Sample records for daresbury recoil separator

  1. Design of SECAR a recoil mass separator for astrophysical capture reactions with radioactive beams

    NASA Astrophysics Data System (ADS)

    Berg, G. P. A.; Couder, M.; Moran, M. T.; Smith, K.; Wiescher, M.; Schatz, H.; Hager, U.; Wrede, C.; Montes, F.; Perdikakis, G.; Wu, X.; Zeller, A.; Smith, M. S.; Bardayan, D. W.; Chipps, K. A.; Pain, S. D.; Blackmon, J.; Greife, U.; Rehm, K. E.; Janssens, R. V. F.

    2018-01-01

    A recoil mass separator SECAR has been designed for the purpose of studying low-energy (p , γ) and (α , γ) reactions in inverse kinematics with radioactive beams for masses up to about A = 65. Their reaction rates are of importance for our understanding of the energy production and nucleosynthesis during explosive hydrogen and helium burning. The radiative capture reactions take place in a windowless hydrogen or He gas target at the entrance of the separator, which consists of four Sections. The first Section selects the charge state of the recoils. The second and third Sections contain Wien Filters providing high mass resolving power to separate efficiently the intense beam from the few reaction products. In the following fourth Section, the reaction products are guided into a detector system capable of position, angle and time-of-flight measurements. In order to accept the complete kinematic cone of recoil particles including multiple scattering in the target in the center of mass energy range of 0.2 MeV to 3.0 MeV, the system must have a large polar angle acceptance of ± 25 mrad. This requires a careful minimization of higher order aberrations. The present system will be installed at the NSCL ReA3 accelerator and will be used with the much higher beam intensities of the FRIB facility when it becomes available.

  2. Design of SECAR a recoil mass separator for astrophysical capture reactions with radioactive beams

    DOE PAGES

    Berg, G. P. A.; Couder, M.; Moran, M. T.; ...

    2017-09-25

    A recoil mass separator SECAR has been designed for the purpose of studying low-energy (p,γ) and (α,γ) reactions in inverse kinematics with radioactive beams for masses up to about A = 65. Their reaction rates are of importance for our understanding of the energy production and nucleosynthesis during explosive hydrogen and helium burning. The radiative capture reactions take place in a windowless hydrogen or He gas target at the entrance of the separator, which consists of four Sections. The first Section selects the charge state of the recoils. The second and third Sections contain Wien Filters providing high mass resolvingmore » power to separate efficiently the intense beam from the few reaction products. In the following fourth Section, the reaction products are guided into a detector system capable of position, angle and time-of-flight measurements. In order to accept the complete kinematic cone of recoil particles including multiple scattering in the target in the center of mass energy range of 0.2 MeV to 3.0 MeV, the system must have a large polar angle acceptance of ± 25 mrad. This requires a careful minimization of higher order aberrations. Furthermore, the present system will be installed at the NSCL ReA3 accelerator and will be used with the much higher beam intensities of the FRIB facility when it becomes available.« less

  3. Recoil-α-fission and recoil-α-α-fission events observed in the reaction 48Ca + 243Am

    NASA Astrophysics Data System (ADS)

    Forsberg, U.; Rudolph, D.; Andersson, L.-L.; Di Nitto, A.; Düllmann, Ch. E.; Fahlander, C.; Gates, J. M.; Golubev, P.; Gregorich, K. E.; Gross, C. J.; Herzberg, R.-D.; Heßberger, F. P.; Khuyagbaatar, J.; Kratz, J. V.; Rykaczewski, K.; Sarmiento, L. G.; Schädel, M.; Yakushev, A.; Åberg, S.; Ackermann, D.; Block, M.; Brand, H.; Carlsson, B. G.; Cox, D.; Derkx, X.; Dobaczewski, J.; Eberhardt, K.; Even, J.; Gerl, J.; Jäger, E.; Kindler, B.; Krier, J.; Kojouharov, I.; Kurz, N.; Lommel, B.; Mistry, A.; Mokry, C.; Nazarewicz, W.; Nitsche, H.; Omtvedt, J. P.; Papadakis, P.; Ragnarsson, I.; Runke, J.; Schaffner, H.; Schausten, B.; Shi, Yue; Thörle-Pospiech, P.; Torres, T.; Traut, T.; Trautmann, N.; Türler, A.; Ward, A.; Ward, D. E.; Wiehl, N.

    2016-09-01

    Products of the fusion-evaporation reaction 48Ca + 243Am were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. Amongst the detected thirty correlated α-decay chains associated with the production of element Z = 115, two recoil-α-fission and five recoil- α- α-fission events were observed. The latter five chains are similar to four such events reported from experiments performed at the Dubna gas-filled separator, and three such events reported from an experiment at the Berkeley gas-filled separator. The four chains observed at the Dubna gas-filled separator were assigned to start from the 2n-evaporation channel 289115 due to the fact that these recoil- α- α-fission events were observed only at low excitation energies. Contrary to this interpretation, we suggest that some of these recoil- α- α-fission decay chains, as well as some of the recoil- α- α-fission and recoil-α-fission decay chains reported from Berkeley and in this article, start from the 3n-evaporation channel 288115.

  4. Synthesis of superheavy elements at the Dubna gas-filled recoil separator

    NASA Astrophysics Data System (ADS)

    Voinov, A. A.

    2016-12-01

    A survey of experiments at the Dubna gas-filled recoil separator (Laboratory of Nuclear Reactions, JINR, Dubna) aimed at the detection and study of the "island of stability" of superheavy nuclei produced in complete fusion reactions of 48Ca ions and 238U-249Cf target nuclei is given. The problems of synthesis of superheavy nuclei, methods for their identification, and investigation of their decay properties, including the results of recent experiments at other separators (SHIP, BGS, TASCA) and chemical setups, are discussed. The studied properties of the new nuclei, the isotopes of elements 112-118, as well as the properties of their decay products, indicate substantial growth of stability of the heaviest nuclei with increasing number of neutrons in the nucleus as the magic number of neutrons N = 184 is approached.

  5. Moving towards first science with the St. George recoil separator

    NASA Astrophysics Data System (ADS)

    Meisel, Zachary; Berg, G. P. A.; Gilardy, G.; Moran, M.; Schmitt, J.; Seymour, C.; Stech, E.; Couder, M.

    2015-10-01

    The St. George recoil mass separator has recently been coupled to the 5MV St. Ana accelerator at the University of Notre Dame's Nuclear Science Lab. St. George is a unique tool designed to measure radiative alpha-capture reactions for nuclei up to A = 40 in inverse kinematics in order to directly obtain cross sections required for astrophysical models of stellar and explosive helium burning. Commissioning of St. George is presently taking place with primary beams of hydrogen, helium, and oxygen. In this presentation, results will be shown for the measured energy acceptance of St. George, which compare favorably to COSY results when employing the calculated optimal ion-optical settings. Additionally, future plans will be discussed, such as assessing the angular acceptance of St. George and the re-integration of HiPPO at the separator target position to provide a dense, windowless helium gas-jet target. The material presented in this work is partially supported by the National Science Foundation Grant No. 1419765.

  6. Test measurement of 7Be(p,γ)8B with the recoil mass separator ERNA

    NASA Astrophysics Data System (ADS)

    Buompane, R.; De Cesare, N.; Di Leva, A.; D'Onofrio, A.; Gialanella, L.; Romano, M.; De Cesare, M.; Duarte, J. G.; Fülöp, Zs.; Morales-Gallegos, L.; Gyürky, Gy.; Gasques, L. R.; Marzaioli, F.; Palumbo, G.; Porzio, G.; Rapagnani, D.; Roca, V.; Rogalla, D.; Romoli, M.; Sabbarese, C.; Schürmann, D.; Terrasi, F.

    2018-06-01

    7Be(p,γ)8B has an important role in nuclear astrophysics, having a direct impact on both the high energy component of solar neutrinos and the 7Li abundance after the Big Bang Nucleosynthesis. All direct measurements providing useful information on this reaction so far used the same approach, i.e. a proton beam on a radioactive 7Be target. The overall precision and accuracy of the estimate of the astrophysical rate of this reaction are limited by the discrepancy between the results of existing measurements, possibly due to the complicated stoichiometry and beam induced deterioration of the radioactive targets. The ERNA (European Recoil separator for Nuclear Astrophysics) collaboration planned a new experiment in inverse kinematics exploiting the intense 7Be beam available at CIRCE (Center for Isotopic Research on Cultural and Environmental heritage), Caserta, Italy. The 8B recoils are produced in a windowless hydrogen gas target and detected after the efficient mass separation provided by ERNA. Here we present the commissioning of the experimental setup and a first cross section measurement at E_{cm}≈ 812 keV.

  7. Synthesis of superheavy elements at the Dubna gas-filled recoil separator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voinov, A. A., E-mail: voinov@jinr.ru; Collaboration: JINR

    2016-12-15

    A survey of experiments at the Dubna gas-filled recoil separator (Laboratory of Nuclear Reactions, JINR, Dubna) aimed at the detection and study of the “island of stability” of superheavy nuclei produced in complete fusion reactions of {sup 48}Ca ions and {sup 238}U–{sup 249}Cf target nuclei is given. The problems of synthesis of superheavy nuclei, methods for their identification, and investigation of their decay properties, including the results of recent experiments at other separators (SHIP, BGS, TASCA) and chemical setups, are discussed. The studied properties of the new nuclei, the isotopes of elements 112–118, as well as the properties of theirmore » decay products, indicate substantial growth of stability of the heaviest nuclei with increasing number of neutrons in the nucleus as the magic number of neutrons N = 184 is approached.« less

  8. Automation of experiments at Dubna Gas-Filled Recoil Separator

    NASA Astrophysics Data System (ADS)

    Tsyganov, Yu. S.

    2016-01-01

    Approaches to solving the problems of automation of basic processes in long-term experiments in heavy ion beams of the Dubna Gas-Filled Recoil Separator (DGFRS) facility are considered. Approaches in the field of spectrometry, both of rare α decays of superheavy nuclei and those for constructing monitoring systems to provide accident-free experiment running with highly radioactive targets and recording basic parameters of experiment, are described. The specific features of Double Side Silicon Strip Detectors (DSSSDs) are considered, special attention is paid to the role of boundary effects of neighboring p-n transitions in the "active correlations" method. An example of an off-beam experiment attempting to observe Zeno effect is briefly considered. Basic examples for nuclear reactions of complete fusion at 48Ca ion beams of U-400 cyclotron (LNR, JINR) are given. A scenario of development of the "active correlations" method for the case of very high intensity beams of heavy ions at promising accelerators of LNR, JINR, is presented.

  9. King's College London/SERC Daresbury Scanning X-ray Microscope

    NASA Astrophysics Data System (ADS)

    Burge, R. E.; Browne, M. T.; Buckley, C. J.; Cave, R.; Charalambous, P.; Duke, P. J.; Freake, A. J.; Hare, A.; Hills, C. P. B.; Kenney, J. M.; Kuriyama, T.; Lidiard, D.; MacDowell, A.; Michette, A. G.; Morrison, G. R.; Ogawa, K.; Rogoyski, A. M.

    1986-01-01

    The present status of the soft X-ray microscope is described and a short description is given, with likely development paths for the future, of the Daresbury synchrotron source, the monochromator, the high-resolution zone-plates, the scanning specimen stage, image recording and methods of image enhancement. It is considered that the instrumental developments needed for images at 10 nm resolution will take a further two or three years.

  10. Optimizing Higgs factories by modifying the recoil mass

    NASA Astrophysics Data System (ADS)

    Gu, Jiayin; Li, Ying-Ying

    2018-02-01

    It is difficult to measure the WW-fusion Higgs production process ({{{e}}}+{{{e}}}-\\to {{ν }}\\bar{{{ν }}}{{h}}) at a lepton collider with a center of mass energy of 240-250 GeV due to its small rate and the large background from the Higgsstrahlung process with an invisible Z ({{{e}}}+{{{e}}}-\\to {{hZ}},{{Z}}\\to {{ν }}\\bar{{{ν }}}). We construct a modified recoil mass variable, {m}{{recoil}}p, defined using only the 3-momentum of the reconstructed Higgs particle, and show that it can separate the WW-fusion and Higgsstrahlung events better than the original recoil mass variable m recoil. Consequently, the {m}{{recoil}}p variable can be used to improve the overall precisions of the extracted Higgs couplings, in both the conventional framework and the effective-field-theory framework. We also explore the application of the {m}{{recoil}}p variable in the inclusive cross section measurements of the Higgsstrahlung process, while a quantitive analysis is left for future studies. JG is Supported by an International Postdoctoral Exchange Fellowship Program between the Office of the National Administrative Committee of Postdoctoral Researchers of China (ONACPR) and DESY. YYL is Supported by Hong Kong PhD Fellowship (HKPFS) and the Collaborative Research Fund (CRF) (HUKST4/CRF/13G)

  11. Spontaneous lateral atomic recoil force close to a photonic topological material

    NASA Astrophysics Data System (ADS)

    Hassani Gangaraj, S. Ali; Hanson, George W.; Antezza, Mauro; Silveirinha, Mário G.

    2018-05-01

    We investigate the quantum recoil force acting on an excited atom close to the surface of a nonreciprocal photonic topological insulator (PTI). The main atomic emission channel is the unidirectional surface plasmon propagating at the PTI-vacuum interface, and we show that it enables a spontaneous lateral recoil force that scales at short distances as 1 /d4 , where d is the atom-PTI separation. Remarkably, the sign of the recoil force is polarization and orientation independent, and it occurs in a translation-invariant homogeneous system in thermal equilibrium. Surprisingly, the recoil force persists for very small values of the gyration pseudovector, which, for a biased plasma, corresponds to very low cyclotron frequencies. The ultrastrong recoil force is rooted in the quasihyperbolic dispersion of the surface plasmons. We consider both an initially excited atom and a continuous pump scenario, the latter giving rise to a steady lateral force whose direction can be changed at will by simply varying the orientation of the biasing magnetic field. Our predictions may be tested in experiments with cold Rydberg atoms and superconducting qubits.

  12. Measurement of 1323 and 1487 keV resonances in 15N(α ,γ )19F with the recoil separator ERNA

    NASA Astrophysics Data System (ADS)

    Di Leva, A.; Imbriani, G.; Buompane, R.; Gialanella, L.; Best, A.; Cristallo, S.; De Cesare, M.; D'Onofrio, A.; Duarte, J. G.; Gasques, L. R.; Morales-Gallegos, L.; Pezzella, A.; Porzio, G.; Rapagnani, D.; Roca, V.; Romoli, M.; Schürmann, D.; Straniero, O.; Terrasi, F.; ERNA Collaboration

    2017-04-01

    Background: The origin of fluorine is a widely debated issue. Nevertheless, the 15N(α ,γ )19F reaction is a common feature among the various production channels so far proposed. Its reaction rate at relevant temperatures is determined by a number of narrow resonances together with the direct capture and the tails of the two broad resonances at Ec .m .=1323 and 1487 keV. Purpose: The broad resonances widths, Γγ and Γα, have to be measured with adequate precision in order to better determine their contribution to the 15N(α ,γ )19F stellar reaction rate. Methods: Measurement through the direct detection of the 19F recoil ions with the European Recoil separator for Nuclear Astrophysics (ERNA) were performed. The reaction was initiated by a 15N beam impinging onto a 4He windowless gas target. The observed yield of the resonances at Ec .m .=1323 and 1487 keV is used to determine their widths in the α and γ channels. Results: We show that a direct measurement of the cross section of the 15N(α ,γ )19F reaction can be successfully obtained with the recoil separator ERNA, and the widths Γγ and Γα of the two broad resonances have been determined. While a fair agreement is found with earlier determination of the widths of the 1487 keV resonance, a significant difference is found for the 1323 keV resonance Γα. Conclusions: The revision of the widths of the two more relevant broad resonances in the 15N(α ,γ )19F reaction presented in this work is the first step toward a more firm determination of the reaction rate. At present, the residual uncertainty at the temperatures of the 19F stellar nucleosynthesis is dominated by the uncertainties affecting the direct capture component and the 364 keV narrow resonance, both so far investigated only through indirect experiments.

  13. Recoiling from a Kick in the Head-On Case

    NASA Technical Reports Server (NTRS)

    Choi, Dae-Il; Kelly, Bernard J.; Boggs, William D.; Baker, John G.; Centrella, Joan; Van Meter, James

    2007-01-01

    Recoil "kicks" induced by gravitational radiation are expected in the inspiral and merger of black holes. Recently the numerical relativity community has begun to measure the significant kicks found when both unequal masses and spins are considered. Because understanding the cause and magnitude of each component of this kick may be complicated in inspiral simulations, we consider these effects in the context of a simple test problem. We study recoils from collisions of binaries with initially head-on trajectories, starting with the simplest case of equal masses with no spin; adding spin and varying the mass ratio, both separately and jointly. We find spin-induced recoils to be significant even in head-on configurations. Additionally, it appears that the scaling of transverse kicks with spins is consistent with post-Newtonian (PN) theory, even though the kick is generated in the nonlinear merger interaction, where PN theory should not apply. This suggests that a simple heuristic description might be effective in the estimation of spin-kicks.

  14. Interpreting Recoil for Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Elsayed, Tarek A.

    2012-04-01

    The phenomenon of recoil is usually explained to students in the context of Newton's third law. Typically, when a projectile is fired, the recoil of the launch mechanism is interpreted as a reaction to the ejection of the smaller projectile. The same phenomenon is also interpreted in the context of the conservation of linear momentum, which is closely related to Newton's third law. Since the actual microscopic causes of recoil differ from one problem to another, some students (and teachers) may not be satisfied with understanding recoil through the principles of conservation of linear momentum and Newton's third law. For these students, the origin of the recoil motion should be presented in more depth.

  15. Controllability analysis and testing of a novel magnetorheological absorber for field gun recoil mitigation

    NASA Astrophysics Data System (ADS)

    Ouyang, Qing; Zheng, Jiajia; Li, Zhaochun; Hu, Ming; Wang, Jiong

    2016-11-01

    This paper aims to analyze the effects of combined working coils of magnetorheological (MR) absorber on the shock mitigation performance and verify the controllability of MR absorber as applied in the recoil system of a field gun. A physical scale model of the field gun is established and a long-stroke MR recoil absorber with four-stage parallel electromagnetic coils is designed to apply separate current to each stage and generate variable magnetic field distribution in the annular flow channel. Based on dynamic analysis and firing stability conditions of the field gun, ideal recoil force-stroke profiles of MR absorber at different limiting firing angles are obtained. The experimental studies are carried out on an impact test rig under different combinations of current loading: conventional unified control mode, separate control mode and timing control mode. The fullness degree index (FDI) is defined as the quantitative evaluation criterion of the controllability of MR absorber during the whole recoil motion. The results show that the force-stroke profile of the novel MR absorber can approach the ideal curve within 25 degrees of the limiting firing angle through judicious exploitation of the adjustable rheological properties of MR fluid.

  16. Detector Calibration to Spontaneous Fission for the Study of Superheavy Elements Using Gas-Filled Recoil Ion Separator

    NASA Astrophysics Data System (ADS)

    Takeyama, Mirei; Kaji, Daiya; Morimoto, Kouji; Wakabayashi, Yasuo; Tokanai, Fuyuki; Morita, Kosuke

    Detector response to spontaneous fission (SF) of heavy nuclides produced in the 206Pb(48Ca,2n)252No reaction was investigated using a gas-filled recoil ion separator (GARIS). Kinetic energy distributions of the SF originating from 252No were observed by tuning implantation depth of evaporation residue (ER) to the detector. The focal plane detector used in the GARIS experiments was well calibrated by comparing with the known total kinetic energy (TKE) of SF due to 252No. The correction value for the TKE calculation was deduced as a function of the implantation depth of 252No to the detector. Furthermore, we have investigated the results by comparing with those obtained by a computer simulation using the particle and heavy ion transport code system (PHITS).

  17. Lifetime measurements using the recoil distance method—achievements and perspectives

    NASA Astrophysics Data System (ADS)

    Krücken, R.

    2001-07-01

    The recoil distance method (RDM) for measuring pico-second nuclear level lifetimes and its use in nuclear structure studies is reviewed and perspectives for the future are presented. High precision measurements in the mass-130 region, studies of multi-phonon states in rare earth nuclei, the investigation of shape coexistence and the recently discovered phenomenon of "magnetic rotation" are reviewed. Prospects for lifetime measurements in exotic regions of nuclei such as the measurement of lifetimes in neutron rich nuclei populated via spontaneous and heavy-ion induced fission are discussed. Other prospects include the use of the RDM technique in conjunction with recoil separators. The relevance of these techniques for experiments with radioactive ion beams will be discussed.

  18. Time-of-flight direct recoil ion scattering spectrometer

    DOEpatents

    Krauss, A.R.; Gruen, D.M.; Lamich, G.J.

    1994-09-13

    A time-of-flight direct recoil and ion scattering spectrometer beam line is disclosed. The beam line includes an ion source which injects ions into pulse deflection regions and separated by a drift space. A final optics stage includes an ion lens and deflection plate assembly. The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions. 23 figs.

  19. The recoil transfer chamber—An interface to connect the physical preseparator TASCA with chemistry and counting setups

    NASA Astrophysics Data System (ADS)

    Even, J.; Ballof, J.; Brüchle, W.; Buda, R. A.; Düllmann, Ch. E.; Eberhardt, K.; Gorshkov, A.; Gromm, E.; Hild, D.; Jäger, E.; Khuyagbaatar, J.; Kratz, J. V.; Krier, J.; Liebe, D.; Mendel, M.; Nayak, D.; Opel, K.; Omtvedt, J. P.; Reichert, P.; Runke, J.; Sabelnikov, A.; Samadani, F.; Schädel, M.; Schausten, B.; Scheid, N.; Schimpf, E.; Semchenkov, A.; Thörle-Pospiech, P.; Toyoshima, A.; Türler, A.; Vicente Vilas, V.; Wiehl, N.; Wunderlich, T.; Yakushev, A.

    2011-05-01

    Performing experiments with transactinide elements demands highly sensitive detection methods due to the extremely low production rates (one -atom -at -a -time conditions). Preseparation with a physical recoil separator is a powerful method to significantly reduce the background in experiments with sufficiently long-lived isotopes ( t1/2≥0.5 s). In the last years, the new gas-filled TransActinide Separator and Chemistry Apparatus (TASCA) was installed and successfully commissioned at GSI. Here, we report on the design and performance of a Recoil Transfer Chamber (RTC) for TASCA—an interface to connect various chemistry and counting setups with the separator. Nuclear reaction products recoiling out of the target are separated according to their magnetic rigidity within TASCA, and the wanted products are guided to the focal plane of TASCA. In the focal plane, they pass a thin Mylar window that separates the ˜1 mbar atmosphere in TASCA from the RTC kept at ˜1 bar. The ions are stopped in the RTC and transported by a continuous gas flow from the RTC to the ancillary setup. In this paper, we report on measurements of the transportation yields under various conditions and on the first chemistry experiments at TASCA—an electrochemistry experiment with osmium and an ion exchange experiment with the transactinide element rutherfordium.

  20. Recoil polarization measurements

    NASA Astrophysics Data System (ADS)

    Brinkmann, Kai-Thomas

    2017-01-01

    Polarization observables in photon-induced meson production off nucleons have long been recognized to hold the promise of a detailed understanding of the excited states in the excitation spectrum of the nucleon. Photon beam and proton target polarization are routinely used at the ELSA facility in the Crystal Barrel/TAPS experiment and have yielded a wealth of data on contributing partial waves and nucleon resonances. A detector study on how to complement these ongoing studies by recoil polarization measurements that offer an orthogonal approach with otherwise unmeasurable observables in the field of non-strange meson photoproduction has been performed. Building on experience with silicon detectors operated in the photon beamline environment, first possible layouts of Si detector telescopes for recoil protons were developed. Various geometries, e.g. Archimedean spiral design of annular sensors, sector shapes and rectangular sensors were studied and have been used during test measurements. A prototype for the recoil polarimeter was built and subjected to performance tests in protonproton scattering at the COSY-accelerator in Jülich.

  1. Time-of-flight direct recoil ion scattering spectrometer

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Lamich, George J.

    1994-01-01

    A time of flight direct recoil and ion scattering spectrometer beam line (10). The beam line (10) includes an ion source (12) which injects ions into pulse deflection regions (14) and (16) separated by a drift space (18). A final optics stage includes an ion lens and deflection plate assembly (22). The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions (14) and (16).

  2. Interpreting Recoil for Undergraduate Students

    ERIC Educational Resources Information Center

    Elsayed, Tarek A.

    2012-01-01

    The phenomenon of recoil is usually explained to students in the context of Newton's third law. Typically, when a projectile is fired, the recoil of the launch mechanism is interpreted as a reaction to the ejection of the smaller projectile. The same phenomenon is also interpreted in the context of the conservation of linear momentum, which is…

  3. Nuclear recoil measurements with the ARIS experiment

    NASA Astrophysics Data System (ADS)

    Fan, Alden; ARIS Collaboration

    2017-01-01

    As direct dark matter searches become increasingly sensitive, it is important to fully characterize the target of the search. The goal of the Argon Recoil Ionization and Scintillation (ARIS) experiment is to quantify information related to the scintillation and ionization energy scale, quenching factor, ion recombination probability, and scintillation time response of nuclear recoils, as expected from WIMPs, in liquid argon. A time projection chamber with an active mass of 0.5 kg of liquid argon and capable of full 3D position reconstruction was exposed to an inverse kinematic neutron beam at the Institut de Physique Nucleaire d'Orsay in France. A scan of nuclear recoil energies was performed through coincidence with a set of neutron detectors to quantify properties of nuclear recoils in liquid argon at various electric fields. The difference in ionization and scintillation response with differing recoil track angle to the electric field was also studied. The preliminary results of the experiment will be presented.

  4. Anatomy of the binary black hole recoil: A multipolar analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnittman, Jeremy D.; Buonanno, Alessandra; Meter, James R. van

    2008-02-15

    We present a multipolar analysis of the gravitational recoil computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and nonzero, nonprecessing spins. We show that multipole moments up to and including l=4 are sufficient to accurately reproduce the final recoil velocity (within {approx_equal}2%) and that only a few dominant modes contribute significantly to it (within {approx_equal}5%). We describe how the relative amplitudes, and more importantly, the relative phases, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ringdown phases. We also find that the numerical resultsmore » can be reproduced by an 'effective Newtonian' formula for the multipole moments obtained by replacing the radial separation in the Newtonian formulas with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasinormal modes. Analytic formulas, obtained by expressing the multipole moments in terms of the fundamental quasinormal modes of a Kerr black hole, are able to explain the onset and amount of 'antikick' for each of the simulations. Lastly, we apply this multipolar analysis to help explain the remarkable difference between the amplitudes of planar and nonplanar kicks for equal-mass spinning black holes.« less

  5. Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy; Buonanno, Alessandra; vanMeter, James R.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.

    2007-01-01

    We present a multipolar analysis of the recoil velocity computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including 1 = 4 are sufficient to accurately reproduce the final recoil velocity (= 98%) and that only a few dominant modes contribute significantly to it (2 95%). We describe how the relative amplitude, and more importantly, the relative phase, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ring-down phases. We also find that the numerical results can be reproduced, to a high level of accuracy, by an effective Newtonian formula for the multipole moments obtained by replacing in the Newtonian formula the radial separation with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes. Analytic formulae, obtained by expressing the multipole moments in terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and amount of '.anti-kick" for each of the simulations. Lastly, we apply this multipolar analysis to understand the remarkable difference between the amplitudes of planar and non-planar kicks for equal-mass spinning black holes.

  6. Gas powered fluid gun with recoil mitigation

    DOEpatents

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  7. Gas powered fluid gun with recoil mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grubelich, Mark C.; Yonas, Gerold

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  8. The Structure of the Exotic N = Z Nucleus Germanium -64

    NASA Astrophysics Data System (ADS)

    Ennis, Patrick John

    This dissertation reports a series of measurements of an intermediate mass N = Z nucleus which constrain generalized models of nuclear structure. In particular, in _sp{32}{64} {Ge }_{32}, the triaxial and octupole shape degrees of freedom are investigated, along with the possible isospin impurity of wave functions. This neutron -deficient isotope was produced in the reaction ^{12}C(^{54}Fe, 2ngamma )^{64}Ge at a beam energy of 165 MeV. The production cross section for ^{64}Ge was measured to be 640 +/- 70 mubarns, which represents only ~0.15% of the total fusion cross section. "In-beam" gamma-ray spectroscopy of nuclei produced at the sub-millibarn level has not previously been achieved. Recoil -gamma-gamma correlations and recoil-gamma angular distributions were measured using the Daresbury Recoil Separator operated in conjunction with a large array of Compton suppressed gamma-ray detectors. Absolute cross section measurements and Monte Carlo studies were performed at Yale University's A.W. Wright Nuclear Structure Laboratory. A level scheme for ^{64 }Ge was constructed which contains 19 states. The nucleus appears to have a structure consistent with a gamma-soft shape and shows little evidence for the predicted susceptibility to octupole deformation. Evidence for forbidden E1 transitions was found which may be indicative of considerable isospin mixing. Future directions for the continued study of exotic nuclei are discussed in the context of the new gamma-ray detector arrays and recoil mass separators being constructed around the world. In particular, we have compared our data which were triggered by recoiling nuclei and two detected gamma rays, to events triggered by detecting three gamma-rays. After proper analysis, it was found that for the strongly produced ^ {64}Zn (sigma = 160 +/- 7 mbarns, ~ 40% of the total fusion cross section), the two triggering methods produced spectra of comparable quality. However, for the much weaker reaction channel leading to

  9. Direct measurement of resonance strengths in 34S(α ,γ )38Ar at astrophysically relevant energies using the DRAGON recoil separator

    NASA Astrophysics Data System (ADS)

    Connolly, D.; O'Malley, P. D.; Akers, C.; Chen, A. A.; Christian, G.; Davids, B.; Erikson, L.; Fallis, J.; Fulton, B. R.; Greife, U.; Hager, U.; Hutcheon, D. A.; Ilyushkin, S.; Laird, A. M.; Mahl, A.; Ruiz, C.

    2018-03-01

    Background: Nucleosynthesis of mid-mass elements is thought to occur under hot and explosive astrophysical conditions. Radiative α capture on 34S has been shown to impact nucleosynthesis in several such conditions, including core and shell oxygen burning, explosive oxygen burning, and type Ia supernovae. Purpose: Broad uncertainties exist in the literature for the strengths of three resonances within the astrophysically relevant energy range (ECM=1.94 -3.42 MeV at T =2.2 GK ). Further, there are several states in 38Ar within this energy range which have not been previously measured. This work aimed to remeasure the resonance strengths of states for which broad uncertainty existed as well as to measure the resonance strengths and energies of previously unmeasured states. Methods: Resonance strengths and energies of eight narrow resonances (five of which had not been previously studied) were measured in inverse kinematics with the DRAGON facility at TRIUMF by impinging an isotopically pure beam of 34S ions on a windowless 4He gas target. Prompt γ emissions of de-exciting 38Ar recoils were detected in an array of bismuth germanate scintillators in coincidence with recoil nuclei, which were separated from unreacted beam ions by an electromagnetic mass separator and detected by a time-of-flight system and a multianode ionization chamber. Results: The present measurements agree with previous results. Broad uncertainty in the resonance strength of the ECM=2709 keV resonance persists. Resonance strengths and energies were determined for five low-energy resonances which had not been studied previously, and their strengths were determined to be significantly weaker than those of previously measured resonances. Conclusions: The five previously unmeasured resonances were found not to contribute significantly to the total thermonuclear reaction rate. A median total thermonuclear reaction rate calculated using data from the present work along with existing literature values

  10. Inner-Shell Electron Recoil Discrimination in Xenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trask, Makayla; Lippincott, Hugh; Baxter, Dan

    2017-01-01

    \\bulletmore » $$$$ Dark matter searches using time projection chambers (TPCs) rely on the ability to distinguish between nuclear and electron interactions $$$$ Xenon TPCs are specifically searching for a low energy nuclear recoil ( < 30 keV ) signal $$$$ To do this, these interactions must be discernable from the electron recoil background« less

  11. Nuclear-Recoil Energy Scale in CDMS II Silicon Dark-Matter Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnese, R.; et al.

    The Cryogenic Dark Matter Search (CDMS II) experiment aims to detect dark matter particles that elastically scatter from nuclei in semiconductor detectors. The resulting nuclear-recoil energy depositions are detected by ionization and phonon sensors. Neutrons produce a similar spectrum of low-energy nuclear recoils in such detectors, while most other backgrounds produce electron recoils. The absolute energy scale for nuclear recoils is necessary to interpret results correctly. The energy scale can be determined in CDMS II silicon detectors using neutrons incident from a broad-spectrummore » $$^{252}$$Cf source, taking advantage of a prominent resonance in the neutron elastic scattering cross section of silicon at a recoil (neutron) energy near 20 (182) keV. Results indicate that the phonon collection efficiency for nuclear recoils is $$4.8^{+0.7}_{-0.9}$$% lower than for electron recoils of the same energy. Comparisons of the ionization signals for nuclear recoils to those measured previously by other groups at higher electric fields indicate that the ionization collection efficiency for CDMS II silicon detectors operated at $$\\sim$$4 V/cm is consistent with 100% for nuclear recoils below 20 keV and gradually decreases for larger energies to $$\\sim$$75% at 100 keV. The impact of these measurements on previously published CDMS II silicon results is small.« less

  12. Gas powered fluid gun with recoil mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grubelich, Mark C.; Yonas, Gerold

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided by a cavitating venturi that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated.

  13. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Fallows, Scott M.

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS~II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for "background-free'' operation of CDMS~II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space. These results, like any others, are subject to a variety of systematic effects that may alter their final interpretations. A primary focus of this dissertation will be difficulties in precisely calibrating the energy scale for nuclear recoil events like those from WIMPs. Nuclear recoils have suppressed ionization signals relative to electron recoils of the same recoil energy, so the response of the detectors is calibrated differently for each recoil type. The overall normalization and linearity of the energy scale for electron recoils in CDMS~II detectors is clearly established by peaks of known gamma energy in the ionization spectrum of calibration data from a 133Ba source. This electron-equivalent keVee) energy scale enables calibration of the total phonon signal (keVt) by enforcing unity

  14. Recoil-ion momentum distributions for transfer ionization in fast proton-He collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, H.T.; Reinhed, P.; Schuch, R.

    2005-07-15

    We present high-luminosity experimental investigations of the transfer ionization (TI:p+He{yields}H{sup 0}+He{sup 2+}+e{sup -}) process in collisions between fast protons and neutral helium atoms in the earlier inaccessibly high-energy range 1.4-5.8 MeV. The protons were stored in the heavy-ion storage and cooler ring CRYRING, where they intersected a narrow supersonic helium gas jet. We discuss the longitudinal recoil-ion momentum distribution, as measured by means of cold-target recoil-ion momentum spectroscopy and find that this distribution splits into two completely separated peaks at the high end of our energy range. These separate contributions are discussed in terms of the earlier proposed Thomas TImore » (TTI) and kinematic TI mechansims. The cross section of the TTI process is found to follow a {sigma}{proportional_to}v{sup -b} dependence with b=10.78{+-}0.27 in accordance with the expected v{sup -11} asymptotic behavior. Further, we discuss the probability for shake-off accompanying electron transfer and the relation of this TI mechanism to photodouble ionization. Finally the influence of the initial-state electron velocity distribution on the TTI process is discussed.« less

  15. Calculation of recoil implantation profiles using known range statistics

    NASA Technical Reports Server (NTRS)

    Fung, C. D.; Avila, R. E.

    1985-01-01

    A method has been developed to calculate the depth distribution of recoil atoms that result from ion implantation onto a substrate covered with a thin surface layer. The calculation includes first order recoils considering projected range straggles, and lateral straggles of recoils but neglecting lateral straggles of projectiles. Projectile range distributions at intermediate energies in the surface layer are deduced from look-up tables of known range statistics. A great saving of computing time and human effort is thus attained in comparison with existing procedures. The method is used to calculate recoil profiles of oxygen from implantation of arsenic through SiO2 and of nitrogen from implantation of phosphorus through Si3N4 films on silicon. The calculated recoil profiles are in good agreement with results obtained by other investigators using the Boltzmann transport equation and they also compare very well with available experimental results in the literature. The deviation between calculated and experimental results is discussed in relation to lateral straggles. From this discussion, a range of surface layer thickness for which the method applies is recommended.

  16. Submillisecond Elastic Recoil Reveals Molecular Origins of Fibrin Fiber Mechanics

    PubMed Central

    Hudson, Nathan E.; Ding, Feng; Bucay, Igal; O’Brien, E. Timothy; Gorkun, Oleg V.; Superfine, Richard; Lord, Susan T.; Dokholyan, Nikolay V.; Falvo, Michael R.

    2013-01-01

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin’s elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin’s mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. PMID:23790375

  17. Direct Measurement of Photon Recoil from a Levitated Nanoparticle

    NASA Astrophysics Data System (ADS)

    Jain, Vijay; Gieseler, Jan; Moritz, Clemens; Dellago, Christoph; Quidant, Romain; Novotny, Lukas

    2016-06-01

    The momentum transfer between a photon and an object defines a fundamental limit for the precision with which the object can be measured. If the object oscillates at a frequency Ω0 , this measurement backaction adds quanta ℏΩ0 to the oscillator's energy at a rate Γrecoil, a process called photon recoil heating, and sets bounds to coherence times in cavity optomechanical systems. Here, we use an optically levitated nanoparticle in ultrahigh vacuum to directly measure Γrecoil. By means of a phase-sensitive feedback scheme, we cool the harmonic motion of the nanoparticle from ambient to microkelvin temperatures and measure its reheating rate under the influence of the radiation field. The recoil heating rate is measured for different particle sizes and for different excitation powers, without the need for cavity optics or cryogenic environments. The measurements are in quantitative agreement with theoretical predictions and provide valuable guidance for the realization of quantum ground-state cooling protocols and the measurement of ultrasmall forces.

  18. Recoil Polarization for Δ Excitation in Pion Electroproduction

    NASA Astrophysics Data System (ADS)

    Kelly, J. J.; Roché, R. E.; Chai, Z.; Jones, M. K.; Gayou, O.; Sarty, A. J.; Frullani, S.; Aniol, K.; Beise, E. J.; Benmokhtar, F.; Bertozzi, W.; Boeglin, W. U.; Botto, T.; Brash, E. J.; Breuer, H.; Brown, E.; Burtin, E.; Calarco, J. R.; Cavata, C.; Chang, C. C.; Chant, N. S.; Chen, J.-P.; Coman, M.; Crovelli, D.; de Leo, R.; Dieterich, S.; Escoffier, S.; Fissum, K. G.; Garde, V.; Garibaldi, F.; Georgakopoulus, S.; Gilad, S.; Gilman, R.; Glashausser, C.; Hansen, J.-O.; Higinbotham, D. W.; Hotta, A.; Huber, G. M.; Ibrahim, H.; Iodice, M.; de Jager, C. W.; Jiang, X.; Klimenko, A.; Kozlov, A.; Kumbartzki, G.; Kuss, M.; Lagamba, L.; Laveissière, G.; Lerose, J. J.; Lindgren, R. A.; Liyanage, N.; Lolos, G. J.; Lourie, R. W.; Margaziotis, D. J.; Marie, F.; Markowitz, P.; McAleer, S.; Meekins, D.; Michaels, R.; Milbrath, B. D.; Mitchell, J.; Nappa, J.; Neyret, D.; Perdrisat, C. F.; Potokar, M.; Punjabi, V. A.; Pussieux, T.; Ransome, R. D.; Roos, P. G.; Rvachev, M.; Saha, A.; Širca, S.; Suleiman, R.; Strauch, S.; Templon, J. A.; Todor, L.; Ulmer, P. E.; Urciuoli, G. M.; Weinstein, L. B.; Wijesooriya, K.; Wojtsekhowski, B.; Zheng, X.; Zhu, L.

    2005-08-01

    We measured angular distributions of recoil-polarization response functions for neutral pion electroproduction for W=1.23 GeV at Q2=1.0 (GeV/c)2, obtaining 14 separated response functions plus 2 Rosenbluth combinations; of these, 12 have been observed for the first time. Dynamical models do not describe quantities governed by imaginary parts of interference products well, indicating the need for adjusting magnitudes and phases for nonresonant amplitudes. We performed a nearly model-independent multipole analysis and obtained values for Re (S1+/M1+)=-(6.84±0.15)% and Re (E1+/M1+)=-(2.91±0.19)% that are distinctly different from those from the traditional Legendre analysis based upon M1+ dominance and ℓπ≤1 truncation.

  19. Submillisecond elastic recoil reveals molecular origins of fibrin fiber mechanics.

    PubMed

    Hudson, Nathan E; Ding, Feng; Bucay, Igal; O'Brien, E Timothy; Gorkun, Oleg V; Superfine, Richard; Lord, Susan T; Dokholyan, Nikolay V; Falvo, Michael R

    2013-06-18

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin's elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin's mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Recoil hysteresis of Sm -Co/Fe exchange-spring bilayers

    NASA Astrophysics Data System (ADS)

    Kang, K.; Lewis, L. H.; Jiang, J. S.; Bader, S. D.

    2005-12-01

    The exchange-spring behavior found in Sm-Co (20nm)/Fe epitaxial bilayer films was investigated by analyzing major hysteresis and recoil curves as a function of anneal conditions. The hard layer consists of nanocrystalline intermetallic Sm-Co hexagonal phases (majority phase Sm2Co7 with SmCo3 and SmCo5). Recoil curves, obtained from the successive removal to remanence and reapplication of an increasingly negative field from the major demagnetization curve, reveal the reversible and irreversible components of the magnetization. The Sm-Co thickness was fixed at 20nm while the Fe thicknesses of 10 and 20nm were studied, with ex situ annealing carried out in evacuated, sealed silica tubes at different temperatures. The peak in the recoil curve area is associated with the coercivity of the hard phase. The development of the soft component magnetization is revealed by the departure of the recoil area from zero with application of a reverse field. These two features together confirm that annealing stabilizes the 10nm Fe bilayer sample against local magnetic reversal while it weakens the 20nm bilayer sample. Furthermore, in both its as-deposited and annealed states the Sm -Co/Fe bilayer of 10nm Fe thickness always displays a higher exchange field and smaller recoil loop areas than the bilayer of 20nm Fe thickness, consistent with a stronger exchange response and more reversible magnetization in the former.

  1. First measurement of surface nuclear recoil background for argon dark matter searches

    DOE PAGES

    Xu, Jingke; Stanford, Chris; Westerdale, Shawn; ...

    2017-09-19

    Here, one major background in direct searches for weakly interacting massive particles (WIMPs) comes from the deposition of radon progeny on detector surfaces. A dangerous surface background is the 206Pb nuclear recoils produced by 210Po decays. In this paper, we report the first characterization of this background in liquid argon. The scintillation signal of low energy Pb recoils is measured to be highly quenched in argon, and we estimate that the 103 keV 206Pb recoil background will produce a signal equal to that of a ~5 keV (30 keV) electron recoil ( 40Ar recoil). In addition, we demonstrate that thismore » dangerous 210Po surface background can be suppressed, using pulse shape discrimination methods, by a factor of ~100 or higher, which can make argon dark matter detectors near background-free and enhance their potential for discovery of medium- and high-mass WIMPs. Lastly, we also discuss the impact on other low background experiments.« less

  2. Signal yields of keV electronic recoils and their discrimination from nuclear recoils in liquid xenon

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Howlett, J.; Itay, R.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Mahlstedt, J.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morâ, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Ramírez García, D.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rupp, N.; Saldanha, R.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wittweg, C.; Wulf, J.; Ye, J.; Zhang, Y.; Zhu, T.; Xenon Collaboration

    2018-05-01

    We report on the response of liquid xenon to low energy electronic recoils below 15 keV from beta decays of tritium at drift fields of 92 V /cm , 154 V /cm and 366 V /cm using the XENON100 detector. A data-to-simulation fitting method based on Markov Chain Monte Carlo is used to extract the photon yields and recombination fluctuations from the experimental data. The photon yields measured at the two lower fields are in agreement with those from literature; additional measurements at a higher field of 366 V /cm are presented. The electronic and nuclear recoil discrimination as well as its dependence on the drift field and photon detection efficiency are investigated at these low energies. The results provide new measurements in the energy region of interest for dark matter searches using liquid xenon.

  3. Detailed Characterization of Nuclear Recoil Pulse Shape Discrimination in the Darkside-50 Direct Dark Matter Experiment

    NASA Astrophysics Data System (ADS)

    Ludert, Erin Edkins

    While evidence of non-baryonic dark matter has been accumulating for decades, its exact nature continues to remain a mystery. Weakly Interacting Massive Particles (WIMPs) are a well motivated candidate which appear in certain extensions of the Standard Model, independently of dark matter theory. If such particles exist, they should occasionally interact with particles of normal matter, producing a signal which may be detected. The DarkSide-50 direct dark matter experiment aims to detect the energy of recoiling argon atoms due to the elastic scattering of postulated WIMPs. In order to make such a discovery, a clear understanding of both the background and signal region is essential. This understanding requires a careful study of the detector's response to radioactive sources, which in turn requires such sources may be safely introduced into or near the detector volume and reliably removed. The CALibration Insertaion System (CALIS) was designed and built for this purpose in a joint effort between Fermi National Laboratory and the University of Hawaii. This work describes the design and testing of CALIS, its installation and commissioning at the Laboratori Nazionali del Gran Sasso (LNGS) and the multiple calibration campaigns which have successfully employed it. As nuclear recoils produced by WIMPs are indistinguishable from those produced by neutrons, radiogenic neutrons are both the most dangerous class of background and a vital calibration source for the study of the potential WIMP signal. Prior to the calibration of DarkSide-50 with radioactive neutron sources, the acceptance region was determined by the extrapolation of nuclear recoil data from a separate, dedicated experiment, ScENE, which measured the distribution of the pulse shape discrimination parameter, f 90, for nuclear recoils of known energies. This work demonstrates the validity of the extrapolation of ScENE values to DarkSide-50, by direct comparison of the f90 distribution of nuclear recoils from Sc

  4. Recoil implantation of boron into silicon by high energy silicon ions

    NASA Astrophysics Data System (ADS)

    Shao, L.; Lu, X. M.; Wang, X. M.; Rusakova, I.; Mount, G.; Zhang, L. H.; Liu, J. R.; Chu, Wei-Kan

    2001-07-01

    A recoil implantation technique for shallow junction formation was investigated. After e-gun deposition of a B layer onto Si, 10, 50, or 500 keV Si ion beams were used to introduce surface deposited B atoms into Si by knock-on. It has been shown that recoil implantation with high energy incident ions like 500 keV produces a shallower B profile than lower energy implantation such as 10 keV and 50 keV. This is due to the fact that recoil probability at a given angle is a strong function of the energy of the primary projectile. Boron diffusion was showed to be suppressed in high energy recoil implantation and such suppression became more obvious at higher Si doses. It was suggested that vacancy rich region due to defect imbalance plays the role to suppress B diffusion. Sub-100 nm junction can be formed by this technique with the advantage of high throughput of high energy implanters.

  5. Nuclear recoil effect on the binding energies in highly charged He-like ions

    NASA Astrophysics Data System (ADS)

    Malyshev, A. V.; Popov, R. V.; Shabaev, V. M.; Zubova, N. A.

    2018-04-01

    The most precise to-date evaluation of the nuclear recoil effect on the n = 1 and n = 2 energy levels of He-like ions is presented in the range Z = 12–100. The one-electron recoil contribution is calculated within the framework of the rigorous quantum electrodynamics approach to first order in the electron-to-nucleus mass ratio m/M and to all orders in the parameter αZ. The two-electron m/M recoil term is calculated employing the 1/Z perturbation theory. The recoil contribution of the zeroth order in 1/Z is evaluated to all orders in αZ, while the 1/Z term is calculated using the Breit approximation. The recoil corrections of the second and higher orders in 1/Z are taken into account within the nonrelativistic approach. The obtained results are compared with the previous evaluation of this effect (Artemyev et al 2005 Phys. Rev. A 71 062104).

  6. Recoil tritium reactions with cyclohexene and methylcyclohexene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fee, Darrell Clark

    1973-06-01

    A study has been made of the reactions of recoil tritium atoms with cyclohexene with methyl cyclohexene. Principle attention was given to unimolecular decomposition processes following T-for-H substitution.

  7. Detailed Characterization of Nuclear Recoil Pulse Shape Discrimination in the DarkSide-50 Direct Dark Matter Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edkins, Erin Elisabeth

    While evidence of non-baryonic dark matter has been accumulating for decades, its exact nature continues to remain a mystery. Weakly Interacting Massive Particles (WIMPs) are a well motivated candidate which appear in certain extensions of the Standard Model, independently of dark matter theory. If such particles exist, they should occasionally interact with particles of normal matter, producing a signal which may be detected. The DarkSide-50 direct dark matter experiment aims to detect the energy of recoiling argon atoms due to the elastic scattering of postulated WIMPs. In order to make such a discovery, a clear understanding of both the background and signal region is essential. This understanding requires a careful study of the detector's response to radioactive sources, which in turn requires such sources may be safely introduced into or near the detector volume and reliably removed. The CALibration Insertaion System (CALIS) was designed and built for this purpose in a j oint effort between Fermi National Laboratory and the University of Hawaii. This work describes the design and testing of CALIS, its installation and commissioning at the Laboratori Nazionali del Gran Sasso (LNGS) and the multiple calibration campaigns which have successfully employed it. As nuclear recoils produced by WIMPs are indistinguishable from those produced by neutrons, radiogenic neutrons are both the most dangerous class of background and a vital calibration source for the study of the potential WIMP signal. Prior to the calibration of DarkSide-50 with radioactive neutron sources, the acceptance region was determined by the extrapolation of nuclear recoil data from a separate, dedicated experiment, ScENE, which measured the distribution of the pulse shape discrimination parameter,more » $$f_{90}$$, for nuclear recoils of known energies. This work demonstrates the validity of the extrapolation of ScENE values to DarkSide-50, by direct comparison of the $$f_{90}$$ distributio n of

  8. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallows, Scott Mathew

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly allmore » remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for \\background- free" operation of CDMS II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space.« less

  9. New separators at the ATLAS facility

    NASA Astrophysics Data System (ADS)

    Back, Birger; Agfa Collaboration; Airis Team

    2015-10-01

    Two new separators are being built for the ATLAS facility. The Argonne Gas-Filled Analyzer (AGFA) is a novel design consisting of a single quadrupole and a multipole magnet that has both dipole and quadrupole field components. The design allows for placing Gammasphere at the target position while providing a solid angle of ~ 22 msr for capturing recoil products emitted at zero degrees. This arrangement enables studies of prompt gamma ray emission from weakly populated trans-fermium nuclei and those near the doubly-magic N = Z = 50 shell closure measured in coincidence with the recoils registered by AGFA. The Argonne In-flight Radioactive Ion Separator (AIRIS) is a magnetic chicane that will be installed immediately downstream of the last ATLAS cryostat and serve to separate radioactive ion beams generated in flight at an upstream high intensity production target. These beams will be further purified by a downstream RF sweeper and transported into a number of target stations including HELIOS, the Enge spectrograph, the FMA and Gammasphere. This talk will present the status of these two projects. This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

  10. Direct Measurement of Recoil Effects on Ar-Ar Standards

    NASA Astrophysics Data System (ADS)

    Hall, C. M.

    2011-12-01

    Advances in the precision possible with the Ar-Ar method using new techniques and equipment have led to considerable effort to improve the accuracy of the calibration of interlaboratory standards. However, ultimately the accuracy of the method relies on the measurement of 40Ar*/39ArK ratios on primary standards that have been calibrated with the K-Ar method and, in turn, on secondary standards that are calibrated against primary standards. It is usually assumed that an Ar-Ar total gas age is equivalent to a K-Ar age, but this assumes that there is zero loss of Ar due to recoil. Instead, traditional Ar-Ar total gas ages are in fact Ar retention ages [1] and not, strictly speaking, comparable to K-Ar ages. There have been efforts to estimate the importance of this effect on standards along with prescriptions for minimizing recoil effects [2,3], but these studies have relied on indirect evidence for 39Ar recoil. We report direct measurements of 39Ar recoil for a set of primary and secondary standards using the vacuum encapsulation techniques of [1] and show that significant adjustments to ages assigned to some standards may be needed. The fraction f of 39Ar lost due to recoil for primary standards MMhb-1 hornblende and GA-1550 biotite are 0.00367 and 0.00314 respectively. It is possible to modify the assumed K-Ar ages of these standards so that when using their measured Ar retention 40Ar*/39ArK ratios, one obtains a correct K-Ar age for an unknown, assuming that the unknown sample has zero loss of 39Ar due to recoil. Assuming a primary K-Ar age for MMhb-1 of 520.4 Ma, the modified age would be 522.1 Ma and assuming a primary K-Ar age for GA-1550 of 98.79 Ma [4] yields a modified effective age of 99.09 Ma. Measured f values for secondary standards FCT-3 biotite, FCT-2 sanidine and TCR-2 sanidine are 0.00932, 0.00182 and 0.00039 respectively. Using an R value for FCT-3 biotite relative to MMhb-1 [5], the K-Ar age for this standard would be 27.83 Ma and using R values

  11. Nonlinear gravitational recoil from the mergers of precessing black-hole binaries

    NASA Astrophysics Data System (ADS)

    Lousto, Carlos O.; Zlochower, Yosef

    2013-04-01

    We present results from an extensive study of 88 precessing, equal-mass black-hole binaries with large spins (83 with intrinsic spins |S→i/mi2| of 0.8 and 5 with intrinsic spins of 0.9), and use these data to model new nonlinear contributions to the gravitational recoil imparted to the merged black hole. We find a new effect, the cross kick, that enhances the recoil for partially aligned binaries beyond the hangup kick effect. This has the consequence of increasing the probabilities of recoils larger than 2000kms-1 by nearly a factor of 2, and consequently, of black holes getting ejected from galaxies, as well as the observation of large differential redshifts/blueshifts in the cores of recently merged galaxies.

  12. A recoil resilient lumen support, design, fabrication and mechanical evaluation

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Arash; Ali, Mohamed Sultan Mohamed; Takahata, Kenichi; Al-Sarawi, Said; Abbott, Derek

    2013-06-01

    Stents are artificial implants that provide scaffolding to a cavity inside the body. This paper presents a new luminal device for reducing the mechanical failure of stents due to recoil, which is one of the most important issues in stenting. This device, which we call a recoil-resilient ring (RRR), is utilized standalone or potentially integrated with existing stents to address the problem of recoil. The proposed structure aims to minimize the need for high-pressure overexpansion that can induce intra-luminal trauma and excess growth of vascular tissue causing later restenosis. The RRR is an overlapped open ring with asymmetrical sawtooth structures that are intermeshed. These teeth can slide on top of each other, while the ring is radially expanded, but interlock step-by-step so as to keep the final expanded state against compressional forces that normally cause recoil. The RRRs thus deliver balloon expandability and, when integrated with a stent, bring both radial rigidity and longitudinal flexibility to the stent. The design of the RRR is investigated through finite element analysis (FEA), and then the devices are fabricated using micro-electro-discharge machining of 200-µm-thick Nitinol sheet. The standalone RRR is balloon expandable in vitro by 5-7 Atm in pressure, which is well within the recommended in vivo pressure ranges for stenting procedures. FEA compression tests indicate 13× less reduction of the cross-sectional area of the RRR compared with a typical stainless steel stent. These results also show perfect elastic recovery of the RRR after removal of the pressure compared to the remaining plastic deformations of the stainless steel stent. On the other hand, experimental loading tests show that the fabricated RRRs have 2.8× radial stiffness compared to a two-column section of a commercial stent while exhibiting comparable elastic recovery. Furthermore, testing of in vitro expansion in a mock artery tube shows around 2.9% recoil, approximately 5-11

  13. Remote recoil: a new wave mean interaction effect

    NASA Astrophysics Data System (ADS)

    Bühler, Oliver; McIntyre, Michael E.

    2003-10-01

    We present a theoretical study of a fundamentally new wave mean or wave vortex interaction effect able to force persistent, cumulative change in mean flows in the absence of wave breaking or other kinds of wave dissipation. It is associated with the refraction of non-dissipating waves by inhomogeneous mean (vortical) flows. The effect is studied in detail in the simplest relevant model, the two-dimensional compressible flow equations with a generic polytropic equation of state. This includes the usual shallow-water equations as a special case. The refraction of a narrow, slowly varying wavetrain of small-amplitude gravity or sound waves obliquely incident on a single weak (low Froude or Mach number) vortex is studied in detail. It is shown that, concomitant with the changes in the waves' pseudomomentum due to the refraction, there is an equal and opposite recoil force that is felt, in effect, by the vortex core. This effective force is called a ‘remote recoil’ to stress that there is no need for the vortex core and wavetrain to overlap in physical space. There is an accompanying ‘far-field recoil’ that is still more remote, as in classical vortex-impulse problems. The remote-recoil effects are studied perturbatively using the wave amplitude and vortex weakness as small parameters. The nature of the remote recoil is demonstrated in various set-ups with wavetrains of finite or infinite length. The effective recoil force {bm R}_V on the vortex core is given by an expression resembling the classical Magnus force felt by moving cylinders with circulation. In the case of wavetrains of infinite length, an explicit formula for the scattering angle theta_* of waves passing a vortex at a distance is derived correct to second order in Froude or Mach number. To this order {bm R}_V {~} theta_*. The formula is cross-checked against numerical integrations of the ray-tracing equations. This work is part of an ongoing study of internal-gravity-wave dynamics in the

  14. Low momentum recoil detectors in CLAS12 at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Charles, Gabriel; CLAS Collaboration Collaboration

    2017-01-01

    Part of the experimental program in Hall B of the Jefferson Lab is dedicated to studying nucleon structure using DIS on nuclei and detecting low-momentum recoil particles in coincidence with the scattered electron. For this purpose, specially designed central detectors are required in place of the inner tracker of CLAS12 to detect particles with momenta below 100 MeV/c. We will present the status of the BONuS12 RTPC detector that will take data within the next 2 years. We will detail the main improvements made from the previous BONuS RTPC. In a second part, we will discuss another recoil experiment, called ALERT, that has been proposed to run in Hall B. The constraints being different, the recoil detector is based on a drift chamber and an array of scintillators. We will present the main differences between the two detectors and summarize the R&D performed to develop the ALERT detector.

  15. Low energy nuclear recoils study in noble liquids for low-mass WIMPs

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Mei, Dongming

    2014-03-01

    Detector response to low-energy nuclear recoils is critical to the detection of low-mass dark matter particles-WIMPs (Weakly interacting massive particles). Although the detector response to the processes of low-energy nuclear recoils is subtle and direct experimental calibration is rather difficult, many studies have been performed for noble liquids, NEST is a good example. However, the response of low-energy nuclear recoils, as a critical issue, needs more experimental data, in particular, with presence of electric field. We present a new design using time of flight to calibrate the large-volume xenon detector, such as LUX-Zeplin (LZ) and Xenon1T, energy scale for low-energy nuclear recoils. The calculation and physics models will be discussed based on the available data to predict the performance of the calibration device and set up criteria for the design of the device. A small test bench is built to verify the concepts at The University of South Dakota. This work is supported by DOE grant DE-FG02-10ER46709 and the state of South Dakota.

  16. A supersonic jet target for the cross section measurement of the 12C(α, γ)16O reaction with the recoil mass separator ERNA

    NASA Astrophysics Data System (ADS)

    Rapagnani, D.; Buompane, R.; Di Leva, A.; Gialanella, L.; Busso, M.; De Cesare, M.; De Stefano, G.; Duarte, J. G.; Gasques, L. R.; Morales Gallegos, L.; Palmerini, S.; Romoli, M.; Tufariello, F.

