Science.gov

Sample records for daresbury recoil separator

  1. Studies of (p, γ) reactions with the Daresbury Recoil Separator at ORNL'S HRIBF

    NASA Astrophysics Data System (ADS)

    Fitzgerald, R.; Abbotoy, E.; Bardayan, D. W.; Blackmon, J. C.; Champagne, A. E.; Chen, A. A.; Greife, U.; Hill, D. W.; James, A. N.; Kozub, R. L.; Lewis, T. A.; Livesay, R.; Ma, Z.; Mahan, S. L.; McConnell, J. W.; Milner, W. T.; Moazen, B. H.; Parker, P. D.; Pierce, D. E.; Roettger, M. E.; Sahin, L.; Shapira, D.; Smith, M. S.; Strieder, F.; Swartz, K. B.; Thomas, J. S.; Visser, D. W.

    2005-02-01

    The fusion of protons with radioactive nuclei is important in stellar explosions such as novae and X-ray bursts and for the production of neutrinos in the sun. The Daresbury Recoil Separator and a windowless gas target system have been installed at ORNL's Holifield Radioactive Ion Beam Facility (HRIBF) for measurements of proton capture reactions in inverse kinematics with radioactive ion beams. The performance of the system has been characterized with a number of experiments using stable ion beams. We report on results from these commissioning measurements and plans for measurements of the 1H(17F,18Ne) and 1H(7Be,8B) reactions.

  2. Studies Of (lowercasep,γ) Reactions With The Daresbury Recoil Separator At ORNL'S HRIBF

    NASA Astrophysics Data System (ADS)

    Fitzgerald, R.; Champagne, A. E.; Visser, D. W.; Blackmon, J. C.; Bardayan, D. W.; Shapira, D.; Smith, M. S.; Kozub, R. L.; Moazen, B. H.; Parker, P. D.; Greife, U.; Livesay, R.; Ma, Z.; Jones, K. L.; Thomas, J. S.; Johnson, M. S.

    2004-10-01

    The fusion of protons with radioactive nuclei is important in stellar explosions such as novae and X-ray bursts as well as in solar neutrino production. The Daresbury Recoil Separator and a windowless gas target system have been installed at ORNL's Holifield Radioactive Ion Beam Facility (HRIBF) for measurements of proton capture reactions in inverse kinematics with radioactive ion beams. The performance of the system has been characterized with a number of experiments with stable ion beams. The windowless gas target thickness has been determined to 3% using a novel technique and the DRS transmission has been studied with ^1H(^12C,γ)^13N. Results from this work will be presented. We will also report on plans for ^1H(^7Be,γ)^8B and ^1H(^17F,γ)^18Ne measurements at the HRIBF.

  3. Simulation of Velocity Filters in the Daresbury Recoil Separator at the HRIBF

    NASA Astrophysics Data System (ADS)

    Rogers, J. P.; Kozub, R. L.; Pain, S. D.; Smith, M. S.; Bardayan, D. W.; Liu, Y.; Matos, M.

    2008-10-01

    The Daresbury Recoil Separator (DRS) at Oak Ridge National Lab's (ORNL) Holifield Radioactive Ion Beam Facility (HRIBF) is used for the study of nuclear reactions of astrophysical importance. For example, the DRS enables direct measurements of proton capture reactions on radioactive ions which occur in stellar explosions such as novae and X-ray bursts. The DRS uses velocity filters (Wien filters) that are tuned to transmit the reaction products with a specific velocity while deflecting the unreacted primary beam particles away from the optical axis, where they are stopped on adjustable slits. Data from earlier calculations of the electromagnetic fields inside and around the filters has been implemented into a FORTRAN program to provide accurate calculations and graphic representations of particle trajectories through the Wien filters. This information can be used to predetermine optimum positions of the slits for future experiments. The program will be used as an experimental setup tool for the DRS.

  4. Direct Measurements of (p,gamma) Cross Sections at Astrophysical Energies using Radioactive Beams and the Daresbury Recoil Separator

    SciTech Connect

    Bardayan, Daniel W; Chipps, K.; Fitzgerald, R. P.; Blackmon, Jeff C; Chae, K. Y.; Champagne, A. E.; Greife, U.; Hatarik, Robert; Kozub, R. L.; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D; Pain, Steven D; Peters, W. A.; Pittman, S. T.; ShrinerJr., J. F.; Smith, Michael Scott

    2009-01-01

    There are a number of astrophysical environments in which the path of nucleosynthesis leads through proton-rich nuclei. These nuclei have traditionally not been available as beams, and thus proton-capture reactions on these nuclei could only be studied indirectly. At the Holifield Radioactive Ion Beam Facility (HRIBF), some of the first direct measurements of (p,gamma) cross sections on radioactive beams have been made. The Daresbury Recoil Separator (DRS) has been used to separate the recoils of interest from the unreacted primary beam and identify them in an isobutane-filled ionization counter. First data from 17F(p,gamma)18Ne and 7B(p,gamma)8B measurements are presented.

  5. Direct measurements of (p, γ) cross-sections at astrophysical energies using radioactive beams and the Daresbury Recoil Separator

    NASA Astrophysics Data System (ADS)

    Bardayan, D. W.; Chipps, K. A.; Fitzgerald, R. P.; Blackmon, J. C.; Chae, K. Y.; Champagne, A. E.; Greife, U.; Hatarik, R.; Kozub, R. L.; Matei, C.; Moazen, B. H.; Nesaraja, C. D.; Pain, S. D.; Peters, W. A.; Pittman, S. T.; Shriner, J. F.; Smith, M. S.

    2009-12-01

    There are a number of astrophysical environments in which the path of nucleosynthesis proceeds through proton-rich nuclei. These nuclei have traditionally not been available as beams, and thus proton-capture reactions on these nuclei could only be studied indirectly. At the Holifield Radioactive Ion Beam Facility (HRIBF), some of the first direct measurements of ( p, γ) cross-sections on radioactive beams have been made. The Daresbury Recoil Separator (DRS) has been used to separate the recoils of interest from the unreacted primary beam and identify them in an isobutane-filled ionization counter. First data from 17F ( p, γ 18Ne and 7Be ( p, γ 8B measurements are presented.

  6. Direct measurments of (p,gamma) cross sections at astrophysical energies using radioactive beams and the Daresbury Recoil Separator

    SciTech Connect

    Bardayan, Daniel W; Chipps, K.; Fitzgerald, R. P.; Blackmon, Jeff C; Chae, Kyung Yuk; Champagne, A. E.; Greife, Uwe; Hatarik, Robert; Kozub, R. L.; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D; Pain, Steven D; Peters, W. A.; Pittman, S. T.; ShrinerJr., J. F.; Smith, Michael Scott

    2009-01-01

    There are a number of astrophysical environments in which the path of nucleosynthesis proceeds through proton-rich nuclei. Radioactive nuclei have traditionally not been available as beams, and thus proton-capture reactions on these nuclei could only be studied indirectly. At the Holifield Radioactive Ion Beam Facility (HRIBF), some of the first direct measurements of (p,g ) cross sections on radioactive beams have been made. The Daresbury Recoil Separator (DRS) has been used to separate the recoils of interest from the unreacted primary beam and identify them in an isobutane-filled ionization counter. Data from 17F(p,g )18Ne and 7Be(p,g )8B measurements are presented.

  7. Recoil Separators for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Blackmon, J. C.

    2004-10-01

    Hydrogen and helium capture reactions are important in many astrophysical environments. Measurements in inverse kinematics using recoil separators have demonstrated a particularly sensitive technique for studying low-yield capture reactions.(M. S. Smith, C. E. Rolfs, and C. A. Barnes, Nucl. Instrum. Meth. Phys. Res. A306) (1991) 233. This approach allows a low background rate to be achieved with a high detection efficiency (about 50%) for the particles of interest using a device with only modest acceptance. Recoil separators using a variety of ion-optic configurations have been installed at numerous accelerator facilities in the past decade and have been used to measure, for example, alpha capture reactions using stable beams(D. Rogalla et al.), Eur. Phys. J. 6 (1999) 471. and proton capture reactions using radioactive ion beams.(S. Bishop et al.), Phys. Rev. Lett. 90 (2003) 162501. Measurements in inverse kinematics are the only viable means for studying reactions on short-lived nuclei that are crucial for understanding stellar explosions, and a recoil separator optimized for the measurement of capture reactions with radioactive ion beams figures prominently into the design of the low energy experimental area at the Rare Isotope Accelerator (RIA). The operational requirements for such a device will be outlined, and recoil separator designs and characteristics will be presented.

  8. Sub-barrier reactions measured using a recoil mass separator

    SciTech Connect

    Betts, R.R.

    1988-01-01

    Few data exist in the sub-barrier region for reaction channels other than fusion. In particular, our experimental knowledge of quasi-elastic transfer reactions is sparse, despite the belief that this particular channel may be dominant in determining some features of the sub-barrier fusion enhancement. Transfer reactions are governed primarily by the closet approach of the colliding nuclei which, at low energies, results in a strong backward peaking of the angular distribution in the center-of-mass frame. For situations where the projectile has a significant fraction of the target mass, as is so in most cases of interest, the backscattered projectile-like fragment has such low energy that the usual techniques of measurement and identification become invalid. Here, we report on a solution to this problem which allows a systematic study of many aspects of transfer reactions in the energy regime of interest. We exploit the fact that associated with the low-energy backscattered projectile-like fragment is a complementary target-like fragment which recoils to forward angles with a large fraction of the incident beam energy. These target-like fragments were detected and identified using the Daresbury Recoil Mass Separator thus allowing the measurement of quasi-elastic transfer over hitherto inaccessible energy range from the vicinity of the barrier to several tens of MeV below. The experiments described here used VYNi beams of energies ranging from 180 to 260 MeV provided by the Daresbury Laboratory Nuclear Structure Facility tandem accelerator. Data on sub-barrier transfer for targets of /sup 116,118,120,122,124/Sn and /sup 144,148,150,152,154/Sm were obtained. 16 refs., 10 figs., 2 tabs.

  9. A recoil separator for nuclear astrophysics SECAR

    NASA Astrophysics Data System (ADS)

    Berg, G. P. A.; Bardayan, D. W.; Blackmon, J. C.; Chipps, K. A.; Couder, M.; Greife, U.; Hager, U.; Montes, F.; Rehm, K. E.; Schatz, H.; Smith, M. S.; Wiescher, M.; Wrede, C.; Zeller, A.

    2016-06-01

    A recoil separator SECAR has been designed to study radiative capture reactions relevant for the astrophysical rp-process in inverse kinematics for the Facility for Rare Isotope Beams (FRIB). We describe the design, layout, and ion optics of the recoil separator and present the status of the project.

  10. Nuclear astrophysics studies by recoil mass separators.

    NASA Astrophysics Data System (ADS)

    Gialanella, L.; Brand, K.; Campajola, L.; D'Onofrio, A.; Greife, U.; Morone, M. C.; Oliviero, G.; Ordine, A.; Roca, V.; Rolfs, C.; Romano, M.; Romoli, M.; Schmidt, S.; Schulte, W. H.; Strieder, F.; Terrasi, F.; Trautvetter, H. P.; Zahnow, D.

    1997-11-01

    It has been recently demonstrated that an accelerator mass spectrometry (AMS) system, used as a recoil separator in conjunction with a windowless gas target, can yield the high suppression factor needed to dispersively analyze radiative capture residues, with the aim of measuring cross sections in the sub-microbarn range. An experiment is underway utilizing a radioactive 7Be beam for the measurement of the cross section of the astrophysically important reaction 7Be(p, γ)8B at a center of mass energy ECM = 1 MeV. Preliminary results of this experiment are presented. The extension of the method to another reaction playing a key role in stellar evolution, i.e. 12C(α, γ)16O, requires an improvement of the angle- and momentum-acceptance of the recoil separator, the use of a jet gas target and of a specially designed low-threshold detector. The solutions proposed by a joint Italian-German project are discussed.

  11. Design of the recoil mass separator St. George

    NASA Astrophysics Data System (ADS)

    Couder, M.; Berg, G. P. A.; Görres, J.; LeBlanc, P. J.; Lamm, L. O.; Stech, E.; Wiescher, M.; Hinnefeld, J.

    2008-03-01

    A recoil mass separator has been designed for the purpose of studying low energy (α,γ) reactions in inverse kinematics for beam masses up to about A=40. Their reaction rates are of importance for our understanding of energy production and nucleosynthesis during stellar and explosive helium burning. The reactions take place in a windowless He gas target at the beginning of the separator which consists of three sections. The first section selects the most abundant charge state. The Wien filter in the second section efficiently separates the intense beam from the few reaction products. In the last section the reaction products are focused into a detector system consisting of time pickup and energy detectors. In order to accept the complete kinematic cone of recoil particles for energies as low as reasonably possible we specified a large circular angular acceptance of ±40 mrad. This requires a careful minimization of higher-order aberrations. The present system has been designed to allow for a future upgrade to extend the experimental program to the analysis of (p,γ) reactions.

  12. Improvements of the DRAGON recoil separator at ISAC

    NASA Astrophysics Data System (ADS)

    Vockenhuber, C.; Buchmann, L.; Caggiano, J.; Chen, A. A.; D'Auria, J. M.; Davis, C. A.; Greife, U.; Hussein, A.; Hutcheon, D. A.; Ottewell, D.; Ouellet, C. O.; Parikh, A.; Pearson, J.; Ruiz, C.; Ruprecht, G.; Trinczek, M.; Zylberberg, J.

    2008-10-01

    The DRAGON (Detector of Recoils And Gammas Of Nuclear reactions) is used to measure radiative proton and alpha capture reaction rates involving both stable and radioactive, heavy-ion reactants at the TRIUMF-ISAC high intensity radioactive beam facility. Completed in 2001 it has been used for several challenging studies for nuclear astrophysics, e.g. 12C(α, γ)16O, 21Na(p, γ)22Mg, 26gAl(p, γ)27Si and 40Ca(α, γ)44Ti. Since initial operation, a number of improvements have been incorporated which are described here. These include a beam centering monitor based on a CCD camera, a mechanical iris to skim of beam halo, a solid state stripper acting as a charge state booster for beams with A ≳ 30, beta and gamma detectors to monitor beam intensity and to determine beam contamination in experiments with radioactive beam and the ionization chamber for both recoil identification and isobar separation.

  13. Moving towards first science with the St. George recoil separator

    NASA Astrophysics Data System (ADS)

    Meisel, Zachary; Berg, G. P. A.; Gilardy, G.; Moran, M.; Schmitt, J.; Seymour, C.; Stech, E.; Couder, M.

    2015-10-01

    The St. George recoil mass separator has recently been coupled to the 5MV St. Ana accelerator at the University of Notre Dame's Nuclear Science Lab. St. George is a unique tool designed to measure radiative alpha-capture reactions for nuclei up to A = 40 in inverse kinematics in order to directly obtain cross sections required for astrophysical models of stellar and explosive helium burning. Commissioning of St. George is presently taking place with primary beams of hydrogen, helium, and oxygen. In this presentation, results will be shown for the measured energy acceptance of St. George, which compare favorably to COSY results when employing the calculated optimal ion-optical settings. Additionally, future plans will be discussed, such as assessing the angular acceptance of St. George and the re-integration of HiPPO at the separator target position to provide a dense, windowless helium gas-jet target. The material presented in this work is partially supported by the National Science Foundation Grant No. 1419765.

  14. Automation of experiments at Dubna Gas-Filled Recoil Separator

    NASA Astrophysics Data System (ADS)

    Tsyganov, Yu. S.

    2016-01-01

    Approaches to solving the problems of automation of basic processes in long-term experiments in heavy ion beams of the Dubna Gas-Filled Recoil Separator (DGFRS) facility are considered. Approaches in the field of spectrometry, both of rare α decays of superheavy nuclei and those for constructing monitoring systems to provide accident-free experiment running with highly radioactive targets and recording basic parameters of experiment, are described. The specific features of Double Side Silicon Strip Detectors (DSSSDs) are considered, special attention is paid to the role of boundary effects of neighboring p-n transitions in the "active correlations" method. An example of an off-beam experiment attempting to observe Zeno effect is briefly considered. Basic examples for nuclear reactions of complete fusion at 48Ca ion beams of U-400 cyclotron (LNR, JINR) are given. A scenario of development of the "active correlations" method for the case of very high intensity beams of heavy ions at promising accelerators of LNR, JINR, is presented.

  15. COSY Simulations to Guide Commissioning of the St. George Recoil Mass Separator

    NASA Astrophysics Data System (ADS)

    Schmitt, Jaclyn; Moran, Michael; Seymour, Christopher; Gilardy, Gwenaelle; Meisel, Zach; Couder, Manoel

    2015-10-01

    The goal of St. George (STrong Gradient Electromagnetic Online Recoil separator for capture Gamma ray Experiments) is to measure (α, γ) cross sections relevant to stellar helium burning. Recoil separators such as St. George are able to more closely approach the low astrophysical energies of interest because they collect reaction recoils rather than γ-rays, and thus are not limited by room background. In order to obtain an accurate cross section measurement, a recoil separator must be able to collect all recoils over their full range of expected energy and angular spread. The energy acceptance of St. George is currently being measured, and the angular acceptance will be measured soon. Here we present the results of COSY ion optics simulations and magnetic field analyses which were performed to help guide the commissioning measurements and diagnostic upgrades required to complete those measurements. National Science Foundation Research Experiences for Undergraduates program.

  16. Clean recoil implantation of the 100Pd/Rh TDPAC probe using a solenoidal separator

    NASA Astrophysics Data System (ADS)

    Abiona, A. A.; Kemp, W. J.; Williams, E.; Timmers, H.

    2012-10-01

    The synthesis and recoil implantation of the 100Pd/Rh probe for time differential perturbed angular correlation (TDPAC) spectroscopy using the solenoidal reaction product separator SOLITAIRE has been demonstrated for the first time. The separator suppresses the co-implantation of the intense flux of elastically scattered projectile ions that can affect results obtained with the hyperfine interactions technique. Using three different fusion evaporation reactions, the solenoid field was optimised at 4.5 T to achieve a concentrated, circular focus of evaporation residue ions with a lateral FWHM of 20 mm. Employing the reaction 92Zr(12C,4n)100Pd several samples have been recoil-implanted with the 100Pd/Rh probe. Gamma-ray spectroscopy of a silver sample and a TDPAC measurement on zinc confirm that the new preparation technique is effective. The ratio function measured with TDPAC of an undoped germanium sample may indicate that palladium-defect pairs are absent when implanting with SOLITAIRE. However, a direct comparison with TDPAC results for germanium samples prepared with conventional recoil implantation, which does not suppress the flux of elastics, does not support this assertion.

  17. Research and Development of a New Gas-Filled Recoil Separator GARIS-II

    NASA Astrophysics Data System (ADS)

    Kaji, Daiya; Morimoto, Kouji; Haba, Hiromitsu; Wakabayashi, Yasuo; Kudou, Yuki; Hung, Minghui; Goto, Shin-ichi; Murakami, Masashi; Goto, Naoya; Koyama, Takumi; Tamura, Nobuyuki; Tsuto, Shouhei; Sumita, Takayuki; Tanaka, Kengo; Takeyama, Mirei; Yamaki, Sayaka; Morita, Kosuke

    The results of the recent on-line test experiment using a gas-filled recoil ion separator GARIS-II, whose main purpose is to perform the so-called hot fusion reactions to produce superheavy elements, are presented. Reaction products via 169Tm(40Ar,4n)205Fr and 208Pb(40Ar,3n)245Fm were collected by the focal plane detection system of GARIS-II with high efficiency of 47% for 205Fr and 63% for 245Fm under low background condition.

  18. A Monte Carlo C-code for calculating transmission efficiency of recoil separators and viewing residue trajectories

    NASA Astrophysics Data System (ADS)

    Nath, S.

    2008-10-01

    We present a semimicroscopic Monte Carlo code for calculating absolute transmission efficiency of recoil separators for heavy ion-induced complete fusion reactions. The code generates realistic distributions for energy, charge state and angle of evaporation residues. Residue trajectories are calculated using first order ion optical transfer matrices. Trajectory plots in the dispersive and the non-dispersive planes are generated. Using this code, we have obtained good agreement between calculated and measured transmission efficiencies for the Heavy Ion Reaction Analyzer at IUAC. The code can be adapted easily to any other electromagnetic recoil separator. Program summaryProgram title: TERS Catalogue identifier: AEBD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 6818 No. of bytes in distributed program, including test data, etc.: 1 216 097 Distribution format: tar.gz Programming language: C Computer: The code has been developed and tested on a PC with Intel Pentium IV processor Operating system: Linux RAM: About 8 Mbytes Classification: 17.7 External routines: pgplot graphics subroutine library [1] should be installed in the system for generating residue trajectory plots. Nature of problem: Recoil separators are employed to select and identify nuclei of interest, produced in a nuclear reaction, rejecting unreacted beam and other undesired reaction products. It is important to know what fraction of the selected nuclei, leaving the target, reaches the detection system. This information is crucial for determining absolute cross section of the studied reaction. Solution method:Interaction of projectiles with target nuclei is treated event by event, semimicroscopically. Position and angle (with respect to beam

  19. Measuring the 16O(α, γ)20Ne Reaction Rate with the Dragon Recoil Separator at Triumf

    NASA Astrophysics Data System (ADS)

    Hager, U.; Greife, U.; Buchmann, L.; Davids, B.; Fallis, J.; Hutcheon, D.; Ottewell, D.; Reeve, S.; Rojas, A.; Ruiz, C.; Sjue, S. K. L.; Erikson, L.; Carmona-Gallardo, M.; Vockenhuber, C.; Brown, J. R.; Irvine, D.

    2013-03-01

    The DRAGON recoil separator facility at TRIUMF measures radiative α and proton capture reactions of astrophysical importance in inverse kinematics. This is done employing radioactive and stable ion beams produced and accelerated using the ISAC (Isotope Separator and ACcelerator) facility in conjunction with the DRAGON windowless gas target. Over the last few years, the DRAGON collaboration has embarked on a programme to measure a variety of reactions considered vital to the understanding of various astrophysical scenarios. An overview of DRAGON's separation, beam suppression, and detection capabilities will be given. In addition, examples of recent reaction cross section measurements will be discussed, such as the 16O(α, γ)20Ne reaction, which plays an important part in the He and Ne burning in massive stars.

  20. Spectroscopy of transfermium nuclei using the GABRIELA set up at the focal plane of the VASSILISSA recoil separator

    SciTech Connect

    Hauschild, K.; Lopez-Martens, A.; Dorvaux, O.; Piot, J.; Curien, D.; Gall, B.; Yeremin, A. V.; Chelnokov, M. L.; Chepigin, V. I.; Isaev, A. V.; Izosimov, I. N.; Kabachenko, A. P.; Katrasev, D. E.; Kuznetsov, A. N.; Malyshev, O. N.; Popeko, A. G.; Sokol, E. A.; Svirikhin, A. I.; Wiborg-Hagen, T.; Nyhus, H. T

    2010-06-01

    An IN2P3-JINR collaboration has launched a project called GABRIELA at the Flerov Laboratory for Nuclear Reactions (FLNR) within the Joint Institute for Nuclear Research (JINR) in Dubna (Russia). The goal of the project is to perform gamma-ray and internal conversion electron spectroscopy of heavy nuclei produced in fusion-evaporation reactions and transported to the focal plane of the recoil separator VASSILISSA. During five experimental campaigns of GABRIELA, the detection system has gained in sensitivity and new spectroscopic information has been obtained for {sup 249}Fm, {sup 251}Fm, {sup 253}No and {sup 255}Lr. In this contribution new results for {sup 253}No will be discussed.

  1. Plasma wakefield acceleration at CLARA facility in Daresbury Laboratory

    NASA Astrophysics Data System (ADS)

    Xia, G.; Nie, Y.; Mete, O.; Hanahoe, K.; Dover, M.; Wigram, M.; Wright, J.; Zhang, J.; Smith, J.; Pacey, T.; Li, Y.; Wei, Y.; Welsch, C.

    2016-09-01

    A plasma accelerator research station (PARS) has been proposed to study the key issues in electron driven plasma wakefield acceleration at CLARA facility in Daresbury Laboratory. In this paper, the quasi-nonlinear regime of beam driven plasma wakefield acceleration is analysed. The wakefield excited by various CLARA beam settings are simulated by using a 2D particle-in-cell (PIC) code. For a single drive beam, an accelerating gradient up to 3 GV/m can be achieved. For a two bunch acceleration scenario, simulation shows that a witness bunch can achieve a significant energy gain in a 10-50 cm long plasma cell.

  2. [Sublimatographic separation of fission products by beta-diketone complexes--FP chelate complexes produced directly by recoil effects (author's transl)].

    PubMed

    Nishikawa, S

    1980-03-01

    The sublimatographic separation of volatile beta-diketonate complexes of fission products produced directly by the recoil atoms of fission products under exposure of a mixture of M (beta-diketone)n and U3O8 on neutron, was carried out. When Fe(dpm)3 and Fe(pta)3 were used as the catcher chelates, both samples, the sublimated radioactive chelates located at the one zone, and the positions agreed with the deposited position of inactive each catcher chelate. The unclides presented in the zone were almost 97Zr-97Nb, 105Ru and 99Mo-99mTc. When Y(dpm)3 was used as the catcher chelates, the sublimated radioactive chelates located at the one zone, and the zone agreed with the deposited position of inactive catcher chelates, the presented nuclides in the zone were mainly 97Zr-97Nb, 95Zr-95Nb, 105Ru, 103Ru, 143Ce, 141Ce, 93Y, 92Y and 147Nd. In the case of Y(pta)3, the sublimated radioactive chelates located at the two zones. The zone at higher temperature side agreed with the deposited position of inactive catcher chelates, and the nuclides presented in this zone were the same as in the case of Y(dpm)3. On the other hand, it was observed that mainly carrier free states of 97Zr-97Nb were deposited at the zone of lower temperature side. When Ni(acac)2 was used as the catcher chelates, the sublimated radioactive chelates located at the same pattern as Y(pta)3, but the amount of deposited zones of activity was quite low. As a U3O8 target was diluted with Fe(dpm)3 catcher chelates, the yield of deposited 97Zr and 95Zr nuclides was enhanced, to about 50%. PMID:7455176

  3. Simulation studies of plasma lens experiments at Daresbury laboratory

    NASA Astrophysics Data System (ADS)

    Hanahoe, K.; Mete, O.; Xia, G.; Angal-Kalinin, D.; Jones, J.; Smith, J.

    2016-03-01

    Experiments are planned to study plasma lensing using the VELA and CLARA Front End accelerators at Daresbury Laboratory. This paper presents results of 2-dimensional particle-in-cell simulations of the proposed experiments. The variation in focusing strength and emittance growth with beam and plasma parameters are studied in the overdense (plasma density much greater than bunch density) regime for the VELA beam. The effect of spherical and longitudinal aberrations on the beam emittance was estimated through numerical and theoretical studies. Simulation results show that a focusing strength equivalent to a magnetic field gradient of 10 T m-1 can be achieved using VELA, and a gradient of 247 T m-1 can be achieved using CLARA Front End.

  4. Results from the Daresbury Compton backscattering X-ray source

    NASA Astrophysics Data System (ADS)

    Laundy, D.; Priebe, G.; Jamison, S. P.; Graham, D. M.; Phillips, P. J.; Smith, S. L.; Saveliev, Y.; Vassilev, S.; Seddon, E. A.

    2012-10-01

    The Daresbury Compton Backscattering X-ray Source uses a high power Ti Sapphire laser interacting in head on geometry with electron bunches in the ALICE energy recovery linear accelerator. X-ray photons with peak energy of 21 keV were generated with the accelerator operating at an energy of 29.6 MeV. The spatial profile of the X-rays emitted near the electron beam axis was measured. The characteristics of the X-ray yield measured as a function of relative timing between the laser pulse and the interacting electron bunch was found to be consistent with the modelled intensity behaviour using measured electron and laser beam parameters.

  5. Transport of Radioactive Material by Alpha Recoil

    SciTech Connect

    Icenhour, A.S.

    2005-05-19

    The movement of high-specific-activity radioactive particles (i.e., alpha recoil) has been observed and studied since the early 1900s. These studies have been motivated by concerns about containment of radioactivity and the protection of human health. Additionally, studies have investigated the potential advantage of alpha recoil to effect separations of various isotopes. This report provides a review of the observations and results of a number of the studies.

  6. First superheavy element experiments at the GSI recoil separator TASCA: The production and decay of element 114 in the {sup 244}Pu({sup 48}Ca,3-4n) reaction

    SciTech Connect

    Gates, J. M.; Duellmann, Ch. E.; Schaedel, M.; Ackermann, D.; Block, M.; Bruechle, W.; Essel, H. G.; Hartmann, W.; Hessberger, F. P.; Huebner, A.; Jaeger, E.; Khuyagbaatar, J.; Kindler, B.; Krier, J.; Kurz, N.; Lommel, B.; Schaffner, H.; Schausten, B.; Schimpf, E.; Steiner, J.

    2011-05-15

    Experiments with the new recoil separator, Transactinide Separator and Chemistry Apparatus (TASCA), at the GSI were performed by using beams of {sup 48}Ca to irradiate targets of {sup 206-208}Pb, which led to the production of {sup 252-254}No isotopes. These studies allowed for evaluation of the performance of TASCA when coupled to a new detector and electronics system. By following these studies, the isotopes of element 114 ({sup 288-291}114) were produced in irradiations of {sup 244}Pu targets with {sup 48}Ca beams at compound nucleus excitation energies around 41.7 and 37.5 MeV, demonstrating TASCA's ability to perform experiments with picobarn-level cross sections. A total of 15 decay chains were observed and were assigned to the decay of {sup 288-291}114. A new {alpha}-decay branch in {sup 281}Ds was observed, leading to the new nucleus {sup 277}Hs.

  7. The HERMES recoil detector

    NASA Astrophysics Data System (ADS)

    Airapetian, A.; Aschenauer, E. C.; Belostotski, S.; Borisenko, A.; Bowles, J.; Brodski, I.; Bryzgalov, V.; Burns, J.; Capitani, G. P.; Carassiti, V.; Ciullo, G.; Clarkson, A.; Contalbrigo, M.; De Leo, R.; De Sanctis, E.; Diefenthaler, M.; Di Nezza, P.; Düren, M.; Ehrenfried, M.; Guler, H.; Gregor, I. M.; Hartig, M.; Hill, G.; Hoek, M.; Holler, Y.; Hristova, I.; Jo, H. S.; Kaiser, R.; Keri, T.; Kisselev, A.; Krause, B.; Krauss, B.; Lagamba, L.; Lehmann, I.; Lenisa, P.; Lu, S.; Lu, X.-G.; Lumsden, S.; Mahon, D.; Martinez de la Ossa, A.; Murray, M.; Mussgiller, A.; Nowak, W.-D.; Naryshkin, Y.; Osborne, A.; Pappalardo, L. L.; Perez-Benito, R.; Petrov, A.; Pickert, N.; Prahl, V.; Protopopescu, D.; Reinecke, M.; Riedl, C.; Rith, K.; Rosner, G.; Rubacek, L.; Ryckbosch, D.; Salomatin, Y.; Schnell, G.; Seitz, B.; Shearer, C.; Shutov, V.; Statera, M.; Steijger, J. J. M.; Stenzel, H.; Stewart, J.; Stinzing, F.; Trzcinski, A.; Tytgat, M.; Vandenbroucke, A.; Van Haarlem, Y.; Van Hulse, C.; Varanda, M.; Veretennikov, D.; Vilardi, I.; Vikhrov, V.; Vogel, C.; Yaschenko, S.; Ye, Z.; Yu, W.; Zeiler, D.; Zihlmann, B.

    2013-05-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with a field strength of 1T. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  8. The HERMES Recoil Detector

    SciTech Connect

    Kaiser, R.

    2006-07-11

    The HERMES Collaboration is installing a new Recoil Detector to upgrade the spectrometer for measurements of hard exclusive electron/positron scattering reactions, in particular deeply virtual Compton scattering. These measurements will provide access to generalised parton distributions and hence to the localisation of quarks inside hadrons and to their orbital angular momentum. The HERMES Recoil Detector consists of three active components: a silicon detector surrounding the target cell inside the beam vacuum, a scintillating fibre tracker and a photon detector consisting of three layers of tungsten/scintillator. All three detectors are located inside a solenoidal magnetic field of 1 Tesla. The Recoil Detector was extensively tested with cosmic muons over the summer of 2005 and is being installed in the winter of 2005/6 for data taking until summer 2007.

  9. Elastic recoil detection

    NASA Astrophysics Data System (ADS)

    Bik, W. M. A.; Habraken, F. H. P. M.

    1993-07-01

    In elastic recoil detection (ERD) one determines the yield and energy of particles ejected out of the surface region of samples under MeV ion bombardment. By application of this surface and thin film analysis technique one can obtain quantitative information concerning the depth distribution of light elements in a sample to be analysed. The quantitativity and the depth resolving power are based on knowledge of the recoil cross section and the stopping power of high-energy ions in matter. This paper reviews the fundamentals of this technique and the various experimental methods for recoil identification. Furthermore, important features for material analysis, such as detection limits, depth resolution and elemental range are discussed. Some emphasis is put on the conversion of the spectral contribution of the elements to atomic concentrations in the films for several representative cases. Throughout the review numerous examples are given to illustrate the features of ERD and to demonstrate empirically the accuracy of the quantification method.

  10. High acceptance recoil polarimeter

    SciTech Connect

    The HARP Collaboration

    1992-12-05

    In order to detect neutrons and protons in the 50 to 600 MeV energy range and measure their polarization, an efficient, low-noise, self-calibrating device is being designed. This detector, known as the High Acceptance Recoil Polarimeter (HARP), is based on the recoil principle of proton detection from np[r arrow]n[prime]p[prime] or pp[r arrow]p[prime]p[prime] scattering (detected particles are underlined) which intrinsically yields polarization information on the incoming particle. HARP will be commissioned to carry out experiments in 1994.

  11. On the analysis of neonatal hamster tooth germs with the photon microprobe at Daresbury, UK

    NASA Astrophysics Data System (ADS)

    Tros, G. H. J.; Van Langevelde, F.; Vis, R. D.

    1990-04-01

    Complementary to the micro-PIXE experiments performed on hamster tooth germs to elucidate the role of fluoride during the growth, the photon microprobe at Daresbury was used to obtain information on the distribution of Zn. The germs of fluoride-administered hamsters, together with a control group, were analyzed with the micro-synchrotron radiation fluorescence method (micro-SXRF).

  12. PREPARATIONS FOR ASSEMBLY OF THE INTERNATIONAL ERL CRYOMODULE AT DARESBURY LABORATORY

    SciTech Connect

    McIntosh, P. A.; Bate, R.; Beard, C. D.; Cordwell, M. A.; Dykes, D. M.; Pattalwar, S. M.; Strachan, J.; Belomestnykh, S.; Liepe, M.; Padamsee, H.; Quigley, P.; Sears, J.; Shemelin, V.; Veshcherevich, V.; Proch, D.; Sekutowicz, J.; Buchner, A.; Gabriel, F.; Michel, P.; Corlett, J. N.; Li, D.; Lidia, S.; Kimura, T.; Smith, T. I.

    2009-04-29

    The collaborative development of an optimised cavity/cryomodule solution for application on ERL facilities has now progressed to final assembly and testing of the cavity string components and their subsequent cryomodule integration. This paper outlines the verification of the various cryomodule sub-components and details the processes utilised forfinal cavity string integration. The paper also describes the modifications needed to facilitate this new cryomodule installation and ultimate operation on the ALICE facility at Daresbury Laboratory.

  13. Recoil-α-fission and recoil-α-α-fission events observed in the reaction 48Ca + 243Am

    NASA Astrophysics Data System (ADS)

    Forsberg, U.; Rudolph, D.; Andersson, L.-L.; Di Nitto, A.; Düllmann, Ch. E.; Fahlander, C.; Gates, J. M.; Golubev, P.; Gregorich, K. E.; Gross, C. J.; Herzberg, R.-D.; Heßberger, F. P.; Khuyagbaatar, J.; Kratz, J. V.; Rykaczewski, K.; Sarmiento, L. G.; Schädel, M.; Yakushev, A.; Åberg, S.; Ackermann, D.; Block, M.; Brand, H.; Carlsson, B. G.; Cox, D.; Derkx, X.; Dobaczewski, J.; Eberhardt, K.; Even, J.; Gerl, J.; Jäger, E.; Kindler, B.; Krier, J.; Kojouharov, I.; Kurz, N.; Lommel, B.; Mistry, A.; Mokry, C.; Nazarewicz, W.; Nitsche, H.; Omtvedt, J. P.; Papadakis, P.; Ragnarsson, I.; Runke, J.; Schaffner, H.; Schausten, B.; Shi, Yue; Thörle-Pospiech, P.; Torres, T.; Traut, T.; Trautmann, N.; Türler, A.; Ward, A.; Ward, D. E.; Wiehl, N.

    2016-09-01

    Products of the fusion-evaporation reaction 48Ca + 243Am were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. Amongst the detected thirty correlated α-decay chains associated with the production of element Z = 115, two recoil-α-fission and five recoil- α- α-fission events were observed. The latter five chains are similar to four such events reported from experiments performed at the Dubna gas-filled separator, and three such events reported from an experiment at the Berkeley gas-filled separator. The four chains observed at the Dubna gas-filled separator were assigned to start from the 2n-evaporation channel 289115 due to the fact that these recoil- α- α-fission events were observed only at low excitation energies. Contrary to this interpretation, we suggest that some of these recoil- α- α-fission decay chains, as well as some of the recoil- α- α-fission and recoil-α-fission decay chains reported from Berkeley and in this article, start from the 3n-evaporation channel 288115.

  14. Interpreting Recoil for Undergraduate Students

    ERIC Educational Resources Information Center

    Elsayed, Tarek A.

    2012-01-01

    The phenomenon of recoil is usually explained to students in the context of Newton's third law. Typically, when a projectile is fired, the recoil of the launch mechanism is interpreted as a reaction to the ejection of the smaller projectile. The same phenomenon is also interpreted in the context of the conservation of linear momentum, which is…

  15. Recoil Based Fuel Breeding Fuel Structure

    SciTech Connect

    Popa-Simil, Liviu

    2008-07-01

    Nuclear transmutation reactions are based on the absorption of a smaller particle as neutron, proton, deuteron, alpha, etc. The resulting compound nucleus gets out of its initial lattice mainly by taking the recoil, also with help from its sudden change in chemical properties. The recoil implantation is used in correlation with thin and ultra thin materials mainly for producing radiopharmaceuticals and ultra-thin layer radioactive tracers. In nuclear reactors, the use of nano-particulate pellets could facilitate the recoil implantation for breeding, transmutation and partitioning purposes. Using enriched {sup 238}U or {sup 232}Th leads to {sup 239}Pu and {sup 233}U production while using other actinides as {sup 240}Pu, {sup 241}Am etc. leads to actinide burning. When such a lattice is immersed into a radiation resistant fluid (water, methanol, etc.), the recoiled product is transferred into the flowing fluid and removed from the hot area using a concentrator/purifier, preventing the occurrence of secondary transmutation reactions. The simulation of nuclear collision and energy transfer shows that the impacted nucleus recoils in the interstitial space creating a defect or lives small lattices. The defect diffuses, and if no recombination occurs it stops at the lattices boundaries. The nano-grains are coated in thin layer to get a hydrophilic shell to be washed by the collection liquid the particle is immersed in. The efficiency of collection depends on particle magnitude and nuclear reaction channel parameters. For {sup 239}Pu the direct recoil extraction rate is about 70% for {sup 238}UO{sub 2} grains of 5 nm diameters and is brought up to 95% by diffusion due to {sup 239}Neptunium incompatibility with Uranium dioxide lattice. Particles of 5 nm are hard to produce so a structure using particles of 100 nm have been tested. The particles were obtained by plasma sputtering in oxygen atmosphere. A novel effect as nano-cluster radiation damage robustness and cluster

  16. Further insight into gravitational recoil

    SciTech Connect

    Lousto, Carlos O.; Zlochower, Yosef

    2008-02-15

    We test the accuracy of our recently proposed empirical formula to model the recoil velocity imparted to the merger remnant of spinning, unequal-mass black-hole binaries. We study three families of black-hole binary configurations, all with mass ratio q=3/8 (to nearly maximize the unequal-mass contribution to the kick) and spins aligned (or counter-aligned) with the orbital angular momentum, two with spin configurations chosen to minimize the spin-induced tangential and radial accelerations of the trajectories, respectively, and a third family where the trajectories are significantly altered by spin-orbit coupling. We find good agreement between the measured and predicted recoil velocities for the first two families, and reasonable agreement for the third. We also reexamine our original generic binary configuration that led to the discovery of extremely large spin-driven recoil velocities and inspired our empirical formula, and find rough agreement between the predicted and measured recoil speeds.

  17. Time-of-flight direct recoil ion scattering spectrometer

    DOEpatents

    Krauss, A.R.; Gruen, D.M.; Lamich, G.J.

    1994-09-13

    A time-of-flight direct recoil and ion scattering spectrometer beam line is disclosed. The beam line includes an ion source which injects ions into pulse deflection regions and separated by a drift space. A final optics stage includes an ion lens and deflection plate assembly. The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions. 23 figs.

  18. Time-of-flight direct recoil ion scattering spectrometer

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Lamich, George J.

    1994-01-01

    A time of flight direct recoil and ion scattering spectrometer beam line (10). The beam line (10) includes an ion source (12) which injects ions into pulse deflection regions (14) and (16) separated by a drift space (18). A final optics stage includes an ion lens and deflection plate assembly (22). The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions (14) and (16).

  19. Angular Momentum Ejection and Recoil*

    NASA Astrophysics Data System (ADS)

    Ohia, O.; Coppi, B.

    2009-11-01

    The spontaneous rotation phenomenon observed in axisymmetric magnetically confined plasmas has been explained by the ``accretion theory'' [1] that considers the plasma angular momentum as gained from its interaction with the magnetic field and the surrounding material wall. The ejection of angular momentum to the wall, and the consequent recoil are attributed to modes excited at the edge while the transport of the (recoil) angular momentum from the edge toward the center is attributed to a different kind of mode. The toroidal phase velocity of the edge mode, to which the sign of the ejected angular momentum is related, is considered to change its direction in the transition from the H-regime to the L-regime. For the latter case, edge modes with phase velocity in the direction of vdi are driven by the temperature gradient of a cold ion population at the edge and damped on the ``hot'' ion population. The ``balanced'' double interaction [2] of the mode with the two populations, corresponding to a condition of marginal stability, leads to ejection of hot ions and loss of angular momentum in the direction of vdi while the cold population acquires angular momentum in the opposite direction. In the H-regime resistive ballooning modes with phase velocities in the direction of vde are viewed as the best candidates for the excited edge modes. *Sponsored in part by the U.S. DOE. [1] B. Coppi, Nucl. Fusion 42, 1 (2002) [2] B. Coppi and F. Pegoraro, Nucl. Fusion 17, 969 (1977)

  20. Gas powered fluid gun with recoil mitigation

    DOEpatents

    Grubelich, Mark C.; Yonas, Gerold

    2016-03-01

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  1. Gas powered fluid gun with recoil mitigation

    DOEpatents

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  2. Recoiling from a Kick in the Head-On Case

    NASA Technical Reports Server (NTRS)

    Choi, Dae-Il; Kelly, Bernard J.; Boggs, William D.; Baker, John G.; Centrella, Joan; Van Meter, James

    2007-01-01

    Recoil "kicks" induced by gravitational radiation are expected in the inspiral and merger of black holes. Recently the numerical relativity community has begun to measure the significant kicks found when both unequal masses and spins are considered. Because understanding the cause and magnitude of each component of this kick may be complicated in inspiral simulations, we consider these effects in the context of a simple test problem. We study recoils from collisions of binaries with initially head-on trajectories, starting with the simplest case of equal masses with no spin; adding spin and varying the mass ratio, both separately and jointly. We find spin-induced recoils to be significant even in head-on configurations. Additionally, it appears that the scaling of transverse kicks with spins is consistent with post-Newtonian (PN) theory, even though the kick is generated in the nonlinear merger interaction, where PN theory should not apply. This suggests that a simple heuristic description might be effective in the estimation of spin-kicks.

  3. Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy; Buonanno, Alessandra; vanMeter, James R.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.

    2007-01-01

    We present a multipolar analysis of the recoil velocity computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including 1 = 4 are sufficient to accurately reproduce the final recoil velocity (= 98%) and that only a few dominant modes contribute significantly to it (2 95%). We describe how the relative amplitude, and more importantly, the relative phase, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ring-down phases. We also find that the numerical results can be reproduced, to a high level of accuracy, by an effective Newtonian formula for the multipole moments obtained by replacing in the Newtonian formula the radial separation with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes. Analytic formulae, obtained by expressing the multipole moments in terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and amount of '.anti-kick" for each of the simulations. Lastly, we apply this multipolar analysis to understand the remarkable difference between the amplitudes of planar and non-planar kicks for equal-mass spinning black holes.

  4. Spallation recoil and age of presolar grains in meteorites

    NASA Astrophysics Data System (ADS)

    Ott, U.; Begemann, F.

    2000-01-01

    We have determined the recoil losses from silicon carbide grain size fractions of spallation neon produced by irradiation with 1.6 GeV protons. During the irradiation the SiC grains were dispersed in paraffin wax in order to avoid re-implantation into neighboring grains. Analysis for spallogenic 21Ne of grain size separates in the size range 0.3 μm to 6 μm and comparison with the 22Na activity of the SiC+paraffin mixture indicates an effective recoil range of 2-3 μm with no apparent effect from acid treatments such as routinely used in the isolation of meteoritic SiC grains. Our results indicate that the majority of presolar SiC grains in primitive meteorites, which are ~μm-sized, will have lost essentially all spallogenic Ne produced by cosmic ray interaction in the interstellar medium. This argues against the validity of previously published presolar ages of Murchison SiC (~10 to ~130 Ma; increasing with grain size; Lewis et al., 1994), where recoil losses had been based on calculated recoil energies. It is argued that the observed variations in meteoritic SiC grain size fractions of 21Ne/22Ne ratios are more likely due to the effects of nucleosynthesis in the He burning shell of the parent AGB stars which imposes new boundary conditions on nuclear parameters and stellar models. It is suggested that spallation-Xe produced on the abundant Ba and REE in presolar SiC, rather than spallogenic Ne, may be a promising approach to the presolar age problem. There is a hint in the currently available Xe data (Lewis et al., 1994) that the large (>1 μm) grains may be younger than the smaller (<1 μm) ones.

  5. Molecular Dynamics Simulation of Energetic Uranium Recoil Damage in Zircon

    SciTech Connect

    Devanathan, Ram; Corrales, Louis R.; Weber, William J.; Chartier, Alain; Meis, Constantin

    2006-10-11

    Defect production and amorphization due to energetic uranium recoils in zircon (ZrSiO4), which is a promising ceramic nuclear waste form, is studied using molecular dynamics simulations with a partial charge model. An algorithm that distinguishes between undamaged crystal, crystalline defects and amorphous regions is used to develop a fundamental understanding of the primary damage state. The amorphous cascade core is separated from the surrounding crystal by a defect-rich region. Small, chemically inhomogeneous amorphous clusters are also produced around the core. The amorphous regions consist of under-coordinated Zr and polymerized Si leading to amorphization and phase separation on a nanometer scale into Zr- and Si-rich regions. This separation could play an important role in the experimentally observed formation of nanoscale ZrO2 in ZrSiO4 irradiated at elevated temperatures.

  6. Elastic recoil changes in early emphysema.

    PubMed Central

    Silvers, G W; Petty, T L; Stanford, R E

    1980-01-01

    An attempt was made to determine if emphysema and static lung recoil were related in a group of 65 excised human lungs. We studied 23 normal lungs, 24 lungs with an emphysema score of 5 or less, and 18 lungs with an emphysema score greater than 5. A comparison of the percentage of predicted elastic recoil revealed that both emphysema groups were significantly different from normal lungs. In addition, the total lung capacities were significantly different between the three groups. In the group with an emphysema score greater than 5 we found a linear negative correlation between the extent of emphysema and percent of predicted elastic recoil at 90% total lung capacity (r = -0.696, p < 0.01). We found a negative correlation between the percentage of predicted elastic recoil and the lung volume (r = -0.612, p < 0.01). We conclude that a significant loss of elastic recoil and a significant increase in total lung capacity occurs in the early stages of emphysema. PMID:7434309

  7. Proton recoil scintillator neutron rem meter

    DOEpatents

    Olsher, Richard H.; Seagraves, David T.

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  8. Medium modifications with recoil polarization

    SciTech Connect

    Brand, J.F.J. van den; Ent, R.

    1994-04-01

    The authors show that the virtual Compton scattering process allows for a precise study of the off-shell electron-nucleon vertex. In a separable model, they show the sensitivity to new unconstrained structure functions of the nucleon, beyond the usual Dirac and Pauli form factors. In addition, they show the sensitivity to bound nucleon form factors using the reaction 4He({rvec e},e{prime},{rvec p}){sup 3}H. A nucleon embedded in a nucleus represents a complex system. Firstly, the bound nucleon is necessarily off-shell and in principle a complete understanding of the dynamical structure of the nucleon is required in order to calculate its off-shell electromagnetic interaction. Secondly, one faces the possibility of genuine medium effects, such as for example quark-exchange contributions. Furthermore, the electromagnetic coupling to the bound nucleon is dependent on the nuclear dynamics through the self-energy of the nucleon in the nuclear medium.

  9. Ionization and scintillation of nuclear recoils in gaseous xenon

    NASA Astrophysics Data System (ADS)

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Matis, H. S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C. A. B.; Shuman, D.; Álvarez, V.; Borges, F. I. G.; Cárcel, S.; Castel, J.; Cebrián, S.; Cervera, A.; Conde, C. A. N.; Dafni, T.; Dias, T. H. V. T.; Díaz, J.; Esteve, R.; Evtoukhovitch, P.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Gil, A.; Gómez, H.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Hernando Morata, J. A.; Herrera, D. C.; Iguaz, F. J.; Irastorza, I. G.; Jinete, M. A.; Labarga, L.; Laing, A.; Liubarsky, I.; Lopes, J. A. M.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez, A.; Moiseenko, A.; Monrabal, F.; Monserrate, M.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Natal da Luz, H.; Navarro, G.; Nebot-Guinot, M.; Palma, R.; Pérez, J.; Pérez Aparicio, J. L.; Ripoll, L.; Rodríguez, A.; Rodríguez, J.; Santos, F. P.; dos Santos, J. M. F.; Seguí, L.; Serra, L.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J. F.; Tomás, A.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R. C.; White, J.; Yahlali, N.

    2015-09-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope α-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  10. A New High-Flux Chemical and Materials Crystallography Station at the SRS Daresbury. 1. Design, Construction and Test Results.

    PubMed

    Cernik, R J; Clegg, W; Catlow, C R; Bushnell-Wye, G; Flaherty, J V; Greaves, G N; Burrows, I; Taylor, D J; Teat, S J; Hamichi, M

    1997-09-01

    A new single-crystal diffraction facility has been constructed on beamline 9 of the SRS at Daresbury Laboratory for the study of structural problems in chemistry and materials science. The station utilizes up to 3.8 mrad horizontally from the 5 T wiggler magnet which can be focused horizontally and vertically. The horizontal focusing is provided by a choice of gallium-cooled triangular bent Si (111) or Si (220) monochromators, giving a wavelength range from 0.3 to 1.5 A. Focusing in the vertical plane is achieved by a cylindrically bent zerodur mirror with a 300 mum-thick palladium coating. The station is equipped with a modified Enraf-Nonius CAD-4 four-circle diffractometer and a Siemens SMART CCD area-detector system. High- and low-temperature facilities are available to cover the temperature range from about 80 to 1000 K. Early results on test compounds without optimization of the beam optics demonstrate that excellent refined structures can be obtained from samples giving diffraction patterns too weak to be measured with conventional laboratory X-ray sources, fulfilling a major objective of the project. PMID:16699241

  11. Calculated Performance Of The Variable-Polarization Undulator Upgrade To The Daresbury SRS Soft X-Ray Undulator Beamline

    NASA Astrophysics Data System (ADS)

    Roper, Mark D.; Bird, Daniel T.

    2004-05-01

    The soft x-ray beamline 5U1 on the Daresbury Laboratory SRS currently uses a planar undulator, producing linearly polarized radiation in the range 100 to 1000 eV. The undulator is soon to be replaced by a variable-polarization device of the Apple II design. The aim is to produce circularly polarized light in the energy range 265 to 1000 eV, covering the K-edges of C, N & O, and the first row transition element L-edges. This will greatly enhance the provision of circularly polarized soft-x-rays on the SRS and open up new opportunities for experimenters. The device will also produce linear polarization with a selectable angle of polarization with respect to the orbit plane, which is currently unavailable on the SRS. In order to provide the coverage over this energy range, we are exploiting the relatively large emittance of the SRS to allow us to use the second and third harmonics even in circular polarization mode. This paper presents the expected beamline output in various polarization modes and the predicted degree of polarization.

  12. Cavity cooling below the recoil limit.

    PubMed

    Wolke, Matthias; Klinner, Julian; Keßler, Hans; Hemmerich, Andreas

    2012-07-01

    Conventional laser cooling relies on repeated electronic excitations by near-resonant light, which constrains its area of application to a selected number of atomic species prepared at moderate particle densities. Optical cavities with sufficiently large Purcell factors allow for laser cooling schemes, avoiding these limitations. Here, we report on an atom-cavity system, combining a Purcell factor above 40 with a cavity bandwidth below the recoil frequency associated with the kinetic energy transfer in a single photon scattering event. This lets us access a yet-unexplored regime of atom-cavity interactions, in which the atomic motion can be manipulated by targeted dissipation with sub-recoil resolution. We demonstrate cavity-induced heating of a Bose-Einstein condensate and subsequent cooling at particle densities and temperatures incompatible with conventional laser cooling. PMID:22767925

  13. Recoil Polarization for {delta} Excitation in Pion Electroproduction

    SciTech Connect

    Kelly, J.J.; Beise, E.J.; Breuer, H.; Chang, C.C.; Chant, N.S.; Roos, P.G.; Roche, R.E.; McAleer, S.; Meekins, D.; Chai, Z.; Gayou, O.; Bertozzi, W.; Gilad, S.; Higinbotham, D.W.; Rvachev, M.; Sirca, S.; Suleiman, R.; Zheng, X.; Zhu, L.; Jones, M.K.

    2005-09-02

    We measured angular distributions of recoil-polarization response functions for neutral pion electroproduction for W=1.23 GeV at Q{sup 2}=1.0 (GeV/c){sup 2}, obtaining 14 separated response functions plus 2 Rosenbluth combinations; of these, 12 have been observed for the first time. Dynamical models do not describe quantities governed by imaginary parts of interference products well, indicating the need for adjusting magnitudes and phases for nonresonant amplitudes. We performed a nearly model-independent multipole analysis and obtained values for Re (S{sub 1+}/M{sub 1+})=-(6.84{+-}0.15)% and Re (E{sub 1+}/M{sub 1+})=-(2.91{+-}0.19)% that are distinctly different from those from the traditional Legendre analysis based upon M{sub 1+} dominance and l{sub {pi}}{<=}1 truncation.

  14. Recoil polarization for delta excitation in pion electroproduction.

    PubMed

    Kelly, J J; Roché, R E; Chai, Z; Jones, M K; Gayou, O; Sarty, A J; Frullani, S; Aniol, K; Beise, E J; Benmokhtar, F; Bertozzi, W; Boeglin, W U; Botto, T; Brash, E J; Breuer, H; Brown, E; Burtin, E; Calarco, J R; Cavata, C; Chang, C C; Chant, N S; Chen, J-P; Coman, M; Crovelli, D; De Leo, R; Dieterich, S; Escoffier, S; Fissum, K G; Garde, V; Garibaldi, F; Georgakopoulus, S; Gilad, S; Gilman, R; Glashausser, C; Hansen, J-O; Higinbotham, D W; Hotta, A; Huber, G M; Ibrahim, H; Iodice, M; de Jager, C W; Jiang, X; Klimenko, A; Kozlov, A; Kumbartzki, G; Kuss, M; Lagamba, L; Laveissière, G; Lerose, J J; Lindgren, R A; Liyanage, N; Lolos, G J; Lourie, R W; Margaziotis, D J; Marie, F; Markowitz, P; McAleer, S; Meekins, D; Michaels, R; Milbrath, B D; Mitchell, J; Nappa, J; Neyret, D; Perdrisat, C F; Potokar, M; Punjabi, V A; Pussieux, T; Ransome, R D; Roos, P G; Rvachev, M; Saha, A; Sirca, S; Suleiman, R; Strauch, S; Templon, J A; Todor, L; Ulmer, P E; Urciuoli, G M; Weinstein, L B; Wijesooriya, K; Wojtsekhowski, B; Zheng, X; Zhu, L

    2005-09-01

    We measured angular distributions of recoil-polarization response functions for neutral pion electroproduction for W = 1.23 GeV at Q(2) = 1.0 (GeV/c)(2), obtaining 14 separated response functions plus 2 Rosenbluth combinations; of these, 12 have been observed for the first time. Dynamical models do not describe quantities governed by imaginary parts of interference products well, indicating the need for adjusting magnitudes and phases for nonresonant amplitudes. We performed a nearly model-independent multipole analysis and obtained values for Re (S(1+)/M(1+)) = -(6.84 +/- 0.15)% and Re (E(1+)/M(1+)) = -(2.91 +/- 0.19)% that are distinctly different from those from the traditional Legendre analysis based upon M1+ dominance and ll(pi) < or = 1 truncation. PMID:16196919

  15. Recoil Polarization for Delta Excitation in Pion Electroproduction

    SciTech Connect

    J. J. Kelly; R. E. Roche; Z. Chai; M. K. Jones; O. Gayou; A. J. Sarty; S. Frullani; K. Aniol; E. J. Beise; F. Benmokhtar; W. Bertozzi; W. U. Boeglin; T. Botto; E. J. Brash; H. Breuer; E. Brown; E. Burtin; J. R. Calarco; C. Cavata; C. C. Chang; N. S. Chant; J.-P. Chen; M. Coman; D. Crovelli; R. De Leo; S. Dieterich; S. Escoffier; K. G. Fissum; V. Garde; F. Garibaldi; S. Georgakopoulus; S. Gilad; R. Gilman; C. Glashausser; J.-O. Hansen; D. W. Higinbotham; A. Hotta; G. M. Huber; H. Ibrahim; M. Iodice; C. W. de Jager; X. Jiang; A. Klimenko; A. Kozlov; G. Kumbartzki; M. Kuss; L. Lagamba; G. Laveissiere; J. J. LeRose; R. A. Lindgren; N. Liyanage; G. J. Lolos; R. W. Lourie; D. J. Margaziotis; F. Marie; P. Markowitz; S. McAleer; D. Meekins; R. Michaels; B. D. Milbrath; J. Mitchell; J. Nappa; D. Neyret; C. F. Perdrisat; M. Potokar; V. A. Punjabi; T. Pussieux; R. D. Ransome; P. G. Roos; M. Rvachev; A. Saha; S. Sirca; R. Suleiman; S. Strauch; J. A. Templon; L. Todor; P. E. Ulmer; G. M. Urciuoli; L. B. Weinstein; K. Wijesooriya; B. Wojtsekhowski; X. Zheng; and L. Zhu

    2005-08-01

    We measured angular distributions of recoil-polarization response functions for neutral pion electroproduction for W=1.23 GeV at Q{sup 2}=1.0 (GeV/c){sup 2}, obtaining 14 separated response functions plus 2 Rosenbluth combinations; of these, 12 have been observed for the first time. Dynamical models do not describe quantities governed by imaginary parts of interference products well, indicating the need for adjusting magnitudes and phases for nonresonant amplitudes. We performed a nearly model-independent multipole analysis and obtained values for Re(S1+/M1+)=-(6.84+/-0.15)% and Re(E1+/M1+)=-(2.91+/-0.19)% that are distinctly different from those from the traditional Legendre analysis based upon M1+ dominance and sp truncation.

