Zhao, Detao; Yang, Jingna; Nishi, Toshio; Ito, Kohzo; Zhao, Xiuying; Zhang, Liqun

    2016-03-01

    A novel class of polymers called “slide-ring” (SR) materials with slideable junctions were used for high damping composites for the first time. The SR acts as the high damping phase dispersed in the natural rubber (NR) matrix, and epoxidized natural rubber (ENR) acts as the compatibilizer. The morphological, structural, and mechanical properties of the composites were investigated by atomic force microscope (AFM), transmission electron microscope (TEM), dynamic mechanical thermal analyzer (DMTA), rubber processing analyzer (RPA), and tensile tester. AFM and TEM results showed that the SR phase was uniformly dispersed in the composites, in a small size that is a function of ENR. DMTA and RPA results showed that the damping factor of the composites is much higher than that of NR, especially at room temperatures. Stretch hysteresis was used to study the energy dissipation of the composites at large strains. The results showed that SR and ENR can significantly improve the dissipation efficiency at strains lower than 200% strain. Wide-angle X-ray diffraction was used to study the strain-induced crystallization of the composites. The results indicated that the impact of the SR on the crystallization of NR is mitigated by the insulating effect of ENR.

  17. A numerically efficient damping model for acoustic resonances in microfluidic cavities

    NASA Astrophysics Data System (ADS)

    Hahn, P.; Dual, J.

    2015-06-01

    Bulk acoustic wave devices are typically operated in a resonant state to achieve enhanced acoustic amplitudes and high acoustofluidic forces for the manipulation of microparticles. Among other loss mechanisms related to the structural parts of acoustofluidic devices, damping in the fluidic cavity is a crucial factor that limits the attainable acoustic amplitudes. In the analytical part of this study, we quantify all relevant loss mechanisms related to the fluid inside acoustofluidic micro-devices. Subsequently, a numerical analysis of the time-harmonic visco-acoustic and thermo-visco-acoustic equations is carried out to verify the analytical results for 2D and 3D examples. The damping results are fitted into the framework of classical linear acoustics to set up a numerically efficient device model. For this purpose, all damping effects are combined into an acoustofluidic loss factor. Since some components of the acoustofluidic loss factor depend on the acoustic mode shape in the fluid cavity, we propose a two-step simulation procedure. In the first step, the loss factors are deduced from the simulated mode shape. Subsequently, a second simulation is invoked, taking all losses into account. Owing to its computational efficiency, the presented numerical device model is of great relevance for the simulation of acoustofluidic particle manipulation by means of acoustic radiation forces or acoustic streaming. For the first time, accurate 3D simulations of realistic micro-devices for the quantitative prediction of pressure amplitudes and the related acoustofluidic forces become feasible.

  18. Novel Slide-Ring Material/Natural Rubber Composites with High Damping Property

    PubMed Central

    Wang, Wencai; Zhao, Detao; Yang, Jingna; Nishi, Toshio; Ito, Kohzo; Zhao, Xiuying; Zhang, Liqun

    2016-01-01

    A novel class of polymers called “slide-ring” (SR) materials with slideable junctions were used for high damping composites for the first time. The SR acts as the high damping phase dispersed in the natural rubber (NR) matrix, and epoxidized natural rubber (ENR) acts as the compatibilizer. The morphological, structural, and mechanical properties of the composites were investigated by atomic force microscope (AFM), transmission electron microscope (TEM), dynamic mechanical thermal analyzer (DMTA), rubber processing analyzer (RPA), and tensile tester. AFM and TEM results showed that the SR phase was uniformly dispersed in the composites, in a small size that is a function of ENR. DMTA and RPA results showed that the damping factor of the composites is much higher than that of NR, especially at room temperatures. Stretch hysteresis was used to study the energy dissipation of the composites at large strains. The results showed that SR and ENR can significantly improve the dissipation efficiency at strains lower than 200% strain. Wide-angle X-ray diffraction was used to study the strain-induced crystallization of the composites. The results indicated that the impact of the SR on the crystallization of NR is mitigated by the insulating effect of ENR. PMID:26949077