    2017-09-01

    12C(α, γ)16O cross section plays a key-role in the stellar evolution and nucleosynthesis of massive stars. Hence, it must be determined with the precision of about 10% at the relevant Gamow energy of 300 keV. The ERNA (European Recoil mass separator for Nuclear Astrophysics) collaboration measured, for the first time, the total cross section of 12C(α, γ)16O by means of the direct detection of the 16O ions produced in the reaction down to an energy of Ecm = 1.9 MeV. To extend the measurement at lower energy, it is necessary to limit the extension of the He gas target. This can be achieved using a supersonic jet, where the oblique shock waves and expansion fans formed at its boundaries confine the gas, which can be efficiently collected using a catcher. A test version of such a system has been designed, constructed and experimentally characterized as a bench mark for a full numerical simulation using FV (Finite Volume) methods. The results of the commissioning of the jet test version and the design of the new system that will be used in combination with ERNA are presented and discussed.

  17. Some concepts of the advanced mass spectrometry at the COMBAS magnetic separator of nuclear reaction products

    NASA Astrophysics Data System (ADS)

    Artukh, A. G.; Tarantin, N. I.

    Proposed is an in-flight measurement method of recoil nuclei masses with the help of a Penning trap located behind the COMBAS magnetic separator for nuclear reaction products. The method is based on the following operations: (i) Accepting the recoil nuclear reaction products by the magnetic separator and decreasing their kinetic energy by degraders. (ii) In-flight transportation of the retarded nuclei into the magnetic field of the Penning trap's solenoid and transforming their remaining longitudinal momentum into orbital rotation by the fringing magnetic field of the solenoid. (iii) Cooling the orbital rotation of the ions by the high-frequency azimuthal electric field of the Penning trap's electric hyperboloid.

  18. Inelastic frontier: Discovering dark matter at high recoil energy

    DOE PAGES

    Bramante, Joseph; Fox, Patrick J.; Kribs, Graham D.; ...

    2016-12-27

    There exist well-motivated models of particle dark matter which predominantly scatter inelastically off nuclei in direct detection experiments. This inelastic transition causes the dark matter to upscatter in terrestrial experiments into an excited state up to 550 keV heavier than the dark matter itself. An inelastic transition of this size is highly suppressed by both kinematics and nuclear form factors. In this paper, we extend previous studies of inelastic dark matter to determine the present bounds on the scattering cross section and the prospects for improvements in sensitivity. Three scenarios provide illustrative examples: nearly pure Higgsino supersymmetric dark matter, magnetic inelasticmore » dark matter, and inelastic models with dark photon exchange. We determine the elastic scattering rate (through loop diagrams involving the heavy state) as well as verify that exothermic transitions are negligible (in the parameter space we consider). Presently, the strongest bounds on the cross section are from xenon at LUX-PandaX (when the mass splitting δ≲160 keV), iodine at PICO (when 160≲δ≲300 keV), and tungsten at CRESST (when δ≳300 keV). Amusingly, once δ≳200 keV, weak scale (and larger) dark matter–nucleon scattering cross sections are allowed. The relative competitiveness of these diverse experiments is governed by the upper bound on the recoil energies employed by each experiment, as well as strong sensitivity to the mass of the heaviest element in the detector. Several implications, including sizable recoil energy-dependent annual modulation and improvements for future experiments, are discussed. We show that the xenon experiments can improve on the PICO results, if they were to analyze their existing data over a larger range of recoil energies, i.e., 20–500 keV Intriguingly, CRESST has reported several events in the recoil energy range 45–100 keV that, if interpreted as dark matter scattering, is compatible with δ~200 keV and an

  19. Passive mechanism of pitch recoil in flapping insect wings.

    PubMed

    Ishihara, D; Horie, T

    2016-12-20

    The high torsional flexibility of insect wings allows for elastic recoil after the rotation of the wing during stroke reversal. However, the underlying mechanism of this recoil remains unclear because of the dynamic process of transitioning from the wing rotation during stroke reversal to the maintenance of a high angle of attack during the middle of each half-stroke, when the inertial, elastic, and aerodynamic effects all have a significant impact. Therefore, the interaction between the flapping wing and the surrounding air was directly simulated by simultaneously solving the incompressible Navier-Stokes equations, the equation of motion for an elastic body, and the fluid-structure interface conditions using the three-dimensional finite element method. This direct numerical simulation controlling the aerodynamic effect revealed that the recoil is the residual of the free pitch vibration induced by the flapping acceleration during stroke reversal in the transient response very close to critical damping due to the dynamic pressure resistance of the surrounding air. This understanding will enable the control of the leading-edge vortex and lift generation, the reduction of the work performed by flapping wings, and the interpretation of the underlying necessity for the kinematic characteristics of the flapping motion.

  20. A RUNAWAY BLACK HOLE IN COSMOS: GRAVITATIONAL WAVE OR SLINGSHOT RECOIL?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Civano, F.; Elvis, M.; Lanzuisi, G.

    2010-07-01

    We present a detailed study of a peculiar source detected in the COSMOS survey at z = 0.359. Source CXOC J100043.1+020637, also known as CID-42, has two compact optical sources embedded in the same galaxy. The distance between the two, measured in the HST/ACS image, is 0.''495 {+-} 0.''005 that, at the redshift of the source, corresponds to a projected separation of 2.46 {+-} 0.02 kpc. A large ({approx}1200 km s{sup -1}) velocity offset between the narrow and broad components of H{beta} has been measured in three different optical spectra from the VLT/VIMOS and Magellan/IMACS instruments. CID-42 is also themore » only X-ray source in COSMOS, having in its X-ray spectra a strong redshifted broad absorption iron line and an iron emission line, drawing an inverted P-Cygni profile. The Chandra and XMM-Newton data show that the absorption line is variable in energy by {Delta}E = 500 eV over four years and that the absorber has to be highly ionized in order not to leave a signature in the soft X-ray spectrum. That these features-the morphology, the velocity offset, and the inverted P-Cygni profile-occur in the same source is unlikely to be a coincidence. We envisage two possible explanations, both exceptional, for this system: (1) a gravitational wave (GW) recoiling black hole (BH), caught 1-10 Myr after merging; or (2) a Type 1/Type 2 system in the same galaxy where the Type 1 is recoiling due to the slingshot effect produced by a triple BH system. The first possibility gives us a candidate GW recoiling BH with both spectroscopic and imaging signatures. In the second case, the X-ray absorption line can be explained as a BAL-like outflow from the foreground nucleus (a Type 2 AGN) at the rearer one (a Type 1 AGN), which illuminates the otherwise undetectable wind, giving us the first opportunity to show that fast winds are present in obscured active galactic nuclei (AGNs), and possibly universal in AGNs.« less

  1. A study of intrinsic statistical variation for low-energy nuclear recoils in liquid xenon detector for dark matter searches

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Wei, Wenzhao; Mei, Dongming; Cubed Collaboration

    2015-10-01

    Noble liquid xenon experiments, such as XENON100, LUX, XENON 1-Ton, and LZ are large dark matter experiments directly searches for weakly interacting massive particles (WIMPs). One of the most important features is to discriminate nuclear recoils from electronic recoils. Detector response is generally calibrated with different radioactive sources including 83mKr, tritiated methane, 241AmBe, 252Cf, and DD-neutrons. The electronic recoil and nuclear recoil bands have been determined by these calibrations. However, the width of nuclear recoil band needs to be fully understood. We derive a theoretical model to understand the correlation of the width of nuclear recoil band and intrinsic statistical variation. In addition, we conduct experiments to validate the theoretical model. In this paper, we present the study of intrinsic statistical variation contributing to the width of nuclear recoil band. DE-FG02-10ER46709 and the state of South Dakota.

  2. Black Hole Mergers and Recoils in Low-Mass Galaxies

    NASA Astrophysics Data System (ADS)

    Blecha, Laura; Kelley, Luke; Koss, Michael; Satyapal, Shobita

    2018-01-01

    Mergers between massive black holes (BHs) in the intermediate-mass range are one of the most promising sources of gravitational waves (GWs) detectable with LISA. These highly energetic GW events could be observed out to very high redshift, in the epoch where massive BH seeds are thought to form. Despite recent progress, however, much is still not known about the low-mass BH population even in the local Universe. The rates of BH binary formation, inspiral, and merger are also highly uncertain across the BH mass scale. To address these pressing issues in advance of LISA, cosmological hydrodynamics simulations and semi-analytic modeling are being used to model the formation and evolution of BH binaries, and the GW signals they produce. Efforts are also underway to understand the electromagnetic (EM) signatures of the BH binary population. These have proven largely elusive thus far, but an increasing population of BH pairs has been found, and advances in the coming years will provide important comparisons for models of GW sources. Moreover, asymmetry in the GW emission from BH mergers imparts a recoil kick to the merged BH, which in extreme cases can eject the BH from its host galaxy. This creates additional uncertainty in the BH merger rate, but the remnant recoiling BH could be observed as an offset quasar. Identifications of such objects would provide another EM signature of BH mergers that would help pave the way for LISA. We will review model predictions of the BH inspiral and merger rate across the mass scale. We will also describe how the EM signatures of active, merging BHs can be used to constrain theoretical merger rates. Finally, we will discuss the predicted observability of recoiling BHs and ongoing efforts to identify and confirm candidate recoils.

  3. Polarization effects in recoil-induced resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazebnyi, D. B., E-mail: becks.ddf@gmail.com; Brazhnikov, D. V.; Taichenachev, A. V.

    2017-01-15

    The effect of the field polarization on the amplitude of recoil-induced resonances (RIRs) is considered for laser-cooled free atoms and for atoms in a working magneto-optical trap (MOT). For all closed dipole transitions, explicit analytical expressions are obtained for the polarization dependence of the resonance amplitudes within a perturbation theory. Optimal polarization conditions are found for the observation of resonances.

  4. Proton recoil scintillator neutron rem meter

    DOEpatents

    Olsher, Richard H.; Seagraves, David T.

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  5. Revealing compressed stops using high-momentum recoils

    DOE PAGES

    Macaluso, Sebastian; Park, Michael; Shih, David; ...

    2016-03-22

    In this study, searches for supersymmetric top quarks at the LHC have been making great progress in pushing sensitivity out to higher mass, but are famously plagued by gaps in coverage around lower-mass regions where the decay phase space is closing off. Within the common stop-NLSP/neutralino-LSP simplified model, the line in the mass plane where there is just enough phase space to produce an on-shell top quark remains almost completely unconstrained. Here, we show that is possible to define searches capable of probing a large patch of this difficult region, with S/B ~ 1 and significances often well beyond 5σ.more » The basic strategy is to leverage the large energy gain of LHC Run 2, leading to a sizable population of stop pair events recoiling against a hard jet. The recoil not only re-establishes a E T, but also leads to a distinctive anti-correlation between the E T and the recoil jet transverse vectors when the stops decay all-hadronically. Accounting for jet combinatorics, backgrounds, and imperfections in E T measurements, we estimate that Run 2 will already start to close the gap in exclusion sensitivity with the first few 10s of fb –1. By 300 fb –1, exclusion sensitivity may extend from stop masses of 550 GeV on the high side down to below 200 GeV on the low side, approaching the “stealth” point at m t¯ = m t and potentially overlapping with limits from tt¯ cross section and spin correlation measurements.« less

  6. Recoil distance lifetime measurements in 122,124Xe

    NASA Astrophysics Data System (ADS)

    Govil, I. M.; Kumar, A.; Iyer, H.; Li, H.; Garg, U.; Ghugre, S. S.; Johnson, T.; Kaczarowski, R.; Kharraja, B.; Naguleswaran, S.; Walpe, J. C.

    1998-02-01

    Lifetimes of the lower-excited states in 122,124Xe are measured using the recoil-distance Doppler-shift technique. The reactions 110Pd(16O,4n)122Xe and 110Pd(18O,4n)124Xe at a beam energy of 66 MeV were used for this experiment. The lifetimes of the 2+, 4+, 6+, and 8+ states of the ground state band were extracted using the computer code LIFETIME including the corrections due to the side feeding and the nuclear deorientation effects. The lifetime of the 2+ state in 122Xe agrees with the recoil distance method (RDM) measurements but for the 124Xe it does not agree with the RDM measurements but agrees with the Coulomb-excitation experiment. The measured B(E2) values for both the nuclei are compared with the standard algebraic and the multishell models.

  7. Measurement of light and charge yield of low-energy electronic recoils in liquid xenon

    NASA Astrophysics Data System (ADS)

    Goetzke, L. W.; Aprile, E.; Anthony, M.; Plante, G.; Weber, M.

    2017-11-01

    The dependence of the light and charge yield of liquid xenon on the applied electric field and recoil energy is important for dark matter detectors using liquid xenon time projections chambers. Few measurements have been made of this field dependence at recoil energies less than 10 keV. In this paper, we present results of such measurements using a specialized detector. Recoil energies are determined via the Compton coincidence technique at four drift fields relevant for liquid xenon dark matter detectors: 0.19, 0.48, 1.02, and 2.32 kV /cm . Mean recoil energies down to 1 keV were measured with unprecedented precision. We find that the charge and light yield are anticorrelated above ˜3 keV and that the field dependence becomes negligible below ˜6 keV . However, below 3 keV, we find a charge yield significantly higher than expectation and a reconstructed energy deviating from linearity.

  8. Modeling ionization and recombination from low energy nuclear recoils in liquid argon

    DOE PAGES

    Foxe, M.; Hagmann, C.; Jovanovic, I.; ...

    2015-03-27

    Coherent elastic neutrino-nucleus scattering (CENNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model. Detection of CENNS could offer benefits for detection of supernova and solar neutrinos in astrophysics, or for detection of antineutrinos for nuclear reactor monitoring and nuclear nonproliferation. One challenge with detecting CENNS is the low energy deposition associated with a typical CENNS nuclear recoil. In addition, nuclear recoils result in lower ionization yields than those produced by electron recoils of the same energy. While a measurement of the nuclear recoil ionization yield in liquid argon in the keV energy range has been recentlymore » reported, a corresponding model for low-energy ionization yield in liquid argon does not exist. For this reason, a Monte Carlo simulation has been developed to predict the ionization yield at sub-10 keV energies. The model consists of two distinct components: (1) simulation of the atomic collision cascade with production of ionization, and (2) the thermalization and drift of ionization electrons in an applied electric field including local recombination. As an application of our results we report updated estimates of detectable ionization in liquid argon from CENNS at a nuclear reactor.« less

  9. A Study of Nuclear Recoils in Liquid Argon Time Projection Chamber for the Direct Detection of WIMP Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Huajie

    2014-11-01

    Robust results of WIMP direct detection experiments depend on rm understandings of nuclear recoils in the detector media. This thesis documents the most comprehensive study to date on nuclear recoils in liquid argon - a strong candidate for the next generation multi-ton scale WIMP detectors. This study investigates both the energy partition from nuclear recoil energy to secondary modes (scintillation and ionization) and the pulse shape characteristics of scintillation from nuclear recoils.

  10. A study of nuclear recoil backgrounds in dark matter detectors

    NASA Astrophysics Data System (ADS)

    Westerdale, Shawn S.

    Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on the 1-1000 GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering off of nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating (alpha, n) yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and development

  11. A Study of Nuclear Recoil Backgrounds in Dark Matter Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerdale, Shawn S.

    2016-01-01

    Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on themore » $1-1000$ GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering from nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating ($$\\alpha$$, n)yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and

  12. Alpha Recoil Flux of Radon in Groundwater and its Experimental Measurement

    NASA Astrophysics Data System (ADS)

    Mehta, N.; Harvey, C. F.; Kocar, B. D.

    2016-12-01

    Groundwater Radon (Rn222) activity is primarily controlled by alpha recoil process (radioactive decay), however, evaluating the rate and extent of this process, and its impact on porewater radioactivity, remains uncertain. Numerous factors contribute to this uncertainty, including the spatial distribution of parent radionuclides (e.g. U238, Th232 , Ra226 and Ra228) within native materials, differences in nuclide recoil length in host matrix and the physical structure of the rock strata (pore size distribution and porosity). Here, we experimentally measure Radon activities within porewater contributed through alpha recoil, and analyze its variations as a function of pore structure and parent nuclide distribution within host matrices, including Marcellus shale rock and Serrie-Copper Pegmatite. The shale cores originate from the Marcellus formation in Mckean, Pennsylvania collected at depths ranging from 1000-7000 feet, and the U-Th-rich Pegmatite is obtained from South Platte District, Colorado. Columns are packed with granulated rock of varying surface area (30,000-60,000 cm2/g) and subjected to low salinity sodium chloride solution in a close loop configuration. The activity of Radon (Rn222) and radium (Ra226) in the saline fluid is measured over time to determine recoil supply rates. Mineralogical and trace element data for rock specimens are characterized using XRD and XRF, and detailed geochemical profiles are constructed through total dissolution and analysis using ICP-MS and ICP-OES. Naturally occurring Radium nuclides and its daughters are quantified using a low-energy Germanium detector. The parent nuclide (U238 and Th232) distribution in the host rock is studied using X-Ray Absorption Spectroscopy (XAS). Our study elucidates the contribution of alpha recoil on the appearance and distribution of Radon (Rn222) within porewater of representative rock matrices. Further, we illustrate the effects of chemical and physical heterogeneity on the rate of this process

  13. Reprint of: A supersonic jet target for the cross section measurement of the 12C(α, γ)16O reaction with the recoil mass separator ERNA

    NASA Astrophysics Data System (ADS)

    Rapagnani, D.; Buompane, R.; Di Leva, A.; Gialanella, L.; Busso, M.; De Cesare, M.; De Stefano, G.; Duarte, J. G.; Gasques, L. R.; Morales Gallegos, L.; Palmerini, S.; Romoli, M.; Tufariello, F.

    2018-01-01

    12C(α, γ)16O cross section plays a key-role in the stellar evolution and nucleosynthesis of massive stars. Hence, it must be determined with the precision of about 10% at the relevant Gamow energy of 300 keV. The ERNA (European Recoil mass separator for Nuclear Astrophysics) collaboration measured, for the first time, the total cross section of 12C(α, γ)16O by means of the direct detection of the 16O ions produced in the reaction down to an energy of Ecm = 1.9 MeV. To extend the measurement at lower energy, it is necessary to limit the extension of the He gas target. This can be achieved using a supersonic jet, where the oblique shock waves and expansion fans formed at its boundaries confine the gas, which can be efficiently collected using a catcher. A test version of such a system has been designed, constructed and experimentally characterized as a bench mark for a full numerical simulation using FV (Finite Volume) methods. The results of the commissioning of the jet test version and the design of the new system that will be used in combination with ERNA are presented and discussed.

  14. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    DOE PAGES

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0more » to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (N ex) and ion pairs (N i) and their ratio (N ex/N i) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.« less

  15. Nuclear-Recoil Differential Cross Sections for the Two Photon Double Ionization of Helium

    NASA Astrophysics Data System (ADS)

    Abdel Naby, Shahin; Ciappina, M. F.; Lee, T. G.; Pindzola, M. S.; Colgan, J.

    2013-05-01

    In support of the reaction microscope measurements at the free-electron laser facility at Hamburg (FLASH), we use the time-dependent close-coupling method (TDCC) to calculate fully differential nuclear-recoil cross sections for the two-photon double ionization of He at photon energy of 44 eV. The total cross section for the double ionization is in good agreement with previous calculations. The nuclear-recoil distribution is in good agreement with the experimental measurements. In contrast to the single-photon double ionization, maximum nuclear recoil triple differential cross section is obtained at small nuclear momenta. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California and the National Institute for Computational Sciences in Knoxville, Tennessee.

  16. Recoil Considerations for Shoulder-Fired Weapons

    DTIC Science & Technology

    2012-05-01

    Fired Weapons 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Bruce P. Burns 5d. PROJECT NUMBER 62616AH80...the textbook. This research was supported in part by an appointment to the Knowledge Preservation Program at ARL administered by the Oak Ridge...endurance to operate. Doubtless one had to learn how to master the recoil loads posed by the weapon, and virtually every successful German

  17. Development of the focal plane system for the SEparator for CApture Reactions

    NASA Astrophysics Data System (ADS)

    Hood, A. A. D.; Blackmon, J. C.; Cottingham, R.; Deibel, C. M.; Good, E.; Joerres, K.; Laminack, A.; Garrity, A.; Secar Collaboration

    2017-09-01

    The SEparator for CApture Reactions (SECAR) is currently under construction for the National Superconducting Cyclotron Laboratory and future Facility for Rare Isotope Beams. SECAR is designed to conduct sensitive measurements of capture reactions critical to understanding stellar explosions. We have developed a versatile focal plane system that will differentiate reaction recoils from unreacted scattered beam particles in measurements covering a large range of energies and masses. The elements of the focal plane system include two metal-foil, micro-channel plate (MCP) detectors, a variety of diagnostics, and two alternative recoil stopping detectors. The MCP detectors will measure the time-of-flight (and therefore velocity) as well as the position of the recoils. Our primary heavy ion recoil detector is a gas ionization chamber that measures position, total energy and relative energy loss and provides good atomic number discrimination at energies greater than about 0.5 MeV/u. For some cases, this gas counter will be replaced by silicon strip detectors to provide superior energy resolution. We will describe the overall design and report on construction and testing of the detector systems. Supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Awards DE-SC0014384 and DE-FG02-96ER40978.

  18. SDSS J1056+5516: A Triple AGN or an SMBH Recoil Candidate?

    NASA Astrophysics Data System (ADS)

    Kalfountzou, E.; Santos Lleo, M.; Trichas, M.

    2017-12-01

    We report the discovery of a kiloparsec-scale triple supermassive black hole system at z = 0.256: SDSS J1056+5516, discovered by our systematic search for binary quasars. The system contains three strong emission-line nuclei, which are offset by < 250 {km} {{{s}}}-1 and by 15-18 kpc in projected separation, suggesting that the nuclei belong to the same physical structure. The system includes a tidal arm feature spanning ˜100 kpc in projected distance at the systems’ redshift, inhabiting an ongoing or recent galaxy merger. Based on our results, such a structure can only satisfy one of the three scenarios; a triple supermasive black hole (SMBH) interacting system, a triple AGN, or a recoiling SMBH. Each of these scenarios is unique for our understanding of the hierarchical growth of galaxies, AGN triggering, and gravitational waves.

  19. On the Mössbauer Effect and the Rigid Recoil Question

    NASA Astrophysics Data System (ADS)

    Davidson, Mark

    2017-03-01

    The rigid recoil of a crystal is the accepted mechanism for the Mössbauer effect. It's at odds with the special theory of relativity which does not allow perfectly rigid bodies. The standard model of particle physics which includes QED should not allow any signals to be transmitted faster than the speed of light. If perturbation theory can be used, then the X-ray emitted in a Mössbauer decay must come from a single nuclear decay vertex at which the 4-momentum is exactly conserved in a Feynman diagram. Then the 4-momentum of the final state Mössbauer nucleus must be slightly off the mass shell. This off-shell behavior would be followed by subsequent diffusion of momentum throughout the crystal to bring the nucleus back onto the mass shell and the crystal to a final relaxed state in which it moves rigidly with the appropriate recoil velocity. This mechanism explains the Mössbauer effect at the microscopic level and reconciles it with relativity. Because off-mass-shell quantum mechanics is required, the on-mass-shell theories developed originally for the Mössbauer effect are inadequate. Another possibility is that that the recoil response involves a non-perturbative effect in the standard model which could allow for a non-local instantaneous momentum transfer between the crystal and the decay (or absorption), as proposed for example by Preparata and others in super-radiance theory. The recoil time of the crystal is probably not instantaneous, and if it could be measured, one could distinguish between various theories. An experiment is proposed in this paper to measure this time. The idea is to measure the total energy radiated due to bremsstrahlung from a charged Mössbauer crystal which has experienced a recoil. Using Larmor's formula, along with corrections to it, allows one to design an experiment. The favored idea is to use many small nano-spheres of Mössbauer-active metals, whose outer surfaces are charged. The energy radiated then varies as the charge

  20. Recoil ions from the β decay of 134Sb confined in a Paul trap

    NASA Astrophysics Data System (ADS)

    Siegl, K.; Scielzo, N. D.; Czeszumska, A.; Clark, J. A.; Savard, G.; Aprahamian, A.; Caldwell, S. A.; Alan, B. S.; Burkey, M. T.; Chiara, C. J.; Greene, J. P.; Harker, J.; Marley, S. T.; Morgan, G. E.; Munson, J. M.; Norman, E. B.; Orford, R.; Padgett, S.; Galván, A. Perez; Sharma, K. S.; Strauss, S. Y.

    2018-03-01

    The low-energy recoiling ions from the β decay of 134Sb were studied by using the Beta-decay Paul Trap. Using this apparatus, singly charged ions were suspended in vacuum at the center of a detector array used to detect emitted β particles, γ rays, and recoil ions in coincidence. The recoil ions emerge from the trap with negligible scattering, allowing β -decay properties and the charge-state distribution of the daughter ions to be determined from the β -ion coincidences. First-forbidden β -decay theory predicts a β -ν correlation coefficient of nearly unity for the 0- to 0+ transition from the ground state of 134Sb to the ground state of 134Te. Although this transition was expected to have a nearly 100% branching ratio, an additional 17.2(52)% of the β -decay strength must populate high-lying excited states to obtain an angular correlation consistent with unity. The extracted charge-state distribution of the recoiling ions was compared with existing β -decay results and the average charge state was found to be consistent with the results from lighter nuclei.

  1. Comparison of acute elastic recoil between the SAPIEN-XT and SAPIEN valves in transfemoral-transcatheter aortic valve replacement.

    PubMed

    Garg, Aatish; Parashar, Akhil; Agarwal, Shikhar; Aksoy, Olcay; Hammadah, Muhammad; Poddar, Kanhaiya Lal; Puri, Rishi; Svensson, Lars G; Krishnaswamy, Amar; Tuzcu, E Murat; Kapadia, Samir R

    2015-02-15

    The SAPIEN-XT is a newer generation balloon-expandable valve created of cobalt chromium frame, as opposed to the stainless steel frame used in the older generation SAPIEN valve. We sought to determine if there was difference in acute recoil between the two valves. All patients who underwent transfemoral-transcatheter aortic valve replacement using the SAPIEN-XT valve at the Cleveland Clinic were included. Recoil was measured using biplane cine-angiographic image analysis of valve deployment. Acute recoil was defined as [(valve diameter at maximal balloon inflation) - (valve diameter after deflation)]/valve diameter at maximal balloon inflation (reported as percentage). Patients undergoing SAPIEN valve implantation were used as the comparison group. Among the 23 mm valves, the mean (standard deviation-SD) acute recoil was 2.77% (1.14) for the SAPIEN valve as compared to 3.75% (1.52) for the SAPIEN XT valve (P = 0.04). Among the 26 mm valves, the mean (SD) acute recoil was 2.85% (1.4) for the SAPIEN valve as compared to 4.32% (1.63) for the SAPIEN XT valve (P = 0.01). Multivariable linear regression analysis demonstrated significantly greater adjusted recoil in the SAPIEN XT valves as compared to the SAPIEN valves by 1.43% [(95% CI: 0.69-2.17), P < 0.001]. However, the residual peak gradient was less for SAPIEN XT compared to SAPIEN valves [18.86 mm Hg versus 23.53 mm Hg (P = 0.01)]. Additionally, no difference in paravalvular leak was noted between the two valve types (P = 0.78). The SAPIEN XT valves had significantly greater acute recoil after deployment compared to the SAPIEN valves. Implications of this difference in acute recoil on valve performance need to be investigated in future studies. © 2014 Wiley Periodicals, Inc.

  2. Usage of the Upgraded Vassilissa Separator for Synthesis of Super-Heavy Elements

    NASA Astrophysics Data System (ADS)

    Yeremin, A. V.; Malyshev, O. N.; Popeko, A. G.; Sagaidak, R. N.; Chepigin, V. I.; Kabachenko, A. P.; Belozerov, A. V.; Chelnokov, M. L.; Gorshkov, V. A.; Svirikhin, A. I.; Korotkov, S. P.; Rohach, J.; Brida, I.; Berek, G.

    2002-12-01

    Electrostatic separator VASSILISSA is used for exploring complete fussion nuclear reactions. The magnetic analyzer, based on D37 dipole magnet, was installed after the second triplet of quadrupole lenses of the separator for the mass identification of evaporation residues. Mass identification is an powerful tool for identification of recoil atoms of super-heavy elements. The new detection system consisting of the time-of-fiight system and 32-strips position-sensitive detector array was installed in the focal plane of the separator. The mass resolution of the separator after upgrade was found to be about 2.5 %.

  3. Recoil polarization and beam-recoil double polarization measurement of eta electroproduction on the proton in the region of the S11(1535) resonance.

    PubMed

    Merkel, H; Achenbach, P; Ayerbe Gayoso, C; Bernauer, J C; Böhm, R; Bosnar, D; Cheymol, B; Distler, M O; Doria, L; Fonvieille, H; Friedrich, J; Janssens, P; Makek, M; Müller, U; Nungesser, L; Pochodzalla, J; Potokar, M; Sánchez Majos, S; Schlimme, B S; Sirca, S; Tiator, L; Walcher, Th; Weinriefer, M

    2007-09-28

    The beam-recoil double polarization P(x')(h) and P(z')(h) and the recoil polarization P(y') were measured for the first time for the p(e,e'p)eta reaction at a four-momentum transfer of Q(2) = 0.1 GeV(2)/c(2) and a center of mass production angle of theta = 120 degrees at the Mainz Microtron MAMI-C. With a center of mass energy range of 1500 MeV

  4. Four pi-recoil proportional counter used as neutron spectrometer

    NASA Technical Reports Server (NTRS)

    Bennett, E. F.

    1968-01-01

    Study considers problems encountered in using 4 pi-recoil counters for neutron spectra measurement. Emphasis is placed on calibration, shape discrimination, variation of W, the average energy loss per ion pair, and the effects of differentiation on the intrinsic counter resolution.

  5. Collisional entanglement fidelities in quantum plasmas including strong quantum recoil and oscillation effects

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-10-01

    The quantum recoil and oscillation effects on the entanglement fidelity and the electron-exchange function for the electron-ion collision are investigated in a semiconductor plasma by using the partial wave analysis and effective interaction potential in strong quantum recoil regime. The magnitude of the electron-exchange function is found to increase as the collision energy increases, but it decreases with an increase in the exchange parameter. It is also found that the collisional entanglement fidelity in strong quantum recoil plasmas is enhanced by the quantum-mechanical and shielding effects. The collisional entanglement fidelity in a semiconductor plasma is also enhanced by the collective plasmon oscillation and electron-exchange effect. However, the electron-exchange effect on the fidelity ratio function is reduced as the plasmon energy increases. Moreover, the electron-exchange influence on the fidelity ratio function is found to increase as the Fermi energy in the semiconductor plasma increases.

  6. Surface and adsorbate structural analysis from time-of-flight scattering and recoiling spectrometry (TOF-SARS)

    NASA Astrophysics Data System (ADS)

    Rabalais, J. W.; Bu, H.; Roux, C.

    1992-02-01

    The methods of obtaining surface structural information from low energy ion scattering spectrometry are described. These methods include measurements of backscattering, forwardscattering, and recoiling intensities vs beam incident α, beam exit β, crystal azimuthal δ, and scattering Θ angles. References are provided which give examples of each different kind of measurement. The technique of time-of-flight scattering and recoiling spectrometry (TOF-SARS), which collects both scattered.and recoiled neutrals and ions simultaneously, is described. TOF-SARS data for the three surface phases, clean Ni{110}-(1 × 1), Ni{110}-(1 × 2)-H missing row, and Ni{110}-(2 × 1)-O missing row, are used to illustrate some of the structural measurements.

  7. 2MASS J00423991+3017515: An Interacting Oddball or a Recoiling AGN?

    NASA Astrophysics Data System (ADS)

    Hogg, J. Drew; Blecha, Laura; Reynolds, Christopher S.

    2017-06-01

    We present deep, multiband Hubble imaging and two epochs of optical spectroscopic monitoring of a peculiar nearby (z=0.14) AGN, 2MASS J00423991+3017515. The host galaxy containing the AGN is morphologically disturbed and interacting with an unmerged companion galaxy, suggesting it has had a rich merger history. The AGN itself is spatially displaced from the apparent center of its host galaxy and the symmetric broad Hα and Hβ lines are consistently blueshifted from the narrow line emission and host galaxy absorption by Δv = 1530 km/s. The investigation is ongoing, but we put forward two hypotheses to explain the odd features of this system. First, the abnormalities could be due to separate, independent causes. Projection effects from the interaction of the two galaxies could give the appearance of a spatial offset, while complex wind dynamics from the AGN accretion disk could give rise to the kinematic shift in the broad line emission. Second, this could be a recoiling AGN. This system fits the template of an accreting supermassive black hole (SMBH) that has recently received a “kick” from the asymmetric emission of gravitational waves (GWs) following the merger of two progenitor SMBHs. SMBH mergers are a likely end-product of hierarchical structure formation and are the supermassive cousins of the stellar-mass BH mergers observed with LIGO in the GW150914 and GW151226 events. However, a SMBH merger has yet to be unambigously detected. If confirmed as a recoiling AGN, 2MASS J00423991+3017515 will provide the first evidence of this growth pathway acting in the SMBH regime.

  8. Accurate measurements of E2 lifetimes using the coincidence recoil-distance method

    NASA Astrophysics Data System (ADS)

    Bhalla, R. K.; Poletti, A. R.

    1984-05-01

    Mean lives of four E2 transitions in the (2s, 1d) shell have been measured using the recoil-distance method (RDM), γ-rays de-exciting the level of interest were detected in coincidence with particles detected in an annular detector at a backward angle thereby reducing the background and producing a beam of recoiling nuclei of well-defined energy and recoil direction. Lifetimes measured were: 22Ne, 1.275 MeV level (2 + → 0 +), 5.16±0.13 ps; 26Mg, 3.588 MeV level (0 + → 2 +), 9.29±0.23 ps; 30Si, 3.788 MeV level (0 +→ 2 +), 12.00±0.70 ps; 38Ar, 3.377 MeV level (0 + → 2 +), 34.5±1.5 ps. The present measurements are compared to those of previous investigators. For the 22Ne level, averaged results from four different measurement techniques are compared and found to be in good agreement. The experimental results are compared to shell-model calculations.

  9. Binary Black Hole Mergers and Recoil Kicks

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Baker, J.; Choi, D.; Koppitz, M.; vanMeter, J.; Miller, C.

    2006-01-01

    Recent developments in numerical relativity have made it possible to follow reliably the coalescence of two black holes from near the innermost stable circular orbit to final ringdown. This opens up a wide variety of exciting astrophysical applications of these simulations. Chief among these is the net kick received when two unequal mass or spinning black holes merge. The magnitude of this kick has bearing on the production and growth of supermassive black holes during the epoch of structure formation, and on the retention of black holes in stellar clusters. Here we report the first accurate numerical calculation of this kick, for two nonspinning black holes in a 1.5:1 mass ratio, which is expected based on analytic considerations to give a significant fraction of the maximum possible recoil. We have performed multiple runs with different initial separations, orbital angular momenta, resolutions, extraction radii, and gauges. The full range of our kick speeds is 86-116 kilometers per second, and the most reliable runs give kicks between 86 and 97 kilometers per second. This is intermediate between the estimates from two recent post-Newtonian analyses and suggests that at redshifts z greater than 10, halos with masses less than 10(exp 9) M(sub SUN) will have difficulty retaining coalesced black holes after major mergers.

  10. Sub-Nanosecond Lifetime Measurement Using the Recoil-Distance Method

    PubMed Central

    Wu, Ching-Yen

    2000-01-01

    The electromagnetic properties of low-lying nuclear states are a sensitive probe of both collective and single-particle degrees of freedom in nuclear structure. The recoil-distance technique provides a very reliable, direct and precise method for measuring lifetimes of nuclear states with lifetimes ranging from less than one to several hundred picoseconds. This method complements the powerful, but complicated, heavy-ion induced Coulomb excitation technique for measuring electromagnetic properties. The recoil distance technique has been combined with heavy-ion induced Coulomb excitation to study a variety of problems. Examples discussed are: study of the two-phonon triplet in 110Pd, coupling of the β and γ degrees of freedom in 182,184W, highly deformed γ bands in 165Ho, octupole collectivity in 96Zr, and opposite parity states in 153Eu. Consistency between the Coulomb excitation results and the lifetime measurements confirms the reliability of the complex analysis often encountered in heavy-ion induced Coulomb excitation work. PMID:27551588

  11. Low energy recoil detection with a spherical proportional counter

    NASA Astrophysics Data System (ADS)

    Savvidis, I.; Katsioulas, I.; Eleftheriadis, C.; Giomataris, I.; Papaevangellou, T.

    2018-01-01

    We present results for the detection of low energy nuclear recoils in the keV energy region, from measurements performed with the Spherical Proportional Counter (SPC). An 241Am-9Be fast neutron source is used in order to obtain neutron-nucleus elastic scattering events inside the gaseous volume of the detector. The detector performance in the keV energy region was measured by observing the 5.9 keV line of a 55Fe X-ray source, with energy resolution of 10% (σ). The toolkit GEANT4 was used to simulate the irradiation of the detector by an 241Am-9Be source, while SRIM was used to calculate the Ionization Quenching Factor (IQF), the simulation results are compared with the measurements. The potential of the SPC in low energy recoil detection makes the detector a good candidate for a wide range of applications, including Supernova or reactor neutrino detection and Dark Matter (WIMP) searches (via coherent elastic scattering).

  12. Constraints on the Nature of CID-42: Recoil Kick or Supermassive Black Hole Pair?

    NASA Technical Reports Server (NTRS)

    Blecha, Laura; Civano, Francesca; Elvis, Martin; Loeb, Abraham

    2012-01-01

    The galaxy CXOC J100043.1+020637, also known as CID-42, is a highly unusual object. An apparent galaxy merger remnant, it displays signatures of both an inspiraling, kiloparsecscale active galactic nucleus (AGN) pair and of a recoiling AGN with a kick velocity approximately greater than 1300 km s(exp -1). Among recoiling AGN candidates, CID-42 alone has both spatial offsets (in optical and X-ray bands) and spectroscopic offsets. In order to constrain the relative likelihood of both scenarios, we develop models using hydrodynamic galaxy merger simulations coupled with radiative transfer calculations. Our gas-rich, major merger models are generally well matched to the galactic morphology and to the inferred stellar mass and star formation rate. We show that a recoiling supermassive black hole (SMBH) in CID-42 should be observable as an AGN at the time of observation. However, in order for the recoiling AGN to produce narrow-line emission, it must be observed shortly after the kick while it still inhabits a dense gaseous region, implying a large total kick velocity (vk approximately greater than 2000 km s(exp -1)). For the dual AGN scenario, an unusually large broad-line offset is required, and the best match to the observed morphology requires a galaxy that is less luminous than CID-42. Further, the lack of X-ray emission from one of the two optical nuclei is not easily attributed to an intrinsically quiescent SMBH or to a Compton-thick galactic environment. While the current data do not allow either the recoiling or the dual AGN scenario for CID-42 to be excluded, our models highlight the most relevant parameters for distinguishing these possibilities with future observations. In particular, high-quality, spatially-resolved spectra that can pinpoint the origin of the broad and narrow line features will be critical for determining the nature of this unique source.

  13. A New High-Flux Chemical and Materials Crystallography Station at the SRS Daresbury. 1. Design, Construction and Test Results.

    PubMed

    Cernik, R J; Clegg, W; Catlow, C R; Bushnell-Wye, G; Flaherty, J V; Greaves, G N; Burrows, I; Taylor, D J; Teat, S J; Hamichi, M

    1997-09-01

    A new single-crystal diffraction facility has been constructed on beamline 9 of the SRS at Daresbury Laboratory for the study of structural problems in chemistry and materials science. The station utilizes up to 3.8 mrad horizontally from the 5 T wiggler magnet which can be focused horizontally and vertically. The horizontal focusing is provided by a choice of gallium-cooled triangular bent Si (111) or Si (220) monochromators, giving a wavelength range from 0.3 to 1.5 A. Focusing in the vertical plane is achieved by a cylindrically bent zerodur mirror with a 300 mum-thick palladium coating. The station is equipped with a modified Enraf-Nonius CAD-4 four-circle diffractometer and a Siemens SMART CCD area-detector system. High- and low-temperature facilities are available to cover the temperature range from about 80 to 1000 K. Early results on test compounds without optimization of the beam optics demonstrate that excellent refined structures can be obtained from samples giving diffraction patterns too weak to be measured with conventional laboratory X-ray sources, fulfilling a major objective of the project.

  14. Recoil Polarization and Beam-Recoil Double Polarization Measurement of {eta} Electroproduction on the Proton in the Region of the S{sub 11}(1535) Resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkel, H.; Achenbach, P.; Ayerbe Gayoso, C.

    2007-09-28

    The beam-recoil double polarization P{sub x{sup '}}{sup h} and P{sub z{sup '}}{sup h} and the recoil polarization P{sub y{sup '}} were measured for the first time for the p(e-vector,e{sup '}p-vector){eta} reaction at a four-momentum transfer of Q{sup 2}=0.1 GeV{sup 2}/c{sup 2} and a center of mass production angle of {theta}=120 deg. at the Mainz Microtron MAMI-C. With a center of mass energy range of 1500 MeV

  15. Positive recoil leader in rocket-triggered and tower-initiated lightning flashes as observed by high speed video camera

    NASA Astrophysics Data System (ADS)

    Qie, X.; Pu, Y.; Jiang, R.; Liu, M.; Sun, Z.

    2017-12-01

    Positive recoil leader was observed in both rocket-triggered and tower lightning flashes. The similar processes are observed in all the cases: an initial weakening dart leader propagated downward from the cloud with weak luminosity and terminated finally before reaching the ground. Then the bidirectional leaders started and propagated in the preexisting and decaying channel below the terminated downward dart leader, and the luminosity of the bileader ends was asymmetrical, but both with its tip being the weakest. The upward positive leader end started earlier and fast than the downward negative leader end. The bidirectional leader developed with the positive leader moving upward, along the decayed downward negative leader channel, and the negative leader downward, along the remnants of the channel created by the previous stroke or ICC, and, hence, could be viewed as a kind of recoil leader. However, the polarity of this recoil leader is contrary to the traditional recoil leader with negative leader end retrogressing along an existing positive leader channel. The bidirectional leaders observed herein are new as they are excited by a decayed negative leader with in the preexisting discharge channel, unlike other bidirectional leaders, e.g., the electric breakdown in virgin air or traditional recoil processes formed in a decayed positive leader channel.

  16. Stability branching induced by collective atomic recoil in an optomechanical ring cavity

    NASA Astrophysics Data System (ADS)

    Ian, Hou

    2017-02-01

    In a ring cavity filled with an atomic condensate, self-bunching of atoms due to the cavity pump mode produce an inversion that re-emits into the cavity probe mode with an exponential gain, forming atomic recoil lasing. An optomechanical ring cavity is formed when one of the reflective mirrors is mounted on a mechanical vibrating beam. In this paper, we extend studies on the stability of linear optomechanical cavities to such ring cavities with two counter-propagating cavity modes, especially when the forward propagating pump mode is taken to its weak coupling limit. We find that when the atomic recoil is in action, stable states of the mechanical mode of the mirror converge into branch cuts, where the gain produced by the recoiling strikes balance with the multiple decay sources, such as cavity leakage in the optomechanical system. This balance is obtained when the propagation delay in the dispersive atomic medium matches in a periodic pattern to the frequencies and linewidths of the cavity mode and the collective bosonic mode of the atoms. We show an input-output hysteresis cycle between the atomic mode and the cavity mode to verify the multi-valuation of the stable states after branching at the weak coupling limit.

  17. Immediate stent recoil in an anastomotic vein graft lesion treated by cutting balloon angioplasty.

    PubMed

    Akkus, Nuri Ilker; Budeepalli, Jagan; Cilingiroglu, Mehmet

    2013-11-01

    Saphenous vein graft (SVG) anastomotic lesions can have significant fibromuscular hyperplasia and may be resistant to balloon angioplasty alone. Stents have been used successfully to treat these lesions. There are no reports of immediate stent recoil following such treatment in the literature. We describe immediate and persistent stent recoil in an anastomotic SVG lesion even after initial and post-deployment complete balloon dilatation of the stent and its successful treatment by cutting balloon angioplasty. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  18. Recoil distance method lifetime measurements at TRIUMF-ISAC using the TIGRESS Integrated Plunger

    NASA Astrophysics Data System (ADS)

    Chester, A.; Ball, G. C.; Bernier, N.; Cross, D. S.; Domingo, T.; Drake, T. E.; Evitts, L. J.; Garcia, F. H.; Garnsworthy, A. B.; Hackman, G.; Hallam, S.; Henderson, J.; Henderson, R.; Krücken, R.; MacConnachie, E.; Moukaddam, M.; Padilla-Rodal, E.; Paetkau, O.; Pore, J. L.; Rizwan, U.; Ruotsalainen, P.; Shoults, J.; Smallcombe, J.; Smith, J. K.; Starosta, K.; Svensson, C. E.; Van Wieren, K.; Williams, J.; Williams, M.

    2018-02-01

    The TIGRESS Integrated Plunger device (TIP) has been developed for recoil distance method (RDM) lifetime measurements using the TIGRESS array of HPGe γ-ray detectors at TRIUMF's ISAC-II facility. A commissioning experiment was conducted utilizing a 250 MeV 84Kr beam at ≈ 2 × 108 particles per second. The 84Kr beam was Coulomb excited to the 21+ state on a movable 27Al target. A thin Cu foil fixed downstream from the target was used as a degrader. Excited nuclei emerged from the target and decayed by γ-ray emission at a distance determined by their velocity and the lifetime of the 21+ state. The ratio of decays which occur between the target and degrader to those occurring after traversing the degrader changes as a function of the target-degrader separation distance. Gamma-ray spectra at 13 target-degrader separation distances were measured and compared to simulated lineshapes to extract the lifetime. The result of τ = 5 . 541 ± 0 . 013(stat.) ± 0 . 063(sys.) ps is shorter than the literature value of 5 . 84 ± 0 . 18 ps with a reduction in uncertainty by a factor of approximately two. The TIP plunger device, experimental technique, analysis tools, and result are discussed.

  19. Coupling of the recoil mass spectrometer CAMEL to the γ-ray spectrometer GASP

    NASA Astrophysics Data System (ADS)

    Spolaore, P.; Ackermann, D.; Bednarczyk, P.; De Angelis, G.; Napoli, D.; Rossi Alvarez, C.; Bazzacco, D.; Burch, R.; Müller, L.; Segato, G. F.; Scarlassara, F.

    1995-02-01

    A project has been realized to link the CAMEL recoil mass spectrometer to the GASP γ-spectrometer in order to perform high resolution and efficiency γ-recoil coincidence measurements. To preserve high flexibility and autonomy in the operation of the two complex apparatus a rough factor two of reduction in the overall heavy ion transmission was accepted in designing the optics of the particle transport from the GASP center to the CAMEL focal plane. The coupled configuration has been tested with the fusion reaction 58Ni (E = 212 MeV) + 64Ni, obtaining a mass resolution of {1}/{300} and efficiency between ˜ 11% and ˜ 15% for different evaporation products.

  20. First high-statistics and high-resolution recoil-ion data from the WITCH retardation spectrometer

    NASA Astrophysics Data System (ADS)

    Finlay, P.; Breitenfeldt, M.; Porobić, T.; Wursten, E.; Ban, G.; Beck, M.; Couratin, C.; Fabian, X.; Fléchard, X.; Friedag, P.; Glück, F.; Herlert, A.; Knecht, A.; Kozlov, V. Y.; Liénard, E.; Soti, G.; Tandecki, M.; Traykov, E.; Van Gorp, S.; Weinheimer, Ch.; Zákoucký, D.; Severijns, N.

    2016-07-01

    The first high-statistics and high-resolution data set for the integrated recoil-ion energy spectrum following the β^+ decay of 35Ar has been collected with the WITCH retardation spectrometer located at CERN-ISOLDE. Over 25 million recoil-ion events were recorded on a large-area multichannel plate (MCP) detector with a time-stamp precision of 2ns and position resolution of 0.1mm due to the newly upgraded data acquisition based on the LPC Caen FASTER protocol. The number of recoil ions was measured for more than 15 different settings of the retardation potential, complemented by dedicated background and half-life measurements. Previously unidentified systematic effects, including an energy-dependent efficiency of the main MCP and a radiation-induced time-dependent background, have been identified and incorporated into the analysis. However, further understanding and treatment of the radiation-induced background requires additional dedicated measurements and remains the current limiting factor in extracting a beta-neutrino angular correlation coefficient for 35Ar decay using the WITCH spectrometer.

  1. Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

    NASA Astrophysics Data System (ADS)

    Xu, Jingke; Shields, Emily; Calaprice, Frank; Westerdale, Shawn; Froborg, Francis; Suerfu, Burkhant; Alexander, Thomas; Aprahamian, Ani; Back, Henning O.; Casarella, Clark; Fang, Xiao; Gupta, Yogesh K.; Ianni, Aldo; Lamere, Edward; Lippincott, W. Hugh; Liu, Qian; Lyons, Stephanie; Siegl, Kevin; Smith, Mallory; Tan, Wanpeng; Kolk, Bryant Vande

    2015-07-01

    The dark matter interpretation of the DAMA modulation signal depends on the NaI(Tl) scintillation efficiency of nuclear recoils. Previous measurements for Na recoils have large discrepancies, especially in the DAMA/LIBRA modulation energy region. We report a quenching effect measurement of Na recoils in NaI(Tl) from 3 to 52 keVnr, covering the whole DAMA/LIBRA energy region for dark matter-Na scattering interpretations. By using a low-energy, pulsed neutron beam, a double time-of-flight technique, and pulse-shape discrimination methods, we obtained the most accurate measurement of this kind for NaI(Tl) to date. The results differ significantly from the DAMA reported values at low energies but fall between the other previous measurements. We present the implications of the new quenching results for the dark matter interpretation of the DAMA modulation signal.

  2. Acute stent recoil and optimal balloon inflation strategy: an experimental study using real-time optical coherence tomography.

    PubMed

    Kitahara, Hideki; Waseda, Katsuhisa; Yamada, Ryotaro; Otagiri, Kyuhachi; Tanaka, Shigemitsu; Kobayashi, Yuhei; Okada, Kozo; Kume, Teruyoshi; Nakagawa, Kaori; Teramoto, Tomohiko; Ikeno, Fumiaki; Yock, Paul G; Fitzgerald, Peter J; Honda, Yasuhiro

    2016-06-12

    Our aim was to evaluate stent expansion and acute recoil at deployment and post-dilatation, and the impact of post-dilatation strategies on final stent dimensions. Optical coherence tomography (OCT) was performed on eight bare metal platforms of drug-eluting stents (3.0 mm diameter, n=6 for each) during and after balloon inflation in a silicone mock vessel. After nominal-pressure deployment, a single long (30 sec) vs. multiple short (10 sec x3) post-dilatations were performed using a non-compliant balloon (3.25 mm, 20 atm). Stent areas during deployment with original delivery systems were smaller in stainless steel stents than in cobalt-chromium and platinum-chromium stents (p<0.001), whereas subsequent acute recoil was comparable among the three materials. At post-dilatation, acute recoil was greater in cobalt-chromium and platinum-chromium stents than in stainless steel stents (p<0.001), resulting in smaller final stent areas in cobalt-chromium and platinum-chromium stents than in stainless steel stents (p<0.001). In comparison between conventional and latest-generation cobalt-chromium stents, stent areas were not significantly different after both deployment and post-dilatation. With multiple short post-dilatations, acute recoil was significantly improved from first to third short inflation (p<0.001), achieving larger final area than a single long inflation, despite stent materials/designs (p<0.001). Real-time OCT revealed significant acute recoil in all stent types. Both stent materials/designs and post-dilatation strategies showed a significant impact on final stent expansion.

  3. Nuclear recoil effect on g-factor of heavy ions: prospects for tests of quantum electrodynamics in a new region

    NASA Astrophysics Data System (ADS)

    Malyshev, A. V.; Shabaev, V. M.; Glazov, D. A.; Tupitsyn, I. I.

    2017-12-01

    The nuclear recoil effect on the g-factor of H- and Li-like heavy ions is evaluated to all orders in αZ. The calculations include an approximate treatment of the nuclear size and the electron-electron interaction corrections to the recoil effect. As the result, the second largest contribution to the theoretical uncertainty of the g-factor values of 208Pb79+ and 238U89+ is strongly reduced. Special attention is paid to tests of the QED recoil effect on the g-factor in experiments with heavy ions. It is found that, while the QED recoil effect on the g-factor value is masked by the uncertainties of the nuclear size and nuclear polarization contributions, it can be probed on a few-percent level in the specific difference of the g-factors of H- and Li-like heavy ions. This provides a unique opportunity to test QED in a new region-strong-coupling regime beyond the Furry picture.

  4. Black hole as a point radiator and recoil effect on the brane world.

    PubMed

    Frolov, Valeri; Stojković, Dejan

    2002-10-07

    A small black hole attached to a brane in a higher-dimensional space emitting quanta into the bulk may leave the brane as a result of a recoil. We construct a field theory model in which such a black hole is described as a massive scalar particle with internal degrees of freedom. In this model, the probability of transition between the different internal levels is identical to the probability of thermal emission calculated for the Schwarzschild black hole. The discussed recoil effect implies that the thermal emission of the black holes, which might be created by interaction of high energy particles in colliders, could be terminated and the energy nonconservation can be observed in the brane experiments.

  5. First β-ν correlation measurement from the recoil-energy spectrum of Penning trapped Ar35 ions

    NASA Astrophysics Data System (ADS)

    Van Gorp, S.; Breitenfeldt, M.; Tandecki, M.; Beck, M.; Finlay, P.; Friedag, P.; Glück, F.; Herlert, A.; Kozlov, V.; Porobic, T.; Soti, G.; Traykov, E.; Wauters, F.; Weinheimer, Ch.; Zákoucký, D.; Severijns, N.

    2014-08-01

    We demonstrate a novel method to search for physics beyond the standard model by determining the β-ν angular correlation from the recoil-ion energy distribution after β decay of ions stored in a Penning trap. This recoil-ion energy distribution is measured with a retardation spectrometer. The unique combination of the spectrometer with a Penning trap provides a number of advantages, e.g., a high recoil-ion count rate and low sensitivity to the initial position and velocity distribution of the ions and completely different sources of systematic errors compared to other state-of-the-art experiments. Results of a first measurement with the isotope Ar35 are presented. Although currently at limited precision, we show that a statistical precision of about 0.5% is achievable with this unique method, thereby opening up the possibility of contributing to state-of-the-art searches for exotic currents in weak interactions.

  6. Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jingke; Shields, Emily; Calaprice, Frank

    2015-07-01

    The dark matter interpretation of the DAMA modulation signal depends on the NaI(Tl) scintillation efficiency of nuclear recoils. Previous measurements for Na recoils have large discrepancies, especially in the DAMA/LIBRA modulation energy region. We report a quenching effect measurement of Na recoils in NaI(Tl) from 3 to 52 keVnr, covering the whole DAMA/LIBRA energy region for dark matter-Na scattering interpretations. By using a low-energy, pulsed neutron beam, a double time-of-flight technique, and pulse-shape discrimination methods, we obtained the most accurate measurement of this kind for NaI(Tl) to date. The results differ significantly from the DAMA reported values at low energies butmore » fall between the other previous measurements. We present the implications of the new quenching results for the dark matter interpretation of the DAMA modulation signal.« less

  7. Measurement of the ionization produced by sub-keV silicon nuclear recoils in a CCD dark matter detector

    DOE PAGES

    Chavarria, A. E.; Collar, J. I.; Peña, J. R.; ...

    2016-10-15

    We report a measurement of the ionization efficiency of silicon nuclei recoiling with sub-keV kinetic energy in the bulk silicon of a charge-coupled device (CCD). Nuclear recoils are produced by low-energy neutrons (<24 keV) from a 124Sb– 9Be photoneutron source, and their ionization signal is measured down to 60 eV electron equivalent. This energy range, previously unexplored, is relevant for the detection of low-mass dark matter particles. The measured efficiency is found to deviate from the extrapolation to low energies of the Lindhard model. Furthermore, this measurement also demonstrates the sensitivity to nuclear recoils of CCDs employed by DAMIC, amore » dark matter direct detection experiment located in the SNOLAB underground laboratory.« less

  8. Nuclear Recoil Effect on the g-Factor of Heavy Ions: Prospects for Tests of Quantum Electrodynamics in a New Region

    NASA Astrophysics Data System (ADS)

    Malyshev, A. V.; Shabaev, V. M.; Glazov, D. A.; Tupitsyn, I. I.

    2017-12-01

    The nuclear recoil effect on the g-factor of H- and Li-like heavy ions is evaluated to all orders in αZ. The calculations include an approximate treatment of the nuclear size and the electron-electron interaction corrections to the recoil effect. As the result, the second largest contribution to the theoretical uncertainty of the g-factor values of 208Pb79+ and 238U89+ is strongly reduced. Special attention is paid to tests of the QED recoil effect on the g-factor in experiments with heavy ions. It is found that, while the QED recoil effect on the gfactor value is masked by the uncertainties of the nuclear size and nuclear polarization contributions, it can be probed on a few-percent level in the specific difference of the g-factors of H- and Li-like heavy ions. This provides a unique opportunity to test QED in a new region of the strong-coupling regime beyond the Furry picture.

  9. On the Form of the Collective Bremsstrahlung Recoil Force in a Nonequilibrium Relativistic Beam-Plasma System.

    DTIC Science & Technology

    1984-01-01

    RD-RI39 895 ON THE FORM OF THE COLLECTIVE BREMSSTRRHLUNG RECOIL i / i FORCE IN A NONEQUILIBRIUM RELATIVISTIC BEAM-PLASMA SYSTEM(U) HARRY DIAMOND LABS...A A O- I I .. . .:. .~ . ." . .- . . . AD Al 39895 H DL-TR-2026 .- 2 ,January 1984 ’ On the Form of the Collective Bremsstrahlung Recoil:O Kodf...Nonequillbrium Relativistic Beam-Plasma System; by Howard It. Brandt A and -t 4 C.. 4 :;x.. 4 4~ . Approw for *4444 𔃿 . U.S.~ Arm Lad Dee ,7 , .1 I . A L

  10. A combined segmented anode gas ionization chamber and time-of-flight detector for heavy ion elastic recoil detection analysis

    NASA Astrophysics Data System (ADS)

    Ström, Petter; Petersson, Per; Rubel, Marek; Possnert, Göran

    2016-10-01

    A dedicated detector system for heavy ion elastic recoil detection analysis at the Tandem Laboratory of Uppsala University is presented. Benefits of combining a time-of-flight measurement with a segmented anode gas ionization chamber are demonstrated. The capability of ion species identification is improved with the present system, compared to that obtained when using a single solid state silicon detector for the full ion energy signal. The system enables separation of light elements, up to Neon, based on atomic number while signals from heavy elements such as molybdenum and tungsten are separated based on mass, to a sample depth on the order of 1 μm. The performance of the system is discussed and a selection of material analysis applications is given. Plasma-facing materials from fusion experiments, in particular metal mirrors, are used as a main example for the discussion. Marker experiments using nitrogen-15 or oxygen-18 are specific cases for which the described improved species separation and sensitivity are required. Resilience to radiation damage and significantly improved energy resolution for heavy elements at low energies are additional benefits of the gas ionization chamber over a solid state detector based system.

  11. Universal Binding and Recoil Corrections to Bound State g Factors in Hydrogenlike Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eides, Michael I.; Martin, Timothy J. S.

    2010-09-03

    The leading relativistic and recoil corrections to bound state g factors of particles with arbitrary spin are calculated. It is shown that these corrections are universal for any spin and depend only on the free particle gyromagnetic ratios. To prove this universality we develop nonrelativistic quantum electrodynamics (NRQED) for charged particles with an arbitrary spin. The coefficients in the NRQED Hamiltonian for higher spin particles are determined only by the requirements of Lorentz invariance and local charge conservation in the respective relativistic theory. For spin one charged particles, the NRQED Hamiltonian follows from the renormalizable QED of the charged vectormore » bosons. We show that universality of the leading relativistic and recoil corrections can be explained with the help of the Bargmann-Michael-Telegdi equation.« less

  12. The recoil implantation technique developed at the U-120 cyclotron in Bucharest

    NASA Astrophysics Data System (ADS)

    Muntele, C. I.; Simil, L. Popa; Racolta, P. M.; Voiculescu, D.