  16. Sound production by a recoiling system in the pempheridae and terapontidae.

    PubMed

    Parmentier, Eric; Fine, Michael L; Mok, Hin-Kiu

    2016-06-01

    Sound-producing mechanisms in fishes are extraordinarily diversified. We report here original mechanisms of three species from two families: the pempherid Pempheris oualensis, and the terapontids Terapon jarbua and Pelates quadrilineatus. All sonic mechanisms are built on the same structures. The rostral part of the swimbladder is connected to a pair of large sonic muscles from the head whereas the posterior part is fused with bony widenings of vertebral bodies. Two bladder regions are separated by a stretchable fenestra that allows forward extension of the anterior bladder during muscle contraction. A recoiling apparatus runs between the inner face of the anterior swimbladder and a vertebral body expansion. The elastic nature of the recoiling apparatus supports its role in helping the swimbladder to recover its initial position during sonic muscle relaxation. This system should aid fast contraction (between 100 and 250Hz) of sonic muscles. There are many differences between species in terms of the swimbladder and its attachments to the vertebral column, muscle origins, and morphology of the recoiling apparatus. The recoiling apparatus found in the phylogenetically-related families (Glaucosomatidae, Pempheridae, Terapontidae) could indicate a new character within the Percomorpharia. J. Morphol. 277:717-724, 2016. © 2016 Wiley Periodicals, Inc. PMID:27021214

  17. Thermal recoil force, telemetry, and the Pioneer anomaly

    SciTech Connect

    Toth, Viktor T.; Turyshev, Slava G.

    2009-02-15

    Precision navigation of spacecraft requires accurate knowledge of small forces, including the recoil force due to anisotropies of thermal radiation emitted by spacecraft systems. We develop a formalism to derive the thermal recoil force from the basic principles of radiative heat exchange and energy-momentum conservation. The thermal power emitted by the spacecraft can be computed from engineering data obtained from flight telemetry, which yields a practical approach to incorporate the thermal recoil force into precision spacecraft navigation. Alternatively, orbit determination can be used to estimate the contribution of the thermal recoil force. We apply this approach to the Pioneer anomaly using a simulated Pioneer 10 Doppler data set.

  18. Recombination in liquid xenon for low-energy recoils

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Mei, Dongming; Cubed Collaboration

    2014-09-01

    Detector response to low-energy recoils in sub-keV region is critical to detection of low-mass dark matter particles-WIMPS (Weakly interacting massive particles). The role of electron-ion recombination is important to the interpretation of the relation between ionization yield and scintillation yield, which are in general anti-correlated. Recent experimental results show that ionization yield increases down to keV range. This phenomenon contradicts general understanding for low energy recoils in the keV range in which direct excitation dominates. The explanation is that recombination becomes much less efficient when the track length is smaller than the thermalization distance of electrons. However, recombination rate is also proportional to ionization density, which is very high for keV recoils. To understand how recombination rate behaves for keV recoils, we calculated both initial recombination rate and volume recombination rate for keV recoils in liquid xenon. In this paper, we show the results of the calculated recombination rate as a function of recoil energy for both electronic recoils and nuclear recoils. Detector response to low-energy recoils in sub-keV region is critical to detection of low-mass dark matter particles-WIMPS (Weakly interacting massive particles). The role of electron-ion recombination is important to the interpretation of the relation between ionization yield and scintillation yield, which are in general anti-correlated. Recent experimental results show that ionization yield increases down to keV range. This phenomenon contradicts general understanding for low energy recoils in the keV range in which direct excitation dominates. The explanation is that recombination becomes much less efficient when the track length is smaller than the thermalization distance of electrons. However, recombination rate is also proportional to ionization density, which is very high for keV recoils. To understand how recombination rate behaves for keV recoils

  19. Neutron star recoils from anisotropic supernovae.

    NASA Astrophysics Data System (ADS)

    Janka, H.-T.; Mueller, E.

    1994-10-01

    Refering to recent hydrodynamical computations (Herant et al. 1992; Janka & Mueller 1993a) it is argued that neutron star kicks up to a few hundred km/s might be caused by a turbulent overturn of the matter between proto-neutron star and supernova shock during the early phase of the supernova explosion. These recoil speeds ("kick velocities") may be of the right size to explain the measured proper motions of most pulsars and do not require the presence of magnetic fields in the star. It is also possible that anisotropic neutrino emission associated with convective processes in the surface layers of the nascent neutron star (Burrows & Fryxell 1992; Janka & Mueller 1993b; Mueller 1993) provides an acceleration mechanism (Woosley 1987), although our estimates indicate that the maximum attainable velocities are around 200km/s. Yet, it turns out to be very unlikely that the considered stochastic asymmetries of supernova explosions are able to produce large enough recoils to account for pulsar velocities in excess of about 500km/s, which can be found in the samples of Harrison et al. (1993) and Taylor et al. (1993). It is concluded that other acceleration mechanisms have to be devised to explain the fast motion of PSR 2224+65 (transverse speed >=800km/s Cordes et al. 1993) and the high-velocities deduced from associations between supernova remnants and nearby young pulsars (e.g., Frail & Kulkarni 1991; Stewart et al. 1993; Caraveo 1993).

  20. Reaction mechanisms in the system {sup 20}Ne+{sup 165}Ho: Measurement and analysis of forward recoil range distributions

    SciTech Connect

    Singh, D.; Ali, R.; Ansari, M. Afzal; Rashid, M. H.; Guin, R.; Das, S. K.

    2009-05-15

    Keeping in view the study of complete and incomplete fusion of heavy ions with a target, the forward recoil range distributions of several evaporation residues produced at 164 MeV {sup 20}Ne-ion beam energy have been measured for the system {sup 20}Ne+{sup 165}Ho. The recoil catcher activation technique followed by off-line gamma spectroscopy has been employed. Measured forward recoil range distributions of these evaporation residues show evidence of several incomplete fusion channels in addition to complete fusion. The entire and partial linear momentum transfers inferred from these recoil range distributions were used to identify the evaporation residues formed by complete and incomplete fusion mechanisms. The results indicate the occurrence of incomplete fusion involving the breakup of {sup 20}Ne into {sup 4}He+{sup 16}O and/or {sup 8}Be+{sup 12}C followed by fusion of one of the fragments with target nucleus {sup 165}Ho. Complete and incomplete fusion reaction channels have been identified in the production of various evaporation residues and an attempt has been made to separate out relative contributions of complete and incomplete fusion components from the analysis of the measured recoil range distribution data. The total contribution of complete and incomplete fusion channels has also been estimated.

  1. A gun recoil system employing a magnetorheological fluid damper

    NASA Astrophysics Data System (ADS)

    Li, Z. C.; Wang, J.

    2012-10-01

    This research aims to design and control a full scale gun recoil buffering system which works under real firing impact loading conditions. A conventional gun recoil absorber is replaced with a controllable magnetorheological (MR) fluid damper. Through dynamic analysis of the gun recoil system, a theoretical model for optimal design and control of the MR fluid damper for impact loadings is derived. The optimal displacement, velocity and optimal design rules are obtained. By applying the optimal design theory to protect against impact loadings, an MR fluid damper for a full scale gun recoil system is designed and manufactured. An experimental study is carried out on a firing test rig which consists of a 30 mm caliber, multi-action automatic gun with an MR damper mounted to the fixed base through a sliding guide. Experimental buffering results under passive control and optimal control are obtained. By comparison, optimal control is better than passive control, because it produces smaller variation in the recoil force while achieving less displacement of the recoil body. The optimal control strategy presented in this paper is open-loop with no feedback system needed. This means that the control process is sensor-free. This is a great benefit for a buffering system under impact loading, especially for a gun recoil system which usually works in a harsh environment.

  2. Difference between a Photon's Momentum and an Atom's Recoil

    SciTech Connect

    Gibble, Kurt

    2006-08-18

    When an atom absorbs a photon from a laser beam that is not an infinite plane wave, the atom's recoil is less than ({Dirac_h}/2{pi})k in the propagation direction. We show that the recoils in the transverse directions produce a lensing of the atomic wave functions, which leads to a frequency shift that is not discrete but varies linearly with the field amplitude and strongly depends on the atomic state detection. The same lensing effect is also important for microwave atomic clocks. The frequency shifts are of the order of the naive recoil shift for the transverse wave vector of the photons.

  3. Monte Carlo Simulation of the DRAGON Recoil Mass Spectrometer End Detectors

    NASA Astrophysics Data System (ADS)

    Veloce, Laurelle; Fallis, J.; Ruiz, C.; Reeve, S.

    2010-11-01

    DRAGON (Detector of Recoils And Gammas Of Nuclear reactions), located at TRIUMF in Vancouver, BC, is designed to study radiative capture reactions relevant in astrophysical nucleosynthesis processes. These types of reactions help us understand the production of heavy elements in the Universe. An accelerated beam of a given isotope is sent through a gas target where the reactions take place. Magnetic and electrostatic dipoles separate the recoils from the original beam particles, selecting particles according to charge and mass. The products of the nuclear reactions are then detected at the end of DRAGON by heavy ion detectors, which constitute two micro channel plate (MCP) detectors for time of flight measurements, used in conjunction with a Double Sided Silicon Strip Detector (DSSSD) or an ionization chamber (IC). The DSSSD gives information on number of counts, total energy deposited, and position while the IC measures the number of counts and the energy deposited as the particle travels through the chamber. In order to determine which set up is ideal for a given reaction and energy range, we have developed a Monte Carlo simulation of these end detectors. The program simulates both recoil and beam particles, and takes into account effects such as straggling and pulse height defect. Reaction kinematics in the gas target are also considered. Comparisons to recent experimental data will be discussed.

  4. Exerpts from the history of alpha recoils.

    PubMed

    Samuelsson, Christer

    2011-05-01

    Any confined air volume holding radon ((222)Rn) gas bears a memory of past radon concentrations due to (210)Pb (T(1/2) = 22 y) and its progenies entrapped in all solid objects in the volume. The efforts of quantifying past radon exposures by means of the left-behind long-lived radon progenies started in 1987 with this author's unsuccessful trials of removing (214)Po from radon exposed glass objects. In this contribution the history and different techniques of assessing radon exposure to man in retrospect will be overviewed. The main focus will be on the implantation of alpha recoils into glass surfaces, but also potential traps in radon dwellings will be discussed. It is concluded that for a successful retrospective application, three crucial imperatives must be met, i.e. firstly, the object must persistently store a certain fraction of the created (210)Pb atoms, secondly, be resistant over decades towards disturbances from the outside and thirdly, all (210)Pb atoms analysed must originate from airborne radon only. For large-scale radon epidemiological studies, non-destructive and inexpensive measurement techniques are essential. Large-scale studies cannot be based on objects rarely found in dwellings or not available for measurements. PMID:21306801

  5. Scintillation Efficiency of Liquid Xenon for Low Energy Nuclear Recoils

    NASA Astrophysics Data System (ADS)

    Wongjirad, Taritree; Ni, Kaixuan; Manzur, Angel; Kastens, Louis; McKinsey, Daniel

    2008-04-01

    In early 2006, the XENON and ZEPLIN collaborations announced highly stringent upper limits on the WIMP-nucleon cross-section. However, the dominant systematic uncertainty in these limits is due to the uncertainty in the nuclear recoil scintillation efficiency (NRSE) for liquid xenon. The NRSE is defined as the amount of scintillation produced by nuclear recoils, divided by the amount of scintillation produced by electron recoils, per unit energy. Though the NRSE has been measured by several groups, its value at the low energies most important for the liquid xenon WIMP searches has a large uncertainty. Furthermore, the NRSE may vary with the strength of the electric field in the liquid xenon. In an attempt to reduce these uncertainties, we have measured the NRSE down to 5 keV nuclear recoil energy for various electric fields.

  6. Recoil splitting of x-ray-induced optical fluorescence

    SciTech Connect

    Gavrilyuk, S.; Aagren, H.; Gel'mukhanov, F.; Sun, Y.-P.; Levin, S.

    2010-03-15

    We show that the anisotropy of the recoil velocity distribution of x-ray-ionized atoms or molecules leads to observable splittings in subsequent optical fluorescence or absorption when the polarization vector of the x rays is parallel to the momentum of the fluorescent photons. The order of the magnitude of the recoil-induced splitting is about 10 {mu}eV, which can be observed using Fourier or laser-absorption spectroscopic techniques.

  7. RECOILING SUPERMASSIVE BLACK HOLES IN SPIN-FLIP RADIO GALAXIES

    SciTech Connect

    Liu, F. K.; Wang Dong; Chen Xian

    2012-02-20

    Numerical relativity simulations predict that coalescence of supermassive black hole (SMBH) binaries leads not only to a spin flip but also to a recoiling of the merger remnant SMBHs. In the literature, X-shaped radio sources are popularly suggested to be candidates for SMBH mergers with spin flip of jet-ejecting SMBHs. Here we investigate the spectral and spatial observational signatures of the recoiling SMBHs in radio sources undergoing black hole spin flip. Our results show that SMBHs in most spin-flip radio sources have mass ratio q {approx}> 0.3 with a minimum possible value q{sub min} {approx_equal} 0.05. For major mergers, the remnant SMBHs can get a kick velocity as high as 2100 km s{sup -1} in the direction within an angle {approx}< 40 Degree-Sign relative to the spin axes of remnant SMBHs, implying that recoiling quasars are biased to be with high Doppler-shifted broad emission lines while recoiling radio galaxies are biased to large apparent spatial off-center displacements. We also calculate the distribution functions of line-of-sight velocity and apparent spatial off-center displacements for spin-flip radio sources with different apparent jet reorientation angles. Our results show that the larger the apparent jet reorientation angle is, the larger the Doppler-shifting recoiling velocity and apparent spatial off-center displacement will be. We investigate the effects of recoiling velocity on the dust torus in spin-flip radio sources and suggest that recoiling of SMBHs would lead to 'dust-poor' active galactic nuclei. Finally, we collect a sample of 19 X-shaped radio objects and for each object give the probability of detecting the predicted signatures of recoiling SMBH.

  8. Warm target recoil ion momentum spectroscopy for fragmentation of molecular hydrogen by ultrashort laser pulses.

    PubMed

    Liu, Jia; Wu, Jian; Czasch, Achim; Zeng, Heping

    2009-07-20

    We demonstrate warm target recoil ion momentum spectroscopy for the fragmentation dynamics of the warm hydrogen molecules at room temperature. The thermal movement effect of the warm molecule is removed by using a correction algorithm in the momentum space. Based on the reconstructed three-dimensional momentum vectors as well as the kinetic energy release spectra, different vibrational states of the H(2)(+) ground state are clearly visible and the internuclear separation for charge resonance enhanced ionization of the second electron is identified. The results show adequate accordance with the former experiments using other techniques. PMID:19654636

  9. Median recoil direction as a WIMP directional detection signal

    NASA Astrophysics Data System (ADS)

    Green, Anne M.; Morgan, Ben

    2010-03-01

    Direct detection experiments have reached the sensitivity to detect dark matter weakly interacting massive particles (WIMPs). Demonstrating that a putative signal is due to WIMPs, and not backgrounds, is a major challenge, however. The direction dependence of the WIMP scattering rate provides a potential WIMP “smoking gun.” If the WIMP distribution is predominantly smooth, the Galactic recoil distribution is peaked in the direction opposite to the direction of Solar motion. Previous studies have found that, for an ideal detector, of order 10 WIMP events would be sufficient to reject isotropy, and rule out an isotropic background. We examine how the median recoil direction could be used to confirm the WIMP origin of an anisotropic recoil signal. Specifically, we determine the number of events required to confirm the direction of solar motion as the median inverse recoil direction at 95% confidence. We find that for zero background 31 events are required, a factor of ˜2 more than are required to simply reject isotropy. We also investigate the effect of a nonzero isotropic background. As the background rate is increased the number of events required increases, initially fairly gradually and then more rapidly, once the signal becomes subdominant. We also discuss the effect of features in the speed distribution at large speeds, as found in recent high resolution simulations, on the median recoil direction.

  10. Median recoil direction as a WIMP directional detection signal

    SciTech Connect

    Green, Anne M.; Morgan, Ben

    2010-03-15

    Direct detection experiments have reached the sensitivity to detect dark matter weakly interacting massive particles (WIMPs). Demonstrating that a putative signal is due to WIMPs, and not backgrounds, is a major challenge, however. The direction dependence of the WIMP scattering rate provides a potential WIMP 'smoking gun'. If the WIMP distribution is predominantly smooth, the Galactic recoil distribution is peaked in the direction opposite to the direction of Solar motion. Previous studies have found that, for an ideal detector, of order 10 WIMP events would be sufficient to reject isotropy, and rule out an isotropic background. We examine how the median recoil direction could be used to confirm the WIMP origin of an anisotropic recoil signal. Specifically, we determine the number of events required to confirm the direction of solar motion as the median inverse recoil direction at 95% confidence. We find that for zero background 31 events are required, a factor of {approx}2 more than are required to simply reject isotropy. We also investigate the effect of a nonzero isotropic background. As the background rate is increased the number of events required increases, initially fairly gradually and then more rapidly, once the signal becomes subdominant. We also discuss the effect of features in the speed distribution at large speeds, as found in recent high resolution simulations, on the median recoil direction.

  11. Calculation of recoil implantation profiles using known range statistics

    NASA Technical Reports Server (NTRS)

    Fung, C. D.; Avila, R. E.

    1985-01-01

    A method has been developed to calculate the depth distribution of recoil atoms that result from ion implantation onto a substrate covered with a thin surface layer. The calculation includes first order recoils considering projected range straggles, and lateral straggles of recoils but neglecting lateral straggles of projectiles. Projectile range distributions at intermediate energies in the surface layer are deduced from look-up tables of known range statistics. A great saving of computing time and human effort is thus attained in comparison with existing procedures. The method is used to calculate recoil profiles of oxygen from implantation of arsenic through SiO2 and of nitrogen from implantation of phosphorus through Si3N4 films on silicon. The calculated recoil profiles are in good agreement with results obtained by other investigators using the Boltzmann transport equation and they also compare very well with available experimental results in the literature. The deviation between calculated and experimental results is discussed in relation to lateral straggles. From this discussion, a range of surface layer thickness for which the method applies is recommended.

  12. Stimulated Rayleigh resonances and recoil-induced effects

    SciTech Connect

    Courtois, J.Y.; Grynberg, G.

    1996-12-31

    The organization of this paper is as follows. We present in Section II the basic ideas about stimulated Rayleigh scattering by considering more particularly the situation where it arises from a relaxation process going on in the material system, and we describe a few experimental observations made in atomic and molecular physics. We then consider the case of nonstationary two-level atoms, and we derive the shape and characteristics of the recoil-induced resonances (Section III). In particular, we show that these resonances can be interpreted either as originating from a stimulated Rayleigh effect or as a stimulated Raman phenomena between atomic energy-momentum states having different momenta. Finally, to make a clear distinction between the physical phenomena that pertain directly to recoil-induced processes (i.e., that actually permit the measurement of the photon recoil) and those for which the introduction of the recoil constitutes a mere physical convenience, we review in Section IV some indisputable manifestations of the photon recoil in atomic and molecular physics. 92 refs., 22 figs.

  13. Nuclear Recoil Calibration of DarkSide-50

    NASA Astrophysics Data System (ADS)

    Edkins, Erin; DarkSide Collaboration

    2016-03-01

    DarkSide-50 dark matter experiment is a liquid argon time projection chamber (TPC) surrounded by a liquid scintillator active neutron veto, designed for the direct detection of Weakly Interacting Massive Particles (WIMPs). The success of such an experiment is dependent upon a detailed understanding of both the expected signal and backgrounds, achieved using radioactive calibration sources of known energies. Nuclear recoils provide a measurement of both the expected signal and the most dangerous background, as nuclear recoils from neutrons cannot be distinguished from a dark matter signal on an event-by-event basis in the TPC. In this talk, I will present the DS-50 calibration system, and analysis of the results of the calibration of DarkSide-50 to nuclear recoils using radioactive neutron sources. See also the DS-50 presentations by X. Xiang and G. Koh.

  14. Rupture and recoil of bent-core liquid crystal filaments.

    PubMed

    Salili, S M; Ostapenko, T; Kress, O; Bailey, C; Weissflog, W; Harth, K; Eremin, A; Stannarius, R; Jákli, A

    2016-05-25

    The recoil process of free-standing liquid crystal filaments is investigated experimentally and theoretically. We focus on two aspects, the contraction speed of the filament and a spontaneously formed undulation instability. At the moment of rupture, the filaments buckle similarly to the classical Euler buckling of elastic rods. The tip velocity decays with decreasing filament length. The wavelength of buckling affinely decreases with the retracting filament tip. The energy gain related to the decrease of the total length and surface area of the filaments is mainly dissipated by layer rearrangements during thickening of the fibre. A flow back into the meniscus is relevant only in the final stage of the recoil process. We introduce a model for the quantitative description of the filament retraction speed. The dynamics of this recoil behaviour may find relevance as a model for biology-related filaments. PMID:27140824

  15. Accounting for Recoil Effects in Geochronometers: A New Model Approach

    NASA Astrophysics Data System (ADS)

    Lee, V. E.; Huber, C.

    2012-12-01

    A number of geologically important chronometers are affected by, or owe their utility to, the "recoil effect". This effect describes the physical displacement of a nuclide due to energetic nuclear processes such as radioactive alpha decay (as in the case of various parent-daughter pairs in the uranium-series decay chains, and Sm-Nd), as well as neutron irradiation (in the case of the methodology for the 40Ar/39Ar dating method). The broad range of affected geochronometers means that the recoil effect can impact a wide range of dating method applications in the geosciences, including but not limited to: Earth surface processes, paleoclimate, volcanic processes, and cosmochemistry and planetary evolution. In particular, the recoil effect can have a notable impact on the use of fine grains (silt- and clay-sized particles) for geochronometric dating purposes. This is because recoil-induced loss of a nuclide from the surfaces of a grain can create an isotopically-depleted outer rind, and for small grains, this depleted rind can be volumetrically significant. When this recoil loss is measurable and occurs in a known time-dependent fashion, it can usefully serve as the basis for chronometers (such as the U-series comminution age method); in other cases recoil loss from fine particles creates an unwanted deviation from expected isotope values (such as for the Ar-Ar method). To improve both the accuracy and precision of ages inferred from geochronometric systems that involve the recoil of a key nuclide from small domains, it is necessary to quantify the magnitude of the recoil loss of that particular nuclide. It is also necessary to quantitatively describe the effect of geological processes that can alter the outer surface of grains, and hence the isotopically-depleted rind. Here we present a new mathematical and numerical model that includes two main features that enable enhanced accuracy and precision of ages determined from geochronometers. Since the surface area of the

  16. Recoil release of fission products from nuclear fuel

    NASA Astrophysics Data System (ADS)

    Wise, C.

    1985-10-01

    An analytical approximation is developed for calculating recoil release from nuclear fuel into gas filled interspaces. This expression is evaluated for a number of interspace geometries and shown to be generally accurate to within about 10% by comparison with numerical calculations. The results are applied to situations of physical interest and it is demonstrated that recoil can be important when modelling fission product release from low temperature CAGR pin failures. Furthermore, recoil can contribute significantly in experiments on low temperature fission product release, particularly where oxidation enhancement of this release is measured by exposing the fuel to CO 2. The calculations presented here are one way of allowing for this, other methods are suggested.

  17. Fission product release from nuclear fuel by recoil and knockout

    NASA Astrophysics Data System (ADS)

    Lewis, B. J.

    1987-03-01

    An analytical model has been developed to describe the fission product release from nuclear fuel arising from the surface-fission release mechanisms of recoil and knockout. Release expressions are evaluated and compared to the short-lived activity measurements from in-reactor experiments with intact operating fuel. Recoil is shown to be an important process for releasing fission products from free UO 2 surfaces into the fuel-to-sheath gap. The model is also applied to tramp uranium in a power reactor primary heat transport circuit where it is demonstrated that recoil is the dominant release mechanism for small particles of fuel which are deposited on in-core surfaces. A methodology is established whereby release from surface contamination can be distinguished from that of fuel pin failure.

  18. Ionic recoil energies in the Coulomb explosion of metal clusters

    NASA Astrophysics Data System (ADS)

    Teuber, S.; Döppner, T.; Fennel, T.; Tiggesbäumker, J.; Meiwes-Broer, K. H.

    The photoionization of metal clusters in intense femtosecond laser fields has been studied. In contrast to an experiment on atoms, the interaction in this case leads to a very efficient and high charging of the particle where tens of electrons per atom are ejected from the cluster. The recoil energy distribution of the atomic fragment ions was measured which in the case of lead clusters exceeds 180 keV. Enhanced charging efficiency which we observed earlier for specific pulse conditions is not reflected in the recoil energy spectra. Both the average and the maximum energies decrease with increasing laser pulse width. This is in good agreement with molecular dynamics calculations.

  19. Status and Prospects of the HERMES Recoil Detector

    SciTech Connect

    Mussgiller, Andreas

    2009-08-04

    Hard exclusive processes provide access to generalized parton distributions (GPDs), which extend our description of the nucleon structure beyond the standard parton distributions. The Deeply Virtual Compton Scattering (DVCS) process provides the theoretically cleanest access to the GPDs. For the final two years of data taking, a recoil detector was installed at HERMES for the purpose of improving the ability to measure hard-exclusive processes. In addition the recoil detector allows one to measure the individual background contributions which can be used to refine previously published results on DVCS. The progress of the ongoing data analysis is presented.

  20. Direct Measurement of Photon Recoil from a Levitated Nanoparticle

    NASA Astrophysics Data System (ADS)

    Jain, Vijay; Gieseler, Jan; Moritz, Clemens; Dellago, Christoph; Quidant, Romain; Novotny, Lukas

    2016-06-01

    The momentum transfer between a photon and an object defines a fundamental limit for the precision with which the object can be measured. If the object oscillates at a frequency Ω0 , this measurement backaction adds quanta ℏΩ0 to the oscillator's energy at a rate Γrecoil, a process called photon recoil heating, and sets bounds to coherence times in cavity optomechanical systems. Here, we use an optically levitated nanoparticle in ultrahigh vacuum to directly measure Γrecoil. By means of a phase-sensitive feedback scheme, we cool the harmonic motion of the nanoparticle from ambient to microkelvin temperatures and measure its reheating rate under the influence of the radiation field. The recoil heating rate is measured for different particle sizes and for different excitation powers, without the need for cavity optics or cryogenic environments. The measurements are in quantitative agreement with theoretical predictions and provide valuable guidance for the realization of quantum ground-state cooling protocols and the measurement of ultrasmall forces.

  1. Direct Measurement of Photon Recoil from a Levitated Nanoparticle.

    PubMed

    Jain, Vijay; Gieseler, Jan; Moritz, Clemens; Dellago, Christoph; Quidant, Romain; Novotny, Lukas

    2016-06-17

    The momentum transfer between a photon and an object defines a fundamental limit for the precision with which the object can be measured. If the object oscillates at a frequency Ω_{0}, this measurement backaction adds quanta ℏΩ_{0} to the oscillator's energy at a rate Γ_{recoil}, a process called photon recoil heating, and sets bounds to coherence times in cavity optomechanical systems. Here, we use an optically levitated nanoparticle in ultrahigh vacuum to directly measure Γ_{recoil}. By means of a phase-sensitive feedback scheme, we cool the harmonic motion of the nanoparticle from ambient to microkelvin temperatures and measure its reheating rate under the influence of the radiation field. The recoil heating rate is measured for different particle sizes and for different excitation powers, without the need for cavity optics or cryogenic environments. The measurements are in quantitative agreement with theoretical predictions and provide valuable guidance for the realization of quantum ground-state cooling protocols and the measurement of ultrasmall forces. PMID:27367388

  2. Isotopic disequilibrium of uranium: alpha-recoil damage and preferential solution effects

    SciTech Connect

    Fleischer, R.L.

    1980-02-29

    Preferential loss of uranium-234 relative to uranium-238 from rocks into solutions has long been attributed to recoiling alpha-emitting nuclei. Direct evidence has been obtained for two mechanisms, first, recoil ejection from grains, and now release by natural etching of alpha-recoil tracks. The observations have implications for radon emanation and for the storage of alpha-emitting radioactive waste.

  3. In-beam studies of proton emitters using the Recoil-Decay Tagging method

    SciTech Connect

    Seweryniak, D.; Woods, P. J.; Ressler, J.; Davids, C. N.; Heinz, A.; Sonzogni, A.; Uusitalo, J.; Walters, W. B.; Caggiano, J.; Carpenter, M. P.; Cizewski, J. A.; Davinson, T.; Ding, K. Y.; Fotiades, N.; Garg, U.; Janssens, R. V. F.; Khoo, T.-L.; Kondev, F.; Lauritsen, T.; Lister, C. J.; Reiter, P.; Shergur, J.; Wiedenhoever, I.

    2000-01-19

    The last five years have witnessed a rapid increase in the volume of data on proton decaying nuclei. The path was led by decay studies with recoil mass separators equipped with double-sided Si strip detectors. The properties of many proton-decaying states were deduced, which triggered renewed theoretical interest in the process of proton decay. The decay experiments were closely followed by in-beam {gamma}-ray studies which extended one's knowledge of high-spin states of proton emitters. The unparalleled selectivity of the Recoil-Decay Tagging method combined with the high efficiency of large arrays of Ge detectors allowed, despite small cross sections and overwhelming background from strong reaction channels, the observation of excited states in several proton emitters. Recently, in-beam studies of the deformed proton emitters {sup 141}Ho and {sup 131}Eu have been performed with the GAMMASPHERE array of Ge detectors and the Fragment Mass Analyzer at ATLAS. Evidence was found for rotational bands in {sup 141}Ho and {sup 131}Eu. The deformations and the single-particle configurations proposed for the proton emitting states from the earlier proton-decay studies were confronted with the assignments deduced based on the in-beam data. It should be noted that the cross section for populating {sup 131}Eu is only about 50 nb, and it represents the weakest channel ever studied in an in-beam experiment.

  4. A recoil resilient lumen support, design, fabrication and mechanical evaluation

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Arash; Ali, Mohamed Sultan Mohamed; Takahata, Kenichi; Al-Sarawi, Said; Abbott, Derek

    2013-06-01

    Stents are artificial implants that provide scaffolding to a cavity inside the body. This paper presents a new luminal device for reducing the mechanical failure of stents due to recoil, which is one of the most important issues in stenting. This device, which we call a recoil-resilient ring (RRR), is utilized standalone or potentially integrated with existing stents to address the problem of recoil. The proposed structure aims to minimize the need for high-pressure overexpansion that can induce intra-luminal trauma and excess growth of vascular tissue causing later restenosis. The RRR is an overlapped open ring with asymmetrical sawtooth structures that are intermeshed. These teeth can slide on top of each other, while the ring is radially expanded, but interlock step-by-step so as to keep the final expanded state against compressional forces that normally cause recoil. The RRRs thus deliver balloon expandability and, when integrated with a stent, bring both radial rigidity and longitudinal flexibility to the stent. The design of the RRR is investigated through finite element analysis (FEA), and then the devices are fabricated using micro-electro-discharge machining of 200-µm-thick Nitinol sheet. The standalone RRR is balloon expandable in vitro by 5-7 Atm in pressure, which is well within the recommended in vivo pressure ranges for stenting procedures. FEA compression tests indicate 13× less reduction of the cross-sectional area of the RRR compared with a typical stainless steel stent. These results also show perfect elastic recovery of the RRR after removal of the pressure compared to the remaining plastic deformations of the stainless steel stent. On the other hand, experimental loading tests show that the fabricated RRRs have 2.8× radial stiffness compared to a two-column section of a commercial stent while exhibiting comparable elastic recovery. Furthermore, testing of in vitro expansion in a mock artery tube shows around 2.9% recoil, approximately 5-11

  5. A Study of Intrinsic Statistical Variation for Nuclear Recoils in Germanium Detector for Dark Matter Searches

    NASA Astrophysics Data System (ADS)

    Wei, Wenzhao; Wang, Lu; Mei, Dongming; Cubed Collaboration

    2015-10-01

    The intrinsic statistical variation in nuclear recoils is a critical part that cannot be ignored when calculating energy resolution of germanium detector in detecting WIMPs. Have a good theoretical understanding about the intrinsic statistical variation in nuclear recoils and develop a model for calculating this variation based on experimental data is of great importance in determining the width of nuclear recoil band, which is used to identify nuclear recoils events. Hence, we designed an experiment to study the intrinsic statistical variation in nuclear recoils with various gamma sources and AmBe neutron source. In addition, we developed a theoretical model to calculate the intrinsic statistical variation in nuclear recoils based on data from AmBe neutron source. In this work, we will present our data and theoretical calculation for nuclear recoils. This work is supported by NSF in part by the NSF PHY-0758120, DOE grant DE-FG02-10ER46709, and the State of South Dakota.

  6. Mass and energy dispersive recoil spectrometry of MOCVD grown Al xGa 1- xAs

    NASA Astrophysics Data System (ADS)

    Walker, S. R.; Johnston, P. N.; Bubb, I. F.; Stannard, W. B.; Cohen, D. D.; Dytlewski, N.; Hult, M.; Whitlow, H. J.; Zaring, C.; Östling, M.; Andersson, M.

    1994-12-01

    Mass and energy dispersive Recoil Spectrometry (RS) has been employed to study stoichiometric variations in Al xGa 1- xAs layers. Quantitative determination of x is an important problem in the production of device materials which is not easily solved with standard techniques. Rutherford Backscattering Spectrometry (RBS) has been used extensively in semiconductor research but overlap of signals in the backscattered ion spectrum is an important limitation in the analysis of materials such as Al xGa 1- xAs which contain elements of low and similar masses. Particle Induced X-ray Emission (PIXE) analysis has good elemental resolution for this class of materials but provides little depth resolution. RS enables the determination of separate energy spectra for individual or small groups of isotopes. This allows it to be used in many situations where RBS is inappropriate. It employs a heavy ion beam to cause constituent nuclei to recoil from the target, and a Time of Flight and Energy (ToF- E) detector to detect these recoiling nuclei. Appropriate mass selection of the ToF- E data allows the determination of depth distributions for each element.

  7. Characterization of the CRESST detectors by neutron induced nuclear recoils

    NASA Astrophysics Data System (ADS)

    Coppi, C.; Ciemniak, C.; von Feilitzsch, F.; Gütlein, A.; Hagn, H.; Isaila, C.; Jochum, J.; Kimmerle, M.; Lanfranchi, J.-C.; Pfister, S.; Potzel, W.; Rau, W.; Roth, S.; Rottler, K.; Sailer, C.; Scholl, S.; Usherov, I.; Westphal, W.

    CRESST is an experiment for the direct detection of dark matter particles via nuclear recoils. The CRESST detectors, based on CaWO4 scintillating crystals, are able to discriminate γ and β background by simultaneously measuring the light and phonon signals produced by particle interactions. The discrimination of the background is possible because of the different light output (Quenching Factor, QF) for nuclear and electron recoils. In this article a measurement is shown, aimed at the determination of the QFs of the different nuclei (O, Ca, W) of the detector crystal at 40-60 mK using an 11 MeV neutron beam produced at the Maier-Leibnitz-Laboratorium in Garching (MLL).

  8. Recoiling supermassive black holes: a search in the nearby universe

    SciTech Connect

    Lena, D.; Robinson, A.; Axon, D. J.; Merritt, D.; Marconi, A.; Capetti, A.; Batcheldor, D.

    2014-11-10

    The coalescence of a binary black hole can be accompanied by a large gravitational recoil due to anisotropic emission of gravitational waves. A recoiling supermassive black hole (SBH) can subsequently undergo long-lived oscillations in the potential well of its host galaxy, suggesting that offset SBHs may be common in the cores of massive ellipticals. We have analyzed Hubble Space Telescope archival images of 14 nearby core ellipticals, finding evidence for small (≲ 10 pc) displacements between the active galactic nucleus (AGN; the location of the SBH) and the center of the galaxy (the mean photocenter) in 10 of them. Excluding objects that may be affected by large-scale isophotal asymmetries, we consider six galaxies to have detected displacements, including M87, where a displacement was previously reported by Batcheldor et al. In individual objects, these displacements can be attributed to residual gravitational recoil oscillations following a major or minor merger within the last few gigayears. For plausible merger rates, however, there is a high probability of larger displacements than those observed, if SBH coalescence took place in these galaxies. Remarkably, the AGN-photocenter displacements are approximately aligned with the radio source axis in four of the six galaxies with displacements, including three of the four having relatively powerful kiloparsec-scale jets. This suggests intrinsic asymmetries in radio jet power as a possible displacement mechanism, although approximate alignments are also expected for gravitational recoil. Orbital motion in SBH binaries and interactions with massive perturbers can produce the observed displacement amplitudes but do not offer a ready explanation for the alignments.

  9. Recoil Polarization for Neutral Pion Electroproduction near the Delta Resonance

    SciTech Connect

    Kelly, James J

    2003-10-01

    We have measured angular distributions for recoil polarization in the p(e,e'p)p0 reaction at Q2»1(GeV/c)2 with 1.16 |lte| W |lte|1.36 GeV across the D resonance. The data are compared with representative models and a truncated Legendre analysis is compared with a more general multipole analysis.

  10. Absolute cross section for recoil detection of deuterium

    NASA Astrophysics Data System (ADS)

    Besenbacher, F.; Stensgaard, I.; Vase, P.

    1986-04-01

    The D( 4He, D) 4He cross section used for recoil detection of deuterium (D) has been calibrated on an absolute scale against the cross section of the D( 3He, α)p nuclear reaction which is often used for D profiling. For 4He energies ranging from 0.8 to ~1.8 MeV. the D( 4He, D) 4He cross section varies only slightly with incident energy and recoil angle θ (for 0° ⩽ 8 ⩽ 35°) and has a value of ~ 500 mb/sr which is significantly higher than the ~ 65 mb/sr c.m.s. cross section of the D( 3He, α)p nuclear reaction. For 4He energies ranging from ~ 1.9 to ~ 2.3 MeV, the D( 4He,D) 4He cross section exhibits a fairly narrow resonance peak (fwhm ~ 70 keV), with a maximum value (for θ = 0°) of ~ 8.5 b/sr, corresponding to a 4He energy of ~ 2130 keV. The large values of the cross section in connection with the described energy dependence makes the use of forward-recoil detection of D attractive for many purposes, e.g., D Jepth profiling (with an extreme gain in sensitivity), absolute concentration or coverage measurements, and lattice-location experiments by transmission channeling.

  11. The recoil proton polarization in. pi. p elastic scattering

    SciTech Connect

    Seftor, C.J.

    1988-09-01

    The polarization of the recoil proton for ..pi../sup +/p and ..pi../sup -/p elastic scattering has been measured for various angles at 547 MeV/c and 625 MeV/c by a collaboration involving The George Washington University; the University of California, Los Angeles; and Abilene Christian University. The experiment was performed at the P/sup 3/ East experimental area of the Los Alamos Meson Physics Facility. Beam intensities varied from 0.4 to 1.0 x 10/sup 7/ ..pi../sup -/'s/sec and from 3.0 to 10.0 x 10/sup 7/ ..pi../sup +/'s/sec. The beam spot size at the target was 1 cm in the horizontal direction by 2.5 cm in the vertical direction. A liquid-hydrogen target was used in a flask 5.7 cm in diameter and 10 cm high. The scattered pion and recoil proton were detected in coincidence using the Large Acceptance Spectrometer (LAS) to detect and momentum analyze the pions and the JANUS recoil proton polarimeter to detect and measure the polarization of the protons. Results from this experiment are compared with previous measurements of the polarization, with analyzing power data previously taken by this group, and to partial-wave analysis predictions. 12 refs., 53 figs., 18 tabs.

  12. Lifetime measurement of 2+- state in 74Zn by recoil-distance Doppler-shift method

    NASA Astrophysics Data System (ADS)

    Niikura, M.; Mouginot, B.; Azaiez, F.; Franchoo, S.; Matea, I.; Stefan, I.; Verney, D.; Assie, M.; Bednarczyk, P.; Borcea, C.; Burger, A.; Burgunder, G.; Buta, A.; Cáceres, L.; Cléement, E.; Coquard, L.; de Angelis, G.; de France, G.; de Oliveira Santos, F.; Dewald, A.; Dijon, A.; Dombradi, Z.; Fiori, E.; Fransen, C.; Friessner, G.; Gaudefroy, L.; Georgiev, G.; Grévy, S.; Hackstein, M.; Harakeh, M. N.; Ibrahim, F.; Kamalou, O.; Kmiecik, M.; Lozeva, R.; Maj, A.; Mihai, C.; Möller, O.; Myalski, S.; Negoita, F.; Pantelica, D.; Perrot, L.; Pissulla, Th.; Rotaru, F.; Rother, W.; Scarpaci, J. A.; Stodel, C.; Thomas, J. C.; Ujic, P.

    2013-09-01

    We have performed the first direct lifetime measurement of the 2+- state in 74Zn. The neutron-rich 74Zn beam was produced by in-flight fragmentation of 76Ge at the Grand Accélérateur National d'Ions Lourds and separated with the LISE spectrometer. The lifetime of the 2+- state was measured by the recoil-distance Doppler-shift method with the Cologne plunger device combined with the EXOGAM detectors. The lifetime of the 2+- state in 74Zn was determined to be 27.0(24) ps, which corresponds to a reduced transition probability B(E2; 2+- -> 0+) = 370(33) e2fm4.

  13. A RUNAWAY BLACK HOLE IN COSMOS: GRAVITATIONAL WAVE OR SLINGSHOT RECOIL?

    SciTech Connect

    Civano, F.; Elvis, M.; Lanzuisi, G.; Hao, H.; Aldcroft, T.; Jahnke, K.; Zamorani, G.; Comastri, A.; Bolzonella, M.; Blecha, L.; Loeb, A.; Bongiorno, A.; Brusa, M.; Leauthaud, A.; Mainieri, V.; Piconcelli, E.; Salvato, M.; Scoville, N.; Trump, J.; Vignali, C.

    2010-07-01

    We present a detailed study of a peculiar source detected in the COSMOS survey at z = 0.359. Source CXOC J100043.1+020637, also known as CID-42, has two compact optical sources embedded in the same galaxy. The distance between the two, measured in the HST/ACS image, is 0.''495 {+-} 0.''005 that, at the redshift of the source, corresponds to a projected separation of 2.46 {+-} 0.02 kpc. A large ({approx}1200 km s{sup -1}) velocity offset between the narrow and broad components of H{beta} has been measured in three different optical spectra from the VLT/VIMOS and Magellan/IMACS instruments. CID-42 is also the only X-ray source in COSMOS, having in its X-ray spectra a strong redshifted broad absorption iron line and an iron emission line, drawing an inverted P-Cygni profile. The Chandra and XMM-Newton data show that the absorption line is variable in energy by {Delta}E = 500 eV over four years and that the absorber has to be highly ionized in order not to leave a signature in the soft X-ray spectrum. That these features-the morphology, the velocity offset, and the inverted P-Cygni profile-occur in the same source is unlikely to be a coincidence. We envisage two possible explanations, both exceptional, for this system: (1) a gravitational wave (GW) recoiling black hole (BH), caught 1-10 Myr after merging; or (2) a Type 1/Type 2 system in the same galaxy where the Type 1 is recoiling due to the slingshot effect produced by a triple BH system. The first possibility gives us a candidate GW recoiling BH with both spectroscopic and imaging signatures. In the second case, the X-ray absorption line can be explained as a BAL-like outflow from the foreground nucleus (a Type 2 AGN) at the rearer one (a Type 1 AGN), which illuminates the otherwise undetectable wind, giving us the first opportunity to show that fast winds are present in obscured active galactic nuclei (AGNs), and possibly universal in AGNs.

  14. Isotopic disequilibrium of uranium: alpha-recoil damage and preferential solution effects.

    PubMed

    Fleischer, R L

    1980-02-29

    Preferential loss of uranium-234 relative to uranium-238 from rocks into solutions has long been attributed to recoiling alpha-emitting nuclei. Direct evidence has been obtained for two mechanisms, first, recoil ejection from grains, and now release by natural etching of alpha-recoil tracks. The observations have implications for radon emanation and for the storage of alpha-emitting radioactive waste. PMID:17830457

  15. Recoil ion charge state distribution following the beta(sup +) decay of {sup 21}Na

    SciTech Connect

    Scielzo, Nicholas D.; Freedman, Stuart J.; Fujikawa, Brian K.; Vetter, Paul A.

    2003-01-03

    The charge state distribution following the positron decay of 21Na has been measured, with a larger than expected fraction of the daughter 21Ne in positive charge states. No dependence on either the positron or recoil nucleus energy is observed. The data is compared to a simple model based on the sudden approximation. Calculations suggest a small but important contribution from recoil ionization has important consequences for precision beta decay correlation experiments detecting recoil ions.

  16. Revealing compressed stops using high-momentum recoils

    NASA Astrophysics Data System (ADS)

    Macaluso, Sebastian; Park, Michael; Shih, David; Tweedie, Brock

    2016-03-01

    Searches for supersymmetric top quarks at the LHC have been making great progress in pushing sensitivity out to higher mass, but are famously plagued by gaps in coverage around lower-mass regions where the decay phase space is closing off. Within the common stop-NLSP/neutralino-LSP simplified model, the line in the mass plane where there is just enough phase space to produce an on-shell top quark remains almost completely unconstrained. Here, we show that is possible to define searches capable of probing a large patch of this difficult region, with S/B ˜ 1 and significances often well beyond 5 σ. The basic strategy is to leverage the large energy gain of LHC Run 2, leading to a sizable population of stop pair events recoiling against a hard jet. The recoil not only re-establishes a [InlineMediaObject not available: see fulltext.] signature, but also leads to a distinctive anti-correlation between the [InlineMediaObject not available: see fulltext.] and the recoil jet transverse vectors when the stops decay all-hadronically. Accounting for jet combinatorics, backgrounds, and imperfections in [InlineMediaObject not available: see fulltext.] measurements, we estimate that Run 2 will already start to close the gap in exclusion sensitivity with the first few 10s of fb-1. By 300 fb-1, exclusion sensitivity may extend from stop masses of 550 GeV on the high side down to below 200 GeV on the low side, approaching the "stealth" point at {m}_{overline{t}}={m}_t and potentially overlapping with limits from toverline{t} cross section and spin correlation measurements.

  17. (7)Be-recoil radiolabelling of industrially manufactured silica nanoparticles.

    PubMed

    Holzwarth, Uwe; Bellido, Elena; Dalmiglio, Matteo; Kozempel, Jan; Cotogno, Giulio; Gibson, Neil

    2014-01-01

    Radiolabelling of industrially manufactured nanoparticles is useful for nanoparticle dosimetry in biodistribution or cellular uptake studies for hazard and risk assessment. Ideally for such purposes, any chemical processing post production should be avoided as it may change the physico-chemical characteristics of the industrially manufactured species. In many cases, proton irradiation of nanoparticles allows radiolabelling by transmutation of a tiny fraction of their constituent atoms into radionuclides. However, not all types of nanoparticles offer nuclear reactions leading to radionuclides with adequate radiotracer properties. We describe here a process whereby in such cases nanoparticles can be labelled with (7)Be, which exhibits a physical half-life of 53.29 days and emits γ-rays of 478 keV energy, and is suitable for most radiotracer studies. (7)Be is produced via the proton-induced nuclear reaction (7)Li(p,n)(7)Be in a fine-grained lithium compound with which the nanoparticles are mixed. The high recoil energy of (7)Be atoms gives them a range that allows the (7)Be-recoils to be transferred from the lithium compound into the nanoparticles by recoil implantation. The nanoparticles can be recovered from the mixture by dissolving the lithium compound and subsequent filtration or centrifugation. The method has been applied to radiolabel industrially manufactured SiO2 nanoparticles. The process can be controlled in such a way that no alterations of the (7)Be-labelled nanoparticles are detectable by dynamic light scattering, X-ray diffraction and electron microscopy. Moreover, cyclotrons with maximum proton energies of 17-18 MeV that are available in most medical research centres could be used for this purpose. PMID:25285032

  18. B -> D* l nu at zero recoil: an update

    SciTech Connect

    Bailey, Jon A.; Bazavov, A.; Bernard, C.; Bouchard, C.M.; DeTar, C.; El-Khadra, A.X.; Freeland, E.D.; Gamiz, E.; Gottlieb, Steven; Heller, U.M.; Hetrick, J.E.

    2010-11-01

    We present an update of our calculation of the form factor for {bar B} {yields} D*{ell}{bar {nu}} at zero recoil, with higher statistics and finer lattices. As before, we use the Fermilab action for b and c quarks, the asqtad staggered action for light valence quarks, and the MILC ensembles for gluons and light quarks (Luescher-Weisz married to 2+1 rooted staggered sea quarks). In this update, we have reduced the total uncertainty on F(1) from 2.6% to 1.7%.

  19. A Proton Recoil Telescope Detector for Neutron Spectroscopy

    SciTech Connect

    Bocci, F.; Cinausero, M.; Rizzi, V.; Barbui, M.; Prete, G.; Andrighetto, A.; Lunardon, M.; Pesente, S.; Fontana, A.; Gemignian, G.; Bonomi, G.; Donzella, A.; Zenoni, A.; Fabris, D.; Morando, M.; Moretto, S.; Nebbia, G.; Viesti, G.

    2007-10-26

    A compact and versatile Proton Recoil Telescope (PRT) detector has been realized to measure neutron energy spectra in the range from few to hundred MeV. The PRT is a position sensitive detector made by: an active multilayer segmented plastic scintillator as neutron to proton converter, two silicon strip detectors for proton energy and position measurement and a final thick CsI(T1) scintillator to measure the residual proton energy. The detector has been tested with the {sup 13}C(d,n) reaction at Laboratori Nazionali del Sud using a 40 MeV deuteron beam.

  20. Projectile paths corrected for recoil and air resistance

    NASA Astrophysics Data System (ADS)

    Kemp, H. R.

    1986-01-01

    The angle of projection of a bullet is not the same as the angle of the bore of the firearm just before firing. This is because recoil alters the direction of the barrel as the bullet moves along the barrel. Neither is the angle of projection of an arrow the same as the direction of the arrow just before it is projected. The difficulty in obtaining the angle of projection limits the value of the standard equation for trajectories relative to a horizontal plane. Furthermore, air resistance makes this equation unrealistic for all but short ranges.

  1. Prompt and delayed spectroscopy of {sup 142}Tb using recoil-isomer tagging

    SciTech Connect

    Mason, P. J. R.; Cullen, D. M.; Kishada, A. M.; Rigby, S. V.; Varley, B. J.; Scholey, C.; Eeckhaudt, S.; Grahn, T.; Greenlees, P. T.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Leppaenen, A.-P.; Maentyniemi, K.; Nieminen, P.; Nyman, M.; Pakarinen, J.

    2009-02-15

    Recoil-isomer tagging has been used to characterize the states built upon an I{sup {pi}}=8{sup +} isomer in {sup 142}Tb. High-spin states of the neutron-deficient nucleus {sup 142}Tb were populated using an {sup 54}Fe beam, accelerated onto a {sup 92}Mo target of thickness {approx}500 {mu}g/cm{sup 2} at energies of 245, 252, and 265 MeV using the K130 cyclotron at the University of Jyvaeskylae, Finland. Use of the JUROGAM target-position Ge-detector array coupled with the GREAT focal-plane spectrometer at the RITU gas-filled recoil separator has significantly increased the efficiency of the isomer-tagging technique. The rotational band built upon the I{sup {pi}}=8{sup +} isomeric state was established with isomer-tagged {gamma}-{gamma} coincidence data and angular distributions were measured for some of the more intensely populated states. Two previously unobserved bands that bypass the isomer were also established. The new data have been interpreted within the framework of the cranked-shell model. The data show good agreement with the calculated triaxial nuclear shape with {gamma}=-30 deg. for the {sup 142m2}Tb isomeric state. The B(M1)/B(E2) branching ratios, nuclear alignment, signature splitting, and reduced transition probability, B(E1), of the isomeric state have been systematically compared with those of the neighboring nuclei. These comparisons give further evidence for the {pi}h{sub 11/2} x {nu}h{sub 11/2} configuration of the isomer.

  2. The WITCH experiment: Acquiring the first recoil ion spectrum

    NASA Astrophysics Data System (ADS)

    Kozlov, V. Yu.; Beck, M.; Coeck, S.; Delahaye, P.; Friedag, P.; Herbane, M.; Herlert, A.; Kraev, I. S.; Tandecki, M.; Van Gorp, S.; Wauters, F.; Weinheimer, Ch.; Wenander, F.; Zákoucký, D.; Severijns, N.

    2008-10-01

    The standard model of the electroweak interaction describes β-decay in the well-known V-A form. Nevertheless, the most general Hamiltonian of a β-decay includes also other possible interaction types, e.g. scalar (S) and tensor (T) contributions, which are not fully ruled out yet experimentally. The WITCH experiment aims to study a possible admixture of these exotic interaction types in nuclear β-decay by a precise measurement of the shape of the recoil ion energy spectrum. The experimental set-up couples a double Penning trap system and a retardation spectrometer. The set-up is installed in ISOLDE/CERN and was recently shown to be fully operational. The current status of the experiment is presented together with the data acquired during the 2006 campaign, showing the first recoil ion energy spectrum obtained. The data taking procedure and corresponding data acquisition system are described in more detail. Several further technical improvements are briefly reviewed.

  3. A Measurement of the Recoil Polarization of Electroproduced {Lambda}(1116)

    SciTech Connect

    Simeon McAleer

    2002-01-01

    The CEBAF Large Acceptance Spectrometer at the Thomas Jefferson National Laboratory was used to study the reaction e + p {yields} e{prime} + K{sup +} + {Lambda}(1116) for events where {Lambda}(1116) subsequently decayed via the channel {Lambda}(1116) {yields} p + {pi}{sup -}. Data were taken at incident electron beam energies of 2.5, 4.0, and 4.2 GeV during the 1999 E1C run period. They hyperon production spectra span the Q{sup 2} range from 0.5 to 2.8 GeV{sup 2} and nearly the entire range in the center of mass angles. The proton angular distribution in the {Lambda}(1116) rest frame is used to deduce the recoil polarization of the hyperon, and the W and cos {theta}{sub cm}{sup K+} dependence of the recoil polarization will be presented. The data show sizeable negative polarizations for the {Lambda}(1116) as a function of both cos {theta}{sub cm}{sup K+} and W.

  4. Silicon shallow doping by erbium and oxygen recoils implantation

    NASA Astrophysics Data System (ADS)

    Feklistov, K. V.; Cherkov, A. G.; Popov, V. P.

    2016-09-01

    In order to get shallow high doping of Si with optically active complexes ErOn, Er followed by O recoils implantation was realized by means of subsequent Ar+ 250-290 keV implantation with doses 2×1015-1×1016 cm-2 through 50-nm deposited films of Er and then SiO2, accordingly. High Er concentration up to 5×1020 cm-3 to the depth of 10 nm was obtained after implantation. However, about a half of the Er implanted atoms become part of surface SiO2 during post-implantation annealing at 950 °C for 1 h in the N2 ambient under a SiO2 cap. The mechanism of Er segregation into the cap oxide following the moving amorphous-crystalline interface during recrystallization was rejected by the transmission electron microscopy (TEM) analysis. Instead, the other mechanism of immobile Er atoms and redistribution of recoil-implanted O atoms toward cap oxide was proposed. It explains the observed formation of two Er containing phases: Er-Si-O phase with a high O content adjacent to the cap oxide and deeper O depleted Er-Si phase. The correction of heat treatments is proposed in order to avoid the above-mentioned problems.

  5. Numerical simulations of spiral galaxy formation and recoiling black holes

    NASA Astrophysics Data System (ADS)

    Guedes, Javiera M.

    This thesis discusses two major topics in regard to the formation and evolution of galaxies and their central massive black holes (MBH). Part 1 explores the detectability of recoiling massive back as kinematically and spatially offset active galactic nuclei (AGN). Chapter 3 is devoted to understanding the effect of an aspherical dark matter potential on the trajectories of the MBHs. This is done through collisionless N-body simulations of kicked black holes in the Via Lactea I halo and through a semi-analytical model that accounts for the evolution of the halo's triaxiality as a function of radius over cosmic time. We find that the return time of MBHs that wander through a differentially triaxial halo is significantly extended in comparison with spherical models. This is because their trajectories are become highly non-radial which prevents them from passing near the halo's center, where dynamical friction is most efficient. Chapter 4 puts recoiling MBHs into context. Here we carry out N-body + SPH simulations of recoiling MBHs in high-resolution galaxy mergers with mass ratios 1:1 (Mayer et al. 2007), 1:4, and 1:10 (Callegari et al. 2009). We study not only the trajectories and return times of these black holes, but also their detectability as spatially/kinematically offset AGN. We find that the probability of detection of these MBHs is extremely low. The detection of large kinematic offsets requires that the MBH have relative offset velocities Deltav > 600km s-1 at the time of observation. This is unlikely due to (1) the low probability of large recoils to occur from a general-relativistic viewpoint, and (2) the short time scale during which the MBH can sustain large velocities even if the initial kick is high. The large amounts of gas funneled to the center of the host potential during mergers also prevents MBHs from reaching large apocenter distances, which hampers their detection as spatially offset AGN, especially at high redshift when recoil events are

  6. Monitoring of physics performance of ILC Software based on Higgs Recoil Mass

    NASA Astrophysics Data System (ADS)

    Volkova, E.; Voutsinas, G.

    2016-02-01

    We discuss a part of ILC software development, that allow us to make automated testing of ILC results. The testing code consists of automated everyday Higgs recoil mass analysis and compares Higgs recoil mass with one of the previous day result. This code uses the result of generation, Mokka simulation and Marlin reconstruction of ILC events.

  7. Optimal control of gun recoil in direct fire using magnetorheological absorbers

    NASA Astrophysics Data System (ADS)

    Singh, Harinder J.; Wereley, Norman M.

    2014-05-01

    Optimal control of a gun recoil absorber is investigated for minimizing recoil loads and maximizing rate of fire. A multi-objective optimization problem was formulated by considering the mechanical model of the recoil absorber employing a spring and a magnetorheological (MR) damper. The damper forces are predicted by evaluating pressure drops using a nonlinear Bingham-plastic model. The optimization methodology provides multiple optimal design configurations with a trade-off between recoil load minimization and increased rate of fire. The configurations with low or high recoil loads imply low or high rate of fire, respectively. The gun recoil absorber performance is also analyzed for perturbations in the firing forces. The adaptive control of the MR damper for varying gun firing forces provides a smooth operation by returning the recoil mass to its battery position (ready to reload and fire) without incurring an end-stop impact. Furthermore, constant load transmissions are observed with respect to the recoil stroke by implementing optimal control during the simulated firing events.