  19. Non-identifiability of the Rayleigh damping material model in magnetic resonance elastography.

    PubMed

    Petrov, Andrii Y; Geoffrey Chase, J; Sellier, Mathieu; Docherty, Paul D

    2013-11-01

    Magnetic Resonance Elastography (MRE) is an emerging imaging modality for quantifying soft tissue elasticity deduced from displacement measurements within the tissue obtained by phase sensitive Magnetic Resonance Imaging (MRI) techniques. MRE has potential to detect a range of pathologies, diseases and cancer formations, especially tumors. The mechanical model commonly used in MRE is linear viscoelasticity (VE). An alternative Rayleigh damping (RD) model for soft tissue attenuation is used with a subspace-based nonlinear inversion (SNLI) algorithm to reconstruct viscoelastic properties, energy attenuation mechanisms and concomitant damping behavior of the tissue-simulating phantoms. This research performs a thorough evaluation of the RD model in MRE focusing on unique identification of RD parameters, μI and ρI. Results show the non-identifiability of the RD model at a single input frequency based on a structural analysis with a series of supporting experimental phantom results. The estimated real shear modulus values (μR) were substantially correct in characterising various material types and correlated well with the expected stiffness contrast of the physical phantoms. However, estimated RD parameters displayed consistent poor reconstruction accuracy leading to unpredictable trends in parameter behaviour. To overcome this issue, two alternative approaches were developed: (1) simultaneous multi-frequency inversion; and (2) parametric-based reconstruction. Overall, the RD model estimates the real shear shear modulus (μR) well, but identifying damping parameters (μI and ρI) is not possible without an alternative approach. PMID:24018294

  20. A numerically efficient damping model for acoustic resonances in microfluidic cavities

    SciTech Connect

    Hahn, P. Dual, J.

    2015-06-15

    Bulk acoustic wave devices are typically operated in a resonant state to achieve enhanced acoustic amplitudes and high acoustofluidic forces for the manipulation of microparticles. Among other loss mechanisms related to the structural parts of acoustofluidic devices, damping in the fluidic cavity is a crucial factor that limits the attainable acoustic amplitudes. In the analytical part of this study, we quantify all relevant loss mechanisms related to the fluid inside acoustofluidic micro-devices. Subsequently, a numerical analysis of the time-harmonic visco-acoustic and thermo-visco-acoustic equations is carried out to verify the analytical results for 2D and 3D examples. The damping results are fitted into the framework of classical linear acoustics to set up a numerically efficient device model. For this purpose, all damping effects are combined into an acoustofluidic loss factor. Since some components of the acoustofluidic loss factor depend on the acoustic mode shape in the fluid cavity, we propose a two-step simulation procedure. In the first step, the loss factors are deduced from the simulated mode shape. Subsequently, a second simulation is invoked, taking all losses into account. Owing to its computational efficiency, the presented numerical device model is of great relevance for the simulation of acoustofluidic particle manipulation by means of acoustic radiation forces or acoustic streaming. For the first time, accurate 3D simulations of realistic micro-devices for the quantitative prediction of pressure amplitudes and the related acoustofluidic forces become feasible.

  1. Resistively shunted piezocomposites for passive damping

    NASA Astrophysics Data System (ADS)

    Yarlagadda, Shridhar

    The goal of this work was to theoretically model, fabricate and characterize 3-3 coupled piezocomposite structures, using shunted piezoelectric fibers with integrated resistive shunting. Advantages and disadvantages of the different shunted piezocomposite configurations were examined from both modeling and fabrication points of view. Two configurations of practical interest were chosen for detailed study: (1) piezoelectric whiskers in a resistive matrix, and (2) piezoelectric whiskers in a layer of epoxy and shunted with a thin film resistive coating. Two different models were developed: a "smeared" dynamic model and a finite element model. Composite beam theory was modified to include shunted piezoelectric behavior and governing equations and boundary conditions were formulated. For the finite element model, a shunted piezoelectric element was formulated and the discretized governing equations were converted to state-space form. Modeling results demonstrated the possibility of modal loss factors as high as 10% in a single mode, for an effective piezoelectric volume fraction of 25%, as well the ability to tailor achievable levels of damping. Non-linear potential variation and local effects were successfully modeled. The critical parameters affecting modal damping were piezoelectric whisker volume fraction, shunt resistance, structural geometry and the location of whiskers. Experimental efforts involved fabrication of shunted piezocomposites for both configurations. Using chopped continuous poled PZT-5H fibers; a whisker/resistive matrix composite was successfully fabricated. For the resistive matrix case, matrix conductivity was a function of filler volume fraction and showed the percolation effect. However, the dielectric constant of the matrix also increased significantly (factor of 1000) at the design filler volume fraction, which drastically altered the electrical behavior of the piezocomposite from the designed case. The change in dielectric constant appeared

