Science.gov

Sample records for dark energy eos

  1. Are dark energy models with variable EoS parameter w compatible with the late inhomogeneous Universe?

    NASA Astrophysics Data System (ADS)

    Akarsu, Özgür; Bouhmadi-López, Mariam; Brilenkov, Maxim; Brilenkov, Ruslan; Eingorn, Maxim; Zhuk, Alexander

    2015-07-01

    We study the late-time evolution of the Universe where dark energy (DE) is presented by a barotropic fluid on top of cold dark matter (CDM) . We also take into account the radiation content of the Universe. Here by the late stage of the evolution we refer to the epoch where CDM is already clustered into inhomogeneously distributed discrete structures (galaxies, groups and clusters of galaxies). Under this condition the mechanical approach is an adequate tool to study the Universe deep inside the cell of uniformity. More precisely, we study scalar perturbations of the FLRW metric due to inhomogeneities of CDM as well as fluctuations of radiation and DE. For an arbitrary equation of state for DE we obtain a system of equations for the scalar perturbations within the mechanical approach. First, in the case of a constant DE equation of state parameter w, we demonstrate that our method singles out the cosmological constant as the only viable dark energy candidate. Then, we apply our approach to variable equation of state parameters in the form of three different linear parametrizations of w, e.g., the Chevallier-Polarski-Linder perfect fluid model. We conclude that all these models are incompatible with the theory of scalar perturbations in the late Universe.

  2. Dark energy

    NASA Astrophysics Data System (ADS)

    Linder, Eric

    2008-02-01

    Dark energy is the name given to the unknown physics causing the current acceleration of the cosmic expansion. Whether dark energy is truly a new component of energy density or an extension of gravitational physics beyond general relativity is not yet known. From: Mattia Galiazzo Address: mattia.galiazzo@univie.ac.at Database: ast

  3. Correspondence between Generalized Dark Energy and Scalar Field Dark Energies

    NASA Astrophysics Data System (ADS)

    Maity, Sayani; Debnath, Ujjal

    2015-07-01

    In this work, we have considered non-flat FRW universe filled with dark matter (with non-zero pressure) and generalized dark energy (GDE) as motivated by the work of Sharif et al. (Mod. Phys. Lett. A 28, 1350180, 2013). Also the dark matter and the dark energy are considered to be interacting. The energy density, pressure and the EoS of the GDE have been calculated for the interacting scenario. For stability analysis of this model, we have also analyzed the sign of square speed of sound. Next we investigate the correspondence between GDE and different other candidates of dark energies such as DBI-essence, tachyonic field, hessenc and electromagnetic field. Also we have reconstructed the potential functions and the scalar fields in this scenario.

  4. Vacuum Energy, EoS, and the Gluon Condensate at Finite Baryon Density in QCD

    SciTech Connect

    Zhitnitsky, Ariel R.

    2007-02-27

    The Equation of States (EoS) plays the crucial role in all studies of neutron star properties. Still, a microscopical understanding of EoS remains largely an unresolved problem. We use 2-color QCD as a model to study the dependence of vacuum energy (gluon condensate in QCD) as function of chemical potential {mu} << {lambda}QCD where we find very strong and unexpected dependence on {mu}. We present the arguments suggesting that similar behavior may occur in 3-color QCD in the color superconducting phases. Such a study may be of importance for analysis of EoS when phenomenologically relevant parameters (within such models as MIT Bag model or NJL model) are fixed at zero density while the region of study lies at much higher densities not available for terrestrial tests.

  5. Statefinder Parameters for Different Dark Energy Models with Variable G Correction in Kaluza-Klein Cosmology

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shuvendu; Debnath, Ujjal; Jamil, Mubasher; Myrzakulov, Ratbay

    2012-07-01

    In this work, we have calculated the deceleration parameter, statefinder parameters and EoS parameters for different dark energy models with variable G correction in homogeneous, isotropic and non-flat universe for Kaluza-Klein Cosmology. The statefinder parameters have been obtained in terms of some observable parameters like dimensionless density parameter, EoS parameter and Hubble parameter for holographic dark energy, new agegraphic dark energy and generalized Chaplygin gas models.

  6. Interacting Ricci dark energy with logarithmic correction

    NASA Astrophysics Data System (ADS)

    Pasqua, Antonio; Khodam-Mohammadi, A.; Jamil, Mubasher; Myrzakulov, R.

    2012-07-01

    Motivated by the holographic principle, it has been suggested that the dark energy density may be inversely proportional to the area A of the event horizon of the universe. However, such a model would have a causality problem. In this work, we consider the entropy-corrected version of the holographic dark energy model in the non-flat FRW universe and we propose to replace the future event horizon area with the inverse of the Ricci scalar curvature. We obtain the equation of state (EoS) parameter ω Λ, the deceleration parameter q and ΩD' in the presence of interaction between Dark Energy (DE) and Dark Matter (DM). Moreover, we reconstruct the potential and the dynamics of the tachyon, K-essence, dilaton and quintessence scalar field models according to the evolutionary behavior of the interacting entropy-corrected holographic dark energy model.

  7. G-corrected holographic dark energy model

    NASA Astrophysics Data System (ADS)

    Malekjani, M.; Honari-Jafarpour, M.

    2013-08-01

    Here we investigate the holographic dark energy model in the framework of FRW cosmology where the Newtonian gravitational constant, G, is varying with cosmic time. Using the complementary astronomical data which support the time dependency of G, the evolutionary treatment of EoS parameter and energy density of dark energy model are calculated in the presence of time variation of G. It has been shown that in this case, the phantom regime can be achieved at the present time. We also calculate the evolution of G-corrected deceleration parameter for holographic dark energy model and show that the dependency of G on the comic time can influence on the transition epoch from decelerated expansion to the accelerated phase. Finally we perform the statefinder analysis for G-corrected holographic model and show that this model has a shorter distance from the observational point in s- r plane compare with original holographic dark energy model.

  8. Analysis of dark matter and dark energy

    NASA Astrophysics Data System (ADS)

    Yongquan, Han

    2016-05-01

    As the law of unity of opposites of the Philosophy tells us, the bright material exists, the dark matter also exists. Dark matter and dark energy should allow the law of unity of opposites. The Common attributes of the matter is radiation, then common attributes of dark matter must be absorb radiation. Only the rotation speed is lower than the speed of light radiation, can the matter radiate, since the speed of the matter is lower than the speed of light, so the matter is radiate; The rotate speed of the dark matter is faster than the light , so the dark matter doesn't radiate, it absorbs radiation. The energy that the dark matter absorb radiation produced (affect the measurement of time and space distribution of variations) is dark energy, so the dark matter produce dark energy only when it absorbs radiation. Dark matter does not radiate, two dark matters does not exist inevitably forces, and also no dark energy. Called the space-time ripples, the gravitational wave is bent radiation, radiation particles should be graviton, graviton is mainly refers to the radiation particles whose wavelength is small. Dark matter, dark energy also confirms the existence of the law of symmetry.

  9. Dark energy crisis

    NASA Astrophysics Data System (ADS)

    Gu, Je-An

    2010-11-01

    In cosmology we are facing the dark energy crisis: How can we survive huge vacuum energy, meanwhile living with tiny dark energy? For the solution to this crisis, we raise several clues and hints, in particular, supersymmetry and the double hierarchy, Mp-MSM-MDE (Planck-Standard Model-dark energy scales). These two clues naturally lead to a solution with a supersymmetry-breaking brane-world. The train of thought from the clues to the solution is elucidated.

  10. Fingerprinting dark energy

    SciTech Connect

    Sapone, Domenico; Kunz, Martin

    2009-10-15

    Dark energy perturbations are normally either neglected or else included in a purely numerical way, obscuring their dependence on underlying parameters like the equation of state or the sound speed. However, while many different explanations for the dark energy can have the same equation of state, they usually differ in their perturbations so that these provide a fingerprint for distinguishing between different models with the same equation of state. In this paper we derive simple yet accurate approximations that are able to characterize a specific class of models (encompassing most scalar-field models) which is often generically called 'dark energy'. We then use the approximate solutions to look at the impact of the dark energy perturbations on the dark matter power spectrum and on the integrated Sachs-Wolfe effect in the cosmic microwave background radiation.

  11. Interacting Ricci dark energy in scalar Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Surajit; Pasqua, Antonio; Aly, Ayman A.

    2014-02-01

    This paper reports a study on the cosmological application of interacting Ricci Dark Energy (RDE) density in the scalar Gauss-Bonnet framework. The interacting holographic RDE model has been employed to obtain the equation of state (EoS) in a spatially flat universe. The main results of this paper are that the reconstructed potential of scalar Gauss-Bonnet gravity for the interacting RDE model decays with the evolution of the universe. However, it is an increasing function of the scalar field . Both the strong and weak energy conditions are violated. A phantom-like behavior of the EoS parameter has been obtained. The effective EoS parameter stays below -1 but tends to -1 with the evolution of the universe. However, it cannot cross the phantom boundary. Finally, the interacting RDE model in Gauss-Bonnet gravity gives accelerated expansion of the universe.

  12. Superconducting dark energy

    NASA Astrophysics Data System (ADS)

    Liang, Shi-Dong; Harko, Tiberiu

    2015-04-01

    Based on the analogy with superconductor physics we consider a scalar-vector-tensor gravitational model, in which the dark energy action is described by a gauge invariant electromagnetic type functional. By assuming that the ground state of the dark energy is in a form of a condensate with the U(1) symmetry spontaneously broken, the gauge invariant electromagnetic dark energy can be described in terms of the combination of a vector and of a scalar field (corresponding to the Goldstone boson), respectively. The gravitational field equations are obtained by also assuming the possibility of a nonminimal coupling between the cosmological mass current and the superconducting dark energy. The cosmological implications of the dark energy model are investigated for a Friedmann-Robertson-Walker homogeneous and isotropic geometry for two particular choices of the electromagnetic type potential, corresponding to a pure electric type field, and to a pure magnetic field, respectively. The time evolutions of the scale factor, matter energy density and deceleration parameter are obtained for both cases, and it is shown that in the presence of the superconducting dark energy the Universe ends its evolution in an exponentially accelerating vacuum de Sitter state. By using the formalism of the irreversible thermodynamic processes for open systems we interpret the generalized conservation equations in the superconducting dark energy model as describing matter creation. The particle production rates, the creation pressure and the entropy evolution are explicitly obtained.

  13. Dark Energy, or Worse

    ScienceCinema

    Professor Sean Carroll

    2010-01-08

    General relativity is inconsistent with cosmological observations unless we invoke components of dark matter and dark energy that dominate the universe. While it seems likely that these exotic substances really do exist, the alternative is worth considering: that Einstein's general relativity breaks down on cosmological scales. I will discuss models of modified gravity, tests in the solar system and elsewhere, and consequences for cosmology.

  14. Dark Energy, or Worse

    SciTech Connect

    Carroll, Sean

    2006-11-13

    General relativity is inconsistent with cosmological observations unless we invoke components of dark matter and dark energy that dominate the universe. While it seems likely that these exotic substances really do exist, the alternative is worth considering: that Einstein's general relativity breaks down on cosmological scales. I will discuss models of modified gravity, tests in the solar system and elsewhere, and consequences for cosmology.

  15. Is dark energy evolving?

    SciTech Connect

    Nair, Remya; Jhingan, Sanjay E-mail: sanjay.jhingan@gmail.com

    2013-02-01

    We look for evidence for the evolution in dark energy density by employing Principal Component Analysis (PCA). Distance redshift data from supernovae and baryon acoustic oscillations (BAO) along with WMAP7 distance priors are used to put constraints on curvature parameter Ω{sub k} and dark energy parameters. The data sets are consistent with a flat Universe. The constraints on the dark energy evolution parameters obtained from supernovae (including CMB distance priors) are consistent with a flat ΛCDM Universe. On the other hand, in the parameter estimates obtained from the addition of BAO data the second principal component, which characterize a non-constant contribution from dark energy, is non-zero at 1σ. This could be a systematic effect and future BAO data holds key to making more robust claims.

  16. Coupling dark energy to dark matter inhomogeneities

    NASA Astrophysics Data System (ADS)

    Marra, Valerio

    2016-09-01

    We propose that dark energy in the form of a scalar field could effectively couple to dark matter inhomogeneities. Through this coupling energy could be transferred to/from the scalar field, which could possibly enter an accelerated regime. Though phenomenological, this scenario is interesting as it provides a natural trigger for the onset of the acceleration of the universe, since dark energy starts driving the expansion of the universe when matter inhomogeneities become sufficiently strong. Here we study a possible realization of this idea by coupling dark energy to dark matter via the linear growth function of matter perturbations. The numerical results show that it is indeed possible to obtain a viable cosmology with the expected series of radiation, matter and dark-energy dominated eras. In particular, the current density of dark energy is given by the value of the coupling parameters rather than by very special initial conditions for the scalar field. In other words, this model-unlike standard models of cosmic late acceleration-does not suffer from the so-called "coincidence problem" and its related fine tuning of initial conditions.

  17. Voids of dark energy

    SciTech Connect

    Dutta, Sourish; Maor, Irit

    2007-03-15

    We investigate the clustering properties of a dynamical dark energy component. In a cosmic mix of a pressureless fluid and a light scalar field, we follow the linear evolution of spherical matter perturbations. We find that the scalar field tends to form underdensities in response to the gravitationally collapsing matter. We thoroughly investigate these voids for a variety of initial conditions, explain the physics behind their formation, and consider possible observational implications. Detection of dark energy voids will clearly rule out the cosmological constant as the main source of the present acceleration.

  18. Big Mysteries: Dark Energy

    ScienceCinema

    Lincoln, Don

    2014-08-07

    Scientists were shocked in 1998 when the expansion of the universe wasn't slowing down as expected by our best understanding of gravity at the time; the expansion was speeding up! That observation is just mind blowing, and yet it is true. In order to explain the data, physicists had to resurrect an abandoned idea of Einstein's now called dark energy. In this video, Fermilab's Dr. Don Lincoln tells us a little about the observations that led to the hypothesis of dark energy and what is the status of current research on the subject.

  19. The Dark Energy Survey

    SciTech Connect

    Flaugher, Brenna; /Fermilab

    2004-11-01

    Dark Energy is the dominant constituent of the universe and they have little understanding of it. They describe a new project aimed at measuring the dark energy equation of state parameter, w, to a statistical precision of {approx} 5%, with four separate techniques. The survey will image 5000 deg{sup 2} in the southern sky and collect 300 million galaxies, 30,000 galaxy clusters, and 2000 Type Ia supernovae. The survey will be carried out using a new 3 deg{sup 2} mosaic camera mounted at the prime focus of the 4m Blanco telescope at CTIO.

  20. Big Mysteries: Dark Energy

    SciTech Connect

    Lincoln, Don

    2014-04-15

    Scientists were shocked in 1998 when the expansion of the universe wasn't slowing down as expected by our best understanding of gravity at the time; the expansion was speeding up! That observation is just mind blowing, and yet it is true. In order to explain the data, physicists had to resurrect an abandoned idea of Einstein's now called dark energy. In this video, Fermilab's Dr. Don Lincoln tells us a little about the observations that led to the hypothesis of dark energy and what is the status of current research on the subject.

  1. Dark energy from QCD

    SciTech Connect

    Urban, Federico R.; Zhitnitsky, Ariel R.

    2010-08-30

    We review two mechanisms rooted in the infrared sector of QCD which, by exploiting the properties of the QCD ghost, as introduced by Veneziano, provide new insight on the cosmological dark energy problem, first, in the form of a Casimir-like energy from quantising QCD in a box, and second, in the form of additional, time-dependent, vacuum energy density in an expanding universe. Based on [1, 2].

  2. Explosive Products EOS: Adjustment for detonation speed and energy release

    SciTech Connect

    Menikoff, Ralph

    2014-09-05

    Propagating detonation waves exhibit a curvature effect in which the detonation speed decreases with increasing front curvature. The curvature effect is due to the width of the wave profile. Numerically, the wave profile depends on resolution. With coarse resolution, the wave width is too large and results in a curvature effect that is too large. Consequently, the detonation speed decreases as the cell size is increased. We propose a modification to the products equation of state (EOS) to compensate for the effect of numerical resolution; i.e., to increase the CJ pressure in order that a simulation propagates a detonation wave with a speed that is on average correct. The EOS modification also adjusts the release isentrope to correct the energy release.

  3. Dark Energy. What the ...?

    SciTech Connect

    Wechsler, Risa

    2007-10-30

    What is the Universe made of? This question has been asked as long as humans have been questioning, and astronomers and physicists are finally converging on an answer. The picture which has emerged from numerous complementary observations over the past decade is a surprising one: most of the matter in the Universe isn't visible, and most of the Universe isn't even made of matter. In this talk, I will explain what the rest of this stuff, known as 'Dark Energy' is, how it is related to the so-called 'Dark Matter', how it impacts the evolution of the Universe, and how we can study the dark universe using observations of light from current and future telescopes.

  4. The dark side of cosmology: dark matter and dark energy.

    PubMed

    Spergel, David N

    2015-03-01

    A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales. PMID:25745164

  5. Unparticle dark energy

    SciTech Connect

    Dai, D.-C.; Stojkovic, Dejan; Dutta, Sourish

    2009-09-15

    We examine a dark energy model where a scalar unparticle degree of freedom plays the role of quintessence. In particular, we study a model where the unparticle degree of freedom has a standard kinetic term and a simple mass potential, the evolution is slowly rolling and the field value is of the order of the unparticle energy scale ({lambda}{sub u}). We study how the evolution of w depends on the parameters B (a function of unparticle scaling dimension d{sub u}), the initial value of the field {phi}{sub i} (or equivalently, {lambda}{sub u}) and the present matter density {omega}{sub m0}. We use observational data from type Ia supernovae, baryon acoustic oscillations and the cosmic microwave background to constrain the model parameters and find that these models are not ruled out by the observational data. From a theoretical point of view, unparticle dark energy model is very attractive, since unparticles (being bound states of fundamental fermions) are protected from radiative corrections. Further, coupling of unparticles to the standard model fields can be arbitrarily suppressed by raising the fundamental energy scale M{sub F}, making the unparticle dark energy model free of most of the problems that plague conventional scalar field quintessence models.