  8. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Fallows, Scott M.

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS~II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for "background-free'' operation of CDMS~II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space. These results, like any others, are subject to a variety of systematic effects that may alter their final interpretations. A primary focus of this dissertation will be difficulties in precisely calibrating the energy scale for nuclear recoil events like those from WIMPs. Nuclear recoils have suppressed ionization signals relative to electron recoils of the same recoil energy, so the response of the detectors is calibrated differently for each recoil type. The overall normalization and linearity of the energy scale for electron recoils in CDMS~II detectors is clearly established by peaks of known gamma energy in the ionization spectrum of calibration data from a 133Ba source. This electron-equivalent keVee) energy scale enables calibration of the total phonon signal (keVt) by enforcing unity

  9. Deconvoluting nonaxial recoil in Coulomb explosion measurements of molecular axis alignment

    NASA Astrophysics Data System (ADS)

    Christensen, Lauge; Christiansen, Lars; Shepperson, Benjamin; Stapelfeldt, Henrik

    2016-08-01

    We report a quantitative study of the effect of nonaxial recoil during Coulomb explosion of laser-aligned molecules and introduce a method to remove the blurring caused by nonaxial recoil in the fragment-ion angular distributions. Simulations show that nonaxial recoil affects correlations between the emission directions of fragment ions differently from the effect caused by imperfect molecular alignment. The method, based on analysis of the correlation between the emission directions of the fragment ions from Coulomb explosion, is used to deconvolute the effect of nonaxial recoil from experimental fragment angular distributions. The deconvolution method is then applied to a number of experimental data sets to correct the degree of alignment for nonaxial recoil, to select optimal Coulomb explosion channels for probing molecular alignment, and to estimate the highest degree of alignment that can be observed from selected Coulomb explosion channels.

  10. Electron recombination in low-energy nuclear recoils tracks in liquid argon

    NASA Astrophysics Data System (ADS)

    Wojcik, M.

    2016-02-01

    This paper presents an analysis of electron-ion recombination processes in ionization tracks of recoiled atoms in liquid argon (LAr) detectors. The analysis is based on the results of computer simulations which use realistic models of electron transport and reactions. The calculations reproduce the recent experimental results of the ionization yield from 6.7 keV nuclear recoils in LAr. The statistical distribution of the number of electrons that escape recombination is found to deviate from the binomial distribution, and estimates of recombination fluctuations for nuclear recoils tracks are obtained. A study of the recombination kinetics shows that a significant part of electrons undergo very fast static recombination, an effect that may be responsible for the weak drift-field dependence of the ionization yield from nuclear recoils in some noble liquids. The obtained results can be useful in the search for hypothetical dark matter particles and in other studies that involve detection of recoiled nuclei.

  11. Developing the Recoil Distance Doppler-Shift technique towards a versatile tool for lifetime measurements of excited nuclear states

    NASA Astrophysics Data System (ADS)

    Dewald, A.; Möller, O.; Petkov, P.

    2012-07-01

    In this article, the Recoil Distance Doppler-Shift (RDDS) method which is extensively used in nuclear structure physics to determine level lifetimes and absolute transition probabilities is reviewed. Especially, it is aimed to present new developments and variants of the technique which have evolved mainly in the past 25 years. After a short and comprehensive description of the basic elements of the plunger technique, the new variants are presented. This comprises the RDDS technique using γγ-coincidences, RDDS measurements in combination with particle detectors for selecting specific reaction channels, RDDS after Coulomb excitation, RDDS after fission and RDDS using a gas target. In addition, the concept of a differential plunger is discussed with respect to its specific features and typical experimental setups. Examples of differential plunger measurements with recoil tagging, recoil decay tagging and after deep inelastic reactions, Coulomb excitation in inverse reaction kinematics as well as after reactions with fast radioactive beams at energies of 50-100 MeV/u are given. The second focus of the review is dedicated to today’s plunger devices and related hardware. The concepts of specific plunger devices which accommodate the specific demands of the aforementioned RDDS applications including specific feedback systems for controlling target-stopper/degrader separations in-beam are presented. Also discussed are target and stopper/degrader foil related issues like foil preparation, mounting and stretching as well as specific features of the foil behavior in-beam (temperature, blistering, wrinkling and carbon build-up). The third focus is devoted to the data analysis. The concept of the Differential Decay Curve Method (DDCM) is presented as an alternative approach for the analysis of RDDS data measured as singles or as γγ-coincidences. For the latter, different gating possibilities are discussed, e.g. gating from above and gating from below the level of

  12. Dielectric barrier structure with hollow electrodes and its recoil effect

    SciTech Connect

    Yu, Shuang; Chen, Qunzhi; Liu, Jiahui; Wang, Kaile; Jiang, Zhe; Sun, Zhili; Zhang, Jue; Fang, Jing

    2015-06-15

    A dielectric barrier structure with hollow electrodes (HEDBS), in which gas flow oriented parallel to the electric field, was proposed. Results showed that with this structure, air can be effectively ignited, forming atmospheric low temperature plasma, and the proposed HEDBS could achieve much higher electron density (5 × 10{sup 15}/cm{sup 3}). It was also found that the flow condition, including outlet diameter and flow rate, played a key role in the evolution of electron density. Optical emission spectroscopy diagnostic results showed that the concentration of reactive species had the same variation trend as the electron density. The simulated distribution of discharge gas flow indicated that the HEDBS had a strong recoil effect on discharge gas, and could efficiently promote generating electron density as well as reactive species.

  13. B{yields}D* at zero recoil revisited

    SciTech Connect

    Gambino, Paolo; Mannel, Thomas; Uraltsev, Nikolai

    2010-06-01

    We examine the B{yields}D* form factor at zero recoil using a continuum QCD approach rooted in the heavy quark sum rules framework. A refined evaluation of the radiative corrections as well as the most recent estimates of higher-order power terms together with more careful continuum calculation are included. An upper bound on the form factor of F(1) < or approx. 0.93 is derived, based on just the positivity of inelastic contributions. A model-independent estimate of the inelastic contributions shows they are quite significant, lowering the form factor by about 6% or more. This results in an unbiased estimate F(1){approx_equal}0.86 with about 3% uncertainty in the central value.

  14. Proton recoil spectroscopy 400 meters from a fission neutron source

    SciTech Connect

    Stanka, M.B.

    1994-12-31

    Neutron kerma and spectrum measurements have been made at the US Army Pulse Radiation Facility (APRF) to 400m in an air-over-ground geometry from a fission neutron source and have been compared to Monte Carlo transport calculations. The neutron spectra measurements were made using a rotating neutron spectrometer. This spectrometer consists of four spherical proton-recoil detectors mounted on a common rotating base. Detector radius, gas composition, and pressure have been varied to allow sensitivity over a neutron range of 50 keV to 4.5 MeV. Neutron kerma was determined by using the Kerr soft-tissue kerma factors. Measured neutron kerma agreed with the calculated neutron kerma to within 5%. Comparisons with other neutron spectrometers such as NE213 and Bonner Spheres are presented and agreement between the different spectrometers is better than 20%.

  15. Calibration of a compact magnetic proton recoil neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfu; Ouyang, Xiaoping; Zhang, Xianpeng; Ruan, Jinlu; Zhang, Guoguang; Zhang, Xiaodong; Qiu, Suizheng; Chen, Liang; Liu, Jinliang; Song, Jiwen; Liu, Linyue; Yang, Shaohua

    2016-04-01

    Magnetic proton recoil (MPR) neutron spectrometer is considered as a powerful instrument to measure deuterium-tritium (DT) neutron spectrum, as it is currently used in inertial confinement fusion facilities and large Tokamak devices. The energy resolution (ER) and neutron detection efficiency (NDE) are the two most important parameters to characterize a neutron spectrometer. In this work, the ER calibration for the MPR spectrometer was performed by using the HI-13 tandem accelerator at China Institute of Atomic Energy (CIAE), and the NDE calibration was performed by using the neutron generator at CIAE. The specific calibration techniques used in this work and the associated accuracies were discussed in details in this paper. The calibration results were presented along with Monte Carlo simulation results.

  16. Spectroscopy of {sup 144}Ho using recoil-isomer tagging

    SciTech Connect

    Mason, P. J. R; Cullen, D. M.; Scholey, C.; Greenlees, P. T.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Nyman, M.; Peura, P.; Puurunen, A.; Rahkila, P.; Ruotsalainen, P.; Sorri, J.; Saren, J.; Uusitalo, J.; Xu, F. R.

    2010-02-15

    Excited states in the proton-unbound odd-odd nucleus {sup 144}Ho have been populated using the {sup 92}Mo({sup 54}Fe,pn){sup 144}Ho reaction and studied using the recoil-isomer-tagging technique. The alignment properties and signature splitting of the rotational band above the I{sup p}i=(8{sup +}){sup 144m}Ho isomer have been analyzed and the isomer confirmed to have a pih{sub 11/2} x nuh{sub 11/2} two-quasiparticle configuration. The configuration-constrained blocking method has been used to calculate the shapes of the ground and isomeric states, which are both predicted to have triaxial nuclear shapes with |gamma|approx =24 deg.

  17. A Study of Nuclear Recoils in Liquid Argon Time Projection Chamber for the Direct Detection of WIMP Dark Matter

    SciTech Connect

    Cao, Huajie

    2014-11-01

    Robust results of WIMP direct detection experiments depend on rm understandings of nuclear recoils in the detector media. This thesis documents the most comprehensive study to date on nuclear recoils in liquid argon - a strong candidate for the next generation multi-ton scale WIMP detectors. This study investigates both the energy partition from nuclear recoil energy to secondary modes (scintillation and ionization) and the pulse shape characteristics of scintillation from nuclear recoils.

  18. Alpha-recoil thorium-234: dissolution into water and the uranium-234/uranium-238 disequilibrium in nature.

    PubMed

    Kigoshi, K

    1971-07-01

    The rate of ejection of alpha-recoil thorium-234 into solution from the surface of zircon sand gives an alpha-recoil range of 550 angstroms. The alpha-recoil thorium-234 atoms ejected into the groundwater may supply excess uranium-234. In pelagic sediments, ejected alpha-recoil thorium-234 may contribute to the supply of mobile uranium-234 in the sedimentary column. PMID:17747313

  19. α -decay chains of recoiled superheavy nuclei: A theoretical study

    NASA Astrophysics Data System (ADS)

    Niyti, Sawhney, Gudveen; Sharma, Manoj K.; Gupta, Raj K.

    2015-05-01

    A systematic theoretical study of α -decay half-lives in the superheavy mass region of the periodic table of elements is carried out by extending the quantum-mechanical fragmentation theory based on the preformed cluster model (PCM) to include temperature (T ) dependence in its built-in preformation and penetration probabilities of decay fragments. Earlier, the α -decay chains of the isotopes of Z =115 were investigated by using the standard PCM for spontaneous decays, with"hot-optimum" orientation effects included, which required a constant scaling factor of 104 to approach the available experimental data. In the present approach of the PCM (T ≠0 ), the temperature effects are included via the recoil energy of the residual superheavy nucleus (SHN) left after x -neutron emission from the superheavy compound nucleus. The important result is that the α -decay half-lives calculated by the PCM (T ≠0 ) match the experimental data nearly exactly, without using any scaling factor of the type used in the PCM. Note that the PCM (T ≠0 ) is an equivalent of the dynamical cluster-decay model for heavy-ion collisions at angular momentum ℓ =0 . The only parameter of model is the neck-length parameter Δ R , which for the calculated half-lives of α -decay chains of various isotopes of Z =113 to 118 nuclei formed in "hot-fusion" reactions is found to be nearly constant, i.e., Δ R ≈0.95 ±0.05 fm for all the α -decay chains studied. The use of recoiled residue nucleus as a secondary heavy-ion beam for nuclear reactions has also been suggested in the past.

  20. A Novel method for modeling the recoil in W boson events at hadron collider

    SciTech Connect

    Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Abolins, Maris A.; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Aguilo, Ernest; Ahsan, Mahsana; Alexeev, Guennadi D.; Alkhazov, Georgiy D.; Alton, Andrew K.; /Michigan U. /Augustana Coll., Sioux Falls /Northeastern U.

    2009-07-01

    We present a new method for modeling the hadronic recoil in W {yields} {ell}{nu} events produced at hadron colliders. The recoil is chosen from a library of recoils in Z {yields} {ell}{ell} data events and overlaid on a simulated W {yields} {ell}{nu} event. Implementation of this method requires that the data recoil library describe the properties of the measured recoil as a function of the true, rather than the measured, transverse momentum of the boson. We address this issue using a multidimensional Bayesian unfolding technique. We estimate the statistical and systematic uncertainties from this method for the W boson mass and width measurements assuming 1 fb{sup -1} of data from the Fermilab Tevatron. The uncertainties are found to be small and comparable to those of a more traditional parameterized recoil model. For the high precision measurements that will be possible with data from Run II of the Fermilab Tevatron and from the CERN LHC, the method presented in this paper may be advantageous, since it does not require an understanding of the measured recoil from first principles.

  1. Damped elastic recoil of the titin spring in myofibrils of human myocardium

    PubMed Central

    Opitz, Christiane A.; Kulke, Michael; Leake, Mark C.; Neagoe, Ciprian; Hinssen, Horst; Hajjar, Roger J.; Linke, Wolfgang A.

    2003-01-01

    The giant protein titin functions as a molecular spring in muscle and is responsible for most of the passive tension of myocardium. Because the titin spring is extended during diastolic stretch, it will recoil elastically during systole and potentially may influence the overall shortening behavior of cardiac muscle. Here, titin elastic recoil was quantified in single human heart myofibrils by using a high-speed charge-coupled device-line camera and a nanonewtonrange force sensor. Application of a slack-test protocol revealed that the passive shortening velocity (Vp) of nonactivated cardiomyofibrils depends on: (i) initial sarcomere length, (ii) release-step amplitude, and (iii) temperature. Selective digestion of titin, with low doses of trypsin, decelerated myofibrillar passive recoil and eventually stopped it. Selective extraction of actin filaments with a Ca2+-independent gelsolin fragment greatly reduced the dependency of Vp on release-step size and temperature. These results are explained by the presence of viscous forces opposing myofibrillar passive recoil that are caused mainly by weak actin–titin interactions. Thus, Vp is determined by two distinct factors: titin elastic recoil and internal viscous drag forces. The recoil could be modeled as that of a damped entropic spring consisting of independent worm-like chains. The functional importance of myofibrillar elastic recoil was addressed by comparing instantaneous Vp to unloaded shortening velocity, which was measured in demembranated, fully Ca2+-activated, human cardiac fibers. Titin-driven passive recoil was much faster than active unloaded shortening velocity in early phases of isotonic contraction. Damped myofibrillar elastic recoil could help accelerate active contraction speed of human myocardium during early systolic shortening. PMID:14563922

  2. High-energy recoil-ion emission in keV heavy-ion surface collisions

    NASA Astrophysics Data System (ADS)

    van Someren, B.; Rudolph, H.; Urazgil'din, I. F.; van Emmichoven, P. A. Zeijlmans; Niehaus, A.

    1997-11-01

    For keV Xe +, Kr + and Ar + ions incident at 30° on Cu(110) we have observed the emission of negatively charged particles with energies up to about 40% of the primary energy. By time-of-flight techniques we have found that electrons are emitted with energies up to 80 eV, whereas the negatively charged high-energy particles are Cu - recoil ions. High-energy Cu + ions have also been found. Simple energy and momentum conservation arguments show that such high recoil energies are indeed possible for multiple collision events in which the primary recoil ion scatters off one or more Cu atoms.

  3. Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter

    SciTech Connect

    Sorensen, P; Dahl, C E

    2011-02-14

    We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al.. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well-described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.

  4. The quasielastic 2H(e,e'p)n reaction at high recoil momenta

    SciTech Connect

    D. Crovelli; Konrad Aniol; Javier Gomez; John LeRose; Arunava Saha; Paul Ulmer; Vina Punjabi; Richard Lindgren; Charles Perdrisat; David Meekins; Joseph Mitchell; Mark Jones; Robert Michaels; Bogdan Wojtsekhowski; Hartmuth Arenhoevel; Michael Finn; Jens-Ole Hansen; Riad Suleiman; Kevin Fissum; Sergey Malov; Cornelis De Jager; Cornelis de Jager; Rikki Roche; Michael Kuss; Eugene Chudakov; Sabine Jeschonnek; Franck Sabatie; Luminita Todor; Meihua Liang; Olivier Gayou; Jian-Ping Chen

    2001-11-01

    The 2H(e,e'p)n cross section was measured in Hall A of the Thomas Jefferson National Accelerator Facility (JLab) in quasielastic kinematics (x=0.96) at a four-momentum transfer squared, Q{sup 2}=0.67 (GeV/c){sup 2}. The experiment was performed in fixed electron kinematics for recoil momenta from zero to 550 MeV/c. Though the measured cross section deviates by 1-2 sigma from a state-of-the-art calculation at low recoil momenta, it agrees at high recoil momenta where final state interactions (FSI) are predicted to be large.

  5. Recoil-nucleus spectra in the interaction of cosmic-ray protons with spacecraft electronics

    SciTech Connect

    Chuvilskaya, T. V.; Shirokova, A. A.; Kadmenskii, A. G.; Chechenin, N. G.

    2008-07-15

    The cross sections for nuclear reactions induced by 50-to 1000-MeV protons in silicon and the angular distributions of products of these reactions are calculated, along with the recoil-nucleus spectra. The recoil-nucleus spectra are shown to contain a monotonically decreasing portion and a recoil peak, which is manifested most clearly at incident-proton energies in excess of 100 MeV. The possibility of employing these results to derive more reliable estimates of single-event upsets in onboard spacecraft electronics is discussed.

  6. Retention studies of recoiling daughter nuclides of 225Ac in polymer vesicles.

    PubMed

    Wang, G; de Kruijff, R M; Rol, A; Thijssen, L; Mendes, E; Morgenstern, A; Bruchertseifer, F; Stuart, M C A; Wolterbeek, H T; Denkova, A G

    2014-02-01

    Alpha radionuclide therapy is steadily gaining importance and a large number of pre-clinical and clinical studies have been carried out. However, due to the recoil effects the daughter recoil atoms, most of which are alpha emitters as well, receive energies that are much higher than the energies of chemical bonds resulting in decoupling of the radionuclide from common targeting agents. Here, we demonstrate that polymer vesicles (i.e. polymersomes) can retain recoiling daughter nuclei based on an experimental study examining the retention of (221)Fr and (213)Bi when encapsulating (225)Ac. PMID:24374072

  7. Atom interferometric studies of light scattering - A new technique for measuring atomic recoil

    NASA Astrophysics Data System (ADS)

    Beattie, Scott

    This dissertation presents two techniques for measuring the atomic recoil frequency, oq, using a single-state atom interferometer that utilizes a dilute cloud of laser-cooled 85Rb atoms. An important motivation for these measurements is that o q, which is related to the ratio of Planck's constant and the atomic mass of rubidium hmRb , can be used to infer the atomic fine structure constant, alpha. The two techniques presented here involve time domain measurements carried out with standing-wave laser fields that manipulate atoms in the same atomic ground state and exploit the wave nature of cold atoms. The first technique uses two off-resonant standing-wave pulses to interfere momentum states so that the recoil frequency can be determined. However, to model the signal shape it is necessary to include effects of spontaneous emission during the interaction with light and the spatial profile of the laser beam. The second technique provides a robust alternative approach for measuring the recoil frequency because the signal shape is considerably simpler and can be modeled easily. We report measurements of atomic recoil using both techniques that are precise to ˜ 1 part per million. The precision was limited mainly by the time scale of the experiment (˜ 20 ms) due to the presence of magnetic field gradients. The dissertation also discusses recent improvements that have extended the time scale to the transit time limit for cold atoms. This is the time of travel of cold atoms through the region of interaction defined by the laser beams. The interferometer uses two standing-wave pulses separated by time T to put the atoms in a superposition of momentum states. Interference between momentum states produce a density grating echo signal at time 2 T. The echo time, 2T, corresponds to the time at which the Doppler phases of the momentum states associated with all atoms in the sample cancel. The echo technique is, therefore, a general method to overcome the effect of the

  8. A study of intrinsic statistical variation for low-energy nuclear recoils in liquid xenon detector for dark matter searches

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Wei, Wenzhao; Mei, Dongming; Cubed Collaboration

    2015-10-01

    Noble liquid xenon experiments, such as XENON100, LUX, XENON 1-Ton, and LZ are large dark matter experiments directly searches for weakly interacting massive particles (WIMPs). One of the most important features is to discriminate nuclear recoils from electronic recoils. Detector response is generally calibrated with different radioactive sources including 83mKr, tritiated methane, 241AmBe, 252Cf, and DD-neutrons. The electronic recoil and nuclear recoil bands have been determined by these calibrations. However, the width of nuclear recoil band needs to be fully understood. We derive a theoretical model to understand the correlation of the width of nuclear recoil band and intrinsic statistical variation. In addition, we conduct experiments to validate the theoretical model. In this paper, we present the study of intrinsic statistical variation contributing to the width of nuclear recoil band. DE-FG02-10ER46709 and the state of South Dakota.

  9. First Measurement of Beam-Recoil Observables Cx and Cz

    SciTech Connect

    R. Bradford; R.A. Schumacher; G. Adams; M.J. Amaryan; P. Ambrozewicz; E. Anciant; M. Anghinolfi; B. Asavapibhop; G. Asryan; G. Audit; H. Avakian; H. Bagdasaryan; N. Baillie; J.P. Ball; N.A. Baltzell; S. Barrow; V. Batourine; M. Battaglieri; K. Beard; I. Bedlinskiy; M. Bektasoglu; M. Bellis; N. Benmouna; B.L. Berman; N. Bianchi; A.S. Biselli; B.E. Bonner; S. Bouchigny; S. Boiarinov; D. Branford; W.J. Briscoe; W.K. Brooks; S. B¨ultmann; V.D. Burkert; C. Butuceanu; J.R. Calarco; S.L. Careccia; D.S. Carman; B. Carnahan; S. Chen; P.L. Cole; A. Coleman; P. Collins; P. Coltharp; D. Cords; † P. Corvisiero; D. Crabb; H. Crannell; V. Crede; J.P. Cummings; R. De Masi; E. De Sanctis; R. De Vita; P.V. Degtyarenko; H. Denizli; L. Dennis; A. Deur; K.V. Dharmawardane; R. Dickson; C. Djalali; G.E. Dodge; J. Donnelly; D. Doughty; P. Dragovitsch; M. Dugger; S. Dytman; O.P. Dzyubak; H. Egiyan; K.S. Egiyan; L. El Fassi; L. Elouadrhiri; A. Empl; P. Eugenio; R. Fatemi; G. Fedotov; G. Feldman; R.J. Feuerbach; T.A. Forest; H. Funsten; M. Garcon; G. Gavalian; G.P. Gilfoyle; K.L. Giovanetti; F.X. Girod; J.T. Goetz; A. Gonenc; R.W. Gothe; K.A. Griffioen; M. Guidal; M. Guillo; N. Guler; L. Guo; V. Gyurjyan; C. Hadjidakis; K. Hafidi; H. Hakobyan; R.S. Hakobyan; J. Hardie; D. Heddle; F.W. Hersman; K. Hicks; I. Hleiqawi; M. Holtrop; J. Hu; M. Huertas; C.E. Hyde-Wright; Y. Ilieva; D.G. Ireland; B.S. Ishkhanov; E.L. Isupov; M.M. Ito; D. Jenkins; H.S. Jo; K. Joo; H.G. Juengst; N. Kalantarians; J.D. Kellie; M. Khandaker; K.Y. Kim; K. Kim; W. Kim; A. Klein; F.J. Klein; M. Klusman; M. Kossov; L.H. Kramer; V. Kubarovsky; J. Kuhn; S.E. Kuhn; S.V. Kuleshov; J. Lachniet; J.M. Laget; J. Langheinrich; D. Lawrence; A.C.S. Lima; K. Livingston; H.Y. Lu; K. Lukashin; M. MacCormick; J.J. Manak; C. Marchand; N. Markov; S. McAleer; B. McKinnon; J.W.C. McNabb; B.A. Mecking; M.D. Mestayer; C.A. Meyer; T. Mibe; K. Mikhailov; M. Mirazita; R. Miskimen; V. Mokeev; K. Moriya; S.A. Morrow; M. Moteabbed; V. Muccifora; J. Mueller; G.S. Mutchler; P. Nadel-Turonski; J. Napolitano; R. Nasseripour; N. Natasha; S. Niccolai; G. Niculescu; I. Niculescu; B.B. Niczyporuk; M.R. Niroula; R.A. Niyazov; M. Nozar; G.V. O’Rielly; M. Osipenko; A.I. Ostrovidov; K. Park; E. Pasyuk; C. Paterson; S.A. Philips; J. Pierce; N. Pivnyuk; D. Pocanic; O. Pogorelko; E. Polli; I. Popa; S. Pozdniakov; B.M. Preedom; J.W. Price; Y. Prok; D. Protopopescu; L.M. Qin; B.P. Quinn; B.A. Raue; G. Riccardi; G. Ricco; M. Ripani; B.G. Ritchie; F. Ronchetti; G. Rosner; P. Rossi; D. Rowntree; P.D. Rubin; F. Sabatie; J. Salamanca; C. Salgado; J.P. Santoro; V. Sapunenko; V.S. Serov; A. Shafi; Y.G. Sharabian; J. Shaw; N.V. Shvedunov; S. Simionatto; A.V. Skabelin; E.S. Smith; L.C. Smith; D.I. Sober; D. Sokhan; M. Spraker; A. Stavinsky; S.S. Stepanyan; S. Stepanyan; B.E. Stokes; P. Stoler; I.I. Strakovsky; S. Strauch; M. Taiuti; S. Taylor; D.J. Tedeschi; U. Thoma; R. Thompson; A. Tkabladze; S. Tkachenko; L. Todor; C. Tur; M. Ungaro; M.F. Vineyard; A.V. Vlassov; K. Wang; D.P. Watts; L.B. Weinstein; H. Weller; D.P. Weygand; M. Williams; E. Wolin; M.H. Wood; A. Yegneswaran; J. Yun; L. Zana; J. Zhang; B. Zhao; and Z.W. Zhao

    2007-03-01

    Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions $\\vec\\gamma + p \\to K^+ + \\vec\\Lambda$ and $\\vec\\gamma + p \\to K^+ + \\vec\\Sigma^0$. The data were obtained using the CLAS detector at Jefferson Lab for center-of-mass energies $W$ between 1.6 and 2.53 GeV, and for $-0.85<\\cos\\theta_{K^+}^{c.m.}< +0.95$. For the $\\Lambda$, the polarization transfer coefficient along the photon momentum axis, $C_z$, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient, $C_x$, is smaller than $C_z$ by a roughly constant difference of unity. Most significantly, the {\\it total} $\\Lambda$ polarization vector, including the induced polarization $P$, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the $\\Sigma^0$ this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these results.

  10. Elastic recoil of coronary stents: a comparative analysis.

    PubMed

    Barragan, P; Rieu, R; Garitey, V; Roquebert, P O; Sainsous, J; Silvestri, M; Bayet, G

    2000-05-01

    Minimum elastic recoil (ER) has became an essential feature of new coronary stents when deployed in artheromatous lesions of various morphologies. The ER of coronary stent might be an important component of 6-month restenosis rate by minimizing the luminal loss. We evaluated the intrinsic ER of 23 coronary stents with a mechanical test bench. The amount of ER for one size of stent (3.0 mm) was quantified using a 3D optical contactless machine (Smartscope MVP, Rochester, NY). The stents were expanded on their own balloon for the precrimped stents; the uncrimped stents were expended using identical 3.0-mm balloons. Two types of measurements were done without exterior stress and with a 0.2-bar exterior stress, directly on the stent at the end of balloon expansion, immediately after balloon deflation, and then 30 min, 60 min, and 120 min after. ER ranged from 1.54%+/-0.81% (Bestent BES 15) to 16.51%+/-2.89% (Paragon stent) without stress (P<0.01) and from 2.35%+/-1.14% (Bestent BES 15) to 18.34%+/-2.41% (Cook GR2) under 0.2-bar pressure (P<0.0001). Furthermore, there was a significant reduction between the mean result of tubular stents (TS) and coil stents (CS). The results of in vitro mechanical tests may confirm strongly the interest of a minimum ER in the prevention of the 6-month restenosis. PMID:10816295

  11. Fast thermometry for trapped atoms using recoil-induced resonance

    NASA Astrophysics Data System (ADS)

    Zhao, Yan-Ting; Su, Dian-Qiang; Ji, Zhong-Hua; Zhang, Hong-Shan; Xiao, Lian-Tuan; Jia, Suo-Tang

    2015-09-01

    We have employed recoil-induced resonance (RIR) with linewidth on the order of 10 kHz to demonstrate the fast thermometry for ultracold atoms. We theoretically calculate the absorption spectrum of RIR which agrees well with the experimental results. The temperature of the ultracold sample derived from the RIR spectrum is T = 84±4.5 μK, which is close to 85 μK that measured by the method of time-of-flight absorption imaging. To exhibit the fast measurement advantage in applying RIR to the ultracold atom thermometry, we study the dependence of ultracold sample temperature on the trapping beam frequency detuning. This method can be applied to determine the translational temperature of molecules in photoassociation dynamics. Project supported by the National Basic Research Development Program of China (Grant No. 2012CB921603), the National High Technology Research and Development Program of China (Grant No. 2011AA010801), the National Natural Science Foundation of China (Grant Nos. 61275209, 11304189, 61378015, and 11434007), and Program for Changjiang Scholars and Innovative Research Team in Universities of China (Grant No. IRT13076).

  12. Superconducting Nuclear Recoil Sensor for Directional Dark Matter Detection

    NASA Astrophysics Data System (ADS)

    Junghans, Ann; Baldwin, Kevin; Hehlen, Markus; Lafler, Randy; Loomba, Dinesh; Phan, Nguyen; Weisse-Bernstein, Nina

    The Universe consists of 72% dark energy, 23% dark matter and only 5% of ordinary matter. One of the greatest challenges of the scientific community is to understand the nature of dark matter. Current models suggest that dark matter is made up of slowly moving, weakly interacting massive particles (WIMPs). But detecting WIMPs is challenging, as their expected signals are small and rare compared to the large background that can mimic the signal. The largest and most robust unique signature that sets them apart from other particles is the day-night variation of the directionality of dark matter on Earth. This modulation could be observed with a direction-sensitive detector and hence, would provide an unambiguous signature for the galactic origin of WIMPs. There are many studies underway to attempt to detect WIMPs both directly and indirectly, but solid-state WIMP detectors are widely unexplored although they would present many advantages to prevalent detectors that use large volumes of low pressure gas. We present first results of a novel multi-layered architecture, in which WIMPs would interact primarily with solid layers to produce nuclear recoils that then induce measureable voltage pulses in adjacent superconductor layers. This work was supported by the U.S. Department of Energy through the LANL Laboratory Directed Research and Development Program.

  13. First measurement of the ionization yield of nuclear recoils in liquid argon

    SciTech Connect

    Joshi, T.; Sangiorgio, Samuele; Bernstein, A.; Foxe, Michael P.; Hagmann, Chris; Jovanovic, Igor; Kazkaz, K.; Mozin, Vladimir V.; Norman, E. B.; Pereverzev, S. V.; Rebassoo, Finn O.; Sorensen, Peter F.

    2014-05-01

    Liquid phase argon has long been used as a target medium for particle detection via scintillation light. Recently there has been considerable interest in direct detection of both hypothetical darkmatter particles and coherent elastic neutrino nucleus scattering. These as-yet unobserved neutral particle interactions are expected to result in a recoiling argon atom O(keV), generally referred to in the literature as a nuclear recoil. This prompts the question of the available electromagnetic signal in a liquid argon detector. In this Letter we report the first measurement of the ionization yield (Qy), detected electrons per unit energy, resulting from nuclear recoils in liquid argon, measured at 6.7 keV. This is also the lowest energy measurement of nuclear recoils in liquid argon.

  14. Further insights into the proton spin with the new HERMES Recoil Detector

    SciTech Connect

    Vilardi, I.

    2007-11-19

    The HERMES experiment, installed in the 27.5 GeV HERA lepton ring at DESY/Hamburg, is used to study the spin structure of the nucleon. To get information about the orbital angular momentum L{sub q} of quarks, exclusive DIS reactions are investigated. The HERMES Collaboration installed a new Recoil Detector to upgrade the existing spectrometer to improve the study of hard exclusive processes, detecting recoil protons with low momentum. Deeply Virtual Compton Scattering is the main process to be studied. The HERMES Recoil Detector consists of three subcomponents inside a superconducting magnet that provides a longitudinal superconducting magnetic field of 1 Tesla. The Recoil Detector was installed in January 2006 and commissioning started in February. First results from the detector will be presented.

  15. Element-specific recoil loops in Sm-Co/Fe exchange-spring magnets.

    SciTech Connect

    Choi, Y.; Jiang, J. S.; Pearson, J. E.; Bader, S. D.; Liu, J. P.; Materials Science Division; Univ. Texas at Arlington

    2008-04-01

    In two-phase nanocomposite magnets, open recoil loops have shown to be sensitive to interphase interfacial conditions and have been often used to characterize the interphase exchange coupling. Typically, the open recoil loops are attributed to the soft phase volume that is decoupled from the hard phase. Our element-specific magnetic measurements on bilayer Sm-Co/Fe exchange-spring magnets reveal that open recoil loops are present not only in the soft Fe layer but also in the hard Sm-Co layer and that the Fe- and Sm-specific remanence curves are similar to each other. The experimental results and micromagnetic modeling reveal that the observed open recoil loops can originate from the anisotropy variations in the hard Sm-Co layer.

  16. A telescope proton recoil spectrometer for fast neutron beam-lines

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Rebai, M.; Tardocchi, M.; Croci, G.; Nocente, M.; Ansell, S.; Frost, C. D.; Gorini, G.

    2015-07-01

    Fast neutron measurements were performed on the VESUVIO beam-line at the ISIS spallation source using a new telescope proton recoil spectrometer. Neutrons interact on a plastic target. Proton production is mainly due to elastic scattering on hydrogen nuclei and secondly due to interaction with carbon nuclei. Recoil protons are measured by a proton spectrometer, which uses in coincidence a 2.54 cm thick YAP scintillator and a 500μm thick silicon detector, measuring the full proton recoil energy and the partial deposited energy in transmission, respectively. Recoil proton spectroscopy measurements (up to Ep = 60MeV) have been interpreted by using Monte Carlo simulations of the beam-line. This instrument is of particular interest for the characterization of the ChipIr beam-line at ISIS, which was designed to feature an atmospheric-like neutron spectrum for the irradiation of micro-electronics.

  17. As-Al recoil implantation through Si 3N 4 barrier layer

    NASA Astrophysics Data System (ADS)

    Godignon, P.; Morvan, E.; Montserrat, J.; Jordà, X.; Flores, D.; Rebollo, J.

    1999-01-01

    Al recoil implantation have been shown to be a possible alternative to direct Al ion implantation to avoid usual problems linked with Al sources. Poor efficiency of the recoil + annealing process is observed if no barrier or an oxyde screen layers are used. This problem can be solved using a Si 3N 4 screen layer. Then, P-N and N +/P/N structures can be obtained with deep low doped P-well with reduced thermal budget.

  18. Investigation on modeling and controability of a magnetorheological gun recoil damper

    NASA Astrophysics Data System (ADS)

    Hu, Hongsheng; Wang, Juan; Wang, Jiong; Qian, Suxiang; Li, Yancheng

    2009-07-01

    Magnetorheological (MR) fluid as a new smart material has done well in the vibration and impact control engineering fields because of its good electromechanical coupling characteristics, preferable dynamic performance and higher sensitivity. And success of MRF has been apparent in many engineering applied fields, such as semi-active suspension, civil engineering, etc. So far, little research has been done about MR damper applied into the weapon system. Its primary purpose of this study is to identify its dynamic performance and controability of the artillery recoil mechanism equipped with MR damper. Firstly, based on the traditional artillery recoil mechanism, a recoil dynamic model is developed in order to obtain an ideal rule between recoil force and its stroke. Then, its effects of recoil resistance on the stability and firing accuracy of artillery are explored. Because MR gun recoil damper under high impact load shows a typical nonlinear character and there exists a shear-thinning phenomenon, to establish an accurate dynamic model has been a seeking aim of its design and application for MR damper under high impact load. Secondly, in this paper, considering its actual bearing load, an inertia factor was introduced to Herschel-Bulkley model, and some factor's effect on damping force are simulated and analyzed by using numerical simulation, including its dynamic performance under different flow coefficients and input currents. Finally, both of tests with the fixed current and different On-Off control algorithms have been done to confirm its controability of MR gun recoil damper under high impact load. Experimental results show its dynamic performances of the large-scale single-ended MR gun recoil damper can be changed by altering the applied currents and it has a good controllability.

  19. Acute stent recoil in the left main coronary artery treated with additional stenting.

    PubMed

    Battikh, Kais; Rihani, Riadh; Lemahieu, Jean Michel

    2003-01-01

    We report a case of acute stent recoil occurring after the stenting of an ostial left main coronary artery lesion. The marked recoil after high-pressure balloon inflation confirmed that the radial force of the first stent was unable to ensure vessel patency. The addition of a second stent provided the necessary support to achieve a good final result. This case illustrates a possible complication of aorto-ostial angioplasty that could be treated with double stenting. PMID:12499528

  20. Influence of elastic recoil on restenosis after successful coronary angioplasty in unstable angina pectoris.

    PubMed

    Ardissino, D; Di Somma, S; Kubica, J; Barberis, P; Merlini, P A; Eleuteri, E; De Servi, S; Bramucci, E; Specchia, G; Montemartini, C

    1993-03-15

    The elastic behavior of the dilated coronary vessel has been reported to affect the immediate results of coronary angioplasty. To determine whether elastic recoil may also influence the long-term restenosis process, 98 consecutive patients with unstable angina and 1-vessel disease were studied. An automated coronary quantitative program was used for the assessment of balloon and coronary luminal diameters. Elastic recoil was defined as the percent reduction between minimal balloon diameter at the highest inflation pressure and minimal lesion diameter immediately after coronary angioplasty. Follow-up coronary arteriography was performed 8 to 12 months after the procedure in all patients. The mean elastic recoil averaged 17.7 +/- 16% and was correlated to the degree of residual stenosis immediately after coronary angioplasty (r = 0.64; p < 0.001). Restenosis, defined as > 50% diameter stenosis at follow-up, developed in 53 patients (54%). There was no correlation between the degree of elastic recoil and the changes in minimal lesion diameter observed during follow-up, whereas a positive correlation between the amount of elastic recoil and the incidence of restenosis was documented (r = 0.84; p < 0.05). Thus, the elastic properties of the dilated vessel do not influence the active process of restenosis. However, because elastic recoil negatively influences the initial results of angioplasty, it is more likely that further reductions in lumen diameter during follow-up can reach a threshold of obstruction considered critical for a binary definition of restenosis. PMID:8447261

  1. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    SciTech Connect

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.

  2. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    DOE PAGESBeta

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0more » to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.« less

  3. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Recoil momentum at a solid surface during developed laser ablation

    NASA Astrophysics Data System (ADS)

    Kuznetsov, L. I.

    1993-12-01

    The recoil momentum from a laser light pulse in the intensity range 105-107 W/cm2 is experimentally investigated for dielectric and metallic targets as a function of the pressure of the surrounding medium and angle of illumination. An equation with empirical coefficients is obtained for the recoil momentum of illuminated targets. Effects of the screening properties of the erosion jet and the back pressure on the recoil momentum are analyzed as the external pressure is varied.

  4. A recoil detector for the measurement of antiproton-proton elastic scattering at angles close to 90°

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Bechstedt, U.; Gillitzer, A.; Grzonka, D.; Khoukaz, A.; Klehr, F.; Lehrach, A.; Prasuhn, D.; Ritman, J.; Sefzick, T.; Stockmanns, T.; Täschner, A.; Wuestner, P.; Xu, H.

    2014-10-01

    The design and construction of a recoil detector for the measurement of recoil protons of antiproton-proton elastic scattering at scattering angles close to are described. The performance of the recoil detector has been tested in the laboratory with radioactive sources and at COSY with proton beams by measuring proton-proton elastic scattering. The results of laboratory tests and commissioning with beam are presented. Excellent energy resolution and proper working performance of the recoil detector validate the conceptual design of the KOALA experiment at HESR to provide the cross section data needed to achieve a precise luminosity determination at the PANDA experiment.

  5. Imprints of recoiling massive black holes on the hot gas of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Devecchi, B.; Rasia, E.; Dotti, M.; Volonteri, M.; Colpi, M.

    2009-04-01

    Anisotropic gravitational radiation from a coalescing black hole (BH) binary is known to impart recoil velocities of up to ~1000kms-1 to the remnant BH. In this context, we study the motion of a recoiling BH inside a galaxy modelled as a Hernquist sphere, and the signature that the hole imprints on the hot gas, using N-body/smoothed particle hydrodynamics simulations. Ejection of the BH results in a sudden expansion of the gas ending with the formation of a gaseous core, similarly to what is seen for the stars. A cometary tail of particles bound to the BH is initially released along its trail. As the BH moves on a return orbit, a nearly spherical swarm of hot gaseous particles forms at every apocentre: this feature can live up to ~108 years. If the recoil velocity exceeds the sound speed initially, the BH shocks the gas in the form of a Mach cone in density near each supersonic pericentric passage. We find that the X-ray fingerprint of a recoiling BH can be detected in Chandra X-ray maps out to a distance of Virgo. For exceptionally massive BHs, the Mach cone and the wakes can be observed out to a few hundred of milliparsec. The detection of the Mach cone is of twofold importance as it can be a probe of high-velocity recoils, and an assessment of the scatter of the MBH - Mbulge relation at large BH masses.

  6. Measurement of nuclear recoil quenching factors in CaWO 4

    NASA Astrophysics Data System (ADS)

    Jagemann, Th.; Feilitzsch, F. v.; Hagn, H.; Jochum, J.; Potzel, W.; Rau, W.; Stark, M.; Westphal, W.

    2006-11-01

    The CRESST experiment, aiming at the direct detection of WIMPs via nuclear recoils, is currently using scintillating CaWO4 crystals. The WIMP-nucleus cross section for elastic scattering as well as the scintillation efficiency differ considerably for recoils from Ca, W and O in these crystals. Therefore a discriminating detector calibration is essential in order to improve WIMP parameter claims. At the tandem accelerator of the Maier-Leibnitz-Laboratory (MLL) in Garching, Germany, a neutron scattering facility is operated for the determination of the individual quenching factors (QF) in the bulk of a CaWO4 crystal to better understand the detector response to neutron background and a possible WIMP signal. First measurements at room temperature reveal QF(O) = 7.8 ± 0.3% (recoil energy 1.0-2.2 MeV), QF(Ca) = 6.3 ± 1.6% (recoil energy 0.4-1 MeV), QF(W) < 3.0% (2σ, recoil energy 0.1 MeV).

  7. Experimental Concept for a Precision Measurement of Nuclear Recoil Ionization Yields for Low Mass WIMP Searches

    NASA Astrophysics Data System (ADS)

    Saab, T.; Figueroa-Feliciano, E.

    2016-07-01

    Understanding the response of dark matter detectors at the lowest recoil energies is important for correctly interpreting data from current experiments or predicting the sensitivity of future experiments to low mass weakly interacting massive particles. In particular, the ionization yield is essential for determining the correct recoil energy of candidate nuclear recoil events; however, few measurements in cryogenic crystals exist below 1 keV. Using the voltage-assisted calorimetric ionization detection technique with a mono-energetic neutron source, we show that it is possible to determine the ionization yield in cryogenic crystals down to an energy to 100 eV. This measurement will also determine the statistics of ionization production at these low energies.

  8. Recoiling black holes: prospects for detection and implications of spin alignment

    NASA Astrophysics Data System (ADS)

    Blecha, Laura; Sijacki, Debora; Kelley, Luke Zoltan; Torrey, Paul; Vogelsberger, Mark; Nelson, Dylan; Springel, Volker; Snyder, Gregory; Hernquist, Lars

    2016-02-01

    Supermassive black hole (BH) mergers produce powerful gravitational wave emission. Asymmetry in this emission imparts a recoil kick to the merged BH, which can eject the BH from its host galaxy altogether. Recoiling BHs could be observed as offset active galactic nuclei (AGN). Several candidates have been identified, but systematic searches have been hampered by large uncertainties regarding their observability. By extracting merging BHs and host galaxy properties from the Illustris cosmological simulations, we have developed a comprehensive model for recoiling AGN. Here, for the first time, we model the effects of BH spin alignment and recoil dynamics based on the gas richness of host galaxies. We predict that if BH spins are not highly aligned, seeing-limited observations could resolve offset AGN, making them promising targets for all-sky surveys. For randomly oriented spins, ≲ 10 spatially offset AGN may be detectable in Hubble Space Telescope-Cosmological Evolution Survey, and >103 could be found with the Panoramic Survey Telescope & Rapid Response System (Pan-STARRS), the Large Synoptic Survey Telescope (LSST), Euclid, and the Wide-Field Infrared Survey Telescope (WFIRST). Nearly a thousand velocity offset AGN are predicted within the Sloan Digital Sky Survey (SDSS) footprint; the rarity of large broad-line offsets among SDSS quasars is likely due in part to selection effects but suggests that spin alignment plays a role in suppressing recoils. None the less, in our most physically motivated model where alignment occurs only in gas-rich mergers, hundreds of offset AGN should be found in all-sky surveys. Our findings strongly motivate a dedicated search for recoiling AGN.

  9. Recoil polarization and beam-recoil double polarization measurement of eta electroproduction on the proton in the region of the S11(1535) resonance.

    PubMed

    Merkel, H; Achenbach, P; Ayerbe Gayoso, C; Bernauer, J C; Böhm, R; Bosnar, D; Cheymol, B; Distler, M O; Doria, L; Fonvieille, H; Friedrich, J; Janssens, P; Makek, M; Müller, U; Nungesser, L; Pochodzalla, J; Potokar, M; Sánchez Majos, S; Schlimme, B S; Sirca, S; Tiator, L; Walcher, Th; Weinriefer, M

    2007-09-28

    The beam-recoil double polarization P(x')(h) and P(z')(h) and the recoil polarization P(y') were measured for the first time for the p(e,e'p)eta reaction at a four-momentum transfer of Q(2) = 0.1 GeV(2)/c(2) and a center of mass production angle of theta = 120 degrees at the Mainz Microtron MAMI-C. With a center of mass energy range of 1500 MeV

  10. Radiation Recoil Effects on the Dynamical Evolution of Asteroids

    NASA Astrophysics Data System (ADS)

    Cotto-Figueroa, Desiree

    The Yarkovsky effect is a radiation recoil force that results in a semimajor axis drift in the orbit that can cause Main Belt asteroids to be delivered to powerful resonances from which they could be transported to Earth-crossing orbits. This force depends on the spin state of the object, which is modified by the YORP effect, a variation of the Yarkovsky effect that results in a torque that changes the spin rate and the obliquity. Extensive analyses of the basic behavior of the YORP effect have been previously conducted in the context of the classical spin state evolution of rigid bodies (YORP cycle). However, the YORP effect has an extreme sensitivity to the topography of the asteroids and a minor change in the shape of an aggregate asteroid can stochastically change the YORP torques. Here we present the results of the first simulations that self-consistently model the YORP effect on the spin states of dynamically evolving aggregates. For these simulations we have developed several algorithms and combined them with two codes, TACO and pkdgrav. TACO is a thermophysical asteroid code that models the surface of an asteroid using a triangular facet representation and which can compute the YORP torques. The code pkdgrav is a cosmological N-body tree code modified to simulate the dynamical evolution of asteroids represented as aggregates of spheres using gravity and collisions. The continuous changes in the shape of an aggregate result in a different evolution of the YORP torques and therefore aggregates do not evolve through the YORP cycle as a rigid body would. Instead of having a spin evolution ruled by long periods of rotational acceleration and deceleration as predicted by the classical YORP cycle, the YORP effect is self-limiting and stochastic on aggregate asteroids. We provide a statistical description of the spin state evolution which lays out the foundation for new simulations of a coupled Yarkovsky/YORP evolution. Both self-limiting YORP and to a lesser

  11. Discrimination of nuclear and electronic recoil events using plasma effect in germanium detectors

    NASA Astrophysics Data System (ADS)

    Wei, W.-Z.; Liu, J.; Mei, D.-M.

    2016-07-01

    We report a new method of using the plasma time difference, which results from the plasma effect, between the nuclear and electronic recoil events in high-purity germanium detectors to distinguish these two types of events in the search for rare physics processes. The physics mechanism of the plasma effect is discussed in detail. A numerical model is developed to calculate the plasma time for nuclear and electronic recoils at various energies in germanium detectors. It can be shown that under certain conditions the plasma time difference is large enough to be observable. The experimental aspects in realizing such a discrimination in germanium detectors is discussed.

  12. Development of the RAON Recoil Spectrometer (KOBRA) and Its Applications for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Moon, Jun Young; Park, Junesic; Cheoul Yun, Chong; Kwon, Young Kwan; Komatsubara, Tetsuro; Hashimoto, Takashi; Tshoo, Kyoungho; Lee, Kwangbok; Jung, In-IL; Kim, Yong Hak; Kim, Yong-Kyun

    KOBRA (KOrea Broad acceptance Recoil spectrometer and Apparatus), a new generation recoil spectrometer, has been designed at the Korean heavy-ion accelerator facility, so called RAON. It will allow many nuclear scientists to explore so-far hard but very interesting questions relevant to low-energy nuclear physics. Especially, in nuclear astrophysics where the unstable, short-lived nuclei are usually involved and the high background rejection power is required, its high performance will come into significantly important role. As a particular case to see its capability, in this article, calculational results of 12C(α, γ)16O reaction which was studied with the COSY-INFINITY is presented.

  13. Ultracapacitor separator

    DOEpatents

    Wei, Chang; Jerabek, Elihu Calvin; LeBlanc, Jr., Oliver Harris

    2001-03-06

    An ultracapacitor includes two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. The electrolyte is a polar aprotic organic solvent and a salt. The porous separator comprises a wet laid cellulosic material.

  14. Complex decay patterns in atomic core photoionization disentangled by ion-recoil measurements

    SciTech Connect

    Guillemin, Renaud; Bomme, Cedric; Marin, Thierry; Journel, Loic; Marchenko, Tatiana; Kushawaha, Rajesh K.; Piancastelli, Maria Novella; Simon, Marc; Trcera, Nicolas

    2011-12-15

    Following core 1s ionization and resonant excitation of argon atoms, we measure the recoil energy of the ions due to momentum conservation during the emission of Auger electrons. We show that such ion momentum spectroscopy can be used to disentangle to some degree complex decay patterns, involving both radiative and nonradiative decays.

  15. Low energy nuclear recoils study in noble liquids for low-mass WIMPs

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Mei, Dongming

    2014-03-01

    Detector response to low-energy nuclear recoils is critical to the detection of low-mass dark matter particles-WIMPs (Weakly interacting massive particles). Although the detector response to the processes of low-energy nuclear recoils is subtle and direct experimental calibration is rather difficult, many studies have been performed for noble liquids, NEST is a good example. However, the response of low-energy nuclear recoils, as a critical issue, needs more experimental data, in particular, with presence of electric field. We present a new design using time of flight to calibrate the large-volume xenon detector, such as LUX-Zeplin (LZ) and Xenon1T, energy scale for low-energy nuclear recoils. The calculation and physics models will be discussed based on the available data to predict the performance of the calibration device and set up criteria for the design of the device. A small test bench is built to verify the concepts at The University of South Dakota. This work is supported by DOE grant DE-FG02-10ER46709 and the state of South Dakota.

  16. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    SciTech Connect

    Fallows, Scott Mathew

    2014-12-01

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for \\background- free" operation of CDMS II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space.

  17. Mass calibration of the energy axis in ToF-E elastic recoil detection analysis

    NASA Astrophysics Data System (ADS)

    Meersschaut, J.; Laricchiuta, G.; Sajavaara, T.; Vandervorst, W.

    2016-03-01

    We report on procedures that we have developed to mass-calibrate the energy axis of ToF-E histograms in elastic recoil detection analysis. The obtained calibration parameters allow one to transform the ToF-E histogram into a calibrated ToF-M histogram.

  18. Modeling ionization and recombination from low energy nuclear recoils in liquid argon

    SciTech Connect

    Foxe, Michael P.; Hagmann, Chris; Jovanovic, Igor; Bernstein, A.; Joshi, T.; Kazkaz, K.; Mozin, Vladimir V.; Pereverzev, S. V.; Sangiorgio, Samuele; Sorensen, Peter F.

    2015-09-01

    Coherent neutrino-nucleus scattering (CNNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model. CNNS is a flavor-blind interaction, which offers potential benefits for its use in nonproliferation (nuclear reactor monitoring) and astrophysics (supernova and solar neutrinos) applications. One challenge with detecting CNNS is the low energy deposition associated with a typical CNNS nuclear recoil. In addition, nuclear recoils are predicted to result in lower ionization yields than those produced by electron recoils of the same energy. This ratio of nuclear- and electron-induced ionization, known as the nuclear quenching factor, is unknown at energies typical for CNNS interactions in liquid xenon (LXe) and liquid argon (LAr), detector media being considered for CNNS detection. While there have been recent measurements [1] of the ionization yield from nuclear recoils in LAr, there is no universal model for nuclear quenching and ionization yield. For this reason, a Monte Carlo simulation has been developed to predict the ionization yield at sub-10 keV energies. The local ionization yield of a recoiling atom in the medium is calculated first. The ejected electrons are subsequently tracked in the electric field resulting from both the local electric charges and the externally applied drift field. The dependence of the ionization yield on the drift electric field is obtained by combining the calculated ionization yield for the initial collision cascade with the electron escape probability. An updated estimate of the CNNS signal expected in a LAr detector operated near a nuclear power reactor is presented.

  19. Constraints on the Nature of CID-42: Recoil Kick or Supermassive Black Hole Pair?

    NASA Technical Reports Server (NTRS)

    Blecha, Laura; Civano, Francesca; Elvis, Martin; Loeb, Abraham

    2012-01-01

    The galaxy CXOC J100043.1+020637, also known as CID-42, is a highly unusual object. An apparent galaxy merger remnant, it displays signatures of both an inspiraling, kiloparsecscale active galactic nucleus (AGN) pair and of a recoiling AGN with a kick velocity approximately greater than 1300 km s(exp -1). Among recoiling AGN candidates, CID-42 alone has both spatial offsets (in optical and X-ray bands) and spectroscopic offsets. In order to constrain the relative likelihood of both scenarios, we develop models using hydrodynamic galaxy merger simulations coupled with radiative transfer calculations. Our gas-rich, major merger models are generally well matched to the galactic morphology and to the inferred stellar mass and star formation rate. We show that a recoiling supermassive black hole (SMBH) in CID-42 should be observable as an AGN at the time of observation. However, in order for the recoiling AGN to produce narrow-line emission, it must be observed shortly after the kick while it still inhabits a dense gaseous region, implying a large total kick velocity (vk approximately greater than 2000 km s(exp -1)). For the dual AGN scenario, an unusually large broad-line offset is required, and the best match to the observed morphology requires a galaxy that is less luminous than CID-42. Further, the lack of X-ray emission from one of the two optical nuclei is not easily attributed to an intrinsically quiescent SMBH or to a Compton-thick galactic environment. While the current data do not allow either the recoiling or the dual AGN scenario for CID-42 to be excluded, our models highlight the most relevant parameters for distinguishing these possibilities with future observations. In particular, high-quality, spatially-resolved spectra that can pinpoint the origin of the broad and narrow line features will be critical for determining the nature of this unique source.

  20. Constraints on the nature of CID-42: recoil kick or supermassive black hole pair?

    NASA Astrophysics Data System (ADS)

    Blecha, Laura; Civano, Francesca; Elvis, Martin; Loeb, Abraham

    2013-01-01

    The galaxy CXOC J100043.1+020637, also known as CID-42, is a highly unusual object. As an apparent galaxy merger remnant, it displays signatures of both an inspiraling, kiloparsec-scale active galactic nucleus (AGN) pair and of a recoiling AGN with a kick velocity of ≳ 1300 km s-1. Among recoiling AGN candidates, CID-42 alone has both spatial offsets (in optical and X-ray bands) and spectroscopic offsets. In order to constrain the relative likelihood of both scenarios, we develop models using hydrodynamic galaxy merger simulations coupled with radiative transfer calculations. Our gas-rich, major merger models are generally well matched to the galactic morphology and to the inferred stellar mass and star formation rate. We show that a recoiling supermassive black hole (SMBH) in CID-42 should be observable as an AGN at the time of observation. However, in order for the recoiling AGN to produce narrow-line emission, it must be observed shortly after the kick while it still inhabits a dense gaseous region, implying a large total kick velocity (vk ≳ 2000 km s-1). For the dual AGN scenario, an unusually large broad-line offset is required, and the best match to the observed morphology requires a galaxy that is less luminous than CID-42. Further, the lack of X-ray emission from one of the two optical nuclei is not easily attributed to an intrinsically quiescent SMBH or to a Compton thick galactic environment. While the current data do not allow either the recoiling or the dual AGN scenario for CID-42 to be excluded, our models highlight the most relevant parameters for distinguishing these possibilities with future observations. In particular, high-quality, spatially resolved spectra that can pinpoint the origin of the broad-line and narrow-line features will be critical for determining the nature of this unique source.

  1. Complete and incomplete fusion reactions in the {sup 16}O+{sup 169}Tm system: Excitation functions and recoil range distributions

    SciTech Connect

    Sharma, Manoj Kumar; Unnati,; Sharma, B.K.; Singh, B.P.; Prasad, R.; Bhardwaj, H.D.; Kumar, Rakesh; Golda, K.S.

    2004-10-01

    With the view to study complete and incomplete fusion in heavy ion induced reactions, experiments have been carried out for measuring excitation functions for several reactions in the system {sup 16}O+{sup 169}Tm at energies near the Coulomb barrier to well above it, using an activation technique. The measured excitation functions have been compared with those calculated theoretically using three different computer codes viz., ALICE-91, CASCADE and PACE2. The enhancement of experimentally measured cross sections for alpha emission channels over their theoretical prediction has been attributed to the fact that these residues are formed not only by complete fusion but also through incomplete fusion. In order to separate out the relative contributions of complete and incomplete fusion, the recoil range distributions of eight residues produced in the interaction of {sup 16}O with {sup 169}Tm at {approx_equal}87 MeV have been measured. The recoil range distributions indicate significant contributions from incomplete fusion at {approx_equal}87 MeV for some of the channels.

  2. Separated flow

    NASA Technical Reports Server (NTRS)

    Sellers, W. L., III; Dunham, R. E., Jr.; Goodman, W. L.; Howard, F. G.; Margason, R. J.; Rudy, D. H.; Rumsey, C. L.; Stough, H. P., III; Thomas, J. L.

