Science.gov

Sample records for daphnia magna exposed

  1. Bioaccumulation and oxidative stress in Daphnia magna exposed to arsenite and arsenate.

    PubMed

    Fan, Wenhong; Ren, Jinqian; Li, Xiaomin; Wei, Chaoyang; Xue, Feng; Zhang, Nan

    2015-11-01

    Arsenic pollution and its toxicity to aquatic organisms have attracted worldwide attention. The bioavailability and toxicity of arsenic are highly related to its speciation. The present study investigated the differences in bioaccumulation and oxidative stress responses in an aquatic organism, Daphnia magna, induced by 2 inorganic arsenic species (As(III) and As(V)). The bioaccumulation of arsenic, Na(+) /K(+) -adenosine triphosphatase (ATPase) activity, reactive oxygen species (ROS) content, total superoxide dismutase (SOD) activity, total antioxidative capability, and malondialdehyde content in D. magna were determined after exposure to 500 µg/L of arsenite and arsenate for 48 h. The results showed that the oxidative stress and antioxidative process in D. magna exposed to arsenite and arsenate could be divided into 3 phases, which were antioxidative response, oxidation inhibition, and antioxidative recovery. In addition, differences in bioaccumulation, Na(+) /K(+) -ATPase activity, and total SOD activity were also found in D. magna exposed to As(III) and As(V). These differences might have been the result of the high affinity of As(III) with sulfhydryl groups in enzymes and the structural similarity of As(V) to phosphate. Therefore, arsenate could be taken up by organisms through phosphate transporters, could substitute for phosphate in biochemical reactions, and could lead to a change in the bioaccumulation of arsenic and activity of enzymes. These characteristics were the possible reasons for the different toxicity mechanisms in the oxidative stress process of arsenite and arsenate. PMID:26084717

  2. Three-Dimensional Analysis of the Swimming Behavior of Daphnia magna Exposed to Nanosized Titanium Dioxide

    PubMed Central

    Noss, Christian; Dabrunz, André; Rosenfeldt, Ricki R.; Lorke, Andreas; Schulz, Ralf

    2013-01-01

    Due to their surface characteristics, nanosized titanium dioxide particles (nTiO2) tend to adhere to biological surfaces and we thus hypothesize that they may alter the swimming performance and behavior of motile aquatic organisms. However, no suitable approaches to address these impairments in swimming behavior as a result of nanoparticle exposure are available. Water fleas Daphnia magna exposed to 5 and 20 mg/L nTiO2 (61 nm; polydispersity index: 0.157 in 17.46 mg/L stock suspension) for 96 h showed a significantly (p<0.05) reduced growth rate compared to a 1-mg/L treatment and the control. Using three-dimensional video observations of swimming trajectories, we observed a treatment-dependent swarming of D. magna in the center of the test vessels during the initial phase of the exposure period. Ensemble mean swimming velocities increased with increasing body length of D. magna, but were significantly reduced in comparison to the control in all treatments after 96 h of exposure. Spectral analysis of swimming velocities revealed that high-frequency variance, which we consider as a measure of swimming activity, was significantly reduced in the 5- and 20-mg/L treatments. The results highlight the potential of detailed swimming analysis of D. magna for the evaluation of sub-lethal mechanical stress mechanisms resulting from biological surface coating and thus for evaluating the effects of nanoparticles in the aquatic environment. PMID:24260519

  3. Transcriptomic alterations in Daphnia magna embryos from mothers exposed to hypoxia.

    PubMed

    Lai, Keng-Po; Li, Jing-Woei; Chan, Christine Ying-Shan; Chan, Ting-Fung; Yuen, Karen Wing-Yee; Chiu, Jill Man-Ying

    2016-08-01

    Hypoxia occurs when dissolved oxygen (DO) falls below 2.8mgL(-1) in aquatic environments. It can cause trans-generational effects not only in fish, but also in the water fleas Daphnia. In this study, transcriptome sequencing analysis was employed to identify transcriptomic alterations induced by hypoxia in embryos of Daphnia magna, with an aim to investigate the mechanism underlying the trans-generational effects caused by hypoxia in Daphnia. The embryos (F1) were collected from adults (F0) that were previously exposed to hypoxia (or normoxia) for their whole life. De novo transcriptome assembly identified 18270 transcripts that were matched to the UniProtKB/Swiss-Prot database and resulted in 7419 genes. Comparative transcriptome analysis showed 124 differentially expressed genes, including 70 up- and 54 down-regulated genes under hypoxia. Gene ontology analysis further highlighted three clusters of genes which revealed acclimatory changes of haemoglobin, suppression in vitellogenin gene family and histone modifications. Specifically, the expressions of histone H2B, H3, H4 and histone deacetylase 4 (HDAC4) were deregulated. This study suggested that trans-generational effects of hypoxia on Daphnia may be mediated through epigenetic regulations of histone modifications. PMID:27399157

  4. Population level effects of multiwalled carbon nanotubes in Daphnia magna exposed to pulses of triclocarban.

    PubMed

    Simon, Anne; Preuss, Thomas G; Schäffer, Andreas; Hollert, Henner; Maes, Hanna M

    2015-08-01

    Due to the rapid increase of carbon nanotubes (CNT) applications and their inevitable release into the aquatic environment, CNT may interact with and further influence the fate and transport of other pollutants such as triclocarban (TCC). TCC is a high-production-volume chemical that is widely used as an antimicrobial agent, is continually released into the aquatic environment, and is biologically active and persistent. In the present study, the population test with Daphnia magna was performed over 93 days. Different treatments were examined: (a) control, (b) solvent control, (c) 1 mg CNT/L from the beginning, (d) 1 mg CNT/L as of day 14, (e) control with a 2-day pulse of 25 µg TCC/L on day 14, 41 µg TCC/L (day 54), and 61 µg TCC/L (day 68) and (f) same pulses of TCC with co-exposure to 1 mg CNT/L. Significant changes in all three size classes were observed as a result of the long-term exposure to 1 mg CNT/L. Increasing in number of neonates, and decreasing in number of juveniles and adults were observed. Moreover, daphnids were significantly smaller when they were exposed to MWCNT. The exposure with TCC led to size-dependent mortality in Daphnia magna populations and a subsequent recovery. Lower toxicity of TCC was observed, with the presence of MWCNT in the medium. The reported effects of TCC on population level were compared to the output of an individual-based Daphnia magna population model, in order to verify the model predictions with laboratory data. PMID:26003833

  5. THE GOOD, THE BAD, AND THE TOXIC: APPROACHING HORMESIS IN DAPHNIA MAGNA EXPOSED TO AN ENERGETIC COMPOUND

    PubMed Central

    Stanley, Jacob K.; Perkins, Edward J.; Habib, Tanwir; Sims, Jerre G.; Chappell, Pornsawan; Escalon, B. Lynn; Wilbanks, Mitchell; Garcia-Reyero, Natàlia

    2014-01-01

    A hormetic response is characterized by an opposite effect in small and large doses of chemical exposure, often resulting in seemingly beneficial effects at low doses. Here, we examined the potential mechanisms underlying the hormetic response of Daphnia magna to the energetic trinitrotoluene (TNT). Daphnia magna were exposed to TNT for 21 days and a significant increase in adult length and number of neonates was identified at low concentrations (0.002 – 0.22 mg/L TNT) while toxic effects were identified at high concentrations (0.97 mg/L TNT and above). Microarray analysis of D. magna exposed to 0.004, 0.12, and 1.85 mg/L TNT identified effects on lipid metabolism as a potential mechanism underlying hormetic effects. Lipidomic analysis of exposed D. magna supported the hypothesis that TNT exposure affected lipid and fatty acid metabolism, showing that hormetic effects could be related to changes in polyunsaturated fatty acids known to be involved in Daphnia growth and reproduction. Our results show that Daphnia exposed to low levels of TNT presented hormetic growth and reproduction enhancement while higher TNT concentrations had an opposite effect. Our results also show how a systems approach can help elucidate potential mechanisms of action and adverse outcomes. PMID:23898970

  6. Energy allocation in Daphnia magna exposed to xenobiotics: A biochemical approach

    SciTech Connect

    Coen, W.M. De; Janssen, C.R.; Persoone, G.

    1995-12-31

    A new approach to sublethal aquatic toxicity testing based on a biochemical assessment of the energy budget of Daphnia magna was developed and evaluated. With this method energy consumption (E{sub c}) is estimated by measuring the electron transport activity based on the calorimetric measurement of a tetrazolium salt reduction. Total available energy (E{sub a}) is assessed by measuring the lipid, protein and sugar content of the test organism using calorimetric methods. E{sub a} {minus} E{sup c} can subsequently be calculated and represents the ``surplus`` energy available for growth and reproduction. D. magna neonates were exposed to cadmium and 2,4-dichlorophenoxy acetic acid for 4 days after which the electron transport activity and the total lipid, protein and sugar content of the test organisms were determined. Using the enthalpy of combustion of the different macromolecular groups and converting the oxygen consumption into oxyenthalpic equivalents, an estimation of the total energy budget of the test organisms was made. Additionally, the age specific survival and reproduction and the growth of D. magna populations exposed to the same sublethal concentrations was assessed in 21 day life table experiments. Energy allocation patterns of stressed D. magna obtained with the new biochemical approach were similar to those obtained with the conventional Scope for Growth determinations. Although more research is needed, comparison between the suborganismal (biochemical) and supraorganismal (life table) endpoints indicate that the proposed short-term assay based on energy allocation could be used to predict long-term effects on the survival, growth and reproduction of daphnids.

  7. Growth of Daphnia magna exposed to mixtures of chemicals with diverse modes of action

    SciTech Connect

    Deneer, J.W.; Seinen, W.; Hermens, J.L.

    1988-02-01

    Concentrations causing inhibition of growth of Daphnia magna after 16 days of exposure were determined for nine chemicals that presumably act through different modes of action. The joint toxic effect of a mixture of these chemicals is found to be nonadditive.

  8. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles.

    PubMed

    Lovern, Sarah B; Klaper, Rebecca

    2006-04-01

    Nanoparticles (1-100 nm) comprise the latest technological advances designed to do everything from absorb environmental toxins to deliver drugs to a target organ. Recently, however, they have come under scrutiny for the potential to cause environmental damage. Because compounds in this miniature size range have chemical properties that differ from those of their larger counterparts, nanoparticles deserve special attention. Our main objective was to assess the potential impact that nanoparticles may have on release into aquatic environments. We prepared titanium dioxide (TiO2) and fullerene (C60) nanoparticles by filtration in tetrahydrofuran or by sonication. Daphnia magna were exposed to the four solutions using U.S. Environmental Protection Agency 48-h acute toxicity tests. Images of the particle solutions were recorded using transmission-electron microscopy, and the median lethal concentration, lowest-observable-effect concentration, and no-observable-effect concentration were determined. Exposure to filtered C60 and filtered TiO2 caused an increase in mortality with an increase in concentration, whereas fullerenes show higher levels of toxicity at lower concentrations. Exposure to the sonicated solutions caused varied mortality. Understanding the potential impacts of nanoparticles will help to identify the most appropriate nanotechnology to preserve the aquatic environment while advancing medical and environmental technology. PMID:16629153

  9. Characterization of acetylcholinesterase inhibition and energy allocation in Daphnia magna exposed to carbaryl.

    PubMed

    Jeon, Junho; Kretschmann, Andreas; Escher, Beate I; Hollender, Juliane

    2013-12-01

    The inhibition of acetylcholinesterase (AChE) activity and energy allocation in the freshwater organism Daphnia magna exposed to carbaryl and potential recovery from the effects was examined. The binding of carbaryl-AChE was characterized through in vitro assays. To evaluate the recovery from inhibition and the alteration in energy budget, in vivo exposure and recovery regime tests were conducted. In comparison to diazoxon, the active metabolite of the insecticide diazinon, the stability of enzyme-carbaryl complex was fifteen times lower and the reactivity toward the active site was two times lower, resulting in approximately 30 times lower overall inhibition rate than for diazoxon. The in vitro reactivation rate constant of the inhibited enzyme and the in vivo recovery rate constant of AChE activity were 1.9 h⁻¹ and 0.12 h⁻¹ for carbaryl, respectively, which are much higher than the corresponding rate constants for diazoxon. The lower AChE inhibition and greater reactivation/recovery rates are in accordance with the lower toxicity of carbaryl compared to diazinon. Carbaryl exposure also altered the profile of the energy reserve: the decrease in lipid and glycogen and the increase in protein content resulted in the reduction of the total energy budget by about 45 mJ/g(ww). This corresponds to 26 percent of the available energy, which might allocate for external stressors. The mechanistic model of AChE inhibition is helpful to get an insight into (eco-)toxicological effects of AChE inhibitors on freshwater crustaceans under environmentally realistic conditions. PMID:24139064

  10. Response of biochemical biomarkers in the aquatic crustacean Daphnia magna exposed to silver nanoparticles.

    PubMed

    Ulm, Lea; Krivohlavek, Adela; Jurašin, Darija; Ljubojević, Marija; Šinko, Goran; Crnković, Tea; Žuntar, Irena; Šikić, Sandra; Vinković Vrček, Ivana

    2015-12-01

    The proliferation of silver nanoparticle (AgNP) production and use owing to their antimicrobial properties justifies the need to examine the resulting environmental impacts. The discharge of biocidal nanoparticles to water bodies may pose a threat to aquatic species. This study evaluated the effects of citrate-coated AgNPs on the standardized test organism Daphnia magna Straus clone MBP996 by means of biochemical biomarker response. AgNP toxicity was compared against the toxic effect of Ag(+). The toxicity endpoints were calculated based upon measured Ag concentrations in exposure media. For AgNPs, the NOAEC and LOAEC values at 48 h were 5 and 7 μg Ag/L, respectively, while these values were 0.5 and 1 μg Ag/L, respectively, for Ag(+). The EC50 at 48 h was computed to be 12.4 ± 0.6 and 2.6 ± 0.1 μg Ag/L for AgNPs and Ag(+), respectively, with 95 % confidence intervals of 12.1-12.8 and 2.3-2.8 μg Ag/L, respectively. These results indicate significant less toxicity of AgNP compared to free Ag(+) ions. Five biomarkers were evaluated in Daphnia magna neonates after acute exposure to Ag(+) or AgNPs, including glutathione (GSH) level, reactive oxygen species (ROS) content, and catalase (CAT), acetylcholinesterase (AChE), and superoxide dismutase (SOD) activity. AgNPs induced toxicity and oxidative stress responses in D. magna neonates at tenfold higher concentrations than Ag. Biochemical methods revealed a clear increase in AChE activity, decreased ROS level, increased GSH level and CAT activity, but no significant changes in SOD activity. As Ag(+) may dissolve from AgNPs, these two types of Ag could act synergistically and produce a greater toxic response. The observed remarkably high toxicity of AgNPs (in the parts-per-billion range) to crustaceans indicates that these organisms are a vulnerable link in the aquatic food chain with regard to contamination by nanosilver. Graphical Abstract ᅟ. PMID:26296504

  11. A metabolomic study on the responses of daphnia magna exposed to silver nitrate and coated silver nanoparticles.

    PubMed

    Li, LianZhen; Wu, Huifeng; Ji, Chenglong; van Gestel, Cornelis A M; Allen, Herbert E; Peijnenburg, Willie J G M

    2015-09-01

    We examined the short-term toxicity of AgNPs and AgNO3 to Daphnia magna at sublethal levels using (1)H NMR-based metabolomics. Two sizes of polyvinylpyrrolidone-coated AgNPs (10 and 40nm) were synthesized and characterized and their Ag(+) release was studied using centrifugal ultrafiltration and inductively coupled plasma mass spectrometry. Multivariate statistical analysis of the (1)H NMR spectra showed significant changes in the D. magna metabolic profiles following 48h exposure to both AgNP particle sizes and Ag(+) exposure. Most of the metabolic biomarkers for AgNP exposure, including 3-hydroxybutyrate, arginine, lysine and phosphocholine, were identical to those of the Ag(+)-exposed groups, suggesting that the dominant effects of both AgNPs were due to released Ag(+). The observed metabolic changes implied that the released Ag(+) induced disturbance in energy metabolism and oxidative stress, a proposed mechanism of AgNP toxicity. Elevated levels of lactate in all AgNP-treated but not in Ag(+)-treated groups provided evidence for Ag-NP enhanced anaerobic metabolism. These findings show that (1)H NMR-based metabolomics provides a sensitive measure of D. magna response to AgNPs and that further targeted assays are needed to elucidate mechanisms of action of nanoparticle-induced toxicity. PMID:25978415

  12. Transmission of DNA damage and increasing reprotoxic effects over two generations of Daphnia magna exposed to uranium.

    PubMed

    Plaire, Delphine; Bourdineaud, Jean-Paul; Alonzo, Antoine; Camilleri, Virginie; Garcia-Sanchez, Laurent; Adam-Guillermin, Christelle; Alonzo, Frédéric

    2013-11-01

    This study aimed to examine the mechanisms involved in the transgenerational increase in Daphnia magna sensitivity to waterborne depleted uranium (DU) under controlled laboratory conditions. Daphnids were exposed to concentrations ranging from 2 to 50 μg L(-1) over two successive generations. Genotoxic effects were assessed using random amplified polymorphic DNA and real time PCR (RAPD-PCR). Effects on life history (survival, fecundity and somatic growth) were monitored from hatching to release of brood 5. Different exposure regimes were tested to investigate the specific sensitivity of various life stages to DU. When daphnids were exposed continuously or from hatching to deposition of brood 5, results demonstrated that DNA damage accumulated in females and were transmitted to offspring in parallel with an increase in severity of effects on life history across generations. When daphnids were exposed during the embryo stage only, DU exposure induced transient DNA damage which was repaired after neonates were returned to a clean medium. Effects on life history remained visible after hatching and did not significantly increase in severity across generations. The present results suggest that DNA damage might be an early indicator of future effects on life history. PMID:24035969

  13. Effects of the interaction between TiO2 with different percentages of exposed {001} facets and Cu(2+) on biotoxicity in Daphnia magna.

    PubMed

    Liu, Lingling; Fan, Wenhong; Lu, Huiting; Xiao, Wei

    2015-01-01

    Anatase TiO2 nanosheets (NSs) with exposed {001} facets have been widely used because of their high activity and particular surface atomic configuration. However, investigations on their biotoxicity are rare. In this study, bioaccumulation of five different TiO2 (with 10%, 61%, 71%, 74% and 78% exposed {001} facets), as well as copper and enzyme activities in Daphnia magna, are systematically investigated and rationalized. The results indicated that the addition of Cu(2+) enhanced agglomeration-sedimentation of TiO2, resulting in the reduction of TiO2 bioaccumulation by 10% to 26%. TiO2 nanoparticles (NPs) increased copper bioaccumulation by 9.8%, whereas the other four TiO2 nanosheets (NSs) decreased it by 43% to 53%, which depended on TiO2 variant adsorption and free Cu(2+) concentrations in the supernatant. The levels of superoxide dismutase (SOD) enzyme and Na(+)/K(+)-ATPase activities suggested that oxidative stress, instead of membrane damage, was the main toxicity in D. magna. Meanwhile, the SOD enzyme activities increased with decreasing Cu accumulation and increasing Ti accumulation because of the different functions of Cu and Ti in organisms. This research highlighted the important role of the percentage of exposed {001} facets in nanostructured TiO2 on bioaccumulation and biotoxicity of TiO2 and Cu(2+) in Daphnia magna. PMID:26242603

  14. Effects of the interaction between TiO2 with different percentages of exposed {001} facets and Cu2+ on biotoxicity in Daphnia magna

    NASA Astrophysics Data System (ADS)

    Liu, Lingling; Fan, Wenhong; Lu, Huiting; Xiao, Wei

    2015-08-01

    Anatase TiO2 nanosheets (NSs) with exposed {001} facets have been widely used because of their high activity and particular surface atomic configuration. However, investigations on their biotoxicity are rare. In this study, bioaccumulation of five different TiO2 (with 10%, 61%, 71%, 74% and 78% exposed {001} facets), as well as copper and enzyme activities in Daphnia magna, are systematically investigated and rationalized. The results indicated that the addition of Cu2+ enhanced agglomeration-sedimentation of TiO2, resulting in the reduction of TiO2 bioaccumulation by 10% to 26%. TiO2 nanoparticles (NPs) increased copper bioaccumulation by 9.8%, whereas the other four TiO2 nanosheets (NSs) decreased it by 43% to 53%, which depended on TiO2 variant adsorption and free Cu2+ concentrations in the supernatant. The levels of superoxide dismutase (SOD) enzyme and Na+/K+-ATPase activities suggested that oxidative stress, instead of membrane damage, was the main toxicity in D. magna. Meanwhile, the SOD enzyme activities increased with decreasing Cu accumulation and increasing Ti accumulation because of the different functions of Cu and Ti in organisms. This research highlighted the important role of the percentage of exposed {001} facets in nanostructured TiO2 on bioaccumulation and biotoxicity of TiO2 and Cu2+ in Daphnia magna.

  15. Effects of the interaction between TiO2 with different percentages of exposed {001} facets and Cu2+ on biotoxicity in Daphnia magna

    PubMed Central

    Liu, Lingling; Fan, Wenhong; Lu, Huiting; Xiao, Wei

    2015-01-01

    Anatase TiO2 nanosheets (NSs) with exposed {001} facets have been widely used because of their high activity and particular surface atomic configuration. However, investigations on their biotoxicity are rare. In this study, bioaccumulation of five different TiO2 (with 10%, 61%, 71%, 74% and 78% exposed {001} facets), as well as copper and enzyme activities in Daphnia magna, are systematically investigated and rationalized. The results indicated that the addition of Cu2+ enhanced agglomeration–sedimentation of TiO2, resulting in the reduction of TiO2 bioaccumulation by 10% to 26%. TiO2 nanoparticles (NPs) increased copper bioaccumulation by 9.8%, whereas the other four TiO2 nanosheets (NSs) decreased it by 43% to 53%, which depended on TiO2 variant adsorption and free Cu2+ concentrations in the supernatant. The levels of superoxide dismutase (SOD) enzyme and Na+/K+-ATPase activities suggested that oxidative stress, instead of membrane damage, was the main toxicity in D. magna. Meanwhile, the SOD enzyme activities increased with decreasing Cu accumulation and increasing Ti accumulation because of the different functions of Cu and Ti in organisms. This research highlighted the important role of the percentage of exposed {001} facets in nanostructured TiO2 on bioaccumulation and biotoxicity of TiO2 and Cu2+ in Daphnia magna. PMID:26242603

  16. Development of resistance to cyfluthrin and naphthalene among Daphnia magna.

    PubMed

    Brausch, John M; Smith, Philip N

    2009-07-01

    In this study, Daphnia magna were exposed to a pyrethroid insecticide (cyfluthrin) or a polycyclic aromatic hydrocarbon (naphthalene) for 12 generations to evaluate development of resistance followed by a 12 generation recovery period. Twenty-four hour old D. magna were exposed to concentrations of each chemical resulting in 50-70% mortality to select for the least sensitive individuals. LC50 values, survival, reproductive output, and time to first brood in stressor-exposed and control D. magna were recorded for each generation. Significant changes in LC50 values were observed after 4 generations and then declined after 6-10 generations post-exposure. D. magna were 5 times less sensitive to cyfluthrin and 3 times less sensitive to naphthalene as compared to controls after 12 generations of exposure. There were no differences in survival, time to first brood, or total number of offspring produced between control and either of the resistant F13 D. magna. Cyfluthrin exposed D. magna exhibited cross-resistance to DDT and methyl parathion, and naphthalene resistant D. magna were less sensitive than controls to both pyrene and benz(a)anthracene. When the cytochrome P450 inhibitor piperonyl butoxide was used in conjunction with cyfluthrin and naphthalene the sensitivity of resistant and control D. magna were equal, suggesting P450s were responsible for conveying resistance. This study demonstrates that life history and organisms' capacity to develop resistance is important to consider ensuring accuracy of ecological risk assessments. PMID:19399609

  17. Changes in iTRAQ-Based Proteomic Profiling of the Cladoceran Daphnia magna Exposed to Microcystin-Producing and Microcystin-Free Microcystis aeruginosa.

    PubMed

    Lyu, Kai; Meng, Qingguo; Zhu, Xuexia; Dai, Daoxin; Zhang, Lu; Huang, Yuan; Yang, Zhou

    2016-05-01

    Global warming and increased nutrient fluxes cause cyanobacterial blooms in freshwater ecosystems. These phenomena have increased the concern for human health and ecosystem services. The mass occurrences of toxic cyanobacteria strongly affect freshwater zooplankton communities, especially the unselective filter feeder Daphnia. However, the molecular mechanisms of cyanobacterial toxicity remain poorly understood. This study is the first to combine the established body growth rate (BGR), which is an indicator of life-history fitness, with differential peptide labeling (iTRAQ)-based proteomics in Daphnia magna influenced by microcystin-producing (MP) and microcystin-free (MF) Microcystis aeruginosa. A significant decrease in BGR was detected when D. magna was exposed to MP or MF M. aeruginosa. Conducting iTRAQ proteomic analyses, we successfully identified and quantified 211 proteins with significant changes in expression. A cluster of orthologous groups revealed that M. aeruginosa-affected differential proteins were strongly associated with lipid, carbohydrate, amino acid, and energy metabolism. These parameters could potentially explain the reduced fitness based on the cost of the substance metabolism. PMID:27057760

  18. Compounds altering fat storage in Daphnia magna.

    PubMed

    Jordão, Rita; Garreta, Elba; Campos, Bruno; Lemos, Marco F L; Soares, Amadeu M V M; Tauler, Romà; Barata, Carlos

    2016-03-01

    The analysis of lipid disruptive effects in invertebrates is limited by our poor knowledge of the lipid metabolic pathways. A recent study showed that tributyltin activated the ecdysteroid, juvenile hormone and retinoic X receptor signaling pathways, and disrupted the dynamics of neutral lipids in the crustacean Daphnia magna impairing the transfer of triacylglycerols to eggs and hence promoting their accumulation in post-spawning females. Tributyltin disruptive effects correlated with lower fitness for offspring and adults. The present study aims to addresses effects of existing compounds on storage lipids in post-spawning females and their health effects. D. magna individuals were exposed 12 chemicals that included vertebrate obesogens (tributyltin, triphenyltin, bisphenol A, nonylphenol, di-2-ethylhexyl phthalate), other contaminants known to affect arthropods (pyriproxyfen, fenarimol, methoprene, emamectin benzoate and fluoxetine), as well as the natural hormones methyl farnesoate and 20-hydroxyecdysone. Reproductive effects were also assessed. Quantitative changes in storage lipids accumulated in lipid droplets were studied using Nile red staining, which showed a close relationship with whole organism levels of triacylglycerols. Ten compounds altered storage lipids in a concentration related manner enhancing (tributyltin, bisphenol A, methyl farnesoate, pyriproxyfen and 20-hydroxyecdysone) or decreasing (nonylphenol, fenarimol, emamectin benzoate, methoprene and fluoxetine) their levels in post-spawning females. Eight compounds that altered lipid levels also had detrimental effects on growth and/or reproduction. PMID:26747981

  19. Qualitative assessment of genotoxicity using random amplified polymorphic DNA: Comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo[a]pyrene

    SciTech Connect

    Atienzar, F.A.; Conradi, M.; Evenden, A.J.; Jha, A.N.; Depledge, M.H.

    1999-10-01

    A method of DNA profiling using the random amplified polymorphic DNA (RAPD) was used to assess toxicant-induced DNA effects in laboratory populations of Daphnia magna exposed to varying concentrations of the genotoxic hydrocarbon benzo[a]pyrene. These effects, represented by changes in the RAPD profiles, were compared with a number of key ecological fitness parameters (age-specific survival, age-specific fecundity, net reproductive rate, and intrinsic rate of population increase). Not only was the RAPD profiling method shown to be a rapid and reproducible assay of toxicant-induced DNA effects, but the qualitative measure of genomic template stability compared favorably with the traditional indices of fitness. The RAPD profiles, however, exhibited higher sensitivity in detecting toxic effects. The significance of these findings for future ecotoxicological studies is discussed.

  20. The random amplified polymorphic DNA (RAPD) assay to determine DNA alterations, repair and transgenerational effects in B(a)P exposed Daphnia magna.

    PubMed

    Atienzar, Franck A; Jha, Awadhesh N

    2004-08-18

    The random amplified polymorphic DNA (RAPD) is a useful assay for the detection of genotoxin-induced DNA damage and mutations. In this study, we have further evaluated the potential of this assay to measure benzo(a)pyrene [B(a)P]-induced DNA changes, and repair (in kinetic experiments) as well as transgenerational effects in the water fleas, Daphnia magna. The organisms, which reproduce parthenogenetically, were exposed to 50 microg L(-1) B(a)P for 3 or 6 days and were allowed to recover in clean medium for 12 or 9 days, respectively. Qualitative and quantitative changes were observed in RAPD profiles generated not only from the B(a)P exposed Daphnia but also from previously treated organisms during the recovery experiments. The fact that some of the RAPD changes disappeared at the end of both recovery experiments suggested that the DNA effects were fully repaired or reversed. In addition, some of the B(a)P-induced RAPD alterations detected in parental D. magna were also observed in the offspring patterns. This suggested that DNA alterations that occurred in germ cells were probably transmitted to the next cohorts. The present study shows that the RAPD method can be useful to qualitatively assess the kinetics of DNA changes, repair and transgenerational effects and such effects could potentially be linked to survival and reproductive success at higher levels of biological organisation. In addition, the water fleas have efficient capabilities to repair or reverse B(a)P-induced DNA effects. Finally, unrepaired or misrepaired genetic damage induced by genotoxins such as B(a)P could be transmitted to next generations in these parthenogenetically reproducing organisms. PMID:15288546

  1. Sucralose Induces Biochemical Responses in Daphnia magna

    PubMed Central

    Eriksson Wiklund, Ann-Kristin; Adolfsson-Erici, Margaretha; Liewenborg, Birgitta; Gorokhova, Elena

    2014-01-01

    The intense artificial sweetener sucralose has no bioconcentration properties, and no adverse acute toxic effects have been observed in standard ecotoxicity tests, suggesting negligible environmental risk. However, significant feeding and behavioural alterations have been reported in non-standard tests using aquatic crustaceans, indicating possible sublethal effects. We hypothesized that these effects are related to alterations in acetylcholinesterase (AChE) and oxidative status in the exposed animals and investigated changes in AChE and oxidative biomarkers (oxygen radical absorbing capacity, ORAC, and lipid peroxidation, TBARS) in the crustacean Daphnia magna exposed to sucralose (0.0001–5 mg L−1). The sucralose concentration was a significant positive predictor for ORAC, TBARS and AChE in the daphnids. Moreover, the AChE response was linked to both oxidative biomarkers, with positive and negative relationships for TBARS and ORAC, respectively. These joint responses support our hypothesis and suggest that exposure to sucralose may induce neurological and oxidative mechanisms with potentially important consequences for animal behaviour and physiology. PMID:24699280

  2. Gene transcription patterns and energy reserves in Daphnia magna show no nanoparticle specific toxicity when exposed to ZnO and CuO nanoparticles.

    PubMed

    Adam, Nathalie; Vergauwen, Lucia; Blust, Ronny; Knapen, Dries

    2015-04-01

    There is still a lot of contradiction on whether metal ions are solely responsible for the observed toxicity of ZnO and CuO nanoparticles to aquatic species. While most experiments have studied nanoparticle effects at organismal levels (e.g. mortality, reproduction), effects at lower levels of biological organization may clarify the role of metal ions, nanoparticles and nanoparticle aggregates. In this study, the effect of ZnO and CuO nanoparticles was tested at two lower levels: energy reserves and gene transcription and compared with zinc and copper salts. Daphnia magna was exposed during 96h to 10% immobilization concentrations of all chemicals, after which daphnids were sampled for determination of glycogen, lipid and protein concentration and for a differential gene transcription analysis using microarray. The dissolved, nanoparticle and aggregated fraction in the medium was characterized. The results showed that ZnO nanoparticles had largely dissolved directly after addition to the test medium. The CuO nanoparticles mostly formed aggregates, while only a small fraction dissolved. The exposure to zinc (both nano and metal salt) had no effect on the available energy reserves. However, in the copper exposure, the glycogen, lipid and protein concentration in the exposed daphnids was lower than in the unexposed ones. When comparing the nanoparticle (ZnO or CuO) exposed daphnids to the metal salt (zinc or copper salt) exposed daphnids, the microarray results showed no significantly differentially transcribed gene fragments. The results indicate that under the current exposure conditions the toxicity of ZnO and CuO nanoparticles to D. magna is solely caused by toxic metal ions. PMID:25704829

  3. Effects of acid precipitation on Daphnia magna

    SciTech Connect

    Parent, S.; Cheetham, R.D.

    1980-08-01

    Pollutants derived from fossil fuel combustion and precipitated from the atmosphere have substantially increased in the past decades. These materials, precipitated in such industrialized areas as southeastern Canada, have caused considerable alterations in aquatic ecosystems. Precipitation over most of the eastern United States is presently 10 to 500 times more acidic than is natural. Most affected aquatic ecosystems contain oligotrophic waters in regions of thin poorly buffered soils. Zooplankton are an important link in food chains of aquatic ecosystems and their disappearance or decline could drastically affect trophic relationships. Declines in zooplankton density in response to acid precipitation have been reported and short term survival of Daphnia pulex between pH 4.3 and 10.4; however, its potential for reproduction was limited to a fairly narrow range. Anderson (1944) noted the advantages of using daphnia as test organisms, and concluded that Daphnia magna was representative of other abundant zooplankton in sensitivity to toxic substances.

  4. Responses of Daphnia magna to pulsed exposures of arsenic.

    PubMed

    Hoang, Tham C; Gallagher, Jeffrey S; Klaine, Stephen J

    2007-06-01

    Research on the toxicity of arsenic has focused on sublethal effects that do not provide sufficient information for risk estimation. While most studies have focused on organism response to constant arsenic exposures, organisms in nature are exposed to fluctuating As concentrations. Consequently, results obtained from standardized bioassays with constant exposures may not adequately characterize risk to indigenous biota. This research was designed to characterize the response of Daphnia magna to fluctuating arsenic exposures during 21-day experiments. At concentrations > or =3000 microg/L As, 21-day pulsed exposure mortality increased as a function of exposure concentration and duration. In addition, 21-day pulsed exposure mortality increased with increasing recovery time. Pulsed As exposure did not affect the growth of D. magna over 21 days. Twenty-one day accumulative reproduction of D. magna was only affected by pulsed exposures of high As concentration and long durations. PMID:17497644

  5. Accumulation of dieldrin in an alga (Scenedesmus obliquus), Daphnia magna, and the guppy (Poecilia reticulata)

    USGS Publications Warehouse

    Reinert, Robert E.

    1972-01-01

    Scenedesmus obliquus, Daphnia magna, and Poecilia reticulata accumulated dieldrin directly from water; average concentration factors (concentration in organism, dry weight, divided by concentration in water) were 1282 for the alga, 13,954 for D. magna, and 49,307 (estimated) for the guppy. The amount accumulated by each species at equilibrium (after about 1.5, 3-4, and 18 days, respectively) was directly proportional to the concentration of dieldrin in the water. Daphnia magna and guppies accumulated more dieldrin from water than from food that had been exposed to similar concentrations in water. When guppies were fed equal daily rations of D. magna containing different concentrations of insecticide, the amounts of dieldrin accumulated by the fish were directly proportional to the concentration in D. magna; when two lots of guppies were fed different quantities of D. magna (10 and 20 organisms per day) containing identical concentrations of dieldrin, however, the amounts accumulated did not differ substantially.

  6. The use of liposomes to differentiate between the effects of nickel accumulation and altered food quality in Daphnia magna exposed to dietary nickel.

    PubMed

    Evens, Roel; De Schamphelaere, Karel A C; Balcaen, Lieve; Wang, Yingying; De Roy, Karen; Resano, Martin; Flórez, M; Boon, Nico; Vanhaecke, Frank; Janssen, Colin R

    2012-03-01

    A potential drawback of traditional dietary metal toxicity studies is that it is difficult to distinguish between the direct toxicity of the metal and indirect effects caused by altered concentrations of essential nutrients in the metal-contaminated diet. In previous studies it has become clear that this can hamper the study of the real impact of dietary metal exposure and also complicates the analysis of the mechanisms of dietary metal toxicity in filter-feeding freshwater invertebrates like Daphnia magna. This problem has been partly circumvented by the production of liposomes, since these vectors are invulnerable to metal-induced food quality shifts and as such can be applied to study the mechanisms of dietary metal toxicity without the confounding effect of nutritional quality shifts. The aim of current study was to evaluate if there is relevance for dietary Ni toxicity under natural exposures, i.e., when D. magna is exposed to dietary Ni via living algae, and secondly, to quantify how nutritional quality shifts contribute to the toxic effects that are observed when algae are used as contaminated food vectors. For this aim, liposomes were prepared by the hydration of phosphatidylcholine in media containing 0 (control), 10, 50, 100 and 500 mg Ni/L. The liposome particles were then mixed with uncontaminated green algae in a 1/10 ratio (on a dry wt basis) to make up diets with constant nutrient quality and varying Ni contents (i.e., 1.2 μg Ni/g dry wt in the control and 18.7, 140.3, 165.0 and 501.6 μg Ni/g dry wt in the Ni-contaminated diet, respectively). A second food type was prepared on the basis of a 1/10 mixture (on a dry weight basis) of control liposomes and Ni-contaminated algae, representing a diet that differed in Ni content (i.e., 1.2, 26.8, 84.7, 262.3 and 742.7 μg Ni/g dry wt) and concentrations of essential nutrients (in terms of P and omega 3 poly-unsaturated fatty acids like eicosapentaenoic acid and α-linolenic acid). Both diets were then

  7. Gene response of CYP360A, CYP314, and GST and whole-organism changes in Daphnia magna exposed to ibuprofen.

    PubMed

    Wang, Lan; Peng, Ying; Nie, Xiangping; Pan, Benben; Ku, Peijia; Bao, Shuang

    2016-01-01

    The fate and ecological impact of non-steroidal anti-inflammatory drugs (NSAIDs) in aquatic environments has gained increasingly concern recently. However, limited information is provided about the toxicity mechanism of NSAIDs to aquatic invertebrates. In the present study, we investigated the expression of CYP360A, CYP314, and GST genes involved in the detoxification process and the responses of their associated enzymes activity, as well as whole-organism changes in Daphnia magna exposed to environmentally relevant concentrations of ibuprofen (IBU). Results showed that the total amount of eggs produced per female, total number of brood per female, and body length were significantly decreased under IBU exposure, suggesting the effects of chronic IBU exposure on growth and reproduction of D. magna cannot be ignored. In gene expression level, the CYP360A gene, homologue to CYP3A in mammalian, showed inhibition at low concentration of IBU (0.5μg·L(-1)) and induction at high concentration of IBU (50μg·L(-1)). GST gene also exhibited a similar performance to CYP3A. CYP314 displayed inhibition for short time exposure (6h) and induced with prolonged exposure time (48h) at low concentration of IBU (0.5μg·L(-1)). Erythromycin N-demethylase (ERND) and aminopyrine N-demethylase (APND) related to cytochrome oxidase P450 (CYPs) were inhibited for short time exposure (6h) to IBU and then activated with prolonged exposure time (48h) at low concentration of IBU (0.5μg·L(-1)), while EROD showed a dose-dependent pattern under IBU exposure. As for antioxidative system, induction of glutathione S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT) was observed in short-term exposure to IBU. Meanwhile, methane dicarboxylic aldehyde (MDA) content increased with the increasing IBU concentration and the delayed exposure time, displaying obvious dose- and time-dependent pattern. In summary, IBU significantly altered some physiological and biochemical parameters and

  8. The response of European Daphnia magna Straus and Australian Daphnia carinata King to changes in geomagnetic field.

    PubMed

    Krylov, Viacheslav V; Bolotovskaya, Irina V; Osipova, Elena A

    2013-03-01

    This study investigates the effects of lifelong exposure to reversed geomagnetic and zero geomagnetic fields (the latter means absence of geomagnetic field) on the life history of Daphnia carinata King from Australia and Daphnia magna Straus from Europe. Considerable deviation in the geomagnetic field from the usual strength, leads to a decrease in daphnia size and life span. Reduced brood sizes and increased body length of neonates are observed in D. magna exposed to unusual magnetic background. The most apparent effects are induced by zero geomagnetic field in both species of Daphnia. A delay in the first reproduction in zero geomagnetic field is observed only in D. magna. No adaptive maternal effects to reversed geomagnetic field are found in a line of D. magna maintained in these magnetic conditions for eight generations. Integrally, the responses of D. magna to unusual geomagnetic conditions are more extensive than that in D. carinata. We suggest that the mechanism of the effects of geomagnetic field reversal on Daphnia may be related to differences in the pattern of distribution of the particles that have a magnetic moment, or to moving charged organic molecules owing to a change in combined outcome and orientation of the geomagnetic field and Earth's gravitational field. The possibility of modulation of self-oscillating processes with changes in geomagnetic field is also discussed. PMID:23320498

  9. Protective effects of ectoine on heat-stressed Daphnia magna.

    PubMed

    Adam, Bownik; Zofia, Stępniewska; Tadeusz, Skowroński

    2014-12-01

    Ectoine (ECT) is an amino acid produced and accumulated by halophilic bacteria in stressful conditions in order to prevent the loss of water from the cell. There is a lack of knowledge on the effects of ECT in heat-stressed aquatic animals. The purpose of our study was to determine the influence of ECT on Daphnia magna subjected to heat stress with two temperature gradients: 1 and 0.1 °C/min in the range of 23-42 °C. Time to immobilisation, survival during recovery, swimming performance, heart rate, thoracic limb movement and the levels of heat shock protein 70 kDa 1A (HSP70 1A), catalase (CAT) and nitric oxide species (NOx) were determined in ECT-exposed and unexposed daphnids; we showed protective effects of ECT on Daphnia magna subjected to heat stress. Time to immobilisation of daphnids exposed to ECT was longer when compared to the unexposed animals. Also, survival rate during the recovery of daphnids previously treated with ECT was higher. ECT significantly attenuated a rapid increase of mean swimming velocity which was elevated in the unexposed daphnids. Moreover, we observed elevation of thoracic limb movement and modulation of heart rate in ECT-exposed animals. HSP70 1A and CAT levels were reduced in the presence of ECT. On the other hand, NOx level was slightly elevated in both ECT-treated and unexposed daphnids, however slightly higher NOx level was found in ECT-treated animals. We conclude that the exposure to ectoine has thermoprotective effects on Daphnia magna, however their mechanisms are not associated with the induction of HSP70 1A. PMID:25223383

  10. Multigenerational cadmium acclimation and biokinetics in Daphnia magna.

    PubMed

    Guan, Rui; Wang, Wen-Xiong

    2006-05-01

    A Cd exposure (3 microg L(-1)) experiment was conducted for six successive generations to investigate the responses to chronic Cd stress in Daphnia magna. We observed a biphasic accumulation of Cd in the six generations and suggested a similar pattern with respect to daphnids' tolerance. Cd assimilation efficiencies, daphnid growth, and reproduction corresponded to the changes of tolerance, which was partially accounted for by metallothionein induction. When maternally exposed neonates grew in Cd-free water for one or two generations, their growth, MT concentration and biokinetic parameters partially or totally recovered. The rapid recovery suggests the high potential for ecological restoration from Cd pollution. Our results indicate that the tolerance of sensitive D. magna clones to Cd was dependent on long-term or multigenerational exposure. The tolerance developed within the first several generations might not be maintained, and the animals may become even more sensitive to Cd stress in subsequent generations. PMID:16202491

  11. Molecular impact of juvenile hormone agonists on neonatal Daphnia magna.

    PubMed

    Toyota, Kenji; Kato, Yasuhiko; Miyakawa, Hitoshi; Yatsu, Ryohei; Mizutani, Takeshi; Ogino, Yukiko; Miyagawa, Shinichi; Watanabe, Hajime; Nishide, Hiroyo; Uchiyama, Ikuo; Tatarazako, Norihisa; Iguchi, Taisen

    2014-05-01

    Daphnia magna has been used extensively to evaluate organism- and population-level responses to pollutants in acute toxicity and reproductive toxicity tests. We have previously reported that exposure to juvenile hormone (JH) agonists results in a reduction of reproductive function and production of male offspring in a cyclic parthenogenesis, D. magna. Recent advances in molecular techniques have provided tools to understand better the responses to pollutants in aquatic organisms, including D. magna. DNA microarray was used to evaluate gene expression profiles of neonatal daphnids exposed to JH agonists: methoprene (125, 250 and 500 ppb), fenoxycarb (0.5, 1 and 2 ppb) and epofenonane (50, 100 and 200 ppb). Exposure to these JH analogs resulted in chemical-specific patterns of gene expression. The heat map analyses based on hierarchical clustering revealed a similar pattern between treatments with a high dose of methoprene and with epofenonane. In contrast, treatment with low to middle doses of methoprene resulted in similar profiles to fenoxycarb treatments. Hemoglobin and JH epoxide hydrolase genes were clustered as JH-responsive genes. These data suggest that fenoxycarb has high activity as a JH agonist, methoprene shows high toxicity and epofenonane works through a different mechanism compared with other JH analogs, agreeing with data of previously reported toxicity tests. In conclusion, D. magna DNA microarray is useful for the classification of JH analogs and identification of JH-responsive genes. PMID:24038158

  12. An assessment of the bioaccumulation of estrone in Daphnia magna.

    PubMed

    Gomes, Rachel L; Deacon, Hannah E; Lai, Ka M; Birkett, Jason W; Scrimshaw, Mark D; Lester, John N

    2004-01-01

    The bioaccumulation of estrone by Daphnia magna was determined. Direct uptake via the aqueous medium occurred within the first 16 h. A bioconcentration factor of 228 was established over all temporal periods. Ingestion via Chlorella vulgaris gave a partitioning factor of 24, which may approximate to a biomagnification factor assuming steady state conditions. These preliminary results indicate that the partitioning to Daphnia magna via the food source, C. vulgaris is less significant than bioconcentration. PMID:14768873

  13. A DAPHNIA MAGNA SHORT-TERM SURVIVAL AND GROWTH TEST

    EPA Science Inventory

    With the change in acceptable test temperatures for invertebrate toxicity tests from <20oC to 25oC, it is now possible to use Daphnia magna for short-term chronic testing. When cultured at 25oC the dry weight of <24 hr old D. magna ranges from 7 to 15 g depending upon nutrition,...

  14. Target gene approaches: Gene expression in Daphnia magna exposed to predator-borne kairomones or to microcystin-producing and microcystin-free Microcystis aeruginosa

    PubMed Central

    2009-01-01

    Background Two major biological stressors of freshwater zooplankton of the genus Daphnia are predation and fluctuations in food quality. Here we use kairomones released from a planktivorous fish (Leucaspius delineatus) and from an invertebrate predator (larvae of Chaoborus flavicans) to simulate predation pressure; a microcystin-producing culture of the cyanobacterium Microcystis aeruginosa and a microcystin-deficient mutant are used to investigate effects of low food quality. Real-time quantitative polymerase chain reaction (QPCR) allows quantification of the impact of biotic stressors on differential gene activity. The draft genome sequence for Daphnia pulex facilitates the use of candidate genes by precisely identifying orthologs to functionally characterized genes in other model species. This information is obtained by constructing phylogenetic trees of candidate genes with the knowledge that the Daphnia genome is composed of many expanded gene families. Results We evaluated seven candidate reference genes for QPCR in Daphnia magna after exposure to kairomones. As a robust approach, a combination normalisation factor (NF) was calculated based on the geometric mean of three of these seven reference genes: glyceraldehyde-3-phosphate dehydrogenase, TATA-box binding protein and succinate dehydrogenase. Using this NF, expression of the target genes actin and alpha-tubulin were revealed to be unchanged in the presence of the tested kairomones. The presence of fish kairomone up-regulated one gene (cyclophilin) involved in the folding of proteins, whereas Chaoborus kairomone down-regulated the same gene. We evaluated the same set of candidate reference genes for QPCR in Daphnia magna after exposure to a microcystin-producing and a microcystin-free strain of the cyanobacterium Microcystis aeruginosa. The NF was calculated based on the reference genes 18S ribosomal RNA, alpha-tubulin and TATA-box binding protein. We found glyceraldehyde-3-phosphate dehydrogenase and

  15. EFFECT OF AGE ON SENSITIVITY OF 'DAPHNIA MAGNA' TO CADMIUM, COPPER AND CYANAZINE

    EPA Science Inventory

    Daphnia magna were exposed to cadmium, copper and cyanazine to determine the relative sensitivities of several age groups: less than 4 h, less than 24 h, 1 d, 2 d, 3 d, 4 d, 5 d and 6 d old. Mean cadmium 48-h EC50 values for each age group ranged from 23 to 164 micrograms/L. Mean...

  16. Phototoxic effects of titanium dioxide nanoparticles on Daphnia magna

    NASA Astrophysics Data System (ADS)

    Mansfield, Charles M.

    Titanium dioxide nanoparticles (TiO2-NP) are one of the most abundantly utilized nanomaterials in the world. Studies have demonstrated the mechanism of acute toxicity in TiO2-NP to be the production of reactive oxygen species (ROS) leading to oxidative stress and mortality in exposed organisms. It has also been demonstrated that the anatase crystalline conformation is capable of catalyzing the cleavage of water molecules to further increase the concentration of ROS in the presence of ultraviolet radiation. This photoenhanced toxicity significantly lowers the toxicity threshold of TiO2-NP to environmentally relevant concentrations (ppb). The goal of this study was to determine whether dietary uptake and accumulation of TiO2-NP in the aquatic filter feeder Daphnia magna resulted in photoenhanced toxicity. D. magna and S. caprincornatum were exposed to aqueous solutions of 20ppm and 200ppm TiO2-NP for 24hrs and then transferred to clean moderately hard water. Samples were taken at various time points, dried, and TiO 2 quantified using ICP-MS. Toxicity assays were run on D. magna using three TiO2-NP (20ppm, 200ppm) exposure protocols and two ultraviolet radiation treatments. The first exposure group was exposed to aqueous solutions of TiO2-NP for the duration of the test. The second exposure group was exposed to TiO2-NP for an hour and then transferred to clean water. The third exposure group was fed S. capricornatum that had been allowed to adsorb TiO2-NP. All samples were then placed in an outdoor UV exposure system and exposed to either full spectrum sunlight (with UV) or filtered sunlight (no UV). Here we show that TiO2 uptake peaked at one hour of exposure likely due to sedimentation of the particles out of suspension, thus decreasing bioavailability for the duration of the test. Interestingly, when D. magna were moved to clean water, aqueous concentrations of TiO2 increase as a result of depuration from the gut tract. Data also suggests these excreted particles

  17. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx).

    PubMed

    Lovern, Sarah B; Strickler, J Rudi; Klaper, Rebecca

    2007-06-15

    Little is known aboutthe impact manufactured nanoparticles will have on aquatic organisms. Previously, we demonstrated that toxicity differs with nanoparticle type and preparation and observed behavioral changes upon exposure to the more lethal nanoparticle suspensions. In this experiment, we quantified these behavioral and physiological responses of Daphnia magna at sublethal nanoparticle concentrations. Titanium dioxide (TiO2) and fullerenes (nano-C60) were chosen for their potential use in technology. Other studies suggest that addition of functional groups to particles can affect their toxicity to cell cultures, but it is unknown if the same is true at the whole organism level. Therefore, a fullerene derivative, C60HxC70Hx, was also used to examine how functional groups affect Daphnia response. Using a high-speed camera, we quantified several behavior and physiological parameters including hopping frequency, feeding appendage and postabdominal curling movement, and heart rate. Nano-C60 was the only suspension to cause a significant change in heart rate. Exposure to both nano-C60 and C60HxC70Hx suspensions caused hopping frequency and appendage movement to increase. These results are associated with increased risk of predation and reproductive decline. They indicate that certain nanoparticle types may have impacts on population and food web dynamics in aquatic systems. PMID:17626453

  18. Increasing toxicity of enrofloxacin over four generations of Daphnia magna.

    PubMed

    Dalla Bona, Mirco; Lizzi, Francesca; Borgato, Arianna; De Liguoro, Marco

    2016-10-01

    The effects of both continuous and alternate exposure to 2mgL(-1) of enrofloxacin (EFX) on survival, growth and reproduction were evaluated over four generations of Daphnia magna. Mortality increased, reaching 100% in most groups by the end of the third generation. Growth inhibition was detected in only one group of the fourth generation. Reproduction inhibition was >50% in all groups and, in second and third generations, groups transferred to pure medium showed a greater inhibition of reproduction than those exposed to EFX. To verify whether the effects observed in these groups could be explained by the perinatal exposure to the antibacterial, a reproduction test with daphnids obtained from in vitro exposed D. magna embryos was also carried out. Perinatal exposure to EFX seemed to act as an 'all-or-nothing' toxicity effect as 31.4% of embryos died, but the surviving daphnids did not show any inhibition of reproduction activity. However, the embryonic mortality may at least partially justify the inhibition of reproduction observed in exposed groups along the multigenerational test. Concluding, the multigenerational test with D. magna did show disruption to a population that cannot be evidenced by the official tests. The increasing deterioration across generations might be inferred as the consequence of heritable alterations. Whilst the concentration tested was higher than those usually detected in the natural environment, the increasing toxicity of EFX across generations and the possible additive toxicity of fluoroquinolone mixtures, prevent harm to crustacean populations by effects in the real context from being completely ruled out. PMID:27379980

  19. Influence of organism age on metal toxicity to Daphnia magna.

    PubMed

    Hoang, Tham C; Klaine, Stephen J

    2007-06-01

    Aquatic organisms living in surface water experience contaminant exposure at different life stages. While some investigators have examined the influence of organism age on the toxicity of pollutants, the general assumption in toxicology has been that young organisms were more sensitive than older organisms. In fact, some standardized toxicity tests call for the use of organisms less than 24 h old. This research characterized the age sensitivity of the water flea Daphnia magna to copper, zinc, selenium, and arsenic. During 21-d toxicity tests, organisms were exposed to a single 12-h pulse of either 70 microg/L Cu, 750 microg/L Zn, 1000 microg/L Se, or 5000 microg/L As at different ages ranging from 3 h to 10 d old. Mortality and reproduction were compiled over 21 d. During the juvenile stage, mortality increased and cumulative reproduction decreased with age, respectively. However, mortality decreased and cumulative reproduction increased with age when organisms became adult. Peak sensitivity occurred in 4-d-old organisms exposed to Cu and Zn, while 2- to 3-d-old organisms were most sensitive to As and Se. Growth of D. magna over 21 d was not affected by the 12-h pulse of Cu, Zn, Se, or As given at any organism age. This indicates the recovery of the organisms after exposure termination. PMID:17571686

  20. Effects of bifenthrin on Daphnia magna during chronic toxicity test and the recovery test.

    PubMed

    Ye, Wei-Hong; Wen, Yue-Zhong; Liu, Wei-Ping; Wang, Zhong-Qiang

    2004-01-01

    The acute and chronic toxic effects of bifenthrin on Daphnia magna were studied. The results showed that 24 h-EC50, 48 h-LC50 and 96 h-LC50 of bifenthrin on D. magna were 3.24, 12.40 and 1.40 microg/L respectively. And the LOEC and NOEC of bifenthrin were 0.02 and 0.004 microg/L respectively. The recovery test of bifenthrin on Daphnia magna was presented. Daphnia magna (F0 generation) were exposed during 21 d to different bifenthrin concentrations. Offspring (animals from the first and third brood: F1 (1st) and F1 (3rd), respectively) were transferred to a free pesticide medium during a 21 d recovery period. In this recovery study, survival, growth, reproduction (mean total young per female, onset of reproduction and number broods per female) and the intrinsic rate of natural increase (r) were assessed as parameters. Reproduction such as number of young per female as well as length was still reduced in F1 (1st) generation daphnids from parentals (F0) exposed to the bifenthrin. However F, (3rd) individuals from parentals exposed to pesticide concentrations were able to restore reproduction when a recovery period of 21 d was allowed, but the length of F, (3rd) from parentals exposed to the 0.5 and 0.75 microg/L bifenthrin concentration was still significantly effected (P < 0.05). PMID:15559825

  1. Small scale mass culture of Daphnia magna Straus

    SciTech Connect

    Rees, J.T.; Oldfather, J.M.

    1980-02-01

    Daphnia magna Straus 1820 was raised on a defined medium in 4-liter flasks with controlled light intensity, temperature, and algal food species. Adult D. magna tolerated high levels of ammonia (up to 108 ..mu..M) at high pH (> 10), although at these levels parthenogenic reproduction may be inhibited. Scenedesmus quadricauda and Ankistrodesmus sp. were satisfactory food sources, and by utilizing Ankistrodesmus densities greater than one animal per ml were achieved. Maintaining the pH at about 7 to 8 seems to be important for successful D. magna culture.

  2. A comparison of the toxicity of 30 reference chemicals to Daphnia magna and Daphnia pulex

    SciTech Connect

    Lilius, H.; Haestbacka, T.; Isomaa, B.

    1995-12-01

    To determine whether significant differences exist in the sensitivity of different Daphnia species to toxicants, the acute toxicity of the first 30 MEIC (multicenter evaluation of in vitro cytotoxicity) reference chemicals was determined in two species of Daphnia: D. magna and D. pulex. Correlation and regression analysis of the EC50 data for immobilization showed a very good concordance (r = 0.97, slope = 1.02). A comparison between the EC50 data obtained for D. magna by two laboratories independently for the 50 MEIC chemicals also showed a good concordance (r = 0.93, slope = 0.91). In both comparisons the regression line did not differ significantly from the regression line for a 1:1 regression. The authors conclude that their study, including a set of reference chemicals, indicates that is no difference in the overall sensitivity of the two Daphnia species and the two clones of D. magna.

  3. Biokinetics and tolerance development of toxic metals in Daphnia magna.

    PubMed

    Tsui, Martin Tsz-Ki; Wang, Wen-Xiong

    2007-05-01

    Daphnia magna is widespread in many freshwater systems of temperate regions and frequently is used to test metal toxicity. Recently, studies have been performed to determine metal biokinetics and development of tolerance in this important zooplankton species. In the present paper, we review the recent progress in these areas and suggest possible directions for future studies. Substantial differences exist in aqueous uptake, dietary assimilation, and elimination of several metals (Cd, Se, Zn, Ag, Hg, and MeHg) by D. magna. The routes of uptake are metal-specific, with Se and MeHg being accumulated predominantly through diet. All metals except Ag can be biomagnified from algae to D. magna, providing that metal concentrations in algae and algal food density are relatively low. Methylmercury is biomagnified in all situations. As a route for metal elimination in D. magna, maternal transfer is especially important for Se, Zn, and MeHg. On the other hand, the effect of single-generation exposure to metals on D. magna is very different from multigeneration exposure, which often results in a significantly higher metal tolerance. Moreover, D. magna easily loses metal tolerance developed through long-term exposure. Recovery from metal stress can temporarily increase the sensitivity of D. magna to metal toxicity. Finally, metallothionein-like protein is responsible for minimizing metal toxicity in D. magna. The results inferred from these studies can be extrapolated to other aquatic invertebrates as well as to other pollutants in the aquatic environment. PMID:17521151

  4. Evaluation of the ultrasonic method for solubilizing Daphnia magna before liquid scintillation counting

    SciTech Connect

    Dauble, D.D.; Hanf, R.W. Jr.; Carlile, D.W.

    1984-11-01

    Adult Daphnia magna were exposed to /sup 14/C-labeled phenol and tissues analyzed for /sup 14/C uptake by three methods: (1) tissue solubilizer, (2) tissue solubilizer plus sonication, and (3) sonication alone. Analysis by liquid scintillation counting revealed that measurements of total activity among treatments were not significantly different (..cap alpha.. less than or equal to 0.10) at two count levels. Sonicated samples showed less variation than tissue samples that were solubilized. 5 references, 1 table.

  5. Translocation of 40 nm diameter nanowires through the intestinal epithelium of Daphnia magna

    PubMed Central

    Mattsson, Karin; Adolfsson, Karl; Ekvall, Mikael T.; Borgström, Magnus T.; Linse, Sara; Hansson, Lars-Anders; Cedervall, Tommy; Prinz, Christelle N.

    2016-01-01

    Abstract Nanowires (NWs) have unique electrical and optical properties of value for many applications including lighting, sensing, and energy harnessing. Consumer products containing NWs increase the risk of NWs being released in the environment, especially into aquatic ecosystems through sewage systems. Daphnia magna is a common, cosmopolitan freshwater organism sensitive to toxicity tests and represents a likely entry point for nanoparticles into food webs of aquatic ecosystems. Here we have evaluated the effect of NW diameter on the gut penetrance of NWs in Daphnia magna. The animals were exposed to NWs of two diameters (40 and 80 nm) and similar length (3.6 and 3.8 μm, respectively) suspended in water. In order to locate the NWs in Daphnia, the NWs were designed to comprise one inherently fluorescent segment of gallium indium phosphide (GaInP) flanked by a gallium phosphide (GaP) segment. Daphnia mortality was assessed directly after 24 h of exposure and 7 days after exposure. Translocation of NWs across the intestinal epithelium was investigated using confocal fluorescence microscopy directly after 24 h of exposure and was observed in 89% of Daphnia exposed to 40 nm NWs and in 11% of Daphnia exposed to 80 nm NWs. A high degree of fragmentation was observed for NWs of both diameters after ingestion by the Daphnia, although 40 nm NWs were fragmented to a greater extent, which could possibly facilitate translocation across the intestinal epithelium. Our results show that the feeding behavior of animals may enhance the ability of NWs to penetrate biological barriers and that penetrance is governed by the NW diameter. PMID:27181920

  6. Translocation of 40 nm diameter nanowires through the intestinal epithelium of Daphnia magna.

    PubMed

    Mattsson, Karin; Adolfsson, Karl; Ekvall, Mikael T; Borgström, Magnus T; Linse, Sara; Hansson, Lars-Anders; Cedervall, Tommy; Prinz, Christelle N

    2016-10-01

    Nanowires (NWs) have unique electrical and optical properties of value for many applications including lighting, sensing, and energy harnessing. Consumer products containing NWs increase the risk of NWs being released in the environment, especially into aquatic ecosystems through sewage systems. Daphnia magna is a common, cosmopolitan freshwater organism sensitive to toxicity tests and represents a likely entry point for nanoparticles into food webs of aquatic ecosystems. Here we have evaluated the effect of NW diameter on the gut penetrance of NWs in Daphnia magna. The animals were exposed to NWs of two diameters (40 and 80 nm) and similar length (3.6 and 3.8 μm, respectively) suspended in water. In order to locate the NWs in Daphnia, the NWs were designed to comprise one inherently fluorescent segment of gallium indium phosphide (GaInP) flanked by a gallium phosphide (GaP) segment. Daphnia mortality was assessed directly after 24 h of exposure and 7 days after exposure. Translocation of NWs across the intestinal epithelium was investigated using confocal fluorescence microscopy directly after 24 h of exposure and was observed in 89% of Daphnia exposed to 40 nm NWs and in 11% of Daphnia exposed to 80 nm NWs. A high degree of fragmentation was observed for NWs of both diameters after ingestion by the Daphnia, although 40 nm NWs were fragmented to a greater extent, which could possibly facilitate translocation across the intestinal epithelium. Our results show that the feeding behavior of animals may enhance the ability of NWs to penetrate biological barriers and that penetrance is governed by the NW diameter. PMID:27181920

  7. Effects of Microcystis aeruginosa on life history of water flea Daphnia magna

    NASA Astrophysics Data System (ADS)

    Liu, Liping; Li, Kang; Chen, Taoying; Dai, Xilin; Jiang, Min; Diana, James S.

    2011-07-01

    Cyanobacterial blooms in eutrophic freshwater systems are a worldwide problem, creating adverse effects for many aquatic organisms by producing toxic microcystins and deteriorating water quality. In this study, microcystins (MCs) in Microcystis aeruginosa, and Daphnia magna exposed to M. aeruginosa, were analyzed by HPLC-MS, and the effects of M. aeruginosa on D. magna were investigated. When D. magna was exposed to M. aeruginosa for more than 2 h, Microcystin-LR (MC-LR) was detected. When exposed to 1.5 × 106, 3 × 106, 0.75 × 107, and 1.5 × 107 cell/mL of M. aeruginosa for 96 h, average survival of D. magna for treatments were 23.33%, 33.33%, 13.33%, 16.67%, respectively, which were significantly lower than the average 100% survival in the control group ( P < 0.05). The adverse effects of M. aeruginosa on body length, time for the first brood, brood numbers, gross fecundity, lifespan, and population growth of D. magna were density-dependent. These results suggest that the occurrence of M. aeruginosa blooms could strongly inhibit the population growth of D. magna through depression of survival, individual growth and gross fecundity. In the most serious situations, M. aeruginosa blooms could undermine the food web by eliminating filter-feeding zooplankton, which would destroy the ecological balance of aquaculture water bodies.

  8. Silver Nanowire Exposure Results in Internalization and Toxicity to Daphnia Magna

    PubMed Central

    Scanlan, Leona D.; Reed, Robert B.; Loguinov, Alexandre V.; Antczak, Philipp; Tagmount, Abderrahmane; Aloni, Shaul; Nowinski, Daniel Thomas; Luong, Pauline; Tran, Christine; Karunaratne, Nadeeka; Pham, Don; Lin, Xin Xin; Falciani, Francesco; Higgins, Chris P.; Ranville, James F.; Vulpe, Chris D.; Gilbert, Benjamin

    2013-01-01

    Nanowires (NWs), high-aspect-ratio nanomaterials, are increasingly used in technological materials and consumer products and may have toxicological characteristics distinct from nanoparticles. We carried out a comprehensive evaluation of the physico-chemical stability of four silver nanowires (AgNWs) of two sizes and coatings and their toxicity to Daphnia magna. Inorganic aluminum-doped silica coatings were less effective than organic poly(vinyl pyrrolidone) coatings at preventing silver oxidation or Ag+ release and underwent a significant morphological transformation within one-hour following addition to low ionic strength Daphnia growth media. All AgNWs were highly toxic to D. magna but less toxic than ionic silver. Toxicity varied as a function of AgNW dimension, coating and solution chemistry. Ag+ release in the media could not account for observed AgNW toxicity. Single-particle inductively coupled plasma mass spectrometry (spICPMS) distinguished and quantified dissolved and nanoparticulate silver in microliter-scale volumes of Daphnia magna hemolymph with a limit of detection of approximately 10 ppb. The silver levels within the hemolymph of Daphnia exposed to both Ag+ and AgNW met or exceeded the initial concentration in the growth medium, indicating effective accumulation during filter feeding. Silver-rich particles were the predominant form of silver in hemolymph following exposure to both AgNWs and Ag+. Scanning electron microscopy (SEM) imaging of dried hemolymph found both AgNWs and silver precipitates that were not present in the AgNW stock or the growth medium. Both organic and inorganic coatings on the AgNW were transformed during ingestion or absorption. Pathway, gene ontology and clustering analyses of gene expression response indicated effects of AgNWs distinct from ionic silver on Daphnia magna. PMID:24099093

  9. Toxicity of the cyanobacterium Cylindrospermopsis raciborskii to Daphnia magna.

    PubMed

    Nogueira, Isabel C G; Saker, Martin L; Pflugmacher, Stephan; Wiegand, Claudia; Vasconcelos, Vítor M

    2004-10-01

    The effect of two strains of Cylindrospermopsis raciborskii on the survivorship, somatic growth, and detoxification processes of juvenile Daphnia magna were investigated. Both strains of C. raciborskii (and also Ankistrodesmus falcatus, used as the control) were given to newborn D. magna at equivalent biovolumes. The survival curves for D. magna subjected to the two C. raciborskii treatments differed from those of the starved and fed treatments. After 48 h of exposure, the percentage of D. magna surviving after exposure to Cylin-A (a cylindrospermopsin-producing strain isolated from Australia) and Cylin-P (a non-cylindrospermopsin-producing strain isolated from Portugal) was 10.00% and 93.33%, respectively. The strain that produces cylindrospermopsin caused the greatest toxic effect in juvenile D. magna. Statistically significant differences in D. magna body size between the four treatments (Cylin-A, Cylin-P, A. falcatus, and starved) were detected after 48 h of exposure. The juvenile D. magna that received the two C. raciborskii treatments showed an increase in size (relative to their size at T(0)) of 2.54% and 38.14%, respectively. These values were statistically significantly different than those of the A. falcatus-fed control (55.54%) and the starved control (11.47%). In both C. raciborskii treatments there was a tendency for increased GST enzyme activities after 24 h of exposure. Cylindrospermopsin was detected (HPLC-MS/MS) in D. magna tissues after 24 and 48 h (0.025 and 0.02 ng animal(-)1, respectively). The results of this study indicate that C. raciborskii can affect the fitness and growth potential of juvenile D. magna. PMID:15352261

  10. Acute toxicity and QSAR of chlorophenols on Daphnia magna

    SciTech Connect

    Devillers, J.; Chambon, P.

    1986-10-01

    Chlorophenols which are released into natural waters from various industrial processes and from agricultural uses have been recognized as a group of chemical substances potentially hazardous to the aquatic environment. Therefore it is important to estimate their toxic impact on biota. Thus, the scope of this research was to obtain acute toxicity data for seventeen chlorophenols towards Daphnia magna and to explore the possibilities of deriving QSAR's (quantitative structure-activity relationship) from the above values.

  11. Rapid toxicity screening tests for aquatic biota. 1. Methodology and experiments with Daphnia magna

    SciTech Connect

    Janssen, C.R.; Persoone, G. )

    1993-04-01

    A promising new and rapid toxicity screening test was developed, the concept and principles of which are presented. The method consists of visual observation of in vivo inhibition of an enzymatic process, using a fluorescent substrate. Juvenile Daphnia magna was exposed to a toxicant dilution series for 1 h, after which the substrate was added and the enzymatic inhibition was observed visually, using a long-wave UV light. The 1-h EC50 results of 11 pure compounds are presented and compared to the conventional 24- and 48-h Daphnia magna EC50s. All 1-h fluorescence EC50s were of the same order of magnitude and correlated very well with the 24- and 48-h EC50s. The sensitivity and reproducibility of this cost-effective screening test were compared to those of the Microtox[reg sign] test. The scope for application and the potential of this new rapid toxicity screening test are evaluated.

  12. Betaproteobacteria Limnohabitans strains increase fecundity in the crustacean Daphnia magna: symbiotic relationship between major bacterioplankton and zooplankton in freshwater ecosystem.

    PubMed

    Peerakietkhajorn, Saranya; Kato, Yasuhiko; Kasalický, Vojtěch; Matsuura, Tomoaki; Watanabe, Hajime

    2016-09-01

    How symbioses between bacteria and aquatic animals influence food webs in freshwater ecosystems is a fundamental question in ecology. We investigated symbiosis between a crustacean zooplankton Daphnia magna and its dominant bacterial symbiont Limnohabitans, an abundant and globally distributed freshwater Betaproteobacteria. Aposymbiotic juvenile Daphnia were prepared and exposed to any of four Limnohabitans sp. - Limnohabitans strains DM1, 2KL-3, 2KL-7 and Limnohabitans planktonicus strain II-D5, all previously found in D. magna digestive tract or culture. Re-infected Daphnia were cultured until they produced the first clutch of juveniles. Limnohabitans strain DM1 and L. planktonicus strain II-D5 successfully re-infected Daphnia through single exposure at the first instar juvenile stage. In contrast to aposymbiotic Daphnia that produced non-viable juveniles, re-infected Daphnia produced viable juveniles and increased fecundity to levels of that of symbiotic Daphnia. Re-infected Daphnia did not increase their number of eggs nor growth rates. Limnohabitans strains 2KL-7 and 2KL-3 could not recover fecundity even in multiple exposures during culture. This study shows the functional evidence demonstrating that a single bacterium Limnohabitans regulates fecundity of the consumer Daphnia through symbiosis. Our results indicated that symbiotic relationship between major bacterioplankton and zooplankton is important for maintaining the population of zooplankton in freshwater ecosystems. PMID:26014379

  13. Characterizing the toxicity of pulsed selenium exposure to Daphnia magna.

    PubMed

    Hoang, Tham C; Klaine, Stephen J

    2008-03-01

    The acute toxicity of selenium (Se) to aquatic biota has been studied extensively for decades. However, most studies have used a constant concentration aqueous exposure of Se to an invertebrate species. Since constant concentration exposure of toxicants to invertebrates is unusual in the environment, episodic exposure or pulsed exposures may represent true risk to aquatic biota more accurately. This research was designed to characterize the toxicity effects of pulsed Se exposure to Daphnia magna. Selenium exposure was varied during a 21-d chronic toxicity test to examine the effects of exposure concentration, duration, and recovery on survival, growth, and reproduction of D. magna. While D. magna did not die during exposures, latent mortality was observed. Latent mortality increased with exposure concentration and duration. Hence, standard toxicity test using continuous exposures would underestimate Se toxicity. Risk assessment method using results of continuous exposure would underestimate risk of Se to biota. For double-pulse exposures, cumulative mortality on day 21 was higher when time interval between pulses was shorter. With the same total exposure time, continuous exposure caused higher toxicity than did pulsed exposures due to recovery and tolerance development in D. magna after earlier pulses. Growth and reproduction of surviving D. magna were not affected by pulsed Se exposure due to recovery of D. magna after removal of the pulses. Based on these results, risk assessment for Se should take latent effects and the effect of recovery in to account. PMID:18190947

  14. SMALL SCALE MASS CULTURE OF DAPHNIA MAGNA STRAUS

    SciTech Connect

    Rees, John T.; Oldfather, Joan M.

    1980-03-01

    Daphnia magna Straus 1820 was reared on a defined medium in 4-liter flasks under controlled conditions of light, temperature and species of algal food. Adult D. magna were found to be tolerant to high levels of ammonia, up to 108 {micro}M, at high pH (>10), although parthenogenic reproduction may be inhibited at these high levels. Scenedesmus quadricauda and Ankistrodesmus sp. were found to be satisfactory food sources. Densities of greater than one animal per ml in culture were attained utilizing Ankistrodesmus sp. as a food source at a pH of 7.7. Maintenance of pH at around 7-8 appears to be important to successful D. magna culture.

  15. Diofenolan induces male offspring production through binding to the juvenile hormone receptor in Daphnia magna.

    PubMed

    Abe, Ryoko; Toyota, Kenji; Miyakawa, Hitoshi; Watanabe, Haruna; Oka, Tomohiro; Miyagawa, Shinichi; Nishide, Hiroyo; Uchiyama, Ikuo; Tollefsen, Knut Erik; Iguchi, Taisen; Tatarazako, Norihisa

    2015-02-01

    Juvenile hormone (JH) and JH agonists have been reported to induce male offspring production in various daphnid species including Daphnia magna. We recently established a short-term in vivo screening assay to detect chemicals having male offspring induction activity in adult D. magna. Diofenolan has been developed as a JH agonist for insect pest control, but its male offspring induction activity in daphnids has not been investigated yet. In this study, we found that the insect growth regulator (IGR) diofenolan exhibited a potent male offspring induction activity at low ng/L to μg/L concentrations, as demonstrated by the short-term in vivo screening assay and the recently developed TG211 ANNEX 7 test protocol. A two-hybrid assay performed using the D. magna JH receptor confirmed that diofenolan had a strong JH activity. Global whole body transcriptome analysis of D. magna exposed to 10 ng/L diofenolan showed an up-regulation of JH-responsive genes and modulation of several genes involved in the ecdysone receptor signaling pathway. These results clearly demonstrate that diofenolan has strong JH activity and male offspring induction activity, and that a combination of modified standardized regulatory testing protocols and rapid in vitro and in vivo screening assays are able to identify potential endocrine disruptors in D. magna. The observation that diofenolan modulates multiple endocrine signaling pathways in D. magna suggests that further investigation of potential interference with growth, development and reproduction is warranted. PMID:25506888

  16. Synthesis, characterization and toxicological evaluation of Cr₂O₃ nanoparticles using Daphnia magna and Aliivibrio fischeri.

    PubMed

    Puerari, Rodrigo Costa; da Costa, Cristina H; Vicentini, Denice S; Fuzinatto, Cristiane F; Melegari, Silvia P; Schmidt, Éder C; Bouzon, Zenilda L; Matias, William G

    2016-06-01

    Chromium III oxide (Cr2O3) nanoparticles (NPs) are used in pigments for ceramics, dyes, paints and cosmetics. However, few studies addressing the toxic potential of these NPs have been reported in the literature. Thus, this research aimed to evaluate the acute and chronic effects of Cr2O3 NPs through acute toxicity tests with Daphnia magna and Aliivibrio fischeri and chronic toxicity tests with Daphnia magna. Cr2O3 NPs were synthesized by the sol-gel method and characterized through TEM, X-Ray diffraction (XRD), zeta potential (ZP) and surface area analysis. In the acute toxicity tests the EC(50,48h) value obtained with D. magna was 6.79 mg L(-1) and for A. fischeri the EC(50,15min) value was 16.10 mg L(-1) and the EC(50,30min) value was 12.91 mg L(-1). Regarding the chronic toxicity tests with D. magna, effects on longevity (OEC=1.00 mg L(-1)), reproduction (OEC=1.00 mg L(-1)) and growth (OEC=0.50 mg L(-1)) were observed. On the SEM and TEM images, ultrastructural alterations in the organelles of exposed organisms were also observed. Thus, toxicological studies with NPs are of great importance in order to reduce the risk of environmental contamination. PMID:26890188

  17. Purification and studies on characteristics of cholinesterases from Daphnia magna *

    PubMed Central

    Yang, Yan-xia; Niu, Li-zhi; Li, Shao-nan

    2013-01-01

    Due to their significant value in both economy and ecology, Daphnia had long been employed to investigate in vivo response of cholinesterase (ChE) in anticholinesterase exposures, whereas the type constitution and property of the enzyme remained unclear. A type of ChE was purified from Daphnia magna using a three-step procedure, i.e., Triton X-100 extraction, ammonium sulfate precipitation, and diethylaminoethyl (DEAE)-Sepharose™-Fast-Flow chromatography. According to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), molecular mass of the purified ChE was estimated to be 84 kDa. Based on substrate studies, the purified enzyme preferred butyrylthiocholine iodide (BTCh) [with maximum velocity (V max)/Michaelis constant (K m)=8.428 L/(min·mg protein)] to acetylthiocholine iodide (ATCh) [with V max/K m=5.346 L/(min·mg protein)] as its substrate. Activity of the purified enzyme was suppressed by high concentrations of either ATCh or BTCh. Inhibitor studies showed that the purified enzyme was more sensitive towards inhibition by tetraisopropylpyrophosphoramide (iso-OMPA) than by 1,5-bis(4-allyldimethylammoniumphenyl) pentan-3-one dibromide (BW284C51). Result of the study suggested that the purified ChE was more like a type of pseudocholinesterase, and it also suggested that Daphnia magna contained multiple types of ChE in their bodies. PMID:23549850

  18. Effect of pulse frequency and interval on the toxicity of chlorpyrifos to Daphnia magna.

    PubMed

    Naddy, R B; Klaine, S J

    2001-11-01

    Due to the episodic nature in which organisms are exposed to non-point source pollutants, it is necessary to understand how they are affected by pulsed concentrations of contaminants. This is essential, as standard toxicity tests may not adequately simulate exposure scenarios for short-lived hydrophobic compounds, such as chlorpyrifos (CPF), a broad-spectrum organophosphate insecticide. Studies were conducted with 7-day old Daphnia magna for 7 days to evaluate the effect of pulse frequency and interval among multiple CPF exposures. Daphnids were exposed to a total exposure of either 12 h at 0.5 microg/l or 6 h at 1.0 microg/l nominal CPF, respectively, in all studies. For interval studies, D. magna were exposed to two pulses of CPF at each concentration, with 0-96-h intervals between pulses. For frequency studies, D. magna were exposed to each CPF concentration altering the pulse scheme by decreasing the exposure duration but increasing the number of pulses, keeping the total exposure time the same. The pulse interval between multiple pulses in these experiments was 24 h. Our results suggest that D. magna can withstand an acutely lethal CPF exposure provided that there is adequate time for recovery between exposures. PMID:11680745

  19. Accumulation and Inactivation of Avian Influenza Virus by the Filter-Feeding Invertebrate Daphnia magna

    PubMed Central

    Borchardt, Mark A.; Spencer, Susan K.

    2013-01-01

    The principal mode of avian influenza A virus (AIV) transmission among wild birds is thought to occur via an indirect fecal-oral route, whereby individuals are exposed to virus from the environment through contact with virus-contaminated water. AIV can remain viable for an extended time in water; however, little is known regarding the influence of the biotic community (i.e., aquatic invertebrates) on virus persistence and infectivity in aquatic environments. We conducted laboratory experiments to investigate the ability of an aquatic filter-feeding invertebrate, Daphnia magna, to accumulate virus from AIV-dosed water under the hypothesis that they represent a potential vector of AIV to waterfowl hosts. We placed live daphnids in test tubes dosed with low-pathogenicity AIV (H3N8 subtype isolated from a wild duck) and sampled Daphnia tissue and the surrounding water using reverse transcription-quantitative PCR (RT-qPCR) at 3- to 120-min intervals for up to 960 min following dosing. Concentrations of viral RNA averaged 3 times higher in Daphnia tissue than the surrounding water shortly after viral exposure, but concentrations decreased exponentially through time for both. Extracts from Daphnia tissue were negative for AIV by cell culture, whereas AIV remained viable in water without Daphnia present. Our results suggest daphnids can accumulate AIV RNA and effectively remove virus particles from water. Although concentrations of viral RNA were consistently higher in Daphnia tissue than the water, additional research is needed on the time scale of AIV inactivation after Daphnia ingestion to fully elucidate Daphnia's role as a potential vector of AIV infection to aquatic birds. PMID:24038705

  20. Effect of lindane on the clearance rate of daphnia magna

    PubMed

    Hartgers; Heugens; Deneer

    1999-05-01

    The impact of the insecticide lindane (gamma-hexachlorocyclohexane) on the clearance rate (CR) of Daphnia magna was investigated using artificial beads. CR (24-h EC50: 65 &mgr;g L-1) was found to be a more sensitive endpoint than acute lethality for D. magna (48-h LC50: 516 &mgr;g L-1). The onset of the effect was rapid; after 2 h of exposure to approximately 241 &mgr;g L-1 of lindane a significant decrease in CR was observed. Daphnids recovered rapidly after transfer to clean water; after 24 h of exposure to approximately 250 &mgr;g L-1 lindane, transfer into clean water resulted in recovery to 80% of control levels within 2 h and complete recovery within 24 h. PMID:10227859

  1. Chronic toxicity of biphenyl to Daphnia magna Straus

    SciTech Connect

    Gersich, F.M.; Bartlett, E.A.; Murphy, P.G.; Milazzo, D.P. )

    1989-09-01

    The US Environmental Protection Agency (EPA) issued a final test rule (1985) for biphenyl on the authority of Section 4(a) of the Toxic Substances Control Act (TSCA). Contained within this rule was the requirement for generating chronic daphnid toxicity data for biphenyl. Biphenyl is used primarily to produce dye carriers, heat-transfer fluids and alkylated biphenyls. The acute toxicity of biphenyl to Daphnia magna has been reported. The 48-hr LC50 values were 4.7 and 2.1 mg/L, respectively. To date, the chronic toxicity of biphenyl to fish and aquatic invertebrates has not been investigated. The objective of this study was to determine the chronic toxicity of biphenyl to D. magna. The daphnid chronic toxicity test is designed to estimate the maximum acceptable toxicant concentration (MATC). The MATC is defined as the concentration falling between the highest concentration showing no effect and the next higher concentration showing a toxic effect when compared to the controls.