  6. Dark Matter and Dark Energy Explained

    NASA Astrophysics Data System (ADS)

    Aisenberg, Sol

    2006-03-01

    The standard model of the universe has many mysteries and defects requiring the use of large fudge factors such as Dark Matter and Dark Energy. We will show that Dark Matter is needed when we try to extend Newton's law of gravity (based upon observations in our solar system) to galactic distances. Dark Matter was introduced to explain the observed flat velocity rotation curves of the outer parts of spiral galaxies, as observed by Vera. Rubin. Much earlier, the (under appreciated) Fritz Zwicky introduced the need for large amounts of missing invisible matter to explain the surprising observed motion of groups of remote galaxies. In our hypothesis, the modification of Newton's laws by the addition of a linear term to the gravitational constant that increases with distance will eliminate the need for dark matter. Our hypothesis is different from the MOND theory of Milgrom, which depends upon acceleration. The Red shift observations by Hubble as a function of distance, and interpreted as ``apparent Doppler effect'' led to the unproven belief that the universe is expanding, and thus to the Big Bang. In turn the apparent acceleration of the expansion required the introduction of Dark Energy. Actually there are three additional components of the red shift that are solely due to gravity and distance and can be larger than the Doppler contribution.

  7. Natural Neutrino Dark Energy

    SciTech Connect

    Gurwich, Ilya

    2010-06-23

    1 construct a general description for neutrino dark energy models, that do not require exotic particles or strange couplings. With the help of the above, this class of models is reduced to a single function with several constraints. It is shown that these models lead to some concrete predictions that can be verified (or disproved) within the next decade, using results from PLANK, EUCLID and JDEM.

  8. Alternatives to dark matter and dark energy

    NASA Astrophysics Data System (ADS)

    Mannheim, Philip D.

    2006-04-01

    We review the underpinnings of the standard Newton Einstein theory of gravity, and identify where it could possibly go wrong. In particular, we discuss the logical independence from each other of the general covariance principle, the equivalence principle and the Einstein equations, and discuss how to constrain the matter energy momentum tensor which serves as the source of gravity. We identify the a priori assumption of the validity of standard gravity on all distance scales as the root cause of the dark matter and dark energy problems, and discuss how the freedom currently present in gravitational theory can enable us to construct candidate alternatives to the standard theory in which the dark matter and dark energy problems could then be resolved. We identify three generic aspects of these alternate approaches: that it is a universal acceleration scale which determines when a luminous Newtonian expectation is to fail to fit data, that there is a global cosmological effect on local galactic motions which can replace galactic dark matter, and that to solve the cosmological constant problem it is not necessary to quench the cosmological constant itself, but only the amount by which it gravitates.

  9. Dark Energy in Practice

    NASA Astrophysics Data System (ADS)

    Sapone, Domenico

    In this paper we review a part of the approaches that have been considered to explain the extraordinary discovery of the late time acceleration of the Universe. We discuss the arguments that have led physicists and astronomers to accept dark energy as the current preferable candidate to explain the acceleration. We highlight the problems and the attempts to overcome the difficulties related to such a component. We also consider alternative theories capable of explaining the acceleration of the Universe, such as modification of gravity. We compare the two approaches and point out the observational consequences, reaching the sad but foresightful conclusion that we will not be able to distinguish between a Universe filled by dark energy or a Universe where gravity is different from General Relativity. We review the present observations and discuss the future experiments that will help us to learn more about our Universe. This is not intended to be a complete list of all the dark energy models but this paper should be seen as a review on the phenomena responsible for the acceleration. Moreover, in a landscape of hardly compelling theories, it is an important task to build simple measurable parameters useful for future experiments that will help us to understand more about the evolution of the Universe.

  10. Dark Energy from Interacting Dark Fermions

    NASA Astrophysics Data System (ADS)

    Goldman, Terrence; McKellar, Bruce; Alsing, Paul; Stephenson, Gerard

    2010-11-01

    Physics is rife with interacting systems that exhibit negative pressure: atomic nuclei are very well known examples. We examine the range of parameters, for neutral fermions interacting only by exchange of an extraordinarily light scalar particle, that produce a negative pressure on the scale of the Universe over time periods where Dark Energy is or may be relevant. Of known or expected neutral Majorana fermions, active neutrinos can be ruled out but sterile neutrinos would work, as well as the LSP, to describe the recent observations of Dark Energy effects. After a phase change required by the instability responsible for the negative pressure, the resulting clouds of neutral fermions will contribute to Dark Matter. Nothing requires that this can only happen once.

  11. Holographic dark energy with time varying parameter c 2

    NASA Astrophysics Data System (ADS)

    Malekjani, M.; Zarei, R.; Honari-Jafarpour, M.

    2013-02-01

    We consider the holographic dark energy model in which the model parameter c 2 evolves slowly with time. First we calculate the evolution of EoS parameter as well as the deceleration parameter in this generalized version of holographic dark energy (GHDE). Depending on the parameter c 2, the phantom regime can be achieved earlier or later compare with original version of holographic dark energy. The evolution of energy density of GHDE model is investigated in terms of parameter c 2. We also show that the time-dependency of c 2 can effect on the transition epoch from decelerated phase to accelerated expansion. Finally, we perform the statefinder diagnostic for GHDE model and show that the evolutionary trajectories of the model in s- r plane are strongly depend on the parameter c 2.

  12. On dark energy isocurvature perturbation

    SciTech Connect

    Liu, Jie; Zhang, Xinmin; Li, Mingzhe E-mail: limz@nju.edu.cn

    2011-06-01

    Determining the equation of state of dark energy with astronomical observations is crucially important to understand the nature of dark energy. In performing a likelihood analysis of the data, especially of the cosmic microwave background and large scale structure data the dark energy perturbations have to be taken into account both for theoretical consistency and for numerical accuracy. Usually, one assumes in the global fitting analysis that the dark energy perturbations are adiabatic. In this paper, we study the dark energy isocurvature perturbation analytically and discuss its implications for the cosmic microwave background radiation and large scale structure. Furthermore, with the current astronomical observational data and by employing Markov Chain Monte Carlo method, we perform a global analysis of cosmological parameters assuming general initial conditions for the dark energy perturbations. The results show that the dark energy isocurvature perturbations are very weakly constrained and that purely adiabatic initial conditions are consistent with the data.

  13. Explorations in dark energy

    NASA Astrophysics Data System (ADS)

    Bozek, Brandon

    This dissertation describes three research projects on the topic of dark energy. The first project is an analysis of a scalar field model of dark energy with an exponential potential using the Dark Energy Task Force (DETF) simulated data models. Using Markov Chain Monte Carlo sampling techniques we examine the ability of each simulated data set to constrain the parameter space of the exponential potential for data sets based on a cosmological constant and a specific exponential scalar field model. We compare our results with the constraining power calculated by the DETF using their "w 0--wa" parameterization of the dark energy. We find that respective increases in constraining power from one stage to the next produced by our analysis give results consistent with DETF results. To further investigate the potential impact of future experiments, we also generate simulated data for an exponential model background cosmology which can not be distinguished from a cosmological constant at DETF Stage 2, and show that for this cosmology good DETF Stage 4 data would exclude a cosmological constant by better than 3sigma. The second project details this analysis on a Inverse Power Law (IPL) or "Ratra-Peebles" (RP) model. This model is a member of a popular subset of scalar field quintessence models that exhibit "tracking" behavior that make this model particularly theoretically interesting. We find that the relative increase in constraining power on the parameter space of this model is consistent to what was found in the first project and the DETF report. We also show, using a background cosmology based on an IPL scalar field model that is consistent with a cosmological constant with Stage 2 data, that good DETF Stage 4 data would exclude a cosmological constant by better than 3sigma. The third project extends the Causal Entropic Principle to predict the preferred curvature within the "multiverse". The Causal Entropic Principle (Bousso, et al.) provides an alternative approach

  14. Dark energy and extended dark matter halos

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  15. Dark matter, dark energy and gravity

    NASA Astrophysics Data System (ADS)

    Robson, B. A.

    2015-02-01

    Within the framework of the Generation Model (GM) of particle physics, gravity is identified with the very weak, universal and attractive residual color interactions acting between the colorless particles of ordinary matter (electrons, neutrons and protons), which are composite structures. This gravitational interaction is mediated by massless vector bosons (hypergluons), which self-interact so that the interaction has two additional features not present in Newtonian gravitation: (i) asymptotic freedom and (ii) color confinement. These two additional properties of the gravitational interaction negate the need for the notions of both dark matter and dark energy.

  16. Constraining Dark Energy

    NASA Astrophysics Data System (ADS)

    Abrahamse, Augusta

    2010-12-01

    Future advances in cosmology will depend on the next generation of cosmological observations and how they shape our theoretical understanding of the universe. Current theoretical ideas, however, have an important role to play in guiding the design of such observational programs. The work presented in this thesis concerns the intersection of observation and theory, particularly as it relates to advancing our understanding of the accelerated expansion of the universe (or the dark energy). Chapters 2 - 4 make use of the simulated data sets developed by the Dark Energy Task Force (DETF) for a number of cosmological observations currently in the experimental pipeline. We use these forecast data in the analysis of four quintessence models of dark energy: the PNGB, Exponential, Albrecht-Skordis and Inverse Power Law (IPL) models. Using Markov Chain Monte Carlo sampling techniques we examine the ability of each simulated data set to constrain the parameter space of these models. We examine the potential of the data for differentiating time-varying models from a pure cosmological constant. Additionally, we introduce an abstract parameter space to facilitate comparison between models and investigate the ability of future data to distinguish between these quintessence models. In Chapter 5 we present work towards understanding the effects of systematic errors associated with photometric redshift estimates. Due to the need to sample a vast number of deep and faint galaxies, photometric redshifts will be used in a wide range of future cosmological observations including gravitational weak lensing, baryon accoustic oscillations and type 1A supernovae observations. The uncertainty in the redshift distributions of galaxies has a significant potential impact on the cosmological parameter values inferred from such observations. We introduce a method for parameterizing uncertainties in modeling assumptions affecting photometric redshift calculations and for propagating these

  17. Entropy Corrected Holographic Dark Energy f(T) Gravity Model

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Rani, Shamaila

    2014-01-01

    This paper is devoted to study the power-law entropy corrected holographic dark energy (ECHDE) model in the framework of f(T) gravity. We assume infrared (IR) cutoff in terms of Granda-Oliveros (GO) length and discuss the constructed f(T) model in interacting as well as in non-interacting scenarios. We explore some cosmological parameters like equation of state (EoS), deceleration, statefinder parameters as well as ωT-ωT‧ analysis. The EoS and deceleration parameters indicate phantom behavior of the accelerated expansion of the universe. It is mentioned here that statefinder trajectories represent consistent results with ΛCDM limit, while evolution trajectory of ωT-ωT‧ phase plane does not approach to ΛCDM limit for both interacting and non-interacting cases.

  18. Beyond the perfect fluid hypothesis for the dark energy equation of state

    SciTech Connect

    Cardone, V.F.; Troisi, A.; Tortora, C.; Capozziello, S.

    2006-02-15

    Abandoning the perfect fluid hypothesis, we investigate here the possibility that the dark energy equation of state (EoS) w is a nonlinear function of the energy density {rho}. To this aim, we consider four different EoS describing classical fluids near thermodynamical critical points and discuss the main features of cosmological models made out of dust matter and a dark energy term with the given EoS. Each model is tested against the data on the dimensionless coordinate distance to Type Ia Supernovae and radio galaxies, the shift and the acoustic peak parameters and the positions of the first three peaks in the anisotropy spectrum of the comic microwave background radiation. We propose a possible interpretation of each model in the framework of scalar field quintessence determining the shape of the self-interaction potential V({phi}) that gives rise to each one of the considered thermodynamical EoS. As a general result, we demonstrate that replacing the perfect fluid EoS with more general expressions gives both the possibility of successfully solving the problem of cosmic acceleration escaping the resort to phantom models.

  19. The Dark Energy Camera

    SciTech Connect

    Flaugher, B.

    2015-04-11

    The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250-μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 Mpixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15μm x 15μm pixels with a plate scale of 0.263" per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.

  20. The Dark Energy Camera

    NASA Astrophysics Data System (ADS)

    Flaugher, B.; Diehl, H. T.; Honscheid, K.; Abbott, T. M. C.; Alvarez, O.; Angstadt, R.; Annis, J. T.; Antonik, M.; Ballester, O.; Beaufore, L.; Bernstein, G. M.; Bernstein, R. A.; Bigelow, B.; Bonati, M.; Boprie, D.; Brooks, D.; Buckley-Geer, E. J.; Campa, J.; Cardiel-Sas, L.; Castander, F. J.; Castilla, J.; Cease, H.; Cela-Ruiz, J. M.; Chappa, S.; Chi, E.; Cooper, C.; da Costa, L. N.; Dede, E.; Derylo, G.; DePoy, D. L.; de Vicente, J.; Doel, P.; Drlica-Wagner, A.; Eiting, J.; Elliott, A. E.; Emes, J.; Estrada, J.; Fausti Neto, A.; Finley, D. A.; Flores, R.; Frieman, J.; Gerdes, D.; Gladders, M. D.; Gregory, B.; Gutierrez, G. R.; Hao, J.; Holland, S. E.; Holm, S.; Huffman, D.; Jackson, C.; James, D. J.; Jonas, M.; Karcher, A.; Karliner, I.; Kent, S.; Kessler, R.; Kozlovsky, M.; Kron, R. G.; Kubik, D.; Kuehn, K.; Kuhlmann, S.; Kuk, K.; Lahav, O.; Lathrop, A.; Lee, J.; Levi, M. E.; Lewis, P.; Li, T. S.; Mandrichenko, I.; Marshall, J. L.; Martinez, G.; Merritt, K. W.; Miquel, R.; Muñoz, F.; Neilsen, E. H.; Nichol, R. C.; Nord, B.; Ogando, R.; Olsen, J.; Palaio, N.; Patton, K.; Peoples, J.; Plazas, A. A.; Rauch, J.; Reil, K.; Rheault, J.-P.; Roe, N. A.; Rogers, H.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schindler, R. H.; Schmidt, R.; Schmitt, R.; Schubnell, M.; Schultz, K.; Schurter, P.; Scott, L.; Serrano, S.; Shaw, T. M.; Smith, R. C.; Soares-Santos, M.; Stefanik, A.; Stuermer, W.; Suchyta, E.; Sypniewski, A.; Tarle, G.; Thaler, J.; Tighe, R.; Tran, C.; Tucker, D.; Walker, A. R.; Wang, G.; Watson, M.; Weaverdyck, C.; Wester, W.; Woods, R.; Yanny, B.; DES Collaboration

    2015-11-01

    The Dark Energy Camera is a new imager with a 2.°2 diameter field of view mounted at the prime focus of the Victor M. Blanco 4 m telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five-element optical corrector, seven filters, a shutter with a 60 cm aperture, and a charge-coupled device (CCD) focal plane of 250 μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 megapixel focal plane comprises 62 2k × 4k CCDs for imaging and 12 2k × 2k CCDs for guiding and focus. The CCDs have 15 μm × 15 μm pixels with a plate scale of 0.″263 pixel-1. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 s with 6-9 electron readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.

  1. Dark mass creation during EWPT via Dark Energy interaction

    NASA Astrophysics Data System (ADS)

    Kisslinger, Leonard S.; Casper, Steven

    2014-04-01

    We add Dark Matter-Dark Energy terms with a quintessence field interacting with a Dark Matter field to a Minimal Supersymmetry Model of the Electroweak (MSSM EW) Lagrangian previously used to calculate the magnetic field created during the Electroweak Phase Transition (EWPT). From the expectation value of the quintessence field, we estimate the Dark Matter mass for parameters used in previous work on Dark Matter-Dark Energy interactions.

  2. Logarithmic Entropy Corrected Holographic Dark Energy with F(R, T) Gravity

    NASA Astrophysics Data System (ADS)

    Ali, R. Amani; Samiee-Nouri, A.

    2015-10-01

    In this paper, we consider F(R, T) gravity as a linear function of the curvature and torsion scalars and interact it with logarithmic entropy corrected holographic dark energy to evaluate cosmology solutions. The model is investigated by FRW metric, and then the energy density and the pressure of dark energy are calculated. Also we obtain equation of state (EoS) parameter of dark energy and plot it with respect to both variable of redshift and e-folding number. Finally, we describe the scenario in three status: early, late and future time by e-folding number.

  3. Interacting vectorlike dark energy, the first and second cosmological coincidence problems

    SciTech Connect

    Wei Hao; Cai Ronggen

    2006-04-15

    One of the puzzles of the dark energy problem is the (first) cosmological coincidence problem, namely, why does our Universe begin the accelerated expansion recently? Why are we living in an epoch in which the dark energy density and the dust matter energy density are comparable? On the other hand, cosmological observations hint that the equation-of-state parameter (EoS) of dark energy crossed the phantom divide w{sub de}=-1 in the near past. Many dark energy models whose EoS can cross the phantom divide have been proposed. However, to our knowledge, these models with crossing the phantom divide only provide the possibility that w{sub de} can cross -1. They do not answer another question, namely, why crossing the phantom divide occurs recently? Since in many existing models whose EoS can cross the phantom divide, w{sub de} undulates around -1 randomly, why are we living in an epoch w{sub de}<-1? This can be regarded as the second cosmological coincidence problem. In this work, the cosmological evolution of the vectorlike dark energy interacting with background perfect fluid is investigated. We find that the first and second cosmological coincidence problems can be alleviated at the same time in this scenario.