    1986-01-01

    A brief overview of flow separation phenomena is provided. Langley has many active research programs in flow separation related areas. Three cases are presented which describe specific examples of flow separation research. In each example, a description of the fundamental fluid physics and the complexity of the flow field is presented along with a method of either reducing or controlling the extent of separation. The following examples are discussed: flow over a smooth surface with an adverse pressure gradient; flow over a surface with a geometric discontinuity; and flow with shock-boundary layer interactions. These results will show that improvements are being made in the understanding of flow separation and its control.

  3. First detection and energy measurement of recoil ions following beta decay in a Penning trap with the WITCH experiment

    NASA Astrophysics Data System (ADS)

    Beck, M.; Coeck, S.; Kozlov, V. Yu.; Breitenfeldt, M.; Delahaye, P.; Friedag, P.; Glück, F.; Herbane, M.; Herlert, A.; Kraev, I. S.; Mader, J.; Tandecki, M.; Van Gorp, S.; Wauters, F.; Weinheimer, Ch.; Wenander, F.; Severijns, N.

    2011-03-01

    The WITCH experiment (Weak Interaction Trap for CHarged particles) will search for exotic interactions by investigating the β - ν angular correlation via the measurement of the recoil energy spectrum after β -decay. As a first step the recoil ions from the β-_{} -decay of 124In stored in a Penning trap have been detected. The evidence for the detection of recoil ions is shown and the properties of the ion cloud that forms the radioactive source for the experiment in the Penning trap are presented.

  4. Modeling and Measurement of 39Ar Recoil Loss From Biotite as a Function of Grain Dimensions

    NASA Astrophysics Data System (ADS)

    Paine, J. H.; Nomade, S.; Renne, P. R.

    2004-12-01

    The call for age measurements with less than 1 per mil error puts a demand upon geochronologists to be aware of and quantify a number of problems which were previously negligible. One such factor is 39Ar recoil loss during sample irradiation, a phenomenon which is widely assumed to affect only unusually small crystals having exceptionally high surface/volume ratios. This phenomenon has important implications for thermochronologic studies seeking to exploit a range of closure temperatures arising from variable diffusion radii. Our study focuses on biotite, in which spatial isotope distributions cannot be reliably recovered by stepwise heating and which therefore lack recoil-diagnostic age spectrum behavior. Previous work by Renne et al. [Application of a deuteron-deuteron (D-D) neutron generator to 40Ar/39Ar geochronology, Applied Radiation and Isotopes, in press] used the SRIM code to calculate a ˜20% 39Ar recoil loss from the outermost 0.25 μ m of an infinite slab of phyllosillicate. This result is applied to measured grains of the biotite standard GA1550, a hypabyssal granite from the Mount Dromedary Complex, Australia. We measure the thickness and surface area of 166 grains and approximate the shape of each grain as a cylinder. Grain thickness ranges from 3 to 210 μ m, with an average grain radius of 350 μ m. We predict the amount of 39Ar recoil loss from each grain, finding an expected age error >0.1 % for grains thinner than 150 μ m, a >1% error for grain less than 10 μ m thick, and up to a 3% error for grains less than 3 μ m thick. These modeling results will be tested by analysis of the measured grains after irradiation in the Oregon State University TRIGA reactor. It is important to either account for 39Ar loss in thin biotite grains, or use sufficiently thick ones so that recoil loss is negligible. Our results indicate that only biotite grains thicker than 150 μ m should be used for neutron fluence monitoring in order to avoid bias greater than the

  5. Vector correlations in photodissociation of polarized polyatomic molecules beyond the axial recoil limit.

    PubMed

    Krasilnikov, Mikhail B; Kuznetsov, Vladislav V; Suits, Arthur G; Vasyutinskii, Oleg S

    2011-05-14

    We present the full quantum mechanical theory of the angular momentum distributions of photofragments produced in photolysis of oriented/aligned parent polyatomic molecules beyond the axial recoil limit. This paper generalizes the results of Underwood and Powis(28,29) to the case of non-axial recoil photodissociation of an arbitrary polyatomic molecule. The spherical tensor approach is used throughout this paper. We show that the recoil angular distribution of the angular momentum polarization of each of the photofragments can be presented in a universal spherical tensor form valid for photolysis in diatomic or polyatomic molecules, irrespective of the reaction mechanism. The angular distribution can be written as an expansion over the Wigner D-functions in terms of the set of the anisotropy-transforming coefficients c(K(i)q(i))(K) (k(d), K(0)) which contain all of the information about the photodissociation dynamics and can be either determined from experiment, or computed from quantum mechanical theory. An important new conservation rule is revealed through the analysis, namely that the component q(i) of the initial reagent polarization rank K(i) and the photofragment polarization rank K onto the photofragment recoil direction k is preserved in any photolysis reaction. Both laboratory and body frame expressions for the recoil angle dependence of the photofragment angular momentum polarization are presented. The parent molecule polarization is shown to lead to new terms in the obtained photofragment angular distributions compared with the isotropic case. In particular, the terms with |q(i)| > 2 can appear which are shown to manifest angular momentum helicity non-conservation in the reaction. The expressions for the coefficients c(K(i)q(i))(K) (k(d), K(0)) have been simplified using the quasiclassical approximation in the high-J limit which allows for introducing the dynamical functions and the rotation factors which describe the decreasing of the photofragment

  6. A statistical method to search for recoiling supermassive black holes in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Raffai, P.; Haiman, Z.; Frei, Z.

    2016-01-01

    We propose an observational test for gravitationally recoiling supermassive black holes (BHs) in active galactic nuclei, based on a correlation between the velocities of BHs relative to their host galaxies, |Δv|, and their obscuring dust column densities, Σdust (both measured along the line of sight). We use toy models for the distribution of recoil velocities, BH trajectories, and the geometry of obscuring dust tori in galactic centres, to simulate 2.5 × 105 random observations of recoiling quasars. BHs with recoil velocities comparable to the escape velocity from the galactic centre remain bound to the nucleus, and do not fully settle back to the centre of the torus due to dynamical friction in a typical quasar lifetime. We find that |Δv| and Σdust for these BHs are positively correlated. For obscured (Σdust > 0) and for partially obscured (0 < Σdust ≲ 2.3 g m-2) quasars with |Δv| ≥ 45 km s-1, the sample correlation coefficient between log10(|Δv|) and Σdust is r45 = 0.28 ± 0.02 and r45 = 0.13 ± 0.02, respectively. Allowing for random ± 100 km s- 1 errors in |Δv| unrelated to the recoil dilutes the correlation for the partially obscured quasars to r45 = 0.026 ± 0.004 measured between |Δv| and Σdust. A random sample of ≳ 3500 obscured quasars with |Δv| ≥ 45 km s-1 would allow rejection of the no-correlation hypothesis with 3σ significance 95 per cent of the time. Finally, we find that the fraction of obscured quasars, {F_obs} (|Δv|), decreases with |Δv| from {F_obs} (<10 km s-1) ≳ 0.8 to {F_obs} (>103 km s-1) ≲ 0.4. This predicted trend can be compared to the observed fraction of type II quasars, and can further test combinations of recoil, trajectory, and dust torus models.

  7. Atomistic Simulation of Track Formation by Energetic Recoils in Zircon

    SciTech Connect

    Moreira, Pedro A.; Devanathan, Ramaswami; Weber, William J.

    2010-09-17

    We have performed classical molecular dynamics simulations of fission track formation in zircon. We simulated the passage of a swift heavy ion through crystalline zircon using cylindrical thermal spikes with energy deposition (dE/dx) of 2.5 to 12.8 keV/nm and radius of 3 nm. At a low dE/dx of 2.55 keV/nm, the structural damage recovered almost completely and a damage track was not produced. At higher values of dE/dx, tracks were observed and the radius of the track increased with increasing dE/dx. Our structural analysis shows amorphization in the core of the track and phase separation into Si-rich regions near the center of the track and Zr-rich regions near the periphery. These simulations establish a threshold dE/dx for fission-track formation in zircon that is relevant to thermo-chronology and nuclear waste immobilization.

  8. Recoil Polarization and Beam-Recoil Double Polarization Measurement of {eta} Electroproduction on the Proton in the Region of the S{sub 11}(1535) Resonance

    SciTech Connect

    Merkel, H.; Achenbach, P.; Ayerbe Gayoso, C.; Bernauer, J. C.; Boehm, R.; Distler, M. O.; Doria, L.; Friedrich, J.; Mueller, U.; Nungesser, L.; Pochodzalla, J.; Sanchez Majos, S.; Schlimme, B. S.; Tiator, L.; Walcher, Th.; Weinriefer, M.; Bosnar, D.; Makek, M.; Cheymol, B.; Fonvieille, H.

    2007-09-28

    The beam-recoil double polarization P{sub x{sup '}}{sup h} and P{sub z{sup '}}{sup h} and the recoil polarization P{sub y{sup '}} were measured for the first time for the p(e-vector,e{sup '}p-vector){eta} reaction at a four-momentum transfer of Q{sup 2}=0.1 GeV{sup 2}/c{sup 2} and a center of mass production angle of {theta}=120 deg. at the Mainz Microtron MAMI-C. With a center of mass energy range of 1500 MeV

  9. Recoil-ion momentum spectroscopy for He2+ + He electron capture reactions

    NASA Astrophysics Data System (ADS)

    Alessi, M.; Focke, P.; Otranto, S.

    2015-01-01

    Electron capture reactions for 3He2+ collisions on He at impact energies in the range 40 keV-300 keV have been studied using the Cold Target Recoil-Ion Momentum Spectroscopy setup which has recently became operational at the Centro Atomico Bariloche. State-selective charge exchange cross sections were obtained and in this work we present recoil-ion transverse momentum distributions. For targets with residual thermal motion, we show that the implementation of a back-projection algorithm based on the transverse momentum distribution component along a direction perpendicular to the jet direction provides results in agreement with those obtained by using previously cooled targets. Present results nicely fit the gaps in the datasets already published by other laboratories and are found to be in good agreement with classical trajectory Monte Carlo simulations.

  10. A predictive theory for elastic scattering and recoil of protons from 4He

    DOE PAGESBeta

    Hupin, Guillaume; Quaglioni, Sofia; Navratil, Petr

    2014-12-08

    Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles) are calculated directly by solving the Schrodinger equation for five nucleons interacting through accurate two- and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and depth profiles ofmore » either hydrogen or helium. Furthermore, we compare our results to available experimental data and show that direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets and can be used to predict these cross sections when measurements are not available.« less

  11. Predictive theory for elastic scattering and recoil of protons from 4He

    NASA Astrophysics Data System (ADS)

    Hupin, Guillaume; Quaglioni, Sofia; Navrátil, Petr

    2014-12-01

    Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles) are calculated directly by solving the Schrödinger equation for five nucleons interacting through accurate two- and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and depth profiles of either hydrogen or helium. We compare our results to available experimental data and show that direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets and can be used to predict these cross sections when measurements are not available.

  12. A predictive theory for elastic scattering and recoil of protons from 4He

    SciTech Connect

    Hupin, Guillaume; Quaglioni, Sofia; Navratil, Petr

    2014-12-08

    Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles) are calculated directly by solving the Schrodinger equation for five nucleons interacting through accurate two- and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and depth profiles of either hydrogen or helium. Furthermore, we compare our results to available experimental data and show that direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets and can be used to predict these cross sections when measurements are not available.

  13. Alpha-recoil damage: Relation to isotopic disequilibrium and leaching of radionuclides

    SciTech Connect

    Fleischer, R.L. )

    1988-06-01

    The observation by Raabe et al. (1973) of large differences between the solubilities of isotopically different plutonium dioxides, has led to the recognition of preferential etching of recoil damage as a widespread phenomenon for alpha-active radionuclides. The associated preferential solubility of the products of alpha decay, along with direct recoil ejection, are the two specific microscopic mechanisms that are documented as causes of isotopic disequilibrium in the U and Th decay series. Similarly, leaching plays a significant role in releasing {sup 222}Rn from natural substances, {sup 222}Rn being the alpha-decay product of {sup 226}Ra. The average annealing time in nature of the damage sites can be inferred from the extent of isotopic disequilibrium for different isotopic pairs in the Th and U decay chains.

  14. A coherent understanding of low-energy nuclear recoils in liquid xenon

    SciTech Connect

    Sorensen, Peter

    2010-09-01

    Liquid xenon detectors such as XENON10 and XENON100 obtain a significant fraction of their sensitivity to light (∼<10 GeV) particle dark matter by looking for nuclear recoils of only a few keV, just above the detector threshold. Yet in this energy regime a correct treatment of the detector threshold and resolution remains unclear. The energy dependence of the scintillation yield of liquid xenon for nuclear recoils also bears heavily on detector sensitivity, yet numerous measurements have not succeeded in obtaining concordant results. In this article we show that the ratio of detected ionization to scintillation can be leveraged to constrain the scintillation yield. We also present a rigorous treatment of liquid xenon detector threshold and energy resolution. Notably, the effective energy resolution differs significantly from a simple Poisson distribution. We conclude with a calculation of dark matter exclusion limits, and show that existing data from liquid xenon detectors strongly constrain recent interpretations of light dark matter.

  15. Nuclear Recoil Effect in the Lamb Shift of Light Hydrogenlike Atoms

    NASA Astrophysics Data System (ADS)

    Yerokhin, V. A.; Shabaev, V. M.

    2015-12-01

    We report high-precision calculations of the nuclear recoil effect to the Lamb shift of hydrogenlike atoms to the first order in the electron-nucleus mass ratio and to all orders in the nuclear binding strength parameter Z α . The results are in excellent agreement with the known terms of the Z α expansion and allow an accurate identification of the nonperturbative higher-order remainder. For hydrogen, the higher-order remainder was found to be much larger than anticipated. This result resolves the long-standing disagreement between the numerical all-order and analytical Z α -expansion approaches to the recoil effect and completely removes the second-largest theoretical uncertainty in the hydrogen Lamb shift of the 1 S and 2 S states.

  16. Development of bubble chambers with enhanced stability and sensitivity to low-energy nuclear recoils

    SciTech Connect

    Bolte, W.J.; Collar, Juan I.; Crisler, M.; Hall, J.; Holmgren, D.; Nakazawa, D.; Odom, B.; O'Sullivan, K.; Plunkett, R.; Ramberg, E.; Raskin, A.; Sonnenschein, A.; Vieira, J.D.; /Chicago U., EFI /KICP, Chicago /Fermilab

    2005-03-01

    The viability of using a Bubble Chamber for rare event searches and in particular for the detection of dark matter particle candidates is considered. Techniques leading to the deactivation of inhomogeneous nucleation centers and subsequent enhanced stability in such a detector are described. Results from prototype trials indicate that sensitivity to low-energy nuclear recoils like those expected from Weakly Interacting Massive Particles can be obtained in conditions of near total insensitivity to minimum ionizing backgrounds. An understanding of the response of superheated heavy refrigerants to these recoils is demonstrated within the context of existing theoretical models. We comment on the prospects for the detection of supersymmetric dark matter particles with a large CF{sub 3}I chamber.

  17. Digital characterization of recoil charged-particle tracks for neutron measurements

    SciTech Connect

    Turner, J.E.; Hunter, S.R.; Hamm, R.N.; Wright, H.A.; Hurst, G.S.; Gibson, W.A.

    1988-01-01

    We are developing a new optical ionization detector for imaging the track of a charged neutron-recoil particle in a gas. Electrons produced in the path of the recoil particle are excited by an external, high-voltage, RF, electric field of short duration. Their oscillatory motion causes ionization and excitation of nearby gas molecules, which then emit light in subsequent de-excitation. Two digital cameras image the optical radiation across two perpendicular planes and analyze it for the numbers of electrons in various volume elements along the track. These numbers constitute the digital characterization of the track. This information can then be used to infer the energy deposited in the track and the track LET in the gas. We have now observed alpha-particle tracks in a chamber utilizing these principles. The application of such a device for neutron dosimetry and neutron spectrometry will be described. 4 refs., 3 figs.

  18. Low energy electron/recoil discrimination for directional Dark Matter detection

    SciTech Connect

    Billard, J.; Mayet, F.; Santos, D. E-mail: mayet@lpsc.in2p3.fr

    2012-07-01

    Directional detection is a promising Dark Matter search strategy. Even though it could accommodate to a sizeable background contamination, electron/recoil discrimination remains a key and challenging issue as for direction-insensitive detectors. The measurement of the 3D track may be used to discriminate electrons from nuclear recoils. While a high rejection power is expected above 20 keV ionization, a dedicated data analysis is needed at low energy. After identifying discriminant observables, a multivariate analysis, namely a Boosted Decision Tree, is proposed, enabling an efficient event tagging for Dark Matter search. We show that it allows us to optimize rejection while keeping a rather high efficiency which is compulsory for rare event search.With respect to a sequential analysis, the rejection is about ∼ 20 times higher with a multivariate analysis, for the same Dark Matter exclusion limit.

  19. Separation techniques.

    PubMed

    Duke, T

    1998-10-01

    The past two years have seen continued development of capillary electrophoresis methods. The separation performance of flowable sieving media now equals, and in some respects exceeds, that provided by gels. The application of microfabrication techniques to separation science is gaining pace. There is a continuing trend towards miniaturization and integration of separation with preparative or analytical steps. Innovative separation methods based on microfabrication technology include electrophoresis in purpose-designed molecular sieves, dielectric, trapping using microelectrodes, and force-free motion in Brownian ratchets. PMID:9818184

  20. SIMULATIONS OF RECOILING MASSIVE BLACK HOLES IN THE VIA LACTEA HALO

    SciTech Connect

    Guedes, J.; Madau, P.; Diemand, J.; Kuhlen, M.; Zemp, M.

    2009-09-10

    The coalescence of a massive black hole (MBH) binary leads to the gravitational-wave recoil of the system and its ejection from the galaxy core. We have carried out N-body simulations of the motion of a M{sub BH} = 3.7 x 10{sup 6} M{sub sun} MBH remnant in the 'Via Lactea I' simulation, a Milky Way-sized dark matter halo. The black hole receives a recoil velocity of V{sub kick} = 80, 120, 200, 300, and 400 km s{sup -1} at redshift 1.5, and its orbit is followed for over 1 Gyr within a 'live' host halo, subject only to gravity and dynamical friction against the dark matter background. We show that, owing to asphericities in the dark matter potential, the orbit of the MBH is highly nonradial, resulting in a significantly increased decay timescale compared to a spherical halo. The simulations are used to construct a semi-analytic model of the motion of the MBH in a time-varying triaxial Navarro-Frenk-White dark matter halo plus a spherical stellar bulge, where the dynamical friction force is calculated directly from the velocity dispersion tensor. Such a model should offer a realistic picture of the dynamics of kicked MBHs in situations where gas drag, friction by disk stars, and the flattening of the central cusp by the returning black hole are all negligible effects. We find that MBHs ejected with initial recoil velocities V{sub kick} {approx}> 500 km s{sup -1} do not return to the host center within a Hubble time. In a Milky Way-sized galaxy, a recoiling hole carrying a gaseous disk of initial mass {approx}M{sub BH} may shine as a quasar for a substantial fraction of its 'wandering' phase. The long decay timescales of kicked MBHs predicted by this study may thus be favorable to the detection of off-nuclear quasar activity.

  1. What Can We Learn From Proton Recoils about Heavy-Ion SEE Sensitivity?

    NASA Technical Reports Server (NTRS)

    Ladbury, Raymond L.

    2016-01-01

    The fact that protons cause single-event effects (SEE) in most devices through production of light-ion recoils has led to attempts to bound heavy-ion SEE susceptibility through use of proton data. Although this may be a viable strategy for some devices and technologies, the data must be analyzed carefully and conservatively to avoid over-optimistic estimates of SEE performance. We examine the constraints that proton test data can impose on heavy-ion SEE susceptibility.

  2. Relativistic calculations of the nuclear recoil effect in highly charged Li-like ions

    NASA Astrophysics Data System (ADS)

    Zubova, N. A.; Shabaev, V. M.; Tupitsyn, I. I.; Plunien, G.

    2013-09-01

    Relativistic theory of the nuclear recoil effect in highly charged Li-like ions is considered within the Breit approximation. The normal mass shift (NMS) and the relativistic NMS (RNMS) are calculated by perturbation theory to zeroth and first orders in the parameter 1/Z. The calculations are performed using the dual kinetic balance method with the basis functions constructed from B-splines. The results of the calculations are compared with the theoretical values obtained by other methods.

  3. Kinematically Identified Recoiling Supermassive Black Hole Candidates in SDSS QSOs with z > 0.25

    NASA Astrophysics Data System (ADS)

    Kim, D.-C.; Evans, A. S.; Stierwalt, S.; Privon, G. C.

    2016-06-01

    We have performed a spectral decomposition to search for recoiling supermassive black holes (rSMBHs) in Sloan Digital Sky Survey (SDSS) quasi-stellar objects (QSOs) with z < 0.25. Out of 1271 QSOs, we have identified 26 rSMBH candidates that are recoiling toward us. The projected recoil velocities range from ‑76 to ‑307 km s‑1 with a mean of ‑149 ± 58 km s‑1. Most of the rSMBH candidates are hosted by gas-rich luminous infrared galaxies (LIRGs)/ultra-luminous infrared galaxies (ULIRGs), but only 23% of them show signs of tidal features, which suggests that a majority of them are advanced mergers. We find that the black hole masses M BH of the rSMBH candidates are on average ∼5 times smaller than those of their stationary counterparts and cause a scatter in the {M}{BH}-{σ }\\ast relation. The Eddington ratios of all of the rSMBH candidates are larger than 0.1, with a mean of 0.52 ± 0.27, suggesting that they are actively accreting mass. Velocity shifts in high-excitation coronal lines suggest that the rSMBH candidates are recoiling with an average velocity of about ‑265 km s‑1. The electron density in the narrow line region of the H ii rSMBH candidates is about 1/10 of that in active galactic nucleus (AGN) rSMBH candidates, probably because the AGN in the former was more spatially offset than that in the latter. The estimated spatial offsets between the rSMBH candidate and the center of the host galaxy range from 0.″21 to 1.″97 and need to be confirmed spatially with high-resolution adaptive optics imaging observations.

  4. Recoil velocity at second post-Newtonian order for spinning black hole binaries

    NASA Astrophysics Data System (ADS)

    Racine, Étienne; Buonanno, Alessandra; Kidder, Larry

    2009-08-01

    We compute the flux of linear momentum carried by gravitational waves emitted from spinning binary black holes at second post-Newtonian (2PN) order for generic orbits. In particular we provide explicit expressions of three new types of terms, namely, next-to-leading order spin-orbit terms at 1.5 post-Newtonian (1.5PN) order, spin-orbit tail terms at 2PN order, and spin-spin terms at 2PN order. Restricting ourselves to quasicircular orbits, we integrate the linear-momentum flux over time to obtain the recoil velocity as function of orbital frequency. We find that in the so-called superkick configuration the higher-order spin corrections can increase the recoil velocity up to a factor ˜3 with respect to the leading-order PN prediction. Whereas the recoil velocity computed in PN theory within the adiabatic approximation can accurately describe the early inspiral phase, we find that its fast increase during the late inspiral and plunge, and the arbitrariness in determining until when it should be trusted, makes the PN predictions for the total recoil not very accurate and robust. Nevertheless, the linear-momentum flux at higher PN orders can be employed to build more reliable resummed expressions aimed at capturing the nonperturbative effects until merger. Furthermore, we provide expressions valid for generic orbits, and accurate at 2PN order, for the energy and angular momentum carried by gravitational waves emitted from spinning binary black holes. Specializing to quasicircular orbits we compute the spin-spin terms at 2PN order in the expression for the evolution of the orbital frequency and found agreement with Mikóczi, Vasúth, and Gergely. We also verified that in the limit of extreme mass ratio our expressions for the energy and angular momentum fluxes match the ones of Tagoshi, Shibata, Tanaka, and Sasaki obtained in the context of black hole perturbation theory.

  5. Recoil-proton polarization in high-energy deuteron photodisintegration with circularly plarized photons.

    SciTech Connect

    Jiang, X.; Arrington, J.; Benmokhtar, F.; Camsonne, A.; Chen, J. P.; Holt, R. J.; Qattan, I. A.; Reimer, P. E.; Schulte, E. C.; Wijesooriya, K.; Physics; Rutgers Univ.; Univ. Blaise Pascal; Thomas Jefferson National Accelerator Facility

    2007-05-01

    We measured the angular dependence of the three recoil-proton polarization components in two-body photodisintegration of the deuteron at a photon energy of 2 GeV. These new data provide a benchmark for calculations based on quantum chromodynamics. Two of the five existing models have made predictions of polarization observables. Both explain the longitudinal polarization transfer satisfactorily. Transverse polarizations are not well described, but suggest isovector dominance.

  6. Recoil-Proton Polarization in High-Energy Deuteron Photodisintegration with Circularly Polarized Photons

    SciTech Connect

    Jiang, X.; Benmokhtar, F.; Glashauser, C.; McCormick, K.; Ransome, R. D.; Arrington, J.; Holt, R. J.; Reimer, P. E.; Schulte, E. C.; Wijesooriya, K.; Camsonne, A.

    2007-05-04

    We measured the angular dependence of the three recoil-proton polarization components in two-body photodisintegration of the deuteron at a photon energy of 2 GeV. These new data provide a benchmark for calculations based on quantum chromodynamics. Two of the five existing models have made predictions of polarization observables. Both explain the longitudinal polarization transfer satisfactorily. Transverse polarizations are not well described, but suggest isovector dominance.

  7. Recoil-Proton Polarization in High-Energy Deuteron Photodisintegration with Circularly Polarized Photons

    SciTech Connect

    X. Jiang; J. Arrington; F. Benmokhtar; A. Camsonne; J. P. Chen; S. Choi; E. Chudakov; F. Cusanno; A. Deur; D. Dutta; F. Garibaldi; D. Gaskell; O. Gayou; R. Gilman; C. Glashauser; D. Hamilton; O. Hansen; D. W. Higinbotham; R. J. Holt; C. W. de Jager; M. K. Jones; L. J. Kaufman; E. R. Kinney; K. Kramer; L. Lagamba; R. de Leo; J. Lerose; D. Lhuillier; R. Lindgren; N. Liyanage; K. McCormick; Z.-E. Meziani; R. Michaels; B. Moffit; P. Monaghan; S. Nanda; K. D. Paschke; C. F. Perdrisat; V. Punjabi; I. A. Qattan; R. D. Ransome; P. E. Reimer; B. Reitz; A. Saha; E. C. Schulte; R. Sheyor; K. Slifer; P. Solvignon; V. Sulkosky; G. M. Urciuoli; E. Voutier; K. Wang; K. Wijesooriya; B. Wojtsekhowski; and L. Zhu

    2007-05-01

    We measured the angular dependence of the three recoil-proton polarization components in two-body photodisintegration of the deuteron at a photon energy of 2 GeV. These new data provide a benchmark for calculations based on quantum chromodynamics. Two of the five existing models have made predictions of polarization observables. Both explain the longitudinal polarization transfer satisfactorily. Transverse polarizations are not well described, but suggest isovector dominance.

  8. Angular dependence of recoil proton polarization in high-energy \\gamma d \\to p n

    SciTech Connect

    X. Jiang; J. Arrington; F. Benmokhtar; A. Camsonne; J.P. Chen; S. Choi; E. Chudakov; F. Cusanno; A. Deur; D. Dutta; F. Garibaldi; D. Gaskell; O. Gayou; R. Gilman; C. Glashauser; D. Hamilton; O. Hansen; D.W. Higinbotham; R.J. Holt; C.W. de Jager; M.K. Jones; L.J. Kaufman; E.R. Kinney; K. Kramer; L. Lagamba; R. de Leo; J. Lerose; D. Lhuillier; R. Lindgren; N. Liyanage; K. McCormick; Z.-E. Meziani; R. Michaels; B. Moffit; P. Monaghan; S. Nanda; K.D. Paschke; C.F. Perdrisat; V. Punjabi; I.A. Qattan; R.D. Ransome; P.E. Reimer; B. Reitz; A. Saha; E.C. Schulte; R. Sheyor; K. Slifer; P. Solvignon; V. Sulkosky; G.M. Urciuoli; E. Voutier; K. Wang; K. Wijesooriya; B. Wojtsekhowski; L. Zhu

    2007-02-26

    We measured the angular dependence of the three recoil proton polarization components in two-body photodisintegration of the deuteron at a photon energy of 2 GeV. These new data provide a benchmark for calculations based on quantum chromodynamics. Two of the five existing models have made predictions of polarization observables. Both explain the longitudinal polarization transfer satisfactorily.. Transverse polarizations are not well described, but suggest isovector dominance.

  9. Design and characterization of a neutron calibration facility for the study of sub-keV nuclear recoils

    NASA Astrophysics Data System (ADS)

    Barbeau, P. S.; Collar, J. I.; Whaley, P. M.

    2007-05-01

    We have designed and built a highly monochromatic 24 keV neutron beam at the Kansas State University Triga Mark-II reactor, as part of an experimental effort to demonstrate sensitivity in a large-mass detector to the ultra-low energy recoils expected from coherent neutrino-nucleus elastic scattering. The beam characteristics were chosen so as to mimic the soft recoil energies expected from reactor antineutrinos in a variety of targets, allowing to understand the response of dedicated detector technologies in this yet unexplored sub-keV recoil range. A full characterization of the beam properties (intensity, monochromaticity, contaminations, beam profile) is presented, together with first tests of the calibration facility using proton recoils in organic scintillator.

  10. Elastic recoil detection analysis of hydrogen with 7Li ions using a polyimide foil as a thick hydrogen reference

    NASA Astrophysics Data System (ADS)

    Pelicon, Primož; Razpet, Alenka; Markelj, Sabina; Čadež, Iztok; Budnar, Miloš

    2005-01-01

    Elastic recoil detection analysis (ERDA) with an absorber foil using a 4.2 MeV 7Li2+ beam was utilized for evaluation of hydrogen depth profiles. Since recoil cross-sections when using Li ions as projectiles are not well known, the energy dependent ratio between the experimental yield and the yield calculated using the Rutherford recoil cross-section was obtained from an ERDA spectrum of a thick polyimide (Kapton) sample. It was estimated that this ratio does not significantly depend on sample composition. Therefore it was used for correction of measured spectra analyzed by existing simulation and evaluation programs in which the Rutherford recoil cross-sections were applied. The correction procedure has been verified in round-robin measurements of well-characterized Si:H thin layers. Application of the method for determination of a hydrogen depth concentration profile in hydrogen-containing graphite samples is presented.

  11. Einstein-Bohr recoiling double-slit gedanken experiment performed at the molecular level

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Jing; Miao, Quan; Gel'Mukhanov, Faris; Patanen, Minna; Travnikova, Oksana; Nicolas, Christophe; Ågren, Hans; Ueda, Kiyoshi; Miron, Catalin

    2015-02-01

    Double-slit experiments illustrate the quintessential proof for wave-particle complementarity. If information is missing about which slit the particle has traversed, the particle, behaving as a wave, passes simultaneously through both slits. This wave-like behaviour and corresponding interference is absent if ‘which-slit’ information exists. The essence of Einstein-Bohr's debate about wave-particle duality was whether the momentum transfer between a particle and a recoiling slit could mark the path, thus destroying the interference. To measure the recoil of a slit, the slits should move independently. We showcase a materialization of this recoiling double-slit gedanken experiment by resonant X-ray photoemission from molecular oxygen for geometries near equilibrium (coupled slits) and in a dissociative state far away from equilibrium (decoupled slits). Interference is observed in the former case, while the electron momentum transfer quenches the interference in the latter case owing to Doppler labelling of the counter-propagating atomic slits, in full agreement with Bohr's complementarity.

  12. Measurement of the W boson mass and width using a novel recoil model

    SciTech Connect

    Wetstein, Matthew J.

    2009-01-01

    This dissertation presents a direct measurement of the W boson mass (MW) and decay width (ΓW) in 1 fb-1 of W → ev collider data at D0 using a novel method to model the hadronic recoil. The mass is extracted from fits to the transverse mass MT, pT(e), and ET distributions. The width is extracted from fits to the tail of the MT distribution. The electron energy measurement is simulated using a parameterized model, and the recoil is modeled using a new technique by which Z recoils are chosen from a data library to match the pT and direction of each generated W boson. We measure the the W boson mass to be MW = 80.4035 ± 0.024(stat) ± 0.039(syst) from the MT, MW = 80.4165 ± 0.027(stat) ± 0.038(syst) from the pT(e), and MW = 80.4025 ± 0.023(stat) ± 0.043(syst) from the ET distributions. ΓW is measured to be ΓW = 2.025 ± 0.038(stat) ± 0.061(syst) GeV.

  13. Transport-theory approach to ion-beam mixing and recoil implantation

    SciTech Connect

    Manning, I. )

    1990-12-01

    Ion bombardment of an amorphous target in slab geometry is considered, and ion-beam mixing and recoil implantation evaluated in the binary-collision approximation. A fundamental equation for target-atom redistribution during ion bombardment is formulated, which relates the redistribution flux to the source function for the creation of energetic atomic recoils and their range distribution; for the analysis, this equation plays the role of the Boltzmann transport equation. Expanding the target-atom density in a power series and truncating at the second term yields a flux equation and closed expressions for coefficients of recoil implantation and of ion-beam mixing. The flux equation plays a role analogous to that of Fick's law in diffusion. Lattice relaxations are taken into account by introducing flux transformations between laboratory and marker coordinate frames. The closed expressions for the coefficients are calculated and compared with experiment. The binary-collision contribution to ion-beam mixing turns out to be larger than heretofore thought. A new mechanism for ion-beam mixing emerges, which turns out to make a very significant contribution. There are even cases where the new mechanism far outweighs the cascade-mixing mechanism, thought to be the major contributor to binary-collision ion-beam mixing.

  14. Nuclear Recoil Calibrations in the LUX Detector Using Direct and Backscattered D-D Neutrons

    NASA Astrophysics Data System (ADS)

    Rhyne, Casey; LUX Collaboration

    2016-03-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. I will discuss the latest calibration of the nuclear recoil (NR) response in liquid xenon (LXe), performed in-situ in the LUX detector using mono-energetic 2.45 MeV neutrons produced via the Adelphi Technologies, Inc. DD108 D-D neutron generator. The calibration measured the NR charge yield in LXe (Qy) to 0.7 keVnr recoil energy with an absolute determination of deposited energy and the NR light yield in LXe (Ly) to recoil energies of 1.1 keVnr, both of which improve upon all previous measurements. I will then focus in depth on the extension of this calibration using a new technique for generating a beam of sub-300 keV quasi-mono-energetic neutrons via the backscatter of 2.45 MeV neutrons off a deuterium-based reflector. Current simulations work optimizing the technique, its advantages, and its impact on future research will be discussed, including the extension of the NR Qy calibration down to 0.14 keVnr, an independent NR Ly calibration, and an a priori estimate of the expected 8B solar neutrino-nucleus coherent scattering signal in the upcoming LUX-ZEPLIN experiment.

  15. Plasma-assisted Recoil Implantation for Shallow Boron Doping in Silicon

    NASA Astrophysics Data System (ADS)

    Liu, H. L.; Gearhart, S. S.; Booske, J. H.; Wang, W.

    1997-10-01

    An ion beam mixing technique is used to fabricate ultra-shallow p+/n junctions for the application of sub-micron CMOS source/drain formation. In this method, a thin boron layer is first sputtered onto the Si wafer. Then -3kV argon Plasma Source Ion Implantation (PSII) drives the boron atoms into the Si substrate by means of ion beam mixing. This process avoids the hazardous toxic gases, undesirable F co-implantation and F etching effects. Sub-100nm deep p+/n junctions have been formed with this method. Numerical simulations were performed to predict the recoiled boron profiles, which are in agreement with the experimental data. The boron sputter deposition process has been optimized. Auger electron spectroscopy (AES) confirms high purity of the deposited boron films. Numerical Simulations show that the B films with thickness ranging from 5nm to 10nm result in very similar recoiled B profiles. The thickness of 7.5nm is chosen for the deposited B layer to make the entire process more reproducible. Moreover, a part of the implantation damage will be contained in the B layer, which will be removed prior to the annealing step. This should help to alleviate the transient enhanced B diffusion. The research for the recoil implantation of 7.5nm thick B layer is currently underway.

  16. A Novel Nuclear Recoil Calibration in the LUX Detector Using a D-D Neutron Generator

    NASA Astrophysics Data System (ADS)

    Verbus, James; LUX Collaboration

    2015-04-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. I will describe a novel calibration of nuclear recoils (NR) in liquid xenon (LXe) performed in-situ in the LUX detector using mono-energetic 2.45 MeV neutrons produced by a D-D neutron generator. This technique was used to measure the NR charge yield in LXe (Qy) to < 1 keV recoil energy with an absolute determination of the deposited energy. The LUX Qy result is a factor of × 5 lower in energy compared to any other previous measurement in the field, and provides a significant improvement in calibration uncertainties. We also present a measurement of the NR light yield in LXe (Leff) to recoil energies as low as ~ 2 keV using the LUX D-D data. The Leff result is also lower in energy with smaller uncertainties than has been previously achieved. These absolute, ultra-low energy calibrations of the NR signal yields in LXe are a clear confirmation of the detector response used for the first LUX WIMP search analysis. Strategies for extending this calibration technique to even lower energies and smaller uncertainties will be discussed.

  17. Binary black hole merger gravitational waves and recoil in the large mass ratio limit

    SciTech Connect

    Sundararajan, Pranesh A.; Hughes, Scott A.; Khanna, Gaurav

    2010-05-15

    Spectacular breakthroughs in numerical relativity now make it possible to compute spacetime dynamics in almost complete generality, allowing us to model the coalescence and merger of binary black holes with essentially no approximations. The primary limitation of these calculations is now computational. In particular, it is difficult to model systems with large mass ratio and large spins, since one must accurately resolve the multiple length scales that play a role in such systems. Perturbation theory can play an important role in extending the reach of computational modeling for binary systems. In this paper, we present first results of a code that allows us to model the gravitational waves generated by the inspiral, merger, and ringdown of a binary system in which one member of the binary is much more massive than the other. This allows us to accurately calibrate binary dynamics in the large mass ratio regime. We focus in this analysis on the recoil imparted to the merged remnant by these waves. We closely examine the ''antikick,'' an antiphase cancellation of the recoil arising from the plunge and ringdown waves, described in detail by Schnittman et al. We find that, for orbits aligned with the black hole spin, the antikick grows as a function of spin. The total recoil is smallest for prograde coalescence into a rapidly rotating black hole, and largest for retrograde coalescence. Amusingly, this completely reverses the predicted trend for kick versus spin from analyses that only include inspiral information.

  18. Nuclear Recoil Cross Sections from Time-dependent Studies of Two-Photon Double Ionization of Helium

    SciTech Connect

    Horner, Daniel A.; Rescigno, Thomas N.; McCurdy, C. William

    2009-12-21

    We examine the sensitivity of nuclear recoil cross sections produced by two-photon double ionization of helium to the underlying triple differential cross sections (TDCS) used in their computation. We show that this sensitivity is greatest in the energy region just below the threshold for sequential double ionization. Accurate TDCS, extracted from non-perturbative solutions of the time-dependent Schroedinger equation, are used here in new computations of the nuclear recoil cross section.

  19. Determination of concentration profiles by elastic recoil detection with a ΔE-E gas telescope and high energy incident heavy ions

    NASA Astrophysics Data System (ADS)

    Stoquert, J. P.; Guillaume, G.; Hage-Ali, M.; Grob, J. J.; Ganter, C.; Siffert, P.

    1989-12-01

    The Elastic Recoil Detection (ERD) method has been used to determine the profile of a wide range of elements simultaneously in a thin layer (1μm) with a depth resolution of a few hundred Å and high sensitivity. Z separation is achieved by a ΔE(gas)-E(solid) telescope. Results for 127I (up to 240 MeV) incident ions used to profile thin films of dielectrics (SiOxNyHz), amorphous semiconductors (a-GaAs: H) and superconductors (YBaCuO, BiSrCaCuO) are reported. It has been considered previously that ERD is of interest for analysis of light elements. We show that high energy heavy incident ions extend the field of application of the ERD method to all elements with an approximately constant depth resolution and sensitivity.

  20. Char separator

    DOEpatents

    Matthews, Francis T.

    1979-01-01

    Particulates removed from the flue gases produced in a fluidized-bed furnace are separated into high-and low-density portions. The low-density portion is predominantly char, and it is returned to the furnace or burned in a separate carbon burnup cell. The high-density portion, which is predominantly limestone products and ash, is discarded or reprocessed. According to another version, the material drained from the bed is separated, the resulting high-and low-density portions being treated in a manner similar to that in which the flue-gas particulates are treated.

  1. CENTRIFUGAL SEPARATORS

    DOEpatents

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  2. Stereoisomers Separation

    NASA Astrophysics Data System (ADS)

    Wieczorek, Piotr

    The use of capillary electrophoresis for enantiomer separation and optical purity determination is presented. The contents start with basic information about the nature of stereoizomers and the mechanism of enantioseparation using capillary electrophoresis techniques. The molecules to be separated show identical chemical structure and electrochemical behavior. Therefore, the chiral recognition of enantiomers is possible only by bonding to chiral selector and the separation based on very small differences in complexation energies of diastereomer complexes formed. This method is useful for this purpose due to the fact that different compounds can be used as chiral selectors. The mostly used chiral selectors like cyclodextrins, crown ethers, chiral surfactants, macrocyclic antibiotics, transition metal complexes, natural, and synthetic polymers and their application for this purpose is also discussed. Finally, examples of practical applications of electromigration techniques for enantiomers separation and determination are presented.

  3. Battery separator

    SciTech Connect

    Balouskus, R.A.; Feinberg, S.C.; Lundquist, J.T.; Lundsager, C.B.

    1980-09-23

    A battery separator and a method of forming the same is described. The separator has good electrical conductivity and a high degree of inhibition to dendrite formation, and is in the form of a thin sheet formed from a substantially uniform mixture of a thermoplastic rubber and a filler in a volume ratio of from about 1:0.15 to 1:0.6. The thermoplastic rubber is preferably a styrene/elastomer/styrene block copolymer.

  4. Product separator

    DOEpatents

    Welsh, Robert A.; Deurbrouck, Albert W.

    1976-01-20

    A secondary light sensitive photoelectric product separator for use with a primary product separator that concentrates a material so that it is visually distinguishable from adjacent materials. The concentrate separation is accomplished first by feeding the material onto a vibratory inclined surface with a liquid flow, such as a wet concentrating table. Vibrations generally perpendicular to the stream direction of flow cause the concentrate to separate from its mixture according to its color. When the concentrate and its surrounding stream reach the recovery end of the table, a detecting device notes the line of color demarcation and triggers a signal if it differs from a normal condition. If no difference is noted nothing moves on the second separator. However, if a difference is detected in the constant monitoring of the color line's location, a product splitter and recovery unit normally positioned near the color line at the recovery end, moves to a new position. In this manner the selected separated concentrate is recovered at a maximum rate regardless of variations in the flow stream or other conditions present.

  5. Map Separates

    USGS Publications Warehouse

    U.S. Geological Survey

    2001-01-01

    U.S. Geological Survey (USGS) topographic maps are printed using up to six colors (black, blue, green, red, brown, and purple). To prepare your own maps or artwork based on maps, you can order separate black-and-white film positives or negatives for any color printed on a USGS topographic map, or for one or more of the groups of related features printed in the same color on the map (such as drainage and drainage names from the blue plate.) In this document, examples are shown with appropriate ink color to illustrate the various separates. When purchased, separates are black-and-white film negatives or positives. After you receive a film separate or composite from the USGS, you can crop, enlarge or reduce, and edit to add or remove details to suit your special needs. For example, you can adapt the separates for making regional and local planning maps or for doing many kinds of studies or promotions by using the features you select and then printing them in colors of your choice.

  6. Measurement and calculation of recoil pressure produced during CO{sub 2} laser interaction with ice

    SciTech Connect

    Semak, V.V.; Knorovsky, G.A.; Maccallum, D.O.; Noble, D.R.; Kanouff, M.P.

    1999-12-09

    Evaporation is a classical physics problem which, because of its significant importance for many engineering applications, has drawn considerable attention by previous researchers. Classical theoretical models [Ta. I. Frenkel, Kinetic Theory of Liquids, Clarendon Press, Oxford, 1946] represent evaporation in a simplistic way as the escape of atoms with highest velocities from a potential well with the depth determined by the atomic binding energy. The processes taking place in the gas phase above the rapidly evaporating surface have also been studied in great detail [S.I.Anisimov and V. A. Khokhlov, Instabilities in Lasser-Matter Interaction, CRC Press, Boca Raton, 1995]. The description of evaporation utilizing these models is known to adequately characterize drilling with high beam intensity, e.g., >10{sup 7} W/cm{sup 2}. However, the interaction regimes when beam intensity is relatively low, such as during welding or cutting, lack both theoretical and experimental consideration of the evaporation. It was shown recently that if the evaporation is treated in accordance with Anisimov et.al.'s approach, then predicted evaporation recoil should be a substantial factor influencing melt flow and related heat transfer during laser beam welding and cutting. To verify the applicability of this model for low beam intensity interaction, the authors compared the results of measurements and calculations of recoil pressure generated during laser beam irradiation of a target. The target material used was water ice at {minus}10 C. The displacement of a target supported in a nearly frictionless air bearing under irradiation by a defocused laser beam from a 14 kW CO{sub 2} laser was recorded and Newton's laws of motion used to derive the recoil pressure.

  7. Order-of-Magnitude Estimate of Fast Neutron Recoil Rates in Proposed Neutrino Detector at SNS

    SciTech Connect

    Iverson, Erik B.

    2006-02-01

    Yuri Efremenko (UT-K) and Kate Scholberg (Duke) indicated, during discussions on 12 January 2006 with the SNS Neutronics Team, interest in a new type of neutrino detector to be placed within the proposed neutrino bunker at SNS, near beam-line 18, against the RTBT. The successful operation of this detector and its associated experiments would require fast-neutron recoil rates of approximately one event per day of operation or less. To this end, the author has attempted the following order-of-magnitude estimate of this recoil rate in order to judge whether or not a full calculation effort is needed or justified. For the purposes of this estimate, the author considers a one-dimensional slab geometry, in which fast and high-energy neutrons making up the general background in the target building are incident upon one side of an irbon slab. This iron slab represents the neutrino bunker walls. If we assume that a significant fraction of the dose rate throughout the target building is due to fast or high-energy neutrons, we can estimate the flux of such neutrons based upon existing shielding calculations performed for radiation protection purposes. In general, the dose rates within the target building are controlled to be less than 0.25 mrem per hour. A variety of calculations have indicated that these dose rates have significant fast and high-energy neutron components. Thus they can estimate the fast neutron flux incident on the neutrino bunker, and thereby the fast neutron flux inside that bunker. Finally, they can estimate the neutron recoil rate within a nominal detector volume. Such an estimate is outlined in Table 1.

  8. Gravitational recoil: effects on massive black hole occupation fraction over cosmic time

    NASA Astrophysics Data System (ADS)

    Volonteri, Marta; Gültekin, Kayhan; Dotti, Massimo

    2010-06-01

    We assess the influence of massive black hole (MBH) ejections from galaxy centres due to gravitational radiation recoil, along the cosmic merger history of the MBH population. We discuss the `danger' of recoil for MBHs as a function of different MBH spin-orbit configurations and of the host halo cosmic bias, and on how that reflects on the occupation fraction of MBHs. We assess ejection probabilities for mergers occurring in a gas-poor environment, in which the MBH binary coalescence is driven by stellar dynamical processes and the spin-orbit configuration is expected to be isotropically distributed. We contrast this case with the `aligned' case. The latter is the more realistic situation for gas-rich, i.e. `wet', mergers, which are expected for high-redshift galaxies. We find that if all haloes at z > 5-7 host an MBH, the probability of the Milky Way (or similar size galaxy) to host an MBH today is less than 50 per cent, unless MBHs form continuously in galaxies. The occupation fraction of MBHs, intimately related to halo bias and MBH formation efficiency, plays a crucial role in increasing the retention fraction. Small haloes, with shallow potential wells and low escape velocities, have a high ejection probability, but the MBH merger rate is very low along their galaxy formation merger hierarchy: MBH formation processes are likely inefficient in such shallow potential wells. Recoils can decrease the overall frequency of MBHs in small galaxies to ~60 per cent, while they have little effect on the frequency of MBHs in large galaxies (at most a 20 per cent effect).

  9. Recoil polarization measurements of the proton electromagnetic form factor ratio at high momentum transfer

    SciTech Connect

    Andrew Puckett

    2009-12-01

    Electromagnetic form factors are fundamental properties of the nucleon that describe the effect of its internal quark structure on the cross section and spin observables in elastic lepton-nucleon scattering. Double-polarization experiments have become the preferred technique to measure the proton and neutron electric form factors at high momentum transfers. The recently completed GEp-III experiment at the Thomas Jefferson National Accelerator Facility used the recoil polarization method to extend the knowledge of the proton electromagnetic form factor ratio GpE/GpM to Q2 = 8.5 GeV2. In this paper we present the preliminary results of the experiment.

  10. A New Method for Electronic Recoil Calibration in Liquid Noble Dark Matter Detectors

    NASA Astrophysics Data System (ADS)

    Macmullin, Sean

    2014-03-01

    Calibration of next-generation liquid noble dark matter detectors present new challenges because radiation from external sources will not probe the entire target, owing to its large volume and high stopping power. For electronic recoil calibration in particular, a proposed solution is to dissolve a source of low-energy β-electrons directly into the liquid. A particularly promising candidate is 212Pb, a daughter of 220Rn. We have acquired a custom-made source of electrodeposited 228Th that efficiently emanates the desired 220Rn. Details of recent measurements of mixing 220Rn and its daughters in a liquid xenon detector and future prospects will be presented.

  11. Reaction {gamma}p {sup {yields}} {eta}' (958) p and polarization of recoil protons

    SciTech Connect

    Tryasuchev, V. A.

    2006-02-15

    On the basis of the isobar model extended by including the t-channel, the cross sections for and single-polarization features of the reaction {gamma}p {sup {yields}} {eta}'p are calculated for incident-photon energies up to 5 GeV, two poorly studied resonances, S{sub 11}(1978) and P{sub 13}(2080), being taken into account in this calculation. In order to reduce the ambiguities in the choice of resonances and their parameters that make it possible to reproduce the experimental differential cross sections, it is proposed to measure the polarization of recoil protons in the reaction being considered.

  12. Triple Differential Cross sections and Nuclear Recoil in Two-Photon Double Ionization of Helium

    SciTech Connect

    Horner, Daniel A.; McCurdy, C. William; Rescigno, Thomas N

    2008-04-29

    Triple differential cross sections (TDCS) for two-photon double ionization of helium are calculated using the method of exterior complex scaling both above and below the threshold for sequential ionization (54.4 eV). It is found that sequential ionization produces characteristic behavior in the TDCS that identifies that process when it is in competition with nonsequential ionization. Moreover we see the signature in the TDCS and nuclear recoil cross sections of"virtual sequential ionization" below the threshold for the sequential process.

  13. Thermal annealing of stabilization products from recoil bromine-82 atoms in neutron-irradiated ammonium perbromate

    SciTech Connect

    Isupov, V.K.; Gavrilov, V.V.

    1987-11-01

    A study has been made on the thermal annealing of stabilization products from recoil bromine-82 atoms in neutron-irradiated ammonium perbromate. Paper and ion-exchange chromatography show that the oxidation of /sup 82/Br/sup -/ to /sup 82/BrO/sub 3//sup -/ in that case occurs only to a small extent, in contrast to alkali-metal perbromates. The effect is ascribed to metastable radiolysis products from the ammonium group. The pyrolysis of ammonium perbromate has also been examined.

  14. 8He cluster structure studied by recoil proton tagged knockout reaction

    NASA Astrophysics Data System (ADS)

    Ye, Y.; Cao, Z.; Xiao, J.; Jiang, D.; Zheng, T.; Hua, H.; Ge, Y.; Li, X.; Lou, J.; Li, Q.; Lv, L.; Qiao, R.; You, H.; Chen, R.; Sakurai, H.; Otsu, H.; Li, Z.; Nishimura, M.; Sakaguchi, S.; Baba, H.; Togano, Y.; Yoneda, K.; Li, C.; Wang, S.; Wang, H.; Li, K.; Nakayama, Y.; Kondo, Y.; Deguchi, S.; Sato, Y.; Tshoo, K.

    2013-04-01

    Knockout reaction experiment for 8He at 82.3 MeV/u on Hydrogen target was carried out at the RIPS beam line in RIKEN. Recoil protons were detected in coincidence with the forward moving core fragments and neutrons. The quasi-free knockout mechanism is identified through the polar angle correlation and checked by various kinematics conditions. The absolute differential cross sections for 6He core cluster are obtained and compared with the simple Glauber model calculations. The extracted spectroscopic factor is close to unity and a shrinking of the cluster size is evidenced.

  15. Spallation recoil II: Xenon evidence for young SiC grains

    NASA Astrophysics Data System (ADS)

    Ott, U.; Altmaier, M.; Herpers, U.; Kuhnhenn, J.; Merchel, S.; Michel, R.; Mohapatra, R. K.

    2005-11-01

    We have determined the recoil range of spallation xenon produced by irradiation of Ba glass targets with ˜1190 and ˜268 MeV protons, using a catcher technique, where spallation products are measured in target and catcher foils. The inferred range for 126Xe produced in silicon carbide is ˜0.19 μm, which implies retention of ˜70% for 126Xe produced in "typical" presolar silicon carbide grains of 1 μm size. Recoil loss of spallation xenon poses a significantly smaller problem than loss of the spallation neon from SiC grains. Ranges differ for the various Xe isotopes and scale approximately linearly as function of the mass difference between the target element, Ba, and the product. As a consequence, SiC grains of various sizes will have differences in spallation Xe composition. In an additional experiment at ˜66 MeV, where the recoil ranges of 22Na and 127Xe produced on Ba glass were determined using γ-spectrometry, we found no evidence for recoil ranges being systematically different at this lower energy. We have used the new data to put constraints on the possible presolar age of the SiC grains analyzed for Xe by Lewis et al. (1994). Uncertainties in the composition of the approximately normal Xe component in SiC (Xe-N) constitute the most serious problem in determining an age, surpassing remaining uncertainties in Xe retention and production rate. A possible interpretation is that spallation contributions are negligible and that trapped 124Xe/126Xe is ˜5% lower in Xe-N than in Q-Xe. But also for other reasonable assumptions for the 124Xe/126Xe ratio in Xe-N (e.g., as in Q-Xe), inferred exposure ages are considerably shorter than theoretically expected lifetimes for interstellar grains. A short presolar age is in line with observations by others (appearance, grain size distribution) that indicate little processing in the interstellar medium (ISM) of surviving (crystalline) SiC. This may be due to amorphization of SiC in the ISM on a much shorter time scale

  16. Ab initio molecular dynamics simulations of low energy recoil events in ceramics

    SciTech Connect

    Gao, Fei; Xiao, Haiyan Y.; Weber, William J.

    2011-07-15

    The recent progress in the use of large-scale ab initio molecular dynamics (AIMD) to investigate low energy recoil events and determine threshold displacement energies, Ed, in ceramics is reviewed. In general, Ed shows a significant dependence on recoil direction and atom. In 3C-SiC, the minimum Ed for both C and Si atoms is found along the <100> direction, with a value of 20 and 49 eV, respectively. The results demonstrate that significant charge transfer occurs during the dynamics process, and defects can enhance charge transfer to surrounding atoms, which provides important insights into the formation of charged defects. It is found that the C vacancy is a positively charged defect, whereas the Si vacancy is in its neutral state. The minimum Ed in GaN is determined to be 17 and 39 eV for N and Ga atoms, respectively, both along the direction. The average Ed for N atoms (32.4 eV) is smaller than that for Ga atoms (73.2 eV). It is of interest to note that the N defects created along different crystallographic directions have a similar configuration (a N-N dumbbell configuration), but various configurations for Ga defects are formed. In Y2Ti2O7 prochlore, the minimum Ed for Y atoms is determined to be 27 eV for a recoil along the <100> direction, 31.5 eV for Ti atoms along the <100> direction, 14.5 eV for O48f atoms along the <110> direction and 13 eV for O8b atoms along the <111> direction. The average Ed values determined are 32.7, 34.2, 14.2 and 16.1 eV for yttrium, titanium, O48f and O8b atoms, respectively. Cation interstitials at vacant 8a sites, which are generally occupied by oxygen anions, and at the bridge sites between two neighboring cations along the <010> direction are observed after low energy recoil events.

  17. Binary and Recoil Collisions in Strong Field Double Ionization of Helium

    SciTech Connect

    Staudte, A.; Villeneuve, D. M.; Corkum, P. B.; Ruiz, C.; Becker, A.; Schoeffler, M.; Schoessler, S.; Meckel, M.; Doerner, R.; Zeidler, D.; Weber, Th.

    2007-12-31

    We have investigated the correlated momentum distribution of both electrons from nonsequential double ionization of helium in a 800 nm, 4.5x10{sup 14} W/cm{sup 2} laser field. Using very high resolution coincidence techniques, we find a so-far unobserved fingerlike structure in the correlated electron momentum distribution. The structure can be interpreted as a signature of the microscopic dynamics in the recollision process. We identify features corresponding to the binary and recoil lobe in field-free (e,2e) collisions. This interpretation is supported by analyzing ab initio solutions of a fully correlated three-dimensional helium model.

  18. Calculated yield of isomer depletion due to NEEC for {sup 93m}Mo recoils

    SciTech Connect

    Karamian, S. A.; Carroll, J. J.

    2012-11-15

    In the present work, quantitative calculations were carried out for production and depletion of the {sup 93m}Mo isomer in a relatively simple experiment using {sup 91}Zr beam ions. Such studies could be arranged at existing and operating accelerator facilities, e.g. at GSI or in JINR. The {sup 93m}Mo nuclei produced in a He gas target due to the {sup 4}He({sup 91}Zr, 2n) reaction will recoil into a gas stopper with a high velocity, being then depleted due to NEEC in highly-ionized species.

  19. Ab initio molecular dynamics simulations of low energy recoil events in ceramics

    SciTech Connect

    Gao, Fei; Xiao, Haiyan; Weber, William J

    2011-01-01

    The recent progress in the use of large-scale ab initio molecular dynamics (AIMD) to investigate low energy recoil events and determine threshold displacement energies, Ed, in ceramics is reviewed. In general, Ed shows a significant dependence on recoil direction and atom. In SiC, the minimum Ed for both C and Si atoms is found along the <100> direction, with a value of 20 and 49 eV, respectively. The results demonstrate that significant charge transfer occurs during the dynamics process, and defects can enhance charge transfer to surrounding atoms, which provides important insights into the formation of charged defects. It is found that the C vacancy is a positively charged defect, whereas the Si vacancy is in its neutral state. The minimum Ed in GaN is determined to be 17 and 39 eV for N and Ga atoms, respectively, both along the direction. The average Ed for N atoms (32.4 eV) is smaller than that for Ga atoms (73.2 eV). It is of interest to note that the N defects created along different crystallographic directions have a similar configuration (a N-N dumbbell configuration), but various configurations for Ga defects are formed. In Y2Ti2O7 prochlore, the minimum Ed for Y atoms is determined to be 27 eV for a recoil along the <100> direction, 31.5 eV for Ti atoms along the <100> direction, 14.5 eV for O48f atoms along the <110> direction and 13 eV for O8b atoms along the <111> direction. The average Ed values determined are 32.7, 34.2, 14.2 and 16.1 eV for yttrium, titanium, O48f and O8b atoms, respectively. Cation interstitials at vacant 8a sites, which are generally occupied by oxygen anions, and at the bridge sites between two neighboring cations along the <010> direction are observed after low energy recoil events.