  2. Effect of Particle Damping on an Acoustically Excited Curved Vehicle Panel Structure with varied Equipment Assemblies

    NASA Technical Reports Server (NTRS)

    Parsons, David; Smith, Andrew; Knight, Brent; Hunt, Ron; LaVerde, Bruce; Craigmyle, Ben

    2012-01-01

    Particle dampers provide a mechanism for diverting energy away from resonant structural vibrations. This experimental study provides data from trials to determine how effective use of these dampers might be for equipment mounted to a curved orthogrid vehicle panel. Trends for damping are examined for variations in damper fill level, component mass, and excitation energy. A significant response reduction at the component level would suggest that comparatively small, thoughtfully placed, particle dampers might be advantageously used in vehicle design. The results of this test will be compared with baseline acoustic response tests and other follow-on testing involving a range of isolation and damping methods. Instrumentation consisting of accelerometers, microphones, and still photography data will be collected to correlate with the analytical results.

  3. Note: Electronic damping of microphonics in superconducting resonators of a continuous wave linac

    SciTech Connect

    Joshi, Gopal; Sahu, Bhuban Kumar; Agarwal, Vivek; Kumar, Girish

    2014-02-15

    The paper presents an implementation technique to damp the microphonics in superconducting resonators utilizing the coupling between the electromagnetic and the mechanical modes of a resonator. In the technique used the resonant frequency variations are fed back to modulate the field amplitude through a suitable transfer function. Of the two transfer functions used in the experiments, one emulates a derivative action and is placed in a negative feedback configuration. The other transfer function is essentially a parallel combination of second order low pass filters and is used in a positive feedback configuration. Experiments with the Quarter Wave resonators of IUAC, New Delhi linac demonstrate that the damping of some of the modes increases significantly with the introduction of this feedback leading to a reduction in power required for field stabilization and quieter operation of the RF control system.

  4. Nonlinear radiation damping of nuclear spin waves and magnetoelastic waves in antiferromagnets

    NASA Astrophysics Data System (ADS)

    Andrienko, Alexander V.; Safonov, Vladimir L.

    2016-03-01

    Parallel pumping of nuclear spin waves in antiferromagnetic CsMnF3 at liquid helium temperatures and magnetoelastic waves in antiferromagnetic FeBO3 at liquid nitrogen temperature in a helical resonator was studied. It was found that the absorbed microwave power is approximately equal to the irradiated power from the sample and that the main restriction mechanism of absorption in both cases is defined by the nonlinear radiation damping predicted about two decades ago. Nonlinear radiation damping is sure to be a common feature of the parallel pumping technique for all normal magnetic excitations and it must be taken into account for interpretation of nonlinear phenomena in parametrically excited magnetic systems.

  5. Evaluating Attenuation of Vibration Response using Particle Impact Damping for a Range of Equipment Assemblies

    NASA Technical Reports Server (NTRS)

    Knight, Brent; Parsons, David; Smith, Andrew; Hunt, Ron; LaVerde, Bruce; Towner, Robert; Craigmyle, Ben

    2013-01-01

    Particle dampers provide a mechanism for diverting energy away from resonant structural vibrations. This experimental study provides data from a series of acoustically excited tests to determine the effectiveness of these dampers for equipment mounted to a curved orthogrid panel for a launch vehicle application. Vibration attenuation trends are examined for variations in particle damper fill level, component mass, and excitation energy. A significant response reduction at the component level was achieved, suggesting that comparatively small, strategically placed, particle damper devices might be advantageously used in launch vehicle design. These test results were compared to baseline acoustic response tests without particle damping devices, over a range of isolation and damping parameters. Instrumentation consisting of accelerometers, microphones, and still photography data will be collected to correlate with the analytical results.