  4. Light thoughts on dark energy

    SciTech Connect

    Linder, Eric V.

    2004-04-01

    The physical process leading to the acceleration of the expansion of the universe is unknown. It may involve new high energy physics or extensions to gravitation. Calling this generically dark energy, we examine the consistencies and relations between these two approaches, showing that an effective equation of state function w(z) is broadly useful in describing the properties of the dark energy. A variety of cosmological observations can provide important information on the dynamics of dark energy and the future looks bright for constraining dark energy, though both the measurements and the interpretation will be challenging. We also discuss a more direct relation between the spacetime geometry and acceleration, via ''geometric dark energy'' from the Ricci scalar, and superacceleration or phantom energy where the fate of the universe may be more gentle than the Big Rip.

  5. Astrophysical constraints on dark energy

    NASA Astrophysics Data System (ADS)

    Ho, Chiu Man; Hsu, Stephen D. H.

    2016-02-01

    Dark energy (i.e., a cosmological constant) leads, in the Newtonian approximation, to a repulsive force which grows linearly with distance and which can have astrophysical consequences. For example, the dark energy force overcomes the gravitational attraction from an isolated object (e.g., dwarf galaxy) of mass 107M⊙ at a distance of 23 kpc. Observable velocities of bound satellites (rotation curves) could be significantly affected, and therefore used to measure or constrain the dark energy density. Here, isolated means that the gravitational effect of large nearby galaxies (specifically, of their dark matter halos) is negligible; examples of isolated dwarf galaxies include Antlia or DDO 190.

  6. Dark matter and dark energy: The critical questions

    SciTech Connect

    Michael S. Turner

    2002-11-19

    Stars account for only about 0.5% of the content of the Universe; the bulk of the Universe is optically dark. The dark side of the Universe is comprised of: at least 0.1% light neutrinos; 3.5% {+-} 1% baryons; 29% {+-} 4% cold dark matter; and 66% {+-} 6% dark energy. Now that we have characterized the dark side of the Universe, the challenge is to understand it. The critical questions are: (1) What form do the dark baryons take? (2) What is (are) the constituent(s) of the cold dark matter? (3) What is the nature of the mysterious dark energy that is causing the Universe to speed up.

  7. Reconstructing and deconstructing dark energy

    SciTech Connect

    Linder, Eric V.

    2004-06-07

    The acceleration of the expansion of the universe, ascribed to a dark energy, is one of the most intriguing discoveries in science. In addition to precise, systematics controlled data, clear, robust interpretation of the observations is required to reveal the nature of dark energy. Even for the simplest question: is the data consistent with the cosmological constant? there are important subtleties in the reconstruction of the dark energy properties. We discuss the roles of analysis both in terms of the Hubble expansion rate or dark energy density {rho}DE(z) and in terms of the dark energy equation of state w(z), arguing that each has its carefully defined place. Fitting the density is best for learning about the density, but using it to probe the equation of state can lead to instability and bias.

  8. Optimizing New Dark Energy Experiments

    SciTech Connect

    Tyson, J. Anthony

    2013-08-26

    Next generation “Stage IV” dark energy experiments under design during this grant, and now under construction, will enable the determination of the properties of dark energy and dark matter to unprecedented precision using multiple complementary probes. The most pressing challenge in these experiments is the characterization and understanding of the systematic errors present within any given experimental configuration and the resulting impact on the accuracy of our constraints on dark energy physics. The DETF and the P5 panel in their reports recommended “Expanded support for ancillary measurements required for the long-term program and for projects that will improve our understanding and reduction of the dominant systematic measurement errors.” Looking forward to the next generation Stage IV experiments we have developed a program to address the most important potential systematic errors within these experiments. Using data from current facilities it has been feasible and timely to undertake a detailed investigation of the systematic errors. In this DOE grant we studied of the source and impact of the dominant systematic effects in dark energy measurements, and developed new analysis tools and techniques to minimize their impact. Progress under this grant is briefly reviewed in this technical report. This work was a necessary precursor to the coming generations of wide-deep probes of the nature of dark energy and dark matter. The research has already had an impact on improving the efficiencies of all Stage III and IV dark energy experiments.

  9. Cosmological evolution with interaction between dark energy and dark matter

    NASA Astrophysics Data System (ADS)

    Bolotin, Yuri L.; Kostenko, Alexander; Lemets, Oleg A.; Yerokhin, Danylo A.

    2015-12-01

    In this review we consider in detail different theoretical topics associated with interaction in the dark sector. We study linear and nonlinear interactions which depend on the dark matter and dark energy densities. We consider a number of different models (including the holographic dark energy and dark energy in a fractal universe), with interacting dark energy and dark matter, have done a thorough analysis of these models. The main task of this review was not only to give an idea about the modern set of different models of dark energy, but to show how much can be diverse dynamics of the universe in these models. We find that the dynamics of a universe that contains interaction in the dark sector can differ significantly from the Standard Cosmological Model.

  10. Inflation with holographic dark energy

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Li, Miao; Wang, Yi

    2007-07-01

    We investigate the corrections of the holographic dark energy to inflation paradigm. We study the evolution of the holographic dark energy in the inflationary universe in detail, and carry out a model-independent analysis on the holographic dark energy corrections to the primordial scalar power spectrum. It turns out that the corrections generically make the spectrum redder. To be consistent with the experimental data, there must be a upper bound on the reheating temperature. We also discuss the corrections due to different choices of the infrared cutoff.

  11. Entropy bounds and dark energy

    NASA Astrophysics Data System (ADS)

    Hsu, Stephen D. H.

    2004-07-01

    Entropy bounds render quantum corrections to the cosmological constant Λ finite. Under certain assumptions, the natural value of Λ is of order the observed dark energy density ~10-10 eV4, thereby resolving the cosmological constant problem. We note that the dark energy equation of state in these scenarios is w≡p/ρ=0 over cosmological distances, and is strongly disfavored by observational data. Alternatively, Λ in these scenarios might account for the diffuse dark matter component of the cosmological energy density. Permanent address: Institute of Theoretical Science and Department of Physics, University of Oregon, Eugene, OR 97403.

  12. Generalized ghost pilgrim dark energy in F(T,TG) cosmology

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Nazir, Kanwal

    2016-07-01

    This paper is devoted to study the generalized ghost pilgrim dark energy (PDE) model in F(T,TG) gravity with flat Friedmann-Robertson-Walker (FRW) universe. In this scenario, we reconstruct F(T,TG) models and evaluate the corresponding equation of state (EoS) parameter for different choices of the scale factors. We assume power-law scale factor, scale factor for unification of two phases, intermediate and bouncing scale factor. We study the behavior of reconstructed models and EoS parameters graphically. It is found that all the reconstructed models show decreasing behavior for PDE parameter u = ‑2. On the other hand, the EoS parameter indicates transition from dust-like matter to phantom era for all choices of the scale factor except intermediate for which this is less than ‑ 1. We conclude that all the results are in agreement with PDE phenomenon.

  13. Dark Energy Rules the Universe

    SciTech Connect

    Linder, Eric

    2008-01-01

    Berkeley Lab theoretical physicist Eric Linder previews his Nov. 24, 2008 talk on the mystery of dark energy. Catch his full lecture here: http://www.osti.gov/sciencecinema/servlets/purl/1007511?format=mp4

  14. Direct reconstruction of dark energy.

    PubMed

    Clarkson, Chris; Zunckel, Caroline

    2010-05-28

    An important issue in cosmology is reconstructing the effective dark energy equation of state directly from observations. With so few physically motivated models, future dark energy studies cannot only be based on constraining a dark energy parameter space. We present a new nonparametric method which can accurately reconstruct a wide variety of dark energy behavior with no prior assumptions about it. It is simple, quick and relatively accurate, and involves no expensive explorations of parameter space. The technique uses principal component analysis and a combination of information criteria to identify real features in the data, and tailors the fitting functions to pick up trends and smooth over noise. We find that we can constrain a large variety of w(z) models to within 10%-20% at redshifts z≲1 using just SNAP-quality data. PMID:20867085

  15. Decoupling dark energy from matter

    SciTech Connect

    Brax, Philippe; Davis, Anne-Christine; Martin, Jérôme E-mail: c.vandebruck@sheffield.ac.uk E-mail: jmartin@iap.fr

    2009-09-01

    We examine the embedding of dark energy in high energy models based upon supergravity and extend the usual phenomenological setting comprising an observable sector and a hidden supersymmetry breaking sector by including a third sector leading to the acceleration of the expansion of the universe. We find that gravitational constraints on the non-existence of a fifth force naturally imply that the dark energy sector must possess an approximate shift symmetry. When exact, the shift symmetry provides an example of a dark energy sector with a runaway potential and a nearly massless dark energy field whose coupling to matter is very weak, contrary to the usual lore that dark energy fields must couple strongly to matter and lead to gravitational inconsistencies. Moreover, the shape of the potential is stable under one-loop radiative corrections. When the shift symmetry is slightly broken by higher order terms in the Kähler potential, the coupling to matter remains small. However, the cosmological dynamics are largely affected by the shift symmetry breaking operators leading to the appearance of a minimum of the scalar potential such that dark energy behaves like an effective cosmological constant from very early on in the history of the universe.

  16. QCD nature of dark energy at finite temperature: Cosmological implications

    NASA Astrophysics Data System (ADS)

    Azizi, K.; Katırcı, N.

    2016-05-01

    The Veneziano ghost field has been proposed as an alternative source of dark energy, whose energy density is consistent with the cosmological observations. In this model, the energy density of the QCD ghost field is expressed in terms of QCD degrees of freedom at zero temperature. We extend this model to finite temperature to search the model predictions from late time to early universe. We depict the variations of QCD parameters entering the calculations, dark energy density, equation of state, Hubble and deceleration parameters on temperature from zero to a critical temperature. We compare our results with the observations and theoretical predictions existing at different eras. It is found that this model safely defines the universe from quark condensation up to now and its predictions are not in tension with those of the standard cosmology. The EoS parameter of dark energy is dynamical and evolves from -1/3 in the presence of radiation to -1 at late time. The finite temperature ghost dark energy predictions on the Hubble parameter well fit to those of Λ CDM and observations at late time.

  17. Understanding Dark Energy

    NASA Astrophysics Data System (ADS)

    Greyber, Howard

    2009-11-01

    By careful analysis of the data from the WMAP satellite, scientists were surprised to determine that about 70% of the matter in our universe is in some unknown form, and labeled it Dark Energy. Earlier, in 1998, two separate international groups of astronomers studying Ia supernovae were even more surprised to be forced to conclude that an amazing smooth transition occurred, from the expected slowing down of the expansion of our universe (due to normal positive gravitation) to an accelerating expansion of the universe that began at at a big bang age of the universe of about nine billion years. In 1918 Albert Einstein stated that his Lambda term in his theory of general relativity was ees,``the energy of empty space,'' and represented a negative pressure and thus a negative gravity force. However my 2004 ``Strong'' Magnetic Field model (SMF) for the origin of magnetic fields at Combination Time (Astro-ph0509223 and 0509222) in our big bang universe produces a unique topology for Superclusters, having almost all the mass, visible and invisible, i.e. from clusters of galaxies down to particles with mass, on the surface of an ellipsoid surrounding a growing very high vacuum. If I hypothesize, with Einstein, that there exists a constant ees force per unit volume, then, gradually, as the universe expands from Combination Time, two effects occur (a) the volume of the central high vacuum region increases, and (b) the density of positive gravity particles in the central region of each Supercluster in our universe decreases dramatically. Thus eventually Einstein's general relativity theory's repulsive gravity of the central very high vacuum region becomes larger than the positive gravitational attraction of all the clusters of galaxies, galaxies, quasars, stars and plasma on the Supercluster shell, and the observed accelerating expansion of our universe occurs. This assumes that our universe is made up mostly of such Superclusters. It is conceivable that the high vacuum

  18. Anisotropic universe with magnetized dark energy

    NASA Astrophysics Data System (ADS)

    Goswami, G. K.; Dewangan, R. N.; Yadav, Anil Kumar

    2016-04-01

    In the present work we have searched the existence of the late time acceleration of the Universe filled with cosmic fluid and uniform magnetic field as source of matter in anisotropic Heckmann-Schucking space-time. The observed acceleration of universe has been explained by introducing a positive cosmological constant Λ in the Einstein's field equation which is mathematically equivalent to vacuum energy with equation of state (EOS) parameter set equal to -1. The present values of the matter and the dark energy parameters (Ωm)0 & (Ω_{Λ})0 are estimated in view of the latest 287 high red shift (0.3 ≤ z ≤1.4) SN Ia supernova data's of observed apparent magnitude along with their possible error taken from Union 2.1 compilation. It is found that the best fit value for (Ωm)0 & (Ω_{Λ})0 are 0.2820 & 0.7177 respectively which are in good agreement with recent astrophysical observations in the latest surveys like WMAP [2001-2013], Planck [latest 2015] & BOSS. Various physical parameters such as the matter and dark energy densities, the present age of the universe and deceleration parameter have been obtained on the basis of the values of (Ωm)0 & (Ω_{Λ})0. Also we have estimated that the acceleration would have begun in the past at z = 0.71131 ˜6.2334 Gyrs before from present.

  19. Dark energy and dark matter from primordial QGP

    NASA Astrophysics Data System (ADS)

    Vaidya, Vaishali; Upadhyaya, G. K.

    2015-07-01

    Coloured relics servived after hadronization might have given birth to dark matter and dark energy. Theoretical ideas to solve mystery of cosmic acceleration, its origin and its status with reference to recent past are of much interest and are being proposed by many workers. In the present paper, we present a critical review of work done to understand the earliest appearance of dark matter and dark energy in the scenario of primordial quark gluon plasma (QGP) phase after Big Bang.

  20. Dark energy and dark matter from primordial QGP

    SciTech Connect

    Vaidya, Vaishali Upadhyaya, G. K.

    2015-07-31

    Coloured relics servived after hadronization might have given birth to dark matter and dark energy. Theoretical ideas to solve mystery of cosmic acceleration, its origin and its status with reference to recent past are of much interest and are being proposed by many workers. In the present paper, we present a critical review of work done to understand the earliest appearance of dark matter and dark energy in the scenario of primordial quark gluon plasma (QGP) phase after Big Bang.

  1. Dynamics of dark energy with a coupling to dark matter

    SciTech Connect

    Boehmer, Christian G.; Caldera-Cabral, Gabriela; Maartens, Roy; Lazkoz, Ruth

    2008-07-15

    Dark energy and dark matter are the dominant sources in the evolution of the late universe. They are currently only indirectly detected via their gravitational effects, and there could be a coupling between them without violating observational constraints. We investigate the background dynamics when dark energy is modeled as exponential quintessence and is coupled to dark matter via simple models of energy exchange. We introduce a new form of dark sector coupling, which leads to a more complicated dynamical phase space and has a better physical motivation than previous mathematically similar couplings.

  2. σCDM coupled to radiation: Dark energy and Universe acceleration

    NASA Astrophysics Data System (ADS)

    Abbyazov, Renat R.; Chervon, Sergey V.; Müller, Volker

    2015-07-01

    Recently, the Chiral Cosmological Model (CCM) coupled to cold dark matter (CDM) has been investigated as σCDM model to study the observed accelerated expansion of the Universe. Dark sector fields (as Dark Energy content) coupled to cosmic dust were considered as the source of Einstein gravity in Friedmann-Robertson-Walker (FRW) cosmology. Such model had a beginning at the matter-dominated era. The purposes of our present investigation are two-fold: To extend “life” of the σCDM for earlier times to radiation-dominated era and to take into account variation of the exponential potential V = V0exp -λ φ MP + V0exp -λ χ MP via variation of the interaction parameter λ. We use Markov Chain Monte Carlo (MCMC) procedure to investigate possible values of initial conditions constrained by the measured amount of the dark matter, dark energy and radiation component today. Our analysis includes dark energy contribution to critical density, the ratio of the kinetic and potential energies, deceleration parameter, effective equation of state (EoS) and evolution of DE EoS with variation of coupling constant λ. A comparison with the ΛCDM model was performed. A new feature of the model is the existence of some values of potential coupling constant, leading to a σCDM solution without transition into accelerated expansion epoch.

  3. Dark Energy Stars

    SciTech Connect

    Chapline, G

    2005-03-08

    Event horizons and closed time-like curves cannot exist in the real world for the simple reason that they are inconsistent with quantum mechanics. Following ideas originated by Robert Laughlin, Pawel Mazur, Emil Mottola, David Santiago, and the speaker it is now possible to describe in some detail what happens physically when one approaches and crosses a region of space-time where classical general relativity predicts there should be an infinite red shift surface. This quantum critical physics provides a new perspective on a variety of enigmatic astrophysical phenomena including supernovae explosions, gamma ray bursts, positron emission, and dark matter.

  4. Dark Energy Camera for Blanco

    SciTech Connect

    Binder, Gary A.; /Caltech /SLAC

    2010-08-25

    In order to make accurate measurements of dark energy, a system is needed to monitor the focus and alignment of the Dark Energy Camera (DECam) to be located on the Blanco 4m Telescope for the upcoming Dark Energy Survey. One new approach under development is to fit out-of-focus star images to a point spread function from which information about the focus and tilt of the camera can be obtained. As a first test of a new algorithm using this idea, simulated star images produced from a model of DECam in the optics software Zemax were fitted. Then, real images from the Mosaic II imager currently installed on the Blanco telescope were used to investigate the algorithm's capabilities. A number of problems with the algorithm were found, and more work is needed to understand its limitations and improve its capabilities so it can reliably predict camera alignment and focus.