  20. Isotope separation

    DOEpatents

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  1. ISOTOPE SEPARATORS

    DOEpatents

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  2. Elution behaviour of alpha-recoil atoms into etchant and ovservation of their tracks on the mica surface

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tetsuo; Komatsu, Shigemi; Kido, Kazuo; Sotobayashi, Takeshi

    1980-12-01

    Muscovite samples, which were irradiated with alpha-recoil atoms emitted from a thinly electrodeposited 232U-source in a vacuum chamber of about 10 -2 Torr, were subjected to a chemical etching treatment with a hydrofluoric acid solution to develop alpha-recoil tracks. The transferred alpha-activities of 224Ra and 212Po, supported by 212Pb, on the mica surface were repeatedly measured after every etching treatment. The results showed that the 224Ra could be rapidly eluted out at earlier etching stages, in contrast to appreciably delayed elution of 212Po. These findings, along with annealing experiments on mica, imply that the recoil range of 224Ra, originated from the parent 228Th by a single decay process, is shorter than the total recoil range of 212Po, which can penetrate partially into inner mica layers through its preceding multiple alpha-decay processes after injection of its precursors into the mica. Scanning electron and phase-contrast microscopic observation of the etched mica surfaces indicated an apparent dependence of the recoil-track etch pit size on the number of succesive alpha-decays.

  3. SEPARATION PROCESS

    DOEpatents

    Stoughton, R.W.

    1961-10-24

    A process for separating tetravalent plutonium from aqueous solutions and from niobium and zirconium by precipitation on lanthanum oxalate is described. The oxalate ions of the precipitate may be decomposed by heating in the presence of an oxidizing agent, forming a plutonium compound readily soluble in acid. (AEC)

  4. Separation Group.

    ERIC Educational Resources Information Center

    Addington, Jean

    1992-01-01

    Describes eight-week short-term group designed to help separated or divorced men and women move through related adjustment phase in focused group setting. Discusses constructs that form the foundations of this short-term psychoeducational and support group and presents brief overview of psychological difficulties that occur as result of marital…

  5. Sub-nanosecond lifetime measurement using the recoil-distance method

    SciTech Connect

    Wu, C.Y.

    2000-02-01

    The electromagnetic properties of low-lying nuclear states are a sensitive probe of both collective and single-particle degrees of freedom in nuclear structure. The recoil-distance technique provides a very reliable, direct and precise method for measuring lifetimes of nuclear states with lifetimes ranging from less than one to several hundred picoseconds. This method complements the powerful, but complicated, heavy-ion induced Coulomb excitation technique for measuring electromagnetic properties. The recoil distance technique has been combined with heavy-ion induced Coulomb excitation to study a variety of problems. Examples discussed are: study of the two-phonon triplet in {sup 110}Pd, coupling of the {beta} and {gamma} degrees of freedom in {sup 182,184}W, highly deformed {gamma} bands in {sup 165}Ho, octupole collectivity in {sup 96}Zr, and opposite parity states in {sup 153}Eu. Consistency between the Coulomb excitation results and the lifetime measurements confirms the reliability of the complex analysis often encountered in heavy-ion induced Coulomb excitation work.

  6. Precision measurement of quenching factors for low-energy nuclear recoils at TUNL

    NASA Astrophysics Data System (ADS)

    Rich, Grayson; Barbeau, Phil; Howell, Calvin; Karwowski, Hugon

    2014-03-01

    With detector technologies becoming increasingly sensitive to exotic events, a thorough understanding of signal yield as a function of deposited energy is required for appropriate interpretation of results from cutting edge detector systems. Elastic neutron scattering is a probe which has been used to mimic the nuclear recoils which may be produced in detection media by light-WIMP interactions or coherent neutrino-nucleus scattering (CNS). We have built at the Triangle Universities Nuclear Laboratory (TUNL) a facility which produces pulsed, collimated, low-energy, quasi-monoenergetic neutron beams using the 7Li(p,n) reaction, resulting in fluxes of ~ 1 neutrons / (s . cm2) at ~90 cm from the neutron-production target. The first precision results from this facility are reported for ultra-low-energy recoils in NaI(Tl) and CsI(Na) and future plans are outlined, including measurements on candidate materials for a CNS detector that can potentially be fielded at the Spallation Neutron Source of Oak Ridge National Laboratory as a part the Coherent Scatter Initiative (CSI). We discuss the implications of new, precise measurements of quenching factors on neutrino detectors and on current- and next-generation light-WIMP searches, particularly the DAMA experiment.

  7. The Final Merger of Massive Black Holes: Recoils, Gravitational Waves, and Electromagnetic Signatures

    NASA Technical Reports Server (NTRS)

    Centrella, Joan M.

    2010-01-01

    The final merger of two massive black holes produces a powerful burst of gravitational radiation, emitting more energy than all the stars in the observable universe combined. The resulting gravitational waveforms will be easily detectable by the space-based LISA out to redshifts z greater than 10, revealing the masses and spins of the black holes to high precision. If the merging black holes have unequal masses, or asymmetric spins, the final black hole that forms can recoil with a velocity exceeding 1000 km/s. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new results that are revealing the dynamics and waveforms of binary black hole mergers, recoil velocities, and the possibility of accompanying electromagnetic outbursts.

  8. Relativistic nuclear recoil, electron correlation and QED effects in highly charged Ar ions

    NASA Astrophysics Data System (ADS)

    Harman, Z.; Soria Orts, R.; Lapierre, A.; Crespo Lopez-Urrutia, J. R.; Artemyev, A. N.; Tupitsyn, I. I.; Jentschura, U. D.; Keitel, C. H.; Tawara, H.; Ullrich, J.; Shabaev, V. M.; Volotka, A. V.

    2007-06-01

    We have performed extensive theoretical studies on the 1s^22s^22p^2P3/2 -- ^2P1/2 M1 transition in Ar^13+ ions. Accurate radiative lifetimes are sensitive to QED corrections like the electron anomalous magnetic moment and to relativistic electron correlation effects. The lifetime of the P3/2 metastable state was determined to be 9.573(4)(5) ms (stat)(syst) [1] using the Heidelberg electron beam ion trap. Theoretical predictions cluster around a value that is significantly shorter than this high-precision experimental result. This discrepancy is presently unexplained. The wavelengths of the above transition in Ar^13+ and the 1s^22s2p ^3P1 -- ^3P2 M1 transition in Ar^14+ were compared for the isotopes ^36Ar and ^40Ar [2]. The observed mass shift has confirmed the relativistic theory of nuclear recoil effects in many-body systems. Our calculations, based on the fully relativistic recoil operator, are in excellent agreement with the measured results. [1] A. Lapierre, U.D. Jentschura, J.R. Crespo L'opez-Urrutia et al., Phys. Rev. Lett. 95, 183001 (2005); [2] R. Soria Orts, Z. Harman, J.R. Crespo L'opez-Urrutia et al., Phys. Rev. Lett. 97, 103002 (2006)

  9. Recoil-ion-momentum spectrum for few-photon double ionization of helium

    NASA Astrophysics Data System (ADS)

    Jiang, Wei-Chao; Tong, Yao; Gong, Qihuang; Peng, Liang-You

    2014-04-01

    We provide an efficient and accurate numerical method to deduce the recoil-ion-momentum spectrum of He from the two-electron momentum distribution, which is obtained by solving the full-dimensional time-dependent Schrödinger equation. We apply this method to study the ion spectra of one-photon double ionization and two-photon sequential and nonsequential double ionization of He. The present calculations agree rather well with the absolute magnitude of the recoil-ion triply differential cross sections published recently [S. A. Abdel-Naby, M. S. Pindzola, and J. Colgan, Phys. Rev. A 86, 013424 (2012), 10.1103/PhysRevA.86.013424; S. A. Abdel-Naby et al., Phys. Rev. A 87, 063425 (2013), 10.1103/PhysRevA.87.063425]. Nevertheless, significant differences are also found in several detailed features of the spectra and straightforward physical analysis indicates that the present results appear more reasonable, which should be confirmed by future experiments or additional independent calculations.

  10. Hydrogen analysis for granite using proton-proton elastic recoil coincidence spectrometry.

    PubMed

    Komatsubara, T; Sasa, K; Ohshima, H; Kimura, H; Tajima, Y; Takahashi, T; Ishii, S; Yamato, Y; Kurosawa, M

    2008-07-01

    In an effort to develop DS02, a new radiation dosimetry system for the atomic bomb survivors of Hiroshima and Nagasaki, measurements of neutron-induced activities have provided valuable information to reconstruct the radiation situation at the time of the bombings. In Hiroshima, the depth profile of (152)Eu activity measured in a granite pillar of the Motoyasu Bridge (128 m from the hypocenter) was compared with that calculated using the DS02 methodology. For calculation of the (152)Eu production due to the thermal-neutron activation reaction, (151)Eu(n,gamma)(152)Eu, information on the hydrogen content in granite is important because the transport and slowing-down process of neutrons penetrating into the pillar is strongly affected by collisions with the protons of hydrogen. In this study, proton-proton elastic recoil coincidence spectrometry has been used to deduce the proton density in the Motoyasu pillar granite. Slices of granite samples were irradiated by a 20 MeV proton beam, and the energies of scattered and recoil protons were measured with a coincidence method. The water concentration in the pillar granite was evaluated to be 0.30 +/- 0.07%wt. This result is consistent with earlier data on adsorptive water (II) and bound water obtained by the Karl Fisher method. PMID:18509666

  11. Oxygen recoil implant from SiO{sub 2} layers into single-crystalline silicon

    SciTech Connect

    Wang, G.; Chen, Y.; Li, D.; Oak, S.; Srivastav, G.; Banerjee, S.; Tasch, A.; Merrill, P.; Bleiler, R.

    2001-06-01

    It is important to understand the distribution of recoil-implanted atoms and the impact on device performance when ion implantation is performed at a high dose through surface materials into single crystalline silicon. For example, in ultralarge scale integration impurity ions are often implanted through a thin layer of screen oxide and some of the oxygen atoms are inevitably recoil implanted into single-crystalline silicon. Theoretical and experimental studies have been performed to investigate this phenomenon. We have modified the Monte Carlo ion implant simulator, UT-Marlowe (B. Obradovic, G. Wang, Y. Chen, D. Li, C. Snell, and A. F. Tasch, UT-MARLOWE Manual, 1999), which is based on the binary collision approximation, to follow the full cascade and to dynamically modify the stoichiometry of the Si layer as oxygen atoms are knocked into it. CPU reduction techniques are used to relieve the demand on computational power when such a full cascade simulation is involved. Secondary ion mass spectrometry (SIMS) profiles of oxygen have been carefully obtained for high dose As and BF{sub 2} implants at different energies through oxide layers of various thicknesses, and the simulated oxygen profiles are found to agree very well with the SIMS data. {copyright} 2001 American Institute of Physics.

  12. Recoil effects due to electron shake-off following the beta decay of 6 He

    NASA Astrophysics Data System (ADS)

    Drake, Gordon W. F.; Schulhoff, Eva

    2016-05-01

    There are currently several experiments in progress to search for new physics beyond the Standard Model by high precision studies of angular correlations in the β decay of the helium isotope 6He to form 6Li +e- +νe. After the β decay process, the atomic electrons of 6 Li+ adjust to the sudden change of nuclear charge from 2 to 3. We calculate the probabilities for electron shake-up and shake-off, including recoil effects, by the use of a Stieltjes imaging representation of the final states. A variety of sum rules provides tight consistency checks on the accuracy of the results. Results obtained previously indicate that there is a 7 σ disagreement between theory and experiment for the additional nuclear recoil induced by the emission of atomic shake-off electrons. This disagreement will be further studied, and the results extended to the 1 s 2 p3 P and metastable 1 s 2 s3 S states as initial states of 6 He before β-decay. Research supported by the Natural Sciences and Engineering Research Council of Canada.

  13. Photodissociation of laboratory oriented molecules: Revealing molecular frame properties of nonaxial recoil

    SciTech Connect

    Brom, Alrik J. van den; Rakitzis, T. Peter; Janssen, Maurice H.M.

    2004-12-15

    We report the photodissociation of laboratory oriented OCS molecules. A molecular beam of OCS molecules is hexapole state-selected and spatially oriented in the electric field of a velocity map imaging lens. The oriented OCS molecules are dissociated at 230 nm with the linear polarization set at 45 deg. to the orientation direction of the OCS molecules. The CO({nu}=0,J) photofragments are quantum state-selectively ionized by the same 230 nm pulse and the angular distribution is measured using the velocity map imaging technique. The observed CO({nu}=0,J) images are strongly asymmetric and the degree of asymmetry varies with the CO rotational state J. From the observed asymmetry in the laboratory frame we can directly extract the molecular frame angles between the final photofragment recoil velocity and the permanent dipole moment and the transition dipole moment. The data for CO fragments with high rotational excitation reveal that the dissociation dynamics is highly nonaxial, even though conventional wisdom suggests that the nearly limiting {beta} parameter results from fast axial recoil dynamics. From our data we can extract the relative contribution of parallel and perpendicular transitions at 230 nm excitation.

  14. Phase and structural transformations in metallic iron under the action of heavy ions and recoil nuclei.

    PubMed

    Alekseev, I; Novikov, D

    2014-02-01

    By the use of various modes of Mössbauer spectroscopy after effects of irradiation of metal iron with (12)C(4+) and (14)N(5+) ions of medium energies, and alpha-particles and the (208)Tl, (208,212)Pb, and (216)Po recoil from a (228)Th-source have been studied. The experimental data obtained in the study enabled various types of external and internal radiation to be compared in regard to the damage they cause, as well as to their effect on the structure-, phase composition- and corrosion resistance properties of metallic iron. Irradiation with (12)C(4+) and (14)N(5+) ions is accompanied by both structural disordering of the α-Fe lattice, and the appearance of γ-phase in the bulk metal. This is indicated by a single line which is 2 to 3-fold broadened (as compared to the lines of the magnetic sextet). This is a result of a strong local heating of the lattice in the thermal spike area with a subsequent instant cooling-down and recrystallization of this "molted" area. Irradiation of iron foils with (12)C(4+)- and (14)N(5+) ions and with recoil nuclei does provoke corrosion processes (the formation of γ-FeOOH) and is accompanied by an intensive oxidation of the metal. PMID:24378918

  15. Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal

    NASA Astrophysics Data System (ADS)

    Lee, H. S.; Adhikari, G.; Adhikari, P.; Choi, S.; Hahn, I. S.; Jeon, E. J.; Joo, H. W.; Kang, W. G.; Kim, G. B.; Kim, H. J.; Kim, H. O.; Kim, K. W.; Kim, N. Y.; Kim, S. K.; Kim, Y. D.; Kim, Y. H.; Lee, J. H.; Lee, M. H.; Leonard, D. S.; Li, J.; Oh, S. Y.; Olsen, S. L.; Park, H. K.; Park, H. S.; Park, K. S.; Shim, J. H.; So, J. H.

    2015-08-01

    We report on the response of a high light-output NaI(Tl) crystal to nuclear recoils induced by neutrons from an Am-Be source and compare the results with the response to electron recoils produced by Compton-scattered 662 keV γ-rays from a 137Cs source. The measured pulse-shape discrimination (PSD) power of the NaI(Tl) crystal is found to be significantly improved because of the high light output of the NaI(Tl) detector. We quantify the PSD power with a quality factor and estimate the sensitivity to the interaction rate for weakly interacting massive particles (WIMPs) with nucleons, and the result is compared with the annual modulation amplitude observed by the DAMA/LIBRA experiment. The sensitivity to spin-independent WIMP-nucleon interactions based on 100 kg·year of data from NaI detectors is estimated with simulated experiments, using the standard halo model.

  16. Differential cross sections and recoil polarizations for the reaction γp→K+Σ0

    NASA Astrophysics Data System (ADS)

    Dey, B.; Meyer, C. A.; Bellis, M.; McCracken, M. E.; Williams, M.; Adhikari, K. P.; Aghasyan, M.; Anghinolfi, M.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Berman, B. L.; Biselli, A. S.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Crede, V.; D'Angelo, A.; Daniel, A.; de Vita, R.; de Sanctis, E.; Deur, A.; Dhamija, S.; Dickson, R.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fegan, S.; Fradi, A.; Gabrielyan, M. Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Gothe, R. W.; Graham, L.; Griffioen, K. A.; Guler, N.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Hassall, N.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Jawalkar, S. S.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Konczykowski, P.; Kubarovsky, V.; Kuleshov, S. V.; Kuznetsov, V.; Livingston, K.; MacGregor, I. J. D.; Martinez, D.; McAndrew, J.; McKinnon, B.; Mikhailov, K.; Mirazita, M.; Mokeev, V.; Moreno, B.; Moriya, K.; Morrison, B.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Nasseripour, R.; Nepali, C. S.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niroula, M. R.; Osipenko, M.; Ostrovidov, A. I.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Pereira, S. Anefalos; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Raue, B. A.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Salamanca, J.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Strakovsky, I. I.; Strauch, S.; Tang, W.; Taylor, C. E.; Tedeschi, D. J.; Tkachenko, S.; Ungaro, M.; Watts, D. P.; Vernarsky, B.; Vineyard, M. F.; Voutier, E.; Weinstein, L. B.; Wood, M. H.; Yegneswaran, A.; Zhang, J.; Zhao, B.; Zhao, Z. W.

    2010-08-01

    High-statistics measurements of differential cross sections and recoil polarizations for the reaction γp→K+Σ0 have been obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass energies (s) from 1.69 to 2.84 GeV, with an extensive coverage in the K+ production angle. Independent measurements were made using the K+pπ-(γ) and K+p(π-,γ) final-state topologies, and were found to exhibit good agreement. Our differential cross sections show good agreement with earlier CLAS, SAPHIR, and LEPS results, while offering better statistical precision and a 300-MeV increase in s coverage. Above s≈2.5 GeV, t- and u-channel Regge scaling behavior can be seen at forward and backward angles, respectively. Our recoil polarization (PΣ) measurements represent a substantial increase in kinematic coverage and enhanced precision over previous world data. At forward angles, we find that PΣ is of the same order of magnitude but opposite sign as PΛ, in agreement with the static SU(6) quark model prediction of PΣ≈-PΛ. This expectation is violated in some mid- and backward-angle kinematic regimes, where PΣ and PΛ are of similar magnitudes but also have the same signs. In conjunction with several other meson photoproduction results recently published by CLAS, the present data will help constrain the partial-wave analyses being performed to search for missing baryon resonances.

  17. Unsteady combustion of homogeneous energetic solids using the laser-recoil method

    SciTech Connect

    Son, S.F.; Brewster, M.Q. . Dept. of Mechanical and Industrial Engineering)

    1995-01-01

    The laser-recoil technique was used to study the unsteady burning of a fine oxidizer AP-HTPB composite propellant (APF series) and a catalyzed double-base propellant (N5) at one atmosphere. Steady burning rate and temperature measurements were performed and quasi-steady, homogeneous, one-dimensional (OSHOD) theory implemented in order to interpret the unsteady results. The frequency response of the fine oxidizer AP-HTPB composite propellant exhibited two peaks that were shown to correspond to the condensed phase thermal layer and the condensed-phase reaction zone of the low- and high-frequency peaks, respectively. Several other factors were considered and eliminated as possible causes of the two peaks. For the fine oxidizer AP-HTPB composite propellant, at these conditions, the assumption of a quasi-steady surface reaction zone was clearly violated at frequencies as low as 60 Hz. The effect of mean radiant flux level on frequency response was also investigated for both APF and N5 propellants. N5 showed a pronounced steady-state burning rate plateau with radiant flux (similar to that for pressure) with corresponding effects exhibited in the frequency response. The results of this work show that detailed information can be obtained using the laser-recoil method that clarifies the structure and dynamics of burning solids. Further, the results suggest that more detailed models that relax the quasi-steady surface reaction zone assumption should be developed.

  18. CDMS detector fabrication improvements and low energy nuclear recoil measurements in germanium

    NASA Astrophysics Data System (ADS)

    Jastram, Andrew Karl

    As the CDMS (Cryogenic Dark Matter Search) experiment is scaled up to tackle new dark matter parameter spaces (lower masses and cross-sections), detector production efficiency and repeatability becomes ever more important. A dedicated facility has been commissioned for SuperCDMS detector fabrication at Texas A&M University (TAMU). The fabrication process has been carefully tuned using this facility and its equipment. Production of successfully tested detectors has been demonstrated. Significant improvements in detector performance have been made using new fabrication methods, equipment, and tuning of process parameters. This work has demonstrated the capability for production of next generation CDMS SNOLAB detectors. Additionally, as the dark matter parameter space is probed further, careful calibrations of detector response to nuclear recoil interactions must be performed in order to extract useful information (in relation to dark matter particle characterizations) from experimental results. A neutron beam of tunable energy is used in conjunction with a commercial radiation detector to characterize ionization energy losses in germanium during nuclear recoil events. Data indicates agreement with values predicted by the Lindhard equation, providing a best-fit k-value of 0.146.

  19. Nuclear recoil and vacuum-polarization effects on the binding energies of supercritical H-like ions

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Ivan A.; Plunien, Günter; Shabaev, Vladimir M.

    2016-01-01

    The Dirac Hamiltonian including nuclear recoil and vacuum-polarization operators is considered in a supercritical regime Z> 137. It is found that the nuclear recoil operator derived within the Breit approximation "regularizes" the Hamiltonian for the point-nucleus model and allows the ground state level to go continuously down and reach the negative energy continuum at a critical value Zcr ≈ 145. If the Hamiltonian contains both the recoil operator and the Uehling potential, the 1s level reaches the negative energy continuum at Zcr ≈ 144. The corresponding calculations for the excited states have been also performed. This study shows that, in contrast to previous investigations, a point-like nucleus can have effectively the charge Z> 137.

  20. Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

    NASA Astrophysics Data System (ADS)

    Xu, Jingke; Shields, Emily; Calaprice, Frank; Westerdale, Shawn; Froborg, Francis; Suerfu, Burkhant; Alexander, Thomas; Aprahamian, Ani; Back, Henning O.; Casarella, Clark; Fang, Xiao; Gupta, Yogesh K.; Ianni, Aldo; Lamere, Edward; Lippincott, W. Hugh; Liu, Qian; Lyons, Stephanie; Siegl, Kevin; Smith, Mallory; Tan, Wanpeng; Kolk, Bryant Vande

    2015-07-01

    The dark matter interpretation of the DAMA modulation signal depends on the NaI(Tl) scintillation efficiency of nuclear recoils. Previous measurements for Na recoils have large discrepancies, especially in the DAMA/LIBRA modulation energy region. We report a quenching effect measurement of Na recoils in NaI(Tl) from 3 to 52 keVnr, covering the whole DAMA/LIBRA energy region for dark matter-Na scattering interpretations. By using a low-energy, pulsed neutron beam, a double time-of-flight technique, and pulse-shape discrimination methods, we obtained the most accurate measurement of this kind for NaI(Tl) to date. The results differ significantly from the DAMA reported values at low energies but fall between the other previous measurements. We present the implications of the new quenching results for the dark matter interpretation of the DAMA modulation signal.

  1. Gas separating

    DOEpatents

    Gollan, Arye

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  2. Gas separating

    DOEpatents

    Gollan, Arye Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  3. Separation system

    DOEpatents

    Rubin, Leslie S.

    1986-01-01

    A separation system for dewatering radioactive waste materials includes a disposal container, drive structure for receiving the container, and means for releasably attaching the container to the drive structure. Separation structure disposed in the container adjacent the inner surface of the side wall structure retains solids while allowing passage of liquids. Inlet port structure in the container top wall is normally closed by first valve structure that is centrifugally actuated to open the inlet port and discharge port structure at the container periphery receives liquid that passes through the separation structure and is normally closed by second valve structure that is centrifugally actuated to open the discharge ports. The container also includes coupling structure for releasable engagement with the centrifugal drive structure. Centrifugal force produced when the container is driven in rotation by the drive structure opens the valve structures, and radioactive waste material introduced into the container through the open inlet port is dewatered, and the waste is compacted. The ports are automatically closed by the valves when the container drum is not subjected to centrifugal force such that containment effectiveness is enhanced and exposure of personnel to radioactive materials is minimized.

  4. Component separations.

    PubMed

    Heller, Lior; McNichols, Colton H; Ramirez, Oscar M

    2012-02-01

    Component separation is a technique used to provide adequate coverage for midline abdominal wall defects such as a large ventral hernia. This surgical technique is based on subcutaneous lateral dissection, fasciotomy lateral to the rectus abdominis muscle, and dissection on the plane between external and internal oblique muscles with medial advancement of the block that includes the rectus muscle and its fascia. This release allows for medial advancement of the fascia and closure of up to 20-cm wide defects in the midline area. Since its original description, components separation technique underwent multiple modifications with the ultimate goal to decrease the morbidity associated with the traditional procedure. The extensive subcutaneous lateral dissection had been associated with ischemia of the midline skin edges, wound dehiscence, infection, and seroma. Although the current trend is to proceed with minimally invasive component separation and to reinforce the fascia with mesh, the basic principles of the techniques as described by Ramirez et al in 1990 have not changed over the years. Surgeons who deal with the management of abdominal wall defects are highly encouraged to include this technique in their collection of treatment options. PMID:23372455

  5. Evidence for shape coexistence in the N=Z nucleus 7236Kr36

    NASA Astrophysics Data System (ADS)

    Varley, B. J.; Campbell, M.; Chishti, A. A.; Gelletly, W.; Goettig, L.; Lister, C. J.; James, A. N.; Skeppstedt, O.

    1987-08-01

    Gamma rays associated with the decay of states in the N=Z nucleus 72Kr have been identified following the 16O(58Ni, 2n) 72Kr reaction at a mean beam energy of 170 MeV. Identification was made using the Daresbury Recoil Separator. The first excited state was found to be at 709.1 +/- 0.3 keV and to be populated with a cross section of 60 +/- 25 υb. The pattern of gamma rays associated with 72Kr indicates the co-existence of nuclear shapes.

  6. Rutherford forward scattering and elastic recoil detection (RFSERD) as a method for characterizing ultra-thin films

    DOE PAGESBeta

    Lohn, Andrew J.; Doyle, Barney L.; Stein, Gregory J.; Mickel, Patrick R.; Stevens, Jim E.; Marinella, Matthew J.

    2014-04-03

    We present a novel ion beam analysis technique combining Rutherford forward scattering and elastic recoil detection (RFSERD) and demonstrate its ability to increase efficiency in determining stoichiometry in ultrathin (5-50 nm) films as compared to Rutherford backscattering. In the conventional forward geometries, scattering from the substrate overwhelms the signal from light atoms but in RFSERD, scattered ions from the substrate are ranged out while forward scattered ions and recoiled atoms from the thin film are simultaneously detected in a single detector. Lastly, the technique is applied to tantalum oxide memristors but can be extended to a wide range of materialsmore » systems.« less

  7. Angular anisotropy parameters and recoil-ion momentum distribution in two-photon double ionization of helium

    SciTech Connect

    Kheifets, A. S.; Ivanov, I. A.; Bray, Igor

    2007-08-15

    We present convergent-close-coupling (CCC) calculations of the angular anisotropy parameters {beta}{sub 2},{beta}{sub 4} and the recoil ion momentum distribution d{sigma}/dp in two-photon double ionization (TPDI) of helium. In a stark contrast to single-photon double ionization (SPDI), where the {beta}{sub 2} parameter varies widely changing the angular distribution from isotropic to nearly dipole for slow and fast photoelectrons, respectively, the {beta} parameters for TPDI show very little change. The angular distribution of the recoil ion is fairly isotropic in TPDI as opposed to a strong alignment with the polarization of light in SPDI.

  8. A gas ionisation detector in the axial (Bragg) geometry used for the time-of-flight elastic recoil detection analysis

    SciTech Connect

    Siketić, Zdravko; Skukan, Natko; Bogdanović Radović, Iva

    2015-08-15

    In this paper, time-of-flight elastic recoil detection analysis spectrometer with a newly constructed gas ionization detector for energy detection is presented. The detector is designed in the axial (Bragg) geometry with a 3 × 3 array of 50 nm thick Si{sub 3}N{sub 4} membranes as an entrance window. 40 mbar isobutane gas was sufficient to stop a 30 MeV primary iodine beam as well as all recoils in the detector volume. Spectrometer and detector performances were determined showing significant improvement in the mass and energy resolution, respectively, comparing to the spectrometer with a standard silicon particle detector for an energy measurement.

  9. Rutherford forward scattering and elastic recoil detection (RFSERD) as a method for characterizing ultra-thin films

    SciTech Connect

    Lohn, Andrew J.; Doyle, Barney L.; Stein, Gregory J.; Mickel, Patrick R.; Stevens, Jim E.; Marinella, Matthew J.

    2014-04-03

    We present a novel ion beam analysis technique combining Rutherford forward scattering and elastic recoil detection (RFSERD) and demonstrate its ability to increase efficiency in determining stoichiometry in ultrathin (5-50 nm) films as compared to Rutherford backscattering. In the conventional forward geometries, scattering from the substrate overwhelms the signal from light atoms but in RFSERD, scattered ions from the substrate are ranged out while forward scattered ions and recoiled atoms from the thin film are simultaneously detected in a single detector. Lastly, the technique is applied to tantalum oxide memristors but can be extended to a wide range of materials systems.

  10. In vivo assessment of stent recoil of biodegradable polymer-coated cobalt–chromium sirolimus-eluting coronary stent system☆

    PubMed Central

    Abhyankar, Atul D.; Thakkar, Ashok S.

    2012-01-01

    Introduction Immediate and acute stent recoil has been observed following balloon deflation in normal and diseased coronary arteries, and the degree varies by stent design. Methods A total of 19 patients, who underwent elective stent implantation for single de novo native coronary artery lesions, were enrolled: all patients treated with the biodegradable polymer-coated sirolimus-eluting cobalt–chromium coronary stent system (Supralimus-Core®). The immediate, acute and cumulative stent recoil was assessed by quantitative coronary angiography. The cumulative stent recoil was measured at 24 h of stent implantation. Results The absolute late loss due to recoil was found 0.08 ± 0.19 mm for Immediate Stent Recoil (ISR), 0.05 ± 0.21 mm for Acute Stent Recoil (ASR) and 0.11 ± 0.25 mm for Cumulative Stent Recoil (CSR) respectively. Conclusions In vivo acute stent recoil of the Supralimus-Core® has higher radial strength compared to other available standard drug-eluting stents. PMID:23253404

  11. Gas separating

    DOEpatents

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  12. Artwork Separation

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Under a grant from California Institute of Technology, Jet Propulsion Laboratory (JPL) and LACMA (Los Angeles County Museum of Art) used image enhancement techniques to separate x-ray images of paintings when one had been painted on top of another. The technique is derived from computer processing of spacecraft-acquired imagery, and will allow earlier paintings, some of which have been covered for centuries, to be evaluated. JPL developed the program for "subtracting" the top painting and enhancing the bottom one, and believes an even more advanced system is possible.

  13. Gas separating

    DOEpatents

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  14. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Séguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; Sangster, T. C.; Shoup, M.; Ulreich, J.; Ashabranner, R. C.; Bionta, R. M.; Carpenter, A. C.; Felker, B.; Khater, H. Y.; LePape, S.; MacKinnon, A.; McKernan, M. A.; Moran, M.; Rygg, J. R.; Yeoman, M. F.; Zacharias, R.; Leeper, R. J.; Fletcher, K.; Farrell, M.; Jasion, D.; Kilkenny, J.; Paguio, R.

    2013-04-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  15. Stability diagram of the collective atomic recoil laser with thermal atoms

    NASA Astrophysics Data System (ADS)

    Tomczyk, H.; Schmidt, D.; Georges, C.; Slama, S.; Zimmermann, C.

    2015-06-01

    We experimentally investigate cold thermal atoms in a single sidedly pumped optical ring resonator for temperatures between 0.4 and 9 μ K . The threshold for collective atomic recoil lasing (CARL) is recorded for various pump-cavity detunings. The resulting stability diagram is interpreted by simulating the classical CARL equations. We find that the stability diagram for thermal atoms shows the same asymmetry as observed for Bose-Einstein condensates in previous experiments. Whereas for condensates the asymmetry is well explained by a Dicke-type quantum model we here discuss a simplified classical model. It complements the quantum model and provides an intuitive explanation based on the change in the long-range atomic interaction with pump-cavity detuning.

  16. Measurement of the Field-Dependent Response of Liquid Xenon to Low-Energy Electronic Recoils

    NASA Astrophysics Data System (ADS)

    Goetzke, Luke; Anthony, Matthew; Aprile, Elena; de Perio, Patrick; Greene, Zach; Lin, Qing; Messina, Marcello; Plante, Guillaume; Rizzo, Alfio; Zhang, Yun

    2016-03-01

    The search for the direct detection of dark matter continues to be led by experiments employing liquid xenon (LXe) as the detection medium. Still, few measurements have been made of the response of LXe to low-energy interactions as a function of energy and electric field. The neriX detector at Columbia University is a dual-phase time projection chamber optimized for simultaneous measurements of light and charge from low-energy interactions in LXe. In this talk, we will present the results of measurements of the light and charge yield of electronic recoils in LXe using neriX. The Compton coincidence technique is employed to extract the yields as a function of energy deposited at different electric fields. We gratefully acknowledge the continued support of the XENON Dark Matter program at Columbia University by the National Science Foundation.

  17. Doppler- and recoil-free laser excitation of Rydberg states via three-photon transitions

    SciTech Connect

    Ryabtsev, I. I.; Beterov, I. I.; Tretyakov, D. B.; Entin, V. M.; Yakshina, E. A.

    2011-11-15

    Three-photon laser excitation of Rydberg states by three different laser beams can be arranged in a starlike geometry that simultaneously eliminates the recoil effect and Doppler broadening. Our analytical and numerical calculations for a particular laser excitation scheme 5S{sub 1/2}{yields}5P{sub 3/2}{yields}6S{sub 1/2}{yields}nP in Rb atoms have shown that, compared to the one- and two-photon laser excitation, this approach provides much narrower linewidth and longer coherence time for both cold atom samples and hot vapors, if the intermediate one-photon resonances of the three-photon transition are detuned by more than respective single-photon Doppler widths. This method can be used to improve fidelity of Rydberg quantum gates and precision of spectroscopic measurements in Rydberg atoms.

  18. First measurements of the absolute neutron spectrum using the Magnetic Recoil Spectrometer (MRS) at the NIF

    NASA Astrophysics Data System (ADS)

    Frenje, J.; Casey, D.; Li, C.; Seguin, F.; Petrasso, R.; Bionta, R.; Cerjan, C.; Eckart, M.; Haan, S.; Hatchett, S.; Khater, H.; Landen, O.; MacKinnon, A.; Moran, M.; Rygg, J.; Kilkenny, J.; Glebov, V.; Sangster, T.; Meyerhofer, D.; Magoon, J.; Fletcher, K.; Leeper, R.

    2010-11-01

    Proper assembly of capsule mass, as manifested through evolution of fuel areal density (ρR), is fundamentally important for achieving hot-spot ignition planned at the National Ignition Facility (NIF). Experimental information about ρR and ρR asymmetries, Ti and yield is therefore essential for understanding how this assembly occurs. To obtain this information, a neutron spectrometer, called the Magnetic-Recoil Spectrometer (MRS) has been implemented on the NIF. Its primary objective is to measure the absolute neutron spectrum in the range 5 to 30 MeV, from which ρR, Ti and yield can be directly inferred for both low-yield tritium-hydrogen-deuterium (THD) and high-yield DT implosions. In this talk, the results from the first measurements of the absolute neutron spectrum produced in exploding pusher and THD implosions will be presented. This work was supported in part by the U.S. DOE, LLNL and LLE.

  19. Tensor interaction constraints from {beta}-decay recoil spin asymmetry of trapped atoms

    SciTech Connect

    Pitcairn, J. R. A.; Roberge, D.; Gorelov, A.; Ashery, D.; Aviv, O.; Behr, J. A.; Bricault, P. G.; Dombsky, M.; Holt, J. D.; Jackson, K. P.; Lee, B.; Pearson, M. R.; Gaudin, A.; Dej, B.; Hoehr, C.; Gwinner, G.; Melconian, D.

    2009-01-15

    We have measured the angular distribution of recoiling daughter nuclei emitted from the Gamow-Teller {beta} decay of spin-polarized {sup 80}Rb. The asymmetry of this distribution vanishes to lowest order in the standard model (SM) in pure Gamow-Teller decays, producing an observable very sensitive to new interactions. We measure the non-SM contribution to the asymmetry to be A{sub T}=0.015{+-}0.029 (stat) {+-}0.019 (syst), consistent with the SM prediction. We constrain higher-order SM corrections using the measured momentum dependence of the asymmetry, and their remaining uncertainty dominates the systematic error. Future progress in determining the weak magnetism term theoretically or experimentally would reduce the final errors. We describe the resulting constraints on fundamental four-Fermi tensor interactions.

  20. Laboratory experiments on the formation and recoil jet transport of aerosol by laser ablation

    NASA Astrophysics Data System (ADS)

    Hirooka, Yoshi; Tanaka, Kazuo A.; Imamura, Keisuke; Okazaki, Katsuya

    2016-05-01

    In a high-repetition rate inertial fusion reactor, the first wall will be subjected to repeated ablation along with pellet implosions, which then leads to the formation of aerosol to scatter and/or deflect laser beams for the subsequent implosion, affecting the overall reactor performance. Proposed in the present work is a method of in-situ directed transport of aerosol particles by the use of laser ablation-induced jet recoil momenta. Lithium and carbon are used as the primary ablation targets, the former of which is known to form aerosol in the form of droplet, and the latter of which tends to form carbon nanotubes. Laboratory-scale experiments have been conducted to irradiate airborne aerosol particles with high-intensity laser to produce ablation-induced jet. Data have indicated a change in aerosol flow direction, but only in the case of lithium.

  1. Measurement of the (211)Pb half-life using recoil atoms from (219)Rn decay.

    PubMed

    Aitken-Smith, P M; Collins, S M

    2016-04-01

    The radioactive half-life of (211)Pb was measured, by α-particle counting of samples of radiochemically pure (211)Pb in equilibrium with its α-emitting progeny, (211)Bi and (211)Po. The samples were prepared by the collection of (215)Po recoil atoms from the decay of the (219)Rn decay progeny produced from a (223)Ra sample onto stainless steel discs. The radioactive decay of the (211)Pb was measured utilising a 2π proportional counter operating on the α plateau. A half-life of 36.164 (13)min was determined, which is in agreement with currently available literature. A full uncertainty budget is presented. A recommended half-life of T1/2((211)Pb)=36.161 (17)min has been evaluated from the current literature values. PMID:26773817

  2. Recoil range distributions of residues from. cap alpha. + /sup 59/Co reactions

    SciTech Connect

    Gadioli, E.; Gadioli Erba, E.; Parker, D.J.; Asher, J.

    1985-10-01

    The recoil range distributions of /sup 61/Cu, /sup 60/Cu, /sup 58/Co, /sup 57/Co, /sup 56/Co, /sup 54/Mn, and /sup 52/Mn residual nuclei produced in ..cap alpha.. particle bombardment of /sup 59/Co at 38, 50, 65, and 85 MeV have been measured and analyzed. Analysis of these measurements, as well as other recently published measurements of longitudinal linear momentum transfer to residue isobars at energies extending up to roughly-equal200 MeV, in the same reaction, shows that calculations based on the exciton model and a realistic description of the ..cap alpha..-nucleus interaction allow a quantitatively correct description of ..cap alpha..-induced reactions. Contrary to recent suggestions, data of this kind do not seem to indicate a change in the general character of the ..cap alpha..-nucleus interaction for incident energies below roughly-equal50 MeV/nucleon.

  3. Measuring the absolute DT neutron yield using the Magnetic Recoil Spectrometer at OMEGA and the NIF

    SciTech Connect

    Mackinnon, A; Casey, D; Frenje, J A; Johnson, M G; Seguin, F H; Li, C K; Petrasso, R D; Glebov, V Y; Katz, J; Knauer, J; Meyerhofer, D; Sangster, T; Bionta, R; Bleuel, D; Hachett, S P; Hartouni, E; Lepape, S; Mckernan, M; Moran, M; Yeamans, C

    2012-05-03

    A Magnetic Recoil Spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion (ICF) implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  4. Supermassive recoil velocities for binary black-hole mergers with antialigned spins.

    PubMed

    González, José A; Hannam, Mark; Sperhake, Ulrich; Brügmann, Bernd; Husa, Sascha

    2007-06-01

    Recent calculations of the recoil velocity in binary black-hole mergers have found the kick velocity to be of the order of a few hundred km/s in the case of nonspinning binaries and about 500 km/s in the case of spinning configurations, and have lead to predictions of a maximum kick of up to 1300 km/s. We test these predictions and demonstrate that kick velocities of at least 2500 km/s are possible for equal-mass binaries with antialigned spins in the orbital plane. Kicks of that magnitude are likely to have significant repercussions for models of black-hole formation, the population of intergalactic black holes, and the structure of host galaxies. PMID:17677893

  5. Recoil Decay Tagging Study Of Transitional Proton Emitters 145,146,147Tm

    SciTech Connect

    Robinson, A.P.; Woods, P.J.; Davinson, T.; Liu, Z.; Davids, C.N.; Seweryniak, D.; Carpenter, M.P.; Hammond, N.; Janssens, R.V.F.; Mukherjee, G.; Sinha, S.; Blank, B.; Freeman, S.J.; Hoteling, N.; Shergur, J.; Walters, W.B.; Scholey, C.; Sonzogni, A.A.; Woehr, A.

    2005-04-05

    Gamma rays from the transitional proton emitting nuclei 145,146,147Tm have been observed using the recoil-decay tagging technique. The ground state band of 147Tm was confirmed and extended and the unfavoured signature sequence was observed. A ground state rotational band with properties of a decoupled h11/2 band was observed in 145Tm. In addition coincidences between the proton fine structure line and the 2+{yields}0+ {gamma}-ray transition in 144Er were detected at the focal plane of the FMA. This is the first time that coincidences between proton radioactive decays and {gamma} rays have been seen. The particle decay of 146Tm has been measured with improved statistics and a rotational band similar to 147Tm has been observed.

  6. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF.

    PubMed

    Casey, D T; Frenje, J A; Johnson, M Gatu; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Magoon, J; Meyerhofer, D D; Sangster, T C; Shoup, M; Ulreich, J; Ashabranner, R C; Bionta, R M; Carpenter, A C; Felker, B; Khater, H Y; LePape, S; MacKinnon, A; McKernan, M A; Moran, M; Rygg, J R; Yeoman, M F; Zacharias, R; Leeper, R J; Fletcher, K; Farrell, M; Jasion, D; Kilkenny, J; Paguio, R

    2013-04-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF. PMID:23635195

  7. Neutron spectrometer based on a proton telescope with electronic collimation of recoil protons

    NASA Astrophysics Data System (ADS)

    Milkov, V. M.; Panteleev, Ts. Ts.; Bogdzel, A.; Shvetsov, V. N.; Kutuzov, S.; Borzakov, S. B.; Sedyshev, P. V.

    2012-11-01

    A prototype of a neutron spectrometer based on a gas proportional counter with recoil-proton registration is created at the Frank Laboratory of Neutron Physics at the Joint Institute for Nuclear Research (FLNP JINR) in Dubna. The spectrometer is developed to measure the kinetic energy of protons scattered elastically at small angles that are produced by ( n, p) reaction in an environment containing hydrogen. The elaborated prototype consists of two cylindrical proportional counters used as cathodes. They are placed in a gas environment with a common centrally situated anode wire. Studies on the characteristics of the neutron spectrometer were conducted using 252Cf and 239Pu-Be radioisotope neutron sources. Measurements were made with monoenergetic neutrons produced by the 7Li( p, n)7Be reaction when a thin lithium target was bombarded with a proton beam from an EG-5 electrostatic accelerator, as well as with neutrons from the reaction D( d, n) 3He with a gas deuterium target.

  8. Charge transport-induced recoil and dissociation in double quantum dots.

    PubMed

    Pozner, Roni; Lifshitz, Efrat; Peskin, Uri

    2014-11-12

    Colloidal quantum dots (CQDs) are free-standing nanostructures with chemically tunable electronic properties. This combination of properties offers intriguing new possibilities for nanoelectromechanical devices that were not explored yet. In this work, we consider a new scanning tunneling microscopy setup for measuring ligand-mediated effective interdot forces and for inducing motion of individual CQDs within an array. Theoretical analysis of a double quantum dot structure within this setup reveals for the first time voltage-induced interdot recoil and dissociation with pronounced changes in the current. Considering realistic microscopic parameters, our approach enables correlating the onset of mechanical motion under bias voltage with the effective ligand-mediated binding forces. PMID:25259800

  9. ASTROPHYSICS. Exclusion of leptophilic dark matter models using XENON100 electronic recoil data.

    PubMed

    2015-08-21

    Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our experiment, we exclude a variety of representative dark matter models that would induce electronic recoils. For axial-vector couplings to electrons, we exclude cross sections above 6 × 10(-35) cm(2) for particle masses of m(χ) = 2 GeV/c(2). Independent of the dark matter halo, we exclude leptophilic models as an explanation for the long-standing DAMA/LIBRA signal, such as couplings to electrons through axial-vector interactions at a 4.4σ confidence level, mirror dark matter at 3.6σ, and luminous dark matter at 4.6σ. PMID:26293959

  10. Gain stabilization control system of the upgraded magnetic proton recoil neutron spectrometer at JET

    SciTech Connect

    Sjoestrand, Henrik; Sunden, E. Andersson; Conroy, S.; Ericsson, G.; Johnson, M. Gatu; Giacomelli, L.; Hellesen, C.; Hjalmarsson, A.; Ronchi, E.; Weiszflog, M.; Gorini, G.; Tardocchi, M.; Popovichev, S. [EURATOM Collaboration: JET EFDA Contributors

    2009-06-15

    Burning plasma experiments such as ITER and DEMO require diagnostics capable of withstanding the harsh environment generated by the intense neutron flux and to maintain stable operating conditions for times longer than present day systems. For these reasons, advanced control and monitoring (CM) systems will be necessary for the reliable operation of diagnostics. This paper describes the CM system of the upgraded magnetic proton recoil neutron spectrometer installed at the Joint European Torus focusing in particular on a technique for the stabilization of the gain of the photomultipliers coupled to the neutron detectors. The results presented here show that this technique provides good results over long time scales. The technique is of general interest for all diagnostics that employ scintillators coupled to photomultiplier tubes.

  11. New recoil transfer chamber for thermalization of heavy ions produced in fusion-evaporation reactions

    NASA Astrophysics Data System (ADS)

    Alfonso, M. C.; Tereshatov, E. E.; DeVanzo, M. J.; Sefcik, J. A.; Bennett, M. E.; Mayorov, D. A.; Werke, T. A.; Folden, C. M.

    2015-10-01

    A new Recoil Transfer Chamber (RTC) has been designed, fabricated, and characterized at the Cyclotron Institute at Texas A&M University. The design is based on a gas stopper that was previously in routine use at the National Superconducting Cyclotron Laboratory. This new RTC uses He gas to stop ions, and a combination of a static electric field and gas flow to maximize the extraction efficiency. In offline experiments, a 228Th source was used to produce 216Po which was successfully extracted even though it has a short half-life. In online experiments using the products of the 118Sn(40Ar, 6n)152Er reaction, an efficiency of several tens of percent was measured.

  12. Development of a compact magnetic proton recoil spectrometer for measurement of deuterium-tritium neutrons.

    PubMed

    Zhang, Jianfu; Ouyang, Xiaoping; Qiu, Suizheng; Zhang, Guoguang; Ruan, Jinlu; Zhang, Xiaodong; Zhang, Xianpeng; Yang, Shaohua; Song, Jiwen; Liu, Linyue; Li, Hongyun

    2015-12-01

    A new compact magnetic proton recoil (MPR) neutron spectrometer has been designed for precise measurement of deuterium-tritium (DT) neutrons. This design is presented emphasizing the magnetic analyzing system, which is based on a compact quadrupole-dipole (QD) electromagnet. The focal plane detector (FPD) is also discussed with respect to application for the next step. The characteristics of the MPR spectrometer were calculated by using Monte Carlo simulation. A preliminary experiment was performed to test the magnetic analyzing system and the proton images of the FPD. Since the QD electromagnet design allows for a larger foil thickness and solid angle to be utilized, the MPR spectrometer defined in this paper can achieve neutron detection efficiency more than 5 × 10(-7) at an energy resolution of 1.5% for measuring DT neutrons. PMID:26724081

  13. Development of a compact magnetic proton recoil spectrometer for measurement of deuterium-tritium neutrons

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfu; Ouyang, Xiaoping; Qiu, Suizheng; Zhang, Guoguang; Ruan, Jinlu; Zhang, Xiaodong; Zhang, Xianpeng; Yang, Shaohua; Song, Jiwen; Liu, Linyue; Li, Hongyun

    2015-12-01

    A new compact magnetic proton recoil (MPR) neutron spectrometer has been designed for precise measurement of deuterium-tritium (DT) neutrons. This design is presented emphasizing the magnetic analyzing system, which is based on a compact quadrupole-dipole (QD) electromagnet. The focal plane detector (FPD) is also discussed with respect to application for the next step. The characteristics of the MPR spectrometer were calculated by using Monte Carlo simulation. A preliminary experiment was performed to test the magnetic analyzing system and the proton images of the FPD. Since the QD electromagnet design allows for a larger foil thickness and solid angle to be utilized, the MPR spectrometer defined in this paper can achieve neutron detection efficiency more than 5 × 10-7 at an energy resolution of 1.5% for measuring DT neutrons.

  14. Low-energy recoils and energy scale in liquid xenon detector for direct dark matter searches

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Mei, Dongming; Cubed Collaboration

    2015-04-01

    Liquid xenon has been proven to be a great detector medium for the direct search of dark matter. However, in the energy region of below 10 keV, the light yield and charge production are not fully understood due to the convolution of excitation, recombination and quenching. We have already studied a recombination model to explain the physics processes involved in liquid xenon. Work is continued on the average energy expended per electron-ion pair as a function of energy based on the cross sections for different type of scattering processes. In this paper, the results will be discussed in comparison with available experimental data using Birk's Law to understand how scintillation quenching contributes to the non-linear light yield for electron recoils with energy below 10 keV in liquid xenon. This work is supported by DOE Grant DE-FG02-10ER46709 and the state of South Dakota.

  15. Absolute Absorption Cross Sections from Photon Recoil in a Matter-Wave Interferometer

    NASA Astrophysics Data System (ADS)

    Eibenberger, Sandra; Cheng, Xiaxi; Cotter, J. P.; Arndt, Markus

    2014-06-01

    We measure the absolute absorption cross section of molecules using a matter-wave interferometer. A nanostructured density distribution is imprinted onto a dilute molecular beam through quantum interference. As the beam crosses the light field of a probe laser some molecules will absorb a single photon. These absorption events impart a momentum recoil which shifts the position of the molecule relative to the unperturbed beam. Averaging over the shifted and unshifted components within the beam leads to a reduction of the fringe visibility, enabling the absolute absorption cross section to be extracted with high accuracy. This technique is independent of the molecular density, it is minimally invasive and successfully eliminates many problems related to photon cycling, state mixing, photobleaching, photoinduced heating, fragmentation, and ionization. It can therefore be extended to a wide variety of neutral molecules, clusters, and nanoparticles.

  16. Exclusion of leptophilic dark matter models using XENON100 electronic recoil data

    NASA Astrophysics Data System (ADS)

    Collaboration, The XENON; Aprile, E.; Agostini, F.; Alfonsi, M.; Arazi, L.; Arisaka, K.; Arneodo, F.; Auger, M.; Balan, C.; Barrow, P.; Baudis, L.; Bauermeister, B.; Behrens, A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Cardoso, J. M. R.; Cervantes, M.; Coderre, D.; Colijn, A. P.; Contreras, H.; Cussonneau, J. P.; Decowski, M. P.; Di Giovanni, A.; Duchovni, E.; Fattori, S.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grignon, C.; Gross, E.; Hampel, W.; Itay, R.; Kaether, F.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Le Calloch, M.; Lellouch, D.; Levinson, L.; Levy, C.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Lyashenko, A.; Macmullin, S.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Mayani, D.; Fernandez, A. J. Melgarejo; Meng, Y.; Messina, M.; Miguez, B.; Molinario, A.; Morana, G.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Pantic, E.; Persiani, R.; Piastra, F.; Pienaar, J.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; dos Santos, J. M. F.; Sartorelli, G.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Simgen, H.; Teymourian, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vitells, O.; Wall, R.; Wang, H.; Weber, M.; Weinheimer, C.

    2015-08-01

    Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our experiment, we exclude a variety of representative dark matter models that would induce electronic recoils. For axial-vector couplings to electrons, we exclude cross sections above 6 × 10-35 cm2 for particle masses of mχ = 2 GeV/c2. Independent of the dark matter halo, we exclude leptophilic models as an explanation for the long-standing DAMA/LIBRA signal, such as couplings to electrons through axial-vector interactions at a 4.4σ confidence level, mirror dark matter at 3.6σ, and luminous dark matter at 4.6σ.

  17. Search for Event Rate Modulation in XENON100 Electronic Recoil Data

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Anthony, M.; Arazi, L.; Arisaka, K.; Arneodo, F.; Balan, C.; Barrow, P.; Baudis, L.; Bauermeister, B.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Cardoso, J. M. R.; Cervantes, M.; Coderre, D.; Colijn, A. P.; Contreras, H.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Giovanni, A.; Duchovni, E.; Fattori, S.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grignon, C.; Gross, E.; Hampel, W.; Hasterok, C.; Itay, R.; Kaether, F.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Le Calloch, M.; Lellouch, D.; Levinson, L.; Levy, C.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Lyashenko, A.; Macmullin, S.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Mayani, D.; Melgarejo Fernandez, A. J.; Meng, Y.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Persiani, R.; Piastra, F.; Pienaar, J.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Dos Santos, J. M. F.; Sartorelli, G.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Simgen, H.; Teymourian, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Wall, R.; Wang, H.; Weber, M.; Weinheimer, C.; Zhang, Y.; Xenon Collaboration

    2015-08-01

    We have searched for periodic variations of the electronic recoil event rate in the (2-6) keV energy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its background contributions during this run, we performed an unbinned profile likelihood analysis to identify any periodicity up to 500 days. We find a global significance of less than 1 σ for all periods, suggesting no statistically significant modulation in the data. While the local significance for an annual modulation is 2.8 σ , the analysis of a multiple-scatter control sample and the phase of the modulation disfavor a dark matter interpretation. The DAMA/LIBRA annual modulation interpreted as a dark matter signature with axial-vector coupling of weakly interacting massive particles to electrons is excluded at 4.8 σ .

  18. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    SciTech Connect

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; Sangster, T. C.; Shoup, M.; Ulreich, J.; Ashabranner, R. C.; Bionta, R. M.; Carpenter, A. C.; Felker, B.; Khater, H. Y.; LePape, S.; MacKinnon, A.; McKernan, M. A.; Moran, M.; Rygg, J. R.; Yeoman, M. F.; Zacharias, R.; Leeper, R. J.; Fletcher, K.; Farrell, M.; Jasion, D.; Kilkenny, J.; Paguio, R.

    2013-04-18

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, iontemperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  19. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    DOE PAGESBeta

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; et al

    2013-04-18

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, iontemperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describesmore » ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.« less

  20. Musett: A segmented Si array for Recoil-Decay-Tagging studies at VAMOS

    NASA Astrophysics Data System (ADS)

    Theisen, Ch.; Jeanneau, F.; Sulignano, B.; Druillole, F.; Ljungvall, J.; Paul, B.; Virique, E.; Baron, P.; Bervas, H.; Clément, E.; Delagnes, E.; Dijon, A.; Dossat, E.; Drouart, A.; Farget, F.; Flouzat, Ch.; De France, G.; Görgen, A.; Houarner, Ch.; Jacquot, B.; Korten, W.; Lebertre, G.; Lecornu, B.; Legeard, L.; Lermitage, A.; Lhenoret, S.; Marry, C.; Maugeais, C.; Menager, L.; Meunier, O.; Navin, A.; Nizery, F.; Obertelli, A.; Rauly, E.; Raine, B.; Rejmund, M.; Ropert, J.; Saillant, F.; Savajols, H.; Schmitt, Ch.; Tripon, M.; Wanlin, E.; Wittwer, G.

    2014-05-01

    A new segmented silicon-array called MUSETT has been built for the study of heavy elements using the Recoil-Decay-Tagging technique. MUSETT is located at the focal plane of the VAMOS spectrometer at GANIL and is used in conjunction with a γ-ray array at the target position. This paper describes the device, which consists of four 10×10 cm2 Si detectors and its associated front-end electronics based on highly integrated ASICs electronics. The triggerless readout electronics, the data acquisition and the analysis tools developed for its characterization are presented. This device was commissioned at GANIL with the EXOGAM γ-ray spectrometer using the fusion-evaporation reaction 197Au(22Ne,5n)214Ac. Additionally, the performance of the VAMOS Wien filter used during the in-beam commissioning is also reported.

  1. Neutron scattering facility for the calibration of the response to nuclear recoils

    NASA Astrophysics Data System (ADS)

    Jochum, J.; Chambon, B.; Drain, D.; von Feilitzsch, F.; Gascon, J.; Huber, M.; Jagemann, T.; de Jésus, M.; Lachenmaier, T.; Lanfranchi, J.-C.; Martineau, O.; Potzel, W.; Rüdig, A.; Schnagl, J.; Simon, E.; Stark, M.; Stern, M.; Wulandari, H.

    2002-02-01

    A possibility to search for elementary particles as dark matter candidates is to detect elastic scattering with cryogenic detectors. For the interpretation of the data one has to determine the detector response to nuclear recoils, the so-called quenching factors. They can differ for the heat-, for the scintillation- and for the ionization-signal and can be measured by scattering of neutrons. The CRESST- and the EDELWEISS-collaborations have set up a neutron scattering facility for cryogenic detectors at the tandem-accelerator of the Munich `Maier-Leibniz-Labor.' The scattering angle and the time-of-flight of the neutrons are measured by an array of liquid scintillator cells. The pulsed high energy (11 MeV) neutron beam is created by nuclear reaction of a 11B on a H2-gas target. The set-up and the results of first tests are presented. .

  2. Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement

    NASA Astrophysics Data System (ADS)

    Gupta, C. K.; Rohilla, Aman; Abhilash, S. R.; Kabiraj, D.; Singh, R. P.; Mehta, D.; Chamoli, S. K.

    2014-11-01

    A thin isotopic 94Zr target of thickness 520 μg /cm2 has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm2 thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of 94Zr from peeling off, a very thin layer of gold has been evaporated on a 94Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched 94Zr target material was utilized for the fabrication of 94Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.

  3. Studies of a-Si:H growth mechanism, using deuterium, by rutherford recoil measurement

    SciTech Connect

    Kuboi, O.; Aratani, M.; Hashimoto, M.; Hayashi, S.; Kohno, I.; Nagai, M.; Nozaki, T.; Yanokura, M.; Yatsurugi, Y.