  6. Strong magnetization damping induced by Ag nanostructures in Ag/NiFe/Ag trilayers

    NASA Astrophysics Data System (ADS)

    Ley Domínguez, D.; da Silva, G. L.; Rodríguez-Suárez, R. L.; Rezende, S. M.; Azevedo, A.

    2013-07-01

    Ferromagnetic resonance has been used to investigate the magnetization relaxation in trilayers of Ag(t)/NiFe(10 nm)/Ag(t), sputter deposited on Si(001) where the thickness of the Ag layer varied from 0 nm to 24 nm. In the first stages of formation, the Ag layers form islands that work as mold to imprint defects or inhomogeneities on the NiFe film surface. The magnetic inhomogeneities and defects imprinted on the surface of the NiFe film act as extrinsic sources of magnetization relaxation in addition to the intrinsic Gilbert damping mechanism. Weak inhomogeneities are associated to the two-magnon scattering source and the strong inhomogeneities are associated to the fluctuations of the local magnetization. By adding the three different sources of magnetization damping, we were able to explain the azimuthal dependence of the ferromagnetic resonance linewidth.

  7. Direct structural damping identification method using complex FRFs

    NASA Astrophysics Data System (ADS)

    Arora, Vikas

    2015-03-01

    Most of the identification methods are based only on the viscous damping model and uses modal data. In this paper, a new FRF-based direct structural damping identification method is proposed. The proposed method is a direct method and identifies structural damping matrix explicitly. As the new method is a FRF-based method, it overcomes the problem of closely spaced modes for damping identification. The accuracy of identified structural damping matrix depends upon the accuracy of finite element model. In this paper, FRF-based model updating method is used to obtain accurate mass and stiffness matrices. Thus, the procedure to obtain accurate structural damping matrix is a two-step procedure. In the first step, mass and stiffness matrices are updated and in the second step, structural damping matrix is identified using updated mass and stiffness matrices, which are obtained in the previous step. The effectiveness of the new method is demonstrated by three numerical examples and one experimental example. The numerical studies of lumped mass system, fixed-fixed beam and L-shaped frame structure are carried out. The effects of coordinate incompleteness, ill-conditioning and robustness of method under presence of noise are investigated. The proposed method is able to predict FRFs accurately for the frequency range covering the modes considered. However, beyond the considered modes, the predicted FRFs do not match the experimental FRFs. It is suggested in this work that ill-conditioning problem should be dealt by considering all the modes in the frequency range of interest. The performance of the proposed method is investigated for cases of light, medium and heavily damped structures. The numerical studies are followed by experimental case study of cantilever beam structure. The effectiveness of the proposed method is evaluated by comparing the predicted and the experimental FRFs. The results have shown that the proposed method is able to predict accurately the

  8. Public health and economic impact of dampness and mold

    SciTech Connect

    Mudarri, David; Fisk, William J.

    2007-06-01

    The public health risk and economic impact of dampness and mold exposures was assessed using current asthma as a health endpoint. Individual risk of current asthma from exposure to dampness and mold in homes from Fisk et al. (2007), and asthma risks calculated from additional studies that reported the prevalence of dampness and mold in homes were used to estimate the proportion of U.S. current asthma cases that are attributable to dampness and mold exposure at 21% (95% confidence internal 12-29%). An examination of the literature covering dampness and mold in schools, offices, and institutional buildings, which is summarized in the appendix, suggests that risks from exposure in these buildings are similar to risks from exposures in homes. Of the 21.8 million people reported to have asthma in the U.S., approximately 4.6 (2.7-6.3) million cases are estimated to be attributable to dampness and mold exposure in the home. Estimates of the national cost of asthma from two prior studies were updated to 2004 and used to estimate the economic impact of dampness and mold exposures. By applying the attributable fraction to the updated national annual cost of asthma, the national annual cost of asthma that is attributable to dampness and mold exposure in the home is estimated to be $3.5 billion ($2.1-4.8 billion). Analysis indicates that exposure to dampness and mold in buildings poses significant public health and economic risks in the U.S. These findings are compatible with public policies and programs that help control moisture and mold in buildings.