    1999-06-01

    At the U-120 cyclotron in Bucharest was developed 15 years ago the thin layer activation (TLA) technique for radioactive labeling of metallic components on depths ranging between 100 μm and 300 μm, for wear/corrosion studies. Aiming to extend these kinds of studies on non-metallic components and at sub-micrometric level we were led to the development of the recoil implantation technique for ultra thin layer activation (UTLA) applications. Due to the low energy of the recoils obtained in a sacrificial target from a nuclear reaction, the surface layer of material to be labeled must be as thick as a few hundred nanometers. Also, since the radiotracer is externally created, there are no restrictions for the kind of material to be labeled, except to be a solid. In this paper we present some results of our studies concerning the actual status of this application at our accelerator.

  13. Measurements of the differential cross sections for recoil tritons in 4He- 3T scattering at energies between 0.5 and 2.5 MeV

    NASA Astrophysics Data System (ADS)

    Sawicki, J. A.

    1988-03-01

    Differential cross-sections for recoil detection of tritons from elastic scattering of α-particles on tritium were measured at forward recoil angles from 10° and 40° and over incident 4He energies ranging from 0.5 to 2.5 MeV. Thin solid state targets consisted of about 10 16T {at.}/{cm 2} either absorbed in a thin film of titanium or implanted at low energy in the matrix of amorphous silicon. The recoil yields were normalized against the yields of the T(d, α)n reaction measured on the same targets. It is found that the cross sections obtained are considerably enhanced as compared to the Rutherford recoil cross section, what can be attributed to the combined effect of Coulomb and nuclear potentials and formation of compound 7Li nuclei. The applications of the elastic recoil detection as a means for depth profiling of tritium in materials are briefly considered. The measured dependence of the triton recoil cross section on the incident energy of 4He + ions allows profiling the concentration of tritium across a range ˜ l μm below the surface of solids.

  14. Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy β and nuclear recoils in liquid argon with DEAP-1

    NASA Astrophysics Data System (ADS)

    Amaudruz, P.-A.; Batygov, M.; Beltran, B.; Bonatt, J.; Boudjemline, K.; Boulay, M. G.; Broerman, B.; Bueno, J. F.; Butcher, A.; Cai, B.; Caldwell, T.; Chen, M.; Chouinard, R.; Cleveland, B. T.; Cranshaw, D.; Dering, K.; Duncan, F.; Fatemighomi, N.; Ford, R.; Gagnon, R.; Giampa, P.; Giuliani, F.; Gold, M.; Golovko, V. V.; Gorel, P.; Grace, E.; Graham, K.; Grant, D. R.; Hakobyan, R.; Hallin, A. L.; Hamstra, M.; Harvey, P.; Hearns, C.; Hofgartner, J.; Jillings, C. J.; Kuźniak, M.; Lawson, I.; La Zia, F.; Li, O.; Lidgard, J. J.; Liimatainen, P.; Lippincott, W. H.; Mathew, R.; McDonald, A. B.; McElroy, T.; McFarlane, K.; McKinsey, D. N.; Mehdiyev, R.; Monroe, J.; Muir, A.; Nantais, C.; Nicolics, K.; Nikkel, J.; Noble, A. J.; O'Dwyer, E.; Olsen, K.; Ouellet, C.; Pasuthip, P.; Peeters, S. J. M.; Pollmann, T.; Rau, W.; Retière, F.; Ronquest, M.; Seeburn, N.; Skensved, P.; Smith, B.; Sonley, T.; Tang, J.; Vázquez-Jáuregui, E.; Veloce, L.; Walding, J.; Ward, M.

    2016-12-01

    The DEAP-1 low-background liquid argon detector was used to measure scintillation pulse shapes of electron and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination down to an electron-equivalent energy of 20 keVee. In the surface dataset using a triple-coincidence tag we found the fraction of β events that are misidentified as nuclear recoils to be < 1.4 ×10-7 (90% C.L.) for energies between 43-86 keVee and for a nuclear recoil acceptance of at least 90%, with 4% systematic uncertainty on the absolute energy scale. The discrimination measurement on surface was limited by nuclear recoils induced by cosmic-ray generated neutrons. This was improved by moving the detector to the SNOLAB underground laboratory, where the reduced background rate allowed the same measurement to be done with only a double-coincidence tag. The combined data set contains 1.23 × 108 events. One of those, in the underground data set, is in the nuclear-recoil region of interest. Taking into account the expected background of 0.48 events coming from random pileup, the resulting upper limit on the level of electronic recoil contamination is < 2.7 ×10-8 (90% C.L.) between 44-89 keVee and for a nuclear recoil acceptance of at least 90%, with 6% systematic uncertainty on the absolute energy scale. We developed a general mathematical framework to describe pulse-shape-discrimination parameter distributions and used it to build an analytical model of the distributions observed in DEAP-1. Using this model, we project a misidentification fraction of approximately 10-10 for an electron-equivalent energy threshold of 15 keVee for a detector with 8 PE/keVee light yield. This reduction enables a search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 10-46 cm2, assuming negligible contribution from nuclear recoil backgrounds.

  15. Molecular modeling of the effects of 40Ar recoil in illite particles on their K-Ar isotope dating

    NASA Astrophysics Data System (ADS)

    Szczerba, Marek; Derkowski, Arkadiusz; Kalinichev, Andrey G.; Środoń, Jan

    2015-06-01

    The radioactive decay of 40K to 40Ar is the basis of isotope age determination of micaceous clay minerals formed during diagenesis. The difference in K-Ar ages between fine and coarse grained illite particles has been interpreted using detrital-authigenic components system, its crystallization history or post-crystallization diffusion. Yet another mechanism should also be considered: natural 40Ar recoil. Whether this recoil mechanism can result in a significant enough loss of 40Ar to provide observable decrease of K-Ar age of the finest illite crystallites at diagenetic temperatures - is the primary objective of this study which is based on molecular dynamics (MD) computer simulations. All the simulations were performed for the same kinetic energy (initial velocity) of the 40Ar atom, but for varying recoil angles that cover the entire range of their possible values. The results show that 40Ar recoil can lead to various deformations of the illite structure, often accompanied by the displacement of OH groups or breaking of the Si-O bonds. Depending on the recoil angle, there are four possible final positions of the 40Ar atom with respect to the 2:1 layer at the end of the simulation: it can remain in the interlayer space or end up in the closest tetrahedral, octahedral or the opposite tetrahedral sheet. No simulation angles were found for which the 40Ar atom after recoil passes completely through the 2:1 layer. The energy barrier for 40Ar passing through the hexagonal cavity from the tetrahedral sheet into the interlayer was calculated to be 17 kcal/mol. This reaction is strongly exothermic, therefore there is almost no possibility for 40Ar to remain in the tetrahedral sheet of the 2:1 layer over geological time periods. It will either leave the crystal, if close enough to the edge, or return to the interlayer space. On the other hand, if 40Ar ends up in the octahedral sheet after recoil, a substantially higher energy barrier of 55 kcal/mol prevents it from leaving

  16. The recoil implantation technique developed at the U-120 cyclotron in Bucharest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muntele, C. I.; Simil, L. Popa; Racolta, P. M.

    1999-06-10

    At the U-120 cyclotron in Bucharest was developed 15 years ago the thin layer activation (TLA) technique for radioactive labeling of metallic components on depths ranging between 100 {mu}m and 300 {mu}m, for wear/corrosion studies. Aiming to extend these kinds of studies on non-metallic components and at sub-micrometric level we were led to the development of the recoil implantation technique for ultra thin layer activation (UTLA) applications. Due to the low energy of the recoils obtained in a sacrificial target from a nuclear reaction, the surface layer of material to be labeled must be as thick as a few hundredmore » nanometers. Also, since the radiotracer is externally created, there are no restrictions for the kind of material to be labeled, except to be a solid. In this paper we present some results of our studies concerning the actual status of this application at our accelerator.« less

  17. Force-time profile differences in the delivery of simulated toggle-recoil spinal manipulation by students, instructors, and field doctors of chiropractic.

    PubMed

    DeVocht, James W; Owens, Edward F; Gudavalli, Maruti Ram; Strazewski, John; Bhogal, Ramneek; Xia, Ting

    2013-01-01

    The objectives of this study were to examine the force-time profiles of toggle recoil using an instrumented simulator to objectively measure and evaluate students' skill to determine if they become quicker and use less force during the course of their training and to compare them to course instructors and to field doctors of chiropractic (DCs) who use this specific technique in their practices. A load cell was placed within a toggle recoil training device. The preload, speed, and magnitude of the toggle recoil thrusts were measured from 60 students, 2 instructors, and 77 DCs (ie, who use the toggle recoil technique in their regular practice). Student data were collected 3 times during their toggle course (after first exposure, at midterm, and at course end.) Thrusts showed a dual-peak force-time profile not previously described in other forms of spinal manipulation. There was a wide range of values for each quantity measured within and between all 3 subject groups. The median peak load for students decreased over the course of their class, but they became slower. Field doctors were faster than students or instructors and delivered higher peak loads. Toggle recoil thrusts into a dropping mechanism varied based upon subject and amount of time practicing the task. As students progressed through the class, speed reduced as they increased control to lower peak loads. In the group studies, field DCs applied higher forces and were faster than both students and instructors. There appears to be a unique 2-peak feature of the force-time plot that is unique to toggle recoil manipulation with a drop mechanism. Copyright © 2013 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  18. Isotope separation by photodissociation of Van der Waal's molecules

    DOEpatents

    Lee, Yuan T.

    1977-01-01

    A method of separating isotopes based on the dissociation of a Van der Waal's complex. A beam of molecules of a Van der Waal's complex containing, as one partner of the complex, a molecular species in which an element is present in a plurality of isotopes is subjected to radiation from a source tuned to a frequency which will selectively excite vibrational motion by a vibrational transition or through electronic transition of those complexed molecules of the molecular species which contain a desired isotope. Since the Van der Waal's binding energy is much smaller than the excitational energy of vibrational motion, the thus excited Van der Waal's complex dissociate into molecular components enriched in the desired isotope. The recoil velocity associated with vibrational to translational and rotational relaxation will send the separated molecules away from the beam whereupon the product enriched in the desired isotope can be separated from the constituents of the beam.

  19. Precision Lifetime Measurements Using the Recoil Distance Method

    PubMed Central

    Krücken, R.

    2000-01-01

    The recoil distance method (RDM) for the measurements of lifetimes of excited nuclear levels in the range from about 1 ps to 1000 ps is reviewed. The New Yale Plunger Device for RDM experiments is introduced and the Differential Decay Curve Method for their analysis is reviewed. Results from recent RDM experiments on SD bands in the mass-190 region, shears bands in the neutron deficient lead isotopes, and ground state bands in the mass-130 region are presented. Perspectives for the use of RDM measurements in the study of neutron-rich nuclei are discussed. PMID:27551587

  20. Rutherford forward scattering and elastic recoil detection (RFSERD) as a method for characterizing ultra-thin films

    DOE PAGES

    Lohn, Andrew J.; Doyle, Barney L.; Stein, Gregory J.; ...

    2014-04-03

    We present a novel ion beam analysis technique combining Rutherford forward scattering and elastic recoil detection (RFSERD) and demonstrate its ability to increase efficiency in determining stoichiometry in ultrathin (5-50 nm) films as compared to Rutherford backscattering. In the conventional forward geometries, scattering from the substrate overwhelms the signal from light atoms but in RFSERD, scattered ions from the substrate are ranged out while forward scattered ions and recoiled atoms from the thin film are simultaneously detected in a single detector. Lastly, the technique is applied to tantalum oxide memristors but can be extended to a wide range of materialsmore » systems.« less

  1. EMMA, a Recoil Mass Spectrometer for TRIUMF's ISAC-II Facility

    NASA Astrophysics Data System (ADS)

    Davids, Barry; EMMA Collaboration

    2016-09-01

    EMMA is a recoil mass spectrometer for TRIUMF's ISAC-II facility in the final stages of installation and commissioning. In this talk I will briefly review the spectrometer's design capabilities, describe recent progress in its installation and commissioning, and discuss plans for its initial experimental program. This work was supported by the Natural Sciences and Engineering Council of Canada. TRIUMF receives federal funds through a contribution agreement with the National Research Council of Canada.

  2. Measurement of the beryllium-7 plus proton fusion cross section

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Ryan P.

    2005-11-01

    The fusion of protons with radioactive nuclei plays an important role in a wide variety of astrophysical scenarios ranging from high-temperature environments like novae and X-ray bursts to the production of neutrinos in the sun. For example, the 8 B neutrino flux measured in neutrino detectors on earth is directly proportional to the cross section for the fusion of protons with radioactive 7 Be. An experimental program has been established to study proton-fusion experiments in inverse kinematics at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL) using a windowless gas target and the Daresbury Recoil Separator (DRS). The performance of the target and separator have been well characterized using a variety of experiments with stable beams including 12 C, 19 F, and 24 Mg. For instance, the areal density of hydrogen in the target was determined to 3% accuracy. This well-characterized system was used to measure accurate stopping powers for many elements in hydrogen gas for the first time. The first measurement of a proton-fusion cross section with a radioactive ion beam at ORNL, the fusion of protons with 7 Be, was performed using the hydrogen gas target and the DRS. The 7 Be was produced at the Triangle Universities Nuclear Laboratory (TUNL) and chemically isolated at ORNL. An average 7 Be beam current of 2.5 ppA bombarded the windowless gas target for a period of 3 days. Recoiling B-8 nuclei were efficiently collected using the DRS and were clearly identified in a gas-filled ion detector. The cross section at a center-of-mass energy of 1.502 MeV was determined to be 1.12 mb with 24% uncertainty. The zero-energy S-factor was determined to be 26.8 eV-b with 25% uncertainty. The technique has been clearly demonstrated, and a precise measurement of the fusion cross section will be possible with the development of a somewhat more intense 7 Be radioactive ion beam.

  3. First limits on WIMP nuclear recoil signals in ZEPLIN-II: A two-phase xenon detector for dark matter detection

    NASA Astrophysics Data System (ADS)

    Alner, G. J.; Araújo, H. M.; Bewick, A.; Bungau, C.; Camanzi, B.; Carson, M. J.; Cashmore, R. J.; Chagani, H.; Chepel, V.; Cline, D.; Davidge, D.; Davies, J. C.; Daw, E.; Dawson, J.; Durkin, T.; Edwards, B.; Gamble, T.; Gao, J.; Ghag, C.; Howard, A. S.; Jones, W. G.; Joshi, M.; Korolkova, E. V.; Kudryavtsev, V. A.; Lawson, T.; Lebedenko, V. N.; Lewin, J. D.; Lightfoot, P.; Lindote, A.; Liubarsky, I.; Lopes, M. I.; Lüscher, R.; Majewski, P.; Mavrokoridis, K.; McMillan, J. E.; Morgan, B.; Muna, D.; Murphy, A. St. J.; Neves, F.; Nicklin, G. G.; Ooi, W.; Paling, S. M.; Pinto da Cunha, J.; Plank, S. J. S.; Preece, R. M.; Quenby, J. J.; Robinson, M.; Salinas, G.; Sergiampietri, F.; Silva, C.; Solovov, V. N.; Smith, N. J. T.; Smith, P. F.; Spooner, N. J. C.; Sumner, T. J.; Thorne, C.; Tovey, D. R.; Tziaferi, E.; Walker, R. J.; Wang, H.; White, J. T.; Wolfs, F. L. H.

    2007-11-01

    Results are presented from the first underground data run of ZEPLIN-II, a 31 kg two-phase xenon detector developed to observe nuclear recoils from hypothetical weakly interacting massive dark matter particles. Discrimination between nuclear recoils and background electron recoils is afforded by recording both the scintillation and ionisation signals generated within the liquid xenon, with the ratio of these signals being different for the two classes of event. This ratio is calibrated for different incident species using an AmBe neutron source and 60Co γ-ray sources. From our first 31 live days of running ZEPLIN-II, the total exposure following the application of fiducial and stability cuts was 225 kg × days. A background population of radon progeny events was observed in this run, arising from radon emission in the gas purification getters, due to radon daughter ion decays on the surfaces of the walls of the chamber. An acceptance window, defined by the neutron calibration data, of 50% nuclear recoil acceptance between 5 keV ee and 20 keV ee, had an observed count of 29 events, with a summed expectation of 28.6 ± 4.3 γ-ray and radon progeny induced background events. These figures provide a 90% c.l. upper limit to the number of nuclear recoils of 10.4 events in this acceptance window, which converts to a WIMP-nucleon spin-independent cross-section with a minimum of 6.6 × 10 -7 pb following the inclusion of an energy-dependent, calibrated, efficiency. A second run is currently underway in which the radon progeny will be eliminated, thereby removing the background population, with a projected sensitivity of 2 × 10 -7 pb for similar exposures as the first run.

  4. A predictive theory for elastic scattering and recoil of protons from 4He

    DOE PAGES

    Hupin, Guillaume; Quaglioni, Sofia; Navratil, Petr

    2014-12-08

    Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles) are calculated directly by solving the Schrodinger equation for five nucleons interacting through accurate two- and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and depth profiles ofmore » either hydrogen or helium. Furthermore, we compare our results to available experimental data and show that direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets and can be used to predict these cross sections when measurements are not available.« less

  5. Incorporation of a Variable Discharge Coefficient for the Primary Orifice into the Benet Labs Recoil Analysis Model via Results from Quasi-Steady State Simulations Using Computational Fluid Dynamics

    DTIC Science & Technology

    2008-03-01

    Appendix 82 MatLab© Cd Calculator Routine FORTRAN© Subroutine of the Variable Cd Model ii ABBREVIATIONS & ACRONYMS Cd...Figure 29. Overview Flowchart of Benét Labs Recoil Analysis Code Figure 30. Overview Flowchart of Recoil Brake Subroutine Figure 31...Detail Flowchart of Recoil Pressure/Force Calculations Figure 32. Detail Flowchart of Variable Cd Subroutine Figure 33. Simulated Brake

  6. Techniques for measuring the atomic recoil frequency using a grating-echo atom interferometer

    NASA Astrophysics Data System (ADS)

    Barrett, Brynle

    I have developed three types of time-domain echo atom interferometer (AIs) that use either two or three standing-wave pulses in different configurations. Experiments approaching the transit time limit are achieved using samples of laser-cooled rubidium atoms with temperatures < 5 μK contained within a glass vacuum chamber—an environment that is largely free of both magnetic fields and field gradients. The principles of the atom-interferometric measurement of Eq can be understood based on a description of the "two-pulse" AI. This interferometer uses two standing-wave pulses applied at times t = 0 and t = T 21 to create a superposition of atomic momentum states differing by multiples of the two-photon momentum, ħq = 2 ħk where k is the optical wave number, that interfere in the vicinity of t = 2T 21. This interference or "echo" manifests itself as a density grating in the atomic sample, and is probed by applying a near-resonant traveling-wave "read-out" pulse and measuring the intensity of the coherent light Bragg-scattered in the backward direction. The scattered light from the grating is associated with a λ/2-periodic modulation produced by the interference of momentum states differing by ħq. Interfering states that differ by more than ħq—which produce higher-frequency spatial modulation within the sample—cannot be detected due to the nature of the Bragg scattering detection technique employed in the experiment. The intensity of the scattered light varies in a periodic manner as a function of the standing-wave pulse separation, T21. The fundamental frequency of this modulation is the two-photon atomic recoil frequency, ω q = ħq2/2M, where q = 2k and M is the mass of the atom (a rubidium isotope in this case). The recoil frequency, ω q, is related to the recoil energy, Eq = ħωq, which is the kinetic energy associated with the recoil of the atom after a coherent two-photon scattering process. By performing the experiment on a suitably long time scale

  7. Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal

    NASA Astrophysics Data System (ADS)

    Lee, H. S.; Adhikari, G.; Adhikari, P.; Choi, S.; Hahn, I. S.; Jeon, E. J.; Joo, H. W.; Kang, W. G.; Kim, G. B.; Kim, H. J.; Kim, H. O.; Kim, K. W.; Kim, N. Y.; Kim, S. K.; Kim, Y. D.; Kim, Y. H.; Lee, J. H.; Lee, M. H.; Leonard, D. S.; Li, J.; Oh, S. Y.; Olsen, S. L.; Park, H. K.; Park, H. S.; Park, K. S.; Shim, J. H.; So, J. H.

    2015-08-01

    We report on the response of a high light-output NaI(Tl) crystal to nuclear recoils induced by neutrons from an Am-Be source and compare the results with the response to electron recoils produced by Compton-scattered 662 keV γ-rays from a 137Cs source. The measured pulse-shape discrimination (PSD) power of the NaI(Tl) crystal is found to be significantly improved because of the high light output of the NaI(Tl) detector. We quantify the PSD power with a quality factor and estimate the sensitivity to the interaction rate for weakly interacting massive particles (WIMPs) with nucleons, and the result is compared with the annual modulation amplitude observed by the DAMA/LIBRA experiment. The sensitivity to spin-independent WIMP-nucleon interactions based on 100 kg·year of data from NaI detectors is estimated with simulated experiments, using the standard halo model.

  8. Automatic detection of recoil-proton tracks and background rejection criteria in liquid scintillator-micro-capillary-array fast neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Mor, Ilan; Vartsky, David; Dangendorf, Volker; Tittelmeier, Kai.; Weierganz, Mathias; Goldberg, Mark Benjamin; Bar, Doron; Brandis, Michal

    2018-06-01

    We describe an analysis procedure for automatic unambiguous detection of fast-neutron-induced recoil proton tracks in a micro-capillary array filled with organic liquid scintillator. The detector is viewed by an intensified CCD camera. This imaging neutron detector possesses the capability to perform high position-resolution (few tens of μm), energy-dispersive transmission-imaging using ns-pulsed beams. However, when operated with CW or DC beams, it also features medium-quality spectroscopic capabilities for incident neutrons in the energy range 2-20 MeV. In addition to the recoil proton events which display a continuous extended track structure, the raw images exhibit complex ion-tracks from nuclear interactions of fast-neutrons in the scintillator, capillaries quartz-matrix and CCD. Moreover, as expected, one also observes a multitude of isolated scintillation spots of varying intensity (henceforth denoted "blobs") that originate from several different sources, such as: fragmented proton tracks, gamma-rays, heavy-ion reactions as well as events and noise that occur in the image-intensifier and CCD. In order to identify the continuous-track recoil proton events and distinguish them from all these background events, a rapid, computerized and automatic track-recognition-procedure was developed. Based on an appropriately weighted analysis of track parameters such as: length, width, area and overall light intensity, the method is capable of distinguishing a single continuous-track recoil proton from typically surrounding several thousands of background events that are found in each CCD frame.

  9. Hydrogen analysis for granite using proton-proton elastic recoil coincidence spectrometry.

    PubMed

    Komatsubara, T; Sasa, K; Ohshima, H; Kimura, H; Tajima, Y; Takahashi, T; Ishii, S; Yamato, Y; Kurosawa, M

    2008-07-01

    In an effort to develop DS02, a new radiation dosimetry system for the atomic bomb survivors of Hiroshima and Nagasaki, measurements of neutron-induced activities have provided valuable information to reconstruct the radiation situation at the time of the bombings. In Hiroshima, the depth profile of (152)Eu activity measured in a granite pillar of the Motoyasu Bridge (128 m from the hypocenter) was compared with that calculated using the DS02 methodology. For calculation of the (152)Eu production due to the thermal-neutron activation reaction, (151)Eu(n,gamma)(152)Eu, information on the hydrogen content in granite is important because the transport and slowing-down process of neutrons penetrating into the pillar is strongly affected by collisions with the protons of hydrogen. In this study, proton-proton elastic recoil coincidence spectrometry has been used to deduce the proton density in the Motoyasu pillar granite. Slices of granite samples were irradiated by a 20 MeV proton beam, and the energies of scattered and recoil protons were measured with a coincidence method. The water concentration in the pillar granite was evaluated to be 0.30 +/- 0.07%wt. This result is consistent with earlier data on adsorptive water (II) and bound water obtained by the Karl Fisher method.

  10. Electron emission and recoil effects following the beta decay of He6

    NASA Astrophysics Data System (ADS)

    Schulhoff, Eva E.; Drake, G. W. F.

    2015-11-01

    Probabilities for atomic electron excitation (shake-up) and ionization (shake-off) are studied following the beta-decay process →Li+6He6+e-+ν¯e , and in particular, recoil-induced contributions to the shake-off probability are calculated within the nonrelativistic sudden approximation. A pseudostate expansion method together with Stieltjes imaging is used to represent the complete two-electron spectrum of final Li+6 ,Li26+, and Li36+ states. Results for the recoil correction show a 7 σ disagreement with the experiment of Carlson et al. [Phys. Rev. 129, 2220 (1963), 10.1103/PhysRev.129.2220]. A variety of sum rules, including a newly derived Thomas-Reich-Kuhn oscillator strength sum rule for dipole recoil terms, provides tight constraints on the accuracy of the results. Calculations are performed for the helium 1 s 2 s 3S metastable state, as well as for the 1 s21S ground state. Our results would reduce the recoil-induced correction to the measured electroneutrino coupling constant ae μ from the apparent 0.6% used in the experiments to 0.09%.

  11. Three-body dissociation of OCS3+: Separating sequential and concerted pathways

    NASA Astrophysics Data System (ADS)

    Kumar, Herendra; Bhatt, Pragya; Safvan, C. P.; Rajput, Jyoti

    2018-02-01

    Events from the sequential and concerted modes of the fragmentation of OCS3+ that result in coincident detection of fragments C+, O+, and S+ have been separated using a newly proposed representation. An ion beam of 1.8 MeV Xe9+ is used to make the triply charged molecular ion, with the fragments being detected by a recoil ion momentum spectrometer. By separating events belonging exclusively to the sequential mode of breakup, the electronic states of the intermediate molecular ion (CO2+ or CS2+) involved are determined, and from the kinetic energy release spectra, it is shown that the low lying excited states of the parent OCS3+ are responsible for this mechanism. An estimate of branching ratios of events coming from sequential versus concerted mode is presented.

  12. XENON100 Dark Matter Search: Scintillation Response of Liquid Xenon to Electronic Recoils

    NASA Astrophysics Data System (ADS)

    Lim, Kyungeun Elizabeth

    Dark matter is one of the missing pieces necessary to complete the puzzle of the universe. Numerous astrophysical observations at all scales suggest that 23 % of the universe is made of nonluminous, cold, collisionless, nonbaryonic, yet undiscovered dark matter. Weakly Interacting Massive Particles (WIMPs) are the most well-motivated dark matter candidates and significant efforts have been made to search for WIMPs. The XENON100 dark matter experiment is currently the most sensitive experiment in the global race for the first direct detection of WIMP dark matter. XENON100 is a dual-phase (liquid-gas) time projection chamber containing a total of 161 kg of liquid xenon (LXe) with a 62kg WIMP target mass. It has been built with radiopure materials to achieve an ultra-low electromagnetic background and operated at the Laboratori Nazionali del Gran Sasso in Italy. WIMPs are expected to scatter off xenon nuclei in the target volume. Simultaneous measurement of ionization and scintillation produced by nuclear recoils allows for the detection of WIMPs in XENON100. Data from the XENON100 experiment have resulted in the most stringent limits on the spin-independent elastic WIMP-nucleon scattering cross sections for most of the significant WIMP masses. As the experimental precision increases, a better understanding of the scintillation and ionization response of LXe to low energy (< 10 keV) particles is crucial for the interpretation of data from LXe based WIMP searches. A setup has been built and operated at Columbia University to measure the scintillation response of LXe to both electronic and nuclear recoils down to energies of a few keV, in particular for the XENON100 experiment. In this thesis, I present the research carried out in the context of the XENON100 dark matter search experiment. For the theoretical foundation of the XENON100 experiment, the first two chapters are dedicated to the motivation for and detection medium choice of the XENON100 experiment

  13. Ab initio molecular dynamics simulations of low energy recoil events in MgO

    NASA Astrophysics Data System (ADS)

    Petersen, B. A.; Liu, B.; Weber, W. J.; Zhang, Y.

    2017-04-01

    Low-energy recoil events in MgO are studied using ab intio molecular dynamics simulations to reveal the dynamic displacement processes and final defect configurations. Threshold displacement energies, Ed, are obtained for Mg and O along three low-index crystallographic directions, [100], [110], and [111]. The minimum values for Ed are found along the [110] direction consisting of the same element, either Mg or O atoms. Minimum threshold values of 29.5 eV for Mg and 25.5 eV for O, respectively, are suggested from the calculations. For other directions, the threshold energies are considerably higher, 65.5 and 150.0 eV for O along [111] and [100], and 122.5 eV for Mg along both [111] and [100] directions, respectively. These results show that the recoil events in MgO are partial-charge transfer assisted processes where the charge transfer plays an important role. There is a similar trend found in other oxide materials, where the threshold displacement energy correlates linearly with the peak partial-charge transfer, suggesting this behavior might be universal in ceramic oxides.

  14. DEVELOPMENT OF A HIGH-EFFICIENCY PROTON RECOIL TELESCOPE FOR D-T NEUTRON FLUENCE MEASUREMENT.

    PubMed

    Tanimura, Y; Yoshizawa, M

    2017-12-22

    A high-efficiency proton recoil telescope was developed to determine neutron fluences in neutron fields using the 3H(d,n)4He reaction. A 2-mm thick plastic scintillation detector was employed as a radiator to increase the detection efficiency and compensate for the energy loss of the recoil proton within. Two silicon detectors were employed as the ΔE and E detectors. The distance between the radiator and the E detector was varied between 50 and 150 mm. The telescope had detection efficiencies of 3.5 × 10-3 and 7.1 × 10-4 cm2 for distances of 50 and 100 mm, respectively, which were high enough to determine the neutron fluence in 14.8-MeV neutron fields, with a few thousand cm-2 s-1 fluence rate, within a few hours. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Shoulder-Fired Weapons with High Recoil Energy: Quantifying Injury and Shooting Performance

    DTIC Science & Technology

    2004-05-01

    USARIEM TECHNICAL REPORT T04-05 SHOULDER-FIRED WEAPONS WITH HIGH RECOIL ENERGY: QUANTIFYING INJURY AND SHOOTING PERFORMANCE...ACKNOWLEDGMENTS The authors would like to thank the following individuals for their assistance in preparing this technical report: Robert Mello... myofascial and other musculoskeletal pain is considered abnormal if the anatomical site is 2 kg/cm2 lower relative to a normal control point, such as

  16. The Darkside-50 Experiment: Electron Recoil Calibrations and a Global Energy Variable

    NASA Astrophysics Data System (ADS)

    Hackett, Brianne R.

    Over the course of decades, there has been mounting astronomical evidence for non-baryonic dark matter, yet its precise nature remains elusive. A favored candidate for dark matter is the Weakly Interacting Massive Particle (WIMP) which arises naturally out of extensions to the Standard Model. WIMPs are expected to occasionally interact with particles of normal matter through nuclear recoils. DarkSide-50 aims to detect this type of particle through the use of a two-phase liquid argon time projection chamber. To make a claim of discovery, an accurate understanding of the background and WIMP search region is imperative. Knowledge of the backgrounds is done through extensive studies of DarkSide-50's response to electron and nuclear recoils. The CALibration Insertion System (CALIS) was designed and built for the purpose of introducing radioactive sources into or near the detector in a joint effort between Fermi National Laboratory (FNAL) and the University of Hawai'i at Manoa. This work describes the testing, installation, and commissioning of CALIS at the Laboratori Nazionali del Gran Sasso. CALIS has been used in multiple calibration campaigns with both neutron and gamma sources. In this work, DarkSide-50's response to electron recoils, which are important for background estimations, was studied through the use of gamma calibration sources by constructing a global energy variable which takes into account the anti-correlation between scintillation and ionization signals produced by interactions in the liquid argon. Accurately reconstructing the event energy correlates directly with quantitatively understanding the WIMP sensitivity in DarkSide-50. This work also validates the theoretically predicted beta decay spectrum of 39Ar against 39Ar beta decay data collected in the early days of DarkSide-50 while it was filled with atmospheric argon; a validation of this type is not readily found in the literature. Finally, we show how well the constructed energy variable can

  17. Recoil distance lifetime measurements in82Kr

    NASA Astrophysics Data System (ADS)

    Brüssermann, S.; Keinonen, J.; Hellmeister, H. P.; Lieb, K. P.

    1982-12-01

    The lifetimes τ=124±12, 6{-2/+4} and 380±100 ps of the E x ( I π )=3.46(8+), 2.92(6+) and 3.04(6-) MeV states, respectively, populated by the reaction76Ge(12C, α2 n) were measured with the recoil distance method. In addition upper lifetime limits were obtained for nine states. The measured lifetimes and energies indicate a band crossing at about I π =8+, probably arising from the alignment of two g 9/2 neutrons. For the 3.04 MeV 6- state as a second member of a band built on the 2.65 MeV 4- state the measured lifetime points to a two-quasiparticle configuration. The positive-parity states have been discussed in the frame of the interacting boson approximation, nuclear field theory and the cranked shell model.

  18. Recoil-free Fraction in Amorphous and Nanocrystalline Aluminium Based Alloys

    NASA Astrophysics Data System (ADS)

    Sitek, Jozef

    2008-10-01

    Aluminium based rapidly quenched alloys of nominal composition Al90Fe7Nb3 and Al94Fe2V4 were studied by Mössbauer spectroscopy. We have measured the recoil-free fraction and thermal shift at room and liquid nitrogen temperature. The frequency modes of atomic vibrations were determined and consequently the characteristic Debye temperature was derived. Characteristic temperature calculated from f-factor was lower than those fitted from second order Doppler shift. This indicates the presence of different frequency modes for amorphous and nanocrystalline states.

  19. A closer look at 40Ar/39Ar systematics of illite, recoil, retention ages, total gas ages, and a new correction method

    NASA Astrophysics Data System (ADS)

    Fitz-Diaz, E.; Hall, C. M.; van der Pluijm, B.

    2013-12-01

    One of the fundamentals of 40Ar-39Ar systematics of illite considers the effects of 39Ar recoil (ejection of 39Ar from tiny illite crystallites during the nuclear reaction 39K(n,p)39Ar), for which sample vacuum encapsulation prior to irradiation has been used since the 1990's. This technique separately measures the fraction of recoiled 39Ar and the Ar (39Ar and 40Ar) retained within illite crystals as they degas during step heating in vacuum. Total-gas ages (TGA) are calculated by using both recoiled and retained argon, while retention ages (RA) only involve retained Ar. Observations in numerous natural examples have shown that TGA fit stratigraphic constraints of geological processes when the average illite crystallite thickness (ICT) is smaller than 10nm, and that RA better matches these constrains for larger ICTs. Illite crystals with ICT >50nm show total gas and retention ages within a few My and they are identical, within analytical error, when ICT exceeds 150nm. We propose a new age correction that takes into account the average ICT and corresponding recoil for a sample , with such corrected ages (XCA) lying between the TGA and RA end-member ages. We apply this correction to samples containing one generation of illite and it particularly affects illite populations formed in the anchizone, with typical ICT values between 10-40nm. We analyzed bentonitic samples (S1, S2 and S3) from sites in Cretaceous carbonates in the front of the Monterrey salient in northern Mexico. Four size fractions (<0.05, 0.05-0.2, 0.2-1 & 1-2 μm) were separated, analyzed with XRD and dated by Ar-Ar. XRD analysis provides mineralogic characterization, illite polytype quantification, and illite crystallite thickness (ICT) determination using half-height peak width (illite crystallinity) and the Scherrer equation. All samples contain illite as the main mineral phase, ICT values between 8-27nm, from fine to coarser grain size fractions. Ages show a range in TGA among the different size

  20. Comparative study of Monte Carlo particle transport code PHITS and nuclear data processing code NJOY for recoil cross section spectra under neutron irradiation

    NASA Astrophysics Data System (ADS)

    Iwamoto, Yosuke; Ogawa, Tatsuhiko

    2017-04-01

    Because primary knock-on atoms (PKAs) create point defects and clusters in materials that are irradiated with neutrons, it is important to validate the calculations of recoil cross section spectra that are used to estimate radiation damage in materials. Here, the recoil cross section spectra of fission- and fusion-relevant materials were calculated using the Event Generator Mode (EGM) of the Particle and Heavy Ion Transport code System (PHITS) and also using the data processing code NJOY2012 with the nuclear data libraries TENDL2015, ENDF/BVII.1, and JEFF3.2. The heating number, which is the integral of the recoil cross section spectra, was also calculated using PHITS-EGM and compared with data extracted from the ACE files of TENDL2015, ENDF/BVII.1, and JENDL4.0. In general, only a small difference was found between the PKA spectra of PHITS + TENDL2015 and NJOY + TENDL2015. From analyzing the recoil cross section spectra extracted from the nuclear data libraries using NJOY2012, we found that the recoil cross section spectra were incorrect for 72Ge, 75As, 89Y, and 109Ag in the ENDF/B-VII.1 library, and for 90Zr and 55Mn in the JEFF3.2 library. From analyzing the heating number, we found that the data extracted from the ACE file of TENDL2015 for all nuclides were problematic in the neutron capture region because of incorrect data regarding the emitted gamma energy. However, PHITS + TENDL2015 can calculate PKA spectra and heating numbers correctly.

  1. A stretch/compress scheme for a high temporal resolution detector for the magnetic recoil spectrometer time (MRSt)

    DOE PAGES

    Hilsabeck, T. J.; Frenje, J. A.; Hares, J. D.; ...

    2016-08-02

    Here we present a time-resolved detector concept for the magnetic recoil spectrometer for time-resolved measurements of the NIF neutron spectrum. The measurement is challenging due to the time spreading of the recoil protons (or deuterons) as they transit an energy dispersing magnet system. Ions arrive at the focal plane of the magnetic spectrometer over an interval of tens of nanoseconds. We seek to measure the time-resolved neutron spectrum with 20 ps precision by manipulating an electron signal derived from the ions. A stretch-compress scheme is employed to remove transit time skewing while simultaneously reducing the bandwidth requirements for signal recording.more » Simulation results are presented along with design concepts for structures capable of establishing the required electromagnetic fields.« less

  2. A stretch/compress scheme for a high temporal resolution detector for the magnetic recoil spectrometer time (MRSt)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilsabeck, T. J.; Frenje, J. A.; Hares, J. D.

    Here we present a time-resolved detector concept for the magnetic recoil spectrometer for time-resolved measurements of the NIF neutron spectrum. The measurement is challenging due to the time spreading of the recoil protons (or deuterons) as they transit an energy dispersing magnet system. Ions arrive at the focal plane of the magnetic spectrometer over an interval of tens of nanoseconds. We seek to measure the time-resolved neutron spectrum with 20 ps precision by manipulating an electron signal derived from the ions. A stretch-compress scheme is employed to remove transit time skewing while simultaneously reducing the bandwidth requirements for signal recording.more » Simulation results are presented along with design concepts for structures capable of establishing the required electromagnetic fields.« less

  3. Theory of ionizing neutrino-atom collisions: The role of atomic recoil

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2016-04-01

    We consider theoretically ionization of an atom by neutrino impact taking into account electromagnetic interactions predicted for massive neutrinos by theories beyond the Standard Model. The effects of atomic recoil in this process are estimated using the one-electron and semiclassical approximations and are found to be unimportant unless the energy transfer is very close to the ionization threshold. We show that the energy scale where these effects become important is insignificant for current experiments searching for magnetic moments of reactor antineutrinos.

  4. Proposed low-energy absolute calibration of nuclear recoils in a dual-phase noble element TPC using D-D neutron scattering kinematics

    NASA Astrophysics Data System (ADS)

    Verbus, J. R.; Rhyne, C. A.; Malling, D. C.; Genecov, M.; Ghosh, S.; Moskowitz, A. G.; Chan, S.; Chapman, J. J.; de Viveiros, L.; Faham, C. H.; Fiorucci, S.; Huang, D. Q.; Pangilinan, M.; Taylor, W. C.; Gaitskell, R. J.

    2017-04-01

    We propose a new technique for the calibration of nuclear recoils in large noble element dual-phase time projection chambers used to search for WIMP dark matter in the local galactic halo. This technique provides an in situ measurement of the low-energy nuclear recoil response of the target media using the measured scattering angle between multiple neutron interactions within the detector volume. The low-energy reach and reduced systematics of this calibration have particular significance for the low-mass WIMP sensitivity of several leading dark matter experiments. Multiple strategies for improving this calibration technique are discussed, including the creation of a new type of quasi-monoenergetic neutron source with a minimum possible peak energy of 272 keV. We report results from a time-of-flight-based measurement of the neutron energy spectrum produced by an Adelphi Technology, Inc. DD108 neutron generator, confirming its suitability for the proposed nuclear recoil calibration.

  5. Extra-large remnant recoil velocities and spins from near-extremal-Bowen-York-spin black-hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dain, Sergio; Max Planck Institute for Gravitational Physics; Lousto, Carlos O.

    2008-07-15

    We evolve equal-mass, equal-spin black-hole binaries with specific spins of a/m{sub H}{approx}0.925, the highest spins simulated thus far and nearly the largest possible for Bowen-York black holes, in a set of configurations with the spins counteraligned and pointing in the orbital plane, which maximizes the recoil velocities of the merger remnant, as well as a configuration where the two spins point in the same direction as the orbital angular momentum, which maximizes the orbital hangup effect and remnant spin. The coordinate radii of the individual apparent horizons in these cases are very small and the simulations require very high centralmore » resolutions (h{approx}M/320). We find that these highly spinning holes reach a maximum recoil velocity of {approx}3300 km s{sup -1} (the largest simulated so far) and, for the hangup configuration, a remnant spin of a/m{sub H}{approx}0.922. These results are consistent with our previous predictions for the maximum recoil velocity of {approx}4000 km s{sup -1} and remnant spin; the latter reinforcing the prediction that cosmic censorship is not violated by merging highly spinning black-hole binaries. We also numerically solve the initial data for, and evolve, a single maximal-Bowen-York-spin black hole, and confirm that the 3-metric has an O(r{sup -2}) singularity at the puncture, rather than the usual O(r{sup -4}) singularity seen for nonmaximal spins.« less

  6. Measurement of Low-Energy Nuclear-Recoil Quenching Factors in CsI[Na] and Statistical Analysis of the First Observation of Coherent, Elastic Neutrino-Nucleus Scattering

    NASA Astrophysics Data System (ADS)

    Rich, Grayson Currie

    The COHERENT Collaboration has produced the first-ever observation, with a significance of 6.7sigma, of a process consistent with coherent, elastic neutrino-nucleus scattering (CEnuNS) as first predicted and described by D.Z. Freedman in 1974. Physics of the CEnuNS process are presented along with its relationship to future measurements in the arenas of nuclear physics, fundamental particle physics, and astroparticle physics, where the newly-observed interaction presents a viable tool for investigations into numerous outstanding questions about the nature of the universe. To enable the CEnuNS observation with a 14.6-kg CsI[Na] detector, new measurements of the response of CsI[Na] to low-energy nuclear recoils, which is the only mechanism by which CEnuNS is detectable, were carried out at Triangle Universities Nuclear Laboratory; these measurements are detailed and an effective nuclear-recoil quenching factor of 8.78 +/- 1.66% is established for CsI[Na] in the recoil-energy range of 5-30 keV, based on new and literature data. Following separate analyses of the CEnuNS-search data by groups at the University of Chicago and the Moscow Engineering and Physics Institute, information from simulations, calculations, and ancillary measurements were used to inform statistical analyses of the collected data. Based on input from the Chicago analysis, the number of CEnuNS events expected from the Standard Model is 173 +/- 48; interpretation as a simple counting experiment finds 136 +/- 31 CEnuNS counts in the data, while a two-dimensional, profile likelihood fit yields 134 +/- 22 CEnuNS counts. Details of the simulations, calculations, and supporting measurements are discussed, in addition to the statistical procedures. Finally, potential improvements to the CsI[Na]-based CEnuNS measurement are presented along with future possibilities for COHERENT Collaboration, including new CEnuNS detectors and measurement of the neutrino-induced neutron spallation process.

  7. The Final Merger of Massive Black Holes: Recoils, Gravitational Waves, and Electromagnetic Signatures

    NASA Technical Reports Server (NTRS)

    Centrella, Joan M.

    2010-01-01

    The final merger of two massive black holes produces a powerful burst of gravitational radiation, emitting more energy than all the stars in the observable universe combined. The resulting gravitational waveforms will be easily detectable by the space-based LISA out to redshifts z greater than 10, revealing the masses and spins of the black holes to high precision. If the merging black holes have unequal masses, or asymmetric spins, the final black hole that forms can recoil with a velocity exceeding 1000 km/s. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new results that are revealing the dynamics and waveforms of binary black hole mergers, recoil velocities, and the possibility of accompanying electromagnetic outbursts.

  8. Ab initio molecular dynamics simulations of low energy recoil events in MgO

    DOE PAGES

    Petersen, B. A.; Liu, B.; Weber, W. J.; ...

    2017-01-11

    In this paper, low-energy recoil events in MgO are studied using ab initio molecular dynamics simulations to reveal the dynamic displacement processes and final defect configurations. Threshold displacement energies, E d, are obtained for Mg and O along three low-index crystallographic directions, [100], [110], and [111]. The minimum values for E d are found along the [110] direction consisting of the same element, either Mg or O atoms. Minimum threshold values of 29.5 eV for Mg and 25.5 eV for O, respectively, are suggested from the calculations. For other directions, the threshold energies are considerably higher, 65.5 and 150.0 eVmore » for O along [111] and [100], and 122.5 eV for Mg along both [111] and [100] directions, respectively. These results show that the recoil events in MgO are partial-charge transfer assisted processes where the charge transfer plays an important role. Finally, there is a similar trend found in other oxide materials, where the threshold displacement energy correlates linearly with the peak partial-charge transfer, suggesting this behavior might be universal in ceramic oxides.« less

  9. A new sliding joint to accommodate recoil of a free-piston-driven expansion tube facility

    NASA Astrophysics Data System (ADS)

    Gildfind, D. E.; Morgan, R. G.

    2016-11-01

    This paper describes a new device to decouple free-piston driver recoil and its associated mechanical vibration from the acceleration tube and test section of The University of Queensland's X3 expansion tube. A sliding joint is introduced to the acceleration tube which axially decouples the facility at this station. When the facility is fired, the upstream section of the facility, which includes the free-piston driver, can recoil upstream freely. The downstream acceleration tube remains stationary. This arrangement provides two important benefits. Firstly, it eliminates nozzle movement relative to the test section before and during the experiment. This has benefits in terms of experimental setup and alignment. Secondly, it prevents transmission of mechanical disturbances from the free-piston driver to the acceleration tube, thereby eliminating mechanically-induced transducer noise in the sensitive pressure transducers installed in this low-pressure tube. This paper details the new design, and presents experimental confirmation of its performance.

  10. Temperature Dependence and Recoil-free Fraction Effects in Olivines Across the Mg-Fe Solid Solution

    NASA Technical Reports Server (NTRS)

    Sklute, E. C.; Rothstein, Y.; Dyar, M. D.; Schaefer, M. W.; Menzies, O. N.; Bland, P. A.; Berry, F. J.

    2005-01-01

    Olivine and pyroxene are the major ferromagnesian minerals in most meteorite types and in mafic igneous rocks that are dominant at the surface of the Earth. It is probable that they are the major mineralogical components at the surface of any planetary body that has undergone differentiation processes. In situ mineralogical studies of the rocks and soils on Mars suggest that olivine is a widespread mineral on that planet s surface (particularly at the Gusev site) and that it has been relatively unaffected by alteration. Thus an understanding of the characteristics of Mossbauer spectra of olivine is of great importance in interpreting MER results. However, variable temperature Mossbauer spectra of olivine, which are needed to quantify recoil-free fraction effects and to understand the temperature dependence of olivine spectra, are lacking in the literature. Thus, we present here a study of the temperature dependence and recoil-free fraction of a series of synthetic olivines.

  11. A recoil-proton spectrometer based on a p-i-n diode implementing pulse-shape discrimination.

    PubMed

    Agosteo, S; D'Angelo, G; Fazzi, A; Foglio Para, A; Pola, A; Ventura, L; Zotto, P

    2004-01-01

    A recoil-proton spectrometer was created by coupling a p-i-n diode with a polyethylene converter. The maximum detectable energy, imposed by the thickness of the totally depleted layer, is approximately 6 MeV. The minimum detectable energy is limited by the contribution of secondary electrons generated by photons in the detector assembly. This limit is approximately 1.5 MeV at full-depletion voltage and was decreased using pulse-shape discrimination. The diode was set up in the 'reverse-injection' configuration (i.e. with the N+ layer adjacent to the converter). This configuration provides longer collection times for the electron-hole pairs generated by the recoil-protons. The pulse-shape discrimination was based on the zero-crossing time of bipolar signals from a (CR)2-(RC)2 filter. The detector was characterised using monoenergetic neutrons generated in the Van De Graaff CN accelerator at the INFN-Laboratori Nazionali di Legnaro. The energy limit for discrimination proved to be approximately 900 keV.

  12. Development and evaluation of a collection apparatus for recoil products for study of the deexcitation process of (235m)U.

    PubMed

    Shigekawa, Y; Kasamatsu, Y; Shinohara, A

    2016-05-01

    The nucleus (235m)U is an isomer with extremely low excitation energy (76.8 eV) and decays dominantly through the internal conversion (IC) process. Because outer-shell electrons are involved in the IC process, the decay constant of (235m)U depends on its chemical environment. We plan to study the deexcitation process of (235m)U by measuring the energy spectra of IC electrons in addition to the decay constants for various chemical forms. In this paper, the preparation method of (235m)U samples from (239)Pu by using alpha-recoil energy is reported. A Collection Apparatus for Recoil Products was fabricated, and then collection efficiencies under various conditions were determined by collecting (224)Ra recoiling out of (228)Th electrodeposited and precipitated sources. The pressure in the apparatus (vacuum or 1 atm of N2 gas) affected the variations of the collection efficiencies depending on the negative voltage applied to the collector. The maximum values of the collection efficiencies were mainly affected by the thickness of the (228)Th sources. From these results, the suitable conditions of the (239)Pu sources for preparation of (235m)U were determined. In addition, dissolution efficiencies were determined by washing collected (224)Ra with solutions. When (224)Ra was collected in 1 atm of N2 gas and dissolved with polar solutions such as water, the dissolution efficiencies were nearly 100%. The method of rapid dissolution of recoil products would be applicable to rapid preparation of short-lived (235m)U samples for various chemical forms.

  13. Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Xenon Collaboration

    2017-03-01

    We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 yr, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. There is a weak modulation signature at a period of 43 1-14+16 day in the low energy region of (2.0-5.8) keV in the single scatter event sample, with a global significance of 1.9 σ ; however, no other more significant modulation is observed. The significance of an annual modulation signature drops from 2.8 σ , from a previous analysis of a subset of this data, to 1.8 σ with all data combined. Single scatter events in the low energy region are thus used to exclude the DAMA/LIBRA annual modulation as being due to dark matter electron interactions via axial vector coupling at 5.7 σ .

  14. Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy β and nuclear recoils in liquid argon with DEAP-1

    DOE PAGES

    Amaudruz, P. -A.; Batygov, M.; Beltran, B.; ...

    2016-09-17

    The DEAP-1 low-background liquid argon detector has been used to measure scintillation pulse shapes of beta decays and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination down to an electron-equivalent energy of 20 keV ee. The relative intensities of singlet/triplet states in liquid argon have been measured as a function of energy between 15 and 500 keVee for both beta and nuclear recoils. Using a triple-coincidence tag we find the fraction of beta events that are misidentified as nuclear recoils to be less than 6 x 10 -8 between 43-86 keV ee and that the discrimination parametermore » agrees with a simple analytic model. The discrimination measurement is currently limited by nuclear recoils induced by cosmic-ray generated neutrons, and is expected to improve by operating the detector underground at SNOLAB. The analytic model predicts a beta misidentification fraction of 10 -10 for an electron-equivalent energy threshold of 20 keV ee. This reduction allows for a sensitive search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 10 -46 cm 2.« less

  15. Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy β and nuclear recoils in liquid argon with DEAP-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaudruz, P. -A.; Batygov, M.; Beltran, B.

    The DEAP-1 low-background liquid argon detector has been used to measure scintillation pulse shapes of beta decays and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination down to an electron-equivalent energy of 20 keV ee. The relative intensities of singlet/triplet states in liquid argon have been measured as a function of energy between 15 and 500 keVee for both beta and nuclear recoils. Using a triple-coincidence tag we find the fraction of beta events that are misidentified as nuclear recoils to be less than 6 x 10 -8 between 43-86 keV ee and that the discrimination parametermore » agrees with a simple analytic model. The discrimination measurement is currently limited by nuclear recoils induced by cosmic-ray generated neutrons, and is expected to improve by operating the detector underground at SNOLAB. The analytic model predicts a beta misidentification fraction of 10 -10 for an electron-equivalent energy threshold of 20 keV ee. This reduction allows for a sensitive search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 10 -46 cm 2.« less

  16. The DarkSide-50 Experiment: Electron Recoil Calibrations and A Global Energy Variable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hackett, Brianne Rae

    2017-01-01

    Over the course of decades, there has been mounting astronomical evidence for non-baryonic dark matter, yet its precise nature remains elusive. A favored candidate for dark matter is the Weakly Interacting Massive Particle (WIMP) which arises naturally out of extensions to the Standard Model. WIMPs are expected to occasionally interact with particles of normal matter through nuclear recoils. DarkSide-50 aims to detect this type of particle through the use of a two-phase liquid argon time projection chamber. To make a claim of discovery, an accurate understanding of the background and WIMP search region is imperative. Knowledge of the backgrounds ismore » done through extensive studies of DarkSide-50's response to electron and nuclear recoils. The CALibration Insertion System (CALIS) was designed and built for the purpose of introduc- ing radioactive sources into or near the detector in a joint eort between Fermi National Laboratory (FNAL) and the University of Hawai'i at Manoa. This work describes the testing, installation, and commissioning of CALIS at the Laboratori Nazionali del Gran Sasso. CALIS has been used in mul- tiple calibration campaigns with both neutron and sources. In this work, DarkSide-50's response to electron recoils, which are important for background estimations, was studied through the use of calibration sources by constructing a global energy variable which takes into account the anti- correlation between scintillation and ionization signals produced by interactions in the liquid argon. Accurately reconstructing the event energy correlates directly with quantitatively understanding the WIMP sensitivity in DarkSide-50. This work also validates the theoretically predicted decay spectrum of 39Ar against 39Ar decay data collected in the early days of DarkSide-50 while it was lled with atmospheric argon; a validation of this type is not readily found in the literature. Finally, we show how well the constructed energy variable can predict energy

  17. Development of phonon-mediated cryogenic particle detectors with electron and nuclear recoil discrimination

    NASA Astrophysics Data System (ADS)

    Nam, Sae Woo

    1999-10-01

    Observations have shown that galaxies, including our own, are surrounded by halos of ``dark matter''. One possibility is that this may be an undiscovered form of matter, weakly interacting massive particles (WIMPs). This thesis describes the development of silicon based cryogenic particle detectors designed to directly detect interactions with these WIMPs. These detectors are part of a new class of detectors which are able to reject background events by simultaneously measuring energy deposited into phonons versus electron hole pairs. By using the phonon sensors with the ionization sensors to compare the partitioning of energy between phonons and ionizations we can discriminate between electron recoil events (background radiation) and nuclear recoil events (dark matter events). These detectors with built-in background rejection are a major advance in background rejection over previous searches. Much of this thesis will describe work in scaling the detectors from / g prototype devices to a fully functional prototype 100g dark matter detector. In particular, many sensors were fabricated and tested to understand the behavior of our phonon sensors, Quasipartice trapping assisted Electrothermal feedback Transition edge sensors (QETs). The QET sensors utilize aluminum quasiparticle traps attached to tungsten superconducting transition edge sensors patterned on a silicon substrate. The tungsten lines are voltage biased and self-regulate in the transition region. Phonons from particle interactions within the silicon propogate to the surface where they are absorbed by the aluminum generating quasiparticles in the aluminum. The quasiparticles diffuse into the tungsten and couple energy into the tungsten electron system. Consequently, the tungsten increases in resistance and causes a current pulse which is measured with a high bandwidth SQUID system. With this advanced sensor technology, we were able to demonstrate detectors with xy position sensitivity with electron and

  18. First identification of excited states in Ba 117 using the recoil- β -delayed proton tagging technique

    DOE PAGES

    Ding, B.; Liu, Z.; Seweryniak, D.; ...

    2017-02-01

    Excited states have been observed for the first time in the neutron-deficient nucleus 117Ba using the recoil-decay tagging technique following the heavy-ion fusion-evaporation reaction 64Zn( 58Ni, 2p3n) 117Ba. Prompt γ rays have been assigned to 117Ba through correlations with β-delayed protons following the decay of A = 117 recoils. Through the analysis of the γ–γ coincidence relationships, a high-spin level scheme consisting of two bands has been established in 117Ba. Based on the systematics of the level spacings in the neighboring barium isotopes, the two bands are proposed to have νh 11/2[532]5/2 – and νd 5/2[413]5/2 + configurations, respectively. Lastly,more » the observed band-crossing properties are interpreted in the framework of cranked shell model.« less

  19. What Can We Learn From Proton Recoils about Heavy-Ion SEE Sensitivity?

    NASA Technical Reports Server (NTRS)

    Ladbury, Raymond L.

    2016-01-01

    The fact that protons cause single-event effects (SEE) in most devices through production of light-ion recoils has led to attempts to bound heavy-ion SEE susceptibility through use of proton data. Although this may be a viable strategy for some devices and technologies, the data must be analyzed carefully and conservatively to avoid over-optimistic estimates of SEE performance. We examine the constraints that proton test data can impose on heavy-ion SEE susceptibility.

  20. Probing Excited States in Nuclei at and Beyond the Proton Drip-Line

    NASA Astrophysics Data System (ADS)

    Carpenter, Michael P.

    1999-03-01

    The coupling of a Compton-suppressed Ge (CSGe) detector array to a recoil separator has seen limited use in the past due to the low efficiency for measuring recoil-γ ray coincidences (<0.1% ). With the building of new generation recoil separators and gamma-ray arrays, a substantial increase in detection efficiency has been achieved. This allows for the opportunity to measure excited states in nuclei with cross-sections below 100 nb. In this paper, results from the coupling of a modest array of CSGe detectors (AYE-Ball) and a current generation Ge array (Gammasphere) with a recoil separator (FMA) will be presented.

  1. Experimental evidence of the vapor recoil mechanism in the boiling crisis.

    PubMed

    Nikolayev, V S; Chatain, D; Garrabos, Y; Beysens, D

    2006-11-03

    Boiling crisis experiments are carried out in the vicinity of the liquid-gas critical point of H2. A magnetic gravity compensation setup is used to enable nucleate boiling at near critical pressure. The measurements of the critical heat flux that defines the threshold for the boiling crisis are carried out as a function of the distance from the critical point. The obtained power law behavior and the boiling crisis dynamics agree with the predictions of the vapor recoil mechanism and disagree with the classical vapor column mechanism.

  2. A gas ionisation detector in the axial (Bragg) geometry used for the time-of-flight elastic recoil detection analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siketić, Zdravko; Skukan, Natko; Bogdanović Radović, Iva

    2015-08-15

    In this paper, time-of-flight elastic recoil detection analysis spectrometer with a newly constructed gas ionization detector for energy detection is presented. The detector is designed in the axial (Bragg) geometry with a 3 × 3 array of 50 nm thick Si{sub 3}N{sub 4} membranes as an entrance window. 40 mbar isobutane gas was sufficient to stop a 30 MeV primary iodine beam as well as all recoils in the detector volume. Spectrometer and detector performances were determined showing significant improvement in the mass and energy resolution, respectively, comparing to the spectrometer with a standard silicon particle detector for an energymore » measurement.« less

  3. The Final Merger of Massive Black Holes: Recoils, Gravitational Waves, and Electromagnetic Signatures

    NASA Astrophysics Data System (ADS)

    Centrella, Joan

    2010-03-01

    The final merger of two massive black holes produces a powerful burst of gravitational radiation, emitting more energy than all the stars in the observable universe combined. The resulting gravitational waveforms will be easily detectable by the space-based LISA out to redshifts z > 10, revealing the masses and spins of the black holes to high precision. If the merging black holes have unequal masses, or asymmetric spins, the final black hole that forms can recoil with a velocity exceeding 1000 km/s. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new results that are revealing the dynamics and waveforms of binary black hole mergers, recoil velocities, and the possibility of accompanying electromagnetic outbursts. This research is supported in part by NASA grant 06-BEFS06-19 to Goddard Space Flight Center.