    1984-05-01

    a-Si:H were grown from silane and disilane by RF glow discharge. Deuterium (D) was used as a tracer in this investigation, in which four gas mixtures (SiH/sub 4/+D/sub 2/, SiD/sub 4/+H/sub 2/, Si/sub 2/H/sub 6/+D/sub 2/, and Si/sub 2/D/sub 6/+H/sub 2/) were employed. a-Si:H so produced were analyzed for H and D by Rutherford recoil measurement to determine whether these elements came from silanes or the dilution gas. When the RF power is low, much larger proportion of hydrogen atoms in silanes than in the dilution gas is found in a-Si:H. On the other hand, at high RF power, an excessive amount of D from the dilution gas, D/sub 2/, appears in a-Si:H.

  4. Development of a compact magnetic proton recoil spectrometer for measurement of deuterium-tritium neutrons

    SciTech Connect

    Zhang, Jianfu Ouyang, Xiaoping; Zhang, Xianpeng; Qiu, Suizheng; Zhang, Guoguang; Ruan, Jinlu; Zhang, Xiaodong; Yang, Shaohua; Song, Jiwen; Liu, Linyue; Li, Hongyun

    2015-12-15

    A new compact magnetic proton recoil (MPR) neutron spectrometer has been designed for precise measurement of deuterium-tritium (DT) neutrons. This design is presented emphasizing the magnetic analyzing system, which is based on a compact quadrupole-dipole (QD) electromagnet. The focal plane detector (FPD) is also discussed with respect to application for the next step. The characteristics of the MPR spectrometer were calculated by using Monte Carlo simulation. A preliminary experiment was performed to test the magnetic analyzing system and the proton images of the FPD. Since the QD electromagnet design allows for a larger foil thickness and solid angle to be utilized, the MPR spectrometer defined in this paper can achieve neutron detection efficiency more than 5 × 10{sup −7} at an energy resolution of 1.5% for measuring DT neutrons.

  5. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    SciTech Connect

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; Sangster, T. C.; Shoup, M.; Ulreich, J.; Ashabranner, R. C.; Bionta, R. M.; Carpenter, A. C.; Felker, B.; Khater, H. Y.; LePape, S.; MacKinnon, A.; and others

    2013-04-15

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  6. Measured Nuclear Recoil Discrimination for HPGS, a Proposed Ton-Scale Dark Matte r Search in Room Temperature Gas

    NASA Astrophysics Data System (ADS)

    Martin, C.; Barton, D.; Dion, M. P.; Esterline, J. H.; Howell, C. R.; Martoff, C. J.; Smith, P. F.; Tornow, W.

    2009-05-01

    The HPGS dark matter proposal is for a simple, room-temperature, ton-scale, 5-10 bar gas scintillation array with nuclear recoil discrimination by pulse-shape, aided by electric fields to suppress wall events. The first experimental confirmation of nuclear recoil discrimination by Xe gas scintillation pulse shape is reported here. Pulse shapes for γ- and x-rays, neutrons, and α particles were measured using highly purified Xe gas at 1-6 bar with a UV-sensitive photomultiplier. Nuclear recoil and α pulses were dominated by recombination scintillation with time constant 250 ns, while gamma and x-ray scintillation was completely contained within 15 ns. We will present detailed comparison of our nuclear recoil pulse shape discrimination to liquid Xe, and discuss the outlook for simpler and lower cost room temperature ton-scale dark matter detectors. (We heartily thank A. Bolotnikov for access to high-purity Xe in his lab at Brookhaven National Laboratory.)

  7. Particle separation

    DOEpatents

    Moosmuller, Hans; Chakrabarty, Rajan K.; Arnott, W. Patrick

    2011-04-26

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  8. Particle separation

    NASA Technical Reports Server (NTRS)

    Moosmuller, Hans (Inventor); Chakrabarty, Rajan K. (Inventor); Arnott, W. Patrick (Inventor)

    2011-01-01

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  9. Battery separator

    SciTech Connect

    Giovannoni, R.T.; Kung, J.K.J.; Choi, W.M.

    1987-10-13

    This patent describes a battery system composed of at least one pair of electrodes of opposite polarity, an electrolyte and a separator positioned between electrodes of opposite polarity. The improvement comprises that the separator is a microporous sheet composed of a substantially uniform composition of A. from 7 to 50 weight percent of a polymer mixture, the mixture formed from (a) from about 95 to about 40 weight percent of polyolefin formed from ethylene, propylene or mixtures thereof or a mixture of the polyolefins having a weight average molecular weight of at least about 3,000,000; and (b) from about 5 to about 60 weight percent of a polymeric blend formed from a polyethylene terpolymer and a vinyl or vinylidene halide polymer in a weight ratio of 19:1 to 1:3, the polyethylene terpolymer formed from (1) ethylene monomer, (2) at least one ethylenically unsaturated organic monomer selected from the group consisting of esters of unsaturated C/sub 3/-C/sub 20/ mono- or dicarboxylic acids, vinyl esters of saturated C/sub 2/-C/sub 18/ carboxylic acids, vinyl alkyl ethers wherein the alkyl group has 1-18 carbon atoms, vinyl or vinylidene halides, acrylonitrile, methacrylonitrile, norbornene, alpha-olefins of 3-12 carbon atoms, and vinyl aromatic compounds, and, (3) an additional monomer selected from the group consisting of ethylenically unsaturated C/sub 3/-C/sub 20/ carboxylic acids, carbon monoxide, and sulfur dioxide; B. from 93 to 50 weight percent of a filler which is substantially inert with respect to the battery electrodes and electrolyte; and C. from 0 to 20 weight percent of plasticizer for at least one of the polymers of the composition.

  10. Laser-tissue interaction with fs pulses: measurement of the recoil momentum by laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Sessa, Gaetano; Travaglini, Michele; Mittnacht, Dirk; Foth, Hans-Jochen

    2003-07-01

    Currently ultra short pulses with pluse duration close to 100 fs are investigated for tissue ablation to perform laser surgery in a microscopic scale without any damage to the remaining tissue. Several groups showed already that the risk of thermal damage can be avoided; however the ablated material leaves the surface with a high velocity which leads to significant recoil momentum to the tissue. This paper focuses on the experimental set-up to measure this momentum transfer. Various set-ups had been developd over the last years like a pendulum that is highly senstive but cannot ensure that in a train of pulses each pulse will impact at exactly the same spot. A sliding rod in a glass tube ensured the constant impact point but is sensitive to several environmental conditions, which are hard to control. Recently, special swing plates were designed as vibration disks. The small sample was mounted in the center of this plate and exposed by fs pulses of a TiSa laser. The beam of a laser Doppler vibrometer was focused onto the backside of the plate monitored its motion. This set-up enabled us to measure the recoil momentum. While the total momentum transfer could be well determined to Δp=6 10-3 g mm/s, the question about a mechanical damage, for example for hair cells in the inner ear is much more difficult to answer, since this depends on the time in which the ablated materials leaves the surface. Evaporation times of 40 ps would lead to serious risk ofhar cell damage.

  11. Nuclear Microprobe using Elastic Recoil Detection (ERD) for Hydrogen Profiling in High Temperature Protonic Conductors

    NASA Technical Reports Server (NTRS)

    Berger, Pascal; Sayir, Ali; Berger, Marie-Helene

    2004-01-01

    The interaction between hydrogen and various high temperature protonic conductors (HTPC) has not been clearly understood due to poor densification and unreacted secondary phases. the melt-processing technique is used in producing fully dense simple SrCe(0.9)Y (0.10) O(3-delta) and complex Sr3Ca(1+x)Nb(2+x)O(9-delta) perovskites that can not be achieved by solid-state sintering. the possibilities of ion beam analysis have been investigated to quantify hydrogen distribution in HTPC perovskites subjected to water heat treatment. Nuclear microprobe technique is based on the interactions of a focused ion beam of MeV light ions (H-1, H-2, He-3, He-4,.) with the sample to be analyzed to determine local elemental concentrations at the cubic micrometer scale, the elastic recoil detection analysis technique (ERDA) has been carried out using He-4(+) microbeams and detecting the resulting recoil protons. Mappings of longitudinal sections of water treated SrCeO3 and Sr(Ca(1/3)Nb(2/3))O3 perovskites have been achieved, the water treatment strongly alters the surface of simple SrCe(0.9)Y(0.10)O(3-delta) perovskite. From Rutherford Back Scattering measurements (RBS), both Ce depletion and surface re-deposition is evidenced. the ERDA investigations on water treated Sr3Ca(1+x)Nb(2+x)O(9-delta) perovskite did not exhibit any spatial difference for the hydrogen incorporation from the surface to the centre. the amount of hydrogen incorporation for Sr3Ca(1+x)Nb(2+x)O(9-delta) was low and required further development of two less conventional techniques, ERDA in forward geometry and forward elastic diffusion H-1(p,p) H-1 with coincidence detection.

  12. Differential cross sections and recoil polarizations for the reaction γp→K+Σ0

    DOE PAGESBeta

    Dey, B.; Meyer, C. A.; Bellis, M.; McCracken, M. E.; Williams, M.; Adhikari, K. P.; Aghasyan, M.; Anghinolfi, M.; Ball, J.; Battaglieri, M.; et al

    2010-08-06

    Here, high-statistics measurements of differential cross sections and recoil polarizations for the reactionmore » $$\\gamma p \\rightarrow K^+ \\Sigma^0$$ have been obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass energies ($$\\sqrt{s}$$) from 1.69 to 2.84 GeV, with an extensive coverage in the $K^+$ production angle. Independent measurements were made using the $$K^{+}p\\pi^{-}$$($$\\gamma$$) and $$K^{+}p$$($$\\pi^-,\\gamma$$) final-state topologies, and were found to exhibit good agreement. Our differential cross sections show good agreement with earlier CLAS, SAPHIR and LEPS results, while offering better statistical precision and a 300-MeV increase in $$\\sqrt{s}$$ coverage. Above $$\\sqrt{s} \\approx 2.5$$ GeV, $t$- and $u$-channel Regge scaling behavior can be seen at forward- and backward-angles, respectively. Our recoil polarization ($$P_\\Sigma$$) measurements represent a substantial increase in kinematic coverage and enhanced precision over previous world data. At forward angles we find that $$P_\\Sigma$$ is of the same magnitude but opposite sign as $$P_\\Lambda$$, in agreement with the static SU(6) quark model prediction of $$P_\\Sigma \\approx -P_\\Lambda$$. This expectation is violated in some mid- and backward-angle kinematic regimes, where $$P_\\Sigma$$ and $$P_\\Lambda$$ are of similar magnitudes but also have the same signs. In conjunction with several other meson photoproduction results recently published by CLAS, the present data will help constrain the partial wave analyses being performed to search for missing baryon resonances.« less

  13. Elastic Recoil after Balloon Angioplasty in Hemodialysis Accesses: Does It Actually Occur and Is It Clinically Relevant?

    PubMed

    Rajan, Dheeraj K; Sidhu, Arshdeep; Noel-Lamy, Maxime; Mahajan, Ashish; Simons, Martin E; Sniderman, Kenneth W; Jaskolka, Jeffrey; Tan, Kong Teng

    2016-06-01

    Purpose To qualify and quantify elastic recoil and determine its effect on access patency. Materials and Methods Research ethics board approval was obtained and all patients signed an informed consent form. This was a prospective, nonrandomized study of mature accesses that underwent balloon percutaneous transluminal angioplasty (PTA) between January 2009 and December 2012. After PTA, completion fistulography was performed at 0-, 5-, 10-, and 15-minute intervals. From Digital Imaging and Communications in Medicine images, percentage of lesion stenosis before and after PTA was measured at each time point. A total of 76 patients (44 men, 32 women; mean age, 59.6 years) were enrolled and underwent 154 PTAs in 56 grafts and 98 fistulas. Venous elastic recoil was defined as recurrent luminal narrowing greater than 50% within 15 minutes after full effacement of the stenosis by the angioplasty balloon. Data collected included sex, age, access type and location, lesion location, length, and time to next intervention. Access patency was estimated by using Kaplan-Meier survival method, association of variables with the risk of loss of patency was assessed by using a Cox proportional hazards model, and a multiple variable model was examined by considering all variables. Results Technical success of PTA with less than 30% residual stenosis was 78%. By 15 minutes, 15.6% (24 of 154) of treated lesions recurrently narrowed by more than 50%, with a majority observed at 5 minutes (15 of 24). Technical failure of PTA was predictive of elastic recoil (P < .001), as was cephalic arch stenosis in fistulas (P = .047) and autogenous fistulas (P = .04). Elastic recoil, when it did occur, did not influence patency. Six-month primary patency was 34.8% in grafts and 47.1% in fistulas. Conclusion Venous elastic recoil after PTA of stenoses in hemodialysis access circuits is common, but its occurrence does not influence access primary patency after PTA. (©) RSNA, 2015. PMID:26694051

  14. Isotope separation by photodissociation of Van der Waal's molecules

    DOEpatents

    Lee, Yuan T.

    1977-01-01

    A method of separating isotopes based on the dissociation of a Van der Waal's complex. A beam of molecules of a Van der Waal's complex containing, as one partner of the complex, a molecular species in which an element is present in a plurality of isotopes is subjected to radiation from a source tuned to a frequency which will selectively excite vibrational motion by a vibrational transition or through electronic transition of those complexed molecules of the molecular species which contain a desired isotope. Since the Van der Waal's binding energy is much smaller than the excitational energy of vibrational motion, the thus excited Van der Waal's complex dissociate into molecular components enriched in the desired isotope. The recoil velocity associated with vibrational to translational and rotational relaxation will send the separated molecules away from the beam whereupon the product enriched in the desired isotope can be separated from the constituents of the beam.

  15. Measurement of the Charge and Light Yield of Low Energy Nuclear Recoils in Liquid Xenon at Different Electric Fields

    NASA Astrophysics Data System (ADS)

    Anthony, Matthew; Aprile, Elena; de Perio, Patrick; Goetzke, Luke; Greene, Zach; Lin, Qing; Messina, Marcello; Plante, Guillaume; Rizzo, Alfio; Zhang, Yun

    2016-03-01

    Dual-phase liquid xenon detectors continue to lead in the search for the direct detection of dark matter. Characterization of the response of liquid xenon to low energy (<= 20 keV) nuclear recoils is essential to establish the sensitivity of these detectors to dark matter. The neriX detector at Columbia University is a dual-phase time projection chamber that is optimized for simultaneous measurements of light and charge from these low-energy interactions. A coincidence technique is employed to extract the light and charge yield from nuclear recoils in liquid xenon as a function of energy deposited and applied electric field. In this talk, we will present preliminary results from the light and charge yield measurements. We acknowledge continued support of the XENON Dark Matter program at Columbia University by the National Science Foundation.

  16. THE QUASAR SDSS J105041.35+345631.3: BLACK HOLE RECOIL OR EXTREME DOUBLE-PEAKED EMITTER?

    SciTech Connect

    Shields, G. A.; Smith, K. L.; Salviander, S. E-mail: krista@mail.utexas.ed

    2009-12-20

    The quasar SDSS J105041.35+345631.3 (z = 0.272) has broad emission lines blueshifted by 3500 km s{sup -1} relative to the narrow lines and the host galaxy. Such an object may be a candidate for a recoiling supermassive black hole, a binary black hole, a superposition of two objects, or an unusual geometry for the broad emission-line region. The absence of narrow lines at the broad line redshift argues against superposition. New Keck spectra of J1050+3456 place tight constraints on the binary model. The combination of large velocity shift and symmetrical Hbeta profile, as well as aspects of the narrow line spectrum, make J1050+3456 an interesting candidate for black hole recoil. Other aspects of the spectrum, however, suggest that the object is most likely an extreme case of a 'double-peaked emitter'. We discuss possible observational tests to determine the true nature of this exceptional object.

  17. A stretch/compress scheme for a high temporal resolution detector for the magnetic recoil spectrometer time (MRSt)

    DOE PAGESBeta

    Hilsabeck, T. J.; Frenje, J. A.; Hares, J. D.; Wink, C. W.

    2016-08-02

    Here we present a time-resolved detector concept for the magnetic recoil spectrometer for time-resolved measurements of the NIF neutron spectrum. The measurement is challenging due to the time spreading of the recoil protons (or deuterons) as they transit an energy dispersing magnet system. Ions arrive at the focal plane of the magnetic spectrometer over an interval of tens of nanoseconds. We seek to measure the time-resolved neutron spectrum with 20 ps precision by manipulating an electron signal derived from the ions. A stretch-compress scheme is employed to remove transit time skewing while simultaneously reducing the bandwidth requirements for signal recording.more » Simulation results are presented along with design concepts for structures capable of establishing the required electromagnetic fields.« less

  18. Temperature Dependence and Recoil-free Fraction Effects in Olivines Across the Mg-Fe Solid Solution

    NASA Technical Reports Server (NTRS)

    Sklute, E. C.; Rothstein, Y.; Dyar, M. D.; Schaefer, M. W.; Menzies, O. N.; Bland, P. A.; Berry, F. J.

    2005-01-01

    Olivine and pyroxene are the major ferromagnesian minerals in most meteorite types and in mafic igneous rocks that are dominant at the surface of the Earth. It is probable that they are the major mineralogical components at the surface of any planetary body that has undergone differentiation processes. In situ mineralogical studies of the rocks and soils on Mars suggest that olivine is a widespread mineral on that planet s surface (particularly at the Gusev site) and that it has been relatively unaffected by alteration. Thus an understanding of the characteristics of Mossbauer spectra of olivine is of great importance in interpreting MER results. However, variable temperature Mossbauer spectra of olivine, which are needed to quantify recoil-free fraction effects and to understand the temperature dependence of olivine spectra, are lacking in the literature. Thus, we present here a study of the temperature dependence and recoil-free fraction of a series of synthetic olivines.

  19. Molecular modeling of the effects of 40Ar recoil in illite particles on their K-Ar isotope dating

    NASA Astrophysics Data System (ADS)

    Szczerba, Marek; Derkowski, Arkadiusz; Kalinichev, Andrey G.; Środoń, Jan

    2015-06-01

    The radioactive decay of 40K to 40Ar is the basis of isotope age determination of micaceous clay minerals formed during diagenesis. The difference in K-Ar ages between fine and coarse grained illite particles has been interpreted using detrital-authigenic components system, its crystallization history or post-crystallization diffusion. Yet another mechanism should also be considered: natural 40Ar recoil. Whether this recoil mechanism can result in a significant enough loss of 40Ar to provide observable decrease of K-Ar age of the finest illite crystallites at diagenetic temperatures - is the primary objective of this study which is based on molecular dynamics (MD) computer simulations. All the simulations were performed for the same kinetic energy (initial velocity) of the 40Ar atom, but for varying recoil angles that cover the entire range of their possible values. The results show that 40Ar recoil can lead to various deformations of the illite structure, often accompanied by the displacement of OH groups or breaking of the Si-O bonds. Depending on the recoil angle, there are four possible final positions of the 40Ar atom with respect to the 2:1 layer at the end of the simulation: it can remain in the interlayer space or end up in the closest tetrahedral, octahedral or the opposite tetrahedral sheet. No simulation angles were found for which the 40Ar atom after recoil passes completely through the 2:1 layer. The energy barrier for 40Ar passing through the hexagonal cavity from the tetrahedral sheet into the interlayer was calculated to be 17 kcal/mol. This reaction is strongly exothermic, therefore there is almost no possibility for 40Ar to remain in the tetrahedral sheet of the 2:1 layer over geological time periods. It will either leave the crystal, if close enough to the edge, or return to the interlayer space. On the other hand, if 40Ar ends up in the octahedral sheet after recoil, a substantially higher energy barrier of 55 kcal/mol prevents it from leaving

  20. The Quasar SDSS J105041.35+345631.3: Black Hole Recoil or Extreme Double-Peaked Emitter?

    NASA Astrophysics Data System (ADS)

    Shields, G. A.; Rosario, D. J.; Smith, K. L.; Bonning, E. W.; Salviander, S.; Kalirai, J. S.; Strickler, R.; Ramirez-Ruiz, E.; Dutton, A. A.; Treu, T.; Marshall, P. J.

    2009-12-01

    The quasar SDSS J105041.35+345631.3 (z = 0.272) has broad emission lines blueshifted by 3500 km s-1 relative to the narrow lines and the host galaxy. Such an object may be a candidate for a recoiling supermassive black hole, a binary black hole, a superposition of two objects, or an unusual geometry for the broad emission-line region. The absence of narrow lines at the broad line redshift argues against superposition. New Keck spectra of J1050+3456 place tight constraints on the binary model. The combination of large velocity shift and symmetrical Hβ profile, as well as aspects of the narrow line spectrum, make J1050+3456 an interesting candidate for black hole recoil. Other aspects of the spectrum, however, suggest that the object is most likely an extreme case of a "double-peaked emitter." We discuss possible observational tests to determine the true nature of this exceptional object.

  1. 7Be recoil implantation for ultra-thin-layer-activation of medical grade polyethylene: Effect on wear resistance

    NASA Astrophysics Data System (ADS)

    Hoffmann, M.; Abbas, K.; Sauvage, T.; Blondiaux, G.; Vincent, L.; Stroosnijder, M. F.

    2001-10-01

    Wear of ultra-high-molecular-weight-polyethylene (UHMWPE) is usually measured by gravimetric methods making laboratory wear tests a time consuming exercise. Methods for the determination of polyethylene wear with a higher sensitivity would reduce test times and costs. One of these alternative methods is ultra-thin-layer-activation (UTLA), which relies on recoil implantation of heavy radioactive nuclei, such as 7Be, by using light mass particle beams. However, the possibility of damages within the polyethylene surface, which would have consequences on its wear behavior, cannot be excluded. In this work the effect of an implantation of 7Be on wear of a medical grade UHMWPE was studied using a block-on-cylinder screening wear tester. The results show that the implantation of UHMWPE with 7Be recoils under the implantation conditions chosen does not alter the tribological behavior of medical grade UHMWPE.

  2. Identification of γ Transitions in ^176-179Hg Using the Recoil Decay Tagging Method.

    NASA Astrophysics Data System (ADS)

    Carpenter, M. P.; Ackermann, D.; Blumenthal, D.; Davids, C.; Fischer, S. M.; Hackman, G.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Nisius, D.; Seweryniak, D.; Woods, P. J.; Amro, H.; Brown, T.; Hamilton, J. H.; Ramayya, A. V.; Reviol, W.; Schwartz, J.; Simpson, J.

    1996-05-01

    In light Hg isotopes (100<= N <= 108), shape co-existence has been established close to the ground state where rotational bands built on collective oblate and prolate shapes are observed. While this shape co-existence feature is predicted to be sustained in lighter Hg nuclei, such measurements become increasingly difficult due to the fact that the cross-sections for making these nuclei become very small (<1mb) and fission dominates (σ_fiss > 100 mb). In order to study this shape-coexistence phenomenon all the way to the proton-drip line, we have identified for the first time γ-ray transitions in ^176-179Hg using the Ayeball Ge array coupled to the Fragment Mass Analyzer. In order to assign γ transitions to a particular nuclide, the recoil decay tagging method was utilized, a technique which correlates γ-rays emitted from excited residues with the charged particle radioactivity of their decay. This work is supported by the DOE under contract W-31-109-ENG-38.

  3. Heavy ion elastic recoil detection analysis set up for electronic sputtering studies

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Avasthi, D. K.; Tripathi, A.; Kabiraj, D.; Sugathan, P.; Chaudhary, G. K.; Barua, P.

    2006-04-01

    Heavy ion elastic recoil detection analysis (ERDA) set up with a large solid angle (greater than or similar to 4.8 msr) Delta E - E position-sensitive telescope detector is developed at Inter University Accelerator Centre as a dedicated facility for the study of electronic sputtering of thin films under swift heavy ion (SHI) irradiation. The detector consists of a gas ionization chamber (Delta E ) and a solid-state surface barrier detector ( E ) housed in a same assembly. The electronic sputtering yield (atoms/ion) is determined by analyzing on-line fluence-dependent ERDA data obtained from a variety of thin films. Large erosion (> 10 5 atoms/ion) of carbon from a-C:H by 150 MeV Ag 13+ ions, evolution of nitrogen (greater than or similar to 880 atoms/ion) from copper nitride and depletion of oxygen (greater than or similar to 1000 atoms/ion) from copper oxide film under 200 MeV Au 15+ ion impact are studied and reported in this work. The electronic sputtering of these materials is discussed on the basis of the thermal spike model of SHI and solid interaction.

  4. Recoil Induced Room Temperature Stable Frenkel Pairs in a-Hafnium Upon Thermal Neutron Capture

    NASA Astrophysics Data System (ADS)

    Butz, Tilman; Das, Satyendra K.; Dey, Chandi C.; Ghoshal, Shamik

    2013-11-01

    Ultrapure hafnium metal (110 ppm zirconium) was neutron activated with a thermal neutron flux of 6:6 · 1012 cm-2s-1 in order to obtain 181Hf for subsequent time differential perturbed angular correlation (TDPAC) experiments using the nuclear probe 181Hf(β-) 181Ta. Apart from the expected nuclear quadrupole interaction (NQI) signal for a hexagonal close-packed (hcp) metal, three further discrete NQIs were observed with a few percent fraction each. The TDPAC spectra were recorded for up to 11 half lives with extreme statistical accuracy. The fitted parameters vary slightly within the temperature range between 248 K and 373 K. The signals corresponding to the three additional sites completely disappear after `annealing' at 453 K for one minute. Based on the symmetry of the additional NQIs and their temperature dependencies, they are tentatively attributed to Frenkel pairs produced by recoil due to the emission of a prompt 5:694 MeV -ray following thermal neutron capture and reported by the nuclear probe in three different positions. These Frenkel pairs are stable up to at least 373 K.

  5. Analysis of hydrogen adsorption and surface binding configuration on tungsten using direct recoil spectrometry

    SciTech Connect

    Kolasinski, R. D.; Hammond, K. D.; Whaley, J. A.; Buchenauer, D. A.; Wirth, B. D.

    2014-12-03

    In our work, we apply low energy ion beam analysis to examine directly how the adsorbed hydrogen concentration and binding configuration on W(1 0 0) depend on temperature. We exposed the tungsten surface to fluxes of both atomic and molecular H and D. We then probed the H isotopes adsorbed along different crystal directions using 1–2 keV Ne+ ions. At saturation coverage, H occupies two-fold bridge sites on W(1 0 0) at 25 °C. Moreover, the H coverage dramatically changes the behavior of channeled ions, as does reconstruction of the surface W atoms. For the exposure conditions examined here, we find that surface sites remain populated with H until the surface temperature reaches 200 °C. Then, we observe H rapidly desorbing until only a residual concentration remains at 450 °C. Development of an efficient atomistic model that accurately reproduces the experimental ion energy spectra and azimuthal variation of recoiled H is underway.

  6. Precision Determination of Electron Scattering Angle by Differential Nuclear Recoil Energy Method

    SciTech Connect

    Liyanage, Nilanga; Saenboonruang, Kiadtisak

    2015-09-01

    The accurate determination of the scattered electron angle is crucial to electron scattering experiments, both with open-geometry large-acceptance spectrometers and ones with dipole-type magnetic spectrometers for electron detection. In particular, for small central-angle experiments using dipole-type magnetic spectrometers, in which surveys are used to measure the spectrometer angle with respect to the primary electron beam, the importance of the scattering angle determination is emphasized. However, given the complexities of large experiments and spectrometers, the accuracy of such surveys is limited and insufficient to meet demands of some experiments. In this article, we present a new technique for determination of the electron scattering angle based on an accurate measurement of the primary beam energy and the principle of differential nuclear recoil. This technique was used to determine the scattering angle for several experiments carried out at the Experimental Hall A, Jefferson Lab. Results have shown that the new technique greatly improved the accuracy of the angle determination compared to surveys.

  7. Precision determination of electron scattering angle by differential nuclear recoil energy method

    SciTech Connect

    Liyanage, N.; Saenboonruang, K.

    2015-12-01

    The accurate determination of the scattered electron angle is crucial to electron scattering experiments, both with open-geometry large-acceptance spectrometers and ones with dipole-type magnetic spectrometers for electron detection. In particular, for small central-angle experiments using dipole-type magnetic spectrometers, in which surveys are used to measure the spectrometer angle with respect to the primary electron beam, the importance of the scattering angle determination is emphasized. However, given the complexities of large experiments and spectrometers, the accuracy of such surveys is limited and insufficient to meet demands of some experiments. In this article, we present a new technique for determination of the electron scattering angle based on an accurate measurement of the primary beam energy and the principle of differential nuclear recoil. This technique was used to determine the scattering angle for several experiments carried out at the Experimental Hall A, Jefferson Lab. Results have shown that the new technique greatly improved the accuracy of the angle determination compared to surveys.

  8. Analysis of hydrogen adsorption and surface binding configuration on tungsten using direct recoil spectrometry

    DOE PAGESBeta

    Kolasinski, R. D.; Hammond, K. D.; Whaley, J. A.; Buchenauer, D. A.; Wirth, B. D.

    2014-12-03

    In our work, we apply low energy ion beam analysis to examine directly how the adsorbed hydrogen concentration and binding configuration on W(1 0 0) depend on temperature. We exposed the tungsten surface to fluxes of both atomic and molecular H and D. We then probed the H isotopes adsorbed along different crystal directions using 1–2 keV Ne+ ions. At saturation coverage, H occupies two-fold bridge sites on W(1 0 0) at 25 °C. Moreover, the H coverage dramatically changes the behavior of channeled ions, as does reconstruction of the surface W atoms. For the exposure conditions examined here, wemore » find that surface sites remain populated with H until the surface temperature reaches 200 °C. Then, we observe H rapidly desorbing until only a residual concentration remains at 450 °C. Development of an efficient atomistic model that accurately reproduces the experimental ion energy spectra and azimuthal variation of recoiled H is underway.« less

  9. First measurements of the absolute neutron spectrum using the magnetic recoil spectrometer at OMEGA (invited)

    SciTech Connect

    Frenje, J. A.; Casey, D. T.; Li, C. K.; Rygg, J. R.; Seguin, F. H.; Petrasso, R. D.; Yu Glebov, V.; Meyerhofer, D. D.; Sangster, T. C.; Hatchett, S.; Haan, S.; Cerjan, C.; Landen, O.; Moran, M.; Song, P.; Wilson, D. C.; Leeper, R. J.

    2008-10-15

    A neutron spectrometer, called a magnetic recoil spectrometer (MRS), has been built and implemented at the OMEGA laser facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] for absolute measurements of the neutron spectrum in the range of 6-30 MeV, from which fuel areal density ({rho}R), ion temperature (T{sub i}), and yield (Y{sub n}) can be determined. The results from the first MRS measurements of the absolute neutron spectrum are presented. In addition, measuring {rho}R at the National Ignition Facility (NIF) [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] will be essential for assessing implosion performance during all stages of development from surrogate implosions to cryogenic fizzles to ignited implosions. To accomplish this, we are also developing an MRS for the NIF. As much of the research and development and instrument optimization of the MRS at OMEGA are directly applicable to the MRS at the NIF, a description of the design and characterization of the MRS on the NIF is discussed as well.

  10. A recoil ion momentum spectrometer for molecular and atomic fragmentation studies.

    PubMed

    Khan, Arnab; Tribedi, Lokesh C; Misra, Deepankar

    2015-04-01

    We report the development and performance studies of a newly built recoil ion momentum spectrometer for the study of atomic and molecular fragmentation dynamics in gas phase upon the impact of charged particles and photons. The present design is a two-stage Wiley-McLaren type spectrometer which satisfies both time and velocity focusing conditions and is capable of measuring singly charged ionic fragments up-to 13 eV in all directions. An electrostatic lens has been introduced in order to achieve velocity imaging. Effects of the lens on time-of-flight as well as on the position have been investigated in detail, both, by simulation and in experiment. We have used 120 keV proton beam on molecular nitrogen gas target. Complete momentum distributions and kinetic energy release distributions have been derived from the measured position and time-of-flight spectra. Along with this, the kinetic energy release spectra of fragmentation of doubly ionized nitrogen molecule upon various projectile impacts are presented. PMID:25933839

  11. Hadronic effects and observables in B →π ℓ+ℓ- decay at large recoil

    NASA Astrophysics Data System (ADS)

    Hambrock, Christian; Khodjamirian, Alexander; Rusov, Aleksey

    2015-10-01

    We calculate the amplitude of the rare flavor-changing neutral-current decay B →π ℓ+ℓ- at large recoil of the pion. The nonlocal contributions in which the weak effective operators are combined with the electromagnetic lepton-pair emission are systematically taken into account. These amplitudes are calculated at off-shell values of the lepton-pair mass squared, q2<0 , employing the operator-product expansion, QCD factorization and light-cone sum rules. The results are fitted to hadronic dispersion relations in q2, including the intermediate vector meson contributions. The dispersion relations are then used in the physical region q2>0 . Our main result is the process-dependent addition Δ C9(B π )(q2) to the Wilson coefficient C9 obtained at 4 mℓ2

  12. A recoil ion momentum spectrometer for molecular and atomic fragmentation studies

    SciTech Connect

    Khan, Arnab; Tribedi, Lokesh C.; Misra, Deepankar

    2015-04-15

    We report the development and performance studies of a newly built recoil ion momentum spectrometer for the study of atomic and molecular fragmentation dynamics in gas phase upon the impact of charged particles and photons. The present design is a two-stage Wiley-McLaren type spectrometer which satisfies both time and velocity focusing conditions and is capable of measuring singly charged ionic fragments up-to 13 eV in all directions. An electrostatic lens has been introduced in order to achieve velocity imaging. Effects of the lens on time-of-flight as well as on the position have been investigated in detail, both, by simulation and in experiment. We have used 120 keV proton beam on molecular nitrogen gas target. Complete momentum distributions and kinetic energy release distributions have been derived from the measured position and time-of-flight spectra. Along with this, the kinetic energy release spectra of fragmentation of doubly ionized nitrogen molecule upon various projectile impacts are presented.

  13. Observation of a resonance in B+ → K+ μ+ μ- decays at low recoil.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Cowie, E; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hess, M; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Martynov, A; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palczewski, T; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Van Dijk, M; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-09-13

    A broad peaking structure is observed in the dimuon spectrum of B+ → K+ μ+ μ- decays in the kinematic region where the kaon has a low recoil against the dimuon system. The structure is consistent with interference between the B+ → K+ μ+ μ- decay and a resonance and has a statistical significance exceeding six standard deviations. The mean and width of the resonance are measured to be 4191(-8)(+9)  MeV/c2 and 65(-16)(+22)  MeV/c2, respectively, where the uncertainties include statistical and systematic contributions. These measurements are compatible with the properties of the ψ(4160) meson. First observations of both the decay B+ → ψ(4160)K+ and the subsequent decay ψ(4160) → μ+ μ- are reported. The resonant decay and the interference contribution make up 20% of the yield for dimuon masses above 3770  MeV/c2. This contribution is larger than theoretical estimates. PMID:24074076

  14. Ar-39 recoil and the apparent persistence of the presolar age of an Allende inclusion

    NASA Astrophysics Data System (ADS)

    Jessberger, E. K.

    1984-07-01

    This is a report on the isotopic composition of argon found in neutron-irradiated quartz ampoules which contain samples of Allende coarse-grained inclusions or aluminum wrap only, and of argon released from one of these inclusions by stepwise heating. Besides atmospheric argon all ampoules contain, with varying concentrations but in constant proportions, Ar-38 from Cl and Ar-39 from K corresponding to Cl/K of about 1. No Ar-39 which has recoiled out of the samples, and no argon which has diffused out of the samples, has been observed in the ampoule gas. The analysis of the isotope variations of argon released by stepwise heating from a sample of inclusion 18 yields an apparent Ar-40-Ar-39 isochron age of 4.85 AE. A reanalysis of argon from another sample of the same inclusion dated earlier yields the same result. Thus inclusion 18 contains more radiogenic Ar-40 than can be accounted for by K-40 decay during 4.53 AE.

  15. Detection Efficiency of a ToF Spectrometer from Heavy-Ion Elastic Recoil Detection

    SciTech Connect

    Barbara, E. de; Marti, G. V.; Capurro, O. A.; Fimiani, L.; Mingolla, M. G.; Negri, A. E.; Arazi, A.; Figueira, J. M.; Pacheco, A. J.; Martinez Heimann, D.; Carnelli, P. F. F.; Fernandez Niello, J. O.

    2010-08-04

    The detection efficiency of a time-of-flight system based on two micro-channel plates (MCP) time zero detectors plus a conventional silicon surface barrier detector was obtained from heavy ion elastic recoil measurements (this ToF spectrometer is mainly devoted to measurements of total fusion cross section of weakly bound projectiles on different mass-targets systems). In this work we have used beams of {sup 7}Li, {sup 16}O, {sup 32}S and {sup 35}Cl to study the mass region of interest for its application to measurements fusion cross sections in the {sup 6,7}Li+{sup 27}Al systems at energies around and above the Coulomb barrier (0.8V{sub B{<=}}E{<=}2.0V{sub B}). As the efficiency of a ToF spectrometer is strongly dependent on the energy and mass of the detected particles, we have covered a wide range of the scattered particle energies with a high degree of accuracy at the lowest energies. The different experimental efficiency curves obtained in that way were compared with theoretical electronic stopping power curves on carbon foils and were applied.

  16. Observable signatures of a black hole ejected by gravitational-radiation recoil in a galaxy merger.

    PubMed

    Loeb, Abraham

    2007-07-27

    According to recent simulations, the coalescence of two spinning black holes (BHs) could lead to a BH remnant with recoil speeds of up to thousands of km s(-1). Here we examine the circumstances resulting from a gas-rich galaxy merger under which the ejected BH would carry an accretion disk and be observable. As the initial BH binary emits gravitational radiation and its orbit tightens, a hole is opened in the disk which delays the consumption of gas prior to the eventual BH ejection. The punctured disk remains bound to the ejected BH within the region where the gas orbital velocity is larger than the ejection speed. For a approximately 10(7) M[middle dot in circle] BH the ejected disk has a characteristic size of tens of thousands of Schwarzschild radii and an accretion lifetime of approximately 10(7) yr. During that time, the ejected BH could traverse a considerable distance and appear as an off-center quasar with a feedback trail along the path it left behind. PMID:17678347

  17. First measurements of the absolute neutron spectrum using the magnetic recoil spectrometer at OMEGA (invited).

    PubMed

    Frenje, J A; Casey, D T; Li, C K; Rygg, J R; Séguin, F H; Petrasso, R D; Glebov, V Yu; Meyerhofer, D D; Sangster, T C; Hatchett, S; Haan, S; Cerjan, C; Landen, O; Moran, M; Song, P; Wilson, D C; Leeper, R J

    2008-10-01

    A neutron spectrometer, called a magnetic recoil spectrometer (MRS), has been built and implemented at the OMEGA laser facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] for absolute measurements of the neutron spectrum in the range of 6-30 MeV, from which fuel areal density (rhoR), ion temperature (T(i)), and yield (Y(n)) can be determined. The results from the first MRS measurements of the absolute neutron spectrum are presented. In addition, measuring rhoR at the National Ignition Facility (NIF) [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] will be essential for assessing implosion performance during all stages of development from surrogate implosions to cryogenic fizzles to ignited implosions. To accomplish this, we are also developing an MRS for the NIF. As much of the research and development and instrument optimization of the MRS at OMEGA are directly applicable to the MRS at the NIF, a description of the design and characterization of the MRS on the NIF is discussed as well. PMID:19044488

  18. Hydrogen uptake in Zircaloy-2 reactor fuel claddings studied with elastic recoil detection

    SciTech Connect

    Rajasekhara, S.; Doyle, B. L.; Enos, D. G.; Clark, B. G.

    2013-04-19

    The recent trend towards a high burn-up discharge spent nuclear fuel necessitates a thorough understanding of hydrogen uptake in Zr-based cladding materials that encapsulate spent nuclear fuel. Although it is challenging to experimentally replicate exact conditions in a nuclear reactor that lead to hydrogen uptake in claddings, in this study we have attempted to understand the kinetics of hydrogen uptake by first electrolytically charging Zircaloy-2 (Zr-2) cladding material for various durations (100 to 2,600 s), and subsequently examining hydrogen ingress with elastic recoil detection (ERD) and transmission electron microscopy (TEM). To understand the influence of irradiation damage defects on hydrogen uptake, an analogous study was performed on ion - irradiated (0.1, 1 and 25 dpa) Zr-2. Analysis of ERD data from the un-irradiated Zr-2 suggests that the growth of the hydride layer is diffusion controlled, and preliminary TEM results support this assertion. In un-irradiated Zr-2, the diffusivity of hydrogen in the hydride phase was found to be approximately 1.1 Multiplication-Sign 10{sup -11} cm{sup 2}/s, while the diffusivity in the hydride phase for lightly irradiated (0.1 and 1 dpa) Zr-2 is an order of magnitude lower. Irradiation to 25 dpa results in a hydrogen diffusivity that is comparable to the un-irradiated Zr-2. These results are compared with existing literature on hydrogen transport in Zr - based materials.

  19. A Critical Review of Alpha Radionuclide Therapy-How to Deal with Recoiling Daughters?

    PubMed

    de Kruijff, Robin M; Wolterbeek, Hubert T; Denkova, Antonia G

    2015-01-01

    This review presents an overview of the successes and challenges currently faced in alpha radionuclide therapy. Alpha particles have an advantage in killing tumour cells as compared to beta or gamma radiation due to their short penetration depth and high linear energy transfer (LET). Touching briefly on the clinical successes of radionuclides emitting only one alpha particle, the main focus of this article lies on those alpha-emitting radionuclides with multiple alpha-emitting daughters in their decay chain. While having the advantage of longer half-lives, the recoiled daughters of radionuclides like 224Ra (radium), 223Ra, and 225Ac (actinium) can do significant damage to healthy tissue when not retained at the tumour site. Three different approaches to deal with this problem are discussed: encapsulation in a nano-carrier, fast uptake of the alpha emitting radionuclides in tumour cells, and local administration. Each approach has been shown to have its advantages and disadvantages, but when larger activities need to be used clinically, nano-carriers appear to be the most promising solution for reducing toxic effects, provided there is no accumulation in healthy tissue. PMID:26066613

  20. A Critical Review of Alpha Radionuclide Therapy—How to Deal with Recoiling Daughters?

    PubMed Central

    de Kruijff, Robin M.; Wolterbeek, Hubert T.; Denkova, Antonia G.

    2015-01-01

    This review presents an overview of the successes and challenges currently faced in alpha radionuclide therapy. Alpha particles have an advantage in killing tumour cells as compared to beta or gamma radiation due to their short penetration depth and high linear energy transfer (LET). Touching briefly on the clinical successes of radionuclides emitting only one alpha particle, the main focus of this article lies on those alpha-emitting radionuclides with multiple alpha-emitting daughters in their decay chain. While having the advantage of longer half-lives, the recoiled daughters of radionuclides like 224Ra (radium), 223Ra, and 225Ac (actinium) can do significant damage to healthy tissue when not retained at the tumour site. Three different approaches to deal with this problem are discussed: encapsulation in a nano-carrier, fast uptake of the alpha emitting radionuclides in tumour cells, and local administration. Each approach has been shown to have its advantages and disadvantages, but when larger activities need to be used clinically, nano-carriers appear to be the most promising solution for reducing toxic effects, provided there is no accumulation in healthy tissue. PMID:26066613

  1. Potku - New analysis software for heavy ion elastic recoil detection analysis

    NASA Astrophysics Data System (ADS)

    Arstila, K.; Julin, J.; Laitinen, M. I.; Aalto, J.; Konu, T.; Kärkkäinen, S.; Rahkonen, S.; Raunio, M.; Itkonen, J.; Santanen, J.-P.; Tuovinen, T.; Sajavaara, T.

    2014-07-01

    Time-of-flight elastic recoil detection (ToF-ERD) analysis software has been developed. The software combines a Python-language graphical front-end with a C code computing back-end in a user-friendly way. The software uses a list of coincident time-of-flight-energy (ToF-E) events as an input. The ToF calibration can be determined with a simple graphical procedure. The graphical interface allows the user to select different elements and isotopes from a ToF-E histogram and to convert the selections to individual elemental energy and depth profiles. The resulting sample composition can be presented as relative or absolute concentrations by integrating the depth profiles over user-defined ranges. Beam induced composition changes can be studied by displaying the event-based data in fractions relative to the substrate reference data. Optional angular input data allows for kinematic correction of the depth profiles. This open source software is distributed under the GPL license for Linux, Mac, and Windows environments.

  2. Neutron spectrum measurements using proton recoil proportional counters: results of measurements of leakage spectra for the Little Boy assembly

    SciTech Connect

    Bennett, E.F.; Yule, T.J.

    1984-01-01

    Measurements of degraded fission-neutron spectra using recoil proportional counters are done routinely for studies involving fast reactor mockups. The same techniques are applicable to measurements of neutron spectra required for personnel dosimetry in fast neutron environments. A brief discussion of current applications of these methods together with the results of a measurement made on the LITTLE BOY assembly at Los Alamos are here described.

  3. Recoil in vacuum for Te ions: Calibration, models, and applications to radioactive-beam g-factor measurements

    SciTech Connect

    Stuchbery, A. E.; Stone, N. J.

    2007-09-15

    In the light of new g factor results for the stable isotopes between {sup 122}Te and {sup 130}Te, the calibration and modeling of the recoil-in-vacuum (RIV) interaction for Te ions is reexamined, and the recent radioactive-beam g factor measurement on {sup 132}Te by the RIV technique is reevaluated. The implications for further RIV g-factor measurements in the {sup 132}Sn region are discussed.

  4. Elastic recoil can either amplify or attenuate muscle-tendon power, depending on inertial vs. fluid dynamic loading.

    PubMed

    Richards, Christopher T; Sawicki, Gregory S

    2012-11-21

    Frog jumps exceed muscle power limits. To achieve this, a muscle may store elastic energy in tendon before it is released rapidly, producing 'power amplification' as tendon recoil assists the muscle to accelerate the load. Do the musculoskeletal modifications conferring power amplification help or hinder frog swimming? We used a Hill-type mathematical model of a muscle-tendon (MT) with contractile element (CE) and series elastic element (SEE) properties of frogs. We varied limb masses from 0.3 to 30 g, foot-fin areas from 0.005 to 50 cm(2) and effective mechanical advantage (EMA=in-lever/out-lever) from 0.025 to 0.1. 'Optimal' conditions produced power amplification of ~19% greater than the CE limit. Yet, other conditions caused ~80% reduction of MT power (power attenuation) due to SEE recoil absorbing power from (rather than adding to) the CE. The tendency for elastic recoil to cause power amplification vs. attenuation was load dependent: low fluid drag loads, high limb mass and EMA=0.1 caused power amplification whereas high drag, low mass and low EMA (=0.025) caused attenuation. Power amplification emerged when: (1) CE shortening velocity is 1/3V(max), (2) elastic energy storage is neither too high nor too low, and (3). peak inertial-drag force ratio ≥ ~1.5. Excessive elastic energy storage delayed the timing of recoil, causing power attenuation. Thus our model predicts that for fluid loads, the benefit from a compliant tendon is modest, and when the system is 'poorly tuned' (i.e., inappropriate EMA), MT power attenuation can be severe. PMID:22898554

  5. First high-statistics and high-resolution recoil-ion data from the WITCH retardation spectrometer

    NASA Astrophysics Data System (ADS)

    Finlay, P.; Breitenfeldt, M.; Porobić, T.; Wursten, E.; Ban, G.; Beck, M.; Couratin, C.; Fabian, X.; Fléchard, X.; Friedag, P.; Glück, F.; Herlert, A.; Knecht, A.; Kozlov, V. Y.; Liénard, E.; Soti, G.; Tandecki, M.; Traykov, E.; Van Gorp, S.; Weinheimer, Ch.; Zákoucký, D.; Severijns, N.

    2016-07-01

    The first high-statistics and high-resolution data set for the integrated recoil-ion energy spectrum following the β^+ decay of 35Ar has been collected with the WITCH retardation spectrometer located at CERN-ISOLDE. Over 25 million recoil-ion events were recorded on a large-area multichannel plate (MCP) detector with a time-stamp precision of 2ns and position resolution of 0.1mm due to the newly upgraded data acquisition based on the LPC Caen FASTER protocol. The number of recoil ions was measured for more than 15 different settings of the retardation potential, complemented by dedicated background and half-life measurements. Previously unidentified systematic effects, including an energy-dependent efficiency of the main MCP and a radiation-induced time-dependent background, have been identified and incorporated into the analysis. However, further understanding and treatment of the radiation-induced background requires additional dedicated measurements and remains the current limiting factor in extracting a beta-neutrino angular correlation coefficient for 35Ar decay using the WITCH spectrometer.

  6. Extra-large remnant recoil velocities and spins from near-extremal-Bowen-York-spin black-hole binaries

    NASA Astrophysics Data System (ADS)

    Dain, Sergio; Lousto, Carlos O.; Zlochower, Yosef

    2008-07-01

    We evolve equal-mass, equal-spin black-hole binaries with specific spins of a/mH˜0.925, the highest spins simulated thus far and nearly the largest possible for Bowen-York black holes, in a set of configurations with the spins counteraligned and pointing in the orbital plane, which maximizes the recoil velocities of the merger remnant, as well as a configuration where the two spins point in the same direction as the orbital angular momentum, which maximizes the orbital hangup effect and remnant spin. The coordinate radii of the individual apparent horizons in these cases are very small and the simulations require very high central resolutions ( htilde M/320). We find that these highly spinning holes reach a maximum recoil velocity of ˜3300kms-1 (the largest simulated so far) and, for the hangup configuration, a remnant spin of a/mH˜0.922. These results are consistent with our previous predictions for the maximum recoil velocity of ˜4000kms-1 and remnant spin; the latter reinforcing the prediction that cosmic censorship is not violated by merging highly spinning black-hole binaries. We also numerically solve the initial data for, and evolve, a single maximal-Bowen-York-spin black hole, and confirm that the 3-metric has an O(r-2) singularity at the puncture, rather than the usual O(r-4) singularity seen for nonmaximal spins.

  7. Shoulder separation - aftercare

    MedlinePlus

    Separated shoulder - aftercare; Acromioclavicular joint separation - aftercare; A/C separation - aftercare ... Shoulder separation is not an injury to the main shoulder joint itself. It is an injury to the top ...

  8. Shoulder separation - aftercare

    MedlinePlus

    Separated shoulder - aftercare; Acromioclavicular joint separation - aftercare; A/C separation - aftercare ... Shoulder separation is not an injury to the main shoulder joint itself. It is an injury to ...

  9. Recoil-Implantation Of Multiple Radioisotopes Towards Wear Rate Measurements And Particle Tracing In Prosthetic Joints

    SciTech Connect

    Warner, Jacob A.; Timmers, Heiko; Smith, Paul N.; Scarvell, Jennifer M.; Gladkis, Laura

    2011-06-01

    This study demonstrates a new method of radioisotope labeling of ultra-high molecular weight polyethylene inserts in prosthetic joints for wear studies. The radioisotopes {sup 97}Ru, {sup 100}Pd, {sup 100}Rh, and {sup 101m}Rh are produced in fusion evaporation reactions induced by {sup 12}C ions in a {sup 92}Zr target foil. The fusion products recoil-implant into ultra-high molecular weight polyethylene plugs, machined to fit into the surface of the inserts. During laboratory simulations of the joint motion, a wear rate of the labeled polyethylene may be measured and the pathways of wear debris particles can be traced by detecting characteristic gamma-rays. The concentration profiles of the radioisotopes extend effectively uniformly from the polyethylene surface to a depth of about 4 {mu}m. The multiplicity of labeling and the use of several gamma-ray lines aids with avoiding systematic measurement uncertainties. Two polyethylene plugs were labeled and one was fitted into the surface of the tibial insert of a knee prosthesis, which had been worn in. Actuation over close to 100,000 cycles with a 900 N axial load and a 24 deg. flexion angle removed (14{+-}1)% of the gamma-ray activity from the plug. Most of this activity dispersed into the serum lubricant identifying this as the important debris pathway. Less than 1% activity was transferred to the femoral component of the prosthesis and the measured activity on the tibial tray was insignificant. Assuming uniform wear across the superior surface of the insert, a wear rate of (12{+-}3) mm{sup 3}/Megacycle was determined. This is consistent with wear rate measurements under similar conditions using other techniques.

  10. Treatment of solid tumors by interstitial release of recoiling short-lived alpha emitters

    NASA Astrophysics Data System (ADS)

    Arazi, L.; Cooks, T.; Schmidt, M.; Keisari, Y.; Kelson, I.

    2007-08-01

    A new method utilizing alpha particles to treat solid tumors is presented. Tumors are treated with interstitial radioactive sources which continually release short-lived alpha emitting atoms from their surface. The atoms disperse inside the tumor, delivering a high dose through their alpha decays. We implement this scheme using thin wire sources impregnated with 224Ra, which release by recoil 220Rn, 216Po and 212Pb atoms. This work aims to demonstrate the feasibility of our method by measuring the activity patterns of the released radionuclides in experimental tumors. Sources carrying 224Ra activities in the range 10-130 kBq were used in experiments on murine squamous cell carcinoma tumors. These included gamma spectroscopy of the dissected tumors and major organs, Fuji-plate autoradiography of histological tumor sections and tissue damage detection by Hematoxylin-Eosin staining. The measurements focused on 212Pb and 212Bi. The 220Rn/216Po distribution was treated theoretically using a simple diffusion model. A simplified scheme was used to convert measured 212Pb activities to absorbed dose estimates. Both physical and histological measurements confirmed the formation of a 5-7 mm diameter necrotic region receiving a therapeutic alpha-particle dose around the source. The necrotic regions shape closely corresponded to the measured activity patterns. 212Pb was found to leave the tumor through the blood at a rate which decreased with tumor mass. Our results suggest that the proposed method, termed DART (diffusing alpha-emitters radiation therapy), may potentially be useful for the treatment of human patients.

  11. Azimuthal asymmetry of recoil electrons in neutrino-electron elastic scattering as signature of neutrino nature

    NASA Astrophysics Data System (ADS)

    Sobków, W.; Błaut, A.

    2016-05-01

    In this paper, we analyze the theoretically possible scenario beyond the standard model in order to show how the presence of the exotic scalar, tensor, {V}+{A} weak interactions in addition to the standard vector-axial ({V}-{A}) ones may help to distinguish the Dirac from Majorana neutrinos in the elastic scattering of an (anti)neutrino beam off the unpolarized electrons in the relativistic limit. We assume that the incoming (anti)neutrino beam comes from the polarized muon decay at rest and is the left-right chiral superposition with assigned direction of the transversal spin polarization with respect to the production plane. Our analysis is carried out for the flavour (current) neutrino eigenstates. It means that the transverse neutrino polarization estimates are the same both for the Dirac and Majorana cases. We display that the azimuthal asymmetry in the angular distribution of recoil electrons is generated by the interference terms between the standard and exotic couplings, which are proportional to the transversal (anti)neutrino spin polarization and independent of the neutrino mass. This asymmetry for the Majorana neutrinos is larger than for the Dirac ones. We also indicate the possibility of utilizing the azimuthal asymmetry measurements to search for the new CP-violating phases. Our study is based on the assumption that the possible detector (running for 1 year) has the shape of a flat circular ring, while the intense neutrino source is located in the centre of the ring and polarized perpendicularly to the ring. In addition, the large low-threshold, real-time detector is able to measure with a high resolution both the polar angle and the azimuthal angle of outgoing electron momentum. Our analysis is model-independent and consistent with the current upper limits on the non-standard couplings.

  12. Ferrofluid separator for nonferrous scrap separation

    NASA Technical Reports Server (NTRS)

    Kaiser, R.; Mir, L.

    1974-01-01

    Behavior of nonmagnetic objects within separator is essentially function of density, and independent of size or shape of objects. Results show close agreement between density of object and apparent density of ferrofluid required to float it. Results also demonstrate that very high separation rates are achievable by ferrofluid sink-float separation.

  13. Extra-large remnant recoil velocities and spins from near-extremal-Bowen-York-spin black-hole binaries

    SciTech Connect

    Dain, Sergio; Lousto, Carlos O.; Zlochower, Yosef

    2008-07-15

    We evolve equal-mass, equal-spin black-hole binaries with specific spins of a/m{sub H}{approx}0.925, the highest spins simulated thus far and nearly the largest possible for Bowen-York black holes, in a set of configurations with the spins counteraligned and pointing in the orbital plane, which maximizes the recoil velocities of the merger remnant, as well as a configuration where the two spins point in the same direction as the orbital angular momentum, which maximizes the orbital hangup effect and remnant spin. The coordinate radii of the individual apparent horizons in these cases are very small and the simulations require very high central resolutions (h{approx}M/320). We find that these highly spinning holes reach a maximum recoil velocity of {approx}3300 km s{sup -1} (the largest simulated so far) and, for the hangup configuration, a remnant spin of a/m{sub H}{approx}0.922. These results are consistent with our previous predictions for the maximum recoil velocity of {approx}4000 km s{sup -1} and remnant spin; the latter reinforcing the prediction that cosmic censorship is not violated by merging highly spinning black-hole binaries. We also numerically solve the initial data for, and evolve, a single maximal-Bowen-York-spin black hole, and confirm that the 3-metric has an O(r{sup -2}) singularity at the puncture, rather than the usual O(r{sup -4}) singularity seen for nonmaximal spins.

  14. The XMM-Newton spectrum of a candidate recoiling supermassive black hole: An elusive inverted P-Cygni profile

    SciTech Connect

    Lanzuisi, G.; Civano, F.; Marchesi, S.; Hickox, R.; Comastri, A.; Cappelluti, N.; Costantini, E.; Elvis, M.; Fruscione, A.; Mainieri, V.; Jahnke, K.; Komossa, S.; Piconcelli, E.; Vignali, C.; Brusa, M.

    2013-11-20

    We present a detailed spectral analysis of new XMM-Newton data of the source CXOC J100043.1+020637, also known as CID-42, detected in the COSMOS survey at z = 0.359. Previous works suggested that CID-42 is a candidate recoiling supermassive black hole (SMBH) showing also an inverted P-Cygni profile in the X-ray spectra at ∼6 keV (rest) with an iron emission line plus a redshifted absorption line (detected at 3σ in previous XMM-Newton and Chandra observations). Detailed analysis of the absorption line suggested the presence of ionized material flowing into the black hole at high velocity. In the new long XMM-Newton observation, while the overall spectral shape remains constant, the continuum 2-10 keV flux decrease of ∼20% with respect to previous observation and the absorption line is undetected. The upper limit on the intensity of the absorption line is EW < 162 eV. Extensive Monte Carlo simulations show that the nondetection of the line is solely due to variation in the properties of the inflowing material, in agreement with the transient nature of these features, and that the intensity of the line is lower than the previously measured with a probability of 98.8%. In the scenario of CID-42 as a recoiling SMBH, the absorption line can be interpreted as being due to an inflow of gas with variable density that is located in the proximity of the SMBH and recoiling with it. New monitoring observations will be requested to further characterize this line.

  15. Separation Anxiety (For Parents)

    MedlinePlus

    ... 5 Things to Know About Zika & Pregnancy Separation Anxiety KidsHealth > For Parents > Separation Anxiety Print A A ... both of you get through it. How Separation Anxiety Develops Babies adapt pretty well to other caregivers. ...