  9. Active damping of modal vibrations by force apportioning

    NASA Technical Reports Server (NTRS)

    Hallauer, W. L., Jr.

    1980-01-01

    Force apportioning, a method of active structural damping based on that used in modal vibration testing of isolating modes by multiple shaker excitation, was analyzed and numerically simulated. A distribution of as few forces as possible on the structure is chosen so as to maximally affect selected vibration modes while minimally exciting all other modes. The accuracy of numerical simulations of active damping, active damping of higher-frequency modes, and studies of imperfection sensitivity are discussed. The computer programs developed are described and possible refinements of the research are examined.

  10. Investigation of empirical damping laws for the space shuttle

    NASA Technical Reports Server (NTRS)

    Bernstein, E. L.

    1973-01-01

    An analysis of dynamic test data from vibration testing of a number of aerospace vehicles was made to develop an empirical structural damping law. A systematic attempt was made to fit dissipated energy/cycle to combinations of all dynamic variables. The best-fit laws for bending, torsion, and longitudinal motion are given, with error bounds. A discussion and estimate are made of error sources. Programs are developed for predicting equivalent linear structural damping coefficients and finding the response of nonlinearly damped structures.

  11. Damping and support in high-temperature superconducting levitation systems

    DOEpatents

    Hull, John R.; McIver, Carl R.; Mittleider, John A.

    2009-12-15

    Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.

  12. Damping in coupled bending and torsion - An experiment

    NASA Technical Reports Server (NTRS)

    Umland, Jeffrey W.; Inman, Daniel J.; Banks, H. T.

    1991-01-01

    Traditional experimental modal testing methods are used to determine the damping properties of a Euler-Bernoulli beam with offset inertial tip mass. Both viscous and strain rate damping models are considered in bending and in torsion. A partial differential equation model of the coupled system is used. Eigenfunctions are derived for the coupled system by using a Green's function approach to derive the approximate uncoupled eigenfunctions. These eigenfunctions are used in a decoupled fashion with experimental modal data to estimate the damping parameters of the coupled system. The experimental modal data were obtained from both free and impulse responses using a combined translational and rotational accelerometer.

  13. Nonlinear Landau damping of transverse electromagnetic waves in dusty plasmas

    SciTech Connect

    Tsintsadze, N. L.; Chaudhary, Rozina; Shah, H. A.; Murtaza, G.

    2009-04-15

    High-frequency transverse electromagnetic waves in a collisionless isotropic dusty plasma damp via nonlinear Landau damping. Taking into account the latter we have obtained a generalized set of Zakharov equations with local and nonlocal terms. Then from this coupled set of Zakharov equations a kinetic nonlinear Schroedinger equation with local and nonlocal nonlinearities is derived for special cases. It is shown that the modulation of the amplitude of the electromagnetic waves leads to the modulation instability through the nonlinear Landau damping term. The maximum growth rate is obtained for the special case when the group velocity of electromagnetic waves is close to the dust acoustic velocity.

  14. Damping ring designs for a TeV Linear Collider

    SciTech Connect

    Raubenheimer, T.O.; Rivkin, L.Z.; Ruth, R.D.

    1988-12-01

    In this paper we present a damping ring design for the TLC (TeV Linear Collider). The ring operates at 1.8 GeV. It has normalized emittances of elepsilon/sub x/ = 2.8 mrad and elepsilon/sub y/ = 25.4 nmrad. The damping times are /tau//sub x/ = 2.5 ms and /tau//sub y/ = 4.0 ms. To achieve these extremely low emittances and fast damping times, the ring contains 22 m of wigglers. 30 refs., 7 figs., 7 tabs.

  15. Effects of damping on mode shapes, volume 2

    NASA Technical Reports Server (NTRS)

    Gates, R. M.; Merchant, D. H.; Arnquist, J. L.