  4. Conception of a New Recoil Proton Telescope for Real-Time Neutron Spectrometry in Proton-Therapy

    NASA Astrophysics Data System (ADS)

    Combe, Rodolphe; Arbor, Nicolas; el Bitar, Ziad; Higueret, Stéphane; Husson, Daniel

    2018-01-01

    Neutrons are the main type of secondary particles emitted in proton-therapy. Because of the risk of secondary cancer and other late occurring effects, the neutron dose should be included in the out-of-field dose calculations. A neutron spectrometer has to be used to take into account the energy dependence of the neutron radiological weighting factor. Due to its high dependence on various parameters of the irradiation (beam, accelerator, patient), the neutron spectrum should be measured independently for each treatment. The current reference method for the measurement of the neutron energy, the Bonner Sphere System, consists of several homogeneous polyethylene spheres with increasing diameters equipped with a proportional counter. It provides a highresolution reconstruction of the neutron spectrum but requires a time-consuming work of signal deconvolution. New neutron spectrometers are being developed, but the main experimental limitation remains the high neutron flux in proton therapy treatment rooms. A new model of a real-time neutron spectrometer, based on a Recoil Proton Telescope technology, has been developed at the IPHC. It enables a real-time high-rate reconstruction of the neutron spectrum from the measurement of the recoil proton trajectory and energy. A new fast-readout microelectronic integrated sensor, called FastPixN, has been developed for this specific purpose. A first prototype, able to detect neutrons between 5 and 20 MeV, has already been validated for metrology with the AMANDE facility at Cadarache. The geometry of the new Recoil Proton Telescope has been optimized via extensive Geant4 Monte Carlo simulations. Uncertainty sources have been carefully studied in order to improve simultaneously efficiency and energy resolution, and solutions have been found to suppress the various expected backgrounds. We are currently upgrading the prototype for secondary neutron detection in proton therapy applications.

  5. Measurement of Recoil Losses and Ranges for Spallation Products Produced in Proton Interactions with Al, Si, Mg at 200 and 500 MeV

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.

    2005-01-01

    Cosmic rays interact with extraterrestrial materials to produce a variety of spallation products. If these cosmogenic nuclides are produced within an inclusion in such material, then an important consideration is the loss of the product nuclei, which recoil out of the inclusion. Of course, at the same time, some atoms of the product nuclei under study may be knocked into the inclusion from the surrounding material, which is likely to have a different composition to that of the inclusion [1]. For example, Ne-21 would be produced in presolar grains, such as SiC, when irradiated in interstellar space. However, to calculate a presolar age, one needs to know how much 21Ne is retained in the grain. For small grains, the recoil losses might be large [2, 3] To study this effect under laboratory conditions, recoil measurements were made using protons with energies from 66 - 1600 MeV on Si, Al and Ba targets [3, 4, 5].

  6. Production of soft X-ray emitting slow multiply charged ions - Recoil ion spectroscopy

    NASA Technical Reports Server (NTRS)

    Sellin, I. A.; Elston, S. B.; Forester, J. P.; Griffin, P. M.; Pegg, D. J.; Peterson, R. S.; Thoe, R. S.; Vane, C. R.; Wright, J. J.; Groeneveld, K.-O.

    1977-01-01

    S ions with a mean charge state of about 14+ and Cl ions with a mean charge state of 12+ were used to study Ne L-shell vacancy production. The ions caused copious production of NeII-NeVIII excited states with approximately 10 to the minus 18 sq cm cross sections. The induced recoil velocities might have application to a significantly higher resolution spectroscopy than is possible with beam-foil methods.

  7. Light output response of EJ-309 liquid organic scintillator to 2.86-3.95 MeV carbon recoil ions due to neutron elastic and inelastic scatter

    NASA Astrophysics Data System (ADS)

    Norsworthy, Mark A.; Ruch, Marc L.; Hamel, Michael C.; Clarke, Shaun D.; Hausladen, Paul A.; Pozzi, Sara A.

    2018-03-01

    We present the first measurements of energy-dependent light output from carbon recoils in the liquid organic scintillator EJ-309. For this measurement, neutrons were produced by an associated particle deuterium-tritium generator and scattered by a volume of EJ-309 scintillator into stop detectors positioned at four fixed angles. Carbon recoils in the scintillator were isolated using triple coincidence among the associated particle detector, scatter detector, and stop detectors. The kinematics of elastic and inelastic scatter allowed data collection at eight specific carbon recoil energies between 2.86 and 3.95 MeV. We found the light output caused by carbon recoils in this energy range to be approximately 1.14% of that caused by electrons of the same energy, which is comparable to the values reported for other liquid organic scintillators. A comparison of the number of scattered neutrons at each angle to a Monte Carlo N-Particle eXtended simulation indicates that the ENDF/B-VII.1 evaluation of differential cross sections for 14.1 MeV neutrons on carbon has discrepancies with the experiment as large as 55%, whereas those reported in the JENDL-4.0u evaluation agree with experiment.

  8. Phase separation and mechanical properties of an elastomeric biomaterial from spider wrapping silk and elastin block copolymers.

    PubMed

    Muiznieks, Lisa D; Keeley, Fred W

    2016-10-01

    Elastin and silk spidroins are fibrous, structural proteins with elastomeric properties of extension and recoil. While elastin is highly extensible and has excellent recovery of elastic energy, silks are particularly strong and tough. This study describes the biophysical characterization of recombinant polypeptides designed by combining spider wrapping silk and elastin-like sequences as a strategy to rationally increase the strength of elastin-based materials while maintaining extensibility. We demonstrate a thermo-responsive phase separation and spontaneous colloid-like droplet formation from silk-elastin block copolymers, and from a 34 residue disordered region of Argiope trifasciata wrapping silk alone, and measure a comprehensive suite of tensile mechanical properties from cross-linked materials. Silk-elastin materials exhibited significantly increased strength, toughness, and stiffness compared to an elastin-only material, while retaining high failure strains and low energy loss upon recoil. These data demonstrate the mechanical tunability of protein polymer biomaterials through modular, chimeric recombination, and provide structural insights into mechanical design. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 693-703, 2016. © 2016 Wiley Periodicals, Inc.

  9. Enhancement of collective atomic recoil lasing due to pump phase modulation

    NASA Astrophysics Data System (ADS)

    Robb, G. R. M.; Burgess, R. T. L.; Firth, W. J.

    2008-10-01

    We investigate the effect of a phase-modulated pump beam on collective backscattering [also termed collective atomic recoil lasing (CARL)] by a cold, collisionless atomic gas. We show using a numerical analysis that different regimes can be identified in which the atomic dynamics evolves in a qualitatively different manner during the light-atom interaction, depending on the magnitude of the pump modulation frequency. Our results also demonstrate that phase-modulating the pump field can substantially enhance the backscattered field intensity relative to the case of a monochromatic pump which has been used in CARL experiments to date.

  10. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    DOE PAGES

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; ...

    2015-03-24

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase offers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at themore » 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.« less

  11. Mahan polaritons and their lifetime due to hole recoil

    NASA Astrophysics Data System (ADS)

    Baeten, Maarten; Wouters, Michiel

    2015-11-01

    We present a theoretical study on polaritons in doped semiconductor microcavities, focussing on a cavity mode that is resonant with the Fermi edge. In agreement with experimental results, the strong light-matter coupling is maintained under very high doping within our ladder diagram approximation. In particular, we find that the polaritons result from the strong admixing of the cavity mode with the Mahan exciton. The upper Mahan polariton, lying in the electron-hole continuum, always remains visible and has a linewidth due to free interband electron-hole creation. The lower Mahan polariton acquires a finite lifetime due to relaxation of the valence band hole if the electron density exceeds a certain critical value. However, if the Rabi splitting exceeds the inverse hole recoil time, the lower polariton lifetime is only limited by the cavity properties.

  12. Ab initio molecular dynamics investigations of low-energy recoil events in Ni and NiCo

    DOE PAGES

    Liu, Bin; Yuan, Fenglin; Jin, Ke; ...

    2015-10-06

    Low-energy recoil events in pure Ni and the equiatomic NiCo alloy are studied using ab initio molecular dynamics simulations. We found that the threshold displacement energies are strongly dependent on orientation and weakly dependent on composition. The minimum threshold displacement energies are along the [1 1 0] direction in both pure Ni and the NiCo alloy. Compared to pure Ni, the threshold displacement energies increase slightly in the NiCo alloy due to stronger bonds in the alloy, irrespective of the element type of the PKA. A single Ni interstitial occupying the center of a tetrahedron formed by four Ni atomsmore » and a <1 0 0> split interstitial is produced in pure Ni by the recoils, while only the <1 0 0> split interstitial is formed in the NiCo alloy. Compared to the replacement sequences in pure Ni, anti-site defect sequences are observed in the alloy, which have high efficiency for both producing defects and transporting energy outside of the cascade core. These results provide insights into energy transfer processes occurring in equiatomic alloys under irradiation.« less

  13. Time-of-flight scattering and recoiling spectrometer (TOF-SARS) for surface analysis

    NASA Astrophysics Data System (ADS)

    Grizzi, O.; Shi, M.; Bu, H.; Rabalais, J. W.

    1990-02-01

    A UHV spectrometer system has been designed and constructed for time-of-flight scattering and recoiling spectrometry (TOF-SARS). The technique uses a pulsed primary ion beam and TOF methods for analysis of both scattered and recoiled neutrals (N) and ions (I) simultaneously with continuous scattering angle variation over a flight path of ≊1 m. The pulsed ion beam line uses an electron impact ionization source with acceleration up to 5 keV; pulse widths down to 20 ns with average current densities of 0.05-5.0 nA/mm2 have been obtained. Typical current densities used herein are ≊0.1 nA/mm2 and TOF spectra can be collected with a total ion dose of <10-3 ions/surface atom. A channel electron multiplier detector, which is sensitive to both ions and fast neutrals, is mounted on a long tube connected to a precision rotary motion feedthru, allowing continuous rotation over a scattering angular range 0°<θ<165°. The sample is mounted on a precision manipulator, allowing azimuthal δ and incident α angle rotation, as well as translation along three orthogonal axes. The system also accommodates standard surface analysis instrumentation for LEED, AES, XPS, and UPS. The capabilities of the system are demonstrated by the following examples: (A) TOF spectra versus scattering angle θ; (B) comparison to LEED and AES; (C) surface and adsorbate structure determinations; (D) monitoring surface roughness; (E) surface semichanneling measurements; (F) measurements of scattered ion fractions; and (G) ion induced Auger electron emission.

  14. Monsters on the move: A search for supermassive black holes undergoing gravitational wave recoil

    NASA Astrophysics Data System (ADS)

    Jadhav, Yashashree; Robinson, Andrew; Lena, Davide

    2018-01-01

    There is compelling evidence that supermassive black holes (SMBH) reside at the centers of all large galaxies and are the gravitational ‘engines’ of Active Galactic Nuclei (AGN). Furthermore, galaxy mergers are thought to have played a fundamental role in the growth and evolution of the largest galaxies in the nearby universe. A galaxy merger is expected to lead to the formation of an SMBH binary, which itself eventually coalesces through the emission of gravitational waves. Such events fall outside the frequency range accessible to the LIGO/VIRGO gravitational wave detectors, but they can be detected via electromagnetic signatures. Numerical relativity simulations show that, depending on the initial spin-orbit configuration of the binary, the merged SMBH receives a gravitational recoil kick that may reach several 1000km/s. This recoil in turn causes the merged SMBH to oscillate for up to ~1 Gyr in the gravitational potential well of the galaxy. During this time, the recoiling SMBH may be observed as a ‘displaced’ AGN. Such events provide a strong test of gravitational physics and the formation and merger frequencies of binary SMBH. As a result of residual oscillations, displacements ~10 – 100pc may be expected even in nearby elliptical galaxies and can be measured as spatial offsets in high resolution optical or infrared images. We present the results of a preliminary study, in which isophotal analysis was conducted for a sample of 96 galaxies to obtain the photocenter of the galaxies using Hubble Space Telescope (HST) archival optical or infrared WFC2/PC, ACS or NICMOS images. The position of the nuclear point source (AGN) was also measured to obtain a displacement vector. This initial sample reveals 18 candidates that show a significant displacement. Of these, 14 are hosted by core ellipticals, while the rest have a cuspy light profile. As galactic and nuclear dust structures may interfere with the isophotal analysis, we are currently obtaining new WFC

  15. RECOIL LABELING OF ORGANIC COMPOUNDS (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oae, S.; Hamada, M.; Otsuji, Y.

    1963-01-01

    The results of C/sup 14/-labeling under neutron irradiation of two groups of compounds are reported: (1) naphthalene, phenanthrene, and anthracene in an attempt to determine whether or not high energy C/sup 14/ fragments formed by nuclear recoil would favor or discriminate against any particular position in product formations; (2) pseudoephedrine, 2-amino-pyrimidine, and 3,6- dihydroxypyridazine as complex nitrogen-containing compounds. These samples were irradiated with thermal neutrons obtained from a pile. To determine the radiochemical yields and the relative ratios of the C/sup 14/ distributions in the respective compounds, the samples were purified radlochemically and were degraded chemically. The results deduced frommore » the experimental data are the following: (1) higher distribution of C/sup 14/ was found in the positions where the localizations of electrons are known to be higher; (2) the re-entry of C/sup 14/ into angular positions was very small; (3) the difference of phase affected the yield but not the distribution of C/sup 14/ in the products; (4) the relatively complex compounds could be labeled directly by this method. (A.G.W.)« less

  16. Analysis of a Compressible Fluid Soft Recoil (CFSR) Concept Applied to a 155 MM Howitzer

    DTIC Science & Technology

    1979-03-01

    Nitrile or Buna-N ( NBR ) rubber with ’ backup rings of nylotron. HITRILE NVLOTRON Piston seals An unresolved problem is that the coefficient of...fluid at atmospheric pressure Poisson’s ratio for Nitrile rubber dynamic coefficient of friction for rubber mass of recoiling parts weight of...Greene, tweed 5 Co. Palmetto catalog.) 43 [i^ - 0.50 = coefficient of friction (An approximate figure for rubber supplied by RIA Rubber

  17. Evidence for age-dependent air-space enlargement contributing to loss of lung tissue elastic recoil pressure and increased shear modulus in older age.

    PubMed

    Subramaniam, K; Kumar, H; Tawhai, M H

    2017-07-01

    As a normal part of mature aging, lung tissue undergoes microstructural changes such as alveolar air-space enlargement and redistribution of collagen and elastin away from the alveolar duct. The older lung also experiences an associated decrease in elastic recoil pressure and an increase in specific tissue elastic moduli, but how this relates mechanistically to microstructural remodeling is not well-understood. In this study, we use a structure-based mechanics analysis to elucidate the contributions of age-related air-space enlargement and redistribution of elastin and collagen to loss of lung elastic recoil pressure and increase in tissue elastic moduli. Our results show that age-related geometric changes can result in reduction of elastic recoil pressure and increase in shear and bulk moduli, which is consistent with published experimental data. All elastic moduli were sensitive to the distribution of stiffness (representing elastic fiber density) in the alveolar wall, with homogenous stiffness near the duct and through the septae resulting in a more compliant tissue. The preferential distribution of elastic proteins around the alveolar duct in the healthy young adult lung therefore provides for a more elastic tissue. NEW & NOTEWORTHY We use a structure-based mechanics analysis to correlate air-space enlargement and redistribution of elastin and collagen to age-related changes in the mechanical behavior of lung parenchyma. Our study highlights that both the cause (redistribution of elastin and collagen) and the structural effect (alveolar air-space enlargement) contribute to decline in lung tissue elastic recoil with age; these results are consistent with published data and provide a new avenue for understanding the mechanics of the older lung. Copyright © 2017 the American Physiological Society.

  18. Dispersion in a thermal plasma including arbitrary degeneracy and quantum recoil.

    PubMed

    Melrose, D B; Mushtaq, A

    2010-11-01

    The longitudinal response function for a thermal electron gas is calculated including two quantum effects exactly, degeneracy, and the quantum recoil. The Fermi-Dirac distribution is expanded in powers of a parameter that is small in the nondegenerate limit and the response function is evaluated in terms of the conventional plasma dispersion function to arbitrary order in this parameter. The infinite sum is performed in terms of polylogarithms in the long-wavelength and quasistatic limits, giving results that apply for arbitrary degeneracy. The results are applied to the dispersion relations for Langmuir waves and to screening, reproducing known results in the nondegenerate and completely degenerate limits, and generalizing them to arbitrary degeneracy.

  19. calculation of B → D*lv form factor at zero recoil using the Oktay-Kronfeld action

    NASA Astrophysics Data System (ADS)

    Bailey, Jon A.; Bhattacharya, Tanmoy; Gupta, Rajan; Jang, Yong-Chull; Lee, Weonjong; Leem, Jaehoon; Park, Sungwoo; Yoon, Boram

    2018-03-01

    We present the first preliminary results for the semileptonic form factor hA1 (w = 1)/ρAj at zero recoil for the B → D*lv decay using lattice QCD with four flavors of sea quarks. We use the HISQ staggered action for the light valence and sea quarks (the MILC HISQ configurations), and the Oktay-Kronfeld (OK) action for the heavy valence quarks.

  20. Chromatographic separation of radioactive noble gases from xenon

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Coffey, T.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Yazdani, K.; Young, S. K.; Zhang, C.

    2018-01-01

    The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopes 85Kr and 39Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search experiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.

  1. Chromatographic separation of radioactive noble gases from xenon

    DOE PAGES

    Akerib, DS; Araújo, HM; Bai, X; ...

    2017-10-31

    The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopesmore » $$^{85}$$Kr and $$^{39}$$Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search exmperiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.« less

  2. Laser cooling of 85Rb atoms to the recoil-temperature limit

    NASA Astrophysics Data System (ADS)

    Huang, Chang; Kuan, Pei-Chen; Lan, Shau-Yu

    2018-02-01

    We demonstrate the laser cooling of 85Rb atoms in a two-dimensional optical lattice. We follow the two-step degenerate Raman sideband cooling scheme [Kerman et al., Phys. Rev. Lett. 84, 439 (2000), 10.1103/PhysRevLett.84.439], where a fast cooling of atoms to an auxiliary state is followed by a slow cooling to a dark state. This method has the advantage of independent control of the heating rate and cooling rate from the optical pumping beam. We operate the lattice at a Lamb-Dicke parameter η =0.45 and show the cooling of spin-polarized 85Rb atoms to the recoil temperature in both dimensions within 2.4 ms with the aid of adiabatic cooling.

  3. Dielectric barrier structure with hollow electrodes and its recoil effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shuang; Chen, Qunzhi; Liu, Jiahui

    2015-06-15

    A dielectric barrier structure with hollow electrodes (HEDBS), in which gas flow oriented parallel to the electric field, was proposed. Results showed that with this structure, air can be effectively ignited, forming atmospheric low temperature plasma, and the proposed HEDBS could achieve much higher electron density (5 × 10{sup 15}/cm{sup 3}). It was also found that the flow condition, including outlet diameter and flow rate, played a key role in the evolution of electron density. Optical emission spectroscopy diagnostic results showed that the concentration of reactive species had the same variation trend as the electron density. The simulated distribution of discharge gasmore » flow indicated that the HEDBS had a strong recoil effect on discharge gas, and could efficiently promote generating electron density as well as reactive species.« less

  4. Role of nuclear charge change and nuclear recoil on shaking processes and their possible implication on physical processes

    NASA Astrophysics Data System (ADS)

    Sharma, Prashant

    2017-12-01

    The probable role of the sudden nuclear charge change and nuclear recoil in the shaking processes during the neutron- or heavy-ion-induced nuclear reactions and weakly interacting massive particle-nucleus scattering has been investigated in the present work. Using hydrogenic wavefunctions, general analytical expressions of survival, shakeup/shakedown, and shakeoff probability have been derived for various subshells of hydrogen-like atomic systems. These expressions are employed to calculate the shaking, shakeup/shakedown, and shakeoff probabilities in some important cases of interest in the nuclear astrophysics and the dark matter search experiments. The results underline that the shaking processes are one of the probable channels of electronic transitions during the weakly interacting massive particle-nucleus scattering, which can be used to probe the dark matter in the sub-GeV regime. Further, it is found that the shaking processes initiating due to nuclear charge change and nuclear recoil during the nuclear reactions may influence the electronic configuration of the participating atomic systems and thus may affect the nuclear reaction measurements at astrophysically relevant energies.

  5. Characterization of the Oxidation State of 229 Th Recoils Implanted in MgF2 for the Search of the Low-lying 229 Th Isomeric State

    NASA Astrophysics Data System (ADS)

    Barker, Beau; Meyer, Edmund; Schacht, Mike; Collins, Lee; Wilkerson, Marianne; Zhao, Xinxin

    2016-05-01

    The low-lying (7.8 eV) isomeric state in 229 Th has the potential to become a nuclear frequency standard. 229 Th recoils from 233 U decays have been collected in MgF2 for use in the direct search of the transition. Of interest is the oxidation state of the implanted 229 Th atoms as this can have an influence on the decay mechanisms and photon emission rate. Too determine the oxidation state of the implanted 229 Th recoils we have employed laser induced florescence (LIF), and plan-wave pseudopotential DFT calculations to search for emission from thorium ions in oxidation states less than + 4. Our search focused on detecting emission from Th3+ ions. The DFT calculations predicted the Th3+ state to be the most likely to be present in the crystal after Th4+. We also calculated the band structure for the Th3+ doped MgF2 crystal. For LIF spectra a number of excitation wavelengths were employed, emission spectra in the visible to near-IR were recorded along with time-resolved emission spectra. We have found no evidence for Th3+ in the MgF2 plates. We also analyzed the detection limit of our apprentice and found that the minimum number of Th3+ atoms that we could detect is quite small compared to the number of implanted 229 Th recoils. The number of implanted 229 Th recoils was derived from a γ-ray spectrum by monitoring emission from the daughters of 228 Th. These were present in the MgF2 plates due to a 232 U impurity, which decays to 228 Th, in the source. LA-UR-16-20442.

  6. The XENON100 Dark Matter Experiment: Design, Construction, Calibration and 2010 Search Results with Improved Measurement of the Scintillation Response of Liquid Xenon to Low-Energy Nuclear Recoils

    NASA Astrophysics Data System (ADS)

    Plante, Guillaume

    An impressive array of astrophysical observations suggest that 83% of the matter in the universe is in a form of non-luminous, cold, collisionless, non-baryonic dark matter. Several extensions of the Standard Model of particle physics aimed at solving the hierarchy problem predict stable weakly interacting massive particles (WIMPs) that could naturally have the right cosmological relic abundance today to compose most of the dark matter if their interactions with normal matter are on the order of a weak scale cross section. These candidates also have the added benefit that their properties and interaction rates can be computed in a well defined particle physics model. A considerable experimental effort is currently under way to uncover the nature of dark matter. One method of detecting WIMP dark matter is to look for its interactions in terrestrial detectors where it is expected to scatter off nuclei. In 2007, the XENON10 experiment took the lead over the most sensitive direct detection dark matter search in operation, the CDMS II experiment, by probing spin-independent WIMP-nucleon interaction cross sections down to sigmachi N ˜ 5 x 10-44 cm 2 at 30 GeV/c2. Liquefied noble gas detectors are now among the technologies at the forefront of direct detection experiments. Liquid xenon (LXe), in particular, is a well suited target for WIMP direct detection. It is easily scalable to larger target masses, allows discrimination between nuclear recoils and electronic recoils, and has an excellent stopping power to shield against external backgrounds. A particle losing energy in LXe creates both ionization electrons and scintillation light. In a dual-phase LXe time projection chamber (TPC) the ionization electrons are drifted and extracted into the gas phase where they are accelerated to amplify the charge signal into a proportional scintillation signal. These two signals allow the three-dimensional localization of events with millimeter precision and the ability to

  7. Recoil /sup 18/F chemistry. XI. High pressure investigation of 1,1-difluoroethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manning, R.G.; Root, J.W.

    1980-06-15

    Nuclear recoil /sup 18/F reactions in CH/sub 3/CHF/sub 2/ have been investigated throughout the effective pressure range 0.3--190 atm. The principal reaction channel is F-to-HF abstraction for which the combined yield from quasithermal and energetic processes in the presence of 5 mole% H/sub 2/S additive is 83.4% +- 0.2%. A reaction mechanism is proposed that involves the organic product forming channels F-for-F, F-for-..cap alpha..H, F-for-..beta..H, F-for-CH/sub 3/ and F-for-CHF/sub 2/. The results are compared with those reported for the /sup 18/F+CH/sub 3/CF/sub 3/ system.

  8. Spin-orbit force, recoil corrections, and possible BB¯* and DD¯* molecular states

    NASA Astrophysics Data System (ADS)

    Zhao, Lu; Ma, Li; Zhu, Shi-Lin

    2014-05-01

    In the framework of the one-boson exchange model, we have calculated the effective potentials between two heavy mesons BB¯* and DD¯* from the t- and u-channel π-, η-, ρ-, ω-, and σ-meson exchanges with four kinds of quantum number: I=0, JPC=1++; I =0, JPC=1+-; I =1, JPC=1++; I =1, JPC=1+-. We keep the recoil corrections to the BB¯* and DD¯* systems up to O(1/M2). The spin-orbit force appears at O(/1M), which turns out to be important for the very loosely bound molecular states. Our numerical results show that the momentum-related corrections are unfavorable to the formation of the molecular states in the I =0, JPC=1++ and I =1, JPC=1+- channels in the DD¯* system.

  9. Recoil Inversion in the Photodissociation of Carbonyl Sulfide near 234 nm.

    PubMed

    Sofikitis, Dimitris; Suarez, Jaime; Schmidt, Johan A; Rakitzis, T Peter; Farantos, Stavros C; Janssen, Maurice H M

    2017-06-23

    We report the observation of recoil inversion of the CO (v=0, J_{CO}=66) state in the UV dissociation of lab-frame oriented carbonyl sulfide (OCS). This state is ejected in the opposite direction with respect to all other (>30) states and in absence of any OCS rotation, thus resulting in spatial filtering of this particular high-J rovibrational state. This inversion is caused by resonances occurring in shallow local minima of the molecular potential, which bring the sulfur closer to the oxygen than the carbon atom, and is a striking example where such subtleties severely modify the photofragment trajectories. The resonant behavior is observed only in the photofragment trajectories and not in their population, showing that stereodynamic measurements from oriented molecules offer an indispensable probe for exploring energy landscapes.

  10. Differential cross sections and recoil polarizations for the reaction γ p → K + Σ 0

    DOE PAGES

    Dey, B.; Meyer, C. A.; Bellis, M.; ...

    2010-08-06

    Here, high-statistics measurements of differential cross sections and recoil polarizations for the reactionmore » $$\\gamma p \\rightarrow K^+ \\Sigma^0$$ have been obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass energies ($$\\sqrt{s}$$) from 1.69 to 2.84 GeV, with an extensive coverage in the $K^+$ production angle. Independent measurements were made using the $$K^{+}p\\pi^{-}$$($$\\gamma$$) and $$K^{+}p$$($$\\pi^-,\\gamma$$) final-state topologies, and were found to exhibit good agreement. Our differential cross sections show good agreement with earlier CLAS, SAPHIR and LEPS results, while offering better statistical precision and a 300-MeV increase in $$\\sqrt{s}$$ coverage. Above $$\\sqrt{s} \\approx 2.5$$ GeV, $t$- and $u$-channel Regge scaling behavior can be seen at forward- and backward-angles, respectively. Our recoil polarization ($$P_\\Sigma$$) measurements represent a substantial increase in kinematic coverage and enhanced precision over previous world data. At forward angles we find that $$P_\\Sigma$$ is of the same magnitude but opposite sign as $$P_\\Lambda$$, in agreement with the static SU(6) quark model prediction of $$P_\\Sigma \\approx -P_\\Lambda$$. This expectation is violated in some mid- and backward-angle kinematic regimes, where $$P_\\Sigma$$ and $$P_\\Lambda$$ are of similar magnitudes but also have the same signs. In conjunction with several other meson photoproduction results recently published by CLAS, the present data will help constrain the partial wave analyses being performed to search for missing baryon resonances.« less

  11. Neutron spectrum measurements using proton recoil proportional counters: results of measurements of leakage spectra for the Little Boy assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, E.F.; Yule, T.J.

    1984-01-01

    Measurements of degraded fission-neutron spectra using recoil proportional counters are done routinely for studies involving fast reactor mockups. The same techniques are applicable to measurements of neutron spectra required for personnel dosimetry in fast neutron environments. A brief discussion of current applications of these methods together with the results of a measurement made on the LITTLE BOY assembly at Los Alamos are here described.

  12. The Magnetic Recoil Spectrometer for time-resolved neutron measurements (MRSt) at the NIF

    NASA Astrophysics Data System (ADS)

    Parker, C. E.; Frenje, J. A.; Wink, C. W.; Gatu Johnson, M.; Lahmann, B.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Hilsabeck, T. J.; Kilkenny, J. D.; Bionta, R.; Casey, D. T.; Khater, H. Y.; Forrest, C. J.; Glebov, V. Yu.; Sorce, C.; Hares, J. D.; Siegmund, O. H. W.

    2017-10-01

    The next-generation Magnetic Recoil Spectrometer, called MRSt, will provide time-resolved measurements of the DT-neutron spectrum. These measurements will provide critical information about the time evolution of the fuel assembly, hot-spot formation, and nuclear burn in Inertial Confinement Fusion (ICF) implosions at the National Ignition Facility (NIF). The neutron spectrum in the energy range 12-16 MeV will be measured with high accuracy ( 5%), unprecedented energy resolution ( 100 keV) and, for the first time ever, time resolution ( 20 ps). An overview of the physics motivation, conceptual design for meeting these performance requirements, and the status of the offline tests for critical components will be presented. This work was supported in part by the U.S. DOE, LLNL, and LLE.

  13. Musett: A segmented Si array for Recoil-Decay-Tagging studies at VAMOS

    NASA Astrophysics Data System (ADS)

    Theisen, Ch.; Jeanneau, F.; Sulignano, B.; Druillole, F.; Ljungvall, J.; Paul, B.; Virique, E.; Baron, P.; Bervas, H.; Clément, E.; Delagnes, E.; Dijon, A.; Dossat, E.; Drouart, A.; Farget, F.; Flouzat, Ch.; De France, G.; Görgen, A.; Houarner, Ch.; Jacquot, B.; Korten, W.; Lebertre, G.; Lecornu, B.; Legeard, L.; Lermitage, A.; Lhenoret, S.; Marry, C.; Maugeais, C.; Menager, L.; Meunier, O.; Navin, A.; Nizery, F.; Obertelli, A.; Rauly, E.; Raine, B.; Rejmund, M.; Ropert, J.; Saillant, F.; Savajols, H.; Schmitt, Ch.; Tripon, M.; Wanlin, E.; Wittwer, G.

    2014-05-01

    A new segmented silicon-array called MUSETT has been built for the study of heavy elements using the Recoil-Decay-Tagging technique. MUSETT is located at the focal plane of the VAMOS spectrometer at GANIL and is used in conjunction with a γ-ray array at the target position. This paper describes the device, which consists of four 10×10 cm2 Si detectors and its associated front-end electronics based on highly integrated ASICs electronics. The triggerless readout electronics, the data acquisition and the analysis tools developed for its characterization are presented. This device was commissioned at GANIL with the EXOGAM γ-ray spectrometer using the fusion-evaporation reaction 197Au(22Ne,5n)214Ac. Additionally, the performance of the VAMOS Wien filter used during the in-beam commissioning is also reported.

  14. The Differential Cross Section and Λ Recoil Polarization from γδ -> Κ0(ρ)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Compton, Nicholas; Thomas Jefferson National Accelerator Facility

    2017-04-30

    Presented is the analysis of the differential cross section and Λ recoil polarization from the reaction γδ -> Κ0(ρ). This work measured these observables over beam energies from 0.90 GeV to 3.0 GeV. These measurements are the first in this channel to cover such a wide range of energies. The data were taken using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Laboratory (JLAB) along with a tagged photon beam. This analysis was completed by identifying events of interest that decayed into the final state topology of π-π+,π-&rho'(ρ). Through conservation of energy and momentum, the Κ0, Λ and missing massmore » of the spectator proton were reconstructed. Utilizing the same analysis techniques, the observables were measured on two different experiments with good agreement. Photoproduction of strange mesons from the neutron are difficult to measure, consequently there are only a few measurements of this kind. Despite that, these reactions supply essential complementary data to those on the proton. The differential cross sections and the recoil polarization extracted, span the region where new nucleon resonances have been found from studies of the reaction γρ -> Κ+Λ. Comparisons between the Κ+Λ and Κ0Λ cross section demonstrate that possible interference terms near 1900 MeV are less pronounced in the latter. This unexpected result inspired a partial wave analyses (PWA) to be fitted to the data. The fit solution shows that this measurement fostered an improvement on the knowledge of observed resonance parameters, necessary to understanding these excited states. The study of nucleon resonances is a key motivating factor since the resonance masses can be calculated from the theory of the strong nuclear force, called quantum chromodynamics, or QCD.« less

  15. Sub-GeV dark matter detection with electron recoils in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cavoto, G.; Luchetta, F.; Polosa, A. D.

    2018-01-01

    Directional detection of Dark Matter particles (DM) in the MeV mass range could be accomplished by studying electron recoils in large arrays of parallel carbon nanotubes. In a scattering process with a lattice electron, a DM particle might transfer sufficient energy to eject it from the nanotube surface. An external electric field is added to drive the electron from the open ends of the array to the detection region. The anisotropic response of this detection scheme, as a function of the orientation of the target with respect to the DM wind, is calculated, and it is concluded that no direct measurement of the electron ejection angle is needed to explore significant regions of the light DM exclusion plot. A compact sensor, in which the cathode element is substituted with a dense array of parallel carbon nanotubes, could serve as the basic detection unit.

  16. First measurement of the VESUVIO neutron spectrum in the 30-80 MeV energy range using a Proton Recoil Telescope technique

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Tardocchi, M.; Croci, G.; Frost, C.; Giacomelli, L.; Grosso, G.; Hjalmarsson, A.; Rebai, M.; Rhodes, N. J.; Schooneveld, E. M.; Gorini, G.

    2013-11-01

    Measurements of the fast neutron energy spectrum at the ISIS spallation source are reported. The measurements were performed with a Proton Recoil Telescope consisting of a thin plastic foil placed in the neutron beam and two scintillator detectors. Results in the neutron energy range 30 MeV < En < 80 MeV are in good agreement with Monte Carlo simulations of the neutron spectrum.

  17. Gain stabilization control system of the upgraded magnetic proton recoil neutron spectrometer at JET.

    PubMed

    Sjöstrand, Henrik; Andersson Sundén, E; Conroy, S; Ericsson, G; Gatu Johnson, M; Giacomelli, L; Gorini, G; Hellesen, C; Hjalmarsson, A; Popovichev, S; Ronchi, E; Tardocchi, M; Weiszflog, M

    2009-06-01

    Burning plasma experiments such as ITER and DEMO require diagnostics capable of withstanding the harsh environment generated by the intense neutron flux and to maintain stable operating conditions for times longer than present day systems. For these reasons, advanced control and monitoring (CM) systems will be necessary for the reliable operation of diagnostics. This paper describes the CM system of the upgraded magnetic proton recoil neutron spectrometer installed at the Joint European Torus focusing in particular on a technique for the stabilization of the gain of the photomultipliers coupled to the neutron detectors. The results presented here show that this technique provides good results over long time scales. The technique is of general interest for all diagnostics that employ scintillators coupled to photomultiplier tubes.

  18. Rosenbluth Separation of the π 0 Electroproduction Cross Section Off the Neutron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazouz, M.; Ahmed, Z.; Albataineh, H.

    2017-06-01

    We report the first longitudinal-transverse separation of the deeply virtual exclusive π0 electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions dσL/dt, dσT/dt, dσLT/dt, and dσTT/dt are extracted as a function of the momentum transfer to the recoil system at Q2=1.75 GeV2 and xB=0.36. The ed→edπ0 cross sections are found compatible with the small values expected from theoretical models. The en→enπ0 cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity generalized parton distributions of the nucleon. By combining these results withmore » previous measurements of π0 electroproduction off the proton, we present a flavor decomposition of the u and d quark contributions to the cross section« less

  19. Rosenbluth Separation of the π0 Electroproduction Cross Section Off the Neutron

    NASA Astrophysics Data System (ADS)

    Mazouz, M.; Ahmed, Z.; Albataineh, H.; Allada, K.; Aniol, K. A.; Bellini, V.; Benali, M.; Boeglin, W.; Bertin, P.; Brossard, M.; Camsonne, A.; Canan, M.; Chandavar, S.; Chen, C.; Chen, J.-P.; Defurne, M.; de Jager, C. W.; de Leo, R.; Desnault, C.; Deur, A.; El Fassi, L.; Ent, R.; Flay, D.; Friend, M.; Fuchey, E.; Frullani, S.; Garibaldi, F.; Gaskell, D.; Giusa, A.; Glamazdin, O.; Golge, S.; Gomez, J.; Hansen, O.; Higinbotham, D.; Holmstrom, T.; Horn, T.; Huang, J.; Huang, M.; Huber, G. M.; Hyde, C. E.; Iqbal, S.; Itard, F.; Kang, Ho.; Kang, Hy.; Kelleher, A.; Keppel, C.; Koirala, S.; Korover, I.; LeRose, J. J.; Lindgren, R.; Long, E.; Magne, M.; Mammei, J.; Margaziotis, D. J.; Markowitz, P.; Martí Jiménez-Argüello, A.; Meddi, F.; Meekins, D.; Michaels, R.; Mihovilovic, M.; Muangma, N.; Muñoz Camacho, C.; Nadel-Turonski, P.; Nuruzzaman, N.; Paremuzyan, R.; Puckett, A.; Punjabi, V.; Qiang, Y.; Rakhman, A.; Rashad, M. N. H.; Riordan, S.; Roche, J.; Russo, G.; Sabatié, F.; Saenboonruang, K.; Saha, A.; Sawatzky, B.; Selvy, L.; Shahinyan, A.; Sirca, S.; Solvignon, P.; Sperduto, M. L.; Subedi, R.; Sulkosky, V.; Sutera, C.; Tobias, W. A.; Urciuoli, G. M.; Wang, D.; Wojtsekhowski, B.; Yao, H.; Ye, Z.; Zana, L.; Zhan, X.; Zhang, J.; Zhao, B.; Zhao, Z.; Zheng, X.; Zhu, P.; Jefferson Lab Hall A Collaboration

    2017-06-01

    We report the first longitudinal-transverse separation of the deeply virtual exclusive π0 electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions d σL/d t , d σT/d t , d σL T/d t , and d σT T/d t are extracted as a function of the momentum transfer to the recoil system at Q2=1.75 GeV2 and xB=0.36 . The e d →e d π0 cross sections are found compatible with the small values expected from theoretical models. The e n →e n π0 cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity generalized parton distributions of the nucleon. By combining these results with previous measurements of π0 electroproduction off the proton, we present a flavor decomposition of the u and d quark contributions to the cross section.

  20. Rosenbluth Separation of the π 0 Electroproduction Cross Section Off the Neutron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazouz, M.; Ahmed, Z.; Albataineh, H.

    Here, we report the first longitudinal/transverse separation of the deeply virtual exclusivemore » $$\\pi^0$$ electroproduction cross section off the neutron and coherent deuteron. Furthemore, the corresponding four structure functions $$d\\sigma_L/dt$$, $$d\\sigma_T/dt$$, $$d\\sigma_{LT}/dt$$ and $$d\\sigma_{TT}/dt$$ are extracted as a function of the momentum transfer to the recoil system at $Q^2$=1.75 GeV$^2$ and $$x_B$$=0.36. The $$ed \\to ed\\pi^0$$ cross sections are found compatible with the small values expected from theoretical models. The $$en \\to en\\pi^0$$ cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity GPDs of the nucleon. By combining our results with previous measurements of $$\\pi^0$$ electroproduction off the proton, we present a flavor decomposition of the $u$ and $d$ quark contributions to the cross section.« less

  1. Rosenbluth Separation of the π^{0} Electroproduction Cross Section Off the Neutron.

    PubMed

    Mazouz, M; Ahmed, Z; Albataineh, H; Allada, K; Aniol, K A; Bellini, V; Benali, M; Boeglin, W; Bertin, P; Brossard, M; Camsonne, A; Canan, M; Chandavar, S; Chen, C; Chen, J-P; Defurne, M; de Jager, C W; de Leo, R; Desnault, C; Deur, A; El Fassi, L; Ent, R; Flay, D; Friend, M; Fuchey, E; Frullani, S; Garibaldi, F; Gaskell, D; Giusa, A; Glamazdin, O; Golge, S; Gomez, J; Hansen, O; Higinbotham, D; Holmstrom, T; Horn, T; Huang, J; Huang, M; Huber, G M; Hyde, C E; Iqbal, S; Itard, F; Kang, Ho; Kang, Hy; Kelleher, A; Keppel, C; Koirala, S; Korover, I; LeRose, J J; Lindgren, R; Long, E; Magne, M; Mammei, J; Margaziotis, D J; Markowitz, P; Martí Jiménez-Argüello, A; Meddi, F; Meekins, D; Michaels, R; Mihovilovic, M; Muangma, N; Muñoz Camacho, C; Nadel-Turonski, P; Nuruzzaman, N; Paremuzyan, R; Puckett, A; Punjabi, V; Qiang, Y; Rakhman, A; Rashad, M N H; Riordan, S; Roche, J; Russo, G; Sabatié, F; Saenboonruang, K; Saha, A; Sawatzky, B; Selvy, L; Shahinyan, A; Sirca, S; Solvignon, P; Sperduto, M L; Subedi, R; Sulkosky, V; Sutera, C; Tobias, W A; Urciuoli, G M; Wang, D; Wojtsekhowski, B; Yao, H; Ye, Z; Zana, L; Zhan, X; Zhang, J; Zhao, B; Zhao, Z; Zheng, X; Zhu, P

    2017-06-02

    We report the first longitudinal-transverse separation of the deeply virtual exclusive π^{0} electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions dσ_{L}/dt, dσ_{T}/dt, dσ_{LT}/dt, and dσ_{TT}/dt are extracted as a function of the momentum transfer to the recoil system at Q^{2}=1.75  GeV^{2} and x_{B}=0.36. The ed→edπ^{0} cross sections are found compatible with the small values expected from theoretical models. The en→enπ^{0} cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity generalized parton distributions of the nucleon. By combining these results with previous measurements of π^{0} electroproduction off the proton, we present a flavor decomposition of the u and d quark contributions to the cross section.

  2. Rosenbluth Separation of the π 0 Electroproduction Cross Section Off the Neutron

    DOE PAGES

    Mazouz, M.; Ahmed, Z.; Albataineh, H.; ...

    2017-06-01

    Here, we report the first longitudinal/transverse separation of the deeply virtual exclusivemore » $$\\pi^0$$ electroproduction cross section off the neutron and coherent deuteron. Furthemore, the corresponding four structure functions $$d\\sigma_L/dt$$, $$d\\sigma_T/dt$$, $$d\\sigma_{LT}/dt$$ and $$d\\sigma_{TT}/dt$$ are extracted as a function of the momentum transfer to the recoil system at $Q^2$=1.75 GeV$^2$ and $$x_B$$=0.36. The $$ed \\to ed\\pi^0$$ cross sections are found compatible with the small values expected from theoretical models. The $$en \\to en\\pi^0$$ cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity GPDs of the nucleon. By combining our results with previous measurements of $$\\pi^0$$ electroproduction off the proton, we present a flavor decomposition of the $u$ and $d$ quark contributions to the cross section.« less

  3. Nuclear Microprobe using Elastic Recoil Detection (ERD) for Hydrogen Profiling in High Temperature Protonic Conductors

    NASA Technical Reports Server (NTRS)

    Berger, Pascal; Sayir, Ali; Berger, Marie-Helene

    2004-01-01

    The interaction between hydrogen and various high temperature protonic conductors (HTPC) has not been clearly understood due to poor densification and unreacted secondary phases. the melt-processing technique is used in producing fully dense simple SrCe(0.9)Y (0.10) O(3-delta) and complex Sr3Ca(1+x)Nb(2+x)O(9-delta) perovskites that can not be achieved by solid-state sintering. the possibilities of ion beam analysis have been investigated to quantify hydrogen distribution in HTPC perovskites subjected to water heat treatment. Nuclear microprobe technique is based on the interactions of a focused ion beam of MeV light ions (H-1, H-2, He-3, He-4,.) with the sample to be analyzed to determine local elemental concentrations at the cubic micrometer scale, the elastic recoil detection analysis technique (ERDA) has been carried out using He-4(+) microbeams and detecting the resulting recoil protons. Mappings of longitudinal sections of water treated SrCeO3 and Sr(Ca(1/3)Nb(2/3))O3 perovskites have been achieved, the water treatment strongly alters the surface of simple SrCe(0.9)Y(0.10)O(3-delta) perovskite. From Rutherford Back Scattering measurements (RBS), both Ce depletion and surface re-deposition is evidenced. the ERDA investigations on water treated Sr3Ca(1+x)Nb(2+x)O(9-delta) perovskite did not exhibit any spatial difference for the hydrogen incorporation from the surface to the centre. the amount of hydrogen incorporation for Sr3Ca(1+x)Nb(2+x)O(9-delta) was low and required further development of two less conventional techniques, ERDA in forward geometry and forward elastic diffusion H-1(p,p) H-1 with coincidence detection.

  4. Lattice QCD calculation of the B(s )→D(s) *ℓν form factors at zero recoil and implications for |Vc b|

    NASA Astrophysics Data System (ADS)

    Harrison, Judd; Davies, Christine T. H.; Wingate, Matthew; Hpqcd Collaboration

    2018-03-01

    We present results of a lattice QCD calculation of B →D* and Bs→Ds* axial vector matrix elements with both states at rest. These zero recoil matrix elements provide the normalization necessary to infer a value for the CKM matrix element |Vc b| from experimental measurements of B¯ 0→D*+ℓ-ν ¯ and B¯s0→Ds*+ℓ-ν¯ decay. Results are derived from correlation functions computed with highly improved staggered quarks (HISQ) for light, strange, and charm quark propagators, and nonrelativistic QCD for the bottom quark propagator. The calculation of correlation functions employs MILC Collaboration ensembles over a range of three lattice spacings. These gauge field configurations include sea quark effects of charm, strange, and equal-mass up and down quarks. We use ensembles with physically light up and down quarks, as well as heavier values. Our main results are FB→D *(1 )=0.895 ±0.01 0stat±0.024sys and FBs→Ds*(1 )=0.883 ±0.01 2stat±0.02 8sys . We discuss the consequences for |Vc b| in light of recent investigations into the extrapolation of experimental data to zero recoil.

  5. Effective field theory search for high-energy nuclear recoils using the XENON100 dark matter detector

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morâ, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang., Y.; Farmer, B.; Xenon Collaboration

    2017-08-01

    We report on weakly interacting massive particles (WIMPs) search results in the XENON100 detector using a nonrelativistic effective field theory approach. The data from science run II (34 kg ×224.6 live days) were reanalyzed, with an increased recoil energy interval compared to previous analyses, ranging from (6.6 -240 ) keVnr . The data are found to be compatible with the background-only hypothesis. We present 90% confidence level exclusion limits on the coupling constants of WIMP-nucleon effective operators using a binned profile likelihood method. We also consider the case of inelastic WIMP scattering, where incident WIMPs may up-scatter to a higher mass state, and set exclusion limits on this model as well.

  6. An image-based skeletal model for the ICRP reference adult male—specific absorbed fractions for neutron-generated recoil protons

    NASA Astrophysics Data System (ADS)

    Jokisch, D. W.; Rajon, D. A.; Bahadori, A. A.; Bolch, W. E.

    2011-11-01

    Recoiling hydrogen nuclei are a principle mechanism for energy deposition from incident neutrons. For neutrons incident on the human skeleton, the small sizes of two contrasting media (trabecular bone and marrow) present unique problems due to a lack of charged-particle (protons) equilibrium. Specific absorbed fractions have been computed for protons originating in the human skeletal tissues for use in computing neutron dose response functions. The proton specific absorbed fractions were computed using a pathlength-based range-energy calculation in trabecular skeletal samples of a 40 year old male cadaver.

  7. ASTROPHYSICS. Exclusion of leptophilic dark matter models using XENON100 electronic recoil data.

    PubMed

    2015-08-21

    Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our experiment, we exclude a variety of representative dark matter models that would induce electronic recoils. For axial-vector couplings to electrons, we exclude cross sections above 6 × 10(-35) cm(2) for particle masses of m(χ) = 2 GeV/c(2). Independent of the dark matter halo, we exclude leptophilic models as an explanation for the long-standing DAMA/LIBRA signal, such as couplings to electrons through axial-vector interactions at a 4.4σ confidence level, mirror dark matter at 3.6σ, and luminous dark matter at 4.6σ. Copyright © 2015, American Association for the Advancement of Science.

  8. First measurement of beam-recoil observables Cx and Cz in hyperon photoproduction

    NASA Astrophysics Data System (ADS)

    Bradford, R. K.; Schumacher, R. A.; Adams, G.; Amaryan, M. J.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Battaglieri, M.; Beard, K.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Bianchi, N.; Biselli, A. S.; Bonner, B. E.; Bouchigny, S.; Boiarinov, S.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Carnahan, B.; Chen, S.; Cole, P. L.; Coleman, A.; Collins, P.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Crede, V.; Cummings, J. P.; Masi, R. De; Sanctis, E. De; Vita, R. De; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deur, A.; Dharmawardane, K. V.; Dickson, R.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Fassi, L. El; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feldman, G.; Feuerbach, R. J.; Forest, T. A.; Funsten, H.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gonenc, A.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hafidi, K.; Hakobyan, H.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hu, J.; Huertas, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kalantarians, N.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Kuleshov, S. V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Lima, A. C. S.; Livingston, K.; Lu, H. Y.; Lukashin, K.; MacCormick, M.; Manak, J. J.; Marchand, C.; Markov, N.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Moriya, K.; Morrow, S. A.; Moteabbed, M.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Natasha, N.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M. R.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Philips, S. A.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Popa, I.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Quinn, B. P.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Salamanca, J.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Shvedunov, N. V.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Sokhan, D.; Spraker, M.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Watts, D. P.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z. W.

    2007-03-01

    Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions γ→+p→K++Λ→ and γ→+p→K++Σ→0. The data were obtained using the CEBAF Large Acceptance Spectrometer (CLAS) detector at the Jefferson Lab for center-of-mass energies W between 1.6 and 2.53 GeV, and for -0.85

  9. Precision determination of electron scattering angle by differential nuclear recoil energy method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liyanage, N.; Saenboonruang, K.

    2015-12-01

    The accurate determination of the scattered electron angle is crucial to electron scattering experiments, both with open-geometry large-acceptance spectrometers and ones with dipole-type magnetic spectrometers for electron detection. In particular, for small central-angle experiments using dipole-type magnetic spectrometers, in which surveys are used to measure the spectrometer angle with respect to the primary electron beam, the importance of the scattering angle determination is emphasized. However, given the complexities of large experiments and spectrometers, the accuracy of such surveys is limited and insufficient to meet demands of some experiments. In this article, we present a new technique for determination of themore » electron scattering angle based on an accurate measurement of the primary beam energy and the principle of differential nuclear recoil. This technique was used to determine the scattering angle for several experiments carried out at the Experimental Hall A, Jefferson Lab. Results have shown that the new technique greatly improved the accuracy of the angle determination compared to surveys.« less

  10. Precision Determination of Electron Scattering Angle by Differential Nuclear Recoil Energy Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liyanage, Nilanga; Saenboonruang, Kiadtisak

    2015-09-01

    The accurate determination of the scattered electron angle is crucial to electron scattering experiments, both with open-geometry large-acceptance spectrometers and ones with dipole-type magnetic spectrometers for electron detection. In particular, for small central-angle experiments using dipole-type magnetic spectrometers, in which surveys are used to measure the spectrometer angle with respect to the primary electron beam, the importance of the scattering angle determination is emphasized. However, given the complexities of large experiments and spectrometers, the accuracy of such surveys is limited and insufficient to meet demands of some experiments. In this article, we present a new technique for determination of themore » electron scattering angle based on an accurate measurement of the primary beam energy and the principle of differential nuclear recoil. This technique was used to determine the scattering angle for several experiments carried out at the Experimental Hall A, Jefferson Lab. Results have shown that the new technique greatly improved the accuracy of the angle determination compared to surveys.« less

  11. Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement

    NASA Astrophysics Data System (ADS)

    Gupta, C. K.; Rohilla, Aman; Abhilash, S. R.; Kabiraj, D.; Singh, R. P.; Mehta, D.; Chamoli, S. K.

    2014-11-01

    A thin isotopic 94Zr target of thickness 520 μg /cm2 has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm2 thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of 94Zr from peeling off, a very thin layer of gold has been evaporated on a 94Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched 94Zr target material was utilized for the fabrication of 94Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.

  12. BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension

    NASA Astrophysics Data System (ADS)

    Dai, De-Chang; Starkman, Glenn; Stojkovic, Dejan; Issever, Cigdem; Rizvi, Eram; Tseng, Jeff

    2008-04-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/~issever/BlackMax/blackmax.html.

  13. A new Recoil Proton Telescope for energy and fluence measurement of fast neutron fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebreton, Lena; Bachaalany, Mario; Husson, Daniel

    The spectrometer ATHENA (Accurate Telescope for High Energy Neutron metrology Applications), is being developed at the IRSN / LMDN (Institut de Radioprotection et de Surete nucleaire / Laboratoire de Metrologie et de dosimetrie des neutrons) and aims at characterizing energy and fluence of fast neutron fields. The detector is a Recoil Proton Telescope and measures neutron fields in the range of 5 to 20 MeV. This telescope is intended to become a primary standard for both energy and fluence measurements. The neutron detection is achieved by a polyethylene radiator for n-p conversion, three 50{sub m} thick silicon sensors that usemore » CMOS technology for the proton tracking and a 3 mm thick silicon diode to measure the residual proton energy. This first prototype used CMOS sensors called MIMOSTAR, initially developed for heavy ion physics. The use of CMOS sensors and silicon diode increases the intrinsic efficiency of the detector by a factor of ten compared with conventional designs. The first prototype has already been done and was a successful study giving the results it offered in terms of energy and fluence measurements. For mono energetic beams going from 5 to 19 MeV, the telescope offered an energy resolution between 5 and 11% and fluence difference going from 5 to 7% compared to other home standards. A second and final prototype of the detector is being designed. It will hold upgraded CMOS sensors called FastPixN. These CMOS sensors are supposed to run 400 times faster than the older version and therefore give the telescope the ability to support neutron flux in the order of 107 to 108cm{sup 2}:s{sup 1}. The first prototypes results showed that a 50 m pixel size is enough for a precise scattering angle reconstruction. Simulations using MCNPX and GEANT4 are already in place for further improvements. A DeltaE diode will replace the third CMOS sensor and will be installed right before the silicon diode for a better recoil proton selection. The final

  14. A Low Nuclear Recoil Energy Threshold for Dark Matter Search with CRESST-III Detectors

    NASA Astrophysics Data System (ADS)

    Mancuso, M.; Angloher, G.; Bauer, P.; Bento, A.; Bucci, C.; Canonica, L.; D'Addabbo, A.; Defay, X.; Erb, A.; von Feilitzsch, Franz; Ferreiro Iachellini, N.; Gorla, P.; Gütlein, A.; Hauff, D.; Jochum, J.; Kiefer, M.; Kluck, H.; Kraus, H.; Lanfranchi, J. C.; Langenkämper, A.; Loebell, J.; Mondragon, E.; Münster, A.; Pagliarone, C.; Petricca, F.; Potzel, W.; Pröbst, F.; Puig, R.; Reindl, F.; Rothe, J.; Schäffner, K.; Schieck, J.; Schipperges, V.; Schönert, S.; Seidel, W.; Stahlberg, M.; Stodolsky, L.; Strandhagen, C.; Strauss, R.; Tanzke, A.; Thi, H. H. Trinh; Türkoglu, C.; Uffinger, M.; Ulrich, A.; Usherov, I.; Wawoczny, S.; Willers, M.; Wüstrich, M.

    2018-05-01

    The CRESST-III experiment (Cryogenic Rare Events Search with Superconducting Thermometers), located at the underground facility Laboratori Nazionali del Gran Sasso in Italy, uses scintillating CaWO_4 crystals as cryogenic calorimeters to search for direct dark matter interactions in detectors. A large part of the parameter space for spin-independent scattering off nuclei remains untested for dark matter particles with masses below a few GeV/c^2 , despite many naturally motivated theoretical models for light dark matter particles. The CRESST-III detectors are designed to achieve the performance required to probe the low-mass region of the parameter space with a sensitivity never reached before. In this paper, new results on the performance and an overview of the CRESST-III detectors will be presented, emphasizing the results about the low-energy threshold for nuclear recoil of CRESST-III Phase 1 which started collecting data in August 2016.

  15. B → Dℓν form factors at nonzero recoil and |V cb| from 2+1-flavor lattice QCD

    DOE PAGES

    Bailey, Jon A.

    2015-08-10

    We present the first unquenched lattice-QCD calculation of the hadronic form factors for the exclusive decay B¯→Dℓν¯ at nonzero recoil. We carry out numerical simulations on 14 ensembles of gauge-field configurations generated with 2+1 flavors of asqtad-improved staggered sea quarks. The ensembles encompass a wide range of lattice spacings (approximately 0.045 to 0.12 fm) and ratios of light (up and down) to strange sea-quark masses ranging from 0.05 to 0.4. For the b and c valence quarks we use improved Wilson fermions with the Fermilab interpretation, while for the light valence quarks we use asqtad-improved staggered fermions. We extrapolate ourmore » results to the physical point using rooted staggered heavy-light meson chiral perturbation theory. We then parametrize the form factors and extend them to the full kinematic range using model-independent functions based on analyticity and unitarity. We present our final results for f +(q 2) and f 0(q 2), including statistical and systematic errors, as coefficients of a series in the variable z and the covariance matrix between these coefficients. We then fit the lattice form-factor data jointly with the experimentally measured differential decay rate from BABAR to determine the CKM matrix element, |V cb|=(39.6 ± 1.7 QCD+exp ± 0.2 QED) × 10 –3. As a byproduct of the joint fit we obtain the form factors with improved precision at large recoil. In conclusion, we use them to update our calculation of the ratio R(D) in the Standard Model, which yields R(D)=0.299(11).« less

  16. Improvements in Fabrication of Elastic Scattering Foils Used to Measure Neutron Yield by the Magnetic Recoil Spectrometer

    DOE PAGES

    Reynolds, H. G.; Schoff, M. E.; Farrell, M. P.; ...

    2017-03-23

    The magnetic recoil spectrometer uses a deuterated polyethylene polymer (CD 2) foil to measure neutron yield in inertial confinement fusion experiments. Higher neutron yields in recent experiments have resulted in primary signal saturation in the detector CR-39 foils, necessitating the fabrication of thinner CD 2 foils than established methods could provide. A novel method of fabricating deuterated polymer foils is described. The resulting foils are thinner, smoother, and more uniform in thickness than the foils produced by previous methods. Here, these new foils have successfully been deployed at the National Ignition Facility, enabling higher neutron yield measurements than previous foils,more » with no primary signal saturation.« less

  17. Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF.