  16. Analysis of accelerator based neutron spectra for BNCT using proton recoil spectroscopy

    SciTech Connect

    Wielopolski, L.; Ludewig, H.; Powell, J.R.; Raparia, D.; Alessi, J.G.; Lowenstein, D.I.

    1999-03-01

    experiments using a proton recoil spectroscopy detection system. Comparison was also made between in phantom {sup 10}BF{sub 3} readings made at the BMRR and those made at the RARAF accelerator facility.

  17. ANALYSIS OF ACCELERATOR BASED NEUTRON SPECTRA FOR BNCT USING PROTON RECOIL SPECTROSCOPY

    SciTech Connect

    WIELOPOLSKI,L.; LUDEWIG,H.; POWELL,J.R.; RAPARIA,D.; ALESSI,J.G.; LOWENSTEIN,D.I.

    1998-11-06

    experiments using a proton recoil spectroscopy detection system. Comparison was also made between in phantom {sup 10}BF{sub 3} readings made at the BMRR and those made at the RARAF accelerator facility.

  18. Potential effects of alpha-recoil on uranium-series dating of calcrete

    USGS Publications Warehouse

    Neymark, L.A.

    2011-01-01

    Evaluation of paleosol ages in the vicinity of Yucca Mountain, Nevada, at the time the site of a proposed high-level nuclear waste repository, is important for fault-displacement hazard assessment. Uranium-series isotope data were obtained for surface and subsurface calcrete samples from trenches and boreholes in Midway Valley, Nevada, adjacent to Yucca Mountain. 230Th/U ages of 33 surface samples range from 1.3 to 423 thousand years (ka) and the back-calculated 234U/238U initial activity ratios (AR) are relatively constant with a mean value of 1.54 ± 0.15 (1σ), which is consistent with the closed-system behavior. Subsurface calcrete samples are too old to be dated by the 230Th/U method. U-Pb data for post-pedogenic botryoidal opal from a subsurface calcrete sample show that these subsurface calcrete samples are older than ~ 1.65 million years (Ma), old enough to have attained secular equilibrium had their U-Th systems remained closed. However, subsurface calcrete samples show U-series disequilibrium indicating open-system behavior of 238U daughter isotopes, in contrast with the surface calcrete, where open-system behavior is not evident. Data for 21 subsurface calcrete samples yielded calculable 234U/238U model ages ranging from 130 to 1875 ka (assuming an initial AR of 1.54 ± 0.15, the mean value calculated for the surface calcrete samples). A simple model describing continuous α-recoil loss predicts that the 234U/238U and 230Th/238U ARs reach steady-state values ~ 2 Ma after calcrete formation. Potential effects of open-system behavior on 230Th/U ages and initial 234U/238U ARs for younger surface calcrete were estimated using data for old subsurface calcrete samples with the 234U loss and assuming that the total time of water-rock interaction is the only difference between these soils. The difference between the conventional closed-system and open-system ages may exceed errors of the calculated conventional ages for samples older than ~ 250 ka, but is

  19. Improvements in Fabrication of Elastic Scattering Foils Used to Measure Neutron Yield by the Magnetic Recoil Spectrometer

    DOE PAGESBeta

    Reynolds, H. G.; Schoff, M. E.; Farrell, M. P.; Gatu Johnson, M.; Bionta, R. M.; Frenje, J. A.

    2016-08-01

    The magnetic recoil spectrometer uses a deuterated polyethylene polymer (CD2) foil to measure neutron yield in inertial confinement fusion experiments. Higher neutron yields in recent experiments have resulted in primary signal saturation in the detector CR-39 foils, necessitating the fabrication of thinner CD2 foils than established methods could provide. A novel method of fabricating deuterated polymer foils is described. The resulting foils are thinner, smoother, and more uniform in thickness than the foils produced by previous methods. Here, these new foils have successfully been deployed at the National Ignition Facility, enabling higher neutron yield measurements than previous foils, with nomore » primary signal saturation.« less

  20. The recoil correction and spin-orbit force for the possible B*Bbar* and D*Dbar* states

    NASA Astrophysics Data System (ADS)

    Zhao, Lu; Ma, Li; Zhu, Shi-Lin

    2015-10-01

    In the framework of the one-boson exchange model, we have calculated the effective potentials between two heavy mesons B*Bbar* and D*Dbar* from the t- and u-channel π-, η-, ρ-, ω- and σ-meson exchanges. We keep the recoil corrections to the B*Bbar* and D*Dbar* systems up to O (1/M2), which turns out to be important for the very loosely bound molecular states. Our numerical results show that the momentum-related corrections are favorable to the formation of the molecular states in the IG =1+, JPC =1+- in the B*Bbar* and D*Dbar* systems.

  1. Development of a gaseous proton-recoil detector for fission cross section measurements below 1 MeV neutron energy

    NASA Astrophysics Data System (ADS)

    Marini, P.; Mathieu, L.; Aïche, M.; Czajkowski, S.; Jurado, B.; Tsekhanovich, I.

    2016-03-01

    The elastic H(n,p) reaction is sometimes used to measure neutron flux, in order to produce high precision measurements. The use of this technique is not straightforward to use below incident neutron energy of 1 MeV, due to a high background in the detected proton spectrum. Experiments have been carried out at the AIFIRA facility to investigate such background and determine its origin and components. Based on these investigations, a gaseous proton-recoil detector has been designed, with a reduced low energy background.

  2. Importance of the recoil contribution in Two Step 2 mechanism for the electron impact double ionization process

    NASA Astrophysics Data System (ADS)

    Li, C.; Staicu Casagrande, E. M.; Lahmam-Bennani, A.

    2014-04-01

    The second order, Two-Step-2 (TS2) mechanism for electron impact double ionization (DI) of various targets at intermediate incident energy is investigated based on a kinematical analysis which assumes the DI to result from two successive (e,2e) single ionization (SI) events. The results show that under the present kinematics, the inclusion of the recoil scattering in each of these (e,2e)-SI steps (in previous studies only the binary scattering was considered) allows a more detailed understanding of the various peaks observed in the experimental angular distributions of the ejected electrons in both (e,3-1e) and (e,3e) experiments.

  3. Recoil Polarization Measurements of the Proton Electromagnetic Form Factor Ratio to Q^2 = 8.5 GeV^2

    SciTech Connect

    Puckett, A J.R.; Jones, M K; Luo, W; Meziane, M; Pentchev, L; Perdrisat, C F; Punjabi, V; Wesselmann, F R; Ahmidouch, A; Albayrak, I; Aniol, K A; Arrington, J; Asaturyan, A; Baghdasaryan, H; Benmokhtar, F; Bertozzi, W; Bimbot, L; Bosted, P; Boeglin, W; Butuceanu, C; Carter, P; Chernenko, S; Christy, E; Commisso, M; Cornejo, J C; Covrig, S; Danagoulian, S; Daniel, A; Davidenko, A; Day, D; Dhamija, S; Dutta, D; Ent, R; Frullani, S; Fenker, H; Frlez, E; Garibaldi, F; Gaskell, D; Gilad, S; Gilman, R; Goncharenko, Y; Hafidi, K; Hamilton, D; Higinbotham, D W; Hinton, W; Horn, T; Hu, B; Huang, J; Huber, G M; Jensen, E; Keppel, C; Khandaker, M; King, P; Kirillov, D; Kohl, M; Kravtsov, V; Kumbartzki, G; Li, Y; Mamyan, V; Margaziotis, D J; Marsh, A; Matulenko, Y; Maxwell, J; Mbianda, G; Meekins, D; Melnik, Y; Miller, J; Mkrtchyan, A; Mkrtchyan, H; Moffit, B; Moreno, O; Mulholland, J; Narayan, A; Nedev, S; Nuruzzaman,; Piasetzky, E; Pierce, W; Piskunov, N M; Prok, Y; Ransome, R D; Razin, D S; Reimer, P; Reinhold, J; Rondon, O; Shabestari, M; Shahinyan, A; Shestermanov, K; Sirca, S; Sitnik, I; Smykov, L; Smith, G; Solovyev, L; Solvingnon, P; Subedi, R; Tomasi-Gustafsson, E; Vasiliev, A; Veilleux, M; Wojtsekhowski, B B; Wood, S; Ye, Z; Zanevsky, Y; Zhang, X; Zhang, Y; Zheng, X; Zhu, L

    2010-06-01

    Among the most fundamental observables of nucleon structure, electromagnetic form factors are a crucial benchmark for modern calculations describing the strong interaction dynamics of the nucleon’s quark constituents; indeed, recent proton data have attracted intense theoretical interest. In this Letter, we report new measurements of the proton electromagnetic form factor ratio using the recoil polarization method, at momentum transfers Q2=5.2, 6.7, and 8.5  GeV2. By extending the range of Q2 for which GEp is accurately determined by more than 50%, these measurements will provide significant constraints on models of nucleon structure in the nonperturbative regime.

  4. Ab initio molecular dynamics investigations of low-energy recoil events in Ni and NiCo

    SciTech Connect

    Liu, Bin; Yuan, Fenglin; Jin, Ke; Zhang, Yanwen; Weber, William J.

    2015-10-06

    Low-energy recoil events in pure Ni and the equiatomic NiCo alloy are studied using ab initio molecular dynamics simulations. We found that the threshold displacement energies are strongly dependent on orientation and weakly dependent on composition. The minimum threshold displacement energies are along the [1 1 0] direction in both pure Ni and the NiCo alloy. Compared to pure Ni, the threshold displacement energies increase slightly in the NiCo alloy due to stronger bonds in the alloy, irrespective of the element type of the PKA. A single Ni interstitial occupying the center of a tetrahedron formed by four Ni atoms and a <1 0 0> split interstitial is produced in pure Ni by the recoils, while only the <1 0 0> split interstitial is formed in the NiCo alloy. Compared to the replacement sequences in pure Ni, anti-site defect sequences are observed in the alloy, which have high efficiency for both producing defects and transporting energy outside of the cascade core. These results provide insights into energy transfer processes occurring in equiatomic alloys under irradiation.

  5. A new telescope for wide-band gamma-ray astronomy: The Silicon Compton Recoil Telescope (SCRT)

    NASA Astrophysics Data System (ADS)

    Tuemer, O. Tuemay; Ait-Ouamer, Farid; Blair, Scott C.; Case, Gary L.; O'Neill, Brendan P.; O'Neill, Terrence J.; White, R. Stephen; Zych, Allen D.

    1994-06-01

    A new prototype gamma-ray telescope is described which is sensitive from 0.3 to 30 MeV as a Compton telescope and to 100 MeV as a pair detector. The Silicon Compton Recoil Telescope (SCRT) uses multilayers of silicon strip detectors as a Compton gamma-ray converter. Recoil electrons are tracked with the silicon strip detectors, and their energy losses and directions are measured. The direction and energy of the Compton-scattered gamma rays are measured with CsI(Tl)-photodiode detectors. Thus unique directions and energies are found for each incident gamma ray for the first time and without the background of overlapping rings. SCRT is the first Compton telescope to image the gamma-ray sky directly. It can also detect electron-positron pairs from gamma rays above 5 MeV, extending SCRT's sensitivity to above 100 MeV. Typical resolutions are 3% (FWHM) in energy at 2 MeV and 0.5 deg (1 sigma) in angle. The proposed prototype SCRT instrument has a sensitive area of 650 sq cm, a detection efficiency of 3%, a size reduction by about an order of magnitude, and a sensitivity of 15 millicrab for a typical Compton Observatory exposure. SCRT can also measure the polarization of the incident gamma rays, especially at low energies and large scattered angles. Simulation calculations and a discussion of results with a laboratory model are presented.

  6. A G/NARRLI Effort. Measuring the Ionization Yield of Low-Energy Nuclear Recoils in Liquid Argon

    SciTech Connect

    Joshi, Tenzing Henry Yatish

    2014-01-01

    Liquid argon has long been used for particle detection due to its attractive drift properties, ample abundance, and reasonable density. The response of liquid argon to lowenergy O(102 -1044 eV) interactions is, however, largely unexplored. Weakly interacting massive particles such as neutrinos and hypothetical dark-matter particles (WIMPs) are predicted to coherently scatter on atomic nuclei, leaving only an isolated low-energy nuclear recoil as evidence. The response of liquid argon to low-energy nuclear recoils must be studied to determine the sensitivity of liquid argon based detectors to these unobserved interactions. Detectors sensitive to coherent neutrino-nucleus scattering may be used to monitor nuclear reactors from a distance, to detect neutrinos from supernova, and to test the predicted behavior of neutrinos. Additionally, direct detection of hypothetical weakly interacting dark matter would be a large step toward understanding the substance that accounts for nearly 27% of the universe. In this dissertation I discuss a small dual-phase (liquid-gas) argon proportional scintillation counter built to study the low-energy regime and several novel calibration and characterization techniques developed to study the response of liquid argon to low-energy O(102 -104 eV) interactions.

  7. Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab

    SciTech Connect

    McCracken, Michael E.

    2010-02-01

    We present measurements of the differential cross section and Lambda recoil polarization for the gamma p to K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi- and K+ p (missing pi -) final-state topologies; results from these analyses were found to exhibit good agreement. These differential cross section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300 MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500 MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of non-resonant K+ Lambda photoproduction mechanisms at all production angles.

  8. Ab initio molecular dynamics investigations of low-energy recoil events in Ni and NiCo

    DOE PAGESBeta

    Liu, Bin; Yuan, Fenglin; Jin, Ke; Zhang, Yanwen; Weber, William J.

    2015-10-06

    Low-energy recoil events in pure Ni and the equiatomic NiCo alloy are studied using ab initio molecular dynamics simulations. We found that the threshold displacement energies are strongly dependent on orientation and weakly dependent on composition. The minimum threshold displacement energies are along the [1 1 0] direction in both pure Ni and the NiCo alloy. Compared to pure Ni, the threshold displacement energies increase slightly in the NiCo alloy due to stronger bonds in the alloy, irrespective of the element type of the PKA. A single Ni interstitial occupying the center of a tetrahedron formed by four Ni atomsmore » and a <1 0 0> split interstitial is produced in pure Ni by the recoils, while only the <1 0 0> split interstitial is formed in the NiCo alloy. Compared to the replacement sequences in pure Ni, anti-site defect sequences are observed in the alloy, which have high efficiency for both producing defects and transporting energy outside of the cascade core. These results provide insights into energy transfer processes occurring in equiatomic alloys under irradiation.« less

  9. Differential cross section and recoil polarization measurements for the γp→K+Λ reaction using CLAS at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    McCracken, M. E.; Bellis, M.; Meyer, C. A.; Williams, M.; Adhikari, K. P.; Anghinolfi, M.; Ball, J.; Battaglieri, M.; Berman, B. L.; Biselli, A. S.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Careccia, S. L.; Carman, D. S.; Cole, P. L.; Collins, P.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; de Vita, R.; de Sanctis, E.; Deur, A.; Dey, B.; Dhamija, S.; Dickson, R.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; El Alaoui, A.; Eugenio, P.; Fegan, S.; Fradi, A.; Gabrielyan, M. Y.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hakobyanm, H.; Hanretty, C.; Hassall, N.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Jo, H. S.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Kuznetsov, V.; Livingston, K.; Mayer, M.; McAndrew, J.; McKinnon, B.; Mestayer, M. D.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Moreno, B.; Moriya, K.; Morrison, B.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Park, S.; Pasyuk, E.; Pereira, S. Anefalos; Perrin, Y.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Quinn, B.; Raue, B. A.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salamanca, J.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vineyard, M. F.; Watts, D.; Voutier, E.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zana, L.

    2010-02-01

    We present measurements of the differential cross section and Λ recoil polarization for the γp→K+Λ reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+pπ- and K+p (missing π-) final-state topologies; results from these analyses were found to exhibit good agreement. These differential-cross-section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300-MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500-MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of nonresonant K+Λ photoproduction mechanisms at all production angles.

  10. Controlling Separation in Turbomachines

    NASA Technical Reports Server (NTRS)

    Evans, Simon; Himmel, Christoph; Power, Bronwyn; Wakelam, Christian; Xu, Liping; Hynes, Tom; Hodson, Howard

    2010-01-01

    Four examples of flow control: 1) Passive control of LP turbine blades (Laminar separation control). 2) Aspiration of a conventional axial compressor blade (Turbulent separation control). 3) Compressor blade designed for aspiration (Turbulent separation control). 4.Control of intakes in crosswinds (Turbulent separation control).

  11. Path Separability of Graphs

    NASA Astrophysics Data System (ADS)

    Diot, Emilie; Gavoille, Cyril

    In this paper we investigate the structural properties of k-path separable graphs, that are the graphs that can be separated by a set of k shortest paths. We identify several graph families having such path separability, and we show that this property is closed under minor taking. In particular we establish a list of forbidden minors for 1-path separable graphs.

  12. Combination of time of flight direct recoiled spectroscopy and ion scattering trajectory simulations of (Ga,Mn)N growth by chemical beam epitaxy

    SciTech Connect

    Carreno, Luz Angela; Bensaoula, Abdelhak

    2005-01-10

    In situ direct recoiled spectroscopy combined with scattering-recoiling trajectory simulations were applied to characterization of (Ga,Mn)N thin films grown by chemical beam epitaxy. Relative intensities of the scattering and recoiling signals recorded as a function of the sample azimuthal rotation allowed determination of the surface composition and periodicity. Models locating the Mn atoms at Ga sites and interstitial positions and the presence of N vacancies at percent levels were simulated. We find that most Mn atoms are located at Ga sites with a nonnegligible level going to interstitial positions; inclusion of N vacancies is also necessary to duplicate some experimental features. This agrees with the samples free carrier concentrations and photoluminescence measurements.

  13. Determination of the extraction efficiency for 233U source α-recoil ions from the MLL buffer-gas stopping cell

    NASA Astrophysics Data System (ADS)

    v. d. Wense, Lars; Seiferle, Benedict; Laatiaoui, Mustapha; Thirolf, Peter G.

    2015-03-01

    Following the α decay of 233U, 229Th recoil ions are shown to be extracted in a significant amount from the MLL buffer-gas stopping cell. The produced recoil ions and subsequent daughter nuclei are mass purified with the help of a customized quadrupole mass spectrometer. The combined extraction and mass purification efficiency for 229Th3+ is determined via MCP-based measurements and via the direct detection of the 229Th α decay. A large value of (10±2)% for the combined extraction and mass purification efficiency of 229Th3+ is obtained at a mass resolution of about 1u/e. In addition to 229Th, also other α-recoil ions of the 233, 232U decay chains are addressed.

  14. Measurement of Recoil Losses and Ranges for Spallation Products Produced in Proton Interactions with Al, Si, Mg at 200 and 500 MeV

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.

    2005-01-01

    Cosmic rays interact with extraterrestrial materials to produce a variety of spallation products. If these cosmogenic nuclides are produced within an inclusion in such material, then an important consideration is the loss of the product nuclei, which recoil out of the inclusion. Of course, at the same time, some atoms of the product nuclei under study may be knocked into the inclusion from the surrounding material, which is likely to have a different composition to that of the inclusion [1]. For example, Ne-21 would be produced in presolar grains, such as SiC, when irradiated in interstellar space. However, to calculate a presolar age, one needs to know how much 21Ne is retained in the grain. For small grains, the recoil losses might be large [2, 3] To study this effect under laboratory conditions, recoil measurements were made using protons with energies from 66 - 1600 MeV on Si, Al and Ba targets [3, 4, 5].

  15. Subaru and e-Merlin observations of NGC 3718. Diaries of a supermassive black hole recoil?

    NASA Astrophysics Data System (ADS)

    Markakis, K.; Dierkes, J.; Eckart, A.; Nishiyama, S.; Britzen, S.; García-Marín, M.; Horrobin, M.; Muxlow, T.; Zensus, J. A.

    2015-08-01

    photometric and spectroscopic characteristics. These characteristics combined with the observed spatial NIR and radio emission offsets, the relative redshift between the broad and the narrow Hα line, the limited star formation activity, and AGN feedback strongly imply the existence of a supermassive black hole recoil. Finally, we discuss a possible interpretation that could naturally incorporate all these findings into one physically consistent picture. Appendices are available in electronic form at http://www.aanda.orgBased on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  16. Use of the ECL-CAMAC trigger processor system for recoil missing mass triggers at the Tagged Photon Spectrometer at Fermilab

    SciTech Connect

    Martin, J.; Bracker, S.; Hartner, G.; Appel, J.; Nash, T.

    1981-05-01

    A trigger processor in operation since May 1980 at the Tagged Photon Spectrometer at Fermilab will be described. The processor, based on the Fermilab ECL-CAMAC system, allows fast selection of high mass diffractive events from the total hadronic cross section. Data from a recoil detector, consisting of 3 wire chambers and 4 layers of scintillator concentric about a 1.5 m liquid hydrogen target, is digitized and presented to the processor within 3 sec. From the chamber data are found the vertices and angles of all recoiling tracks.

  17. The cyro-thermochromatographic separator (CTS): A new detectionand separation system for highly volatile osmium and hassium (element108) tetroxides

    SciTech Connect

    Kirbach, U.W.; Folden III, C.M.; Ginter, T.N.; Gregorich, K.E.; Lee, D.M.; Ninov, V.; Omtvedt, J.P.; Patin, J.B.; Seward, N.K.; Strellis,D.A.; Sudowe, R.; Wilk, P.A.; Zielinski, P.M.; Hoffman, D.C.; Nitsche, H.

    2002-03-08

    We implemented a new concept for heavy element chemistry research using an ion separator to separate the desired products from the beam, transfer products and other undesirable by-products prior to chemical studies. First, a Recoil product Transfer Chamber (RTC) was designed and attached to the Berkeley Gas-filled Separator (BGS) to collect and transfer the recoiling products to the chemical separation system. The RTC consists of a wire-grid-supported thin mylar foil ({le}) 200 {micro}g/cm{sup 2} that separates the BGS detector chamber, at 1.3 mbar pressure, from the chemistry system at different pressures ranging from 480 mbar to 2000 mbar. The overall transport efficiency ranged between 30% and 15%, compared to the activity measured in the focal plane detector of the BGS. The CTS was designed as a separation and {alpha}-decay detection system for the highly volatile tetroxides of osmium and hassium, element 108. The CTS, shown in figure 1, consists of two rows of 32-{alpha} detectors arranged along a negative temperature gradient. The tetroxides adsorb on the surface of one of the silicone photodiodes at a certain deposition temperature, and the nuclide is then identified by the {alpha}-decay. To test the CTS with the expected hassium homologue osmium, different {alpha}-active osmium isotopes were produced using the nuclear reactions {sup 118}Sn({sup 56}Fe, 4,5n) {sup 170,169}Os and {sup 120}Sn({sup 56}Fe, 4,5n) {sup 172,171}Os. After preseparation in the BGS, a mixture of 90% helium and 10% oxygen was used to transport the osmium to a quartz tube heated to 1225 K, where OsO{sub 4} was formed. The negative temperature gradient in the CTS ranged from 248 K to 173 K. Using a flow rate of 500 mL/min, most of the osmium activity was adsorbed at a temperature of about 203 K. From the measured {alpha}-activity distribution, an adsorption enthalpy of 40 {+-} 1 kJ/mol for OsO{sub 4} on the detector surface was calculated using Monte Carlo simulations. The results show

  18. Ionene membrane battery separator

    NASA Technical Reports Server (NTRS)

    Moacanin, J.; Tom, H. Y.

    1969-01-01

    Ionic transport characteristics of ionenes, insoluble membranes from soluble polyelectrolyte compositions, are studied for possible application in a battery separator. Effectiveness of the thin film of separator membrane essentially determines battery lifetime.

  19. Magnetic separation of algae

    DOEpatents

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  20. Separation in Binary Alloys

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.

    1986-01-01

    Studies of monotectic alloys and alloy analogs reviewed. Report surveys research on liquid/liquid and solid/liquid separation in binary monotectic alloys. Emphasizes separation processes in low gravity, such as in outer space or in free fall in drop towers. Advances in methods of controlling separation in experiments highlighted.

  1. Meniscus membranes for separations

    DOEpatents

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2004-01-27

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  2. Meniscus Membranes For Separation

    DOEpatents

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  3. Zirconium isotope separation

    SciTech Connect

    Siddall, M.B.

    1984-12-11

    A method of separating zirconium isotopes by converting the zirconium to its iodide salt prior to separation by usual isotope methods is disclosed. After separation the desired isotopes are converted from the salt to the metal by the van Arkel-de Boer iodide process.

  4. Space Shuttle separation mechanisms

    NASA Technical Reports Server (NTRS)

    Rogers, W. F.

    1979-01-01

    The development of space shuttle separation devices is reviewed to illustrate the mechanisms involved in separating the orbiter from the Boeing 747 carrier aircraft and from the externally mounted propellant tank. Other aspects of the separation device development discussed include design evolution, operational experience during the orbiter approach and landing tests, and the work to be accomplished before an operational system becomes a reality.

  5. Space shuttle separation mechanisms

    NASA Technical Reports Server (NTRS)

    Rogers, W. F.

    1978-01-01

    The development of space shuttle separation devices is reviewed to illustrate the mechanisms involved in separating the Orbiter from the Boeing 747 carrier aircraft and from the externally mounted propellant tank. Other aspects of the separation device development discussed include design evolution, operational experience during the orbiter approach and landing tests, and the work required to produce an operational system.

  6. Measurements of fission yields in the heavy region at the recoil ass spectrometer lohengrin

    NASA Astrophysics Data System (ADS)

    Bail, A.; Serot, O.; Mathieu, L.; Litaize, O.; Materna, T.; Köster, U.; Faust, H.; Letourneau, A.; Panebianco, S.; Dupont, E.; Michel-Sendis, F.

    2009-10-01

    In spite of the huge amount of fission yield data available in different libraries, more accurate values are still needed for nuclear energy applications and to improve our understanding of the fission process. Thus measurements of fission yields were performed at the mass spectrometer Lohengrin at the Institut Laue-Langevin in Grenoble, France. The mass separator Lohengrin is situated at the research reactor of the institute and permits the placement of an actinide layer in a high thermal neutron flux. It separates fragments according to their atomic mass, kinetic energy and ionic charge state by the action of magnetic and electric fields. Coupled to a high resolution ionization chamber the experiment was used to investigate the mass and isotopic yields in the light mass region. Almost all fission yields of isotopes from Th to Cf have been measured at Lohengrin with this method. It has been extended in this work to the heavy mass region for the reactions 235U(nth,f), 239Pu(nth,f), and 241Pu(nth,f). For these higher masses an isotopic separation is no longer possible. So, a new method was undertaken with the reaction 239Pu(nth,f) to determine the isotopic yields by γ spectrometry. The results are presented in this paper.

  7. BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension

    SciTech Connect

    Dai Dechang; Starkman, Glenn; Stojkovic, Dejan; Issever, Cigdem; Tseng, Jeff; Rizvi, Eram

    2008-04-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/{approx}issever/BlackMax/blackmax.html.

  8. The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF)

    DOE PAGESBeta

    Frenje, J. A.; Hilsabeck, T. J.; Wink, C. W.; Bell, P.; Bionta, R.; Cerjan, C.; Gatu Johnson, M.; Kilkenny, J. D.; Li, C. K.; Séguin, F. H.; et al

    2016-08-02

    The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (Ti), yield (Yn), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with amore » time resolution of ~20 ps and energy resolution of ~100 keV for total neutron yields above ~1016. Lastly, at lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ~20 ps.« less

  9. Measurement of the beam-recoil polarization in low-energy virtual Compton scattering from the proton

    NASA Astrophysics Data System (ADS)

    Doria, L.; Janssens, P.; Achenbach, P.; Ayerbe Gayoso, C.; Baumann, D.; Bensafa, I.; Benali, M.; Beričič, J.; Bernauer, J. C.; Böhm, R.; Bosnar, D.; Correa, L.; D'Hose, N.; Defaÿ, X.; Ding, M.; Distler, M. O.; Fonvieille, H.; Friedrich, J.; Friedrich, J. M.; Laveissière, G.; Makek, M.; Marroncle, J.; Merkel, H.; Mihovilovič, M.; Müller, U.; Nungesser, L.; Pasquini, B.; Pochodzalla, J.; Postavaru, O.; Potokar, M.; Ryckbosch, D.; Sánchez Majos, S.; Schlimme, B. S.; Seimetz, M.; Širca, S.; Tamas, G.; Van de Vyver, R.; Van Hoorebeke, L.; Van Overloop, A.; Walcher, Th.; Weinriefer, M.; A1 Collaboration

    2015-11-01

    Double-polarization observables in the reaction e ⃗p →e'p ⃗'γ have been measured at Q2=0.33 (GeV/c ) 2 . The experiment was performed at the spectrometer setup of the A1 Collaboration using the 855 MeV polarized electron beam provided by the Mainz Microtron (MAMI) and a recoil proton polarimeter. From the double-polarization observables the structure function PLT ⊥ is extracted for the first time, with the value (-15.4 ±3 .3(stat .)-2.4+1.5(syst.)) GeV-2 , using the low-energy theorem for virtual Compton scattering. This structure function provides a hitherto unmeasured linear combination of the generalized polarizabilities of the proton.

  10. Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF.

    PubMed

    Casey, D T; Frenje, J A; Gatu Johnson, M; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Knauer, J P; Meyerhofer, D D; Sangster, T C; Bionta, R M; Bleuel, D L; Döppner, T; Glenzer, S; Hartouni, E; Hatchett, S P; Le Pape, S; Ma, T; MacKinnon, A; McKernan, M A; Moran, M; Moses, E; Park, H-S; Ralph, J; Remington, B A; Smalyuk, V; Yeamans, C B; Kline, J; Kyrala, G; Chandler, G A; Leeper, R J; Ruiz, C L; Cooper, G W; Nelson, A J; Fletcher, K; Kilkenny, J; Farrell, M; Jasion, D; Paguio, R

    2012-10-01

    A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF. PMID:23126915

  11. Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF

    SciTech Connect

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Knauer, J. P.; Meyerhofer, D. D.; Sangster, T. C.; Bionta, R. M.; Bleuel, D. L.; Doeppner, T.; Glenzer, S.; Hartouni, E.; Hatchett, S. P.; Le Pape, S.; Ma, T.; MacKinnon, A.; and others

    2012-10-15

    A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  12. Electron emission and recoil effects following the beta decay of He6

    NASA Astrophysics Data System (ADS)

    Schulhoff, Eva E.; Drake, G. W. F.

    2015-11-01

    Probabilities for atomic electron excitation (shake-up) and ionization (shake-off) are studied following the beta-decay process →Li+6He6+e-+ν¯e , and in particular, recoil-induced contributions to the shake-off probability are calculated within the nonrelativistic sudden approximation. A pseudostate expansion method together with Stieltjes imaging is used to represent the complete two-electron spectrum of final Li+6 ,Li26+, and Li36+ states. Results for the recoil correction show a 7 σ disagreement with the experiment of Carlson et al. [Phys. Rev. 129, 2220 (1963), 10.1103/PhysRev.129.2220]. A variety of sum rules, including a newly derived Thomas-Reich-Kuhn oscillator strength sum rule for dipole recoil terms, provides tight constraints on the accuracy of the results. Calculations are performed for the helium 1 s 2 s 3S metastable state, as well as for the 1 s21S ground state. Our results would reduce the recoil-induced correction to the measured electroneutrino coupling constant ae μ from the apparent 0.6% used in the experiments to 0.09%.

  13. B → Dℓν form factors at nonzero recoil and |Vcb| from 2+1-flavor lattice QCD

    DOE PAGESBeta

    Bailey, Jon A.

    2015-08-10

    We present the first unquenched lattice-QCD calculation of the hadronic form factors for the exclusive decay B¯→Dℓν¯ at nonzero recoil. We carry out numerical simulations on 14 ensembles of gauge-field configurations generated with 2+1 flavors of asqtad-improved staggered sea quarks. The ensembles encompass a wide range of lattice spacings (approximately 0.045 to 0.12 fm) and ratios of light (up and down) to strange sea-quark masses ranging from 0.05 to 0.4. For the b and c valence quarks we use improved Wilson fermions with the Fermilab interpretation, while for the light valence quarks we use asqtad-improved staggered fermions. We extrapolate ourmore » results to the physical point using rooted staggered heavy-light meson chiral perturbation theory. We then parametrize the form factors and extend them to the full kinematic range using model-independent functions based on analyticity and unitarity. We present our final results for f+(q2) and f0(q2), including statistical and systematic errors, as coefficients of a series in the variable z and the covariance matrix between these coefficients. We then fit the lattice form-factor data jointly with the experimentally measured differential decay rate from BABAR to determine the CKM matrix element, |Vcb|=(39.6 ± 1.7QCD+exp ± 0.2QED) × 10–3. As a byproduct of the joint fit we obtain the form factors with improved precision at large recoil. In conclusion, we use them to update our calculation of the ratio R(D) in the Standard Model, which yields R(D)=0.299(11).« less

  14. Safety shutdown separators

    DOEpatents

    Carlson, Steven Allen; Anakor, Ifenna Kingsley; Farrell, Greg Robert

    2015-06-30

    The present invention pertains to electrochemical cells which comprise (a) an anode; (b) a cathode; (c) a solid porous separator, such as a polyolefin, xerogel, or inorganic oxide separator; and (d) a nonaqueous electrolyte, wherein the separator comprises a porous membrane having a microporous coating comprising polymer particles which have not coalesced to form a continuous film. This microporous coating on the separator acts as a safety shutdown layer that rapidly increases the internal resistivity and shuts the cell down upon heating to an elevated temperature, such as 110.degree. C. Also provided are methods for increasing the safety of an electrochemical cell by utilizing such separators with a safety shutdown layer.

  15. Aptamers in Affinity Separations: Stationary Separation

    NASA Astrophysics Data System (ADS)

    Ravelet, Corinne; Peyrin, Eric

    The use of DNA or RNA aptamers as tools in analytical chemistry is a very promising field of research because of their capabilities to bind specifically the target molecules with an affinity similar to that of antibodies. Notably, they appear to be of great interest as target-specific ligands for the separation and capture of various analytes in affinity chromatography and related affinity-based methods such as magnetic bead technology. In this chapter, the recent developments of these aptamer-based separation/capture approaches are addressed.

  16. SHELS -- A Separator for Heavy Element Spectroscopy: First Results

    NASA Astrophysics Data System (ADS)

    Popeko, A.; Yeremin, A.; Malyshev, O.; Chepigin, V.; Svirikhin, A.; Isaev, A.; Kuznetsova, A.; Lopez-Martens, A.; Hauschild, K.; Dorvaux, O.; Gal, B.; Mullins, S.; Jones, P.; Ntshangase, S.

    2015-11-01

    Detailed spectroscopic information of excited nuclear states in deformed transfermium nuclei is scarce. Most of the information available today has been obtained from investigations of fine-structure α-decay. Although α-decay gives access to hindrance factors and lifetimes which are strongly correlated to shell/subshell closures and the presence of isomers, only the combined use of γ- and conversion-electron spectroscopy allows the precise determination of excitation energy, spin and parity of nuclear levels. Our accumulated experience with ion-optical calculations allowed us to design the new experimental set-up, from which optimal parameters utilized with existing separators and their associated complex focal-plane detector systems, were determined. The results of first experimental tests of the modernized VASSILISSA separator with the use of accelerated 22Ne ions are presented. The data were obtained from the experimental measurements of the transmission coefficients of the recoil nuclei synthesized in the asymmetric combinations of the incident ion - target nucleus. Ion optical calculations inherent in the project of modernization of the separator are completely confirmed.

  17. Reassessing the discovery potential of the B →K*ℓ+ℓ- decays in the large-recoil region: SM challenges and BSM opportunities

    NASA Astrophysics Data System (ADS)

    Jäger, S.; Martin Camalich, J.

    2016-01-01

    We critically examine the potential to disentangle the Standard Model (SM) and new physics (NP) in B →K*μ+μ- and B →K*e+e- decays, focusing on (i) the LHCb anomaly, (ii) the search for right-handed currents, and (iii) lepton-universality violation. Restricting ourselves to the large-recoil region, we advocate a parametrization of the hadronic matrix elements that separates model-independent information about nonperturbative QCD from the results of model calculations. We clarify how to estimate corrections to the heavy-quark limit that would generate a right-handed (virtual) photon in the b →s γ contribution to the decay. We then apply this approach to the discussion of various sets of observables of increasing theoretical cleanness. First, we show that angular observables in the optimized Pi(') basis are, in general, still not robust against the long-distance QCD effects, both numerically and by examining analytically the dependence on corrections to the (model-independent) heavy-quark limit. As a result, while a fit to data favors a NP contribution to the semileptonic operators of the type δ C9≃-1.5 , this comes at a relatively small statistical significance of ≲2 σ once such power corrections are properly accounted for. Second, two of these observables, P1 and P3C P, are particularly clean at very low q2 and sensitive probes of right-handed quark currents. We discuss their potential to set stringent bounds on the Wilson coefficient C7', especially using data of the electronic mode, and we update the bounds with current angular data in the muonic channel. Finally, in light of the recent hint of lepton-universality violation in B+→K+ℓℓ , we introduce and investigate new lepton-universality observables involving angular observables of the muonic and electronic modes and their zero crossings and show that, if the effect is of the size suggested by experiment, these can clearly distinguish between different NP explanations in terms of underlying

  18. Isotope separation by photochromatography

    DOEpatents

    Suslick, Kenneth S.

    1977-01-01

    An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

  19. Isotope separation by photochromatography

    DOEpatents

    Suslick, K.S.

    1975-10-03

    A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)

  20. The ADvanced SEParation (ADSEP)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The ADvanced SEParation (ADSEP) commercial payload is making use of major advances in separation technology: The Phase Partitioning Experiment (PPE); the Micorencapsulation experiment; and the Hemoglobin Separation Experiment (HSE). Using ADSEP, commercial researchers will attempt to determine the partition coefficients for model particles in a two-phase system. With this information, researchers can develop a higher resolution, more effective cell isolation procedure that can be used for many different types of research and for improved health care. The advanced separation technology is already being made available for use in ground-based laboratories.

  1. The separation of adult separation anxiety disorder.

    PubMed

    Baldwin, David S; Gordon, Robert; Abelli, Marianna; Pini, Stefano

    2016-08-01

    The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) categorization of mental disorders places "separation anxiety disorder" within the broad group of anxiety disorders, and its diagnosis no longer rests on establishing an onset during childhood or adolescence. In previous editions of DSM, it was included within the disorders usually first diagnosed in infancy, childhood, or adolescence, with the requirement for an onset of symptoms before the age of 18 years: symptomatic adults could only receive a retrospective diagnosis, based on establishing this early onset. The new position of separation anxiety disorder is based upon the findings of epidemiological studies that revealed the unexpectedly high prevalence of the condition in adults, often in individuals with an onset of symptoms after the teenage years; its prominent place within the DSM-5 group of anxiety disorders should encourage further research into its epidemiology, etiology, and treatment. This review examines the clinical features and boundaries of the condition, and offers guidance on how it can be distinguished from other anxiety disorders and other mental disorders in which "separation anxiety" may be apparent. PMID:27503572

  2. URANIUM SEPARATION PROCESS

    DOEpatents

    McVey, W.H.; Reas, W.H.

    1959-03-10

    The separation of uranium from an aqueous solution containing a water soluble uranyl salt is described. The process involves adding an alkali thiocyanate to the aqueous solution, contacting the resulting solution with methyl isobutyl ketons and separating the resulting aqueous and organic phase. The uranium is extracted in the organic phase as UO/sub 2/(SCN)/sub/.

  3. Method for separating isotopes

    DOEpatents

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  4. Adventures in maceral separation

    SciTech Connect

    Dyrkacz, G.R.

    1994-02-01

    Progress has been made in recent years in the science of maceral separation. However, there are many areas that can be improved and new areas investigated. Power of density gradient centrifugation to physically resolve macerals and submaceral species coupled with other instrumental techniques is attractive for defining the limits of coal heterogeneity as well as investigating the ability of other separation methods.

  5. Indecision on decisional separability.

    PubMed

    Mack, Michael L; Richler, Jennifer J; Gauthier, Isabel; Palmeri, Thomas J

    2011-02-01

    The theoretical framework of General Recognition Theory (GRT; Ashby & Townsend, Psychological Review, 93, 154-179, 1986) coupled with the empirical analysis tools of Multidimensional Signal Detection Analysis (MSDA; Kadlec & Townsend, Multidimensional models of perception and recognition, pp. 181-228, 1992) have become one important method for assessing dimensional interactions in perceptual decision-making. In this article, we critically examine MSDA and characterize cases where it is unable to discriminate two kinds of dimensional interactions: perceptual separability and decisional separability. We performed simulations with known instances of violations of perceptual or decisional separability, applied MSDA to the data generated by these simulations, and evaluated MSDA on its ability to accurately characterize the perceptual versus decisional source of these simulated dimensional interactions. Critical cases of violations of perceptual separability are often mischaracterized by MSDA as violations of decisional separability. PMID:21327365

  6. Substituted polyacetylene separation membrane

    DOEpatents

    Pinnau, Ingo; Morisato, Atsushi

    1998-01-13

    A separation membrane useful for gas separation, particularly separation of C.sub.2+ hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula: ##STR1## wherein R.sub.1 is chosen from the group consisting of C.sub.1 -C.sub.4 alkyl and phenyl, and wherein R.sub.2 is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) ›PMP!. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations.

  7. Substituted polyacetylene separation membrane

    DOEpatents

    Pinnau, I.; Morisato, Atsushi

    1998-01-13

    A separation membrane is described which is useful for gas separation, particularly separation of C{sub 2+} hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula shown in the accompanying diagram, wherein R{sub 1} is chosen from the group consisting of C{sub 1}-C{sub 4} alkyl and phenyl, and wherein R{sub 2} is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) [PMP]. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations. 4 figs.

  8. Membrane separation technology

    SciTech Connect

    Stookey, D.J.; Patton, C.J.; Malcolm, G.L.

    1986-01-01

    Membrane separations of interest here are not to be confused with barrier separations of the type employed in the uranium enrichment plant at Oak Ridge, Tennessee. There isotopes of uranium hexafluoride were separated by the free-molecular or Knudsen flow of the gas mixture through the pores and orifices created within a porous nickel media which was sometimes referred to as a membrane. In barrier separation, an enrichment of gases of differing molecular weights is accomplished by the differing gaseous diffusion rates within the porous media. By contrast the membranes of interest here are thin, dense, continuous films, typically formed from polymers. The separation of species is accomplished by the dissolution of the gases in the polymer and their diffusion across the solid film thickness under a concentration gradient according to Fick's law. This process is commonly referred to as membrane permeation.

  9. Isothermal separation processes

    NASA Technical Reports Server (NTRS)

    England, C.

    1982-01-01

    The isothermal processes of membrane separation, supercritical extraction and chromatography were examined using availability analysis. The general approach was to derive equations that identified where energy is consumed in these processes and how they compare with conventional separation methods. These separation methods are characterized by pure work inputs, chiefly in the form of a pressure drop which supplies the required energy. Equations were derived for the energy requirement in terms of regular solution theory. This approach is believed to accurately predict the work of separation in terms of the heat of solution and the entropy of mixing. It can form the basis of a convenient calculation method for optimizing membrane and solvent properties for particular applications. Calculations were made on the energy requirements for a membrane process separating air into its components.

  10. Separators for flywheel rotors

    DOEpatents

    Bender, Donald A.; Kuklo, Thomas C.

    1998-01-01

    A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors.

  11. Separators for flywheel rotors

    DOEpatents

    Bender, D.A.; Kuklo, T.C.

    1998-07-07

    A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors. 10 figs.

  12. Relationship between early diastolic intraventricular pressure gradients, an index of elastic recoil, and improvements in systolic and diastolic function

    NASA Technical Reports Server (NTRS)

    Firstenberg, M. S.; Smedira, N. G.; Greenberg, N. L.; Prior, D. L.; McCarthy, P. M.; Garcia, M. J.; Thomas, J. D.

    2001-01-01

    BACKGROUND: Early diastolic intraventricular pressure gradients (IVPGs) have been proposed to relate to left ventricular (LV) elastic recoil and early ventricular "suction." Animal studies have demonstrated relationships between IVPGs and systolic and diastolic indices during acute ischemia. However, data on the effects of improvements in LV function in humans and the relationship to IVPGs are lacking. METHODS AND RESULTS: Eight patients undergoing CABG and/or infarct exclusion surgery had a triple-sensor high-fidelity catheter placed across the mitral valve intraoperatively for simultaneous recording of left atrial (LA), basal LV, and apical LV pressures. Hemodynamic data obtained before bypass were compared with those with similar LA pressures and heart rates obtained after bypass. From each LV waveform, the time constant of LV relaxation (tau), +dP/dt(max), and -dP/dt(max) were determined. Transesophageal echocardiography was used to determined end-diastolic (EDV) and end-systolic (ESV) volumes and ejection fractions (EF). At similar LA pressures and heart rates, IVPG increased after bypass (before bypass 1.64+/-0.79 mm Hg; after bypass 2.67+/-1.25 mm Hg; P<0.01). Significant improvements were observed in ESV, as well as in apical and basal +dP/dt(max), -dP/dt(max), and tau (each P<0.05). Overall, IVPGs correlated inversely with both ESV (IVPG=-0.027[ESV]+3.46, r=-0.64) and EDV (IVPG=-0.027[EDV]+4.30, r=-0.70). Improvements in IVPGs correlated with improvements in apical tau (Deltatau =5.93[DeltaIVPG]+4.76, r=0.91) and basal tau (Deltatau =2.41[DeltaIVPG]+5.13, r=-0.67). Relative changes in IVPGs correlated with changes in ESV (DeltaESV=-0.97[%DeltaIVPG]+23.34, r=-0.79), EDV (DeltaEDV=-1.16[%DeltaIVPG]+34.92, r=-0.84), and EF (DeltaEF=0.38[%DeltaIVPG]-8.39, r=0.85). CONCLUSIONS: Improvements in LV function also increase IVPGs. These changes in IVPGs, suggestive of increases in LV suction and elastic recoil, correlate directly with improvements in LV relaxation

  13. Process for phase separation

    DOEpatents

    Comolli, Alfred G.

    1979-01-01

    This invention provides a continuous process for separating a gaseous phase from a hydrocarbon liquid containing carbonaceous particulates and gases. The liquid is fed to a cylindrical separator, with the gaseous phase being removed therefrom as an overhead product, whereas the hydrocarbon liquid and the particulates are withdrawn as a bottoms product. By feeding the liquid tangentially to the separator and maintaining a particulate-liquid slurry downward velocity of from about 0.01 to about 0.25 fps in the separator, a total solids weight percent in the slurry of from about 0.1 to about 30%, a slurry temperature of from about 550.degree. to about 900.degree. F., a slurry residence time in the separator of from about 30 to about 360 seconds, and a length/diameter ratio for the separator of from about 20/1 to about 50/1, so that the characterization factor, .alpha., defined as ##STR1## DOES NOT EXCEED ABOUT 48 (.degree.R sec.sup.2)/ft, the deposit of carbonaceous materials on the interior surface of the separator may be substantially eliminated.

  14. Novel Separation of Actinides

    SciTech Connect

    Mariella, R

    2011-02-17

    The separation of actinides and other elements of interest for nuclear forensics and threat reduction is currently performed using decades-old chemistries and ion-exchange columns. We propose to determine the technical feasibility of a novel method for separating actinide ions in solution. This method is based upon isotachophoresis (ITP), which has been applied in the purification of pharmaceuticals and other biochemical applications. This technique has the potential to separate inorganic ions more effectively than existing methods, which is key to analyzing very small samples. We will perform a quantitative assessment of the effectiveness of specific isotachophoretic approaches including predicting the physical and chemical properties, such as ion mobility, of inorganic ions under specific solvent conditions using a combination of ab initio calculations and semi-empirical methods. We expect to obtain a thorough understanding of the analytical systems parameters under which ITP is most effective for the separation of inorganic samples, including the influence of the double layer surrounding actinide ions, the Debye length for different ions and ion complexes, and Debye-Hueckel limits. Inorganic separations are key to nuclear forensics for countering terrorism and nuclear proliferation. If found to be feasible and potentially superior to currently used separation approaches, ITP could provide the conceptual basis for an improved means to separate samples of nuclear explosion debris for nuclear forensic analysis, in support of the Laboratory's missions in homeland and national security.

  15. In-beam separation and mass determination of superheavy nuclei. Part II

    NASA Astrophysics Data System (ADS)

    Malyshev, O. N.; Yeremin, A. V.; Popeko, A. G.; Belozerov, A. V.; Chelnokov, M. L.; Chepigin, V. I.; Gorshkov, V. A.; Hofmann, S.; Itkis, M. G.; Kabachenko, A. P.; Oganessian, Yu. Ts.; Sagaidak, R. N.; Šáro, Š.; Shutov, A. V.; Svirikhin, A. I.

    2004-01-01

    Within the past 15 years, the recoil separator VASSILISSA has been used for the investigations of evaporation residues produced in complete fusion reactions induced by heavy ions. The study of decay properties and formation of cross-sections of the isotopes of elements 110, 112 and 114 was performed using high-intensity 48Ca beams and 232Th, 238U, 242Pu targets. For further experiments aimed at the synthesis of the superheavy element isotopes ( Z⩾110) with the use of intense 48Ca extracted beams, improvements in the ion optical system of the separator and the focal plane detector system have been made. The results from the test reactions and new results for the isotope 283112 are presented.

  16. Elastic recoil cross section determination of deuterium by helium-4 ions at 30° with the energy range of 2.6-7.4 MeV

    NASA Astrophysics Data System (ADS)

    Han, Zhibin; Hao, Wanli; Wang, Chunjie; Shi, Liqun

    2016-05-01

    The elastic recoil cross section for D(4He, D) 4He was determined at a recoil angle of 30° over an incident helium energy range from 2.6 to 7.4 MeV. A thin solid target Ta/TiDx/Si used for cross section measurement was prepared by direct current magnetron sputtering, and it was so stable to ion beam bombardment that nearly no deuterium loss (less than 0.2%) exists over the whole experiment. A relative determination method is adopted in this measurement. It can avoid the error from the beam dose and the solid angle of the detectors and it is also free to direct measurement of D content in the film. The total uncertainty in the cross section determination is less than 5%.

  17. Recoil-Ion Momentum Distributions for Two-Photon Double Ionization of He and Ne by 44 eV Free-Electron Laser Radiation

    SciTech Connect

    Rudenko, A.; Moshammer, R.; Ullrich, J.; Foucar, L.; Havermeier, T.; Smolarski, M.; Schoessler, S.; Cole, K.; Schoeffler, M.; Doerner, R.; Kurka, M.; Ergler, Th.; Kuehnel, K. U.; Jiang, Y. H.; Voitkiv, A.; Najjari, B.; Luedemann, S.; Schroeter, C. D.; Kheifets, A.; Duesterer, S.

    2008-08-15

    Recoil-ion momentum distributions for two-photon double ionization of He and Ne (({Dirac_h}/2{pi}){omega}=44 eV) have been recorded with a reaction microscope at FLASH (the free-electron laser at Hamburg) at an intensity of {approx}1x10{sup 14} W/cm{sup 2} exploring the dynamics of the two fundamental two-photon-two-electron reaction pathways, namely, sequential and direct (or nonsequential) absorption of the photons. We find strong differences in the recoil-ion momentum patterns for the two mechanisms pointing to the significantly different two-electron emission dynamics and thus provide serious constraints for theoretical models.

  18. Molecular dynamics simulations of point defect production in cementite and Cr23C6 inclusions in α-iron: Effects of recoil energy and temperature

    NASA Astrophysics Data System (ADS)

    Henriksson, K. O. E.

    2016-06-01

    The number of point defects formed in spherical cementite and Cr23C6 inclusions embedded into ferrite (α-iron) has been studied and compared against cascades in pure versions of these materials (only ferrite, Fe3C, or Cr23C6 in a cell). Recoil energies between 100 eV and 3 keV and temperatures between 400 K and 1000 K were used. The overall tendency is that the number of point defects — such as antisites, vacancy and interstitials — increases with recoil energy and temperature. The radial distributions of defects indicate that the interface between inclusions and the host tend to amplify and restrict the defect formation to the inclusions themselves, when compared to cascades in pure ferrite and pure carbide cells.

  19. Enhance separations with electricity

    SciTech Connect

    Muralidhara, H.S.

    1994-05-01

    To satisfy growing environmental regulations, control energy costs, or just to stay competitive, one must improve existing separation technologies and make them more efficient. New challenges in food processing and requirements for novel purification technologies in the biotech industry also will require more efficient separation techniques. This paper discusses some enhanced separation processes based on the application of an electric field in the combined-fields approach. In a combined-fields approach, the emphasis is on the generation of additional driving forces to work simultaneously with the conventional driving force of the process. Here the authors concentrate on the application of an electric field to generate the additional driving force.

  20. Unconventional cyclone separators

    SciTech Connect

    Schmidt, P. )

    1993-01-01

    Conventional cyclone separators are seldom suitable for dust removal from gases according to present standards. The reason is the presence of secondary currents within the cyclone body, which disturb the process of separation as predicted by elementary cyclone theory. Interference can be avoided by special design of the cyclone, including the geometry of the separation chamber, the position of openings, use of flow guides within the cyclone, the dimension and the geometry of the hopper, bleeding and bypassing of the gas, use of multicyclones, and means for dust agglomeration.

  1. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  2. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, Frederick T.

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  3. Rotary drum separator system

    NASA Technical Reports Server (NTRS)

    Barone, Michael R. (Inventor); Murdoch, Karen (Inventor); Scull, Timothy D. (Inventor); Fort, James H. (Inventor)

    2009-01-01

    A rotary phase separator system generally includes a step-shaped rotary drum separator (RDS) and a motor assembly. The aspect ratio of the stepped drum minimizes power for both the accumulating and pumping functions. The accumulator section of the RDS has a relatively small diameter to minimize power losses within an axial length to define significant volume for accumulation. The pumping section of the RDS has a larger diameter to increase pumping head but has a shorter axial length to minimize power losses. The motor assembly drives the RDS at a low speed for separating and accumulating and a higher speed for pumping.

  4. Materials separation by dielectrophoresis

    NASA Technical Reports Server (NTRS)

    Sagar, A. D.; Rose, R. M.

    1988-01-01

    The feasibility of vacuum dielectrophoresis as a method for particulate materials separation in a microgravity environment was investigated. Particle separations were performed in a specially constructed miniature drop-tower with a residence time of about 0.3 sec. Particle motion in such a system is independent of size and based only on density and dielectric constant, for a given electric field. The observed separations and deflections exceeded the theoretical predictions, probably due to multiparticle effects. In any case, this approach should work well in microgravity for many classes of materials, with relatively simple apparatus and low weight and power requirements.

  5. The Yale Gas-Filled Split Pole Magnetic Separator

    NASA Astrophysics Data System (ADS)

    Cata-Danil, G.; Beausang, C. W.; Casten, R. F.; Chen, A.; Chubrich, N.; Cooper, J. R.; Krücken, R.; Liu, B.; Novak, J. R.; Visser, D.; Zamfir, N. V.

    1998-10-01

    Design and construction of a gas-filled recoil separator is underway at the Wright Nuclear Structure Laboratory at Yale University. By filling the magnetic field region of the existing Enge Split-Pole magnet with N2 or He2 gases in the 1 to 15 mbar pressure range a gradual focussing of discrete charge states has been measured. The incident ions were ^16O and ^35,37Cl with 49 MeV and 95 MeV energies, respectively. The process is understood as a result of coalescing of trajectories of different charge states around a trajectory defined by the mean charge state (q¯) of the ion in gas. Because q¯ depends on the atomic number Z and is roughly proportional with the ion velocity, the average magnetic rigidity (B¯ρ=Av/q¯) is almost independent of the velocity distribution of the incident ions. The ion trajectories will be therefore be mainly determined by the mass number A and the atomic number Z of the ion. Monte Carlo simulations with the code RAYTRACE closely reproduce the experimental behavior. We plan to use the Yale Mass Separator (YaMS) for nuclear structure studies in conjunction with high efficency gamma detectors (clover detectors) for enhancing weak reaction channels and fission background reduction. Work supported by the US-DOE under contract numbers DE-FG02-91ER-40609 and DE-FG02-88ER-40417.

  6. B →π ℓν at zero recoil from lattice QCD with physical u /d quarks

    NASA Astrophysics Data System (ADS)

    Colquhoun, B.; Dowdall, R. J.; Koponen, J.; Davies, C. T. H.; Lepage, G. P.

    2016-02-01

    The exclusive semileptonic decay B →π ℓν is a key process for the determination of the Cabibbo-Kobayashi-Maskawa matrix element Vu b from the comparison of experimental rates as a function of q2 with theoretically determined form factors. The sensitivity of the form factors to the u /d quark mass has meant significant systematic uncertainties in lattice QCD calculations at unphysically heavy pion masses. Here, we give the first lattice QCD calculations of this process for u /d quark masses going down to their physical values, calculating the f0 form factor at zero recoil to 3%. We are able to resolve a long-standing controversy by showing that the soft-pion theorem result f0(qmax2)=fB/fπ does hold as mπ→0 . We use the highly improved staggered quark formalism for the light quarks and show that staggered chiral perturbation theory for the mπ dependence is almost identical to continuum chiral perturbation theory for f0, fB, and fπ. We also give results for other processes such as Bs→K ℓν .

  7. Probing high areal-density cryogenic deuterium-tritium implosions using downscattered neutron spectra measured by the magnetic recoil spectrometera)

    NASA Astrophysics Data System (ADS)

    Frenje, J. A.; Casey, D. T.; Li, C. K.; Séguin, F. H.; Petrasso, R. D.; Glebov, V. Yu.; Radha, P. B.; Sangster, T. C.; Meyerhofer, D. D.; Hatchett, S. P.; Haan, S. W.; Cerjan, C. J.; Landen, O. L.; Fletcher, K. A.; Leeper, R. J.

    2010-05-01

    For the first time high areal-density (ρR) cryogenic deuterium-tritium (DT) implosions have been probed using downscattered neutron spectra measured with the magnetic recoil spectrometer (MRS) [J. A. Frenje et al., Rev. Sci. Instrum. 79, 10E502 (2008)], recently installed and commissioned on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The ρR data obtained with the MRS have been essential for understanding how the fuel is assembled and for guiding the cryogenic program at the Laboratory for Laser Energetics (LLE) to ρR values up to ˜300 mg/cm2. The ρR data obtained from well-established charged particle spectrometry techniques [C. K. Li et al., Phys. Plasmas 8, 4902 (2001)] were used to authenticate the MRS data for low-ρR plastic capsule implosions, and the ρR values inferred from these techniques are in excellent agreement, indicating that the MRS technique provides high-fidelity data. Recent OMEGA-MRS data and Monte Carlo simulations have shown that the MRS on the NIF [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] will meet most of the absolute and relative requirements for determining ρR, ion temperature (Ti) and neutron yield (Yn) in both low-yield, tritium-rich, deuterium-lean, hydrogen-doped implosions and high-yield DT implosions.