  5. The Dark Energy Survey Camera

    NASA Astrophysics Data System (ADS)

    Flaugher, Brenna

    2012-03-01

    The Dark Energy Survey Collaboration has built the Dark Energy Camera (DECam), a 3 square degree, 520 Megapixel CCD camera which is being mounted on the Blanco 4-meter telescope at CTIO. DECam will be used to carry out the 5000 sq. deg. Dark Energy Survey, using 30% of the telescope time over a 5 year period. During the remainder of the time, and after the survey, DECam will be available as a community instrument. Construction of DECam is complete. The final components were shipped to Chile in Dec. 2011 and post-shipping checkout is in progress in Dec-Jan. Installation and commissioning on the telescope are taking place in 2012. A summary of lessons learned and an update of the performance of DECam and the status of the DECam installation and commissioning will be presented.

  6. Unified dark energy-dark matter model with inverse quintessence

    SciTech Connect

    Ansoldi, Stefano; Guendelman, Eduardo I. E-mail: guendel@bgu.ac.il

    2013-05-01

    We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future.

  7. Measuring Dark Energy with CHIME

    NASA Astrophysics Data System (ADS)

    Newburgh, Laura; Chime Collaboration

    2015-04-01

    The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a new radio transit interferometer currently being built at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC, Canada. We will use the 21 cm emission line of neutral hydrogen to map baryon acoustic oscillations between 400-800 MHz across 3/4 of the sky. These measurements will yield sensitive constraints on the dark energy equation of state between redshifts 0.8 - 2.5, a fascinating but poorly probed era corresponding to when dark energy began to impact the expansion history of the Universe. I will describe theCHIME instrument, the analysis challenges, the calibration requirements, and current status.

  8. Dark energy survey and camera

    SciTech Connect

    William Wester

    2004-08-16

    The authors describe the Dark Energy Survey and Camera. The survey will image 5000 sq. deg. in the southern sky to collect 300 million galaxies, 30,000 galaxy clusters and 2000 Type Ia supernovae. They expect to derive a value for the dark energy equation of state parameters, w, to a precision of 5% by combining four distinct measurement techniques. They describe the mosaic camera that will consist of CCDs with enhanced sensitivity in the near infrared. The camera will be mounted at the prime focus of the 4m Blanco telescope.

  9. Field Flows of Dark Energy

    SciTech Connect

    Cahn, Robert N.; de Putter, Roland; Linder, Eric V.

    2008-07-08

    Scalar field dark energy evolving from a long radiation- or matter-dominated epoch has characteristic dynamics. While slow-roll approximations are invalid, a well defined field expansion captures the key aspects of the dark energy evolution during much of the matter-dominated epoch. Since this behavior is determined, it is not faithfully represented if priors for dynamical quantities are chosen at random. We demonstrate these features for both thawing and freezing fields, and for some modified gravity models, and unify several special cases in the literature.

  10. Modeling Dark Energy Through AN Ising Fluid with Network Interactions

    NASA Astrophysics Data System (ADS)

    Luongo, Orlando; Tommasini, Damiano

    2014-12-01

    We show that the dark energy (DE) effects can be modeled by using an Ising perfect fluid with network interactions, whose low redshift equation of state (EoS), i.e. ω0, becomes ω0 = -1 as in the ΛCDM model. In our picture, DE is characterized by a barotropic fluid on a lattice in the equilibrium configuration. Thus, mimicking the spin interaction by replacing the spin variable with an occupational number, the pressure naturally becomes negative. We find that the corresponding EoS mimics the effects of a variable DE term, whose limiting case reduces to the cosmological constant Λ. This permits us to avoid the introduction of a vacuum energy as DE source by hand, alleviating the coincidence and fine tuning problems. We find fairly good cosmological constraints, by performing three tests with supernovae Ia (SNeIa), baryonic acoustic oscillation (BAO) and cosmic microwave background (CMB) measurements. Finally, we perform the Akaike information criterion (AIC) and Bayesian information criterion (BIC) selection criteria, showing that our model is statistically favored with respect to the Chevallier-Polarsky-Linder (CPL) parametrization.

  11. Interacting new agegraphic version of pilgrim dark energy

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Abbas, G.

    2015-05-01

    We discuss the cosmological evolution of the interacting pilgrim dark energy (DE) with conformal age of the universe in flat FRW universe. We evaluate the equation of state (EoS) parameter for three different values of interacting parameter which evolutes the universe from matter dominated to phantom-like eras by evolving quintessence as well as vacuum DE eras. We also give the correspondence of the present DE model with quintessence, tachyon, k-essence, dilaton and DBI-essence scalar field models. We discuss the dynamics of scalar field and corresponding potentials. We find that the behavior of scalar field, corresponding potentials and kinetic energy terms (in k-essence and dilaton field) consistent with the present day observations. Also, cosmological planes such as ω ǎrtheta-ω ǎrtheta' and r - s planes corresponds to ΛCDM limit.

  12. Holographic dark energy with varying gravitational constant

    NASA Astrophysics Data System (ADS)

    Jamil, Mubasher; Saridakis, Emmanuel N.; Setare, M. R.

    2009-08-01

    We investigate the holographic dark energy scenario with a varying gravitational constant, in flat and non-flat background geometry. We extract the exact differential equations determining the evolution of the dark energy density-parameter, which include G-variation correction terms. Performing a low-redshift expansion of the dark energy equation of state, we provide the involved parameters as functions of the current density parameters, of the holographic dark energy constant and of the G-variation.

  13. Josephson junctions and dark energy

    NASA Astrophysics Data System (ADS)

    Jetzer, Philippe; Straumann, Norbert

    2006-08-01

    In a recent paper Beck and Mackey [C. Beck, M.C. Mackey, astro-ph/0603397] argue that the argument we gave in our paper [Ph. Jetzer, N. Straumann, Phys. Lett. B 606 (2005) 77, astro-ph/0411034] to disprove their claim that dark energy can be discovered in the Lab through noise measurements of Josephson junctions is incorrect. In particular, they emphasize that the measured noise spectrum in Josephson junctions is a consequence of the fluctuation dissipation theorem, while our argument was based on equilibrium statistical mechanics. In this note we show that the fluctuation dissipation relation does not depend upon any shift of vacuum (zero-point) energies, and therefore, as already concluded in our previous paper, dark energy has nothing to do with the proposed measurements.

  14. Dark energy from discrete spacetime.

    PubMed

    Trout, Aaron D

    2013-01-01

    Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies. PMID:24312502

  15. Dark Energy from Discrete Spacetime

    PubMed Central

    Trout, Aaron D.

    2013-01-01

    Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies. PMID:24312502

  16. Dynamics of dark energy in collapsing halo of dark matter

    NASA Astrophysics Data System (ADS)

    Tsizh, M.; Novosyadlyj, B.

    2015-09-01

    We investigate the non-linear evolution of spherical density and velocity perturbations of dark matter and dark energy in the expanding Universe. For this we have used the conservation and Einstein equations to describe the evolution of gravitationally coupled inhomogeneities of dark matter, dark energy and radiation from the linear stage in the early Universe to the non-linear stage at the current epoch. A simple method of numerical integration of the system of non-linear differential equations for evolution of the central part of halo is proposed. The results are presented for the halo of cluster (k=2 Mpc^{-1}) and supercluster scales (k=0.2 Mpc^{-1}) and show that a quintessential scalar field dark energy with a low value of effective speed of sound c_s<0.1 can have a notable impact on the formation of large-scale structures in the expanding Universe.

  17. Do neutrinos contribute to total dark energy

    NASA Astrophysics Data System (ADS)

    Manihar Singh, Koijam; Mahanta, K. L.

    2016-02-01

    From a critical study of our present universe it is found that dark energy, and of course, dark matter are there in the universe from the beginning of its evolution manifesting in one form or the other. The different forms contained in our model are found to be generalized Chaplygin gas, quintessence and phantom energy; of course, the generalized Chaplygin gas can explain the origin of dark energy as well as dark matter in our universe simultaneously. However the more beauty in our study is that there is high possibility of the energy produced from the neutrinos might contribute to the dark energy prevalent in this universe.

  18. The Dark Energy Survey: more than dark energy - an overview

    NASA Astrophysics Data System (ADS)

    Dark Energy Survey Collaboration; Abbott, T.; Abdalla, F. B.; Aleksić, J.; Allam, S.; Amara, A.; Bacon, D.; Balbinot, E.; Banerji, M.; Bechtol, K.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Blazek, J.; Bonnett, C.; Bridle, S.; Brooks, D.; Brunner, R. J.; Buckley-Geer, E.; Burke, D. L.; Caminha, G. B.; Capozzi, D.; Carlsen, J.; Carnero-Rosell, A.; Carollo, M.; Carrasco-Kind, M.; Carretero, J.; Castander, F. J.; Clerkin, L.; Collett, T.; Conselice, C.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, T. M.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Dodelson, S.; Doel, P.; Drlica-Wagner, A.; Estrada, J.; Etherington, J.; Evrard, A. E.; Fabbri, J.; Finley, D. A.; Flaugher, B.; Foley, R. J.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Guarnieri, P.; Gutierrez, G.; Hartley, W.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Jouvel, S.; Kessler, R.; King, A.; Kirk, D.; Kron, R.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Lin, H.; Maia, M. A. G.; Makler, M.; Manera, M.; Maraston, C.; Marshall, J. L.; Martini, P.; McMahon, R. G.; Melchior, P.; Merson, A.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Morice-Atkinson, X.; Naidoo, K.; Neilsen, E.; Nichol, R. C.; Nord, B.; Ogando, R.; Ostrovski, F.; Palmese, A.; Papadopoulos, A.; Peiris, H. V.; Peoples, J.; Percival, W. J.; Plazas, A. A.; Reed, S. L.; Refregier, A.; Romer, A. K.; Roodman, A.; Ross, A.; Rozo, E.; Rykoff, E. S.; Sadeh, I.; Sako, M.; Sánchez, C.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Soumagnac, M.; Suchyta, E.; Sullivan, M.; Swanson, M.; Tarle, G.; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker, D.; Vieira, J. D.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Weller, J.; Wester, W.; Whiteway, L.; Wilcox, H.; Yanny, B.; Zhang, Y.; Zuntz, J.

    2016-08-01

    This overview paper describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4 m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion, the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae and other transients. The main goals of DES are to characterize dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large-scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper, we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from `Science Verification', and from the first, second and third seasons of observations), what DES can tell us about the Solar system, the Milky Way, galaxy evolution, quasars and other topics. In addition, we show that if the cosmological model is assumed to be Λ+cold dark matter, then important astrophysics can be deduced from the primary DES probes. Highlights from DES early data include the discovery of 34 trans-Neptunian objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed).

  19. The Dark Energy Survey: more than dark energy - an overview

    NASA Astrophysics Data System (ADS)

    Dark Energy Survey Collaboration; Abbott, T.; Abdalla, F. B.; Allam, S.; Aleksić, J.; Amara, A.; Bacon, D.; Balbinot, E.; Banerji, M.; Bechtol, K.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Blazek, J.; Dodelson, S.; Bonnett, C.; Brooks, D.; Bridle, S.; Brunner, R. J.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Caminha, G. B.; Carlsen, J.; Carnero-Rosell, A.; Carollo, M.; Carrasco-Kind, M.; Carretero, J.; Castander, F. J.; Clerkin, L.; Collett, T.; Conselice, C.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, T. M.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Drlica-Wagner, A.; Etherington, J.; Estrada, J.; Evrard, A. E.; Fabbri, J.; Finley, D. A.; Flaugher, B.; Fosalba, P.; Foley, R. J.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Guarnieri, P.; Gutierrez, G.; Hartley, W.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Jouvel, S.; Kessler, R.; King, A.; Kirk, D.; Kron, R.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Lin, H.; Maia, M. A. G.; Makler, M.; Manera, M.; Maraston, C.; Marshall, J. L.; Martini, P.; McMahon, R. G.; Melchior, P.; Merson, A.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Morice-Atkinson, X.; Naidoo, K.; Neilsen, E.; Nichol, R. C.; Nord, B.; Ogando, R.; Ostrovski, F.; Palmese, A.; Papadopoulos, A.; Peiris, H.; Peoples, J.; Plazas, A. A.; Percival, W. J.; Reed, S. L.; Romer, A. K.; Roodman, A.; Ross, A.; Rozo, E.; Rykoff, E. S.; Sadeh, I.; Sako, M.; Sánchez, C.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Soumagnac, M.; Suchyta, E.; Sullivan, M.; Swanson, M.; Tarle, G.; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker, D.; Vieira, J. D.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Wester, W.; Weller, J.; Whiteway, L.; Wilcox, H.; Yanny, B.; Zhang, Y.; Zuntz, J.

    2016-03-01

    This overview article describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae and other transients. The main goals of DES are to characterise dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from `Science Verification', and from the first, second and third seasons of observations), what DES can tell us about the solar system, the Milky Way, galaxy evolution, quasars, and other topics. In addition, we show that if the cosmological model is assumed to be Λ + Cold Dark Matter (LCDM) then important astrophysics can be deduced from the primary DES probes. Highlights from DES early data include the discovery of 34 Trans Neptunian Objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed).

  20. The Dark Energy Survey: More than dark energy - An overview

    DOE PAGESBeta

    Abbott, T.

    2016-03-21

    This overview article describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae andmore » other transients. The main goals of DES are to characterise dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from `Science Verification', and from the first, second and third seasons of observations), what DES can tell us about the solar system, the Milky Way, galaxy evolution, quasars, and other topics. In addition, we show that if the cosmological model is assumed to be Lambda+ Cold Dark Matter (LCDM) then important astrophysics can be deduced from the primary DES probes. Lastly, highlights from DES early data include the discovery of 34 Trans Neptunian Objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed).« less

  1. Reconstruction of the interaction term between dark matter and dark energy using SNe Ia

    SciTech Connect

    Solano, Freddy Cueva; Nucamendi, Ulises E-mail: ulises@ifm.umich.mx

    2012-04-01

    We apply a parametric reconstruction method to a homogeneous, isotropic and spatially flat Friedmann-Robertson-Walker (FRW) cosmological model filled of a fluid of dark energy (DE) with constant equation of state (EOS) parameter interacting with dark matter (DM)\\@. The reconstruction method is based on expansions of the general interaction term and the relevant cosmological variables in terms of Chebyshev polynomials which form a complete set orthonormal functions. This interaction term describes an exchange of energy flow between the DE and DM within dark sector. To show how the method works we do the reconstruction of the interaction function expanding it in terms of only the first six Chebyshev polynomials and obtain the best estimation for the coefficients of the expansion assuming three models: (a) a DE equation of the state parameter w = −1 (an interacting cosmological Λ), (b) a DE equation of the state parameter w = constant with a dark matter density parameter fixed, (c) a DE equation of the state parameter w = constant with a free constant dark matter density parameter to be estimated, and using the Union2 SNe Ia data set from ''The Supernova Cosmology Project'' (SCP) composed by 557 type Ia supernovae. In both cases, the preliminary reconstruction shows that in the best scenario there exist the possibility of a crossing of the noninteracting line Q = 0 in the recent past within the 1σ and 2σ errors from positive values at early times to negative values at late times. This means that, in this reconstruction, there is an energy transfer from DE to DM at early times and an energy transfer from DM to DE at late times. We conclude that this fact is an indication of the possible existence of a crossing behavior in a general interaction coupling between dark components.

  2. Clustering properties of dynamical dark energy models

    SciTech Connect

    Avelino, P. P.; Beca, L. M. G.; Martins, C. J. A. P.

    2008-05-15

    We provide a generic but physically clear discussion of the clustering properties of dark energy models. We explicitly show that in quintessence-type models the dark energy fluctuations, on scales smaller than the Hubble radius, are of the order of the perturbations to the Newtonian gravitational potential, hence necessarily small on cosmological scales. Moreover, comparable fluctuations are associated with different gauge choices. We also demonstrate that the often used homogeneous approximation is unrealistic, and that the so-called dark energy mutation is a trivial artifact of an effective, single fluid description. Finally, we discuss the particular case where the dark energy fluid is nonminimally coupled to dark matter.

  3. The vacuum's dark particles behave like dark matter and dark energy

    NASA Astrophysics Data System (ADS)

    Haller, John

    2015-04-01

    Building on the governing hypothesis that self-information is equal to action, I solve for the time step of the vacuum. The resulting equations (both quantum diffusion and Friedmann's equations) argue that a dark particle, or special black hole, exists at hbar or twice the reduced Planck mass where the Hawking temperature breaks down. It is hypothesized that if neutral hydrogen is nearby the dark particles are able to couple with the background field and thus have a density that looks like dark matter. If hydrogen is not around, the dark particles become frozen leading to a constant density of black body radiation similar to dark energy. If the Universe's dark particles (away from neutral hydrogen) became frozen during the re-ionization of the Universe's history, its BBR density is well within confidence ranges for the cosmological constant. This hypothesis can also explain the recent observations that dark matter decays into dark energy.

  4. Power-law and logarithmic entropy-corrected Ricci viscous dark energy and dynamics of scalar fields

    NASA Astrophysics Data System (ADS)

    Pasqua, Antonio

    2013-08-01

    In this work, I consider the logarithmic-corrected and the power-law corrected versions of the holographic dark energy (HDE) model in the non-flat FRW universe filled with a viscous Dark Energy (DE) interacting with Dark Matter (DM). I propose to replace the infra-red cut-off with the inverse of the Ricci scalar curvature R. I obtain the equation of state (EoS) parameter ω Λ , the deceleration parameter q and the evolution of energy density parameter \\varOmegaD' in the presence of interaction between DE and DM for both corrections. I study the correspondence of the logarithmic entropy corrected Ricci Dark Dnergy (LECRDE) and power-law entropy corrected Ricci Dark Energy (PLECRDE) models with the the Modified Chaplygin Gas (MCG) and some scalar fields including tachyon, K-essence, dilaton and quintessence. I also make comparisons with previous results.