    PubMed

    Casey, D T; Frenje, J A; Gatu Johnson, M; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Knauer, J P; Meyerhofer, D D; Sangster, T C; Bionta, R M; Bleuel, D L; Döppner, T; Glenzer, S; Hartouni, E; Hatchett, S P; Le Pape, S; Ma, T; MacKinnon, A; McKernan, M A; Moran, M; Moses, E; Park, H-S; Ralph, J; Remington, B A; Smalyuk, V; Yeamans, C B; Kline, J; Kyrala, G; Chandler, G A; Leeper, R J; Ruiz, C L; Cooper, G W; Nelson, A J; Fletcher, K; Kilkenny, J; Farrell, M; Jasion, D; Paguio, R

    2012-10-01

    A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  18. Hypercompact Stellar Systems Around Recoiling Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Merritt, David; Schnittman, Jeremy D.; Komossa, S.

    2009-07-01

    A supermassive black hole ejected from the center of a galaxy by gravitational-wave recoil carries a retinue of bound stars—a "hypercompact stellar system" (HCSS). The numbers and properties of HCSSs contain information about the merger histories of galaxies, the late evolution of binary black holes, and the distribution of gravitational-wave kicks. We relate the structural properties (size, mass, density profile) of HCSSs to the properties of their host galaxies and to the size of the kick in two regimes: collisional (M BH lsim 107 M sun), i.e., short nuclear relaxation times, and collisionless (M BH gsim 107 M sun), i.e., long nuclear relaxation times. HCSSs are expected to be similar in size and luminosity to globular clusters, but in extreme cases (large galaxies, kicks just above escape velocity) their stellar mass can approach that of ultracompact dwarf galaxies. However, they differ from all other classes of compact stellar system in having very high internal velocities. We show that the kick velocity is encoded in the velocity dispersion of the bound stars. Given a large enough sample of HCSSs, the distribution of gravitational-wave kicks can therefore be empirically determined. We combine a hierarchical merger algorithm with stellar population models to compute the rate of production of HCSSs over time and the probability of observing HCSSs in the local universe as a function of their apparent magnitude, color, size, and velocity dispersion, under two different assumptions about the star formation history prior to the kick. We predict that ~102 HCSSs should be detectable within 2 Mpc of the center of the Virgo cluster, and that many of these should be bright enough that their kick velocities (i.e., velocity dispersions) could be measured with reasonable exposure times. We discuss other strategies for detecting HCSSs and speculate on some exotic manifestations.

  19. BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai Dechang; Starkman, Glenn; Stojkovic, Dejan

    2008-04-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can bemore » interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/{approx}issever/BlackMax/blackmax.html.« less

  20. Observation of a resonance in B+ → K+ μ+ μ- decays at low recoil.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Cowie, E; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hess, M; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Martynov, A; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palczewski, T; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Van Dijk, M; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-09-13

    A broad peaking structure is observed in the dimuon spectrum of B+ → K+ μ+ μ- decays in the kinematic region where the kaon has a low recoil against the dimuon system. The structure is consistent with interference between the B+ → K+ μ+ μ- decay and a resonance and has a statistical significance exceeding six standard deviations. The mean and width of the resonance are measured to be 4191(-8)(+9)  MeV/c2 and 65(-16)(+22)  MeV/c2, respectively, where the uncertainties include statistical and systematic contributions. These measurements are compatible with the properties of the ψ(4160) meson. First observations of both the decay B+ → ψ(4160)K+ and the subsequent decay ψ(4160) → μ+ μ- are reported. The resonant decay and the interference contribution make up 20% of the yield for dimuon masses above 3770  MeV/c2. This contribution is larger than theoretical estimates.

  1. Analysis of hydrogen adsorption and surface binding configuration on tungsten using direct recoil spectrometry

    DOE PAGES

    Kolasinski, R. D.; Hammond, K. D.; Whaley, J. A.; ...

    2014-12-03

    In our work, we apply low energy ion beam analysis to examine directly how the adsorbed hydrogen concentration and binding configuration on W(1 0 0) depend on temperature. We exposed the tungsten surface to fluxes of both atomic and molecular H and D. We then probed the H isotopes adsorbed along different crystal directions using 1–2 keV Ne + ions. At saturation coverage, H occupies two-fold bridge sites on W(1 0 0) at 25 °C. Moreover, the H coverage dramatically changes the behavior of channeled ions, as does reconstruction of the surface W atoms. For the exposure conditions examined here,more » we find that surface sites remain populated with H until the surface temperature reaches 200 °C. Then, we observe H rapidly desorbing until only a residual concentration remains at 450 °C. Development of an efficient atomistic model that accurately reproduces the experimental ion energy spectra and azimuthal variation of recoiled H is underway.« less

  2. Minimizing the cost of locomotion with inclined trunk predicts crouched leg kinematics of small birds at realistic levels of elastic recoil.

    PubMed

    Rode, Christian; Sutedja, Yefta; Kilbourne, Brandon M; Blickhan, Reinhard; Andrada, Emanuel

    2016-02-01

    Small birds move with pronograde trunk orientation and crouched legs. Although the pronograde trunk has been suggested to be beneficial for grounded running, the cause(s) of the specific leg kinematics are unknown. Here we show that three charadriiform bird species (northern lapwing, oystercatcher, and avocet; great examples of closely related species that differ remarkably in their hind limb design) move their leg segments during stance in a way that minimizes the cost of locomotion. We imposed measured trunk motions and ground reaction forces on a kinematic model of the birds. The model was used to search for leg configurations that minimize leg work that accounts for two factors: elastic recoil in the intertarsal joint, and cheaper negative muscle work relative to positive muscle work. A physiological level of elasticity (∼ 0.6) yielded segment motions that match the experimental data best, with a root mean square of angular deviations of ∼ 2.1 deg. This finding suggests that the exploitation of elastic recoil shapes the crouched leg kinematics of small birds under the constraint of pronograde trunk motion. Considering that an upright trunk and more extended legs likely decrease the cost of locomotion, our results imply that the cost of locomotion is a secondary movement criterion for small birds. Scaling arguments suggest that our approach may be utilized to provide new insights into the motion of extinct species such as dinosaurs. © 2016. Published by The Company of Biologists Ltd.

  3. The decay overline B to overline K {ell^{ + }}{ell^{ - }} at low hadronic recoil and model-independent ∆ B = 1 constraints

    NASA Astrophysics Data System (ADS)

    Bobeth, Christoph; Hiller, Gudrun; van Dyk, Danny; Wacker, Christian

    2012-01-01

    We study the decay overline B to overline K {ell^{ + }}{ell^{ - }} for ℓ = e, μ, τ with a softly recoiling kaon, that is, for high dilepton invariant masses sqrt {{{q^{{2}}}}} of the order of the b-quark mass. This kinematic region can be treated within an operator product expansion and simplified using heavy quark symmetry, leading to systematic predictions for heavy-to-light processes such as overline B to {overline K^{{left( * right)}}}{ell^{ + }}{ell^{ - }} . We show that the decay rates of both overline B to {overline K^{ * }}{ell^{ + }}{ell^{ - }} and overline B to overline K {ell^{ + }}{ell^{ - }} decays into light leptons depend on a common combination of short-distance coefficients. The corresponding CP-asymmetries are hence identical. Furthermore we present low recoil predictions for overline B to overline K {ell^{ + }}{ell^{ - }} observables, including the flat term in the angular distribution which becomes sizable for taus. We work out model-independently the constraints on Δ B = 1 operators using the most recent data from the experiments BaBar, Belle, CDF and LHCb. For constructive interference with the standard model, generic new physics is pushed up to scales above 44 TeV at 95% CL. Assuming none or small CP-violation we obtain a lower bound on the position of the zero of the forward-backward asymmetry of {overline B^0} to {overline K^{{ * 0}}}{ell^{ + }}{ell^{ - }} decays as q_0^2 > {1}.{7} GeV2, which improves to q_0^2 > 2.6 GeV2 for a standard model-like sign b → sγ amplitude.

  4. Surface periodicity of Ir(110) from time-of-flight scattering and recoiling spectrometry (TOF-SARS)

    NASA Astrophysics Data System (ADS)

    Bu, H.; Shi, M.; Rabalais, J. W.

    1991-03-01

    The surface periodicity of the Ir(110) surface in both the clean reconstructed (1×3) and oxygen stabilized unreconstructed (1×1) phases have been investigated using time-of-flight scattering and recoiling spectrometry (TOF-SARS). A pulsed 4 keV Ar + ion beam is directed at a grazing incident angle to the surface and the scattered neutral plus ion flux is monitored as a function of beam exit angle and crystal azimuthal angle. It is demonstrated that either maxima or minima are obtained in the scattered flux along the low-index crystallographic directions depending on whether near-specular or off-specular scattering conditions, respectively, are used. These scattering intensity patterns as a function of crystal azimuthal angle provide a direct measure of the surface periodicity. These intensity variations are explained in terms of the Lindhard critical angle, semichannel focusing effects, and trajectory simulations.

  5. Experimental equipment for an advanced ISOL facility[Isotope Separation On-Line Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baktash, C.; Lee, I.Y.; Rehm, K.E.

    This report summarizes the proceedings and recommendations of the Workshop on the Experimental Equipment for an Advanced ISOL Facility which was held at Lawrence Berkeley National Laboratory on July 22--25, 1998. The purpose of this workshop was to discuss the performance requirements, manpower and cost estimates, as well as a schedule of the experimental equipment needed to fully exploit the new physics which can be studied at an advanced ISOL facility. An overview of the new physics opportunities that would be provided by such a facility has been presented in the White Paper that was issued following the Columbus Meeting.more » The reactions and experimental techniques discussed in the Columbus White Paper served as a guideline for the formulation of the detector needs at the Berkeley Workshop. As outlined a new ISOL facility with intense, high-quality beams of radioactive nuclei would provide exciting new research opportunities in the areas of: the nature of nucleonic matter; the origin of the elements; and tests of the Standard Model. After an introductory section, the following equipment is discussed: gamma-ray detectors; recoil separators; magnetic spectrographs; particle detectors; targets; and apparatus using non-accelerated beams.« less

  6. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    DOE PAGES

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; ...

    2013-04-18

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, iontemperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describesmore » ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.« less

  7. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF.

    PubMed

    Casey, D T; Frenje, J A; Johnson, M Gatu; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Magoon, J; Meyerhofer, D D; Sangster, T C; Shoup, M; Ulreich, J; Ashabranner, R C; Bionta, R M; Carpenter, A C; Felker, B; Khater, H Y; LePape, S; MacKinnon, A; McKernan, M A; Moran, M; Rygg, J R; Yeoman, M F; Zacharias, R; Leeper, R J; Fletcher, K; Farrell, M; Jasion, D; Kilkenny, J; Paguio, R

    2013-04-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  8. Hydrogen adsorption site on the Ni?110?-p(1 × 2)-H surface from time-of-flight scattering and recoiling spectrometry (TOF-SARS)

    NASA Astrophysics Data System (ADS)

    Bu, H.; Roux, C. D.; Rabalais, J. W.

    The adsorption site of hydrogen on the Ni{110}-p(1 × 2)-H surface resulting from saturation exposure to H 2 at ˜ 310-350 K has been investigated by time-of-flight scattering and recoiling spectrometry (TOF-SARS). The recoiled neutral plus ion hydrogen atom flux resulting from 2-5 keV Ar + or Ne + pulsed ion beams incident on the surface was monitored as a function of crystal azimuthal angle and beam incidence angle. From classical trajectory calculations and shadowing and blocking analyses, it is concluded that hydrogen atoms are localized at the pseudo-three-fold sites on the (1 × 2) missing-row (MR) reconstructed Ni{110} surface; the (1 × 2) MR reconstruction is induced by hydrogen adsorption shown elsewhere [Surf. Sci. 259 (1991) 253]. Only the pseudo-three-fold site is consistent with all of the experimental data. The coordinates of the hydrogen adsorption site with respect to the nickel lattice were determined. The lateral distance of hydrogen from the 1st-layer Ni <1 overline10> rows is 1.56 ± 0.12 Å and the vertical distance above the substrate is 0.21 ± 0.12 Å, providing NiH bond lengths of 2.0 Å to the two-layer Ni atoms and 1.5 Å to the 2nd-layer Ni atom.

  9. Collective excitations in the transitional nuclei 163Re and 165Re

    NASA Astrophysics Data System (ADS)

    Davis-Merry, T. R.; Joss, D. T.; Page, R. D.; Simpson, J.; Paul, E. S.; Ali, F. A.; Bianco, L.; Carroll, R. J.; Cederwall, B.; Darby, I. G.; Drummond, M. C.; Eeckhaudt, S.; Ertürk, S.; Gómez-Hornillos, M. B.; Grahn, T.; Greenlees, P. T.; Hadinia, B.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Nieminen, P.; Nyman, M.; O'Donnell, D.; Pakarinen, J.; Peura, P.; Rahkila, P.; Revill, J. P.; Ruotsalainen, P.; Sandzelius, M.; Sapple, P. J.; Sarén, J.; Sayǧi, B.; Scholey, C.; Sorri, J.; Thomson, J.; Uusitalo, J.

    2015-03-01

    Excited states in the neutron-deficient nuclei 75163Re88 and 75165Re90 were populated in the 106Cd( 60Ni ,p 2 n γ ) and 92Mo( 78Kr , 3 p 2 n γ ) fusion-evaporation reactions at bombarding energies of 270 and 380 MeV, respectively. γ rays were detected at the target position using the JUROGAM spectrometer while recoiling ions were separated in-flight by the RITU gas-filled recoil separator and implanted in the GREAT spectrometer. The energy level schemes for 163Re and 165Re were identified using recoil-decay correlation techniques. At low spin, the yrast bands of these isotopes consist of signature partner bands based on a single π h11 /2 quasiproton configuration. The bands display large energy splitting consistent with the soft triaxial shape typical of transitional nuclei above N =82 . The configurations of the excited states are proposed within the framework of the cranked shell model.

  10. Prompt and delayed spectroscopy of At 203 : Observation of a shears band and a 29 / 2 + isomeric state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auranen, K.; Uusitalo, J.; Juutinen, S.

    Using fusion-evaporation reactions, a gas-filled recoil separator, recoil-gating technique and recoil-isomer decay tagging technique we have extended the level scheme of At-203 (N = 118) significantly. We have observed an isomeric [tau = 14.1(3) mu s] state with a spin and parity of 29/2(+). The isomeric state is suggested to originate from the pi(h(9/2)) circle times |Po-202; 11(-)> coupling, and it is depopulated through 286 keV E2 and 366 keV E3 transitions. In addition, we have observed a cascade of magnetic-dipole transitions which is suggested to be generated by the shears mechanism.

  11. Alpha-Recoil Damage Annealing Effecfs on Zircon Crystallinity and He Diffusivity: Improving Damage-Diffusivity Models

    NASA Astrophysics Data System (ADS)

    Thurston, O. G.; Guenthner, W.; Garver, J. I.

    2017-12-01

    The effects of radiation damage on He diffusion in zircon has been a major research focus in thermochronology over the past decade. In the zircon-He system, alpha-recoil damage effects He diffusivity in two ways: a decrease in He diffusivity at low radiation damage levels, and an increase in He diffusivity at high radiation damage levels. The radiation damage accumulation process within zircon is well understood; however, the kinetics of annealing of alpha-recoil damage at geologic timescales as they pertain to damage-diffusivity models, and for metamict zircon (i.e. transition from crystalline to amorphous glass via damage accumulation), has not been well constrained. This study aims to develop a more complete model that describes the annealing kinetics for zircon grains with a broad range of pre-annealing, alpha-induced radiation damage. A suite of zircon grains from the Lucerne pluton, ME were chosen for this study due to their simple thermal history (monotonic cooling), notable range of effective uranium (eU, eU = [U] +0.235*[Th]) (15 - 34,239 ppm eU), and large range of radiation damage as measured by Raman shift from crystalline (>1005 cm-1) to metamict (<1000 cm-1). The zircon grains selected represent the full range of eU and radiation damage present in the pluton. The zircon grains were first mapped for overall crystallinity using Raman spectroscopy, then annealed at different time-temperature (t-T) schedules from 1 hr to 24 hrs at temperatures ranging from 700-1100 °C, followed by remapping with Raman spectroscopy to track the total Raman shift for each t-T step. The temperature window selected is at the "roll-over" point established in prior studies (Zhang et al., 2000), at which most laboratory annealing occurs. Our data show that high radiation damage zircon grains show larger Raman shifts than low radiation damage zircon grains when exposed to the same t-T step. The high damage zircon grains typically show a Raman shift of 4 cm-1 toward crystalline

  12. Sensitivity of jet substructure to jet-induced medium response

    NASA Astrophysics Data System (ADS)

    Milhano, Guilherme; Wiedemann, Urs Achim; Zapp, Korinna Christine

    2018-04-01

    Jet quenching in heavy ion collisions is expected to be accompanied by recoil effects, but unambiguous signals for the induced medium response have been difficult to identify so far. Here, we argue that modern jet substructure measurements can improve this situation qualitatively since they are sensitive to the momentum distribution inside the jet. We show that the groomed subjet shared momentum fraction zg, and the girth of leading and subleading subjets signal recoil effects with dependencies that are absent in a recoilless baseline. We find that recoil effects can explain most of the medium modifications to the zg distribution observed in data. Furthermore, for jets passing the Soft Drop Condition, recoil effects induce in the differential distribution of subjet separation ΔR12 a characteristic increase with ΔR12, and they introduce a characteristic enhancement of the girth of the subleading subjet with decreasing zg. We explain why these qualitatively novel features, that we establish in JEWEL+PYTHIA simulations, reflect generic physical properties of recoil effects that should therefore be searched for as telltale signatures of jet-induced medium response.

  13. Recoil Directionality Studies in Two-Phase Liquid Argon TPC Detectors

    NASA Astrophysics Data System (ADS)

    Cadeddu, Matteo; Batignani, Giovanni; Marcello Bonivento, Walter; Bottino, Bianca; Campajola, Luigi; Caravati, Mauro; Catalanotti, Sergio; Cicalò, Corrado; Cocco, Alfredo; Covone, Giovanni; De Rosa, Gianfranca; Devoto, Alberto; Dionisi, Carlo; Fiorillo, Giuliana; Giagu, Stefano; Gulino, Marisa; Kuss, Michael; Lissia, Marcello; Lista, Luca; Longo, Giuseppe; Pallavicini, Marco; Pandola, Luciano; Razeti, Marco; Rescigno, Marco; Rossi, Biagio; Rossi, Nicola; Testera, Gemma; Trinchese, Pasquale; Walker, Susan; Zullo, Maurizio

    2017-12-01

    Projects attempting the direct detection of WIMP dark matter share the common problem of eliminating sources of background or using techniques to distinguish background events from true signals. Although experiments such as DarkSide have achieved essentially background free exposures through careful choice of materials and application of efficient veto techniques, there will still be a high burden of proof to convince the greater scientific community when a discovery is claimed. A directional signature in the data would provide extremely strong evidence to distinguish a true WIMP signal from that of an isotropic background. Two-phase argon time projection chambers (TPCs) provide an experimental apparatus which can both be scaled to the ton-scale size required to accommodate the low cross-section expected for WIMP interactions and have an anisotropy that could be exploited to evaluate the polar angles of the resulting nuclear recoils from WIMP collisions with target nuclei. Our studies show that even a modest resolution in the polar angle reconstruction would offer a powerful tool to detect a directional signature. In this contribution, the status of the ReD experiment, which is under construction at Naples University, will be also shown. The aim of the project is to assess and enhance the directionality of two-phase argon TPCs. ReD will use a small TPC exposed to a beam of mono-energetic neutrons to study the so called "columnar recombination" in liquid argon. This development could have high impact on the future experiments in the field, opening up the potential to find conclusive evidence for dark matter or disprove the WIMP hypothesis at and above the mass range explored by planned accelerator experiments.

  14. First-excited state g factor of Te 136 by the recoil in vacuum method

    DOE PAGES

    Stuchbery, A. E.; Allmond, J. M.; Danchev, M.; ...

    2017-07-27

    The g factor of the first 2 + state of radioactive 136Te with two valence protons and two valence neutrons beyond double-magic 132Sn has been measured by the recoil in vacuum (RIV) method. The lifetime of this state is an order of magnitude longer than the lifetimes of excited states recently measured by the RIV method in Sn and Te isotopes, requiring a new evaluation of the free-ion hyperfine interactions and methodology used to determine the g factor. In this paper, the calibration data are reported and the analysis procedures are described in detail. The resultant g factor has amore » similar magnitude to the g factors of other nuclei with an equal number of valence protons and neutrons in the major shell. However, an unexpected trend is found in the g factors of the N = 84 isotones, which decrease from 136Te to 144Nd. Finally, shell model calculations with interactions derived from the CD Bonn potential show good agreement with the g factors and E2 transition rates of 2 + states around 132Sn, confirming earlier indications that 132Sn is a good doubly magic core.« less

  15. First-excited state g factor of Te 136 by the recoil in vacuum method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuchbery, A. E.; Allmond, J. M.; Danchev, M.

    The g factor of the first 2 + state of radioactive 136Te with two valence protons and two valence neutrons beyond double-magic 132Sn has been measured by the recoil in vacuum (RIV) method. The lifetime of this state is an order of magnitude longer than the lifetimes of excited states recently measured by the RIV method in Sn and Te isotopes, requiring a new evaluation of the free-ion hyperfine interactions and methodology used to determine the g factor. In this paper, the calibration data are reported and the analysis procedures are described in detail. The resultant g factor has amore » similar magnitude to the g factors of other nuclei with an equal number of valence protons and neutrons in the major shell. However, an unexpected trend is found in the g factors of the N = 84 isotones, which decrease from 136Te to 144Nd. Finally, shell model calculations with interactions derived from the CD Bonn potential show good agreement with the g factors and E2 transition rates of 2 + states around 132Sn, confirming earlier indications that 132Sn is a good doubly magic core.« less

  16. Microparticle Separation by Cyclonic Separation

    NASA Astrophysics Data System (ADS)

    Karback, Keegan; Leith, Alexander

    2017-11-01

    The ability to separate particles based on their size has wide ranging applications from the industrial to the medical. Currently, cyclonic separators are primarily used in agriculture and manufacturing to syphon out contaminates or products from an air supply. This has led us to believe that cyclonic separation has more applications than the agricultural and industrial. Using the OpenFoam computational package, we were able to determine the flow parameters of a vortex in a cyclonic separator in order to segregate dust particles to a cutoff size of tens of nanometers. To test the model, we constructed an experiment to separate a test dust of various sized particles. We filled a chamber with Arizona test dust and utilized an acoustic suspension technique to segregate particles finer than a coarse cutoff size and introduce them into the cyclonic separation apparatus where they were further separated via a vortex following our computational model. The size of the particles separated from this experiment will be used to further refine our model. Metropolitan State University of Denver, Colorado University of Denver, Dr. Randall Tagg, Dr. Richard Krantz.

  17. High-resolution measurements of the DT neutron spectrum using new CD foils in the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gatu Johnson, M., E-mail: gatu@psfc.mit.edu; Frenje, J. A.; Li, C. K.

    2016-11-15

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility measures the DT neutron spectrum from cryogenically layered inertial confinement fusion implosions. Yield, areal density, apparent ion temperature, and directional fluid flow are inferred from the MRS data. This paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to ∼200 keV FWHM.

  18. High-resolution measurements of the DT neutron spectrum using new CD foils in the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    DOE PAGES

    Gatu Johnson, M.; Frenje, J. A.; Bionta, R. M.; ...

    2016-08-09

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility measures the DT neutron spectrum from cryogenically layered inertial confinement fusion implosions. Yield, areal density, apparent ion temperature, and directional fluid flow are inferred from the MRS data. Here, this paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to ~200 keV FWHM.

  19. High-resolution measurements of the DT neutron spectrum using new CD foils in the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility.

    PubMed

    Gatu Johnson, M; Frenje, J A; Bionta, R M; Casey, D T; Eckart, M J; Farrell, M P; Grim, G P; Hartouni, E P; Hatarik, R; Hoppe, M; Kilkenny, J D; Li, C K; Petrasso, R D; Reynolds, H G; Sayre, D B; Schoff, M E; Séguin, F H; Skulina, K; Yeamans, C B

    2016-11-01

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility measures the DT neutron spectrum from cryogenically layered inertial confinement fusion implosions. Yield, areal density, apparent ion temperature, and directional fluid flow are inferred from the MRS data. This paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to ∼200 keV FWHM.

  20. Relationship between early diastolic intraventricular pressure gradients, an index of elastic recoil, and improvements in systolic and diastolic function.

    PubMed

    Firstenberg, M S; Smedira, N G; Greenberg, N L; Prior, D L; McCarthy, P M; Garcia, M J; Thomas, J D

    2001-09-18

    Early diastolic intraventricular pressure gradients (IVPGs) have been proposed to relate to left ventricular (LV) elastic recoil and early ventricular "suction." Animal studies have demonstrated relationships between IVPGs and systolic and diastolic indices during acute ischemia. However, data on the effects of improvements in LV function in humans and the relationship to IVPGs are lacking. Eight patients undergoing CABG and/or infarct exclusion surgery had a triple-sensor high-fidelity catheter placed across the mitral valve intraoperatively for simultaneous recording of left atrial (LA), basal LV, and apical LV pressures. Hemodynamic data obtained before bypass were compared with those with similar LA pressures and heart rates obtained after bypass. From each LV waveform, the time constant of LV relaxation (tau), +dP/dt(max), and -dP/dt(max) were determined. Transesophageal echocardiography was used to determined end-diastolic (EDV) and end-systolic (ESV) volumes and ejection fractions (EF). At similar LA pressures and heart rates, IVPG increased after bypass (before bypass 1.64+/-0.79 mm Hg; after bypass 2.67+/-1.25 mm Hg; P<0.01). Significant improvements were observed in ESV, as well as in apical and basal +dP/dt(max), -dP/dt(max), and tau (each P<0.05). Overall, IVPGs correlated inversely with both ESV (IVPG=-0.027[ESV]+3.46, r=-0.64) and EDV (IVPG=-0.027[EDV]+4.30, r=-0.70). Improvements in IVPGs correlated with improvements in apical tau (Deltatau =5.93[DeltaIVPG]+4.76, r=0.91) and basal tau (Deltatau =2.41[DeltaIVPG]+5.13, r=-0.67). Relative changes in IVPGs correlated with changes in ESV (DeltaESV=-0.97[%DeltaIVPG]+23.34, r=-0.79), EDV (DeltaEDV=-1.16[%DeltaIVPG]+34.92, r=-0.84), and EF (DeltaEF=0.38[%DeltaIVPG]-8.39, r=0.85). Improvements in LV function also increase IVPGs. These changes in IVPGs, suggestive of increases in LV suction and elastic recoil, correlate directly with improvements in LV relaxation and ESV.

  1. Solar neutrinos as a signal and background in direct-detection experiments searching for sub-GeV dark matter with electron recoils

    NASA Astrophysics Data System (ADS)

    Essig, Rouven; Sholapurkar, Mukul; Yu, Tien-Tien

    2018-05-01

    Direct-detection experiments sensitive to low-energy electron recoils from sub-GeV dark matter interactions will also be sensitive to solar neutrinos via coherent neutrino-nucleus scattering (CNS), since the recoiling nucleus can produce a small ionization signal. Solar neutrinos constitute both an interesting signal in their own right and a potential background to a dark matter search that cannot be controlled or reduced by improved shielding, material purification and handling, or improved detector design. We explore these two possibilities in detail for semiconductor (silicon and germanium) and xenon targets, considering several possibilities for the unmeasured ionization efficiency at low energies. For dark-matter-electron-scattering searches, neutrinos start being an important background for exposures larger than ˜1 - 10 kg -years in silicon and germanium, and for exposures larger than ˜0.1 - 1 kg -year in xenon. For the absorption of bosonic dark matter (dark photons and axion-like particles) by electrons, neutrinos are most relevant for masses below ˜1 keV and again slightly more important in xenon. Treating the neutrinos as a signal, we find that the CNS of 8B neutrinos can be observed with ˜2 σ significance with exposures of ˜2 , 7, and 20 kg-years in xenon, germanium, and silicon, respectively, assuming there are no other backgrounds. We give an example for how this would constrain nonstandard neutrino interactions. Neutrino components at lower energy can only be detected if the ionization efficiency is sufficiently large. In this case, observing pep neutrinos via CNS requires exposures ≳10 - 100 kg -years in silicon or germanium (˜1000 kg -years in xenon), and observing CNO neutrinos would require an order of magnitude more exposure. Only silicon could potentially detect 7Be neutrinos. These measurements would allow for a direct measurement of the electron-neutrino survival probability over a wide energy range.

  2. Site-specific recoil-induced effects on inner-shell photoionization of linear triatomic molecules: N 1 s photoelectron spectra of N2 O

    NASA Astrophysics Data System (ADS)

    Krivosenko, Yu. S.; Pavlychev, A. A.

    2016-11-01

    We investigate hard X-ray ionization of linear triatomic molecules accenting recoil-induced effects on the dynamics of molecular frame. This dynamics is studied within the two-springs and harmonic approximations. The mode-channel relationship connecting the excitations of vibrational, rotational and translational degrees of freedom with the Σ → Σ and Σ → Π photoionization channels is applied to compute the N 1s-1 photoelectron spectra of molecular N2 O for various photon energies. The distinct ionized-site- and molecular-orientation-specific changes in the vibration structure of the 1 s photoelectron lines of terminal and central nitrogen atoms are revealed and discussed.

  3. Experimental study of isomeric intruder 1 2 + states in At 197 , 203

    DOE PAGES

    Auranen, K.; Uusitalo, J.; Juutinen, S.; ...

    2017-04-10

    A newly observed isomeric intruder ½ + state [T ½=3.5(6)ms] is identified in 203At using a gas-filled recoil separator and fusion-evaporation reactions. The isomer is depopulated through a cascade of E3 and mixed M1/E2 transitions to the 9/2 – ground state, and it is suggested to originate from the π(s ½) –1 configuration. In addition, the structures above the ½ + state in 203At and 197At are studied using in-beam γ-ray spectroscopy, recoil-decay tagging, and recoil-isomer decay tagging methods. As a result, the ½ + state is fed from 3/2 + and 5/2 + states, and the origin of thesemore » states are discussed.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auranen, K.; Uusitalo, J.; Juutinen, S.

    A newly observed isomeric intruder ½ + state [T ½=3.5(6)ms] is identified in 203At using a gas-filled recoil separator and fusion-evaporation reactions. The isomer is depopulated through a cascade of E3 and mixed M1/E2 transitions to the 9/2 – ground state, and it is suggested to originate from the π(s ½) –1 configuration. In addition, the structures above the ½ + state in 203At and 197At are studied using in-beam γ-ray spectroscopy, recoil-decay tagging, and recoil-isomer decay tagging methods. As a result, the ½ + state is fed from 3/2 + and 5/2 + states, and the origin of thesemore » states are discussed.« less

  5. Measurement of the secondary neutron dose distribution from the LET spectrum of recoils using the CR-39 plastic nuclear track detector in 10 MV X-ray medical radiation fields

    NASA Astrophysics Data System (ADS)

    Fujibuchi, Toshioh; Kodaira, Satoshi; Sawaguchi, Fumiya; Abe, Yasuyuki; Obara, Satoshi; Yamaguchi, Masae; Kawashima, Hajime; Kitamura, Hisashi; Kurano, Mieko; Uchihori, Yukio; Yasuda, Nakahiro; Koguchi, Yasuhiro; Nakajima, Masaru; Kitamura, Nozomi; Sato, Tomoharu

    2015-04-01

    We measured the recoil charged particles from secondary neutrons produced by the photonuclear reaction in a water phantom from a 10-MV photon beam from medical linacs. The absorbed dose and the dose equivalent were evaluated from the linear energy transfer (LET) spectrum of recoils using the CR-39 plastic nuclear track detector (PNTD) based on well-established methods in the field of space radiation dosimetry. The contributions and spatial distributions of these in the phantom on nominal photon exposures were verified as the secondary neutron dose and neutron dose equivalent. The neutron dose equivalent normalized to the photon-absorbed dose was 0.261 mSv/100 MU at source to chamber distance 90 cm. The dose equivalent at the surface gave the highest value, and was attenuated to less than 10% at 5 cm from the surface. The dose contribution of the high LET component of ⩾100 keV/μm increased with the depth in water, resulting in an increase of the quality factor. The CR-39 PNTD is a powerful tool that can be used to systematically measure secondary neutron dose distributions in a water phantom from an in-field to out-of-field high-intensity photon beam.

  6. Shape and structure of N=Z 64Ge: electromagnetic transition rates from the application of the recoil distance method to a knockout reaction.

    PubMed

    Starosta, K; Dewald, A; Dunomes, A; Adrich, P; Amthor, A M; Baumann, T; Bazin, D; Bowen, M; Brown, B A; Chester, A; Gade, A; Galaviz, D; Glasmacher, T; Ginter, T; Hausmann, M; Horoi, M; Jolie, J; Melon, B; Miller, D; Moeller, V; Norris, R P; Pissulla, T; Portillo, M; Rother, W; Shimbara, Y; Stolz, A; Vaman, C; Voss, P; Weisshaar, D; Zelevinsky, V

    2007-07-27

    Transition rate measurements are reported for the 2(1)+ and 2(2)+ states in N=Z 64Ge. The experimental results are in excellent agreement with large-scale shell-model calculations applying the recently developed GXPF1A interactions. The measurement was done using the recoil distance method (RDM) and a unique combination of state-of-the-art instruments at the National Superconducting Cyclotron Laboratory (NSCL). States of interest were populated via an intermediate-energy single-neutron knockout reaction. RDM studies of knockout and fragmentation reaction products hold the promise of reaching far from stability and providing lifetime information for excited states in a wide range of nuclei.

  7. Shape and Structure of N=Z Ge64: Electromagnetic Transition Rates from the Application of the Recoil Distance Method to a Knockout Reaction

    NASA Astrophysics Data System (ADS)

    Starosta, K.; Dewald, A.; Dunomes, A.; Adrich, P.; Amthor, A. M.; Baumann, T.; Bazin, D.; Bowen, M.; Brown, B. A.; Chester, A.; Gade, A.; Galaviz, D.; Glasmacher, T.; Ginter, T.; Hausmann, M.; Horoi, M.; Jolie, J.; Melon, B.; Miller, D.; Moeller, V.; Norris, R. P.; Pissulla, T.; Portillo, M.; Rother, W.; Shimbara, Y.; Stolz, A.; Vaman, C.; Voss, P.; Weisshaar, D.; Zelevinsky, V.

    2007-07-01

    Transition rate measurements are reported for the 21+ and 22+ states in N=Z Ge64. The experimental results are in excellent agreement with large-scale shell-model calculations applying the recently developed GXPF1A interactions. The measurement was done using the recoil distance method (RDM) and a unique combination of state-of-the-art instruments at the National Superconducting Cyclotron Laboratory (NSCL). States of interest were populated via an intermediate-energy single-neutron knockout reaction. RDM studies of knockout and fragmentation reaction products hold the promise of reaching far from stability and providing lifetime information for excited states in a wide range of nuclei.

  8. Detecting neutrons by forward recoil protons at the Energy & Transmutation facility: Detector development and calibration with 14.1-MeV neutrons

    NASA Astrophysics Data System (ADS)

    Afanasev, S.; Vishnevskiy, A.; Vishnevskiy, D.; Rogachev, A.; Tyutyunnikov, S.

    2017-05-01

    As part of the Energy & Transmutation project, we are developing a detector for neutrons with energies in the 10-100 MeV range emitted from the target irradiated by a charged-particle beam. The neutron is detected by measuring the time-of-flight and total kinetic energy of the forward-going recoil proton [1] knocked out at a small angle from a thin layer of plastic scintillator, which has to be selected against an intense background created by γ quanta, scattered neutrons, and charged particles. On the other hand, neutron energy has to be measured over the full range with no extra tuning of the detector operation regime. Initial measurements with a source of 14.1-MeV neutrons are reported.

  9. Ionizing Energy Depositions After Fast Neutron Interactions in Silicon

    DOE PAGES

    Bergmann, Benedikt; Pospisil, Stanislav; Caicedo, Ivan; ...

    2016-06-01

    In our study we present the ionizing energy depositions in a 300 μm thick silicon layer after fast neutron impact. With the Time-of-Flight (ToF) technique, the ionizing energy deposition spectra of recoil silicons and secondary charged particles were assigned to (quasi-)monoenergetic neutron energies in the range from 180 keV to hundreds of MeV. We also show and interpret representative measured energy spectra. By separating the ionizing energy losses of the recoil silicon from energy depositions by products of nuclear reactions, the competition of ionizing (IEL) and non-ionizing energy losses (NIEL) of a recoil silicon within the silicon lattice was investigated.more » Furthermore, the data give supplementary information to the results of a previous measurement and are compared with different theoretical predictions.« less

  10. Ionizing Energy Depositions After Fast Neutron Interactions in Silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, Benedikt; Pospisil, Stanislav; Caicedo, Ivan

    In our study we present the ionizing energy depositions in a 300 μm thick silicon layer after fast neutron impact. With the Time-of-Flight (ToF) technique, the ionizing energy deposition spectra of recoil silicons and secondary charged particles were assigned to (quasi-)monoenergetic neutron energies in the range from 180 keV to hundreds of MeV. We also show and interpret representative measured energy spectra. By separating the ionizing energy losses of the recoil silicon from energy depositions by products of nuclear reactions, the competition of ionizing (IEL) and non-ionizing energy losses (NIEL) of a recoil silicon within the silicon lattice was investigated.more » Furthermore, the data give supplementary information to the results of a previous measurement and are compared with different theoretical predictions.« less

  11. Relationship between early diastolic intraventricular pressure gradients, an index of elastic recoil, and improvements in systolic and diastolic function

    NASA Technical Reports Server (NTRS)

    Firstenberg, M. S.; Smedira, N. G.; Greenberg, N. L.; Prior, D. L.; McCarthy, P. M.; Garcia, M. J.; Thomas, J. D.

    2001-01-01

    BACKGROUND: Early diastolic intraventricular pressure gradients (IVPGs) have been proposed to relate to left ventricular (LV) elastic recoil and early ventricular "suction." Animal studies have demonstrated relationships between IVPGs and systolic and diastolic indices during acute ischemia. However, data on the effects of improvements in LV function in humans and the relationship to IVPGs are lacking. METHODS AND RESULTS: Eight patients undergoing CABG and/or infarct exclusion surgery had a triple-sensor high-fidelity catheter placed across the mitral valve intraoperatively for simultaneous recording of left atrial (LA), basal LV, and apical LV pressures. Hemodynamic data obtained before bypass were compared with those with similar LA pressures and heart rates obtained after bypass. From each LV waveform, the time constant of LV relaxation (tau), +dP/dt(max), and -dP/dt(max) were determined. Transesophageal echocardiography was used to determined end-diastolic (EDV) and end-systolic (ESV) volumes and ejection fractions (EF). At similar LA pressures and heart rates, IVPG increased after bypass (before bypass 1.64+/-0.79 mm Hg; after bypass 2.67+/-1.25 mm Hg; P<0.01). Significant improvements were observed in ESV, as well as in apical and basal +dP/dt(max), -dP/dt(max), and tau (each P<0.05). Overall, IVPGs correlated inversely with both ESV (IVPG=-0.027[ESV]+3.46, r=-0.64) and EDV (IVPG=-0.027[EDV]+4.30, r=-0.70). Improvements in IVPGs correlated with improvements in apical tau (Deltatau =5.93[DeltaIVPG]+4.76, r=0.91) and basal tau (Deltatau =2.41[DeltaIVPG]+5.13, r=-0.67). Relative changes in IVPGs correlated with changes in ESV (DeltaESV=-0.97[%DeltaIVPG]+23.34, r=-0.79), EDV (DeltaEDV=-1.16[%DeltaIVPG]+34.92, r=-0.84), and EF (DeltaEF=0.38[%DeltaIVPG]-8.39, r=0.85). CONCLUSIONS: Improvements in LV function also increase IVPGs. These changes in IVPGs, suggestive of increases in LV suction and elastic recoil, correlate directly with improvements in LV relaxation

  12. Development of ΔE-E telescope ERDA with 40 MeV 35Cl7+ beam at MALT in the University of Tokyo optimized for analysis of metal oxynitride thin films

    NASA Astrophysics Data System (ADS)

    Harayama, I.; Nagashima, K.; Hirose, Y.; Matsuzaki, H.; Sekiba, D.

    2016-10-01

    We have developed a compact ΔE-E telescope elastic recoil detection analysis (ERDA) system, for the first time at Micro Analysis Laboratory, Tandem Accelerator (MALT) in the University of Tokyo, which consists of a gas ionization chamber and solid state detector (SSD) for the quantitative analysis of light elements. The gas ionization chamber is designed to identify the recoils of O and N from metal oxynitrides thin films irradiated with 40 MeV 35Cl7+. The length of the electrodes along the beam direction is 50 mm optimized to sufficiently separate energy loss of O and N recoils in P10 gas at 6.0 × 103 Pa. The performance of the gas ionization chamber was examined by comparing the ERDA results on the SrTaO2N thin films with semi-empirical simulation and the chemical compositions previously determined by nuclear reaction analysis (NRA) and Rutherford backscattering spectrometry (RBS). We also confirmed availability of the gas ionization chamber for identifying not only the recoils of O and N but also those of lithium, carbon and fluorine.

  13. Status of the MiniCLEAN dark matter experiment

    NASA Astrophysics Data System (ADS)

    Rielage, Keith

    2009-10-01

    MiniCLEAN utilizes over 400 kg of liquid cryogen to detect nuclear recoils from WIMP dark matter with a projected sensitivity of 2x10-45 cm^2 for a mass of 100 GeV. The liquid cryogen is interchangeable between argon and neon to study the A^2 dependence of the potential signal and examine backgrounds. MiniCLEAN utilizes a unique modular design with spherical geometry to maximize the light yield using cold photomultiplier tubes in a single-phase detector. Pulse shape discrimination techniques are used to separate nuclear recoil signals from electron recoil backgrounds. Particular attention is being paid to mitigating the backgrounds from contamination of surfaces by radon daughters during assembly. The design and assembly status of the experiment will be discussed. The projected timeline and future plans for staging the experiment at SNOLAB in Sudbury, Canada will be presented.

  14. The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF)

    DOE PAGES

    Frenje, J. A.; Hilsabeck, T. J.; Wink, C. W.; ...

    2016-08-02

    The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (T i), yield (Y n), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate datamore » with a time resolution of ~20 ps and energy resolution of ~100 keV for total neutron yields above ~10 16. Lastly, at lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ~20 ps.« less

  15. The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF).

    PubMed

    Frenje, J A; Hilsabeck, T J; Wink, C W; Bell, P; Bionta, R; Cerjan, C; Gatu Johnson, M; Kilkenny, J D; Li, C K; Séguin, F H; Petrasso, R D

    2016-11-01

    The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (T i ), yield (Y n ), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with a time resolution of ∼20 ps and energy resolution of ∼100 keV for total neutron yields above ∼10 16 . At lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ∼20 ps.

  16. The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frenje, J. A., E-mail: jfrenje@psfc.mit.edu; Wink, C. W.; Gatu Johnson, M.

    The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (T{sub i}), yield (Y{sub n}), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate datamore » with a time resolution of ∼20 ps and energy resolution of ∼100 keV for total neutron yields above ∼10{sup 16}. At lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ∼20 ps.« less

  17. Treatment of solid tumors by interstitial release of recoiling short-lived alpha emitters

    NASA Astrophysics Data System (ADS)

    Arazi, L.; Cooks, T.; Schmidt, M.; Keisari, Y.; Kelson, I.

    2007-08-01

    A new method utilizing alpha particles to treat solid tumors is presented. Tumors are treated with interstitial radioactive sources which continually release short-lived alpha emitting atoms from their surface. The atoms disperse inside the tumor, delivering a high dose through their alpha decays. We implement this scheme using thin wire sources impregnated with 224Ra, which release by recoil 220Rn, 216Po and 212Pb atoms. This work aims to demonstrate the feasibility of our method by measuring the activity patterns of the released radionuclides in experimental tumors. Sources carrying 224Ra activities in the range 10-130 kBq were used in experiments on murine squamous cell carcinoma tumors. These included gamma spectroscopy of the dissected tumors and major organs, Fuji-plate autoradiography of histological tumor sections and tissue damage detection by Hematoxylin-Eosin staining. The measurements focused on 212Pb and 212Bi. The 220Rn/216Po distribution was treated theoretically using a simple diffusion model. A simplified scheme was used to convert measured 212Pb activities to absorbed dose estimates. Both physical and histological measurements confirmed the formation of a 5-7 mm diameter necrotic region receiving a therapeutic alpha-particle dose around the source. The necrotic regions shape closely corresponded to the measured activity patterns. 212Pb was found to leave the tumor through the blood at a rate which decreased with tumor mass. Our results suggest that the proposed method, termed DART (diffusing alpha-emitters radiation therapy), may potentially be useful for the treatment of human patients.

  18. The G_E/G_M-ratio of the proton by recoil polarization measurement in e+parrow e'+p

    NASA Astrophysics Data System (ADS)

    Punjabi, Vina; Jones, Mark; Perdrisat, Charles F.; Quemener, Gilles

    1998-10-01

    The recently commissioned Hall A high resolution spectrometers (HRS) and the focal plane polarimeter (FPP) were used to obtain the ratio of the electric and magnetic form factors of the proton, G_E/G_M. This form factor ratio is proportional to the measured ratio of the transverse, P_t, to longitudinal, P_l, components of the recoiling proton polarization. The method takes advantage of the precession of the proton magnetic moment in the hadron HRS, which rotates the longitudinal polarization component into the plane of the FPP analyzer; this allows simultaneous measurement of both components of the polarization. The ratio P_t/P_l is independent of both the electron beam polarization and the polarimeter analyzing power. Most of the data were obtained with polarized beams of 100 μ A with polarization of ~ 0.39 incident on the 15 cm cell of the high power LH2 target. We will report the results for G_E/GM at several values of Q^2 between 0.5 and 3.5 GeV^2.

  19. Recoil Distance Lifetime Measurements of the Nuclei SAMARIUM-146 and EUROPIUM-147, Using Hydrogen-Iodide X Neutron Gamma) Reactions.

    NASA Astrophysics Data System (ADS)

    Rozak, Stephen

    Recoil-distance lifetime measurements have been performed on several levels in ('146)Sm and ('147)Eu, using the reactions ('139)La(('11)B,4n)('146)Sm and ('139)La(('12)C,4n)('147)Eu. The data were analyzed with an algorithm incorporated into a computer code PLUNGER that treats arbitrarily complex cascade feeding in a new, mathematically rigorous, formalism. Higher order corrections are also incorporated into the code and are discussed. The measured mean lifetimes in ('146)Sm are 7ps (2(,1)('+), 747.2keV), 3ps (4(,1)('+), 1381.2keV), 125ps (6(,1)('+), 1811.5keV), 15.7ps (7(,1)('-), 2600.3keV), 16.4ps (8(,1)('+), 2737.1keV), 1.2ns (9(,1)('-), 2797.6keV), 38.8ps (9(,2)('-), 3354.5keV), 14.5ps (11(,1)('-), 3783.5keV), 7.1ps (11(,2)('-), 4091.2keV), 2.3ps (12('-), 4461.4keV), and 7.6ps (13('-), 4628.8keV). The lifetimes measured in ('147)Eu are 6.8ps (15/2('-), 1346.7keV), 12.2ps (19/2(' -), 1926.9keV), 137ps (23/2('-), 2293.2keV), 72.2ps (27/2(' -), 2900.9keV), and 33ps (23/2('-), 2996.9keV). The results for ('146)Sm were compared to calculations of the IBA model and cluster-vibrator model. Both models have good success reproducing the data up to the 6('+) -4('+) transition. They both fail to reproduce the transition probabilities for the 8('+)-6('+) transition. The data also support the interpretation of the lowest negative parity levels (3('-), 5('-),7('-),9('-),11(' -)) as being a band composed of an octupole phonon coupled to the ground state band. The data support the interpretation of the 11/2(' -), 15/2('-), 19/2('-), 23/2('-), and 27/2('-) levels in ('147)Eu as comprised of a valence nucleon coupled to the 0('+), 2('+), 4('+), 6('+), and 8('+) levels in ('146)Sm. The success of this work also demonstrates that the feeding problem is not insurmountable when applying Doppler shift recoil-distance techniques to nuclei formed by (HI,xn) reactions, even when complicated decay schemes are involved.

  20. The Z2/A dependence in heavy-ion fusion for the reactions of chlorine on thulium, lutetium, tantalum and tungsten. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiRienzo, A.C.

    1980-06-01

    Evaporation residues produced in the reactions 35Cl+169Tm and 37Cl+169Tm, 175Lu, 181Ta and 186W were observed at zero degree utilizing the Mass Inst of Tech.- Brookhaven Nat'l Lab Recoil Mass Spectrometer. The recoiling nuclei were separated from the beam and refocused onto a surface barrier detector by a combination of electrostatic and magnetic fields and magnetic quadrupole lenses. The residual nuclei are alpha radioactive and can thus be identified by a characteristic alpha line observed after the arrival pulse of the evaporation residue. The recoiling nuclei also pass through a gas ionization chamber whereas the decay alpha do not. A separatemore » anti-coincidence spectrum therefore displayed the alphas background free. Trends of evaporation residue cross section were charted versus Z sq (proton no.)/ A(atomic no.) and compared to statistical evaporation codes.« less

  1. Ultracapacitor separator

    DOEpatents

    Wei, Chang; Jerabek, Elihu Calvin; LeBlanc, Jr., Oliver Harris

    2001-03-06

    An ultracapacitor includes two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. The electrolyte is a polar aprotic organic solvent and a salt. The porous separator comprises a wet laid cellulosic material.

  2. Shape and structure of N=Z ^64Ge; Electromagnetic transition rates from the application of the Recoil Distance Method to knock-out reactions.

    NASA Astrophysics Data System (ADS)

    Starosta, K.; Dewald, A.

    2007-04-01

    Transition rate measurements are reported for the 2^+1 and 2^+2 states in the N=Z nucleus ^64Ge. The measurement was done utilizing the Recoil Distance Method (RDM) and a unique combination of state of the art instruments at the National Superconducting Cyclotron Laboratory (NSCL). States of interest were populated via an intermediate energy single neutron knock-out reaction. RDM studies of knock-out and fragmentation reaction products hold the promise of reaching far from stability and providing lifetime information for intermediate-spin excited states in a wide range of exotic nuclei. The large-scale Shell Model calculations applying the recently developed GXPF1A interaction are in excellent agreement with the above results. Theoretical analysis suggests that ^64Ge is a collective γ-soft anharmonic vibrator.

  3. High temperature ion source for an on-line isotope separator

    DOEpatents

    Mlekodaj, Ronald L.

    1979-01-01

    A reduced size ion source for on-line use with a cyclotron heavy-ion beam is provided. A sixfold reduction in source volume while operating with similar input power levels results in a 2000.degree. C. operating temperature. A combined target/window normally provides the reaction products for ionization while isolating the ion source plasma from the cyclotron beam line vacuum. A graphite felt catcher stops the recoiling reaction products and releases them into the plasma through diffusion and evaporation. Other target arrangements are also possible. A twenty-four hour lifetime of unattended operation is achieved, and a wider range of elements can be studied than was heretofore possible.

  4. Multiparticle configurations of excited states in 155Lu

    NASA Astrophysics Data System (ADS)

    Carroll, R. J.; Hadinia, B.; Qi, C.; Joss, D. T.; Page, R. D.; Uusitalo, J.; Andgren, K.; Cederwall, B.; Darby, I. G.; Eeckhaudt, S.; Grahn, T.; Gray-Jones, C.; Greenlees, P. T.; Jones, P. M.; Julin, R.; Juutinen, S.; Leino, M.; Leppänen, A.-P.; Nyman, M.; Pakarinen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Seweryniak, D.; Simpson, J.

    2016-12-01

    Excited states in the neutron-deficient N =84 nuclide 155Lu have been populated by using the 102Pd(58Ni,α p ) reaction. The 155Lu nuclei were separated by using the gas-filled recoil ion transport unit (RITU) separator and implanted into the Si detectors of the gamma recoil electron alpha tagging (GREAT) spectrometer. Prompt γ -ray emissions measured at the target position using the JUROGAM Ge detector array were assigned to 155Lu through correlations with α decays measured in GREAT. Structures feeding the (11 /2-) and (25 /2-)α -decaying states have been revised and extended. Shell-model calculations have been performed and are found to reproduce the excitation energies of several of the low-lying states observed to within an average of 71 keV. In particular, the seniority inversion of the 25 /2- and 27 /2- states is reproduced.

  5. Is bioresorbable vascular scaffold acute recoil affected by baseline renal function and scaffold selection?

    PubMed

    Gunes, Haci Murat; Yılmaz, Filiz Kizilirmak; Gokdeniz, Tayyar; Demir, Gultekin Gunhan; Guler, Ekrem; Guler, Gamze Babur; Karaca, Oğuz; Cakal, Beytullah; İbişoğlu, Ersin; Boztosun, Bilal

    2016-12-01

    The aim of the present study was to investigate the relationship between glomerular filtration rate (GFR) and acute post-scaffold recoil (PSR) in patients undergoing bioresorbable scaffold (BVS) implantation. We included 130 patients who underwent everolimus-eluting BVS device (Absorb BVS; Abbott Vascular, Santa Clara, CA, USA) or the novolimus-eluting BVS device (Elixir Medical Corporation) implantations for single or multi-vessel disease. Clinical, angiographic variables and procedural characteristics were defined and pre-procedural GFR was calculated for each patient. Post-procedural angiographic parameters of each patient were analyzed. Primary objective of the study was to evaluate the effect of GFR on angiographic outcomes after BVS implantation while secondary objective was to compare post-procedural angiographic results between the two BVS device groups. Baseline clinical characteristics and angiographic parameters were similar between the two BVS groups. Post-procedural angiographic analysis revealed significantly lower PSR in the DESolve group than the Absorb group (0.10±0.04 vs. 0.13±0.05, p: 0.003). When PSR in the whole study population was evaluated, it was positively correlated with age, tortuosity , calcification and PBR as there was a negative correlation between GFR. Besides GFR were found to be independent predictors for PSR in all groups and the whole study population. In patients undergoing BVS implantation, pre-procedural low GFR is associated with increased post-procedural PSR. Calcification, age, PBR, dyslipidemia and tortuosity are other independent risk factors for PSR. DESolve has lower PSR when compared with Absorb. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Territorial shifts in clinical practice.

    PubMed

    1998-01-01

    Junior doctors are frightened about the erosion of their role and the change of the power relationship between themselves and nurses, the 26th RCN A&E Nursing Association Annual Conference in Daresbury has been told.

  7. Chiral Separations

    NASA Astrophysics Data System (ADS)

    Stalcup, A. M.

    2010-07-01

    The main goal of this review is to provide a brief overview of chiral separations to researchers who are versed in the area of analytical separations but unfamiliar with chiral separations. To researchers who are not familiar with this area, there is currently a bewildering array of commercially available chiral columns, chiral derivatizing reagents, and chiral selectors for approaches that span the range of analytical separation platforms (e.g., high-performance liquid chromatography, gas chromatography, supercritical-fluid chromatography, and capillary electrophoresis). This review begins with a brief discussion of chirality before examining the general strategies and commonalities among all of the chiral separation techniques. Rather than exhaustively listing all the chiral selectors and applications, this review highlights significant issues and differences between chiral and achiral separations, providing salient examples from specific classes of chiral selectors where appropriate.

  8. Simulations of recoiling black holes: adaptive mesh refinement and radiative transfer

    NASA Astrophysics Data System (ADS)

    Meliani, Zakaria; Mizuno, Yosuke; Olivares, Hector; Porth, Oliver; Rezzolla, Luciano; Younsi, Ziri

    2017-02-01

    Context. In many astrophysical phenomena, and especially in those that involve the high-energy regimes that always accompany the astronomical phenomenology of black holes and neutron stars, physical conditions that are achieved are extreme in terms of speeds, temperatures, and gravitational fields. In such relativistic regimes, numerical calculations are the only tool to accurately model the dynamics of the flows and the transport of radiation in the accreting matter. Aims: We here continue our effort of modelling the behaviour of matter when it orbits or is accreted onto a generic black hole by developing a new numerical code that employs advanced techniques geared towards solving the equations of general-relativistic hydrodynamics. Methods: More specifically, the new code employs a number of high-resolution shock-capturing Riemann solvers and reconstruction algorithms, exploiting the enhanced accuracy and the reduced computational cost of adaptive mesh-refinement (AMR) techniques. In addition, the code makes use of sophisticated ray-tracing libraries that, coupled with general-relativistic radiation-transfer calculations, allow us to accurately compute the electromagnetic emissions from such accretion flows. Results: We validate the new code by presenting an extensive series of stationary accretion flows either in spherical or axial symmetry that are performed either in two or three spatial dimensions. In addition, we consider the highly nonlinear scenario of a recoiling black hole produced in the merger of a supermassive black-hole binary interacting with the surrounding circumbinary disc. In this way, we can present for the first time ray-traced images of the shocked fluid and the light curve resulting from consistent general-relativistic radiation-transport calculations from this process. Conclusions: The work presented here lays the ground for the development of a generic computational infrastructure employing AMR techniques to accurately and self

  9. Potential effects of alpha-recoil on uranium-series dating of calcrete

    USGS Publications Warehouse

    Neymark, L.A.

    2011-01-01

    Evaluation of paleosol ages in the vicinity of Yucca Mountain, Nevada, at the time the site of a proposed high-level nuclear waste repository, is important for fault-displacement hazard assessment. Uranium-series isotope data were obtained for surface and subsurface calcrete samples from trenches and boreholes in Midway Valley, Nevada, adjacent to Yucca Mountain. 230Th/U ages of 33 surface samples range from 1.3 to 423 thousand years (ka) and the back-calculated 234U/238U initial activity ratios (AR) are relatively constant with a mean value of 1.54 ± 0.15 (1σ), which is consistent with the closed-system behavior. Subsurface calcrete samples are too old to be dated by the 230Th/U method. U-Pb data for post-pedogenic botryoidal opal from a subsurface calcrete sample show that these subsurface calcrete samples are older than ~ 1.65 million years (Ma), old enough to have attained secular equilibrium had their U-Th systems remained closed. However, subsurface calcrete samples show U-series disequilibrium indicating open-system behavior of 238U daughter isotopes, in contrast with the surface calcrete, where open-system behavior is not evident. Data for 21 subsurface calcrete samples yielded calculable 234U/238U model ages ranging from 130 to 1875 ka (assuming an initial AR of 1.54 ± 0.15, the mean value calculated for the surface calcrete samples). A simple model describing continuous α-recoil loss predicts that the 234U/238U and 230Th/238U ARs reach steady-state values ~ 2 Ma after calcrete formation. Potential effects of open-system behavior on 230Th/U ages and initial 234U/238U ARs for younger surface calcrete were estimated using data for old subsurface calcrete samples with the 234U loss and assuming that the total time of water-rock interaction is the only difference between these soils. The difference between the conventional closed-system and open-system ages may exceed errors of the calculated conventional ages for samples older than ~ 250 ka, but is

  10. Separators - Technology review: Ceramic based separators for secondary batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram

    Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ('Energiewende') was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membranemore » - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic

  11. Separators - Technology review: Ceramic based separators for secondary batteries

    NASA Astrophysics Data System (ADS)

    Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram; Bazhenov, Vasilii; Schilm, Jochen; Leisegang, Tilmann; Meyer, Dirk C.

    2014-06-01

    Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ("Energiewende") was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membrane - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based separators

  12. Determination of the structure of subsurface layers by means of coaxial time-of-flight scattering and recoiling spectrometry (TOF-SARS)

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Teplov, S. V.; Rabalais, J. W.