  2. Statistical validation of structured population models for Daphnia magna

    PubMed Central

    Adoteye, Kaska; Banks, H.T.; Cross, Karissa; Eytcheson, Stephanie; Flores, Kevin B.; LeBlanc, Gerald A.; Nguyen, Timothy; Ross, Chelsea; Smith, Emmaline; Stemkovski, Michael; Stokely, Sarah

    2016-01-01

    In this study we use statistical validation techniques to verify density-dependent mechanisms hypothesized for populations of Daphnia magna. We develop structured population models that exemplify specific mechanisms, and use multi-scale experimental data in order to test their importance. We show that fecundity and survival rates are affected by both time-varying density-independent factors, such as age, and density-dependent factors, such as competition. We perform uncertainty analysis and show that our parameters are estimated with a high degree of confidence. Further, we perform a sensitivity analysis to understand how changes in fecundity and survival rates affect population size and age-structure. PMID:26092608

  3. Effects of metal salt mixtures on Daphnia magna reproduction

    SciTech Connect

    Biesinger, K.E.; Christensen, G.M.; Fiandt, J.T.

    1986-02-01

    Three binary metal experiments were conducted using a complete block design; testing the chlorides of Cd, Hg, and Zn individually and in combinations of Cd-Hg, Cd-Zn, and Zn-Hg on Daphnia magna reproduction. These mixtures were tested at one-half, once, and twice the 16% reproductive impairment concentration previously determined for individual metals. The Cd-Hg, Cd-Zn, and Zn-Hg mixtures all showed significant reductions in reproduction at concentrations where the metal salts alone caused no significant effect.

  4. The chronic toxicity of CuO nanoparticles and copper salt to Daphnia magna.

    PubMed

    Adam, Nathalie; Vakurov, Alexander; Knapen, Dries; Blust, Ronny

    2015-01-01

    In this study, the effects of CuO nanoparticles and CuCl2·2H2O were tested on Daphnia magna under chronic exposure scenarios. During a 21-day exposure to the nanoparticles and salt, the reproduction was followed by a daily count of the number of offspring. After the exposure, the adult Daphnia length and uptake of copper was measured. The dissolved, nanoparticle and aggregated fractions were distinguished in the exposure medium. The results showed that only a small fraction of the nanoparticles dissolved, while the majority of the particles formed large aggregates (>450 nm). The dissolved fraction of the nanoparticles corresponded with the dissolved fraction of the copper salt. The effects of the nanoparticles (reproduction EC10: 0.546 mg Cu/l, EC20: 0.693 mg Cu/l, EC50: 1.041 mg Cu/l) on reproduction and length were much lower than the effects of the copper salts (reproduction EC10: 0.017 mg Cu/l, EC20: 0.019 mg Cu/l, EC50: 0.022 mg Cu/l). Based upon total body analysis, the Daphnia copper concentration appeared much higher when exposed to the nanoparticles than when exposed to the salt. These combined results indicate that the toxicity of CuO nanoparticles to D. magna is caused by copper ions formed during dissolution of the nanoparticles in the exposure medium. PMID:25464278

  5. Chromium toxicity on two linked trophic levels. I. Effects of contaminated algae on Daphnia magna.

    PubMed

    Gorbi, G; Corradi, M G

    1993-02-01

    The effects of feeding Daphnia magna on algae (Scenedesmus acutus) pretreated with different concentrations of Cr(VI) were studied. A positive effect on growth and newborn production rate was observed in the daphnids fed on algae exposed to 1 mg/liter Cr(VI). Fecundity and growth were drastically reduced in daphnids fed on algae exposed to 10 mg/liter Cr(VI). Since the algae, cultured in the presence of these two Cr(VI) concentrations, supplied daphnids with similar amounts of chromium, the observed effects on the population dynamics of D. magna were attributed more to alterations of the nutritional value of the algal food, due to the Cr treatment, than to a toxic effect of the metal. PMID:7682919

  6. Exploring methods for compositional and particle size analysis of noble metal nanoparticles in Daphnia magna.

    PubMed

    Krystek, Petra; Brandsma, Sicco; Leonards, Pim; de Boer, Jacob

    2016-01-15

    The identification and quantification of the bioaccumulation of noble metal engineered nanoparticles (ENPs) by aquatic organisms is of great relevance to understand the exposure and potential toxicity mechanisms of nanoscale materials. Four analytical scenarios were investigated in relation to various sized and composed noble metal (gold (Au), platinum (Pt) and silver (Ag)) ENPs during acute, short-term exposure of Daphnia (D.) magna. Next to the total elemental quantification of absorbed ENPs by D. magna, especially information on the size and particle distribution of ENPs in D. magna is of relevance. Dissolution of the exposed biological material prior to measurement by asymmetric flow field flow fractionation coupled to inductively coupled plasma mass spectrometry (AF4-ICPMS) is challenging because the ENPs must stay stable regarding to particle size and composition. Next to dissolution of exposed D. magna by tetra methyl ammonium hydroxide (TMAH), a new enzymatic dissolution approach was explored by using trypsin. The presence of various sized and composed ENPs has been confirmed by AF4-ICPMS but the chosen dissolution medium was crucial for the results. TMAH and trypsin led to comparable results for medium-sized (50nm) noble metals ENPs in exposed D. magna. But it was also shown that the dissolution of biological materials with smaller (<5nm) ENPs led to different results in particle size and elemental concentration depending on the selected dissolution medium. A significant uptake of Au and Pt ENPs by D. magna or adsorption to particles occurred because only 1-5% of the exposed ENPs remained in the exposure medium. PMID:26592609

  7. Bioavailability of sediment-associated Cu and Zn to Daphnia magna.

    PubMed

    Gillis, P L; Wood, C M; Ranville, J F; Chow-Fraser, P

    2006-05-25

    Exposures to mining-impacted, field-collected sediment (Clear Creek, CO, USA) contaminated with Cu (2.4 mg/g) and Zn (5.2 mg/g) were acutely toxic to juvenile Daphnia magna. Dissolved Cu and Zn in the overlying water (sediment+reference water) were at levels that could cause acute toxicity. To reduce dissolved metals below toxic levels, the sediment was repeatedly rinsed to remove any easily mobilized metals. Washing the sediment reduced dissolved Cu by 60% and Zn by 80%. D. magna exposed to washed sediment experienced higher survival (95%) compared to those exposed to the original sediment (<50%). Cu and Zn that remained associated with suspended sediment after washing were not bioavailable, since survival and tissue metal concentrations in D. magna exposed to both filtered (>0.45 microm) and unfiltered overlying water were statistically similar. Multiple regression analysis indicated that only dissolved Cu significantly contributed to mortality of D. magna whereas particulate Cu, particulate Zn, and dissolved Zn did not. Regression analysis on a combined dataset from all Clear Creek exposures (washed and unwashed), revealed a significant (p < 0.0001, r(2) = 0.76) relationship between the concentration of dissolved copper in the overlying water and the mortality of exposed Daphnia, yielding an estimated LC50 of 26 microg/L dissolved copper (hardness approximately 140 mg/L). The results of this study indicate that if the sediment of Clear Creek was subjected to a resuspension event that there would be a significant efflux of metals from the sediment into the water column, resulting in potentially toxic levels in the water column. PMID:16488492

  8. TALEN-mediated homologous recombination in Daphnia magna

    PubMed Central

    Nakanishi, Takashi; Kato, Yasuhiko; Matsuura, Tomoaki; Watanabe, Hajime

    2015-01-01

    Transcription Activator-Like Effector Nucleases (TALENs) offer versatile tools to engineer endogenous genomic loci in various organisms. We established a homologous recombination (HR)-based knock-in using TALEN in the crustacean Daphnia magna, a model for ecological and toxicological genomics. We constructed TALENs and designed the 67 bp donor insert targeting a point deletion in the eyeless mutant that shows eye deformities. Co-injection of the TALEN mRNA with donor DNA into eggs led to the precise integration of the donor insert in the germ line, which recovered eye deformities in offspring. The frequency of HR events in the germ line was 2% by using both plasmid and single strand oligo DNA with 1.5 kb and 80 nt homology to the target. Deficiency of ligase 4 involved in non-homologous end joining repair did not increase the HR efficiency. Our data represent efficient HR-based knock-in by TALENs in D. magna, which is a promising tool to understand Daphnia gene functions. PMID:26674741

  9. Disturbances in energy metabolism of Daphnia magna after exposure to tebuconazole.

    PubMed

    Sancho, E; Villarroel, M J; Andreu, E; Ferrando, M D

    2009-03-01

    This study was conducted to investigate the change of some biochemical parameters in the aquatic invertebrate Daphnia magna following exposure to the fungicide tebuconazole and to determine the most sensitive biomarker among the ones tested in this species. Four biochemical biomarkers (protein, glycogen, lipids and caloric content) were correlated with feeding behaviour studies of D. magna after fungicide exposure. Juveniles of D. magna were exposed to four sublethal concentrations of tebuconazole (0.41, 0.52, 0.71 and 1.14 mgL(-1)) for 5d. Daphnid samples were taken from each test and control group at 24, 48, 72, 96 and 120 h after the start of the experiment. Tebuconazole EC(50) values were calculated on D. magna in our laboratory as 56.83 and 40.10 mgL(-1) at 24 and 48 h, respectively. Results showed that daphnid energy content decreased as tebuconazole concentration increased, especially after 96-120 h of exposure to 0.52 mgL(-1) and higher fungicide concentrations. The data suggest that tebuconazole is moderately toxic to D. magna but also that it seriously impairs the metabolic functions, resulting in alterations in biochemical constituents. In the D. magna feeding study, algae feeding rates were inhibited after fungicide exposure. Such findings indicate the importance of feeding studies in laboratory toxicity test as well as their relationship with others studies. The results emphasize the importance of considering different kind of biomarkers to identify and evaluate the biological effect of a fungicide in the aquatic environment. Although the biochemical biomarkers used resulted good indicators of tebuconazole toxicity, feeding rates in D. magna decreased after only 5h exposure to the fungicide resulting in the most sensitive parameter of daphnid fungicide exposure. PMID:19135699

  10. The influence of benthic fish bioturbation on cadmium bioavailability to Daphnia magna

    SciTech Connect

    Wall, S.B.; Isely, J.J.; La Point, T.W.

    1994-12-31

    The authors are interested in how benthic fish bioturbation of contaminated sediments influences bioaccumulation into planktonic and, ultimately, nektonic organisms. They performed a series of exposures with cadmium-spiked sediment, 1 {mu}g/g nominal concentration, and koi carp Cyprinus carpio. Daphnia magna were placed in exposure aquaria with and without carp for six days and bioaccumulation after 48 h was measured. Preliminary results indicate that carp increased total suspended solids from 0.0 mg/L to 44.4 mg/L and mean total cadmium water concentrations, 1.4 {mu}g/L and 2.8 {mu}g/L, without and with fish, respectively. However, body burdens of Daphnia magna did not reflect the water concentration trend. Mean Cd residues of daphnids exposed without fish, 9.377 {mu}g/g, were not statistically different from those in the with-fish exposure, 8.348 {mu}g/g. Similarity in daphnid body burdens was probably due to cadmium binding with suspended sediment particles and dissolved organic carbon in the exposure chambers, therefore minimizing Cd bioavailability to D. magna. The present focus is on determining the bioavailable cadmium concentration.

  11. Development of a Daphnia magna DNA microarray for evaluating the toxicity of environmental chemicals.

    PubMed

    Watanabe, Hajime; Takahashi, Eri; Nakamura, Yuko; Oda, Shigeto; Tatarazako, Norihisa; Iguchi, Taisen

    2007-04-01

    Toxic chemical contaminants have a variety of detrimental effects on various species, and the impact of pollutants on ecosystems has become an urgent issue. However, the majority of studies regarding the effects of chemical contaminants have focused on vertebrates. Among aquatic organisms, Daphnia magna has been used extensively to evaluate organism- and population-level responses of invertebrates to pollutants in acute toxicity or reproductive toxicity tests. Although these types of tests can provide information concerning hazardous concentrations of chemicals, they provide no information about their mode of action. Recent advances in molecular genetic techniques have provided tools to better understand the responses of aquatic organisms to pollutants. In the present study, we adapted some of the techniques of molecular genetics to develop new tools, which form the basis for an ecotoxicogenomic assessment of D. magna. Based on a Daphnia expressed sequence tag database, we developed an oligonucleotide-based DNA microarray with high reproducibility. The DNA microarray was used to evaluate gene expression profiles of neonatal daphnids exposed to several different chemicals: Copper sulfate, hydrogen peroxide, pentachlorophenol, or beta-naphthoflavone. Exposure to these chemicals resulted in characteristic patterns of gene expression that were chemical-specific, indicating that the Daphnia DNA microarray can be used for classification of toxic chemicals and for development of a mechanistic understanding of chemical toxicity on a common freshwater organism. PMID:17447551

  12. Use of daphnia magna to assess potentially contaminated buildings. Final report, April 1990-March 1991

    SciTech Connect

    Haley, M.V.; Kurnas, C.W.

    1992-06-01

    Random concrete core samples taken from a loading dock were used in determining the toxicity of concrete to Daphnia magna. The cores were ground to powder and analyzed for volatiles and chemical agents before being subjected to aquatic toxicology studies using Daphnia magna. Particle size, pH, and ion exchange mechanisms were investigated as par of methodology development. No effects were observed in daphnia exposed to concrete concentrations up to 4000 mg/L after the pH was adjusted. It was determined that an ion exchange reaction between sodium bicarbonate and concrete caused the water hardness to drop. Concrete spiked with sodium lauryl sulfate, copper sulfate, and Beta-aminoethylarylthiosulfonate were investigated to determine if concrete would alter the toxicity. The resulting EC50s were 17.2, 1.42, and 17.3 mg/L, respectively. The copper sulfate toxicity was reduced by two orders of magnitude. The changes in sodium lauryl sulfate and Beta-aminoethylarylthiosulfonate were not significant.

  13. Influence of food, aquatic humus, and alkalinity on methylmercury uptake by Daphnia magna

    SciTech Connect

    Monson, B.A.; Brezonik, P.L.

    1999-03-01

    Six-day-old Daphnia magna were exposed to low concentrations of methylmercury (MeHg) in synthetic freshwater and synthetic food. Uptake kinetics were determined in 24- to 72-h experiments, measuring both the loss of Hg from water and accumulation in D. magna. Dose-uptake response was linear for MeHg concentrations up to 4.0 ng/L; an initial concentration of 2.0 ng/L was used when other factors were varied. Concentrations of total Hg and MeHg in water and D. magna were measured in treatments with varied hardness and alkalinity, aquatic humus (AH), and food spiked with MeHg versus water spiked with MeHg. Uptake rate coefficients were derived from two versions of a first-order, two-compartment model. The first version assumed constant MeHg concentration; the second accounted for changing MeHg concentration in water over time. Both models accounted for a nonzero starting concentration of MeHg in plankton. Fitted rate coefficients were higher for the second model than the first: the uptake coefficient (k{sub u}) was nine times higher; the depuration coefficient (k{sub d}) was twice as high. Assuming a constant MeHg concentration for a one-time spike thus underestimated the rate coefficient. The source of MeHg was compared by exposing D. magna for 48 h to MeHg at 2 ng/L in food or water. Daphnia magna accumulated significantly more inorganic Hg (i.e., Hg{sup 2+}) from spiked food than from spiked water, but accumulation of MeHg was the same from both sources. A similar response was found when D. magna were exposed to a lake water extraction of AH at concentrations of C at 3 and 10 mg/L. At the higher AH concentration, total Hg in daphnids was higher, but MeHg was lower, suggesting that AH was a source of inorganic Hg but reduced the bioavailability of MeHg. Exposure of D. magna to MeHg at 2 ng/L in hard or soft water adjusted to pH 6.7 showed no significant difference in MeHg uptake, supporting an argument that hardness and alkalinity per se do not affect MeHg uptake by

  14. Daphnia magna feeding behavior after exposure to tetradifon and recovery from intoxication.

    PubMed

    Villarroel, M J; Ferrando, M D; Sancho, E; Andreu, E

    1999-09-01

    The feeding behavior of the cladocera Daphnia magna subjected to a short-term exposure to the acaricide tetradifon (4-chlorophenyl 2,4, 5-trichlorophenyl sulfone) was studied. The experiments were performed using the unicellular algae Nannochloris oculata at a density of 5x10(5) cells/ml as food for the organisms. In a first experiment, three generations (F0, F1, and F3) of the daphnids were exposed to sublethal levels of tetradifon (0.1, 0.18, 0.22, and 0.44 mg/l) and the effect of the toxicant on filtration and ingestion rates was determined. Rates of filtration and ingestion of D. magna declined in the three generations studied with increasing toxicant concentrations; however, toxicant effect was greater in daphnids from generations F1 and F3 than in those from the parental generation F0. A second experiment was conducted in order to evaluate whether animals of a first (1) or third (F3) generation coming from parental daphnids (F0) previously exposed to those pesticide concentrations exhibited any alteration in feeding behavior when transferred to clean water (recovery period). The results indicated that the feeding rates of D. magna generations F1 and F3 were still affected during the recovery period but to a less degree. The effective tetradifon concentrations D. magna at which feeding rates were reduced to 50% that of controls (EC(50)) were also calculated. PMID:10499987

  15. Reproduction recovery of the crustacean Daphnia magna after chronic exposure to ibuprofen.

    PubMed

    Hayashi, Yuya; Heckmann, Lars-Henrik; Callaghan, Amanda; Sibly, Richard M

    2008-05-01

    In mammals, the pharmaceutical ibuprofen (IB), a non-steroidal anti-inflammatory drug, primarily functions by reversibly inhibiting the cyclooxygenase (COX) pathway in the synthesis of eicosanoids (e.g. prostaglandins). Previous studies suggest that IB may act in a similar manner to interrupt production of eicosanoids reducing reproduction in the model crustacean Daphnia magna. On this basis withdrawal of IB should lead to the recovery of D. magna reproduction. Here we test whether the effect of IB is reversible in D. magna, as it is in mammals, by observing reproduction recovery following chronic exposure. D. magna (5-days old) were exposed to a range of IB concentrations (0, 20, 40 and 80 mg l(-1)) for 10 days followed by a 10 day recovery period in uncontaminated water. During the exposure period, individuals exposed to higher concentrations produced significantly fewer offspring. Thereafter, IB-stressed individuals produced offspring faster during recovery, having similar average population growth rates (PGR) (1.15-1.28) to controls by the end of the test. It appears that maternal daphnids are susceptible to IB during egg maturation. This is the first recorded recovery of reproduction in aquatic invertebrates that suffered reproductive inhibition during chronic exposure to a chemical stressor. Our results suggest a possible theory behind the compensatory fecundity that we referred to as 'catch-up reproduction'. PMID:18214676

  16. Impact of imidacloprid on Daphnia magna under different food quality regimes.

    PubMed

    Ieromina, Oleksandra; Peijnenburg, Willie J G M; de Snoo, Geert; Müller, Jutta; Knepper, Thomas P; Vijver, Martina G

    2014-03-01

    Aquatic ecosystems are characterized by fluctuating conditions that have direct effects on aquatic communities but also indirect influences such as changing the toxicity of chemicals. Because the effect of food quality on pesticide toxicity has rarely been studied, in the present study Daphnia magna juveniles supplied with 4 different food quality levels were exposed to a range of imidacloprid concentrations for 21 d. Food quality was expressed as carbon:phosphorus ratios of algae Pseudokirchneriella subcapitata (C:P 35, C:P 240, C:P 400, and C:P 1300). Survival, growth rates, and reproduction of D. magna were monitored, and the combined effects of imidacloprid exposure and the phosphorus content of algae were analyzed. A stronger effect on survival was observed at the P-deficient diet (C:P 1300), confirmed by lower 10% effect concentration (EC10) values at days 7, 9, 15, and 21 compared with diets with higher phosphorus contents. Similarly, the growth rate was reduced when D. magna were supplied with algae of low phosphorus content at imidacloprid exposure conditions. The highest reproductive output was observed for D. magna fed the optimal phosphorus diet (C:P 240), both at control and exposed conditions. Poor food quality increased the sensitivity of nontarget species to pesticide exposure, potentially leading to an underestimation of adverse effects on aquatic communities in the field. PMID:24288231

  17. Chronic toxicity of dietary copper to Daphnia magna.

    PubMed

    De Schamphelaere, K A C; Forrez, I; Dierckens, K; Sorgeloos, P; Janssen, C R

    2007-03-30

    There is a growing concern that dietborne metal toxicity might be important in aquatic ecosystems. However, the science behind this matter is insufficiently developed to explicitly and accurately account for this in metal regulation or risk assessment. We investigated the effects of a chronic exposure of Daphnia magna to an elevated level of Cu (3000 microg Cu/g dry wt) in their diet (the green alga Pseudokirchneriella subcapitata). Compared to daphnids fed with P. subcapitata containing a background of 10.6 microg Cu/g dry wt, daphnids fed for 21 days with this Cu-contaminated food accumulated a total copper body burden of 325 microg Cu/g dry wt, which is about 30-fold higher than the control body burden of 12.1 microg/g dry wt. The exposed daphnids experienced a 38% reduction of growth (measured as final dry body weight), a 50% reduction of reproduction (total number of juveniles produced per daphnid), and only produced three broods versus four broods by the control daphnids. Unlike most other studies, we were able to demonstrate that these effects were most likely not due to a reduced nutritional quality of the food, based on C:P ratios and fatty acid content and composition of the Cu-contaminated algae. Life-history analysis showed that time to first brood was not affected by dietary Cu, while the second and third broods were significantly delayed by 0.7 and 1.5 days, respectively. On the other hand, brood sizes of all three broods were significantly lower in Cu exposed daphnids, i.e. by 32-55%. The variety of effects observed suggest the possible, and perhaps simultaneous, involvement of several toxicity mechanisms such as increased metabolic cost, reduced energy acquisition (potentially via inhibition of digestive enzyme activity), targeted inhibition of reproduction (potentially via inhibition of vitellogenesis), and/or direct inhibition of molting. Further research is needed to differentiate between these postulated mechanisms of dietary Cu toxicity and to

  18. Daphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity.

    PubMed

    Poynton, Helen C; Varshavsky, Julia R; Chang, Bonnie; Cavigiolio, Giorgio; Chan, Sarah; Holman, Patricia S; Loguinov, Alexandre V; Bauer, Darren J; Komachi, Kelly; Theil, Elizabeth C; Perkins, Edward J; Hughes, Owen; Vulpe, Chris D

    2007-02-01

    Toxicogenomics has provided innovative approaches to chemical screening, risk assessment, and predictive toxicology. If applied to ecotoxicology, genomics tools could greatly enhance the ability to understand the modes of toxicity in environmentally relevant organisms. Daphnia magna, a small aquatic crustacean, is considered a "keystone" species in ecological food webs and is an indicator species for toxicant exposure. Our objective was to demonstrate the potential utility of gene expression profiling in ecotoxicology by identifying novel biomarkers and uncovering potential modes of action in D. magna. Using a custom D. magna cDNA microarray, we identified distinct expression profiles in response to sublethal copper, cadmium, and zinc exposures and discovered specific biomarkers of exposure including two probable metallothioneins, and a ferritin mRNA with a functional IRE. The gene expression patterns support known mechanisms of metal toxicity and reveal novel modes of action including zinc inhibition of chitinase activity. By integrating gene expression profiling into an environmentally important organism, this study provides experimental support for the utility of ecotoxicogenomics. PMID:17328222

  19. Effect of metals on Daphnia magna and cladocerans representatives of the Argentinean fluvial littoral.

    PubMed

    Luciana, Regaldo; Reno, Ulises; Gervasio, Susana; Horacio, Troiani; Gagneten, Ana María

    2014-07-01

    Chronic toxicity tests were conducted to assess the effect of Cu, Cr and Pb on Moinodaphnia macleayi and Ceriodaphnia dubia -two cladoceran species from the Argentinian Fluvial Littoral Zone (AFLZ)- and Daphnia magna -an holarctic species-. The specimens were exposed to three concentrations of each metal. As endpoints, the number of living and dead organisms, molts, neonates released, and the age of first reproduction were recorded. Chronic assays showed that Cu significantly affected the analyzed life history traits in the three species. The lowest Pb and Cr concentrations did not affect survival, molting or fecundity in D. magna. Conversely, in M. macleayi and C. dubia, survival, molting and fecundity showed highly significant differences in all the concentrations tested compared to control assay. The present study stresses the importance of using biological parameters as bioindicators, as well as the study species from the Southern Hemisphere to assess metal pollution. PMID:25004754

  20. Differential oxidative stress of octahedral and cubic Cu2O micro/nanocrystals to Daphnia magna.

    PubMed

    Fan, Wenhong; Wang, Xiaolong; Cui, Minming; Zhang, Dongfeng; Zhang, Yuan; Yu, Tao; Guo, Lin

    2012-09-18

    This study attempts to understand the impact of different shapes of an individual micro/nanomaterial on their biotoxicities to aquatic organisms. Two differently shaped Cu(2)O micro/nanocrystals (cubes and octahedrons with side lengths of 900 nm) were exposed to Daphnia magna for 72 h, afterward several antioxidant biomarkers such as reactive oxygen species (ROS), catalase (CAT), total antioxidant capacity (T-AOC), and malondialdehyde (MDA) in D. magna were measured. We demonstrated the differential influences of two crystallographic Cu(2)O nanocrystals on the antioxidant process. Specifically, octahedral Cu(2)O nanocrystals showed a higher level of oxidative stress, possibly because of its larger surface area and higher reaction activity of the octahedron. The biomarker results further showed that the oxidative stress and antioxidant mechanism process involved three stages-antioxidant response, oxidation inhibition, and antioxidant inactivation. Furthermore, the accumulation of MDA was mainly responsible for the ROS-induced toxicity. PMID:22894800

  1. Effect of age on sensitivity of daphnia magna to cadmium, copper and cyanazine

    SciTech Connect

    Nebeker, A.V.; Cairns, M.A.; Onjukka, S.T.; Titus, R.H.

    1986-01-01

    Daphnia magna were exposed to cadmium, copper, and cyanazine to determine the relative sensitivities of several age groups: less than 4 h, less than 24 h, 1 d, 2 d, 3 d, 4 d, 5 d, and 6 d old. Mean cadmium 48-h EC50 values for each age group ranged from 23 to 164 micrograms/L. Mean copper EC50 values ranged from 6 to 18 micrograms/L. Cyanazine EC50 values ranged from 53 to 106 micrograms/L. The 1-d-old Daphnia mean EC50s were 48 and 49 micrograms/L for cadmium, 10 and 10 micrograms/L for copper and 84 and 86 microgram/L for cyanazine, respectively. These similar sensitivities indicate that older animals can be used in tests equally as well as younger animals, thus simplifying the recovery of daphnids in acute sediment toxicity tests.

  2. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx)

    PubMed Central

    Lovern, Sarah B.; Strickler, J. Rudi; Klaper, Rebecca

    2008-01-01

    Little is known about the impact manufactured nanoparticles will have on aquatic organisms. Previously, we demonstrated that toxicity differs with nanoparticle type and preparation and observed behavioral changes upon exposure to the more lethal nanoparticle suspensions. In this experiment, we quantified these behavioral and physiological responses of Daphnia at sublethal nanoparticle concentrations. Titanium dioxide (TiO2) and fullerenes (nano-C60) were chosen for their potential use in technology. Other studies suggest that addition of functional groups to particles can affect their toxicity to cell cultures, but it is unknown if the same is true at the whole organism level. Therefore, a fullerene derivative, C60HxC70Hx, was also used to examine how functional groups affect Daphnia response. Using a high-speed camera, we quantified several behavior and physiological parameters including hopping frequency, feeding appendage and postabdominal curling movement, and heart rate. Nano-C60 was the only suspension to cause a significant change in heart rate. Both exposure to nano-C60 and C60HxC70Hx suspensions caused hopping frequency and appendage movement to increase. These results are associated with increased risk of predation and reproductive decline. They indicate that certain nanoparticle types may have impacts on population and food web dynamics in aquatic systems. PMID:17626453

  3. Daphnia magna transcriptome by RNA-Seq across 12 environmental stressors.

    PubMed

    Orsini, Luisa; Gilbert, Donald; Podicheti, Ram; Jansen, Mieke; Brown, James B; Solari, Omid Shams; Spanier, Katina I; Colbourne, John K; Rush, Douglas; Decaestecker, Ellen; Asselman, Jana; De Schamphelaere, Karel A C; Ebert, Dieter; Haag, Christoph R; Kvist, Jouni; Laforsch, Christian; Petrusek, Adam; Beckerman, Andrew P; Little, Tom J; Chaturvedi, Anurag; Pfrender, Michael E; De Meester, Luc; Frilander, Mikko J

    2016-01-01

    The full exploration of gene-environment interactions requires model organisms with well-characterized ecological interactions in their natural environment, manipulability in the laboratory and genomic tools. The waterflea Daphnia magna is an established ecological and toxicological model species, central to the food webs of freshwater lentic habitats and sentinel for water quality. Its tractability and cyclic parthenogenetic life-cycle are ideal to investigate links between genes and the environment. Capitalizing on this unique model system, the STRESSFLEA consortium generated a comprehensive RNA-Seq data set by exposing two inbred genotypes of D. magna and a recombinant cross of these genotypes to a range of environmental perturbations. Gene models were constructed from the transcriptome data and mapped onto the draft genome of D. magna using EvidentialGene. The transcriptome data generated here, together with the available draft genome sequence of D. magna and a high-density genetic map will be a key asset for future investigations in environmental genomics. PMID:27164179

  4. Daphnia magna transcriptome by RNA-Seq across 12 environmental stressors

    PubMed Central

    Orsini, Luisa; Gilbert, Donald; Podicheti, Ram; Jansen, Mieke; Brown, James B.; Solari, Omid Shams; Spanier, Katina I.; Colbourne, John K.; Rush, Douglas; Decaestecker, Ellen; Asselman, Jana; De Schamphelaere, Karel A.C.; Ebert, Dieter; Haag, Christoph R.; Kvist, Jouni; Laforsch, Christian; Petrusek, Adam; Beckerman, Andrew P.; Little, Tom J.; Chaturvedi, Anurag; Pfrender, Michael E.; De Meester, Luc; Frilander, Mikko J.

    2016-01-01

    The full exploration of gene-environment interactions requires model organisms with well-characterized ecological interactions in their natural environment, manipulability in the laboratory and genomic tools. The waterflea Daphnia magna is an established ecological and toxicological model species, central to the food webs of freshwater lentic habitats and sentinel for water quality. Its tractability and cyclic parthenogenetic life-cycle are ideal to investigate links between genes and the environment. Capitalizing on this unique model system, the STRESSFLEA consortium generated a comprehensive RNA-Seq data set by exposing two inbred genotypes of D. magna and a recombinant cross of these genotypes to a range of environmental perturbations. Gene models were constructed from the transcriptome data and mapped onto the draft genome of D. magna using EvidentialGene. The transcriptome data generated here, together with the available draft genome sequence of D. magna and a high-density genetic map will be a key asset for future investigations in environmental genomics. PMID:27164179

  5. Acute toxicity assessment of camphor in biopesticides by using Daphnia magna and Danio rerio

    PubMed Central

    Yim, Eun-Chae; Kim, Hyeon-Joe; Kim, Seong-Jun

    2014-01-01

    Objectives An ecofriendly alternative to chemical pesticides is bio-pesticides, which are derived from natural sources. The interest in bio-pesticides is based on the disadvantages associated with chemical pesticides. Methods We conducted acute toxicity assessments of camphor, a major component of bio-pesticides, by using Daphnia magna (D. magna) as well as assessed the morphological abnormalities that occurred in Danio rerio (D. rerio) embryos. Results The median effective concentration of camphor on D. magna after 48 hours was 395.0 μM, and the median lethal concentration on D. rerio embryos after 96 hours was 838.6 μM. The no observed effect concentration and predicted no effect concentration of camphor on D. magna, which was more sensitive than D. rerio, were calculated as 55.2 μM and 3.95 μM, respectively. Morphological abnormalities in D. rerio embryos exposed to camphor increased over time. Coagulation, delayed hatching, yolk sac edema, pericardial edema, and pigmentation of embryos mainly appeared between 24 and 48 hours. Further, symptoms of scoliosis and head edema occurred after 72 hours. In addition, bent tails, ocular defects and collapsed symptoms of fertilized embryonic tissue were observed after 96 hours. Conclusions The camphor toxicity results suggest that continuous observations on the ecosystem are necessary to monitor toxicity in areas where biological pesticides containing camphor are sprayed. PMID:25234414

  6. Fish bioturbation of cadmium-contaminated sediments: Factors affecting Cd availability to Daphnia magna

    SciTech Connect

    Wall, S.B.; La Point, T.W.; Isely, J.J.

    1996-03-01

    Benthic fish bioturbation of contaminated sediments is thought to enhance exposure and, potentially, bioaccumulation into planktonic organisms. Exposures were conducted with cadmium-spiked sediment, 1.0 mg/kg nominal concentrations, and koi carp (Cyprinus carpio). Daphnia magna were placed in aquaria with and without fish for 6 d and Cd bioaccumulation was measured every 48 h. Koi carp bioturbation increased mean total suspended solids (TSS) in two trials from 0.001 mg/L to 44.4 mg/L and 19.2 mg/L to 762.4 mg/L. Mean aqueous Cd concentrations increased from1.4 {micro}g/L to 2.8 {micro}g/L, and from 1.6 {micro}g/L to 13.2 {micro}g/L. Cadmium binding capacity increased from 28.9 {micro}g/L to 169.8 {micro}g/L in with-fish treatments when compared to controls. However, Daphnia magna body burdens did not increase. Mean Cd residues of daphnids exposed with fish, 9.2 {micro}g/g, were not statistically different from without-fish exposures, 8.0 {micro}g/g. Body burdens slightly decreased in the first trial after the with-fish treatment, 9.4 {micro}g/g to 8.3 {micro}g/g. Fish size was partially correlated with TSS and aqueous Cd concentrations and TSS positively correlated with binding capacity. Because increased TSS in the with-fish treatment resulted in increased binding capacity, it is probable that cadmium bioavailability decreased. Although koi carp were capable of remobilizing Cd from sediment, Cd bioaccumulation into Daphnia magna was not significant.

  7. Obesogens beyond Vertebrates: Lipid Perturbation by Tributyltin in the Crustacean Daphnia magna

    PubMed Central

    Jordão, Rita; Casas, Josefina; Fabrias, Gemma; Campos, Bruno; Piña, Benjamín; Lemos, Marco F.L.; Soares, Amadeu M.V.M.; Tauler, Romà

    2015-01-01

    Background The analysis of obesogenic effects in invertebrates is limited by our poor knowledge of the regulatory pathways of lipid metabolism. Recent data from the crustacean Daphnia magna points to three signaling hormonal pathways related to the molting and reproductive cycles [retinoic X receptor (RXR), juvenile hormone (JH), and ecdysone] as putative targets for exogenous obesogens. Objective The present study addresses the disruptive effects of the model obesogen tributyltin (TBT) on the lipid homeostasis in Daphnia during the molting and reproductive cycle, its genetic control, and health consequences of its disruption. Methods D. magna individuals were exposed to low and high levels of TBT. Reproductive effects were assessed by Life History analysis methods. Quantitative and qualitative changes in lipid droplets during molting and the reproductive cycle were studied using Nile red staining. Lipid composition and dynamics were analyzed by ultra-performance liquid chromatography coupled to a time-of-flight mass spectrometer. Relative abundances of mRNA from different genes related to RXR, ecdysone, and JH signaling pathways were studied by qRT-PCR. Results and Conclusions TBT disrupted the dynamics of neutral lipids, impairing the transfer of triacylglycerols to eggs and hence promoting their accumulation in adult individuals. TBT’s disruptive effects translated into a lower fitness for offspring and adults. Co-regulation of gene transcripts suggests that TBT activates the ecdysone, JH, and RXR receptor signaling pathways, presumably through the already proposed interaction with RXR. These findings indicate the presence of obesogenic effects in a nonvertebrate species. Citation Jordão R, Casas J, Fabrias G, Campos B, Piña B, Lemos MF, Soares AM, Tauler R, Barata C. 2015. Obesogens beyond vertebrates: lipid perturbation by tributyltin in the crustacean Daphnia magna. Environ Health Perspect 123:813–819; http://dx.doi.org/10.1289/ehp.1409163 PMID

  8. Acute toxicity of furazolidone on Artemia salina, Daphnia magna, and Culex pipiens molestus larvae

    SciTech Connect

    Macri, A.; Stazi, A.V.; Dojmi di Delupis, G.

    1988-10-01

    As a result of evidence of the ecotoxicity of nitrofurans, the acute toxicity of furazolidone was tested in vivo on two aquatic organisms, Artemia salina and Daphnia magna, which are both crustaceans. Toxicity studies were also performed on larvae of Culex pipiens molestus. Results indicated a significant toxicity of the compound on Culex pipiens and Daphnia magna, while Artemia salina proved to be the least sensitive.

  9. Acute toxicity of cyanogen chloride to Daphnia magna

    SciTech Connect

    Kononen, D.W.

    1988-09-01

    The destruction of cyanide in waste waters by chlorination has been shown to result in the formation of the extremely toxic compound, cyanogen chloride. Industrial cyanide-containing waste waters may be treated by a batch chlorination process under highly alkaline conditions prior to being discharged into a receiving water systems. Alternatively, if the concentration of cyanide is relatively low, and such waste waters may be diverted to municipal waste treatment facilities where they may be subjected to a process of chlorination which may not be sufficient for the complete oxidative destruction of the available cyanide. Although a large body of literature exists concerning the toxicity of HCN and metallic cyanide compounds to aquatic organisms, there is a comparative scarcity of information concerning cyanogen chloride toxicity. This study was designed to determine the acute toxicity of CNCl to Daphnia magna neonates under static bioassay conditions.

  10. Development of miniaturized acute toxicity tests for Daphnia magna and Pimephales promelas

    SciTech Connect

    Powell, R.L.; Kimerle, R.A.; Moser, E.M.; McKee, M.J.

    1995-12-31

    Standard EPA methods for conducting static, 48-hour, acute toxicity tests using Daphnia magna and Pimephales promelas (fathead minnows) can be miniaturized to successfully yield accurate LC50/EC50 values. The screening procedure involves exposing the test organisms to 1 mL of test solution, in test chambers which consist of the wells on 48-well microliter plates. Toxicity of the microliter plates and solvent, DO concentration, organism biomass to test solution ratio, partitioning of the chemicals and dilution of the test solution during transfer of the test organisms were examined. Survival and exposure were not significantly altered using non-standard test chambers. Toxicity of linear alkylbenzene sulfonate (LAS), pentachlorophenol (PCP), kepone, and sodium lauryl sulfate (SLS) was determined using D. magna and fathead minnows. Serial dilutions were made and 1 mL aliquots pipetted into the wells. Daphnia magna, < 24 hours old, and newly hatched fathead minnows, were transferred into the wells, twenty individuals per concentration, one per well. Dose-response curves were established for all test compounds. LC50/EC50`s values obtained using miniaturized methods strongly correlated with those obtained using standard EPA procedures. The tests were repeated a number of times with coefficient of variances for D. magna ranging from 10% with kepone to 64% with SLS. For fathead minnows CVs ranged from 0% with PCP to 23% with kepone. It was concluded that current methods can be miniaturized, yet still provide accurate information regarding toxicity for compounds in limited supply. This method may also be amenable to effluent testing i.e. TIE fractions. Other benefits include reducing the amount of equipment and space needed to conduct a test and the time involved.

  11. Dynamic multipathway modeling of Cd bioaccumulation in Daphnia magna using waterborne and dietborne exposures.

    PubMed

    Goulet, Richard R; Krack, Susannah; Doyle, Patrick J; Hare, Landis; Vigneault, Bernard; McGeer, James C

    2007-02-28

    We tested the predictive ability of the dynamic multipathway bioaccumulation model (DYMBAM) to characterize Cd accumulation in Daphnia magna, a species commonly used in toxicity tests and because of its sensitivity, particularly to metals, a species that is relied upon in ecological risk assessments. We conducted chronic exposure experiments in which D. magna were exposed to either dietborne Cd alone or to both dietborne and waterborne Cd. In the food-only treatments, the algae Chlamydomonas reinhardtii or Pseudokirchneriella subcapitata were pre-exposed to free Cd ion concentrations, [Cd(2+)], from 0.001 to 100nM (0.001-11microgL(-1)) then, on a daily feeding renewal basis, fed to D. magna over 21 days. In the water plus food treatment, D. magna were exposed for 21 days to the same range of [Cd(2+)] and fed with the same algal species that had been exposed to Cd at various concentrations. In the algal exposure media, Cd concentrations in algae were directly related to those in water and were characterized by a linear regression model using the log transformed concentration of the WHAM predicted Cd(2+) concentration. The DYMBAM was used with estimated values of the model constants for ingestion rate (0.08-0.34gg(-1)day(-1)) and growth rate (0.085-0.131day(-1)) based on our experimental data and with literature values for rate constants of Cd influx and efflux as well as Cd assimilation efficiency. Measured Cd concentrations in D. magna agreed with model predictions within a factor of 3. Using the model, we predict that food is an important contributor of Cd burden to D. magna, particularly at lower Cd exposure concentrations over an environmentally realistic gradient of free Cd in water. However, this cladoceran also takes up Cd from water and this exposure route becomes increasingly important at very high concentrations of free Cd (>10nM or 1.1microgL(-1)). Nevertheless, Cd produced lethal effects in D. magna that were exposed to this metal in water and diet, but

  12. Toxicity of new generation flame retardants to Daphnia magna.

    PubMed

    Waaijers, Susanne L; Hartmann, Julia; Soeter, A Marieke; Helmus, Rick; Kools, Stefan A E; de Voogt, Pim; Admiraal, Wim; Parsons, John R; Kraak, Michiel H S

    2013-10-01

    There is a tendency to substitute frequently used, but relatively hazardous brominated flame retardants (BFRs) with halogen-free flame retardants (HFFRs). Consequently, information on the persistence, bioaccumulation and toxicity (PBT) of these HFFRs is urgently needed, but large data gaps and inconsistencies exist. Therefore, in the present study the toxicity of a wide range of HFFRs to the water flea Daphnia magna was investigated. Our results revealed that four HFFRs were showing no effect at their Sw (saturated water concentration) and three had a low toxicity (EC50>10 mg L(-1)), suggesting that these compounds are not hazardous. Antimony trioxide had a moderate toxicity (EC50=3.01 mg L(-1), 95% CL: 2.76-3.25) and triphenyl phosphate and the brominated reference compound tetra bromobisphenol A were highly toxic to D. magna (EC50=0.55 mg L(-1), 95% CL: 0.53-0.55 and EC50=0.60 mg L(-1), 95% CL: 0.24-0.97 respectively). Aluminum trihydroxide and bisphenol A bis(diphenyl phosphate) caused limited mortality at Sw (26 and 25% respectively) and have a low solubility (<10 mg L(-1)). Hence, increased toxicity of these compounds may be observed when for instance decreasing pH could increase solubility. By testing all compounds under identical conditions we provided missing insights in the environmental hazards of new generation flame retardants and propose as best candidates for BFR replacements: APP, ALPI, DOPO, MHO, MPP, ZHS and ZS. PMID:23886749

  13. Acute toxicity of 50 metals to Daphnia magna.

    PubMed

    Okamoto, Akira; Yamamuro, Masumi; Tatarazako, Norihisa

    2015-07-01

    Metals are essential for human life and physiological functions but may sometimes cause disorders. Therefore, we conducted acute toxicity testing of 50 metals in Daphnia magna: EC50s of seven elements (Be, Cu, Ag, Cd, Os, Au and Hg) were < 100 µg l(-1) ; EC50s of 13 elements (Al, Sc, Cr, Co, Ni, Zn, Se, Rb, Y, Rh, Pt, Tl and Pb) were between 100 and 1000 µg l(-1) ; EC50s of 14 elements (Li, V, Mn, Fe, Ge, As, In, Sn, Sb, Te, Cs, Ba, W and Ir) were between 1,001 and 100,000 µg l(-1) ; EC50s of six elements (Na, Mg, K, Ca, Sr and Mo) were > 100,000 µg l(-1) ; and. 7 elements (Ti, Zr, Bi, Nb, Hf, Re and Ta) did not show EC50 at the upper limit of respective aqueous solubility, and EC50s were not obtained. Ga, Ru and Pd adhered to the body of D. magna and physically retarded the movement of D. magna. These metals formed hydroxides after adjusting the pH. Therefore, here, we distinguished this physical effect from the physiological toxic effect. The acute toxicity results of 40 elements obtained in this study were not correlated with electronegativity. Similarly, the acute toxicity results of metals including the rare metals were also not correlated with first ionization energy, atomic weight, atomic number, covalent radius, atomic radius or ionic radius. PMID:25382633

  14. Chronic toxicity of aniline and 2,4-dichlorophenol to Daphnia magna Straus

    SciTech Connect

    Gersich, F.M.; Milazzo, D.P.

    1988-01-01

    Data generated from daphnid chronic toxicity tests are used by various regulatory agencies for the development of water quality criteria. Two chemicals which are lacking reported chronic data are aniline and 2,4-dichlorophenol. The acute toxicity of 2,4-dichlorophenol to Daphnia magna has been reported; the toxicity of aniline to D. magna also has been reported. Chronic data for these chemicals are lacking for invertebrates. The objective of this study was to estimate the chronic toxicity of aniline and 2,4-dichlorophenol to Daphnia magna Straus, using a standard 21-day static renewal procedure.

  15. Population dynamics in Daphnia magna as modified by chronic tetradifon stress.

    PubMed

    Villarroel, M J; Ferrando, M D; Sancho, E; Andreu, E

    2000-03-01

    Two Daphnia magna offsprings (animals from the first and third brood) whose parentals (F0-generation) were exposed during 21 days to different tetradifon (4-chlorophenyl 2,4,5-trichlophenyl sulfone) concentrations, were transferred to a pesticide free medium during 21 days (recovery period). The algae Nannochloris oculata (5 x 10(5) cells/mL) was used as food. In this recovery study, survival, growth and reproduction (mean total young per female, mean brood size, onset of reproduction and mean number broods per female) were assessed as individual parameters and the intrinsic rate of natural increase (r) as population parameter, for F1 generation (1st and 3rd broods). Reproduction was still reduced in F1 (1st and 3rd broods) generation daphnids from parentals (F0) exposed to 0.18 mg/L tetradifon and higher concentrations even after 21 days in clean water. However, survival was not significantly different (p > 0.05) in those F1 offsprings from parentals pre-exposed to the acaricide. Growth was still reduced in F1 daphnids from parentals pre-exposed to 0.10-0.44 mg/L tetradifon. The intrinsic rate of natural increase (r) was still affected in F1 generation daphnids, specially in those from the third brood. Therefore, F1 generation D. magna offsprings from a parental generation (F0) previously exposed to the acaricide tetradifon were not able to recuperate completely when a recovery period of 21 days was allowed. PMID:10736770

  16. Rapid changes in water hardness and alkalinity: Calcite formation is lethal to Daphnia magna.

    PubMed

    Bogart, Sarah J; Woodman, Samuel; Steinkey, Dylan; Meays, Cindy; Pyle, Greg G

    2016-07-15

    There is growing concern that freshwater ecosystems may be negatively affected by ever-increasing anthropogenic inputs of extremely hard, highly alkaline effluent containing large quantities of Ca(2+), Mg(2+), CO3(2-), and HCO3(-) ions. In this study, the toxicity of rapid and extreme shifts in water hardness (38-600mg/L as CaCO3) and alkalinity (30-420mg/L as CaCO3) to Daphnia magna was tested, both independently and in combination. Within these ranges, where no precipitation event occurred, shifts in water hardness and/or alkalinity were not toxic to D. magna. In contrast, 98-100% of D. magna died within 96h after exposure to 600mg/L as CaCO3 water hardness and 420mg/L as CaCO3 alkalinity (LT50 of 60h with a 95% CI of 54.2-66.0h). In this treatment, a CaCO3 (calcite) precipitate formed in the water column which was ingested by and thoroughly coated the D. magna. Calcite collected from a mining impacted stream contained embedded organisms, suggesting field streams may also experience similar conditions and possibly increased mortality as observed in the lab tests. Although further investigation is required to determine the exact fate of aquatic organisms exposed to rapid calcite precipitation in the field, we caution that negative effects may occur more quickly or at lower concentrations of water hardness and alkalinity in which we observed effects in D. magna, because some species, such as aquatic insects, are more sensitive than cladocerans to changes in ionic strength. Our results provide evidence that both calcite precipitation and the major ion balance of waters should be managed in industrially affected ecosystems and we support the development of a hardness+alkalinity guideline for the protection of aquatic life. PMID:27060657

  17. Toxic effect of selenium on the zooplankton, Daphnia magna and Daphnia pulicaria, in water and the food source (Chlamydomonas reinhardtii)

    SciTech Connect

    Boyum, K.W.

    1984-01-01

    Acute and chronic toxicity experiments were performed on the zooplankton, Daphnia magna and Daphnia pulicaria, to investigate the toxicity of selenium on these aquatic invertebrates. The acute 48 h LC/sub 50/ of sodium selenate for Daphnia magna and Daphnia pulicaria were 1.01 and 0.25 mg Se/1, respectively. The 48 h LC/sub 50/ of sodium selenite for D. magna and D. pulicaria were 0.45 and 0.006 mg Se/1, respectively. Chronic 28-day toxicity tests were performed on D. magna at 0.05, 0.10, 0.50, and 1.00 mg Se/1 as sodium selenate in the water and with two food types. One food type was algae raised in clean Lake Michigan water and the second treatment was algae raised in media with selenium concentrations corresponding to those in the water cited above. When compared to Daphnia fed selenium-free algae, D. magna fed selenium-laden algae had greater survival, a greater number of offspring produced, and a greater intrinsic growth rate, r, at the toxicant concentration in the water of 0.05, 0.10, and 0.50 mg Se/1. These parameters were, however, lower than those observed in the controls. Uptake of /sup 75/Se as sodium selenate in D. magna was reduced in the presence of selenium-laden algae and DL-selenomethionine, while L-methionine increased the uptake of /sup 75/Se. Selenium bound to an amino acid such as Dl-selenomethionine or organically bound within an algal food source appears to be preferentially incorporated thereby reducing the uptake of inorganic forms from the water.

  18. Assessment of the effects of the carbamazepine on the endogenous endocrine system of Daphnia magna.

    PubMed

    Oropesa, A L; Floro, A M; Palma, P

    2016-09-01

    In the present study, the endocrine activity of the antiepileptic pharmaceutical carbamazepine (CBZ) in the crustacean Daphnia magna was assessed. To assess the hormonal activity of the drug, we exposed maternal daphnids and embryos to environmental relevant concentrations of CBZ (ranging from 10 to 200 μg/L) and to mixtures of CBZ with fenoxycarb (FEN; 1 μg/L). Chronic exposure to CBZ significantly decreased the reproductive output and the number of molts of D. magna at 200 μg/L. This compound induced the production of male offspring (12 ± 1.7 %), in a non-concentration-dependent manner, acting as a weak juvenile hormone analog. Results showed that this substance, at tested concentrations, did not antagonize the juvenoid action of FEN. Further, CBZ has shown to be toxic to daphnid embryos through maternal exposure interfering with their normal gastrulation and organogenesis stages but not producing direct embryo toxicity. These findings suggest that CBZ could act as an endocrine disruptor in D. magna as it decreases the reproductive output, interferes with sex determination, and causes development abnormality in offspring. Therefore, CBZ could directly affect the population sustainability. PMID:27225007

  19. Effects of naphthalene on the hemoglobin concentration and oxygen uptake of daphnia magna

    SciTech Connect

    Crider, J.Y.; Wilhm, J.; Harman, H.J.

    1982-01-01

    In addition to acute testing for survival of Daphnia magna exposed to naphthalene, various physiological tests were made. Short term studies were conducted to calculate LC50 values and physiological responses. Daphnia of 24 h were fed initially 0.25 ml food/l and the pH, dissolved oxygen and temperature, conductivity, swimming movements, and the number of survivors were determined at 0, 24, and 48 h. These experiments were run at least three times and the dosage-mortality curves were determined by the use of probit and regression analyses. Physiological studies were made for concentrations of 1, 5, and 10 mg/l. Oxygen consumption of Daphnia was measured polarographically and a carboxyhemoglobin method was used to measure total hemoglobin. The hemoglobin concentrations of the treated organisms decreased from 102 nmoles/animal at 1 mg/l naphthalene to 67 nmoles/animal at 9 mg/l. Oxygen uptake decreased from 37 nmoles/animal/h at 1 mg/l to 28 nmoles/animal/h at8 mg/l. Results show that hemoglobin concentration and oxygen uptake may be useful tools in assessing water quality and its effects on the biota. (JMT)

  20. Genes mirror geography in Daphnia magna.

    PubMed

    Fields, Peter D; Reisser, Céline; Dukić, Marinela; Haag, Christoph R; Ebert, Dieter

    2015-09-01

    Identifying the presence and magnitude of population genetic structure remains a major consideration in evolutionary biology as doing so allows one to understand the demographic history of a species as well as make predictions of how the evolutionary process will proceed. Next-generation sequencing methods allow us to reconsider previous ideas and conclusions concerning the distribution of genetic variation, and what this distribution implies about a given species evolutionary history. A previous phylogeographic study of the crustacean Daphnia magna suggested that, despite strong genetic differentiation among populations at a local scale, the species shows only moderate genetic structure across its European range, with a spatially patchy occurrence of individual lineages. We apply RAD sequencing to a sample of D. magna collected across a wide swath of the species' Eurasian range and analyse the data using principle component analysis (PCA) of genetic variation and Procrustes analytical approaches, to quantify spatial genetic structure. We find remarkable consistency between the first two PCA axes and the geographic coordinates of individual sampling points, suggesting that, on a continent-wide scale, genetic differentiation is driven to a large extent by geographic distance. The observed pattern is consistent with unimpeded (i.e. no barriers, landscape or otherwise) migration at large spatial scales, despite the fragmented and patchy nature of favourable habitats at local scales. With high-resolution genetic data similar patterns may be uncovered for other species with wide geographic distributions, allowing an increased understanding of how genetic drift and selection have shaped their evolutionary history. PMID:26190313

  1. Uncovering Cryptic Asexuality in Daphnia magna by RAD Sequencing.

    PubMed

    Svendsen, Nils; Reisser, Celine M O; Dukić, Marinela; Thuillier, Virginie; Ségard, Adeline; Liautard-Haag, Cathy; Fasel, Dominique; Hürlimann, Evelin; Lenormand, Thomas; Galimov, Yan; Haag, Christoph R

    2015-11-01

    The breeding systems of many organisms are cryptic and difficult to investigate with observational data, yet they have profound effects on a species' ecology, evolution, and genome organization. Genomic approaches offer a novel, indirect way to investigate breeding systems, specifically by studying the transmission of genetic information from parents to offspring. Here we exemplify this method through an assessment of self-fertilization vs. automictic parthenogenesis in Daphnia magna. Self-fertilization reduces heterozygosity by 50% compared to the parents, but under automixis, whereby two haploid products from a single meiosis fuse, the expected heterozygosity reduction depends on whether the two meiotic products are separated during meiosis I or II (i.e., central vs. terminal fusion). Reviewing the existing literature and incorporating recombination interference, we derive an interchromosomal and an intrachromosomal prediction of how to distinguish various forms of automixis from self-fertilization using offspring heterozygosity data. We then test these predictions using RAD-sequencing data on presumed automictic diapause offspring of so-called nonmale producing strains and compare them with "self-fertilized" offspring produced by within-clone mating. The results unequivocally show that these offspring were produced by automixis, mostly, but not exclusively, through terminal fusion. However, the results also show that this conclusion was only possible owing to genome-wide heterozygosity data, with phenotypic data as well as data from microsatellite markers yielding inconclusive or even misleading results. Our study thus demonstrates how to use the power of genomic approaches for elucidating breeding systems, and it provides the first demonstration of automictic parthenogenesis in Daphnia. PMID:26341660

  2. Acute and chronic effects of pulse exposure of Daphnia magna to dimethoate and pirimicarb.

    PubMed

    Andersen, Tobias Henrik; Tjørnhøj, Rikke; Wollenberger, Leah; Slothuus, Tina; Baun, Anders

    2006-05-01

    Short-term (<48 h) and long-term (21 d) effects of dimethoate and pirimicarb were studied in Daphnia magna exposed to pulses of 0.5 to 8 h in duration. During a 21-d postexposure observation period, the following parameters were monitored: Mortality, mobility, day for first offspring, animal size, weight of offspring and adults, and number of offspring produced. In general, animals exposed to a single pulse of dimethoate or pirimicarb regained mobility after 24 to 48 h in clean media. Animals exposed to repeated pulses of dimethoate did not recover mobility during a 48-h postexposure observation period, and mortality was significantly increased. Animals exposed to two pulses of pirimicarb showed less recovery of mobility compared with those exposed to one pulse. Exposure of D. magna to 30 mg/L of dimethoate or 100 microg/L of pirimicarb for 2 to 6 h resulted in a significant reduction in the number of offspring and in the average weight of offspring. The average body length was reduced after pulse exposure to 30 mg/L of dimethoate for 3 h or 70 microg/L of pirimicarb for 4 h, and these exposure concentrations caused a delay in the day for first offspring at exposure durations of 2 to 6 h. The most important new findings in the present study are that short-term (<4 h) pulse exposure of neonates to acetylcholinesterase-inhibiting pesticides caused reproductive damage in D. magna and that repeated-pulse exposure significantly increased mortality in animals that apparently had recovered after a single-pulse exposure. PMID:16704047

  3. Daphnia magna negatively affected by chronic exposure to purified Cry-toxins.

    PubMed

    Bøhn, Thomas; Rover, Carina Macagnan; Semenchuk, Philipp Robert

    2016-05-01

    Cry-toxin genes originating from Bacillus thuringiensis are inserted into genetically modified (GM) plants, often called Bt-plants, to provide insect resistance to pests. Significant amounts of Bt-plant residues, and thus Cry-toxins, will be shed to soil and aquatic environments. We exposed Daphnia magna to purified Cry1Ab and Cry2Aa toxins for the full life-span of the animals. We used single toxins in different doses and combinations of toxins and Roundup(®), another potential stressor on the rise in agricultural ecosystems. Animals exposed to 4.5 mg/L (ppm) of Cry1Ab, Cry2Aa and the combination of both showed markedly higher mortality, smaller body size and very low juvenile production compared to controls. Animals exposed to 0.75 mg/L also showed a tendency towards increased mortality but with increased early fecundity compared to the controls. Roundup(®) stimulated animals to strong early reproductive output at the cost of later rapid mortality. We conclude that i) purified Cry-toxins in high concentrations are toxic to D. magna, indicating alternative modes-of-action for these Cry-toxins; ii) Cry-toxins act in combination, indicating that 'stacked events' may have stronger effects on non-target organisms; iii) further studies need to be done on combinatorial effects of multiple Cry-toxins and herbicides that co-occur in the environment. PMID:26993955

  4. Comparative Developmental Staging of Female and Male Water Fleas Daphnia pulex and Daphnia magna During Embryogenesis.

    PubMed

    Toyota, Kenji; Hiruta, Chizue; Ogino, Yukiko; Miyagawa, Shinichi; Okamura, Tetsuro; Onishi, Yuta; Tatarazako, Norihisa; Iguchi, Taisen

    2016-02-01

    The freshwater crustacean genus Daphnia has been used extensively in ecological, developmental and ecotoxicological studies. Daphnids produce only female offspring by parthenogenesis under favorable conditions, but in response to various unfavorable conditions and external stimuli, they produce male offspring. Although we reported that exogenous exposure to juvenile hormones and their analogs can induce male offspring even under female-producing conditions, we recently established a male induction system in the Daphnia pulex WTN6 strain simply by changing day-length. This male and female induction system is suitable for understanding the innate mechanisms of sexual dimorphic development in daphnids. Embryogenesis has been described as a normal plate (developmental staging) in various daphnid species; however, all studies have mainly focused on female development. Here, we describe the developmental staging of both sexes during embryogenesis in two representative daphnids, D. pulex and D. magna, based on microscopic time-course observations. Our findings provide the first detailed insights into male embryogenesis in both species, and contribute to the elucidation of the mechanisms underlying sexual differentiation in daphnids. PMID:26853866

  5. Daphnia magna shows reduced infection upon secondary exposure to a pathogen.

    PubMed

    McTaggart, Seanna J; Wilson, Philip J; Little, Tom J

    2012-12-23

    Previous pathogen exposure is an important predictor of the probability of becoming infected. This is deeply understood for vertebrate hosts, and increasingly so for invertebrate hosts. Here, we test if an initial pathogen exposure changes the infection outcome to a secondary pathogen exposure in the natural host-pathogen system Daphnia magna and Pasteuria ramosa. Hosts were initially exposed to an infective pathogen strain, a non-infective pathogen strain or a control. The same hosts underwent a second exposure, this time to an infective pathogen strain, either immediately after the initial encounter or 48 h later. We observed that an initial encounter with a pathogen always conferred protection against infection compared with controls. PMID:22875818

  6. Bioaccumulation and biomarker responses of cubic and octahedral Cu2O micro/nanocrystals in Daphnia magna.

    PubMed

    Fan, Wenhong; Shi, Zhiwei; Yang, Xiuping; Cui, Minming; Wang, Xiaolong; Zhang, Dongfeng; Liu, Hong; Guo, Lin

    2012-11-15

    Great progress has been made in the controlled fabrication of nanomaterials with given sizes, shapes, and geometries. However, how such changes in structure potentially affect the bioavailability and toxicity of metal nanoparticles to aquatic organisms remains mostly unknown. The present study reports the different behaviors of two types of Cu(2)O micro/nanocrystals (micro/nano-Cu(2)O) with different shapes (cubic and octahedral) and crystallographies (with exposed surfaces as {100} or {111}). The bioaccumulation, median lethal concentration, and biomarker responses of Daphnia magna exposed to the two micro/nanocrystals are also investigated. The Cu accumulation, production of metallothionein (MT), and inhibition ratio of D. magna increased gradually with increasing micro/nano-Cu(2)O concentration. The two crystals showed slight Cu accumulation differences toward D. magna, and their biomarker responses and toxicities to D. magna differed significantly as well. The octahedral Cu(2)O micro/nanocrystals were more toxic to D. magna compared with the cubic micro/nanocrystals probably because of the higher surface activities of the {111} facets compared with those of the {100} facets for cuprites. Food ingestion was the main entry pathway of the micro/nanocrystals into organisms, and toxicity was consequently determined based on the dissolution behavior of the micro/nanocrystals in vivo. PMID:22999974

  7. Chronic effects of cyanobacterial toxins on Daphnia magna and their offspring.

    PubMed

    Dao, Thanh Son; Do-Hong, Lan-Chi; Wiegand, Claudia

    2010-06-15

    The zooplankton grazer Daphnia magna endures living in water bodies up to moderate densities of cyanobacteria, such as Microcystis spp., known for producing toxic secondary metabolites. Although daphnids are affected via decreased food filtering, inhibition of digestive proteases and lethality, development of tolerance against cyanobacterial toxins has also been observed. Aim of our study was to investigate in detail chronic effects of cyanobacterial toxins, with emphasis on microcystin, on D. magna. The animals were exposed chronically for two generations to either microcystin-LR in 5 or 50 microg L(-1), or to cyanobacterial crude extract containing the same amount of total microcystin, starting at neonate stadium. Survival, growth, maturation and fecundity were observed for the first generation during two months. In the offspring survival, maturation, and growth were followed for the first week. Low concentration of microcystin-LR slightly affected the growth and reproduction of parent daphnids. Survivorship decreased during chronic exposure with increasing microcystin concentration. Age to maturity of the offspring increased and their survival decreased after parent generation was exposed to the toxin, even if the offspring were raised in control medium. Besides, cessation of the eggs/embryos was observed and malformation of neonates caused by cyanobacterial toxins was firstly recorded. PMID:20132836

  8. Two-generational effects of contaminants in Daphnia magna: Effects of offspring quality.

    PubMed

    Campos, Bruno; Jordão, Rita; Rivetti, Claudia; Lemos, M F L; Soares, A M V M; Tauler, Roma; Barata, Carlos

    2016-06-01

    The authors set up a protocol to perform a 2-generational ring test using the existing guidelines for the Daphnia magna reproduction test. It is well known in ecology that size and quality of offspring vary across the first clutches in D. magna and that certain chemicals affect offspring quality. Therefore, the origin of the second generation is an important factor to consider. Two-generational effects across first, second, and third clutches were evaluated using 4-nonylphenol; those across first and third clutches were evaluated using tributyltin, and those across the third clutch were evaluated using piperonyl butoxide. The compound showing the greatest aggravation of toxic effects between the parental and second generations was piperonyl butoxide, followed by 4-nonylphenol, whereas intergenerational effects of tributyltin varied across experiments. The studied chemicals affected the quantity and quality of the offspring produced by exposed females of the parental generation, those effects being greater in third-clutch neonates. Therefore, when third-clutch offspring were further exposed, they turned out to be more sensitive than the parental generation. The results are in line with those obtained in multigenerational studies using mammalian tests, which showed that, in many cases, effects on the second generation can be predicted by evaluating the quality of the offspring produced. Environ Toxicol Chem 2016;35:1470-1477. © 2015 SETAC. PMID:26505489

  9. Frequency and inheritance of non-male producing clones in Daphnia magna: evolution towards sex specialization in a cyclical parthenogen?

    PubMed

    Galimov, Y; Walser, B; Haag, C R

    2011-07-01

    In Daphnia (Cladocera, Crustacea), parthenogenetic reproduction alternates with sexual reproduction. Individuals of both sexes that belong to the same parthenogenetic line are genetically identical, and their sex is determined by the environment. Previously, non-male producing (NMP) genotypes have been described in species of the Daphnia pulex group. Such genotypes can only persist through phases of sexual reproduction if they co-occur with normal (MP) genotypes that produce both males and females, and thus the breeding system polymorphism is similar to gynodioecy (coexistence of females with hermaphrodites), which is well known in plants. Here we show that the same breeding system polymorphism also occurs in Daphnia magna, a species that has diverged from D. pulex more than 100 MY ago. Depending on the population, between 0% and 40% of D. magna females do not produce males when experimentally exposed to a concentration of the putative sex hormone methyl farnesoate that normally leads to male-only clutches. Natural broods of these NMP females never contained males, contrasting with high proportions of male offspring in MP females from the same populations. The results from a series of crossing experiments suggest that NMP is determined by a dominant allele at a single nuclear locus (or a several closely linked loci): NMP × MP crosses always yielded 50% NMP and 50% MP offspring, whereas MP × MP crosses always yielded 100% MP offspring. Based on cytochrome c oxidase subunit I-sequences, we found that NMP genotypes from different populations belong to three highly divergent mitochondrial lineages, potentially representing three independent evolutionary origins of NMP in D. magna. Thus, the evolution of NMP genotypes in cyclical parthenogens may be more common than previously thought. Moreover, MP genotypes that coexist with NMP genotypes may have responded to the presence of the latter by partially specializing on male production. Hence, these populations of D

  10. Resistance to a bacterial parasite in the crustacean Daphnia magna shows Mendelian segregation with dominance.

    PubMed

    Luijckx, P; Fienberg, H; Duneau, D; Ebert, D

    2012-05-01

    The influence of host and parasite genetic background on infection outcome is a topic of great interest because of its pertinence to theoretical issues in evolutionary biology. In the present study, we use a classical genetics approach to examine the mode of inheritance of infection outcome in the crustacean Daphnia magna when exposed to the bacterial parasite Pasteuria ramosa. In contrast to previous studies in this system, we use a clone of P. ramosa, not field isolates, which allows for a more definitive interpretation of results. We test parental, F1, F2, backcross and selfed parental clones (total 284 genotypes) for susceptibility against a clone of P. ramosa using two different methods, infection trials and the recently developed attachment test. We find that D. magna clones reliably exhibit either complete resistance or complete susceptibility to P. ramosa clone C1 and that resistance is dominant, and inherited in a pattern consistent with Mendelian segregation of a single-locus with two alleles. The finding of a single host locus controlling susceptibility to P. ramosa suggests that the previously observed genotype-genotype interactions in this system have a simple genetic basis. This has important implications for the outcome of host-parasite co-evolution. Our results add to the growing body of evidence that resistance to parasites in invertebrates is mostly coded by one or few loci with dominance. PMID:22167056

  11. Postexposure feeding depression: a new toxicity endpoint for use in laboratory studies with Daphnia magna.

    PubMed

    McWilliam, Ruth A; Baird, Donald J

    2002-06-01

    In situ bioassays with daphnids currently employ lethality as an endpoint, and although sublethal responses (reproduction and feeding rate) can be measured in the field, such endpoints pose major practical challenges. Previous studies have indicated that Daphnia magna exposed to toxic substances can exhibit delayed recovery in feeding behavior (postexposure feeding depression). This simple, robust response has the potential to be an ecologically relevant and potentially diagnostic endpoint. This study developed and tested the use of postexposure feeding depression as a toxicity endpoint in the laboratory environment. First, replicate numbers were manipulated to produce statistically reliable results. Second, postexposure feeding depression in D. magna was studied under laboratory conditions, by employing toxic substances with differing modes of action. Although most substances caused feeding inhibition during direct exposure, not all substances produced postexposure feeding depression. However, the use of lethality as a supplementary endpoint provided an alternative measure when no feeding depression was apparent after exposure. In combination, these endpoints offer a potentially more sensitive, ecologically relevant alternative to the use of lethality alone for in situ bioassay studies. PMID:12069303

  12. Changes of chemical chronic toxicity to Daphnia magna under different food regimes.

    PubMed

    Pavlaki, Maria D; Ferreira, Abel L G; Soares, Amadeu M V M; Loureiro, Susana

    2014-11-01

    In aquatic ecosystems several stressors may act together and affect the life traits of organisms. Pesticide runoffs are usually associated with high inputs of organic matter and depletion of oxygen in aquatic systems. This study aimed at combining anthropogenic stress (chemicals) and natural stress (food availability) and evaluates their joint effect to the life traits of Daphnia magna. The neonicotinoid insecticide imidacloprid and the heavy metal nickel chloride were used and a 21 d chronic test was carried out to obtain reproduction and growth data. The conceptual model Independent action, usually used for assessing response patterns in chemical mixtures, was used for data interpretation. Results showed an increase in the reproduction and growth pattern of D. magna as food levels increased. Both chemicals significantly impaired the reproduction as well as the somatic growth of the organism while the same happened with food concentrations lower than 3×10(5) cells/mL. It was also observed that food availability did not change the toxicity of imidacloprid and nickel chloride when food levels were higher than 3×10(5) cells/mL. When combined with low food levels, imidacloprid showed a slight increase in toxicity, showing that daphnids become more sensitive with reduced food availability, however in a non-significant way. However, toxicity of nickel appeared to be independent of the food level. Both chemicals induced mortality to the organisms exposed in the absence of food only at the end of the test. PMID:25164202

  13. Salinity tolerance of Daphnia magna and potential use for estuarine sediment toxicity tests.

    PubMed

    Schuytema, G S; Nebeker, A V; Stutzman, T W

    1997-08-01

    Daphnia magna Straus, a common organism used for freshwater sediment toxicity tests, was evaluated to determine its tolerance to salinity and suitability for tests with estuarine water and sediments. Daphnids were exposed for 2 to 21 days to salinity in a variety of water-only tests, in tests with freshwater sediment overlain by salt water, and in tests with estuarine sediments overlain by freshwater. Daphnid age, test length, and temperature seemed to have little effect upon the range of LC50, NOAEL, and LOAEL values. LC50s for all tests ranged from 5.10 to 7.81 g/L, with a mean of 6.6 g/L salinity (measured conductivity 10.0 mS/cm) [corrected]. The mean NOAEL and LOAEL values based on production of young were 4.6 and 6.9 g/L salinity (measured conductivity 7.1 and 10.5 mS/cm) [corrected], respectively. The results indicate that D. magna will survive and reproduce well in water with salinities below 4 g/L and demonstrate the potential usefulness of this organism in monitoring sediment toxicity from both freshwater and estuarine wetland sites. PMID:9294248

  14. Depressing Antidepressant: Fluoxetine Affects Serotonin Neurons Causing Adverse Reproductive Responses in Daphnia magna.

    PubMed

    Campos, Bruno; Rivetti, Claudia; Kress, Timm; Barata, Carlos; Dircksen, Heinrich

    2016-06-01

    Selective serotonin reuptake inhibitors (SSRIs) are widely used antidepressants. As endocrine disruptive contaminants in the environment, SSRIs affect reproduction in aquatic organisms. In the water flea Daphnia magna, SSRIs increase offspring production in a food ration-dependent manner. At limiting food conditions, females exposed to SSRIs produce more but smaller offspring, which is a maladaptive life-history strategy. We asked whether increased serotonin levels in newly identified serotonin-neurons in the Daphnia brain mediate these effects. We provide strong evidence that exogenous SSRI fluoxetine selectively increases serotonin-immunoreactivity in identified brain neurons under limiting food conditions thereby leading to maladaptive offspring production. Fluoxetine increases serotonin-immunoreactivity at low food conditions to similar maximal levels as observed under high food conditions and concomitantly enhances offspring production. Sublethal amounts of the neurotoxin 5,7-dihydroxytryptamine known to specifically ablate serotonin-neurons markedly decrease serotonin-immunoreactivity and offspring production, strongly supporting the effect to be serotonin-specific by reversing the reproductive phenotype attained under fluoxetine. Thus, SSRIs impair serotonin-regulation of reproductive investment in a planktonic key organism causing inappropriately increased reproduction with potentially severe ecological impact. PMID:27128505

  15. Global cytosine methylation in Daphnia magna depends on genotype, environment, and their interaction.

    PubMed

    Asselman, Jana; De Coninck, Dieter I M; Vandegehuchte, Michiel B; Jansen, Mieke; Decaestecker, Ellen; De Meester, Luc; Vanden Bussche, Julie; Vanhaecke, Lynn; Janssen, Colin R; De Schamphelaere, Karel A C

    2015-05-01

    The authors characterized global cytosine methylation levels in 2 different genotypes of the ecotoxicological model organism Daphnia magna after exposure to a wide array of biotic and abiotic environmental stressors. The present study aimed to improve the authors' understanding of the role of cytosine methylation in the organism's response to environmental conditions. The authors observed a significant genotype effect, an environment effect, and a genotype × environment effect. In particular, global cytosine methylation levels were significantly altered after exposure to Triops predation cues, Microcystis, and sodium chloride compared with control conditions. Significant differences between the 2 genotypes were observed when animals were exposed to Triops predation cues, Microcystis, Cryptomonas, and sodium chloride. Despite the low global methylation rate under control conditions (0.49-0.52%), global cytosine methylation levels upon exposure to Triops demonstrated a 5-fold difference between the genotypes (0.21% vs 1.02%). No effects were found in response to arsenic, cadmium, fish, lead, pH of 5.5, pH of 8, temperature, hypoxia, and white fat cell disease. The authors' results point to the potential role of epigenetic effects under changing environmental conditions such as predation (i.e., Triops), diet (i.e., Cryptomonas and Microcystis), and salinity. The results of the present study indicate that, despite global cytosine methylation levels being low, epigenetic effects may be important in environmental studies on Daphnia. PMID:25639773

  16. Developing antibodies from cholinesterase derived from prokaryotic expression and testing their feasibility for detecting immunogen content in Daphnia magna *

    PubMed Central

    Liu, Hong-cui; Yuan, Bing-qiang; Li, Shao-nan

    2016-01-01

    To yield cholinesterase (ChE) from prokaryotic expression, the ChE gene that belongs to Daphnia magna was amplified by reverse transcription-polymerase chain reaction (RT-PCR) using forward primer 5'-CCCYGGNGCSAT GATGTG-3' and reverse primer 5'-GYAAGTTRGCCCAATATCT-3'. To express the gene, one sequence of the amplified DNA, which was able to encode a putative protein containing two conserved carboxylesterase domains, was connected to the prokaryotic expression vector PET-29a(+). The recombinant vector was transformed into Escherichia coil BL21 (DE3). Protein expression was induced by isopropy-D-thiogalactoside. The expressed ChE was used as an immunogen to immunize BALB/c mice. The obtained antibodies were tested for their specificity towards crude enzymes from species such as Alona milleri, Macrobrachium nipponense, Bombyx mori, Chironomus kiiensis, Apis mellifera, Eisenia foetida, Brachydanio rerio, and Xenopus laevis. Results indicated that the antibodies had specificity suitable for detecting ChE in Daphnia magna. A type of indirect and non-competitive enzyme-linked immunosorbent assay (IN-ELISA) was used to test the immunoreactive content of ChE (ChE-IR) in Daphina magna. The detection limit of the IN-ELISA was found to be 14.5 ng/ml at an antiserum dilution of 1:22 000. Results from tests on Daphnia magna exposed to sublethal concentrations of triazophos indicated a maximal induction of 57.2% in terms of ChE-IR on the second day after the animals were exposed to a concentration of 2.10 μg/L triazophos. Testing on animals acclimatized to a temperature of 16 °C indicated that ChE-IR was induced by 16.9% compared with the ChE-IR content detected at 21 °C, and the rate of induction was 25.6% at 10 °C. The IN-ELISA was also used to test the stability of ChE-IR in collected samples. Repeated freezing and thawing had no influence on the outcome of the test. All these results suggest that the polyclonal antibodies developed against the recombinant ChE are as

  17. Developing antibodies from cholinesterase derived from prokaryotic expression and testing their feasibility for detecting immunogen content in Daphnia magna.

    PubMed

    Liu, Hong-cui; Yuan, Bing-qiang; Li, Shao-nan

    2016-02-01

    To yield cholinesterase (ChE) from prokaryotic expression, the ChE gene that belongs to Daphnia magna was amplified by reverse transcription-polymerase chain reaction (RT-PCR) using forward primer 5'-CCCYGGNGCSAT GATGTG-3' and reverse primer 5'-GYAAGTTRGCCCAATATCT-3'. To express the gene, one sequence of the amplified DNA, which was able to encode a putative protein containing two conserved carboxylesterase domains, was connected to the prokaryotic expression vector PET-29a(+). The recombinant vector was transformed into Escherichia coil BL21 (DE3). Protein expression was induced by isopropy-D-thiogalactoside. The expressed ChE was used as an immunogen to immunize BALB/c mice. The obtained antibodies were tested for their specificity towards crude enzymes from species such as Alona milleri, Macrobrachium nipponense, Bombyx mori, Chironomus kiiensis, Apis mellifera, Eisenia foetida, Brachydanio rerio, and Xenopus laevis. Results indicated that the antibodies had specificity suitable for detecting ChE in Daphnia magna. A type of indirect and non-competitive enzyme-linked immunosorbent assay (IN-ELISA) was used to test the immunoreactive content of ChE (ChE-IR) in Daphina magna. The detection limit of the IN-ELISA was found to be 14.5 ng/ml at an antiserum dilution of 1:22 000. Results from tests on Daphnia magna exposed to sublethal concentrations of triazophos indicated a maximal induction of 57.2% in terms of ChE-IR on the second day after the animals were exposed to a concentration of 2.10 μg/L triazophos. Testing on animals acclimatized to a temperature of 16 °C indicated that ChE-IR was induced by 16.9% compared with the ChE-IR content detected at 21 °C, and the rate of induction was 25.6% at 10 °C. The IN-ELISA was also used to test the stability of ChE-IR in collected samples. Repeated freezing and thawing had no influence on the outcome of the test. All these results suggest that the polyclonal antibodies developed against the recombinant ChE are as

  18. Behavioral response of Daphnia magna to silver salt and nanoparticle exposure

    EPA Science Inventory

    Endpoints in the investigation of the toxicity of metallic nanoparticles have varied from genetic and molecular through whole organism responses such as death and reproduction. The work presented here is an effort to quantify behavioral responses of Daphnia magna to exposure to s...

  19. Development and validation of a Daphnia magna four-day survival and growth test method

    EPA Science Inventory

    Zooplankton are an important part of the aquatic ecology of all lakes and streams. As a result, numerous methods have been developed to assess the quality of waterbodies using various zooplankton species. Included in these is the freshwater species Daphnia magna. Current test me...

  20. EFFECTS OF INORGANIC COMPLEXING ON THE TOXICITY OF COPPER TO 'DAPHNIA MAGNA'

    EPA Science Inventory

    The report includes the effects of carbonate-bicarbonate, orthophosphate, and pyrophosphate on the toxicity of copper (II) to Daphnia magna studied at constant pH and total hardness. Mortality rates and reciprocal survival times were directly correlated with cupric (Cu2+) and cop...

  1. EFFECTIVE CONCENTRATIONS OF 6 CONTAMINANTS TO LEMMA MINOR, PIMEPHALES PROMELA, DAPHNIA MAGNA, AND CERIODAPHNIA DUBIA

    EPA Science Inventory

    The research presented here resulted in EC50 and LOEC values for the contaminants copper, cadmium, diazinon, atrazine, and cyanide to the species Lemna Minor, Pimephales promelas, Daphnia magna, and Ceriodaphnia dubia. Observed values were used as benchmarks for assessing the se...