  5. The ASY-EOS experiment at GSI: investigating the symmetry energy at supra-saturation densities

    NASA Astrophysics Data System (ADS)

    Russotto, P.; Chartier, M.; De Filippo, E.; Le Fèvre, A.; Gannon, S.; Gašparić, I.; Kiš, M.; Kupny, S.; Leifels, Y.; Lemmon, R. C.; Łukasik, J.; Marini, P.; Pagano, A.; Pawłowski, P.; Santoro, S.; Trautmann, W.; Veselsky, M.; Acosta, L.; Adamczyk, M.; Al-Ajlan, A.; Al-Garawi, M.; Al-Homaidhi, S.; Amorini, F.; Auditore, L.; Aumann, T.; Ayyad, Y.; Baran, V.; Basrak, Z.; Benlliure, J.; Boiano, C.; Boisjoli, M.; Boretzky, K.; Brzychczyk, J.; Budzanowski, A.; Cardella, G.; Cammarata, P.; Chajecki, Z.; Chbihi, A.; Colonna, M.; Cozma, D.; Czech, B.; Di Toro, M.; Famiano, M.; Geraci, E.; Greco, V.; Grassi, L.; Guazzoni, C.; Guazzoni, P.; Heil, M.; Heilborn, L.; Introzzi, R.; Isobe, T.; Kezzar, K.; Krasznahorkay, A.; Kurz, N.; La Guidara, E.; Lanzalone, G.; Lasko, P.; Li, Q.; Lombardo, I.; Lynch, W. G.; Matthews, Z.; May, L.; Minniti, T.; Mostazo, M.; Papa, M.; Pirrone, S.; Politi, G.; Porto, F.; Reifarth, R.; Reisdorf, W.; Riccio, F.; Rizzo, F.; Rosato, E.; Rossi, D.; Simon, H.; Skwirczynska, I.; Sosin, Z.; Stuhl, L.; Trifirò, A.; Trimarchi, M.; Tsang, M. B.; Verde, G.; Vigilante, M.; Wieloch, A.; Wigg, P.; Wolter, H. H.; Wu, P.; Yennello, S.; Zambon, P.; Zetta, L.; Zoric, M.

    2013-03-01

    The elliptic-flow ratio of neutrons with respect to protons in reactions of neutron rich heavy-ions systems at intermediate energies has been proposed as an observable sensitive to the strength of the symmetry term in the nuclear Equation Of State (EOS) at supra-saturation densities. The recent results obtained from the existing FOPI/LAND data for 197Au+197Au collisions at 400 MeV/nucleon in comparison with the UrQMD model allowed a first estimate of the symmetry term of the EOS but suffer from a considerable statistical uncertainty. In order to obtain an improved data set for Au+Au collisions and to extend the study to other systems, a new experiment was carried out at the GSI laboratory by the ASY-EOS collaboration in May 2011.

  6. Dark matter and dark energy in dwarf galaxy systems

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.

    2014-01-01

    Quantitative estimates of themaximumallowed totalmasses and sizes of the dark-matter halos in groups and associations of dwarf galaxies—special types of metagalactic populations identified in recent astronomical observations with the Hubble Space Telescope—are presented. Dwarf-galaxy systems are formed of isolated dark-matter halos with a small number of dark galaxies embedded in them. Data on the sizes of these systems and the velocity dispersions of the embedded galaxies can be used to determine lower limits on the total dark-halo masses using the virial theorem. Upper limits follow from the conditions that the systems immersed in the cosmic dark-energy background be gravitationally bound. The median maximum masses are close to 1012 M ⊙ for both groups and associations of dwarf galaxies, although the median virial masses for these two types of systems differ by approximately a factor of ten.

  7. Constraining dark energy fluctuations with supernova correlations

    SciTech Connect

    Blomqvist, Michael; Enander, Jonas; Mörtsell, Edvard E-mail: enander@fysik.su.se

    2010-10-01

    We investigate constraints on dark energy fluctuations using type Ia supernovae. If dark energy is not in the form of a cosmological constant, that is if the equation of state w≠−1, we expect not only temporal, but also spatial variations in the energy density. Such fluctuations would cause local variations in the universal expansion rate and directional dependences in the redshift-distance relation. We present a scheme for relating a power spectrum of dark energy fluctuations to an angular covariance function of standard candle magnitude fluctuations. The predictions for a phenomenological model of dark energy fluctuations are compared to observational data in the form of the measured angular covariance of Hubble diagram magnitude residuals for type Ia supernovae in the Union2 compilation. The observational result is consistent with zero dark energy fluctuations. However, due to the limitations in statistics, current data still allow for quite general dark energy fluctuations as long as they are in the linear regime.

  8. Dark Energy: fiction or reality?

    SciTech Connect

    Triay, Roland

    2010-06-15

    Is Dark Energy justified as an alternative to the cosmological constant LAMBDA in order to explain the acceleration of the cosmic expansion? It turns out that a straightforward dimensional analysis of Einstein equation provides us with clear evidences that the geometrical nature of LAMBDA is the only viable source to this phenomenon, in addition of the application of Ockham's razor principle. This contribution is primarily a review of the main stream in the interpretation of LAMBDA because it is at the origin of such a research program.

  9. Renewable Energy Requirement Guidance for EPACT 2005 and EO 13423

    SciTech Connect

    2009-01-18

    Describes what counts toward the federal goals, the definition of "new" for renewable power/renewable energy certificate (REC) purchases, and what types of on-site projects will get double credit (Section 203 (C)).

  10. A two measure model of dark energy and dark matter

    SciTech Connect

    Guendelman, Eduardo; Singleton, Douglas; Yongram, N. E-mail: dougs@csufresno.edu

    2012-11-01

    In this work we construct a unified model of dark energy and dark matter. This is done with the following three elements: a gravitating scalar field, φ with a non-conventional kinetic term, as in the string theory tachyon; an arbitrary potential, V(φ); two measures — a metric measure ((−g){sup 1/2}) and a non-metric measure (Φ). The model has two interesting features: (i) For potentials which are unstable and would give rise to tachyonic scalar field, this model can stabilize the scalar field. (ii) The form of the dark energy and dark matter that results from this model is fairly insensitive to the exact form of the scalar field potential.

  11. Dark matter and dark energy from quark bag model

    SciTech Connect

    Brilenkov, Maxim; Eingorn, Maxim; Jenkovszky, Laszlo; Zhuk, Alexander E-mail: maxim.eingorn@gmail.com E-mail: ai.zhuk2@gmail.com

    2013-08-01

    We calculate the present expansion of our Universe endowed with relict colored objects — quarks and gluons — that survived hadronization either as isolated islands of quark-gluon ''nuggets'' or spread uniformly in the Universe. In the first scenario, the QNs can play the role of dark matter. In the second scenario, we demonstrate that uniform colored objects can play the role of dark energy providing the late-time accelerating expansion of the Universe.

  12. Thermodynamics of dark energy interacting with dark matter and radiation

    SciTech Connect

    Jamil, Mubasher; Saridakis, Emmanuel N.; Setare, M. R.

    2010-01-15

    We investigate the validity of the generalized second law of thermodynamics, in the cosmological scenario where dark energy interacts with both dark matter and radiation. Calculating separately the entropy variation for each fluid component and for the apparent horizon itself, we show that the generalized second law is always and generally valid, independently of the specific interaction form, of the fluids equation-of-state parameters and of the background geometry.

  13. Holographic dark energy from minimal supergravity

    NASA Astrophysics Data System (ADS)

    Landim, Ricardo C. G.

    2016-02-01

    We embed models of holographic dark energy (HDE) coupled to dark matter (DM) in minimal supergravity plus matter, with one chiral superfield. We analyze two cases. The first one has the Hubble radius as the infrared (IR) cutoff and the interaction between the two fluids is proportional to the energy density of the DE. The second case has the future event horizon as IR cutoff while the interaction is proportional to the energy density of both components of the dark sector.

  14. Massive photon and dark energy

    NASA Astrophysics Data System (ADS)

    Kouwn, Seyen; Oh, Phillial; Park, Chan-Gyung

    2016-04-01

    We investigate the cosmology of massive electrodynamics and explore the possibility whether the massive photon could provide an explanation of dark energy. The action is given by the scalar-vector-tensor theory of gravity, which is obtained by nonminimal coupling of the massive Stueckelberg QED with gravity; its cosmological consequences are studied by paying particular attention to the role of photon mass. We find that the theory allows for cosmological evolution where the radiation- and matter-dominated epochs are followed by a long period of virtually constant dark energy that closely mimics a Λ CDM model. We also find that the main source of the current acceleration is provided by the nonvanishing photon mass governed by the relation Λ ˜m2 . A detailed numerical analysis shows that the nonvanishing photon mass on the order of ˜1 0-34 eV is consistent with current observations. This magnitude is far less than the most stringent limit on the photon mass available so far, which is on the order of m ≤1 0-27 eV .

  15. Space Based Dark Energy Surveys

    NASA Astrophysics Data System (ADS)

    Dore, Olivier

    2016-03-01

    Dark energy, the name given to the cause of the accelerating expansion of the Universe, is one of the most tantalizing mystery in modern physics. Current cosmological models hold that dark energy is currently the dominant component of the Universe, but the exact nature of DE remains poorly understood. There are ambitious ground-based surveys underway that seek to understand DE and NASA is participating in the development of significantly more ambitious space-based surveys planned for the next decade. NASA has provided mission enabling technology to the European Space Agency's (ESA) Euclid mission in exchange for US scientists to participate in the Euclid mission. NASA is also developing the Wide Field Infrared Survey Telescope-Astrophysics Focused Telescope Asset (WFIRST) mission for possible launch in 2024. WFIRST was the highest ranked space mission in the Astro2010 Decadal Survey and the current design uses a 2.4m space telescope to go beyond what was then envisioned. Understanding DE is one of the primary science goals of WFIRST-AFTA. This talk will review the state of DE, the relevant activities of the Cosmic Structure Interest Group (CoSSIG) of the PhyPAG, and detail the status and complementarity between Euclid, WFIRST and ot ambitious ground-based efforts.

  16. Entropy-Corrected Holographic Dark Energy

    NASA Astrophysics Data System (ADS)

    Wei, Hao

    2009-10-01

    The holographic dark energy (HDE) is now an interesting candidate of dark energy, which has been studied extensively in the literature. In the derivation of HDE, the black hole entropy plays an important role. In fact, the entropy-area relation can be modified due to loop quantum gravity or other reasons. With the modified entropy-area relation, we propose the so-called “entropy-corrected holographic dark energy" (ECHDE) in the present work. We consider many aspects of ECHDE and find some interesting results. In addition, we briefly consider the so-called “entropy-corrected agegraphic dark energy" (ECADE).

  17. Interacting holographic dark energy with logarithmic correction

    SciTech Connect

    Jamil, Mubasher; Farooq, M. Umar E-mail: mufarooq@yahoo.com

    2010-03-01

    The holographic dark energy (HDE) is considered to be the most promising candidate of dark energy. Its definition is motivated from the entropy-area relation which depends on the theory of gravity under consideration. Recently a new definition of HDE is proposed with the help of quantum corrections to the entropy-area relation in the setup of loop quantum cosmology. Employing this new definition, we investigate the model of interacting dark energy and derive its effective equation of state. Finally we establish a correspondence between generalized Chaplygin gas and entropy-corrected holographic dark energy.

  18. Reconstructing the history of dark energy using maximum entropy

    NASA Astrophysics Data System (ADS)

    Zunckel, Caroline; Trotta, Roberto

    2007-09-01

    We present a Bayesian technique based on a maximum-entropy method to reconstruct the dark energy equation of state (EOS) w(z) in a non-parametric way. This Maximum Entropy (MaxEnt) technique allows to incorporate relevant prior information while adjusting the degree of smoothing of the reconstruction in response to the structure present in the data. After demonstrating the method on synthetic data, we apply it to current cosmological data, separately analysing Type Ia supernova measurement from the HST/GOODS programme and the first-year Supernovae Legacy Survey (SNLS), complemented by cosmic microwave background and baryonic acoustic oscillation data. We find that the SNLS data are compatible with w(z) = -1 at all redshifts 0 <= z <~ 1100, with error bars of the order of 20 per cent for the most-constraining choice of priors. The HST/GOODS data exhibit a slight (about 1σ significance) preference for w > -1 at z ~ 0.5 and a drift towards w > -1 at larger redshifts which, however, is not robust with respect to changes in our prior specifications. We employ both a constant EOS prior model and a slowly varying w(z) and find that our conclusions are only mildly dependent on this choice at high redshifts. Our method highlights the danger of employing parametric fits for the unknown EOS, that can potentially miss or underestimate real structure in the data.

  19. Dark energy in hybrid inflation

    SciTech Connect

    Gong, Jinn-Ouk; Kim, Seongcheol

    2007-03-15

    The situation that a scalar field provides the source of the accelerated expansion of the Universe while rolling down its potential is common in both the simple models of the primordial inflation and the quintessence-based dark energy models. Motivated by this point, we address the possibility of causing the current acceleration via the primordial inflation using a simple model based on hybrid inflation. We trigger the onset of the motion of the quintessence field via the waterfall field, and find that the fate of the Universe depends on the true vacuum energy determined by choosing the parameters. We also briefly discuss the variation of the equation of state and the possible implementation of our scenario in supersymmetric theories.

  20. Probing the matter and dark energy sources in a viable Big Rip model of the Universe

    NASA Astrophysics Data System (ADS)

    Kumar, Suresh

    2014-08-01

    Chevallier-Polarski-Linder (CPL) parametrization for the equation of state (EoS) of dark energy in terms of cosmic redshift or scale factor have been frequently studied in the literature. In this study, we consider cosmic time-based CPL parametrization for the EoS parameter of the effective cosmic fluid that fills the fabric of spatially flat and homogeneous Robertson-Walker (RW) spacetime in General Relativity. The model exhibits two worthy features: (i) It fits the observational data from the latest H(z) and Union 2.1 SN Ia compilations matching the success of ΛCDM model. (ii) It describes the evolution of the Universe from the matter-dominated phase to the recent accelerating phase similar to the ΛCDM model but leads to Big Rip end of the Universe contrary to the everlasting de Sitter expansion in the ΛCDM model. We investigate the matter and dark energy sources in the model, in particular, behavior of the dynamical dark energy responsible for the Big Rip end of Universe.

  1. Dark matter and dark energy via nonperturbative (flavor) vacua

    NASA Astrophysics Data System (ADS)

    Tarantino, Walter

    2012-02-01

    A nonperturbative field theoretical approach to flavor physics (Blasone-Vitiello formalism) has been shown to imply a highly nontrivial vacuum state. Although still far from representing a satisfactory framework for a coherent and complete characterization of flavor states, in recent years the formalism has received attention for its possible implications at cosmological scales. In a previous work, we implemented the approach on a simple supersymmetric model (free Wess-Zumino), with flavor mixing, which was regarded as a model for free neutrinos and sneutrinos. The resulting effective vacuum (called flavor vacuum) was found to be characterized by a strong supersymmetry breaking. In this paper we explore the phenomenology of the model and we argue that the flavor vacuum is a consistent source for both dark energy (thanks to the bosonic sector of the model) and dark matter (via the fermionic one). Quite remarkably, besides the parameters connected with neutrino physics, in this model no other parameters have been introduced, possibly leading to a predictive theory of dark energy/matter. Despite its oversimplification, such a toy model already seems capable to shed some light on the observed energy hierarchy between neutrino physics, dark energy and dark matter. Furthermore, we move a step forth in the construction of a more realistic theory, by presenting a novel approach for calculating relevant quantities and hence extending some results to interactive theories, in a completely nonperturbative way.

  2. Description of dark energy and dark matter by vector fields

    NASA Astrophysics Data System (ADS)

    Meierovich, Boris E.

    A simple Lagrangian (with squared covariant divergence of a vector field as a kinetic term) turned out an adequate tool for oscopic description of dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Space-like and time-like massive vector fields describe two different forms of dark matter. The space-like field is attractive. It is responsible for the observed plateau in galaxy rotation curves. The time-like massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four-parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the Universe. In particular, the singular "big bang" turns into a regular inflation-like transition from contraction to expansion with accelerated expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the boundary of existence of regular oscillating solutions (in the absence of vector fields). The simplicity of the general covariant expression for the energy-momentum tensor allows analyzing the main properties of the dark sector analytically, avoiding unnecessary model assumptions.

  3. How clustering dark energy affects matter perturbations

    NASA Astrophysics Data System (ADS)

    Mehrabi, A.; Basilakos, S.; Pace, F.

    2015-09-01

    The rate of structure formation in the Universe is different in homogeneous and clustered dark energy models. The degree of dark energy clustering depends on the magnitude of its effective sound speed c2_eff and for c2_eff=0 dark energy clusters in a similar fashion to dark matter while for c2_eff=1 it stays (approximately) homogeneous. In this paper we consider two distinct equations of state for the dark energy component, wd = const and w_d=w_0+w_1(z/1+z) with c2_eff as a free parameter and we try to constrain the dark energy effective sound speed using current available data including Type Ia supernovae, baryon acoustic oscillation, cosmic microwave background shift parameter (Planck and WMAP), Hubble parameter, big bang nucleosynthesis and the growth rate of structures fσ8(z). At first we derive the most general form of the equations governing dark matter and dark energy clustering under the assumption that c2_eff=const. Finally, performing an overall likelihood analysis we find that the likelihood function peaks at c2_eff=0; however, the dark energy sound speed is degenerate with respect to the cosmological parameters, namely Ωm and wd.