    1994-05-01

    It is demonstrated that both surface and subsurface structural information can be obtained from Si{100}-(2 × 1) and Si{100}-(1 × 1)-H by coupling coaxial time-of-flight scattering and recoiling spectrometry (TOF-SARS) with three-dimensional trajectory simulations. Experimentally, backscattering intensity versus incident α angle scans at a scattering angle of ˜ 180° have been measured for 2 keV He + incident on both the (2 × 1) and (1 × 1)-H surfaces. Computationally, an efficient three-dimensional version of the Monte Carlo computer code RECAD has been developed and applied to simulation of the TOF-SARS results. An R (reliability) factor has been introduced for quantitative evaluation of the agreement between experimental and simulated scans. For the case of 2 keV He + scattering from Si{100}, scattering features can be observed and delineated from as many as 14 atomic layers ( ˜ 18 Å) below the surface. The intradimer spacing D is determined as 2.2 Å from the minimum in the R-factor versus D plot.

  13. Wet separation processes as method to separate limestone and oil shale

    NASA Astrophysics Data System (ADS)

    Nurme, Martin; Karu, Veiko

    2015-04-01

    Biggest oil shale industry is located in Estonia. Oil shale usage is mainly for electricity generation, shale oil generation and cement production. All these processes need certain quality oil shale. Oil shale seam have interlayer limestone layers. To use oil shale in production, it is needed to separate oil shale and limestone. A key challenge is find separation process when we can get the best quality for all product types. In oil shale separation typically has been used heavy media separation process. There are tested also different types of separation processes before: wet separation, pneumatic separation. Now oil shale industry moves more to oil production and this needs innovation methods for separation to ensure fuel quality and the changes in quality. The pilot unit test with Allmineral ALLJIG have pointed out that the suitable new innovation way for oil shale separation can be wet separation with gravity, where material by pulsating water forming layers of grains according to their density and subsequently separates the heavy material (limestone) from the stratified material (oil shale)bed. Main aim of this research is to find the suitable separation process for oil shale, that the products have highest quality. The expected results can be used also for developing separation processes for phosphorite rock or all others, where traditional separation processes doesn't work property. This research is part of the study Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/

  14. Recoil Distance Method lifetime measurements via gamma-ray and charged-particle spectroscopy at NSCL

    NASA Astrophysics Data System (ADS)

    Voss, Philip Jonathan

    The Recoil Distance Method (RDM) is a well-established technique for measuring lifetimes of electromagnetic transitions. Transition matrix elements derived from the lifetimes provide valuable insight into nuclear structure. Recent RDM investigations at NSCL present a powerful new model-independent tool for the spectroscopy of nuclei with extreme proton-to-neutron ratios that exhibit surprising behavior. Neutron-rich 18C is one such example, where a small B(E2; 2+1 → 0+gs) represented a dramatic shift from the expected inverse relationship between the B(E2) and 2+1 excitation energy. To shed light on the nature of this quadrupole excitation, the RDM lifetime technique was applied with the Koln/NSCL plunger. States in 18C were populated by the one-proton knockout reaction of a 19N secondary beam. De-excitation gamma rays were detected with the Segmented Germanium Array in coincidence with reaction residues at the focal plane of the S800 Magnetic Spectrometer. The deduced B(E2) and excitation energy were both well described by ab initio no-core shell model calculations. In addition, a novel extension of RDM lifetime measurements via charged-particle spectroscopy of exotic proton emitters has been investigated. Substituting the reaction residue degrader of the Koln/NSCL plunger with a thin silicon detector permits the study of short-lived nuclei beyond the proton dripline. A proof of concept measurement of the mean lifetime of the two-proton emitter 19Mg was conducted. The results indicated a sub-picosecond lifetime, one order of magnitude smaller than the published results, and validate this new technique for lifetime measurements of charged-particle emitters.

  15. Product separator

    DOEpatents

    Welsh, Robert A.; Deurbrouck, Albert W.

    1976-01-20

    A secondary light sensitive photoelectric product separator for use with a primary product separator that concentrates a material so that it is visually distinguishable from adjacent materials. The concentrate separation is accomplished first by feeding the material onto a vibratory inclined surface with a liquid flow, such as a wet concentrating table. Vibrations generally perpendicular to the stream direction of flow cause the concentrate to separate from its mixture according to its color. When the concentrate and its surrounding stream reach the recovery end of the table, a detecting device notes the line of color demarcation and triggers a signal if it differs from a normal condition. If no difference is noted nothing moves on the second separator. However, if a difference is detected in the constant monitoring of the color line's location, a product splitter and recovery unit normally positioned near the color line at the recovery end, moves to a new position. In this manner the selected separated concentrate is recovered at a maximum rate regardless of variations in the flow stream or other conditions present.

  16. Composite separators and redox flow batteries based on porous separators

    DOEpatents

    Li, Bin; Wei, Xiaoliang; Luo, Qingtao; Nie, Zimin; Wang, Wei; Sprenkle, Vincent L.

    2016-01-12

    Composite separators having a porous structure and including acid-stable, hydrophilic, inorganic particles enmeshed in a substantially fully fluorinated polyolefin matrix can be utilized in a number of applications. The inorganic particles can provide hydrophilic characteristics. The pores of the separator result in good selectivity and electrical conductivity. The fluorinated polymeric backbone can result in high chemical stability. Accordingly, one application of the composite separators is in redox flow batteries as low cost membranes. In such applications, the composite separator can also enable additional property-enhancing features compared to ion-exchange membranes. For example, simple capacity control can be achieved through hydraulic pressure by balancing the volumes of electrolyte on each side of the separator. While a porous separator can also allow for volume and pressure regulation, in RFBs that utilize corrosive and/or oxidizing compounds, the composite separators described herein are preferable for their robustness in the presence of such compounds.

  17. Recoil distance method lifetime measurement of the 21+ state in 94Sr and implications for the structure of neutron-rich Sr isotopes

    NASA Astrophysics Data System (ADS)

    Chester, A.; Ball, G. C.; Caballero-Folch, R.; Cross, D. S.; Cruz, S.; Domingo, T.; Drake, T. E.; Garnsworthy, A. B.; Hackman, G.; Hallam, S.; Henderson, J.; Henderson, R.; Korten, W.; Krücken, R.; Moukaddam, M.; Olaizola, B.; Ruotsalainen, P.; Smallcombe, J.; Starosta, K.; Svensson, C. E.; Williams, J.; Wimmer, K.

    2017-07-01

    A high precision lifetime measurement of the 21+ state in 94Sr was performed at TRIUMF's ISAC-II facility by coupling the recoil distance method implemented via the TIGRESS integrated plunger with unsafe Coulomb excitation in inverse kinematics. Due to limited statistics imposed by the use of a radioactive 94Sr beam, a likelihood ratio χ2 method was derived and used to compare experimental data to Geant4 simulations. The B (E 2 ;21+→01+) value extracted from the lifetime measurement of 7 .80-0.40+0.50(stat.)±0.07 (sys.) ps is approximately 25% larger than previously reported while the relative error has been reduced by a factor of approximately 8. A baseline deformation has been established for Sr isotopes with N ≤58 which is a necessary condition for the quantum phase transition interpretation of the onset of deformation in this region. A comparison to existing theoretical models is presented.

  18. Electron-deuteron deep-inelastic scattering with spectator nucleon tagging and final-state interactions at intermediate x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strikman, Mark; Weiss, Christian

    We consider electron-deuteron deep-inelastic scattering (DIS) with detection of a proton in the nuclear fragmentation region ("spectator tagging") as a method for extracting the free neutron structure functions and studying their nuclear modifications. Such measurements could be performed at a future Electron-Ion Collider (EIC) with suitable forward detectors. The measured proton recoil momentum (≲ 100 MeV in the deuteron rest frame) specifies the deuteron configuration during the high-energy process and permits a controlled theoretical treatment of nuclear effects. Nuclear and nucleonic structure are separated using methods of light-front quantum mechanics. The impulse approximation (IA) to the tagged DIS cross sectionmore » contains the free neutron pole, which can be reached by on-shell extrapolation in the recoil momentum. Final-state interactions (FSI) distort the recoil momentum distribution away from the pole. In the intermediate-x region 0.1 < x < 0.5 FSI arise predominantly from interactions of the spectator proton with slow hadrons produced in the DIS process on the neutron (rest frame momenta ≲1 GeV, target fragmentation region). We construct a schematic model describing this effect, using final-state hadron distributions measured in nucleon DIS experiments and low-energy hadron scattering amplitudes. We investigate the magnitude of FSI, their dependence on the recoil momentum (angular dependence, forward/backward regions), their analytic properties, and their effect on the on-shell extrapolation. We comment on the prospects for neutron structure extraction in tagged DIS with EIC. Finally, we discuss possible extensions of the FSI model to other kinematic regions (large/small x). In tagged DIS at x << 0.1 FSI resulting from diffractive scattering on the nucleons become important and require separate treatment.« less

  19. Electron-deuteron deep-inelastic scattering with spectator nucleon tagging and final-state interactions at intermediate x

    DOE PAGES

    Strikman, Mark; Weiss, Christian

    2018-03-27

    We consider electron-deuteron deep-inelastic scattering (DIS) with detection of a proton in the nuclear fragmentation region ("spectator tagging") as a method for extracting the free neutron structure functions and studying their nuclear modifications. Such measurements could be performed at a future Electron-Ion Collider (EIC) with suitable forward detectors. The measured proton recoil momentum (≲ 100 MeV in the deuteron rest frame) specifies the deuteron configuration during the high-energy process and permits a controlled theoretical treatment of nuclear effects. Nuclear and nucleonic structure are separated using methods of light-front quantum mechanics. The impulse approximation (IA) to the tagged DIS cross sectionmore » contains the free neutron pole, which can be reached by on-shell extrapolation in the recoil momentum. Final-state interactions (FSI) distort the recoil momentum distribution away from the pole. In the intermediate-x region 0.1 < x < 0.5 FSI arise predominantly from interactions of the spectator proton with slow hadrons produced in the DIS process on the neutron (rest frame momenta ≲1 GeV, target fragmentation region). We construct a schematic model describing this effect, using final-state hadron distributions measured in nucleon DIS experiments and low-energy hadron scattering amplitudes. We investigate the magnitude of FSI, their dependence on the recoil momentum (angular dependence, forward/backward regions), their analytic properties, and their effect on the on-shell extrapolation. We comment on the prospects for neutron structure extraction in tagged DIS with EIC. Finally, we discuss possible extensions of the FSI model to other kinematic regions (large/small x). In tagged DIS at x << 0.1 FSI resulting from diffractive scattering on the nucleons become important and require separate treatment.« less

  20. Electron-deuteron deep-inelastic scattering with spectator nucleon tagging and final-state interactions at intermediate x

    NASA Astrophysics Data System (ADS)

    Strikman, M.; Weiss, C.

    2018-03-01

    We consider electron-deuteron deep-inelastic scattering (DIS) with detection of a proton in the nuclear fragmentation region ("spectator tagging") as a method for extracting the free neutron structure functions and studying their nuclear modifications. Such measurements could be performed at a future electron-ion collider (EIC) with suitable forward detectors. The measured proton recoil momentum (≲100 MeV in the deuteron rest frame) specifies the deuteron configuration during the high-energy process and permits a controlled theoretical treatment of nuclear effects. Nuclear and nucleonic structure are separated using methods of light-front quantum mechanics. The impulse approximation to the tagged DIS cross section contains the free neutron pole, which can be reached by on-shell extrapolation in the recoil momentum. Final-state interactions (FSIs) distort the recoil momentum distribution away from the pole. In the intermediate-x region 0.1 recoil momentum (angular dependence, forward/backward regions), their analytic properties, and their effect on the on-shell extrapolation. We comment on the prospects for neutron structure extraction in tagged DIS with an EIC. We discuss possible extensions of the FSI model to other kinematic regions (large/small x ). In tagged DIS at x ≪0.1 FSIs resulting from diffractive scattering on the nucleons become important and require separate treatment.

  1. The coincidence counting technique for orders of magnitude background reduction in data obtained with the magnetic recoil spectrometer at OMEGA and the NIF.

    PubMed

    Casey, D T; Frenje, J A; Séguin, F H; Li, C K; Rosenberg, M J; Rinderknecht, H; Manuel, M J-E; Gatu Johnson, M; Schaeffer, J C; Frankel, R; Sinenian, N; Childs, R A; Petrasso, R D; Glebov, V Yu; Sangster, T C; Burke, M; Roberts, S

    2011-07-01

    A magnetic recoil spectrometer (MRS) has been built and successfully used at OMEGA for measurements of down-scattered neutrons (DS-n), from which an areal density in both warm-capsule and cryogenic-DT implosions have been inferred. Another MRS is currently being commissioned on the National Ignition Facility (NIF) for diagnosing low-yield tritium-hydrogen-deuterium implosions and high-yield DT implosions. As CR-39 detectors are used in the MRS, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). The coincidence counting technique was developed to reduce these types of background tracks to the required level for the DS-n measurements at OMEGA and the NIF. Using this technique, it has been demonstrated that the number of background tracks is reduced by a couple of orders of magnitude, which exceeds the requirement for the DS-n measurements at both facilities.

  2. Ion mass separation modeling inside a plasma separator

    NASA Astrophysics Data System (ADS)

    Gavrikov, A. V.; Sidorov, V. S.; Smirnov, V. P.; Tarakanov, V. P.

    2018-01-01

    The results have been obtained in a continuation of the work for ion trajectories calculation in crossed electric and magnetic fields and also in a close alignment with the plasma separation study development. The main task was to calculate trajectories of ions of the substance imitating spent nuclear fuel in order to find a feasible plasma separator configuration. The three-dimensional modeling has been made with KARAT code in a single-particle approximation. The calculations have been performed under the following conditions. Magnetic field is produced by 2 coils of wire, the characteristic field strength in a uniform area is 1.4 kG. Electric field is produced by several electrodes (axial ones, anode shell and capacitor sheets) with electric potential up to 500 V. The characteristic linear size of the cylindrical separator area is ∼ 100 cm. The characteristic size of injection region is ∼ 1 cm. Spatial position of the injection region is inside the separator. The injection direction is along magnetic lines. Injected particles are single-charged ions with energies from 0 to 20 eV with atomic masses A = 150 and 240. Wide spreading angle range was investigated. As a result of simulation a feasible separator configuration was found. This configuration allows to achieve more than 10 cm spatial division distance for the separated ions and is fully compliant with and supplementary to the vacuum arc-based ion source research.

  3. Separation efficiency in a whirlpool surface tension separator, separating faeces and toilet paper for nutrient recovery--pilot-scale study.

    PubMed

    Vinnerås, B

    2004-01-01

    The main proportion of the plant nutrients in waste from society can be recycled in two unpolluted fractions if the urine and the faeces are collected separately. By using urine-diverting toilets combined with a whirlpool surface tension faecal separator, it is possible to achieve this. If the separator is installed correctly, with a gradual bend to minimise disintegration of the particles, it is possible to collect approximately 92% nitrogen, 86% phosphorus and 76% potassium of the content excreted in the faeces in a small separated fraction that only contains 10% of the flushwater used. The faecal separation is a robust system with no moving parts, which is not significantly affected by the flushwater volume, and almost no water is separated to the separated solids if neither toilet paper nor faeces are flushed.

  4. A DAFT DL_POLY distributed memory adaptation of the Smoothed Particle Mesh Ewald method

    NASA Astrophysics Data System (ADS)

    Bush, I. J.; Todorov, I. T.; Smith, W.

    2006-09-01

    The Smoothed Particle Mesh Ewald method [U. Essmann, L. Perera, M.L. Berkowtz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103 (1995) 8577] for calculating long ranged forces in molecular simulation has been adapted for the parallel molecular dynamics code DL_POLY_3 [I.T. Todorov, W. Smith, Philos. Trans. Roy. Soc. London 362 (2004) 1835], making use of a novel 3D Fast Fourier Transform (DAFT) [I.J. Bush, The Daresbury Advanced Fourier transform, Daresbury Laboratory, 1999] that perfectly matches the Domain Decomposition (DD) parallelisation strategy [W. Smith, Comput. Phys. Comm. 62 (1991) 229; M.R.S. Pinches, D. Tildesley, W. Smith, Mol. Sim. 6 (1991) 51; D. Rapaport, Comput. Phys. Comm. 62 (1991) 217] of the DL_POLY_3 code. In this article we describe software adaptations undertaken to import this functionality and provide a review of its performance.

  5. Elastic recoil detection analysis for the determination of hydrogen concentration profiles in switchable mirrors

    NASA Astrophysics Data System (ADS)

    Huisman, M. C.; van der Molen, S. J.; Vis, R. D.

    1999-10-01

    Switchable mirrors [J.N. Huiberts, R. Griessen, J.H. Rector, R.J. Wijngaarden, J.P. Dekker, D.G. de Groot, N.J. Koeman, Nature 380 (1996) 231; J.N Huiberts, J.H. Rector, R.J. Wijngaarden, S. Jetten, D. de Groot, B. Dam, N.J.. Koeman, R. Griessen, B. Hjörvarsson, S Olafsson, Y.S. Cho, J. Alloys and Compounds 239 (1996) 158; F.J.A. den Broeder, S.J. van der Molen, M. Kremers, J. N. Huiberts, D.G. Nagengast, A.T.M. van Gogh, W.H. Huisman, N. J. Koeman, B. Dam, J.H. Rector, S. Plota, M. Haaksma, R.M.N. Hanzen, R.M. Jungblut, P.A. Duine, R. Griessen, Nature 394 (1998) 656] made of thin films of Y, La or rare-earth (RE) metals exhibit spectacular changes in their optical and electrical properties upon hydrogen loading. The study of these materials has indicated that the occurring phenomena are highly sensitive to the actual hydrogen concentration in these materials. In this paper elastic recoil detection analysis (ERDA) is used as a tool to measure hydrogen concentrations on a micrometer scale. The measurements have been performed using a 4He 2+ ion beam from a 1.7 MV Pelletron accelerator. The ion beam can be focused routinely to a spot size of approximately 10 μm 2. The experimental set-up enables the simultaneous measurement of Rutherford backscattering spectrometry (RBS) as well as particle induced X-ray emission (PIXE) spectra, which provide complementary information. The results of ERDA measurements on laterally diffused YH x (0< x<3) samples with a qualitatively known hydrogen concentration profile are presented and discussed. The calibration of the microbeam set-up and possible improvement of the measurement technique are described.

  6. Ultrasound imparted air-recoil resonance (UIAR) method for acoustic power estimation: theory and experiment.

    PubMed

    Kaiplavil, Sreekumar; Rivens, Ian; ter Haar, Gail

    2013-07-01

    Ultrasound imparted air-recoil resonance (UIAR), a new method for acoustic power estimation, is introduced with emphasis on therapeutic high-intensity focused ultrasound (HIFU) monitoring applications. Advantages of this approach over existing practices include fast response; electrical and magnetic inertness, and hence MRI compatibility; portability; high damage threshold and immunity to vibration and interference; low cost; etc. The angle of incidence should be fixed for accurate measurement. However, the transducer-detector pair can be aligned in any direction with respect to the force of gravity. In this sense, the operation of the device is orientation independent. The acoustic response of a pneumatically coupled pair of Helmholtz resonators, with one of them acting as the sensor head, is used for the estimation of acoustic power. The principle is valid in the case of pulsed/ burst as well as continuous ultrasound exposure, the former being more sensitive and accurate. An electro-acoustic theory has been developed for describing the dynamics of pressure flow and resonance in the system considering various thermo- viscous loss mechanisms. Experimental observations are found to be in agreement with theoretical results. Assuming the window damage threshold (~10 J·mm(-2)) and accuracy of RF power estimation are the upper and lower scale-limiting factors, the performance of the device was examined for an RF power range of 5 mW to 100 W with a HIFU transducer operating at 1.70 MHz, and an average nonlinearity of ~1.5% was observed. The device is also sensitive to sub-milliwatt powers. The frequency response was analyzed at 0.85, 1.70, 2.55, and 3.40 MHz and the results are presented with respective theoretical estimates. Typical response time is in the millisecond regime. Output drift is about 3% for resonant and 5% for nonresonant modes. The principle has been optimized to demonstrate a general-purpose acoustic power meter.

  7. Acoustofluidic bacteria separation

    NASA Astrophysics Data System (ADS)

    Li, Sixing; Ma, Fen; Bachman, Hunter; Cameron, Craig E.; Zeng, Xiangqun; Huang, Tony Jun

    2017-01-01

    Bacterial separation from human blood samples can help with the identification of pathogenic bacteria for sepsis diagnosis. In this work, we report an acoustofluidic device for label-free bacterial separation from human blood samples. In particular, we exploit the acoustic radiation force generated from a tilted-angle standing surface acoustic wave (taSSAW) field to separate Escherichia coli from human blood cells based on their size difference. Flow cytometry analysis of the E. coli separated from red blood cells shows a purity of more than 96%. Moreover, the label-free electrochemical detection of the separated E. coli displays reduced non-specific signals due to the removal of blood cells. Our acoustofluidic bacterial separation platform has advantages such as label-free separation, high biocompatibility, flexibility, low cost, miniaturization, automation, and ease of in-line integration. The platform can be incorporated with an on-chip sensor to realize a point-of-care sepsis diagnostic device.

  8. Map Separates

    USGS Publications Warehouse

    ,

    2001-01-01

    U.S. Geological Survey (USGS) topographic maps are printed using up to six colors (black, blue, green, red, brown, and purple). To prepare your own maps or artwork based on maps, you can order separate black-and-white film positives or negatives for any color printed on a USGS topographic map, or for one or more of the groups of related features printed in the same color on the map (such as drainage and drainage names from the blue plate.) In this document, examples are shown with appropriate ink color to illustrate the various separates. When purchased, separates are black-and-white film negatives or positives. After you receive a film separate or composite from the USGS, you can crop, enlarge or reduce, and edit to add or remove details to suit your special needs. For example, you can adapt the separates for making regional and local planning maps or for doing many kinds of studies or promotions by using the features you select and then printing them in colors of your choice.

  9. Update on the MiniCLEAN dark matter experiment

    DOE PAGES

    Rielage, K.; Akashi-Ronquest, M.; Bodmer, M.; ...

    2015-03-24

    The direct search for dark matter is entering a period of increased sensitivity to the hypothetical Weakly Interacting Massive Particle (WIMP). One such technology that is being examined is a scintillation only noble liquid experiment, MiniCLEAN. MiniCLEAN utilizes over 500 kg of liquid cryogen to detect nuclear recoils from WIMP dark matter and serves as a demonstration for a future detector of order 50 to 100 tonnes. The liquid cryogen is interchangeable between argon and neon to study the A² dependence of the potential signal and examine backgrounds. MiniCLEAN utilizes a unique modular design with spherical geometry to maximize themore » light yield using cold photomultiplier tubes in a single-phase detector. Pulse shape discrimination techniques are used to separate nuclear recoil signals from electron recoil backgrounds. MiniCLEAN will be spiked with additional ³⁹Ar to demonstrate the effective reach of the pulse shape discrimination capability. Assembly of the experiment is underway at SNOLAB and an update on the project is given.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rielage, K.; Akashi-Ronquest, M.; Bodmer, M.

    The direct search for dark matter is entering a period of increased sensitivity to the hypothetical Weakly Interacting Massive Particle (WIMP). One such technology that is being examined is a scintillation only noble liquid experiment, MiniCLEAN. MiniCLEAN utilizes over 500 kg of liquid cryogen to detect nuclear recoils from WIMP dark matter and serves as a demonstration for a future detector of order 50 to 100 tonnes. The liquid cryogen is interchangeable between argon and neon to study the A² dependence of the potential signal and examine backgrounds. MiniCLEAN utilizes a unique modular design with spherical geometry to maximize themore » light yield using cold photomultiplier tubes in a single-phase detector. Pulse shape discrimination techniques are used to separate nuclear recoil signals from electron recoil backgrounds. MiniCLEAN will be spiked with additional ³⁹Ar to demonstrate the effective reach of the pulse shape discrimination capability. Assembly of the experiment is underway at SNOLAB and an update on the project is given.« less

  11. CENTRIFUGAL SEPARATORS

    DOEpatents

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  12. Stereoisomers Separation

    NASA Astrophysics Data System (ADS)

    Wieczorek, Piotr

    The use of capillary electrophoresis for enantiomer separation and optical purity determination is presented. The contents start with basic information about the nature of stereoizomers and the mechanism of enantioseparation using capillary electrophoresis techniques. The molecules to be separated show identical chemical structure and electrochemical behavior. Therefore, the chiral recognition of enantiomers is possible only by bonding to chiral selector and the separation based on very small differences in complexation energies of diastereomer complexes formed. This method is useful for this purpose due to the fact that different compounds can be used as chiral selectors. The mostly used chiral selectors like cyclodextrins, crown ethers, chiral surfactants, macrocyclic antibiotics, transition metal complexes, natural, and synthetic polymers and their application for this purpose is also discussed. Finally, examples of practical applications of electromigration techniques for enantiomers separation and determination are presented.

  13. Safety shutdown separators

    DOEpatents

    Carlson, Steven Allen; Anakor, Ifenna Kingsley; Farrell, Greg Robert

    2015-06-30

    The present invention pertains to electrochemical cells which comprise (a) an anode; (b) a cathode; (c) a solid porous separator, such as a polyolefin, xerogel, or inorganic oxide separator; and (d) a nonaqueous electrolyte, wherein the separator comprises a porous membrane having a microporous coating comprising polymer particles which have not coalesced to form a continuous film. This microporous coating on the separator acts as a safety shutdown layer that rapidly increases the internal resistivity and shuts the cell down upon heating to an elevated temperature, such as 110.degree. C. Also provided are methods for increasing the safety of an electrochemical cell by utilizing such separators with a safety shutdown layer.

  14. Time-of-flight scattering and recoiling spectrometry (TOF-SARS) analysis of Pt{110}. II. The (1 × 2)-to-(1 × 3) interconversion and characterization of the (1 × 3) phase

    NASA Astrophysics Data System (ADS)

    Masson, F.; Rabalais, J. W.

    1991-08-01

    The (1 × 3) phase of Pt{110} is shown to be stabilized by Ca and K impurities in the outermost layers of the surface. This structural phase is characterized by time-of-flight scattering and recoiling spectrometry (TOF-SARS). The results reveal that the surface is reconstructed into (1 × 3) troughs in which part of the central second-layer rows remain. Å 0.24 ± 0.08 Å inward relaxation of the first layer atoms is observed. The proposed structure of (1 × 3)-Pt{110} is contrasted with previous work on the (1 × 3)-{110} surfaces of Pt, Au, and Ir.

  15. Measurement of the 21Na(p,{gamma})22Mg Reaction with the Dragon Facility at TRIUMF-ISAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, A.A.; Bishop, S.; D'Auria, J.M.

    2003-08-26

    The DRAGON recoil separator facility, designed to measure the rates of radiative proton and alpha capture reactions important for nuclear astrophysics, is now operational at the TRIUMF-ISAC radioactive beam facility in Vancouver, Canada. We report on first measurements of the 21Na(p,{gamma})22Mg reaction rate with radioactive beams of 21Na.

  16. Isothermal separation processes

    NASA Technical Reports Server (NTRS)

    England, C.

    1982-01-01

    The isothermal processes of membrane separation, supercritical extraction and chromatography were examined using availability analysis. The general approach was to derive equations that identified where energy is consumed in these processes and how they compare with conventional separation methods. These separation methods are characterized by pure work inputs, chiefly in the form of a pressure drop which supplies the required energy. Equations were derived for the energy requirement in terms of regular solution theory. This approach is believed to accurately predict the work of separation in terms of the heat of solution and the entropy of mixing. It can form the basis of a convenient calculation method for optimizing membrane and solvent properties for particular applications. Calculations were made on the energy requirements for a membrane process separating air into its components.

  17. Magnetic separation anxiety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canning, C.

    1992-01-01

    This paper reports that only a few years ago superconducting magnetic separation was viewed as the next major market for superconducting magnets. The first commercial units had been installed, worked flawlessly, and demonstrated real economic viability. The potential market was seen as quite large, and many people believed that superconducting magnetic separation would soon show the same rapid growth that MRI had demonstrated after its initial success. These hopes even prompted IGC, one of the top MRI magnet builders, to form a separate division devoted to magnetic separation. Despite the existence of Magstream, IGC has not been overly active inmore » the market. As a technology that has applications from the clay on the Earth to the soil on the moon, superconducting magnetic separation has yet to become widely used.« less

  18. Time-of-flight scattering and recoiling spectrometry (TOF-SARS) analysis of Pt{110}. I. Quantitative structural study of the clean (1 × 2) surface

    NASA Astrophysics Data System (ADS)

    Masson, F.; Rabalais, J. W.

    1991-08-01

    The technique of time-of-flight scattering and recoiling spectrometry (TOF-SARS) is used for quantitative structural characterization of the reconstructed (1 × 2) missing-row Pt{110} clean surface. The results are presented as scans of scattered intensity versus incident angle at two scattering angles and are interpreted in terms of simple classical concepts (shadowing, blocking, focusing). Measured critical incident and exit angles corresponding to interatomic spacings unaffected by reconstruction are used to calibrate the screening constant of the interaction potential employed in the trajectory simulations. Analysis of the surface reconstruction is performed by combining experimental data and calibrated computations. The results indicate a contraction of the first-to-second interlayer spacing (-0.22 ± 0.07 Å, i.e., -16 ± 5%), a buckling of amplitude 0.19 ± 0.13 Å in the third layer and, possibly, a row-pairing in the second layer. These observations are in agreement with LEED, MEIS, GXRD, and RHEED experiments.

  19. Controlling Separation in Turbomachines

    NASA Technical Reports Server (NTRS)

    Evans, Simon; Himmel, Christoph; Power, Bronwyn; Wakelam, Christian; Xu, Liping; Hynes, Tom; Hodson, Howard

    2010-01-01

    Four examples of flow control: 1) Passive control of LP turbine blades (Laminar separation control). 2) Aspiration of a conventional axial compressor blade (Turbulent separation control). 3) Compressor blade designed for aspiration (Turbulent separation control). 4.Control of intakes in crosswinds (Turbulent separation control).

  20. Recoil-Implantation Of Multiple Radioisotopes Towards Wear Rate Measurements And Particle Tracing In Prosthetic Joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Jacob A.; Timmers, Heiko; Smith, Paul N.

    2011-06-01

    This study demonstrates a new method of radioisotope labeling of ultra-high molecular weight polyethylene inserts in prosthetic joints for wear studies. The radioisotopes {sup 97}Ru, {sup 100}Pd, {sup 100}Rh, and {sup 101m}Rh are produced in fusion evaporation reactions induced by {sup 12}C ions in a {sup 92}Zr target foil. The fusion products recoil-implant into ultra-high molecular weight polyethylene plugs, machined to fit into the surface of the inserts. During laboratory simulations of the joint motion, a wear rate of the labeled polyethylene may be measured and the pathways of wear debris particles can be traced by detecting characteristic gamma-rays. Themore » concentration profiles of the radioisotopes extend effectively uniformly from the polyethylene surface to a depth of about 4 {mu}m. The multiplicity of labeling and the use of several gamma-ray lines aids with avoiding systematic measurement uncertainties. Two polyethylene plugs were labeled and one was fitted into the surface of the tibial insert of a knee prosthesis, which had been worn in. Actuation over close to 100,000 cycles with a 900 N axial load and a 24 deg. flexion angle removed (14{+-}1)% of the gamma-ray activity from the plug. Most of this activity dispersed into the serum lubricant identifying this as the important debris pathway. Less than 1% activity was transferred to the femoral component of the prosthesis and the measured activity on the tibial tray was insignificant. Assuming uniform wear across the superior surface of the insert, a wear rate of (12{+-}3) mm{sup 3}/Megacycle was determined. This is consistent with wear rate measurements under similar conditions using other techniques.« less

  1. A blind source separation approach for humpback whale song separation.

    PubMed

    Zhang, Zhenbin; White, Paul R

    2017-04-01

    Many marine mammal species are highly social and are frequently encountered in groups or aggregations. When conducting passive acoustic monitoring in such circumstances, recordings commonly contain vocalizations of multiple individuals which overlap in time and frequency. This paper considers the use of blind source separation as a method for processing these recordings to separate the calls of individuals. The example problem considered here is that of the songs of humpback whales. The high levels of noise and long impulse responses can make source separation in underwater contexts a challenging proposition. The approach present here is based on time-frequency masking, allied to a noise reduction process. The technique is assessed using simulated and measured data sets, and the results demonstrate the effectiveness of the method for separating humpback whale songs.

  2. Hydrogen separation process

    DOEpatents

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  3. Sink-float ferrofluid separator applicable to full scale nonferrous scrap separation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Design and performance of a ferrofluid levitation separator for recovering nonferrous metals from shredded automobiles are reported. The scrap separator uses an electromagnet to generate a region of constant density within a pool of ferrofluid held between the magnetic poles; a saturated kerosene base ferrofluid as able to float all common industrial metals of interest. Conveyors move the scrap into the ferrofluid for separation according to density. Results of scrap mixture separation studies establish the technical feasibility of relatively pure aluminum alloy and zinc alloy fractions from shredded automobile scrap by this ferrofluid levitation process. Economic projections indicate profitable operation for shredders handling more than 300 cars per day.

  4. Methods for separating a fluid, and devices capable of separating a fluid

    DOEpatents

    TeGrotenhuis, Ward E; Humble, Paul H; Caldwell, Dustin D

    2013-05-14

    Methods and apparatus for separating fluids are disclosed. We have discovered that, surprisingly, providing an open pore structure between a wick and an open flow channel resulted in superior separation performance. A novel and compact integrated device components for conducting separations are also described.

  5. Separating biological cells

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1979-01-01

    Technique utilizing electric field to promote biological cell separation from suspending medium in zero gravity increases speed, reduces sedimentation, and improves efficiency of separation in normal gravity.

  6. Recoil Distance Method lifetime measurement of the 2 1 + state in 94Sr and implications for the structure of neutron rich Sr isotopes

    NASA Astrophysics Data System (ADS)

    Chester, Aaron; Starosta, Krzysztof; S1467 Experiment Collaboration

    2017-09-01

    A high precision lifetime measurement of the 21+ state in 94Sr was performed at TRIUMF's ISAC-II facility by coupling the Recoil Distance Method implemented via the TIGRESS Integrated Plunger with unsafe Coulomb excitation in inverse kinematics. Due to limited statistics imposed by the use of a radioactive 94Sr beam, a likelihood ratio χ2 method was derived and used to compare experimental data to Geant4-simulated lineshapes. The B (E 2 ;21+ ->01+) value extracted from the lifetime measurement of 7 .80-0.40 + 0.50 (stat .) +/- 0.07 (sys .) ps is approximately 25% larger than previously reported while the relative uncertainty has been reduced by a factor of approximately 8. A baseline deformation has been established for Sr isotopes with N <= 58 which is a necessary condition for the Quantum Phase Transition interpretation of the onset of deformation in this region. A summary of the experiment, description of the data analysis methods, and a comparison to existing theoretical models will be presented.

  7. Unsteady three-dimensional flow separation

    NASA Technical Reports Server (NTRS)

    Hui, W. H.

    1988-01-01

    A concise mathematical framework is constructed to study the topology of steady 3-D separated flows of an incompressible, or a compressible viscous fluid. Flow separation is defined by the existence of a stream surface which intersects with the body surface. The line of separation is itself a skin-friction line. Flow separation is classified as being either regular or singular, depending respectively on whether the line of separation contains only a finite number of singular points or is a singular line of the skin-friction field. The special cases of 2-D and axisymmetric flow separation are shown to be of singular type. In regular separation it is shown that a line of separation originates from a saddle point of separation of the skin-friction field and ends at nodal points of separation. Unsteady flow separation is defined relative to a coordinate system fixed to the body surface. It is shown that separation of an unsteady 3-D incompressible viscous flow at time t, when viewed from such a frame of reference, is topologically the same as that of the fictitious steady flow obtained by freezing the unsteady flow at the instant t. Examples are given showing effects of various forms of flow unsteadiness on flow separation.

  8. Nickel-hydrogen separator development

    NASA Technical Reports Server (NTRS)

    Gonzalez-Sanabria, O. D.

    1986-01-01

    The separator technology is a critical element in the nickel-hydrogen (Ni-H2) systems. Previous research and development work carried out at NASA Lewis Research Center has determined that separators made from zirconium oxide (ZrO2) and potassium titanate (PKT) fibers will function satisfactorily in Ni-H2 cells without exhibiting the problems associated with the asbestos separators. These separators and their characteristics were previously discussed. A program was established to transfer the separator technology into a commercial production line. A detailed plan of this program will be presented and the preliminary results will be discussed.

  9. Quality testing of an innovative cascade separation system for multiple cell separation

    NASA Astrophysics Data System (ADS)

    Pierzchalski, Arkadiusz; Moszczynska, Aleksandra; Albrecht, Bernd; Heinrich, Jan-Michael; Tarnok, Attila

    2012-03-01

    Isolation of different cell types from mixed samples in one separation step by FACS is feasible but expensive and slow. It is cheaper and faster but still challenging by magnetic separation. An innovative bead-based cascade-system (pluriSelect GmbH, Leipzig, Germany) relies on simultaneous physical separation of different cell types. It is based on antibody-mediated binding of cells to beads of different size and isolation with sieves of different mesh-size. We validated pluriSelect system for single parameter (CD3) and simultaneous separation of CD3 and CD15 cells from EDTA blood-samples. Results were compared with those obtained by MACS (Miltenyi-Biotech) magnetic separation (CD3 separation). pluriSelect separation was done in whole blood, MACS on Ficoll gradient isolated leukocytes, according to the manufacturer's protocols. Isolated and residual cells were immunophenotyped (7-color 8-antibody panel (CD3; CD16/56; CD4; CD8; CD14; CD19; CD45; HLADR) on a CyFlowML flow cytometer (Partec GmbH). Cell count (Coulter), purity, yield and viability (7-AAD exclusion) were determined. There were no significant differences between both systems regarding purity (92-98%), yield (50-60%) and viability (92-98%) of isolated cells. PluriSelect separation was slightly faster than MACS (1.15 h versus 1.5h). Moreover, no preenrichment steps were necessary. In conclusion, pluriSelect is a fast, simple and gentle system for efficient simultaneous separation of two cell subpopulation directly from whole blood and can provide a simple alternative to FACS. The isolated cells can be used for further research applications.

  10. Conditions for fluid separations in microchannels, capillary-driven fluid separations, and laminated devices capable of separating fluids

    DOEpatents

    TeGrotenhuis, Ward E [Kennewick, WA; Stenkamp, Victoria S [Richland, WA

    2005-04-05

    Methods of separating fluids using capillary forces and/or improved conditions for are disclosed. The improved methods may include control of the ratio of gas and liquid Reynolds numbers relative to the Suratman number. Also disclosed are wick-containing, laminated devices that are capable of separating fluids.

  11. Conditions for fluid separations in microchannels, capillary-driven fluid separations, and laminated devices capable of separating fluids

    DOEpatents

    TeGrotenhuis, Ward E [Kennewick, WA; Stenkamp, Victoria S [Richland, WA

    2008-03-18

    Methods of separating fluids using capillary forces and/or improved conditions for are disclosed. The improved methods may include control of the ratio of gas and liquid Reynolds numbers relative to the Suratman number. Also disclosed are wick-containing, laminated devices that are capable of separating fluids.

  12. MiniCLEAN-360: A liquid argon/neon dark matter detector

    NASA Astrophysics Data System (ADS)

    Rielage, Keith; DEAP/CLEAN Collaboration

    2008-11-01

    MiniCLEAN-360 utilizes 360 kg of liquid argon to detect the nuclear recoil from WIMP dark matter with a projected cross-section sensitivity of 10-45 cm2. To reach this planned sensitivity, a unique modular design is being developed with a spherical geometry to maximize light collection using PMTs. Pulse shape discrimination techniques separate nuclear recoil signal from the electron recoil backgrounds resulting from the beta decay of 39Ar and Compton scattering of gamma rays. The design allows for the replacement of the target material with liquid neon to examine any signal and backgrounds with a different sensitivity. It also provides research and development for a larger scale low energy solar neutrino experiment using neon (CLEAN: Cryogenic Low Energy Astrophysics with Noble gases) that plans to measure the pp-solar neutrino flux to 1%. Particular attention is being paid to mitigating the background from contamination of surfaces by radon daughters during assembly. The engineering design, radon mitigation plan, and various testing setups are presented. MiniCLEAN-360 anticipates the start of data collection in mid-2009 at SNOLAB in Sudbury, Ontario, Canada.

  13. Medical Separation Among Careerists

    DTIC Science & Technology

    2013-03-01

    Observations 18,314 18,314 18,314 18,314 Adjusted7R&squared 0.0210 0.0210 0.0211 0.0212 Robust7standard7errors7in7parentheses *** 7p ɘ.01,7** 7p ...0.05,7* 7p ɘ.1 Medical7Separation Medical7Separation Medical7Separation Medical7Separation (i) (j) (k) (l) 58 The factors with the highest magnitude are

  14. Hyperfine interactions of trans-lead elements studied by nuclear radiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ansaldo, E.J.

    1973-09-16

    The applications of nuclear radiation methods to the study of hyperfine interactions (hfi) for elements beyond Pb in the periodic table are reviewed. A general discussion of hfi is presented along with a review of specific methods. The techniques are illustrated whenever possible by their application to the actinides, with emphasis on the unsolved aspects of the results. A special method of sample preparation is ion implantation, in which stable or radioactive ions of practically any element are shot into the host, either by means of isotope separators or the recoil energy of nuclear reactions or radioactive decays. The locationmore » of the implanted (recoiled) atom in the lattice has to be assessed for a reliable determination of the hfi. Therefore, a chapter on the channeling technique is also included. (JRD)« less

  15. Separation of non-ferrous metals from ASR by corona electrostatic separation

    NASA Astrophysics Data System (ADS)

    Kim, Yang-soo; Choi, Jin-Young; Jeon, Ho-Seok; Han, Oh-Hyung; Park, Chul-Hyun

    2016-04-01

    Automotive shredder residue (ASR), the residual fraction of approximate 25% obtained after dismantling and shredding from waste car, consists of polymers (plastics and rubber), metals (ferrous and non-ferrous), wood, glass and fluff (textile and fiber). ASR cannot be effectively separated due to its heterogeneous materials and coated or laminated complexes and then largely deposited in land-fill sites as waste. Thus reducing a pollutant release before disposal, techniques that can improve the liberation of coated (or laminated) complexes and the recovery of valuable metals from the shredder residue are needed. ASR may be separated by a series of physical processing operations such as comminution, air, magnetic and electrostatic separations. The work deals with the characterization of the shredder residue coming from an industrial plant in korea and focuses on estimating the optimal conditions of corona electrostatic separation for improving the separation efficiency of valuable non-ferrous metals such as aluminum, copper and etc. From the results of test, the maximum separation achievable for non-ferrous metals using a corona electrostatic separation has been shown to be recovery of 92.5% at a grade of 75.8%. The recommended values of the process variables, particle size, electrode potential, drum speed, splitter position and relative humidity are -6mm, 50 kV, 35rpm, 20° and less 40%, respectively. Acknowledgments This study was supported by the R&D Center for Valuable Recycling (Global-Top R&BD Program) of the Ministry of Environment. (Project No. GT-11-C-01-170-0)

  16. Axisymmetrical separator for separating particulate matter from a fluid carrying medium

    DOEpatents

    Linhardt, Hans D.

    1984-09-04

    A separator for separating particles carried in a fluid carrying medium is disclosed. The separator includes an elongated duct and associated openings incorporated in a solid body. The duct is axisymmetrical relative to its longitudinal axis, and includes a curved wall portion having a curved cross-section taken along the longitudinal axis. An axisymmetrical opening located downstream of the curved wall portion leads from the duct into an axisymmetrical channel which is substantially radially disposed relative to the longitudinal axis. Continuation of the duct downstream of the opening is a discharge portion which is substantially colinear with the longitudinal axis. In operation, a substantial majority of the fluid carrying medium leaves the duct radially through the opening and channel in a state substantially free of particles. A remaining small portion of the fluid carrying medium and a substantial majority of the particles are channelled into the discharge portion by centrifugal forces arising due to travel of the particles along the curved walls. For industrial scale separation of particles from a fluid carrying medium, such as for the clean-up of stack gases, an array of several hundred to several thousand of the separators is provided.

  17. Monitored separation device

    NASA Technical Reports Server (NTRS)

    Fox, George Edward (Inventor); Jackson, George William (Inventor); Willson, Richard Coale (Inventor)

    2011-01-01

    A device for separating and purifying useful quantities of particles comprises: a. an anolyte reservoir connected to an anode, the anolyte reservoir containing an electrophoresis buffer; b. a catholyte reservoir connected to a cathode, the catholyte reservoir also containing the electrophoresis buffer; c. a power supply connected to the anode and to the cathode; d. a column having a first end inserted into the anolyte reservoir, a second end inserted into the catholyte reservoir, and containing a separation medium; e. a light source; f. a first optical fiber having a first fiber end inserted into the separation medium, and having a second fiber end connected to the light source; g. a photo detector; h. a second optical fiber having a third fiber end inserted into the separation medium, and having a fourth fiber end connected to the photo detector; and i. an ion-exchange membrane in the anolyte reservoir.

  18. Acoustic particle separation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. (Inventor)

    1985-01-01

    A method is described which uses acoustic energy to separate particles of different sizes, densities, or the like. The method includes applying acoustic energy resonant to a chamber containing a liquid of gaseous medium to set up a standing wave pattern that includes a force potential well wherein particles within the well are urged towards the center, or position of minimum force potential. A group of particles to be separated is placed in the chamber, while a non-acoustic force such as gravity is applied, so that the particles separate with the larger or denser particles moving away from the center of the well to a position near its edge and progressively smaller lighter particles moving progressively closer to the center of the well. Particles are removed from different positions within the well, so that particles are separated according to the positions they occupy in the well.

  19. Nickel-hydrogen separator development

    NASA Technical Reports Server (NTRS)

    Gonzalez-Sanabria, O. D.

    1986-01-01

    The separator technology is a critical element in the nickel-hydrogen (Ni-H2) systems. Previous research and development work carried out at NASA Lewis Research Center has determined that separators made from zirconium oxide (ZrO2) and potassium titanate (PKT) fibers will function satisfactorily in Ni-H2 cells without exhibiting the problems associated with the asbestos separators. A program has been established to transfer the separator technology into a commercial production line. A detailed plan of this program will be presented and the preliminary results will be discussed.

  20. The ADvanced SEParation (ADSEP)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The ADvanced SEParation (ADSEP) commercial payload is making use of major advances in separation technology: The Phase Partitioning Experiment (PPE); the Micorencapsulation experiment; and the Hemoglobin Separation Experiment (HSE). Using ADSEP, commercial researchers will attempt to determine the partition coefficients for model particles in a two-phase system. With this information, researchers can develop a higher resolution, more effective cell isolation procedure that can be used for many different types of research and for improved health care. The advanced separation technology is already being made available for use in ground-based laboratories.

  1. Estimation of Separation Buffers for Wind-Prediction Error in an Airborne Separation Assistance System

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Hoadley, Sherwood T.; Allen, B. Danette

    2009-01-01

    Wind prediction errors are known to affect the performance of automated air traffic management tools that rely on aircraft trajectory predictions. In particular, automated separation assurance tools, planned as part of the NextGen concept of operations, must be designed to account and compensate for the impact of wind prediction errors and other system uncertainties. In this paper we describe a high fidelity batch simulation study designed to estimate the separation distance required to compensate for the effects of wind-prediction errors throughout increasing traffic density on an airborne separation assistance system. These experimental runs are part of the Safety Performance of Airborne Separation experiment suite that examines the safety implications of prediction errors and system uncertainties on airborne separation assurance systems. In this experiment, wind-prediction errors were varied between zero and forty knots while traffic density was increased several times current traffic levels. In order to accurately measure the full unmitigated impact of wind-prediction errors, no uncertainty buffers were added to the separation minima. The goal of the study was to measure the impact of wind-prediction errors in order to estimate the additional separation buffers necessary to preserve separation and to provide a baseline for future analyses. Buffer estimations from this study will be used and verified in upcoming safety evaluation experiments under similar simulation conditions. Results suggest that the strategic airborne separation functions exercised in this experiment can sustain wind prediction errors up to 40kts at current day air traffic density with no additional separation distance buffer and at eight times the current day with no more than a 60% increase in separation distance buffer.

  2. Enhancing Centrifugal Separation With Electrophoresis

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1986-01-01

    Separation of biological cells by coil-planet centrifuge enhanced by electrophoresis. By itself, coil-planet centrifuge offers relatively gentle method of separating cells under low centrifugal force in physiological medium that keeps cells alive. With addition of voltage gradient to separation column of centrifuge, separation still gentle but faster and more complete. Since separation apparatus contains no rotary seal, probability of leakage, contamination, corrosion, and short circuits reduced.

  3. Fundamentals of affinity cell separations.

    PubMed

    Zhang, Ye; Lyons, Veronica; Pappas, Dimitri

    2018-03-01

    Cell separations using affinity methods continue to be an enabling science for a wide variety of applications. In this review, we discuss the fundamental aspects of affinity separation, including the competing forces for cell capture and elution, cell-surface interactions, and models for cell adhesion. Factors affecting separation performance such as bond affinity, contact area, and temperature are presented. We also discuss and demonstrate the effects of nonspecific binding on separation performance. Metrics for evaluating cell separations are presented, along with methods of comparing separation techniques for cell isolation using affinity capture. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Metal-Organic Frameworks for Separation.

    PubMed

    Zhao, Xiang; Wang, Yanxiang; Li, Dong-Sheng; Bu, Xianhui; Feng, Pingyun

    2018-03-27

    Separation is an important industrial step with critical roles in the chemical, petrochemical, pharmaceutical, and nuclear industries, as well as in many other fields. Although much progress has been made, the development of better separation technologies, especially through the discovery of high-performance separation materials, continues to attract increasing interest due to concerns over factors such as efficiency, health and environmental impacts, and the cost of existing methods. Metal-organic frameworks (MOFs), a rapidly expanding family of crystalline porous materials, have shown great promise to address various separation challenges due to their well-defined pore size and unprecedented tunability in both composition and pore geometry. In the past decade, extensive research is performed on applications of MOF materials, including separation and capture of many gases and vapors, and liquid-phase separation involving both liquid mixtures and solutions. MOFs also bring new opportunities in enantioselective separation and are amenable to morphological control such as fabrication of membranes for enhanced separation outcomes. Here, some of the latest progress in the applications of MOFs for several key separation issues, with emphasis on newly synthesized MOF materials and the impact of their compositional and structural features on separation properties, are reviewed and highlighted. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. 26 CFR 1.663(c)-1 - Separate shares treated as separate trusts or as separate estates; in general.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of applicable law in situations in which a single trust (or estate) instrument creates not one but... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Separate shares treated as separate trusts or as..., DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Estates and Trusts Which May...

  6. Substituted polyacetylene separation membrane

    DOEpatents

    Pinnau, Ingo; Morisato, Atsushi

    1998-01-13

    A separation membrane useful for gas separation, particularly separation of C.sub.2+ hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula: ##STR1## wherein R.sub.1 is chosen from the group consisting of C.sub.1 -C.sub.4 alkyl and phenyl, and wherein R.sub.2 is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) ›PMP!. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations.

  7. [Father-Child-Contact and Well-being of the Children in Separated and Non-Separated Families].

    PubMed

    Werneck, Harald; Eder, Maximilian O; Ebner, Simone; Werneck-Rohrer, Sonja

    2015-01-01

    Father-Child-Contact and Well-being of the Children in Separated and Non-Separated Families This study investigated determinants of the contact between children and fathers after parental separation and the interplay of family status (non-separated vs. separated families), father-child relationship-quality and child's well-being. We compared 254 adolescents aged 15 to 19 years, from non-separated and separated families, by administering an adaptation of the "Inventory of Life Quality in Children and Adolescents" (Mattejat u. Remschmidt, 1998) and the scale emotionality of the FPI-R (Fahrenberg, Hampel, Selg, 2000). Contact between fathers and children after parental separation was mainly associated with parental conflict and contact during and after the separation. No significant associations were found with age and gender of the child, maternal remarriage or paternal education. The relationship to the father mediated the effects of family arrangement on different measures of child well-being. In separated families children with little contact to their fathers showed worse relationships to them compared to children in intact families. Good father-child relationships were positively associated with different measures of children's well-being. A central conclusion of this study is, that the father-child relationship is an important source for child's well-being.

  8. Meniscus Membranes For Separation

    DOEpatents

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  9. Multistage Electrophoretic Separators

    NASA Technical Reports Server (NTRS)

    Thomas, Nathan; Doyle, John F.; Kurk, Andy; Vellinger, John C.; Todd, Paul

    2006-01-01

    A multistage electrophoresis apparatus has been invented for use in the separation of cells, protein molecules, and other particles and solutes in concentrated aqueous solutions and suspensions. The design exploits free electrophoresis but overcomes the deficiencies of prior free-electrophoretic separators by incorporating a combination of published advances in mathematical modeling of convection, sedimentation, electro-osmotic flow, and the sedimentation and aggregation of droplets. In comparison with other electrophoretic separators, these apparatuses are easier to use and are better suited to separation in relatively large quantities characterized in the art as preparative (in contradistinction to smaller quantities characterized in the art as analytical). In a multistage electrophoretic separator according to the invention, an applied vertical steady electric field draws the electrically charged particles of interest from within a cuvette to within a collection cavity that has been moved into position of the cuvette. There are multiple collection cavities arranged in a circle; each is aligned with the cuvette for a prescribed short time. The multistage, short-migration-path character of the invention solves, possibly for the first time, the fluid-instability problems associated with free electrophoresis. The figure shows a prototype multistage electrophoretic separator that includes four sample stations and five collection stages per sample. At each sample station, an aqueous solution or suspension containing charged species to be separated is loaded into a cuvette, which is machined into a top plate. The apparatus includes a lower plate, into which 20 collection cavities have been milled. Each cavity is filled with an electrophoresis buffer solution. For the collection of an electrophoretic fraction, the lower plate is rotated to move a designated collection cavity into alignment with the opening of the cuvette. An electric field is then applied between a non

  10. Process, including PSA and membrane separation, for separating hydrogen from hydrocarbons

    DOEpatents

    Baker, Richard W.; Lokhandwala, Kaaeid A.; He, Zhenjie; Pinnau, Ingo

    2001-01-01

    An improved process for separating hydrogen from hydrocarbons. The process includes a pressure swing adsorption step, a compression/cooling step and a membrane separation step. The membrane step relies on achieving a methane/hydrogen selectivity of at least about 2.5 under the conditions of the process.

  11. Substituted polyacetylene separation membrane

    DOEpatents

    Pinnau, I.; Morisato, Atsushi

    1998-01-13

    A separation membrane is described which is useful for gas separation, particularly separation of C{sub 2+} hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula shown in the accompanying diagram, wherein R{sub 1} is chosen from the group consisting of C{sub 1}-C{sub 4} alkyl and phenyl, and wherein R{sub 2} is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) [PMP]. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations. 4 figs.

  12. Complementary use of ion beam elastic backscattering and recoil detection analysis for the precise determination of the composition of thin films made of light elements

    NASA Astrophysics Data System (ADS)

    Climent-Font, A.; Cervera, M.; Hernández, M. J.; Muñoz-Martín, A.; Piqueras, J.

    2008-04-01

    Rutherford backscattering spectrometry (RBS) is a well known powerful technique to obtain depth profiles of the constituent elements in a thin film deposited on a substrate made of lighter elements. In its standard use the probing beam is typically 2 MeV He. Its capabilities to obtain precise composition profiles are severely diminished when the overlaying film is made of elements lighter than the substrate. In this situation the analysis of the energy of the recoiled element from the sample in the elastic scattering event, the ERDA technique may be advantageous. For the detection of light elements it is also possible to use beams at specific energies producing elastic resonances with these light elements to be analyzed, with a much higher scattering cross sections than the Rutherford values. This technique may be called non-RBS. In this work we report on the complementary use of ERDA with a 30 MeV Cl beam and non-RBS with 1756 keV H ions to characterize thin films made of boron, carbon and nitrogen (BCN) deposited on Si substrates.

  13. Novel Separation of Actinides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariella, R

    The separation of actinides and other elements of interest for nuclear forensics and threat reduction is currently performed using decades-old chemistries and ion-exchange columns. We propose to determine the technical feasibility of a novel method for separating actinide ions in solution. This method is based upon isotachophoresis (ITP), which has been applied in the purification of pharmaceuticals and other biochemical applications. This technique has the potential to separate inorganic ions more effectively than existing methods, which is key to analyzing very small samples. We will perform a quantitative assessment of the effectiveness of specific isotachophoretic approaches including predicting the physicalmore » and chemical properties, such as ion mobility, of inorganic ions under specific solvent conditions using a combination of ab initio calculations and semi-empirical methods. We expect to obtain a thorough understanding of the analytical systems parameters under which ITP is most effective for the separation of inorganic samples, including the influence of the double layer surrounding actinide ions, the Debye length for different ions and ion complexes, and Debye-Hueckel limits. Inorganic separations are key to nuclear forensics for countering terrorism and nuclear proliferation. If found to be feasible and potentially superior to currently used separation approaches, ITP could provide the conceptual basis for an improved means to separate samples of nuclear explosion debris for nuclear forensic analysis, in support of the Laboratory's missions in homeland and national security.« less

  14. Chromatographic Separations Using Solid-Phase Extraction Cartridges: Separation of Wine Phenolics

    NASA Astrophysics Data System (ADS)

    Brenneman, Charles A.; Ebeler, Susan E.

    1999-12-01

    We describe a simple laboratory experiment that demonstrates the principles of chromatographic separation using solid-phase extraction columns and red wine. By adjusting pH and mobile phase composition, the wine is separated into three fractions of differing polarity. The content of each fraction can be monitored by UV-vis spectroscopy. When the experiment is combined with experiments involving HPLC or GC separations, students gain a greater appreciation for and understanding of the highly automated instrumental systems currently available. In addition, they learn about the chemistry of polyphenolic compounds, which are present in many foods and beverages and which are receiving much attention for their potentially beneficial health effects.

  15. A simplified sheathless cell separation approach using combined gravitational-sedimentation-based prefocusing and dielectrophoretic separation.

    PubMed

    Luo, Tao; Fan, Lei; Zeng, Yixiao; Liu, Ya; Chen, Shuxun; Tan, Qiulin; Lam, Raymond H W; Sun, Dong

    2018-05-04

    Prefocusing of the cell mixture is necessary for achieving a high-efficiency and continuous dielectrophoretic (DEP) cell separation. However, prefocusing through sheath flow requires a complex and tedious peripheral system for multi-channel fluid control, hindering the integration of DEP separation systems with other microfluidic functionalities for comprehensive clinical and biological tasks. This paper presented a simplified sheathless cell separation approach that combines gravitational-sedimentation-based sheathless prefocusing and DEP separation methods. Through gravitational sedimentation in a tubing, which was inserted into the inlet of a microfluidic chip with an adjustable steering angle, the cells were focused into a stream at the upstream region of a microchannel prior to separation. Then, a DEP force was applied at the downstream region of the microchannel for the active separation of the cells. Through this combined strategy, the peripheral system for the sheath flow was no longer required, and thus the integration of cell separation system with additional microfluidic functionalities was facilitated. The proposed sheathless scheme focused the mixture of cells with different sizes and dielectric properties into a stream in a wide range of flow rates without changing the design of the microfluidic chip. The DEP method is a label-free approach that can continuously separate cells on the basis of the sizes or dielectric properties of the cells and thus capable of greatly flexible cell separation. The efficiency of the proposed approach was experimentally assessed according to its performance in the separation of human acute monocytic leukemia THP-1 cells from yeast cells with respect to different sizes and THP-1 cells from human acute myelomonocytic leukemia OCI-AML3 cells with respect to different dielectric properties. The experimental results revealed that the separation efficiency of the method can surpass 90% and thus effective in separating cells on

  16. Isotope separation by photochromatography

    DOEpatents

    Suslick, Kenneth S.