  2. Multigenerational acclimation of Daphnia magna to mercury: relationships between biokinetics and toxicity.

    PubMed

    Tsui, Martin T K; Wang, Wen-Xiong

    2005-11-01

    We examined the effects of multigenerational exposure of mercury (Hg) on Hg toxicity and biokinetics in a population of Daphnia magna. After chronic Hg exposure at 3.8 microg Hg/L, the first generation (F0) adults had an elevated 24-h median lethal concentration (LC50) of Hg (76 microg/L) when compared to the control adults (56 microg/L). The dissolved influx rate of Hg was depressed significantly in the Hg-treated adults, which was accompanied by a reduced ingestion rate and enhanced induction of metallothionein-like proteins (MTLP). The second-generation (F1) juveniles originating from the control and exposed lines had no major differences in these parameters (except the dietary assimilation efficiency). Recovery from Hg stress enhanced the vulnerability of F1 adults to Hg toxicity, with a reduced 48-h LC50 (44 microg/L) and a decreased concentration of MTLP (80% of control). Nevertheless, Hg-treated F1 adults had similar tolerance (in terms of LC50s) as the control line, indicating that D. magna acclimated to Hg stress after the first generation of exposure. No major difference occurred in the Hg biokinetics and toxicity among different groups of F2 daphnids. However, the F2 neonates produced by the Hg-treated F1 adults had much higher 48-h LC50 (149 microg/L) and MTLP concentration (148% of control) when there was continuous Hg exposure after birth. We concluded that acclimation to Hg stress occurred quickly in D. magna, though animals recovering from Hg stress were more vulnerable to Hg toxicity. Both ingestion rate and MTLP may not be good biomarkers of Hg stress in the field, because acclimation can be achieved through multigenerational exposure to elevated Hg concentrations. PMID:16398130

  3. Deciphering mechanisms of malathion toxicity under pulse exposure of the freshwater cladoceran Daphnia magna.

    PubMed

    Trac, Lam Ngoc; Andersen, Ole; Palmqvist, Annemette

    2016-02-01

    The organophosphate pesticide (OP) malathion is highly toxic to freshwater invertebrates, including the cladoceran Daphnia magna, a widely used test organism in ecotoxicology. To assess whether toxic effects of malathion are driven primarily by exposure concentration or exposure duration, D. magna was pulse exposed to equivalent integrated doses (duration × concentration): 3 h × 16 μg/L, 24 h × 2 μg/L, and 48 h × 1 μg/L. After recovery periods of 3 h, 24 h, and 48 h, the toxicity of malathion on different biological levels in D. magna was examined by analyzing the following endpoints: survival and immobilization; enzyme activities of acetylcholinesterase (AChE), carboxylesterase (CbE), and glutathione S-transferase (GST); and AChE gene expression. The results showed no difference in survival among equivalent integrated doses. Adverse sublethal effects were driven by exposure concentration rather than pulse duration. Specifically, short pulse exposure to a high concentration of malathion resulted in more immobilized daphnids, lower AChE and CbE activities, and a higher transcript level of AChE gene compared with long pulse exposure to low concentration. The expression of the AChE gene was up-regulated, indicating a compensatory mechanism to cope with enzyme inhibition. The study shows the need for obtaining a better understanding of the processes underlying toxicity under realistic exposure scenarios, so this can be taken into account in environmental risk assessment of pesticides. PMID:26419489

  4. Linear solvation energy relationships for toxicity of selected organic chemicals to Daphnia pulex and Daphnia magna

    USGS Publications Warehouse

    Passino, Dora R.M.; Hickey, James P.; Frank, Anthony M.

    1988-01-01

    In the Laurentian Great Lakes, more than 300 contaminants have been identified in fish, other biota, water, and sediment. Current hazard assessment of these chemicals by the National Fisheries Research Center-Great Lakes is based on their toxicity, occurrence in the environment, and source. Although scientists at the Center have tested over 70 chemicals with the crustacean Daphnia pulex, the number of experimental data needed to screen the huge array of chemicals in the Great Lakes exceeds the practical capabilities of conducting bioassays. This limitation can be partly circumvented, however, by using mathematical models based on quantitative structure-activity relationships (QSAR) to provide rapid, inexpensive estimates of toxicity. Many properties of chemicals, including toxicity, bioaccumulation and water solubility are well correlated and can be predicted by equations of the generalized linear solvation energy relationships (LSER). The equation we used to model solute toxicity is Toxicity = constant + mVI/100 + s (π* + dδ) + bβm + aαm where VI = intrinsic (Van der Waals) molar volume; π* = molecular dipolarity/polarizability; δ = polarizability 'correction term'; βm = solute hydrogen bond acceptor basicity; and αm = solute hydrogen bond donor acidity. The subscript m designates solute monomer values for α and β. We applied the LSER model to 48-h acute toxicity data (measured as immobilization) for six classes of chemicals detected in Great Lakes fish. The following regression was obtained for Daphnia pulex (concentration = μM): log EC50 = 4.86 - 4.35 VI/100; N = 38, r2 = 0.867, sd = 0.403 We also used the LSER modeling approach to analyze to a large published data set of 24-h acute toxicity for Daphnia magna; the following regression resulted, for eight classes of compounds (concentration = mM): log EC50 = 3.88 - 4.52 VI/100 - 1.62 π* + 1.66 βm - 0.916 αm; N = 62, r2 = 0.859, sd = 0.375 In addition we developed computer software that identifies

  5. Composition and stability of the microbial community inside the digestive tract of the aquatic crustacean Daphnia magna.

    PubMed

    Freese, Heike M; Schink, Bernhard

    2011-11-01

    Small filter-feeding zooplankton organisms like the cladoceran Daphnia spp. are key members of freshwater food webs. Although several interactions between Daphnia and bacteria have been investigated, the importance of the microbial communities inside Daphnia guts has been studied only poorly so far. In the present study, we characterised the bacterial community composition inside the digestive tract of a laboratory-reared clonal culture of Daphnia magna using 16S rRNA gene libraries and terminal-restriction length polymorphism fingerprint analyses. In addition, the diversity and stability of the intestinal microbial community were investigated over time, with different food sources as well as under starvation stress and death, and were compared to the community in the cultivation water. The diversity of the Daphnia gut microbiota was low. The bacterial community consisted mainly of Betaproteobacteria (e.g. Limnohabitans sp.), few Gammaproteobacteria (e.g. Pseudomonas sp.) and Bacteroidetes that were related to facultatively anaerobic bacteria, but did not contain typical fermentative or obligately anaerobic gut bacteria. Rather, the microbiota was constantly dominated by Limnohabitans sp. which belongs to the Lhab-A1 tribe (previously called R-BT065 cluster) that is abundant in various freshwaters. Other bacterial groups varied distinctly even under constant cultivation conditions. Overall, the intestinal microbial community did not reflect the community in the surrounding cultivation water and clustered separately when analysed via the Additive Main Effects and Multiplicative Interaction model. In addition, the microbiota proved to be stable also when Daphnia were exposed to bacteria associated with a different food alga. After starvation, the community in the digestive tract was reduced to stable members. After death of the host animals, the community composition in the gut changed distinctly, and formerly undetected bacteria were activated. Our results suggest

  6. Trans generational effects of the neurotoxin BMAA on the aquatic grazer Daphnia magna.

    PubMed

    Faassen, Elisabeth J; García-Altares, María; Mendes e Mello, Mariana; Lürling, Miquel

    2015-11-01

    β-N-Methylamino-l-alanine (BMAA) is a neurotoxin that is suspected to play a role in the neurological diseases amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson's disease. BMAA has been detected in phytoplankton and globally, the main exposure routes for humans to BMAA are through direct contact with phytoplankton-infested waters and consumption of BMAA-contaminated fish and invertebrates. As BMAA can be transferred from mothers to offspring in mammals, BMAA exposure is expected to have transgenerational effects. The aim of our study was to determine whether maternal exposure to BMAA affects offspring fitness in zooplankton. We performed a multigenerational life history experiment and a multigenerational uptake experiment with the water flea Daphnia magna as a model species. In both experiments, offspring from nonexposed and exposed mothers were raised in clean and BMAA-containing medium. Direct exposure to 110μg/l BMAA reduced survival, somatic growth, reproduction and population growth. Maternal exposure did not affect D. magna fitness: animals from exposed mothers that were raised in clean medium had a higher mortality and produced lighter neonates than the controls, but this did not result in lower population growth rates. No evidence of adaptation was found. Instead, multigeneration exposure to BMAA had a negative effect: animals that were exposed during two generations had a lower brood viability and neonate weight than animals born from unexposed mothers, but raised in BMAA-containing medium. Maternal transfer of BMAA was observed, but BMAA concentrations in neonates raised in BMAA containing medium were similar for animals born from exposed and unexposed mothers. Our results indicate that zooplankton might be an important vector for the transfer of BMAA along the pelagic food chain, but whether BMAA plays a role in preventing zooplankton from controlling cyanobacterial blooms needs further investigation. PMID:26465128

  7. Effects of multigenerational exposure to elevated temperature on reproduction, oxidative stress, and Cu toxicity in Daphnia magna.

    PubMed

    Bae, Eunhye; Samanta, Palas; Yoo, Jisu; Jung, Jinho

    2016-10-01

    This study evaluated the effect of temperature (20 and 25°C) on reproduction, oxidative stress, and copper (Cu) toxicity in Daphnia magna across three generations (F0, F1, and F2). Exposing D. magna to elevated temperature significantly decreased the number of offspring per female per day, the time to first brood, and body length compared to exposure to the optimal temperature (p<0.05). In addition, elevated temperature induced a significantly higher production of reactive oxygen species and lipid peroxidation (p<0.05). These findings suggest that D. magna likely responded to thermal stress by investing more energy into defense mechanisms, rather than growth and reproduction. In addition, oxidative stress at the elevated temperature gradually increased with each generation, possibly owing to the reduced fitness of the offspring. Exposing D. magna to 25°C (EC50=34±3µgL(-1)) substantially increased the median effective concentration of Cu in all generations compared to exposure to 20°C (EC50=25±3µgL(-1)), indicating a decrease in acute toxicity at elevated temperature. However, elevated temperature significantly increased the oxidative stress induced by a sublethal concentration of Cu (10µgL(-1)). The interaction between elevated temperature and Cu exposure appears to be synergistic; however, this needs to be confirmed using multiple generations in a long-term experiment. PMID:27376351

  8. The induction of metallothioneins during pulsed cadmium exposure to Daphnia magna: Recovery and trans-generational effect.

    PubMed

    Li, Shuang; Sheng, Lianxi; Xu, Jingbo; Tong, Haibin; Jiang, Haibo

    2016-04-01

    Although the importance of pulse exposure has gained ground in recent years, there were few studies on recovery and trans-generational effect of it. Two successive generations Daphnia magna were exposed to cadmium (Cd) pulses for 6h at the concentrations from 40 to 100 µg/l. The changes of tolerance and induction of MTs in exposed D. magna and their offspring were measured. The reduced tolerance of exposed D. magna was returned to levels similar to control after about 9 days in a generation. The level of MT still increased up to 3 days after exposure. In the experimental range, exposure duration played a decisive role in MT induction. The tolerance of F1 was lower than F0 and decreased with increasing pulsed concentrations of F0. Exposed to the same pulse, the MT levels of F1 were higher than the MT levels of F0, but the more obvious detoxification of MT in F1 had not been found. Our results suggest that pulsed cadmium exposure had impact on offspring of exposed organism and the risk assessment should take trans-generational effect into account. PMID:26720811

  9. Correlation between heavy metal acute toxicity values in Daphnia magna and fish

    SciTech Connect

    Khangarot, B.S.; Ray, P.K.

    1987-04-01

    In the toxicant bioassays, invertebrates with special reference to aquatic arthropod species have been of recent interest as test models due to the need for developing nonmammalian tests system. The cladoceran Daphnia magna bioassays have several practical advantages. D. magna has been used as a useful test species and its sensitivity to environmental pollutants have been recognized as a general representative of other freshwater zooplankton species. The objectives of this study were to determine the acute toxicity of various heavy metals to Daphnia magna for 48 h of exposure and to compare these values with the existing LC50 values for rainbow trout (Salmo gairdneri); which is commonly used as a test animal in aquatic bioassay studies.

  10. Effects of copper pre-exposure routes on the energy reserves and subsequent copper toxicity in Daphnia magna.

    PubMed

    Canli, M

    2006-10-01

    The hypothesis was tested that copper uptake routes affect the tolerance of Daphnia magna to copper and influence the energy reserves. These were determined in D. magna juveniles that had been exposed for 4 days to water borne and/or dietary copper (algae Pseudokichneriella subcapitata loaded with copper) at nominal concentrations of 0, 10, and 100 nM. Tolerance increased with dietary copper pre-exposure reflected in 24 and 48 h LC50 values of 466 and 398 nM at 100 nM pre-exposure versus 301 and 254 nM in controls, respectively. Control animals (no copper added to their exposure medium and diet) had the lowest lipid content and consequently the lowest energy content. The current study stresses the importance of addressing dietary exposure routes in metal toxicity assessments. PMID:16944514

  11. Ecotoxicity of contaminated suspended solids for filter feeders (Daphnia magna).

    PubMed

    Weltens, R; Goossens, R; Van Puymbroeck, S

    2000-10-01

    It is generally assumed that the dissolved fraction of a toxic substance in surface water is mainly responsible for toxicity to aquatic organisms. However, toxic compounds are often adsorbed or chemically bound to suspended particles in the water column, depending upon the physico-chemical conditions. In the present study potential adverse effects to filter feeding organisms by metal contaminated particles were investigated. In our hypotheses the adsorbed metals might desorb in the gastrointestinal tract-due to different physico-chemical conditions-and exert toxic effects. Clay and sand particles, algae and organic material (peat) were artificially contaminated with cadmium and zinc. The contaminated materials were resuspended in standard conditions and toxicity was measured for the water flea Daphnia magna (mortality at 48 hours). As a reference, supernatant solutions were used containing the same concentration of dissolved metal as the suspensions. It was also established that the test concentrations of solid material (250 and 500 mg/l uncontaminated particles) did not cause any mortality within 48 hours. Daphnids are filter feeders: they filtrate large amounts of surrounding water, redrawing particles as a food source. Results strongly indicate that contaminated particles threaten the health of these particle-feeding organisms. Compared to the reference severe acute toxic effects were seen and cadmium accumulation was increased when contaminated solid material was present. Results were essentially the same for the different materials used in the experiments, except for sand contaminated with cadmium. This shows that mineral as well as organic materials can contribute to the particle bound toxicity. Different results were obtained when a static set up was used instead of a flow through set up, illustrating that the route of administration is important to make particles available and thus to evaluate their toxicity. Contaminated particles clearly have toxic

  12. The long-term effects of acute exposure to ionising radiation on survival and fertility in Daphnia magna.

    PubMed

    Sarapultseva, Elena I; Dubrova, Yuri E

    2016-10-01

    The results of recent studies have provided strong evidence for the transgenerational effects of parental exposure to ionising radiation and chemical mutagens. However, the transgenerational effects of parental exposure on survival and fertility remain poorly understood. To establish whether parental irradiation can affect the survival and fertility of directly exposed organisms and their offspring, crustacean Daphnia magna were given 10, 100, 1000 and 10,000mGy of acute γ-rays. Exposure to 1000 and 10,000mGy significantly compromised the viability of irradiated Daphnia and their first-generation progeny, but did not affect the second-generation progeny. The fertility of F0 and F1Daphnia gradually declined with the dose of parental exposure and significantly decreased at dose of 100mGy and at higher doses. The effects of parental irradiation on the number of broods were only observed among the F0Daphnia exposed to 1000 and 10,000mGy, whereas the brood size was equally affected in the two consecutive generations. In contrast, the F2 total fertility was compromised only among progeny of parents that received the highest dose of 10,000mGy. We propose that the decreased fertility observed among the F2 progeny of parents exposed to 10,000mGy is attributed to transgenerational effects of parental irradiation. Our results also indicate a substantial recovery of the F2 progeny of irradiated F0Daphnia exposed to the lower doses of acute γ-rays. PMID:27288911

  13. Chronic toxicity of hydrogen peroxide to Daphnia magna in a continuous exposure, flow-through test system

    USGS Publications Warehouse

    Meinertz, J.R.; Greseth, Shari L.; Gaikowski, M.P.; Schmidt, L.J.

    2008-01-01

    A flow-through, continuous exposure test system was developed to expose Daphnia magna to an unstable compound. 35% Perox-Aid?? is a specially formulated hydrogen peroxide (a highly oxidative chemical) product approved for use in U.S. aquaculture and therefore has the potential to be released from aquaculture facilities and pose a risk to aquatic invertebrates. The study objective was to assess the effects of 35% Perox-Aid?? on an aquatic invertebrate by evaluating the survival, growth, production, and gender ratio of progeny from a representative aquatic invertebrate continuously exposed to 35% Perox-Aid??. The study design consisted of 6 treatment groups (10 test chambers each) with target hydrogen peroxide concentrations of 0.0, 0.32, 0.63, 1.25, 2.5, and 5.0??mg L- 1. The study was initiated with < 24-h-old Daphnia (1 daphnid per chamber) that were exposed to hydrogen peroxide for 21??days. Hydrogen peroxide concentrations ??? 1.25??mg L- 1 had no significant effect on Daphnia time to death compared to controls and no significant effect on the time to first brood production and the number of broods produced. Concentrations ??? 0.63??mg L- 1 had no significant effect on the total number of young produced. Concentrations ??? 0.32??mg L- 1 had a negative effect on Daphnia growth. Hydrogen peroxide had no significant effect on the gender ratio of young produced. All second generation Daphnia were female. A continuous discharge of hydrogen peroxide into aquatic ecosystems is not likely to affect cladocerans if the concentration is maintained at ??? 0.63??mg L- 1 for less than 21??days.

  14. Transgenerational effects of two antidepressants (sertraline and venlafaxine) on Daphnia magna life history traits.

    PubMed

    Minguez, Laëtitia; Ballandonne, Céline; Rakotomalala, Christiane; Dubreule, Christelle; Kientz-Bouchart, Valérie; Halm-Lemeille, Marie-Pierre

    2015-01-20

    The low levels of antidepressants detected in surface waters currently raise concern about their potential long-term risks to nontarget aquatic organisms. We investigated the transgenerational effects of sertraline, a selective serotonin reuptake inhibitor, and venlafaxine, a serotonin-norepinephrine reuptake inhibitor, on the life traits of Daphnia magna over two generations under environmentally realistic concentrations. We also studied the reversibility of the effect using recovery experiments. We assessed daphnid survival, growth, and reproduction over 21 days and evidenced detectable effects of the antidepressants. Sertraline increased the F0-daphnid fecundity whereas it decreased the offspring number of F1-daphnids. Transfer to clean medium caused negative effects on the offspring of daphnids exposed to 0.3 μg L(–1), but improved the fecundity of offspring of daphnids exposed to 100 μg L(–1). Venlafaxine exposure decreased the offspring number of F0-daphnids and resulted in drug tolerance in the F1 generation. Sertraline, unlike venlafaxine, may turn out to be a true environmental threat due to its accumulation in algae and the physiological weakness observed over generations. These effects across generations point out to the need to perform multigeneration tests to assess the environmental risk of pharmaceuticals in nontarget organisms. PMID:25506746

  15. Physiological and biochemical perturbations in Daphnia magna following exposure to the model environmental estrogen diethylstilbestrol

    SciTech Connect

    Baldwin, W.S.; Milam, D.L.; LeBlanc, G.A.

    1995-06-01

    The estrogenic properties of many environmental contaminants, such as DDE and PCBs, have been associated with reproductive failure in a variety of vertebrate species. While estrogens have been measured in many invertebrate species, the function of this hormone in invertebrates is controversial. The objective of the present study was to identify possible physiological and biochemical target sites for the estrogenic effects of some xenobiotics on the freshwater crustacean Daphnia magna using the model environmental estrogen diethylstilbestrol (DES). Chronic exposure of daphnids to 0.50 mg/L DES reduced molting frequency among first-generation juveniles and decreased fecundity of second-generation daphnids. Adult first-generation daphnids chronically exposed to DES, as well as adult daphnids acutely exposed to DES for only 48 h, were examined for steroid hormone metabolic capabilities using testosterone as the model steroid. The rate of elimination of two major hydroxylated metabolites of testosterone was significantly reduced, and elimination of glucose conjugates of testosterone was significantly elevated from exposure to 0.50 mg/L DES. These results demonstrate that multigeneration exposure of daphnids to DES results in reduced fecundity and altered steroid metabolic capabilities. Thus, some arthropods, like vertebrates, are sensitive to the effects of endocrine-disrupting chemicals.

  16. Small RNA Sequencing Based Identification of MiRNAs in Daphnia magna

    PubMed Central

    2015-01-01

    Small RNA molecules are short, non-coding RNAs identified for their crucial role in post-transcriptional regulation. A well-studied example includes miRNAs (microRNAs) which have been identified in several model organisms including the freshwater flea and planktonic crustacean Daphnia. A model for epigenetic-based studies with an available genome database, the identification of miRNAs and their potential role in regulating Daphnia gene expression has only recently garnered interest. Computational-based work using Daphnia pulex, has indicated the existence of 45 miRNAs, 14 of which have been experimentally verified. To extend this study, we took a sequencing approach towards identifying miRNAs present in a small RNA library isolated from Daphnia magna. Using Perl codes designed for comparative genomic analysis, 815,699 reads were obtained from 4 million raw reads and run against a database file of known miRNA sequences. Using this approach, we have identified 205 putative mature miRNA sequences belonging to 188 distinct miRNA families. Data from this study provides critical information necessary to begin an investigation into a role for these transcripts in the epigenetic regulation of Daphnia magna. PMID:26367422

  17. Free ionic nickel accumulation and localization in the freshwater zooplankter, Daphnia magna

    SciTech Connect

    Hall, T.M.

    1982-01-01

    The processes which lead to the accumulation of free ionic nickel (radioactive) from solution by Daphnia magna were studied and incorporated into a model which describes accummulation at different concentrations. Adsorption proved to be a relatively small component of nickel accummulation. The accummulation rate eventually approached zero, which represented an equilibrium between uptake and loss of nickel. However, elimination experiments did reveal a pool of relatively static nickel. The appearance and distribution of nickel within five body parts (body fluid, carapace, gut, filtering appendages, and eggs) of D. magna supported the accummulation data and added to the understanding of the pathways of nickel through the organism.

  18. Reproducibility of a life-cycle toxicity test with Daphnia magna

    SciTech Connect

    Parkhurst, B.R.; Forte, J.L.; Wright, G.P.

    1981-01-01

    Standardized chronic life-cycle toxicity testing procedures for aquatic species are described. The reproducibility of chronic toxicity and points using the static-renewal method with Daphnia magna are investigated. The objectives were to determine if the lowest rejected concentrations tested (LRCTs) obtained for six different toxicity criteria in static-renewal tests with acridine were reproducible over time and to determine the relative sensitivity and variability of the toxicity criteria. Two of the six toxicity criteria, numbers of young per brood and the young produced per female, were found to be reliable and sensitive for estimating the LRCT for acridine to D. magna. (RJC)

  19. Automated swimming activity monitor for examining temporal patterns of toxicant effects on individual Daphnia magna.

    PubMed

    Bahrndorff, Simon; Michaelsen, Thomas Yssing; Jensen, Anne; Marcussen, Laurits Faarup; Nielsen, Majken Elley; Roslev, Peter

    2016-07-01

    Aquatic pollutants are often biologically active at low concentrations and impact on biota in combination with other abiotic stressors. Traditional toxicity tests may not detect these effects, and there is a need for sensitive high-throughput methods for detecting sublethal effects. We have evaluated an automated infra-red (IR) light-based monitor for recording the swimming activity of Daphnia magna to establish temporal patterns of toxicant effects on an individual level. Activity was recorded for 48 h and the sensitivity of the monitor was evaluated by exposing D. magna to the reference chemicals K2 Cr2 O7 at 15, 20 and 25 °C and 2,4-dichlorophenol at 20 °C. Significant effects (P < 0.001) of toxicant concentrations, exposure time and incubation temperatures were observed. At 15 °C, the swimming activity remained unchanged for 48 h at sublethal concentrations of K2 Cr2 O7 whereas activity at 20 and 25 °C was more biphasic with decreases in activity occurring after 12-18 h. A similar biphasic pattern was observed after 2,4-dichlorophenol exposure at 20 °C. EC50 values for 2,4-dichlorophenol and K2 Cr2 O7 determined from automated recording of swimming activity showed increasing toxicity with time corresponding to decreases in EC50 of 0.03-0.07 mg l(-1) h(-1) . EC50 values determined after 48 h were comparable or lower than EC50 values based on visual inspection according to ISO 6341. The results demonstrated that the swimming activity monitor is capable of detecting sublethal behavioural effects that are toxicant and temperature dependent. The method allows EC values to be established at different time points and can serve as a high-throughput screening tool in toxicity testing. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26198804

  20. Age and exposure duration as a factor influencing Cu and Zn toxicity toward Daphnia magna.

    PubMed

    Muyssen, B T A; Janssen, C R

    2007-11-01

    Standardized toxicity tests are generally performed with juvenile test organisms, e.g., in Daphnia magna assays neonates<24 h old are used. The purpose of this research was to investigate the influence of a delayed exposure to Cu and Zn on population parameters and toxicity values derived from these endpoints. Juveniles (<24 h; T0) and 7-d old daphnids (T7) were exposed for 21 and 14 d, respectively. For Cu, juveniles were significantly more sensitive than 7d old organisms following acute (48 h) as well as chronic (14 d) exposure. After 14 d of exposure to 130 microg/L Cu, mortality was 80% and 10% in T0 and T7, respectively. Juveniles per surviving female at this concentration decreased by 78% and 14% compared to the control. 14 d-NOEC and LOEC values (based on juveniles per surviving female) were 75 and 90 microg/L Cu for T0 and both>130 microg/L for T7. For Zn, survival in T0 and T7 was similar. Although T7 organisms produced significantly more offspring, 14 d-NOEC and LOEC values were equal to those of T0, i.e., 80 and 115 microg/L, respectively. For Cu as well as for Zn effect concentrations based on 14 and 21 d exposure were similar (results from T0). It can be concluded that acute and chronic toxicity data obtained from juvenile D. magna are more sensitive or equally sensitive than obtained from 7d old organisms. As differences are observed between the two metals extrapolations of these conclusions to other toxicants and other aquatic species cannot be made without further investigation. PMID:17258805

  1. Defeminization in Daphnia magna: A screening test for endocrine-disruptors in the environment?

    SciTech Connect

    Gerritsen, A.A.M.; Hoeven, N. van der

    1995-12-31

    Long term consequences associated with exposure to endocrine disrupting chemicals in the environment have been found in mammals, birds, fish, turtles and gastropods. Despite their important role, however, hardly any attention has been paid to the long term effects of such chemicals on crustaceans. Experiments originally carried out to quantify the ability of Daphnia magna to recover from short term exposure to para-tert-pentylphenol, revealed the endocrine disrupting properties of the test compound. During one of the experiments animals were divided into six (8 hour) age groups between 0 and 48 hours and exposed to 6 mg of para-tert-pentylphenol 1{sup {minus}1} for a period of 8 hours. Within the age groups of 16 to 24 and of 24 to 32 hours old 51 and 70% of the females respectively lag-fed behind in growth and showed reduced fertility. In addition to this, about 37 and 16% of these females showed malformations suggesting defeminization. The males showed no delay in growth and had no malformations. Furthermore, in terms of survival the males were shown to be less sensitive towards the test compound than the females. The type of effects in females and the sharp distinction between the effects on males and females are indicative for the estrogenicity of para-tert-pentylphenol. The estrogenic effects of a number alkylphenols, including para-tert-pentylphenol, were demonstrated in rats and confirmed in tests with the human breast cell MCF7. To the best of knowledge estrogenicity has not been recorded before for any chemical for any crustacean. The observation of estrogenic effects in D. magna opens up the way to a standardized test for screening chemicals with potentially endocrine disrupting properties. Such a test may be a valuable tool in environmental risk assessment and conservation of environmental and human health.

  2. Liposomes as an alternative delivery system for investigating dietary metal toxicity to Daphnia magna.

    PubMed

    Evens, Roel; De Schamphelaere, Karel A C; Balcaen, Lieve; Wang, Yingying; De Roy, Karen; Resano, Martín; Flórez, María del Rosario; Van der Meeren, Paul; Boon, Nico; Vanhaecke, Frank; Janssen, Colin R

    2011-10-01

    Dietary metal toxicity studies with invertebrates such as Daphnia magna are often performed using metal-contaminated algae as a food source. A drawback of this approach is that it is difficult to distinguish between the direct toxicity of the metal and indirect effects caused by a reduced essential nutrient content in the metal-contaminated diet, due to prior exposure of the algae to the metal. This hampers the study of the mechanisms of dietary metal toxicity in filter-feeding freshwater invertebrates. The aim of the present study was to develop a technique for producing metal-contaminated liposomes as an alternative delivery system of dietary metals. These liposomes are not vulnerable to metal-induced shifts in nutrient quality. Liposomes were prepared by the hydration of phosphatidylcholine in media containing either 0 (control) or 50mg Ni/L. The liposomes had average diameters of 19.31 (control) and 10.48 μm (Ni-laden), i.e., a size appropriate for ingestion by D. magna. The liposome particles were then mixed with uncontaminated green algae in a 1/10 ratio (on a dry wt. basis) to make up two diets that differed in Ni content (i.e., 2.0 μg Ni/g dry wt. in the control and 144.2 μg Ni/g dry wt. in the Ni-contaminated diet, respectively). This diet was then fed to D. magna during a 21-day chronic bioassay. The experiment showed that the Ni content and the size distribution of the liposomes were stable for at least 7 days. Also the use of phosphatidylcholine as a liposome component did not affect the reproduction of the daphnids. Exposure to increased level of dietary Ni resulted in 100% mortality after 14 days of exposure and in an increased whole-body Ni concentration in D. magna of 14.9 and 20.4 μg Ni/g dry wt. after 7 and 14 days of exposure, respectively. The Ni-exposed daphnids also exhibited a reduced size (i.e., 30% smaller than the control) after 7 days and a completely halted growth between day 7 and day 14. In terms of reproduction, the size of the

  3. Environmental effects of dredging. Use of daphnia magna to predict consequences of bioaccumulation

    SciTech Connect

    1987-03-01

    Results reported herein represent a portion of the laboratory research evaluating the relationship between mercury and cadmium tissue residues and biological effects in the freshwater crustacean, Daphnia magna (commonly known as the water flea). Procedures presented here for a 28-day Daphnia magna toxicity test could be used in screening for water-column toxicity resulting from open-water disposal of a specific dredged material. As a part of its regulatory and dredging programs, the U. S. Army Corps of Engineers often conducts, or requires to be conducted, an assessment of the potential for bioaccumulation of environmental contaminants from sediment scheduled for dredging and open-water disposal. There is, at present, no generally accepted guidance available to aid in the interpretation of the biological consequences of bioaccumulation. To provide an initial basis for such guidance, the Environmental Laboratory is conducting both literature database analyses and experimental laboratory studies as part of the Long-Term Effects of Dredging Operations (LEDO) Program.

  4. Chronic toxicity of diphenhydramine hydrochloride and erythromycin thiocyanate to Daphnia, Daphnia magna, in a continuous exposure test system

    USGS Publications Warehouse

    Meinertz, J.R.; Schreier, T.M.; Bernardy, J.A.; Franz, J.L.

    2010-01-01

    Diphenhydramine hydrochloride (DH; Benadryl TM, an over-the-counter antihistamine) and erythromycin thiocyanate (ET; a commonly used macrolide antibiotic) are pharmaceutical compounds whose chronic toxicity to Daphnia magna had not been characterized. Continuous exposure to DH concentrations about 5 times greater than the maximum reported environmental concentration of 0.023 lg/L for 21 days or to ET concentrations about 40 times the maximum reported environmental concentration of 6 (mu or u)g/L for 21 days did not significantly impact D. magna survival and production. In this study the no observable effect concentration for DH was 0.12 (mu or u)g/L and for ET was 248 (mu or u)g/L.

  5. Arginine kinase in the cladoceran Daphnia magna: cDNA sequencing and expression is associated with resistance to toxic Microcystis.

    PubMed

    Lyu, Kai; Zhang, Lu; Zhu, Xuexia; Cui, Guilian; Wilson, Alan E; Yang, Zhou

    2015-03-01

    Nutrient loading derived from anthropogenic activities into lakes have increased the frequency, severity and duration of toxic cyanobacterial blooms around the world. Although herbivorous zooplankton are generally considered to be unable to control toxic cyanobacteria, populations of some zooplankton, including Daphnia, have been shown to locally adapt to toxic cyanobacteria and suppress cyanobacterial bloom formation. However, little is known about the physiology of zooplankton behind this phenomenon. One possible explanation is that some zooplankton may induce more tolerance by elevating energy production, thereby adding more energy allocation to detoxification expenditure. It is assumed that arginine kinase (AK) serves as a core in temporal and spatial adenosine triphosphate (ATP) buffering in cells with high fluctuating energy requirements. To test this hypothesis, we studied the energetic response of a single Daphnia magna clone exposed to a toxic strain of Microcystis aeruginosa, PCC7806. Arginine kinase of D. magna (Dm-AK) was successfully cloned. An ATP-gua PtransN domain which was described as a guanidine substrate specificity domain and an ATP-gua Ptrans domain which was responsible for binding ATP were both identified in the Dm-AK. Phylogenetic analysis of AKs in a range of arthropod taxa suggested that Dm-AK was as dissimilar to other crustaceans as it was to insects. Dm-AK transcript level and ATP content in the presence of M. aeruginosa were significantly lower than those in the control diet containing only the nutritious chlorophyte, Scenedesmus obliquus, whereas the two parameters in the neonates whose mothers had been previously exposed to M. aeruginosa were significantly higher than those of mothers fed with pure S. obliquus. These findings suggest that Dm-AK might play an essential role in the coupling of energy production and utilization and the tolerance of D. magna to toxic cyanobacteria. PMID:25575127

  6. Chronic effects of contaminated sediment on Daphnia magna and Chironomus tentans (journal version)

    SciTech Connect

    Nebeker, A.V.; Onjukka, S.T.; Cairns, M.A.

    1988-01-01

    Chronic tests were conducted with Daphnia magna (cladoceran) and Chironomus tentans (midge) to determine their usefulness as test organisms for chronic sediment assays, and to estimate the potential long-term impact of contaminated freshwater sediments and contaminated Superfund-site soils on freshwater invertebrates. These two species were used successfully in acute sediment tests and were shown to be useful in chronic tests in water.

  7. Chronic effects of contaminated sediment on Daphnia magna and Chironomus tentans

    SciTech Connect

    Nebeker, A.V.; Onjukka, S.T.; Cairns, M.A.

    1988-10-01

    Chronic tests were conducted with Daphnia magna (cladoceran) and Chironomus tentans (midge) to determine their usefulness as test organisms for chronic sediment assays, and to estimate the potential long-term impact of contaminated freshwater sediments and contaminated Superfund site soils on freshwater invertebrates. These two species have been used successfully in acute sediment tests, and have been shown to be useful in chronic tests in water--only bioassays.

  8. The sensitivity of Daphnia magna and Daphnia curvirostris to 10 veterinary antibacterials and to some of their binary mixtures.

    PubMed

    Dalla Bona, Mirco; Di Leva, Vincenzo; De Liguoro, Marco

    2014-11-01

    Aim of this study was to evaluate the suitability of Daphnia curvirostris for the acute toxicity test usually performed on Daphnia magna, and to compare the sensitivity of the two species toward 10 antibacterials [enrofloxacin (EFX), ciprofloxacin(CPX), sulfaguanidine (SGD), sulfadiazine (SDZ), sulfamethazine (SMZ), sulfaquinoxaline (SQO), sulfaclozine (SCZ), sulfamerazine (SMA), sulfadimethoxine (SDM) and trimethoprim (TMP)] and some of their binary mixtures. Furthermore, a tentative prolonged-toxicity test (lasting 13d) was settled up in order to evidence toxic responses with drug concentrations that were uneffective in the classic 48h immobilization test. Results showed that D. curvirostris was more sensitive than D. magna to the majority of compounds (6 out of 10). Lowest 48h EC50s were obtained with EFX (4.3mgL(-1) in D. curvirostris) and SGD (6.2mgL(-1) in D. magna). The toxicity of paired compounds was always concentration-additive or less than concentration-additive. In the prolonged-toxicity test mortality and/or reproduction inhibition were constantly observed. It was concluded that: (1) D. curvirostris could be a suitable model for the evaluation of acute toxicity of antibacterials since its sensitivity was generally greater than that of D. magna; (2) the toxicity of EFX and SGD should be given special attention as the two compounds, in the prolonged test, showed to be active at concentrations of 0.9mgL(-1) and 2.5mgL(-1), respectively; (3) the concentration addition is usually a reasonable worst case estimation of the environmental impact of antibacterial mixtures. PMID:24630458

  9. Toxicity and accumulation of Cu and ZnO nanoparticles in Daphnia magna.

    PubMed

    Xiao, Yinlong; Vijver, Martina G; Chen, Guangchao; Peijnenburg, Willie J G M

    2015-04-01

    There is increasing recognition that the wide use of nanoparticles, such as Cu (CuNPs) and ZnO nanoparticles (ZnONPs), may pose risks to the environment. Currently there is insufficient insight in the contribution of metal-based nanoparticles and their dissolved ions to the overall toxicity and accumulation. To fill in this gap, we combined the fate assessment of CuNPs and ZnONPs in aquatic test media with the assessment of toxicity and accumulation of ions and particles present in the suspensions. It was found that at the LC50 level of Daphnia magna exposed to the nanoparticle suspensions, the relative contributions of ions released from CuNPs and ZnONPs to toxicity were around 26% and 31%, respectively, indicating that particles rather than the dissolved ions were the major source of toxicity. It was additionally found that at the low exposure concentrations of CuNPs and ZnONPs (below 0.05 and 0.5 mg/L, respectively) the dissolved ions were predominantly accumulated, whereas at the high exposure concentrations (above 0.1 mg/L and 1 mg/L, respectively), particles rather than the released ions played a dominant role in the accumulation process. Our results thus suggest that consideration on the contribution of dissolved ions to nanoparticle toxicity needs to be interpreted with care. PMID:25785366

  10. Identification of chemical-specific protein profiles in Daphnia magna using neural networks

    SciTech Connect

    Iamonte, T.; Broadt, T.; Bradley, B.

    1995-12-31

    One dimensional gel electrophoresis was performed on whole-animal homogenates of 10 Daphnia magna exposed for 48 hours to one toxic and one non-toxic concentration of 2,4-dinitrophenol and sodium pentachlorophenate, two uncouplers of oxidative phosphorylation; malathion, an organophosphate; and permethrine, a pyrethroid, along with culture water and solvent controls, as appropriate. Ten randomized complete block exposures were conducted to minimize among-cohort variability. The 10-animal samples were gel electrophoresed, visualized using neutral silver staining and digitized with a Molecular Dynamics personal laser densitometer equipped with ImageQuant software. Densitometric data were used in a commercial neural network software package to construct a learning set, or database, of the protein profiles induced by the known chemical treatments. Novel data sets were then presented to the neural network program for assignment to treatment categories. Although no differences in protein profile between controls and chemical treatments and among chemical treatments could be detected visually in one dimensional gels, the neural network was able to correctly assign each sample to the appropriate learned treatment category about 70 percent of the time. Key proteins used by the neural network software to learn the protein profile of each chemical were identified by molecular weight and assigned a relative importance for identification of that chemical.

  11. Pentachlorophenol disrupts steroid hormone metabolism at concentrations that reduce survival and fecundity of Daphnia magna

    SciTech Connect

    Parks, L.G.; LeBlanc, G.A.

    1995-12-31

    Alterations in steroid metabolism by environmental endocrine disrupters can significantly affect steroid hormone-dependent processes such as growth and reproduction. Exposure to pentachlorophenol (PCP) has been shown to elicit a variety of endocrine-related adverse effects. The present study was undertaken to establish whether concentrations of PCP that adversely affect survival, growth, or reproduction of Daphnia magna during chronic exposure also elicit changes in steroid hormone metabolism. Survival and/or reproduction of daphnids was significantly reduced from exposure to 1.0, 0.50 and 0.25 mg/L PCP. Following chronic exposure to PCP, daphnids were incubated with [{sup 14}C]testosterone and the testosterone metabolites eliminated were identified and quantified. The rate of testosterone hydroxyl-metabolite elimination was not significantly different from controls. However, elimination of two of the glucose-conjugated metabolites of testosterone decreased in a PCP concentration-dependent manner. Adult daphnids were next exposed to these concentrations of PCP for only 48 hours and effects on steroid metabolism assessed. As observed following chronic exposure, PCP had no effect on the elimination of hydroxyl-metabolites. However, elimination of glucose and sulfate conjugates of testosterone were inhibited in a concentration-dependent manner. These results demonstrate that, (1) PCP alters steroid biotransformation activities at concentrations that affect survival and reproduction, and (2) effects on steroid metabolism can be detected following short-term exposure to PCP. Thus, this biochemical parameter may serve as a biomarker of chronic toxicity associated with PCP.

  12. Relationship between solubility and toxicity of coal liquefaction materials to the freshwater crustacean, Daphnia magna

    SciTech Connect

    Dauble, D.D.; Gray, R.H.; Scott, A.J.; Thomas, B.L.

    1985-11-01

    The potential ecological risk from complex coal liquids that may be released to freshwater ecosystems is ultimately dependent on both the degree of solubility of parent material and the toxic properties of constitutent compounds that an organism is exposed to. Thus, highly water-soluble components that remain bioavailable and are present in the water column at acutely toxic concentrations pose a problem for many aquatic organisms. We screened coal liquids derived from several processes and under different process designs to evaluate the acute toxicity of their water-soluble fractions (WSFs) to Daphnia magna. The solubility of materials treated varied and WSFs ranged from 44 to 2260 mg/L total carbon (TC). The most soluble materials in water exhibited greater toxicity based on percent dilution of the WSF. However, toxicity was similar for all materials tested when based on soluble components (TC in solution). Chemical characterization of the WSFs indicated that phenols comprised the majority of the TC in solution. Because toxicity based on total phenols was generally greater than that for individual phenolics tested separately, other soluble chemical classes in the complex mixtures likely contribute to observed toxicity.

  13. Role of soluble zinc in ZnO nanoparticle cytotoxicity in Daphnia magna: A morphological approach.

    PubMed

    Bacchetta, Renato; Maran, Barbara; Marelli, Marcello; Santo, Nadia; Tremolada, Paolo

    2016-07-01

    The role of soluble zinc has been determined in Daphnia magna by a morphological approach, integrating a previous paper in which the ultrastructural damages to gut epithelial cells have been studied after ZnO nanoparticles exposure. In the present paper, the toxicity and morphological effects of soluble zinc from ZnSO4 have been determined in a 48-h acute exposure test. Daphnids have been exposed to six nominal zinc concentrations (0.075, 0.15, 0.3, 0.6, 1.2, and 2.4mg Zn/L) and then fixed for microscopic analyses. Data from the acute toxicity tests gave an EC50 value of 0.99mg/L and showed that no immobilization appeared up to 0.3mg Zn/L. Ultrastructural analyses of samples from the two highest concentrations showed large vacuolar structures, swelling of mitochondria, multilamellar bodies, and a great number of autophagy vacuoles. These findings have been compared to those from our previous study, and similarities and/or differences discussed. Based on the overall results it can be concluded that dissolved zinc ions played a key role in ZnO nanoparticle toxicity and that the morphological approach is an extremely useful tool for comparing toxicological effects as well. A possible common toxic mechanism of soluble zinc and ZnO nanoparticles was also proposed. PMID:27131075

  14. Growth Retardation and Altered Isotope Composition As Delayed Effects of PCB Exposure in Daphnia magna.

    PubMed

    Ek, Caroline; Gerdes, Zandra; Garbaras, Andrius; Adolfsson-Erici, Margaretha; Gorokhova, Elena

    2016-08-01

    Trophic magnification factor (TMF) analysis employs stable isotope signatures to derive biomagnification potential for environmental contaminants. This approach relies on species δ(15)N values aligning with their trophic position (TP). This, however, may not always be true, because toxic exposure can alter growth and isotope allocation patterns. Here, effects of PCB exposure (mixture of PCB18, PCB40, PCB128, and PCB209) on δ(15)N and δ(13)C as well as processes driving these effects were explored using the cladoceran Daphnia magna. A two-part experiment assessed effects of toxic exposure during and after exposure; juvenile daphnids were exposed during 3 days (accumulation phase) and then allowed to depurate for 4 days (depuration phase). No effects on survival, growth, carbon and nitrogen content, and stable isotope composition were observed after the accumulation phase, whereas significant changes were detected in adults after the depuration phase. In particular, a significantly lower nitrogen content and a growth inhibition were observed, with a concomitant increase in δ(15)N (+0.1 ‰) and decrease in δ(13)C (-0.1 ‰). Although of low magnitude, these changes followed the predicted direction indicating that sublethal effects of contaminant exposure can lead to overestimation of TP and hence underestimated TMF. PMID:27367056

  15. Identification of multiple steroid hydroxylases in Daphnia magna and their modulation by xenobiotics

    SciTech Connect

    Baldwin, W.S.; LeBlanc, G.A. . Dept. of Toxicology)

    1994-07-01

    Steroid hydroxylase activities were characterized in Daphnia magna and evaluated for potential use as biomarkers of xenobiotic exposure. Microsomes prepared from Daphnia magna generated as single NADPH-dependent metabolite of [[sup 14]C] testosterone. However, intact daphnids excreted at least 10 polar metabolites of [[sup 14]C] testosterone into the test medium. Six of these metabolites were identified as 2[alpha]-, 16[beta]-, 6[beta]-, 6[alpha]-, 7[alpha]-, and 15[alpha]-[[sup 14]C]hydroxytestosterone. The unidentified metabolites are also presumed to be hydroxylated products of testosterone, based on their relative migrations during TLC. The inefficient metabolism of [[sup 14]C] testosterone during the in vitro microsomal incubations may have been due to the release of P450 inhibitors during microsome preparation. Exposure of daphnids to the P450 modulators phenobarbital, [beta]-naphthoflavone, piperonyl butoxide, and malathion differentially inhibited the steroid hydroxylase activities. Results from this study indicate that Daphnia magna expresses several P450 enzymes and that these enzymes are differentially modulated by xenobiotic exposure. Steroid hydroxylase activities may serve not only as a biomarker of toxicant exposure, but also as a predictor of toxicant effects involving perturbations of steroid hormone homeostasis.

  16. Role of B-esterases in assessing toxicity of organophosphorus (chlorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphnia magna.

    PubMed

    Barata, Carlos; Solayan, Arun; Porte, Cinta

    2004-02-10

    In this study, the cladoceran Daphnia magna was exposed to two model organophosphorous and one carbamate pesticides including malathion, chlorpyrifos and carbofuran to assess acetylcholinesterase (AChE) and carboxylesterase (CbE) inhibition and recovery patterns and relate those responses with individual level effects. Our results revealed differences in enzyme inhibition and recovery patterns among the studied esterase enzymes and pesticides. CbE was more sensitive to organophosphorous than AChE, whereas both CbE and AChE showed equivalent sensitivities to the carbamate carbofuran. Recovery patterns of AChE and CbE activities following exposure to the studied pesticides were similar with 80-100% recoveries taking place 12 and 96 h after exposure to organophosphorous and carbamates pesticides, respectively. The physiological role of AChE and CbE inhibition patterns in Daphnia was examined by using organophosphorous and carbamate compounds alone and with specific inhibitors of CbE. Under exposure to organophosphorous pesticides, survival of Daphnia juveniles was impaired at AChE inhibition levels higher than 50% whereas under exposure to the carbamate carbofuran low levels of AChE inhibition affected mortality. Inhibition of CbE by 80-90% increased toxicity to organophosphorous and carbamate pesticides by up to two- and four-fold, respectively. Our results suggest that both AChE and CbE enzymes are involved in determining toxicity of Daphnia to the studied chemicals and that AChE inhibition levels higher than 50% can be considered of environmental concern to Daphnia species. PMID:15036868

  17. Effects of He-Ne laser on Daphnia magna Straus manifested in subsequent generations

    NASA Astrophysics Data System (ADS)

    Vorob'yeva, O. V.; Filenko, O. F.; Isakova, E. F.; Vorobieva, N. N.; Rybaltovskii, A. O.; Yusupov, V. I.; Bagratashvili, V. N.

    2015-11-01

    The effects of He-Ne laser irradiation (including visible laser light 632.8 nm in wavelength and an attendant electromagnetic field from the laser apparatus) on the fertility, newborn quality and linear dimensions of the body of Cladocera Daphnia magna Straus were determined. It is shown that the attendant electromagnetic field generated by the laser apparatus can have significant impact on the results of low-intensity laser therapy. The laser light exposure of daphnia to a dose range of 1.7-1300 mJ cm-2 stimulates the integral functions of the daphnia’s body. At the same time, the attendant electromagnetic field (72 mA m-1 in the frequency range of 0.02-20 kHz and 400 mA m-1 in the frequency range of 3-4 MHz) causes the appearance of quickly dying and/or abnormal newborn (up to a small percent) that has never been observed in the control. Anomalies of daphnia mainly consisted of swimming antenna pathologies. Moreover, under the influence of the attendant electromagnetic field on parental daphnia only, these anomalies appear even in several subsequent generations of newborn. The negative impact on daphnia disappears completely after the suppression of the attendant electromagnetic field to laboratory background level. It is shown that laser light can partially compensate the negative impact of the attendant electromagnetic field on Daphnia.

  18. Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna

    PubMed Central

    2012-01-01

    Background To better understand the potential ecotoxicological impacts of silver nanoparticles released into freshwater environments, the Daphnia magna 48-hour immobilization test was used. Methods The toxicities of silver nitrate, two types of colloidal silver nanoparticles, and a suspension of silver nanoparticles were assessed and compared using standard OECD guidelines. Also, the swimming behavior and visible uptake of the nanoparticles by Daphnia were investigated and compared. The particle suspension and colloids used in the toxicity tests were well-characterized. Results The results obtained from the exposure studies showed that the toxicity of all the silver species tested was dose and composition dependent. Plus, the silver nanoparticle powders subsequently suspended in the exposure water were much less toxic than the previously prepared silver nanoparticle colloids, whereas the colloidal silver nanoparticles and AgNO3 were almost similar in terms of mortality. The silver nanoparticles were ingested by the Daphnia and accumulated under the carapace, on the external body surface, and connected to the appendages. All the silver species in this study caused abnormal swimming by the D. magna. Conclusion According to the present results, silver nanoparticles should be classified according to GHS (Globally Harmonized System of classification and labeling of chemicals) as "category acute 1" to Daphnia neonates, suggesting that the release of nanosilver into the environment should be carefully considered. PMID:22472056

  19. Competition impedes the recovery of Daphnia magna from repeated insecticide pulses.

    PubMed

    Dolciotti, Ida; Foit, Kaarina; Herkelrath, Anna; Liess, Matthias

    2014-02-01

    The effects of multiple insecticide pulses on non-target organisms have rarely been investigated in combination with relevant biotic interactions, such as competition. In this study, we examined the effects of two repeated pulses of the insecticide pirimicarb (3, 10, 24 μg/L) on populations of Daphnia magna with or without competition. To investigate the influence of competition, half of the test systems were supplemented with the pirimicarb-insensitive species Culex pipiens. The pesticide pulses were followed by a recovery period of 28 days, which corresponded to approximately three generation times for D. magna. The one-species setup with the Daphnia populations and the two-species setup with both the Daphnia and Culex populations had a precontamination period of 30 days so that intra- and interspecific competitions were present prior to the insecticide pulse. Short-term effects on the survival of the Daphnia population were observed in both setups immediately after each insecticide pulse at the highest concentration level. In the one-species setup, the short-term effects on population survival were increased by intraspecific competition. However, the Daphnia populations in the one-species setup recovered and reached the control level within approximately two weeks after each insecticide pulse. In contrast, in the two-species setup at the highest concentration, we observed culmination of insecticide effects: the Daphnia populations did not recover and their abundance was below the control level until the end of the observation time. Their recovery was impeded by the presence of the competing species C. pipiens for at least four weeks. At low concentrations, no culmination of effects was observed. We conclude that repeated toxicant pulses on populations that are challenged with interspecific competition may result in a multigenerational culmination of toxicant effects. PMID:24373889

  20. Chronic toxicity of erythromycin thiocyanate to Daphnia magna in a flow-through, continuous exposure test system

    USGS Publications Warehouse

    Meinertz, J.R.; Schreier, T.M.; Bernardy, J.A.

    2011-01-01

    Approval of a new animal drug application for AQUAMYCIN 100?? (erythromycin thiocyanate; ET) to treat freshwater salmonid species with bacterial kidney disease is being pursued in the US. As part of the approval process, ETs impact on an aquatic environment had to be described in an environmental assessment. The environmental assessment was lacking data to characterize the effect ET would have on a chronically exposed aquatic invertebrate organism. A major step to fulfilling the environmental assessment was completed after conducting a comprehensive study continuously exposing Daphnia magna to ET for 21 days. Results indicated that the no observable effect concentration for ET was 179 ??g/L. ?? 2011 Springer Science+Business Media, LLC (outside the USA).

  1. Combined experimental and theoretical study on photoinduced toxicity of an anthraquinone dye intermediate to Daphnia magna.

    PubMed

    Wang, Ying; Chen, Jingwen; Lin, Jing; Wang, Zhen; Bian, Haitao; Cai, Xiyun; Hao, Ce

    2009-04-01

    The toxicity of chemicals can be enhanced by light through two photochemical pathways: Photomodification to more toxic substances and photosensitization. In the present study, the reactive oxygen species (ROS) mechanism for photoinduced acute toxicity of 1-amino-2,4-dibromoanthraquinone (ADBAQ) to Daphnia magna was clarified by experiment and theoretical calculation. The results of the present study show that ADBAQ exhibited high toxicity to D. magna under simulated solar radiation (SSR), with a median effective concentration of 1.23 +/- 0.19 nM (mean +/- standard deviation). The photomodified ADBAQ (mixtures of ADBAQ and its photoproducts) was less phototoxic than the intact ADBAQ. The SSR-only or ADBAQ-only treatments did not affect the ROS level in D. magna, whereas increased ROS levels were observed in the presence of SSR and ADBAQ. The ROS in vivo were determined by measuring the fluorescence of 2',7'-dichlorofluorescein, which is a useful technique to assess toxicity of chemicals to aquatic organisms. The antioxidants, including vitamin C, vitamin E, and beta-carotene, decreased the photoinduced oxidative damage to D. magna, probably by scavenging ROS. These experimental results demonstrate that photosensitization is the potential mechanism of photoinduced toxicity of ADBAQ to D. magna. Proposed phototoxic pathways of ADBAQ were elucidated by means of time-dependent density functional theory. The theoretical calculation indicates that superoxide anion and singlet oxygen are able to be generated through electron transfer or energy transfer in the photosensitization reactions. PMID:19391687

  2. Reduced fitness of Daphnia magna fed a Bt-transgenic maize variety.

    PubMed

    Bøhn, Thomas; Primicerio, Raul; Hessen, Dag O; Traavik, Terje

    2008-11-01

    Genetically modified (GM) maize expressing the Bt-toxin Cry1Ab (Bt-maize) was tested for effects on survival, growth, and reproduction of the water flea Daphnia magna, a crustacean arthropod commonly used as a model organism in ecotoxicological studies. In three repeated experiments, D. magna were fed 100% ground maize in suspension, using either GM or isogenic unmodified (UM) maize. D. magna fed GM-maize showed a significantly reduced fitness performance: The mortality was higher, a lower proportion of females reached sexual maturation, and the overall egg production was lower compared to D. magna fed UM isogenic maize. We conclude that the tested variety of Bt-maize and its UM counterpart do not have the same quality as food sources for this widely used model organism. The combination of a reduced fitness performance combined with earlier onset of reproduction of D. magna fed Bt-maize indicates a toxic effect rather than a lower nutritional value of the GM-maize. PMID:18347840

  3. Survival of daphnia magna and hyalella azteca in cadmium-spiked water and sediment

    SciTech Connect

    Nebeker, A.V.; Onjukka, S.T.; Cairns, M.A.; Krawczyk, D.F.

    1986-01-01

    Freshwater sediments and water were spiked with cadmium (Cd) in the laboratory, and toxicity tests were conducted with the cladoceran Daphnia magna and the amphipod Hyalella azteca to determine if Cd in the sediment would cause increased toxicity. The 48-h LC50 values for Daphnia in tests without sediment were 36, 33, 24, and 40 micrograms/L total Cd. Calculated free-ion (Cd/sup 2 +/)LC50 values for the same tests were 28, 25, 18 and 31 micrograms/L. LC50 values (48-h) determined for total Cd(uncentrifuged water sample) in the sediment-containing beakers were 252, 69, and 122 micrograms/L for Daphnia. LC50 values for dissolved Cd(centrifuged 10,000 rpm) in the sediment-containing beakers were 61, 27, and 100 micrograms/L for Daphnia. Higher total Cd LC50 values indicate that Cd adsorbed to soluble organic material was not biologically available. No significant mortality of Daphnia or Hyalella occurred in the flow-through tests in which sediment contained the same levels of Cd as in the static tests. Mortality was similar in beakers with and without Cd-spiked sediment, indicating that Cd in the sediment and adsorbed to organic materials was not available to cause increased mortality.

  4. Evidence for links between feeding inhibition, population characteristics, and sensitivity to acute toxicity for Daphnia magna.

    PubMed

    Agatz, Annika; Brown, Colin D

    2013-08-20

    A population experiment with Daphnia magna tested the hypothesis that short-term feeding inhibition provokes a shift in population structure that will vary with conspecific pressure (e.g., pressure occurring from individuals of the same species due to competition for food and space) and increases population sensitivity to a xenobiotic exposure due to size-dependent toxicity (e.g., decreasing sensitivity with increasing body length). Populations were exposed for one week to a feeding inhibitor (imidacloprid, 0.15 or 12.0 mg/L) followed by one week of recovery and one day of exposure to an acute toxin (carbaryl, 0.0098 mg/L). Identical exposure under low and high conspecific pressure was studied by delaying the start of exposure for half of the populations by two weeks; thus populations were in a different stage of population development when exposure occurred. Feeding inhibition of 97% (12.0 mg/L imidacloprid) caused a shift in population structure toward smaller individuals but also reduced population abundance by up to 56 ± 7% with a strong influence of conspecific pressure. Increased population sensitivity to carbaryl was observed after feeding inhibition of 97% as hypothesized. Carbaryl exposure for one day resulted in population decline of up to 23 ± 6% when populations were not previously exposed to imidacloprid. Identical carbaryl exposure provoked a four times stronger decline in population abundance when exposure occurred following feeding inhibition of 97%. In conflict with the hypothesis, this was at least in part due to changes in the reproductive strategy of daphnids following exposure to imidacloprid rather than driven by the shift in population structure. The differences in population sensitivity to additional stress (carbaryl) occurring one week after feeding inhibition caused by exposure to imidacloprid adds a further challenge to understanding potential impacts from multiple stressors as occurring in the field at the population level. PMID

  5. Acute toxicity of binary and ternary mixtures of Cd, Cu, and Zn to Daphnia magna.

    PubMed

    Meyer, Joseph S; Ranville, James F; Pontasch, Mandee; Gorsuch, Joseph W; Adams, William J

    2015-04-01

    Standard static-exposure acute lethality tests were conducted with Daphnia magna neonates exposed to binary or ternary mixtures of Cd, Cu, and Zn in moderately hard reconstituted water that contained 3 mg dissolved organic carbon/L added as Suwannee River fulvic acid. These experiments were conducted to test for additive toxicity (i.e., the response to the mixture can be predicted by combining the responses obtained in single-metal toxicity tests) or nonadditive toxicity (i.e., the response is less than or greater than additive). Based on total metal concentrations (>90% dissolved) the toxicity of the tested metal mixtures could be categorized into all 3 possible additivity categories: less-than-additive toxicity (e.g., Cd-Zn and Cd-Cu-Zn mixtures and Cd-Cu mixtures when Cu was titrated into Cd-containing waters), additive toxicity (e.g., some Cu-Zn mixtures), or more-than-additive toxicity (some Cu-Zn mixtures and Cd-Cu mixtures when Cd was titrated into Cu-containing waters). Exposing the organisms to a range of sublethal to supralethal concentrations of the titrated metal was especially helpful in identifying nonadditive interactions. Geochemical processes (e.g., metal-metal competition for binding to dissolved organic matter and/or the biotic ligand, and possibly supersaturation of exposure waters with the metals in some high-concentration exposures) can explain much of the observed metal-metal interactions. Therefore, bioavailability models that incorporate those geochemical (and possibly some physiological) processes might be able to predict metal mixture toxicity accurately. PMID:25336231

  6. Adsorption, uptake and distribution of gold nanoparticles in Daphnia magna following long term exposure.

    PubMed

    Botha, Tarryn Lee; Boodhia, Kailen; Wepener, Victor

    2016-01-01

    Gold nanoparticles (nAu) have recently been studied and developed within the biological and photothermal therapeutic contexts. The major clinical interest is within the application of novel drug delivery systems. Environmental exposure to nanoparticles can occur in different stages of the lifecycle of the product; from their synthesis, applications, product weathering and their disposal. Freshwater Daphnids, specifically Daphnia magna, have been used since the 1960s as a standard species in acute and chronic aquatic toxicity testing. Visualization of the interactions and uptake of nAu by D. magna was related to reproduction and molting patterns. Exposure to nAu was done using a chronic reproduction test performed for 14 days at six concentrations (0.5mg/L, 2mg/L, 5mg/L, 10mg/L, 15mg/L and 20mg/L). Microscopy was used to determine whether there was any uptake or interaction of nAu with daphnia. However the concentration of nAu in the media and the charge of particles played a role in the uptake and surface adsorption. As exposure concentrations of nAu increased it appeared that the nAu aggregated onto the surface and in the gut of the organisms in higher concentrations. There was no evidence of nAu internalization into the body cavity of the daphnia. Aquatic exposure to nAu resulted in increased adhesion of the particles to the carapace of daphnia, ingestion and uptake into the gut of daphnia and had no significant effect on reproduction and molting patterns. PMID:26650707

  7. Effect of nutrient limitation of cyanobacteria on protease inhibitor production and fitness of Daphnia magna.

    PubMed

    Schwarzenberger, Anke; Sadler, Thomas; Von Elert, Eric

    2013-10-01

    Herbivore-plant interactions have been well studied in both terrestrial and aquatic ecosystems as they are crucial for the trophic transfer of energy and matter. In nutrient-rich freshwater ecosystems, the interaction between primary producers and herbivores is to a large extent represented by Daphnia and cyanobacteria. The occurrence of cyanobacterial blooms in lakes and ponds has, at least partly, been attributed to cyanotoxins, which negatively affect the major grazer of planktonic cyanobacteria, i.e. Daphnia. Among these cyanotoxins are the widespread protease inhibitors. These inhibitors have been shown (both in vitro and in situ) to inhibit the most important group of digestive proteases in the gut of Daphnia, i.e. trypsins and chymotrypsins, and to reduce Daphnia growth. In this study we grew cultures of the cyanobacterium Microcystis sp. strain BM25 on nutrient-replete, N-depleted or P-depleted medium. We identified three different micropeptins to be the cause for the inhibitory activity of BM25 against chymotrypsins. The micropeptin content depended on nutrient availability: whereas N limitation led to a lower concentration of micropeptins per biomass, P limitation resulted in a higher production of these chymotrypsin inhibitors. The altered micropeptin content of BM25 was accompanied by changed effects on the fitness of Daphnia magna: a higher content of micropeptins led to lower IC50 values for D. magna gut proteases and vice versa. Following expectations, the lower micropeptin content in the N-depleted BM25 caused higher somatic growth of D. magna. Therefore, protease inhibitors can be regarded as a nutrient-dependent defence against grazers. Interestingly, although the P limitation of the cyanobacterium led to a higher micropeptin content, high growth of D. magna was observed when they were fed with P-depleted BM25. This might be due to reduced digestibility of P-depleted cells with putatively thick mucilaginous sheaths. These findings indicate that

  8. The induction of biochemical changes in Daphnia magna by CuO and ZnO nanoparticles.

    PubMed

    Mwaanga, Phenny; Carraway, Elizabeth R; van den Hurk, Peter

    2014-05-01

    Whilst a considerable number of studies have been reported on the acute toxicity of nanoparticles (NPs) on invertebrates such as Daphnia magna, few studies have been reported on the biochemical change (biomarkers) induction on these species by NPs, especially metal oxide NPs. The aim of this study was to investigate some biomarkers in D. magna induced by copper oxide (CuO) and zinc oxide (ZnO) NPs under controlled laboratory conditions. We exposed the 5 day old D. magna for 72 h to sublethal concentration of CuO and ZnO NPs in synthetic moderately hard water (MHW) with and without dissolved natural organic matter (NOM) and estimated the glutathione-S-transferase (GST) activity, formation of oxidized glutathione (GSSG), and amounts of thiobarbituric acid reacting substances (TBARS) and metallothionein (MT). Additionally, complementary short term dissolution studies on CuO and ZnO NPs were conducted. The results showed inactivation of GST enzyme by both metal oxide NPs. The results also showed increased production of oxidized GSH, increased generation of TBARS and increased induction of MT. In the presence of NOM, significant reduction (p<0.05) in these biochemical changes was observed. These results indicated that oxidative stress is one of the toxicity mechanisms for these metal oxide NPs. Furthermore, the results suggest that these metal oxide NPs compromise the health of D. magna, and possibly other aquatic organisms, and therefore have potential to affect ecosystem stability. The short term dissolution studies showed that the proportion of dissolved NPs is higher (1.2% and 70% of initial concentration for dissolved Cu and Zn, respectively) at low particle concentration and is lower (0.4% and 17% of initial concentration for dissolved Cu and Zn, respectively) at higher particle concentration. These results suggest that the observed toxicity may be caused by both metal oxide nanoparticles and metal ions dissociated from the nanoparticles. PMID:24699179

  9. Acute toxicity of leachates of tire wear material to Daphnia magna--variability and toxic components.

    PubMed

    Wik, Anna; Dave, Göran

    2006-09-01

    Large amounts of tire rubber are deposited along the roads due to tread wear. Several compounds may leach from the rubber and cause toxicity to aquatic organisms. To investigate the toxic effects of tire wear material from different tires, rubber was abraded from the treads of twenty-five tires. Leachates were prepared by allowing the rubber to equilibrate with dilution water at 44 degrees C for 72 h. Then the rubber was filtered from the leachates, and test organisms (Daphnia magna) were added. Forty-eight hour EC50s ranged from 0.5 to >10.0 g l(-1). The toxicity identification evaluation (TIE) indicated that non-polar organic compounds caused most of the toxicity. UV exposure of the filtered tire leachates caused no significant increase in toxicity. However, when tested as unfiltered leachates (the rubber was not filtered from the leachates before addition of D. magna) photo-enhanced toxicity was considerable for some tires, which means that test procedures are important when testing tire leachates for aquatic (photo) toxicity. The acute toxicity of tire wear for Daphnia magna was found to be <40 times a predicted environmental concentration based on reports on the concentration of a tire component found in environmental samples, which emphasizes the need for a more extensive risk assessment of tire wear for the environment. PMID:16466775

  10. Uptake, depuration, and bioconcentration of two pharmaceuticals, roxithromycin and propranolol, in Daphnia magna.

    PubMed

    Ding, Jiannan; Lu, Guanghua; Liu, Jianchao; Yang, Haohan; Li, Yi

    2016-04-01

    The objective of the present study was to investigate the uptake, depuration, and bioconcentration of two pharmaceuticals, roxithromycin (ROX) and propranolol (PRP), in Daphnia magna via aqueous exposure. Additionally, dietary and pH effects on the bioconcentration of two pharmaceuticals in daphnia were studied. During the 24-h uptake phase followed by the 24-h depuration phase, the uptake rate constants (k(u)) of ROX for daphnia were 9.21 and 2.77 L kg(-1) h(-1), corresponding to the exposure concentrations of 5 and 100 μg L(-1), respectively; For PRP at the nominal concentrations of 5 and 100 μg L(-1), k(u) were 2.29 and 0.99 L kg(-1) h(-1), respectively. The depuration rate constants (k(d)) of ROX in daphnia, at the exposure concentrations of 5 and 100 μg L(-1), were 0.0985 and 0.207 h(-1), respectively; while those of PRP were 0.0276 and 0.0539 h(-1) for the nominal concentrations of 5 and 100 μg L(-1), respectively. With the decreasing exposure concentrations, the bioconcentration factors (BCFs) in daphnia ranged from 13.4 to 93.5 L kg(-1) for ROX, and 18.4 to 83.0 L kg(-1) for PRP, revealing the considerable accumulation potential of these two pharmaceuticals. Moreover, after 6h exposure, the body burdens of ROX and PRP in dead daphnia were 4.98-6.14 and 7.42-12.9 times higher than those in living daphnia, respectively, implying that body surface sorption dominates the bioconcentration of the two pharmaceuticals in daphnia. In addition, the presence of algal food in the media could significantly elevate the kd values for both ROX and PRP, thereby restraining their bioconcentration in daphnia. A pH-dependent bioconcentration study revealed that the bioconcentration of the two pharmaceuticals in daphnia increased with increasing pH levels, which ranged from 7 to 9. Finally, a model was developed to estimate the relationships between pH and the BCFs of the two pharmaceuticals in zooplankton. The predicted values based on this model were highly consistent

  11. Effects of ectoine on behavioural, physiological and biochemical parameters of Daphnia magna.

    PubMed

    Bownik, Adam; Stępniewska, Zofia; Skowroński, Tadeusz

    2015-02-01

    Ectoine (ECT) is a compatible solute produced by soil, marine and freshwater bacteria in response to stressful factors. The purpose of our study was to determine the possible toxic influence of ECT on Daphnia magna. We determined the following endpoints: survival rate during exposure and recovery, swimming performance, heart rate, thoracic limb movement determined by image analysis, haemoglobin level by ELISA assay, catalase and nitric oxide species (NOx) by spectrophotometric methods. The results showed 80% survival of daphnids exposed to 50mg/L of ECT after 24h and 10% after 90h, however lower concentrations of ECT were well tolerated. A concentration-dependent reduction of swimming velocity was noted at 24 and 48h of the exposure. ECT (at 2.5 and 4mg/L) induced an increase of heart rate and thoracic limb movement (at 2.5, 4 and 20mg/L) after 24h. After 10h of the exposure to ECT daphnids showed a concentration-dependent increase of haemoglobin level synthesized and accumulated in the epipodite epithelia. After 24h we noted a concentration-dependent decrease of haemoglobin level and its lowest value was found after 48h of the exposure. ECT at a concentration of 20 and 25mg/L slightly stimulated catalase activity after 24h. NOx level was also increased after 10h of the exposure to 20 and 25mg/L of ECT reaching maximal activity after 24h. Our results suggest that ECT possesses some modulatory potential on the behaviour, physiology and biochemical parameters in daphnids. PMID:25460046

  12. Rapid Adaptation of a Daphnia magna Population to Metal Stress Is Associated with Heterozygote Excess.

    PubMed

    Hochmuth, Jennifer D; De Meester, Luc; Pereira, Cecília M S; Janssen, Colin R; De Schamphelaere, Karel A C

    2015-08-01

    Although natural populations can harbor evolutionary potential to adapt genetically to chemical stress, it is often thought that natural selection leads to a general reduction of genetic diversity and involves costs. Here, a 10 week microevolution experiment was conducted with a genetically diverse and representative sample of one natural Daphnia magna population that was exposed to copper and zinc. Both Cu- and Zn-selected populations developed a significantly higher metal tolerance (i.e., genetic adaptation), indicated by higher reproduction probabilities of clonal lines in Cu and Zn exposures than observed for the original and control populations. The complete recovery of the population densities after 10 weeks of Zn selection (following an initial decrease of 74%) illustrates an example of evolutionary rescue. Microsatellite genotyping revealed a decrease in clonal diversity but no change in allelic richness, and showed an excess in heterozygosity in the Cu- and Zn-selected populations compared to the control and original populations. The excess heterozygosity in metal-selected populations that we observed has important consequences for risk assessment, as it contributes to the maintenance of a higher allelic diversity under multigenerational chemical exposure. This study is, to our knowledge, the first report of an increase in heterozygosity following multigenerational exposure to metal stress, despite a decline in clonal diversity. In a follow-up study with the Zn-selected populations, we observed no effect of Zn selection on the tolerance to heat and cyanobacteria. However, we observed higher tolerance to Cd in the Zn-selected than in the original and control populations if the 20% effective concentration of Cd was considered (cross-tolerance). Our results suggest only limited costs of adaptation but future research is needed to evaluate the adaptive potential of metal-selected populations to novel stressors and to determine to what extent increased

  13. Acclimation to ultraviolet irradiation affects UV-B sensitivity of Daphnia magna to several environmental toxicants.

    PubMed

    Kim, Jungkon; Lee, Minjung; Oh, Sorin; Ku, Ja-Lok; Kim, Kyung-Hee; Choi, Kyungho

    2009-12-01

    Phototoxicity of several environmental contaminants by UV light has been reported in many studies. Nevertheless, field observations suggest the presence of certain defense mechanisms that would protect aquatic organisms against phototoxic damages. The current study was conducted to understand the responses of aquatic receptors to phototoxic chemicals in a natural environment where low dose UV light is present and long-term acclimation to UV might have been taken place. For this purpose, the water flea Daphnia magna was acclimated to a non-lethal, environmentally relevant level of UV-B light for >20 successive generations. The differences in toxicity response were evaluated between the UV-B acclimated and the non-acclimated daphnids when they were exposed to phototoxic compounds such as polynuclear aromatic hydrocarbons (fluoranthene and pyrene), a pharmaceutical (sulfathiazole), or metals (Cd and Cu) under UV-B light. Following the UV-B acclimation, toxicity of metals under UV-B light significantly decreased (P<0.1) suggesting the defense/repair system which might be developed through acclimation. For PAHs and sulfathiazole, however the acclimation rendered organisms more susceptible (P<0.05). The metabolic cost incurred during the acclimation to UV-B stress may in part explain the organisms' reduced capacity to deal with other stressors. Addition of vitamin C significantly increased the resistance of UV-B acclimated individuals against Cu, while no change was observed for the other chemicals, suggesting that the mode of Cu phototoxicity is different from those of the other phototoxicants under UV-B light. Two-dimensional gel electrophoresis analyses showed that long-term acclimation to UV-B lead to notable changes in protein expression, which may be further evaluated to explain varying susceptibilities of the acclimated daphnids to different phototoxicants. PMID:19836821

  14. Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna.

    PubMed

    Zhao, Chun-Mei; Wang, Wen-Xiong

    2012-06-01

    Silver nanoparticles (AgNPs) are now widely used in antibacterial and personal care products. However, the underlying physicochemical mechanisms leading to the toxicity of AgNPs are still under debate. The present study revealed the different effects of three surface coatings (including lactate, polyvinylpyrrolidone, and sodium dodecylbenzene sulfonate, as AgNPs-L, AgNPs-P and AgNPs-S, respectively) on the acute toxicity of AgNPs to a model freshwater cladoceran Daphnia magna. Significant difference in mortality was observed among these three surface coatings of AgNPs, with the 48-h 50% lethal concentrations (48-h LC50s) of AgNPs-L, AgNPs-P and AgNPs-S being 28.7, 2.0 and 1.1 μg/L, respectively. In contrast, when the daphnids were exposed to soluble Ag released from AgNPs-L and AgNPs-P, the difference in the 48-h LC50s between the two surface coatings (1.1 μg/L and 0.57 μg/L, respectively) decreased significantly. These 48-h LC50s were comparable to that of AgNO₃ (0.88 μg/L), indicating that soluble Ag was the primarily cause of the observed toxicity of AgNPs. Indeed, the surface coatings influenced the dissolution of AgNPs into soluble Ag, resulting in the different toxicities of AgNP to the daphnids. Additionally, the 48-h bioaccumulation of AgNPs in daphnids was also dependent on the characteristics of the nanoparticles, such as particle size and surface coating. Our results point to the need to consider the effects of surface coating on the toxicity of AgNPs in environmental risk assessments. PMID:21591875

  15. Development of an NMR microprobe procedure for high-throughput environmental metabolomics of Daphnia magna.

    PubMed

    Nagato, Edward G; Lankadurai, Brian P; Soong, Ronald; Simpson, André J; Simpson, Myrna J

    2015-09-01

    Nuclear magnetic resonance (NMR) is the primary platform used in high-throughput environmental metabolomics studies because its non-selectivity is well suited for non-targeted approaches. However, standard NMR probes may limit the use of NMR-based metabolomics for tiny organisms because of the sample volumes required for routine metabolic profiling. Because of this, keystone ecological species, such as the water flea Daphnia magna, are not commonly studied because of the analytical challenges associated with NMR-based approaches. Here, the use of a 1.7-mm NMR microprobe in analyzing tissue extracts from D. magna is tested. Three different extraction procedures (D2O-based buffer, Bligh and Dyer, and acetonitrile : methanol : water) were compared in terms of the yields and breadth of polar metabolites. The D2O buffer extraction yielded the most metabolites and resulted in the best reproducibility. Varying amounts of D. magna dry mass were extracted to optimize metabolite isolation from D. magna tissues. A ratio of 1-1.5-mg dry mass to 40 µl of extraction solvent provided excellent signal-to-noise and spectral resolution using (1)H NMR. The metabolite profile of a single daphnid was also investigated (approximately 0.2 mg). However, the signal-to-noise of the (1)H NMR was considerably lower, and while feasible for select applications would likely not be appropriate for high-throughput NMR-based metabolomics. Two-dimensional NMR experiments on D. magna extracts were also performed using the 1.7-mm NMR probe to confirm (1)H NMR metabolite assignments. This study provides an NMR-based analytical framework for future metabolomics studies that use D. magna in ecological and ecotoxicity studies. PMID:25891518

  16. Acute toxicity of a mixture of copper and single-walled carbon nanotubes to Daphnia magna.

    PubMed

    Kim, Ki T; Klaine, Stephen J; Lin, Sijie; Ke, Pu C; Kim, Sang D

    2010-01-01

    Nanomaterials released into the environment will interact with many materials including other contaminants. This may influence bioavailability and fate of both the nanoparticles and the other contaminants. The present study examined the effect of a combination of soluble copper and surface-modified single-walled carbon nanotubes (SWNTs) on Daphnia magna. Lysophosphatidylcholine (LPC) was used to modify the surface of SWNTs, reducing the surface hydrophobicity of the tubes and thereby producing a stable aqueous nanoparticle suspension. The toxicity of the nanoparticle-copper (Cu) mixture was determined to be additive. The addition of nontoxic concentration of LPC-SWNTs enhanced the uptake and toxicity of copper. Greater amounts of Cu were shown to accumulate in D. magna upon addition of 0.5 and 1.0 mg/L LPC-SWNTs. PMID:20821426

  17. Effects of physiochemical properties of test media on nanoparticle toxicity to Daphnia magna Straus.

    PubMed

    Seo, Jaehwan; Kim, Soyoun; Choi, Seona; Kwon, Dongwook; Yoon, Tae-Hyun; Kim, Woo-Keun; Park, June-Woo; Jung, Jinho

    2014-09-01

    The physicochemical property of standard test media significantly influenced the aggregation and dissolution of Ag, CuO and ZnO nanoparticles (NPs) and the toxicity of the NPs to Daphnia magna. For all the NPs, the highest amount of metal ions was released from the ISO medium, whereas acute toxicity to D. magna was highest in the moderately hard water medium (EC50 = 4.94, 980, and 1,950 μg L(-1) for Ag, CuO, and ZnO, respectively). By comparing EC50 values based on the total and dissolved concentrations of NPs with those of metal salt solutions, we found that both particulate and dissolved fractions were likely responsible for the toxicity of Ag NPs, whereas the dissolved fraction mostly contributed to the toxicity of CuO and ZnO NPs. PMID:25063370

  18. Aquatic ecotoxicity of a pheromonal antagonist in Daphnia magna and Desmodesmus subspicatus.

    PubMed

    Rosa, Esmeralda; Barata, Carlos; Damásio, Joana; Bosch, Maria Pilar; Guerrero, Angel

    2006-09-12

    Evaluation of the ecotoxicological potential of (Z)-11-hexadecenyl trifluoromethyl ketone (Z11-16:TFMK), a new biorational agent with high prospective features to control the Mediterranean corn borer Sesamia nonagrioides in infested maize fields, in comparison to the parent pheromone compound (Z)-11-hexadecenyl acetate (Z11-16:Ac) is described. Acute and sublethal toxicity tests of both compounds against the cladoceran Daphnia magna and the chlorophyte Desmodesmus subspicatus were conducted, the endpoints being immobilisation and feeding inhibition for Daphnia and growth rate inhibition for Desmodesmus. In addition, effects on B esterases including cholinesterase and carboxylesterase activities in Daphnia were also assessed to evaluate the mode of action of both chemicals. Toxicities of both compounds were moderate with EC(50) values ranging from 3.11 to 103.74mgl(-1) in algae growth, from 0.07 to 1.20mgl(-1) in Daphnia survival, and from 0.10 to 0.53mgl(-1) in Daphnia feeding rate. In all cases Z11-16:TFMK was more toxic than the naturally occurring pheromone component. Serine esterase assays showed a strong inhibition of the carboxylesterase activities in Daphnia at concentrations with apparently no effects on survival or feeding, suggesting that inhibition of other key esterases may be the possible mechanism of toxicity of this compound. The results obtained have been related with some physico-chemical properties of the compounds, such as water solubility and octanol-water partition coefficient, suggesting that Z11-16:TFMK may affect aquatic organisms at lower concentrations than expected from non-polar narcosis. PMID:16899308

  19. An evaluation of biotic ligand models predicting acute copper toxicity to Daphnia magna in wastewater effluent.

    PubMed

    Constantino, Carlos; Scrimshaw, Mark; Comber, Sean; Churchley, John

    2011-04-01

    The toxicity of Cu to Daphnia magna was investigated in a series of 48-h immobilization assays in effluents from four wastewater treatment works. The assay results were compared with median effective concentration (EC50) forecasts produced by the HydroQual biotic ligand model (BLM), the refined D. magna BLM, and a modified BLM that was constructed by integrating the refined D. magna biotic ligand characterization with the Windermere humic aqueous model (WHAM) VI geochemical speciation model, which also accommodated additional effluent characteristics as model inputs. The results demonstrated that all the BLMs were capable of predicting toxicity by within a factor of two, and that the modified BLM produced the most accurate toxicity forecasts. The refined D. magna BLM offered the most robust assessment of toxicity in that it was not reliant on the inclusion of effluent characteristics or optimization of the dissolved organic carbon active fraction to produce forecasts that were accurate by within a factor of two. The results also suggested that the biotic ligand stability constant for Na may be a poor approximation of the mechanisms governing the influence of Na where concentrations exceed the range within which the biotic ligand stability constant value had been determined. These findings support the use of BLMs for the establishment of site-specific water quality standards in waters that contain a substantial amount of wastewater effluent, but reinforces the need for regulators to scrutinize the composition of models, their thermodynamic and biotic ligand parameters, and the limitations of those parameters. PMID:21184526

  20. The relative importance of water and food as cadmium sources to Daphnia magna Straus.

    PubMed

    Barata, Carlos; Markich, Scott J; Baird, Donald J; Soares, Amadeu M V M

    2002-12-01

    Knowledge of the transport pathways of metals into aquatic organisms is paramount in determining the metal's potential mechanism of toxicity. To determine the relative importance of water and food as cadmium (Cd) sources for the cladoceran Daphnia magna grazing on the algae Chlorella vulgaris, we measured cadmium accumulation and toxicity (feeding inhibition and survival) in three genetically different clones of D. magna subsequent to water, food, and water and food exposures. We found that Cd uptake from water and food was independent of source and additive in effect, with D. magna juveniles accumulating twice as much Cd from water than from food (algae). However, the efficiency with which Cd was assimilated by D. magna from its algal diet was much higher (10%) than from water (0.3%). Uptake and toxic responses were inversely related: tolerant clones accumulated more Cd. As a consequence, models based on uptake of metals from the combined routes of water and food may be reliable to predict metal dynamics in the field, but may fail to predict toxic effects since tolerance to metals is not necessarily linked to reduced total uptake of metals. PMID:12359386

  1. The relationship of total copper 48-h LC50s to Daphnia magna dry weight

    SciTech Connect

    Lazorchak, J.M. ); Waller, W.T. )

    1993-05-01

    A study was conducted with Daphnia magna to determine the effect of neonate weight loss or lack of weight gain on experimentally derived copper 48-h LC50s. Standard unfed tests as well as algal-fed (Selenastrum capricornutum) tests were used to look at weight loss and gain. No significant relationship was found between amount of weight loss and copper LC50s. However, dry weight of unfed and algal-fed control organisms could be used to predict total copper LC50s.