  4. Thermodynamics of interacting holographic dark energy

    NASA Astrophysics Data System (ADS)

    Arevalo, Fabiola; Cifuentes, Paulo; Peña, Francisco

    2016-01-01

    The thermodynamics of a scheme of dark matter-dark energy interaction is studied considering a holographic model for the dark energy in a flat Friedmann-Lemaitre-Robertson-Walker background. We obtain a total entropy rate for a general horizon and we study the Generalized Second Law of Thermodynamics for a cosmological interaction as a free function. Additionally, we discuss two horizons related to the Ricci and Ricci-like model and its effect on an interacting system.

  5. Power-Law Entropy Corrected New Holographic Scalar Field Models of Dark Energy with Modified Ir-Cutoff

    NASA Astrophysics Data System (ADS)

    Khodam-Mohammadi, A.

    In this work, the PLECHDE model with Granda-Oliveros (G-O) IR-cutoff is studied. The evolution of dark energy density, deceleration and EoS parameters are calculated. I demonstrate that under a condition, our universe can accelerate near the phantom barrier at present time. We calculate these parameters also in PLECHDE at Ricci scale, when α = 2 and β = 1, and a comparison between Ricci scale, G-O cutoff and non-corrected HDE without matter field with G-O cutoff is done. The correspondence between this model and some scalar field of dark energy models is established. By this method, the evolutionary treatment of kinetic energy and potential for quintessence, tachyon, K-essence and dilaton fields, are obtained. I show that the results has a good compatibility with previous work in the limiting case of flat, dark dominated and non-corrected holographic dark energy.

  6. [Dark matter and dark energy of the universe].

    PubMed

    Aguilar Peris, José

    2005-01-01

    At the turn of the 20th Century, the Universe was thought to consist of our solar system, the Sun, planets, satellites and comets, floating under the Milky Way. The astronomers were ignorant of the existence of galaxies, clusters, quasars and black holes. Over the last ten years the Cosmology has made remarkable progress in our understanding of the composition of the Universe: 23 per cent is in an unknown form called dark matter; 73 per cent in another form called dark energy; 3 per cent is made of free hydrogen and helium atoms; 0.5 per cent makes up all the light we see in the night including the stars, clusters and superclusters; 0.3 per cent is in free neutrino particles; and finally, 0.03 per cent is in the heavier nuclei of which the Sun, the Earth and ourselves are made. In this work we study specially the dark matter and the dark energy. The first one appears to be attached to galaxies, and astronomers agree that it is cold, meaning that the particles that make up that matter are not moving fast. Very recently astronomers discovered that a tremendous amount of the so-cahled dark energy exists and that it is pushing and accelerating the expansion of the Universe. Should this expansion continue for another 14,000 million years, the sky will darken with only a handful of galaxies remaining visible. PMID:16463572

  7. Cosmological constraints on superconducting dark energy models

    NASA Astrophysics Data System (ADS)

    Keresztes, Zoltán; Gergely, László Á.; Harko, Tiberiu; Liang, Shi-Dong

    2015-12-01

    We consider cosmological tests of a scalar-vector-tensor gravitational model, in which the dark energy is included in the total action through a gauge-invariant, electromagnetic type contribution. The ground state of dark energy, corresponding to a constant potential V , is a Bose-Einstein type condensate with spontaneously broken U(1) symmetry. In other words, dark energy appears as a massive vector field emerging from a superposition of a massless vector and a scalar field, the latter corresponding to the Goldstone boson. Two particular cosmological models, corresponding to pure electric and pure magnetic type potentials, respectively, are confronted with type IA supernovae and Hubble parameter data. In the electric case, a good fit is obtained along a narrow inclined stripe in the Ωm-ΩV parameter plane, which includes the Λ cold dark matter limit as the best fit. The other points on this admissible region represent superconducting dark energy as a sum of a cosmological constant and a time-evolving contribution. In the magnetic case the cosmological test selects either (i) parameter ranges of the superconducting dark energy allowing for the standard baryonic sector plus dark matter or (ii) a unified superconducting dark matter and dark energy model, additionally including only the baryonic sector.

  8. Physical evidence for dark energy

    SciTech Connect

    Scranton, Ryan; Connolly, Andrew J.; Nichol, Robert C.; Stebbins, Albert; Szapudi, Istvan; Eisenstein, Daniel J.; Afshordi, Niayesh; Budavari, Tamas; Csabai, Istvan; Frieman, Joshua A.; Gunn, James E.; Johnston, David; Loh, Yeong-Shang; Lupton, Robert H.; Miller, Christopher J.; Sheldon, Erin Scott; Sheth, Ravi K.; Szalay, Alexander S.; Tegmark, Max; Xu, Yongzhong; Anderson, Scott F.; /Pittsburgh U. /Carnegie Mellon U. /Fermilab /Inst. Astron., Honolulu /Arizona U., Astron. Dept. - Steward Observ. /Princeton U. Observ. /Johns Hopkins U. /Eotvos U. /Chicago U., Astron. Astrophys. Ctr. /KICP, Chicago /Pennsylvania U. /Washington U., Seattle, Astron. Dept. /Apache Point Observ. /Illinois U., Urbana, Astron. Dept. /Tokyo U., ICRR /LLNL, Livermore /Sussex U., Astron. Ctr. /Baltimore, Space Telescope Sci. /Michigan U. /Naval Observ., Flagstaff /Penn State U., Astron. Astrophys.

    2003-07-01

    The authors present measurements of the angular cross-correlation between luminous red galaxies from the Sloan Digital Sky Survey and the cosmic microwave background temperature maps from the Wilkinson Microwave Anisotropy Probe. They find a statistically significant achromatic positive correlation between these two data sets, which is consistent with the expected signal from the late Integrated Sachs-Wolfe (ISW) effect. they do not detect any anti-correlation on small angular scales as would be produced from a large Sunyaev-Zel'dovich (SZ) effect, although they do see evidence for some SZ effect for their highest redshift samples. Assuming a flat universe, their preliminary detection of the ISW effect provides independent physical evidence for the existence of dark energy.

  9. An analytic model for interacting dark energy and its observational constraints

    NASA Astrophysics Data System (ADS)

    Pan, Supriya; Bhattacharya, Subhra; Chakraborty, Subenoy

    2015-09-01

    The paper deals with a theoretical model for interacting dark energy (DE). The interaction between the cold dark matter (dust) and the DE has been assumed to be non-gravitational in nature. Exact analytic cosmological solutions are obtained both for constant and variable EoS for DE. It is found that, for very small value of the coupling parameter (in the interaction term), the model asymptotically extends up to Λ cold dark matter, while the model can enter into the phantom domain asymptotically, if the coupling parameter is not so small. Both the solutions are then analysed with 194 Supernovae Type Ia data. The best-fitting parameters are shown with 1σ and 2σ confidence intervals. Finally, we have discussed the cosmographic parameters for both the cases.

  10. Effective equation of state for running vacuum: `mirage' quintessence and phantom dark energy

    NASA Astrophysics Data System (ADS)

    Basilakos, Spyros; Solà, Joan

    2014-02-01

    Past analyses of the equation of state (EoS) of the Dark Energy (DE) were not incompatible with a phantom phase near our time. This has been the case in the years of Wilkinson Microwave Anisotropy Probe observations, in combination with the remaining cosmological observables. Such situations did not completely disappear from the data collected from the Planck satellite mission. In it the EoS analysis may still be interpreted as suggesting ωD ≲ -1, and so a mildly evolving DE cannot be discarded. In our opinion, the usual ansatzs made on the structure of the EoS for dynamical DE models (e.g. quintessence and the like) is too simplified. In this work, we examine in detail some of these issues and suggest that a general class of models with a dynamical vacuum energy density could explain the persistent phantom anomaly, despite this there is no trace of real phantom behaviour in them. The spurious or `mirage' effect is caused by an attempt to describe them as if the DE would be caused by fundamental phantom scalar fields. Remarkably, the effective DE behaviour can also appear as quintessence in transit to phantom, or vice versa.

  11. Dark Matter and Dark Energy - Fact or Fantasy?

    NASA Astrophysics Data System (ADS)

    Mannheim, Philip

    We show that the origin of the dark matter and dark energy problems originates in the assumption of standard Einstein gravity that Newton's constant is fundamental. We discuss an alternate, conformal invariant, metric theory of gravity in which Newton's constant is induced dynamically, with the global induced one which is effective for cosmology being altogether weaker than the local induced one needed for the solar system. We find that in the theory dark matter is no longer needed, and that the accelerating universe data can be fitted without fine-tuning using a cosmological constant as large as particle physics suggests. In the conformal theory then it is not the cosmological constant which is quenched but rather the amount of gravity that it produces.

  12. Embrace the Dark Side: Advancing the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Suchyta, Eric

    The Dark Energy Survey (DES) is an ongoing cosmological survey intended to study the properties of the accelerated expansion of the Universe. In this dissertation, I present work of mine that has advanced the progress of DES. First is an introduction, which explores the physics of the cosmos, as well as how DES intends to probe it. Attention is given to developing the theoretical framework cosmologists use to describe the Universe, and to explaining observational evidence which has furnished our current conception of the cosmos. Emphasis is placed on the dark sector - dark matter and dark energy - the content of the Universe not explained by the Standard Model of particle physics. As its name suggests, the Dark Energy Survey has been specially designed to measure the properties of dark energy. DES will use a combination of galaxy cluster, weak gravitational lensing, angular clustering, and supernovae measurements to derive its state of the art constraints, each of which is discussed in the text. The work described in this dissertation includes science measurements directly related to the first three of these probes. The dissertation presents my contributions to the readout and control system of the Dark Energy Camera (DECam); the name of this software is SISPI. SISPI uses client-server and publish-subscribe communication patterns to coordinate and command actions among the many hardware components of DECam - the survey instrument for DES, a 570 megapixel CCD camera, mounted at prime focus of the Blanco 4-m Telescope. The SISPI work I discuss includes coding applications for DECam's filter changer mechanism and hexapod, as well as developing the Scripts Editor, a GUI application for DECam users to edit and export observing sequence SISPI can load and execute. Next, the dissertation describes the processing of early DES data, which I contributed. This furnished the data products used in the first-completed DES science analysis, and contributed to improving the

  13. Dark energy, inflation, and extra dimensions

    SciTech Connect

    Steinhardt, Paul J.; Wesley, Daniel

    2009-05-15

    We consider how accelerated expansion, whether due to inflation or dark energy, imposes strong constraints on fundamental theories obtained by compactification from higher dimensions. For theories that obey the null energy condition (NEC), we find that inflationary cosmology is impossible for a wide range of compactifications; and a dark energy phase consistent with observations is only possible if both Newton's gravitational constant and the dark energy equation of state vary with time. If the theory violates the NEC, inflation and dark energy are only possible if the NEC-violating elements are inhomogeneously distributed in the compact dimensions and vary with time in precise synchrony with the matter and energy density in the noncompact dimensions. Although our proofs are derived assuming general relativity applies in both four and higher dimensions and certain forms of metrics, we argue that similar constraints must apply for more general compactifications.

  14. The Dark Energy Survey Pipeline

    NASA Astrophysics Data System (ADS)

    Morganson, Eric; Dark Energy Survey Data Management Team

    2016-01-01

    The Dark Energy Survey (DES) is a large optical survey that is intended to study cosmology using Type Ia supernovae, baryon acoustic oscillations, galaxy cluster counting and gravitational lensing. DES comprises two five year surveys (roughly 100 nights per year) on the Blanco 4-m telescope at the Cerro Tololo Interamerican Observatory (CTIO) in Chile. The first is a 5,000 square degree survey of the high Galactic latitude Southern sky to roughly 24th magnitude in the g, r, i, z and Y filters. The second is a set of ten 3 square degree fields that are observed roughly once every five nights as a supernova survey. DES will be significantly deeper than and have superior image quality to previous wide field surveys like SDSS and Pan-STARRS1. Reduced DES images are made public at NOAO roughly one year after the images are taken. DES plans to release its first two years of data (images and catalogs) in 2017 and its entire dataset after it finishes taking data in 2018. The National Center for Supercomputing Applications (NCSA) at the University of Illinois is leading the DES data processing. I describe this data processing, the DES pipeline and the DES data in this poster.

  15. Status of the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Buckley-Geer, Elizabeth J.; Dark Energy Science Collaboration

    2016-01-01

    The Dark Energy Survey is probing the origin of cosmic acceleration and the nature of dark energy by carrying out two interleaved, multi-band imaging surveys using the 570-megapixel Dark Energy Camera built by the collaboration for the NOAO Blanco 4-meter telescope at CTIO. The survey began in August 2013 and has completed two of its five 105-night observing seasons, including grizY imaging of several thousand square degrees and time-domain griz imaging of 30 sq. deg. with a 6-night cadence. I will describe the status of the survey and highlight some of the science results.

  16. Can observational growth rate data favor the clustering dark energy models?

    NASA Astrophysics Data System (ADS)

    Mehrabi, Ahmad; Malekjani, Mohammad; Pace, Francesco

    2015-03-01

    Under the commonly used assumption that clumped objects can be well described by a spherical top-hat matter density profile, we investigate the evolution of the cosmic growth index in clustering dark energy (CDE) scenarios on sub-horizon scales. We show that the evolution of the growth index γ( z) strongly depends on the equation-of-state (EoS) parameter and on the clustering properties of the dark energy (DE) component. Performing a χ 2 analysis, we show that CDE models have a better fit to observational growth rate data points with respect to the concordance ΛCDM model. We finally determine γ( z) using an exponential parametrization and demonstrate that the growth index in CDE models presents large variations with cosmic redshift. In particular it is smaller (larger) than the theoretical value for the ΛCDM model, γ Λ ≃0.55, in the recent past (at the present time).

  17. The general class of Bianchi cosmological models with varying EoS parameter

    NASA Astrophysics Data System (ADS)

    Chaubey, R.; Shukla, A. K.

    2015-03-01

    This paper deals with the general class of Bianchi cosmological models with varying equation of state (EoS) parameter. We have discussed three different types of physically viable cosmological solutions of average scale factor by using a special law for deceleration parameter which is linear in time with a negative slope. The exact solutions to the corresponding field equations are obtained for three different physical viable cosmologies. The EoS parameter for deceleration parameter as well as dark energy is found to be the time varying function. We have using the latest observational data to draw a qualitative picture of the evaluation of the universe. In our constructed model, the equation of state parameter of dark energy is obtained as time varying and it is evolving with negative sign which is consistent with recent observation. We also shows that, at the early stage, the equation of state (EoS) parameter ( γ) is positive i.e. the universe was matter dominated but at large time, the universe evolving with negative values i.e. the present epoch. All physical parameters are calculated and discussed in each physical viable cosmological model.

  18. Dark Energy as Extra-Dimensional Gravity

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.

    The nature of dark energy, which presently dominates the universal energy budget, remains a complete mystery. Models in which it is currently evolving tend to be overly sensitive to initial conditions, and necessarily involve a very light degree of freedom which is very difficult to obtain from realistic microscopic physics. This essay describes recent progress in understanding how the dark energy can arise as a residue of extra-dimensional gravitation, leading to new insights into how dark-energy cosmology might work. This picture produces dark energy dynamics within which couplings slowly run (or: 'walk') over cosmological times. It also has several unusual experimental predictions, including measurable modifications to Newton's Law on sub-millimeter scales and dramatic implications at next-generation collider experiments.

  19. On the Triple Interacting Dark Energy Model

    NASA Astrophysics Data System (ADS)

    Huang, Peng; Huang, Yong-Chang

    2013-07-01

    Three aspects of the triple interacting dark energy model are studied. The relation between two types of the triple interacting dark energy models is investigated first. Then, the concrete forms of the interacting terms are given by supposing ratios between different energy components is stationary. Furthermore, the stability of the triple interacting dark energy model with different transfer terms is studied in detail, and the complete table of relations between the stability and the transfer terms is given, we find that only models with transformation between matter and dark energy proportional to ρc or ρDE, while the transformation between radiation and matter is not proportional to ρR, are stable against perturbation, which give strong restriction on the model building of the triple interacting.

  20. Gravity Resonance Spectroscopy Constrains Dark Energy and Dark Matter Scenarios

    NASA Astrophysics Data System (ADS)

    Jenke, T.; Cronenberg, G.; Burgdörfer, J.; Chizhova, L. A.; Geltenbort, P.; Ivanov, A. N.; Lauer, T.; Lins, T.; Rotter, S.; Saul, H.; Schmidt, U.; Abele, H.

    2014-04-01

    We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate that Newton's inverse square law of gravity is understood at micron distances on an energy scale of 10-14 eV. At this level of precision, we are able to provide constraints on any possible gravitylike interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant β >5.8×108 at 95% confidence level (C.L.), and an attractive (repulsive) dark matter axionlike spin-mass coupling is excluded for the coupling strength gsgp>3.7×10-16 (5.3×10-16) at a Yukawa length of λ =20 μm (95% C.L.).

  1. Dark matter from dark energy-baryonic matter couplings

    NASA Astrophysics Data System (ADS)

    Avilés, Alejandro; Cervantes-Cota, Jorge L.

    2011-01-01

    We present a scenario in which a scalar field dark energy is coupled to the trace of the energy momentum tensor of the baryonic matter fields. In the slow-roll regime, this interaction could give rise to the cosmological features of dark matter. We work out the cosmological background solutions and fit the parameters of the model using the Union 2 supernovae data set. Then, we develop cosmological perturbations up to linear order, and we find that the perturbed variables have an acceptable behavior, in particular, the density contrast of baryonic matter grows similar to that in the ΛCDM model for a suitable choice of the strength parameter of the coupling.