    1977-01-01

    An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

  17. Fuel-Cell Water Separator

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth Alan; Fisher, Caleb; Newman, Paul

    2010-01-01

    The main product of a typical fuel cell is water, and many fuel-cell configurations use the flow of excess gases (i.e., gases not consumed by the reaction) to drive the resultant water out of the cell. This two-phase mixture then exits through an exhaust port where the two fluids must again be separated to prevent the fuel cell from flooding and to facilitate the reutilization of both fluids. The Glenn Research Center (GRC) has designed, built, and tested an innovative fuel-cell water separator that not only removes liquid water from a fuel cell s exhaust ports, but does so with no moving parts or other power-consuming components. Instead it employs the potential and kinetic energies already present in the moving exhaust flow. In addition, the geometry of the separator is explicitly intended to be integrated into a fuel-cell stack, providing a direct mate with the fuel cell s existing flow ports. The separator is also fully scalable, allowing it to accommodate a wide range of water removal requirements. Multiple separators can simply be "stacked" in series or parallel to adapt to the water production/removal rate. GRC s separator accomplishes the task of water removal by coupling a high aspect- ratio flow chamber with a highly hydrophilic, polyethersulfone membrane. The hydrophilic membrane readily absorbs and transports the liquid water away from the mixture while simultaneously resisting gas penetration. The expansive flow path maximizes the interaction of the water particles with the membrane while minimizing the overall gas flow restriction. In essence, each fluid takes its corresponding path of least resistance, and the two fluids are effectively separated. The GRC fuel-cell water separator has a broad range of applications, including commercial hydrogen-air fuel cells currently being considered for power generation in automobiles.

  18. URANIUM SEPARATION PROCESS

    DOEpatents

    McVey, W.H.; Reas, W.H.

    1959-03-10

    The separation of uranium from an aqueous solution containing a water soluble uranyl salt is described. The process involves adding an alkali thiocyanate to the aqueous solution, contacting the resulting solution with methyl isobutyl ketons and separating the resulting aqueous and organic phase. The uranium is extracted in the organic phase as UO/sub 2/(SCN)/sub/.

  19. Modeling of the 105-mm Rarefaction Wave Gun

    DTIC Science & Technology

    2009-08-01

    10  5.4  Recoil Brakes and Recuperators...guN (RAVEN) was invented by Kathe (1) to substantially reduce the recoil and, hence, the mass of the system that absorbs the recoil, while minimally...free recoil velocity is the velocity of the tube/piston system after the velocities equilibrate. The system utilizes a free recoil mount. The

  20. Separation process using microchannel technology

    DOEpatents

    Tonkovich, Anna Lee [Dublin, OH; Perry, Steven T [Galloway, OH; Arora, Ravi [Dublin, OH; Qiu, Dongming [Bothell, WA; Lamont, Michael Jay [Hilliard, OH; Burwell, Deanna [Cleveland Heights, OH; Dritz, Terence Andrew [Worthington, OH; McDaniel, Jeffrey S [Columbus, OH; Rogers, Jr; William, A [Marysville, OH; Silva, Laura J [Dublin, OH; Weidert, Daniel J [Lewis Center, OH; Simmons, Wayne W [Dublin, OH; Chadwell, G Bradley [Reynoldsburg, OH

    2009-03-24

    The disclosed invention relates to a process and apparatus for separating a first fluid from a fluid mixture comprising the first fluid. The process comprises: (A) flowing the fluid mixture into a microchannel separator in contact with a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the first fluid is sorbed by the sorption medium, removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing first fluid from the sorption medium and removing desorbed first fluid from the microchannel separator. The process and apparatus are suitable for separating nitrogen or methane from a fluid mixture comprising nitrogen and methane. The process and apparatus may be used for rejecting nitrogen in the upgrading of sub-quality methane.

  1. Isotope separation by photochromatography

    DOEpatents

    Suslick, K.S.

    1975-10-03

    A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)

  2. Parent-Child Separation: A Comparison of Maternally and Paternally Separated Children in Military Families.

    ERIC Educational Resources Information Center

    Applewhite, Larry W.; Mays, Robert A.

    1996-01-01

    Claims that children of parents in the military services have adapted to parental separation as parents balance the demands of family and job responsibility. Compares the psychosocial functioning of children who have experienced extended maternal separation with that exhibited by children who have separated from their fathers. Addresses…

  3. ISOTOPE SEPARATORS

    DOEpatents

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  4. Triple pulse shape discrimination and capture-gated spectroscopy in a composite heterogeneous scintillator

    NASA Astrophysics Data System (ADS)

    Sharma, M.; Nattress, J.; Wilhelm, K.; Jovanovic, I.

    2017-06-01

    We demonstrate an all-solid-state design for a composite heterogeneous scintillation detector sensitive to interactions with high-energy photons (gammas), fast neutrons, and thermal neutrons. The scintillator exhibits triple pulse shape discrimination, effectively separating electron recoils, fast neutron recoils, and neutron captures. This is accomplished by combining the properties of two distinct scintillators, whereby a 51-mm diameter, 51-mm tall cylinder of pulse shape discriminating plastic is wrapped by a 320-μm thick sheet of 6LiF:ZnS(Ag), optically coupling the scintillators to each other and to the photomultiplier tube. In this way, the sensitivity to neutron captures is achieved without the need to load the plastic scintillator with a capture agent. We demonstrate a figure of merit of up to 1.2 for fast neutrons/gammas and 5.7 for thermal neutrons/gammas. Intrinsic capture efficiency is found to be 0.46±0.05% and is in good agreement with simulation, while gamma rejection was 10-6 with respect to the capture region and 10-4 with respect to the recoil region using a 300 keVee threshold. Finally, we show an improvement in capture-gated neutron spectroscopy by rejecting accidental gamma coincidences using pulse shape discrimination in the plastic scintillator.

  5. Inorganic separator technology program

    NASA Technical Reports Server (NTRS)

    Smatko, J. S.; Weaver, R. D.; Kalhammer, F. R.

    1973-01-01

    Testing and failure analyses of silver zinc cells with largely inorganic separators were performed. The results showed that the wet stand and cycle life objective of the silver-zinc cell development program were essentially accomplished and led to recommendations for cell composition, design, and operation that should yield further improvement in wet and cycle life. A series of advanced inorganic materials was successfully developed and formulated into rigid and semiflexible separator samples. Suitable screening tests for evaluation of largely inorganic separators were selected and modified for application to the separator materials. The results showed that many of these formulations are potentially superior to previously used materials and permitted selection of three promising materials for further evaluation in silver-zinc cells.

  6. Magnetic separation of algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nath, Pulak; Twary, Scott N.

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  7. Separation anxiety in children

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001542.htm Separation anxiety in children To use the sharing features on this page, please enable JavaScript. Separation anxiety in children is a developmental stage in which ...

  8. To Separate or Not to Separate? Parental Decision-Making regarding the Separation of Twins in the Early Years of Schooling

    ERIC Educational Resources Information Center

    Staton, Sally; Thorpe, Karen; Thompson, Catherine; Danby, Susan

    2012-01-01

    In recent times concerns about possible adverse effects of early separation and advocacy for individual rights have resulted in a movement away from organizational level policies about the separation of twin children as they enter school. Instead, individualized approaches that focus on the twin children's characteristics and family perspectives…

  9. Separation system

    DOEpatents

    Rubin, Leslie S.

    1986-01-01

    A separation system for dewatering radioactive waste materials includes a disposal container, drive structure for receiving the container, and means for releasably attaching the container to the drive structure. Separation structure disposed in the container adjacent the inner surface of the side wall structure retains solids while allowing passage of liquids. Inlet port structure in the container top wall is normally closed by first valve structure that is centrifugally actuated to open the inlet port and discharge port structure at the container periphery receives liquid that passes through the separation structure and is normally closed by second valve structure that is centrifugally actuated to open the discharge ports. The container also includes coupling structure for releasable engagement with the centrifugal drive structure. Centrifugal force produced when the container is driven in rotation by the drive structure opens the valve structures, and radioactive waste material introduced into the container through the open inlet port is dewatered, and the waste is compacted. The ports are automatically closed by the valves when the container drum is not subjected to centrifugal force such that containment effectiveness is enhanced and exposure of personnel to radioactive materials is minimized.

  10. Blind speech separation system for humanoid robot with FastICA for audio filtering and separation

    NASA Astrophysics Data System (ADS)

    Budiharto, Widodo; Santoso Gunawan, Alexander Agung

    2016-07-01

    Nowadays, there are many developments in building intelligent humanoid robot, mainly in order to handle voice and image. In this research, we propose blind speech separation system using FastICA for audio filtering and separation that can be used in education or entertainment. Our main problem is to separate the multi speech sources and also to filter irrelevant noises. After speech separation step, the results will be integrated with our previous speech and face recognition system which is based on Bioloid GP robot and Raspberry Pi 2 as controller. The experimental results show the accuracy of our blind speech separation system is about 88% in command and query recognition cases.

  11. ORNL actinide materials and a new detection system for superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Krzysztof P.; Roberto, James B.; Brewer, Nathan T.; Utyonkov, Vladimir K.

    2016-12-01

    The actinide resources and production capabilities at Oak Ridge National Laboratory (ORNL) are reviewed, including potential electromagnetic separation of rare radioactive materials. The first experiments at the Dubna Gas Filled Recoil Separator (DGFRS) with a new digital detection system developed at ORNL and University of Tennessee Knoxville (UTK) are presented. These studies used 240Pu material provided by ORNL and mixed-Cf targets made at ORNL. The proposal to use an enriched 251Cf target and a large dose of 58Fe beam to reach the N = 184 shell closure and to observe new elements with Z = 124, 122 and 120 is discussed.

  12. Field Artillery Cannon Weapons Systems and Ammunition Handbook.

    DTIC Science & Technology

    1981-12-01

    velocity 472 meters per second Maximum range 11,000 meters Type breechblock Horizontal sliding wedge Type firing mechanism Continuous pull , M13 Type...interrupted screw Type of firing mechanism Continuous pull , M35 Type of recoil mechanism Hydropneumatic Minimum recoil 24 inches Maximum recoil 36...breechblock Threaded, interrupted screw Type of firing mechanism Continuous pull , M35 Type of recoil mechanism Hydropneurnatic Minimum recoil 50 inches +_2

  13. Separations in the STATS report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choppin, G.R.

    1996-12-31

    The Separations Technology and Transmutation Systems (STATS) Committee formed a Subcommittee on Separations. This subcommittee was charged with evaluating the separations proposed for the several reactor and accelerator transmutation systems. It was also asked to review the processing options for the safe management of high-level waste generated by the defense programs, in particular, the special problems involved in dealing with the waste at the U.S. Department of Energy (DOE) facility in Hanford, Washington. Based on the evaluations from the Subcommittee on Separations, the STATS Committee concluded that for the reactor transmutation programs, aqueous separations involving a combination of PUREX andmore » TRUEX solvent extraction processes could be used. However, additional research and development (R&D) would be required before full plant-scale use of the TRUEX technology could be employed. Alternate separations technology for the reactor transmutation program involves pyroprocessing. This process would require a significant amount of R&D before its full-scale application can be evaluated.« less

  14. Enhanced separation of rare earth elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyon, K.; Greenhalgh, M.; Herbst, R. S.

    2016-09-01

    Industrial rare earth separation processes utilize PC88A, a phosphonic acid ligand, for solvent extraction separations. The separation factors of the individual rare earths, the equipment requirements, and chemical usage for these flowsheets are well characterized. Alternative ligands such as Cyanex® 572 and the associated flowsheets are being investigated at the pilot scale level to determine if significant improvements to the current separation processes can be realized. These improvements are identified as higher separation factors, reduced stage requirements, or reduced chemical consumption. Any of these improvements can significantly affect the costs associated with these challenging separation proccesses. A mid/heavy rare earthmore » element (REE) separations flowsheet was developed and tested for each ligand in a 30 stage mixer-settler circuit to compare the separation performance of PC88A and Cyanex® 572. The ligand-metal complex strength of Cyanex® 572 provides efficient extraction of REE while significantly reducing the strip acid requirements. Reductions in chemical consumption have a significant impact on process economics for REE separations. Partitioning results summarized Table 1 indicate that Cyanex® 572 offers the same separation performance as PC88A while reducing acid consumption by 30% in the strip section for the mid/heavy REE separation. Flowsheet Effluent Compositions PC88A Cyanex® 572 Raffinate Mid REE Heavy REE 99.40% 0.60% 99.40% 0.60% Rich Mid REE Heavy REE 2.20% 97.80% 0.80% 99.20% Liquor Strip Acid Required 3.4 M 2.3 M Table 1 – Flowsheet results comparing separation performance of PC88A and Cyanex® 572 for a mid/heavy REE separation.« less

  15. Testing Orions Fairing Separation System

    NASA Technical Reports Server (NTRS)

    Martinez, Henry; Cloutier, Chris; Lemmon, Heber; Rakes, Daniel; Oldham, Joe; Schlagel, Keith

    2014-01-01

    Traditional fairing systems are designed to fully encapsulate and protect their payload from the harsh ascent environment including acoustic vibrations, aerodynamic forces and heating. The Orion fairing separation system performs this function and more by also sharing approximately half of the vehicle structural load during ascent. This load-share condition through launch and during jettison allows for a substantial increase in mass to orbit. A series of component-level development tests were completed to evaluate and characterize each component within Orion's unique fairing separation system. Two full-scale separation tests were performed to verify system-level functionality and provide verification data. This paper summarizes the fairing spring, Pyramidal Separation Mechanism and forward seal system component-level development tests, system-level separation tests, and lessons learned.

  16. Separation by solvent extraction

    DOEpatents

    Holt, Jr., Charles H.

    1976-04-06

    17. A process for separating fission product values from uranium and plutonium values contained in an aqueous solution, comprising adding an oxidizing agent to said solution to secure uranium and plutonium in their hexavalent state; contacting said aqueous solution with a substantially water-immiscible organic solvent while agitating and maintaining the temperature at from -1.degree. to -2.degree. C. until the major part of the water present is frozen; continuously separating a solid ice phase as it is formed; separating a remaining aqueous liquid phase containing fission product values and a solvent phase containing plutonium and uranium values from each other; melting at least the last obtained part of said ice phase and adding it to said separated liquid phase; and treating the resulting liquid with a new supply of solvent whereby it is practically depleted of uranium and plutonium.

  17. Mercury Capsule Separation Tests

    NASA Image and Video Library

    1960-04-01

    Mercury capsule separation from Redstone booster in the Altitude Wind Tunnel (AWT): NASA Lewis conducted full-scale separation tests of the posigrade rockets that were fired after the Redstone rockets burned out. The researchers studied the effect of the posigrade rockets firing on the Redstone booster and retrograde package. This film shows the Mercury capsule being mounted to the Redstone missile model in the Altitude Wind Tunnel. The capsule's engines are fired and it horizontally separates from the Atlas. After firing the capsule swings from an overhead crane.

  18. Methane/nitrogen separation process

    DOEpatents

    Baker, Richard W.; Lokhandwala, Kaaeid A.; Pinnau, Ingo; Segelke, Scott

    1997-01-01

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  19. Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship.

    PubMed

    Adil, Karim; Belmabkhout, Youssef; Pillai, Renjith S; Cadiau, Amandine; Bhatt, Prashant M; Assen, Ayalew H; Maurin, Guillaume; Eddaoudi, Mohamed

    2017-06-06

    The separation of related molecules with similar physical/chemical properties is of prime industrial importance and practically entails a substantial energy penalty, typically necessitating the operation of energy-demanding low temperature fractional distillation techniques. Certainly research efforts, in academia and industry alike, are ongoing with the main aim to develop advanced functional porous materials to be adopted as adsorbents for the effective and energy-efficient separation of various important commodities. Of special interest is the subclass of metal-organic frameworks (MOFs) with pore aperture sizes below 5-7 Å, namely ultra-microporous MOFs, which in contrast to conventional zeolites and activated carbons show great prospects for addressing key challenges in separations pertaining to energy and environmental sustainability, specifically materials for carbon capture and separation of olefin/paraffin, acetylene/ethylene, linear/branched alkanes, xenon/krypton, etc. In this tutorial review we discuss the latest developments in ultra-microporous MOF adsorbents and their use as separating agents via thermodynamics and/or kinetics and molecular sieving. Appreciably, we provide insights into the distinct microscopic mechanisms governing the resultant separation performances, and suggest a plausible correlation between the inherent structural features/topology of MOFs and the associated gas/vapour separation performance.

  20. Recent advances in microparticle continuous separation.

    PubMed

    Kersaudy-Kerhoas, M; Dhariwal, R; Desmulliez, M P Y

    2008-03-01

    Recent advances in microparticle separation in continuous flow are presented. It is intended for scientists in the field of separation science in biology, chemistry and microsystems engineering. Recent techniques of micron-sized particle separation within microsystems are described with emphasis on five different categories: optical, magnetic, fluidic-only, electrical and minor separation methods. Examples from the growing literature are explained with insights on separation efficiency and microengineering challenges. Current applications of the techniques are discussed.

  1. Microporous polyethylene separators — today and tomorrow. Separator development trends for modern automotive batteries

    NASA Astrophysics Data System (ADS)

    Böhnstedt, Werner

    During the past decade, the design of modern automotive batteries has undergone a fundamental change. The introduction of microporous polyethylene pocket separators has resulted in an approximately 8% better volume utilization. Besides increasing the energy density, the polyethylene envelope has enalbed an improvement in cold-cranking performance and has raised the production efficiency. A first failure-mode analysis of pocket-separated automotive batteries in Europe with respect to leaf separation is presented. For comparable service life, a shift in failure mode has been found. Although corrosion of the positive electrode still dominates, a significant increase in positive active-material shedding is noted. This is certainly a consequence of the general trend towards lower antimony contents. Shorting through the separator is only found in cases of severe battery mistreatment. This positive, intermediary result is supplemented by an outlook on emerging development trends. Future automotive batteries will experience elevated operating temperatures, higher cycling loads, and maintenance freedom. Battery tests at temperatures up to 75 °C with various alloy combinations show that the hybrid design is best suited to meet the expected requirements. Microporous polyethylene pocket separation is not expected to be a limiting factor; the trend to lower antimony alloy content and increased cycling load will demonstrate the advantage of this separation even more clearly than in the past. Optimization of the already achieved, balanced separator characteristics profile with the reference parameters of electrical performance, water loss, durability and machinability will stimulate further development work.

  2. Three-dimensional separation and reattachment

    NASA Technical Reports Server (NTRS)

    Peake, D. J.; Tobak, M.

    1982-01-01

    The separation of three dimensional turbulent boundary layers from the lee of flight vehicles at high angles of attack is investigated. The separation results in dominant, large scale, coiled vortex motions that pass along the body in the general direction of the free stream. In all cases of three dimensional flow separation and reattachment, the assumption of continuous vector fields of skin friction lines and external flow streamlines, coupled with simple laws of topology, provides a flow grammar whose elemental constituents are the singular points: the nodes, spiral nodes (foci), and saddles. The phenomenon of three dimensional separation may be construed as either a local or a global event, depending on whether the skin friction line that becomes a line of separation originates at a node or a saddle point.

  3. Composition and structure of surfaces by time-of-flight scattering and recoiling spectrometry (TOF-SARS)

    NASA Astrophysics Data System (ADS)

    Ahn, Jeongheon

    1997-10-01

    Time-of-flight scattering and recoiling spectrometry (TOF-SARS) was applied to characterize surface structures in order to understand the chemical and physical phenomena on various surfaces. The combination of TOF-SARS, LEED, and classical ion trajectory simulations has allowed characterization of the elemental composition in the outermost atomic layers, surface symmetry, and possible reconstruction or relaxation. The composition and structure of the CdS\\{0001\\}-(1 x 1) and CdS\\{000bar1\\}-(1 x 1) surfaces were investigated. The termination layer of each surface was determined by grazing incidence TOF-SARS. Both (1 x 1) surfaces are bulk-terminated without any reconstruction or relaxation detected by TOF-SARS. Each surface has two domains which are rotated by 60sp° from each other and there exist steps on both surfaces. The CdS\\{0001\\}-(1 x 1) surface is stabilized by O and H covering half a monolayer which are structurally ordered on the surface, while the O and H on the CdS\\{000bar1\\}-(1 x 1) stabilize the surface without ordering. The study of GaN\\{000bar1\\}-(1 x 1) shows the bulk-termination of the surface with no detectable reconstruction or relaxation. The surface is terminated in a N layer with Ga in the 2sp{nd}-layer. H atoms are bound to the outermost N atoms with a coverage of ˜3/4 monolayer and protrude outward from the surface. The surface termination, composition and structure of the Alsb2Osb3 (sapphire) were examined. The surface relaxation was studied quantitatively using classical ion trajectory simulations along with TOF-SARS. The surface undergoes 1sp{st}{-}2sp{nd}-layer relaxation as large as 0.5 A from the bulk value resulting in near coplanarity of Al and O atoms. The reconstruction of the Ni\\{100\\}-(2 x 2)-C surface was studied by TOF-SARS. The surface contained 80% of the (2 x 2)p4g phase and 20% of the unreconstructed (2 x 2) phase. The displacement of Ni atoms was determined by comparing the experimental and simulated results.

  4. Social Separation in Monkeys.

    ERIC Educational Resources Information Center

    Mineka, Susan; Suomi, Stephen J.

    1978-01-01

    Reviews phenomena associated with social separation from attachment objects in nonhuman primates. Evaluates four theoretical treatments of separation in light of existing data: Bowlby's attachment-object-loss theory, Kaufman's conservation-withdrawal theory, Seligman's learned helplessness theory, and Solomon and Corbit's opponent-process theory.…

  5. Novel platform for minimizing cell loss on separation process: Droplet-based magnetically activated cell separator

    NASA Astrophysics Data System (ADS)

    Kim, Youngho; Hong, Su; Lee, Sang Ho; Lee, Kangsun; Yun, Seok; Kang, Yuri; Paek, Kyeong-Kap; Ju, Byeong-Kwon; Kim, Byungkyu

    2007-07-01

    To reduce the problem of cell loss due to adhesion, one of the basic phenomena in microchannel, we proposed the droplet-based magnetically activated cell separator (DMACS). Based on the platform of the DMACS—which consists of permanent magnets, a coverslip with a circle-shaped boundary, and an injection tube—we could collect magnetically (CD45)-labeled (positive) cells with high purity and minimize cell loss due to adhesion. To compare separation efficiency between the MACS and the DMACS, the total number of cells before and after separation with both the separators was counted by flow cytometry. We could find that the number (3241/59940) of cells lost in the DMACS is much less than that (22360/59940) in the MACS while the efficiency of cell separation in the DMACS (96.07%) is almost the same as that in the MACS (96.72%). Practically, with fluorescent images, it was visually confirmed that the statistical data are reliable. From the viability test by using Hoechst 33 342, it was also demonstrated that there was no cell damage on a gas-liquid interface. Conclusively, DMACS will be a powerful tool to separate rare cells and applicable as a separator, key component of lab-on-a-chip.

  6. Materials separation by dielectrophoresis

    NASA Technical Reports Server (NTRS)

    Sagar, A. D.; Rose, R. M.

    1988-01-01

    The feasibility of vacuum dielectrophoresis as a method for particulate materials separation in a microgravity environment was investigated. Particle separations were performed in a specially constructed miniature drop-tower with a residence time of about 0.3 sec. Particle motion in such a system is independent of size and based only on density and dielectric constant, for a given electric field. The observed separations and deflections exceeded the theoretical predictions, probably due to multiparticle effects. In any case, this approach should work well in microgravity for many classes of materials, with relatively simple apparatus and low weight and power requirements.

  7. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, Frederick T.

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  8. Rotary drum separator system

    NASA Technical Reports Server (NTRS)

    Barone, Michael R. (Inventor); Murdoch, Karen (Inventor); Scull, Timothy D. (Inventor); Fort, James H. (Inventor)

    2009-01-01

    A rotary phase separator system generally includes a step-shaped rotary drum separator (RDS) and a motor assembly. The aspect ratio of the stepped drum minimizes power for both the accumulating and pumping functions. The accumulator section of the RDS has a relatively small diameter to minimize power losses within an axial length to define significant volume for accumulation. The pumping section of the RDS has a larger diameter to increase pumping head but has a shorter axial length to minimize power losses. The motor assembly drives the RDS at a low speed for separating and accumulating and a higher speed for pumping.

  9. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  10. Methane/nitrogen separation process

    DOEpatents

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  11. Evaluation of Inorganic/Organic Separators

    NASA Technical Reports Server (NTRS)

    Donnel, C. P., III

    1976-01-01

    Thirty-six (36) experimental 40AH sealed silver-zinc cells were constructed during phase I of this two (2) phase program. These cells were divided into six (6) groups of six (6) cells each. Each group of six (6) cells was evenly divided into two batches of three (3) cells each. Groups 1 through 4 each featured a different inorganic filler material in the slurry used to coat the separator substrate. Groups 5 and 6 featured an alternate method of separator bag construction. With the exception of the various separator materials, the parts and processes used to produce these thirty-six (36) cells were the same as those used to make the HR40-7 cell. The two (2) batches of cells in each cell group differed only in the lots of solutions and other separator slurry components used. Each cell was given two formation charge/discharge cycles prior to being shipped to NASA Lewis Research Center. Phase II of the program consisted of constructing another thirty-six (36) 40AH experimental cells in six (6) groups of six (6) cells each. Each group was distinguished by the type of precoated separator material used to fabricate separator bags. A new method of separator bag construction was used in this phase of the program. These cells were given two (2) formation cycles and shipped to NASA Lewis Research Center.

  12. Separation and recovery of fine particles from waste circuit boards using an inflatable tapered diameter separation bed.

    PubMed

    Duan, Chenlong; Sheng, Cheng; Wu, Lingling; Zhao, Yuemin; He, Jinfeng; Zhou, Enhui

    2014-01-01

    Recovering particle materials from discarded printed circuit boards can enhance resource recycling and reduce environmental pollution. Efficiently physically separating and recovering fine metal particles (-0.5 mm) from the circuit boards are a key recycling challenge. To do this, a new type of separator, an inflatable tapered diameter separation bed, was developed to study particle motion and separation mechanisms in the bed's fluid flow field. For 0.5-0.25 mm circuit board particles, metal recovery rates ranged from 87.56 to 94.17%, and separation efficiencies ranged from 87.71 to 94.20%. For 0.25-0.125 mm particles, metal recovery rates ranged from 84.76 to 91.97%, and separation efficiencies ranged from 84.74 to 91.86%. For superfine products (-0.125 mm), metal recovery rates ranged from 73.11 to 83.04%, and separation efficiencies ranged from 73.00 to 83.14%. This research showed that the inflatable tapered diameter separation bed achieved efficient particle separation and can be used to recover fine particles under a wide range of operational conditions. The bed offers a new mechanical technology to recycle valuable materials from discarded printed circuit boards, reducing environmental pollution.

  13. Method for separating isotopes

    DOEpatents

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  14. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  15. Atom Interferometry: A Matter Wave Clock and a Measurement of α

    NASA Astrophysics Data System (ADS)

    Estey, Brian; Lan, Shau-Yu; Kuan, Pei-Chen; Hohensee, Michael; Haslinger, Philipp; Kehayias, Pauli; English, Damon; Müller, Holger

    2012-06-01

    Developments in large-momentum transfer beamsplitters (eg. Bragg diffraction) and conjugate Ramsey-Bord'e interferometers have enabled atom interferometers with unparalleled size and sensitivity. The atomic wave packet separation is large enough that the Coriolis force due to the earth's rotation reduces interferometer contrast. We compensate for this effect using a tip-tilt mirror, improving our contrast by up to a factor of 3.5, allowing pulse separations of up to 250 ms with 10k beamsplitters. This interferometer can be used to make a precise measurement of the recoil frequency (h/m) and thus the fine structure constant. The interferometer also gives us indirect access to the Compton frequency (νC≡mc^2/h) oscillations of the matter wave, since h/m is simply c^2/νC. Using an optical frequency comb we reference the interferometer's laser frequency to a multiple of a cesium atom's recoil frequency. This self-referenced interferometer thus locks a local oscillator to a specified fraction of the cesium Compton frequency, with a fractional stability of 2 pbb over several hours. This has potential application in redefining the kilogram in terms of the second. We also present a preliminary measurement of the fine structure constant.

  16. Equilibrium charge state distributions of Ni, Co, and Cu beams in molybdenum foil at 2 MeV/u

    NASA Astrophysics Data System (ADS)

    Gastis, Panagiotis; Perdikakis, George; Robertson, Daniel; Bauder, Will; Skulski, Michael; Collon, Phillipe; Anderson, Tyler; Ostdiek, Karen; Aprahamian, Ani; Lu, Wenting; Almus, Robert

    2015-10-01

    The charge states of heavy-ions are important for the study of nuclear reactions in inverse kinematics when electromagnetic recoil mass spectrometers are used. The passage of recoil products through a material, like the windows of gas cells or charge state boosters, results a charge state distribution (CSD) in the exit. This distribution must be known for the extraction of any cross section since only few charge-state can be transmitted through a magnetic separator separator for a given setting. The calculation of CSDs for heavy ions is challenging. Currently we rely on semi-empirical models with unknown accuracy for ion/target combinations in the Z > 20 region. In the present study were measured the CSDs of the stable 60Ni, 59Co, and 63Cu beams while passing through a 1 μm molybdenum foil. The beam energies were 1.84 MeV/u, 2.09 MeV/u, and 2.11 MeV/u for the 60Ni, 59Co, and 63Cu respectively. The results of this study mainly check the accuracy of the semi-empirical models used by the program LISE++, on calculating CSDs for ion/target combinations of Z > 20. In addition, other empirical models on calculating mean charge states were compared and checked.

  17. Method for separating boron isotopes

    DOEpatents

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  18. Noise source separation of diesel engine by combining binaural sound localization method and blind source separation method

    NASA Astrophysics Data System (ADS)

    Yao, Jiachi; Xiang, Yang; Qian, Sichong; Li, Shengyang; Wu, Shaowei

    2017-11-01

    In order to separate and identify the combustion noise and the piston slap noise of a diesel engine, a noise source separation and identification method that combines a binaural sound localization method and blind source separation method is proposed. During a diesel engine noise and vibration test, because a diesel engine has many complex noise sources, a lead covering method was carried out on a diesel engine to isolate other interference noise from the No. 1-5 cylinders. Only the No. 6 cylinder parts were left bare. Two microphones that simulated the human ears were utilized to measure the radiated noise signals 1 m away from the diesel engine. First, a binaural sound localization method was adopted to separate the noise sources that are in different places. Then, for noise sources that are in the same place, a blind source separation method is utilized to further separate and identify the noise sources. Finally, a coherence function method, continuous wavelet time-frequency analysis method, and prior knowledge of the diesel engine are combined to further identify the separation results. The results show that the proposed method can effectively separate and identify the combustion noise and the piston slap noise of a diesel engine. The frequency of the combustion noise and the piston slap noise are respectively concentrated at 4350 Hz and 1988 Hz. Compared with the blind source separation method, the proposed method has superior separation and identification effects, and the separation results have fewer interference components from other noise.

  19. Mars Atmospheric Capture and Gas Separation

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony; Santiago-Maldonado, Edgardo; Gibson, Tracy; Devor, Robert; Captain, James

    2011-01-01

    The Mars atmospheric capture and gas separation project is selecting, developing, and demonstrating techniques to capture and purify Martian atmospheric gases for their utilization for the production of hydrocarbons, oxygen, and water in ISRU systems. Trace gases will be required to be separated from Martian atmospheric gases to provide pure C02 to processing elements. In addition, other Martian gases, such as nitrogen and argon, occur in concentrations high enough to be useful as buffer gas and should be captured as welL To achieve these goals, highly efficient gas separation processes will be required. These gas separation techniques are also required across various areas within the ISRU project to support various consumable production processes. The development of innovative gas separation techniques will evaluate the current state-of-the-art for the gas separation required, with the objective to demonstrate and develop light-weight, low-power methods for gas separation. Gas separation requirements include, but are not limited to the selective separation of: (1) methane and water from un-reacted carbon oxides (C02- CO) and hydrogen typical of a Sabatier-type process, (2) carbon oxides and water from unreacted hydrogen from a Reverse Water-Gas Shift process, (3) carbon oxides from oxygen from a trash/waste processing reaction, and (4) helium from hydrogen or oxygen from a propellant scavenging process. Potential technologies for the separations include freezers, selective membranes, selective solvents, polymeric sorbents, zeolites, and new technologies. This paper and presentation will summarize the results of an extensive literature review and laboratory evaluations of candidate technologies for the capture and separation of C02 and other relevant gases.

  20. Magnetic separations in biotechnology.

    PubMed

    Borlido, L; Azevedo, A M; Roque, A C A; Aires-Barros, M R

    2013-12-01

    Magnetic separations are probably one of the most versatile separation processes in biotechnology as they are able to purify cells, viruses, proteins and nucleic acids directly from crude samples. The fast and gentle process in combination with its easy scale-up and automation provide unique advantages over other separation techniques. In the midst of this process are the magnetic adsorbents tailored for the envisioned target and whose complex synthesis spans over multiple fields of science. In this context, this article reviews both the synthesis and tailoring of magnetic adsorbents for bioseparations as well as their ultimate application. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Gas separation membrane module assembly

    DOEpatents

    Wynn, Nicholas P [Palo Alto, CA; Fulton, Donald A [Fairfield, CA

    2009-03-31

    A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

  2. Separation and Recovery of Fine Particles from Waste Circuit Boards Using an Inflatable Tapered Diameter Separation Bed

    PubMed Central

    Sheng, Cheng; Wu, Lingling; Zhao, Yuemin; He, Jinfeng; Zhou, Enhui

    2014-01-01

    Recovering particle materials from discarded printed circuit boards can enhance resource recycling and reduce environmental pollution. Efficiently physically separating and recovering fine metal particles (−0.5 mm) from the circuit boards are a key recycling challenge. To do this, a new type of separator, an inflatable tapered diameter separation bed, was developed to study particle motion and separation mechanisms in the bed's fluid flow field. For 0.5–0.25 mm circuit board particles, metal recovery rates ranged from 87.56 to 94.17%, and separation efficiencies ranged from 87.71 to 94.20%. For 0.25–0.125 mm particles, metal recovery rates ranged from 84.76 to 91.97%, and separation efficiencies ranged from 84.74 to 91.86%. For superfine products (−0.125 mm), metal recovery rates ranged from 73.11 to 83.04%, and separation efficiencies ranged from 73.00 to 83.14%. This research showed that the inflatable tapered diameter separation bed achieved efficient particle separation and can be used to recover fine particles under a wide range of operational conditions. The bed offers a new mechanical technology to recycle valuable materials from discarded printed circuit boards, reducing environmental pollution. PMID:25379546

  3. Separation of solids by varying the bulk density of a fluid separating medium

    DOEpatents

    Peterson, Palmer L.; Duffy, James B.; Tokarz, Richard D.

    1978-01-01

    A method and apparatus for separating objects having a density greater than a selected density value from objects having a density less than said selected density value. The method typically comprises: (a) providing a separation vessel having an upper and lower portion, said vessel containing a liquid having a density exceeding said selected density value; (b) reducing the apparent density of the liquid to said selected density value by introducing solid, bubble-like bodies having a density less than that of the liquid into the lower portion of the vessel and permitting them to rise therethrough; (c) introducing the objects to be separated into the separation vessel and permitting the objects having a density greater than the apparent density of the liquid to sink to the lower portion of the vessel, while the objects having a density less than said selected density value float in the upper portion of the vessel; and (d) separately removing the higher density objects in the lower portion and the lower density objects in the upper portion from the separation vessel. The apparatus typically comprises: (a) a vessel containing a liquid having a density such that at least part of said objects having a density exceeding said selected density value will float therein; (b) means to place said objects into said vessel; (c) means to reduce the effective density of at least a portion of said liquid to said selected density value, whereby said objects having a density exceeding said selected density value sink into said liquid and said objects having a density less than said selected density value remain afloat, said means to adjust the effective density comprising solid, bubble-like bodies having a density less than said selected density value and means for introducing said bodies into said liquid; and (d) means for separately removing said objects having a density exceeding said selected density value and said objects having a density less than said selected density value

  4. Achiral and Chiral Separations Using Micellar Electrokinetic Chromatography, Polyelectrolyte Multilayer Coatings, and Mixed Mode Separation Techniques with Molecular Micelles

    PubMed Central

    Luces, Candace A.; Warner, Isiah M.

    2014-01-01

    Mixed mode separation using a combination of micellar electrokinetic chromatography (MEKC) and polyelectrolyte multilayer (PEM) coatings is herein reported for the separation of achiral and chiral analytes. Many analytes are difficult to separate by MEKC and PEM coatings alone. Therefore, the implementation of a mixed mode separation provides several advantages for overcoming the limitations of these well-established methods. In this study, it was observed that achiral separations using MEKC and PEM coatings individually resulted in partial resolution of 8 very similar aryl ketones when the molecular micelle (sodium poly(N-undecanoyl-l-glycinate) (poly-SUG)) concentration was varied from 0.25% – 1.00% (w/v) and the bilayer number varied from 2 – 4. However, when mixed mode separation was introduced, baseline resolution was achieved for all 8 analytes. In the case of chiral separations, temazepam, aminoglutethimide, benzoin, benzoin methyl ether and coumachlor were separated using the three separation techniques. For chiral separations, the chiral molecular micelle, sodium poly(N-undecanoyl-l-leucylvalinate) (poly-l-SULV), was employed at concentrations of 0.25–1.50% (w/v) for both MEKC and PEM coatings. Overall, the results revealed partial separation with MEKC and PEM coatings individually. However, mixed mode separation enabled baseline separation of each chiral mixture. The separation of achiral and chiral compounds from different compound classes demonstrates the versatility of this mixed mode approach. PMID:20155738

  5. Organic Separation Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2014-09-22

    Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations,more » could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.« less

  6. Carter separable electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Lynden-Bell, D.

    2000-02-01

    The purely electromagnetic analogue in flat space of Kerr's metric in general relativity is only rarely considered. Here we carry out in flat space a programme similar to Carter's investigation of metrics in general relativity in which the motion of a charged particle is separable. We concentrate on the separability of the motion (be it classical, relativistic or quantum) of a charged particle in electromagnetic fields that lie in planes through an axis of symmetry. In cylindrical polar coordinates (t,R,φ,z) the four-vector potential takes the form [formmu2] is the unit toroidal vector. The forms of the functions Φ(R,z) and A(R,z) are sought that allow separable motion. This occurs for relativistic motion only when AR,Φ and A2-Φ2 are all of the separable form ζ(λ)-η(μ)]/(λ-μ), where ζ and η are arbitrary functions, and λ and μ are spheroidal coordinates or degenerations thereof. The special forms of A and Φ that allow this are deduced. They include the Kerr metric analogue, with E+iB=-∇{q[(r-ia).(r-ia)]-1/2}. Rather more general electromagnetic fields allow separation when the motion is non-relativistic. The investigation is extended to fields that lie in parallel planes. Connections to Larmor's theorem are remarked upon.

  7. Centrifugal lyophobic separator

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Bruce, R. A. (Inventor)

    1974-01-01

    A centrifugal separator is described using a lyophobic filter for removing liquid particles from a mixed stream of gas and liquid under various negative or positive external acceleration conditions as well as zero g or weightless conditions. Rotating the lyophobic filter and inclining the filter to the entering flow improves the lyophobic properties of the filter, provides gross separation of larger liquid particles, and prevents prolonged contact of liquid droplets with the spinning filter which might change the filter properties or block the filter.

  8. 38 CFR 21.7045 - Eligibility based on involuntary separation, voluntary separation, or participation in the Post...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational..., voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational Assistance Program. An.... (Authority: 38 U.S.C. 3018B) (d) Alternate eligibility requirements for participants in the Post-Vietnam Era...

  9. 38 CFR 21.7045 - Eligibility based on involuntary separation, voluntary separation, or participation in the Post...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational..., voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational Assistance Program. An.... (Authority: 38 U.S.C. 3018B) (d) Alternate eligibility requirements for participants in the Post-Vietnam Era...

  10. 38 CFR 21.7045 - Eligibility based on involuntary separation, voluntary separation, or participation in the Post...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational..., voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational Assistance Program. An.... (Authority: 38 U.S.C. 3018B) (d) Alternate eligibility requirements for participants in the Post-Vietnam Era...

  11. 38 CFR 21.7045 - Eligibility based on involuntary separation, voluntary separation, or participation in the Post...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational..., voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational Assistance Program. An.... (Authority: 38 U.S.C. 3018B) (d) Alternate eligibility requirements for participants in the Post-Vietnam Era...

  12. 38 CFR 21.7045 - Eligibility based on involuntary separation, voluntary separation, or participation in the Post...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational..., voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational Assistance Program. An.... (Authority: 38 U.S.C. 3018B) (d) Alternate eligibility requirements for participants in the Post-Vietnam Era...

  13. A High-Efficiency Superhydrophobic Plasma Separator

    PubMed Central

    Liu, Changchun; Liao, Shih-Chuan; Song, Jinzhao; Mauk, Michael G.; Li, Xuanwen; Wu, Gaoxiang; Ge, Dengteng; Greenberg, Robert M.; Yang, Shu; Bau, Haim H.

    2016-01-01

    To meet stringent limit-of-detection specifications for low abundance target molecules, a relatively large volume of plasma is needed for many blood-based clinical diagnostics. Conventional centrifugation methods for plasma separation are not suitable for on-site testing or bedside diagnostics. Here, we report a simple, yet high-efficiency, clamshell-style, superhydrophobic plasma separator that is capable of separating a relatively large volume of plasma from several hundred microliters of whole blood (finger-prick blood volume). The plasma separator consists of a superhydrophobic top cover with a separation membrane and a superhydrophobic bottom substrate. Unlike previously reported membrane-based plasma separators, the separation membrane in our device is positioned at the top of the sandwiched whole blood film to increase the membrane separation capacity and plasma yield. In addition, the device’s superhydrophobic characteristics (i) facilitates the formation of well-defined, contracted, thin blood film with a high contact angle; (ii) minimizes biomolecular adhesion to surfaces; (iii) increases blood clotting time; and (iv) reduces blood cell hemolysis. The device demonstrated a “blood in-plasma out” capability, consistently extracting 65±21.5 μL of plasma from 200 μL of whole blood in less than 10 min without electrical power. The device was used to separate plasma from Schistosoma mansoni genomic DNA-spiked whole blood with a recovery efficiency of > 84.5 ± 25.8 %. The S. mansoni genomic DNA in the separated plasma was successfully tested on our custom-made microfluidic chip by using loop mediated isothermal amplification (LAMP) method. PMID:26732765

  14. Device for hydrogen separation and method

    DOEpatents

    Paglieri, Stephen N [White Rock, NM; Anderson, Iver E [Ames, IA; Terpstra, Robert L [Ames, IA

    2009-11-03

    A device for hydrogen separation has a porous support and hydrogen separation material on the support. The support is prepared by heat treatment of metal microparticles, preferably of iron-based or nickel-based alloys that also include aluminum and/or yttrium. The hydrogen separation material is then deposited on the support. Preferred hydrogen separation materials include metals such as palladium, alloys, platinum, refractory metals, and alloys.

  15. A new submarine oil-water separation system

    NASA Astrophysics Data System (ADS)

    Cai, Wen-Bin; Liu, Bo-Hong

    2017-12-01

    In order to solve the oil field losses of environmental problems and economic benefit caused by the separation of lifting production liquid to offshore platforms in the current offshore oil production, from the most basic separation principle, a new oil-water separation system has been processed of adsorption and desorption on related materials, achieving high efficiency and separation of oil and water phases. And the submarine oil-water separation device has been designed. The main structure of the device consists of gas-solid phase separation device, period separating device and adsorption device that completed high efficiency separation of oil, gas and water under the adsorption and desorption principle, and the processing capacity of the device is calculated.

  16. Separated Shoulder

    MedlinePlus

    ... that hold your collarbone (clavicle) to your shoulder blade. In a mild separated shoulder, the ligaments might ... ligaments that hold your collarbone to your shoulder blade. Risk factors Participating in contact sports, such as ...

  17. New separators for nickel-zinc batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1976-01-01

    Flexible separators consisting of a substrate coated with a mixture of a polymer and organic and inorganic additives were cycle tested in nickel-zinc cells. By substituting a rubber-based resin for polyphenylene oxide in the standard inorganic-organic separator, major improvements in both cell life and flexibility were made. Substituting newsprint for asbestos as the substrate shows promise for use on the zinc electrode and reduces separator cost. The importance of ample electrolyte in the cells was noted. Cycle lives and the characteristics of these flexible, low-cost separators were compared with those of a standard microporous polypropylene separator.

  18. Disturbance Source Separation in Shear Flows Using Blind Source Separation Methods

    NASA Astrophysics Data System (ADS)

    Gluzman, Igal; Cohen, Jacob; Oshman, Yaakov

    2017-11-01

    A novel approach is presented for identifying disturbance sources in wall-bounded shear flows. The method can prove useful for active control of boundary layer transition from laminar to turbulent flow. The underlying idea is to consider the flow state, as measured in sensors, to be a mixture of sources, and to use Blind Source Separation (BSS) techniques to recover the separate sources and their unknown mixing process. We present a BSS method based on the Degenerate Unmixing Estimation Technique. This method can be used to identify any (a priori unknown) number of sources by using the data acquired by only two sensors. The power of the new method is demonstrated via numerical and experimental proofs of concept. Wind tunnel experiments involving boundary layer flow over a flat plate were carried out, in which two hot-wire anemometers were used to separate disturbances generated by disturbance generators such as a single dielectric barrier discharge plasma actuator and a loudspeaker.

  19. Continuous magnetic separator and process

    DOEpatents

    Oder, Robin R.; Jamison, Russell E.

    2008-04-22

    A continuous magnetic separator and process for separating a slurry comprising magnetic particles into a clarified stream and a thickened stream. The separator has a container with a slurry inlet, an overflow outlet for the discharge of the clarified slurry stream, and an underflow outlet for the discharge of a thickened slurry stream. Magnetic particles in the slurry are attracted to, and slide down, magnetic rods within the container. The slurry is thus separated into magnetic concentrate and clarified slurry. Flow control means can be used to control the ratio of the rate of magnetic concentrate to the rate of clarified slurry. Feed control means can be used to control the rate of slurry feed to the slurry inlet.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lippincott, W. H.; McKinsey, D. N.; Nikkel, J. A.

    Using a single-phase liquid argon detector with a signal yield of 4.85 photoelectrons per keV of electronic-equivalent recoil energy (keVee), we measure the scintillation time dependence of both electronic and nuclear recoils in liquid argon down to 5 keVee. We develop two methods of pulse shape discrimination to distinguish between electronic and nuclear recoils. Using one of these methods, we measure a background- and statistics-limited level of electronic recoil contamination to be 7.6x10{sup -7} between 52 and 110 keV of nuclear recoil energy (keVr) for a nuclear recoil acceptance of 50% with no nuclear recoil-like events above 62 keVr. Finally,more » we develop a maximum likelihood method of pulse shape discrimination based on the measured scintillation time dependence.« less

  1. Membrane separation of hydrocarbons

    DOEpatents

    Chang, Y. Alice; Kulkarni, Sudhir S.; Funk, Edward W.

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture through a polymeric membrane. The membrane which is utilized to effect the separation comprises a polymer which is capable of maintaining its integrity in the presence of hydrocarbon compounds and which has been modified by being subjected to the action of a sulfonating agent. Sulfonating agents which may be employed will include fuming sulfuric acid, chlorosulfonic acid, sulfur trioxide, etc., the surface or bulk modified polymer will contain a degree of sulfonation ranging from about 15 to about 50%. The separation process is effected at temperatures ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psig.

  2. Little Boy neutron spectrum below 1 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, A.E.

    1984-01-01

    A high-resolution /sup 3/He ionization chamber of the type development by Cuttler and Shalev was used to study the neutron spectrum from the Little Boy mockup. Measurements were made at distances of 0.75 and 2.0 m and at angles of 0/sup 0/, 45/sup 0/, and 90/sup 0/ with respect to the axis of the assembly, which was operated at power levels from 8.6 to 450 mW. Detector efficiency as a function of energy as well as parameters for correction of pulse-height distributions for proton-recoil and wall effects were determined from a set of response functions for monoenergetic neutrons measured atmore » the Los Alamos 3.75-MeV Van de Graaff Accelerator Facility. Pulse-shape discrimination was used to separate /sup 3/He-recoil pulses from the pulse-height distribution. The spectrum was found to be highly structured, with peaks corresponding to minima in the total neutron cross section of iron. In particular, 15% of the neutrons above the epithermal peak in energy were found to be in the 24-keV iron window. Lesser peaks out to 700 keV are also attributable to filtering action of the weapon's heavy iron casing. Data taken using experimental proton-recoil proportional counters are compared with the high-resolution spectra.« less

  3. Simultaneous Multiple-Location Separation Control

    NASA Technical Reports Server (NTRS)

    Greenblatt, David (Inventor)

    2009-01-01

    A method of controlling a shear layer for a fluid dynamic body introduces first periodic disturbances into the fluid medium at a first flow separation location. Simultaneously, second periodic disturbances are introduced into the fluid medium at a second flow separation location. A phase difference between the first and second periodic disturbances is adjusted to control flow separation of the shear layer as the fluid medium moves over the fluid dynamic body.

  4. ZEPLIN-III direct dark matter search : final results and measurements in support of next generation instruments

    NASA Astrophysics Data System (ADS)

    Reichhart, Lea

    2013-12-01

    Astrophysical observations give convincing evidence for a vast non-baryonic component, the so-called dark matter, accounting for over 20% of the overall content of our Universe. Direct dark matter search experiments explore the possibility of interactions of these dark matter particles with ordinary baryonic matter via elastic scattering resulting in single nuclear recoils. The ZEPLIN-III detector operated on the basis of a dualphase (liquid/gas) xenon target, recording events in two separate response channels { scintillation and ionisation. These allow discrimination between electron recoils (from background radiation) and the signal expected from Weakly Interacting Massive Particle (WIMP) elastic scatters. Following a productive first exposure, the detector was upgraded with a new array of ultra-low background photomultiplier tubes, reducing the electron recoil background by over an order of magnitude. A second major upgrade to the detector was the incorporation of a tonne-scale active veto detector system, surrounding the WIMP target. Calibration and science data taken in coincidence with ZEPLIN-III showed rejection of up to 30% of the dominant electron recoil background and over 60% of neutron induced nuclear recoils. Data taking for the second science run finished in May 2011 with a total accrued raw fiducial exposure of 1,344 kg days. With this extensive data set, from over 300 days of run time, a limit on the spin-independent WIMP-nucleon cross-section of 4.8 10-8 pb near 50 GeV/c2 WIMP mass with 90% confidence was set. This result combined with the first science run of ZEPLIN-III excludes the scalar cross-section above 3.9 10-8 pb. Studying the background data taken by the veto detector allowed a calculation of the neutron yield induced by high energy cosmic-ray muons in lead of (5.8 0.2) 10-3 neutrons/muon/(g/cm2) for a mean muon energy of 260 GeV. Measurements of this kind are of great importance for large scale direct dark matter search experiments and

  5. Stacking Oxygen-Separation Cells

    NASA Technical Reports Server (NTRS)

    Schroeder, James E.

    1991-01-01

    Simplified configuration and procedure developed for assembly of stacks of solid-electrolyte cells separating oxygen from air electrochemically. Reduces number of components and thus reduces probability of such failures as gas leaks, breakdown of sensitive parts, and electrical open or short circuits. Previous, more complicated version of cell described in "Improved Zirconia Oxygen-Separation Cell" (NPO-16161).

  6. Inorganic-organic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1978-01-01

    A flexible separator is reported for use between the electrodes of Ni-Cd and Ni-Zn batteries using alkaline electrolytes. The separator was made by coating a porous substrate with a battery separator composition. The coating material included a rubber-based resin copolymer, a plasticizer and inorganic and organic fillers which comprised 55% by volume or less of the coating as finally dried. One or more of the filler materials, whether organic or inorganic, is preferably active with the alkaline electrolyte to produce pores in the separator coating. The plasticizer was an organic material which is hydrolyzed by the alkaline electrolyte to improve conductivity of the separator coating.

  7. Wake vortex separation standards : analysis methods

    DOT National Transportation Integrated Search

    1997-01-01

    Wake vortex separation standards are used to prevent hazardous wake vortex encounters. A "safe" separation model can be used to assess the safety of proposed changes in the standards. A safe separation model can be derived from an encounter hazard mo...

  8. Workforce Downsizing and Restructuring in the Department of Defense: The Voluntary Separation Incentive Payment Program Versus Involuntary Separation

    DTIC Science & Technology

    2016-01-01

    Workforce Downsizing and Restructuring in the Department of Defense The Voluntary Separation Incentive Payment Program Versus Involuntary...Voluntary Separation Incentive Payment (VSIP). The purposes of this research are to place VSIP in context relative to involuntary separation, determine...5 CHAPTER TWO Review of Severance Pay, Voluntary Separation Incentive Pay, and Voluntary

  9. Separation of sodium-22 from irradiated targets

    DOEpatents

    Taylor, Wayne A.; Jamriska, David

    1996-01-01

    A process for selective separation of sodium-22 from an irradiated target including dissolving an irradiated target to form a first solution, contacting the first solution with hydrated antimony pentoxide to selectively separate sodium-22 from the first solution, separating the hydrated antimony pentoxide including the separated sodium-22 from the first solution, dissolving the hydrated antimony pentoxide including the separated sodium-22 in a mineral acid to form a second solution, and, separating the antimony from the sodium-22 in the second solution.

  10. Comparison between students and residents on determinants of willingness to separate waste and waste separation behaviour in Zhengzhou, China.

    PubMed

    Dai, Xiaoping; Han, Yuping; Zhang, Xiaohong; Hu, Wei; Huang, Liangji; Duan, Wenpei; Li, Siyi; Liu, Xiaolu; Wang, Qian

    2017-09-01

    A better understanding of willingness to separate waste and waste separation behaviour can aid the design and improvement of waste management policies. Based on the intercept questionnaire survey data of undergraduate students and residents in Zhengzhou City of China, this article compared factors affecting the willingness and behaviour of students and residents to participate in waste separation using two binary logistic regression models. Improvement opportunities for waste separation were also discussed. Binary logistic regression results indicate that knowledge of and attitude to waste separation and acceptance of waste education significantly affect the willingness of undergraduate students to separate waste, and demographic factors, such as gender, age, education level, and income, significantly affect the willingness of residents to do so. Presence of waste-specific bins and attitude to waste separation are drivers of waste separation behaviour for both students and residents. Improved education about waste separation and facilities are effective to stimulate waste separation, and charging on unsorted waste may be an effective way to improve it in Zhengzhou.

  11. Molten carbonate fuel cell separator

    DOEpatents

    Nickols, Richard C.

    1986-09-02

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  12. Molten carbonate fuel cell separator

    DOEpatents

    Nickols, R.C.

    1984-10-17

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  13. Separator for electrochemical cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, R.A.

    1988-12-27

    An electrochemical cell is described comprising a sealed casing; an anode, a cathode, a separator positioned between the anode and the cathode, and a non-aqueous electrolyte sealed in the casing; a pair of electrical terminals on the casing; means for electrically isolating the electrical terminals from each other; and means for electrically connecting the anode to one terminal and the cathode to the other terminal; wherein the anode is comprised of lithium foil, the cathode is comprised of manganese dioxide, and the separator consists essentially of a microporous polypropylene film having a thickness of about 1.5 mils and internal voidsmore » of about 60% by volume; wherein the anode, cathode, and separator are spirally wound together in a jelly roll configuration.« less

  14. Gas separation membranes

    DOEpatents

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  15. Separation membrane development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, M.W.

    1998-08-01

    A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.

  16. Spiral fluid separator

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A. (Inventor)

    1993-01-01

    A fluid separator for separating particulate matter such as contaminates is provided which includes a series of spiral tubes of progressively decreasing cross sectional area connected in series. Each tube has an outlet on the outer curvature of the spiral. As fluid spirals down a tube, centrifugal force acts to force the heavier particulate matter to the outer wall of the tube, where it exits through the outlet. The remaining, and now cleaner, fluid reaches the next tube, which is smaller in cross sectional area, where the process is repeated. The fluid which comes out the final tube is diminished of particulate matter.

  17. Separation techniques: Chromatography

    PubMed Central

    Coskun, Ozlem

    2016-01-01

    Chromatography is an important biophysical technique that enables the separation, identification, and purification of the components of a mixture for qualitative and quantitative analysis. Proteins can be purified based on characteristics such as size and shape, total charge, hydrophobic groups present on the surface, and binding capacity with the stationary phase. Four separation techniques based on molecular characteristics and interaction type use mechanisms of ion exchange, surface adsorption, partition, and size exclusion. Other chromatography techniques are based on the stationary bed, including column, thin layer, and paper chromatography. Column chromatography is one of the most common methods of protein purification. PMID:28058406

  18. Dynamic acoustic field activated cell separation (DAFACS).

    PubMed

    Skotis, G D; Cumming, D R S; Roberts, J N; Riehle, M O; Bernassau, A L

    2015-02-07

    Advances in diagnostics, cell and stem cell technologies drive the development of application-specific tools for cell and particle separation. Acoustic micro-particle separation offers a promising avenue for high-throughput, label-free, high recovery, cell and particle separation and isolation in regenerative medicine. Here, we demonstrate a novel approach utilizing a dynamic acoustic field that is capable of separating an arbitrary size range of cells. We first demonstrate the method for the separation of particles with different diameters between 6 and 45 μm and secondly particles of different densities in a heterogeneous medium. The dynamic acoustic field is then used to separate dorsal root ganglion cells. The shearless, label-free and low damage characteristics make this method of manipulation particularly suited for biological applications. Advantages of using a dynamic acoustic field for the separation of cells include its inherent safety and biocompatibility, the possibility to operate over large distances (centimetres), high purity (ratio of particle population, up to 100%), and high efficiency (ratio of separated particles over total number of particles to separate, up to 100%).

  19. Separability of agricultural crops with airborne scatterometry

    NASA Technical Reports Server (NTRS)

    Mehta, N. C.

    1983-01-01

    Backscattering measurements were acquired with airborne scatterometers over a site in Cass County, North Dakota on four days in the 1981 crop growing season. Data were acquired at three frequencies (L-, C- and Ku-bands), two polarizations (like and cross) and ten incidence angles (5 degrees to 50 degrees in 5 degree steps). Crop separability is studied in an hierarchical fashion. A two-class separability measure is defined, which compares within-class to between-class variability, to determine crop separability. The scatterometer channels with the best potential for crop separability are determined, based on this separability measure. Higher frequencies are more useful for discriminating small grains, while lower frequencies tend to separate non-small grains better. Some crops are more separable when row direction is taken into account. The effect of pixel purity is to increase the separability between all crops while not changing the order of useful scatterometer channels. Crude estimates of separability errors are calculated based on these analyses. These results are useful in selecting the parameters of active microwave systems in agricultural remote sensing.

  20. Facile fabrication of multilayer separators for lithium-ion battery via multilayer coextrusion and thermal induced phase separation

    NASA Astrophysics Data System (ADS)

    Li, Yajie; Pu, Hongting

    2018-04-01

    Polypropylene (PP)/polyethylene (PE) multilayer separators with cellular-like submicron pore structure for lithium-ion battery are efficiently fabricated by the combination of multilayer coextrusion (MC) and thermal induced phase separation (TIPS). The as-prepared separators, referred to as MC-TIPS PP/PE, not only show efficacious thermal shutdown function and wider shutdown temperature window, but also exhibit higher thermal stability than the commercial separator with trilayer construction of PP and PE (Celgard® 2325). The dimensional shrinkage of MC-TIPS PP/PE can be negligible until 160 °C. In addition, compared to the commercial separator, MC-TIPS PP/PE exhibits higher porosity and electrolyte uptake, leading to higher ionic conductivity and better battery performances. The above-mentioned fascinating characteristics with the convenient preparation process make MC-TIPS PP/PE a promising candidate for the application as high performance lithium-ion battery separators.