    1977-01-01

    Displacement, velocity, and acceleration admittances were calculated for a realistic NASTRAN structural model of space shuttle for three conditions: liftoff, maximum dynamic pressure and end of solid rocket booster burn. The realistic model of the orbiter, external tank, and solid rocket motors included the representation of structural joint transmissibilities by finite stiffness and damping elements. Data values for the finite damping elements were assigned to duplicate overall low-frequency modal damping values taken from tests of similar vehicles. For comparison with the calculated admittances, position and rate gains were computed for a conventional shuttle model for the liftoff condition. Dynamic characteristics and admittances for the space shuttle model are presented.

  16. Directed compact percolation near a damp wall with biased growth

    NASA Astrophysics Data System (ADS)

    Lonsdale, H.; Owczarek, A. L.

    2012-11-01

    The model of directed compact percolation near a damp wall is generalized to allow for a bias in the growth of a cluster, either towards or away from the wall. The percolation probability for clusters beginning with seed width m, any distance from the wall, is derived exactly by solving the associated recurrences. It is found that the general biased case near a damp wall leads to a critical exponent β = 1, in line with the dry biased case, which differs from the unbiased damp/dry exponent β = 2.

  17. Trapped-Particle-Mediated Collisional Damping of Nonaxisymmetric Plasma Waves

    SciTech Connect

    Kabantsev, A. A.; Driscoll, C. F.

    2006-09-01

    Weak axial variations in magnetic or electric confinement fields in pure electron plasmas cause slow electrons to be trapped locally, and collisional diffusion across the trapping separatrix then causes surprisingly large trapped-particle-mediated (TPM) damping and transport effects. Here we characterize TPM damping of m{sub {theta}}{ne}0, m{sub z}={+-}1 Trivelpiece-Gould plasma modes in large-amplitude long-lived Bernstein-Greene-Kruskal states. The TPM damping gives {gamma}{sub BGK}/{omega}{approx}10{sup -4} and seems to dominate in regimes of weak interparticle collisions.

  18. The Plastic Scintillator Detector of the DAMPE space experiment

    NASA Astrophysics Data System (ADS)

    Sun, Zhiyu

    2016-07-01

    The DArk Matter Explorer (DAMPE) is a satellite based experiment aiming for dark matter search and many other topics astronomy interested. The Plastic Scintillator Detector (PSD) gives DAMPE the ability to measure charge of the crossing particles and separate gamma from electrons, which are necessary for achieving the goals of the experiment. The PSD is composed by 82 scintillator counters and read at both ends by a total of 162 photomultiplier tubes. In this paper, we describe the final design of DAMPE-PSD, the expected performances, and shows some results of the beam test carried on at CERN.

  19. Damping induced by ferrofluid seals in ironless loudspeaker

    NASA Astrophysics Data System (ADS)

    Pinho, M.; Génevaux, J. M.; Dauchez, N.; Brouard, B.; Collas, P.; Mézière, H.

    2014-04-01

    Damping induced by ferrofluid seals in ironless loudspeakers is investigated in this paper. The magnetic field is steady but not spatially constant. A model to determine the viscous damping coefficient induced by the ferrofluid seal is derived. It is a function of geometrical parameters and local viscosity of the ferrofluid in which dependence from magnetic field, shear rate and frequency is accounted for. Comparison with experimental results shows a good agreement for the thinner seals. An overestimation of the damping is observed for higher volumes. This discrepancy comes from geometric irregularities of the magnet assembly made out of several tiles.

  20. Approach for Selection of Rayleigh Damping Parameters Used for Time History Analysis

    SciTech Connect

    R. E. Spears; S. R. Jensen

    2012-12-01

    Nonlinearities, whether geometric or material, need to be addressed in seismic analysis. One good analysis method that can address these nonlinearities is direct time integration with Rayleigh damping. Modal damping is the damping typically specified in seismic analysis Codes and Standards. Modal damping is constant for all frequencies where Rayleigh damping varies with frequency. An approach is proposed here for selection of Rayleigh damping coefficients to be used in seismic analyses that is consistent with given Modal damping. The approach uses the difference between the modal damping response and the Rayleigh damping response along with effective mass properties of the model being evaluated to match overall system response levels. This paper provides a simple example problem to demonstrate the approach. It also provides results for a finite element model representing an existing piping system. Displacement, acceleration, and stress results are compared from model runs using modal damping and model runs using Rayleigh damping with coefficients selected using the proposed method.