  2. Quintom dark energy with nonminimal coupling

    NASA Astrophysics Data System (ADS)

    Marciu, Mihai

    2016-06-01

    The quintom formalism is studied by considering the nonminimal coupling of the quintessence and the phantom field, respectively, with the scalar curvature of space-time. The dynamical aspects of the evolution of the system are evaluated by considering numerical solutions of the system of equations from the matter-dominated era. It is observed that the cosmic expansion is accelerated, the Universe is evolving toward the big rip, while the coupling coefficient ξ is affecting mainly the dark energy equation of state. For significant values of the coupling coefficient, the dark energy equation of state presents an oscillatory behavior around the phantom divide line and the frequency of the oscillations is increasing with the strength of the coupling. At late times the Universe is dark-energy dominated, and dark energy evolves asymptotically to the cosmological constant.

  3. Varying ghost dark energy and particle creation

    NASA Astrophysics Data System (ADS)

    Khurshudyan, M.

    2016-02-01

    One of the models of dark energy is the ghost dark energy, which has a geometrical origin. Recently, a certain type of phenomenological modification of ghost dark energy has been suggested which motivated us for this work. The goal of this paper is twofold. First, we would like to study the cosmological scenario involving interacting varying ghost dark energy. A cosmographic analysis of a non-interacting model is also performed. Then, we study the particle creation following the straight analogy between quantization in Minkowski background and canonical quantization of a scalar field in curved dynamical backgrounds. Particular attention will be paid to massless-particle production from a radiation-dominated universe (according to our toy model) which evolves to our large-scale universe. Constraints on the parameters of the models obtained during the cosmographic analysis did allow to demonstrate the possibility of a massless-particle creation in a radiation-dominated universe.

  4. Dark Energy, Dark Matter and Science with Constellation-X

    NASA Technical Reports Server (NTRS)

    Cardiff, Ann Hornschemeier

    2005-01-01

    Constellation-X, with more than 100 times the collecting area of any previous spectroscopic mission operating in the 0.25-40 keV bandpass, will enable highthroughput, high spectral resolution studies of sources ranging from the most luminous accreting supermassive black holes in the Universe to the disks around young stars where planets form. This talk will review the updated Constellation-X science case, released in booklet form during summer 2005. The science areas where Constellation-X will have major impact include the exploration of the space-time geometry of black holes spanning nine orders of magnitude in mass and the nature of the dark energy and dark matter which govern the expansion and ultimate fate of the Universe. Constellation-X will also explore processes referred to as "cosmic feedback" whereby mechanical energy, radiation, and chemical elements from star formation and black holes are returned to interstellar and intergalactic medium, profoundly affecting the development of structure in the Universe, and will also probe all the important life cycles of matter, from stellar and planetary birth to stellar death via supernova to stellar endpoints in the form of accreting binaries and supernova remnants. This talk will touch upon all these areas, with particular emphasis on Constellation-X's role in the study of Dark Energy.

  5. Probing dark energy through scale dependence

    NASA Astrophysics Data System (ADS)

    Motta, Mariele; Sawicki, Ignacy; Saltas, Ippocratis D.; Amendola, Luca; Kunz, Martin

    2013-12-01

    We consider the consequences of having no prior knowledge of the true dark energy model for the interpretation of cosmological observations. The magnitude of redshift-space distortions and weak-lensing shear is determined by the metric on the geodesics of which galaxies and light propagate. We show that, given precise enough observations, we can use these data to completely reconstruct the metric on our past light cone and therefore to measure the scale and time dependence of the anisotropic stress and the evolution of the gravitational potentials in a model-independent manner. Since both dark matter and dark energy affect the visible sector only through the gravitational field they produce, they are inseparable without a model for dark energy: galaxy bias cannot be measured and therefore the distribution of dark matter determined; the peculiar velocity of dark matter can be identified with that of the galaxies only when the equivalence principle holds. Given these limitations, we show how one can nonetheless build tests for classes of dark energy models which depend on making measurements at multiple scales at a particular redshift. They are null tests on the model-independent observables, do not require modeling evolution in time, and do not require any parametrization of the free functions of these models—such as the sound speed. We show that one in principle could rule out or constrain the whole class of the most general scalar-tensor theories even without assuming the quasistatic limit.

  6. Effective theory of interacting dark energy

    NASA Astrophysics Data System (ADS)

    Gleyzes, Jérôme; Langlois, David; Mancarella, Michele; Vernizzi, Filippo

    2015-08-01

    We present a unifying treatment of dark energy and modified gravity that allows distinct conformal-disformal couplings of matter species to the gravitational sector. In this very general approach, we derive the conditions to avoid ghost and gradient instabilities. We compute the equations of motion for background quantities and linear perturbations. We illustrate our formalism with two simple scenarios, where either cold dark matter or a relativistic fluid is nonminimally coupled. This extends previous studies of coupled dark energy to a much broader spectrum of gravitational theories.

  7. Dark Energy Models in f( R, T) Theory with Variable Deceleration Parameter

    NASA Astrophysics Data System (ADS)

    Mishra, R. K.; Chand, Avtar; Pradhan, Anirudh

    2016-02-01

    In this communication we have investigated Bianchi type-II dark energy (DE) cosmological models with and without presence of magnetic field in modified f( R, T) gravity theory as proposed by Harko et al. (Phys. Rev. D, 84, 024020, 2011). The exact solution of the field equations is obtained by setting the deceleration parameter q as a time function along with suitable assumption the scale factor a(t)= [sinh(α t)]^{{1/n}}, α and n are positive constant. We have obtained a class of accelerating and decelerating DE cosmological models for different values of n and α. The present study believes that the mysterious dark energy is the main responsible force for accelerating expansion of the universe. For our constructed models the DE candidates cosmological constant (Λ) and the EoS parameter ( ω) both are found to be time varying quantities. The cosmological constant Λ is very large at early time and approaches to a small positive value at late time whereas the EoS parameters is found small negative at present time. Physical and kinematical properties of the models are discussed with the help of pictorial representations of the parameters. We have observed that our constructed models are compatible with recent cosmological observations.

  8. Power Law and Logarithmic Ricci Dark Energy Models in Hořava-Lifshitz Cosmology

    NASA Astrophysics Data System (ADS)

    Pasqua, Antonio; Chattopadhyay, Surajit; Khurshudyan, Martiros; Myrzakulov, Ratbay; Hakobyan, Margarit; Movsisyan, Artashes

    2015-03-01

    In this work, we studied the Power Law and the Logarithmic Entropy Corrected versions of the Ricci Dark Energy (RDE) model in a spatially non-flat universe and in the framework of Hořava-Lifshitz cosmology. For the two cases containing non-interacting and interacting RDE and Dark Matter (DM), we obtained the exact differential equation that determines the evolutionary form of the RDE energy density. Moreover, we obtained the expressions of the deceleration parameter q and, using a parametrization of the equation of state (EoS) parameter ω D given by the relation ω D ( z) = ω 0+ ω 1 z, we derived the expressions of both ω 0 and ω 1. We interestingly found that the expression of ω 0 is the same for both non-interacting and interacting case. The expression of ω 1 for the interacting case has strong dependence from the interacting parameter b 2. The parameters derived in this work are done in small redshift approximation and for low redshift expansion of the EoS parameter.

  9. Constraints on dark energy from new observations including Pan-STARRS

    SciTech Connect

    Zheng, Wei; Li, Si-Yu; Li, Hong; Xia, Jun-Qing; Li, Mingzhe; Lu, Tan E-mail: lisy@ihep.ac.cn E-mail: xiajq@ihep.ac.cn E-mail: t.lu@pmo.ac.cn

    2014-08-01

    In this paper, we set the new limits on the equation of state parameter (EoS) of dark energy with the observations of cosmic microwave background radiation (CMB) from Planck satellite, the type Ia supernovae from Pan-STARRS and the baryon acoustic oscillation (BAO). We consider two parametrization forms of EoS: a constant w and time evolving w(a)=w{sub 0}+w{sub a}(1-a). The results show that with a constant EoS, w=-1.141±0.075 68% C.L.), which is consistent with ΛCDM at about 2σ confidence level. For a time evolving w(a) model, we get w{sub 0}=-1.09{sup +0.16}{sub -0.18} 1σ C.L.), w{sub a}=-0.34{sup +0.87}{sub -0.51} 1σ C.L.), and in this case ΛCDM can be comparable with our observational data at 1σ confidence level. In order to do the parametrization independent analysis, additionally we adopt the so called principal component analysis (PCA) method, in which we divide redshift range into several bins and assume w as a constant in each redshift bin (bin-w). In such bin-w scenario, we find that for most of the bins cosmological constant can be comparable with the data, however, there exists few bins which give w deviating from ΛCDM at more than 2σ confidence level, which shows a weak hint for the time evolving behavior of dark energy. To further confirm this hint, we need more data with higher precision.

  10. Dark Energy Found Stifling Growth in Universe

    NASA Astrophysics Data System (ADS)

    2008-12-01

    WASHINGTON -- For the first time, astronomers have clearly seen the effects of "dark energy" on the most massive collapsed objects in the universe using NASA's Chandra X-ray Observatory. By tracking how dark energy has stifled the growth of galaxy clusters and combining this with previous studies, scientists have obtained the best clues yet about what dark energy is and what the destiny of the universe could be. This work, which took years to complete, is separate from other methods of dark energy research such as supernovas. These new X-ray results provide a crucial independent test of dark energy, long sought by scientists, which depends on how gravity competes with accelerated expansion in the growth of cosmic structures. Techniques based on distance measurements, such as supernova work, do not have this special sensitivity. Scientists think dark energy is a form of repulsive gravity that now dominates the universe, although they have no clear picture of what it actually is. Understanding the nature of dark energy is one of the biggest problems in science. Possibilities include the cosmological constant, which is equivalent to the energy of empty space. Other possibilities include a modification in general relativity on the largest scales, or a more general physical field. People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Ghostly Glow Reveals a Hidden Class of Long-Wavelength Radio Emitters Powerful Nearby Supernova Caught By Web Cassiopeia A Comes Alive Across Time and Space To help decide between these options, a new way of looking at dark energy is required. It is accomplished by observing how cosmic acceleration affects the growth of galaxy clusters over time. "This result could be described as 'arrested development of the universe'," said Alexey Vikhlinin of the Smithsonian Astrophysical Observatory in Cambridge, Mass., who led the research. "Whatever is forcing the expansion of the universe to speed up is also forcing its

  11. Report of the Dark Energy Task Force

    DOE R&D Accomplishments Database

    Albrecht, Andreas; Bernstein, Gary; Cahn, Robert; Freedman, Wendy L.; Hewitt, Jacqueline; Hu, Wayne; Huth, John; Kamionkowski, Marc; Kolb, Edward W.; Knox, Lloyd; Mather, John C.

    2006-01-01

    Dark energy appears to be the dominant component of the physical Universe, yet there is no persuasive theoretical explanation for its existence or magnitude. The acceleration of the Universe is, along with dark matter, the observed phenomenon that most directly demonstrates that our theories of fundamental particles and gravity are either incorrect or incomplete. Most experts believe that nothing short of a revolution in our understanding of fundamental physics will be required to achieve a full understanding of the cosmic acceleration. For these reasons, the nature of dark energy ranks among the very most compelling of all outstanding problems in physical science. These circumstances demand an ambitious observational program to determine the dark energy properties as well as possible.

  12. Dark matter and dark energy: approaches and constraints

    NASA Astrophysics Data System (ADS)

    Zakharov, Alexander

    We will introduce problems of Dark Matter (DM) and Dark Energy (DE), namely we will describe a development of these concepts and their present status. We will demonstrate ap-proaches to these problems. As specific issues we will discuss limits on DM concentration near the black hole at the Galactic Center and ways to solve DE problem introducing alternative theories of gravity such as f (R)-theories. The existence of dark matter (DM) at scales of few pc down to 10-5 pc around the centers of galaxies and in particular in the Galactic Center region has been considered in the literature. Under the assumption that such a DM clump, principally constituted by non-baryonic matter (like WIMPs) does exist at the center of our galaxy, the study of the γ-ray emission from the Galactic Center region allows us to constrain both the mass and the size of this DM sphere. Moreover, if a DM cusp does exist around the Galactic Center it could modify the trajectories of stars moving around it in a sensible way depending on the DM mass distribution. Here, we discuss the constraints that can be obtained with the orbit analysis of stars (as S2 and S16) moving inside the DM concentration with present and next generations of large telescopes. In particular, consideration of the S2 star apoastron shift may allow improving limits on the DM mass and size. We will describe severe constraints from Solar system data on parameters f (R) = Rn theories, where n = 1 corresponds to the standard general relativistic case. 1. A. F. Zakharov, A.A. Nucita, F. De Paolis, G. Ingrosso: Solar system constraints on Rn gravity, Phys. Rev. D 74, 107101, (2006). 2. A. F. Zakharov, A.A. Nucita, F. De Paolis, G. Ingrosso: Apoastron shift constraints on dark matter distribution at the Galactic Center, Phys. Rev. D 76, 062001, (2007). 3. A.F. Zakharov, S. Capozziello, F. De Paolis, G. Ingrosso, A.A. Nucita, The Role of Dark Matter and Dark Energy in Cosmological Models: Theoretical Overview, Space Sci. Rev. 148

  13. Examining the viability of phantom dark energy

    NASA Astrophysics Data System (ADS)

    Ludwick, Kevin J.

    2015-09-01

    In the standard cosmological framework of the 0th-order Friedmann-Lemaître-Robertson-Walker (FLRW) metric and the use of perfect fluids in the stress-energy tensor, dark energy with an equation-of-state parameter w <-1 (known as phantom dark energy) implies negative kinetic energy and vacuum instability when modeled as a scalar field. However, the accepted values for present-day w from Planck and WMAP9 include a significant range of values less than -1 . We find that it is not as obvious as one might think that phantom dark energy has negative kinetic energy categorically. Analogously, we find that field models of quintessence dark energy (wϕ>-1 ) do not necessarily have positive kinetic energy categorically. Staying within the confines of observational constraints and general relativity, for which there is good experimental validation, we consider a few reasonable departures from the standard 0th-order framework in an attempt to see if negative kinetic energy can be avoided in these settings despite an apparent w <-1 . We consider a more accurate description of the universe through the perturbing of the isotropic and homogeneous FLRW metric and the components of the stress-energy tensor, and we consider dynamic w and primordial isocurvature and adiabatic perturbations. We find that phantom dark energy does not necessarily have negative kinetic energy for all relevant length scales at all times, and we also find that, by the same token, quintessence dark energy does not necessarily have positive kinetic energy for all relevant length scales at all times.

  14. Generalized models of unification of dark matter and dark energy

    NASA Astrophysics Data System (ADS)

    Čaplar, Neven; Štefančić, Hrvoje

    2013-01-01

    A model of unification of dark matter and dark energy based on the modeling of the speed of sound as a function of the parameter of the equation of state is introduced. It is found that the model in which the speed of sound depends on the power of the parameter of the equation of state, cs2=α(-w)γ, contains the generalized Chaplygin gas models as its subclass. An effective scalar field description of the model is obtained in a parametric form which in some cases can be translated into a closed form solution for the scalar field potential. A constraint on model parameters is obtained using the observational data on the Hubble parameter at different redshifts.

  15. Variable G Corrections to Statefinder Parameters of Dark Energy

    NASA Astrophysics Data System (ADS)

    Jamil, Mubasher

    2010-11-01

    Motivated by several observational and theoretical developments concerning the variability of Newton’s gravitational constant with time G( t), we calculate the varying G correction to the statefinder parameters for four models of dark energy namely interacting dark energy holographic dark energy, new-agegraphic dark energy and generalized Chaplygin gas.

  16. Interacting entropy-corrected holographic dark energy with apparent horizon as an infrared cutoff

    NASA Astrophysics Data System (ADS)

    Khodam-Mohammadi, A.; Malekjani, M.

    2012-05-01

    In this work we consider the entropy-corrected version of interacting holographic dark energy (HDE), in the non-flat universe enclosed by apparent horizon. Two corrections of entropy so-called logarithmic `LEC' and power-law `PLEC' in HDE model with apparent horizon as an IR-cutoff are studied. The ratio of dark matter to dark energy densities u, equation of state parameter w D and deceleration parameter q are obtained. We show that the cosmic coincidence problem is solved for interacting models. By studying the effect of interaction in EoS parameter of both models, we see that the phantom divide may be crossed and also understand that the interacting models can drive an acceleration expansion at the present and future, while in non-interacting case, this expansion can happen only at the early time. The graphs of deceleration parameter for interacting models, show that the present acceleration expansion is preceded by a sufficiently long period deceleration at past. Moreover, the thermodynamical interpretation of interaction between LECHDE and dark matter is described. We obtain a relation between the interaction term of dark components and thermal fluctuation in a non-flat universe, bounded by the apparent horizon. In limiting case, for ordinary HDE, the relation of interaction term versus thermal fluctuation is also calculated.

  17. Transition from a matter-dominated era to a dark energy universe

    NASA Astrophysics Data System (ADS)

    Nojiri, Shin'Ichi; Odintsov, Sergei D.; Štefančić, Hrvoje

    2006-10-01

    We develop a general program of the unification of a matter-dominated era with an acceleration epoch for scalar-tensor theory or a dark fluid. The general reconstruction of the scalar-tensor theory is fulfilled. The explicit form of the scalar potential for which the theory admits a matter-dominated era, a transition to an acceleration, and an (asymptotically de Sitter) acceleration epoch consistent with Wilkinson Microwave Anisotropy Probe data is found. The interrelation of the epochs of deceleration-acceleration transition and matter dominance-dark energy transition for dark fluids with a general equation of state (EOS) is investigated. We give several examples of such models with explicit EOS (using redshift parametrization) where matter-dark energy domination transition may precede the deceleration-acceleration transition. As a by-product, the reconstruction scheme is applied to scalar-tensor theory to define the scalar potentials which may produce the dark matter effect. The obtained modification of Newton potential may explain the rotation curves of galaxies.

  18. Constraining Dark Matter and Dark Energy Models using Astrophysical Surveys

    NASA Astrophysics Data System (ADS)

    Cieplak, Agnieszka M.