  1. 24 CFR 3285.101 - Fire separation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Fire separation. 3285.101 Section... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Pre-Installation Considerations § 3285.101 Fire separation. Fire separation distances must be in accordance with the requirements of Chapter 6 of NFPA 501A...

  2. Separation as a suicide risk factor.

    PubMed

    Wyder, Marianne; Ward, Patrick; De Leo, Diego

    2009-08-01

    Marital separation (as distinct from divorce) is rarely researched in the suicidological literature. Studies usually report on the statuses of 'separated' and 'divorced' as a combined category, possibly because demographic registries are not able to identify separation reliably. However, in most countries divorce only happens once the process of separation has settled which, in most cases, occurs a long time after the initial break-up. It has been hypothesised that separation might carry a far greater risk of suicide than divorce. The present study investigates the impact of separation on suicide risk by taking into account the effects of age and gender. The incidence of suicide associated with marital status, age and gender was determined by comparing the Queensland Suicide Register (a large dataset of all suicides in Queensland from 1994 to 2004) with the QLD population through two different census datasets: the Registered Marital Status and the Social Marital Status. These two registries permit the isolation of the variable 'separated' with great reliability. During the examined period, 6062 persons died by suicide in QLD (an average of 551 cases per year), with males outnumbering females by four to one. For both males and females separation created a risk of suicide at least 4 times higher than any other marital status. The risk was particularly high for males aged 15 to 24 (RR 91.62). This study highlights a great variation in the incidence of suicide by marital status, age and gender, which suggests that these variables should not be studied in isolation. Furthermore, particularly in younger males, separation appears to be strongly associated with the risk of suicide.

  3. Revisiting separation properties of convex fuzzy sets

    USDA-ARS?s Scientific Manuscript database

    Separation of convex sets by hyperplanes has been extensively studied on crisp sets. In a seminal paper separability and convexity are investigated, however there is a flaw on the definition of degree of separation. We revisited separation on convex fuzzy sets that have level-wise (crisp) disjointne...

  4. Passive gas separator and accumulator device

    DOEpatents

    Choe, Hwang; Fallas, Thomas T.

    1994-01-01

    A separation device employing a gas separation filter and swirler vanes for separating gas from a gasliquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use.

  5. Recoil polarization measurements for neutral pion electroproduction at Q2=1(GeV/c)2 near the Δ resonance

    NASA Astrophysics Data System (ADS)

    Kelly, J. J.; Gayou, O.; Roché, R. E.; Chai, Z.; Jones, M. K.; Sarty, A. J.; Frullani, S.; Aniol, K.; Beise, E. J.; Benmokhtar, F.; Bertozzi, W.; Boeglin, W. U.; Botto, T.; Brash, E. J.; Breuer, H.; Brown, E.; Burtin, E.; Calarco, J. R.; Cavata, C.; Chang, C. C.; Chant, N. S.; Chen, J.-P.; Coman, M.; Crovelli, D.; Leo, R. De; Dieterich, S.; Escoffier, S.; Fissum, K. G.; Garde, V.; Garibaldi, F.; Georgakopoulos, S.; Gilad, S.; Gilman, R.; Glashausser, C.; Hansen, J.-O.; Higinbotham, D. W.; Hotta, A.; Huber, G. M.; Ibrahim, H.; Iodice, M.; Jager, C. W. De; Jiang, X.; Klimenko, A.; Kozlov, A.; Kumbartzki, G.; Kuss, M.; Lagamba, L.; Laveissière, G.; Lerose, J. J.; Lindgren, R. A.; Liyange, N.; Lolos, G. J.; Lourie, R. W.; Margaziotis, D. J.; Marie, F.; Markowitz, P.; McAleer, S.; Meekins, D.; Michaels, R.; Milbrath, B. D.; Mitchell, J.; Nappa, J.; Neyret, D.; Perdrisat, C. F.; Potokar, M.; Punjabi, V. A.; Pussieux, T.; Ransome, R. D.; Roos, P. G.; Rvachev, M.; Saha, A.; Širca, S.; Suleiman, R.; Strauch, S.; Templon, J. A.; Todor, L.; Ulmer, P. E.; Urciuoli, G. M.; Weinstein, L. B.; Wijsooriya, K.; Wojtsekhowski, B.; Zheng, X.; Zhu, L.

    2007-02-01

    We measured angular distributions of differential cross section, beam analyzing power, and recoil polarization for neutral pion electroproduction at Q2=1.0(GeV/c)2 in 10 bins of 1.17⩽W⩽1.35 GeV across the Δ resonance. A total of 16 independent response functions were extracted, of which 12 were observed for the first time. Comparisons with recent model calculations show that response functions governed by real parts of interference products are determined relatively well near the physical mass, W=MΔ≈1.232 GeV, but the variation among models is large for response functions governed by imaginary parts, and for both types of response functions, the variation increases rapidly with W>MΔ. We performed a multipole analysis that adjusts suitable subsets of ℓπ⩽2 amplitudes with higher partial waves constrained by baseline models. This analysis provides both real and imaginary parts. The fitted multipole amplitudes are nearly model independent—there is very little sensitivity to the choice of baseline model or truncation scheme. By contrast, truncation errors in the traditional Legendre analysis of N→Δ quadrupole ratios are not negligible. Parabolic fits to the W dependence around MΔ for the multiple analysis gives values for Re(S1+/M1+)=(-6.61±0.18)% and Re(E1+/M1+)=(-2.87±0.19)% for the pπ0 channel at W=1.232 GeV and Q2=1.0(GeV/c)2 that are distinctly larger than those from the Legendre analysis of the same data. Similarly, the multipole analysis gives Re(S0+/M1+)=(+7.1±0.8)% at W=1.232 GeV, consistent with recent models, while the traditional Legendre analysis gives the opposite sign because its truncation errors are quite severe.

  6. Magnetically Enhanced Solid-Liquid Separation

    NASA Astrophysics Data System (ADS)

    Rey, C. M.; Keller, K.; Fuchs, B.

    2005-07-01

    DuPont is developing an entirely new method of solid-liquid filtration involving the use of magnetic fields and magnetic field gradients. The new hybrid process, entitled Magnetically Enhanced Solid-Liquid Separation (MESLS), is designed to improve the de-watering kinetics and reduce the residual moisture content of solid particulates mechanically separated from liquid slurries. Gravitation, pressure, temperature, centrifugation, and fluid dynamics have dictated traditional solid-liquid separation for the past 50 years. The introduction of an external field (i.e. the magnetic field) offers the promise to manipulate particle behavior in an entirely new manner, which leads to increased process efficiency. Traditional solid-liquid separation typically consists of two primary steps. The first is a mechanical step in which the solid particulate is separated from the liquid using e.g. gas pressure through a filter membrane, centrifugation, etc. The second step is a thermal drying process, which is required due to imperfect mechanical separation. The thermal drying process is over 100-200 times less energy efficient than the mechanical step. Since enormous volumes of materials are processed each year, more efficient mechanical solid-liquid separations can be leveraged into dramatic reductions in overall energy consumption by reducing downstream drying requirements have a tremendous impact on energy consumption. Using DuPont's MESLS process, initial test results showed four very important effects of the magnetic field on the solid-liquid filtration process: 1) reduction of the time to reach gas breakthrough, 2) less loss of solid into the filtrate, 3) reduction of the (solids) residual moisture content, and 4) acceleration of the de-watering kinetics. These test results and their potential impact on future commercial solid-liquid filtration is discussed. New applications can be found in mining, chemical and bioprocesses.

  7. Improved pulse shape discrimination in EJ-301 liquid scintillators

    NASA Astrophysics Data System (ADS)

    Lang, R. F.; Masson, D.; Pienaar, J.; Röttger, S.

    2017-06-01

    Digital pulse shape discrimination has become readily available to distinguish nuclear recoil and electronic recoil events in scintillation detectors. We evaluate digital implementations of pulse shape discrimination algorithms discussed in the literature, namely the Charge Comparison Method, Pulse-Gradient Analysis, Fourier Series and Standard Event Fitting. In addition, we present a novel algorithm based on a Laplace Transform. Instead of comparing the performance of these algorithms based on a single Figure of Merit, we evaluate them as a function of recoil energy. Specifically, using commercial EJ-301 liquid scintillators, we examined both the resulting acceptance of nuclear recoils at a given rejection level of electronic recoils, as well as the purity of the selected nuclear recoil event samples. We find that both a Standard Event fit and a Laplace Transform can be used to significantly improve the discrimination capabilities over the whole considered energy range of 0 - 800keVee . Furthermore, we show that the Charge Comparison Method performs poorly in accurately identifying nuclear recoils.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozorgnia, Nassim; Gelmini, Graciela B.; Gondolo, Paolo, E-mail: n.bozorgnia@uva.nl, E-mail: gelmini@physics.ucla.edu, E-mail: paolo@physics.utah.edu

    Directional dark matter detection attempts to measure the direction of motion of nuclei recoiling after having interacted with dark matter particles in the halo of our Galaxy. Due to Earth's motion with respect to the Galaxy, the dark matter flux is concentrated around a preferential direction. An anisotropy in the recoil direction rate is expected as an unmistakable signature of dark matter. The average nuclear recoil direction is expected to coincide with the average direction of dark matter particles arriving to Earth. Here we point out that for a particular type of dark matter, inelastic exothermic dark matter, the meanmore » recoil direction as well as a secondary feature, a ring of maximum recoil rate around the mean recoil direction, could instead be opposite to the average dark matter arrival direction. Thus, the detection of an average nuclear recoil direction opposite to the usually expected direction would constitute a spectacular experimental confirmation of this type of dark matter.« less

  9. Ion irradiation of electronic-type-separated single wall carbon nanotubes: A model for radiation effects in nanostructured carbon

    NASA Astrophysics Data System (ADS)

    Rossi, Jamie E.; Cress, Cory D.; Helenic, Alysha R.; Schauerman, Chris M.; DiLeo, Roberta A.; Cox, Nathanael D.; Messenger, Scott R.; Weaver, Brad D.; Hubbard, Seth M.; Landi, Brian J.

    2012-08-01

    The structural and electrical properties of electronic-type-separated (metallic and semiconducting) single wall carbon nanotube (SWCNT) thin-films have been investigated after irradiation with 150 keV 11B+ and 150 keV 31P+ with fluences ranging from 1012 to 1015 ions/cm2. Raman spectroscopy results indicate that the ratio of the Raman D to G' band peak intensities (D/G') is a more sensitive indicator of SWCNT structural modification induced by ion irradiation by one order of magnitude compared to the ratio of the Raman D to G band peak intensities (D/G). The increase in sheet resistance (Rs) of the thin-films follows a similar trend as the D/G' ratio, suggesting that the radiation induced variation in bulk electrical transport for both electronic-types is equal and related to localized defect generation. The characterization results for the various samples are compared based on the displacement damage dose (DDD) imparted to the sample, which is material and damage source independent. Therefore, it is possible to extend the analysis to include data from irradiation of transferred CVD-graphene films on SiO2/Si substrates using 35 keV C+ ions, and compare the observed changes at equivalent levels of ion irradiation-induced damage to that observed in the SWCNT thin-film samples. Ultimately, a model is developed for the prediction of the radiation response of nanostructured carbon materials based on the DDD for any incident ion with low-energy recoil spectra. The model is also related to the defect concentration, and subsequently the effective defect-to-defect length, and yields a maximum defect concentration (minimum defect-to-defect length) above which the bulk electrical transport properties in SWCNT thin-films and large graphene-based electronic devices rapidly degrade when exposed to harsh environments.

  10. Separation and Depleted Uranium Fragments from Gun Test Catchment. Volume 2. Catchment System and Separations Methods

    DTIC Science & Technology

    1993-12-30

    projectile fragments from target materials, principally sand. Phase I activities included (1) literature review of separations technology , (2) site visits, (3...the current operation, evaluation of alternative means for separation of DU from sand, a review of uranium mining technology for v possible...the current operation, evaluation of alternative means for separation of DU from sand, a review of uranium mining technology for possible

  11. Local sensitivities of the gulf stream separation

    DOE PAGES

    Schoonover, Joseph; Dewar, William K.; Wienders, Nicolas; ...

    2016-12-05

    Robust and accurate Gulf Stream separation remains an unsolved problem in general circulation modeling whose resolution will positively impact the ocean and climate modeling communities. Oceanographic literature does not face a shortage of plausible hypotheses that attempt to explain the dynamics of the Gulf Stream separation, yet a single theory that the community agrees on is missing. We investigate the impact of the Deep Western Boundary Current, coastline curvature, and continental shelf steepening on the Gulf Stream separation within regional configurations of the MIT General Circulation Model. Artificial modifications to the regional bathymetry are introduced to investigate the sensitivity ofmore » the separation to each of these factors. Metrics for subsurface separation detection confirm the direct link between flow separation and the surface expression of the Gulf Stream in the Mid-Atlantic Bight. Conversely, the Gulf Stream separation exhibits minimal sensitivity to the presence of the DWBC and coastline curvature. The implications of these results to the development of a “separation recipe” for ocean modeling are discussed. Furthermore, we conclude adequate topographic resolution is a necessary, but not sufficient, condition for proper Gulf Stream separation.« less

  12. Polymer membranes as separators for supercapacitors

    NASA Astrophysics Data System (ADS)

    Szubzda, Bronisław; Szmaja, Aleksandra; Ozimek, Mariusz; Mazurkiewicz, Sławomir

    2014-12-01

    The purpose of the studies described was to examine the influence of low-energy plasma modification of polyamide and polypropylene polymer nonwoven fabrics on the usable properties of supercapacitors when using these fabrics as the separator material. To achieve this goal the following investigations were carried out: testing the time required for electrolyte saturation of separators and the conductivity of the electrolyte contained in the separator, as well as electrochemical examinations of supercapacitor models in which the modified fabric separators were used. The tests conducted fully confirm the usability of this modification for cleaning the surface and improving the wettability of separators by the electrolyte, which in turn results in a significant decrease of the internal resistance of the supercapacitor, thus increasing the usable power of the device.

  13. Sheathless Size-Based Acoustic Particle Separation

    PubMed Central

    Guldiken, Rasim; Jo, Myeong Chan; Gallant, Nathan D.; Demirci, Utkan; Zhe, Jiang

    2012-01-01

    Particle separation is of great interest in many biological and biomedical applications. Flow-based methods have been used to sort particles and cells. However, the main challenge with flow based particle separation systems is the need for a sheath flow for successful operation. Existence of the sheath liquid dilutes the analyte, necessitates precise flow control between sample and sheath flow, requires a complicated design to create sheath flow and separation efficiency depends on the sheath liquid composition. In this paper, we present a microfluidic platform for sheathless particle separation using standing surface acoustic waves. In this platform, particles are first lined up at the center of the channel without introducing any external sheath flow. The particles are then entered into the second stage where particles are driven towards the off-center pressure nodes for size based separation. The larger particles are exposed to more lateral displacement in the channel due to the acoustic force differences. Consequently, different-size particles are separated into multiple collection outlets. The prominent feature of the present microfluidic platform is that the device does not require the use of the sheath flow for positioning and aligning of particles. Instead, the sheathless flow focusing and separation are integrated within a single microfluidic device and accomplished simultaneously. In this paper, we demonstrated two different particle size-resolution separations; (1) 3 μm and 10 μm and (2) 3 μm and 5 μm. Also, the effects of the input power, the flow rate, and particle concentration on the separation efficiency were investigated. These technologies have potential to impact broadly various areas including the essential microfluidic components for lab-on-a-chip system and integrated biological and biomedical applications. PMID:22368502

  14. Continuity and Separation in Symmetric Topologies

    ERIC Educational Resources Information Center

    Harris, J.; Lynch, M.

    2007-01-01

    In this note, it is shown that in a symmetric topological space, the pairs of sets separated by the topology determine the topology itself. It is then shown that when the codomain is symmetric, functions which separate only those pairs of sets that are already separated are continuous, generalizing a result found by M. Lynch.

  15. Particle Spectrometers for FRIB

    NASA Astrophysics Data System (ADS)

    Amthor, A. M.

    2014-09-01

    FRIB promises to dramatically expand the variety of nuclear systems available for direct experimental study by providing rates of many rare isotopes orders of magnitude higher than those currently available. A new generation of experimental systems, including new particle spectrometers will be critical to our ability to take full advantage of the scientific opportunities offered by FRIB. The High-Rigidity Spectrometer (HRS) will allow for experiments with the most neutron-rich and short-lived isotopes produced by in-flight fragmentation at FRIB. The bending capability of the HRS (8 Tm) matches to the rigidity for which rare isotopes are produced at the highest intensity in the FRIB fragment separator. The experimental program will be focused on nuclear structure and astrophysics, and allow for the use of other cutting-edge detection systems for gamma, neutron, and charged-particle detection. Stopped and reaccelerated beam studies will be an important compliment to in-flight techniques at FRIB, providing world-unique, high quality, intense rare isotope beams at low energies up to and beyond the Coulomb barrier--with the completion of ReA12--and serving many of the science goals of the broader facility, from nuclear structure and astrophysics to applications. Two specialized recoil spectrometers are being developed for studies with reaccelerated beams. SECAR, the Separator for Capture Reactions, will be built following ReA3, coupled to a windowless gas jet target, JENSA, and will focus on radiative capture reactions for astrophysics, particularly those needed to improve our understanding of novae and X-ray bursts. A recoil separator following ReA12 is proposed to address a variety of physics cases based on fusion-evaporation, Coulomb excitation, transfer, and deep-inelastic reactions by providing a large angular, momentum and charge state acceptance; a high mass resolving power; and the flexibility to couple to a variety of auxiliary detector systems. Two designs

  16. Gas phase chemical studies of superheavy elements using the Dubna gas-filled recoil separator - Stopping range determination

    NASA Astrophysics Data System (ADS)

    Wittwer, D.; Abdullin, F. Sh.; Aksenov, N. V.; Albin, Yu. V.; Bozhikov, G. A.; Dmitriev, S. N.; Dressler, R.; Eichler, R.; Gäggeler, H. W.; Henderson, R. A.; Hübener, S.; Kenneally, J. M.; Lebedev, V. Ya.; Lobanov, Yu. V.; Moody, K. J.; Oganessian, Yu. Ts.; Petrushkin, O. V.; Polyakov, A. N.; Piguet, D.; Rasmussen, P.; Sagaidak, R. N.; Serov, A.; Shirokovsky, I. V.; Shaughnessy, D. A.; Shishkin, S. V.; Sukhov, A. M.; Stoyer, M. A.; Stoyer, N. J.; Tereshatov, E. E.; Tsyganov, Yu. S.; Utyonkov, V. K.; Vostokin, G. K.; Wegrzecki, M.; Wilk, P. A.

    2010-01-01

    Currently, gas phase chemistry experiments with heaviest elements are usually performed with the gas-jet technique with the disadvantage that all reaction products are collected in a gas-filled thermalisation chamber adjacent to the target. The incorporation of a physical preseparation device between target and collection chamber opens up the perspective to perform new chemical studies. But this approach requires detailed knowledge of the stopping force (STF) of the heaviest elements in various materials. Measurements of the energy loss of mercury (Hg), radon (Rn), and nobelium (No) in Mylar and argon (Ar) were performed at low kinetic energies of around (40-270) keV per nucleon. The experimentally obtained values were compared with STF calculations of the commonly used program for calculating stopping and ranges of ions in matter (SRIM). Using the obtained data points an extrapolation of the STF up to element 114, eka-lead, in the same stopping media was carried out. These estimations were applied to design and to perform a first chemical experiment with a superheavy element behind a physical preseparator using the nuclear fusion reaction 244Pu( 48Ca; 3n) 289114. One decay chain assigned to an atom of 285112, the α-decay product of 289114, was observed.

  17. Separation and confirmation of showers

    NASA Astrophysics Data System (ADS)

    Neslušan, L.; Hajduková, M.

    2017-02-01

    Aims: Using IAU MDC photographic, IAU MDC CAMS video, SonotaCo video, and EDMOND video databases, we aim to separate all provable annual meteor showers from each of these databases. We intend to reveal the problems inherent in this procedure and answer the question whether the databases are complete and the methods of separation used are reliable. We aim to evaluate the statistical significance of each separated shower. In this respect, we intend to give a list of reliably separated showers rather than a list of the maximum possible number of showers. Methods: To separate the showers, we simultaneously used two methods. The use of two methods enables us to compare their results, and this can indicate the reliability of the methods. To evaluate the statistical significance, we suggest a new method based on the ideas of the break-point method. Results: We give a compilation of the showers from all four databases using both methods. Using the first (second) method, we separated 107 (133) showers, which are in at least one of the databases used. These relatively low numbers are a consequence of discarding any candidate shower with a poor statistical significance. Most of the separated showers were identified as meteor showers from the IAU MDC list of all showers. Many of them were identified as several of the showers in the list. This proves that many showers have been named multiple times with different names. Conclusions: At present, a prevailing share of existing annual showers can be found in the data and confirmed when we use a combination of results from large databases. However, to gain a complete list of showers, we need more-complete meteor databases than the most extensive databases currently are. We also still need a more sophisticated method to separate showers and evaluate their statistical significance. Tables A.1 and A.2 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http

  18. Separations on water-ice. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, P.K.

    1998-07-01

    This report focuses on processes to separate water frozen into ice. Research topics include the following: normal phase columnar chromatography; electrophoresis in a planar format; and zone melting type separations on a solid column of ice. Attempts were made to dope the emulsion with {beta}-cyclodextrin in order to separate commercially important chiral drugs such as Inderal.

  19. Passive gas separator and accumulator device

    DOEpatents

    Choe, H.; Fallas, T.T.

    1994-08-02

    A separation device employing a gas separation filter and swirler vanes for separating gas from a gas-liquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use. 3 figs.

  20. Separator material for electrochemical cells

    DOEpatents

    Cieslak, W.R.; Storz, L.J.

    1991-03-26

    An electrochemical cell is characterized as utilizing an aramid fiber as a separator material. The aramid fibers are especially suited for lithium/thionyl chloride battery systems. The battery separator made of aramid fibers possesses superior mechanical strength, chemical resistance, and is flame retardant.

  1. Separator material for electrochemical cells

    DOEpatents

    Cieslak, Wendy R.; Storz, Leonard J.

    1991-01-01

    An electrochemical cell characterized as utilizing an aramid fiber as a separator material. The aramid fibers are especially suited for lithium/thionyl chloride battery systems. The battery separator made of aramid fibers possesses superior mechanical strength, chemical resistance, and is flame retardant.

  2. Hot spot and trench volcano separations

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Schubert, G.

    1974-01-01

    It is suggested that the distribution of separations between trench volcanos located along subduction zones reflects the depth of partial melting, and that the separation distribution for hot spot volcanoes near spreading centers provides a measure of the depth of mantle convection cells. It is further proposed that the lateral dimensions of mantle convection cells are also represented by the hot-spot separations (rather than by ridge-trench distances) and that a break in the distribution of hot spot separations at 3000 km is evidence for both whole mantle convection and a deep thermal plume origin of hot spots.

  3. Dendrite preventing separator for secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor); Halpert, Gerald (Inventor)

    1993-01-01

    Dendrites are prevented from shorting a secondary lithium battery by use of a first porous separator, such as porous polypropylene, adjacent to the lithium anode that is unreactive with lithium and a second porous fluoropolymer separator between the cathode and the first separator, such as polytetrafluoroethylene, that is reactive with lithium. As the tip of a lithium dendrite contacts the second separator, an exothermic reaction occurs locally between the lithium dendrite and the fluoropolymer separator. This results in the prevention of the dendrite propagation to the cathode.

  4. Dendrite preventing separator for secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor); Halpert, Gerald (Inventor)

    1995-01-01

    Dendrites are prevented from shorting a secondary lithium battery by use of a first porous separator such as porous polypropylene adjacent the lithium anode that is unreactive with lithium and a second porous fluoropolymer separator between the cathode and the first separator such as polytetrafluoroethylene that is reactive with lithium. As the tip of a lithium dendrite contacts the second separator, an exothermic reaction occurs locally between the lithium dendrite and the fluoropolymer separator. This results in the prevention of the dendrite propagation to the cathode.

  5. Centrifugal separator devices, systems and related methods

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID; Law, Jack D [Pocatello, ID; Garn, Troy G [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Macaluso, Lawrence L [Carson City, NV

    2012-03-20

    Centrifugal separator devices, systems and related methods are described. More particularly, fluid transfer connections for a centrifugal separator system having support assemblies with a movable member coupled to a connection tube and coupled to a fixed member, such that the movable member is constrained to movement along a fixed path relative to the fixed member are described. Also, centrifugal separator systems including such fluid transfer connections are described. Additionally, methods of installing, removing and/or replacing centrifugal separators from centrifugal separator systems are described.

  6. Source separation of municipal solid waste: The effects of different separation methods and citizens' inclination-case study of Changsha, China.

    PubMed

    Chen, Haibin; Yang, Yan; Jiang, Wei; Song, Mengjie; Wang, Ying; Xiang, Tiantian

    2017-02-01

    A case study on the source separation of municipal solid waste (MSW) was performed in Changsha, the capital city of Hunan Province, China. The objective of this study is to analyze the effects of different separation methods and compare their effects with citizens' attitudes and inclination. An effect evaluation method based on accuracy rate and miscellany rate was proposed to study the performance of different separation methods. A large-scale questionnaire survey was conducted to determine citizens' attitudes and inclination toward source separation. Survey result shows that the vast majority of respondents hold consciously positive attitudes toward participation in source separation. Moreover, the respondents ignore the operability of separation methods and would rather choose the complex separation method involving four or more subclassed categories. For the effects of separation methods, the site experiment result demonstrates that the relatively simple separation method involving two categories (food waste and other waste) achieves the best effect with the highest accuracy rate (83.1%) and the lowest miscellany rate (16.9%) among the proposed experimental alternatives. The outcome reflects the inconsistency between people's environmental awareness and behavior. Such inconsistency and conflict may be attributed to the lack of environmental knowledge. Environmental education is assumed to be a fundamental solution to improve the effect of source separation of MSW in Changsha. Important management tips on source separation, including the reformation of the current pay-as-you-throw (PAYT) system, are presented in this work. A case study on the source separation of municipal solid waste was performed in Changsha. An effect evaluation method based on accuracy rate and miscellany rate was proposed to study the performance of different separation methods. The site experiment result demonstrates that the two-category (food waste and other waste) method achieves the

  7. Preservation of Separating, Transferring, or Separated Personnel's Records in Accordance with the Federal Records Act

    EPA Pesticide Factsheets

    This procedure is designed to ensure that all records as defined in the Federal Records Act, independent of media and format, created or received by EPA employees who are separating, transferring or have separated from an employment relationship with EPA.

  8. Spousal-residence separation among Chinese young couples.

    PubMed

    Ma, Z; Liaw K-l; Zeng, Y

    1996-05-01

    The factors affecting the residential separation of spouses in China are examined. "Based on the microdata of the 1987 National Population Survey, we find that the variation in spousal-residence separations among Chinese young couples in the mid-1980s is well explained by personal and household factors within a multivariate model. The separations were aggravated by migrations for the reasons of employment or education. Although marriage migrations reduced the number of separations, those who had been married for a short period of time...were more prone to be separated. It is ironic that the higher a person's level of education, the greater the tendency for them to suffer the pain of spousal-residence separation. Household status could also be a very important factor: the lower the household status of a married individual, the more likely that he (or she) would be separated from their spouse." excerpt

  9. Experiments on an unsteady, three-dimensional separation

    NASA Technical Reports Server (NTRS)

    Henk, R. W.; Reynolds, W. C.; Reed, H. L.

    1992-01-01

    Unsteady, three-dimensional flow separation occurs in a variety of technical situations including turbomachinery and low-speed aircraft. An experimental program at Stanford in unsteady, three-dimensional, pressure-driven laminar separation has investigated the structure and time-scaling of these flows; of particular interest is the development, washout, and control of flow separation. Results reveal that a two-dimensional, laminar boundary layer passes through several stages on its way to a quasi-steady three-dimensional separation. The quasi-steady state of the separation embodies a complex, unsteady, vortical structure.

  10. Hyper-X Stage Separation: Background and Status

    NASA Technical Reports Server (NTRS)

    Reubush, David E.

    1999-01-01

    This paper provides an overview of stage separation activities for NASA's Hyper-X program; a focused hypersonic technology effort designed to move hypersonic, airbreathing vehicle technology from the laboratory environment to the flight environment. This paper presents an account of the development of the current stage separation concept, highlights of wind tunnel experiments and computational fluid dynamics investigations being conducted to define the separation event, results from ground tests of separation hardware, schedule and status. Substantial work has been completed toward reducing the risk associated with stage separation.

  11. Microgravity Passive Phase Separator

    NASA Technical Reports Server (NTRS)

    Paragano, Matthew; Indoe, William; Darmetko, Jeffrey

    2012-01-01

    A new invention disclosure discusses a structure and process for separating gas from liquids in microgravity. The Microgravity Passive Phase Separator consists of two concentric, pleated, woven stainless- steel screens (25-micrometer nominal pore) with an axial inlet, and an annular outlet between both screens (see figure). Water enters at one end of the center screen at high velocity, eventually passing through the inner screen and out through the annular exit. As gas is introduced into the flow stream, the drag force exerted on the bubble pushes it downstream until flow stagnation or until it reaches an equilibrium point between the surface tension holding bubble to the screen and the drag force. Gas bubbles of a given size will form a front that is moved further down the length of the inner screen with increasing velocity. As more bubbles are added, the front location will remain fixed, but additional bubbles will move to the end of the unit, eventually coming to rest in the large cavity between the unit housing and the outer screen (storage area). Owing to the small size of the pores and the hydrophilic nature of the screen material, gas does not pass through the screen and is retained within the unit for emptying during ground processing. If debris is picked up on the screen, the area closest to the inlet will become clogged, so high-velocity flow will persist farther down the length of the center screen, pushing the bubble front further from the inlet of the inner screen. It is desired to keep the velocity high enough so that, for any bubble size, an area of clean screen exists between the bubbles and the debris. The primary benefits of this innovation are the lack of any need for additional power, strip gas, or location for venting the separated gas. As the unit contains no membrane, the transport fluid will not be lost due to evaporation in the process of gas separation. Separation is performed with relatively low pressure drop based on the large surface

  12. Using Biomolecules to Separate Plutonium

    NASA Astrophysics Data System (ADS)

    Gogolski, Jarrod

    Used nuclear fuel has traditionally been treated through chemical separations of the radionuclides for recycle or disposal. This research considers a biological approach to such separations based on a series of complex and interdependent interactions that occur naturally in the human body with plutonium. These biological interactions are mediated by the proteins serum transferrin and the transferrin receptor. Transferrin to plutonium in vivo and can deposit plutonium into cells after interacting with the transferrin receptor protein at the cell surface. Using cerium as a non-radioactive surrogate for plutonium, it was found that cerium(IV) required multiple synergistic anions to bind in the N-lobe of the bilobal transferrin protein, creating a conformation of the cerium-loaded protein that would be unable to interact with the transferrin receptor protein to achieve a separation. The behavior of cerium binding to transferrin has contributed to understanding how plutonium(IV)-transferrin interacts in vivo and in biological separations.

  13. Separation of CHO cells using hydrocyclones.

    PubMed

    Pinto, Rodrigo C V; Medronho, Ricardo A; Castilho, Leda R

    2008-01-01

    Hydrocyclones are simple and robust separation devices with no moving parts. In the past few years, their use in animal cell separation has been proposed. In this work, the use of different hydrocyclone configurations for Chinese hamster ovary (CHO) cell separation was investigated following an experimental design. It was shown that cell separation efficiencies for cultures of the wild-type CHO.K1 cell line and of a recombinant CHO cell line producing granulocyte-macrophage colony stimulating factor (GM-CSF) were kept above 97%. Low viability losses were observed, as measured by trypan blue exclusion and by determination of intracellular lactate dehydrogenase (LDH) released to the culture medium. Mathematical models were proposed to predict the flow rate, flow ratio and separation efficiency as a function of hydrocyclone geometry and pressure drop. When cells were monitored for any induction of apoptosis upon passage through the hydrocyclones, no increase in apoptotic cell concentration was observed within 48 h of hydrocycloning. Thus, based on the high separation efficiencies, the robustness of the equipment, and the absence of apoptosis induction, hydrocyclones seem to be specially suited for use as cell retention devices in long-term perfusion runs.

  14. Improved Separators For Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Shen, David; Surampudi, Subbarao; Huang, Chen-Kuo; Halpert, Gerald

    1994-01-01

    Improved pairs of separators proposed for use in rechargeable lithium cells operating at ambient temperature. Block growth of lithium dendrites and help prevent short circuits. Each cell contains one separator made of microporous polypropylene placed next to anode, and one separator made of microporous polytetrafluoroethylene (PTFE) next to cathode. Separators increase cycle lives of secondary lithium cells. Cells to which concept applicable those of Li/TiS(2), Li/NbSe(3), Li/CoO(2), Li/MoS(2), Li/VO(x), and Li/MnO(2) chemical systems. Advantageous in spacecraft, military, communications, automotive, and other applications in which high energy density and rechargeability needed.

  15. Flow-induced separation in wall turbulence.

    PubMed

    Nguyen, Quoc; Srinivasan, Chiranth; Papavassiliou, Dimitrios V

    2015-03-01

    One of the defining characteristics of turbulence is its ability to promote mixing. We present here a case where the opposite happens-simulation results indicate that particles can separate near the wall of a turbulent channel flow, when they have sufficiently different Schmidt numbers without use of any other means. The physical mechanism of the separation is understood when the interplay between convection and diffusion, as expressed by their characteristic time scales, is considered, leading to the determination of the necessary conditions for a successful separation between particles. Practical applications of these results can be found when very small particles need to be separated or removed from a fluid.

  16. Membrane-augmented cryogenic methane/nitrogen separation

    DOEpatents

    Lokhandwala, Kaaeid

    1997-01-01

    A membrane separation process combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C.sub.3+ hydrocarbons that might otherwise freeze and plug the cryogenic equipment.

  17. Gaseous isotope separation using solar wind phenomena.

    PubMed

    Wang, C G

    1980-12-01

    A large evacuated drum-like chamber fitted with supersonic nozzles in the center, with the chamber and the nozzles corotating, can separate gaseous fluids according to their molecular weights. The principle of separation is essentially the same as that of the solar wind propagation, in which components of the plasma fluid are separated due to their difference in the time-of-flight. The process can inherently be very efficient, serving as a pump as well as a separator, and producing well over 10(5) separative work units (kg/year) for the hydrogen/deuterium mixture at high-velocity flows.

  18. Dependence of calculus retropulsion dynamics on fiber size and radiant exposure during Ho:YAG lithotripsy.

    PubMed

    Lee, Ho; Ryan, Robert T; Kim, Jeehyun; Choi, Bernard; Arakeri, Navanit V; Teichman, Joel M H; Welch, A J

    2004-08-01

    During pulsed laser lithotripsy, the calculus is subject to a strong recoil momentum which moves the calculus away from laser delivery and prolongs the operation. This study was designed to quantify the recoil momentum during Ho:YAG laser lithotripsy. The correlation among crater shape, debris trajectory, laser-induced bubble and recoil momentum was investigated. Calculus phantoms made from plaster of Paris were ablated with free running Ho:YAG lasers. The dynamics of recoil action of a calculus phantom was monitored by a high-speed video camera and the laser ablation craters were examined with Optical Coherent Tomography (OCT). Higher radiant exposure resulted in larger ablation volume (mass) which increased the recoil momentum. Smaller fibers produced narrow craters with a steep contoured geometry and decreased recoil momentum compared to larger fibers. In the presence of water, recoil motion of the phantom deviated from that of phantom in air. Under certain conditions, we observed the phantom rocking towards the fiber after the laser pulse. The shape of the crater is one of the major contributing factors to the diminished recoil momentum of smaller fibers. The re-entrance flow of water induced by the bubble collapse is considered to be the cause of the rocking of the phantom.

  19. SEPARATION OF AMERICIUM FROM PROMETHIUM

    DOEpatents

    Pressly, R.E.

    1959-07-01

    Promethium-147 is separated from americium in acidic aqueous solution by adding fluosilicic acid to the solution, heating the solution to form a promethium precipitate and separating the precipitate from solution. The precipitate is then re-dissolved by ihe addition of boric acid and nitric acid, and re-precipitated by the addition of fluosilicic acid. This procedure is repeated six or more times to obtain a relatively americium-free promeihium precipitate. Americium may be separately recovered from the supernatant liquids. This process is applicable to the recovery of promethium from fission-product solutions which have been allowed to decay for a period of two to four years.

  20. 9 CFR 3.109 - Separation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Mammals Animal Health and Husbandry Standards § 3.109 Separation. Marine mammals, whenever known to be... in the same enclosure. Marine mammals must not be housed near other animals that cause them... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Separation. 3.109 Section 3.109...

  1. 9 CFR 3.109 - Separation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Mammals Animal Health and Husbandry Standards § 3.109 Separation. Marine mammals, whenever known to be... in the same enclosure. Marine mammals must not be housed near other animals that cause them... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Separation. 3.109 Section 3.109...

  2. 9 CFR 3.109 - Separation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Mammals Animal Health and Husbandry Standards § 3.109 Separation. Marine mammals, whenever known to be... in the same enclosure. Marine mammals must not be housed near other animals that cause them... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Separation. 3.109 Section 3.109...

  3. 9 CFR 3.109 - Separation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Mammals Animal Health and Husbandry Standards § 3.109 Separation. Marine mammals, whenever known to be... in the same enclosure. Marine mammals must not be housed near other animals that cause them... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Separation. 3.109 Section 3.109...

  4. METHOD OF SEPARATING URANIUM SUSPENSIONS

    DOEpatents

    Wigner, E.P.; McAdams, W.A.

    1958-08-26

    A process is presented for separating colloidally dissed uranium oxides from the heavy water medium in upwhich they are contained. The method consists in treating such dispersions with hydrogen peroxide, thereby converting the uranium to non-colloidal UO/sub 4/, and separating the UO/sub 4/ sfter its rapid settling.

  5. Physical stage of photosynthesis charge separation

    NASA Astrophysics Data System (ADS)

    Yakovlev, A. G.; Shuvalov, V. A.

    2016-06-01

    An analytical review is given concerning the biophysical aspects of light-driven primary charge separation in photosynthesis reaction centers (RCs) which are special pigment-protein complexes residing in a cell membrane. The primary (physical) stage of charge separation occurs in the pico- and femtosecond ranges and consists of transferring an electron along the active A-branch of pigments. The review presents vast factual material on both the general issues of primary photosynthesis and some more specific topics, including (1) the role of the inactive B-branch of pigments, (2) the effect of the protein environment on the charge separation, and (3) the participation of monomeric bacteriochlorophyll BA in primary electron acceptance. It is shown that the electron transfer and stabilization are strongly influenced by crystallographic water and tyrosine M210 molecules from the nearest environment of BA. A linkage between collective nuclear motions and electron transfer upon charge separation is demonstrated. The nature of the high quantum efficiency of primary charge separation reactions is discussed.

  6. Separation of submicron bioparticles by dielectrophoresis.

    PubMed Central

    Morgan, H; Hughes, M P; Green, N G

    1999-01-01

    Submicron particles such as latex spheres and viruses can be manipulated and characterized using dielectrophoresis. By the use of appropriate microelectrode arrays, particles can be trapped or moved between regions of high or low electric fields. The magnitude and direction of the dielectrophoretic force on the particle depends on its dielectric properties, so that a heterogeneous mixture of particles can be separated to produce a more homogeneous population. In this paper the controlled separation of submicron bioparticles is demonstrated. With electrode arrays fabricated using direct write electron beam lithography, it is shown that different types of submicron latex spheres can be spatially separated. The separation occurs as a result of differences in magnitude and/or direction of the dielectrophoretic force on different populations of particles. These differences arise mainly because the surface properties of submicron particles dominate their dielectrophoretic behavior. It is also demonstrated that tobacco mosaic virus and herpes simplex virus can be manipulated and spatially separated in a microelectrode array. PMID:10388776

  7. Husimi coordinates of multipartite separable states

    NASA Astrophysics Data System (ADS)

    Parfionov, Georges; Zapatrin, Romàn R.

    2010-12-01

    A parametrization of multipartite separable states in a finite-dimensional Hilbert space is suggested. It is proved to be a diffeomorphism between the set of zero-trace operators and the interior of the set of separable density operators. The result is applicable to any tensor product decomposition of the state space. An analytical criterion for separability of density operators is established in terms of the boundedness of a sequence of operators.

  8. MASS SEPARATION OF HIGH ENERGY PARTICLES

    DOEpatents

    Marshall, L.

    1962-09-25

    An apparatus and method are described for separating charged, high energy particles of equal momentum forming a beam where the particles differ slightly in masses. Magnetic lenses are utilized to focus the beam and maintain that condition while electrostatic fields located between magnetic lenses are utilized to cause transverse separation of the particles into two beams separated by a sufficient amount to permit an aperture to block one beam. (AEC)

  9. Physical mechanisms in shock-induced turbulent separated flow

    NASA Astrophysics Data System (ADS)

    Dolling, D. S.

    1987-12-01

    It has been demonstrated that the flow downstream of the moving shock is separated and that the foot of the shock is effectively the instantaneous separation point. The shock induced turbulent separation is an intermittant process and the separation line indicated by surface tracer methods, such as kerosene-lampblack, is a downstream boundary of a region of intermittent separation.

  10. Apparatus for electrophoresis separation

    DOEpatents

    Anderson, Norman L.

    1978-01-01

    An apparatus is disclosed for simultaneously performing electrophoresis separations on a plurality of slab gels containing samples of protein, protein subunits or nucleic acids. A reservoir of buffer solution is divided into three compartments by two parallel partitions having vertical slots spaced along their length. A sheet of flexible, electrically insulative material is attached to each partition and is provided with vertical slits aligned with the slots. Slab-gel holders are received within the slots with the flexible material folded outwardly as flaps from the slits to overlay portions of the holder surfaces and thereby act as electrical and liquid seals. An elongated, spaghetti-like gel containing a sample of specimen that was previously separated by isoelectric focusing techniques is vertically positioned along a marginal edge portion of the slab gel. On application of an electrical potential between the two outer chambers of buffer solution, a second dimensional electrophoresis separation in accordance with molecular weight occurs as the specimen molecules migrate across the slab gel.

  11. Separation of sulfur isotopes

    DOEpatents

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  12. Mass Separation by Metamaterials

    PubMed Central

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-01-01

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices. PMID:26912419

  13. Informed Source Separation: A Bayesian Tutorial

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.

    2005-01-01

    Source separation problems are ubiquitous in the physical sciences; any situation where signals are superimposed calls for source separation to estimate the original signals. In h s tutorial I will discuss the Bayesian approach to the source separation problem. This approach has a specific advantage in that it requires the designer to explicitly describe the signal model in addition to any other information or assumptions that go into the problem description. This leads naturally to the idea of informed source separation, where the algorithm design incorporates relevant information about the specific problem. This approach promises to enable researchers to design their own high-quality algorithms that are specifically tailored to the problem at hand.

  14. Teaching Separations: Why, What, When, and How?

    ERIC Educational Resources Information Center

    Wankat, Phillip C.

    2001-01-01

    Describes how and when to teach separation science to chemical engineering students. Separation science is important for industrial businesses involving the manufacture of adsorption systems, distillation columns, extractors, and other separation equipment and techniques. (Contains 13 references.) (YDS)

  15. Redox‐Active Separators for Lithium‐Ion Batteries

    PubMed Central

    Pan, Ruijun; Ruan, Changqing; Edström, Kristina; Strømme, Maria

    2017-01-01

    Abstract A bilayered cellulose‐based separator design is presented that can enhance the electrochemical performance of lithium‐ion batteries (LIBs) via the inclusion of a porous redox‐active layer. The proposed flexible redox‐active separator consists of a mesoporous, insulating nanocellulose fiber layer that provides the necessary insulation between the electrodes and a porous, conductive, and redox‐active polypyrrole‐nanocellulose layer. The latter layer provides mechanical support to the nanocellulose layer and adds extra capacity to the LIBs. The redox‐active separator is mechanically flexible, and no internal short circuits are observed during the operation of the LIBs, even when the redox‐active layer is in direct contact with both electrodes in a symmetric lithium–lithium cell. By replacing a conventional polyethylene separator with a redox‐active separator, the capacity of the proof‐of‐concept LIB battery containing a LiFePO4 cathode and a Li metal anode can be increased from 0.16 to 0.276 mA h due to the capacity contribution from the redox‐active separator. As the presented redox‐active separator concept can be used to increase the capacities of electrochemical energy storage systems, this approach may pave the way for new types of functional separators. PMID:29593967

  16. Redox-Active Separators for Lithium-Ion Batteries.

    PubMed

    Wang, Zhaohui; Pan, Ruijun; Ruan, Changqing; Edström, Kristina; Strømme, Maria; Nyholm, Leif

    2018-03-01

    A bilayered cellulose-based separator design is presented that can enhance the electrochemical performance of lithium-ion batteries (LIBs) via the inclusion of a porous redox-active layer. The proposed flexible redox-active separator consists of a mesoporous, insulating nanocellulose fiber layer that provides the necessary insulation between the electrodes and a porous, conductive, and redox-active polypyrrole-nanocellulose layer. The latter layer provides mechanical support to the nanocellulose layer and adds extra capacity to the LIBs. The redox-active separator is mechanically flexible, and no internal short circuits are observed during the operation of the LIBs, even when the redox-active layer is in direct contact with both electrodes in a symmetric lithium-lithium cell. By replacing a conventional polyethylene separator with a redox-active separator, the capacity of the proof-of-concept LIB battery containing a LiFePO 4 cathode and a Li metal anode can be increased from 0.16 to 0.276 mA h due to the capacity contribution from the redox-active separator. As the presented redox-active separator concept can be used to increase the capacities of electrochemical energy storage systems, this approach may pave the way for new types of functional separators.

  17. Reproductive cell separation: A concept

    NASA Technical Reports Server (NTRS)

    Cutaia, A. J.

    1973-01-01

    Attempt has been made to separate mammalian male (Y) bearing sperm from female (X) bearing sperm. Both types of sperm are very dependent on gravity for their direction of movement. Proposed concept suggests electrophoretic force of suitable magnitude and direction may be effective means of separating X and Y sperm under zero gravity.

  18. Kr/Xe Separation over a Chabazite Zeolite Membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Xuhui; Zong, Zhaowang; Elsaidi, Sameh K.

    2016-08-10

    Cryogenic distillation, the current conventional technology to separate Krypton and Xenon from air, and from nuclear reprocessing technologies, is an energy-intensive and expensive process. Membrane technology could potentially make this challenging industrial separation less energy intensive and economically viable. We demonstrate that chabazite zeolite SAPO-34 membranes effectively separated Kr/Xe gas mixtures at industrially relevant compositions. Control over membrane thickness and average crystal size led to industrial range permeances and high separation selectivities. Specifically, SAPO-34 membranes can separate Kr/Xe mixtures with Kr permeances as high as 361.4 GPU and separation selectivities of 34.8 for molar compositions close to typical concentrations ofmore » these two gases in air. In addition, SAPO-34 membranes separated Kr/Xe mixtures with Kr permeances as high as 525.7 GPU and separation selectivities up to 45.1 for molar compositions as might be encountered in nuclear reprocessing technologies. Molecular sieving and differences in diffusivities were identified as the dominant separation mechanisms.« less

  19. Photochemical isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1987-01-01

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  20. Laser isotope separation

    DOEpatents

    Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

    1975-11-26

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  1. Laser isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  2. Photochemical isotope separation

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.

    1987-04-28

    A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.

  3. Nuclear Astrophysics At ISAC With DRAGON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Auria, John M.

    2005-05-24

    The unique DRAGON (recoil mass separator) facility is now available to provide measurements of radiative capture reactions involving short-lived exotic reactants which are considered important in explosive stellar scenarios such as novae and X-ray bursts. A description of the first study completed, the 1H(21Na,22Mg){gamma} reaction, will be summarized and updated. In addition, the planned program for DRAGON will be presented along with a summary of the upgrade of the ISAC Radioactive Beams laboratory.

  4. Ternary particle yields in 249Cf(nth,f)

    NASA Astrophysics Data System (ADS)

    Tsekhanovich, I.; Büyükmumcu, Z.; Davi, M.; Denschlag, H. O.; Gönnenwein, F.; Boulyga, S. F.

    2003-03-01

    An experiment measuring ternary particle yields in 249Cf(nth,f) was carried out at the high flux reactor of the Institut Laue-Langevin using the Lohengrin recoil mass separator. Parameters of energy distributions were determined for 27 ternary particles up to 30Mg and their yields were calculated. The yields of 17 further ternary particles were estimated on the basis of the systematics developed. The heaviest particles observed in the experiment are 37Si and 37S; their possible origin is discussed.

  5. Vorticity Distributions in Unsteady Flow Separation

    DTIC Science & Technology

    1988-11-08

    a significant result, which was presented at the Unsteady Separated Flow Workshop at the Air Force Academy last July, and which is ready for...i~~A’I C amsi4 61102F 2307 A2 11 Ti-,LE (Incluce Security Claw fication) Vorticity Distributions in Unsteady Flow Separation 12 PERSONAL AUTHOR(S...LSIIAINO HSPG / UNCLASSIFIED Report MEUA-IT-88-2 VORTICITY DISTRIBUTIONS IN UNSTEADY FLOW SEPARATION Frederick S. Sherman Department of Mechanical

  6. Liquid/Gas Separator Handles Varying Loads

    NASA Technical Reports Server (NTRS)

    Mann, John

    1992-01-01

    Liquid/gas separator includes two independent motors, one for pumping mixture and other for drawing off extracted gas. Two materials moved at speeds best suited for them. Liquid expelled radially outward from separator rotor. Entrained gas released, flows axially through rotor, and leaves through fan at downstream end. Unit developed to separate air from urine in spacecraft wastewater-treatment system, also functions in normal gravity. Made largely of titanium to resist corrosion.

  7. Membrane-augmented cryogenic methane/nitrogen separation

    DOEpatents

    Lokhandwala, K.

    1997-07-15

    A membrane separation process is described which is combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C{sub +2} hydrocarbons that might otherwise freeze and plug the cryogenic equipment. 10 figs.

  8. ADSORPTION METHOD FOR SEPARATING METAL CATIONS

    DOEpatents

    Khym, J.X.

    1959-03-10

    The chromatographic separation of fission product cations is discussed. By use of this method a mixture of metal cations containing Zr, Cb, Ce, Y, Ba, and Sr may be separated from one another. Mentioned as preferred exchange adsorbents are resins containing free sulfonic acid groups. Various eluants, such as tartaric acid, HCl, and citric acid, used at various acidities, are employed to effect the selective elution and separation of the various fission product cations.

  9. Three-dimensional boundary layers approaching separation

    NASA Technical Reports Server (NTRS)

    Williams, J. C., III

    1976-01-01

    The theory of semi-similar solutions of the laminar boundary layer equations is applied to several flows in which the boundary layer approaches a three-dimensional separation line. The solutions obtained are used to deduce the nature of three-dimensional separation. It is shown that in these cases separation is of the "ordinary" type. A solution is also presented for a case in which a vortex is embedded within the three-dimensional boundary layer.

  10. Grace DAKASEP alkaline battery separator

    NASA Technical Reports Server (NTRS)

    Giovannoni, R. T.; Lundquist, J. T.; Choi, W. M.

    1987-01-01

    The Grace DAKASEP separator was originally developed as a wicking layer for nickel-zinc alkaline batteries. The DAKASEP is a filled non-woven separator which is flexible and heat sealable. Through modification of formulation and processing variables, products with a variety of properties can be produced. Variations of DAKASEP were tested in Ni-H2, Ni-Zn, Ni-Cd, and primary alkaline batteries with good results. The properties of DAKASEP which are optimized for Hg-Zn primary batteries are shown in tabular form. This separator has high tensile strength, 12 micron average pore size, relatively low porosity at 46-48 percent, and consequently moderately high resistivity. Versions were produced with greater than 70 percent porosity and resistivities in 33 wt percent KOH as low as 3 ohm cm. Performance data for Hg-Zn E-1 size cells containing DAKASEP with the properties shown in tabular form, are more reproducible than data obtained with a competitive polypropylene non-woven separator. In addition, utilization of active material is in general considerably improved.

  11. Novel surface modification of polymer-based separation media controlling separation selectivity, retentivity and generation of electroosmotic flow.

    PubMed

    Hosoya, Ken; Kubo, Takuya; Takahashi, Katsuo; Ikegami, Tohru; Tanaka, Nobuo

    2002-12-06

    Uniformly sized packing materials based on synthetic polymer particles for high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC) have been prepared from polymerization mixtures containing methacrylic acid (MAA) as a functional monomer and by using a novel surface modification method. This "dispersion method" affords effectively modified separation media. Both the amount of MAA utilized in the preparation and reaction time affect the selectivity of chromatographic separation in both the HPLC and the CEC mode and electroosmotic flow. This detailed study revealed that the dispersion method effectively modified internal surface of macroporous separation media and, based on the amount of MAA introduced, exclusion mechanism for the separation of certain solutes could be observed.

  12. Pattern separation in the hippocampus

    PubMed Central

    Yassa, Michael A.; Stark, Craig E. L.

    2011-01-01

    The ability to discriminate among similar experiences is a critical feature of episodic memory. This ability has long been hypothesized to require the hippocampus, with computational models suggesting it is dependent on pattern separation. However, empirical data for the hippocampus’ role in pattern separation was not available until recently. This review summarizes data from electrophysiological recordings, lesion studies, immediate early gene imaging, transgenic mouse models, as well as human functional neuroimaging that provide convergent evidence for the involvement of particular hippocampal subfields in this key process. We discuss the impact of aging and adult neurogenesis on pattern separation, as well as highlight several challenges to linking across species and approaches and suggest future directions for investigation. PMID:21788086

  13. Column-coupling strategies for multidimensional electrophoretic separation techniques.

    PubMed

    Kler, Pablo A; Sydes, Daniel; Huhn, Carolin

    2015-01-01

    Multidimensional electrophoretic separations represent one of the most common strategies for dealing with the analysis of complex samples. In recent years we have been witnessing the explosive growth of separation techniques for the analysis of complex samples in applications ranging from life sciences to industry. In this sense, electrophoretic separations offer several strategic advantages such as excellent separation efficiency, different methods with a broad range of separation mechanisms, and low liquid consumption generating less waste effluents and lower costs per analysis, among others. Despite their impressive separation efficiency, multidimensional electrophoretic separations present some drawbacks that have delayed their extensive use: the volumes of the columns, and consequently of the injected sample, are significantly smaller compared to other analytical techniques, thus the coupling interfaces between two separations components must be very efficient in terms of providing geometrical precision with low dead volume. Likewise, very sensitive detection systems are required. Additionally, in electrophoretic separation techniques, the surface properties of the columns play a fundamental role for electroosmosis as well as the unwanted adsorption of proteins or other complex biomolecules. In this sense the requirements for an efficient coupling for electrophoretic separation techniques involve several aspects related to microfluidics and physicochemical interactions of the electrolyte solutions and the solid capillary walls. It is interesting to see how these multidimensional electrophoretic separation techniques have been used jointly with different detection techniques, for intermediate detection as well as for final identification and quantification, particularly important in the case of mass spectrometry. In this work we present a critical review about the different strategies for coupling two or more electrophoretic separation techniques and the

  14. Analysis of airfoil transitional separation bubbles

    NASA Technical Reports Server (NTRS)

    Davis, R. L.; Carter, J. E.

    1984-01-01

    A previously developed local inviscid-viscous interaction technique for the analysis of airfoil transitional separation bubbles, ALESEP (Airfoil Leading Edge Separation) has been modified to utilize a more accurate windward finite difference procedure in the reversed flow region, and a natural transition/turbulence model has been incorporated for the prediction of transition within the separation bubble. Numerous calculations and experimental comparisons are presented to demonstrate the effects of the windward differencing scheme and the natural transition/turbulence model. Grid sensitivity and convergence capabilities of this inviscid-viscous interaction technique are briefly addressed. A major contribution of this report is that with the use of windward differencing, a second, counter-rotating eddy has been found to exist in the wall layer of the primary separation bubble.

  15. Separation: High School to College.

    ERIC Educational Resources Information Center

    Brody, Michael; And Others

    The transition from high school senior to college freshman reflects the emergence of the adolescent into the young adult and can result in separation anxiety for parent and senior. In order to support the parents and seniors, a seminar on the topic of separation was given to parents and seniors by a child psychiatrist and two high school college…

  16. Male Students' Separate Education

    ERIC Educational Resources Information Center

    Sheymardanov, Shamil

    2018-01-01

    The paper deals with application of separate education theory as a factor contributing to the increase in the level of the male students' training. The topicality of the paper is concluded in the fact that in the modern society the pedagogical concept of separate education is considered to be outdated. Alongside with that, some experiments in…

  17. Gas separation using ultrasound and light absorption

    DOEpatents

    Sinha, Dipen N [Los Alamos, NM

    2012-07-31

    An apparatus and method for separating a chosen gas from a mixture of gases having no moving parts and utilizing no chemical processing is described. The separation of particulates from fluid carriers thereof has been observed using ultrasound. In a similar manner, molecular species may be separated from carrier species. It is also known that light-induced drift may separate light-absorbing species from carrier species. Therefore, the combination of temporally pulsed absorption of light with ultrasonic concentration is expected to significantly increase the efficiency of separation by ultrasonic concentration alone. Additionally, breaking the spatial symmetry of a cylindrical acoustic concentrator decreases the spatial distribution of the concentrated particles, and increases the concentration efficiency.

  18. Method for separating disparate components in a fluid stream

    DOEpatents

    Meikrantz, David H.

    1990-01-01

    The invention provides a method of separating a mixed component waste stream in a centrifugal separator. The mixed component waste stream is introduced into the separator and is centrifugally separated within a spinning rotor. A dual vortex separation occurs due to the phase density differences, with the phases exiting the rotor distinct from one another. In a preferred embodiment, aqueous solutions of organics can be separated with up to 100% efficiency. The relatively more dense water phase is centrifugally separated through a radially outer aperture in the separator, while the relatively less dense organic phase is separated through a radially inner aperture.

  19. Separation of organic azeotropic mixtures by pervaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, R.W.

    1991-12-01

    Distillation is a commonly used separation technique in the petroleum refining and chemical processing industries. However, there are a number of potential separations involving azetropic and close-boiling organic mixtures that cannot be separated efficiently by distillation. Pervaporation is a membrane-based process that uses selective permeation through membranes to separate liquid mixtures. Because the separation process is not affected by the relative volatility of the mixture components being separated, pervaporation can be used to separate azetropes and close-boiling mixtures. Our results showed that pervaporation membranes can be used to separate azeotropic mixtures efficiently, a result that is not achievable with simplemore » distillation. The membranes were 5--10 times more permeable to one of the components of the mixture, concentrating it in the permeate stream. For example, the membrane was 10 times more permeable to ethanol than methyl ethyl ketone, producing 60% ethanol permeate from an azeotropic mixture of ethanol and methyl ethyl ketone containing 18% ethanol. For the ethyl acetate/water mixture, the membranes showed a very high selectivity to water (> 300) and the permeate was 50--100 times enriched in water relative to the feed. The membranes had permeate fluxes on the order of 0.1--1 kg/m{sup 2}{center dot}h in the operating range of 55--70{degrees}C. Higher fluxes were obtained by increasing the operating temperature.« less

  20. WET FLUORIDE SEPARATION METHOD

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1958-11-25

    The separation of U/sup 233/ from thorium, protactinium, and fission products present in neutron-irradiated thorium is accomplished by dissolving the irradiated materials in aqueous nitric acid, adding either a soluble fluoride, iodate, phosphate, or oxalate to precipltate the thorium, separating the precipltate from the solution, and then precipitating uranlum and protactinium by alkalizing the solution. The uranium and protactinium precipitate is removcd from the solution and dissolved in nitric acid. The uranyl nitrate may then be extracted from the acid solution by means of ether, and the protactinium recovered from the aqueous phase.