  2. Usefulness of the lipid index for biouptake studies with Daphnia magna

    SciTech Connect

    Dauble, D.D.; Klopfer, D.C.; Carlile, D.W.; Hanf, R.W.

    1984-04-01

    Adult Daphnia magna were starved and monitored for lipid content and brood production. Mean lipid index values declined for 72 hours to less than 50% of 24 hour values. Number of hatched young was inversely related to lipid storage and ovary production. Uptake kinetics of /sup 14/C-labelled quinoline was compared between two daphnid test groups with mean lipid scores of 5.4 and 2.8, respectively. Total /sup 14/C counts were significantly higher for the high lipid group at 8 hour. Our studies indicated that lipid reserves of daphnid test populations can be routinely monitored as an indicator of environmental stress.

  3. Food availability affects the strength of mutualistic host-microbiota interactions in Daphnia magna.

    PubMed

    Callens, Martijn; Macke, Emilie; Muylaert, Koenraad; Bossier, Peter; Lievens, Bart; Waud, Michael; Decaestecker, Ellen

    2016-04-01

    The symbiotic gut microbial community is generally known to have a strong impact on the fitness of its host. Nevertheless, it is less clear how the impact of symbiotic interactions on the hosts' fitness varies according to environmental circumstances such as changes in the diet. This study aims to get a better understanding of host-microbiota interactions under different levels of food availability. We conducted experiments with the invertebrate, experimental model organism Daphnia magna and compared growth, survival and reproduction of conventionalized symbiotic Daphnia with germ-free individuals given varying quantities of food. Our experiments revealed that the relative importance of the microbiota for the hosts' fitness varied according to dietary conditions. The presence of the microbiota had strong positive effects on Daphnia when food was sufficient or abundant, but had weaker effects under food limitation. Our results indicate that the microbiota can be a potentially important factor in determining host responses to changes in dietary conditions. Characterization of the host-associated microbiota further showed that Aeromonas sp. was the most prevalent taxon in the digestive tract of Daphnia. PMID:26405832

  4. Toxicity identification evaluation of anaerobically treated swine slurry: a comparison between Daphnia magna and Raphanus sativus.

    PubMed

    Villamar, Cristina A; Silva, Jeannette; Bay-Schmith, Enrique; Vidal, Gladys

    2014-01-01

    Anaerobic digestion does not efficiently reduce ionic compounds present in swine slurry, which could present a potential risk to aquatic ecosystems (surface runoff) and terrestrial ambient (irrigation). The objective of this study was to evaluate the ecotoxicological characteristics of anaerobically treated swine slurry using acute and chronic (epicotyl elongation) toxicity tests with Daphnia magna and Raphanus sativus and identification of suspected toxic compounds using the Toxicity Identification Evaluation (TIE) method. The evaluation was performed in three phases: physicochemical characterization of the slurry; acute/chronic toxicity testing with Daphnia magna and Raphanus sativus for each fraction of the TIE (cation and anion exchange columns, activated carbon, pH modification/aeration and EDTA) and identification of suspected toxic compounds. The anaerobically treated slurry contained concentrations of ammonium of 1,072 mg L(-1), chloride of 815 mg L(-1) and metals below 1 mg L(-1) with a D. magna acute toxicity (48h-LC50) of 5.3% and R. sativus acute toxicity (144h-LC50) of 48.1%. Epicotyl elongation of R. sativus was inhibited at concentrations above 25% (NOEC). The cation exchange reduced the toxicity and free ammonia by more than 90% for both bio-indicators. Moreover, this condition stimulated the epicotyl growth of R. sativus between 10% and 37%. In conclusion, the main compound suspected of causing acute toxicity in D. magna and acute/chronic toxicity in R. sativus is the ammonium. The findings suggest the need the ammonium treatment prior to the agricultural reuse of swine slurry given the high risk to contaminate the aquatic environment by runoff and toxicity of sensitive plants. PMID:25190563

  5. Effects of aqueous stable fullerene nanocrystal (nC60) on copper (trace necessary nutrient metal): Enhanced toxicity and accumulation of copper in Daphnia magna.

    PubMed

    Tao, Xianji; He, Yiliang; Fortner, John D; Chen, Yongsheng; Hughes, Joseph B

    2013-08-01

    Our focus herein is to evaluate the potential interaction between nC60 and copper, a trace necessary metal, in light of the impact on toxicity. The non-observable effects concentration (NOEC) of nC60 was confirmed as 100μgL(-1) before. When Daphnia magna was exposed to the mixture of copper solution and nC60 suspension (100μgL(-1)), LC50 of 48h was lower than that when they were exposed to copper solution alone. This result clearly showed the decrease in NOEC of copper at the presence of nC60. Cu(2+)-ATPase activity was enhanced at the presence of nC60, indicating that copper transport involved with the uptake, distribution and depuration in body was increased. We further conducted experiments on accumulation of copper in D. magna. The observed equilibrium copper concentration in D. magna in the mixture of 100μgL(-1) nC60 and 1μgL(-1) copper solution reached 131μg (kg wet weight)(-1), which was more than twice that in copper solution only: 60μg (kg wet weight)(-1). This result demonstrated that the accumulation of copper in D. magna was significantly enhanced at the presence of even low nC60 concentration. Experiments also showed that copper was quickly adsorbed onto nC60. The absorption of copper onto D. magna was statistically correlated to the absorption of nC60 onto D. magna; this might be caused by nC60 facilitating the transfer of copper into D. magna. The absorption and desorption of copper to nC60 (pH=5.0) reached equilibrium quickly, which may be involved with the co-bioaccumulation and decrease in NOEC of Cu(2+) and nC60. PMID:23755985

  6. Biological Surface Coating and Molting Inhibition as Mechanisms of TiO2 Nanoparticle Toxicity in Daphnia magna

    PubMed Central

    Dabrunz, André; Duester, Lars; Prasse, Carsten; Seitz, Frank; Rosenfeldt, Ricki; Schilde, Carsten; Schaumann, Gabriele E.; Schulz, Ralf

    2011-01-01

    The production and use of nanoparticles (NP) has steadily increased within the last decade; however, knowledge about risks of NP to human health and ecosystems is still scarce. Common knowledge concerning NP effects on freshwater organisms is largely limited to standard short-term (≤48 h) toxicity tests, which lack both NP fate characterization and an understanding of the mechanisms underlying toxicity. Employing slightly longer exposure times (72 to 96 h), we found that suspensions of nanosized (∼100 nm initial mean diameter) titanium dioxide (nTiO2) led to toxicity in Daphnia magna at nominal concentrations of 3.8 (72-h EC50) and 0.73 mg/L (96-h EC50). However, nTiO2 disappeared quickly from the ISO-medium water phase, resulting in toxicity levels as low as 0.24 mg/L (96-h EC50) based on measured concentrations. Moreover, we showed that nTiO2 (∼100 nm) is significantly more toxic than non-nanosized TiO2 (∼200 nm) prepared from the same stock suspension. Most importantly, we hypothesized a mechanistic chain of events for nTiO2 toxicity in D. magna that involves the coating of the organism surface with nTiO2 combined with a molting disruption. Neonate D. magna (≤6 h) exposed to 2 mg/L nTiO2 exhibited a “biological surface coating” that disappeared within 36 h, during which the first molting was successfully managed by 100% of the exposed organisms. Continued exposure up to 96 h led to a renewed formation of the surface coating and significantly reduced the molting rate to 10%, resulting in 90% mortality. Because coating of aquatic organisms by manmade NP might be ubiquitous in nature, this form of physical NP toxicity might result in widespread negative impacts on environmental health. PMID:21647422

  7. Assessment of chronic effects of tebuconazole on survival, reproduction and growth of Daphnia magna after different exposure times.

    PubMed

    Sancho, E; Villarroel, M J; Ferrando, M D

    2016-02-01

    The effect of the fungicide tebuconazole (0.41, 0.52, 0.71 and 1.14mg/L) on survival, reproduction and growth of Daphnia magna organisms was monitored using 14 and 21 days exposure tests. A third experiment was performed by exposing D. magna to the fungicide for 14 days followed by 7 days of recovery (14+7). In order to test fungicide effects on D. magna, parameters as survival, mean whole body length, mean total number of neonates per female, mean number of broods per female, mean brood size per female, time to first brood/reproduction and intrinsic rate of natural increase (r) were used. Reproduction was seriously affected by tebuconazole. All tebuconazole concentrations tested affected the number of broods per female and day to first brood. At 14-days test, number of neonates per female and body size decreased by concentrations of tebuconazole higher than 0.52mg/L, whereas at 21-days test both parameters were affected at all the concentrations tested. Survival of the daphnids after 14 days fungicide exposure did not exhibited differences among experimental and control groups. In this experiment r value was reduced (in a 22%) when animals were exposed to concentrations of 0.71mg/L and 1.14mg/L. Survival of daphnids exposed during 21 days to 1.14mg/L declined, and the intrinsic rate of natural increase (r) decreased in a 30 % for tebuconazole concentrations higher than 0.41mg/L. Longevity of daphnids pre-exposed to tebuconazole for 14 days and 7 days in clean water did not show differences from control values and all of them survived the 21 days of the test. However, after 7 days in fungicide free medium animals were unable to restore control values for reproductive parameters and length. The maximum acceptable toxicant concentration (MATC) was calculated using the r values as parameter of evaluation. MATC estimations were 0.61mg/L and 0.46mg/L for 14 and 21 days, respectively. Results showed that the number of neonates per female was the highest sensitive

  8. Laboratory investigation into the development of resistance of Daphnia magna to the herbicide molinate.

    PubMed

    Sánchez, M; Andreu-Moliner, E; Ferrando, M D

    2004-11-01

    Daphnia magna (F0 generation) was exposed to different sublethal molinate concentrations (0, 3.77, 4.71, 6.28, 9.42, and 18.85 mg/L) during 21 days. Chronic toxicity tests, using the same herbicide concentrations, were also carried out during 21 days using neonates of F1 first brood (F1-1st) and F1 third brood (F1-3rd) offspring generations from the parentals (F0) preexposed to the herbicide. Finally, offspring (from F1-1st and F1-3rd broods) were transferred to herbicide-free medium during a 21-day recovery period. The alga Nannochloris oculata (5 x 10(5) cells/mL) was used as food in all the experiments. The effect of molinate on survival, reproduction, and growth was monitored for the selected daphnid generations. The parameters used to evaluate herbicide effect on reproduction were mean total young per female, mean brood size, time to first reproduction, mean number broods per female, and intrinsic rate of natural increase (r). Survival and growth (body length) were also determined after 21 days of exposure to molinate. Reproduction was significantly reduced when molinate concentration was increased in the medium. This effect was higher in the parental (F0) daphnids than in the F1-1st and F1-3rd offspring. In the recovery study, reproduction was still reduced in F1 generation daphnids (1st and 3rd), but only in those animals from parentals exposed to the highest molinate concentrations. The decreased with increasing concentrations of molinate in daphnids from the parental generation (F0). Significant differences were also found in daphnids from the F1 generation (exposure). The growth of the exposed organisms (F0 and F1) decreased, although the greatest decrease was found in the parental animals (F0) (25%) exposed to 9.42 mg/L molinate. F1 daphnids (1st and 3rd broods) from the recovery period did not show any significant difference in their growth after 21 days of study. Finally, survival was not affected after exposure to the selected molinate concentrations

  9. Environmental labeling of car tires--toxicity to Daphnia magna can be used as a screening method.

    PubMed

    Wik, Anna; Dave, Göran

    2005-02-01

    Car tires contain several water-soluble compounds that can leach into water and have toxic effects on aquatic organisms. Due to tire wear, 10,000 tonnes of rubber particles end up along the Swedish roads every year. This leads to a diffuse input of emissions of several compounds. Emissions of polyaromatic hydrocarbons (PAHs) are of particular concern. PAHs are ingredients of the high aromatic oil (HA oil) that is used in the rubber as a softener and as a filler. The exclusion of HA oils from car tires has started, and an environmental labeling of tires could make HA oils obsolete. The toxicity to Daphnia magna from 12 randomly selected car tires was tested in this study. Rubber from the tread of the tires was grated into small pieces, to simulate material from tire wear, and the rubber was equilibrated with dilution water for 72 h before addition of test organisms. The 24-h EC50s of the rubber pieces ranged from 0.29 to 32 gl-1, and the 48-h EC50s ranged from 0.0625 to 2.41 gl-1. Summer tires were more toxic than winter tires. After the 48-h exposure, the daphnids were exposed to UV-light for 2 h, to determine if the tires contained compounds that were phototoxic. After UV-activation the EC50s ranged from 0.0625 to 0.38 gl-1. Four of the 12 tires had a very distinct photoactivation, with a toxicity increase of >10 times. This study has shown that the used method for toxicity testing with Daphnia magna according to ISO 6341 could be used as a basis for environmental labeling of car tires. PMID:15620758

  10. Species interactions and chemical stress: combined effects of intraspecific and interspecific interactions and pyrene on Daphnia magna population dynamics.

    PubMed

    Viaene, Karel P J; De Laender, Frederik; Rico, Andreu; Van den Brink, Paul J; Di Guardo, Antonio; Morselli, Melissa; Janssen, Colin R

    2015-08-01

    Species interactions are often suggested as an important factor when assessing the effects of chemicals on higher levels of biological organization. Nevertheless, the contribution of intraspecific and interspecific interactions to chemical effects on populations is often overlooked. In the present study, Daphnia magna populations were initiated with different levels of intraspecific competition, interspecific competition, and predation and exposed to pyrene pulses. Generalized linear models were used to test which of these factors significantly explained population size and structure at different time points. Pyrene had a negative effect on total population densities, with effects being more pronounced on smaller D. magna individuals. Among all species interactions tested, predation had the largest negative effect on population densities. Predation and high initial intraspecific competition were shown to interact antagonistically with pyrene exposure. This was attributed to differences in population structure before pyrene exposure and pyrene-induced reductions in predation pressure by Chaoborus sp. larvae. The present study provides empirical evidence that species interactions within and between populations can alter the response of aquatic populations to chemical exposure. Therefore, such interactions are important factors to be considered in ecological risk assessments. PMID:25772479

  11. Chronic toxicity of di-n-butyl and di-n-octyl phthalate to Daphnia magna and the fathead minnow

    SciTech Connect

    McCarthy, J.F.; Whitmore, D.K.

    1985-01-01

    The toxicities of di-n-butyl phthalate (DBP) and di-n-octyl phthalate (DOP) were assessed by measuring the effect of exposure to these compounds on the fecundity of Daphnia magna and on the hatching and survival of the early life stages of the fathead minnow Pimephales promelas. For D. magna, exposure to 1.8 mg/L DBP or 1.0 mg/L DOP caused a significant reduction in reproduction. Doses of 0.56 mg/L DBP or 0.32 mg/L DOP had no significant effect in decreasing reproduction. Survival of fathead minnow embryos was decreased by exposure to 1.8 mg/L DBP; none of the embryos exposed to this dose hatched successfully. Hatching and larval survival were affected by exposure to 1.0 mg/L DBP, but not to 0.56 mg/L. Exposure to DOP did not affect survival of either early embryos or larvae of the fathead minnow at doses up to 10 mg/L (the highest dose tested). Hatching of the embryos was significantly decreased at 10 mg/L, but not at 3.2 mg/L DOP. 26 references, 4 figures, 11 tables.

  12. Influence of polychlorinated aromatic compounds on the biotransformation and toxicity of organophosphorus pesticides (OP) to the Daphnia magna

    SciTech Connect

    Tonkopii, V.; Zagrebin, A.; Sherstneva, L.

    1995-12-31

    The effect of different polychlorinated aromatics (DDT, Aroclor 1254, certain polychlorinated biphenyls and dibenzofurans) on the toxicity of OP (DDVP paraoxon, malaoxon) to Daphnia magna was studied. Pretreatment of daphnids with chlorinated compounds during 72 hours in nontoxic concentrations (1/5--1/20 CL{sub 50}) has been shown to reduce the toxicity of OP for hydrobionts. For study of influence of chlorinated compounds on biotransformation of OP the activity of enzymes which are hydrolyzing the OP was investigated in Daphnia`s homogenates or microsomes. The activity of carboxylesterase (tributyrinase, aliesterase) and arylesterase (phosphorylphosphatase) with usage as substrates accordingly {alpha}-naphthylacetate and paraoxon was measured. Besides that the activity of cholinesterase with application of propionylthiocholine as substrate was determined. After polychlorinated aromatic compounds treatment of daphnids activities of both aryl-and carboxylesterase increased markedly. It decreased the inhibition of Daphnia`s cholinesterase caused by incubation with OP in concentrations 0.5--1.0 CL{sub 50}. Thus the induction by chlorinate aromatics of OP metabolizing enzymes seems to play the important role in reduction of OP toxicity to Daphnia magna. Perhaps the aryl- and carboxylesterase of Daphnia can be used as biomarkers of pollution by polychlorinated aromatics in water.

  13. The developmental toxicity of 1-methyl-3-octylimidazolium bromide on Daphnia magna.

    PubMed

    Luo, Yan-Rui; Li, Xiao-Yu; Chen, Xiao-Xiao; Zhang, Bang-Jun; Sun, Zhen-Jun; Wang, Jian-Ji

    2008-12-01

    The developmental toxicity of 1-methyl-3-octylimidazolium bromide ([C(8)mim]Br) on Daphnia magna was investigated. The 24 and 48 h LC(50) values for [C(8)mim]Br in D. magna were 1.99 and 0.95 mg/L, respectively. A series of multigenerational toxicity tests were then used to explore [C(8)mim]Br effects in D. magna. [C(8)mim]Br significantly inhibited the body lengths of the F0 and F1 1st generations. After 21 days of exposure, [C(8)mim]Br lowered the reproductive ability of the F0 and F1 1st generations. In F1 3rd generation, 21 days of [C(8)mim]Br exposure prolonged the time to bear the first egg and the time to the first brood compared with the control, but the number of first-brood offspring and the number of broods produced by these animals were reduced. After the recovery period all the reproductive parameters returned to normal in F1 1st generation except for the number of broods. The dead neonates increased with prolonged exposure and increasing concentrations, and the dead neonates of the F1 3rd generation went far beyond that of the F1 1st and F0 generations. The intrinsic rate of natural increase (r) values of the three D. magna generations significantly decreased after exposure to higher concentrations of [C(8)mim]Br compared with control groups. Collectively, these results suggest that [C(8)mim]Br exerts a toxic effect on the development of D. magna. This study also highlights the importance of systematically evaluating the potential effects of aquatic ecosystems of ionic liquids that may be released into bodies of water. PMID:18442076

  14. Surface binding of contaminants by algae: Consequences for lethal toxicity and feeding to Daphnia magna straus

    SciTech Connect

    Taylor, G. |; Baird, D.J.; Soares, A.M.V.M.

    1998-03-01

    Freshwater algae, as with all suspended particulate matter in the water column, exhibit a net negative charge resulting in an affinity for positively charged species, such as toxic metal cations, which will readily adsorb to algal cell surfaces. In this study, the adsorption of a representative toxic metal cadmium cation (Cd{sup 2+}) to a freshwater algal species, Chlorella vulgaris, was investigated using environmentally realistic concentrations of both. A further study of the effects of this particulate adsorption of Cd{sup 2+} on lethal toxicity and feeding in Daphnia magna was conducted. Two apparently contrasting effects were observed. For the D. magna feeding study, cell ingestion was inhibited, leading to reduced growth and reproduction. Experiments comparing the effect of algal-bound cadmium and dissolved forms of cadmium demonstrate that this inhibition is almost entirely due to the surface-bound fraction of ions. However, at concentrations of dissolved cadmium that are lethal to Daphnia, algal cells were found to reduce toxicity. Such findings indicate the importance of food ration in laboratory-based toxicity tests as well as the difficulty in predicting the environmental fate and effect of contaminants using such tests.

  15. Multigenerational effect of perfluorooctane sulfonate (PFOS) on the individual fitness and population growth of Daphnia magna.

    PubMed

    Jeong, Tae-Yong; Yuk, Min-Su; Jeon, Junho; Kim, Sang Don

    2016-11-01

    We investigated the multigenerational effect of PFOS to individual fitness (e.g., body weight, acetylcholinesterase and glutathione S-transferase) and population growth (e.g., offspring number and time to first brood) of Daphnia magna during continuous and discontinuous exposures. The intrinsic rate of population growth was also calculated. In the continuous exposure, population growth-related adverse effects were detected during all test periods, and the adverse effect tended to be weaker in later generations. On the other hand, individual fitness-related adverse effects were observed from F1 not in F0 and deteriorated as the generation number increased. These results imply that individual fitness worsens although the population growth is restored in later generations. Upon discontinuous exposure, a few but significant adverse effects were observed during the non-exposure period and highest effects were detected during the re-exposure period. This encourages the study of different exposure scenarios, which may result in unexpected and higher PFOS toxicity. Consequently, this study confirms adverse effects of PFOS to Daphnia magna in multigenerational period and supports reasons for studies linking individual fitness changes to population dynamics and covering diverse exposure scenarios to evaluate the risk of PFOS in a water environment. PMID:27396314

  16. Effects from Filtration, Capping Agents, and Presence/Absence of Food on the Toxicity of Silver Nanoparticles to Daphnia Magna

    EPA Science Inventory

    Relatively little is known regarding the behavior and toxicity of nanoparticles in the environment. The objectives of the work presented here include establishing the toxicity of a variety of silver nanoparticles (AgNPs) to Daphnia magna neonates, assessing the applicability of ...

  17. Gene transcription in Daphnia magna: effects of acute exposure to a carbamate insecticide and an acetanilide herbicide.

    PubMed

    Pereira, Joana Luísa; Hill, Christopher J; Sibly, Richard M; Bolshakov, Viacheslav N; Gonçalves, Fernando; Heckmann, Lars-Henrik; Callaghan, Amanda

    2010-05-01

    Daphnia magna is a key invertebrate in the freshwater environment and is used widely as a model in ecotoxicological measurements and risk assessment. Understanding the genomic responses of D. magna to chemical challenges will be of value to regulatory authorities worldwide. Here we exposed D. magna to the insecticide methomyl and the herbicide propanil to compare phenotypic effects with changes in mRNA expression levels. Both pesticides are found in drainage ditches and surface water bodies standing adjacent to crops. Methomyl, a carbamate insecticide widely used in agriculture, inhibits acetylcholinesterase, a key enzyme in nerve transmission. Propanil, an acetanilide herbicide, is used to control grass and broad-leaf weeds. The phenotypic effects of single doses of each chemical were evaluated using a standard immobilisation assay. Immobilisation was linked to global mRNA expression levels using the previously estimated 48h-EC(1)s, followed by hybridization to a cDNA microarray with more than 13,000 redundant cDNA clones representing >5000 unique genes. Following exposure to methomyl and propanil, differential expression was found for 624 and 551 cDNAs, respectively (one-way ANOVA with Bonferroni correction, P

  18. Effects of nanoparticles of TiO2 on food depletion and life-history responses of Daphnia magna.

    PubMed

    Campos, Bruno; Rivetti, Claudia; Rosenkranz, Philipp; Navas, José María; Barata, Carlos

    2013-04-15

    The extent to which different forms of nanoparticles of titanium dioxide (nano-TiO2) aggregated with microalgae, decreased food levels and hence impaired growth, reproduction and fitness of Daphnia magna individuals were studied. Treatments included three different types of nano-TiO2 differing in their coating or crystalline structure but of similar primary size (20 nm) plus a micron-sized bulk material, two exposure levels (1, 10mg/l) and two food ration levels of the microalgae Chlorella vulgaris that included a non limiting (1.5 μgC/ml) and a limiting one (0.3 μgC/ml). Effects were assessed using standardized chronic tests and assays that maximized food depletion in the water column under semi-static and re-suspension conditions. Results indicated that the high ion levels in culture medium lead to the aggregation of nanoparticles followed by particle destabilization. Nanoparticle aggregates interacted with the algae cells, forming clusters. Large TiO2-algae agglomerates settled readily dramatically depleting the concentration of available food for D. magna. At limiting food rations food depletion by nanoparticle aggregation had dramatic effects on reproduction and fitness of exposed D. magna at 1mg/l irrespectively of the particle form. At high food rations effects were only observed for one of the nano-TiO2, P-25, at high exposure levels (10 mg/l) under both semi-static and particle re-suspension conditions, which suggest that P-25 effects were mediated by clogging the gut and hence diminishing food acquisition. These results indicate that nano-TiO2 may affect the transfer of energy throughout the planktonic aquatic food webs increasing the settlement of edible particles from the water column. PMID:23416410

  19. β-N-methylamino-L-alanine (BMAA) uptake by the animal model, Daphnia magna and subsequent oxidative stress.

    PubMed

    Esterhuizen-Londt, Maranda; Wiegand, Claudia; Downing, Tim G

    2015-06-15

    β-N-methylamino-l-alanine (BMAA), produced by cyanobacteria, is a neurotoxin implicated in Amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC). BMAA concentrations in cyanobacteria are lower than those thought to be necessary to result in neurological damage thus bioaccumulation or biomagnification is required to achieve concentrations able to cause neurodegeneration. Many cyanobacteria produce BMAA and uptake routes into the food web require examination. In this study we investigate the uptake of BMAA by adult phytoplanktivorus Daphnia magna via exposure to dissolved pure BMAA and BMAA containing cyanobacteria, as well as the subsequent oxidative stress response in the daphnia. Free BMAA and protein-associated BMAA were quantified by LC-MS/MS. Dissolved BMAA was taken up and was found as free BMAA in D. magna. No protein-associated BMAA was detected in D. magna after a 24-h exposure period. No BMAA was detectable in D. magna after exposure to BMAA containing cyanobacteria. BMAA inhibited the oxidative stress defence and biotransformation enzymes within 24-h exposure in the tested Daphnia and could therefore impair the oxidant status and the capability of detoxifying other substances in D. magna. PMID:25841344

  20. Aminomethylphosphonic acid has low chronic toxicity to Daphnia magna and Pimephales promelas.

    PubMed

    Levine, Steven L; von Mérey, Georg; Minderhout, Tui; Manson, Philip; Sutton, Peter

    2015-06-01

    Aminomethylphosphonic acid (AMPA) is the simplest member of a class of compounds known as aminomethylenephosphonates and the only environmental metabolite measured in significant amounts during the degradation of the herbicide glyphosate in soil. However, there are additional sources of AMPA in the environment, originating from organic phosphonates which are used in water treatment to inhibit scale formation and corrosion. Like glyphosate, AMPA has low acute toxicity to aquatic animals, and the no-observed-adverse effect concentration (NOAEC) obtained from a fish full-life cycle study for glyphosate was determined to be 26 mg/L. However, the chronic toxicity of AMPA to aquatic animals has not been evaluated before. The purpose of the present study was to assess the potential for chronic toxicity of AMPA to fathead minnow (Pimephales promelas) and Daphnia magna. Chronic toxicity to P. promelas was evaluated in a fish early-life stage study. The primary endpoints were larval survival, growth, and development. The NOAEC for P. promelas was determined to be 12 mg/L, the highest concentration tested. The chronic toxicity to D. magna was evaluated in a Daphnia reproduction test. The primary endpoints were survival, growth, and reproduction. The no-observed-effect concentration for D. magna was determined to be 15 mg/L. Conservatively predicted environmental surface water concentrations for AMPA from typical foliar agricultural application rates and values from surface water monitoring programs are 100 to 1000 times less than the NOAEC values from both studies. Consequently, there is a large and highly protective margin of safety between realistic environmental exposures to AMPA and chronic toxicity to aquatic vertebrates and invertebrates. PMID:25690938

  1. What causes the difference in synergistic potentials of propiconazole and prochloraz toward pyrethroids in Daphnia magna?

    PubMed

    Dalhoff, Kristoffer; Gottardi, Michele; Kretschmann, Andreas; Cedergreen, Nina

    2016-03-01

    Azole fungicides (imidazoles and triazoles) are known to function synergistically with several compounds, especially with pyrethroid insecticides, most likely by inhibiting cytochrome P450. Different azole fungicides have been shown to differ in their synergistic potentials usually with the imidazoles being stronger synergists than the triazoles. This study investigated whether the toxicokinetic and toxicodynamic (TKTD) properties of the imidazole prochloraz and triazole propiconazole can explain their different synergistic potential toward the freshwater macroinvertebrate Daphnia magna. Pulse exposure to external concentrations of propiconazole (1.4μM) and prochloraz (1.7μM) for 18h resulted in internal concentrations of 22.7 and 53.5μmolkg(-1)w.w. for propiconazole and prochloraz, respectively. This 2-fold difference in bioaccumulation corresponded very well with the observed 2.7-fold lower external EC50-estimate (7 days) for prochloraz compared to propiconazole. The estimated IC50 for the in vivo inhibition of cytochrome P450 (ECOD) activity, however, measured as transformation of 7-ethoxycoumarin into 7-hydroxycoumarin, was almost 500-fold higher for prochloraz (IC50: 0.011±0.002μM) compared to propiconazole (IC50: 4.9±0.06μM). When indirectly measuring the binding strength of the two azoles, daphnids exposed to propiconazole recovered roughly 80% of their ECOD activity compared to the control shortly after being moved to azole-free medium, indicating that propiconazole causes reversible inhibition of cytochrome P450. In contrast, the ECOD-activity remained inhibited in the prochloraz-exposed daphnids for 12h following transfer to azole-free medium, which correlated with elimination of the measured internal prochloraz concentration (DT95≈13h). These results indicate that lethal toxicity of the azole fungicides is mainly driven by toxicokinetics through their hydrophobicities resulting in different internal concentrations. Their synergistic potential

  2. Combined effects of water quality parameters on mixture toxicity of copper and chromium toward Daphnia magna.

    PubMed

    Jo, Hun-Je; Son, Jino; Cho, Kijong; Jung, Jinho

    2010-11-01

    In this study, a central composite design (CCD) was employed to evaluate the combined effects of pH, hardness and dissolved organic carbon (DOC) on the toxicity of a mixture of Cu(II) and Cr(VI) toward Daphnia magna. Overall, the results showed that increases in pH, hardness and DOC concentration led to decreased mixture toxicity of Cu(II) and Cr(VI) by reducing the concentrations of toxic species such as Cu(2+) and HCrO(4)(-). In addition, empirical models for the prediction of 24-h and 48-h mortalities of D. magna were developed and validated by using three different sources of dissolved organic matter (DOM). Because the DOMs had different Cu(II)-binding capacities, the empirical models were revised using the ligand concentration of DOMs instead of the DOC concentration; however, the prediction capability of these models did not differ significantly. These results suggest that it is not likely that the chemical property of DOM is important for prediction of the mixture toxicity of Cu(II) and Cr(VI) toward D. magna when the ligand concentration of DOMs greatly exceed the Cu(II) concentration. PMID:20875667

  3. Chronic toxicity of silver nitrate to Ceriodaphnia dubia and Daphnia magna, and potential mitigating factors.

    PubMed

    Naddy, Rami B; Gorsuch, Joseph W; Rehner, Anita B; McNerney, Gina R; Bell, Russell A; Kramer, James R

    2007-08-15

    We investigated the chronic toxicity of Ag, as silver nitrate, using two freshwater aquatic cladoceran species, Ceriodaphnia dubia and Daphnia magna, to generate data for the development of a chronic ambient water quality criterion for Ag. Preliminary studies with C. dubia showed variable results which were related to the equilibration time between food and silver. Follow-up testing was conducted using a 3h equilibration time, which stabilized dissolved Ag concentrations and the toxicity of Ag(+). Results with C. dubia conducted individually (1 per cup, n=10) and in mass (30 per chamber, n=2) gave similar results once similar standardized equilibration times were used. The maximum acceptable toxicant concentration (MATC) of Ag to C. dubia and D. magna was 9.61 and 3.00microg dissolved Ag/L, respectively. The chronic toxicity of Ag(+) to C. dubia was also evaluated in the presence of: (1) dissolved organic carbon (DOC) and (2) sulfide. The addition of DOC (0.4mg/L) resulted in a approximately 50% decrease in toxicity while the addition of sulfide (75.4nM) deceased toxicity by 42%. Whole-body Ag concentration in D. magna was positively correlated with increased levels of Ag exposure, however; we observed a non-statistical decrease in whole-body Na levels, an estimator of sodium homeostasis. PMID:17658626

  4. Cohorts and populations in chronic toxicity studies with Daphnia magna: a cadmium example

    SciTech Connect

    van Leeuwen, C.J.; Luttmer, W.J.; Griffioen, P.S.

    1985-02-01

    Two semistatic life table experiments with Daphnia magna were carried out on reconstituted and Lake Ijssel water. The nontoxic concentrations for cadmium with respect to the intrinsic rate of natural increase, derived from age-specific survival and fecundity were 1 and 3.2 micrograms/liter, respectively. Body length appeared to be a sensitive parameter. A third intermittent-flow experiment was started with small, exponentially growing populations. These populations had a stable age distribution, were composed of cohorts of different ages and showed an almost perfect logistic growth. Cadmium was shown to reduce the upper numerical limit (carrying capacity) for D. magna and was inversely related to this parameter: log Y = 2.85 -0.20 log (Cd); r = -0.99. A nontoxic concentration could not be established. Based on the background concentration of cadmium, a freshwater quality criterion of 0.1 microgram/liter is proposed. The results are used to discuss several shortcomings of the current methods. Finally it is stated that the introduction of the concepts of population dynamics in reproduction tests with D. magna is a realistic step towards ecotoxicology.

  5. Toxicity Thresholds for Diclofenac, Acetaminophen and Ibuprofen in the Water Flea Daphnia magna.

    PubMed

    Du, Juan; Mei, Cheng-Fang; Ying, Guang-Guo; Xu, Mei-Ying

    2016-07-01

    Non-steroid anti-inflammatory drugs (NSAIDs) have been frequently detected in aquatic ecosystem and posed a huge risk to non-target organisms. The aim of this study was to evaluate the toxic effects of three typical NSAIDs, diclofenac (DFC), acetaminophen (APAP) and ibuprofen (IBP), toward the water flea Daphnia magna. All three NSAIDs showed remarkable time-dependent and concentration-dependent effects on D. magna, with DFC the highest and APAP the lowest toxic. Survival, growth and reproduction data of D. magna from all bioassays were used to determine the LC10 and LC50 (10 % lethal and median lethal concentrations) values of NSAIDs, as well as the EC10 and EC50 (10 % effect and median effect concentrations) values. Concentrations for the lethal and sublethal toxicity endpoints were mainly in the low ppm-range, of which reproduction was the most sensitive one, indicating that non-target organisms might be adversely affected by relevant ambient low-level concentrations of NSAIDs after long-time exposures. PMID:27098253

  6. The use of cohorts and populations in chronic toxicity studies with Daphnia magna: a cadmium example.

    PubMed

    van Leeuwen, C J; Luttmer, W J; Griffioen, P S

    1985-02-01

    Two semistatic life table experiments with Daphnia magna were carried out on reconstituted and Lake IJssel water. The "nontoxic concentrations" for cadmium with respect to the intrinsic rate of natural increase, derived from age-specific survival and fecundity were 1 and 3.2 micrograms/liter, respectively. Body length appeared to be a sensitive parameter. A third intermittent-flow experiment was started with small, exponentially growing populations. These populations had a stable age distribution, were composed of cohorts of different ages and showed an almost perfect logistic growth. Cadmium was shown to reduce the upper numerical limit (carrying capacity) for D. magna and was inversely related to this parameter: log Y = 2.85 -0.20 log [Cd]; r = -0.99. A "nontoxic concentration" could not be established. Based on the "background" concentration of cadmium, a freshwater quality criterion of 0.1 microgram/liter is proposed. The results are used to discuss several shortcomings of the current methods. Finally it is stated that the introduction of the concepts of population dynamics in reproduction tests with D. magna is a realistic step towards ecotoxicology. PMID:3987588

  7. Inactivation mechanism of chlorination in Escherichia coli internalized in Limnoithona sinensis and Daphnia magna.

    PubMed

    Lin, Tao; Chen, Wei; Cai, Bo

    2016-02-01

    Zooplankton may harbor microorganisms in the aquatic environment, thus protecting them from disinfection during drinking water treatment. However, few studies have evaluated the protective effect of internalization by zooplankton against bacterial disinfection. In this study, we investigated the role of zooplankton (Limnoithona sinensis and Daphnia magna) as a refuge for ingested bacteria against inactivation by chlorination. Only 30% of chlorine reached the internalized bacteria inside the digestive tract of zooplankton. However, this was sufficient to achieve 1.4 log inactivation of internalized Escherichia coli in L. sinensis and 1.2 log inactivation in D. magna at Ct values of 80 mg min/L. Inactivation of internalized bacteria was achieved through the active transfer of free chlorine in the bulk water into the zooplankton digestive tract during grazing activity. D. magna was more sensitive to hypochlorous acid than L. sinensis, and its grazing behavior was inhibited during the inactivation experiment. PMID:26624518

  8. Effects of the artificial sweetener sucralose on Daphnia magna and Americamysis bahia survival, growth and reproduction.

    PubMed

    Huggett, D B; Stoddard, K I

    2011-10-01

    The artificial sweetener sucralose has been detected in municipal wastewater effluent and surface waters at concentrations ranging from ng/L to low μg/L. Few chronic ecotoxicological data are available in the peer reviewed literature with respect to sucralose. To address this data gap, 21 d Daphnia magna and 28 d Americamysis bahia (mysid shrimp) studies were conducted to assess the effects of sucralose on the survival, growth and reproduction of these organisms. Concentrations ⩽1800mg/L resulted in no statistically significant reduction in D. magna survival or reproduction. Survival, growth and reproduction of mysid shrimp were unaffected by ⩽93mg/L sucralose. The no observable effect concentration (NOEC) and lowest observable effect concentration (LOEC) for the D. magna study were 1800 and >1800mg/L, respectively. The NOEC and LOEC for the mysid study were 93 and >93mg/L, respectively. Collectively, these data suggest that the concentrations of sucralose detected in the environment are well below those required to elicit chronic effects in freshwater or marine invertebrates. PMID:21742009

  9. Evaluation of a high-hardness COMBO medium and frozen algae for Daphnia magna.

    PubMed

    Baer, K N; Goulden, C E

    1998-03-01

    A new high-hardness (H-H) COMBO medium for long-term culturing and bioassay testing of Daphnia magna was evaluated in 21-day survival, growth, and reproduction studies. The COMBO medium originally designed for softwater daphnid species (i.e., D. pulicaria) was modified for the hardwater species D. magna. This medium also allowed continuous culturing of a green algal food source for daphnids, Ankistrodesmus falcatus. After 12 generations of culturing in H-H COMBO medium, the mean fecundity was 128 +/- 12 (coefficient of variation = 9.4%). No significant observations of dead young, aborted eggs, or reduced antennas were made during the 6 months of continuous culturing. The no-observable-effect concentration (NOEC) for a reference toxicant standard, 3,4-dichloroaniline (3,4-DCA), was 8.3 micrograms/liter, which is similar to published values. These studies demonstrate that H-H COMBO is an acceptable medium for use for culturing and bioassay testing with D. magna. Additional experiments using frozen aliquots of A. falcatus were conducted. Although mean fecundity (64 +/- 7) and adult length were significantly decreased from the values for daphnids fed fresh algae, the NOEC for 3,4-DCA was > 25 micrograms/liter. The use of this alternative food source in bioassay testing appears promising, but further optimization of feeding rates is warranted. PMID:9570911

  10. DNA damage and oxidative stress induced by acetylsalicylic acid in Daphnia magna.

    PubMed

    Gómez-Oliván, Leobardo Manuel; Galar-Martínez, Marcela; Islas-Flores, Hariz; García-Medina, Sandra; SanJuan-Reyes, Nely

    2014-08-01

    Acetylsalicylic acid is a nonsteroidal anti-inflammatory widely used due to its low cost and high effectiveness. This compound has been found in water bodies worldwide and is toxic to aquatic organisms; nevertheless its capacity to induce oxidative stress in bioindicators like Daphnia magna remains unknown. This study aimed to evaluate toxicity in D. magna induced by acetylsalicylic acid in water, using oxidative stress and DNA damage biomarkers. An acute toxicity test was conducted in order to determine the median lethal concentration (48-h LC50) and the concentrations to be used in the subsequent subacute toxicity test in which the following biomarkers were evaluated: lipid peroxidation, oxidized protein content, activity of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, and level of DNA damage. Lipid peroxidation level and oxidized protein content were significantly increased (p<0.05), and antioxidant enzymes significantly altered with respect to controls; while the DNA damage were significantly increased (p<0.05) too. In conclusion, acetylsalicylic acid induces oxidative stress and DNA damage in D. magna. PMID:24747829

  11. Hard X-ray nanoprobe investigations of the subtissue metal distributions within Daphnia magna.

    PubMed

    De Samber, B; De Schamphelaere, K A C; Janssen, C R; Vekemans, B; De Rycke, R; Martinez-Criado, G; Tucoulou, R; Cloetens, P; Vincze, L

    2013-07-01

    The unique potential of nanoscale elemental imaging of major/minor and trace-level elemental distributions within thin biological tissue sections of the ecotoxicological model organism Daphnia magna is demonstrated by synchrotron radiation nano-X-ray fluorescence (nano-XRF). The applied highly specialized sample preparation method, coupled with the high spatial resolution (∼180 nm) and high X-ray photon flux (6 × 10(11) photons/s) available at the European Synchrotron Radiation Facility (ESRF) ID22NI beamline proved to be critical for the high-quality visualization of (trace-)metal distributions on the submicron level within the target structures of interest. These include the branchial sacs on the thoracic appendages (epipodites) of D. magna, which are osmoregulatory regions where ion exchange occurs. For the main element of interest (Zn), detection limits of 0.7 ppm (3 ag) was reached in fast-scanning mode using an acquisition time of 0.3 s/pixel. As demonstrated, synchrotron radiation nano-XRF revealed the elemental distributions of Ca, Fe, and Zn within this osmoregulatory region on the submicron scale, aiding the exploration of possible detoxification mechanisms of Zn within D. magna at the subtissue level. PMID:23681201

  12. [Thermal preference and avoidance in cladoceran Daphnia magna strauss (Crustacea, Cladocera) acclimated to constant temperature].

    PubMed

    Verbitskiĭ, V B; Verbitskaia, T I

    2012-01-01

    The final preferable temperature (FPT) and avoidance temperature (AT) were determined in parthenogenetic females of the crustacean Daphnia magna Strauss. The animals were preliminary acclimated to constant temperature of 23.4 degrees C followed by keeping them in a thermo-gradient device for 24 days. It was revealed that daphnia select FPT with overshoot. In the first four days, daphnia selected temperatures 0.6-1.6 degrees C higher than the acclimation temperature and 4-7.4 degrees C higher than FPT. Two zones of FPT are revealed: the first zone by the time of 5-13 days (17.6 +/- 1.2 degrees C); the second, by 16-24 days (20 +/- 1.5 degrees C). The dynamics of AT diapason followed the dynamics of FPT. Two zones of the AT plateau were observed: over five to 17 days (temperatures < 14 degrees C and > 25.8 degrees C were avoided) and for 21-24 days (< 8.5 degrees C and 26 degrees C). PMID:22567878

  13. Bioavailability of Pyrene Associated with Suspended Sediment of Different Grain Sizes to Daphnia magna as Investigated by Passive Dosing Devices.

    PubMed

    Zhang, Xiaotian; Xia, Xinghui; Li, Husheng; Zhu, Baotong; Dong, Jianwei

    2015-08-18

    Suspended sediment (SPS) is widely present in rivers around the world. However, the bioavailability of hydrophobic organic compounds (HOCs) associated with SPS is not well understood. In this work, the influence of SPS grain size on the bioavailability of SPS-associated pyrene to Daphnia magna was studied using a passive dosing device, which maintained a constant freely dissolved pyrene concentration (Cfree) in the exposure systems. The immobilization and protein as well as enzymatic activities of Daphnia magna were investigated to study the bioavailability of SPS-associated pyrene. With Cfree of pyrene ranging from 20.0 to 60.0 μg L(-1), the immobilization of Daphnia magna in the presence of 1 g L(-1) SPS was 1.11-2.89 times that in the absence of SPS. The immobilization caused by pyrene associated with different grain size SPS was on the order of 50-100 μm > 0-50 μm > 100-150 μm. When pyrene Cfree was 20.0 μg L(-1), the immobilization caused by pyrene associated with 50-100 μm SPS was 1.42 and 2.43 times that with 0-50 and 100-150 μm SPS, respectively. The protein and enzymatic activities of Daphnia magna also varied with the SPS grain size. The effect of SPS grain size on the bioavailability of SPS-associated pyrene was mainly due to the difference in SPS ingestion by Daphnia magna and SPS composition, especially the organic carbon type, among the three size fractions. This study suggests that not only the concentration but also the size distribution of SPS should be considered for the development of a biological effect database and establishment of water quality criteria for HOCs in natural waters. PMID:26199982

  14. The Effects of Natural and Anthropogenic Microparticles on Individual Fitness in Daphnia magna.

    PubMed

    Ogonowski, Martin; Schür, Christoph; Jarsén, Åsa; Gorokhova, Elena

    2016-01-01

    Concerns are being raised that microplastic pollution can have detrimental effects on the feeding of aquatic invertebrates, including zooplankton. Both small plastic fragments (microplastics, MPs) produced by degradation of larger plastic waste (secondary MPs; SMPs) and microscopic plastic spheres used in cosmetic products and industry (primary MPs; PMPs) are ubiquitously present in the environment. However, despite the fact that most environmental MPs consist of weathered plastic debris with irregular shape and broad size distribution, experimental studies of organism responses to MP exposure have largely used uniformly sized spherical PMPs. Therefore, effects observed for PMPs in such experiments may not be representative for MP-effects in situ. Moreover, invertebrate filter-feeders are generally well adapted to the presence of refractory material in seston, which questions the potential of MPs at environmentally relevant concentrations to measurably affect digestion in these organisms. Here, we compared responses to MPs (PMPs and SMPs) and naturally occurring particles (kaolin clay) using the cladoceran Daphnia magna as a model organism. We manipulated food levels (0.4 and 9 μg C mL-1) and MP or kaolin contribution to the feeding suspension (<1 to 74%) and evaluated effects of MPs and kaolin on food uptake, growth, reproductive capacity of the daphnids, and maternal effects on offspring survival and feeding. Exposure to SMPs caused elevated mortality, increased inter-brood period and decreased reproduction albeit only at high MP levels in the feeding suspension (74% by particle count). No such effects were observed in either PMP or kaolin treatments. In daphnids exposed to any particle type at the low algal concentration, individual growth decreased by ~15%. By contrast, positive growth response to all particle types was observed at the high algal concentration with 17%, 54% and 40% increase for kaolin, PMP and SMP, respectively. When test particles comprised

  15. The Effects of Natural and Anthropogenic Microparticles on Individual Fitness in Daphnia magna

    PubMed Central

    Schür, Christoph; Jarsén, Åsa; Gorokhova, Elena

    2016-01-01

    Concerns are being raised that microplastic pollution can have detrimental effects on the feeding of aquatic invertebrates, including zooplankton. Both small plastic fragments (microplastics, MPs) produced by degradation of larger plastic waste (secondary MPs; SMPs) and microscopic plastic spheres used in cosmetic products and industry (primary MPs; PMPs) are ubiquitously present in the environment. However, despite the fact that most environmental MPs consist of weathered plastic debris with irregular shape and broad size distribution, experimental studies of organism responses to MP exposure have largely used uniformly sized spherical PMPs. Therefore, effects observed for PMPs in such experiments may not be representative for MP-effects in situ. Moreover, invertebrate filter-feeders are generally well adapted to the presence of refractory material in seston, which questions the potential of MPs at environmentally relevant concentrations to measurably affect digestion in these organisms. Here, we compared responses to MPs (PMPs and SMPs) and naturally occurring particles (kaolin clay) using the cladoceran Daphnia magna as a model organism. We manipulated food levels (0.4 and 9 μg C mL-1) and MP or kaolin contribution to the feeding suspension (<1 to 74%) and evaluated effects of MPs and kaolin on food uptake, growth, reproductive capacity of the daphnids, and maternal effects on offspring survival and feeding. Exposure to SMPs caused elevated mortality, increased inter-brood period and decreased reproduction albeit only at high MP levels in the feeding suspension (74% by particle count). No such effects were observed in either PMP or kaolin treatments. In daphnids exposed to any particle type at the low algal concentration, individual growth decreased by ~15%. By contrast, positive growth response to all particle types was observed at the high algal concentration with 17%, 54% and 40% increase for kaolin, PMP and SMP, respectively. When test particles comprised

  16. Effects of algal food quality on sexual reproduction of Daphnia magna.

    PubMed

    Choi, Jong-Yun; Kim, Seong-Ki; La, Geung-Hwan; Chang, Kwang-Hyeon; Kim, Dong-Kyun; Jeong, Keon-Young; Park, Min S; Joo, Gea-Jae; Kim, Hyun-Woo; Jeong, Kwang-Seuk

    2016-05-01

    The objective of our study was to investigate sexual reproduction of Daphnia magna associated with mating behaviors and hatching rates, according to different algal food sources. Since a diatom is known to contain more abundant long-chain poly unsaturated fatty acids (PUFAs), we hypothesized that the diatom-consuming D. magna would exhibit more successful reproduction rates. Upon the hypothesis, we designed three experiments using two algal species, a green alga (Chlorella vulgaris) and a diatom (Stephanodiscus hantzschii). From the results, we found that the mating frequency and copulation duration increased in the treatment with S. hantzschii, resulting in a significant increase of hatching rates of resting eggs. In the other two repetitive mating strategies (e.g., one female vs. multiple males, and one male vs. multiple females), we found that the hatching rates of resting eggs were greater in the S. hantzschii treatment. In addition to the mating strategy, male body size significantly increased in the diatom treatment, hence average diameter of penis was also statistically different among the treatments (greater diameter in the S. hantzschii treatment). To examine the effect of algal food quality, we estimated quantity of fatty acids in the two algal species. Our result showed that S. hantzschii had a higher proportion of long-chain PUFAs than C. vulgaris. Furthermore, a stable isotope analysis revealed that carbon and nitrogen originated from S. hantzschii were more assimilated to D. magna. In summary, our study manifested that diatom consumption of D. magna leads to more successful sexual reproduction. We then discussed how the diatom consumption of zooplankton influences food web dynamics in a freshwater ecosystem. PMID:27217941

  17. How reliable are data for the ecotoxicity of trivalent chromium to Daphnia magna?

    PubMed

    Ponti, Benedetta; Bettinetti, Roberta; Dossi, Carlo; Vignati, Davide Anselmo Luigi

    2014-10-01

    Risk assessments from the European Union and the World Health Organization report values for acute and chronic toxicity of Cr(III) to Daphnia magna in the range of 0.6 mg/L to 111 mg/L and 0.047 mg/L to 3.4 mg/L, respectively. To understand whether factors other than the use of different test media and data reporting contribute to this variability, the authors tested the acute (48-h) and chronic (21-d) toxicities of Cr(III) to D. magna according to Organisation for Economic Co-operation and Development (OECD) methods. Filterable (0.45-µm) chromium concentrations were measured at 0 h, 6 h, 24 h, and 48 h, the latter value corresponding to the total duration of the acute tests and to the interval between medium renewals in chronic tests. In highly alkaline media (4.9 meq/L), Cr concentrations decreased rapidly below the analytical detection limit, and no toxicity was observed. In less alkaline media (approximately 0.8 meq/L), the decrease in filterable Cr concentrations was inversely proportional to the quantity of added Cr(III). The authors concluded that existing data likely underestimate the ecotoxicity of Cr(III) to D. magna. A reliable assessment of the hazard of Cr(III) to D. magna must consider that exposure concentrations can decrease markedly from the beginning to the end of a test and that medium alkalinity strongly influences the outcome of laboratory toxicity tests. PMID:24943496

  18. A comparison of the response of Simocephalus mixtus (Cladocera) and Daphnia magna to contaminated freshwater sediments.

    PubMed

    Martínez-Jerónimo, Fernando; Cruz-Cisneros, Jade Lizette; García-Hernández, Leonardo

    2008-09-01

    The southeast region of Mexico is characterized by intensive oil industry activities carried out by the national public enterprise Petróleos Mexicanos (PEMEX). The freshwater lagoon "El Limón", located in the municipality of Macuspana, state of Tabasco, Mexico, has received over 40 years discharges of untreated waste waters from the Petrochemical Complex "Ciudad PEMEX", located on the border of the lagoon. To assess the toxicity of the sediments and, hence, to obtain information on the biological effects of these contaminating discharges, the cladoceran Simocephalus mixtus was used as a test organism in acute (48h) and chronic (12d) toxicity assays. For comparison purposes, bioassays were also conducted with the reference cladoceran Daphnia magna. The sediments of this lagoon contain important amounts of metals and hydrocarbons that have been accumulated over time; however, the acute tests only registered reduced lethal effects on the test organisms (maxima of 10% and 17% mortality for D. magna and S. mixtus, respectively). This may be due to low bioavailability of the pollutants present in the sediments. On the other hand, partial or total inhibition and delay in the start of reproduction, reduction in clutch sizes, reduced survival, as well as reduction in the size of adults and offspring were recorded in the chronic assays. The most evident chronic effects were found in S. mixtus; in this species, reproduction was inhibited up to 72%, whereas D. magna was only affected by 24%. We determined that S. mixtus is a more sensitive test organism than D. magna to assess whole-sediment toxicity in tropical environments, and that chronic exposure bioassays are required for an integrated sediment evaluation. The sediments from "El Limón" lagoon induced chronic intoxication responses and, therefore, remediation measures are urgently needed to recover environmental conditions suitable for the development of its aquatic biota. PMID:18573528

  19. Hormetic response of cholinesterase from Daphnia magna in chronic exposure to triazophos and chlorpyrifos.

    PubMed

    Li, Shaonan; Tan, Yajun

    2011-01-01

    In vivo activity of cholinesterase (ChE) in Daphnia magna was measured at different time points during 21-day exposure to triazophos and chlorpyrifos ranging from 0.05 to 2.50 microg/L and 0.01 to 2.00 microg/L, respectively. For exposure to triazophos, ChE was induced up to 176.5% at 1.5 microg/L and day 10 when measured by acetylthiocholine (ATCh), whereas it was induced up to 174.2% at 0.5 microg/L and day 10 when measured by butyrylthiocholine (BTCh). For exposure to chlorpyrifos, ChE was induced up to 134.0% and 160.5% when measured by ATCh and BTCh, respectively, with both maximal inductions detected at 0.1 microg/L and day 8. Obvious induction in terms of ChE activity was also detected in daphnia removed from exposures 24 hr after their birth and kept in a recovery culture for 21 days. Results indicated that the enzyme displayed symptoms of hormesis, a characteristic featured by conversion from low-dose stimulation to high-dose inhibition. In spite of that, no promotion in terms of reproduction rate and body size was detected at any tested concentrations regardless of whether the daphnia were collected at end of the 21-day exposure or at end of a 21-day recovery culture. This suggested that induction of ChE caused by anticholinesterases had nothing to do with the prosperity of the daphnia population. PMID:21790060

  20. Assessment of the toxicity of a pesticide with a two-generation reproduction test using Daphnia magna.

    PubMed

    Sánchez, M; Ferrando, M D; Sancho, E; Andreu, E

    1999-11-01

    Daphnia magna (F0 generation) were exposed during 21 days to different diazinon concentrations. Offspring (animals from the first and third brood: F1 (1st) and F1 (3rd), respectively) were transferred to a free pesticide medium during a 21-day recovery period. The algae Nannochloris oculata (5x10(5) cells/ml) were used as food. In this recovery study, survival, growth and reproduction (mean total young per female, mean brood size, onset of reproduction and mean number broods per female) were assessed as individual parameters, and the intrinsic rate of natural increase (r) as population parameter for F1 (1st and 3rd broods) daphnids. Reproduction as well as survival was still reduced in F1 (1st) generation daphnids from parentals (F0) exposed to the highest diazinon concentration. However, F1 (1st) and F1 (3rd) individuals from parentals exposed to pesticide concentrations below 0.5 ng/l were able to restore reproduction and survival when a recovery period of 21 days was allowed. PMID:10661716

  1. Bisphenol A migration from plastic materials: direct insight of ecotoxicity in Daphnia magna.

    PubMed

    Mansilha, Catarina; Silva, Poliana; Rocha, Sónia; Gameiro, Paula; Domingues, Valentina; Pinho, Carina; Ferreira, Isabel M P L V O

    2013-09-01

    Bisphenol A (BPA) is an endocrine disrupting chemical (EDC) whose migration from food packaging is recognized worldwide. However, the real overall food contamination and related consequences are yet largely unknown. Among humans, children's exposure to BPA has been emphasized because of the immaturity of their biological systems. The main aim of this study was to assess the reproductive impact of BPA leached from commercially available plastic containers used or related to child nutrition, performing ecotoxicological tests using the biomonitoring species Daphnia magna. Acute and chronic tests, as well as single and multigenerational tests were done. Migration of BPA from several baby bottles and other plastic containers evaluated by GC-MS indicated that a broader range of foodstuff may be contaminated when packed in plastics. Ecotoxicological test results performed using defined concentrations of BPA were in agreement with literature, although a precocious maturity of daphnids was detected at 3.0 mg/L. Curiously, an increased reproductive output (neonates per female) was observed when daphnids were bred in the polycarbonate (PC) containers (145.1 ± 4.3 % to 264.7 ± 3.8 %), both in single as in multigenerational tests, in comparison with the negative control group (100.3 ± 1.6 %). A strong correlated dose-dependent ecotoxicological effect was observed, providing evidence that BPA leached from plastic food packaging materials act as functional estrogen in vivo at very low concentrations. In contrast, neonate production by daphnids cultured in polypropylene and non-PC bottles was slightly but not significantly enhanced (92.5 ± 2.0 % to 118.8 ± 1.8 %). Multigenerational tests also revealed magnification of the adverse effects, not only on fecundity but also on mortality, which represents a worrying trend for organisms that are chronically exposed to xenoestrogens for many generations. Two plausible explanations for the observed results

  2. The uptake of ZnO and CuO nanoparticles in the water-flea Daphnia magna under acute exposure scenarios.

    PubMed

    Adam, Nathalie; Leroux, Frédéric; Knapen, Dries; Bals, Sara; Blust, Ronny

    2014-11-01

    In this study the uptake of ZnO and CuO nanoparticles by Daphnia magna was tested. Daphnids were exposed during 48 h to acute concentrations of the nanoparticles and corresponding metal salts. The Daphnia zinc and copper concentration was measured and the nanoparticles were localized using electron microscopy. The aggregation and dissolution in the medium was characterized. A fast dissolution of ZnO in the medium was observed, while most CuO formed large aggregates and only a small fraction dissolved. The Daphnia zinc concentration was comparable for the nanoparticles and salts. Contrarily, a much higher Daphnia copper concentration was observed in the CuO exposure, compared to the copper salt. CuO nanoparticles adsorbed onto the carapace and occurred in the gut but did not internalize in the tissues. The combined dissolution and uptake results indicate that the toxicity of both nanoparticle types was caused by metal ions dissolved from the particles in the medium. PMID:25108488

  3. Acute and chronic toxicity of buprofezin on Daphnia magna and the recovery evaluation.

    PubMed

    Liu, Yong; Qi, Suzhen; Zhang, Wen; Li, Xuefeng; Qiu, Lihong; Wang, Chengju

    2012-11-01

    The toxic effects of buprofezin on Daphnia magna after both chronic and acute exposures were evaluated according to OECD guidelines. A 48-h acute exposure of buprofezin resulted in daphnid immobility at an EC(50) of 0.44 mg/L. In a 14 days chronic exposure of buprofezin (0, 0.025, 0.05, 0.10 and 0.15 mg/L), the development and reproduction of daphnids were all significantly affected and the body length was more sensitive than other observed parameters. However, the adverse effects of buprofezin on parental daphnids can be passed on to their offspring and cannot be recovered in a short time. PMID:22940740

  4. Population developmental stage determines the recovery potential of Daphnia magna populations after fenvalerate application.

    PubMed

    Pieters, Barry J; Liess, Matthias

    2006-10-01

    This study investigated the responses of Daphnia magna populations to pulsed exposures of the pyrethroid insecticide Fenvalerate applied during an early and a late stage of population development, and analyzed the dynamics of the subsequent recovery. A novel digital observation technique was used to describe the size and numbers of animals. High Fenvalerate concentrations caused high mortality rates during exponential population growth as well as during the food-limited stationary phase. However, recovery of populations took considerably longer in the stationary phase than in populations growing exponentially. The poor nutritional and reproductive state of food-deprived adults was indicated as the main cause of the slow recovery of populations. It is argued that populations operating at the carrying capacity of their environment are vulnerable to toxicant-induced disturbances to an extent not predictable from observations on exponentially growing populations such as are commonly used in ecotoxicology. PMID:17051815

  5. Joint Toxicity of Two Phthalates with Waterborne Copper to Daphnia magna and Photobacterium phosphoreum.

    PubMed

    Huang, Boyang; Li, Dinglong; Yang, Yan

    2016-09-01

    Di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP) are two widely used phthalates, while Cu(II) is a common valence state of copper. They have been ubiquitously detected in the aquatic environment, but information on their joint toxicity to aquatic organisms is scarce. In this study, we evaluated the combined effects of copper and these two phthalates to Daphnia magna and Photobacterium phosphoreum by quantifying the acute toxicity expressed by the EC50 (the concentration causing 50 % of maximal effect) value. The toxicity order was DEHP + Cu(II) > DBP + Cu(II) > Cu(II) > DEHP > DBP for both test species. Antagonism effects were found in the joint toxicity of Cu(II) combined with DBP or DEHP using the toxic unit method. These findings have important implications in environmental risk assessment for phthalates in the aquatic environment in the presence of heavy metals. PMID:27385371

  6. Infections by Pasteuria do not protect its natural host Daphnia magna from subsequent infections.

    PubMed

    Duneau, David; Ebert, Dieter; Du Pasquier, Louis

    2016-04-01

    The existence of immunological memory in invertebrates remains a contentious topic. Exposure of Daphnia magna crustaceans to a noninfectious dose of the bacterium Pasteuria ramosa has been reported to reduce the chance of future infection upon exposure to higher doses. Using clonal hosts and parasites, we tested whether initial exposure of the host to the parasite (priming), followed by clearing of the parasite with antibiotic, protects the host from a second exposure (challenge). Our experiments included three treatments: priming and challenge with the same or with a different parasite clone, or no priming. Two independent experiments showed that both the likelihood of infection and the degree of parasite proliferation did not differ between treatments, supporting the conclusion that there is no immunological memory in this system. We discuss the possibility that previous discordant reports could result from immune or stress responses that did not fade following initial priming. PMID:26709232

  7. Chronic effects of Pinus radiata and Eucalyptus globulus kraft mill effluents and phytosterols on Daphnia magna.

    PubMed

    López, D; Chamorro, S; Silva, J; Bay-Schmith, E; Vidal, G

    2011-12-01

    Two kraft pulp mill effluents were compared in terms of their chronic toxicity to Daphnia magna. One resulted from pulping Pinus radiata and the other came from a parallel processing of Pinus radiata and Eucalyptus globulus (mixed kraft pulp mill effluent). The concentration of phytosterols found in the mixed kraft pulp mill effluent was higher than in the effluent from Pinus radiata, with values of 0.1082 and 0.02 μg/L, respectively. The phytosterols per se are responsible for 12.9% and 8.1% of the deviation from the natural shape, while the kraft pulp mill effluents account for 25.6%-27.8% of shape deviation. The role of β-sitosterol and stigmasterol is discussed in relation to endocrine disruption. PMID:21979137

  8. Gravity Perception in a Cladoceran-zooplankter: Anatomy of Antennal Socket Setae of Daphnia Magna

    NASA Technical Reports Server (NTRS)

    Meyers, D. G.

    1985-01-01

    Night orientation in Daphnia magna was recently associated with setae on the basal socket of the swimming antennae. Daphnids are suspected of maintaining nocturnal equilibrium by monitoring the gravity vector through upward setal deflections caused by sinking between antennal swimming strokes. Setae appear to be hydrodynamic rheoceptors that sense the gravity vector indirectly by mechanoreceptivity to the direction and velocity of water currents. Neuroanatomical stains have revealed cell bodies at the base of the setal shafts, dendritic connections through to the distal ends of the shafts, and axonal tracts around the antennal socket connecting with an additional cell body and continuing toward the brain. These anatomical observations combined with previous scanning electron microscopy studies suggest that the setae are similar to mechanoreceptors and propreceptors used by higher crustaceans to sense water currents and gravity, and maintained balance.

  9. Mixture toxicity effects of sea louse control agents in Daphnia magna.

    PubMed

    Rose, Stephanie; Altenburger, Rolf; Sturm, Armin

    2016-02-01

    Caligid sea lice are ectoparasites causing major disease problems in industrial salmon farming. Sea louse control currently relies widely on parasiticides. Among non-target species, crustaceans are particularly susceptible to salmon delousing agents. Drug combinations have recently been suggested for sea louse control; however, no information is available on the non-target effects of such mixtures. To obtain first insights into combination effects of salmon parasiticides, acute toxicity tests with the crustacean model species Daphnia magna were conducted. Four compounds, including two organophosphates and two pyrethroids, were tested individually and in all pair-wise combinations at one fixed concentration ratio. For most combinations, observed toxicities were close to predictions assuming concentration additivity. However, deltamethrin and cypermethrin showed greater than predicted combination effects, while the inverse was observed for deltamethrin and malathion. The results demonstrate combination effects of anti-sea louse agents and suggest that predictions based on concentration additivity are in most cases protective. PMID:26401637

  10. Feeding inhibition explains effects of imidacloprid on the growth, maturation, reproduction, and survival of Daphnia magna.

    PubMed

    Agatz, Annika; Cole, Tabatha A; Preuss, Thomas G; Zimmer, Elke; Brown, Colin D

    2013-03-19

    Effects of some xenobiotics on aquatic organisms might not be caused directly by the compound but rather arise from acclimation of the organism to stress invoked by feeding inhibition during exposure. Experiments were conducted to identify effects of imidacloprid on individual performance (feeding, growth, maturation, reproduction, and survival) of Daphnia magna under surplus and reduced food availability. Concentrations inhibiting feeding by 5, 50, and 95% after one day of exposure were 0.19, 1.83, and 8.70 mg/L, respectively. Exposure with imidacloprid at ≥ 3.7 mg/L reduced growth by up to 53 ± 11% within one week. Surplus food availability after inhibition allowed recovery from this growth inhibition, whereas limited food supply eliminated the potential for recovery in growth even for exposure at 0.15 mg/L. A shift in the distribution of individual energy reserves toward reproduction rather than growth resulted in increased reproduction after exposure to concentrations ≤ 0.4 mg/L. Exposure to imidacloprid at ≥ 4.0 mg/L overwhelmed this adaptive response and reduced reproduction by up to 57%. We used the individual based Daphnia magna population model IDamP as a virtual laboratory to demonstrate that only feeding was affected by imidacloprid, and that in turn this caused the other impacts on individual performance. Consideration of end points individually would have led to a different interpretation of the effects. Thus, we demonstrate how multiple lines of evidence linked by understanding the ecology of the organism are necessary to elucidate xenobiotic impacts along the effect cascade. PMID:23425205

  11. The effects of lead on delta-aminolevulinic acid dehydratase activity, growth, hemoglobin content, and reproduction in Daphnia magna.

    PubMed

    Berglind, R; Dave, G; Sjöbeck, M L

    1985-04-01

    The effects of continuous exposure to lead for various periods and recovery in clean water on delta-aminolevulinic acid dehydratase (ALA-D) activity, hemoglobin content, growth, and reproduction were studied in Daphnia magna. Steady-state inhibition of ALA-D activity was reached within 2 days in 16, 64, and 256 micrograms Pb liter-1, but restoration in clean water was prolonged in relation to previous exposure. In spite of the inhibition of ALA-D activity hemoglobin content increased after 2 days in 16 and 24 micrograms Pb liter-1. Furthermore, hemoglobin content in previously exposed animals increased during recovery in clean water. Maximum hemoglobin content (2.9 times control value) was found after 2 days recovery of animals exposed to 64 micrograms Pb liter-1. These findings suggest that some enzyme(s) other than ALA-D in the biosynthetic pathway of hemoglobin formation is (are) more sensitive to lead. Growth, in contrast to reproduction, was stimulated by low concentrations of lead (less than 64 micrograms Pb liter-1), although in 256 micrograms Pb liter-1 growth was also significantly impaired. After 19 days the 16 and 50% reproductive impairment concentrations were less than or equal to 1 and 10 micrograms Pb liter-1, respectively. PMID:3987601

  12. Effects of lead on delta-aminolevulinic acid dehydratase activity, growth, hemoglobin content, and reproduction in Daphnia magna

    SciTech Connect

    Berglind, R.; Dave, G.; Sjoebeck, M.L.

    1985-04-01

    The effects of continuous exposure to lead for various periods and recovery in clean water on delta-aminolevulinic acid dehydratase (ALA-D) activity, hemoglobin content, growth, and reproduction were studied in Daphnia magna. Steady-state inhibition of ALA-D activity was reached within 2 days in 16, 64, and 256 micrograms Pb liter-1, but restoration in clean water was prolonged in relation to previous exposure. In spite of the inhibition of ALA-D activity hemoglobin content increased after 2 days in 16 and 24 micrograms Pb liter-1. Furthermore, hemoglobin content in previously exposed animals increased during recovery in clean water. Maximum hemoglobin content (2.9 times control value) was found after 2 days recovery of animals exposed to 64 micrograms Pb liter-1. These findings suggest that some enzyme(s) other than ALA-D in the biosynthetic pathway of hemoglobin formation is (are) more sensitive to lead. Growth, in contrast to reproduction, was stimulated by low concentrations of lead (less than 64 micrograms Pb liter-1), although in 256 micrograms Pb liter-1 growth was also significantly impaired. After 19 days the 16 and 50% reproductive impairment concentrations were less than or equal to 1 and 10 micrograms Pb liter-1, respectively.

  13. Toxicity of pulse exposures of zinc, cadmium, and copper to pre-exposed trout and Daphnia

    SciTech Connect

    Cohen, A.S.; Hockett, J.R.; Stubblefield, W.A.; Mount, D.R.

    1994-12-31

    Previous studies have demonstrated that the sensitivity of fish to metals decreases following pre-exposure to sub-lethal concentrations. However, little information is available regarding the acclimatory capacity of invertebrate species or the ability of organisms to withstand brief (< 96 hr), high concentration pulse exposures to metals. Studies were conducted to investigate these issues. Groups of rainbow and brown trout were exposed for 1 0 days to single metals (Zn, Cu, and Cd) concentrations equal to 0.5 of the previously determined Incipient Lethal Level (ILL). Daphnia were similarly exposed for 24 hours to 0.5 of the predetermined 48-hr LC{sub 50}. Pre-exposed and naive (nonexposed) trout and D. magna were challenged with single 4-hr pulse exposures to each metal; organisms were monitored for a total of 96 and 48 hrs, respectively. Study results confirm a general increase in the ability of pre-exposed trout and D. magna to withstand subsequent pulse exposures. The magnitude of acquired tolerance varied depending on species and metal, but generally ranged from 1.2 to 5.9 times that of naive organisms.

  14. Trophic transfer of differently functionalized zinc oxide nanoparticles from crustaceans (Daphnia magna) to zebrafish (Danio rerio).

    PubMed

    Skjolding, L M; Winther-Nielsen, M; Baun, A

    2014-12-01

    The potential uptake and trophic transfer of nanoparticles (NP) is not well understood so far and for ZnO NP the data presented in peer-reviewed literature is limited. In this paper the influence of surface functionalization on the uptake and depuration behavior of ZnO NP, ZnO-OH NP and ZnO-octyl NP in D. magna was studied. Bulk ZnO particles (≤5 μm) and ZnCl2 were used as references for uptake of particles and dissolved species of Zn, respectively. Furthermore, the trophic transfer of ZnO NP and ZnO-octyl NP from daphnids (Daphnia magna) to zebra fish (Danio rerio) was studied. For ZnO NP and ZnO-octyl NP fast uptakes in D. magna were observed, whereas no measurable uptake took place for ZnO-OH NP. Lower body burden of ZnCl2 was found compared to both ZnO NP and ZnO-octyl. Contrary, the body burden for bulk ZnO was higher than that of ZnO NP but lower than ZnO-octyl. The higher body burdens found for functionalized ZnO-octyl NP than for non-functionalized ZnO NP showed that that the functionalization of the NP has a high influence on the uptake and depuration behavior. Though no mortality was observed, the resulting body burdens were 9.6 times (ZnO NP) and 47 times (ZnO-octyl NP) higher than toxic levels reported for zinc in D. magna. Consequently, the zinc recovered in the animals was not solely due to soluble zinc, but agglomerates/aggregates of ZnO NP or ZnO-octyl NP contributed to the body burdens. The trophic transfer study showed uptake of both ZnO NP and ZnO-octyl NP reaching more than tenfold higher levels than those obtained through aqueous exposure in other studies. This study contributes to expand the available data on uptake behavior of differently functionalized ZnO NP in D. magna and the potential trophic transfer from zooplankton to fish. PMID:25456224

  15. Aquatic toxicity of cartap and cypermethrin to different life stages of Daphnia magna and Oryzias latipes.

    PubMed

    Kim, Younghee; Jung, Jinyong; Oh, Sorin; Choi, Kyungho

    2008-01-01

    Cartap and cypermethrin, which are among the most widely used pesticides in many countries, are considered safe because of their low mammalian toxicity and their low persistence in the environment. However, recent findings of endocrine-disrupting effects and developmental neurotoxicity have raised concerns about the potential ecological impacts of these pesticides. We evaluated the aquatic toxicity of cartap [S,S'-(2-dimethylaminotrimethylene) bis(thiocarbamate), unspecified hydrochloride] and cypermethrin [(RS)-alpha-cyano-3-phenoxybenzyl-(1RS,3RS,1RS,3SR)-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylate], both individually and combined, on different life stages of the freshwater cladoceran Daphnia magna and a freshwater teleost, Japanese medaka (Oryzias latipes). The 96-hr Daphnia median effective concentrations (EC50s) for cartap and cypermethrin were 91.0 microg/L and 0.00061 microg/L, respectively. Rapid recovery of Daphnia was observed after short-term pulsed exposure to cartap and cypermethrin; there were no adverse effects on reproduction or survival 20 d after a 24 hr exposure to cartap up to 1240 microg/L and cypermethrin up to 1.9 microg/L. Chronic continuous exposure (for 21 d) of 7-d-old Daphnia to cypermethrin significantly reduced the intrinsic population growth rate in a concentration-dependent manner. However, because the intrinsic population growth rates were all above zero, populations did not decrease even at the highest experimental concentration of 200 ng/L. Exposure of Daphnia neonates (< 24 hr old) to cypermethrin for 21 d caused significant, sub-lethal reproduction-related problems, such as increased time to first brood, reduced brood size, and reduced total brood number, at 0.0002, 0.002, and 0.2 ng/L cypermethrin, but the intrinsic population growth rate was not significantly affected. Oryzias latipes was relatively more resistant to both pesticides. In particular, embryos appeared to be more resistant than juveniles or adults

  16. Comparison of ethanol toxicity to Daphnia magna and Ceriodaphnia dubia tested at two different temperatures: static acute toxicity test results

    SciTech Connect

    Takahashi, I.T.; Cowgill, U.M.; Murphy, P.G.