  8. FastPixN, a new integrated pixel chip for a future fast version of the IRSN - recoil proton telescope.

    PubMed

    Kachel, M; Husson, D; Higueret, S; Taforeau, J; Lebreton, L

    2014-10-01

    A first prototype of recoil proton telescope (RPT) is currently working at the AMANDE facility, being developed as a collaboration between IPHC Strasbourg and the LNE-IRSN. The device, able to measure both energy and fluence of neutron fields in the range of 5-20 MeV, has to be improved further, in order to reduce the considerable inelastic background generated by the neutrons inside the RPT itself. To achieve faster running cycles, the present complementary metal-oxide-semiconductor pixels used for proton tracking are to be replaced by a new integrated chip, specially developed for this application. The authors present a first version of this new element, with individual pixels readout at a 200-MHz frequency, with a fast 4-bit ADC for each column of 64 pixels. The measured performances point to a complete frame treatment in only 12.6 µs. With a readout speed multiplied by a factor 400 over the existing device, the authors expect a considerable improvement of the telescope at AMANDE, with the potential to reach neutron fluence rates up to 10(7) n cm(-2) s(-1) or more. PMID:24277876

  9. Fluence measurement of fast neutron fields with a highly efficient recoil proton telescope using active pixel sensors.

    PubMed

    Taforeau, J; Higueret, S; Husson, D; Kachel, M; Lebreton, L

    2014-10-01

    The spectrometer ATHENA (Accurate Telescope for High-Energy Neutron metrology Applications) is being developed at the LNE-IRSN and aims at characterising energy and fluence of fast neutron fields. The detector is a recoil proton telescope and measures neutron fields in the range of 5-20 MeV. This telescope is intended to become a primary standard for both energy and fluence measurements. The neutron detection is achieved by a polyethylene radiator for n-p conversion, three 50-µm-thick silicon sensors that use CMOS technology for proton tracking and a 3-mm-thick silicon diode to measure the residual proton energy. The use of CMOS sensors and silicon diode, owing to a large detection solid angle, increases the intrinsic efficiency of the detector by a factor of 10 compared with conventional designs. The ability of the spectrometer to determine the neutron energy was demonstrated and reported elsewhere. This paper focuses on the fluence measurement of monoenergetic neutron fields in the range of 5-20 MeV. Experimental investigations, performed at the AMANDE facility, indicate a good estimation of neutron fluence at various energies. In addition, a complete description of uncertainties budget is presented in this paper and a Monte Carlo propagation of uncertainty sources leads to a fluence measurement with a precision ∼3-5 % depending on the neutron energy. PMID:24243312

  10. Recoil distance transmission method: Measurement of interaction cross sections of excited states with fast rare-isotope beams

    NASA Astrophysics Data System (ADS)

    Kobayashi, N.; Whitmore, K.; Iwasaki, H.

    2016-09-01

    The possible appearance of nuclear halos in ground and excited states close to the particle-decay threshold is of great importance in the investigation of nuclear structure and few-body correlations at the limit of stability. In order to obtain direct evidence of the halo structure manifested in nuclear excited states, we have considered a new method to measure the interaction cross sections of excited states. The combination of the transmission method and the recoil distance Doppler-shift method with a plunger device enables us to measure the number of interactions of the excited states in a target. Formulae to determine the interaction cross section are derived, and key issues to realize measurements are discussed. Dominant sources of errors are uncertainties in the excited-state lifetimes and γ-ray yields. We examine prototype experiments and perform simulations to study the impact of each uncertainty on the final result. This method provides a novel opportunity to perform cross section measurements on the excited states of rare isotopes.

  11. Implementation of heavy-ion elastic recoil detection analysis at JANNUS-Saclay for quantitative helium depth profiling

    NASA Astrophysics Data System (ADS)

    Loussouarn, T.; Beck, L.; Trocellier, P.; Brimbal, D.; Leprêtre, F.; Bordas, E.; Vaubaillon, S.; Serruys, Y.; Lefaix-Jeuland, H.

    2015-10-01

    Quantitative depth profiling measurements of implanted light elements is an important issue for electronics and nuclear applications. Conventional elastic recoil detection analysis (ERDA) has been improved by using heavy ions as incident particles for quantitatively profiling helium in materials. A new system has been implemented on the triple beam irradiation platform JANNUS at Saclay devoted to carry out HI-ERDA measurements. This device is dedicated to helium depth profiling using a 15 MeV 16O5+ incident ion beam. Capabilities of the technique (quantitative analysis, resolution and limit of detection) were tested on samples of known composition. For the first time, 4He depth profiles in pure α-iron, as-implanted and annealed, are obtained. HI-ERDA measurements have shown that helium release in pure α-iron can be described by a succession of two steps, the first having a slow kinetics below 700 °C and the second with a fast kinetics above 700 °C.

  12. Integral cross section measurements and product recoil velocity distributions of Xe2+ + N2 hyperthermal charge-transfer collisions

    NASA Astrophysics Data System (ADS)

    Hause, Michael L.; Prince, Benjamin D.; Bemish, Raymond J.

    2016-07-01

    Charge exchange from doubly charged rare gas cations to simple diatomics proceeds with a large cross section and results in populations of many vibrational and electronic product states. The charge exchange between Xe2+ and N2, in particular, is known to create N2 + in both the A and B electronic states. In this work, we present integral charge exchange cross section measurements of the Xe2+ + N2 reaction as well as axial recoil velocity distributions of the Xe+ and N2 + product ions for collision energies between 0.3 and 100 eV in the center-of-mass (COM) frame. Total charge-exchange cross sections decrease from 70 Å2 to about 40 Å2 with increasing collision energy through this range. Analysis of the axial velocity distributions indicates that a Xe2+ - N2 complex exists at low collision energies but is absent by 17.6 eV COM. Analysis of the axial velocity distributions reveals evidence for complexes with lifetimes comparable to the rotational period at low collision energies. The velocity distributions are consistent with quasi-resonant single charge transfer at high collision energies.

  13. Spontaneous Rotation as a Recoil Process--Novel Experimental Evidences and Consistency with the Tenets of the Accretion Theory

    NASA Astrophysics Data System (ADS)

    Basu, B.; Coppi, B.; Zhou, T.

    2012-10-01

    The Accretion Theory [1] of the spontaneous (a.k.a. intrinsic) rotation phenomenon observed on axisymmetric toroidal plasmas was based on the idea that angular momentum is ejected by collective modes from the plasma column and therefore the plasma rotates in the opposite direction. Until recently, the entire plasma column was observed to rotate unidirectionally and the ejection was directed to the plasma chamber, which can not be seen to counter-rotate. According to recent experiments [2], pairs of adjacent regions rotating in opposite directions can emerge within a given plasma column. Thus we argue that, if the prevalent modes are excited in the narrow region within the plasma column where the radial gradients of relevant plasma parameters are significant, angular momentum can be expelled toward the outer region. Then the inner region rotates as a recoil from this expulsion, in the direction opposite to that of the rotation of the outer region. The linear and quasi-linear theories of the modes involved in the relevant transport processes are given.[4pt] [1] B. Coppi, Nucl. Fusion 42,1 (1966).[0pt] [2] J. Rice et al., Nucl. Fusion 51, 083005 (2011).

  14. In situ production of alpha particles and alpha recoil particles in quartz applied to ESR studies of oxygen vacancies

    NASA Astrophysics Data System (ADS)

    Toyoda, S.; Rink, W. J.; Yonezawa, C.; Matsue, H.; Kagami, T.

    2001-12-01

    The intensity of an ESR signal associated with oxygen vacancies in quartz (E 1' center and heat-treated E 1' center) are correlated with the radiometric age of their host rocks. Two natural processes are responsible for the production of oxygen vacancies (1) lattice damage along alpha recoil and alpha particle tracks and (2) randomly distributed ionization damage from energetic electrons (beta particles) and gamma photons. The aim of this paper was to determine whether the track damage process is dominant relative to the ionization processes. Heat-treated E 1' centers are considered a proxy measure of the oxygen vacancy concentration. In situ alpha irradiation of quartz was accomplished by neutron irradiation of lithium and boron-bearing quartz. We found that the oxygen vacancy population measured by ESR was a factor of 2 higher than estimated from calculations of the damage using Ziegler's TRIM software. Considering the uncertainties in absolute determinations of spin concentration from ESR signals, the agreement is very good and supports the theory that alpha particle damage is largely responsible for oxygen vacancy production during natural irradiation of quartz over intervals of hundreds of millions of years.

  15. Integral cross section measurements and product recoil velocity distributions of Xe(2+) + N2 hyperthermal charge-transfer collisions.

    PubMed

    Hause, Michael L; Prince, Benjamin D; Bemish, Raymond J

    2016-07-28

    Charge exchange from doubly charged rare gas cations to simple diatomics proceeds with a large cross section and results in populations of many vibrational and electronic product states. The charge exchange between Xe(2+) and N2, in particular, is known to create N2 (+) in both the A and B electronic states. In this work, we present integral charge exchange cross section measurements of the Xe(2+) + N2 reaction as well as axial recoil velocity distributions of the Xe(+) and N2 (+) product ions for collision energies between 0.3 and 100 eV in the center-of-mass (COM) frame. Total charge-exchange cross sections decrease from 70 Å(2) to about 40 Å(2) with increasing collision energy through this range. Analysis of the axial velocity distributions indicates that a Xe(2+) - N2 complex exists at low collision energies but is absent by 17.6 eV COM. Analysis of the axial velocity distributions reveals evidence for complexes with lifetimes comparable to the rotational period at low collision energies. The velocity distributions are consistent with quasi-resonant single charge transfer at high collision energies. PMID:27475363

  16. Dynamic measurement of the helium concentration of evolving tungsten nanostructures using Elastic Recoil Detection during plasma exposure

    NASA Astrophysics Data System (ADS)

    Woller, K. B.; Whyte, D. G.; Wright, G. M.

    2015-08-01

    Helium (He) concentration depth profiles of evolving tungsten (W) nanostructures have been measured for the first time using in situ Elastic Recoil Detection (ERD) throughout plasma irradiation. Exposures resulting in fuzzy and non-fuzzy surfaces were analyzed in order to illuminate the role of He during the development of these surface morphologies. ERD was performed on samples with surface temperatures from Ts = 530-1100 K and irradiated by He flux densities of ΓHe ∼ 1020-1022 m-2 s-1. He concentration profiles in samples that developed either non-fuzzy or fuzzy surfaces are uniformly shaped with concentrations of 1.5-7 at.%, which is presumed to be too low for pressure driven growth models. Therefore, surface morphology changes are not perpetuated by continuous bubble bursting deformation. Also, a threshold in He flux density above 1020 m-2 s-1 is suggested by using in situ ERD to monitor the depth profile evolution of the He-rich layer while changing the flux during exposure.

  17. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    DOE PAGESBeta

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Oliveira, C. A.B.; Nygren, D.

    2015-03-24

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase offers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at themore » 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.« less

  18. Characterization of the Oxidation State of 229 Th Recoils Implanted in MgF2 for the Search of the Low-lying 229 Th Isomeric State

    NASA Astrophysics Data System (ADS)

    Barker, Beau; Meyer, Edmund; Schacht, Mike; Collins, Lee; Wilkerson, Marianne; Zhao, Xinxin

    2016-05-01

    The low-lying (7.8 eV) isomeric state in 229 Th has the potential to become a nuclear frequency standard. 229 Th recoils from 233 U decays have been collected in MgF2 for use in the direct search of the transition. Of interest is the oxidation state of the implanted 229 Th atoms as this can have an influence on the decay mechanisms and photon emission rate. Too determine the oxidation state of the implanted 229 Th recoils we have employed laser induced florescence (LIF), and plan-wave pseudopotential DFT calculations to search for emission from thorium ions in oxidation states less than + 4. Our search focused on detecting emission from Th3+ ions. The DFT calculations predicted the Th3+ state to be the most likely to be present in the crystal after Th4+. We also calculated the band structure for the Th3+ doped MgF2 crystal. For LIF spectra a number of excitation wavelengths were employed, emission spectra in the visible to near-IR were recorded along with time-resolved emission spectra. We have found no evidence for Th3+ in the MgF2 plates. We also analyzed the detection limit of our apprentice and found that the minimum number of Th3+ atoms that we could detect is quite small compared to the number of implanted 229 Th recoils. The number of implanted 229 Th recoils was derived from a γ-ray spectrum by monitoring emission from the daughters of 228 Th. These were present in the MgF2 plates due to a 232 U impurity, which decays to 228 Th, in the source. LA-UR-16-20442.

  19. Synthesis of compounds labeled with phosphorus-32 using recoil atoms. III. Synthesis of O,O-dialkyldithiophosphates and O,O-dialkylthionephosphates

    SciTech Connect

    Makarov, A.M.; Genkina, G.K.; Mastryukova, T.A.

    1988-11-01

    Phosphorus-32-labeled O,O-dialkylthionephosphates having a low specific activity are used as tracers for the study of the mechanism of action of various pesticides. A method has been developed for obtaining O,O-dialkyldithiophosphates and O,O-dialkylthionephosphates labeled with phosphorus-32 without using a carrier. A scheme has been proposed for stabilizing recoil atoms of phosphorus-32 in the carbon disulfide-alkanol system.

  20. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Oliveira, C. A. B.; Nygren, D.

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase o_ers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at the 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.

  1. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    SciTech Connect

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Oliveira, C. A.B.; Nygren, D.

    2015-03-24

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase offers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at the 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.

  2. Gas-separation process

    DOEpatents

    Toy, Lora G.; Pinnau, Ingo; Baker, Richard W.

    1994-01-01

    A process for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material.

  3. Laser-Beam Separator

    NASA Technical Reports Server (NTRS)

    Mcdermid, I. S.

    1984-01-01

    Train of prisms and optical stop separate fundamental beam of laser from second and higher order harmonics of beam produced in certain crystals and by stimulated Raman scattering in gases and liquids.

  4. Particle separation by dielectrophoresis

    PubMed Central

    Gascoyne, Peter R. C.; Vykoukal, Jody

    2009-01-01

    The application of dielectrophoresis to particle discrimination, separation, and fractionation is reviewed, some advantages and disadvantages of currently available approaches are considered, and some caveats are noted. PMID:12210248

  5. Separation by solvent extraction

    DOEpatents

    Holt, Jr., Charles H.

    1976-04-06

    17. A process for separating fission product values from uranium and plutonium values contained in an aqueous solution, comprising adding an oxidizing agent to said solution to secure uranium and plutonium in their hexavalent state; contacting said aqueous solution with a substantially water-immiscible organic solvent while agitating and maintaining the temperature at from -1.degree. to -2.degree. C. until the major part of the water present is frozen; continuously separating a solid ice phase as it is formed; separating a remaining aqueous liquid phase containing fission product values and a solvent phase containing plutonium and uranium values from each other; melting at least the last obtained part of said ice phase and adding it to said separated liquid phase; and treating the resulting liquid with a new supply of solvent whereby it is practically depleted of uranium and plutonium.

  6. Separator for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Hoyt, H. W.; Pfluger, H. L.

    1968-01-01

    Separator compositions have been tested as components of three-plate silver-zinc oxide cells in a standard cycling test. Six materials meet imposed requirements, giving cycling performance superior to cellophane.

  7. Microsystem capillary separations

    DOEpatents

    TeGrotenhuis, Ward E [Kennewick, WA; Wegeng, Robert S [Richland, WA; Whyatt, Greg A [West Richland, WA; Stenkamp, Victoria S [Richland, WA; Gauglitz, Phillip A [Richland, WA

    2003-12-23

    Laminated, multiphase separators and contactors having wicking structures and gas flow channels are described. Some preferred embodiments are combined with microchannel heat exchange. Integrated systems containing these components are also part of the present invention.

  8. Reduction criterion for separability

    NASA Astrophysics Data System (ADS)

    Cerf, N. J.; Adami, C.; Gingrich, R. M.

    1999-08-01

    We introduce a separability criterion based on the positive map Γ:ρ-->(Tr ρ)-ρ, where ρ is a trace-class Hermitian operator. Any separable state is mapped by the tensor product of Γ and the identity into a non-negative operator, which provides a simple necessary condition for separability. This condition is generally not sufficient because it is vulnerable to the dilution of entanglement. In the special case where one subsystem is a quantum bit, Γ reduces to time reversal, so that this separability condition is equivalent to partial transposition. It is therefore also sufficient for 2×2 and 2×3 systems. Finally, a simple connection between this map for two qubits and complex conjugation in the ``magic'' basis [Phys. Rev. Lett. 78, 5022 (1997)] is displayed.

  9. Inorganic separator technology program

    NASA Technical Reports Server (NTRS)

    Smatko, J. S.; Weaver, R. D.; Kalhammer, F. R.

    1973-01-01

    Testing and failure analyses of silver zinc cells with largely inorganic separators were performed. The results showed that the wet stand and cycle life objective of the silver-zinc cell development program were essentially accomplished and led to recommendations for cell composition, design, and operation that should yield further improvement in wet and cycle life. A series of advanced inorganic materials was successfully developed and formulated into rigid and semiflexible separator samples. Suitable screening tests for evaluation of largely inorganic separators were selected and modified for application to the separator materials. The results showed that many of these formulations are potentially superior to previously used materials and permitted selection of three promising materials for further evaluation in silver-zinc cells.

  10. Kinematic separation of mixtures

    SciTech Connect

    Goldshtik, M.; Husain, H.S.; Hussain, F. )

    1992-06-15

    A phenomenon of spontaneous separation of components in an initially uniform fluid mixture is found experimentally. A qualitative explanation of the effect is proposed in terms of nonparallel streamlines in the medium.

  11. Booster separation motor

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The design, development, fabrication, testing, evaluation and flight qualification of the space shuttle booster separation motor is discussed. Delivery of flight hardware to support the research and development flights of the space shuttle is discussed.

  12. Molten salt electrolyte separator

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

  13. Monitored separation device

    NASA Technical Reports Server (NTRS)

    Jackson, George William (Inventor); Willson, Richard Coale (Inventor); Fox, George Edward (Inventor)

    2011-01-01

    A device for separating and purifying useful quantities of particles comprises: a. an anolyte reservoir connected to an anode, the anolyte reservoir containing an electrophoresis buffer; b. a catholyte reservoir connected to a cathode, the catholyte reservoir also containing the electrophoresis buffer; c. a power supply connected to the anode and to the cathode; d. a column having a first end inserted into the anolyte reservoir, a second end inserted into the catholyte reservoir, and containing a separation medium; e. a light source; f. a first optical fiber having a first fiber end inserted into the separation medium, and having a second fiber end connected to the light source; g. a photo detector; h. a second optical fiber having a third fiber end inserted into the separation medium, and having a fourth fiber end connected to the photo detector; and i. an ion-exchange membrane in the anolyte reservoir.

  14. Separable Arrowhead Microneedles

    PubMed Central

    Chu, Leonard Y.; Prausnitz, Mark R.

    2010-01-01

    Hypodermic needles cause pain and bleeding, produce biohazardous sharp waste and require trained personnel. To address these issues, we introduce separable arrowhead microneedles that rapidly and painlessly deliver drugs and vaccines to the skin. These needles are featured by micron-size sharp tips mounted on blunt shafts. Upon insertion in the skin, the sharp-tipped polymer arrowheads encapsulating drug separate from their metal shafts and remain embedded in the skin for subsequent dissolution and drug release. The blunt metal shafts can then be discarded. Due to rapid separation of the arrowhead tips from the shafts within seconds, administration using arrowhead microneedles can be carried out rapidly, while drug release kinetics can be independently controlled based on separable arrowhead formulation. Thus, drug and vaccine delivery using arrowhead microneedles are designed to offer a quick, convenient, safe and potentially self-administered method of drug delivery as an alternative to hypodermic needles. PMID:21047538

  15. Influence of recoil-implanted and thermally released iodine on I-SCC of Zircaloy-4 in PCI-conditions: chemical aspects

    NASA Astrophysics Data System (ADS)

    Fregonese, M.; Lefebvre, F.; Lemaignan, C.; Magnin, T.

    The pellet cladding interaction (PCI) phenomenon can lead to cladding failure by iodine induced stress corrosion cracking (I-SCC) during power transients. In these situations, the aggressive species is present as both, recoil implanted iodine in the cladding, and gaseous iodine thermally released in the gap. The aim of this work is to determine the respective roles of implanted and gaseous iodine in the SCC phenomenon. Two types of SCC tests have thus been performed. In the first one, zirconium and iodine recoil implanted tensile test specimens were used, with implantation profiles typical of those existing in a cladding under PCI conditions either on the dose or on the induced damage standpoint. These tests have shown that recoil implanted iodine has no chemical effect on the development of the SCC cracks. The second type of tests was performed on reference tensile test specimens at 350°C with iodine released either, in oxygen containing atmospheres or, at increasing temperatures. The iodine efficiency for cracks initiation was found to be stronger when no oxygen is available for repassivation and when iodine is released at higher temperature. These two conditions being fulfilled during PCI loading, since no gaseous oxygen is available in the fuel-to-clad gap, and since iodine is released through the pellet radical cracks at high temperature, thermally released iodine can be considered as the chemical active species responsible for SCC.

  16. SEPARATIONS BY ELECTRODIALYSIS

    DOEpatents

    Webb, W.H.; Vie, J.D.

    1962-06-12

    A method is given for separating cesium, cerium, zirconium, and uranyl ions frora a common solution by electrodialysis. An anion exchange membrane and a cation exchange membrane are placed on either side of the feed solution compartment; the former is in electrolytic contact with an anode and the latter with cathode. On acidification of the feed solution to a critical value of 0.5 N and passage of a current from the anode to the cathode, the desired separations tske place. (AEC)

  17. Hydrogen separation process

    DOEpatents

    Mundschau, Michael; Xie, Xiaobing; Evenson, IV, Carl; Grimmer, Paul; Wright, Harold

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  18. Measurement and model prediction of proton-recoil track length distributions in NTA film dosimeters for neutron energy spectroscopy and retrospective dose assessment

    NASA Astrophysics Data System (ADS)

    Taulbee, Timothy D.

    The goal of this research was to determine whether neutron dose reconstruction could be improved through re-analysis of historic NTA films worn by workers in the 1950 through the 1970s. To improve neutron dose reconstruction, the underlying neutron energy spectra is critical in determining the organ dose due to energy dependence of the dose conversion factor as well as the application of radiation weighting factors used in epidemiology and probability of causation calculations. Monte Carlo models of proton-recoil track length distributions were developed and benchmarked against measurement data for both NTA and Ilford films. These models, when applied to several NTA film dosimeter configurations, demonstrated that proton-recoil track length distributions change based upon incident neutron energy. The neutron energy spectra changes that result from the general work environment such as source term and shielding can subsequently be modeled to predict the response of the NTA film dosimeter. An Automatic NTA Film Analyzer has been designed and developed to determine if the difference in proton-recoil track length distributions predicted by the Monte Carlo models could be measured and whether these differences could be correlated to the incident neutron energy spectra. The design required the development of a 2D-3D hybrid track recognition algorithm for a three dimensional analysis of the NTA film in order to accurately determine the proton-recoil track length for subsequent neutron energy determination. NTA films exposed to a plutonium fluoride (PuF4) and polonium boron (PoB) calibration sources were measured and compared. The proton-recoil track lengths were used to reconstruct the incident neutron energy spectra demonstrating the functionality of the analyzer and that reconstruction of the neutron energy spectra from NTA films is feasible. These measurements were compared to the Monte Carlo models and confirmed the applicability of using models to determine the NTA

  19. 21 CFR 1301.12 - Separate registrations for separate locations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Separate registrations for separate locations. 1301.12 Section 1301.12 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE... Separate registrations for separate locations. (a) A separate registration is required for each...

  20. 21 CFR 1309.23 - Separate registration for separate locations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Separate registration for separate locations. 1309.23 Section 1309.23 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE REGISTRATION... Registration § 1309.23 Separate registration for separate locations. (a) A separate registration is...

  1. Hydrodynamic gas mixture separation

    SciTech Connect

    Stolyarov, A.A.

    1982-02-10

    The separation of gas mixtures is the basis of many chemical, petrochemical, and gas processes. Classical separation methods (absorption, adsorption, condensation, and freezing) require cumbersome and complex equipment. No adequate solution is provided by the cheapening and simplification of gas-processing apparatus and separation methods by hydration and diffusion. For example, an apparatus for extracting helium from natural gas by diffusion has a throughput of gas containing 0.45% helium of 117,000 m/sup 3//h and in the first stage has teflon membranes working at a pressure difference of 63.3x10/sup 5/ Pa of area 79,000 m/sup 2/, and the specific cost of the apparatus was 8500 dollars per m/sup 3//h of helium. Therefore, vigorous studies are being conducted on new ways of efficient separation of gas mixtures that are cheaper and simpler. Here we consider a novel method of physically essentially reversible separation of gas mixtures, which involves some features of single-phase supersonic flows.

  2. Organic Separation Test Results

    SciTech Connect

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2014-09-22

    Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations, could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.

  3. Nuclear astrophysics at the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Smith, M.S.

    1994-12-31

    The potential for understanding spectacular stellar explosions such as novae, supernovae, and X-ray bursts will be greatly enhanced by the availability of the low-energy, high-intensity, accelerated beams of proton-rich radioactive nuclei currently being developed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. These beams will be utilized in absolute cross section measurements of crucial (p, {gamma}) capture reactions in efforts to resolve the substantial qualitative uncertainties in current models of explosive stellar hydrogen burning outbursts. Details of the nuclear astrophysics research program with the unique HRIBF radioactive beams and a dedicated experimental endstation--centered on the Daresbury Recoil Separator--will be presented.

  4. First Direct Measurement of the 17F(p,γ)18Ne Cross Section

    NASA Astrophysics Data System (ADS)

    Chipps, K. A.; Bardayan, D. W.; Blackmon, J. C.; Chae, K. Y.; Greife, U.; Hatarik, R.; Kozub, R. L.; Matei, C.; Moazen, B. H.; Nesaraja, C. D.; Pain, S. D.; Peters, W. A.; Pittman, S. T.; Shriner, J. F.; Smith, M. S.

    2009-01-01

    The rate of the 17F(p,γ)18Ne reaction is of significant importance in astrophysical events like novae and x-ray bursts. A 3+ state in 18Ne predicted to dominate the rate was found at 599.8 keV using the 17F(p,p)17F reaction [1], but the resonance strength was unknown. For the first time, the 17F(p,γ)18Ne reaction has been measured directly with the Daresbury Recoil Separator, using a mixed beam of radioactive 17F and stable 17O from the HRIBF at ORNL. A γ width was found for the 599.8 keV resonance in 18Ne, and an upper limit on the direct capture S factor was determined at an intermediate energy of 800 keV.

  5. First Direct Measurement of the ^17F(p,γ)^18Ne Cross Section

    NASA Astrophysics Data System (ADS)

    Chipps, K. A.; Greife, U.; Bardayan, D. W.; Nesaraja, C. D.; Pain, S. D.; Smith, M. S.; Blackmon, J. C.; Chae, K. Y.; Moazen, B. H.; Pittman, S. T.; Hatarik, R.; Peters, W. A.; Kozub, R. L.; Shriner, J. F.; Matei, C.

    2008-10-01

    The rate of the ^17F(p,γ)^18Ne reaction is of significant importance in astrophysical events like novae and x-ray bursts. A 3^+ state in ^18Ne predicted to dominate the rate was found at 599.8 keV using the ^17F(p,p)^17F reaction [1], but the resonance strength was unknown. For the first time, the ^17F(p,γ)^18Ne reaction has been measured directly with the Daresbury Recoil Separator, using a mixed beam of radioactive ^17F and stable ^17O from the HRIBF at ORNL. Resonant proton capture cross sections, γ widths, and resonance strengths for the 599.8 keV and 1178 keV resonances will be reported, as well as an upper limit on the direct capture cross section at an intermediate energy. [1] Bardayan et al., Phys. Rev. C 62 055804 (2000)

  6. Mass Separation by Metamaterials

    PubMed Central

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-01-01

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices. PMID:26912419

  7. Membrane separation of hydrocarbons

    DOEpatents

    Chang, Y. Alice; Kulkarni, Sudhir S.; Funk, Edward W.

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture through a polymeric membrane. The membrane which is utilized to effect the separation comprises a polymer which is capable of maintaining its integrity in the presence of hydrocarbon compounds and which has been modified by being subjected to the action of a sulfonating agent. Sulfonating agents which may be employed will include fuming sulfuric acid, chlorosulfonic acid, sulfur trioxide, etc., the surface or bulk modified polymer will contain a degree of sulfonation ranging from about 15 to about 50%. The separation process is effected at temperatures ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psig.

  8. Variables Separation in Gravity

    NASA Astrophysics Data System (ADS)

    Obukhov, Valery

    2004-12-01

    To solve the problem of exact integration of the field equations or equations of motion of matter in curved spacetimes one can use a class of Riemannian metrics for which the simplest equations of motion can be integrated by the complete separation of variables method. Here, we consider the particular case of the class of Stäckel metrics. These metrics admit integration of the Hamilton Jacobi equation for test particle by the complete separation of variables method. It appears that the other important equations of motion (Klein Gordon Fock, Dirac,Weyl) in curved spacetimes can be integrated by complete separation of variables method only for the metrics, belonging to the class of Stäckel spaces.

  9. Flow separation detector

    NASA Technical Reports Server (NTRS)

    Mateer, G. C.; Brosh, A. (Inventor)

    1977-01-01

    An arrangement for sensing the fluid separation along a surface which employs a thermally insulating element having a continuous surface blending into and forming a part of the fluid flow surface is described. A sudden decrease in the temperature of the downstream sensor conductor and concomitant increase in the temperature of the upstream sensor conductor is an indication of the separation. When the temperatures are returned to the state achieved during normal flow, the indicator thereby indicates the normal, attached fluid flow. The conductors may be, for example, wires or thin films, and should be within the viscous sub-layer of the expected fluid flow. A single heater and several pairs of sensors and corresponding sensor conductors may be used to detect not only the fluid flow and the separation, but the direction of the fluid flow, over the fluid flow surface.

  10. Mass Separation by Metamaterials.

    PubMed

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-01-01

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices. PMID:26912419

  11. Mass Separation by Metamaterials

    NASA Astrophysics Data System (ADS)

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-02-01

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices.

  12. Inclusive production of H\\rightarrow b\\bar{b} plus a recoil for the LHC Run-II

    NASA Astrophysics Data System (ADS)

    Gutierrez, Nicolas

    2016-07-01

    This letter presents a study of the inclusive production of H→ b\\bar{b} plus a recoil, using simulated samples of pp collisions at \\sqrt{s}=14 \\text{TeV} for an integrated luminosity in the range between 30 \\text{fb}-1 and 3 \\text{ab}-1 . The case for experiments to include un-prescaled b-tag multijet triggers for this topology is made and the ideal jet thresholds are discussed. The sensitivity to the Standard Model Higgs boson with a transverse momentum of at least 200 GeV is evaluated with respect to a continuous background, dominated by multijet processes. The mass of b-jet-pairs is analysed, quoting sensitivity to cross-sections in the range from 1 to 2 pb, for 100 \\text{fb}-1 , covering the total Higgs-boson production cross-section of 1.8 pb. The trigger strategy presented in this letter is compared to triggers already in use, showing an increase on the signal efficiency for masses below 200 GeV and a performance comparable to a logical OR of all the currently available akin triggers for higher masses. The robustness of the expected sensitivity against systematic uncertainties is estimated by considering various typical sources, such as those on the fitting parameters of the continuous background, shape uncertainties affecting the signal acceptance and the background modelling. The accuracy of the Higgs-boson production cross-section measurements is also discussed, quoting sensitivity to deviations of 50% for 100 \\text{fb}-1 and 10% for 3 \\text{ab}-1 .

  13. Measurement of the sup 12 C( p ,. pi. sup 0 ) sup 13 N reaction by recoil detection

    SciTech Connect

    Homolka, J.; Schott, W.; Wagner, W.; Wilhelm, W. ); Saber, M.; Segel, R.E. ); Bent, R.D.; Fatyga, M.; Pollock, R.E. ); Kienle, P. ); Rehm, K.E. )

    1992-03-01

    Differential cross sections for the neutral pion production reaction {sup 12}C({ital p},{pi}{sup 0}){sup 13}N{sub g.s.} have been measured at 153.5, 166.1, 186.0, and 204.0 MeV bombarding energy using recoil detection. The shape of the angular distribution agrees well with that of the mirror reaction {sup 12}C({ital p},{pi}{sup +}){sup 13}C{sub g.s.}. Isospin invariance predicts for the ratio of the cross sections {sigma}({ital p},{pi}{sup +})/{sigma}({ital p},{pi}{sup 0})=2. At 153.5, 166.1, and 186.0, MeV, where ({ital p},{pi}{sup +}) cross sections have been reported previously by other groups at the same reduced pion momentum {eta}={ital p}{sub {pi}}/{ital m}{sub {pi}}{ital c}=0.34,0.55,0.78, the ratio of the total cross sections is 2.02{plus minus}0.14, 3.14{plus minus}0.12, and 2.12{plus minus}0.16, respectively. The ({ital p},{pi}{sup 0}) cross sections at 166 MeV is therefore 1.57{plus minus}0.06 times larger than expected. For {ital T}{sub {ital p}}{lt}160 MeV, the experimental cross sections are larger than predicted by a phase space and Coulomb barrier penetration calculation that fits the higher-energy data. Differential cross sections were also obtained for the {sup 12}C({ital p},{pi}{sup {minus}}){sup 13}O reaction, and upper limits set for differential cross sections for radiative capture to the ground state of {sup 13}N.

  14. Spiral Flow Separator

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1993-01-01

    Proposed liquid-separating device relies on centrifugal force in liquid/liquid or liquid/solid mixture in spiral path. Operates in continuous flow at relatively high rates. Spiral tubes joined in sequence, with outlet tubes connected to joints. Cross-sectional areas of successive spiral tubes decreases by cross-sectional areas of outlet tubes. Centrifugal force pushes denser particles or liquids to outer edge of spiral, where removed from flow. Principle exploited to separate solids from wastewater, oil from fresh or salt water, or contaminants from salt water before evaporation. Also used to extract such valuable materials as precious metals from slurries.

  15. Spiral fluid separator

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A. (Inventor)

    1993-01-01

    A fluid separator for separating particulate matter such as contaminates is provided which includes a series of spiral tubes of progressively decreasing cross sectional area connected in series. Each tube has an outlet on the outer curvature of the spiral. As fluid spirals down a tube, centrifugal force acts to force the heavier particulate matter to the outer wall of the tube, where it exits through the outlet. The remaining, and now cleaner, fluid reaches the next tube, which is smaller in cross sectional area, where the process is repeated. The fluid which comes out the final tube is diminished of particulate matter.

  16. SEPARATION OF FLUID MIXTURES

    DOEpatents

    Lipscomb, R.; Craig, A.; Labrow, S.; Dunn, J.F.

    1958-10-28

    An apparatus is presented for separating gaseous mixtures by selectively freezing a constituent of the mixture and subsequently separating the frozen gas. The gas mixture is passed through a cylinder fltted with a cooling jacket, causing one gas to freeze on the walls of the cylinder. A set of scraper blades are provided in the interior of the cyllnder, and as the blades oscillate, the frozen gas is scraped to the bottom of the cylinder. Means are provided for the frozen material to pass into a heating chamber where it is vaporized and the product gas collected.

  17. WET FLUORIDE SEPARATION METHOD

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1958-11-25

    The separation of U/sup 233/ from thorium, protactinium, and fission products present in neutron-irradiated thorium is accomplished by dissolving the irradiated materials in aqueous nitric acid, adding either a soluble fluoride, iodate, phosphate, or oxalate to precipltate the thorium, separating the precipltate from the solution, and then precipitating uranlum and protactinium by alkalizing the solution. The uranium and protactinium precipitate is removcd from the solution and dissolved in nitric acid. The uranyl nitrate may then be extracted from the acid solution by means of ether, and the protactinium recovered from the aqueous phase.

  18. SULFIDE METHOD PLUTONIUM SEPARATION

    DOEpatents

    Duffield, R.B.

    1958-08-12

    A process is described for the recovery of plutonium from neutron irradiated uranium solutions. Such a solution is first treated with a soluble sullide, causing precipitation of the plutoniunn and uraniunn values present, along with those impurities which form insoluble sulfides. The precipitate is then treated with a solution of carbonate ions, which will dissolve the uranium and plutonium present while the fission product sulfides remain unaffected. After separation from the residue, this solution may then be treated by any of the usual methods, such as formation of a lanthanum fluoride precipitate, to effect separation of plutoniunn from uranium.

  19. Gas separation membranes

    DOEpatents

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  20. Separators for electrochemical cells

    SciTech Connect

    Carlson, Steven Allen; Anakor, Ifenna Kingsley

    2014-11-11

    Provided are separators for use in an electrochemical cell comprising (a) an inorganic oxide and (b) an organic polymer, wherein the inorganic oxide comprises organic substituents. Preferably, the inorganic oxide comprises an hydrated aluminum oxide of the formula Al.sub.2O.sub.3.xH.sub.2O, wherein x is less than 1.0, and wherein the hydrated aluminum oxide comprises organic substituents, preferably comprising a reaction product of a multifunctional monomer and/or organic carbonate with an aluminum oxide, such as pseudo-boehmite and an aluminum oxide. Also provided are electrochemical cells comprising such separators.

  1. Separation membrane development

    SciTech Connect

    Lee, M.W.

    1998-08-01

    A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.

  2. Multistage Electrophoretic Separators

    NASA Technical Reports Server (NTRS)

    Thomas, Nathan; Doyle, John F.; Kurk, Andy; Vellinger, John C.; Todd, Paul

    2006-01-01

    A multistage electrophoresis apparatus has been invented for use in the separation of cells, protein molecules, and other particles and solutes in concentrated aqueous solutions and suspensions. The design exploits free electrophoresis but overcomes the deficiencies of prior free-electrophoretic separators by incorporating a combination of published advances in mathematical modeling of convection, sedimentation, electro-osmotic flow, and the sedimentation and aggregation of droplets. In comparison with other electrophoretic separators, these apparatuses are easier to use and are better suited to separation in relatively large quantities characterized in the art as preparative (in contradistinction to smaller quantities characterized in the art as analytical). In a multistage electrophoretic separator according to the invention, an applied vertical steady electric field draws the electrically charged particles of interest from within a cuvette to within a collection cavity that has been moved into position of the cuvette. There are multiple collection cavities arranged in a circle; each is aligned with the cuvette for a prescribed short time. The multistage, short-migration-path character of the invention solves, possibly for the first time, the fluid-instability problems associated with free electrophoresis. The figure shows a prototype multistage electrophoretic separator that includes four sample stations and five collection stages per sample. At each sample station, an aqueous solution or suspension containing charged species to be separated is loaded into a cuvette, which is machined into a top plate. The apparatus includes a lower plate, into which 20 collection cavities have been milled. Each cavity is filled with an electrophoresis buffer solution. For the collection of an electrophoretic fraction, the lower plate is rotated to move a designated collection cavity into alignment with the opening of the cuvette. An electric field is then applied between a non

  3. Triboelectrostatic separation of Slovakian coals

    SciTech Connect

    Soong, Y.; Link, T.A.; Schoffstall, M.R.; Champagne, K.J.; Sands, W.D.; Newby, T.L.; Schehl, R.R.

    1999-07-01

    The beneficiation of three types of Slovakian coal, namely Cigel, Handlova, and Novaky coal was studied using triboelectrostatic separation. Three different types of triboelectrostatic separators -- parallel plate, cylindrical and louvered plate separators - were used for this study. It was found that the quality of separation was dependent upon the type of coal and the configuration of the separator utilized.

  4. Gas-separation process

    DOEpatents

    Toy, L.G.; Pinnau, I.; Baker, R.W.

    1994-01-25

    A process is described for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material. 6 figures.

  5. Electrostatically Enhanced Vortex Separator

    NASA Technical Reports Server (NTRS)

    Collins, Earl R.

    1993-01-01

    Proposed device removes fine particles from high-pressure exhaust gas of chemical reactor. Negatively charged sectors on rotating disks in vortex generator attracts positively charged particles from main stream of exhaust gas. Electrostatic charge enhances particle-separating action of vortex. Gas without particles released to atmosphere.

  6. Separation, Separatism and Diversity.

    ERIC Educational Resources Information Center

    Hasegawa, Maya

    1991-01-01

    In the United States, once legal integration was achieved and the White male culture was challenged for real power, minority groups began to question the wisdom of cultural and social integration and celebrate diversity. An acceptable line between healthy separation and unhealthy separatism must be found. (MSE)

  7. Low gravity phase separator

    NASA Technical Reports Server (NTRS)

    Smoot, G. F.; Pope, W. L.; Smith, L. (Inventor)

    1977-01-01

    An apparatus is described for phase separating a gas-liquid mixture as might exist in a subcritical cryogenic helium vessel for cooling a superconducting magnet at low gravity such as in planetary orbit, permitting conservation of the liquid and extended service life of the superconducting magnet.

  8. METHOD OF SEPARATING NEPTUNIUM

    DOEpatents

    Seaborg, G.T.

    1961-10-24

    plutonium in an aqueous solution containing sulfate ions. The process consists of contacting the solution with an alkali metal bromate, digesting the resulting mixture at 15 to 25 deg C for a period of time not more than that required to oxidize the neptunium, adding lanthanum ions and fluoride ions, and separating the plutonium-containing precipitate thus formed from the supernatant solution. (AEC)

  9. Impedances of Tevatron separators

    SciTech Connect

    K. Y. Ng

    2003-05-28

    The impedances of the Tevatron separators are revisited and are found to be negligibly small in the few hundred MHz region, except for resonances at 22.5 MHz. The later are contributions from the power cables which may drive head-tail instabilities if the bunch is long enough.

  10. Separation of Powers.

    ERIC Educational Resources Information Center

    Bill of Rights in Action, 1987

    1987-01-01

    The dimensions of the separation of powers principle are explored through three lessons in the subject areas of U.S. history, U.S. government, and world history. In 1748, a French nobleman, Baron de Montesquieu, wrote a book called "The Spirit of the Laws," in which he argued that there could be no liberty when all government power was held by one…

  11. Hydrogen isotope separation

    DOEpatents

    Bartlit, John R.; Denton, William H.; Sherman, Robert H.

    1982-01-01

    A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

  12. Hydrogen isotope separation

    DOEpatents

    Bartlit, J.R.; Denton, W.H.; Sherman, R.H.

    Disclosed is a system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D/sub 2/, DT, T/sub 2/, and a tritium-free stream of HD for waste disposal.

  13. Lunar Soil Particle Separator

    NASA Technical Reports Server (NTRS)

    Berggren, Mark

    2010-01-01

    The Lunar Soil Particle Separator (LSPS) beneficiates soil prior to in situ resource utilization (ISRU). It can improve ISRU oxygen yield by boosting the concentration of ilmenite, or other iron-oxide-bearing materials found in lunar soils, which can substantially reduce hydrogen reduction reactor size, as well as drastically decreasing the power input required for soil heating

  14. Fathering After Marital Separation

    ERIC Educational Resources Information Center

    Keshet, Harry Finkelstein; Rosenthal, Kristine M.

    1978-01-01

    Deals with experiences of a group of separated or divorced fathers who chose to remain fully involved in the upbringing of their children. As they underwent transition from married parenthood to single fatherhood, these men learned that meeting demands of child care contributed to personal stability and growth. (Author)

  15. Stem Cell Separation Technologies

    PubMed Central

    Zhu, Beili; Murthy, Shashi K.

    2012-01-01

    Stem cell therapy and translational stem cell research require large-scale supply of stem cells at high purity and viability, thus leading to the development of stem cell separation technologies. This review covers key technologies being applied to stem cell separation, and also highlights exciting new approaches in this field. First, we will cover conventional separation methods that are commercially available and have been widely adapted. These methods include Fluorescence-activated cell sorting (FACS), Magnet-activated cell sorting (MACS), pre-plating, conditioned expansion media, density gradient centrifugation, field flow fractionation (FFF), and dielectrophoresis (DEP). Next, we will introduce emerging novel methods that are currently under development. These methods include improved aqueous two-phase system, systematic evolution of ligands by exponential enrichment (SELEX), and various types of microfluidic platforms. Finally, we will discuss the challenges and directions towards future breakthroughs for stem cell isolation. Advancing stem cell separation techniques will be essential for clinical and research applications of stem cells. PMID:23505616

  16. Separation and Attachment

    ERIC Educational Resources Information Center

    Honig, Alice Sterling

    2005-01-01

    Developing secure attachments with babies gives them a very special gift--the foundation for good infant mental health! In this article, the author discusses how to develop secure attachments with babies. Babies who are in the care of others during the day often suffer from separations from their special adults. Thirteen "tips" to ensure that…

  17. Polymide gas separation membranes

    DOEpatents

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz

    2004-09-14

    Soluble polyamic acid salt (PAAS) precursors comprised of tertiary and quaternary amines, ammonium cations, sulfonium cations, or phosphonium cations, are prepared and fabricated into membranes that are subsequently imidized and converted into rigid-rod polyimide articles, such as membranes with desirable gas separation properties. A method of enhancing solubility of PAAS polymers in alcohols is also disclosed.

  18. Laser beam color separator

    NASA Technical Reports Server (NTRS)

    Franke, J. M.

    1978-01-01

    Multiwavelength laser beam is separated into series of parallel color beams using prism and retroreflector. Setup is inexpensive and needs no critical adjustments. It can incorporate several prisms to increase dispersion and reduce overall size. Transmission grating can be used instead of prism with sacrifice in efficiency. Spatial filter can remove unwanted beams.

  19. Molten salt electrolyte separator

    DOEpatents

    Kaun, T.D.

    1996-07-09

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  20. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  1. Separation science and technology

    SciTech Connect

    Smith, B.F.; Sauer, N.; Chamberlin, R.M.; Gottesfeld, S.; Mattes, B.R.; Li, D.Q.; Swanson, B.

    1998-12-31

    The focus of this project is the demonstration and advancement of membrane-based separation and destruction technologies. The authors are exploring development of membrane systems for gas separations, selective metal ion recovery, and for separation or destruction of hazardous organics. They evaluated existing polymers and polymer formulations for recovery of toxic oxyanionic metals such as chromate and arsenate from selected waste streams and developed second-generation water-soluble polymeric systems for highly selective oxyanion removal and recovery. They optimized the simultaneous removal of radioactive strontium and cesium from aqueous solutions using the new nonhazardous separations agents, and developed recyclable, redox-active extractants that permitted recovery of the radioactive ions into a minimal waste volume. They produced hollow fibers and fabricated prototype hollow-fiber membrane modules for applications to gas separations and the liquid-liquid extraction and recovery of actinides and nuclear materials from process streams. They developed and fabricated cyclodextrin-based microporous materials that selectively absorb organic compounds in an aqueous environment; the resultant products gave pure water with organics at less than 0.05 parts per billion. They developed new, more efficient, membrane-based electrochemical reactors for use in organic destruction in process waste treatment. They addressed the need for advanced oxidation technologies based on molecular-level materials designs that selectively remove or destroy target species. They prepared and characterized surface-modified TiO{sub 2} thin films using different linking approaches to attach ruthenium photosensitizers, and they started the measurement of the photo-degradation products generated using surface modified TiO{sub 2} films in reaction with chlorophenol.

  2. DEVELOPMENT OF SUPERIOR ENTRAINMENT SEPARATORS

    EPA Science Inventory

    An experimental and theoretical program was carried out to develop an improved design for entrainment separators for scrubbers. The problems of separation efficiency, suspended solids deposition and plugging of the entrainment separator were of primary concern. A pilot scale entr...

  3. Microgravity Passive Phase Separator

    NASA Technical Reports Server (NTRS)

    Paragano, Matthew; Indoe, William; Darmetko, Jeffrey

    2012-01-01

    A new invention disclosure discusses a structure and process for separating gas from liquids in microgravity. The Microgravity Passive Phase Separator consists of two concentric, pleated, woven stainless- steel screens (25-micrometer nominal pore) with an axial inlet, and an annular outlet between both screens (see figure). Water enters at one end of the center screen at high velocity, eventually passing through the inner screen and out through the annular exit. As gas is introduced into the flow stream, the drag force exerted on the bubble pushes it downstream until flow stagnation or until it reaches an equilibrium point between the surface tension holding bubble to the screen and the drag force. Gas bubbles of a given size will form a front that is moved further down the length of the inner screen with increasing velocity. As more bubbles are added, the front location will remain fixed, but additional bubbles will move to the end of the unit, eventually coming to rest in the large cavity between the unit housing and the outer screen (storage area). Owing to the small size of the pores and the hydrophilic nature of the screen material, gas does not pass through the screen and is retained within the unit for emptying during ground processing. If debris is picked up on the screen, the area closest to the inlet will become clogged, so high-velocity flow will persist farther down the length of the center screen, pushing the bubble front further from the inlet of the inner screen. It is desired to keep the velocity high enough so that, for any bubble size, an area of clean screen exists between the bubbles and the debris. The primary benefits of this innovation are the lack of any need for additional power, strip gas, or location for venting the separated gas. As the unit contains no membrane, the transport fluid will not be lost due to evaporation in the process of gas separation. Separation is performed with relatively low pressure drop based on the large surface

  4. Separator for lithium batteries and lithium batteries including the separator

    SciTech Connect

    Foster, D.L.

    1989-03-14

    A multilayer separator is described for preventing the internal shorting of lithium batteries, the multilayer separator including porous membranes and an electroactive polymeric material contained within the separator layers wherein the polymer is one that will react with any lithium dendrites that could penetrate the separator thus preventing an internal short circuit of the cell.

  5. Laser isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  6. Photochemical isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1987-01-01

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  7. Composite battery separator

    NASA Technical Reports Server (NTRS)

    Edwards, Dean B. (Inventor); Rippel, Wally E. (Inventor)

    1987-01-01

    A composite battery separator comprises a support element (10) having an open pore structure such as a ribbed lattice and at least one liquid permeable sheet (20,22) to distribute the compressive force evenly onto the surfaces of the layers (24, 26) of negative active material and positive active material. In a non-flooded battery cell the compressible, porous material (18), such as a glass mat which absorbs the electrolyte, is compressed into a major portion of the pores or openings (16) in the support element. The unfilled pores in the material (18) form a gas diffusion path as the channels (41) formed between adjacent ribs in the lattice element (30,36). Facing two lattice elements (30, 31) with acute angled cross-ribs (34, 38) facing each other prevents the elements from interlocking and distorting a porous, separator (42) disposed between the lattice elements.

  8. Advances in electrophoretic separations

    NASA Technical Reports Server (NTRS)

    Snyder, R. S.; Rhodes, P. H.

    1984-01-01

    Free fluid electrophoresis is described using laboratory and space experiments combined with extensive mathematical modeling. Buoyancy driven convective flows due to thermal and concentration gradients are absent in the reduced gravity environment of space. The elimination of convection in weightlessness offers possible improvements in electrophoresis and other separation methods which occur in fluid media. The mathematical modeling suggests new ways of doing electrophoresis in space and explains various phenomena observed during past experiments. The extent to which ground based separation techniques are limited by gravity induced convection is investigated and space experiments are designed to evaluate specific characteristics of the fluid/particle environment. A series of experiments are proposed that require weightlessness and apparatus is developed that can be used to carry out these experiments in the near future.

  9. Photochemical isotope separation

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.

    1987-04-28

    A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.

  10. Advanced Separation Consortium

    SciTech Connect

    2006-01-01

    The Center for Advanced Separation Technologies (CAST) was formed in 2001 under the sponsorship of the US Department of Energy to conduct fundamental research in advanced separation and to develop technologies that can be used to produce coal and minerals in an efficient and environmentally acceptable manner. The CAST consortium consists of seven universities - Virginia Tech, West Virginia University, University of Kentucky, Montana Tech, University of Utah, University of Nevada-Reno, and New Mexico Tech. The consortium brings together a broad range of expertise to solve problems facing the US coal industry and the mining sector in general. At present, a total of 60 research projects are under way. The article outlines some of these, on topics including innovative dewatering technologies, removal of mercury and other impurities, and modelling of the flotation process. 1 photo.

  11. Separation of Climate Signals

    SciTech Connect

    Kamath, C; Fodor, I

    2002-11-13

    Understanding changes in global climate is a challenging scientific problem. Simulated and observed data include signals from many sources, and untangling their respective effects is difficult. In order to make meaningful comparisons between different models, and to understand human effects on global climate, we need to isolate the effects of different sources. Recent eruptions of the El Chichon and Mt. Pinatubo volcanoes coincided with large El Nino and Southern Oscillation (ENSO) events, which complicates the separation of their contributions on global temperatures. Current approaches for separating volcano and ENSO signals in global mean data involve parametric models and iterative techniques [3]. We investigate alternative methods based on principal component analysis (PCA) [2] and independent component analysis (ICA) [1]. Our goal is to determine if such techniques can automatically identify the signals corresponding to the different sources, without relying on parametric models.

  12. Hermes separation strategies

    NASA Astrophysics Data System (ADS)

    Cledassou, Rodolphe; Le Du, Michel; Laporte, Francois

    In the framework of Hermes studies, safety and rescue strategies are dimensionning elements for the mission. For this, during the different phases of the mission, the separation maneuvers are delicate and critical. More particularly, it is important to avoid a collision between the HSV (Hermes Space Vehicle) and Ariane 5, or between the HSP (Hermes Space Plane) and the HRM (Hermes Resource Module), and then to stabilize the plane at the correct attitude. The aim of this paper is to present the separation strategies that have been studied to insure the safety of the plane. That means that we will see in detail what must be done to compensate the roll, pitch and yaw rates and keep the correct attitude for each phase considered. Moreover, we will present the stabilization algorithms. All results will be obtained by using a 6 degrees of freedon (DOF) computation.

  13. Laser isotope separation

    DOEpatents

    Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

    1975-11-26

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  14. Acoustophoresis separation method

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S. (Inventor)

    1993-01-01

    A method and apparatus are provided for acoustophoresis, i.e., the separation of species via acoustic waves. An ultrasonic transducer applies an acoustic wave to one end of a sample container containing at least two species having different acoustic absorptions. The wave has a frequency tuned to or harmonized with the point of resonance of the species to be separated. This wave causes the species to be driven to an opposite end of the sample container for removal. A second ultrasonic transducer may be provided to apply a second, oppositely directed acoustic wave to prevent undesired streaming. In addition, a radio frequency tuned to the mechanical resonance and coupled with a magnetic field can serve to identify a species in a medium comprising species with similar absorption coefficients, whereby an acoustic wave having a frequency corresponding to this gyrational rate can then be applied to sweep the identified species to one end of the container for removal.

  15. Nylon separators. [thermal degradation

    NASA Technical Reports Server (NTRS)

    Lim, H. S.

    1977-01-01

    A nylon separator was placed in a flooded condition in K0H solution and heated at various high temperatures ranging from 60 C to 110 C. The weight decrease was measured and the molecular weight and decomposition product were analyzed to determine: (1) the effect of K0H concentration on the hydrolysis rate; (2) the effect of K0H concentration on nylon degradation; (3) the activation energy at different K0H concentrations; and (4) the effect of oxygen on nylon degradation. The nylon hydrolysis rate is shown to increase as K0H concentration is decreased 34%, giving a maximum rate at about 16%. Separator hydrolysis is confirmed by molecular weight decrease in age of the batteries, and the reaction of nylon with molecular oxygen is probably negligible, compared to hydrolysis. The extrapolated rate value from the high temperature experiment correlates well with experimental values at 35 degrees.

  16. Steam separator latch assembly

    DOEpatents

    Challberg, R.C.; Kobsa, I.R.

    1994-02-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof. 12 figures.

  17. Steam separator latch assembly

    DOEpatents

    Challberg, Roy C.; Kobsa, Irvin R.

    1994-01-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof.

  18. Developments for a measurement of the beta -- nu correlation and determination of the recoil charge-state distribution in 6He beta decay

    NASA Astrophysics Data System (ADS)

    Hong, Ran

    The beta-nu of a pure Gamow-Teller beta decay such as the 6He decay is sensitive to tensor-type weak currents predicted by theories beyond the Standard Model. An experiment is developed at University of Washington aiming at measuring the coefficient a_{beta-nu} of 6He decays to the 0.1% level and looking for its deviation from the Standard-Model prediction -1/3 using laser-trapped 6He atoms. The beta particle is detected by a scintillator and a multi-wire proportional chamber, and the recoil ion is detected by a microchannel plate with delay-line anodes for position readouts. a_{beta-nu} is extracted by fitting the measured time-of-flight spectrum of the recoil ions to templates generated by Monte Carlo simulations. This dissertation describes the developments of this experiment for the intermediate goal of a 1% level a_{beta-nu} measurement, such as the detector design, Monte Carlo simulation software, and data analysis frame work. Particularly, detector calibrations are described in detail. The analysis of a 2% level proof-of-principle run in October 2015 is presented as well. Shake-off probabilities for decays of trapped 6He atoms matter for the high-precision a_{beta-nu} measurement. The charge state distribution of recoil ions is obtained by analyzing their time-of-flight distribution using the same experimental setups for the a_{beta-nu} measurement. An analysis approach that is independent of the beta-nu correlation is developed. The measured upper limit of the double shake-off probability is 2x10. {-4} at 90% confidence level. This result is 100 times lower than the most recent calculation by Schulhoff and Drake. This disagreement is significant for the a_{beta-nu} measurement and needs to be addressed by improved atomic theory calculations.

  19. Effects of molecular rotation after ionization and prior to fragmentation on observed recoil-frame photoelectron angular distributions in the dissociative photoionization of nonlinear molecules

    NASA Astrophysics Data System (ADS)

    López-Domínguez, Jesús A.; Lucchese, Robert R.

    2016-03-01

    Experimental angle-resolved photoelectron-photoion coincidence experiments measure photoelectron angular distributions (PADs) in dissociative photoionization (DPI) in the reference frame provided by the momenta of the emitted heavy fragments. By extension of the nomenclature used with DPI of diatomic molecules, we refer to such a PAD as a recoil-frame PAD (RFPAD). When the dissociation is fast compared to molecular rotational and bending motions, the emission directions of the heavy fragments can be used to determine the orientation of the bonds that are broken in the DPI at the time of the ionization, which is known as the axial-recoil approximation (ARA). When the ARA is valid, the RFPADs correspond to molecular-frame photoelectron angular distributions (MFPADs) when the momenta of a sufficient number of the heavy fragments are determined. When only two fragments are formed, the experiment cannot measure the orientation of the fragments about the recoil axes so that the resulting measured PAD is an azimuthally averaged RFPAD (AA-RFPAD). In this study we consider how the breakdown of the ARA due to rotation will modify the observed RFPADs for DPI processes in nonlinear molecules for ionization by light of arbitrary polarization. This model is applied to the core C 1 s DPI of CH4, with the results compared to experimental measurements and previous theoretical calculations done within the ARA. The published results indicate that there is a breakdown in the ARA for two-fragment events where the heavy-fragment kinetic energy release was less than 9 eV. Including the breakdown of the ARA due to rotation in our calculations gives very good agreement with the experimental AA-RFPAD, leading to an estimate of upper bounds on the predissociative lifetimes as a function of the kinetic energy release of the intermediate ion states formed in the DPI process.

  20. URANIUM SEPARATION PROCESS

    DOEpatents

    Lyon, W.L.

    1962-04-17

    A method of separating uranium oxides from PuO/sub 2/, ThO/sub 2/, and other actinide oxides is described. The oxide mixture is suspended in a fused salt melt and a chlorinating agent such as chlorine gas or phosgene is sparged through the suspension. Uranium oxides are selectively chlorinated and dissolve in the melt, which may then be filtered to remove the unchlorinated oxides of the other actinides. (AEC)