    1987-08-01

    Ethanol is a commonly used solvent in toxicity testing, yet there are few studies in the literature devoted to its toxicity to zooplankton. The purpose of this study was to compare the response of Daphnia magna Straus 1820 and Ceriodaphnia dubia J. Richard 1894 to ethanol. Two temperatures were selected because most toxicity data involving D. magna has been carried out at 20/sup 0/C while all discussions concerning C. dubia appear to relate to temperatures oscillating around 25/sup 0/C. Thus, the response of these two organisms to ethanol was examined at 20/sup 0/C and at 24/sup 0/C.r

  17. Importance of metallothioneins in the cadmium detoxification process in Daphnia magna.

    PubMed

    Fraysse, B; Geffard, O; Berthet, B; Quéau, H; Biagianti-Risbourg, S; Geffard, A

    2006-11-01

    Good knowledge of the relationship between toxic metals and biological systems, particularly the sub-cellular fraction, could be a suitable early indicator of toxic effects. These effects and the sub-cellular behaviour of cadmium were studied with a widely used species in freshwater toxicity bioassays, Daphnia magna. In spite of this very commonplace usage in ecotoxicological studies, very few data are available on its toxicant metabolism and in particular metal homeostasis. Combining multi-tools analysis, a soluble protein was found: it is heat-stable, rich in sulfhydryl groups (differential pulse polarography), characterised by a molecular mass of approximately 6.5 kDa, with a G-75 chromatographic profile corresponding to the rabbit metallothioneins monomer, with few if any aromatic-containing amino acids, it binds metals (e.g. Cd, Cu), and its concentration increases with Cd exposure. This evidence led us to hypothesise that metallothioneins (MTs) are present in D. magna. Up to 75% of the Cd body burden with Cd exposure is bound to the MTs fraction. The increase in the Cd concentration in the surrounding medium and concomitantly in daphnids induces sub-cellular reorganisation of essential metals such as Cu and Zn. The rate of metals in the soluble cellular fraction and associated with MTs increases with the Cd body burden. Monitoring sub-cellular distribution of metals after exposure in the natural environment could be very useful for ecotoxicological assessment. PMID:17113354

  18. Ecotoxicological assessment of grey water treatment systems with Daphnia magna and Chironomus riparius.

    PubMed

    Hernández Leal, L; Soeter, A M; Kools, S A E; Kraak, M H S; Parsons, J R; Temmink, H; Zeeman, G; Buisman, C J N

    2012-03-15

    In order to meet environmental quality criteria, grey water was treated in four different ways: 1) aerobic 2) anaerobic+aerobic 3) aerobic+activated carbon 4) aerobic+ozone. Since each treatment has its own specific advantages and disadvantages, the aim of this study was to compare the ecotoxicity of differently treated grey water using Chironomus riparius (96 h test) and Daphnia magna (48 h and 21d test) as test organisms. Grey water exhibited acute toxicity to both test organisms. The aerobic and combined anaerobic+aerobic treatment eliminated mortality in the acute tests, but growth of C. riparius was still affected by these two effluents. Post-treatment by ozone and activated carbon completely removed the acute toxicity from grey water. In the chronic toxicity test the combined anaerobic+aerobic treatment strongly affected D. magna population growth rate (47%), while the aerobic treatment had a small (9%) but significant effect. Hence, aerobic treatment is the best option for biological treatment of grey water, removing most of the toxic effects of grey water. If advanced treatment is required, the treatment with either ozone or GAC were shown to be very effective in complete removal of toxicity from grey water. PMID:22197265

  19. Predicting the toxicity of permethrin to Daphnia magna in water using SPME fibers.

    PubMed

    Harwood, Amanda D; Bunch, Aubrey R; Flickinger, Dallas L; You, Jing; Lydy, Michael J

    2012-04-01

    Multiple factors can influence bioavailability, which can make predictions of toxicity in natural systems difficult. The current study examined the potential use of solid-phase microextraction fibers as a matrix-independent approach to predict the toxicity of permethrin to Daphnia magna across various water sources, including a laboratory reconstituted water, two natural waters, and a modified natural water. Water source strongly affected the toxicity of permethrin as well as the concentration-response relationships. Although permethrin concentrations in the water were predictive of toxicity to D. magna for individual water sources, there was no relationship between permethrin concentrations among water sources and mortality. This indicated that compositional differences among water sources can greatly influence toxicity, suggesting that benchmarks established using reconstituted water may be overly conservative for some natural waters. In addition, although permethrin tissue residues were predictive of mortality for individual waters, the correlation among waters was not as clear. Finally, both 48-h and equilibrium-based SPME fiber concentrations adequately predicted toxicity independent of water properties. This demonstrated that bioavailability-based estimates provided a more accurate prediction of toxicity than water concentrations and that SPME fibers could be used in environmental monitoring as a rapid and accurate means of predicting toxicity in natural waters. PMID:22037820

  20. Increased risk of phosphorus limitation at higher temperatures for Daphnia magna.

    PubMed

    Persson, Jonas; Wojewodzic, Marcin Włodzimierz; Hessen, Dag Olav; Andersen, Tom

    2011-01-01

    Invertebrate herbivores frequently face growth rate constraints due to their high demands for phosphorus (P) and nitrogen (N). Temperature is a key modulator of growth rate, yet the interaction between temperature and P limitation on somatic growth rate is scarcely known. To investigate this interaction, we conducted a study on the somatic growth rate (SGR) of the cladoceran Daphnia magna, known to be susceptible to P-limitation. We determined the SGR across a broad range of dietary P content of algae (carbon (C):P ratios (125-790), and at different temperatures (10-25°C). There was a strong impact of both temperature and C:P ratio on the SGR of D. magna, and also a significant interaction between both factors was revealed. The negative effect of dietary C:P on growth rate was reduced with decreased temperature. We found no evidence of P limitation at lowest temperature, suggesting that enzyme kinetics or other measures of food quality overrides the demands for P to RNA and protein synthesis at low temperatures. These findings also indicate an increased risk of P limitation and thus reduced growth efficiency at high temperatures. PMID:20803219

  1. Rapid evolution of antioxidant defence in a natural population of Daphnia magna.

    PubMed

    Oexle, S; Jansen, M; Pauwels, K; Sommaruga, R; De Meester, L; Stoks, R

    2016-07-01

    Natural populations can cope with rapid changes in stressors by relying on sets of physiological defence mechanisms. Little is known onto what extent these physiological responses reflect plasticity and/or genetic adaptation, evolve in the same direction and result in an increased defence ability. Using resurrection ecology, we studied how a natural Daphnia magna population adjusted its antioxidant defence to ultraviolet radiation (UVR) during a period with increasing incident UVR reaching the water surface. We demonstrate a rapid evolution of the induction patterns of key antioxidant enzymes under UVR exposure in the laboratory. Notably, evolutionary changes strongly differed among enzymes and mainly involved the evolution of UV-induced plasticity. Whereas D. magna evolved a strong plastic up-regulation of glutathione peroxidase under UVR, it evolved a lower plastic up-regulation of glutathione S-transferase and superoxide dismutase and a plastic down-regulation of catalase. The differentially evolved antioxidant strategies were collectively equally effective in dealing with oxidative stress because they resulted in the same high levels of oxidative damage (to lipids, proteins and DNA) and lowered fitness (intrinsic growth rate) under UVR exposure. The lack of better protection against UVR may suggest that the UVR exposure did not increase between both periods. Predator-induced evolution to migrate to lower depths that occurred during the same period may have contributed to the evolved defence strategy. Our results highlight the need for a multiple trait approach when focusing on the evolution of defence mechanisms. PMID:27018861

  2. Systems biology meets stress ecology: linking molecular and organismal stress responses in Daphnia magna

    PubMed Central

    Heckmann, Lars-Henrik; Sibly, Richard M; Connon, Richard; Hooper, Helen L; Hutchinson, Thomas H; Maund, Steve J; Hill, Christopher J; Bouetard, Anthony; Callaghan, Amanda

    2008-01-01

    Background Ibuprofen and other nonsteroidal anti-inflammatory drugs have been designed to interrupt eicosanoid metabolism in mammals, but little is known of how they affect nontarget organisms. Here we report a systems biology study that simultaneously describes the transcriptomic and phenotypic stress responses of the model crustacean Daphnia magna after exposure to ibuprofen. Results Our findings reveal intriguing similarities in the mode of action of ibuprofen between vertebrates and invertebrates, and they suggest that ibuprofen has a targeted impact on reproduction at the molecular, organismal, and population level in daphnids. Microarray expression and temporal real-time quantitative PCR profiles of key genes suggest early ibuprofen interruption of crustacean eicosanoid metabolism, which appears to disrupt signal transduction affecting juvenile hormone metabolism and oogenesis. Conclusion Combining molecular and organismal stress responses provides a guide to possible chronic consequences of environmental stress for population health. This could improve current environmental risk assessment by providing an early indication of the need for higher tier testing. Our study demonstrates the advantages of a systems approach to stress ecology, in which Daphnia will probably play a major role. PMID:18291039

  3. Consequences of calcium decline on the embryogenesis and life history of Daphnia magna.

    PubMed

    Giardini, Jamie-Lee; Yan, Norman D; Heyland, Andreas

    2015-07-01

    Ambient calcium is declining in thousands of soft-water lake habitats in temperate regions as a consequence of unsustainable forestry practices, decreased atmospheric calcium deposition and acidic deposition. As their exoskeleton is heavily reinforced with calcium, freshwater crustaceans have a high specific calcium requirement relative to other aquatic organisms. Daphnia, in particular, is an ideal crustacean for investigating the consequences of calcium decline because it is an abundant and important member of freshwater zooplankton communities. Although it has been established that adult and juvenile Daphnia have different tolerances to low ambient calcium as a result of their different life stage-specific calcium requirements, the consequences of declining calcium on embryonic development have never been investigated. Here, we describe the distribution of calcium in embryonic stages of D. magna and introduce a novel and easy to use staging scheme. We tested whether calcium can be traced from mothers to their offspring. Finally, we assessed the fitness consequences of maternal provisioning in limiting calcium environments. We found that while embryos require calcium for their development and moulting, they do not equilibrate with environmental calcium levels. Instead, we were able to trace calcium from mothers to their offspring. Furthermore, our data strongly suggest that females are faced with an allocation trade-off between providing calcium to their offspring and using it for growth and moulting. Together, these data provide novel insights into the consequences of calcium decline for freshwater zooplankton. PMID:25944923

  4. Whole effluent toxicity (WET) tests on wastewater treatment plants with Daphnia magna and Selenastrum capricornutum.

    PubMed

    Ra, Jin Sung; Kim, Hyun Koo; Chang, Nam Ik; Kim, Sang Don

    2007-06-01

    Whole effluent toxicity (WET) tests, with Daphnia magna and Selenastrum capricornutum, were introduced to evaluate the biological toxicities of effluents from the wastewater treatment plants (WWTPs) in Korea. In WET tests of WWTPs effluents, 33.3% (33/99) for D. magna and 92.6% (75/81) for S. capricornutum revealed greater than 1 toxic unit (TU), even though all the treatment plants investigated were operating in compliance with the regulations, as assessed using conventional monitoring methods (i.e., BOD and total concentration of N or P, etc). There were only minor differences in toxicities according to the types of influents (municipal and agro-industrial) in all treatment plants. However, the effluents treated by an activated sludge treatment process were found to exhibit significantly lower toxicity than those treated by rotating biological contactor (RBC) and extended aeration processes. The seasonal variations in the toxicity were lower in the summer compared to winter, which may have been due to the rainfall received to the sewage intake system during the former period. The impact of WET on river water was also investigated based on the discharge volume. At sites A and B, the total impact of toxicity to stream and river waters was observed to be 70.9% and 90.4% for D. magna and S. capricornutum, respectively. The other four small treatment plants (sites F, G, H and I), with relative discharging volumes between 0.001 and 0.002, contribute less than 1% to the total toxicity. PMID:17106776

  5. Comparison of nanosilver and ionic silver toxicity in Daphnia magna and Pimephales promelas.

    PubMed

    Hoheisel, Sarah M; Diamond, Steve; Mount, David

    2012-11-01

    The increasing use of nanosilver in consumer products and the likelihood of environmental exposure warrant investigation into the toxicity of nanosilver to aquatic organisms. A series of studies were conducted comparing the potency of nanosilver to ionic silver (Ag(+)) at acute and sublethal levels using two test organisms (Daphnia magna and Pimephales promelas). The 48-h D. magna median lethal concentration (LC50) of multiple sizes (10, 20, 30, and 50 nm) of commercially prepared nanosilver (nanoComposix) ranged from 4.31 to 30.36 µg total Ag L(-1) with increasing toxicity associated with decreasing particle size. A strong relationship between estimated specific particle surface area and acute toxicity was observed. Nanosilver suspensions (10 nm) treated with cation exchange resin to reduce the concentration of Ag(+) associated with it were approximately equally toxic to D. magna compared to untreated nanosilver (48-h LC50s were 2.15 and 2.79 µg total Ag L(-1), respectively). The 96-h LC50 and 7-d sublethal 20% effective concentrations (EC20s) for P. promelas were 89.4 and 46.1 µg total Ag L(-1), respectively, for 10 nm nanosilver and 4.70 and 1.37 µg total Ag L(-1), respectively, for Ag(+); the resulting ratios of 96-h LC50 to 7-d EC20 were not significantly different for nanosilver and ionic silver. Overall, these studies did not provide strong evidence that nanosilver either acts by a different mechanism of toxicity than ionic silver, or is likely to cause acute or lethal toxicity beyond that which would be predicted by mass concentration of total silver. This in turn suggests that regulatory approaches based on the toxicity of ionic silver to aquatic life would not be underprotective for environmental releases of nanosilver. PMID:22887018

  6. The uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna under chronic exposure scenarios.

    PubMed

    Adam, Nathalie; Leroux, Frédéric; Knapen, Dries; Bals, Sara; Blust, Ronny

    2015-01-01

    In this study, the uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna was tested. Daphnids were exposed during 10 days to sublethal concentrations of ZnO and CuO nanoparticles and corresponding metal salts (ZnCl₂ and CuCl₂.2H₂O), after which they were transferred to unexposed medium for another 10 days. At different times during the exposure and none-exposure, the total and internal zinc or copper concentration of the daphnids was determined and the nanoparticles were localized in the organism using electron microscopy. The exposure concentrations were characterized by measuring the dissolved, nanoparticle and aggregated fraction in the medium. The results showed that the ZnO nanoparticles quickly dissolved after addition to the medium. Contrarily, only a small fraction (corresponding to the dissolved metal salt) of the CuO nanoparticles dissolved, while most of these nanoparticles formed large aggregates. Despite an initial increase in zinc and copper concentration during the first 48 h to 5 day exposure, the body concentration reached a plateau level that was comparable for the ZnO nanoparticles and ZnCl₂, but much higher for the CuO nanoparticles (with visible aggregates accumulating in the gut) than CuCl₂.2H₂O. During the remaining exposure and subsequent none-exposure phase, the zinc and copper concentration decreased fast to concentrations comparable with the unexposed daphnids. The results indicate that D. magna can regulate its internal zinc and copper concentration after exposure to ZnO and CuO nanoparticles, similar as after exposure to metal salts. The combined dissolution, accumulation and toxicity results confirm that the toxicity of ZnO and CuO nanoparticles is caused by the dissolved fraction. PMID:25462733

  7. Sublethal effects of the flame retardant intermediate hexachlorocyclopentadiene (HCCPD) on the gene transcription and protein activity of Daphnia magna.

    PubMed

    Houde, Magali; Carter, Barbara; Douville, Mélanie

    2013-09-15

    Hexachlorocyclopentadiene (HCCPD) is a chlorinated chemical of high production volume used as an intermediate in the production of flame retardants. HCCPD may be released to the environment during production, use, and as a result of product degradation. The objectives of this study were to evaluate sublethal effects of HCCPD exposure to Daphnia magna at environmentally relevant concentrations (0.0138-13.8 μg/L) using genomic tools (microarray and qPCR), enzyme activities, and life-history endpoints (survival, reproduction, and growth). In chronic exposures, no differences were observed in life-history endpoints (survival, time of first brood, time of first molt, molt frequency, number of neonates, and body length) between exposed organisms and controls. Microarray analyses indicated significant differential genomic transcription for 46 genes (p-value ≤ 0.05 and fold-change>2). Five identified genes were related to metabolic functions. Enzyme activities of α-amylase and trypsin, selected based on transcriptional responses, were evaluated in D. magna. Although trypsin activity was similar between treatments and controls, the activity of α-amylase significantly decreased with increasing HCCPD concentrations. On the chemical level, instability of HCCPD was observed in spiked culture media, most probably due to photolysis and biodegradation. HCCPD was not detected in surface water samples collected upstream and at the point of discharge of a major wastewater treatment plant effluent. Environmentally, rapid degradation of HCCPD could be outdone by its continuous release into aquatic ecosystems in specific areas of concern (e.g., vicinity of industries and hazardous sites). Toxicity results from this study highlight the use of genomics in the identification of biomarkers and help advance the science, and potential use, of multi-level biological approaches for environmental risk assessment. PMID:23820075

  8. Acute toxicity of chromate, DDT, PCP, TPBS, and zinc to Daphnia magna cultured in hard and soft water

    SciTech Connect

    Berglind, R.; Dave, G.

    1984-07-01

    The aim of this study was to compare the toxicity of five chemicals to water fleas (Daphnia magna) cultured in either hard to soft water. The toxicity tests were made in reconstituted waters and the five chemicals to be tested were, p,p'-DDT, pentachlorophenol (PCP), tetrapropylenbenzyl sulfonate (TPBS), potassium bichromate (K/sub 2/Cr/sub 2/O/sub 7/) and zincsulfate (ZnSO/sub 4/ x 7H/sub 2/O).

  9. Effect of the dispersion of oil in freshwater based on time-dependent Daphnia magna toxicity tests

    SciTech Connect

    Vindimian, E.; Vollat, B.; Garric, J. )

    1992-02-01

    The purpose of this work is the study of the time dependence of the acute toxicity of oil and dispersants on a sensitive freshwater organism: Daphnia magna. Two different oils were used: a crude oil from the southwest of France and a gas oil free from volatile substances after being equilibrated with atmosphere. Two commercial dispersants were used: British Petroleum Enersperse 1037 and Dasic Freshwater for this study.

  10. An evaluation of nickel toxicity to Ceriodaphnia dubia and Daphnia magna in a contaminated stream and in laboratory tests

    SciTech Connect

    Kszos, L.A.; Stewart, A.J.; Taylor, P.A. )

    1992-01-01

    Seven-day tests with Ceriodaphnia dubia were used to document ambient toxicity in two industrially contaminated streams in southeastern Tennessee. Low survival of Ceriodaphnia dubia was linked to concentrations of Ni below EPA water quality criteria. A toxicity identification evaluation consisting of Ceriodaphnia dubia, Daphnia magna, and Pimephales promelas toxicity tests with Ni, chemical analyses, and experiments with a Ni-selective resin were used to show that Ni was the primary toxicant in one of the streams. Nickel nitrate and Ni chloride were both extremely toxic to Ceriodaphnia dubia but were not very toxic to Pimephales promelas: Ni at a concentration of 7.5 [mu]g/l was lethal to Ceriodaphnia dubia within 7 d, but 16 mg/L Ni did not reduce survival or growth of Pimephales promelas. When dilution water with a hardness of 177 mg/L was used, 15.0 [mu]g/L killed all the Ceriodaphnia dubia in 7 d. Daphnia magna was less sensitive than Ceriodaphnia dubia to Ni: a concentration of 40 [mu]g/L significantly reduced fecundity but not survival in 21 d. In stream water containing 49 [mu]g/L Ni, 100% mortality of Ceriodaphnia dubia occurred in 7 d, but 70% of the Daphnia magna survived for 14 d. When the Ni in the stream water was reduced to 10 [mu]g/L with the resin, 60% of the Ceriodaphnia dubia lived for 7 d and all the animals reproduced; survival and reproduction of Daphnia magna remained high for all 14 d. Experiments with [sup 63]Ni showed that both species accumulated similar amounts of Ni, so the difference in toxicity was not a result of Ni uptake. The high sensitivity of Ceriodaphnia dubia to Ni and the lower than expected reduction in Ni toxicity to Ceriodaphnia dubia with increasing hardness have important implications for effluent and ambient testing and toxicity reduction efforts.

  11. Influence of duration of exposure to the pyrethroid fenvalerate on sublethal responses and recovery of Daphnia magna straus.

    PubMed

    Reynaldi, Sebastián; Liess, Matthias

    2005-05-01

    This study compares lethal and sublethal responses of Daphnia magna Straus exposed to fenvalerate continuously (21 d) and as a pulse (24 h). Survival was reduced more severely in the continuous- than in the pulse-exposure regime. Complete mortality occurred at 1 microg/L for continuous exposure and at 3.2 microg/L for pulse exposure. Regarding reproductive endpoints, fenvalerate delayed the age at first reproduction. At the beginning of the reproductive phase (day 10), this delay resulted in a reduction of the neonates per living female at similar concentrations in both exposure regimes (0.3 and 0.1 microg/L for continuous and pulse exposure, respectively). The population growth rate was inhibited in continuous and pulse exposure at 0.3 and 0.6 microg/L, respectively. However, the effects of fenvalerate in the pulse exposure were transient. After 21 d, a recovery to values close to the controls occurred with respect to the total neonates per female and the population growth rate over a broad range of concentrations from 0.1 up to 1 microg/L. In contrast, no substantial recovery occurred in the continuous-exposure regime. PMID:16110995

  12. Application of a redox-proteomics toolbox to Daphnia magna challenged with model pro-oxidants copper and paraquat.

    PubMed

    Rainville, Louis-Charles; Coelho, Ana Varela; Sheehan, David

    2015-01-01

    The redox status of cells is involved in the regulation of several cellular stress-response pathways. It is frequently altered by xenobiotics, as well as by environmental stressors. As such, there is an increasing interest in understanding the redox status of proteins in different scenarios. Recent advances in proteomics enable researchers to measure oxidative lesions in a wide range of proteins. This opens the door to the sensitive detection of toxicity targets and helps decipher the molecular impact of pollutants and environmental stressors. The present study applies the measurement of protein carbonyls, the most common oxidative lesion of proteins, to gel-based proteomics in Daphnia magna. Daphnids were exposed to copper and paraquat, 2 well-known pro-oxidants. Catalase activity was decreased by paraquat, whereas global measurement of protein carbonyls and thiols indicated no change with treatment. Despite the absence of observed oxidative stress, 2-dimensional electrophoresis of the daphnid proteins and measurement of their carbonylation status revealed that 32 features were significantly affected by the treatments, showing higher sensitivity than single measurements. Identified proteins affected by copper indicated a decrease in the heat-shock response, whereas paraquat affected glycolysis. The present study demonstrates the applicability of redox-proteomics in daphnids, and indicates that the heat-shock response plays a counterintuitive role in metal resistance in daphnids. PMID:25263122

  13. Intracellular Conversion of Environmental Nitrate and Nitrite to Nitric Oxide with Resulting Developmental Toxicity to the Crustacean Daphnia magna

    PubMed Central

    Hannas, Bethany R.; Das, Parikshit C.; Li, Hong; LeBlanc, Gerald A.

    2010-01-01

    Background Nitrate and nitrite (jointly referred to herein as NOx) are ubiquitous environmental contaminants to which aquatic organisms are at particularly high risk of exposure. We tested the hypothesis that NOx undergo intracellular conversion to the potent signaling molecule nitric oxide resulting in the disruption of endocrine-regulated processes. Methodology/Principal Findings These experiments were performed with insect cells (Drosophila S2) and whole organisms Daphnia magna. We first evaluated the ability of cells to convert nitrate (NO3−) and nitrite (NO2−) to nitric oxide using amperometric real-time nitric oxide detection. Both NO3− and NO2− were converted to nitric oxide in a substrate concentration-dependent manner. Further, nitric oxide trapping and fluorescent visualization studies revealed that perinatal daphnids readily convert NO2− to nitric oxide. Next, daphnids were continuously exposed to concentrations of the nitric oxide-donor sodium nitroprusside (positive control) and to concentrations of NO3− and NO2−. All three compounds interfered with normal embryo development and reduced daphnid fecundity. Developmental abnormalities were characteristic of those elicited by compounds that interfere with ecdysteroid signaling. However, no compelling evidence was generated to indicate that nitric oxide reduced ecdysteroid titers. Conclusions/Significance Results demonstrate that nitrite elicits developmental and reproductive toxicity at environmentally relevant concentrations due likely to its intracellular conversion to nitric oxide. PMID:20805993

  14. Acute and Chronic Toxicity of Soluble Fractions of Industrial Solid Wastes on Daphnia magna and Vibrio fischeri

    PubMed Central

    Flohr, Letícia; de Castilhos Júnior, Armando Borges; Matias, William Gerson

    2012-01-01

    Industrial wastes may produce leachates that can contaminate the aquatic ecosystem. Toxicity testing in acute and chronic levels is essential to assess environmental risks from the soluble fractions of these wastes, since only chemical analysis may not be adequate to classify the hazard of an industrial waste. In this study, ten samples of solid wastes from textile, metal-mechanic, and pulp and paper industries were analyzed by acute and chronic toxicity tests with Daphnia magna and Vibrio fischeri. A metal-mechanic waste (sample MM3) induced the highest toxicity level to Daphnia magna(CE50,48 h = 2.21%). A textile waste induced the highest toxicity level to Vibrio fischeri (sample TX2, CE50,30 min = 12.08%). All samples of pulp and paper wastes, and a textile waste (sample TX2) induced chronic effects on reproduction, length, and longevity of Daphnia magna. These results could serve as an alert about the environmental risks of an inadequate waste classification method. PMID:22619632

  15. Combining physico-chemical analysis with a Daphnia magna bioassay to evaluate a recycling technology for drinking water treatment plant waste residuals.

    PubMed

    Chen, Ting; Xu, Yongpeng; Zhu, Shijun; Cui, Fuyi

    2015-12-01

    Recycling water treatment plant (WTP) waste residuals is considered to be a feasible method to enhance the efficiency of pollutant removal. This study also evaluated the safety and water quality of a pilot-DWTP waste residuals recycling technology by combining physical-chemistry analysis with a Daphnia magna assay. The water samples taken from each treatment step were extracted and concentrated by XAD-2 resin and were then analyzed for immobilization and enzyme activity with D. magna. The measured parameters, such as the dissolve organic carbon (DOC), UV254 and THM formation potential (THMFPs) of the recycling process, did not obviously increase over 15 days of continuous operation and were even lower than typical values from a conventional process. The extract concentration ranged from 0 to 2 Leq/ml as measured on the 7th and 15th days and the immobilization of D. magna exposed to water treated by the recycling process was nearly equivalent to that of the conventional process. Both the superoxide dismutase (SOD) and the catalase (CAT) activity assay indicated that a lower dose of water extract (0.5, 1, 1.5 Leq/ml) could stimulate the enzyme activity of D. magna, whereas a higher dose (2 Leq/ml at the sampling point C3, R3, R4 ) inhibits the activity. Moreover, the SOD and CAT activity of D. magna with DOC and UV254 showed a strong concentration-effect relationship, where the concentration range of DOC and UV254 were 4.1-16.2 mg/L and 0.071-4.382 cm(-1), respectively. The results showed that there was no statistically significant difference (p>0.05) between the conventional and recycling treatment processes and the toxicity of water samples in the recycling process did not increase during the 15-day continuous recycling trial. PMID:26318972

  16. Effect of culture conditions and mother's age on the sensitivity of Daphnia magna Straus 1820 (Cladocera) neonates to hexavalent chromium.

    PubMed

    Martínez-Jerónimo, Fernando; Martínez-Jerónimo, Laura; Espinosa-Chávez, Félix

    2006-04-01

    Daphnia magna is a freshwater cladoceran used worldwide as test organism in aquatic toxicity assays. In Mexico there is a test protocol for this species; nevertheless, some aspects of the controlled neonate production, as well as the possible consequences of the reproducers' culture conditions on the response of neonates to the toxic substance, are not completely known. In the present study, we evaluated the effect of temperature and photoperiod on the acute toxicity of CrVI in D. magna neonates, aimed at providing useful information on the Median Lethal Concentration (LC50) to this heavy metal, which is used as reference toxicant in some laboratories. D. magna was cultured at 20 and 25 degrees C, in combination with two photoperiod values: 16:8 and 12:12 (light:dark) during 40 days; the green microalga Ankistrodesmus falcatus (4x10(5) cells ml(-1)) was supplied as food. Once the reproduction began, the neonates were removed and acute toxicity bioassays at 20 and 25 degrees C were performed, by exposing them to hexavalent chromium. We also determined changes in neonates' size at 20 and 25 degrees C. Chromium toxicity increased along with increasing temperatures, and LC50 values were slightly lower for the first and last clutches in the observed period, but these findings are not conclusive because of the large variability recorded. The average LC50's were 0.2076+/-0.0164 mg l(-1) (at 20 degrees C) and 0.1544+/-0.0175 mg l(-1) (at 25 degrees C). The reproducers' culture temperature had no effect on neonates' sensitivity to chromium, in spite of performing the tests at temperatures either lower or higher than those at which the neonates had been obtained. The length of neonates produced during the first two clutches (<1.25 mm) was significantly lower than that measured in neonates of following reproductions (>1.3 mm), and were smaller at 25 degrees C; however, this did not seem to affect their sensitivity to chromium. PMID:16570207

  17. Chronic toxicity of 14 phthalate esters to Daphnia magna and rainbow trout (Oncorhynchus mykiss)

    SciTech Connect

    Rhodes, J.E.; Adams, W.J.; Biddinger, G.R.; Robillard, K.A.; Gorsuch, J.W.

    1995-11-01

    Chronic toxicity studies were performed with commercial phthalate esters and Daphnia magna (14 phthalates) and rainbow trout (Oncorhynchus mykiss) (six phthalates). For the lower-molecular-weight phthalate esters--dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), and butylbenzyl phthalate (BBP)--the results of the studies indicated a general trend in which toxicity for both species increased as water solubility decreased. The geometric mean maximum acceptable toxicant concentration(GM-MATC) for D. magna ranged from 0.63 to 34.8 mg/L. For the higher-molecular-weight phthalate esters--dihexyl phthalate (DHP), butyl 2-ethylhexyl phthalate (BOP), di-(n-hexyl, n-octyl, n-decyl) phthalate (610P), di-(2-ethylhexyl) phthalate (DEHP), diisooctyl phthalate (DIOP), diisononyl phthalate (DINP), di-(heptyl, nonyl, undecyl) phthalate (711P), diisodecyl phthalate (DIDP), diundecyl phthalate (DUP), and ditridecyl phthalate (DTDP)--the GM-MATC values ranged from 0.042 to 0.15 mg/L. Survival was equally sensitive and sometimes more sensitive than reproduction. The observed toxicity to daphnids with most of the higher-molecular-weight phthalate esters appeared to be due to surface entrapment or a mode of toxicity that is not due to exposure to dissolved aqueous-phase chemical. Early life-stage toxicity studies with rainbow trout indicated that survival (DMP) and growth (DBP) were affected at 24 and 0.19 mg/L, respectively. This pattern of observed toxicity with the lower-molecular-weight phthalate esters and not the higher-molecular-weight phthalate esters is consistent with previously reported acute toxicity studies for several aquatic species.

  18. Behavior and chronic toxicity of two differently stabilized silver nanoparticles to Daphnia magna.

    PubMed

    Sakka, Yvonne; Skjolding, Lars Michael; Mackevica, Aiga; Filser, Juliane; Baun, Anders

    2016-08-01

    While differences in silver nanoparticle (AgNP) colloidal stability, surface potential, or acute aquatic toxicity for differently stabilized AgNP have often been reported, these have rarely been studied in long-term ecotoxicity tests. In the current study, we investigated the chronic toxicity of AgNP to Daphnia magna over a 21-day period with two different stabilizers (citrate and detergent), representative for charge and sterical stabilizers, respectively. This was coupled with a series of short-term experiments, such as mass balance and uptake/depuration testing, to investigate the behavior of both types of AgNP during a typical media exchange period in the D. magna test for chronic toxicity. As expected, the sterically stabilized AgNP was more stable in the test medium, also in the presence of food; however, a higher uptake of silver after 24h exposure of the charge stabilized AgNP was found compared to the detergent-stabilized AgNP (0.046±0.006μgAgμgDW(-1) and 0.023±0.005μgAgμgDW(-1), respectively). In accordance with this, the higher reproductive effects and mortality were found for the charge-stabilized than for the sterically-stabilized silver nanoparticles in 21-d tests for chronic toxicity. LOEC was 19.2μgAgL(-1) for both endpoints for citrate-coated AgNP and >27.5μgAgL(-1) (highest tested concentration for detergent-stabilized AgNP). This indicates a link between uptake and toxicity. The inclusion of additional short-term experiments on uptake and depuration is recommended when longer-term chronic experiments with nanoparticles are conducted. PMID:27449283

  19. Bioaccumulation and biotransformation of the beta-blocker propranolol in multigenerational exposure to Daphnia magna.

    PubMed

    Jeong, Tae-Yong; Kim, Tae-Hun; Kim, Sang Don

    2016-09-01

    Multigenerational bioaccumulation and biotransformation activity and short-term kinetics (e.g., uptake and depuration) of propranolol in Daphnia magna were investigated at environmental concentration. The body burden and the major metabolite, desisopropyl propranolol (DIP), of propranolol were quantified using LC-MS/MS at the end of each generation after exposure for 11 generations. The accumulation of propranolol in D. magna at an environmental concentration of 0.2 μg/L was not much different between the parent (F0) and the eleventh filial (F10) generation. However, at 28 μg/L, its accumulation was 1.6 times higher-up to 18.9 μg/g-in the F10 generation relative to the F0. In contrast to propranolol, DIP intensity gradually increased from F0 to F10 at 0.2 μg/L, reflecting an increase in detoxification load and biotransformation performance; no increasing trend was observed at 28 μg/L. The bioaccumulation factor (BAF) showed higher values with a lower concentration and longer period of exposure. The average values of the BAF for 21 days of long-term exposure in successive 11 generations were 440.4 ± 119.7 and 1026.5 ± 208.6 L/kg for 28 μg/L and 0.2 μg/L, respectively. These are comparable to the BAF of 192 for the short-term 72-h exposure at 28 μg/L in the parent generation. It is also recommended that future studies for pharmaceutical ingredients be conducted on drug-drug interaction and structural characteristics on the prediction of biotransformation activity and bioaccumulation rate. PMID:27373739

  20. High bioconcentration of titanium dioxide nanoparticles in Daphnia magna determined by kinetic approach.

    PubMed

    Fan, Wenhong; Liu, Lingling; Peng, Ruishuang; Wang, Wen-Xiong

    2016-11-01

    The environmental risk assessments of titanium dioxide nanoparticles (TiO2 NPs) have drawn wide attention and one of the required critical information is the bioconcentration potentials of these nanoparticles in aquatic organisms. In the present study, the bioconcentration of six commercially available TiO2 NPs with different sizes and surface properties were quantified in a freshwater cladoceran Daphnia magna using kinetic modeling approach. We first calculated the uptake rate constant (ku) and depuration rate constant (ke) of TiO2 NPs and then employed a first-order kinetic model to predict the bioconcentration factors (BCF) at different TiO2 NPs concentrations. Both the ku and ke of TiO2 NPs were significantly affected by the exposure concentration and the nanoparticle property. The predicted BCF values in D. magna of six TiO2 NPs ranged from 2.40×10(5)L/kg to 1.52×10(6)L/kg, and had no clear correlation with the exposure concentration. Large nominal size resulted in a lower BCF of TiO2 NPs at lower exposure concentration. Higher hydrophobicity and Al(OH)3 coating also resulted in a higher BCF. All the six TiO2 NPs in this study were therefore considered very bioaccumulative. More attention should be paid to bioconcentration in the environmental risk assessments of TiO2 NPs, and the physicochemical properties of TiO2 NPs should be taken into account. PMID:27392581

  1. Transcriptomic, biochemical and individual markers in transplanted Daphnia magna to characterize impacts in the field.

    PubMed

    Rivetti, Claudia; Campos, Bruno; Faria, Melissa; De Castro Català, Nuria; Malik, Amrita; Muñoz, Isabel; Tauler, Romà; Soares, Amadeu M V M; Osorio, Victoria; Pérez, Sandra; Gorga, Marina; Petrovic, Mira; Mastroianni, Nicola; de Alda, Miren López; Masiá, Ana; Campo, Julian; Picó, Yolanda; Guasc, Helena; Barceló, Damià; Barata, Carlos

    2015-01-15

    Daphnia magna individuals were transplanted across 12 sites from three Spanish river basins (Llobregat, Ebro, Jucar) showing different sources of pollution. Gene transcription, feeding and biochemical responses in the field were assessed and compared with those obtained in re-constituted water treatments spiked with organic eluates obtained from water samples collected at the same locations and sampling periods. Up to 166 trace contaminants were detected in water and classified by their mode of action into 45 groups that included metals, pharmaceuticals, pesticides, illicit drugs, and other industrial compounds. Physicochemical water parameters differentiated the three river basins with Llobregat having the highest levels of conductivity, metals and pharmaceuticals, followed by Ebro, whereas the Jucar river had the greatest levels of illicit drugs. D. magna grazing rates and cholinesterase activity responded similarly than the diversity of riparian benthic communities. Transcription patterns of 13 different genes encoding for general stress, metabolism and energy processes, molting and xenobiotic transporters corroborate phenotypic responses differentiated sites within and across river basins. Principal Component Analysis and Partial Least Square Projections to Latent Structures regression analyses indicated that measured in situ responses of most genes and biomarkers and that of benthic macroinvertebrate diversity indexes were affected by distinct environmental factors. Conductivity, suspended solids and fungicides were negatively related with the diversity of macroinvertebrates cholinesterase, and feeding responses. Gene transcripts of heat shock protein and metallothionein were positively related with 11 classes of organic contaminants and 6 metals. Gene transcripts related with signaling paths of molting and reproduction, sugar, protein and xenobiotic metabolism responded similarly in field and lab exposures and were related with high residue concentrations of

  2. Arsenate Accumulation, Distribution, and Toxicity Associated with Titanium Dioxide Nanoparticles in Daphnia magna.

    PubMed

    Li, Mengting; Luo, Zhuanxi; Yan, Yameng; Wang, Zhenhong; Chi, Qiaoqiao; Yan, Changzhou; Xing, Baoshan

    2016-09-01

    Titanium dioxide nanoparticles (nano-TiO2) are widely used in consumer products. Nano-TiO2 dispersion could, however, interact with metals and modify their behavior and bioavailability in aquatic environments. In this study, we characterized and examined arsenate (As(V)) accumulation, distribution, and toxicity in Daphnia magna in the presence of nano-TiO2. Nano-TiO2 acts as a positive carrier, significantly facilitating D. magna's ability to uptake As(V). As nano-TiO2 concentrations increased from 2 to 20 mg-Ti/L, total As increased by a factor of 2.3 to 9.8 compared to the uptake from the dissolved phase. This is also supported by significant correlations between arsenic (As) and titanium (Ti) signal intensities at concentrations of 2.0 mg-Ti/L nano-TiO2 (R = 0.676, P < 0.01) and 20.0 mg-Ti/L nano-TiO2 (R = 0.776, P < 0.01), as determined by LA-ICP-MS. Even though As accumulation increased with increasing nano-TiO2 concentrations in D. magna, As(V) toxicity associated with nano-TiO2 exhibited a dual effect. Compared to the control, the increased As was mainly distributed in BDM (biologically detoxified metal), but Ti was mainly distributed in MSF (metal-sensitive fractions) with increasing nano-TiO2 levels. Differences in subcellular distribution demonstrated that adsorbed As(V) carried by nano-TiO2 could dissociate itself and be transported separately, which results in increased toxicity at higher nano-TiO2 concentrations. Decreased As(V) toxicity associated with lower nano-TiO2 concentrations results from unaffected As levels in MSFs (when compared to the control), where several As components continued to be adsorbed by nano-TiO2. Therefore, more attention should be paid to the potential influence of nano-TiO2 on bioavailability and toxicity of cocontaminants. PMID:27485179

  3. The time- and age-dependent effects of the juvenile hormone analog pesticide, pyriproxyfen on Daphnia magna reproduction.

    PubMed

    Ginjupalli, Gautam K; Baldwin, William S

    2013-08-01

    Pyriproxyfen is an insecticidal juvenile hormone analog that perturbs insect and tick development. Pyriproxyfen also alters parthenogenic reproduction in non-target cladoceran species as it induces male production that can lead to a decrease in fecundity, a reduction in population density, and subsequent ecological effects. In this study, we investigate the impacts of pyriproxyfen on Daphnia magna reproduction using a series of male production screening assays. These assays demonstrate that pyriproxyfen increases male production in a concentration-dependent fashion with an EC50 of 156pM (50.24ngL(-1)); a concentration considered environmentally relevant. Furthermore, pyriproxyfen decreases overall fecundity at all ages tested (7, 14, 21-d old female parthenogenic daphnids). Juvenile (3-d old) and reproductively mature (10-d old) female daphnids were also exposed to 155pM pyriproxyfen for 2-12d and reproduction measured for 16d to compare the effects of short-term and prolonged exposures, and determine the potential for recovery. Results indicate that longer pyriproxyfen exposures (8-12d) extend male production and decrease reproduction; however, daphnids exposed for only 2-4d recover and produce a relatively normal abundance of neonates. In addition, juvenile daphnids are also very sensitive to pyriproxyfen, but the primary effect on juvenile daphnids is reduced reproduction and protracted development not male production. Taken together, continued use of pyriproxyfen around water bodies needs due caution because of its potential adverse effects with significant developmental delays and male production compounded by prolonged exposure. PMID:23714148

  4. Effects of an organophosphate on Daphnia magna at suborganismal and organismal levels: implications for population dynamics.

    PubMed

    Duquesne, Sabine

    2006-10-01

    The effects and recovery of 24 h pulse exposure to paraoxon-methyl on Daphnia magna were recorded for various endpoints to study the propagation of effects through various biological levels of organization. Above a threshold concentration (2.2 microgL(-1)), all selected endpoints were affected. Thus, effects at the suborganismal level (e.g., the biomarker response: transient inhibition of cholinesterase (ChE) activity) were accompanied by effects at the organismal (survival, reduction in reproductive performance, decrease in body size) and population (reduced population growth rate) levels. At intermediate and sublethal concentrations, exposure induced a transient ChE inhibition that was also accompanied by effects at the organismal level and that exerted long-term effects on population dynamics. At lower concentrations, although ChE activity was affected, there was no propagation of effects to higher biological levels. This study shows that effects of pulse exposure to organophosphates propagate from the suborganismal level toward the population level and demonstrates the significance of transient ChE inhibition on population dynamics. PMID:16545452

  5. Biochemical, metabolic, and behavioural responses and recovery of Daphnia magna after exposure to an organophosphate.

    PubMed

    Duquesne, Sabine; Küster, Eberhard

    2010-03-01

    The responses of various suborganismal and organismal endpoints of Daphnia magna to pulse exposure to sublethal levels of the organophosphate paraoxon-methyl were compared. The changes and recovery of biochemical, metabolic, and behavioural variables, as well as physiological responses, were observed. The cholinesterase (ChE), filtration, and swimming activities were all affected in a concentration-dependent manner, and these effects reached significance at concentrations of 1.0, 1.5, and 0.7 microg L(-1), respectively. The levels of these variables recovered significantly after detoxification for 24h in clean medium. ChE and swimming activities were affected significantly by lower concentrations of paraoxon-methyl than filtration activity, which had the same threshold as the physiological responses ((15)N abundance and body size). This study showed that among the parameters studied, swimming activity was the most sensitive, whereas changes in filtration activity had the most significant physiological consequences, and were therefore important in terms of effects propagation to the population level. PMID:20031215

  6. An integrated model describing the toxic responses of Daphnia magna to pulsed exposures of three metals.

    PubMed

    Hoang, Tham C; Tomasso, Joseph R; Klaine, Stephen J

    2007-01-01

    Some toxicology research in which toxicant exposures are continual (pulsed) rather than continuous have been reported. A number of toxicity models have been developed for pulsed and continuous exposures. Most of these models were developed based on one- or two-compartment, first-order toxicokinetics and were calibrated with organic compounds. In the present study, the relationship between mortality (after 21 d) of Daphnia magna in response to pulsed and continuous exposures to Cu, Zn, and Se was used to develop a model that integrated the effects of single and multiple pulsed metal exposures based on first-order uptake and depuration kinetics. Mortality was a function of exposure concentration, duration, and recovery time between exposures. The model was successfully validated using an independent data set. It is applicable to risk assessment and, potentially, may be incorporated with other models (e.g., the biotic ligand model) to predict the toxicity of pulsed metal exposures under a range of environmental conditions. PMID:17269470

  7. Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna.

    PubMed

    Fan, Wenhong; Cui, Minming; Liu, Hong; Wang, Chuan; Shi, Zhiwei; Tan, Cheng; Yang, Xiuping

    2011-03-01

    The acute toxicity of engineered nanoparticles (NPs) in aquatic environments at high concentrations has been well-established. This study demonstrates that, at a concentration generally considered to be safe in the environment, nano-TiO(2) remarkably enhanced the toxicity of copper to Daphnia magna by increasing the copper bioaccumulation. Specifically, at 2 mg L(-1) nano-TiO(2), the (LC(50)) of Cu(2+) concentration observed to kill half the population, decreased from 111 μg L(-1) to 42 μg L(-1). Correspondingly, the level of metallothionein decreased from 135 μg g(-1) wet weight to 99 μg g(-1) wet weight at a Cu(2+) level of 100 μg L(-1). The copper was found to be adsorbed onto the nano-TiO(2), and ingested and accumulated in the animals, thereby causing toxic injury. The nano-TiO(2) may compete for free copper ions with sulfhydryl groups, causing the inhibition of the detoxification by metallothioneins. PMID:21177008

  8. Role of food and clay particles in toxicity of copper and diazinon using Daphnia magna.

    PubMed

    Jeon, Junho; Sung Ra, Jin; Lee, Sun Hong; Lee, Myun J; Yu, Seung H; Kim, Sang Don

    2010-03-01

    Toxicity changes in copper and diazinon were investigated in the presence of food, clay, and their mixture by using Daphnia magna. In sorption equilibrium experiments, copper was significantly attracted (>34% sorbed) to food, clay, and food-clay mixture due to their negative zeta potential, while diazinon was less sorbed (<11%). In the exposure test with food and clay particles, it was revealed that copper was remarkably reduced in the presence of clay particles indicating the change in bioavailability of copper by sorption to clay. This was considered as the primary mechanism for toxicity reduction whereas diazinon toxicity was food dependent in the analysis of toxicity using toxicity change index (TCI). It was also shown that certain foods could not only act as a sorbent to copper and diazinon, but also as a material of energy source to alleviate the toxic damage. Meanwhile, clay can be considered as a prominent sorbent to copper but not to diazinon and can inhibit the sorption interaction between foodstuffs and toxicants through the aggregation and sedimentation processes. Furthermore, clay particles, as shown in TCI analysis, may be a potentially risky material as a physiological stressor or a toxicant carrier in contaminated environments. PMID:19942290

  9. Citrate coated silver nanoparticles change heavy metal toxicities and bioaccumulation of Daphnia magna.

    PubMed

    Kim, Injeong; Lee, Byung-Tae; Kim, Hyun-A; Kim, Kyoung-Woong; Kim, Sang Don; Hwang, Yu-Sik

    2016-01-01

    Citrate-coated AgNPs (c-AgNPs) have negatively charged surfaces and their surface interactions with heavy metals can affect metal toxicity in aquatic environments. This study used Daphnia magna to compare the acute toxicities and bioaccumulation of As(V), Cd, and Cu when they interact with c-AgNPs. The 24-h acute toxicities of As(V) and Cu were not affected by the addition of c-AgNPs, while bioaccumulation significantly decreased in the presence of c-AgNPs. In contrast, both the 24-h acute toxicity and bioaccumulation of Cd increased in the presence of c-AgNPs. These toxicity and bioaccumulation trends can be attributed to the interactions between the AgNP surface and the heavy metals. As(V) and c-AgNPs compete by negative charge, decreasing As(V) toxicity. Copper adheres readily to c-AgNP citrate, decreasing Cu bioavailability, and thus reducing Cu toxicity and bioaccumulation. Citrate complexes with divalent cations such as Ca and Mg reduce the competition between divalent cations and Cd on biotic ligand, increasing toxicity and bioaccumulation of Cd. This study shows that surface properties determine the effect of c-AgNPs on heavy metal toxicities and bioaccumulations; hence, further studies on the effect of nanoparticle by it surface properties are warranted. PMID:26188498

  10. Acute aquatic toxicity of nine alcohol ethoxylate surfactants to fathead minnow and Daphnia magna

    SciTech Connect

    Wong, D.C.L.; Dorn, P.B.; Chai, E.Y.

    1995-12-31

    The aquatic toxicity of nine commercial-grade alcohol ethoxylate surfactants was studied in acute exposures to fathead minnow (Pimephales promelas) and Daphnia magna. All studies were conducted in accordance with USEPA TSCA Good Laboratory Practice Standards. Mean measured surfactant concentrations in exposure solutions showed good agreement with nominal concentrations for both fathead minnow and daphnid tests. Surfactant recoveries ranged from 59 to 97% and 67 to 106% in the fathead minnow and daphnid solutions, respectively. The response of both species to the surfactants was generally similar with the daphnids being slightly more sensitive to a few surfactants. Surfactant toxicity tended to increase with increasing alkyl chain lengths. The effect of low average EO groups on increased surfactant toxicity was more evident in the daphnid exposures. Quantitative structure-activity relationship (QSAR) models were developed form the data which relates surfactant structure to toxicity. The models predict increasing toxicity with decreasing EO number and increasing alkyl chain length. The models also indicate that alkyl chain length has a greater effect on toxicity than EO groups. Further, the models indicate that both species did not differ markedly in their sensitivity to alkyl chain length effects, while the number of EO groups had a stronger effect on daphnids than fathead minnow. Good agreement was found between QSAR model-predicted toxicity and reported toxicity values from the literature for several surfactants previously studied.

  11. Toxicity of methyl tertiary butyl ether to Daphnia magna and photobacterium phosphoreum

    SciTech Connect

    Gupta, G.; Lin, Y.J.

    1995-10-01

    Methyl tertiary butyl ether (MTBE) is a liquid organic compound added to gasoline to increase its oxygen content and to reduce the emission of carbon monoxide during combustion in many urban areas. In order to meet the 1990 Clean Air Act amendments, gasoline must contain 2.7% oxygen (by weight) or 15% (by volume) of MTBE in gasoline to meet the regulations for the control of carbon monoxide emissions. Health effects caused by inhalation of MTBE include headaches, dizziness, irritated eyes and nausea; MTBE is one of cancer--causing chemicals. Intracaval injection of MTBE (0.2 mg/kg) caused the highest mortality (100%) in rats. General anesthetic effect induced by MTBE was found at or above 1200 mg/kg body weight; Rosenkranz and Klopman (1991) predicted that MTBE is neither a genotoxicant nor a carcinogen. Nevertheless, the safety of using MTBE in oxygenated fuels is now being questioned from its potential as groundwater pollutant. This study measures the toxicity of MTBE to Daphnia magna and Photobacterium phosphoreum. 13 refs.

  12. Combined effects of dissolved organic material and water hardness on toxicity of cadmium to Daphnia magna

    SciTech Connect

    Penttinen, S.; Kostamo, A.; Kukkonen, J.V.K.

    1998-12-01

    The interaction between dissolved organic material (DOM) and water hardness and their effects on the acute toxicity of cadmium (Cd) to Daphnia magna was studied. At an original hardness of humic lake water, Cd was significantly less toxic in the humic than in the reference water. Furthermore, after dilution down to 10%, the humic water still decreased the lethality significantly. The results suggest that the reduced toxicity of Cd in the lake water is due to complexation with DOC. An increase in water hardness decreased the measured binding coefficient of Cd to DOM. In addition, the acute toxicity of Cd decreased, and the difference between the reference and humic water disappeared. As a conclusion, DOM in the soft lake water had a protective effect against Cd toxicity. In hard water, obviously, the added hardness cations, especially Ca{sup 2+}, effectively competed with Cd{sup 2+} for available binding sites in DOM. Simultaneously, CA{sup 2+} ions interfered also with the uptake of Cd{sup 2+} either by competing in transport through cell membranes or by reducing membrane permeability.

  13. Usefulness of the lipid index for bioaccumulation studies with Daphnia magna

    SciTech Connect

    Dauble, D.D.; Klopfer, D.C.; Carlile, D.W.; Hanf, R.W. Jr.

    1985-01-01

    Bioaccumulation studies with Daphnia magna have become an important tool for hazard evaluation of potentially toxic materials released to aquatic environments. Despite widespread use of this test organism, little attention has been paid to the influence of stored lipids on uptake of xenobiotics. The authors drew upon principles of zooplankton population dynamics in the limnological literature to define experimental parameters for bioconcentration testing of organic compounds. Adult test populations were initially starved and monitored for lipid content and brood production. Mean lipid index values declined at 72 h to less than 50% of those observed at 24 h. The number of hatched young peaked at 48 h and was inversely related to lipid storage and ovary production. In a separate experiment, uptake kinetics of /sup 14/C-labelled quinoline were compared between two daphnid test groups with mean lipid scores of 5.4 and 2.8 respectively. Total radioactivity was significantly higher for the high lipid group at 8 h, and the coefficient of variation was lower. Estimated bioconcentration factors adjusted to dry weight were similar. Our studies indicated that lipid reserves of daphnid test populations can be routinely monitored as an indicator of stress in the laboratory. Bioaccumulation tests should be limited to less than 24 h to avoid depletion of lipid stores, which may cause increased variation in tissue concentration over time. 19 references, 2 figures, 2 tables.

  14. A mechanistic model of contaminant-induced feeding inhibition in Daphnia magna

    SciTech Connect

    Allen, Y.; Calow, P.; Baird, D.J.

    1995-09-01

    Particles in water ubiquitously carry a net negative charge. It was hypothesized that the interaction between suspended particles and pollutants in water results in a process of adsorption that can be related to the charge of the pollutant concerned, and that this is a potential route of pollutant uptake by aquatic animals such as particle-grazing zooplankton. Experiment with the alga Chlorella vulgaris were conducted to test the hypotheses that pollutant-induced feeding inhibition in the cladoceran Daphnia magna was dependent on this mechanism. Using compounds differing in charge, results supported the hypothesis that, while all compounds were capable of causing feeding inhibition, electropositive species such as cadmium induced effects close to the chronic no-effect concentration, whereas electronegative species such as vanadium induced effects only at or close to lethal levels. It was suggested that for those compounds capable of causing feeding inhibition at sublethal concentrations, this inhibition would be a key mechanism impairing reproduction and growth, with potential consequences of grazing animals at population and community levels in natural ecosystems.

  15. Neuroanatomy of the optic ganglia and central brain of the water flea Daphnia magna (Crustacea, Cladocera).

    PubMed

    Kress, Timm; Harzsch, Steffen; Dircksen, Heinrich

    2016-03-01

    We reveal the neuroanatomy of the optic ganglia and central brain in the water flea Daphnia magna by use of classical neuroanatomical techniques such as semi-thin sectioning and neuronal backfilling, as well as immunohistochemical markers for synapsins, various neuropeptides and the neurotransmitter histamine. We provide structural details of distinct neuropiles, tracts and commissures, many of which were previously undescribed. We analyse morphological details of most neuron types, which allow for unravelling the connectivities between various substructural parts of the optic ganglia and the central brain and of ascending and descending connections with the ventral nerve cord. We identify 5 allatostatin-A-like, 13 FMRFamide-like and 5 tachykinin-like neuropeptidergic neuron types and 6 histamine-immunoreactive neuron types. In addition, novel aspects of several known pigment-dispersing hormone-immunoreactive neurons are re-examined. We analyse primary and putative secondary olfactory pathways and neuronal elements of the water flea central complex, which displays both insect- and decapod crustacean-like features, such as the protocerebral bridge, central body and lateral accessory lobes. Phylogenetic aspects based upon structural comparisons are discussed as well as functional implications envisaging more specific future analyses of ecotoxicological and endocrine disrupting environmental chemicals. PMID:26391274

  16. Aquatic toxicity assessment of esters towards the Daphnia magna through PCA-ANFIS.

    PubMed

    Asadollahi-Baboli, M

    2013-10-01

    The widespread production of esters combined with their ability to migrate in different compartments, makes their environmental toxicity important. In this background, the multivariate image analysis-quantitative structure-toxicity relationship (MIA-QSTR) method coupled to principal component analysis-adaptive neuro-fuzzy inference systems (PCA-ANFIS) was applied to assess the toxicity of esters to Daphnia magna. In MIA-QSTR, pixels of chemical structures (2D images) stand for descriptors, and structural changes account for the variance in toxicities. The ANFIS procedure was capable of correlating the inputs (PCA scores) with the toxicities accurately. The PCA-ANFIS also was statistically validated for its predictive power using cross-validation, applicability domain and Y-scrambling evaluation procedures. The satisfactory results (R p (2) = 0.926, Q LOO (2) = 0.887, R L25%O (2) = 0.843, RMSELOO = 0.320 and RMSEL25%O = 0.379) suggests that the QSTR model could be proposed as an alternative method for aquatic toxicity assessment of esters allowing possible application in the European Union regulation REACH. PMID:23884170

  17. Arachidonic Acid Enhances Reproduction in Daphnia magna and Mitigates Changes in Sex Ratios Induced by Pyriproxyfen

    PubMed Central

    Ginjupalli, Gautam K.; Gerard, Patrick D.; Baldwin, William S.

    2016-01-01

    Arachidonic acid (AA) is one of only two unsaturated fatty acids retained in the ovaries of crustaceans, and an inhibitor of HR97g, a nuclear receptor expressed in adult ovaries. We hypothesized that as a key fatty acid, AA may be associated with reproduction and potentially environmental sex determination in Daphnia. Reproduction assays with AA indicate that it alters female/male sex ratios by increasing female production. This reproductive effect only occurred during a restricted P. subcapitata diet. Next, we tested whether enriching a poorer algal diet (C. vulgaris) with AA enhances overall reproduction and sex ratios. AA enrichment of a C. vulgaris diet also enhances fecundity at 1.0 and 4.0μM by 30–40% in the presence and absence of pyriproxyfen. This indicates that AA is crucial in reproduction regardless of environmental sex determination. Furthermore, our data indicates that P. subcapitata may provide a threshold concentration of AA needed for reproduction. Diet switch experiments from P. subcapitata to C. vulgaris mitigate some but not all of AA’s effects when compared to a C. vulgaris only diet, suggesting that some AA provided by P. subcapitata is retained. In summary, AA supplementation increases reproduction and represses pyriproxyfen-induced environmental sex determination in D. magna in restricted diets. A diet rich in AA may provide protection from some reproductive toxicants such as the juvenile hormone agonist, pyriproxyfen. PMID:25393616

  18. A comparative study on toxicity identification of industrial effluents using Daphnia magna.

    PubMed

    Yi, Xianliang; Kim, Eunhee; Jo, Hun-Je; Han, Taejun; Jung, Jinho

    2011-09-01

    In this study, acute toxicity monitoring and toxicity identification evaluation procedures were applied to identify causative toxicants in industrial effluents. Effluents from a metal plating factory and a rubber products factory were acutely toxic toward Daphnia magna and the toxicity varied over different sampling events (2.9-5.9 and 1.7-7.6 TU, respectively). For the rubber products effluent, it was confirmed that zinc (5.65-13.18 mg L(-1)) was found to be a major cause of toxicity, which is likely originated from zinc 2-mercaptobenzothiazole and zinc diethyldithiocarbamate used as vulcanization accelerators. For the metal plating effluent, it appeared that the presence of high concentrations of Cl(-) and SO(4)(2-) (8,539-11,400 and 3,588-4,850 mg L(-1), respectively) caused the observed toxicity. These toxicants likely originated from sodium bisulfate (NaHSO(3)) and sodium hypochlorite (NaOCl) used as reducing and oxidizing agents. Though copper was found to be present in levels much higher than the EC(50) (50% effective concentration) value, this was not attributable to the toxicity of metal plating effluent likely due to complexation with dissolved organic matter. PMID:21761172

  19. Trophic transfer of gold nanoparticles from Euglena gracilis or Chlamydomonas reinhardtii to Daphnia magna.

    PubMed

    Lee, Woo-Mi; Yoon, Sung-Ji; Shin, Yu-Jin; An, Youn-Joo

    2015-06-01

    Understanding the trophic transfer of nanoparticles (NPs) is important because NPs are small enough to easily penetrate into organisms. In this study, we evaluated the trophic transfer of gold NPs (AuNPs) within the aquatic food chain. We observed AuNPs transfer from 2 species of primary producers (Chlamydomonas reinhardtii or Euglena gracilis) to the primary consumer (Daphnia magna). Also, bioaccumulation of AuNPs in E. gracilis was higher than that in C. reinhardtii. The reasons for the difference in Au accumulation may be the physical structure of these organisms, and the surface area that is available for interaction with NPs. C. reinhardtii has a cell wall that may act as a barrier to the penetration of NPs. The size of E. gracilis is larger than that of C. reinhardtii. This study demonstrates the trophic transfer of AuNPs from a general producer to a consumer in an aquatic environment. PMID:25756227

  20. Daphnia magna's sense of competition: intra-specific interactions (ISI) alter life history strategies and increase metals toxicity.

    PubMed

    Gust, Kurt A; Kennedy, Alan J; Melby, Nicolas L; Wilbanks, Mitchell S; Laird, Jennifer; Meeks, Barbara; Muller, Erik B; Nisbet, Roger M; Perkins, Edward J

    2016-08-01

    This work investigates whether the scale-up to multi-animal exposures that is commonly applied in genomics studies provides equivalent toxicity outcomes to single-animal experiments of standard Daphnia magna toxicity assays. Specifically, we tested the null hypothesis that intraspecific interactions (ISI) among D. magna have neither effect on the life history strategies of this species, nor impact toxicological outcomes in exposure experiments with Cu and Pb. The results show that ISI significantly increased mortality of D. magna in both Cu and Pb exposure experiments, decreasing 14 day LC50 s and 95 % confidence intervals from 14.5 (10.9-148.3) to 8.4 (8.2-8.7) µg Cu/L and from 232 (156-4810) to 68 (63-73) µg Pb/L. Additionally, ISI potentiated Pb impacts on reproduction eliciting a nearly 10-fold decrease in the no-observed effect concentration (from 236 to 25 µg/L). As an indication of environmental relevance, the effects of ISI on both mortality and reproduction in Pb exposures were sustained at both high and low food rations. Furthermore, even with a single pair of Daphnia, ISI significantly increased (p < 0.05) neonate production in control conditions, demonstrating that ISI can affect life history strategy. Given these results we reject the null hypothesis and conclude that results from scale-up assays cannot be directly applied to observations from single-animal assessments in D. magna. We postulate that D. magna senses chemical signatures of conspecifics which elicits changes in life history strategies that ultimately increase susceptibility to metal toxicity. PMID:27151402

  1. A fluorescence-based hydrolytic enzyme activity assay for quantifying toxic effects of Roundup® to Daphnia magna.

    PubMed

    Ørsted, Michael; Roslev, Peter

    2015-08-01

    Daphnia magna is a widely used model organism for aquatic toxicity testing. In the present study, the authors investigated the hydrolytic enzyme activity of D. magna after exposure to toxicant stress. In vivo enzyme activity was quantified using 15 fluorogenic enzyme probes based on 4-methylumbelliferyl or 7-amino-4-methylcoumarin. Probing D. magna enzyme activity was evaluated using short-term exposure (24-48 h) to the reference chemical K2 Cr2 O7 or the herbicide formulation Roundup®. Toxicant-induced changes in hydrolytic enzyme activity were compared with changes in mobility (International Organization for Standardization standard 6341). The results showed that hydrolytic enzyme activity was quantifiable as a combination of whole body fluorescence of D. magna and the fluorescence of the surrounding water. Exposure of D. magna to lethal and sublethal concentrations of Roundup resulted in loss of whole body enzyme activity and release of cell constituents, including enzymes and DNA. Roundup caused comparable inhibition of mobility and alkaline phosphatase activity with median effective concentration values at 20 °C of 8.7 mg active ingredient (a.i.)/L to 11.7 mg a.i./L. Inhibition of alkaline phosphatase activity by Roundup was lowest at 14 °C and greater at 20 °C and 26 °C. The results suggest that the fluorescence-based hydrolytic enzyme activity assay (FLEA assay) can be used as an index of D. magna stress. Combining enzyme activity with fluorescence measurements may be applied as a simple and quantitative supplement for toxicity testing with D. magna. PMID:25809520

  2. The development of pathogen resistance in Daphnia magna: implications for disease spread in age-structured populations.

    PubMed

    Garbutt, Jennie S; O'Donoghue, Anna J P; McTaggart, Seanna J; Wilson, Philip J; Little, Tom J

    2014-11-01

    Immunity in vertebrates is well established to develop with time, but the ontogeny of defence in invertebrates is markedly less studied. Yet, age-specific capacity for defence against pathogens, coupled with age structure in populations, has widespread implications for disease spread. Thus, we sought to determine the susceptibility of hosts of different ages in an experimental invertebrate host-pathogen system. In a series of experiments, we show that the ability of Daphnia magna to resist its natural bacterial pathogen Pasteuria ramosa changes with host age. Clonal differences make it difficult to draw general conclusions, but the majority of observations indicate that resistance increases early in the life of D. magna, consistent with the idea that the defence system develops with time. Immediately following this, at about the time when a daphnid would be most heavily investing in reproduction, resistance tends to decline. Because many ecological factors influence the age structure of Daphnia populations, our results highlight a broad mechanism by which ecological context can affect disease epidemiology. We also show that a previously observed protective effect of restricted maternal food persists throughout the entire juvenile period, and that the protective effect of prior treatment with a small dose of the pathogen ('priming') persists for 7 days, observations that reinforce the idea that immunity in D. magna can change over time. Together, our experiments lead us to conclude that invertebrate defence capabilities have an ontogeny that merits consideration with respect to both their immune systems and the epidemic spread of infection. PMID:25214486

  3. The development of pathogen resistance in Daphnia magna: implications for disease spread in age-structured populations

    PubMed Central

    Garbutt, Jennie S.; O'Donoghue, Anna J. P.; McTaggart, Seanna J.; Wilson, Philip J.; Little, Tom J.

    2014-01-01

    Immunity in vertebrates is well established to develop with time, but the ontogeny of defence in invertebrates is markedly less studied. Yet, age-specific capacity for defence against pathogens, coupled with age structure in populations, has widespread implications for disease spread. Thus, we sought to determine the susceptibility of hosts of different ages in an experimental invertebrate host–pathogen system. In a series of experiments, we show that the ability of Daphnia magna to resist its natural bacterial pathogen Pasteuria ramosa changes with host age. Clonal differences make it difficult to draw general conclusions, but the majority of observations indicate that resistance increases early in the life of D. magna, consistent with the idea that the defence system develops with time. Immediately following this, at about the time when a daphnid would be most heavily investing in reproduction, resistance tends to decline. Because many ecological factors influence the age structure of Daphnia populations, our results highlight a broad mechanism by which ecological context can affect disease epidemiology. We also show that a previously observed protective effect of restricted maternal food persists throughout the entire juvenile period, and that the protective effect of prior treatment with a small dose of the pathogen (‘priming’) persists for 7 days, observations that reinforce the idea that immunity in D. magna can change over time. Together, our experiments lead us to conclude that invertebrate defence capabilities have an ontogeny that merits consideration with respect to both their immune systems and the epidemic spread of infection. PMID:25214486

  4. Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna.

    PubMed

    Rehse, Saskia; Kloas, Werner; Zarfl, Christiane

    2016-06-01

    Recent studies revealed that freshwaters are not only polluted by chemicals, but also by persistent synthetic material like microplastics (plastic particles <1 mm). Microplastics include a diverse range of characteristics, e.g. polymer type, size or shape, but also their tendency to sorb pollutants or release additives. Although there is rising concern about the pollution of freshwaters by microplastics, knowledge about their potential effects on organisms is limited. For a better understanding of their risks, it is crucial to unravel which characteristics influence their effects on organisms. Analysing effects by the mere particles is the first step before including more complex interactions e.g. with associated chemicals. The aim of this study was to analyse potential physical effects of microplastics on one representative organism for limnic zooplankton (Daphnia magna). We investigated whether microplastics can be ingested and whether their presence causes adverse effects after short-term exposure. Daphnids were exposed for up to 96 h to 1-μm and 100-μm polyethylene particles at concentrations between 12.5 and 400 mg L(-1). Ingestion of 1-μm particles led to immobilisation increasing with dose and time with an EC50 of 57.43 mg L(-1) after 96 h. 100-μm particles that could not be ingested by the daphnids had no observable effects. These results underline that, considering high concentrations, microplastic particles can already induce adverse effects in limnic zooplankton. Although it needs to be clarified if these concentrations can be found in the environment these results are a basis for future impact analysis, especially in combination with associated chemicals. PMID:27010171

  5. Effects of the organophosphate paraoxon-methyl on survival and reproduction of Daphnia magna: importance of exposure duration and recovery.

    PubMed

    Duquesne, Sabine; Reynaldi, Sebastián; Liess, Matthias

    2006-05-01

    The aim of this study was to determine the influence of exposure duration (1 h, 24 h, continuous) to paraoxon-methyl on the magnitude of lethal and sublethal effects, the shape of the concentration-response relationships and the recovery processes in Daphnia magna. Survival was more severely reduced in the continuous than in the pulse exposure regimes. The lethal concentrations (3d median lethal concentration [LC50] values) were 233, 2.33, and 1.14 microg/L after 1-h, 24-h, and continuous exposure, respectively. The shapes of the concentration-response relationships for survival were significantly different after 1 h of exposure than after 24-h and continuous exposure. Indeed, the slopes of the curves defined by the ratios LC90/LC10 (ratio of 90 and 10% lethal concentrations) were 100, 1.74, and 1.97 for 1-h, 24-h, and continuous exposure, respectively. The large difference between 1 h and longer durations of exposure shows that the population is partially affected (10-90%) over a much broader range of concentrations when exposure is short. Negative effects on reproductive outputs occurred mostly at concentrations affecting partly the survival and therefore also over a broad range of concentrations after 1 h of exposure. However, these effects were only transient in the pulse exposure regimes as individual performances recovered. By contrast, reproductive outputs of survivors exposed continuously remained impaired. These results suggest that a refined risk assessment should consider exposure duration because it influences the magnitude of effects and recovery. PMID:16704048

  6. n vivo retention of ingested Au NPs by Daphnia magna: No evidence for trans-epithelial alimentary uptake

    USGS Publications Warehouse

    Khan, Farhan R.; Kennaway, Gabrielle M.; Croteau, Marie-Noële; Dybowska, Agnieszka; Smith, Brian D.; Nogueira, António J.A.; Rainbow, Philip S.; Luoma, Samuel N.; Valsami-Jones, Eugenia

    2014-01-01

    In vivo studies with Daphnia magna remain inconclusive as to whether engineered nanoparticles (NPs) are internalized into tissues after ingestion. Here we used a three-pronged approach to study the in vivo retention and efflux kinetics of 20 nm citrate stabilized Au NPs ingested by this key aquatic species. Daphnids were exposed to suspended particles (600 μg L−1) for 5 h after which they were depurated for 24 h in clean water containing algae. Light microscopy was used to follow the passage of Au NPs through the gastrointestinal tract, Au body burdens were determined by ICP-MS (inductively coupled plasma mass spectrometry), and transmission electron microscopy (TEM) was used to examine the presence and distribution of Au NPs in tissues. Results revealed that the elimination of Au NPs was bi-phasic. The fast elimination phase lasted −1 (±SE) which accounted for ∼75% of the ingested Au. The remaining ∼25% of the ingested Au NPs was eliminated at a 100-fold slower rate. TEM analysis revealed that Au NPs in the midgut were in close proximity to the peritrophic membrane after 1 and 24 h of depuration. There were no observations of Au NP uptake at the microvilli. Thus, although Au NPs were retained in the gut lumen, there was no observable internalization into the gut epithelial cells. Similar to carbon nanotubes and CuO NPs, our findings indicate that in daphnids the in vivo retention of Au NPs does not necessarily result in their internalization.

  7. Acute, chronic and reproductive toxicity of complex cyanobacterial blooms in Daphnia magna and the role of microcystins.

    PubMed

    Smutná, Marie; Babica, Pavel; Jarque, Sergio; Hilscherová, Klára; Maršálek, Blahoslav; Haeba, Maher; Bláha, Ludek

    2014-03-01

    Toxic cyanobacterial blooms are a global threat to human health and aquatic biota. While the ecotoxicity of cyanobacterial toxins such as microcystins has been studied extensively, little is known about the risks they pose in the wild, i.e. within complex biomasses. In this work, crustaceans (Daphnia magna) were exposed to varying concentrations (0-405 mg d.w L(-1)) of eight complex cyanobacterial water bloom samples in a series of acute (48 h) and chronic (21 day) toxicity experiments. Further acute and chronic exposure assays were performed using aqueous extracts of the crude biomass samples and two fractions prepared by solid phase extraction (SPE) of the aqueous extracts. The cyanobacterial biomasses differed with respect to their dominant cyanobacterial species and microcystin contents. High acute toxicity was observed for 6 of the 8 crude biomass samples. Chronic exposure assays were performed using one complex biomass sample and its various subsamples/fractions. The complex biomass, the crude aqueous extract, and the microcystin-free SPE permeate all elicited similar and significant lethal effects, with LC50 values of around 35.6 mg biomass d.w L(-1) after 21 days. The cyanobacterial biomass samples also affected reproductive health, significantly increasing the time to the first brood (LOEC = 45 mg d.w L(-1) exposure) and inhibiting fecundity by 50% at 15 mg d.w L(-1). Conversely, the microcystin-containing C18-SPE eluate fraction had only weak effects in the chronic assay. These results indicate that cyanobacterial water blooms are highly toxic to zooplankton (both acutely and chronically) at environmentally relevant concentrations. However, the effects observed in the acute and chronic assays were independent of the samples' microcystin contents. Our results thus point out the importance of other cyanobacterial components such as lipopolysaccharides, various peptides and depsipeptides, polar alkaloid metabolites or other unidentified metabolites in the

  8. In vivo retention of ingested Au NPs by Daphnia magna: no evidence for trans-epithelial alimentary uptake.

    PubMed

    Khan, Farhan R; Kennaway, Gabrielle M; Croteau, Marie-Noële; Dybowska, Agnieszka; Smith, Brian D; Nogueira, António J A; Rainbow, Philip S; Luoma, Samuel N; Valsami-Jones, Eugenia

    2014-04-01

    In vivo studies with Daphnia magna remain inconclusive as to whether engineered nanoparticles (NPs) are internalized into tissues after ingestion. Here we used a three-pronged approach to study the in vivo retention and efflux kinetics of 20 nm citrate stabilized Au NPs ingested by this key aquatic species. Daphnids were exposed to suspended particles (600 μg L(-1)) for 5 h after which they were depurated for 24 h in clean water containing algae. Light microscopy was used to follow the passage of Au NPs through the gastrointestinal tract, Au body burdens were determined by ICP-MS (inductively coupled plasma mass spectrometry), and transmission electron microscopy (TEM) was used to examine the presence and distribution of Au NPs in tissues. Results revealed that the elimination of Au NPs was bi-phasic. The fast elimination phase lasted<1h and the rate constant at which Au (of Au NPs) was eliminated was 1.12 ± 0.34 h(-1) (±SE) which accounted for ∼75% of the ingested Au. The remaining ∼25% of the ingested Au NPs was eliminated at a 100-fold slower rate. TEM analysis revealed that Au NPs in the midgut were in close proximity to the peritrophic membrane after 1 and 24h of depuration. There were no observations of Au NP uptake at the microvilli. Thus, although Au NPs were retained in the gut lumen, there was no observable internalization into the gut epithelial cells. Similar to carbon nanotubes and CuO NPs, our findings indicate that in daphnids the in vivo retention of Au NPs does not necessarily result in their internalization. PMID:24411838

  9. Bioavailability and toxicity of trace metals to the cladoceran Daphnia magna in relation to cadmium exposure history

    NASA Astrophysics Data System (ADS)

    Guan, Rui

    The cladoceran Daphnia magna is widely used in freshwater bioassessments and ecological risk assessments. This study designed a series of experiments employing radiotracer methodology to quantify the trace metals (mainly Cd and Zn) biokinetics in D. magna under different environmental and biological conditions and to investigate the influences of different Cd exposure histories on the bioavailability and toxicity of trace metals to D. magna. A bioenergetic-based kinetic model was finally applied in predicting the Cd accumulation dynamics in D. magna and the model validity under non-steady state was assessed. Cd assimilation was found in this study to be influenced by the food characteristics (e.g., metal concentration in food particles), the metal exposure history of the animals, and the genetic characteristics. Some of these influences could be interpreted by the capacity and/or competition of those metal binding sites within the digestive tract and/or the detoxifying proteins metallothionein (MT). My study demonstrated a significant induction of MT in response to Cd exposure and it was the dominant fraction in sequestering the internal nonessential trace metals in D. magna. The ratio of Cd body burden to MT might better predict the Cd toxicity on the digestion systems of D. magna than the Cd tissue burden alone within one-generational exposure to Cd. It was found that metal elimination (rate constant and contribution of different release routes) was independent of the food concentration and the dietary metal concentration, implying that the elimination may not be metabolically controlled. The incorporation of the bioenergetic-based kinetic model, especially under non-steady state, is invaluable in helping to understand the fate of trace metals in aquatic systems and potential environmental risks. The dependence of biokinetic parameters on environmental factors rather than on genotypes implies a great potential of using biokinetics in inter-laboratory comparisons.

  10. Integrated analysis of the ecotoxicological and genotoxic effects of the antimicrobial peptide melittin on Daphnia magna and Pseudokirchneriella subcapitata.

    PubMed

    Galdiero, Emilia; Maselli, Valeria; Falanga, Annarita; Gesuele, Renato; Galdiero, Stefania; Fulgione, Domenico; Guida, Marco

    2015-08-01

    Melittin is a major constituent of the bee venom of Apis mellifera with a broad spectrum of activities. Melittin therapeutical potential is subject to its toxicity and the assessment of ecotoxicity and genotoxicity is of particular interest for therapeutic use. Here we analyzed the biological effects of melittin on two aquatic species, which are representative of two different levels of the aquatic trophic chain: the invertebrate Daphnia magna and the unicellular microalgae Pseudokirchneriella subcapitata. The attention was focused on the determination of: i) ecotoxicity; ii) genotoxicity; iii) antigenotoxicity. Our main finding is that melittin is detrimental to D. magna reproduction and its sub-lethal concentrations create an accumulation dependent on exposition times and a negative effect on DNA. We also observed that melittin significantly delayed time to first eggs. Moreover, results showed that melittin exerted its toxic and genotoxic effects in both species, being a bit more aggressive towards P. subcapitata. PMID:25884346

  11. A biology-based dynamic approach for the reconciliation of acute and chronic toxicity tests: application to Daphnia magna.

    PubMed

    Zaldívar, José-Manuel; Baraibar, Joaquín

    2011-03-01

    There is the need to integrate existing toxicity data in a coherent framework for extending their domain of applicability as well as their extrapolation potential. This integration would also reduce time and cost-consuming aspects of these tests and reduce animal usage. In this work, based on data extracted from literature, we have assessed the advantages that a dynamic biology-toxicant fate coupled model for Daphnia magna could provide when assessing toxicity data, in particular, the possibility to obtain from short-term (acute) toxicity test long-term (chronic) toxicity values taking into account the inherent variability of D. magna populations and the multiple sources of data. The results show that this approach overcomes some of the limitations of existing toxicity tests and that the prediction errors are considerably reduced when compared with the factor from 2 to 5 obtained using acute-to-chronic ratios. PMID:21168184

  12. Acute and chronic toxicity of selected disinfection byproducts to Daphnia magna, Cyprinodon variegatus, and Isochrysis galbana.

    PubMed

    Fisher, Daniel; Yonkos, Lance; Ziegler, Gregory; Friedel, Elizabeth; Burton, Dennis

    2014-05-15

    Ballast water treatment has become a major issue in the last decade due to the problem of invasive species transported and released by the uptake and discharge of ballast water for shipping operations. One of the important issues considering ballast water treatment is to determine whether treated ballast water, once discharged, is safe to the aquatic environment. The International Maritime Organization (IMO) Marine Environmental Protection Committee (MEPC) has determined that prior to approval of a ballast water management system, aquatic toxicity data must be available for both the active substance and relevant byproducts. Many proposed ballast water treatment systems use chlorine as the active ingredient. Although there are sufficient toxicity data concerning active substances such as chlorine, there are limited toxicity data concerning disinfection (halogenated) byproducts including dibromochloromethane, four haloacetic acids and sodium bromate. Acute and chronic toxicity were determined for these disinfection byproducts (DBPs). Acute toxicity values ranged from 96-h LC50s of 46.8 mg/l for Daphnia magna for both dibromochloromethane and sodium bromate to a 96-h LC50 of 376.4 mg/l for Cyprinodon variegatus for tribromoacetic acid. Acute Isochrysis galbana population growth effect values ranged from a 72-h EC10 of 39.9 mg/l for dichloroacetic acid to a 72-h EC50 of 15,954 mg/l for sodium bromate. Chronic toxicity mortality/reproduction effects values for D. magna ranged from a 21-d IC25 of 160.9 mg/l for tribromoacetic acid to a 21-d LOEC of 493.0 mg/l for trichloroacetic acid. Chronic toxicity mortality/growth values for C. variegatus ranged from a 32-d IC25 of 246.8 mg/l for trichloroacetic acid to a 32-d LOEC of 908.1 mg/l for tribromoacetic acid. I. galbana 96-h chronic population growth effects values ranged from an EC10 of 38.5 mg/l for trichloroacetic acid to an LOEC of 500.0 mg/l for tribromoacetic acid. Acute to chronic ratios for all of these

  13. A comparative study of toxicity identification using Daphnia magna and Tigriopus japonicus: implications of establishing effluent discharge limits in Korea.

    PubMed

    Kang, Sung-Wook; Seo, Jaehwan; Han, Jeonghoon; Lee, Jae-Seong; Jung, Jinho

    2011-01-01

    In Korea, the new permission criteria for industrial effluents based on Daphnia magna acute toxicity tests will be gradually implemented starting from 2011. Thus, in this study, toxicity assessment and identification using a marine species (Tigriopus japonicus) and the freshwater species (D. magna) was comparatively investigated. Effluent from an acid mine drainage treatment plant showed acute toxicity toward both organisms due to low pH, which was removed by neutralization of the effluent. Additionally, evaluation of the effluent of an electronics company revealed that Cu was attributable to the observed toxicity, and the effluent was more toxic toward T. japonicus than D. magna. Moreover, effluents from a metal plating factory were acutely toxic toward D. magna (6.50 TU), while they were not toxic against T. japonicus. Toxicity identification revealed that the high level of Cl- (12,841 mg L(-1)) was the cause of toxicity. Thus, the effluents had no effect on the marine species, T. japonicus. These findings suggest that a marine species rather than a freshwater species is more desirable for toxicity assessment of industrial effluent discharged into the saltwater, and thus should be considered in the legislation of toxicity-based discharge limits in Korea. PMID:21172718

  14. Toxicity of sodium molybdate and sodium dichromate to Daphnia magna straus evaluated in acute, chronic, and acetylcholinesterase inhibition tests.

    PubMed

    Diamantino, T C; Guilhermino, L; Almeida, E; Soares, A M

    2000-03-01

    As a result of a widespread application in numerous industrial processes, chromium is a contaminant of many environmental systems. Chromium and their compounds are toxic to both invertebrates and vertebrates and, for this reason, there has been a search for suitable and less toxic alternatives. Molybdenum compounds have been studied as alternative to chromium compounds for some industrial applications. The toxicity of chromium is well known but the effects of molybdenum and molybdenum mining on natural populations and communities of freshwater invertebrates have not often been studied. However, chromium, and molybdenum (and their compounds) are included in the same list (List II) of European Union dangerous substances. In this study, the acute and chronic effects of sodium molybdate and sodium dichromate to Daphnia magna Straus were evaluated. Furthermore, in vitro and in vivo effects of these two metals on acetylcholinesterase (AChE) activity of D. magna Straus were investigated. LC(50) values determined at 48 h were 0.29 and 2847.5 mg L(-1) for chromium (as sodium dichromate) and molybdenum (as sodium molybdate), respectively. No significant in vitro effects of both metals on AChE were found. However, both toxicants inhibited AChE in vivo at concentrations under the respective 48-h LC(50) values. Both sodium dichromate and sodium molybdate inhibited the reproduction and growth of D. magna, but the concentrations inducing significant effects were different for the two chemicals. Sodium molybdate had significant lower toxicity to D. magna Straus than sodium dichromate. PMID:10702344

  15. Identification of multi-level toxicity of liquid crystal display wastewater toward Daphnia magna and Moina macrocopa.

    PubMed

    Kim, Sae-Bom; Kim, Woong-Ki; Chounlamany, Vanseng; Seo, Jaehwan; Yoo, Jisu; Jo, Hun-Je; Jung, Jinho

    2012-08-15

    Toxicity-based regulations of industrial effluent have been adopted to complement the conventional discharge limits based on chemical analyses. In this study, multi-level toxicity including acute toxicity, feeding rate inhibition and oxidative stress of effluent from a liquid crystal display (LCD) wastewater treatment plant (WWTP) to Daphnia magna (reference species) and Moina macrocopa (native species) were periodically monitored from April 2010 to April 2011. Raw wastewater was acutely toxic to both D. magna and M. macrocopa, but the toxicity reached less than 1 TU in the final effluent (FE) as treatment proceeded. Although acute toxicity was not observed in the FE, the feeding rate of daphnids was significantly inhibited. Additionally, the antioxidant enzyme activity of catalase, superoxide dismutase and glutathione peroxidase (GPx) in D. magna increased significantly when compared to the control, while only GPx activity was increased significantly in M. macrocopa (p<0.05). A toxicity identification evaluation using D. magna showed that Cu was the key toxicant in the FE, which was not effectively removed by the coagulation/flocculation process in the LCD WWTP. In addition, Al originating from the coagulant seemed to increase toxicity of the FE. PMID:22677053

  16. Population Growth of the Cladoceran, Daphnia magna: A Quantitative Analysis of the Effects of Different Algal Food

    PubMed Central

    Choi, Jong-Yun; Kim, Seong-Ki; Chang, Kwang-Hyeon; Kim, Myoung-Chul; La, Geung-Hwan; Joo, Gea-Jae; Jeong, Kwang-Seuk

    2014-01-01

    In this study, we examined the effects of two phytoplankton species, Chlorella vulgaris and Stephanodiscus hantzschii, on growth of the zooplankton Daphnia magna. Our experimental approach utilized stable isotopes to determine the contribution of food algae to offspring characteristics and to the size of adult D. magna individuals. When equal amounts of food algae were provided (in terms of carbon content), the size of individuals, adult zooplankton, and their offspring increased significantly following the provision of S. hantzschii, but not after the provision of C. vulgaris or of a combination of the two species. Offspring size was unaffected when C. vulgaris or a mixture of the two algal species was delivered, whereas providing only S. hantzschii increased the production of larger-sized offspring. Stable isotope analysis revealed significant assimilation of diatom-derived materials that was important for the growth of D. magna populations. Our results confirm the applicability of stable isotope approaches for clarifying the contribution of different food algae and elucidate the importance of food quality for growth of D. magna individuals and populations. Furthermore, we expect that stable isotope analysis will help to further precisely examine the contribution of prey to predators or grazers in controlled experiments. PMID:24752042

  17. Bioaccumulation of fossil fuel components during single-compound and complex-mixture exposures of Daphnia magna

    SciTech Connect

    Dauble, D.D.; Carlile, D.W.; Hanf, R.W. Jr.

    1986-07-01

    The authors conducted tests with the water flea (Daphnia magna) to compare the bioaccumulation of compounds presented alone with the bioaccumulation of these same compounds when they were presented within a complex coal liquid, water-soluble fraction. Phenol and aniline were used as representative compounds because they are highly soluble, moderately toxic, and common to many fossil fuel liquid products and corresponding wastes. The tests were primarily designed to aid in development of predictive models relating to the transport and fate of components from complex mixtures in aquatic biota.

  18. Ecotoxicity and environmental risk assessment of larvicides used in the control of Aedes aegypti to Daphnia magna (Crustacea, Cladocera).

    PubMed

    Abe, Flavia Renata; Coleone, Ana Carla; Machado, Angela Aparecida; Gonçalves Machado-Neto, Joaquim

    2014-01-01

    Dengue transmitted by mosquitoes of the genus Aedes, species aegypti, is a major public health concern in Brazil. The chemical control of the mosquito larvae has been performed with the larvicide temephos since 1967. However, vector resistance was reported to temephos in several Brazilian states, and the Ministry of Health ordered the replacement of this larvicide by diflubenzuron (DFB), an inhibitor of chitin synthesis. Both insecticides are diluted in water with larvae and are able to reach aquatic environments in which they subsequently adversely damage nontarget organisms. The aims of this study were to (1) determine the acute toxicity (EC50) and environmental risk (RQ) of DFB and temephos to the microcrustacean Daphnia magna, and (2) evaluate the chronic toxicity (no-observed-effect concentration [NOEC] and lowest-observed-effect concentration [LOEC]) of these larvicides to D. magna. The experiments were performed according to a completely randomized design. The estimated 48-h EC50 of temephos was 0.15 μg/L (lower limit = 0.1 and upper limit = 0.2 μg/L) and the 48-h EC50 of DFB was 0.06 μg/L (lower limit = 0.03 and upper limit = 0.1 μg/L). RQ values were 4.166.7 to DFB and 6.666.6 to temephos. NOEC and LOEC values were respectively 2.5 and 5 ng/L for DFB, and respectively 6.2 and 12.5 ng/L for temephos. Thus, temephos and DFB are classified as highly toxic to Daphnia magna and pose a high environmental risk to this species. Mortality of D. magna was observed at concentrations lower than those used in the field to control A. aegypti larvae. PMID:24555645

  19. Phototoxicity identification by solid phase extraction and photoinduced toxicity to Daphnia magna.

    PubMed

    Wernersson, A; Dave, G

    1997-04-01

    The photoinduced toxicity of several environmental pollutants (some Polycyclic Aromatic Hydrocarbons [PAHs]) is a potential threat to aquatic organisms. To identify the cause/s of photoinduced toxicity of a sample, it is not sufficient to simply analyze the content of some known phototoxic compounds; so far too few substances of environmental concern have ever been tested for their photoinduced toxicity. The PAHs as well as other known phototoxic compounds are hydrophobic and are expected to bind to C18 columns. The use of Solid Phase Extraction (SPE) is typically part of the procedure identifying any primary nonpolar toxicant/s, and adding phototoxicity tests to these manipulations would not substantially increase the workload. In this study, therefore, the difference in acute toxicity to Daphnia magna before and after 2 h of UV irradiation was determined for six PAHs. The ratio between EC50 values before and after UV irradiation ranged from 4.6 (for benzo-a-pyrene) to >244 (for 3, 4-benzofluoranthene), demonstrating that the UV enhances the PAH-toxicity. A further characterization technique using binding to Sep-Pak SPE C18 columns and recovery with methanol as an eluting agent was then tested in combination with UV irradiation. The mean recovered UV induced toxicity after binding and elution of the six PAHs was 119% according to the phototoxicity tests made. A linear relationship, between the log10 Kow values for the PAHs and the log10 for the concentration of methanol at peak elution was found. The combined use of C18 column separation and UV activation may, therefore, be used in toxicity identification evaluations (TIE) of organic phototoxic compounds. PMID:9096075

  20. The toxicity of sulfamethazine to Daphnia magna and its additivity to other veterinary sulfonamides and trimethoprim.

    PubMed

    De Liguoro, Marco; Fioretto, Barbara; Poltronieri, Carlo; Gallina, Guglielmo

    2009-06-01

    Sulfonamides (SAs), the oldest chemotherapeutic agents used for antimicrobial therapy, still play an important role in veterinary mass treatments. Consequently, traces of these compounds, alone or in combinations, have been repeatedly detected in the environment. Sulfamethazine (SMZ) deserves particular attention not only because it is the most used veterinary SA, but also due to its proven effects on fertility in mice and on thyroid hormone homeostasis in rats. In this study, after evaluating the acute toxicity to Daphnia magna of six veterinary SAs and trimethoprim (TMP), the additivity of SMZ to each other compound was tested using the isobologram method. Two reproduction tests on the same biological model were also performed in order to derive LOEC and NOEC of SMZ. The acute EC(50) was in the range 131-270 mgL(-1) for all the compounds tested with the exception of sulfaguanidine (EC(50)=3.86 mgL(-1)). In acute binary tests SMZ showed a complex interaction with sulfaquinoxaline (superadditivity, additivity or subadditivity) at the three different combination ratios tested, simple additivity to TMP and less than additive interaction when paired to the other SAs. LOEC and NOEC of SMZ obtained from reproduction tests were 3.125 and 1.563 mgL(-1), respectively. In conclusion, SMZ should not harm the crustacean population at environmentally realistic concentrations. Its toxicity is comparable to that of other systemic SAs, and their binary interactions are less than additive. The same can not be entirely said for enteric SAs, and considering that these compounds are administered at high doses and mostly excreted in unmetabolised form, further evaluation of their impact to the aquatic environment seems advisable. PMID:19269673

  1. Toxicity of copper nanoparticles to Daphnia magna under different exposure conditions.

    PubMed

    Xiao, Yinlong; Peijnenburg, Willie J G M; Chen, Guangchao; Vijver, Martina G

    2016-09-01

    Although the risks of metallic nanoparticles (NPs) to aquatic organisms have already been studied for >10years, our understanding of the link between the fate of particles in exposure medium and their toxicity is still in its infancy. Moreover, most of the earlier studies did not distinguish the contribution of particles and soluble ions to the toxic effects caused by suspensions of metallic NPs. In this study, the toxicity of CuNPs to Daphnia magna upon modification of the exposure conditions, achieved by aging the suspensions of CuNPs and by altering water chemistry parameters like the pH and levels of dissolved organic carbon (DOC), was investigated. The LC50 values for CuNPs exposure decreased by about 30% after 7days of aging. The LC50 values increased >12-fold upon addition of DOC at concentrations ranging from 0 to 10mg/L to the exposure medium. Changing the pH from 6.5 to 8.5 resulted in a 3-fold higher LC50 value. Furthermore, it was found that during 7days of aging of the exposure medium (without addition of DOC and at pH7.8), the toxicity could be mostly ascribed to the particles present in the suspension (around 70%). However, adding DOC or decreasing the pH of the exposure medium reduced the contribution of the particles to the observed toxicity. We thus found that the effective concentration regarding the toxicity was mainly driven by the contribution of the soluble ions in the presence of DOC or at pH6.5. Our results suggest that the toxicity results of CuNPs obtained from laboratory tests may overestimate the risk of the particles in polluted waters due to the common absence of DOC in laboratory test solutions. Moreover, the role of the ions shedding from CuNPs is very important in explaining the toxicity in natural waters. PMID:27135569

  2. Chronic toxicity of a homologous series of alcohol ethoxylate surfactants to Daphnia magna

    SciTech Connect

    Gillespie, W.B. Jr.; Rodgers, J.H. Jr.; Wong, D.C.L.; Dorn, P.B.

    1995-12-31

    The effects of three homologous nonionic surfactants were evaluated in a series of 21 d Daphnia magna flow-through laboratory experiments. No observed effects concentrations and effects concentrations for survival and reproduction were determined for three linear alcohol ethoxylate (LAE) surfactants with average carbon chain lengths of 10, 12.5, and 14.5 and average ethylene oxide units/mole of 6, 6.5, and 7, respectively. Mean measured concentrations of LAE in laboratory experiments ranged from 0.91 to 16.91 mg/L, 0.38 to 5.21 mg/L and 0.31 to 1.83 mg/L for C{sub 10}, C{sub 12.5}, and C{sub 14.5} LAEs, respectively. Daphnid survival NOECs were 2.8 mg/L (C{sub 10}), 1.8 mg/L (C{sub 12.5}), and 0.79 mg/L (C{sub 14.5}). Daphnid survival and reproduction were equally sensitive to the C{sub 10} and C{sub 14.5} surfactants, however, reproduction was more sensitive than survival for the C{sub 12.5} surfactant. Reproduction NOECs were 2.8, 0.77, and 0.79 mg/L for the C{sub 10}, C{sub 12.5}, and C{sub 14.5} LAEs, respectively. The 21 d chronic survival NOECs for daphnids were similar to NOECs for cladoceran densities obtained in outdoor stream mesocosm studies conducted at the University of Mississippi Field Station. These results indicate a relationship of approximately 1:1 between the chronic laboratory and field results.

  3. The fungicide propiconazole interferes with embryonic development of the crustacean Daphnia magna.

    PubMed

    Kast-Hutcheson, K; Rider, C V; LeBlanc, G A

    2001-03-01

    Propiconazole is a fungicide used in a variety of agricultural applications. Preliminary studies had suggested that embryos of the crustacean Daphnia magna are particularly susceptible to the toxicity of this chemical. The goals of the present study were to define endpoints of daphnid embryonic development that could be routinely used to assess the embryo toxicity of chemicals and to characterize definitively the embryo toxicity of propiconazole to daphnids. Daphnid embryonic development was characterized into six readily distinguishable stages based on the degree of tissue differentiation. Embryonic development could be monitored either in the brood chamber of the maternal organism or using embryos removed from the brood chamber and incubated ex vivo. Standard toxicity assessment revealed that propiconazole elicited no significant adverse effects on daphnid survival or fecundity during a 21-d exposure to concentrations as high as 0.25 mg/L. Exposure to 0.25 mg/L propiconazole, however, caused a significant incidence of developmental abnormalities and embryonic death. Abnormalities were consistent with developmental arrest at later stages of embryonic maturation. Propiconazole elicited a steep concentration-response curve with respect to embryo toxicity, with a 10% and a 90% incidence of embryo toxicity measured at 0.50 and 0.82 mg/L, respectively. Direct exposure of embryos to propiconazole resulted in toxicity, though the incidence and characteristics of developmental abnormalities were not consistent with that observed during chronic exposures. However, maternal exposure to propiconazole followed by transfer of early embryos to propiconazole-free media resulted in embryo toxicity consistent with that observed during chronic exposure. These results indicate that propiconazole interferes with the later stages of daphnid embryonic development, and that this toxicity is manifested largely via maternal exposure to the fungicide. PMID:11349850

  4. Determination of detoxification to Daphnia magna of four pharmaceuticals and seven surfactants by activated sludge.

    PubMed

    Dave, Göran; Herger, Gabriella

    2012-07-01

    Pharmaceuticals are bioactive compounds generally resistant to biodegradation, which can make them problematic when they are released into nature. The use pattern for pharmaceuticals means that they are discharged into water via sewage treatment plants. Also surfactants are discharged through sewage treatment plants, primarily due to their use in detergents and shampoos and other cleaners. In this study the acute toxicity to Daphnia magna of four pharmaceuticals (ciprofloxacin, ibuprofen, paracetamol and zinc pyrithione) and seven surfactants (C8 alkyl glucoside, C6 alkyl glucoside, sodium caprylimidiopropionate, tallow-trimethyl-ammonium chloride, potassium decylphosphate, propylheptanol ethoxylate and alkylmonoethanolamide ethoxylate) was determined. Abiotic (without activated sludge bacteria) and biotic (with activated sludge bacteria) detoxification was also determined. The 24-h EC50s ranged from 2 μg L(-1) for the most toxic substance (zinc pyrithione) to 2 g L(-1) for the least toxic compound (C6 alkyl glucoside). Detoxification rates determined as the ratio between initial EC50 and EC50 after 1 week in water with activated sludge bacteria ranged from 0.4 (paracetamol) to 13 (zinc pyrithione). For most of these chemicals detoxification rate decreased after 1 week, but for one (alkylmonoethanolamide ethoxylate) it increased from about 2 to 30 times after 2 weeks. Many of these chemicals were "detoxified" also abiotically at about the same rate as biotically. Further studies are needed to determine the degradation products that were precipitated (aggregated) for some of the tested chemicals. Altogether, this study has shown that there are large differences in toxicity among chemicals entering sewage treatment plants, but also that the detoxification of them can differ. Therefore, the detoxification should receive more attention in the hazard and risk assessment of chemicals entering sewage treatment plants. PMID:22480943

  5. Arachidonic acid enhances reproduction in Daphnia magna and mitigates changes in sex ratios induced by pyriproxyfen.

    PubMed

    Ginjupalli, Gautam K; Gerard, Patrick D; Baldwin, William S

    2015-03-01

    Arachidonic acid is 1 of only 2 unsaturated fatty acids retained in the ovaries of crustaceans and an inhibitor of HR97g, a nuclear receptor expressed in adult ovaries. The authors hypothesized that, as a key fatty acid, arachidonic acid may be associated with reproduction and potentially environmental sex determination in Daphnia. Reproduction assays with arachidonic acid indicate that it alters female:male sex ratios by increasing female production. This reproductive effect only occurred during a restricted Pseudokirchneriella subcapitata diet. Next, the authors tested whether enriching a poorer algal diet (Chlorella vulgaris) with arachidonic acid enhances overall reproduction and sex ratios. Arachidonic acid enrichment of a C. vulgaris diet also enhances fecundity at 1.0 µM and 4.0 µM by 30% to 40% in the presence and absence of pyriproxyfen. This indicates that arachidonic acid is crucial in reproduction regardless of environmental sex determination. Furthermore, the data indicate that P. subcapitata may provide a threshold concentration of arachidonic acid needed for reproduction. Diet-switch experiments from P. subcapitata to C. vulgaris mitigate some, but not all, of arachidonic acid's effects when compared with a C. vulgaris-only diet, suggesting that some arachidonic acid provided by P. subcapitata is retained. In summary, arachidonic acid supplementation increases reproduction and represses pyriproxyfen-induced environmental sex determination in D. magna in restricted diets. A diet rich in arachidonic acid may provide protection from some reproductive toxicants such as the juvenile hormone agonist pyriproxyfen. Environ Toxicol Chem 2015;34:527-535. © 2014 SETAC. PMID:25393616

  6. Sublethal effects of multiwalled carbon nanotube exposure in the invertebrate Daphnia magna.

    PubMed

    Stanley, Jacob K; Laird, Jennifer G; Kennedy, Alan J; Steevens, Jeffery A

    2016-01-01

    Carbon nanotubes were previously demonstrated to accumulate on the carapace and in the gut of daphnids in aquatic exposures. The purpose of the present study was to assess the effects of multiwalled carbon nanotube (MWCNT) exposure on the sublethal Daphnia magna endpoints swimming behavior, algal feeding, growth, and reproduction and to determine the relative magnitude of difference between lethal and sublethal toxicity thresholds in 48-h and 14-d exposures. A stable dispersion of MWCNTs was prepared using 100 mg/L natural organic matter (NOM), and all treatments were compared statistically to a NOM control. The swimming behavior endpoints of mean velocity and total distance moved were determined using digital tracking software. For the acute (48-h) exposure, a 50% lethal concentration (LC50) of 29.3 (23.6-36.3) mg/L and a 50% effective concentration (EC50) of 6.7 mg/L in the swimming velocity endpoint were determined. When swimming response was nonmonotonic below 2 mg/L, consistent reductions in velocity were observed at 6.9 mg/L and above. Median effect concentrations were lower in the chronic (14-d) bioassay. The 14-d LC50 was 4.3 mg/L (3.3-5.6 mg/L), and the reproduction EC50 was 5.0 mg/L. Lowest-observed-effect concentrations for survival and reproduction were 5.4 mg/L and 1.7 mg/L, respectively. Significantly fewer (23.1%) algal cells were consumed in the 3.9-mg/L treatment relative to the control. No significant effects on swimming behavior were observed for the 14-d bioassay. Less traditional sublethal endpoints such as swimming behavior and feeding rate may be especially important to assess for MWCNTs and other materials expected to be more physically than chemically toxic through mechanisms such as gut clogging. PMID:26222333

  7. Uptake of cadmium from a dietary and soluble source by the crustacean Daphnia magna

    SciTech Connect

    Carney, G.C.; Shore, P.; Chandra, H.

    1986-04-01

    Daphnia were exposed to radioactively labeled cadmium in solution and in the presence of Chlorella which had been preloaded with the metal to varying extents. Illuminated algal cells retained the cadmium and greatly reduced its availability to the daphnids. Autoradiographic evidence was obtained which implicated the exoskeleton as a major sink for the cadmium taken up from solution. Cadmium in solution at a concentration close to the 48 hr LC/sub 50/ level did not affect respiration during the first 6 hr of exposure. Retention patterns were similar, regardless of the source of cadmium, but ecdysis resulted in a considerable loss of body burden provided that this had been acquired via a predominantly soluble route.

  8. Comparative toxicity of selenate, selenite, seleno-DL-methionine and seleno-DL-cystine to Daphnia magna

    SciTech Connect

    Maier, K.J.; Foe, C.G.; Knight, A.W. )

    1993-04-01

    Elevated concentrations of the trace element selenium (Se) have resulted in the degradation of several aquatic ecosystems. This study evaluated the comparative toxicity of several aqueous chemical species of selenium to an aquatic cladoceran, Daphnia magna. Responses to mixtures of these selenium forms, varying the sulfate concentration, were also examined. Initial experiments compared the toxicity of aqueous forms of selenate, selenite, seleno-DL-methionine, and seleno-DL-cystine to neonate Daphnia magna, resulting in 4-h LC50 values of 2.84, 0.55, 0.31, and 2.01 mg Se per liter, respectively. Immobilization was an acute sublethal response observed during exposure to the organic selenium forms only. The 48-h IC50 values were 0.045 and 0.52 mg Se per liter for seleno-DL-methionine and seleno-DL-cystine, respectively. Evaluation of the invertebrate response to various combinations of selenate, selenite, and seleno-DL-methionine demonstrated that the toxicities of these forms of selenium are additive. Increasing the concentration of sulfate decreased, varied, and left unaffected the toxicities of selenate, selenite, and seleno-DL-methionine, respectively. These results indicate that both the chemical form of selenium and the sulfate concentration can influence the toxicity of selenium.

  9. Transcription patterns of genes encoding four metallothionein homologs in Daphnia pulex exposed to copper and cadmium are time- and homolog-dependent.

    PubMed

    Asselman, Jana; Shaw, Joseph R; Glaholt, Stephen P; Colbourne, John K; De Schamphelaere, Karel A C

    2013-10-15

    Metallothioneins are proteins that play an essential role in metal homeostasis and detoxification in nearly all organisms studied to date. Yet discrepancies between outcomes of chronic and acute exposure experiments hamper the understanding of the regulatory mechanisms of their isoforms following metal exposure. Here, we investigated transcriptional differences among four identified homologs (mt1-mt4) in Daphnia pulex exposed across time to copper and cadmium relative to a control. Transcriptional upregulation of mt1 and mt3 was detected on day four following exposure to cadmium, whereas that of mt2 and mt4 was detected on day two and day eight following exposure to copper. These results confirm temporal and metal-specific differences in the transcriptional induction of genes encoding metallothionein homologs upon metal exposure which should be considered in ecotoxicological monitoring programs of metal-contaminated water bodies. Indeed, the mRNA expression patterns observed here illustrate the complex regulatory system associated with metallothioneins, as these patterns are not only dependent on the metal, but also on exposure time and the homolog studied. Further phylogenetic analysis and analysis of regulatory elements in upstream promoter regions revealed a high degree of similarity between metallothionein genes of Daphnia pulex and Daphnia magna, a species belonging to the same genus. These findings, combined with a limited amount of available expression data for D. magna metallothionein genes, tentatively suggest a potential generalization of the metallothionein response system between these Daphnia species. PMID:24113165

  10. Transcription patterns of genes encoding four metallothionein homologs in Daphnia pulex exposed to copper and cadmium are time- and homolog- dependent

    PubMed Central

    Asselman, Jana; Shaw, Joseph R.; Glaholt, Stephen P.; Colbourne, John K.; De Schamphelaere, Karel AC.

    2013-01-01

    Metallothioneins are proteins that play an essential role in metal homeostasis and detoxification in nearly all organisms studied to date. Yet discrepancies between outcomes of chronic and acute exposure experiments hamper the understanding of the regulatory mechanisms of their isoforms following metal exposure. Here, we investigated transcriptional differences among four identified homologs (mt1–mt4) in Daphnia pulex exposed across time to copper and cadmium relative to a control. Transcriptional upregulation of mt1 and mt3 was detected on day four following exposure to cadmium, whereas that of mt2 and mt4 was detected on day two and day eight following exposure to copper. These results confirm temporal and metal-specific differences in the transcriptional induction of genes encoding metallothionein homologs upon metal exposure which should be considered in ecotoxicological monitoring programs of metal-contaminated water bodies. Indeed, the mRNA expression patterns observed here illustrate the complex regulatory system associated with metallothioneins, as these patterns are not only dependent on the metal, but also on exposure time and the homolog studied. Further phylogenetic analysis and analysis of regulatory elements in upstream promoter regions revealed a high degree of similarity between metallothionein genes of Daphnia pulex and Daphnia magna, a species belonging to the same genus. These findings, combined with a limited amount of available expression data for D. magna metallothionein genes, tentatively suggest a potential generalization of the metallothionein response system between these Daphnia species. PMID:24113165

  11. Toxicokinetic and toxicodynamic model for diazinon toxicity--mechanistic explanation of differences in the sensitivity of Daphnia magna and Gammarus pulex.

    PubMed

    Kretschmann, Andreas; Ashauer, Roman; Hollender, Juliane; Escher, Beate I

    2012-09-01

    A mechanistic toxicokinetic and toxicodynamic model for acute toxic effects (immobilization, mortality) of the organothiophosphate insecticide diazinon in Daphnia magna is presented. The model was parameterized using measured external and internal (whole-body) concentrations of diazinon, its toxic metabolite diazoxon, and the inactive metabolite 2-isopropyl-6-methyl-4-pyrimidinol, plus acetylcholinesterase (AChE) activity measured during exposure to diazinon in vivo. The toxicokinetic and toxicodynamic model provides a coherent picture from exposure to the resulting toxic effect on an organism level through internally formed metabolites and the effect on a molecular scale. A very fast reaction of diazoxon with AChE (pseudo first-order inhibition rate constant k(i) = 3.3 h(-1)) compared with a slow formation of diazoxon (activation rate constant k(act) = 0.014 h(-1)) was responsible for the high sensitivity of D. magna toward diazinon. Recovery of AChE activity from inhibition was slow and rate-determining (99% recovery within 16 d), compared with a fast elimination of diazinon (99% elimination within 17 h). The obtained model parameters were compared with toxicokinetic and toxicodynamic parameters of Gammarus pulex exposed to diazinon from previous work. This comparison revealed that G. pulex is less sensitive because of a six times faster detoxification of diazinon and diazoxon and an approximately 400 times lower rate for damage accrual. These differences overcompensate the two times faster activation of diazinon to diazoxon in G. pulex compared to D. magna. The present study substantiates theoretical considerations that mechanistically based effect models are helpful to explain sensitivity differences among different aquatic invertebrates. PMID:22653849

  12. Modification of the acute toxic response of Daphnia magna Straus 1820 to Cr(VI) by the effect of varying saline concentrations (NaCl).

    PubMed

    de la Paz Gómez-Díaz, María; Martínez-Jerónimo, Fernando

    2009-01-01

    Daphnia magna Straus is a freshwater organism that can strive in environments with a salinity of up to 12 psu, although its life cycle and survival are significantly affected by increasing salinities. Saline environments are not devoid of chemical contaminant influences, such as toxic metals; for freshwater species this could be another stress factor aside from that caused by salinity. In this study, we assessed the acute (48 h) toxicity produced by hexavalent chromium [Cr(VI)] in neonates of a D. magna strain previously acclimated to different salinities induced by adding NaCl to reconstituted hard water. The Mean Lethal Concentration (CL(50)) values determined for Cr(VI) were 0.14 +/- 0.12, 1.35 +/- 0.34, 1.79 +/- 0.41, 2.0 +/- 0.21, 2.02 +/- 0.075, and 2.6 +/- 0.23 mg l(-1) for salinities of 0.3, 1, 2, 3, 4, and 5 psu, respectively, evidencing that D. magna's sensitivity to Cr(VI) decreased with increasing salinity. The increase in tolerance could be due to a possible antagonic effect of NaCl on Cr(VI) rather than due to a reduction in Cr(VI) bioavailability due to the NaCl concentration. Although it was not demonstrated that the stress produced by salinity increased the sensitivity to the exposed toxicant, care must be exerted in inferring that the impact of contaminants, such as toxic metals, could be lower on freshwater species that sporadically or permanently strive in brackish water environments. PMID:18758949

  13. Performance of standard media in toxicological assessments with Daphnia magna: chelators and ionic composition versus metal toxicity.

    PubMed

    Loureiro, Cláudia; Castro, Bruno B; Pereira, Joana Luísa; Gonçalves, Fernando

    2011-01-01

    Fully artificial test media can increase reproducibility and standardization in ecotoxicological assessments, but there is still a lack of convergence among ecotoxicology laboratories in aquatic test media with respect to ionic composition, chelators, and organic supplements. We compared the performance of Daphnia magna in three widely-used reconstituted media. The tested media differed in composition: (a) ADaM, an artificial medium based in a synthetic sea salt, with no a priori known chelating properties; (b) ASTM hard water supplemented with algal extract, a semi-artificial medium with unknown chelating properties; and (c) M7, a complex artificial medium containing EDTA as a chelator. All three media were suitable for rearing D. magna (although performance in M7 was suboptimal) and acute EC(50) values for reference substances (3,4-DCA, K(2)Cr(2)O(7)) were similar between media. In acute exposures to Cu and Cd, daphniids were least sensitive when reared in M7, as expected due to metal chelation by EDTA. Daphnia sensitivity to Cd was low in ADaM. Thus, these two media were suboptimal for assessing the toxicity of some metals to D. magna in acute tests. We suggest that both the ionic composition of the medium and the presence of chelators should be taken into account when metal toxicity is concerned. Chronic toxicity profiles for Cu suggested a mild chelating effect of the algal extract in ASTM medium. Still, ASTM hard water persists as one of the most suitable media for acute toxicity assessments of metals and metal-contaminated samples. PMID:21080223

  14. Sequence Conservation and Sexually Dimorphic Expression of the Ftz-F1 Gene in the Crustacean Daphnia magna

    PubMed Central

    Mohamad Ishak, Nur Syafiqah; Kato, Yasuhiko; Matsuura, Tomoaki; Watanabe, Hajime

    2016-01-01

    Identifying the genes required for environmental sex determination is important for understanding the evolution of diverse sex determination mechanisms in animals. Orthologs of Drosophila orphan receptor Fushi tarazu factor-1 (Ftz-F1) are known to function in genetic sex determination. In contrast, their roles in environmental sex determination remain unknown. In this study, we have cloned and characterized the Ftz-F1 ortholog in the branchiopod crustacean Daphnia magna, which produces males in response to environmental stimuli. Similar to that observed in Drosophila, D. magna Ftz-F1 (DapmaFtz-F1) produces two splicing variants, αFtz-F1 and βFtz-F1, which encode 699 and 777 amino acids, respectively. Both isoforms share a DNA-binding domain, a ligand-binding domain, and an AF-2 activation domain and differ only at the A/B domain. The phylogenetic position and genomic structure of DapmaFtz-F1 suggested that this gene has diverged from an ancestral gene common to branchiopod crustacean and insect Ftz-F1 genes. qRT-PCR showed that at the one cell and gastrulation stages, both DapmaFtz-F1 isoforms are two-fold more abundant in males than in females. In addition, in later stages, their sexual dimorphic expressions were maintained in spite of reduced expression. Time-lapse imaging of DapmaFtz-F1 RNAi embryos was performed in H2B-GFP expressing transgenic Daphnia, demonstrating that development of the RNAi embryos slowed down after the gastrulation stage and stopped at 30–48 h after ovulation. DapmaFtz-F1 shows high homology to insect Ftz-F1 orthologs based on its amino acid sequence and exon-intron organization. The sexually dimorphic expression of DapmaFtz-F1 suggests that it plays a role in environmental sex determination of D. magna. PMID:27138373

  15. Sequence Conservation and Sexually Dimorphic Expression of the Ftz-F1 Gene in the Crustacean Daphnia magna.

    PubMed

    Mohamad Ishak, Nur Syafiqah; Kato, Yasuhiko; Matsuura, Tomoaki; Watanabe, Hajime

    2016-01-01

    Identifying the genes required for environmental sex determination is important for understanding the evolution of diverse sex determination mechanisms in animals. Orthologs of Drosophila orphan receptor Fushi tarazu factor-1 (Ftz-F1) are known to function in genetic sex determination. In contrast, their roles in environmental sex determination remain unknown. In this study, we have cloned and characterized the Ftz-F1 ortholog in the branchiopod crustacean Daphnia magna, which produces males in response to environmental stimuli. Similar to that observed in Drosophila, D. magna Ftz-F1 (DapmaFtz-F1) produces two splicing variants, αFtz-F1 and βFtz-F1, which encode 699 and 777 amino acids, respectively. Both isoforms share a DNA-binding domain, a ligand-binding domain, and an AF-2 activation domain and differ only at the A/B domain. The phylogenetic position and genomic structure of DapmaFtz-F1 suggested that this gene has diverged from an ancestral gene common to branchiopod crustacean and insect Ftz-F1 genes. qRT-PCR showed that at the one cell and gastrulation stages, both DapmaFtz-F1 isoforms are two-fold more abundant in males than in females. In addition, in later stages, their sexual dimorphic expressions were maintained in spite of reduced expression. Time-lapse imaging of DapmaFtz-F1 RNAi embryos was performed in H2B-GFP expressing transgenic Daphnia, demonstrating that development of the RNAi embryos slowed down after the gastrulation stage and stopped at 30-48 h after ovulation. DapmaFtz-F1 shows high homology to insect Ftz-F1 orthologs based on its amino acid sequence and exon-intron organization. The sexually dimorphic expression of DapmaFtz-F1 suggests that it plays a role in environmental sex determination of D. magna. PMID:27138373

  16. TiO2 Nanoparticle Uptake by the Water Flea Daphnia magna via Different Routes is Calcium-Dependent.

    PubMed

    Tan, Ling-Yan; Huang, Bin; Xu, Shen; Wei, Zhong-Bo; Yang, Liu-Yan; Miao, Ai-Jun

    2016-07-19

    Calcium plays versatile roles in aquatic ecosystems. In this study, we investigated its effects on the uptake of polyacrylate-coated TiO2 nanoparticles (PAA-TiO2-NPs) by the water flea (cladoceran) Daphnia magna. Particle distribution in these daphnids was also visualized using synchrotron radiation-based micro X-ray fluorescence spectroscopy, transmission electron microscopy, and scanning electron microscopy. At low ambient Ca concentrations in the experimental medium ([Ca]dis), PAA-TiO2-NPs were well dispersed and distributed throughout the daphnid; the particle concentration was highest in the abdominal zone and the gut, as a result of endocytosis and passive drinking of the nanoparticles, respectively. Further, Ca induced PAA-TiO2-NP uptake as a result of the increased Ca influx. At a high [Ca]dis, the PAA-TiO2-NPs formed micrometer-sized aggregates that were ingested by D. magna and concentrated only in its gut, independent of the Ca influx. Our results demonstrated the multiple effects of Ca on nanoparticle bioaccumulation. Specifically, well-dispersed nanoparticles were taken up by D. magna through endocytosis and passive drinking whereas the uptake of micrometer-sized aggregates relied on active ingestion. PMID:27359244

  17. Genetically modified rice Bt-Shanyou63 expressing Cry1Ab/c protein does not harm Daphnia magna.

    PubMed

    Zhang, Li; Guo, Ruqing; Fang, Zhixiang; Liu, Biao

    2016-10-01

    The genetically modified (GM) rice Bt-ShanYou63 (Bt-SY63) received an official biosafety certificate while its safety remained in dispute. In a lifelong study, Daphnia magna were experimentally fed a basal diet of rice flours from Bt-SY63 or its parental rice ShanYou63 (SY63) at concentrations of 0.2mg, 0.3mg, or 0.4mgC (per individual per day). Overall the survival, body size, and reproduction of the animals were comparable between Bt-SY63 and ShanYou63.. The results showed that no significant differences were observed in growth and reproduction parameters between D. magna fed GM and non-GM flour and no dose-related changes occurred in all the values. Based on the different parameters assessed, the GM rice Bt-SY63 is a safe food source for D. magna that does not differ in quality from non-GM rice. PMID:27322607

  18. Identification of toxicity variations in a stream affected by industrial effluents using Daphnia magna and Ulva pertusa.

    PubMed

    Yoo, Jisu; Ahn, Byeongyong; Oh, Jeong-Ju; Han, Taejun; Kim, Woo-Keun; Kim, Sanghoon; Jung, Jinho

    2013-09-15

    A comprehensive toxicity monitoring study from August to October 2011 using Daphnia magna and Ulva pertusa was conducted to identify the cause of toxicity in a stream receiving industrial effluents (IEs) from a textile and leather products manufacturing complex. Acute toxicity toward both species was observed consistently in IE, which influenced toxicity of downstream (DS) water. A toxicity identification evaluation (TIE) confirmed that both Cu and Zn were key toxicants in the IE, and that the calculated toxicity based on Cu and Zn concentrations well simulated the variation in the observed toxicity (r(2)=0.9216 and 0.7256 for D. magna and U. pertusa, respectively). In particular, U. pertusa was sensitive enough to detect acute toxicity in DS and was useful to identify Zn as a key toxicant. Activities of catalase, superoxide dismutase, glutathione peroxidase, glutathione S-transferase, and malondialdehyde were induced significantly in D. magna, although acute toxicity was not observed. In addition, higher levels of antioxidant enzymes were expressed in DS than upstream waters, likely due to the Cu and Zn from IE. Overall, TIE procedures with a battery of bioassays were effective for identifying the cause of lethal and sub-lethal toxicity in effluent and stream water. PMID:23892313

  19. Surfactants decrease the toxicity of ZnO, TiO2 and Ni nanoparticles to Daphnia magna.

    PubMed

    Oleszczuk, Patryk; Jośko, Izabela; Skwarek, Ewa

    2015-11-01

    The objective of the study was the estimation of the effect of surfactants on the toxicity of ZnO, TiO2 and Ni nanoparticles (ENPs) towards Daphnia magna. The effect of hexadecyltrimethylammonium bromide (CTAB), triton X-100 (TX100) and 4-dodecylbenzenesulfonic acid (SDBS) was tested. The Daphtoxkit F test (conforming to OECD Guideline 202 and ISO 6341) was applied for the toxicity testing. Both the surfactants and the ENPs were toxic to D. magna. The addition of ENPs to a solution of the surfactants caused a significant reduction of toxicity of ENPs. The range of reduction of the toxicity of the ENPs depended on the kind of the ENPs and their concentration in the solution, and also on the kind of surfactant. For nano-ZnO the greatest reduction of toxicity was caused by CTAB, while for nano-TiO2 the largest drop of toxicity was observed after the addition of TX100. In the case of nano-Ni, the effect of the surfactants depended on its concentration. Most probably the reduction of toxicity of ENPs in the presence of the surfactants was related with the formation of ENPs aggregates that inhibited the availability of ENPs for D. magna. PMID:26410374

  20. Comparative evaluation of acute and chronic toxicities of CuO nanoparticles and bulk using Daphnia magna and Vibrio fischeri.

    PubMed

    Rossetto, Ana Letícia de O F; Melegari, Silvia Pedroso; Ouriques, Luciane Cristina; Matias, William Gerson

    2014-08-15

    Copper oxide (CuO) has various applications, as highlighted by the incorporation of this compound as a biocide of antifouling paints for coating ships and offshore oil platforms. The objective of this study was to evaluate and compare the aquatic toxicity of CuO nanoparticles (NPs) and microparticles (MPs) through acute and chronic toxicity tests with the freshwater microcrustacean Daphnia magna and an acute toxicity test with the bioluminescent marine bacteria Vibrio fischeri. Acute toxicity results for D. magna in tests with CuO NPs (EC50, 48 h=22 mg L(-1)) were ten times higher than those for tests with CuO MPs (EC50, 48 h=223.6 mg L(-1)). In both periods of exposure of V. fischeri, the CuO NPs (EC50, 15m 248±56.39 - equivalent to 12.40%; EC50, 30 m 257.6±30.8 mg L(-1) - equivalent to 12.88%) were more toxic than the CuO MPs (EC50, 15m 2404.6±277.4 - equivalent to 60.10%; EC50, 30 m 1472.9±244.7 mg L(-1) - equivalent to 36.82%). In chronic toxicity tests, both forms of CuO showed significant effects (p<0.05) on the growth and reproduction parameters of the D. magna relative to the control. Additionally, morphological changes, such as lack of apical spine development and malformed carapaces in D. magna, were observed for organisms after the chronic test. The toxicity results demonstrate that CuO NPs have a higher level of toxicity than CuO MPs, emphasizing the need for comparative toxicological studies to correctly classify these two forms of CuO with identical CAS registration numbers. PMID:24907615

  1. Effects of Cylindrospermopsis raciborskii and Aphanizomenon ovalisporum (cyanobacteria) ingestion on Daphnia magna midgut and associated diverticula epithelium.

    PubMed

    Nogueira, Isabel C G; Lobo-da-Cunha, Alexandre; Vasconcelos, Vítor M

    2006-11-16

    This article reports a light and electron microscopy investigation of the effects of Cylindrospermopsis raciborskii and Aphanizomenon ovalisporum ingestion on midgut and associated digestive diverticula of Daphnia magna. Additionally, survivorship and growth effects caused by feeding on cyanobacteria were assessed. Three cyanobacteria were used in the experiments: cylindrospermopsin (CYN)-producing C. raciborskii, CYN-producing A. ovalisporum and non-CYN-producing C. raciborskii. In order to discriminate between the alterations due to the low nutritional value of cyanobacteria and toxic effects, a control group was fed on the chlorophyte Ankistrodesmus falcatus and another control group was not fed. In the chlorophyte fed control, the epithelium lining the midgut and associated diverticula is mainly formed by strongly stained cells with an apical microvilli border. Nevertheless, unstained areas in which cell lyses had occurred were also observed. In the unfed control, the unstained areas became predominant due to an increment of cell lyses. All individuals fed on CYN-producing A. ovalisporum and some of those fed on non-CYN-producing C. raciborskii appear similar to the unfed control. However, some individuals fed on non-CYN-producing C. raciborskii showed similarities with the fed control. In contrast, the midgut and digestive diverticula of D. magna fed on CYN-producing C. raciborskii showed a widespread dissociation of epithelial cells, associated with severe intracellular disorganization, but cell lysis was less evident than in controls. These alterations cannot be attributed to CYN, because those effects were not induced by CYN-producing A. ovalisporum. Therefore, data suggest the production of another unidentified active metabolite by CYN-producing C. raciborskii, responsible for the disruption of cell adhesion in the epithelium of D. magna digestive tract. Data also show that the tested cyanobacteria are inadequate as food to D. magna, due to low nutritional

  2. Toxicity of two pulsed metal exposures to Daphnia magna: relative effects of pulsed duration-concentration and influence of interpulse period.

    PubMed

    Hoang, Tham C; Gallagher, Jeffrey S; Tomasso, Joseph R; Klaine, Stephen J

    2007-11-01

    Aquatic organisms living in surface waters experience fluctuating contaminant exposures that vary in concentration, duration, and frequency. This study characterized the role of pulsed concentration, pulsed duration, and the interval between pulses on the toxicity of four metals (Cu, Zn, Se, and As) to Daphnia magna. During 21-d toxicity tests, neonatal D. magna were exposed to single or double pulses. Pulsed concentrations and durations ranged from 32 to 6000 microg/L and 8 to 96 h, respectively. Intervals between two pulses ranged from 24 to 288 h. Mortality, growth, and reproduction were characterized for exposures. For single-pulse exposures of Cu and As, metal concentration had a stronger effect on survival of D. magna than did pulsed duration: pulses with 2X concentration and 1Y duration resulted in more mortality than did pulses with 1X concentration and 2Y duration. In contrast, effects of pulsed duration were stronger than metal concentration for Zn. However, the effects of duration and concentration were similar for Se. The relative effects of pulsed concentration and duration found in the present study revealed that the common method using area under the curve (AUC = concentration x duration) may not always accurately estimate environmental risk from metals (e.g., for Cu, Zn, As). In addition, the occurrence of delayed mortality in the present study revealed that using continuous exposure bioassays might underestimate metal toxicity to aquatic biota. For double-pulse exposures, the toxicity of the second pulse was influenced by the first pulse for all four metals. This influence was dependent on the pulsed concentration and duration and the interval between pulses. Further, toxicity caused by the second pulse decreased as the time between the exposures increased. For all four metals, there existed an interval great enough that the toxicity of the two pulses was independent. This would result in less toxicity for multiple exposures than continuous

  3. Effects of chemical stress on the population dynamics of Daphnia magna: a comparison of two test procedures

    SciTech Connect

    van Leeuwen, C.J.; Niebeek, G.; Rijkeboer, M.

    1987-08-01

    Ten substances were tested to compare two methods that can be used in chronic toxicity studies with the Cladoceran Daphnia magna. In semistatic experiments with cohorts (life-table studies) survival appeared to be a dominant factor in exponential population growth. Specific inhibition of reproduction as a result of toxic stress was observed only in tests with bromide and 2,4-dichloroaniline. For some substances (cadmium, bichromate, metavanadate, and bromide) individual growth (carapace length) was found to be a sensitive parameter. In intermittent-flow experiments with small expanding populations the yield (carrying capacity) proved to be a highly sensitive parameter, probably owing to the fact that in these tests populations grow logistically, i.e., become additionally stressed by food limitation. Chemically induced reductions in food ingestion and conversion efficiency may thus become very predominant. In view of the place of these crustaceans in the food web such reductions in the carrying capacity would seem to be of great ecotoxicological importance.

  4. Bioavailability of HOC depending on the colloidal state of humic substances: a case study with PCB-77 and Daphnia magna.

    PubMed

    Gallé, T; Grégoire, Ch; Wagner, M; Bierl, R

    2005-10-01

    Condensed organic matter with higher affinity for hydrophobic organic compounds (HOC) is currently held responsible for slow desorption and concomitant lower bioavailabilities of HOC in sediments and soils. In an experiment with Daphnia magna and IHSS Peat Humic Acid (PHA), we showed that the bioconcentration factor (BCF) of 3,3',4,4'-tetrachlorobiphenyl (PCB-77) was directly related to the charge of the humic colloid, as predicted by the metal-humic binding model WHAM. Consistent with the type of binding to the humic acid (counter-ion accumulation vs. specific binding), increasing the concentration of Na+ and Ca2+ ions generated opposite effects on colloid charge and HOC binding by the humic acid. Condensation as a colloidal phenomenon in solution as well as on surfaces needs to be addressed as a contributor to lower bioavailabilities and, possibly, to slower desorption kinetics. PMID:15967482

  5. Effect of subcellular distribution on nC₆₀ uptake and transfer efficiency from Scenedesmus obliquus to Daphnia magna.

    PubMed

    Chen, Qiqing; Hu, Xialin; Yin, Daqiang; Wang, Rui

    2016-06-01

    The potential uptake and trophic transfer ability of nanoparticles (NPs) in aquatic organisms have not been well understood yet. There has been an increasing awareness of the subcellular fate of NPs in organisms, but how the subcellular distribution of NPs subsequently affects the trophic transfer to predator remains to be answered. In the present study, the food chain from Scenedesmus obliquus to Daphnia magna was established to simulate the trophic transfer of fullerene aqueous suspension (nC60). The nC60 contaminated algae were separated into three fractions: cell wall (CW), cell organelle (CO), and cell membrane (CM) fractions, and we investigated the nC60 uptake amounts and trophic transfer efficiency to the predator through dietary exposure to algae or algal subcellular fractions. The nC60 distribution in CW fraction of S. obliquus was the highest, following by CO and CM fractions. nC60 uptake amounts in D. magna were found to be mainly relative to the NPs' distribution in CW fraction and daphnia uptake ability from CW fraction, whereas the nC60 trophic transfer efficiency (TE) were mainly in accordance with the transfer ability of NPs from the CO fraction. CW fed group possessed the highest uptake amount, followed by CO and CM fed groups, but the presence of humic acid (HA) significantly decreased the nC60 uptake from CW fed group. The CO fed groups acquired high TE values for nC60, while CM fed groups had low TE values. Moreover, even though CW fed group had a high TE value; it decreased significantly with the presence of HA. This study contributes to the understanding of fullerene NPs' dietary exposure to aquatic organisms, suggesting that NPs in different food forms are not necessarily equally trophically available to the predator. PMID:26946286

  6. The mysid Siriella armata as a model organism in marine ecotoxicology: comparative acute toxicity sensitivity with Daphnia magna.

    PubMed

    Pérez, Sara; Beiras, Ricardo

    2010-01-01

    Siriella armata (Crustacea, Mysidacea) is a component of the coastal zooplankton that lives in swarms in the shallow waters of the European neritic zone, from the North Sea to the Mediterranean. Juveniles of this species were examined as standard test organisms for use in marine acute toxicity tests. The effects of reference toxicants, three trace metals (Copper, Cadmium and Zinc), and one surfactant, sodium dodecyl sulfate (SDS) were studied on S. armata neonates (\\24 h) reared in the laboratory. Acute toxicity tests were carried out with filtered sea water on individual chambers (microplate wells for metals or glass vials for SDS) incubated in an isothermal room at 20 degrees C, with 16 h light: 8 h dark photoperiod for 96 h. Each neonate was fed daily with 10-15 nauplii of Artemia salina. Acute (96 h) LC50 values, in increasing order, were 46.9 lg/L for Cu, 99.3 lg/L for Cd, 466.7 lg/L for Zn and 8.5 mg/L for SDS. The LC(10), NOEC and LOEC values were also calculated. Results were compared with Daphnia magna, a freshwater cladoceran widely used as a standard ecotoxicological test organism. Acute (48 h) LC(50) values were 56.2 lg/L for Cu, 571.5 lg/L for Cd, 1.3 mg/L for Zn and 27.3 mg/L for SDS. For all the reference toxicants studied, the marine mysid Siriella armata showed higher sensitivity than the freshwater model organism Daphnia magna, validating the use of Siriella mysids as model organisms in marine acute toxicity tests. PMID:19757032

  7. Toxicity to Daphnia magna and Vibrio fischeri of Kraft bleach plant effluents treated by catalytic wet-air oxidation.

    PubMed

    Pintar, Albin; Besson, Michèle; Gallezot, Pierre; Gibert, Janine; Martin, Dominique

    2004-01-01

    Two Kraft-pulp bleaching effluents from a sequence of treatments which include chlorine dioxide and caustic soda were treated by catalytic wet-air oxidation (CWAO) at T=463 K in trickle-bed and batch-recycle reactors packed with either TiO2 extrudates or Ru(3 wt%)/TiO2 catalyst. Chemical analyses (TOC removal, color, HPLC) and bioassays (48-h and 30-min acute toxicity tests using Daphnia magna and Vibrio fischeri, respectively) were used to get information about the toxicity impact of the starting effluents and of the treated solutions. Under the operating conditions, complex organic compounds are mostly oxidized into carbon dioxide and water, along with short-chain carboxylic acids. Bioassays were found as a complement to chemical analyses for ensuring the toxicological impact on the ecosystem. In spite of a large decrease of TOC, the solutions of end products were all more toxic to Daphnia magna than the starting effluents by factors ranging from 2 to 33. This observation is attributed to the synergistic effects of acetic acid and salts present in the solutions. On the other hand, toxicity reduction with respect to Vibrio fischeri was achieved: detoxification factors greater than unity were measured for end-product solutions treated in the presence of the Ru(3 wt%)/TiO2 catalyst, suggesting the absence of cumulative effect for this bacteria, or a lower sensitivity to the organic acids and salts. Bleach plant effluents treated by the CWAO process over the Ru/TiO2 catalyst were completely biodegradable. PMID:14675640

  8. Importance of suspended sediment (SPS) composition and grain size in the bioavailability of SPS-associated pyrene to Daphnia magna.

    PubMed

    Xia, Xinghui; Zhang, Xiaotian; Zhou, Dong; Bao, Yimeng; Li, Husheng; Zhai, Yawei

    2016-07-01

    Hydrophobic organic compounds (HOCs) tend to associate with suspended sediment (SPS) in aquatic environments; the composition and grain size of SPS will affect the bioavailability of SPS-associated HOCs. However, the bioavailability of HOCs sorbed on SPS with different compositions and grain sizes is not well understood. In this work, passive dosing devices were made to control the freely dissolved concentration of pyrene, a typical HOC, in the exposure systems. The effect of pyrene associated with amorphous organic carbon (AOC), black carbon (BC), and minerals of SPS with grain sizes of 0-50 μm and 50-100 μm on the immobilization and enzymatic activities of Daphnia magna was investigated to quantify the bioavailability of pyrene sorbed on SPS with different grain sizes and compositions. The results showed that the contribution of AOC-, BC-, and mineral-associated pyrene to the total bioavailability of SPS-associated pyrene was approximately 50%-60%, 10%-29%, and 20%-30%, respectively. The bioavailable fraction of pyrene sorbed on the three components of SPS was ordered as AOC (22.4%-67.3%) > minerals (20.1%-46.0%) > BC (9.11%-16.8%), and the bioavailable fraction sorbed on SPS of 50-100 μm grain size was higher than those of 0-50 μm grain size. This is because the SPS grain size will affect the ingestion of SPS and the SPS composition will affect the desorption of SPS-associated pyrene in Daphnia magna. According to the results obtained in this study, a model has been developed to calculate the bioavailability of HOCs to aquatic organisms in natural waters considering both SPS grain size and composition. PMID:27112726

  9. Combined toxicity of three chlorophenols 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol to Daphnia magna.

    PubMed

    Xing, Liqun; Sun, Jie; Liu, Hongling; Yu, Hongxia

    2012-05-01

    The toxicity of single and combined mixtures of 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), and pentachlorophenol (PCP) to Daphnia magna was studied. The toxicity ranking of these three single chlorophenols (CPs) to Daphnia magna was PCP > 2,4-DCP > 2,4,6-TCP. The toxic units (TU) approach was used to estimate the combined effects in experiments, the median effective concentration (EC(50)) values were 0.87-1.21 and 0.46-0.59 for binary and ternary mixtures, respectively. Response surface models of General Linear Models (R(2) > 0.90, residual deviation < 3.25) were established for all three binary mixtures. The toxicity for ternary mixtures based on the EC(50)-value and 10% effective concentration (EC(10))-value fixed mixture ratio presented a synergism. The risk based on the single CP's toxicity test may be underestimated. In addition, four approaches (concentration addition, toxicity equivalency factors, effect summation, and independent action) were used for the calculation of combined effects of the mixture. The experimental results showed that concentration addition and toxicity equivalency factor approaches were effective methods for calculation of additive effects of mixtures from binary systems of CPs; while independent action and effect summation (low simulated tail) predicted lower toxicity than experimental results. Limitations of the traditional focus on the effects of single agents were highlighted; hazard assessments ignoring the possibility of joint action of CPs will almost certainly lead to significant underestimations of risk. PMID:22618410

  10. Synchrotron X-ray 2D and 3D Elemental Imaging of CdSe/ZnS Quantum dot Nanoparticles in Daphnia Magna

    SciTech Connect

    Jackson, B.; Pace, H; Lanzirotti, A; Smith, R; Ranville, J

    2009-01-01

    The potential toxicity of nanoparticles to aquatic organisms is of interest given that increased commercialization will inevitably lead to some instances of inadvertent environmental exposures. Cadmium selenide quantum dots (QDs) capped with zinc sulfide are used in the semiconductor industry and in cellular imaging. Their small size (<10 nm) suggests that they may be readily assimilated by exposed organisms. We exposed Daphnia magna to both red and green QDs and used synchrotron X-ray fluorescence to study the distribution of Zn and Se in the organism over a time period of 36 h. The QDs appeared to be confined to the gut, and there was no evidence of further assimilation into the organism. Zinc and Se fluorescence signals were highly correlated, suggesting that the QDs had not dissolved to any extent. There was no apparent difference between red or green QDs, i.e., there was no effect of QD size. 3D tomography confirmed that the QDs were exclusively in the gut area of the organism. It is possible that the QDs aggregated and were therefore too large to cross the gut wall.

  11. Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: a transmission electron microscopy study.

    PubMed

    Heinlaan, Margit; Kahru, Anne; Kasemets, Kaja; Arbeille, Brigitte; Prensier, Gérard; Dubourguier, Henri-Charles

    2011-01-01

    This work is a follow-up of our previous paper (Heinlaan et al., 2008. Chemosphere 71, 1308-1316) where we showed about 50-fold higher acute toxicity of CuO nanoparticles (NPs) compared to bulk CuO to water flea Daphnia magna. In the current work transmission electron microscopy (TEM) was used to determine potential time-dependent changes in D. magna midgut epithelium ultrastructure upon exposure to CuO NPs compared to bulk CuO at their 48 h EC(50) levels: 4.0 and 175 mg CuO/L, respectively. Special attention was on potential internalization of CuO NPs by midgut epithelial cells. Ingestion of both CuO formulations by daphnids was evident already after 10 min of exposure. In the midgut lumen CuO NPs were dispersed whereas bulk CuO was clumped. By the 48th hour of exposure to CuO NPs (but not to equitoxic concentrations of bulk CuO) the following ultrastructural changes in midgut epithelium of daphnids were observed: protrusion of epithelial cells into the midgut lumen, presence of CuO NPs in circular structures analogous to membrane vesicles from holocrine secretion in the midgut lumen. Implicit internalization of CuO NPs via D. magna midgut epithelial cells was not evident however CuO NPs were no longer contained within the peritrophic membrane but located between the midgut epithelium microvilli. Interestingly, upon exposure to CuO NPs bacterial colonization of the midgut occurred. Ultrastructural changes in the midgut of D. magna upon exposure to CuO NPs but not to bulk CuO refer to its nanosize-related adverse effects. Time-dependent solubilisation of CuO NPs and bulk CuO in the test medium was quantified by recombinant Cu-sensor bacteria: by the 48th hour of exposure to bulk CuO, the concentration of solubilised copper ions was 0.05 ± 0.01 mg Cu/L that was comparable to the acute EC(50) value of Cu-ions to D. magna (48 h CuSO(4) EC(50) = 0.07 ± 0.01 mg Cu/L). However, in case of CuO NPs, the solubilised Cu-ions 0.01 ± 0.001 mg Cu/L, explained only part of

  12. Effects of intra- and interspecific competition on the sensitivity of Daphnia magna populations to the fungicide carbendazim.

    PubMed

    Del Arco, Ana Isabel; Rico, Andreu; van den Brink, Paul J

    2015-08-01

    The ecological risk assessment of pesticides is generally based on toxicity data obtained from single-species laboratory experiments and does not take into account ecological interactions such as competition or predation. Intraspecific and interspecific competition are expected to result in additional stress and might increase the sensitivity of aquatic populations to pesticide contamination. To test this hypothesis, the effects of the fungicide carbendazim were assessed on the population dynamics of the micro-crustacean Daphnia magna under different levels of intraspecific and interspecific competition for an algal food resource, using the rotifer Brachionus calyciflorus as competing species. The experiments were performed in glass jars with three different carbendazim concentrations (i.e., 50, 100 and 150 µg/L), and had a duration of 25 days, with a 4-day pre-treatment period in which competition was allowed to take place and a 21-day exposure period. The endpoints evaluated were D. magna total population abundance and population structure. Results of these experiments show that competition stress on its own had a significant influence on shaping D. magna population's structure, however, a different response was observed in the intraspecific and interspecific competition experiments. The use of a 4-day pre-treatment period in the intraspecific experiment already led to an absence of interactive effects due to the quick abundance confluence between the different intraspecific treatments, thus not allowing the observation of interactive effects between competition and carbendazim stress. Results of the interspecific competition experiment showed that rotifers were quickly outcompeted by D. magna and that D. magna even profited from the rotifer presence through exploitative competition, which alleviated the original stress caused by the algal resource limitation. These experiments suggest that competition interactions play an important role in defining population

  13. Induction of multixenobiotic defense mechanisms in resistant Daphnia magna clones as a general cellular response to stress.

    PubMed

    Jordão, Rita; Campos, Bruno; Lemos, Marco F L; Soares, Amadeu M V M; Tauler, Romà; Barata, Carlos

    2016-06-01

    Multixenobiotic resistance mechanisms (MXR) were recently identified in Daphnia magna. Previous results characterized gene transcripts of genes encoding and efflux activities of four putative ABCB1 and ABCC transporters that were chemically induced but showed low specificity against model transporter substrates and inhibitors, thus preventing us from distinguishing between activities of different efflux transporter types. In this study we report on the specificity of induction of ABC transporters and of the stress protein hsp70 in clones selected to be genetically resistant to ABCB1 chemical substrates. Clones resistant to mitoxantrone, ivermectin and pentachlorophenol showed distinctive transcriptional responses of transporter protein coding genes and of putative transporter dye activities. Expression of hsp70 proteins also varied across resistant clones. Clones resistant to mitoxantrone and pentachlorophenol showed high constitutive levels of hsp70. Transcriptional levels of the abcb1 gene transporter and of putative dye transporter activity were also induced to a greater extent in the pentachlorophenol resistant clone. Observed higher dye transporter activities in individuals from clones resistant to mitoxantrone and ivermectin were unrelated with transcriptional levels of the studied four abcc and abcb1 transporter genes. These findings suggest that Abcb1 induction in D. magna may be a part of a general cellular stress response. PMID:27039215

  14. Exposure Medium: Key in Identifying Free Ag+ as the Exclusive Species of Silver Nanoparticles with Acute Toxicity to Daphnia magna

    PubMed Central

    Shen, Mo-Hai; Zhou, Xiao-Xia; Yang, Xiao-Ya; Chao, Jing-Bo; Liu, Rui; Liu, Jing-Fu

    2015-01-01

    It is still not very clear what roles the various Ag species play in the toxicity of silver nanoparticles (AgNPs). In this study, we found that traditional exposure media result in uncontrollable but consistent physicochemical transformation of AgNPs, causing artifacts in determination of median lethal concentration (LC50) and hindering the identification of Ag species responsible for the acute toxicity of AgNPs to Daphnia magna. This obstacle was overcome by using 8 h exposure in 0.1 mmol L−1 NaNO3 medium, in which we measured the 8-h LC50 of seven AgNPs with different sizes and coatings, and determined the concentrations of various Ag species. The LC50 as free Ag+ of the seven AgNPs (0.37–0.44 μg L−1) agreed very well with that of AgNO3 (0.40 μg L−1), and showed the lowest value compared to that as total Ag, total Ag+, and dissolved Ag, demonstrating free Ag+ is exclusively responsible for the acute toxicity of AgNPs to D. magna, while other Ag species in AgNPs have no contribution to the acute toxicity. Our results demonstrated the great importance of developing appropriate exposure media for evaluating risk of nanomaterials. PMID:25858866

  15. Can natural levels of Al influence Cu speciation and toxicity to Daphnia magna in a Swedish soft water lake?

    PubMed

    Hoppe, S; Gustafsson, J-P; Borg, H; Breitholtz, M

    2015-11-01

    It is well known that chemical parameters, such as natural organic matter (NOM), cation content and pH may influence speciation and toxicity of metals in freshwaters. Advanced bioavailability models, e.g. Biotic Ligand Models (BLMs), can use these and other chemical parameters to calculate site specific recommendations for metals in the aquatic environment. However, since Al is not an input parameter in the BLM v.2.2.3, used in this study, there could be a discrepancy between calculated and measured results in Al rich waters. The aim of this study was to evaluate if the presence of Al in a circumneutral (pH ∼6) soft humic freshwater, Lake St. Envättern, will affect the Cu speciation and thereby the toxicity to the cladoceran Daphnia magna. The results show a statistically significant increase in the free Cu(2+) concentration with Al additions and that measured levels of Cu(2+) significantly differed from BLM calculated levels of Cu(2+). Furthermore, there was also a statistically significant elevated acute toxic response to D. magna at low additions of Al (10 μg/L). However, since the large difference between calculated and measured Cu(2+) resulted in a significant but minor (factor of 2.3) difference between calculated and measured toxicity, further studies should be conducted in Al rich soft waters to evaluate the importance of adding Al as an input parameter into the BLM software. PMID:26073589

  16. Transmission and Accumulation of Nano-TiO2 in a 2-Step Food Chain (Scenedesmus obliquus to Daphnia magna).

    PubMed

    Chen, Jinyuan; Li, Herong; Han, Xiaoqian; Wei, Xiuzhen

    2015-08-01

    The recent increase in nanomaterial usage has led to concerns surrounding its health risks and environmental impact. The food chain is an important pathway for high-trophic-level organisms absorbing and enriching nanomaterials. Our study therefore simulated nanometer titanium dioxide (nano-TiO2) transfer along a 2-step food chain, from the unicellular alga Scenedesmus obliquus to the water flea Daphnia magna. We also explored the effect of sodium dodecyl benzene sulfonate (SDBS) on nano-TiO2 bioavailability. A suspension of 10 mg/L nano-TiO2 was optimally dispersed in aqueous solutions by 5 mg/L SDBS. After 72 h, S. obliquus growth was not significantly affected by 10 mg/L nano-TiO2, 5 mg/L SDBS and their mixed suspension. SDBS not only improved nano-TiO2 stability in water, but also increased its uptake in S. obliquus and enhanced its accumulation in D. magna. Our study suggests that nano-TiO2 is mildly toxic to S. obliquus, and can be transferred along the aquatic food chain with a biomagnification effect. PMID:26091814

  17. Exposure Medium: Key in Identifying Free Ag+ as the Exclusive Species of Silver Nanoparticles with Acute Toxicity to Daphnia magna

    NASA Astrophysics Data System (ADS)

    Shen, Mo-Hai; Zhou, Xiao-Xia; Yang, Xiao-Ya; Chao, Jing-Bo; Liu, Rui; Liu, Jing-Fu

    2015-04-01

    It is still not very clear what roles the various Ag species play in the toxicity of silver nanoparticles (AgNPs). In this study, we found that traditional exposure media result in uncontrollable but consistent physicochemical transformation of AgNPs, causing artifacts in determination of median lethal concentration (LC50) and hindering the identification of Ag species responsible for the acute toxicity of AgNPs to Daphnia magna. This obstacle was overcome by using 8 h exposure in 0.1 mmol L-1 NaNO3 medium, in which we measured the 8-h LC50 of seven AgNPs with different sizes and coatings, and determined the concentrations of various Ag species. The LC50 as free Ag+ of the seven AgNPs (0.37-0.44 μg L-1) agreed very well with that of AgNO3 (0.40 μg L-1), and showed the lowest value compared to that as total Ag, total Ag+, and dissolved Ag, demonstrating free Ag+ is exclusively responsible for the acute toxicity of AgNPs to D. magna, while other Ag species in AgNPs have no contribution to the acute toxicity. Our results demonstrated the great importance of developing appropriate exposure media for evaluating risk of nanomaterials.

  18. Do titanium dioxide nanoparticles induce food depletion for filter feeding organisms? A case study with Daphnia magna.

    PubMed

    Bundschuh, Mirco; Vogt, Roland; Seitz, Frank; Rosenfeldt, Ricki R; Schulz, Ralf

    2016-07-01

    Although nanoparticles are increasingly investigated, their impact on the availability of food (i.e., algae) at the bottom of food chains remains unclear. It is, however, assumed that algae, which form heteroagglomerates with nanoparticles, sediment quickly limiting the availability of food for primary consumers such as Daphnia magna. As a consequence, it may be hypothesized that this scenario - in case of fundamental importance for the nanoparticles impact on primary consumers - induces a similar pattern in the life history strategy of daphnids relative to situations of food depletion. To test this hypothesis, the present study compared the life-history strategy of D. magna experiencing different degrees of food limitation as a consequence of variable algal density with daphnids fed with heteroagglomerates composed of algae and titanium dioxide nanoparticles (nTiO2). In contrast to the hypothesis, daphnids' body length, weight, and reproduction increased when fed with these heteroagglomerates, while the opposite pattern was observed under food limitation scenarios. Moreover, juvenile body mass, and partly length, was affected negatively irrespective of the scenarios. This suggests that daphnids experienced - besides a limitation in the food availability - additional stress when fed with heteroagglomerates composed of algae and nTiO2. Potential explanations include modifications in the nutritious quality of algae but also an early exposure of juveniles to nTiO2. PMID:27155102

  19. Inhibition of multixenobiotic resistance transporters (MXR) by silver nanoparticles and ions in vitro and in Daphnia magna.

    PubMed

    Georgantzopoulou, Anastasia; Cambier, Sébastien; Serchi, Tommaso; Kruszewski, Marcin; Balachandran, Yekkuni L; Grysan, Patrick; Audinot, Jean-Nicolas; Ziebel, Johanna; Guignard, Cédric; Gutleb, Arno C; Murk, AlberTinka J

    2016-11-01

    The P-glycoprotein (P-gp, ABCB1) and multidrug resistance associated protein 1 (MRP1), important members of the ABC (ATP-binding cassette) transporters, protect cells and organisms via efflux of xenobiotics and are responsible for the phenomenon of multidrug or multixenobiotic resistance (MXR). In this study we first evaluated, in vitro, the interaction of silver nanoparticles (Ag NPs, 20, 23 and 27nm), Ag 200nm particles and Ag ions (AgNO3) with MXR efflux transporters using MDCKII and the P-gp over-expressing MDCKII-MDR1 cells and calcein-AM as a substrate of the transporters. Next the in vivo modulation of MXR activity was studied in Daphnia magna juveniles with the model P-gp and MRP1 inhibitors verapamil-HCl and MK571, respectively. The common environmental contaminants perfluorooctane sulfonate and bisphenol A, previously observed to interfere with the P-gp in vitro, also inhibited the efflux of calcein in vivo. Small-sized Ag NPs (with biomolecules present on the surface) and AgNO3 inhibited the MXR activity in daphnids and MDCKII-MDR1 cells, but abcb1 gene expression remained unchanged. Both Ag NPs and dissolved ions contributed to the effects. This study provides evidence of the interference of Ag NPs and AgNO3 with the MXR activity both in vitro and in D. magna, and should be taken into account when Ag NP toxicity is assessed. PMID:27376922

  20. Larvicidal activity of Myrtaceae essential oils and their components against Aedes aegypti, acute toxicity on Daphnia magna, and aqueous residue.

    PubMed

    Park, Hye-Mi; Kim, Junheon; Chang, Kyu-Sik; Kim, Byung-Seok; Yang, Yu-Jung; Kim, Gil-Hah; Shin, Sang-Chul; Park, Il-Kwon

    2011-03-01

    The larvicidal activity of 11 Myrtaceae essential oils and their constituents was evaluated against Aedes aegypti L. Of the 11, Melaleuca linariifolia Sm., Melaleuca dissitiflora F. Muell., Melaleuca quinquenervia (Cav.) S. T. Blake, and Eucalyptus globulus Labill oils at 0.1 mg/ml exhibited > or = 80% larval mortality. At this same concentration, the individual constituents tested, allyl isothiocyanate, alpha-terpinene, p-cymene, (+)-limonene, (-)-limonene, gamma-terpinene, and (E)-nerolidol, resulted in > or = 95% mortality. We also tested the acute toxicity of these four active oils earlier mentioned and their constituents against Daphnia magna Straus. M. linariifolia and allyl isothiocyanate was the most toxic to D. magna. Twodays after treatment, residues of M. dissitiflora, M. linariifolia, M. quinquenervia, and E. globulus oils in water were 55.4, 46.6, 32.4, and 14.8%, respectively. Less than 10% of allyl isothiocyanate, alpha-terpinene, p-cymene, (-)-limonene, (+)-limonene, and gamma-terpinene was detected in the water at 2 d after treatment. Our results indicated that oils and their constituents could easily volatilize in water within a few days after application, thus minimizing their effect on the aqueous ecosystem. Therefore, Myrtaceae essential oils and their constituents could be developed as control agents against mosquito larvae. PMID:21485381

  1. (1)H NMR-based metabolomics of Daphnia magna responses after sub-lethal exposure to triclosan, carbamazepine and ibuprofen.

    PubMed

    Kovacevic, Vera; Simpson, André J; Simpson, Myrna J

    2016-09-01

    Pharmaceuticals and personal care products are a class of emerging contaminants that are present in wastewater effluents, surface water, and groundwater around the world. There is a need to determine rapid and reliable bioindicators of exposure and the toxic mode of action of these contaminants to aquatic organisms. (1)H nuclear magnetic resonance (NMR)-based metabolomics in combination with multivariate statistical analysis was used to determine the metabolic profile of Daphnia magna after exposure to a range of sub-lethal concentrations of triclosan (6.25-100μg/L), carbamazepine (1.75-14mg/L) and ibuprofen (1.75-14mg/L) for 48h. Sub-lethal triclosan exposure suggested a general oxidative stress condition and the branched-chain amino acids, glutamine, glutamate, and methionine emerged as potential bioindicators. The aromatic amino acids, serine, glycine and alanine are potential bioindicators for sub-lethal carbamazepine exposure that may have altered energy metabolism. The potential bioindicators for sub-lethal ibuprofen exposure are serine, methionine, lysine, arginine and leucine, which showed a concentration-dependent response. The differences in the metabolic changes were related to the dissimilar modes of toxicity of triclosan, carbamazepine and ibuprofen. (1)H NMR-based metabolomics gave an improved understanding of how these emerging contaminants impact the keystone species D. magna. PMID:26809854

  2. The effects of CaCl2 and CaBr2 on the reproduction of Daphnia magna Straus.

    PubMed

    Mažuran, Neda; Hršak, Vladimir; Kovačević, Goran

    2015-06-01

    Concentrated CaCl2 and CaBr2 salt solutions of densities up to 2.3 kg L-1 are regularly used to control hydrostatic pressure in oil wells during special operations in the exploration and production of natural gas and crude oil. Various concentrations of high density salts are frequently left in mud pits near the drilling site as waste, polluting fresh and ground waters by spillage and drainage. The toxic effects of these salts have already been observed. This study investigated the effects of CaCl2 and CaBr2 on water flea Daphnia magna Straus in a 21-day reproduction test. The three tested concentrations of CaCl2 (240, 481, and 1925 mg L-1) caused a significant dose-response decrease of reproduction (p<0.001). With CaBr2 (533 and 1066 mg L-1), only aborted eggs were produced, demonstrating the embryotoxicity of the substance. The results suggest that high concentrations of the tested chemicals are harmful to Daphnia's reproduction and could reduce its abundance. PMID:26110475

  3. Development of Quantitative Structure-Activity Relationship Models for Predicting Chronic Toxicity of Substituted Benzenes to Daphnia Magna.

    PubMed

    Fan, Deling; Liu, Jining; Wang, Lei; Yang, Xianhai; Zhang, Shenghu; Zhang, Yan; Shi, Lili

    2016-05-01

    The chronic toxicity of anthropogenic molecules such as substituted benzenes to Daphnia magna is a basic eco-toxicity parameter employed to assess their environmental risk. As the experimental methods are laborious, costly, and time-consuming, development in silico models for predicting the chronic toxicity is vitally important. In this study, on the basis of five molecular descriptors and 48 compounds, a quantitative structure-property relationship model that can predict the chronic toxicity of substituted benzenes were developed by employing multiple linear regressions. The correlation coefficient (R (2)) and root-mean square error (RMSE) for the training set were 0.836 and 0.390, respectively. The developed model was validated by employing 10 compounds tested in our lab. The R EXT (2) and RMSE EXT for the validation set were 0.736 and 0.490, respectively. To further characterizing the toxicity mechanism of anthropogenic molecules to Daphnia, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models were developed. PMID:27016939

  4. Statistical models to predict the toxicity of major ions to Ceriodaphnia dubia, Daphnia magna and Pimephales promelas (fathead minnows)

    SciTech Connect

    Mount, D.R.; Gulley, D.D.; Hockett, J.R.; Garrison, T.D.; Evans, J.M.

    1997-10-01

    Toxicity of fresh waters with high total dissolved solids has been shown to be dependent on the specific ionic composition of the water. To provide a predictive tool to assess toxicity attributable to major ions, the authors tested the toxicity of over 2,900 ion solutions using the daphnids, Ceriodaphnia dubia and Daphnia magna, and fathead minnows (Pimephales promelas). Multiple logistic regression was used to relate ion composition to survival for each of the three test species. In general, relative ion toxicity was K{sup +} > HCO{sub 3}{sup {minus}} {approx} Mg{sup 2+} > Cl{sup {minus}} > SO{sub 4}{sup 2{minus}}; Na{sup +} and Ca{sup 2+} were not significant variables in the regressions, suggesting that the toxicity of Na{sup +} and Ca{sup 2+} salts was primarily attributable to the corresponding anion. For C. dubia and D. magna, toxicity of Cl{sup {minus}}, SO{sub 4}{sup 2{minus}}, and K{sup +} was reduced in solutions enriched with more than one cation. Final regression models showed a good quality of fit to the data (R{sup 2} = 0.767--0.861). Preliminary applications of these models to field-collected samples indicated a high degree of accuracy for the C. dubia model, while the D. magna and fathead minnow models tended to overpredict ion toxicity. Studies of oil and gas produced waters, irrigation drain waters, shale oil leachates, sediment pore waters, and industrial process waters have shown toxicity caused by elevated concentrations of common ions.

  5. Effect of pH and ionic strength on exposure and toxicity of encapsulated lambda-cyhalothrin to Daphnia magna.

    PubMed

    Son, Jino; Hooven, Louisa A; Harper, Bryan; Harper, Stacey L

    2015-12-15

    Encapsulation of pesticide active ingredients in polymers has been widely employed to control the release of poorly water-soluble active ingredients. Given the high dispersibility of these encapsulated pesticides in water, they are expected to behave differently compared to their active ingredients; however, our current understanding of the fate and effects of encapsulated pesticides is still limited. In this study, we employed a central composite design (CCD) to investigate how pH and ionic strength (IS) affect the hydrodynamic diameter (HDD) and zeta potential of encapsulated λ-cyhalothrin and how those changes affect the exposure and toxicity to Daphnia magna. R(2) values greater than 0.82 and 0.84 for HDD and zeta potential, respectively, irrespective of incubation time suggest those changes could be predicted as a function of pH and IS. For HDD, the linear factor of pH and quadratic factor of pH×pH were found to be the most significant factors affecting the change of HDD at the beginning of incubation, whereas the effects of IS and IS×IS became significant as incubation time increased. For zeta potential, the linear factor of IS and quadratic factor of IS×IS were found to be the most dominant factors affecting the change of zeta potential of encapsulated λ-cyhalothrin, irrespective of incubation time. The toxicity tests with D. magna under exposure conditions in which HDD or zeta potential of encapsulated λ-cyhalothrin was maximized or minimized in the overlying water also clearly showed the worst-case exposure condition to D. magna was when the encapsulated λ-cyhalothrin is either stable or small in the overlying water. Our results show that water quality could modify the fate and toxicity of encapsulated λ-cyhalothrin in aquatic environments, suggesting understanding their aquatic interactions are critical in environmental risk assessment. Herein, we discuss the implications of our findings for risk assessment. PMID:26327636

  6. Metallothionein and Hsp70 trade-off against one another in Daphnia magna cross-tolerance to cadmium and heat stress.

    PubMed

    Haap, Timo; Schwarz, Simon; Köhler, Heinz-R

    2016-01-01

    The association between the insensitivity of adapted ecotypes of invertebrates to environmental stress, such as heavy metal pollution, and overall low Hsp levels characterizing these organisms has been attracting attention in various studies. The present study seeks to induce and examine this phenomenon in Daphnia magna by multigenerational acclimation to cadmium in a controlled laboratory setting. In this experiment, interclonal variation was examined: two clones of D. magna that have previously been characterized to diverge regarding their cadmium resistance and levels of the stress protein Hsp70, were continuously exposed to a sublethal concentration of Cd over four generations to study the effects of acclimation on Hsp70, metallothionein (MT), reproduction and cross-tolerance to heat stress. The two clones differed in all the measured parameters in a characteristic way, clone T displaying Cd and heat resistance, lower Hsp70 levels and offspring numbers on the one hand and higher MT expression on the other hand, clone S the opposite for all these parameters. We observed only slight acclimation-induced changes in constitutive Hsp70 levels and reproductive output. The differences in MT expression between clones as well as between acclimated organisms and controls give evidence for MT accounting for the higher Cd tolerance of clone T. Overall high Hsp70 levels of clone S did not confer cross tolerance to heat stress, contrary to common expectations. Our results suggest a trade-off between the efforts to limit the proteotoxic symptoms of Cd toxicity by Hsp70 induction and those to sequester and detoxify Cd by means of MT. PMID:26655655

  7. An integrated study of toxicant-induced inhibition of feeding and digestion activity in Daphnia magna

    SciTech Connect

    Coen, W.M. De; Janssen, C.R.; Persoone, G.

    1995-12-31

    Previous studies on D. magna exposed to xenobiotics have demonstrated that feeding inhibition can be used as a general indicator of toxic stress. In order to evaluate the consequences of the reduced food absorption on the energy balance of the organism, the effects of short-term exposure to sublethal toxicant concentrations of 8 chemicals on physiological (ingestion rate) and biochemical aspects (digestive enzyme activity) of the feeding process were investigated. The ingestion activity was assessed using a simple and sensitive method based on the use of fluorescent latex microbeads. The biochemical aspects of feeding were studied by analyzing the activity of 5 digestive enzymes, each responsible for the breakdown of one of the three major macromolecular constituents of the food (3 carbohydrases: amylase, cellulose and {beta}-galactosidase; trypsin and esterase). Using ingestion as an effect criterium, correlation analysis revealed a significant (p < 0.05) and positive (r{sup 2} = 0.89) correlation between the 1.5h EC50 value and the conventional acute toxicity endpoint (24hEC50). For 3 out of 5 enzymes studied a clear concentration-response relationship was observed. The 2h EC 10 value (inhibition) of {beta}-galactosidase activity and 2h EC5 value of trypsin and esterase activity showed a significant linear correlation (r{sup 2} respectively 0.98, 0.96 and 0.95) with the 24hEC50 value. The relationships between the physiological and biochemical effects will be discussed in the context of toxicant-induced homeostatic adjustments in the organism`s metabolism. Finally the potential use of both types of effect criteria as rapid screening tools in aquatic toxicity testing will be reviewed.

  8. Gene expression profiling in Daphnia magna, part II: validation of a copper specific gene expression signature with effluent from two copper mines in California.

    PubMed

    Poynton, Helen C; Zuzow, Rick; Loguinov, Alexandre V; Perkins, Edward J; Vulpe, Chris D

    2008-08-15

    Genomic technologies show great potential for classifying disease states and toxicological impacts from exposure to chemicals into functional categories. In environmental monitoring, the ability to classify field samples and predict the pollutants present in these samples could contribute to monitoring efforts and the diagnosis of contaminated sites. Using gene expression analysis, we challenged our custom Daphnia magna cDNA microarray to determine the presence of a specific metal toxicant in blinded field samples collected from two copper mines in California. We compared the gene expression profiles from our field samples to previously established expression profiles for Cu, Cd, and Zn. The expression profiles from the Cu-containing field samples clustered with the laboratory-exposed Cu-specific gene expression profiles and included genes previously identified as copper biomarkers, verifying that gene expression analysis can predict environmental exposure to a specific pollutant. In addition, our study revealed that upstream field samples containing undetectable levels of Cu caused the differential expression of only a few genes, lending support for the concept of a no observed transcriptional effect level (NOTEL). If confirmed by further studies, the NOTEL may play an important role in discriminating polluted and nonpolluted sites in future monitoring efforts. PMID:18767696

  9. Establishment of a short-term, in vivo screening method for detecting chemicals with juvenile hormone activity using adult Daphnia magna.

    PubMed

    Abe, Ryoko; Watanabe, Haruna; Yamamuro, Masumi; Iguchi, Taisen; Tatarazako, Norihisa

    2015-01-01

    Juvenile hormone (JH) and JH agonists have been shown to induce male offspring production in various daphnids, including Daphnia magna using OECD TG211. The critical period (about 1h) for JH action on ova in the parent's ovary to induce male offspring is existing at 7-8h later from ovulation. Therefore, we considered that adult D. magna could be used to produce a short-term screening method for detecting JH analogs. Using this method, we successfully demonstrated male offspring induction in the second broods after exposure to JH or JH agonists. After investigating the exposure time, the number of repetitions and the exposure concentration, we established a short-term, in vivo screening method for detecting JH analogs using adult D. magna. We examined positive and negative control chemicals using a previously developed method and verified the validity of our new testing method. PMID:24477940

  10. Modeling responses of Daphnia magna to pesticide pulse exposure under varying food conditions: intrinsic versus apparent sensitivity.

    PubMed

    Pieters, Barry J; Jager, Tjalling; Kraak, Michiel H S; Admiraal, Wim

    2006-10-01

    Recent studies showed that limiting food conditions resulted in either increased or decreased sensitivity of Daphnia magna to toxicants. It remained unclear whether these contrasting food-dependent alterations in toxicity resulted from differences in intrinsic sensitivity of the daphnids or from changes in toxicokinetics and resource allocation. It is hypothesized here that, if food level only affects accumulation kinetics and resource allocation, then the intrinsic sensitivity to this toxicant should be the same for all food regimes. This hypothesis was investigated using the DEBtox model, which is based on the theory of Dynamic Energy Budgets. We examined results of two recently conducted life-cycle studies on the combined effects of food level and a pulsed exposure to the pyrethroid insecticide fenvalerate (FV) on D. magna. The model described the effects of the time-varying exposure well, and indicated that when the animals did not die from exposure to FV, full reversibility of toxic effects was possible, allowing a complete recovery. Results revealed furthermore that the data from both studies could be described by the same NECs for survival and assimilation, killing rate and tolerance concentration (132 (49.2-228) x 10(-6) microg/L, 0 (0-1.18 x 10(-5)) microg/L, 74.4 (55.6-96.4) L (microg d)(-1) and 5.39 (2.72-18.5) x 10(-3) microg/L, respectively). It is therefore concluded that food-dependent FV toxicity can be explained by altered toxicokinetics and resource allocation, but not by changes in the intrinsic sensitivity of the daphnids. This study implies that the effect of pesticide application in the field depends on the trophic state of the receiving water body, but also that full recovery of survivors is possible after FV application. PMID:17024561

  11. Mechanistic toxicodynamic model for receptor-mediated toxicity of diazoxon, the active metabolite of diazinon, in Daphnia magna.

    PubMed

    Kretschmann, Andreas; Ashauer, Roman; Hitzfeld, Kristina; Spaak, Piet; Hollender, Juliane; Escher, Beate I

    2011-06-01

    The organothiophosphate diazinon inhibits the target site acetylcholinesterase only after activation to its metabolite diazoxon. Commonly, the toxicity of xenobiotics toward aquatic organisms is expressed as a function of the external concentration and the resulting effect on the individual level after fixed exposure times. This approach does not account for the time dependency of internal processes such as uptake, metabolism, and interaction of the toxicant with the target site. Here, we develop a mechanistic toxicodynamic model for Daphnia magna and diazoxon, which accounts for the inhibition of the internal target site acetylcholinesterase and its link to the observable effect, immobilization, and mortality. The model was parametrized by experiments performed in vitro with the active metabolite diazoxon on enzyme extracts and in vivo with the parent compound diazinon. The mechanism of acetylcholinesterase inhibition was shown to occur irreversibly in two steps via formation of a reversible enzyme-inhibitor complex. The corresponding kinetic parameters revealed a very high sensitivity of acetylcholinesterase from D. magna toward diazoxon, which corresponds well with the high toxicity of diazinon toward this species. Recovery of enzyme activity but no recovery from immobilization was observed after in vivo exposure to diazinon. The toxicodynamic model combining all in vitro and in vivo parameters was successfully applied to describe the time course of immobilization in dependence of acetylcholinesterase activity during exposure to diazinon. The threshold value for enzyme activity below which immobilization set in amounted to 40% of the control activity. Furthermore, the model enabled the prediction of the time-dependent diazoxon concentration directly present at the target site. PMID:21539304

  12. Temperature and food concentration have limited influence on the mixture toxicity of copper and Microcystis aeruginosa to Daphnia magna.

    PubMed

    Hochmuth, Jennifer D; Janssen, Colin R; De Schamphelaere, Karel A C

    2016-03-01

    Standard ecotoxicity tests are conducted under constant and favorable experimental conditions. In natural communities, however, the toxicity of chemicals may be influenced by abiotic and biotic environmental factors. Firstly, the authors examined the influence of temperature and total food concentration on the nature of the combined effects of copper (Cu) and the cyanobacterium Microcystis aeruginosa to Daphnia magna (i.e., whether the combined effects deviated from noninteraction). Secondly, the authors investigated the relative influence of the percentage of M. aeruginosa in the diet, temperature, and total food concentration on chronic Cu toxicity to D. magna. The nature of the combined effects between Cu and M. aeruginosa (i.e., synergism according to the independent action reference model and noninteraction according to concentration addition reference model) was not affected by temperature and total food concentration. In line with other studies, the concentration addition reference model gave rise to more protective predictions of mixture toxicity than the independent action reference model, thus confirming the former model's suitability as a conservative scenario for evaluating mixture toxicity of Cu and M. aeruginosa under the temperature and food concentrations tested. Further, the 21-d median effective concentration for Cu based on reproduction varied between 20 μg/L and 100 μg/L, and the results indicate that the percentage of M. aeruginosa explained 76% of the variance in the Cu median effective concentration for reproduction, whereas the effects of temperature and total food were limited (together explaining 11% of the variance). The present study suggests that environmental risk assessment of Cu should consider specific situations where harmful M. aeruginosa blooms can co-occur with elevated Cu exposure. Environ Toxicol Chem 2016;35:742-749. © 2015 SETAC. PMID:26354710

  13. Evaluating the sorption of organophosphate esters to different sourced humic acids and its effects on the toxicity to Daphnia magna.

    PubMed

    Pang, Long; Liu, Jingfu; Yin, Yongguang; Shen, Mohai

    2013-12-01

    Because of large usage as flame retardants and additives, organophosphate esters (OPEs) are widely detected in the environment and regarded as emerging contaminants. However, the sorption of OPEs to organic matter and its effects have scarcely been studied. In the present study, the sorption of 9 commonly used OPEs to 4 representative humic acids--Elliott Soil humic acid, Suwannee River humic acid, Aldrich humic acid, and Acros humic acid--in the range of 0 mg/L to 50 mg/L dissolved organic carbon (DOC), was evaluated with negligible-depletion solid-phase microextraction and verified by its impacts on the toxicity to the aquatic invertebrate Daphnia magna. Whereas OPEs with a high octanol/water partition coefficient (log K(OW)=4.51-6.64) were associated with humic acids mainly by hydrophobic interaction with DOC partition coefficient (K(DOC)) in the range of 10²·²² to 10⁵·³¹, the sorption of low-K(OW) OPEs (log K(OW)=-0.65 to 2.59) to humic acids was not hydrophobic interaction-dominant, with K(DOC) in the range of 10³·⁴⁷ to 10⁴·²⁹. These results were corroborated by the effects of humic acids on the acute toxicity of 3 high-K(OW) OPEs to D. magna. The sorption of OPEs to Suwannee River humic acid was weak and had negligible effects on the toxicity of high-K(OW) OPEs; the presence of terrestrial Acros humic acid (50 mg/L DOC), however, significantly decreased the toxicity by 53% to 60%. The results indicated that the strong sorption between high-K(OW) OPEs and terrestrial humic acid might affect their transportation and bioavailability. PMID:23966232

  14. Aqueous and dietary copper uptake and elimination in Daphnia magna determined by the ⁶⁷cu radiotracer.

    PubMed

    Zhao, Chun-Mei; Fan, Wen-Hong; Wang, Wen-Xiong

    2009-11-01

    Among the many toxic metals, the biokinetics of copper (Cu) in the freshwater cladoceran Daphnia magna have not been studied due to the lack of an ideal radiotracer. In the present study, a gamma radiotracer, ⁶⁷Cu (half-life = 61.9 h), was used to study the uptake of copper from the dissolved and dietary phase and efflux in D. magna, an important toxicity testing species. The influx rate of Cu from the dissolved phase increased with dissolved Cu concentration, with a calculated uptake rate constant of 0.055 L/g/h. The assimilation efficiency (AE) of Cu decreased significantly (from 92 to 16%) as the available food concentration increased, and the AE differed among the food types. As low as 1% of Cu AE was found in daphnids fed high concentrations (1.54 mg/L) of the green algae Chlorella pyrenoidosa. The AE decreased linearly as the ingestion rate of the daphnids increased. The efflux rate constant was 0.20/d at high food concentrations. Excretion accounted for 82 to 94% of total Cu loss from the animals, although Cu also was transferred maternally from female adults to their offspring. Under conditions of high food concentrations, approximately 6.5% of the mother's Cu was transferred to the offspring over 7 d. It was concluded that Cu accumulation is dominated by uptake from dietary sources, and there is a substantial need to understand the dietary toxicity of Cu to daphnids. The present study has implications for the choice of food particles in conducting the Cu toxicity testing in cladocerans. PMID:19839654

  15. Chronic effect of NaCl salinity on a freshwater strain of Daphnia magna Straus (Crustacea: Cladocera): a demographic study.

    PubMed

    Martínez-Jerónimo, Fernando; Martínez-Jerónimo, Laura

    2007-07-01

    Daphnia magna is mainly recognized as a freshwater cladoceran, but there are some strains that grow in brackish waters. The tolerance to salinity of a freshwater strain was assessed at NaCl concentrations of 0, 2, 4, 6, and 7 g L(-1). The green microalga Ankistrodesmus falcatus was fed at optimal concentration (4 x 10(5)cells mL(-1)). Reproduction and survival were recorded in two experimental series: in the first one, 20 female neonates were individually studied for each treatment. In the second, cohorts of 10 female neonates were distributed in each of five replicates per treatment. In both cases, experiments were conducted over a full life-cycle. The determined 48-h LC(50) for NaCl was 5.48 g L(-1), but we recorded reproduction at up to 7 g NaCl L(-1). The average clutch size, total progeny, number of clutches, and longevity were significantly reduced by the NaCl concentration (P<0.01); total progeny ranged from 467 to 25 neonates as edge values for NaCl concentrations of 0-7 g L(-1). Inter-brood time was significantly higher for females grown at 7 g NaCl L(-1) (3.9 days). The Life Table analysis demonstrates that average lifespan, life expectancy at birth, net reproductive rate and intrinsic rate of growth were also significantly reduced according to NaCl concentration. Based on the results for the two highest NaCl concentrations (6 and 7 g L(-1)), we conclude that the used D. magna strain was acclimated to develop satisfactorily under concentrations of up to 6 g NaCl L(-1); however, the established salinity conditions reduced significantly reproduction and survival in this strain. PMID:17055052

  16. Morphological evidence of mechanoreceptive gravity perception in a water flea - Daphnia magna

    NASA Technical Reports Server (NTRS)

    Meyers, D. G.

    1985-01-01

    Hair-like structures or setae located in the basal membrane of the swimming antennae of the water flea, D. magna, were observed by scanning electron microscopy and compared to mechanoreceptors in the Higher Order Crustacea. Similarities in anatomy, size, attachment, number, length, and orientation support the hypothesis that the setae are rheoceptive mechanoreceptors which mediate gravity perception through deflection by water currents during the sink phase of hop-and-sink swimming behavior.

  17. Comparison between two clones of Daphnia magna: effects of multigenerational cadmium exposure on toxicity, individual fitness, and biokinetics.

    PubMed

    Guan, Rui; Wang, Wen-Xiong

    2006-03-10

    We investigated the effects of genotype (two different clones) and multigenerational Cd-exposure history on Cd toxicity, individual fitness, and biokinetics in populations of a freshwater cladoceran Daphnia magna. The adults of the tolerant (T) clone had longer mean-survival-time than the sensitive (S) clone in both control groups (without Cd-exposure) and continuous Cd-exposure groups, but the two clones showed comparable resistances to acute Cd stress in the recovery groups. The body concentration of metallothionein (MT) played a critical role in handling Cd stress, which mainly accounted for the significant difference between the two clones in terms of survival distribution. High comparability of these two clones in individual fitness parameters and biokinetics suggested that these parameters are unlikely driven by genetic variation. For each specific clone, continuous Cd-exposure inhibited the animal growth, elevated the MT induction, and increased the Cd uptake rate (ingestion rate, assimilation efficiency from dietary phase, and uptake rate from dissolved phase), all of which enhanced the weight-specific Cd accumulation in daphnids' bodies. The strong dependence of biokinetic parameters on environmental factors (e.g., food concentrations, pH, dissolved or dietary metal concentration, and metal exposure histories) rather than on genotypes implied the great potential of using biokinetics in inter-lab comparisons and environmental risk assessments. PMID:16289344

  18. Modelling the impact of the environmental scenario on population recovery from chemical stress exposure: a case study using Daphnia magna.

    PubMed

    Gabsi, Faten; Preuss, Thomas G

    2014-11-01

    Recovery of organisms is an important attribute for evaluating the acceptability of chemicals' effects in ecological risk assessment in Europe. Recovery in the field does not depend on the chemical's properties and type of exposure only, but it is strongly linked to important environmental variables and biological interactions as well. Yet, these remain only marginally considered in the European risk assessment of chemicals. Here, we use individual-based modelling to investigate how the environmental scenario affects Daphnia magna population recovery from chemical exposure. Simulation experiments were performed for chemicals with lethality levels ranging from 40% to 90% at different food and temperature conditions. The same toxicity levels were then tested in combination with biological interactions including predation or competition. Results show that for the same chemical effect strength, populations often exhibited different recovery times in a different environmental context. The interactions between the chemical and the environmental variables were the strongest determinants of population recovery. Most important, biotic interactions even induced opposite effects on recovery at low and at high mortality levels. Results of this study infer that no specific role can be attributed to any abiotic or biotic variable in isolation. We conclude that unless the complex interactive mechanisms between the different factors constituting the full environmental scenario are taken into account in risk assessment, we cannot achieve a complete understanding of recovery processes from chemical effects. PMID:25261821

  19. Heavy metal uptake and toxicity in the presence of titanium dioxide nanoparticles: a factorial approach using Daphnia magna.

    PubMed

    Rosenfeldt, Ricki R; Seitz, Frank; Schulz, Ralf; Bundschuh, Mirco

    2014-06-17

    Unintentionally released titanium dioxide nanoparticles (nTiO2) may co-occur in aquatic environments together with other stressors, such as, metal ions. The effects of P25-nTiO2 on the toxicity and uptake of the elements silver (Ag), arsenic (As) and copper (Cu) were assessed by applying a factorial test design. The test design consisted of two developmental stages of Daphnia magna, two levels of nTiO2 (0 versus 2 mg/L) as well as seven nominal test concentrations of the respective element. The presence of nTiO2 increased Ag toxicity for juveniles as indicated by a 40% lower 72-h EC50, while the toxicities of As and Cu were reduced by up to 80%. This reduction was even more pronounced for Cu in the presence of dissolved organic carbon (i.e., seaweed extract) and nTiO2. This outcome coincides with the body burden of the elements, which was elevated 2-fold for Ag and decreased 14-fold for Cu in the presence of nTiO2. Although the underlying mechanisms could not be uncovered, the data suggest that the carrier function of nTiO2 plays a central role. However, to understand the processes and mechanisms occurring in the field due to the presence of nTiO2 further systematic investigations considering environmental variables and nanoparticle characteristics are required. PMID:24847969

  20. Effects of experimental long-term CO2 exposure on Daphnia magna (Straus 1820): From physiological effects to ecological consequences.

    PubMed

    Parra, Gema; Galotti, Andréa; Jiménez-Melero, Raquel; Guerrero, Francisco; Sánchez-Moyano, Emilio; Jiménez-Gómez, Francisco; Conradi, Mercedes

    2016-08-01

    The carbon capture and storage (CCS) technologies that were proposed to mitigate environmental problems arising from anthropogenic CO2 emissions, also have potential environmental risks. An eventual CCS leak might induce very low pH values in the aquatic system. Due to the lack of knowledge of long-term CO2 exposures with very low pH values, this study aims to know the effects and consequences of such a situation for zooplankton, using the Daphnia magna experimental model. A CO2 injection system was used to provide the experimental condition. A twenty-one days experiment with control and low pH treatment (pH = 7) replicates was carried out under light and temperature-controlled conditions. Survival, individual growth, RNA:DNA ratio, and neonates production were analysed during the aforementioned period. No differences on survival (except last day), individual growth and RNA:DNA ratio were observed between both control and low pH treatments. However, clear differences were detected in neonates production and, consequently, in population growth rates and secondary production. The observed differences could be related with an energy allocation strategy to ensure individual survival but would have ecological consequences affecting higher trophic levels. PMID:27179245

  1. Chronic Responses of Daphnia magna Under Dietary Exposure to Leaves of a Transgenic (Event MON810) Bt-Maize Hybrid and its Conventional Near-Isoline.

    PubMed

    Holderbaum, Daniel Ferreira; Cuhra, Marek; Wickson, Fern; Orth, Afonso Inácio; Nodari, Rubens Onofre; Bøhn, Thomas

    2015-01-01

    Insect resistance is the second most common trait globally in cultivated genetically modified (GM) plants. Resistance is usually obtained by introducing into the plant's genome genes from the bacterium Bacillus thuringiensis (Bt) coding for insecticidal proteins (Cry proteins or toxins) that target insect pests. The aim of this study was to examine the hypothesis that a chronic, high-dose dietary exposure to leaves of a Bt-maize hybrid (GM event MON810, expressing a transgenic or recombinant Cry1Ab toxin), exerted no adverse effects on fitness parameters of the aquatic nontarget organism Daphnia magna (water flea) when compared to an identical control diet based on leaves of the non-GM near-isoline. Cry1Ab was immunologically detected and quantified in GM maize leaf material used for Daphnia feed. A 69-kD protein near Bt's active core-toxin size and a 34-kD protein were identified. The D. magna bioassay showed a resource allocation to production of resting eggs and early fecundity in D. magna fed GM maize, with adverse effects for body size and fecundity later in life. This is the first study to examine GM-plant leaf material in the D. magna model, and provides of negative fitness effects of a MON810 maize hybrid in a nontarget model organism under chronic, high dietary exposure. Based upon these results, it is postulated that the observed transgenic proteins exert a nontarget effect in D. magna and/or unintended changes were produced in the maize genome/metabolome by the transformation process, producing a nutritional difference between GM-maize and non-GM near-isoline. PMID:26262442

  2. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus.

    PubMed

    Heinlaan, Margit; Ivask, Angela; Blinova, Irina; Dubourguier, Henri-Charles; Kahru, Anne

    2008-04-01

    As the production of nanoparticles of ZnO, TiO2 and CuO is increasing, their (eco)toxicity to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus was studied with a special emphasis on product formulations (nano or bulk oxides) and solubilization of particles. Our innovative approach based on the combination of traditional ecotoxicology methods and metal-specific recombinant biosensors allowed to clearly differentiate the toxic effects of metal oxides per se and solubilized metal ions. Suspensions of nano and bulk TiO2 were not toxic even at 20 g l(-1). All Zn formulations were very toxic: L(E)C50 (mg l(-1)) for bulk ZnO, nanoZnO and ZnSO4.7H2O: 1.8, 1.9, 1.1 (V. fischeri); 8.8, 3.2, 6.1 (D. magna) and 0.24, 0.18, 0.98 (T. platyurus), respectively. The toxicity was due to solubilized Zn ions as proved with recombinant Zn-sensor bacteria. Differently from Zn compounds, Cu compounds had different toxicities: L(E)C50 (mg l(-1)) for bulk CuO, nano CuO and CuSO4: 3811, 79, 1.6 (V. fischeri), 165, 3.2, 0,17 (D. magna) and 95, 2.1, 0.11 (T. platyurus), respectively. Cu-sensor bacteria showed that toxicity to V. fischeri and T. platyurus was largely explained by soluble Cu ions. However, for Daphnia magna, nano and bulk CuO proved less bioavailable than for bacterial Cu-sensor. This is the first evaluation of ZnO, CuO and TiO2 toxicity to V. fischeri and T. platyurus. For nano ZnO and nano CuO this is also a first study for D. magna. PMID:18194809

  3. Chronic Responses of Daphnia magna Under Dietary Exposure to Leaves of a Transgenic (Event MON810) Bt–Maize Hybrid and its Conventional Near-Isoline

    PubMed Central

    Ferreira Holderbaum, Daniel; Cuhra, Marek; Wickson, Fern; Orth, Afonso Inácio; Nodari, Rubens Onofre; Bøhn, Thomas

    2015-01-01

    Insect resistance is the second most common trait globally in cultivated genetically modified (GM) plants. Resistance is usually obtained by introducing into the plant’s genome genes from the bacterium Bacillus thuringiensis (Bt) coding for insecticidal proteins (Cry proteins or toxins) that target insect pests. The aim of this study was to examine the hypothesis that a chronic, high-dose dietary exposure to leaves of a Bt–maize hybrid (GM event MON810, expressing a transgenic or recombinant Cry1Ab toxin), exerted no adverse effects on fitness parameters of the aquatic nontarget organism Daphnia magna (water flea) when compared to an identical control diet based on leaves of the non-GM near-isoline. Cry1Ab was immunologically detected and quantified in GM maize leaf material used for Daphnia feed. A 69-kD protein near Bt’s active core-toxin size and a 34-kD protein were identified. The D. magna bioassay showed a resource allocation to production of resting eggs and early fecundity in D. magna fed GM maize, with adverse effects for body size and fecundity later in life. This is the first study to examine GM-plant leaf material in the D. magna model, and provides of negative fitness effects of a MON810 maize hybrid in a nontarget model organism under chronic, high dietary exposure. Based upon these results, it is postulated that the observed transgenic proteins exert a nontarget effect in D. magna and/or unintended changes were produced in the maize genome/metabolome by the transformation process, producing a nutritional difference between GM-maize and non-GM near-isoline. PMID:26262442

  4. Effects of suspended solids on the acute toxicity of zinc to Daphnia magna and Pimephales promelas

    SciTech Connect

    Hall, W.S.; Dickson, K.L.; Saleh, F.Y.; Rodgers, J.H. Jr.; Wilcox, D.; Entazami, A.

    1986-12-01

    Current procedures for setting site-specific water quality criteria consider abiotic and biotic factors. Suspended solids were shown to be important in reducing zinc toxicity to water column organisms. At zinc concentrations of approx. = 1 mg/L in solutions with < 100 mg/L of all suspended solids tested, zinc toxicity to D. magna was reduced. Sorption of zinc to suspended solids and/or changes in water chemistry due to the addition of suspended solids appear to have been the factors causing reductions in zinc toxicity to D. magna. Only suspended solids levels of 483-734 mg/L of a type that increased total alkalinity, total hardness, and total dissolved carbon clearly reduced the toxicity of approx. = 20 mg/L zinc to P. promelas. The toxic form of zinc to these organisms appears to reside in the aqueous phase. Characteristics of suspended solids did not influence the partition coefficient of zinc in sorption experiments of less than or equal to 96 h. The slopes of dose-response curves proved to be useful for assessing the potential of an organism to respond to changes in aqueous phase zinc concentrations, and may be a useful biological parameter when considering site-specific water quality criteria for chemicals.

  5. Toxicity of cobalt-complexed cyanide to Oncorhynchus mykiss, Daphnia magna, and Ceriodaphnia dubia: Potentiation by ultraviolet radiation and attenuation by dissolved organic carbon and adaptive UV tolerance

    USGS Publications Warehouse

    Little, E.E.; Calfee, R.D.; Theodorakos, P.; Brown, Z.A.; Johnson, C.A.

    2007-01-01

    Background. Cobalt cyanide complexes often result when ore is treated with cyanide solutions to extract gold and other metals. These have recently been discovered in low but significant concentrations in effluents from gold leach operations. This study was conducted to determine the potential toxicity of cobalt-cyanide complexes to freshwater organisms and the extent to which ultraviolet radiation (UV) potentiates this toxicity. Tests were also conducted to determine if humic acids or if adaptation to UV influenced sensitivity to the cyanide complexes. Methods. Rainbow trout (Oncorhynchus mykiss), Daphnia magna, and Ceriodaphnia dubia were exposed to potassium hexacyanocobaltate in the presence and absence of UV radiation, in the presence and absence of humic acids. Cyano-cobalt exposures were also conducted with C. dubia from cultures adapted to elevated UV. Results. With an LC50 concentration of 0.38 mg/L, cyanocobalt was over a 1000 times more toxic to rainbow trout in the presence of UV at a low, environmentally relevant irradiance level (4 ??W/cm2 as UVB) than exposure to this compound in the absence of UV with an LC50 of 112.9 mg/L. Toxicity was immediately apparent, with mortality occurring within an hour of the onset of exposure at the highest concentration. Fish were unaffected by exposure to UV alone. Weak-acid dissociable cyanide concentrations were observed in irradiated aqueous solutions of cyanocobaltate within hours of UV exposure and persisted in the presence of UV for at least 96 hours, whereas negligible concentrations were observed in the absence of UV. The presence of humic acids significantly diminished cyanocobalt toxicity to D. magna and reduced mortality from UV exposure. Humic acids did not significantly influence survival among C. dubia. C. dubia from UV-adapted populations were less sensitive to metallocyanide compounds than organisms from unadapted populations. Conclusions. The results indicate that metallocyanide complexes may pose a

  6. The synergistic potential of the azole fungicides prochloraz and propiconazole toward a short α-cypermethrin pulse increases over time in Daphnia magna.

    PubMed

    Kretschmann, Andreas; Gottardi, Michele; Dalhoff, Kristoffer; Cedergreen, Nina

    2015-05-01

    Pyrethroid insecticides are highly toxic to non-target aquatic invertebrates. Their high toxicity is synergized when co-occurring with azole fungicides in the aquatic environment. Little is known about the importance of synergy, when pyrethroids only occur during a short pulse of a few hours, as it is likely to happen in the environment, nor about the persistence of synergy over time. This study analyzed the synergistic potential of the fungicides propiconazole and prochloraz toward Daphnia magna, when exposed to a pulse (7.2 h) of α-cypermethrin at different concentrations (average pulse concentrations 0.07-11 nM). Immobilization was monitored during exposure and a subsequent recovery period (87.5h) with and without continuous co-exposure to the azoles (1.4 and 1.7 μM, respectively). EC50 values for immobilization decreased exponentially over time with a higher rate in the presence of the azoles. EC50 values for α-cypermethrin determined at the end of the experiment were 3.3±0.5 nM in the absence of azoles and 0.26±0.04, and 0.08±0.01 nM in the presence of propiconazole and prochloraz, respectively. The synergistic potential of the azoles was strongly dependent on time: no synergism could be detected during the pulse, but with azole co-exposure EC50 values decreased during the recovery period by a factor of up to 13 (propiconazole) and 61 (prochloraz) compared to values without azole exposure. Such high synergistic ratios have not been reported for pesticide mixtures in literature before. Our findings highlight that a pulse of the pyrethroid α-cypermethrin is synergized far beyond the actual pulse and beyond standardized test durations. Long post-exposure times are therefore mandatory in order to capture full synergism. PMID:25797530

  7. Effects of charge and surface ligand properties of nanoparticles on oxidative stress and gene expression within the gut of Daphnia magna.

    PubMed

    Dominguez, Gustavo A; Lohse, Samuel E; Torelli, Marco D; Murphy, Catherine J; Hamers, Robert J; Orr, Galya; Klaper, Rebecca D

    2015-05-01

    Concern has been raised regarding the current and future release of engineered nanomaterials into aquatic environments from industry and other sources. However, not all nanomaterials may cause an environmental impact and identifying which nanomaterials may be of greatest concern has been difficult. It is thought that the surface groups of a functionalized nanoparticles (NPs) may play a significant role in determining their interactions with aquatic organisms, but the way in which surface properties of NPs impact their toxicity in whole organisms has been minimally explored. A major point of interaction of NPs with aquatic organisms is in the gastrointestinal tract as they ingest particulates from the water column or from the sediment. The main goal of this study was to use model gold NP (AuNPs) to evaluate the potential effects of the different surfaces groups on NPs on the gut of an aquatic model organism, Daphnia magna. In this study, we exposed daphnids to a range of AuNPs concentrations and assessed the impact of AuNP exposure in the daphnid gut by measuring reactive oxygen species (ROS) production and expression of genes associated with oxidative stress and general cellular stress: glutathione S-transferase (gst), catalase (cat), heat shock protein 70 (hsp70), and metallothionein1 (mt1). We found ROS formation and gene expression were impacted by both charge and the specific surface ligand used. We detected some degree of ROS production in all NP exposures, but positively charged AuNPs induced a greater ROS response. Similarly, we observed that, compared to controls, both positively charged AuNPs and only one negatively AuNP impacted expression of genes associated with cellular stress. Finally, ligand-AuNP exposures showed a different toxicity and gene expression profile than the ligand alone, indicating a NP specific effect. PMID:25734859

  8. Effects of charge and surface ligand properties of nanoparticles on oxidative stress and gene expression within the gut of Daphnia magna

    SciTech Connect

    Dominguez, Gustavo A.; Lohse, Samuel E.; Torelli, Marco; Murphy, Catherine; Hamers, Robert J.; Orr, Galya; Klaper, Rebecca D.

    2015-05-01

    Concern has been raised regarding the current and future release of engineered nanomaterials into aquatic environments from industry and other sources. However, not all nanomaterials may cause an environ-mental impact and identifying which nanomaterials may be of greatest concern has been difficult. It is thought that the surface groups of a functionalized nanoparticles (NPs) may play a significant role in determining their interactions with aquatic organisms, but the way in which surface properties of NPs impact their toxicity in whole organisms has been minimally explored. A major point of interaction of NPs with aquatic organisms is in the gastrointestinal tract as they ingest particulates from the water column or from the sediment. The main goal of this study was to use model gold NP (AuNPs) to evaluate the potential effects of the different surfaces groups on NPs on the gut of an aquatic model organism, Daphnia magna. In this study, we exposed daphnids to a range of AuNPs concentrations and assessed the impact of AuNP exposure in the daphnid gut by measuring reactive oxygen species (ROS) production and expression of genes associated with oxidative stress and general cellular stress: glutathione S-transferase(gst), catalase (cat), heat shock protein 70 (hsp70), and metallothionein1 (mt1). We found ROS formation and gene expression were impacted by both charge and the specific surface ligand used. We detected some degree of ROS production in all NP exposures, but positively charged AuNPs induced a greater ROS response. Similarly, we observed that, compared to controls, both positively charged AuNPs and only one negatively AuNP impacted expression of genes associated with cellular stress. Finally, ligand-AuNP exposures showed a different toxicity and gene expression profile than the ligand alone, indicating a NP specific effect.

  9. Gravity receptors in a microcrustacean water flea - Sensitivity of antennal-socket setae in Daphnia magna

    NASA Technical Reports Server (NTRS)

    Meyers, D. G.; Farmer, J. M.

    1982-01-01

    Gravity receptors of Dephnia magna were discovered on the basal segment of the swimming antennae and were shown to respond to upward water currents that pass the animal as it sinks between swimming strokes. Sensitivity of the gravity perceiving mechanism was tested by subjecting daphnids to a series of five decreasingly dense aqueous solutions (neutral density to water) in darkness (to avoid visual cues). Three-dimensional, video analysis of body position (pitch, yaw and roll) and swimming path (hop and sink, vertical and horizontal patterns) revealed a gradual threshold that occurred near a density difference between the animal and its environment of less than 0.25%. Because daphnids do not sink but continue to slide after stroking in the increased density solutions, gravity perception appears to occur during a vertical swing of the longitudinal body axis to the vertical plane, about their center of gravity, and, thereby, implies a multidirectional sensitivity for the antennal-socket setae.

  10. Effects of different food doses on cadmium toxicity to Daphnia magna

    SciTech Connect

    Kluettgen, B.; Ratte, H.T. )

    1994-10-01

    Chronic toxicity tests were conducted with Daphnia magma using cadmium concentrations of 0, 0.5, 1, 2, and 5 [mu]g/L Cd with algae doses of 0.8, 4, 8, and 16 [center dot] 10[sup 6] cells/d of Chlorella saccharophila for each. In this way, the authors were able to determine the effects of cadmium on the life-table data of individuals, under different nutritional conditions. The development of juveniles was found to be inhibited by cadmium at low food doses, whereas body length and reproduction were strongly affected at higher food levels. The molting interval of adults and the development rate of embryos proved to be unaffected by cadmium. Cadmium-stressed animals lived longer than did the unstressed controls. The intrinsic rate of natural increase was generally reduced by cadmium, independent of the food dose.

  11. Effects of food concentration, animal interactions, and water volume on survival, growth, and reproduction of daphnia magna under flow-through conditions

    SciTech Connect

    LeBlanc, G.A.; Schoenfeld, D.A.; Surpreant, D.C.

    1981-10-01

    The purpose of this study is to evaluate the effects of food concentration, animal interaction, and water volume on the survival, growth, and reproduction of Daphnia magna under flow-through conditions. A response surface design was used to determine the interactive, as well as the individual, effects of the three factors. The results indicated that there were no important interactive effects of the three factors on survival, growth, or reproduction of D. magna. Individual effects of the factors on reproduction were observed. Food concentration produced a linear trend, with increasing food concentration resulting in an increase in offspring production. The number of daphnids per container produced a quadratic trend, with the maximum offspring production occurring in vessels containing approximately 14 daphnids. Water volume produced a slight linear trend, with increasing water volume resulting in an increase in offspring production.

  12. Aging of TiO2 Nanoparticles Transiently Increases Their Toxicity to the Pelagic Microcrustacean Daphnia magna.

    PubMed

    Seitz, Frank; Lüderwald, Simon; Rosenfeldt, Ricki R; Schulz, Ralf; Bundschuh, Mirco

    2015-01-01

    During their aquatic life cycle, nanoparticles are subject to environmentally driven surface modifications (e.g. agglomeration or coating) associated with aging. Although the ecotoxicological potential of nanoparticles might be affected by these processes, only limited information about the potential impact of aging is available. In this context, the present study investigated acute (96 h) and chronic (21 d) implications of systematically aged titanium dioxide nanoparticles (nTiO2; ~90 nm) on the standard test species Daphnia magna by following the respective test guidelines. The nTiO2 were aged for 0, 1, 3 and 6 d in media with varying ionic strengths (Milli-Q water: approx. 0.00 mmol/L and ASTM: 9.25 mmol/L) in the presence or absence of natural organic matter (NOM). Irrespective of the other parameters, aging in Milli-Q did not change the acute toxicity relative to an unaged control. In contrast, 6 d aged nTiO2 in ASTM without NOM caused a fourfold decreased acute toxicity. Relative to the 0 d aged particles, nTiO2 aged for 1 and 3 d in ASTM with NOM, which is the most environmentally-relevant setup used here, significantly increased acute toxicity (by approximately 30%), while a toxicity reduction (60%) was observed for 6 d aged nTiO2. Comparable patterns were observed during the chronic experiments. A likely explanation for this phenomenon is that the aging of nTiO2 increases the particle size at the start of the experiment or the time of the water exchange from <100 nm to approximately 500 nm, which is the optimal size range to be taken up by filter feeding D. magna. If subjected to further agglomeration, larger nTiO2 particles, however, cannot be retained by the daphnids' filter apparatus ultimately reducing their ecotoxicological potential. This non-linear pattern of increasing and decreasing nTiO2 related toxicity over the aging duration, highlights the knowledge gap regarding the underlying mechanisms and processes. This understanding seems, however

  13. Aging of TiO2 Nanoparticles Transiently Increases Their Toxicity to the Pelagic Microcrustacean Daphnia magna

    PubMed Central

    Seitz, Frank; Lüderwald, Simon; Rosenfeldt, Ricki R.; Schulz, Ralf; Bundschuh, Mirco

    2015-01-01

    During their aquatic life cycle, nanoparticles are subject to environmentally driven surface modifications (e.g. agglomeration or coating) associated with aging. Although the ecotoxicological potential of nanoparticles might be affected by these processes, only limited information about the potential impact of aging is available. In this context, the present study investigated acute (96 h) and chronic (21 d) implications of systematically aged titanium dioxide nanoparticles (nTiO2; ~90 nm) on the standard test species Daphnia magna by following the respective test guidelines. The nTiO2 were aged for 0, 1, 3 and 6 d in media with varying ionic strengths (Milli-Q water: approx. 0.00 mmol/L and ASTM: 9.25 mmol/L) in the presence or absence of natural organic matter (NOM). Irrespective of the other parameters, aging in Milli-Q did not change the acute toxicity relative to an unaged control. In contrast, 6 d aged nTiO2 in ASTM without NOM caused a fourfold decreased acute toxicity. Relative to the 0 d aged particles, nTiO2 aged for 1 and 3 d in ASTM with NOM, which is the most environmentally-relevant setup used here, significantly increased acute toxicity (by approximately 30%), while a toxicity reduction (60%) was observed for 6 d aged nTiO2. Comparable patterns were observed during the chronic experiments. A likely explanation for this phenomenon is that the aging of nTiO2 increases the particle size at the start of the experiment or the time of the water exchange from <100 nm to approximately 500 nm, which is the optimal size range to be taken up by filter feeding D. magna. If subjected to further agglomeration, larger nTiO2 particles, however, cannot be retained by the daphnids’ filter apparatus ultimately reducing their ecotoxicological potential. This non-linear pattern of increasing and decreasing nTiO2 related toxicity over the aging duration, highlights the knowledge gap regarding the underlying mechanisms and processes. This understanding seems, however

  14. Chronic effects of temperature and nitrate pollution on Daphnia magna: Is this cladoceran suitable for widespread use as a tertiary treatment?

    PubMed

    Maceda-Veiga, Alberto; Webster, Gordon; Canals, Oriol; Salvadó, Humbert; Weightman, Andrew J; Cable, Jo

    2015-10-15

    Effluent clarification and disinfection are major challenges in wastewater management. The cladoceran Daphnia magna has been proposed as a cost-effective and ecosystem-friendly option to clarify and disinfect secondary effluents, but its efficacy has not been fully tested under different sewage conditions. The present study explores the effects of temperature and nitrate on the efficacy of D. magna as a tertiary treatment at two different scales (individual assays and microcosms). Individual assays were employed to determine direct effects of temperature and/or nitrate on D. magna cultured in a suspension of organic matter. Using microcosms under the same environmental conditions, we explored the clearing efficacy of D. magna interacting with a natural microbial community. Individual assays revealed that D. magna mortality increased by 17% at 26 °C, 21% at >250 mg NO3(-)/l and by 60% at 26 °C and at >250 mg NO3(-)/l, and individuals displayed reduced body size, filtering rates and fecundity when compared to those at 21 °C and <40 mg NO3(-)/l. Improved performance under these conditions was also mirrored in the microcosms, with a higher density of D. magna (>100 ind/l) at 21 °C and <40 mg NO3(-)/l compared to the number (0-21 ind/l) at 26 °C and/or >250 mg NO3(-)/l. In the microcosms at 21 °C and <40 mg NO3(-)/l, turbidity and the density of bacteria, protists and micro-metazoa decreased in relation to those at 26 °C and/or >250 mg NO3(-)/l. Each treatment developed a unique and characteristic microbial assemblage, and D. magna was identified as the major driver of the community structure of protists and micro-metazoa. This enabled us to determine taxa vulnerability to D. magna grazing, and to re-define their tolerance thresholds for nitrate. In conclusion, this study increases our knowledge of how microbes respond to temperature and nitrate pollution, and highlights that D. magna efficacy as a tertiary treatment can be seriously

  15. Influence of water quality on silver toxicity to rainbow trout (Oncorhynchus mykiss), fathead minnows (Pimephales promelas), and water fleas (Daphnia magna)

    SciTech Connect

    Karen, D.J.; Ownby, D.R.; Forsythe, B.L.; Bills, T.P.; La Point, T.W.; Cobb, G.B.; Klaine, S.J.

    1999-01-01

    Toxicity bioassays were conducted to quantify water quality conditions under which silver, as silver nitrate, is toxic to Oncorhynchus mykiss. Pimephales promelas, and Daphnia magna. Bioassays for P. promelas and D. magna were conducted as static replacement tests, whereas a flow-through bioassay system was modified and used for O. mykiss. Results from 96-h toxicity bioassays for O. mykiss indicated that chloride, hardness, and dissolved organic carbon (DOC) protected against silver toxicosis, with DOC affording the highest protective effects. For P. promelas and D. magna, little protection was provided by increased CaCo+O{sub 3} alone, whereas DOC had a major ameliorating influence on measured silver toxicity. Lower concentrations of chloride had little effect on reducing silver nitrate toxicity. Dissolved organic carbon was more important than hardness for predicting the toxicity of ionic silver in natural waters to O. mykiss, P. promelas, and D. magna. Similarly, DOC significantly reduced silver nitrate toxicity to trout, whereas Cl{sup {minus}} and hardness had only a minor protective effect. However, Cl{sup {minus}}/DOC mixtures showed a greater-than-additive protective effect. Thus, the authors suggest that incorporating an organic carbon coefficient into the silver criterion equation will enhance the criterion values for site specificity.

  16. Correlating toxicological effects of ionic liquids on Daphnia magna with in silico calculated linear free energy relationship descriptors.

    PubMed

    Cho, Chul-Woong; Yun, Yeoung-Sang

    2016-06-01

    In silico prediction model for toxicological effects of ionic liquids (ILs) is useful to understand ILs' toxicological interactions and to design environmentally benign IL structures. Actually, it is essential since the types of ILs are extremely numerous. Accordingly, prediction models were developed in this study. For the modelling, well-defined linear free energy relationship (LFER) descriptors - i.e. excess molar refraction (E), dipolarity/polarizability (S), H-bonding acidity (A), H-bonding basicity (B), McGowan volume (V), cation interaction (J(+)) and anion interaction (J(-)) - were in silico calculated using density functional theory and conductor-like screening model. These descriptors were then correlated with the toxicological values of ILs to Daphnia magna. First, a model established by Hoover et al. (2007) using measured LFER descriptors of 97 neutral compounds was applied to the prediction of ILs' toxicity. As expected, the model by Hoover et al. (2007) needs to be amended for ILs. To that end, the difference in toxicological interactions between neutral compounds and ILs was addressed by additional single J(+) or five LFER descriptors of cation i.e. Ec, Sc, Bc, Vc, and J(+). Secondly, a prediction model for only ILs was developed by using the three LFER descriptors Ec, Bc, and J(+). The model had a reasonable predictability and robustness of R(2) = 0.880 for the training set, 0.848 for the test set, and 0.867 for the overall set. The established models can be used to design environmentally benign IL structures and to reduce labour, danger, time, and materials compared to the experiment-based study. PMID:26971173

  17. Evaluating the ameliorative effect of natural dissolved organic matter (DOM) quality on copper toxicity to Daphnia magna: improving the BLM.

    PubMed

    Al-Reasi, Hassan A; Smith, D Scott; Wood, Chris M

    2012-03-01

    Various quality predictors of seven different natural dissolved organic matter (DOM) and humic substances were evaluated for their influence on protection of Daphnia magna neonates against copper (Cu) toxicity. Protection was examined at 3 and 6 mg l(-1) of dissolved organic carbon (DOC) of each DOM isolate added to moderately hard, dechlorinated water. Other water chemistry parameters (pH, concentrations of DOC, calcium, magnesium and sodium) were kept relatively constant. Predictors included absorbance ratios Abs(254/365) (index of molecular weight) and Abs-octanol(254)/Abs-water(254) (index of lipophilicity), specific absorption coefficient (SAC(340); index of aromaticity), and fluorescence index (FI; index of source). In addition, the fluorescent components (humic-like, fulvic-like, tryptophan-like, and tyrosine-like) of the isolates were quantified by parallel factor analysis (PARAFAC). Up to 4-fold source-dependent differences in protection were observed amongst the different DOMs. Significant correlations in toxicity amelioration were found with Abs(254/365), Abs-octanol(254)/Abs-water(254), SAC(340), and with the humic-like fluorescent component. The relationships with FI were not significant and there were no relationships with the tryptophan-like or tyrosine-like fluorescent components at 3 mg C l(-1), whereas a negative correlation was seen with the fulvic-like component. In general, the results indicate that larger, optically dark, more lipophilic, more aromatic DOMs of terrigenous origin, with higher humic-like content, are more protective against Cu toxicity. A method for incorporating SAC(340) as a DOM quality indicator into the Biotic Ligand Model is presented; this may increase the accuracy for predicting Cu toxicity in natural waters. PMID:22072428

  18. Joint effect of phosphorus limitation and temperature on alkaline phosphatase activity and somatic growth in Daphnia magna.

    PubMed

    Wojewodzic, Marcin W; Kyle, Marcia; Elser, James J; Hessen, Dag O; Andersen, Tom

    2011-04-01

    Alkaline phosphatase (AP) is a potential biomarker for phosphorus (P) limitation in zooplankton. However, knowledge about regulation of AP in this group is limited. In a laboratory acclimation experiment, we investigated changes in body AP concentration for Daphnia magna kept for 6 days at 10, 15, 20 and 25 °C and fed algae with 10 different molar C:P ratios (95-660). In the same experiment, we also assessed somatic growth of the animals since phosphorus acquisition is linked to growth processes. Overall, non-linear but significant relationships of AP activity with C:P ratio were observed, but there was a stronger impact of temperature on AP activity than of P limitation. Animals from the lowest temperature treatment had higher normalized AP activity, which suggests the operation of biochemical temperature compensation mechanisms. Body AP activity increased by a factor of 1.67 for every 10 °C decrease in temperature. These results demonstrate that temperature strongly influences AP expression. Therefore, using AP as a P limitation marker in zooplankton needs to consider possible confounding effects of temperature. Both temperature and diet affected somatic growth. The temperature effect on somatic growth, expressed as the Q (10) value, responded non-linearly with C:P, with Q(10) ranging between 1.9 for lowest food C:P ratio and 1.4 for the most P-deficient food. The significant interaction between those two variables highlights the importance of studying temperature-dependent changes of growth responses to food quality. PMID:21153741

  19. Use of population modeling to interpret a 21-day sediment elutriate bioassay with Daphnia magna

    SciTech Connect

    Bridges, T.S.; Gibson, A.B.; Wright, R.B.; Gray, B.R.; Gamble, V.E.

    1994-12-31

    Sediment contamination was evaluated in 17 Great Lakes sediments using a 21-day sediment elutriate bioassay with D. magna. Sediment type had a significant effect on survival at the conclusion of the test, age at first reproduction, the number of broods produced, and the total number of young produced per adult. Sediments producing low survivorship also had negative effects on reproduction. However, a broad range of reproductive responses were found among sediments with high survivorship. To integrate all of these results a stochastic matrix population model was constructed for each of the sediment treatments. Survivorship, age at first reproduction, and total fecundity were all important determinants of population growth. However, modeling results indicated that independent examination of the endpoints measured during the test does not accurately reflect effects at the population level; i.e., no one endpoint appeared to have an overriding effect on population growth. The amount of total suspended solids (TSS) in the elutriates had a strong effect on the reproductive endpoints measured; TSS was negatively correlated with age at first reproduction and positively correlated with per brood fecundity and measures of population growth. Demographic modeling appears to be a useful method for integrating the effects of multiple endpoints and for providing ecologically relevant interpretive guidance.

  20. Application of a stable isotope technique to determine the simultaneous uptake of cadmium, copper, nickel, lead, and zinc by the water flea Daphnia magna from water and the green algae Pseudokirchneriella subcapitata.

    PubMed

    Komjarova, Irina; Blust, Ronny

    2009-08-01

    Accumulation and toxicological effects of water and dietary metals in aquatic organisms can potentially be very different. Therefore, it is important to know the relative contribution of these different sources to metal exposure, availability, and accumulation. In the present study, a stable isotope technique was applied to investigate the uptake of Cd, Cu, Ni, Pb, and Zn by the green alga Pseudokirchneriella subcapitata and the water flea Daphnia magna during simultaneous exposure to the five metals at environmentally realistic concentrations from separate water and dietary routes. Green algae take up Cu faster compared to Cd, Ni, Pb, and Zn, and the distribution of metals between the external and internal compartments is dependent on metal and population growth stage. The metal accumulation reached a steady state within 24 to 48 h for all metals. Metal uptake rate constants from water were highest for Cu and lowest for Ni. Metal assimilation efficiencies from the food source varied with metal, ranging from approximately 80% in the case of Cd to near 0% in the case of Ni. Because the data for the different metals were obtained on the same multimetal-exposed organisms, the results are directly comparable among the metals. For all five metals studied, water appeared to be the most important route of uptake by D. magna. PMID:19290681

  1. Rapid toxicity screening of sediment pore waters using physiological and biochemical biomarkers of Daphnia magna

    SciTech Connect

    Coen, W.M. De; Janssen, C.R.; Persoone, G.

    1995-12-31

    Two new rapid toxicity tests, based on ingestion activity and digestive enzyme activity of D. magna, were developed and evaluated. The ingestion activity was measured using fluorescent latex micro-beads and an automated microplate fluorimeter allowing a sensitive quantification of the feeding activity of the organisms. The activity of the digestive enzymes, 6-galactosidase, esterase and trypsin, was determined in test organism homogenates using the following fluorogenic{sup 1} and chromogenic{sup 2} substrates: 4-methylumbelliferyl-{beta}-D galactoside{sup 1}, fluorescin diacetate{sup 1} and N-Benzoyl-L-arginine-4-nitroanilide{sup 2}. Both biomarker techniques were developed to allow rapid toxicity screening on a routine basis. The toxicity of the pore waters of eight contaminated samples was assessed with the aid of the developed biomarker assays. Comparison of the conventional 24h EC50 values with the EC50 values obtained with the 1.5h ingestion test and the threshold concentrations of the 2h digestive enzyme tests revealed a positive correlation between the different effect concentrations. A similar correlation (r{sup 2} = 0.87) between the conventional 24h EC50 values and 1.5h EC50 values was observed in toxicity tests with pure compounds. Correlation coefficients for the relationships between the 3 enzyme effect concentrations and the 24h EC50 values ranged from 0.95 to 0.98, The positive correlations between the conventional and biomarker effect criteria, observed for both environmental samples and pure compounds, demonstrate the potential use of the developed methods as rapid toxicity screening tools.

  2. Modeling the concentration-response function of the herbicide dinoseb on Daphnia magna (survival time, reproduction) and Pseudokirchneriella subcapitata (growth rate).

    PubMed

    Chèvre, Nathalie; Brazzale, Alessandra R; Becker-van Slooten, Kristin; Behra, Renata; Tarradellas, Joseph; Guettinger, Herbert

    2005-09-01

    Models describing dose-response relationships are becoming increasingly popular in ecotoxicology. They allow simple and thorough evaluations of toxicity test results, including inter- and extrapolations to concentrations or exposure times other than those tested. Simple parametric regression models are of particular interest because their parameters may be attributed mechanistic meanings and they can be applied without sophisticated mathematical and computational support. We recently proposed a four-parameter logistic regression model to fit the survival data of Daphnia magna under dinoseb stress. The model parameters are the maximum survival time, the minimum time required for an individual to die, effect concentration, EC(50), and a curve shape parameter. This model has now been applied to compare the lethality and reproduction toxicity of D. magna and the growth inhibition of Pseudokirchneriella subcapitata under dinoseb stress. It can be fitted adequately to all the measured data and the parameters can be attributed biological meanings in any of the three endpoints. A comparison of the modeled concentration-response functions of all three endpoints for dinoseb toxicity shows that the range of ECs with respect to both D. magna and algae is steep (a decrease of between 0.1 and 0.6 mg/L). The survival and reproduction of D. magna exhibit similar characteristic concentration-response functions and toxicities. The statistical no-effect concentration (SNEC) is 0.14 (survival) and 0.11 (reproduction)mg/L, respectively. On the other hand, algae seem to be less sensitive to dinoseb than D. magna (SNEC: 0.48 mg/L). However, further investigations of individual algae may lead to a more suitable comparison. We speculate that the four parameters of the model function can be related to specific properties of chemicals and organisms. Characterization of these properties would allow simple and appropriate estimation of the toxic effects of these chemicals. PMID:15978287

  3. Copper/zinc superoxide dismutase from the Cladoceran Daphnia magna: molecular cloning and expression in response to different acute environmental stressors.

    PubMed

    Lyu, Kai; Zhu, Xuexia; Wang, Qianqian; Chen, Yafen; Yang, Zhou

    2013-08-01

    The copper/zinc superoxide dismutase (Cu/Zn-SOD) is a representative antioxidant enzyme that is responsible for the conversion of superoxide to oxygen and hydrogen peroxide in aerobic organisms. Cu/Zn-SOD mRNAs have been cloned from many species and employed as useful biomarkers of oxidative stresses. In the present study, we cloned Cu/Zn-SOD cDNA from the cladoceran Daphnia magna, analyzed its catalytic properties, and investigated mRNA expression patterns after exposure to known oxidative stressors. The full-length Cu/Zn-SOD of the D. magna (Dm-Cu/Zn-SOD) sequence consisted of 703 bp nucleotides, encoding 178 amino acids, showing well-conserved domains that were required for metal binding and several common characteristics. The deduced amino acid sequence of Dm-Cu/Zn-SOD showed that it shared high identity with Daphnia pulex (88%), Alvinella pompejana (56%), and Cristaria plicata (56%). The phylogenetic analysis indicated that Dm-Cu/Zn-SOD was highly homologous to D. pulex. The variation of Dm-Cu/Zn-SOD mRNA expression was quantified by real-time PCR, and the results indicated that the expression was up-regulated after 48-h exposure to copper, un-ionized ammonia, and low dissolved oxygen. This study shows that the Dm-Cu/Zn-SOD mRNA could be successfully employed as a biomarker of oxidative stress, which is a common mode of toxicity for many other aquatic hazardous materials. PMID:23815380

  4. Acute toxicity and environmental risk of teflubenzuron to Daphnia magna, Poecilia reticulata and Lemna minor in the absence and presence of sediment.

    PubMed

    Medeiros, Louise S; Souza, Jaqueline P; Winkaler, Elissandra U; Carraschi, Silvia P; Cruz, Claudinei; Souza-Júnior, Severino C; Machado-Neto, Joaquim G

    2013-01-01

    This study aimed to estimate the acute toxicity of teflubenzuron (1-(3,5-dichloro-2,4-difluorophenyl)-3-(2,6-difluorobenzoyl)urea) (TFB) for Daphnia magna, Lemna minor and Poecilia reticulata, in the absence and presence of sediment; evaluate the effect of sediment on the TFB bioavailability; and to classify this insecticide according to its environmental poisoning risk for agricultural and aquaculture uses. The tests of TFB acute toxicity were conducted in static system in a completely randomized design with increasing TFB concentrations, and a control group. The TFB has been classified according to the estimated values of EC50 and LC50 by its acute toxicity and environmental risk. The sediment significantly reduced toxicity and bioavailability of TFB in water column. Therefore, the insecticide can be classified as being highly toxic to Daphnia magna, which means the agricultural and aquacultural uses of TFB pose a high risk of environmental toxicity to non-target organisms. However, it was practically non-toxic to L. minor and P. reticulata. PMID:23581694

  5. The influence of natural organic matter and aging on suspension stability in guideline toxicity testing of silver, zinc oxide, and titanium dioxide nanoparticles with Daphnia magna.

    PubMed

    Cupi, Denisa; Hartmann, Nanna B; Baun, Anders

    2015-03-01

    The present study investigated changes in suspension stability and ecotoxicity of engineered nanoparticles (ENPs) by addition of Suwannee River natural organic matter and aging of stock and test suspensions prior to testing. Acute toxicity tests of silver (Ag), zinc oxide (ZnO), and titanium dioxide (TiO2 ) ENPs with Daphnia magna were carried out following Organisation for Economic Co-operation and Development test guidelines. Daphnia magna was found to be very sensitive to Ag ENPs (48-h 50% effective concentration 33 μg L(-1) ), and aging of the test suspensions in M7 medium (up to 48 h) did not decrease toxicity significantly. Conversely, the presence of Suwannee River natural organic matter (NOM; 20 mg L(-1) ) completely alleviated Ag ENP toxicity in all testing scenarios and did not aid in stabilizing suspensions. In contrast, addition of Suwannee River NOM stabilized ZnO ENP suspensions and did not decrease toxicity. Aging for 48 h generated monotonous concentration-response curves in the presence and absence of Suwannee River NOM. At concentrations up to 100 mg L(-1) TiO2 ENPs did not cause immobilization of D. magna under any of the tested conditions. Presence of Suwannee River NOM caused agglomeration in stock suspensions. The authors' results suggest that aging and presence of Suwannee River NOM are important parameters in standard toxicity testing of ENPs, which in some cases may aid in gaining better control over the exposure conditions but in other cases might contribute to agglomeration or elimination of ENP toxicity. Therefore, modifications to the current guidelines for testing ENPs should be evaluated on a case-by-case basis. Environ Toxicol Chem 2015;34:497-506. © 2014 SETAC. PMID:25546145

  6. Impact of carbon nanotubes on the toxicity of inorganic arsenic [AS(III) and AS(V)] to Daphnia magna: The role of certain arsenic species.

    PubMed

    Wang, Xinghao; Qu, Ruijuan; Allam, Ahmed A; Ajarem, Jamaan; Wei, Zhongbo; Wang, Zuoyao

    2016-07-01

    As a type of emerging nanomaterial, hydroxylated multiwalled carbon nanotubes (OH-MWCNTs) may interact with other pollutants in the aquatic environments and further influence their toxicity, transport, and fate. Thus, evaluation of toxicity to arsenic in the presence of CNTs needs to receive much more attention. The present study was conducted to explore the underlying mechanisms of OH-MWCNT-induced arsenic (As[III] and As[V]) toxicity changes in the aquatic organism Daphnia magna at different pH levels. The most toxic species for As(III) and As(V) to D. magna were found to be H2 AsO3 (-) and H2 AsO4 (-) . It appeared that the pH values were of greatest importance when the biological toxicity of As(III) and As(V) was compared. Furthermore, the effects of OH-MWCNTs on arsenic toxicity to D. magna indicated that the presence of OH-MWCNTs could enhance the toxicity of arsenic. The interactions of arsenic with OH-MWCNTs were further investigated by conducting adsorption experiments. The adsorption capacity of As(V) by OH-MWCNTs was found to be higher than that of As(III). To conclude, adsorption of certain arsenic species onto OH-MWCNTs is crucial for a reliable interpretation of enhanced toxicity. Environ Toxicol Chem 2016;35:1852-1859. © 2016 SETAC. PMID:26681408

  7. Influence of environmental factors on the response of a natural population of Daphnia magna (Crustacea: Cladocera) to spinosad and Bacillus thuringiensis israelensis in Mediterranean coastal wetlands.

    PubMed

    Duchet, C; Caquet, Th; Franquet, E; Lagneau, C; Lagadic, L

    2010-05-01

    The present study was undertaken to assess the impact of a candidate mosquito larvicide, spinosad (8, 17 and 33 microg L(-1)) on a field population of Daphnia magna under natural variations of water temperature and salinity, using Bti (0.16 and 0.50 microL L(-1)) as the reference larvicide. Microcosms (125 L) were placed in a shallow temporary marsh where D. magna was naturally present. The peak of salinity observed during the 21-day observation period may have been partly responsible for the decrease of daphnid population density in all the microcosms. It is also probably responsible for the absence of recovery in the microcosms treated with spinosad which caused a sharp decrease of D. magna abundance within the first two days following treatment whereas Bti had no effect. These results suggest that it may be difficult for a field population of daphnids to cope simultaneously with natural (water salinity and temperature) and anthropogenic (larvicides) stressors. PMID:19939529

  8. Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment.

    PubMed

    Barata, Carlos; Baird, D J; Nogueira, A J A; Soares, A M V M; Riva, M C

    2006-06-10

    Two different concepts, termed concentration addition (CA) and independent action (IA), describe general relationships between the effects of single substances and their corresponding mixtures allowing calculation of an expected mixture toxicity on the basis of known toxicities of the mixture components. Both concepts are limited to cases in which all substances in a mixture influence the same experimental endpoint, and are usually tested against a "fixed ratio design" where the mixture ratio is kept constant throughout the studies and the overall concentration of the mixture is systematically varied. With this design, interaction among toxic components across different mixture ratios and endpoints (i.e. lethal versus sublethal) is not assessed. In this study lethal and sublethal (feeding) responses of Daphnia magna individuals to single and binary combinations of similarly and dissimilarly acting chemicals including the metals (cadmium, copper) and the pyrethroid insecticides (lambda-cyhalothrin and deltamethrin) were assayed using a composite experimental design to test for interactions among toxic components across mixture effect levels, mixture ratios, lethal and sublethal toxic effects. To account for inter-experiment response variability, in each binary mixture toxicity assay the toxicity of the individual mixture constituents was also assessed. Model adequacy was then evaluated comparing the slopes and elevations of predicted versus observed mixture toxicity curves with those estimated for the individual components. Model predictive abilities changed across endpoints. The IA concept was able to predict accurately mixture toxicities of dissimilarly acting chemicals for lethal responses, whereas the CA concept did so in three out of four pairings for feeding response, irrespective of the chemical mode of action. Interaction effects across mixture effect levels, evidenced by crossing slopes, were only observed for the binary mixture Cd and Cu for lethal effects

  9. Effect of chronic exposure to two components of Tritan copolyester on Daphnia magna, Moina macrocopa, and Oryzias latipes, and potential mechanisms of endocrine disruption using H295R cells.

    PubMed

    Jang, Sol; Ji, Kyunghee

    2015-11-01

    Tritan copolyester is a novel plastic form from Eastman Company utilizing three main monomers, 1,4-cyclohexanedimethanol (CHDM), dimethyl terephthalate (DMT), and 2,2,4,4-tetramethyl-1,3-cyclobutanediol. Despite Tritan has been widely applied for plastic bottles, the effects of long-term exposure to these compounds have seldom been investigated. We investigated chronic effects and endocrine disruption potential of CHDM and terephthalic acid (TPA), main mammalian metabolite formed from DMT, using crustacean Daphnia magna and Moina macrocopa, and freshwater fish (Oryzias latipes). The effects on sex hormone balance and the associated mechanisms were also investigated by use of H295R cells. In chronic toxicity test, D. magna showed significant decrease in reproduction (number of young per female) after exposure to 10 mg/L TPA. In early life stage exposure using O. latipes, significant decrease of juvenile survival and weight were observed in fish exposed to 10 mg/L and ≥1 mg/L CHDM, respectively. Expressions of vtg2 mRNA in fish exposed to CHDM and those of cyp19b, star, cyp17, and cyp19a mRNAs in fish exposed to TPA were significantly up-regulated. The results of H295R cell assay also showed that both chemicals at high concentrations could alter sex hormone production in steroidogenic pathway. The effective concentrations of the tested compounds were several orders of magnitude greater than the concentrations can be detected in ambient waters. Further in vivo and in vitro studies will be needed to investigate the effect of co-polymer on endocrine disruption. PMID:26289545

  10. An evaluation of aquatic toxicity data with a population growth model for application to environmental hazard assessment. [Ceriodaphnia dubia:a3; Daphnia magna:a3

    SciTech Connect

    Burton, W.D.

    1991-05-01

    Acute and chronic bioassays with the cladocerans Ceriodaphnia dubia and Daphnia magna were conducted using four chemicals, each having a different mode of action. The chemicals were: cadmium (chloride), pentachlorophenol (PCP), 1-octanol, and 1-naphthyl-N-methylcarbamate (carbaryl). The data obtained from the tests were used to compare species sensitivities, endpoint sensitivities, and the relative toxicities of the chemicals. In the acute bioassays, estimates of the median lethal concentrations (48-h LC{sub 50}S) were used to compare the species sensitivities. Ceriodaphnia dubia was more sensitive than D. magna to all four chemicals, and carbaryl was the most toxic chemical to both species. The sensitivity of three endpoints (survival, reproduction and the intrinsic rate of natural increase, r) were used to evaluate the chronic toxicity of the four chemicals to C. dubia and D. magna. Survival, reproduction and r all declined with greater concentrations of the chemicals. These effects were evident in both the 7- or 14-d exposures. The lowest observed effect concentration (LOEC) determined from studies with the four chemicals showed that neither survival nor reproduction was consistently the more sensitive endpoint for either C. dubia or D. magna. The LOECs for r were the same for both exposure durations for each species. The data from this study demonstrate that the calculations of r from chronic toxicity data can provide equally sensitive bioassay results for protecting the environment, while eliminating conflicting interpretations of toxicant effects on separate endpoints. Furthermore, statistical decisions drawn from comparisons of the toxicity of exposure concentrations with the controls may not provide the most ecologically meaningful criteria for environmental protection. 103 refs., 16 figs., 15 tabs.

  11. Measuring internal azole and pyrethroid pesticide concentrations in Daphnia magna using QuEChERS and GC-ECD--method development with a focus on matrix effects.

    PubMed

    Kretschmann, Andreas; Cedergreen, Nina; Christensen, Jan H

    2016-02-01

    Pyrethroids are highly toxic towards aquatic macroinvertebrates such as Daphnia magna and can be synergized when co-occurring with azole fungicides. A sensitive analytical method for the measurement of azole-pyrethroid mixtures in aquatic macroinvertebrates is not available at present. We developed and validated an extraction, cleanup, and quantification procedure for four pyrethroid insecticides and four azole fungicides at the picograms per milligram wet weight level in D. magna using a QuEChERS approach and GC-ECD analysis. Short- and long-term matrix effects were analyzed by injection of a series of extracts from D. magna, and the best surrogate standards were identified through correlation analysis of analyte responses. The presence of matrix clearly stabilized the analyte responses (≤6% relative standard deviation of peak area compared to up to 22% when injected without matrix). The sensitivity was high with detection limits and limits of quantification between 58-168 and 119-571 pg mg(wet weight)(-1) for the azoles and 5.8-27 and 12-84 pg mg(wet weight)(-1) for the pyrethroids, respectively. Accuracy (% recovery) was between 95 and 111% and the precision (repeatability) below 10% relative standard deviation for all analytes. In the case of prochloraz, α-cypermethrin, and deltamethrin, normalization to surrogate standards led to a clear improvement of accuracy and precision by up to 8 and 4%, respectively. The method was successfully applied to the measurement of internal α-cypermethrin concentrations in D. magna under environmentally relevant exposure conditions (exposure to a pulse in the micrograms per liter range) with and without co-exposure to propiconazole. PMID:26677019

  12. DNA alterations and effects on growth and reproduction in Daphnia magna during chronic exposure to gamma radiation over three successive generations.

    PubMed

    Parisot, Florian; Bourdineaud, Jean-Paul; Plaire, Delphine; Adam-Guillermin, Christelle; Alonzo, Frédéric

    2015-06-01

    This study examined chronic effects of external Cs-137 gamma radiation on Daphnia magna exposed over three successive generations (F0, F1 and F2) to environmentally relevant dose rates (ranging from 0.007 to 35.4 mGy h(-1)). Investigated endpoints included survival, growth, reproduction and DNA alterations quantified using random-amplified polymorphic DNA polymerase chain reaction (RAPD-PCR). Results demonstrated that radiation effects on survival, growth and reproduction increased in severity from generation F0 to generation F2. Mortality after 21 days at 35.4 mGy h(-1) increased from 20% in F0 to 30% in F2. Growth was affected by a slight reduction in maximum length at 35.4 mGy h(-1) in F0 and by reductions of 5 and 13% in growth rate, respectively, at 4.70 and 35.4 mGy h(-1) in F2. Reproduction was affected by a reduction of 19% in 21 day-fecundity at 35.4 mGy h(-1) in F0 and by a delay of 1.9 days in brood release as low as 0.070 mGy h(-1) in F2. In parallel, DNA alterations became significant at decreasing dose rates over the course of F0 (from 4.70 mGy h(-1) at hatching to 0.007 mGy h(-1) after ∼21 days) and from F0 to F2 (0.070 mGy h(-1) at hatching to 0.007 mGy h(-1) after ∼21 days), demonstrating their rapid accumulation in F0 daphnids and their transmission to offspring generations. Transiently more efficient DNA repair leading to some recovery at the organism level was suggested in F1, with no effect on survival, a slight reduction of 12% in 21 day-fecundity at 35.4 mGy h(-1) and DNA alterations significant at highest dose rates only. The study improved our understanding of long term responses to low doses of radiation at the molecular and organismic levels in a non-human species for a better radioprotection of aquatic ecosystems. PMID:25840277

  13. Freshwater in situ toxicity testing: Daphnia magna, Ceriodaphnia dubia, Pimephales promelas, Hyalella azteca and Chironomus tentans

    SciTech Connect

    Burton, G.A. Jr.

    1995-12-31

    The use of traditional laboratory toxicity test species in field exposures have proven to be a valuable assessment tool for monitoring effluent, water, sediment and storm water quality. Mimicking fluctuating exposures of stressors with associated interactions with differing physico-chemical variables is difficult. In situ exposures are conducted for similar time periods measuring similar response endpoints as in more traditional laboratory tests. However, organisms are transferred to the field and exposed in various types of test chambers. The author has observed responses which are similar and which are significantly different from simultaneous laboratory exposures. Temperature, dissolved oxygen, suspended solids, natural light, flow, and predation may affect in situ responses, but are often removed from laboratory exposures. The strengths and weaknesses observed with these test systems over the past few years will be reviewed.

  14. MULTIGENERATION IMPACTS ON DAPHNIA MAGNA OF CARBON NANOMATERIALS WITH DIFFERING CORE STRUCTURES AND FUNCTIONALIZATIONS

    PubMed Central

    Arndt, Devrah A; Chen, Jian; Moua, Maika; Klaper, Rebecca D

    2014-01-01

    Several classes of contaminants have been shown to have multigenerational impacts once a parental generation has been exposed. Acute and chronic toxicity are described for several types of nanomaterials in the literature; however, no information is available on the impact of nanomaterials on future generations of organisms after the exposure is removed. In the present study, the authors examined the impacts of carbon nanomaterials (CNMs), including fullerenes (C60), single-walled carbon nanotubes (SWCNTs), and multiwalled carbon nanotubes (MWCNTs) with neutral, positive, and negative functional groups to F1 and F2 generation daphnids after an F0 exposure. Data from the present study indicate that multigenerational toxicity is present with certain nanomaterial exposures and is highly dependent on the surface chemistry of the nanomaterial. Many CNMs that showed toxicity to exposed F0 daphnids in previous experiments did not induce multigenerational toxicity. Certain nanomaterials, however, such as C60-malonate, SWCNTs, SWCNT-CONH2, and MWCNTs, caused a significant decrease in either survival or reproduction in F1 daphnids; and SWCNT-CONH2 decreased reproduction out to the F2 generation. Impacts of nanomaterials on F1 and F2 size were small and lacked clear patterns, indicating that CNMs have minimal multigenerational impacts on size. Industries should take into account how surface chemistry influences nanomaterial toxicity to future generations of organisms to create sustainable nanomaterials that do not harm freshwater ecosystems. Environ Toxicol Chem 2014;33:541–547. © 2013 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. This is an open access article under the terms of the Creative Commons Attribution–NonCommercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. PMID:24442719

  15. [Effect of a model of the H-component of a typical magnetic storm on early ontogenesis in Daphnia magna Straus].

    PubMed

    Krylov, V V; Zotov, O D; Osipova, E A; Znobishcheva, A V; Demtsun, N A

    2010-01-01

    The effect of a model of the H-component of a typical magnetic storm on the early ontogenesis of Daphnia magna Straus at 21 and 23 degrees C has been studied. It was shown based on the rates of the early ontogenesis that the effects of the model magnetic storm from the sudden onset of the storm to its end differ from the effects of the model magnetic storm from the recovery phase to the end of the storm. The effects of the model magnetic storm depended on temperature. The action of the model magnetic storm from the sudden onset of the storm to its end led to changes in the body length in the first progeny broods. PMID:20968083

  16. Bioavailability of benzo(a)pyrene and dehydroabietic acid from a few lake waters containing varying dissolved organic carbon concentrations to Daphnia magna

    SciTech Connect

    Oikari, A.; Kukkonen, J. )

    1990-07-01

    Dissolved organic carbon (DOC) in natural waters consists of a great variety of organic molecules. Some of these molecules have been identified but most of them cannot be identified. This unidentified group of heterogeneous organic macromolecules is considered as humic substances. The role of humic substances in water chemistry and in aquatic toxicology is receiving increasing attention. The effects of DOC on the bioavailability of organic pollutants have been demonstrated in several studies. A decreased bioavailability has been demonstrated in most cases. Both the quantity and the quality of DOC are suggested determinants of this apparent ecotoxicological buffer of inland waters worldwide. In this study, the authors measured the bioaccumulation of benzo(a)pyrene (BaP) and dehydroabietic acid (DHAA) in Daphnia magna using a wide range of naturally occurring DOC levels. Another objective was to associate the reduced bioavailability with the chemical characteristics of water and DOC.

  17. Comparison of the capacity of two biotic ligand models to predict chronic copper toxicity to two Daphnia magna clones and formulation of a generalized bioavailability model.

    PubMed

    Van Regenmortel, Tina; Janssen, Colin R; De Schamphelaere, Karel A C

    2015-07-01

    Although it is increasingly recognized that biotic ligand models (BLMs) are valuable in the risk assessment of metals in aquatic systems, the use of 2 differently structured and parameterized BLMs (1 in the United States and another in the European Union) to obtain bioavailability-based chronic water quality criteria for copper is worthy of further investigation. In the present study, the authors evaluated the predictive capacity of these 2 BLMs for a large dataset of chronic copper toxicity data with 2 Daphnia magna clones, termed K6 and ARO. One BLM performed best with clone K6 data, whereas the other performed best with clone ARO data. In addition, there was an important difference between the 2 BLMs in how they predicted the bioavailability of copper as a function of pH. These modeling results suggested that the effect of pH on chronic copper toxicity is different between the 2 clones considered, which was confirmed with additional chronic toxicity experiments. Finally, because fundamental differences in model structure between the 2 BLMs made it impossible to create an average BLM, a generalized bioavailability model (gBAM) was developed. Of the 3 gBAMs developed, the authors recommend the use of model gBAM-C(uni), which combines a log-linear relation between the 21-d median effective concentration (expressed as free Cu(2+) ion activity) and pH, with more conventional BLM-type competition constants for sodium, calcium, and magnesium. This model can be considered a first step in further improving the accuracy of chronic toxicity predictions of copper as a function of water chemistry (for a variety of Daphnia magna clones), even beyond the robustness of the current BLMs used in regulatory applications. PMID:25771778

  18. Gene expression profiling in Daphnia magna part I: concentration-dependent profiles provide support for the No Observed Transcriptional Effect Level.

    PubMed

    Poynton, Helen C; Loguinov, Alexandre V; Varshavsky, Julia R; Chan, Sarah; Perkins, Edward J; Vulpe, Chris D

    2008-08-15

    Ecotoxicogenomic approaches to environmental monitoring provide holistic information, offer insight into modes of action, and help to assess the causal agents and potential toxicity of effluents beyond the traditional end points of death and reproduction. Recent investigations of toxicant exposure indicate dose-dependent changes are a key issue in interpreting genomic studies. Additionally, there is interest in developing methods to integrate gene expression studies in environmental monitoring and regulation, and the No Observed Transcriptional Effect Level (NOTEL) has been proposed as a means for screening effluents and unknown chemicals fortoxicity. However, computational methods to determine the NOTEL have yet to be established. Therefore, we examined effects on gene expression in Daphnia magna following exposure to Cu, Cd, and Zn over a range of concentrations including a tolerated, a sublethal, and a nearly acutely toxic concentration. Each concentration produced a distinct gene expression profile. We observed differential expression of a very few genes at tolerated concentrations that were distinct from the expression profiles observed at concentrations associated with toxicity. These results suggest that gene expression analysis may offer a strategy for distinguishing toxic and nontoxic concentrations of metals in the environment and provide support for a NOTEL for metal exposure in D. magna. Mechanistic insights could be inferred from the concentration-dependent gene expression profiles including metal specific effects on disparate metabolic processes such as digestion, immune response, development and reproduction, and less specific stress responses at higher concentrations. PMID:18767695

  19. Application of an acute biotic ligand model to predict chronic copper toxicity to Daphnia magna in natural waters of Chile and reconstituted synthetic waters.

    PubMed

    Villavicencio, German; Urrestarazu, Paola; Arbildua, Jose; Rodriguez, Patricio H

    2011-10-01

    The objective of the present study was to assess the predictive capacity of the acute Cu biotic ligand model (BLM) as applied to chronic Cu toxicity to Daphnia magna in freshwaters from Chile and synthetic laboratory-prepared waters. Samples from 20 freshwater bodies were taken, chemically characterized, and used in the acute Cu BLM to predict the 21-d chronic Cu toxicity for D. magna. The half-maximal effective concentration (EC50) values, determined using the Organisation for Economic Co-operation and Development (OECD) 21-d reproduction test (OECD Method 211), were compared with the BLM simulated EC50 values. The same EC50 comparison was performed with the results of 19 chronic tests in synthetic media, with a wide range of hardness and alkalinity and a fixed 2 mg/L dissolved organic carbon (DOC) concentration. The acute BLM was modified only by adjustment of the accumulation associated with 50% of an effect value (EA50). The modified BLM model was able to predict, within a factor of two, 95% of the 21-d EC50 and 89% of the 21-d half-maximal lethal concentrations (LC50) in natural waters, and 100% of the 21-d EC50 and 21-d LC50 in synthetic waters. The regulatory implications of using a slightly modified version of an acute BLM to predict chronic effects are discussed. PMID:21796669

  20. Acute toxicity of two CdSe/ZnSe quantum dots with different surface coating in Daphnia magna under various light conditions.

    PubMed

    Lee, Jiyoun; Ji, Kyunghee; Kim, Jungkon; Park, Chansik; Lim, Kook Hee; Yoon, Tae Hyun; Choi, Kyungho

    2010-12-01

    With an increasing use of quantum dots (QDs) in many applications, their potential hazard is of growing concern. However, little is known about their ecotoxicity, especially in vivo. In the present study, we employed freshwater macroinvertebrate, Daphnia magna, to evaluate toxicity characteristics of cadmium selenide/zinc selenide (CdSe/ZnSe) in relation to surface coatings, e.g., mercaptopropionic acid QD ((MPA)QD), and gum arabic/tri-n-octylphosphine oxide QD ((GA/TOPO)QD), and light conditions, i.e., dark, fluorescent light, environmental level of ultraviolet (UV) light, and sunlight. The results of the present study showed that D. magna was more susceptible to (GA/TOPO)QD exposure compared to (MPA)QD. The surface coating of QD appeared to determine the stability of QDs and hence the toxicity, potentially by size change of or the release of toxic components from QDs. However, (GA/TOPO)QD was still less toxic than the equivalent level of CdCl₂. The toxicity of all the tested compounds increased by changing the light condition from dark to white fluorescence to UV-B light, and to natural sunlight. The effect of light condition on QDs toxicity could also be explained by photostability of the QDs, which would affect size of the particle, release of toxic component ions, and generation of reactive oxygen species. Considering increasing use of QDs in various applications, their environmental fates and corresponding toxic potentials deserve further investigation. PMID:19575465

  1. Detection of hormones in surface and drinking water in Brazil by LC-ESI-MS/MS and ecotoxicological assessment with Daphnia magna.

    PubMed

    Torres, Nádia Hortense; Aguiar, Mario Mamede; Ferreira, Luiz Fernando Romanholo; Américo, Juliana Heloisa Pinê; Machado, Ângela Maria; Cavalcanti, Eliane Bezerra; Tornisielo, Valdemar Luiz

    2015-06-01

    The growing use of pharmaceutical drug is mainly due to several diseases in human and in animal husbandry. As these drugs are discharged into waterways via wastewater, they cause a major impact on the environment. Many of these drugs are hormones; in which even at low concentrations can alter metabolic and physiological functions in many organisms. Hormones were found in surface water, groundwater, soil, and sediment at concentrations from nanograms to milligrams per liter of volume--quantities known to cause changes in the endocrine system of aquatic organisms. This study aimed to develop a methodology for hormone detection (estriol, estrone, 17β-estradiol, 17α-ethinylestradiol, progesterone, and testosterone) on surface and treated water samples. Sample toxicity was assessed by ecotoxicology tests using Daphnia magna. A liquid chromatograph coupled to a mass spectrometer with an electrospray ionization source (LC-ESI-MS/MS) was used for the analysis. The results showed that samples were contaminated by the hormones estriol, estrone, progesterone, 17β-estradiol, and 17α-ethinylestradiol during the sampling period, and the highest concentrations measured were 90, 28, 26, 137, and 194 ng · L(-1), respectively. This indicates the inflow of sewage containing these hormones at some points in the Piracicaba River in the State of Sao Paulo-Brazil. Results indicated little toxicity of the hormone estriol in D. magna, indicating that chronic studies with this microcrustacean are necessary. PMID:26013657

  2. Co-exposure of ZnO nanoparticles and UV radiation to Daphnia magna and Danio rerio: Combined effects rather than protection.

    PubMed

    Azevedo, Sofia L; Ribeiro, Fabianne; Jurkschat, Kerstin; Soares, Amadeu M V M; Loureiro, Susana

    2016-02-01

    The application of nanoparticles (NPs) in consumer products has been increasing over the past few years. Their release into the environment is likely to happen at any stage of production or during the use of products containing NPs. Zinc oxide NPs (ZnO-NP) are among the most-used NPs on the market due to its intrinsic properties, such as ultraviolet (UV) absorption. The aim of the present study was to assess the combined effects of ZnO-NP and UV radiation on 2 freshwater species: Daphnia magna and Danio rerio. The initial hypothesis was that the presence of ZnO-NP in the aquatic media would decrease the damaging effects of UV radiation for both species. The endpoints assessed for D. magna were immobilization, feeding inhibition, and reproduction output. For D. rerio, egg development was studied during 96 h and mortality, hatching delay, and abnormal development were the endpoints recorded. Combined exposures were designed based on the single toxicity of both stressors and analyzed based on the independent action concept and exploring possible deviations for synergism/antagonism, dose level, and dose ratio. Combined exposures with D. magna induced synergism on reproduction, decreasing the number of neonates produced more than expected based on both stressors' individual toxicity. Single exposures of D. rerio embryos to both stressors induced negative effects. The combined exposures caused a dose-ratio deviation pattern on mortality and hatching, with a synergism observed when ZnO-NP was the dominant stressor, changing to antagonism when UV radiation dominated the combined exposure. Regarding the results attained, studying ZnO toxicity under laboratory conditions may underestimate the risks when considering the potential interaction on effects when combined with UV radiation. PMID:26275073

  3. Effects of Tris(1,3-dichloro-2-propyl) Phosphate on Growth, Reproduction, and Gene Transcription of Daphnia magna at Environmentally Relevant Concentrations.

    PubMed

    Li, Han; Su, Guanyong; Zou, Ming; Yu, Liqin; Letcher, Robert J; Yu, Hongxia; Giesy, John P; Zhou, Bingsheng; Liu, Chunsheng

    2015-11-01

    The synthetic flame retardant tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) has been frequently detected in natural waters, and its maximum concentration ever reported is 377 ng/L. However, information on the adverse effects of environmentally relevant concentrations of TDCIPP on aquatic organisms are totally unknown. In this study, <12-h old water fleas, D. magna, were exposed to concentrations of 0, 65±7.1, 550±33, or 6500±1400 ng/L TDCIPP, and dose- and time-dependent effects on reproduction and development were evaluated. Sequences of genes of D. magna were obtained from the National Center for Biotechnology Information and were used to develop PCR arrays for D. magna. Arrays were then used to study transcriptional responses of D. magna to TDCIPP. Exposure to environmentally relevant concentrations of TDCIPP significantly decreased fecundity as well as length of F0 and F1 generations. Transcriptional responses showed that, of the 155 genes tested, expressions of 57 genes were significantly changed, and some changes occurred following exposure to environmentally relevant concentrations (i.e., 65±7.1 and 550±23 ng/L). Furthermore, pathways related to protein synthesis and metabolism and endocytosis were considered to be significantly affected in a dose- and time-dependent manner and might be responsible for TDCIPP-induced reproductive and developmental toxicities. PMID:26422752

  4. Comparison of Brachionus calyciflorus 2-d and Microtox{reg{underscore}sign} chronic 22-H tests with Daphnia magna 21-d test for the chronic toxicity assessment of chemicals

    SciTech Connect

    Radix, P.; Leonard, M.; Papantoniou, C.; Roman, G.; Saouter, E.; Gallotti-Schmitt, S.; Thiebaud, H.; Vasseur, P.

    1999-10-01

    The Daphnia magna 21-d test may be required by European authorities as a criterion for the assessment of aquatic chronic toxicity for the notification of new substances. However, this test has several drawbacks. It is labor-intensive, relatively expensive, and requires the breeding of test organisms. The Brachionous calyciflorus 2-d test and Microtox chronic 22-h test do not suffer from these disadvantages and could be used as substitutes for the Daphnia 21-d test for screening assays. During this study, the toxicity of 25 chemicals was measured using both the microtox chronic toxicity and B. calyciflorus 2-d tests, and the no-observed-effect concentrations (NOECs) were compared to the D. magna 21-d test. The Brachionus test was slightly less sensitive than the Daphnia test, but the correlation between the two tests was relatively good (r{sup 2} = 0.54). The B. calyciflorus 2-d test, and to a lesser extent the Microtox chronic 22-h test, were able to predict the chronic toxicity values of the Daphnia 21-d test. They constitute promising cost-effective tools for chronic toxicity screening.

  5. Part 2: Sensitivity comparisons of the mayfly Centroptilum triangulifer to Ceriodaphnia dubia and Daphnia magna using standard reference toxicants; NaCl, KCl and CuSO4.

    PubMed

    Struewing, Katherine A; Lazorchak, James M; Weaver, Paul C; Johnson, Brent R; Funk, David H; Buchwalter, David B

    2015-11-01

    Criteria for establishing water quality standards that are protective for 95% of the native species are generally based upon laboratory toxicity tests. These tests utilize common model organisms that have established test methods. However, for invertebrates these species represent mostly the zooplankton community and are not inclusive of all taxa. In order to examine a potential under-representation in emerging aquatic invertebrates the US Environmental Protection Agency has cultured a parthenogenetic mayfly, Centroptilum triangulifer (Ephemeroptera: Baetidae). This study established a 48h acute and a 14-day short-term chronic testing procedure for C. triangulifer and compared its sensitivity to two model invertebrates, Ceriodaphnia dubia and Daphnia magna. Toxicity tests were conducted to determine mortality and growth effects using standard reference toxicants: NaCl, KCl and CuSO4. In 48-h acute tests, the average LC50 for the mayfly was 659mgL(-1) NaCl, 1957mgL(-1) KCl, and 11μgL(-1) CuSO4. IC25 values, using dry weight as the endpoint, were 228mgL(-1) NaCl, 356mgL(-1) KCl and 5μgL(-1) CuSO4. C. triangulifer was the most sensitive species in NaCl acute and chronic growth tests. At KCl concentrations tested, C. triangulifer was less sensitive for acute tests but was equally or more sensitive than C. dubia and D. magna for growth measurements. This study determined C. triangulifer has great potential and benefits for use in ecotoxicological studies. PMID:24932778

  6. (1)H NMR-based metabolomics investigation of Daphnia magna responses to sub-lethal exposure to arsenic, copper and lithium.

    PubMed

    Nagato, Edward G; D'eon, Jessica C; Lankadurai, Brian P; Poirier, David G; Reiner, Eric J; Simpson, Andre J; Simpson, Myrna J

    2013-09-01

    Metal and metalloid contamination constitutes a major concern in aquatic ecosystems. Thus it is important to find rapid and reliable indicators of metal stress to aquatic organisms. In this study, we tested the use of (1)H nuclear magnetic resonance (NMR) - based metabolomics to examine the response of Daphnia magna neonates after a 48h exposure to sub-lethal concentrations of arsenic (49μgL(-1)), copper (12.4μgL(-1)) or lithium (1150μgL(-1)). Metabolomic responses for all conditions were compared to a control using principal component analysis (PCA) and metabolites that contributed to the variation between the exposures and the control condition were identified and quantified. The PCA showed that copper and lithium exposures result in statistically significant metabolite variations from the control. Contributing to this variation was a number of amino acids such as: phenylalanine, leucine, lysine, glutamine, glycine, alanine, methionine and glutamine as well as the nucleobase uracil and osmolyte glycerophosphocholine. The similarities in metabolome changes suggest that lithium has an analogous mode of toxicity to that of copper, and may be impairing energy production and ionoregulation. The PCA also showed that arsenic exposure resulted in a metabolic shift in comparison to the control population but this change was not statistically significant. However, significant changes in specific metabolites such as alanine and lysine were observed, suggesting that energy metabolism is indeed disrupted. This research demonstrates that (1)H NMR-based metabolomics is a viable platform for discerning metabolomic changes and mode of toxicity of D. magna in response to metal stressors in the environment. PMID:23732010

  7. Toxicity of aryl- and benzylhalides to Daphnia magna and classification of their mode of action based on quantitative structure-activity relationship

    SciTech Connect

    Marchini, S.; Passerini, L.; Hoglund, M.D.; Pino, A.; Nendza, M.

    1999-12-01

    The acute toxicity of aryl- and benzylhalides to Daphnia magna was investigated to test the validity of existing classification schemes for chemicals by mode of action, mainly based on fish studies, and the applicability of predictive quantitative structure-activity relationship (QSAR) models. Halobenzenes and halotoluenes are generally agreed to be unambiguous baseline toxicants (class 1) with the major exception of the benzylic structures, which are reactive in fish tests (class 3). Eighty-nine percent of the arylhalides tested in this study match a log P{sub ow}-dependent QSAR, including fluorinated, chlorinated, brominated, and iodinated derivatives, thereby confirming the validity of the baseline models also for variously halogenated compounds (other than only-chloro compounds). The toxicities of the benzylhalides relative to baseline QSARs clearly indicate that these compounds belong to two classes of mode of action, i.e., they either act as narcotic toxicants (class 1) or reveal excess toxicity due to unspecific reactivity (class 3). On some occasions, the assignment to the two classes of F. magna deviates from the structural rules derived from fish, i.e., iodinated compounds as well as {alpha},{alpha}-Cl{sub 2}-toluene's lack reactive excess toxicity but behave as nonpolar nonspecific toxicants. The QSARs derived during this study reveal lower slopes and higher intercepts than typical baseline models and, together with the analysis of mixture toxicity studies, behavioral studies, and critical body burden, advocate the hypothesis that there are several different ways to produce baseline toxicity. Most halobenzenes and halotoluenes are actually baseline chemicals with some extra reactivity and as such form a subgroup, whose limits still have to be defined. Different primary sites of action could explain why the chemicals are discriminated by different classification systems, but still they must have some rate-limiting interaction in common as they fit the

  8. Suitability of enzymatic markers to assess the environmental condition of natural populations of Gambusia affinis and Daphnia magna--a case study.

    PubMed

    Domingues, Inês; Santos, Cátia S A; Ferreira, Nuno G C; Machado, Luísa; Oliveira, Rhaul; Ferreira, Abel; Lopes, Isabel; Loureiro, Susana; Soares, Amadeu M V M

    2015-04-01

    In recent years, the use of biochemical markers, especially in the assessment of toxic effects and modes of action, under controlled laboratory conditions has increased. However, transposing their use to in situ monitoring or risk assessment evaluations has encountered barriers, mainly related to the difficulty in interpreting the meaning of biochemical variation. In this work, we aimed at understanding if biochemical marker activities (cholinesterase, glutathione S-transferase and lactate dehydrogenase) can be used to monitor the health status of natural populations of fish (Gambusia affinis) and daphnids (Daphnia magna). For that, two ponds with different water properties were chosen as study sites, and organisms collected at four sampling periods along the year. The pattern of biochemical marker responses was not the same in the two species, showing higher integrated biochemical marker response values in the winter for G. affinis and in the autumn for D. magna, suggesting specificities that must be taken into account in biomonitoring programmes by including representative species of several trophic levels. In the case of G. affinis, the differences in key physicochemical parameters between the two ponds (especially dissolved oxygen levels) did not seem to affect biochemical marker levels as if organisms were already perfectly adapted to their environment. In general, seasonal variation of water quality seems to have an important role on biochemical marker responses. Several parameters above Environmental Quality Standards were identified such as dissolved oxygen (DO), ammonia, nitrites, sulphides and metals, but eventual responses to these stressors could not be discriminated from natural variation except for particular cases. PMID:25805370

  9. Interference with xenobiotic metabolic activity by the commonly used vehicle solvents dimethylsulfoxide and methanol in zebrafish (Danio rerio) larvae but not Daphnia magna

    PubMed Central

    David, Rhiannon M.; Jones, Huw S.; Panter, Grace H.; Winter, Matthew J.; Hutchinson, Thomas H.; Kevin Chipman, J.

    2012-01-01

    Organic solvents, such as dimethylsulfoxide (DMSO) and methanol are widely used as vehicles to solubilise lipophilic test compounds in toxicity testing. However, the effects of such solvents upon innate detoxification processes in aquatic organisms are poorly understood. This study assessed the effect of solvent exposure upon cytochrome P450 (CYP)-mediated xenobiotic metabolism in Daphnia magna and zebrafish larvae (4 d post fertilisation). Adult D. magna were demonstrated to have a low, but detectable, metabolism of ethoxyresorufin in vivo and this activity was not modulated by pre-exposure to DMSO or methanol (24 h, up to 0.1% and 0.05% v/v, respectively). In contrast, the metabolism of ethoxyresorufin in zebrafish larvae was significantly reduced by both solvents (0.1% and 0.05% v/v, respectively) after 24 h of exposure. In zebrafish, these observed decreases in activity towards ethoxyresorufin were accompanied by decreased expression of a variety of genes coding for drug metabolising enzymes (corresponding to CYP1, CYP2, CYP3 and UDP-glucuronyl transferase [UGT] family enzymes), measured by quantitative PCR. Reduction of gene expression and CYP1 enzyme activities by methanol (0.05% v/v) in zebrafish larvae was partially reversed by co-exposure with Aroclor 1254 (100 μg L−1). Overall this study suggests that relatively low concentrations of organic solvents can impact upon the biotransformation of certain xenobiotics in zebrafish larvae, and that this warrants consideration when assessing compounds for metabolism and toxicity in this species. PMID:22472102

  10. Influence of pH and media composition on suspension stability of silver, zinc oxide, and titanium dioxide nanoparticles and immobilization of Daphnia magna under guideline testing conditions.

    PubMed

    Cupi, Denisa; Hartmann, Nanna B; Baun, Anders

    2016-05-01

    In aquatic toxicity testing of engineered nanoparticles (ENPs) the process of agglomeration is very important as it may alter bioavailability and toxicity. In the present study, we aimed to identify test conditions that are favorable for maintaining stable ENP suspensions. We evaluated the influence of key environmental parameters: pH (2-12) and ionic strength using M7, Soft EPA (S EPA) medium, and Very Soft EPA (VS EPA) medium; and observed the influence of these parameters on zeta potential, zeta average, and acute immobilization of Daphnia magna for three different ENPs. Despite being sterically stabilized, test suspensions of silver (Ag) ENPs formed large agglomerates in both VS EPA and M7 media; and toxicity was found to be higher in VS EPA medium due to increased dissolution. Low-agglomerate suspensions for zinc oxide (ZnO) could be obtained at pH 7 in VS EPA medium, but the increase in dissolution caused higher toxicity than in M7 medium. Titanium dioxide (TiO2) ENPs had a point of zero charge in the range of pH 7-8. At pH 7 in VS EPA, agglomerates with smaller hydrodynamic diameters (~200nm) were present compared to the high ionic strength M7 medium where hydrodynamic diameters reached micrometer range. The stable suspensions of TiO2 ENPs caused immobilization of D. magna, 48-h EC50 value of 13.7mgL(-1) (95% CI, 2.4mg-79.1mgL(-1)); whereas no toxicity was seen in the unstable, highly agglomerated M7 medium suspensions, 48-h EC50 >100mgL(-1). The current study provides a preliminary approach for methodology in testing and assessing stability and toxicity of ENPs in aquatic toxicity tests of regulatory relevance. PMID:26829068

  11. Relative acute toxicity of acid mine drainage water column and sediments to Daphnia magna in the Puckett's Creek Watershed, Virginia, USA.

    PubMed

    Soucek, D J; Cherry, D S; Trent, G C

    2000-04-01

    Acid mine drainage (AMD) is produced when pyrite (FeS(2)) is oxidized on exposure to oxygen and water to form ferric hydroxides and sulfuric acid. If produced in sufficient quantity, iron precipitate, heavy metals (depending on soil mineralogy), and sulfuric acid may contaminate surface and ground water. A previous study of an AMD impacted watershed (Puckett's Creek, Powell River drainage, southwestern Virginia, USA) conducted by these researchers indicated that both water column and sediment toxicity were significantly correlated with benthic macroinvertebrate community impacts. Sites that had toxic water or sediment samples had significantly reduced macroinvertebrate taxon richness. The present study was designed to investigate the relative acute toxicity of acid mine drainage (AMD) water column and sediments to a single test organism (Daphnia magna) and to determine which abiotic factors were the best indicators of toxicity in this system. Nine sampling stations were selected based on proximity to major AMD inputs in the watershed. In 48-h exposures, sediment samples from three stations were acutely toxic to D. magna, causing 64-100% mortality, whereas water samples from five stations caused 100% mortality of test organisms. Forty-eight-hour LC50 values ranged from 35 to 63% for sediment samples and 27 to 69% for water column samples. Sediment iron concentration and several water chemistry parameters were the best predictors of sediment toxicity, and water column pH was the best predictor of water toxicity. Based on these correlations and on the fact that toxic sediments had high percent water content, water chemistry appears to be a more important adverse influence in this system than sediment chemistry. PMID:10667927

  12. Comparison of the sensitivities of fish, Microtox and Daphnia-magna bioassays to amoxycillin in anaerobic/aerobic sequential reactor systems.

    PubMed

    Çelebi, H; Sponza, D T

    2012-01-01

    In this study the anaerobic treatability of amoxycillin (AMX) was investigated in a laboratory-scale anaerobic multi-chamber bed reactor (AMCBR)/aerobic continuously stirred tank reactor (CSTR) system. The chemical oxygen demand (COD) and AMX removal efficiencies were around 94% in the AMCBR reactor at hydraulic retention times (HRTs) between 2.25 and 5.5 days. Decreasing the HRT appeared not to have a significant effect on the performance of the AMCBR up to a HRT of 1.13 days. The maximum methane production rate and methane percentage were around 1,100-1,200 mL/day and 55%, respectively, at HRTs between 2.25 and 5.5 days. The decrease in HRT to 1.5 days decreased slightly the gas productions (1,000 mL/day and 500 mL for total and methane gases) and methane percentage (45%). The AMCBR recovered back to its baseline performance within a couple of days. The acute toxicity of 150 mg/L AMX was monitored with Daphnia magna, Lepistes sp., and Vibrio fischeri acute toxicity tests. The acute toxicity removals were 98, 96 and 96% for V. fischeri, D. magna and Lepistes sp. in the effluent of the sequential system treating 150 mg/L AMX at HRTs of 2.25-5.5 days. Among the trophic organisms used in the acute toxicity tests the most sensitive organism was found to be bacteria (V. fischeri) while the most resistant organism was found to be fish (Lepistes sp.). PMID:22797243

  13. Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles

    EPA Science Inventory

    Applications for silver nanomaterials in consumer products are rapidly expanding, creating an urgent need for toxicological examination of the exposure potential and ecological effects of silver nanoparticles (AgNPs). The integration of genomic techniques into environmental toxic...

  14. Rheoceptive mediators of graviperception in a water flea: Morphological implications of antennal-socket setae in daphnia magna

    NASA Technical Reports Server (NTRS)

    Meyers, D. G.

    1984-01-01

    Aquatic microcrustaceans of the genus Daphnia are known to orient to light during the day. At night, in the absence of visual cues, daphnids were suspected of maintaining equilibrium by monitoring the direction of gravity through their swimming antennae. Recent investigations using simulated, weightlessness conditions coupled with absence of illumination revealed hair like structures or setae on the basal, articulating socket of the antennae that, when surgically removed, resulted in disorientation. Given the simulated weightlessness or neutrally buoyant condition that eliminated sinking of the normally negatively buoyant Daphnia, it was proposed that the antennal socket setae function as rheoceptors stimulated by the upward rush of water currents during gravity induced, sinking phase of daphnid swimming movements. This rheoceptively mediated, gravity perception hypothesis is further supported by morphological investigations. Scanning electron micrographs indicate that antennal socket setae are anatomically similar to proprioceptors used by higher crustaceans to monitor gravitational direction.

  15. Changes in /sup 22/Na influx and outflux in Daphnia magna (Straus) as a function of elevated Al concentrations in soft water at low pH

    SciTech Connect

    Havas, M.; Likens, G.E.

    1985-11-01

    The effects of aluminum on sodium regulation by the freshwater crustacean Daphnia magna were determined. /sup 22/Na influx and outflux experiments were conducted in soft water adjusted to pH 4.5, 5.0, and 6.5 (reference pH) with either ambient (0.02 mg/liter) or high (1.02 mg/liter) concentrations of total Al. The results indicate that Al toxicity was pH dependent. Aluminum increased the rate of morbidity of D. magna at pH 6.5, had no additional effect to those of hydrogen ions (H/sup +/) at pH 5.0, and reduced the rate of morbidity at pH 4.5. Both H/sup +/ and total Al concentrations interfered with Na regulation, although it was possible to distinguish between their respective effects by using /sup 22/Na. At pH 6.5, Al decreased /sup 22/Na influx (by 46%) and increased /sup 22/Na outflux (by 25%), which led to a net loss of Na. At pH 5.0, Al reduced /sup 22/Na influx (by 58%) but had not additional effect to that of H/sup +/ on /sup 22/Na outflux. At pH 4.5, /sup 22/Na influx was significantly inhibited (by 73%) compared with the reference pH 6.5 treatment even in the absence of Al. Aluminum decreased /sup 22/Na outflux (by 31%) at pH 4.5, which reduced the net loss of Na and temporarily prolonged survival of the daphnids. These results indicate that Al affects both /sup 22/Na influx and outflux in D. magna. The lower rate of Na uptake may involve a denaturation of the enzyme responsible for the active uptake of Na. At pH 6.5, the increased outflux of /sup 22/Na may be due to either increased membrane permeability or increased renal losses (or both). At pH 4.5, the reduced outflux of /sup 22/Na resembles the amelioration that occurs in the presence of elevated Ca concentrations.

  16. Comparison of the effect of different pH buffering techniques on the toxicity of copper and zinc to Daphnia magna and Pseudokirchneriella subcapitata.

    PubMed

    De Schamphelaere, K A C; Heijerick, D G; Janssen, C R

    2004-10-01

    During the time-course of ecotoxicity tests with algae and chronic (reproductive) toxicity tests with daphnids, in which algae are present as a food source, pH can dramatically increase due to photosynthetic activity. As pH changes can significantly affect metal speciation and thus its bioavailability, it may be necessary to buffer the pH of the exposure medium. One class of buffers (Good's N-subtituted aminosulfonic acids) are increasingly being used in biological and chemical applications, including ecotoxicity testing. However, the potential effect of these buffers on metal toxicity has, so far, scarcely been examined. In this study we investigated if MOPS (3-N morpholino propane sulfonic acid) affected the toxicity of copper and zinc to two standard test organisms: the cladoceran Daphnia magna and the green alga Pseudokirchneriella subcapitata. First, we demonstrate that up to a concentration of 750 mg l(-1) (which proved to be sufficient for pH buffering) MOPS did not affect 21-day net reproduction of D. magna or the 72-h population growth of P. subcapitata. Second, we conducted bioassays in copper and zinc spiked standard media for the pH range 6-8. For D. magna the possible effect of 750 mg l(-1) MOPS on acute copper and zinc toxicity was investigated by performing parallel 48-h toxicity tests in NaHCO3 and MOPS buffered test media. Seventy-two hour growth inhibition assays with P. subcapitata were performed in parallel in MOPS and NaHCO3 buffered test media and in test media with daily manual pH adjustment with HCl. For daphnids no significant differences in copper and zinc toxicity were observed between MOPS or NaHCO3 buffered test media. For algae no significant differences in metal toxicity were observed between MOPS and HCl buffered media, but in test media buffered with NaHCO3 an increased copper and zinc toxicity was observed as a consequence of pH increases during the test. Clearly, the results of this study demonstrate the importance of pH buffering

  17. Acute toxicity of Ag and CuO nanoparticle suspensions against Daphnia magna: the importance of their dissolved fraction varying with preparation methods.

    PubMed

    Jo, Hun Je; Choi, Jae Woo; Lee, Sang Hyup; Hong, Seok Won

    2012-08-15

    A variety of methods to prepare nanoparticle suspensions have been employed for aquatic toxicity tests, although they can influence the dispersion property and subsequent toxicity of nanoparticles. Thus, in this study, we prepared stock suspensions of silver (Ag) and copper oxide (CuO) nanoparticles using different methods and compared their acute toxicity against Daphnia magna. The results showed that the dispersion method, filtration and initial concentration largely affected their toxicity, when the toxicity was expressed as the total concentrations of Ag and Cu. In case of Ag nanoparticles, the toxicity was also influenced by their different particle size. However, negligible differences in 24h-median effect concentration (EC(50)) values, which were calculated in terms of their dissolved concentrations, were observed. When expressing toxicity on the basis of dissolved concentrations, 24h-EC(50) values of the Ag and CuO nanoparticles were also found to be similar to those of the counterpart ionic species, i.e., Ag (as AgNO(3)) and Cu (as CuCl(2)·2H(2)O). These findings indicate that the dissolved fraction of nanoparticles largely contributes to their acute toxicity. Our results may help in establishing a useful guideline for preparing nanoparticle suspensions with reproducible toxicity. PMID:22682800

  18. [Application of biotic ligand model for the acute toxicity of copper to Daphnia magna in water of Liaohe River and Taihu Lake].

    PubMed

    Zhou, Teng-Yao; Cao, Ying; Qin, Lu-Mei; Zhang, Ya-Hui; Zeng, Hong-Hu; Yan, Zhen-Guang; Liu, Zheng-Tao

    2014-05-01

    The acute toxicity (48 h-LC50 ) of copper to Daphnia magna predicted by the biotic ligand model (BLM) was compared with the 48 h-LC50 measured in water samples from Liaohe River and Taihu Lake at four specific sites in wet and dry seasons. The results showed that 48 h-LC50 values predicted by BLM were 232.75-411.49 microgL-1 and 48 h-LC50 values measured in the water samples were 134. 55-350. 00 microg L-1 in three sites of Hongmiaozi of Liaohe River, Pingtaishan and Tuoshan of Taihu Lake, which had a better consistency. While for Tongjiangkou of Liaohe River, there was a difference between the BLM predictions and the measured values in wet and dry seasons. According to the predictions and the experimental results, water effect ratios (WERs) were in the range of 2. 18-5.79 and 1.88-11.15 which all were higher than 1. The acute toxicity of Cu of all sites in dry season was greater than those in wet season, which might be that Cu complexation with dissolved organic matter (DOC) reduced the toxicity of Cu. PMID:25055693

  19. Comparison of formation of disinfection by-products by chlorination and ozonation of wastewater effluents and their toxicity to Daphnia magna.

    PubMed

    Park, Keun-Young; Choi, Su-Young; Lee, Seung-Hoon; Kweon, Ji-Hyang; Song, Ji-Hyeon

    2016-08-01

    This study compared the two most frequently used disinfectants (i.e., chlorine and ozone) to understand their efficiency in wastewater effluents and the ecotoxicity of disinfection by-products created during chlorination and ozonation. Four trihalomethanes (THMs) and nine haloacetic acids (HAAs) were measured from a chlorine-disinfected sample and two aldehydes (i.e., formaldehydes and acetaldehydes) were analyzed after ozonation. Chlorination was effective for total coliform removal with Ct value in the range of 30-60 mg-min/L. Over 1.6 mg/L of ozone dose and 0.5 min of the contact time presented sufficient disinfection efficiency. The concentration of THMs increased with longer contact time (24 h), but that of HAAs showed little change with contact time. The measured concentration of formaldehyde at the ozone dose of 1.6 mg/L and the contact time of 9 min showed the greatest value in this study, approximately 330 μg L(-1), from which the corresponding ecotoxicity was determined using an indicator species, Daphnia magna. The ecotoxicity results were consistent with the toxicological features judged by occurrence, genotoxicity, and carcinogenicity. Both the disinfection efficiency as well as the DBP formation potential should therefore be considered to avoid harmful impacts on aquatic environments when a disinfection method is used for wastewater effluents. PMID:27213572

  20. Toxicity of fluoranthene to Daphnia magna, Hyalella azteca, Chironomus tentans, and Stylaria lacustris in water-only and whole sediment exposures

    SciTech Connect

    Suedel, B.C.; Rodgers, J.H. Jr.

    1996-07-01

    Fluoranthene is a polycyclic aromatic hydrocarbon (PAH) with a hydrophobic nature (water solubility = 265 {mu}g/L; U.S. EPA 1980) and a propensity to sorb to sediments. Fluoranthene has a K{sub oc} of 4.65, an intermediate value for PAHs. Fluoranthene can be toxic to some aquatic organisms at concentrations lower than its aqueous solubility. Therefore, desorption from sediments could produce aqueous concentrations that are harmful to aquatic organisms. Very few studies have examined the toxicity of fluoranthene to freshwater organisms. Data for other PAHs show that crustaceans are the most sensitive species, followed by polychaete worms and fish. Effects of fluoranthene-amended sediments on selected marine benthic organisms were examined. The objectives of this research were to (1) determine the relative sensitivities of Daphnia magna Straus, Hyalella azteca Saussure, Chironomus tentans Fabricius, and Stylaria lacustris Linnaeus in 48-hr and 10-d aqueous phase exposures to fluoranthene; and (2) determine the relative responses of these organisms in 10-d fluoranthene-amended sediment exposures. 12 refs., 3 tabs.

  1. Comparative acute toxicity to aquatic organisms of components of coal-derived synthetic fuels. [Selenastrum capricornutum; Nitzchia palea; Physa gyrina, Daphnia magna; Chironomus tentans; Gammarus minus; Pimephales promelas; Salmo gairdneri; Micropterus salmoides

    SciTech Connect

    Millemann, R.E.; Birge, W.J.; Black, J.A.; Cushman, R.M.; Daniels, K.L.; Franco, P.J.; Giddings, J.M.; McCarthy, J.F.; Stewart, A.J.

    1984-01-01

    In acute toxicity tests, green algae Selenaastrum capricornutum, diatoms Nitzschia palea, adult snails Physa gyrina, juvenile cladocerans Daphnia magna, larval midges Chironomus tentans, adult amphipods Gammarus minus, juvenile fathead minnows Pimephales promelas, and embryo-larva stages of rainbow trout Salmo gairdneri and largemouth bass Micropterus salmoides were exposed for 4 hours (algae), 48 hours (arthropods and snails), 96 hours (fathead minnows), 7 days (large-mouth bass), and 27 days (rainbow trout) to two phenols (phenol and ..beta..-naphthol), two azaarenes (quinoline and acridine), and two polycyclic aromatic hydrocarbons (naphthalene and phenanthrene) present in coal-derived oils. Median lethal or median effective concentrations (LC50s or EC50s) ranged from 0.03 mg/liter for phenanthrene and rainbow trout to 286.54 mg/liter for phenol and the green alga. The rainbow trout embryo-larva assay was the most sensitive of the test systems to all the chemicals except quinoline. For this last compound, systems with juvenile fathead minnows and largemouth bass embryos were the most sensitive. As test systems, fish embryos and larvae were the most sensitive, juvenile fathead minnows and arthropods had intermediate sensitivity, and algae and snails were the most resistant to the test compounds under the test conditions. Within each chemical class (phenols, azaarenes, and polycylcic aromatic hydrocarbons), toxicity increased with increased ring number except for the reversed relationship with the azaarenes and fathead minnows. Thus, ..beta..-naphthol (two rings) was 2 to 45 times more toxic than phenol (one ring); acridine (three rings) was 7 to 27 times more toxic than quinoline (two rings); and phenanthrene (three rings) was 3 to 9 times more toxic than naphthalene (two rings). 50 references.

  2. A test of the additivity of acute toxicity of binary-metal mixtures of ni with Cd, Cu, and Zn to Daphnia magna, using the inflection point of the concentration-response curves.

    PubMed

    Traudt, Elizabeth M; Ranville, James F; Smith, Samantha A; Meyer, Joseph S

    2016-07-01

    Mixtures of metals are often present in surface waters, leading to toxicity that is difficult to predict. To provide data for development of multimetal toxicity models, Daphnia magna neonates were exposed to individual metals (Cd, Cu, Ni, Zn) and to binary combinations of those metals in standard 48-h lethality tests conducted in US Environmental Protection Agency moderately hard reconstituted water with 3 mg dissolved organic carbon (DOC)/L added as Suwannee River fulvic acid. Toxicity tests were performed with mixtures of Ni and 1) Cd, which is considerably more toxic than Ni; 2) Cu, which is less toxic than Cd but more toxic than Ni; and 3) Zn, which has a toxicity threshold similar to Ni. For each combination of metals in the binary mixtures, the concentration of 1 metal was held constant while the second metal was varied through a series that ranged from nonlethal to lethal concentrations; then the roles of the metals were reversed. Inflection points of the concentration-response curves were compared to test for additivity of toxicity. Sublethal concentrations of Ni caused less-than-additive toxicity with Cd, slightly less-than-additive toxicity with Zn, and greater-than-additive toxicity with Cu. One explanation of these results might be competition among the metals for binding to biological ligands and/or dissolved organic matter. Therefore, models might have to incorporate sometimes competing chemical interactions to accurately predict metal-mixture toxicity. Environ Toxicol Chem 2016;35:1843-1851. © 2015 SETAC. PMID:26681657

  3. Environmental Sex Determination in the Branchiopod Crustacean Daphnia magna: Deep Conservation of a Doublesex Gene in the Sex-Determining Pathway

    PubMed Central

    Kato, Yasuhiko; Kobayashi, Kaoru; Watanabe, Hajime; Iguchi, Taisen

    2011-01-01

    Sex-determining mechanisms are diverse among animal lineages and can be broadly divided into two major categories: genetic and environmental. In contrast to genetic sex determination (GSD), little is known about the molecular mechanisms underlying environmental sex determination (ESD). The Doublesex (Dsx) genes play an important role in controlling sexual dimorphism in genetic sex-determining organisms such as nematodes, insects, and vertebrates. Here we report the identification of two Dsx genes from Daphnia magna, a freshwater branchiopod crustacean that parthenogenetically produces males in response to environmental cues. One of these genes, designated DapmaDsx1, is responsible for the male trait development when expressed during environmental sex determination. The domain organization of DapmaDsx1 was similar to that of Dsx from insects, which are thought to be the sister group of branchiopod crustaceans. Intriguingly, the molecular basis for sexually dimorphic expression of DapmaDsx1 is different from that of insects. Rather than being regulated sex-specifically at the level of pre–mRNA splicing in the coding region, DapmaDsx1 exhibits sexually dimorphic differences in the abundance of its transcripts. During embryogenesis, expression of DapmaDsx1 was increased only in males and its transcripts were primarily detected in male-specific structures. Knock-down of DapmaDsx1 in male embryos resulted in the production of female traits including ovarian maturation, whereas ectopic expression of DapmaDsx1 in female embryos resulted in the development of male-like phenotypes. Expression patterns of another D. magna Dsx gene, DapmaDsx2, were similar to those of DapmaDsx1, but silencing and overexpression of this gene did not induce any clear phenotypic changes. These results establish DapmaDsx1 as a key regulator of the male phenotype. Our findings reveal how ESD is implemented by selective expression of a fundamental genetic component that is functionally conserved

  4. Comparative study of the trophic transfer of two mercury compounds--HgCl/sub 2/ and CH/sub 3/HgCl--between Chlorella vulgaris and Daphnia magna. Influence of temperature

    SciTech Connect

    Baudou, A.; Ribeyre, F.

    1981-12-01

    A comparative study is presented of the transfer of HgCl/sub 2/ and CH/sub 3/HgCl between a species representative of the ''producer'' level -- Chlorella vulgaris -- and a primary consumer -- Daphnia magna. The experiment was carried out at two temperatures, 10 and 18/sup 0/C, and the concentration of metal in the environment was 1 ..mu..g.l/sup -1/ (1 ppb). Results seem to indicate that the two contaminants, which are first introduced into the environment and then fixed by the unicellular algae, retain their specific property of crossing the digestive barrier of the consumer link.

  5. Development of a regression model to predict copper toxicity to Daphnia magna and site-specific copper criteria across multiple surface-water drainages in an arid landscape.

    PubMed

    Fulton, Barry A; Meyer, Joseph S

    2014-08-01

    The water effect ratio (WER) procedure developed by the US Environmental Protection Agency is commonly used to derive site-specific criteria for point-source metal discharges into perennial waters. However, experience is limited with this method in the ephemeral and intermittent systems typical of arid climates. The present study presents a regression model to develop WER-based site-specific criteria for a network of ephemeral and intermittent streams influenced by nonpoint sources of Cu in the southwestern United States. Acute (48-h) Cu toxicity tests were performed concurrently with Daphnia magna in site water samples and hardness-matched laboratory waters. Median effect concentrations (EC50s) for Cu in site water samples (n=17) varied by more than 12-fold, and the range of calculated WER values was similar. Statistically significant (α=0.05) univariate predictors of site-specific Cu toxicity included (in sequence of decreasing significance) dissolved organic carbon (DOC), hardness/alkalinity ratio, alkalinity, K, and total dissolved solids. A multiple-regression model developed from a combination of DOC and alkalinity explained 85% of the toxicity variability in site water samples, providing a strong predictive tool that can be used in the WER framework when site-specific criteria values are derived. The biotic ligand model (BLM) underpredicted toxicity in site waters by more than 2-fold. Adjustments to the default BLM parameters improved the model's performance but did not provide a better predictive tool compared with the regression model developed from DOC and alkalinity. PMID:24796294

  6. Functional characterization of four metallothionein genes in Daphnia pulex exposed to environmental stressors

    PubMed Central

    Asselman, J.; Glaholt, S.P.; Smith, Z.; Smagghe, G.; Janssen, C.R.; Colbourne, J.K.; Shaw, J.R.; De Schamphelaere, K.A.C.

    2014-01-01

    We characterized the metallothionein genes (Mt1, Mt2, Mt3, and Mt4) in Daphnia pulex on both molecular and ecotoxicological level. We therefore conducted a bioinformatical analysis of the gene location and predicted protein sequence, and screened the upstream flanking region for regulatory elements. The number of these elements and their positions relative to the start codon varied strongly among the four genes and even among two gene duplicates (Mt1A and Mt1B), suggesting different roles of the four proteins in the organisms’ response to stress. We subsequently conducted a chronic 16-day exposure of D. pulex to different environmental stressors (at sublethal levels causing approximately 50% reduction in reproduction). Based on prior knowledge, we exposed them to the metals Cd, Cu, and Ni, the moulting hormone hydroxyecdysone (20E), and the oxidative stressors cyanobacteria (Microcystis aeruginosa), and paraquat (Pq). We then compared mRNA expression levels of the four Mt genes under these stress conditions with control conditions in “The Chosen One” clone (TCO), for which the full genome was sequenced and annotated. All together, the mRNA expression results under the different stress regimes indicate that different Mt genes may play different and various roles in the response of D. pulex to stress and that some (but not all) of the differences among the four genes could be related to the pattern of regulatory elements in their upstream flanking region. PMID:22266576

  7. Daphnia predation on the amphibian chytrid fungus and its impacts on disease risk in tadpoles

    PubMed Central

    Searle, Catherine L; Mendelson, Joseph R; Green, Linda E; Duffy, Meghan A

    2013-01-01

    Direct predation upon parasites has the potential to reduce infection in host populations. For example, the fungal parasite of amphibians, Batrachochytrium dendrobatidis (Bd), is commonly transmitted through a free-swimming zoospore stage that may be vulnerable to predation. Potential predators of Bd include freshwater zooplankton that graze on organisms in the water column. We tested the ability of two species of freshwater crustacean (Daphnia magna and D. dentifera) to consume Bd and to reduce Bd density in water and infection in tadpoles. In a series of laboratory experiments, we allowed Daphnia to graze in water containing Bd while manipulating Daphnia densities, Daphnia species identity, grazing periods and concentrations of suspended algae (Ankistrodesmus falcatus). We then exposed tadpoles to the grazed water. We found that high densities of D. magna reduced the amount of Bd detected in water, leading to a reduction in the proportion of tadpoles that became infected. Daphnia dentifera, a smaller species of Daphnia, also reduced Bd in water samples, but did not have an effect on tadpole infection. We also found that algae affected Bd in complex ways. When Daphnia were absent, less Bd was detected in water and tadpole samples when concentrations of algae were higher, indicating a direct negative effect of algae on Bd. When Daphnia were present, however, the amount of Bd detected in water samples showed the opposite trend, with less Bd when densities of algae were lower. Our results indicate that Daphnia can reduce Bd levels in water and infection in tadpoles, but these effects vary with species, algal concentration, and Daphnia density. Therefore, the ability of predators to consume parasites and reduce infection is likely to vary depending on ecological context. PMID:24324864

  8. Daphnia predation on the amphibian chytrid fungus and its impacts on disease risk in tadpoles.

    PubMed

    Searle, Catherine L; Mendelson, Joseph R; Green, Linda E; Duffy, Meghan A

    2013-10-01

    Direct predation upon parasites has the potential to reduce infection in host populations. For example, the fungal parasite of amphibians, Batrachochytrium dendrobatidis (Bd), is commonly transmitted through a free-swimming zoospore stage that may be vulnerable to predation. Potential predators of Bd include freshwater zooplankton that graze on organisms in the water column. We tested the ability of two species of freshwater crustacean (Daphnia magna and D. dentifera) to consume Bd and to reduce Bd density in water and infection in tadpoles. In a series of laboratory experiments, we allowed Daphnia to graze in water containing Bd while manipulating Daphnia densities, Daphnia species identity, grazing periods and concentrations of suspended algae (Ankistrodesmus falcatus). We then exposed tadpoles to the grazed water. We found that high densities of D. magna reduced the amount of Bd detected in water, leading to a reduction in the proportion of tadpoles that became infected. Daphnia dentifera, a smaller species of Daphnia, also reduced Bd in water samples, but did not have an effect on tadpole infection. We also found that algae affected Bd in complex ways. When Daphnia were absent, less Bd was detected in water and tadpole samples when concentrations of algae were higher, indicating a direct negative effect of algae on Bd. When Daphnia were present, however, the amount of Bd detected in water samples showed the opposite trend, with less Bd when densities of algae were lower. Our results indicate that Daphnia can reduce Bd levels in water and infection in tadpoles, but these effects vary with species, algal concentration, and Daphnia density. Therefore, the ability of predators to consume parasites and reduce infection is likely to vary depending on ecological context. PMID:24324864

  9. Combined use of Daphnia magna in situ bioassays, biomarkers and biological indices to diagnose and identify environmental pressures on invertebrate communities in two Mediterranean urbanized and industrialized rivers (NE Spain).

    PubMed

    Damásio, Joana; Tauler, Romà; Teixidó, Elisabeth; Rieradevall, Maria; Prat, Narcis; Riva, Maria Carmen; Soares, Amadeu M V M; Barata, Carlos

    2008-05-30

    Environmental factors affecting aquatic invertebrate communities were assessed using Daphnia magna in situ bioassays and biological indices based on community assemblages of benthic macroinvertebrates. Investigations were carried out in two heavily industrialized and urbanized river basins from the NE of Spain (Llobregat and Besós). Measures of energy consumption (i.e. algal grazing), and of specific biochemical responses (biomarkers) were conducted on individuals transplanted upstream and downstream from effluent discharges of sewage treatment plants. In both rivers there was a clear deterioration of the ecological water quality parameters and benthic communities towards downstream reaches. In all but one of the 19 locations studied, transplanted organisms were affected in at least one of the five measured responses. In three of them, significant effects were detected in most of the traits considered. Principal Component and Partial Least Square Projections to Latent Structures regression analyses indicated that the measured responses in D. magna in situ bioassays and those of macroinvertebrate assemblages were affected by distinct environmental factors. From up to 20 environmental variables considered, seven of them including habitat degradation, suspended solids, nitrogenous and conductivity related parameters affected macroinvertebrate assemblages. On the other hand, levels of organophosphorus compounds and polycyclic aromatic hydrocarbons were high enough to trigger the responses of D. magna in situ bioassays. These results emphasize the importance of combining biological indices with biomarkers and more generalized and ecologically relevant (grazing) in situ responses to identify ecological effects of effluent discharges from sewage treatment plants in surface waters. PMID:18420289

  10. The distribution of the heavy metal accumulation rate in the biomass of three Daphnia species

    SciTech Connect

    Gajula, V.K.; Hovorka, J.; Stuchlik, E.

    1995-12-31

    The difference in the accumulation rate of a mixture of heavy metals in aquatic organisms is of considerable interest because of its importance in the prediction of the effect of pollutants in aquatic systems. In this study the authors are making an effort to evaluate the accumulation patterns of pollutants in aquatic organisms by establishing a relation between the level of an accumulated mixture of heavy metals (Cd, Zn, Pb, As, Hg) in individuals of Daphnia magna, Daphnia pulicaria and Daphnia galeata and its dry weight with respect to the form of heavy metals in the aquatic environment. One age group of Daphnia species (10 day old) were exposed to 5 ppb, 10 ppb and 20 ppb of the mixture of heavy metals for 24 hours in three different experiments. In the first experiment the mixture of heavy metals was present exclusively in labelled algae (Scendesmus actus), in the second in an aquatic medium with non labelled algae, and in the third experiment the mixture of heavy metals was dissolved in the aquatic medium only without the addition of algae. The concentration of the heavy metal mixture in individuals of D.magna; D.pulicaria and D.galeata was determined using atomic absorption spectrometry. Results were statistically evaluated and the rate of accumulation and influence of various heavy metals in the biomass of three Daphnia species is discussed.

  11. Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins

    PubMed Central

    Shaw, Joseph R; Colbourne, John K; Davey, Jennifer C; Glaholt, Stephen P; Hampton, Thomas H; Chen, Celia Y; Folt, Carol L; Hamilton, Joshua W

    2007-01-01

    Background Genomic research tools such as microarrays are proving to be important resources to study the complex regulation of genes that respond to environmental perturbations. A first generation cDNA microarray was developed for the environmental indicator species Daphnia pulex, to identify genes whose regulation is modulated following exposure to the metal stressor cadmium. Our experiments revealed interesting changes in gene transcription that suggest their biological roles and their potentially toxicological features in responding to this important environmental contaminant. Results Our microarray identified genes reported in the literature to be regulated in response to cadmium exposure, suggested functional attributes for genes that share no sequence similarity to proteins in the public databases, and pointed to genes that are likely members of expanded gene families in the Daphnia genome. Genes identified on the microarray also were associated with cadmium induced phenotypes and population-level outcomes that we experimentally determined. A subset of genes regulated in response to cadmium exposure was independently validated using quantitative-realtime (Q-RT)-PCR. These microarray studies led to the discovery of three genes coding for the metal detoxication protein metallothionein (MT). The gene structures and predicted translated sequences of D. pulex MTs clearly place them in this gene family. Yet, they share little homology with previously characterized MTs. Conclusion The genomic information obtained from this study represents an important first step in characterizing microarray patterns that may be diagnostic to specific environmental contaminants and give insights into their toxicological mechanisms, while also providing a practical tool for evolutionary, ecological, and toxicological functional gene discovery studies. Advances in Daphnia genomics will enable the further development of this species as a model organism for the environmental sciences

  12. Morphological and ultrastructural effects of sublethal cadmium poisoning on Daphnia

    SciTech Connect

    Griffiths, P.R.E.

    1980-08-01

    When Daphnia magna were exposed to 52 and 12 ..mu..g Cd/sup 2 +/ liter/sup -1/ their gut diverticula became shrunken, empty of chlorophyll, and paralyzed. This effect is easily observed in living animals and might serve as a useful indicator of low levels of cadmium pollution in the field. Electron microscope studies revealed the formation of granules of calcium on the basal and lateral cell membranes and also in the mitochondria and microvilli of the cells of these distorted organs.

  13. Phototoxicity of CdSe/ZnSe quantum dots with surface coatings of 3-mercaptopropionic acid or tri-n-octylphosphine oxide/gum arabic in Daphnia magna under environmentally relevant UV-B light.

    PubMed

    Kim, Jungkon; Park, Yena; Yoon, Tae Hyun; Yoon, Chung Sik; Choi, Kyungho

    2010-04-15

    The potential ecotoxicological consequences about semiconductor crystal nanoparticles (NPs) are a growing concern. However, our understanding of the mechanism of toxicity in NPs is very limited, especially under varying environmental conditions such as ultraviolet (UV) light. We performed an in vivo study employing Daphnia magna to evaluate the mechanism involved in toxicity of cadmium selenide/zinc selenide quantum dots (QDs) with two different organic coatings under an environmental level of UV-B light. We used QDs with mercaptopropionic acid (MPA) and tri-n-octylphosphine oxide/gum arabic (GA) and measured their toxicities under an environmental level of UV-B light. Whole-body reactive oxygen species (ROS) generation and mRNA expression level biomarkers, as well as acute toxicity, were measured in D. magna. With UV-B light, both cadmium (Cd) and GA-QD became more toxic in daphnids. The levels of small Cd molecules (<10kDa cutoff) increased for GA-QD under UV-B; however, the observed acute lethal toxicity could not be explained by the measured Cd level. Under UV-B light, both Cd and GA-QD generated more ROS. In addition, the expression pattern of mRNAs specific to Cd exposure was not observed from GA-QD with or without UV-B light. These observations suggest that the phototoxicity of QDs may be explained not only by Cd release from the QD core but also by stability of surface coating characteristics and other potential causes such as ROS generation. PMID:20083314

  14. Sequential assessment via daphnia and zebrafish for systematic toxicity screening of heterogeneous substances.

    PubMed

    Jang, Gun Hyuk; Park, Chang-Beom; Kang, Benedict J; Kim, Young Jun; Lee, Kwan Hyi

    2016-09-01

    Environment and organisms are persistently exposed by a mixture of various substances. However, the current evaluation method is mostly based on an individual substance's toxicity. A systematic toxicity evaluation of heterogeneous substances needs to be established. To demonstrate toxicity assessment of mixture, we chose a group of three typical ingredients in cosmetic sunscreen products that frequently enters ecosystems: benzophenone-3 (BP-3), ethylhexyl methoxycinnamate (EHMC), and titanium dioxide nanoparticle (TiO2 NP). We first determined a range of nominal toxic concentration of each ingredient or substance using Daphnia magna, and then for the subsequent organismal level phenotypic assessment, chose the wild-type zebrafish embryos. Any phenotype change, such as body deformation, led to further examinations on the specific organs of transgenic zebrafish embryos. Based on the systematic toxicity assessments of the heterogeneous substances, we offer a sequential environmental toxicity assessment protocol that starts off by utilizing Daphnia magna to determine a nominal concentration range of each substance and finishes by utilizing the zebrafish embryos to detect defects on the embryos caused by the heterogeneous substances. The protocol showed additive toxic effects of the mixtures. We propose a sequential environmental toxicity assessment protocol for the systematic toxicity screening of heterogeneous substances from Daphnia magna to zebrafish embryo in-vivo models. PMID:27288628

  15. Comparative toxicity of copper and acridine to fish, Daphnia and algae

    SciTech Connect

    Blaylock, B.G.; Frank, M.L.; McCarthy, J.F.

    1985-01-01

    A comparison was made of the sensitivity of fish, Daphnia and algae to the toxic effects of copper and acridine. A series of toxicity tests was conducted with these organisms, and the following biological endpoints determined: LC50s for fish, LC50s and effects on reproduction of Daphnia and 50% inhibition of the growth rate of algae. The 96-h LCO50s for bluegill (Lepomis macrochirus) and Daphnia magna exposed to copper were 2.2 and 0.13 mg/L, respectively. A chronic exposure to 0.03 mg/L of copper for 14 d significantly decreased reproduction in Daphnia. Exposure to 0.4 and 0.2 mg/L copper inhibited the growth rate of Selenastrum capricornutum and Chlorella vulgaris, respectively, by 50%. The 96-h LC50s for fathead minnows (Pimephales promelas) and D. magna exposed to acridine were 2.3 and 3.1 mg/L, respectively. A chronic exposure to 1.25 mg/L acridine for 14 d significantly inhibited reproduction in Daphnia, and an exposure to 0.9 mg/L inhibited the growth rate of S. capricornutum by 50%. Based on the biological endpoints determined in these tests, Daphnia were more sensitive to copper than were fish or algae. In contrast, the most sensitive biological endpoint in tests with acridine was the inhibition of algal growth. Comparison of these test results indicates that short-term toxicity tests used for screening toxicants for possible environmental effects should include both plant and animal species. 16 references, 4 figures, 4 tables.

  16. Assessment of the concentrations of polycyclic aromatic hydrocarbons and organochlorine pesticides in soils from the Sarno River basin, Italy, and ecotoxicological survey by Daphnia magna.

    PubMed

    Arienzo, Michele; Albanese, Stefano; Lima, Annamaria; Cannatelli, Claudia; Aliberti, Francesco; Cicotti, Flavia; Qi, Shiuhua; De Vivo, Benedetto

    2015-02-01

    We studied the contamination level of the soils of the Sarno River basin in southwestern Italy by combined acute toxicity test with Dapnia magna and chemical extraction of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs). For the ecotoxicological assessment, 188 samples were taken and coincided with those of a previous study (2013) where heavy metals were surveyed. For the organics assessment, 21 samples were selected nearby representative areas of elevated anthropic pressure. About 10.1 % of the samples showed noticeable sign of D. magna mortality, 61-100 %, and fall along the potentially floatable areas of Sarno and Solofrana basins with high degree of contamination by Cr, As, Zn, and Hg. High levels of ecotoxicity, 61-100 %, were determined in the lower Sarno River basin in areas of moderate or low degree of contamination by Cd, Cu Hg, Pb, Sb, Sn, and Zn. Benzo(a)pyrene, indenopyrene, and benzo(g,h,i)perylene were present at concentrations of 0.32, 0.23, and 0.18 mg kg(-1), respectively, 2- to 3-fold the law limits with most of the samples falling nearby the points where the ecotoxicity output was close to 100 %. Among OCPs, pp'-DDT had a mean of 0.225 mg kg(-1) and hence about more than 200- and 2-fold the residential, 0.01 mg kg(-1), and commercial/industrial limits, 0.1 mg kg(-1) and determined mainly in the central Sarno valley in an area where elevated concentrations of benzopyrene and D. magna mortality were also observed. The study evidenced the high rate of contamination by PAHs and OCPs of the soils and the need of urgent remediation actions. PMID:25638057

  17. Evaluation of MWNT toxic effects on daphnia and zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Olasagasti, Maider; Alvarez, Noelia; Vera, Carolina; Rainieri, Sandra

    2009-05-01

    Organisms of daphnia (Daphnia magna) and zebrafish (Danio rerio) embryos were exposed to a range of different concentrations of COOH-functionalized MWCNT suspended in an aqueous solution of Tween 20. Immobilization of daphnia and growth retardation, inhibition and malformation of zebrafish embryos were the endpoints tested after 24 and 48 hours. Immobilization of daphnia could be observed from 3 to 16 ppm and an increasing mortality of zebrafish embryo was detected at all the concentration tested. To identify more subtle toxic effects, we took advantage of the extensive information available on the zebrafish genome and monitored by RT-PCR the expression patterns of different zebrafish genes that could act as toxicity bio-markers. At some of the concentrations tested, changes in the expression profiles of the genes examined were detected. Our results suggest that MWCNT could potentially represent a risk to human health and environment, therefore a wider range of concentrations and further testing of this molecules should be carried out to define possible limitations in their use.

  18. Influence of pH, hardness, dissolved organic carbon concentration, and dissolved organic matter source on the acute toxicity of copper to Daphnia magna in soft waters: implications for the biotic ligand model.

    PubMed

    Ryan, Adam C; Tomasso, Joseph R; Klaine, Stephen J

    2009-08-01

    The influence of pH, dissolved organic carbon (DOC) concentration, water hardness, and dissolved organic matter (DOM) source on the acute toxicity of copper were investigated with standardized 48-h Daphnia magna toxicity tests. Toxicity tests were conducted according to a four-factor complete factorial design. Nominal factor levels were as follows: pH 6 and 8; DOC, 2.5 and 10 mg/L; hardness, 10, 20, and 40 mg/L as CaCO3; and two DOM sources (collected from the Black River and Edisto River, SC, USA). The experimental design resulted in 24 different factor level combinations. Results indicated that all factors had significant effects on copper toxicity. Furthermore, a strong interactive effect of DOC concentration and pH was detected. Because the biotic ligand model (BLM) has become a widely used tool for predicting toxicity and interpreting toxicity test results, its performance with these data was evaluated. Seventy percent of BLM predictions were within twofold of the observed median lethal concentrations. However, BLM parameters could be adjusted to improve model performance with this data set. This analysis suggested that in soft waters, the CuOH+ complex binds more strongly with the biotic ligand and that the competitive effect of hardness cations should be increased. The results of the present study may have implications for application of the BLM to some types of surface waters. Furthermore, a comprehensive analysis of BLM performance with all available data should be performed, and necessary updates to model parameters should be made to produce the most robust and widely applicable model. PMID:19265455

  19. Identification of compounds bound to suspended solids causing sub-lethal toxic effects in Daphnia magna. A field study on re-suspended particles during river floods in Ebro River.

    PubMed

    Rivetti, Claudia; Gómez-Canela, Cristian; Lacorte, Silvia; Díez, Sergi; Lázaro, Wilkinson L; Barata, Carlos

    2015-04-01

    Identifying chemicals causing adverse effects in organisms present in water remains a challenge in environmental risk assessment. This study aimed to assess and identify toxic compounds bound to suspended solids re-suspended during a prolonged period of flushing flows in the lower part of Ebro River (NE, Spain). This area is contaminated with high amounts of organochlorine and mercury sediment wastes. Chemical characterization of suspended material was performed by solid phase extraction using a battery of non-polar and polar solvents and analyzed by GC-MS/MS and LC-MS/MS. Mercury content was also determined for all sites. Post-exposure feeding rates of Daphnia magna were used to assess toxic effects of whole and filtered water samples and of re-constituted laboratory water with re-suspended solid fractions. Organochlorine and mercury residues in the water samples increased from upstream to downstream locations. Conversely, toxic effects were greater at the upstream site than downstream of the superfund Flix reservoir. A further analysis of the suspended solid fraction identified a toxic component eluted within the 80:20 methanol:water fraction. Characterization of that toxic component fraction by LC-MS/MS identified the phytotoxin anatoxin-a, whose residue levels were correlated with observed feeding inhibition responses. Further feeding inhibition assays conducted in the lab using anatoxin-a produced from Planktothrix agardhii, a filamentous cyanobacteria, confirmed field results. This study provides evidence that in real field situation measured contaminant residues do not always agree with toxic effects. PMID:25667993

  20. SURVIVAL OF 'DAPHNIA', CRAYFISH, AND STONEFLIES IN AIR-SUPERSATURATED WATER

    EPA Science Inventory

    Daphnia magna, the crayfish Pacifastacus leniusculus, and nymphs of the stoneflies, Acroneuria californica, A. pacifica, and Pteronarcys californica were tested in the laboratory to determine their survival in different concentrations of air-supersaturated water. The mean 96-h LC...

  1. Temperature effects on survival and DNA repair in four freshwater cladoceran Daphnia species exposed to UV radiation.

    PubMed

    Connelly, Sandra J; Moeller, Robert E; Sanchez, Guillermo; Mitchell, David L

    2009-01-01

    The biological responses of four freshwater daphniid species, Daphnia middendorffiana, D. pulicaria, D. pulex and D. parvula, to a single acute dose of ultraviolet B radiation (UVB) were compared. In addition to survival, we compared the induction of DNA damage (i.e. cyclobutane pyrimidine dimers) between species as well as the ability to repair this damage in the presence or absence of photoreactivating light. All four species showed high levels of shielding against DNA damage when compared to damage induced in purified DNA dosimeters at the same time and dose. Significant variation in survival was observed between species depending on temperature and light conditions. Contrary to our expectations, all species showed significantly higher survival and light-dependent DNA damage removal rates at 10 degrees C compared to 20 degrees C, suggesting that the enhanced rate of photoenzymatic repair (PER) at the lower temperature contributed significantly to the recovery of these organisms from UVB. PER was highly effective in promoting survival of three of the four species at 10 degrees C, but at 20 degrees C it was only partially effective in two species, and ineffective in two others. None of the species showed significant dark repair at 20 degrees C and only D. pulicaria showed a significant capacity at 10 degrees C. Two species, D. middendorffiana and D. pulex, showed some short-term survival at 10 degrees C in absence of PER despite their inability to repair any appreciable amount of DNA damage in the dark. All species died rapidly at 20 degrees C in absence of PER, as predicted from complete or near-absence of nucleotide excision repair (NER). Overall, the protective effects of tissue structure and pigmentation were similar in all Daphnia species tested and greatly mitigated the absorption of UVB by DNA and its damaging effects. Surprisingly, the visibly melanotic D. middendorffiana was not better shielded from DNA damage than the three non-melanotic species, and in

  2. TOXICITY OF SILVER NANOPARTICLES TO DAPHNIA MAGNA

    EPA Science Inventory

    Relatively little is known regarding toxicity of nanoparticles in the environment. It is widely assumed that the toxicity of nanoparticles will be less than that of their metallic ions. Also the effect of organics on metal toxicity is well established. Presented here are the resu...

  3. Making the Most of the "Daphnia" Heart Rate Lab: Optimizing the Use of Ethanol, Nicotine & Caffeine

    ERIC Educational Resources Information Center

    Corotto, Frank; Ceballos, Darrel; Lee, Adam; Vinson, Lindsey

    2010-01-01

    Students commonly test the effects of chemical agents on the heart rate of the crustacean "Daphnia" magna, but the procedure has never been optimized. We determined the effects of three concentrations of ethanol, nicotine, and caffeine and of a control solution on heart rate in "Daphnia." Ethanol at 5% and 10% (v/v) reduced mean heart rate to…

  4. Nanoplastic affects growth of S. obliquus and reproduction of D. magna.

    PubMed

    Besseling, Ellen; Wang, Bo; Lürling, Miquel; Koelmans, Albert A

    2014-10-21

    The amount of nano- and microplastic in the aquatic environment rises due to the industrial production of plastic and the degradation of plastic into smaller particles. Concerns have been raised about their incorporation into food webs. Little is known about the fate and effects of nanoplastic, especially for the freshwater environment. In this study, effects of nano-polystyrene (nano-PS) on the growth and photosynthesis of the green alga Scenedesmus obliquus and the growth, mortality, neonate production, and malformations of the zooplankter Daphnia magna were assessed. Nano-PS reduced population growth and reduced chlorophyll concentrations in the algae. Exposed Daphnia showed a reduced body size and severe alterations in reproduction. Numbers and body size of neonates were lower, while the number of neonate malformations among neonates rose to 68% of the individuals. These effects of nano-PS were observed between 0.22 and 103 mg nano-PS/L. Malformations occurred from 30 mg of nano-PS/L onward. Such plastic concentrations are much higher than presently reported for marine waters as well as freshwater, but may eventually occur in sediment pore waters. As far as we know, these results are the first to show that direct life history shifts in algae and Daphnia populations may occur as a result of exposure to nanoplastic. PMID:25268330

  5. Controlling Harmful Cyanobacteria: Taxa-Specific Responses of Cyanobacteria to Grazing by Large-Bodied Daphnia in a Biomanipulation Scenario

    PubMed Central

    Urrutia-Cordero, Pablo; Ekvall, Mattias K.; Hansson, Lars-Anders

    2016-01-01

    Lake restoration practices based on reducing fish predation and promoting the dominance of large-bodied Daphnia grazers (i.e., biomanipulation) have been the focus of much debate due to inconsistent success in suppressing harmful cyanobacterial blooms. While most studies have explored effects of large-bodied Daphnia on cyanobacterial growth at the community level and/or on few dominant species, predictions of such restoration practices demand further understanding on taxa-specific responses in diverse cyanobacterial communities. In order to address these questions, we conducted three grazing experiments during summer in a eutrophic lake where the natural phytoplankton community was exposed to an increasing gradient in biomass of the large-bodied Daphnia magna. This allowed evaluating taxa-specific responses of cyanobacteria to Daphnia grazing throughout the growing season in a desired biomanipulation scenario with limited fish predation. Total cyanobacterial and phytoplankton biomasses responded negatively to Daphnia grazing both in early and late summer, regardless of different cyanobacterial densities. Large-bodied Daphnia were capable of suppressing the abundance of Aphanizomenon, Dolichospermum, Microcystis and Planktothrix bloom-forming cyanobacteria. However, the growth of the filamentous Dolichospermum crassum was positively affected by grazing during a period when this cyanobacterium dominated the community. The eutrophic lake was subjected to biomanipulation since 2005 and nineteen years of lake monitoring data (1996–2014) revealed that reducing fish predation increased the mean abundance (50%) and body-size (20%) of Daphnia, as well as suppressed the total amount of nutrients and the growth of the dominant cyanobacterial taxa, Microcystis and Planktothrix. Altogether our results suggest that lake restoration practices solely based on grazer control by large-bodied Daphnia can be effective, but may not be sufficient to control the overgrowth of all

  6. Controlling Harmful Cyanobacteria: Taxa-Specific Responses of Cyanobacteria to Grazing by Large-Bodied Daphnia in a Biomanipulation Scenario.

    PubMed

    Urrutia-Cordero, Pablo; Ekvall, Mattias K; Hansson, Lars-Anders

    2016-01-01

    Lake restoration practices based on reducing fish predation and promoting the dominance of large-bodied Daphnia grazers (i.e., biomanipulation) have been the focus of much debate due to inconsistent success in suppressing harmful cyanobacterial blooms. While most studies have explored effects of large-bodied Daphnia on cyanobacterial growth at the community level and/or on few dominant species, predictions of such restoration practices demand further understanding on taxa-specific responses in diverse cyanobacterial communities. In order to address these questions, we conducted three grazing experiments during summer in a eutrophic lake where the natural phytoplankton community was exposed to an increasing gradient in biomass of the large-bodied Daphnia magna. This allowed evaluating taxa-specific responses of cyanobacteria to Daphnia grazing throughout the growing season in a desired biomanipulation scenario with limited fish predation. Total cyanobacterial and phytoplankton biomasses responded negatively to Daphnia grazing both in early and late summer, regardless of different cyanobacterial densities. Large-bodied Daphnia were capable of suppressing the abundance of Aphanizomenon, Dolichospermum, Microcystis and Planktothrix bloom-forming cyanobacteria. However, the growth of the filamentous Dolichospermum crassum was positively affected by grazing during a period when this cyanobacterium dominated the community. The eutrophic lake was subjected to biomanipulation since 2005 and nineteen years of lake monitoring data (1996-2014) revealed that reducing fish predation increased the mean abundance (50%) and body-size (20%) of Daphnia, as well as suppressed the total amount of nutrients and the growth of the dominant cyanobacterial taxa, Microcystis and Planktothrix. Altogether our results suggest that lake restoration practices solely based on grazer control by large-bodied Daphnia can be effective, but may not be sufficient to control the overgrowth of all

  7. Comparative metagenomics of Daphnia symbionts

    PubMed Central

    Qi, Weihong; Nong, Guang; Preston, James F; Ben-Ami, Frida; Ebert, Dieter

    2009-01-01

    Background Shotgun sequences of DNA extracts from whole organisms allow a comprehensive assessment of possible symbionts. The current project makes use of four shotgun datasets from three species of the planktonic freshwater crustaceans Daphnia: one dataset from clones of D. pulex and D. pulicaria and two datasets from one clone of D. magna. We analyzed these datasets with three aims: First, we search for bacterial symbionts, which are present in all three species. Second, we search for evidence for Cyanobacteria and plastids, which had been suggested to occur as symbionts in a related Daphnia species. Third, we compare the metacommunities revealed by two different 454 pyrosequencing methods (GS 20 and GS FLX). Results In all datasets we found evidence for a large number of bacteria belonging to diverse taxa. The vast majority of these were Proteobacteria. Of those, most sequences were assigned to different genera of the Betaproteobacteria family Comamonadaceae. Other taxa represented in all datasets included the genera Flavobacterium, Rhodobacter, Chromobacterium, Methylibium, Bordetella, Burkholderia and Cupriavidus. A few taxa matched sequences only from the D. pulex and the D. pulicaria datasets: Aeromonas, Pseudomonas and Delftia. Taxa with many hits specific to a single dataset were rare. For most of the identified taxa earlier studies reported the finding of related taxa in aquatic environmental samples. We found no clear evidence for the presence of symbiotic Cyanobacteria or plastids. The apparent similarity of the symbiont communities of the three Daphnia species breaks down on a species and strain level. Communities have a similar composition at a higher taxonomic level, but the actual sequences found are divergent. The two Daphnia magna datasets obtained from two different pyrosequencing platforms revealed rather similar results. Conclusion Three clones from three species of the genus Daphnia were found to harbor a rich community of symbionts. These

  8. Interspecific Differences between D. pulex and D. magna in Tolerance to Cyanobacteria with Protease Inhibitors

    PubMed Central

    Kuster, Christian J.; Von Elert, Eric

    2013-01-01

    It is known that cyanobacteria negatively affect herbivores due to their production of toxins such as protease inhibitors. In the present study we investigated potential interspecific differences between two major herbivores, Daphnia magna and Daphnia pulex, in terms of their tolerance to cyanobacteria with protease inhibitors. Seven clones each of D. magna and of D. pulex were isolated from different habitats in Europe and North America. To test for interspecific differences in the daphnids’ tolerance to cyanobacteria, their somatic and population growth rates were determined for each D. magna and D. pulex clone after exposure to varying concentrations of two Microcystis aeruginosa strains. The M. aeruginosa strains NIVA and PCC− contained either chymotrypsin or trypsin inhibitors, but no microcystins. Mean somatic and population growth rates on a diet with 20% NIVA were significantly more reduced in D. pulex than in D. magna. On a diet with 10% PCC−, the population growth of D. pulex was significantly more reduced than that of D. magna. This indicates that D. magna is more tolerant to cyanobacteria with protease inhibitors than D. pulex. The reduction of growth rates was possibly caused by an interference of cyanobacterial inhibitors with proteases in the gut of Daphnia, as many other conceivable factors, which might have been able to explain the reduced growth, could be excluded as causal factors. Protease assays revealed that the sensitivities of chymotrypsins and trypsins to cyanobacterial protease inhibitors did not differ between D. magna and D. pulex. However, D. magna exhibited a 2.3-fold higher specific chymotrypsin activity than D. pulex, which explains the observed higher tolerance to cyanobacterial protease inhibitors of D. magna. The present study suggests that D. magna may control the development of cyanobacterial blooms more efficiently than D. pulex due to differences in their tolerance to cyanobacteria with protease inhibitors. PMID:23650523

  9. A Study on the D. magna and V. fischeri Toxicity Relationship of Industrial Wastewater from Korea

    NASA Astrophysics Data System (ADS)

    Pyo, S.; Lee, S.; Chun Sang, H.; Park, T. J.; Kim, M. S.

    2015-12-01

    It is well known that high concentration of TDS (total dissolved solid) in industrial effluent gives rise to the toxicity to the Daphnia magna toxicity test. D. magna is vulnerable to relatively low TDS concentration showing the 24-hr EC50 of Salinity 0.6% (as the sea salt concentration). Recently, standard mandatory toxicity testing using Daphnia magna has been used to monitor industrial effluent toxicity according to Korea standard method (Acute Toxicity Test Method of the Daphnia magna Straus (Cladocera, Crustacea), ES 04704. 1a) under regulation. Since only one acute toxicity testing is applied in the present, we are trying to introduce microbial battery for more complete toxicity assessment. In this study, the acute toxicities between daphnids and microbes were compared. The results of D. magna and Vibrio fischeri toxicity test from 165 industrial wastewater effluents showed high positive correlation. In addition, the possibility of predicting daphnia toxicity from the bacterial toxicity data amounts to 92.6% if we consider salinity effect (>5ppt) together. From this study, we found that the V. fischeri toxicity test is a powerful battery tool to assess the industrial wastewater toxicity. Here, we suggest that luminescent bacteria toxicity test be useful not only for complete toxicity assessment which can't be obtained by daphnia toxicity testing only but also for the reduction cost, time, and labor in the Korean society. Keywords : D. magna, V. fischeri, Industrial waste water, battery test Acknowledgement This research was supported by a grant (15IFIP-B089908-02) from Plant Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government

  10. Chronic toxicity of mixtures of copper, cadmium and zinc to Daphnia pulex

    SciTech Connect

    Flickinger, A.L.

    1984-01-01

    Daphnia pulex (de Greer) were exposed to single and bimetal mixtures of copper, cadmium and zinc in reconstituted waters of different hardness/alkalinity and humic acid concentrations. The effect of single and bimetal exposure to these metals was evaluated by survivorship and reproductive indices of brood size, percent aborted eggs/brood, age at reproductive maturity, age at first reproduction and the instantaneous rate of population growth. Accumulation by 7-day-old Daphnia magna of metals in these mixtures was also assessed in medium water containing 0.0 and 0.75 mg humic acid/L. The addition of 0.75 mg humic acid/L decreased the acute toxicity of copper and zinc but increased the acute toxicity of cadmium. Survival was the best index of a single or bimetal chronic stress since it was equally or more sensitive than any reproductive index. The interaction between copper and zinc was variable in soft water which contained 0.15 mg humic acid/L, but largely independent in medium water which contained 0.0 and 0.75 mg humic acid/L. Zinc and humic acid had no effect on the accumulation of copper in medium water. Copper and cadmium were synergistic in their interaction on daphniid survival in medium water which contained 0.0 and 0.75 mg humic acid/L.

  11. Daphnia response to biotic stress is modified by PCBs.

    PubMed

    Bernatowicz, Piotr; Pijanowska, Joanna

    2011-05-01

    The aim of this study was to examine the influence of xenobiotics (PCBs) on the responses of Daphnia to biotic factors such as the presence of a predator (fish kairomone) or filamentous cyanobacteria. Both behaviour (depth selection) and life history (body size at first reproduction and fecundity) were affected by these stressors. Though there was no direct effect of PCBs, their influence resulted in disruption of the "natural" reaction to the presence of fish or cyanobacteria, leading to inadequate responses of Daphnia to these biotic threats. Examined clones of Daphnia showed significant diversity in their reaction to these stress factors, which was greater than that between Daphnia clones exposed to different environmental conditions. PCB pollution may change the frequency of Daphnia clones in favour of those whose responses to biotic stress are similar in both the absence and presence of these toxic chemicals. PMID:21095006

  12. Effects of Nanosilver on Daphnia magna and Pimephales promelas

    EPA Science Inventory

    The increasing use of nanosilver in consumer products warrants investigation into its toxicity to aquatic organisms. A series of studies were conducted comparing the potency of nanosilver to ionic silver (Ag+) at acute and sublethal levels and to evaluate the likelihood that the ...

  13. Electroantennogram measurement of the olfactory response of Daphnia spp. and its impairment by waterborne copper.

    PubMed

    Simbeya, Christy K; Csuzdi, Catherine E; Dew, William A; Pyle, Greg G

    2012-08-01

    In this study an electroantennogram (EAG) method was developed for use on live daphniids. The EAG response of Daphnia magna and Daphnia pulex to a variety of amino acids was measured. The strongest response measured was elicited by L-arginine and was shown to induce a concentration-dependent response indicating the response is olfactory in nature. Subsequent exposures of D. magna to a low, ecologically-relevant concentration of copper (7.5 μg/L) showed a disruption in EAG function. This study utilizes the development of an EAG method for measuring olfactory acuity of live daphniids and demonstrates that at ecologically-relevant concentrations, the olfactory dysfunction caused by copper can be detected. The EAG technique is a useful tool for investigating the olfactory response of daphniids to odourants at the cellular level and detecting the effects of toxicants on the olfactory acuity of daphniids. PMID:22721843

  14. Resolving some practical questions about Daphnia acute toxicity tests

    SciTech Connect

    Barera, Y.; Adams, W.J.

    1981-10-01

    Acute toxicity tests were performed with six age groups of Daphnia magna, ranging from less than or equal to6 h to 216 h, and with five chemicals, selected on the basis of their physical and chemical properties as well as their acute toxicity to D. magna. The age of the daphnids did not significantly alter the 48-h EC/sub 50/ values for the chemicals tested. The maximum difference observed in the 48-h EC/sub 50/ values between the 6-h and 216-h age groups was a factor of 3.9 for linear alkylbenzene sulfonate (LAS). For purposes of standardization, it appears that D. magna up to 48 h of age at the beginning of the test can be used to conduct acute toxicity tests with most chemicals. The results of static acute toxicity tests conducted with butylbenzyl phthalate (BBP) and D. magna in the presence and absence of several commonly used solvents indicate that the acute toxicity of this chemical is not altered by the use of a solvent carrier. The 48-h EC/sub 50/ value for BBP without a solvent was 1.0 mg/L, compared with a range of 1.6 to 2.2 mg/L when acetone, dimethylformamide, ethanol, or triethylene glycol were used as solvent carriers. The acute toxicities of the solvents in the absence of BBP were also determined for D. magna. The values ranged from 9.3 to 52.4 g/L. The results of static acute tests performed with D. magna and BBP in the presence of various concentrations of daphnid foods (algae or trout chow), indicate that the 48-h EC/sub 50/ values increase proportionally with an increase in food concentrations. These results suggest that acute toxicity tests with D. magna should be conducted in the presence of food with chemicals with a high Ksigma if the results are to be used to select the test concentrations for a chronic study with daphnids. The type of food and the concentration used in the acute test should be the same as those used in a chronic test.

  15. Expose-R experiment on effects of open space condition on survivorship in dormant stages of aquatic invertebrates

    NASA Astrophysics Data System (ADS)

    Alekseev, Victor; Novikova, Nataliya; Levinskikh, Margarita; Sychev, Vladimir; Yusoff, Fatimah; Azuraidi, Osman

    2012-07-01

    Dormancy protects animals and plants in harsh environmental conditions from months up to hundred years. This phenomenon is perspective for space researches especially for interplanetary missions. Direct experiments in open space BYORYSK supported in principle the fact of survivorship of bacteria, fungi spores, seed of plants and crustacean dormant cysts. Even though the rate of survivorship in long-term treatments was low but good enough to conclude that biological invasion even to Mars is a real danger. As soon as the BYORYSK lunch was made of metal the possibility for resting stages to survive under UV treatment in vacuum without some protection was not clear. To test it an ESA and RSA equipment titled EXPOSE-R was applied. The EXPOSE-R facility was an external facility attached to the outside of the Zvezda Service Module in ISS in the end of November 2008. It had glace windows transparent for UV-radiation and possibility to measure temperature, space- and UV-radiation. Among a number of experiments requiring exposure to the open space environment it had a biological launch containing resting stages of terrestrial and aquatic organisms. These stages included dried ephippia of cladoceran Daphnia magna differentiated on size, dormant eggs of ostracode Eucypris ornate, cysts of fair-shrimp Streptocephalus torvicornis ( all from hemi desert Caspian area) and Artemis salina from salt lake Crimean populations. All dormant stages were kept in transparent to UV plastic bags placed in three layers. After about two years of exposing in open space dormant stages of 3 species A. salina, D. magna, S. torvicornis successfully survived at different scales but in second and third layers only . The highest level of survivorship was found in A. salina cysts. In preliminary land experiments that imitated land EXPOSE imitation of outside space station UV and vacuum conditions survivorship in resting eggs of D .magna, S. torvicornis and E. ornate was tested also. The total UV dose of

  16. Optimisation of DNA extraction from the crustacean Daphnia.

    PubMed

    Athanasio, Camila Gonçalves; Chipman, James K; Viant, Mark R; Mirbahai, Leda

    2016-01-01

    Daphnia are key model organisms for mechanistic studies of phenotypic plasticity, adaptation and microevolution, which have led to an increasing demand for genomics resources. A key step in any genomics analysis, such as high-throughput sequencing, is the availability of sufficient and high quality DNA. Although commercial kits exist to extract genomic DNA from several species, preparation of high quality DNA from Daphnia spp. and other chitinous species can be challenging. Here, we optimise methods for tissue homogenisation, DNA extraction and quantification customised for different downstream analyses (e.g., LC-MS/MS, Hiseq, mate pair sequencing or Nanopore). We demonstrate that if Daphnia magna are homogenised as whole animals (including the carapace), absorbance-based DNA quantification methods significantly over-estimate the amount of DNA, resulting in using insufficient starting material for experiments, such as preparation of sequencing libraries. This is attributed to the high refractive index of chitin in Daphnia's carapace at 260 nm. Therefore, unless the carapace is removed by overnight proteinase digestion, the extracted DNA should be quantified with fluorescence-based methods. However, overnight proteinase digestion will result in partial fragmentation of DNA therefore the prepared DNA is not suitable for downstream methods that require high molecular weight DNA, such as PacBio, mate pair sequencing and Nanopore. In conclusion, we found that the MasterPure DNA purification kit, coupled with grinding of frozen tissue, is the best method for extraction of high molecular weight DNA as long as the extracted DNA is quantified with fluorescence-based methods. This method generated high yield and high molecular weight DNA (3.10 ± 0.63 ng/µg dry mass, fragments >60 kb), free of organic contaminants (phenol, chloroform) and is suitable for large number of downstream analyses. PMID:27190714

  17. Experimental evolution reveals high insecticide tolerance in Daphnia inhabiting farmland ponds

    PubMed Central

    Jansen, Mieke; Coors, Anja; Vanoverbeke, Joost; Schepens, Melissa; De Voogt, Pim; De Schamphelaere, Karel A C; De Meester, Luc

    2015-01-01

    Exposure of nontarget populations to agricultural chemicals is an important aspect of global change. We quantified the capacity of natural Daphnia magna populations to locally adapt to insecticide exposure through a selection experiment involving carbaryl exposure and a control. Carbaryl tolerance after selection under carbaryl exposure did not increase significantly compared to the tolerance of the original field populations. However, there was evolution of a decreased tolerance in the control experimental populations compared to the original field populations. The magnitude of this decrease was positively correlated with land use intensity in the neighbourhood of the ponds from which the original populations were sampled. The genetic change in carbaryl tolerance in the control rather than in the carbaryl treatment suggests widespread selection for insecticide tolerance in the field associated with land use intensity and suggests that this evolution comes at a cost. Our data suggest a strong impact of current agricultural land use on nontarget natural Daphnia populations. PMID:26029258

  18. Epidemiology of a Daphnia-Multiparasite System and Its Implications for the Red Queen

    PubMed Central

    Auld, Stuart K. J. R.; Hall, Spencer R.; Duffy, Meghan A.

    2012-01-01

    The Red Queen hypothesis can explain the maintenance of host and parasite diversity. However, the Red Queen requires genetic specificity for infection risk (i.e., that infection depends on the exact combination of host and parasite genotypes) and strongly virulent effects of infection on host fitness. A European crustacean (Daphnia magna) – bacterium (Pasteuria ramosa) system typifies such specificity and high virulence. We studied the North American host Daphnia dentifera and its natural parasite Pasteuria ramosa, and also found strong genetic specificity for infection success and high virulence. These results suggest that Pasteuria could promote Red Queen dynamics with D. dentifera populations as well. However, the Red Queen might be undermined in this system by selection from a more common yeast parasite (Metschnikowia bicuspidata). Resistance to the yeast did not correlate with resistance to Pasteuria among host genotypes, suggesting that selection by Metschnikowia should proceed relatively independently of selection by Pasteuria. PMID:22761826

  19. Copper complexation and toxicity to Daphnia in natural waters

    SciTech Connect

    Borgmann, U.; Charlton, C.C.

    1984-01-01

    Toxicity of copper to Daphnia magna in artificial medium, artificial medium plus algae, and natural water from Hamilton Harbour and Lake Ontario was determined, with and without added Tris, in order to test the assumption that free cupric ion concentrations are the same in equivalently toxic media even when total copper concentrations vary. Free cupric ion concentrations were calculated from the increase in the total copper concentration tolerated after Tris addition and from cupric ion electrode measurements. Copper toxicity was greatest in inorganic medium, lowest in inorganic medium plus algae and in Hamilton Harbour water, and intermediate in lake water. However, after Tris addition, toxicity was greatest in lake water and lowest in inorganic medium and inorganic medium plus algae. Both the bioassay and electrode data indicate that free cupric ion concentrations differ in different test waters when toxicity is the same. Free metal concentrations do not, therefore, provide a good measure of copper toxicity for Daphnia in natural waters. 12 references, 1 figure, 1 table.

  20. Acute toxicity of PCB congeners to Daphnia magma and Pimephales promelas

    SciTech Connect

    Dillon, T.M. ); Burton, W.D.S. )

    1991-02-01

    The acute toxicity (EC50/LC50) of commercial PCB mixtures has been reported to range from 2.0 to 283 ug/L. Because PCBs are very hydrophobic most biological studies have utilized a carrier solvent to facilitate introduction of PCBs into aqueous solution. As a result, biological effects are often reported at exposure concentrations exceeding water solubility. The purpose of this work was to evaluate the comparative toxicity of selected PCB congeners without carrier solvents. These tests were conducted on early life stages of two sensitive freshwater organisms, Daphnia magna and Pimephales promelas.

  1. Optimisation of DNA extraction from the crustacean Daphnia

    PubMed Central

    Athanasio, Camila Gonçalves; Chipman, James K.; Viant, Mark R.

    2016-01-01

    Daphnia are key model organisms for mechanistic studies of phenotypic plasticity, adaptation and microevolution, which have led to an increasing demand for genomics resources. A key step in any genomics analysis, such as high-throughput sequencing, is the availability of sufficient and high quality DNA. Although commercial kits exist to extract genomic DNA from several species, preparation of high quality DNA from Daphnia spp. and other chitinous species can be challenging. Here, we optimise methods for tissue homogenisation, DNA extraction and quantification customised for different downstream analyses (e.g., LC-MS/MS, Hiseq, mate pair sequencing or Nanopore). We demonstrate that if Daphnia magna are homogenised as whole animals (including the carapace), absorbance-based DNA quantification methods significantly over-estimate the amount of DNA, resulting in using insufficient starting material for experiments, such as preparation of sequencing libraries. This is attributed to the high refractive index of chitin in Daphnia’s carapace at 260 nm. Therefore, unless the carapace is removed by overnight proteinase digestion, the extracted DNA should be quantified with fluorescence-based methods. However, overnight proteinase digestion will result in partial fragmentation of DNA therefore the prepared DNA is not suitable for downstream methods that require high molecular weight DNA, such as PacBio, mate pair sequencing and Nanopore. In conclusion, we found that the MasterPure DNA purification kit, coupled with grinding of frozen tissue, is the best method for extraction of high molecular weight DNA as long as the extracted DNA is quantified with fluorescence-based methods. This method generated high yield and high molecular weight DNA (3.10 ± 0.63 ng/µg dry mass, fragments >60 kb), free of organic contaminants (phenol, chloroform) and is suitable for large number of downstream analyses. PMID:27190714

  2. Bacterial epibionts of Daphnia: a potential route for the transfer of dissolved organic carbon in freshwater food webs.

    PubMed

    Eckert, Ester M; Pernthaler, Jakob

    2014-09-01

    The identification of interacting species and elucidation of their mode of interaction may be crucial to understand ecosystem-level processes. We analysed the activity and identity of bacterial epibionts in cultures of Daphnia galeata and of natural