    This thesis addresses astrophysical probes to constrain dark matter (DM) and dark energy models. Primordial black holes (PBHs) remain one of the few DM candidates within the Standard Model of Particle Physics. This thesis presents a new probe of this PBH DM, using the microlensing of the source stars monitored by the already existing Kepler satellite. With its photometric precision and the large projected cross section of the nearby stars, it is found that previous constraints on PBH DM could theoretically be extended by two orders of magnitude. Correcting a well-known microlensing formula, a limb-darkening analysis is included, and a new approximation is calculated for future star selection. A preliminary prediction is calculated for the planned Wide-Field Infrared Survey Telescope. A preliminary study of the first two years of publicly available Kepler data is presented. The investigation yields many new sources of background error not predicted in the theoretical calculations, such as stellar flares and comets in the field of view. Since no PBH candidates are detected, an efficiency of detection is therefore calculated by running a Monte Carlo with fake limb-darkened finite-source microlensing events. It is found that with just the first 8 quarters of data, a full order of magnitude of the PBH mass range can be already constrained. Finally, one of the astrophysical probes of dark energy is also addressed - specifically, the baryon acoustic oscillations (BAO) measurement in the gas distribution, as detected in quasar absorption lines. This unique measurement of dark energy at intermediate redshifts is being measured by current telescope surveys. The last part of this thesis therefore focuses on understanding the systematic effects in such a detection. Since the bias between the underlying dark matter distribution and the measured gas flux distribution is based on gas physics, hydrodynamic simulations are used to understand the evolution of neutral hydrogen over

  19. Polytropic dark matter flows illuminate dark energy and accelerated expansion

    NASA Astrophysics Data System (ADS)

    Kleidis, K.; Spyrou, N. K.

    2015-04-01

    Currently, a large amount of data implies that the matter constituents of the cosmological dark sector might be collisional. An attractive feature of such a possibility is that, it can reconcile dark matter (DM) and dark energy (DE) in terms of a single component, accommodated in the context of a polytropic-DM fluid. In fact, polytropic processes in a DM fluid have been most successfully used in modeling dark galactic haloes, thus significantly improving the velocity dispersion profiles of galaxies. Motivated by such results, we explore the time evolution and the dynamical characteristics of a spatially-flat cosmological model, in which, in principle, there is no DE at all. Instead, in this model, the DM itself possesses some sort of fluidlike properties, i.e., the fundamental units of the Universe matter-energy content are the volume elements of a DM fluid, performing polytropic flows. In this case, together with all the other physical characteristics, we also take the energy of this fluid's internal motions into account as a source of the universal gravitational field. This form of energy can compensate for the extra energy, needed to compromise spatial flatness, namely, to justify that, today, the total energy density parameter is exactly unity. The polytropic cosmological model, depends on only one free parameter, the corresponding (polytropic) exponent, Γ. We find this model particularly interesting, because for Γ ≤ 0.541, without the need for either any exotic DE or the cosmological constant, the conventional pressure becomes negative enough so that the Universe accelerates its expansion at cosmological redshifts below a transition value. In fact, several physical reasons, e.g., the cosmological requirement for cold DM (CDM) and a positive velocity-of-sound square, impose further constraints on the value of Γ, which is eventually settled down to the range -0.089 < Γ ≤ 0. This cosmological model does not suffer either from the age problem or from the

  20. "Dark energy" in the Local Void

    NASA Astrophysics Data System (ADS)

    Villata, M.

    2012-05-01

    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (˜5×1015 M ⊙) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.

  1. Probing gravitation, dark energy, and acceleration

    SciTech Connect

    Linder, Eric V.

    2004-02-20

    The acceleration of the expansion of the universe arises from unknown physical processes involving either new fields in high energy physics or modifications of gravitation theory. It is crucial for our understanding to characterize the properties of the dark energy or gravity through cosmological observations and compare and distinguish between them. In fact, close consistencies exist between a dark energy equation of state function w(z) and changes to the framework of the Friedmann cosmological equations as well as direct spacetime geometry quantities involving the acceleration, such as ''geometric dark energy'' from the Ricci scalar. We investigate these interrelationships, including for the case of super acceleration or phantom energy where the fate of the universe may be more gentle than the Big Rip.

  2. Examining the Viability of Phantom Dark Energy

    NASA Astrophysics Data System (ADS)

    Ludwick, Kevin

    2016-03-01

    In the standard cosmological framework of the 0th-order FLRW metric and the use of perfect fluids in the stress-energy tensor, dark energy with an equation-of-state parameter w < - 1 (known as phantom dark energy) implies negative kinetic energy and vacuum instability when modeled as a scalar field. However, the accepted values for present-day w from Planck and WMAP9 include a significant range of values less than - 1 . Staying within the confines of observational constraints and general relativity, for which there is good experimental validation, we consider a few reasonable departures from the standard 0th-order framework in an attempt to see if negative kinetic energy can be avoided in these settings despite an apparent w < - 1 . We consider a more accurate description of the universe through the perturbing of the isotropic and homogeneous FLRW metric and the components of the stress-energy tensor, and we consider dynamic w and primordial isocurvature and adiabatic perturbations. We find that phantom dark energy does not necessarily have negative kinetic energy for all relevant length scales at all times and, by the same token, that quintessence dark energy does not necessarily have positive kinetic energy for all relevant length scales at all times.

  3. Topics in microlensing and dark energy

    NASA Astrophysics Data System (ADS)

    Yashar, Mark

    In this dissertation we describe two separate research projects. The first project involves the utilization and development of reddening models, color magnitude diagrams (CMDs), and microlensing population models of the Large Magellanic Cloud (LMC) to constrain the locations of micro-lensing source stars and micro-lensing objects in the Large Magellanic Cloud and the Milky Way (MW) halo using data of 13 microlensing source stars obtained by the MACHO (massive compact halo objects) collaboration with the Hubble Space Telescope. This analysis suggests that the source stars are located in the LMC disk and the lenses are located in the MW halo. For the second project, we report on the results of a Markov Chain Monte Carlo (MCMC) analysis of an inverse power law (IPL) quintessence model using the Dark Energy Task Force (DETF) simulated data models as a representation of future dark energy experiments. Simulated data sets were generated for a Lambda cold dark matter (L CDM ) background cosmology as well as a case where the dark energy is provided by a specific IPL fiducial model. The results are presented in the form of error contours generated by these two background cosmologies which are then used to consider the effects of future dark energy projects on IPL scalar field models and are able to demonstrate the power of DETF Stage 4 data sets in the context of the IPL model. We find that the respective increase in constraining power with higher quality data sets produced by our analysis gives results that are broadly consistent with the DETF results for the w 0 - w a parameterization of dark energy. Finally, using our simulated data sets constructed around a fiducial IPL model, we find that for a universe containing dark energy described by such a scalar field, a cosmological constant can be excluded by Stage 4 data at the 3s level.

  4. The Logotropic Dark Fluid as a unification of dark matter and dark energy

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri

    2016-07-01

    We propose a heuristic unification of dark matter and dark energy in terms of a single "dark fluid" with a logotropic equation of state P = Aln ⁡ (ρ /ρP), where ρ is the rest-mass density, ρP = 5.16 ×1099gm-3 is the Planck density, and A is the logotropic temperature. The energy density ɛ is the sum of a rest-mass energy term ρc2 ∝a-3 mimicking dark matter and an internal energy term u (ρ) = - P (ρ) - A = 3 Aln ⁡ a + C mimicking dark energy (a is the scale factor). The logotropic temperature is approximately given by A ≃ρΛc2 / ln ⁡ (ρP /ρΛ) ≃ρΛc2 / [ 123 ln ⁡ (10) ], where ρΛ = 6.72 ×10-24gm-3 is the cosmological density and 123 is the famous number appearing in the ratio ρP /ρΛ ∼10123 between the Planck density and the cosmological density. More precisely, we obtain A = 2.13 ×10-9gm-1s-2 that we interpret as a fundamental constant. At the cosmological scale, our model fulfills the same observational constraints as the ΛCDM model (they will differ in about 25 Gyrs when the logotropic universe becomes phantom). However, the logotropic dark fluid has a nonzero speed of sound and a nonzero Jeans length which, at the beginning of the matter era, is about λJ = 40.4pc, in agreement with the minimum size of the dark matter halos observed in the universe. The existence of a nonzero Jeans length may solve the missing satellite problem. At the galactic scale, the logotropic pressure balances the gravitational attraction, providing halo cores instead of cusps. This may solve the cusp problem. The logotropic equation of state generates a universal rotation curve that agrees with the empirical Burkert profile of dark matter halos up to the halo radius. In addition, it implies that all the dark matter halos have the same surface density Σ0 =ρ0rh = 141M⊙ /pc2 and that the mass of dwarf galaxies enclosed within a sphere of fixed radius ru = 300pc has the same value M300 = 1.93 ×107M⊙, in remarkable agreement with the observations

  5. Dark Energy and the Hubble Law

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Dolgachev, V. P.; Domozhilova, L. M.

    The Big Bang predicted by Friedmann could not be empirically discovered in the 1920th, since global cosmological distances (more than 300-1000 Mpc) were not available for observations at that time. Lemaitre and Hubble studied receding motions of galaxies at local distances of less than 20-30 Mpc and found that the motions followed the (nearly) linear velocity-distance relation, known now as Hubble's law. For decades, the real nature of this phenomenon has remained a mystery, in Sandage's words. After the discovery of dark energy, it was suggested that the dynamics of local expansion flows is dominated by omnipresent dark energy, and it is the dark energy antigravity that is able to introduce the linear velocity-distance relation to the flows. It implies that Hubble's law observed at local distances was in fact the first observational manifestation of dark energy. If this is the case, the commonly accepted criteria of scientific discovery lead to the conclusion: In 1927, Lemaitre discovered dark energy and Hubble confirmed this in 1929.

  6. Anisotropic perturbations due to dark energy

    NASA Astrophysics Data System (ADS)

    Battye, Richard A.; Moss, Adam

    2006-08-01

    A variety of observational tests seem to suggest that the Universe is anisotropic. This is incompatible with the standard dogma based on adiabatic, rotationally invariant perturbations. We point out that this is a consequence of the standard decomposition of the stress-energy tensor for the cosmological fluids, and that rotational invariance need not be assumed, if there is elastic rigidity in the dark energy. The dark energy required to achieve this might be provided by point symmetric domain wall network with P/ρ=-2/3, although the concept is more general. We illustrate this with reference to a model with cubic symmetry and discuss various aspects of the model.

  7. Gravity resonance spectroscopy constrains dark energy and dark matter scenarios.

    PubMed

    Jenke, T; Cronenberg, G; Burgdörfer, J; Chizhova, L A; Geltenbort, P; Ivanov, A N; Lauer, T; Lins, T; Rotter, S; Saul, H; Schmidt, U; Abele, H

    2014-04-18

    We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate that Newton's inverse square law of gravity is understood at micron distances on an energy scale of 10-14  eV. At this level of precision, we are able to provide constraints on any possible gravitylike interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant β>5.8×108 at 95% confidence level (C.L.), and an attractive (repulsive) dark matter axionlike spin-mass coupling is excluded for the coupling strength gsgp>3.7×10-16 (5.3×10-16) at a Yukawa length of λ=20  μm (95% C.L.). PMID:24785025

  8. Non-linear dark energy clustering

    SciTech Connect

    Anselmi, Stefano; Ballesteros, Guillermo; Pietroni, Massimo E-mail: ballesteros@pd.infn.it

    2011-11-01

    We consider a dark energy fluid with arbitrary sound speed and equation of state and discuss the effect of its clustering on the cold dark matter distribution at the non-linear level. We write the continuity, Euler and Poisson equations for the system in the Newtonian approximation. Then, using the time renormalization group method to resum perturbative corrections at all orders, we compute the total clustering power spectrum and matter power spectrum. At the linear level, a sound speed of dark energy different from that of light modifies the power spectrum on observationally interesting scales, such as those relevant for baryonic acoustic oscillations. We show that the effect of varying the sound speed of dark energy on the non-linear corrections to the matter power spectrum is below the per cent level, and therefore these corrections can be well modelled by their counterpart in cosmological scenarios with smooth dark energy. We also show that the non-linear effects on the matter growth index can be as large as 10–15 per cent for small scales.

  9. DESTINY, The Dark Energy Space Telescope

    NASA Technical Reports Server (NTRS)

    Pasquale, Bert A.; Woodruff, Robert A.; Benford, Dominic J.; Lauer, Tod

    2007-01-01

    We have proposed the development of a low-cost space telescope, Destiny, as a concept for the NASA/DOE Joint Dark Energy Mission. Destiny is a 1.65m space telescope, featuring a near-infrared (0.85-1.7m) survey camera/spectrometer with a moderate flat-field field of view (FOV). Destiny will probe the properties of dark energy by obtaining a Hubble diagram based on Type Ia supernovae and a large-scale mass power spectrum derived from weak lensing distortions of field galaxies as a function of redshift.

  10. Dark Energy: A Crisis for Fundamental Physics

    ScienceCinema

    Stubbs, Christopher [Harvard University, Cambridge, Massachusetts, USA

    2010-09-01

    Astrophysical observations provide robust evidence that our current picture of fundamental physics is incomplete. The discovery in 1998 that the expansion of the Universe is accelerating (apparently due to gravitational repulsion between regions of empty space!) presents us with a profound challenge, at the interface between gravity and quantum mechanics. This "Dark Energy" problem is arguably the most pressing open question in modern fundamental physics. The first talk will describe why the Dark Energy problem constitutes a crisis, with wide-reaching ramifications. One consequence is that we should probe our understanding of gravity at all accessible scales, and the second talk will present experiments and observations that are exploring this issue.

  11. Spectroscopic needs for imaging dark energy experiments

    NASA Astrophysics Data System (ADS)

    Newman, Jeffrey A.; Abate, Alexandra; Abdalla, Filipe B.; Allam, Sahar; Allen, Steven W.; Ansari, Réza; Bailey, Stephen; Barkhouse, Wayne A.; Beers, Timothy C.; Blanton, Michael R.; Brodwin, Mark; Brownstein, Joel R.; Brunner, Robert J.; Carrasco Kind, Matias; Cervantes-Cota, Jorge L.; Cheu, Elliott; Chisari, Nora Elisa; Colless, Matthew; Comparat, Johan; Coupon, Jean; Cunha, Carlos E.; de la Macorra, Axel; Dell'Antonio, Ian P.; Frye, Brenda L.; Gawiser, Eric J.; Gehrels, Neil; Grady, Kevin; Hagen, Alex; Hall, Patrick B.; Hearin, Andew P.; Hildebrandt, Hendrik; Hirata, Christopher M.; Ho, Shirley; Honscheid, Klaus; Huterer, Dragan; Ivezić, Željko; Kneib, Jean-Paul; Kruk, Jeffrey W.; Lahav, Ofer; Mandelbaum, Rachel; Marshall, Jennifer L.; Matthews, Daniel J.; Ménard, Brice; Miquel, Ramon; Moniez, Marc; Moos, H. W.; Moustakas, John; Myers, Adam D.; Papovich, Casey; Peacock, John A.; Park, Changbom; Rahman, Mubdi; Rhodes, Jason; Ricol, Jean-Stephane; Sadeh, Iftach; Slozar, Anže; Schmidt, Samuel J.; Stern, Daniel K.; Anthony Tyson, J.; von der Linden, Anja; Wechsler, Risa H.; Wood-Vasey, W. M.; Zentner, Andrew R.

    2015-03-01

    Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-z's): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-z's will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments.

  12. Dark Energy and The Dark Matter Relic Abundance

    SciTech Connect

    Rosati, Francesca

    2004-11-17

    Two mechanisms by which the quintessence scalar could enhance the relic abundance of dark matter particles are discussed. These effects can have an impact on supersymmetric candidates for dark matter.

  13. The ASY-EOS experiment at GSI: investigating symmetry energy at supra-saturation densities

    NASA Astrophysics Data System (ADS)

    Russotto, P.; Chartier, M.; Cozma, M. D.; De Filippo, E.; Le Fèvre, A.; Gannon, S.; Gašparić, I.; Kiš, M.; Kupny, S.; Leifels, Y.; Lemmon, R. C.; Li, Q.; Łukasik, J.; Marini, P.; Pawłowski, P.; Santoro, S.; Trautmann, W.; Veselsky, M.; Acosta, L.; Adamczyk, M.; Al-Ajlan, A.; Al-Garawi, M.; Al-Homaidhi, S.; Amorini, F.; Auditore, L.; Aumann, T.; Ayyad, Y.; Baran, V.; Basrak, Z.; Bassini, R.; Benlliure, J.; Boiano, C.; Boisjoli, M.; Boretzky, K.; Brzychczyk, J.; Budzanowski, A.; Cardella, G.; Cammarata, P.; Chajecki, Z.; Chbihi, A.; Colonna, M.; Czech, B.; Di Toro, M.; Famiano, M.; Greco, V.; Grassi, L.; Guazzoni, C.; Guazzoni, P.; Heil, M.; Heilborn, L.; Introzzi, R.; Isobe, T.; Kezzar, K.; Krasznahorkay, A.; Kurz, N.; La Guidara, E.; Lanzalone, G.; Lasko, P.; Lombardo, I.; Lynch, W. G.; Matthews, Z.; May, L.; Minniti, T.; Mostazo, M.; Pagano, A.; Papa, M.; Pirrone, S.; Pleskac, R.; Politi, G.; Porto, F.; Reifarth, R.; Reisdorf, W.; Riccio, F.; Rizzo, F.; Rosato, E.; Rossi, D.; Simon, H.; Skwirczynska, I.; Sosin, Z.; Stuhl, L.; Trifirò, A.; Trimarchi, M.; Tsang, M. B.; Verde, G.; Vigilante, M.; Wieloch, A.; Wigg, P.; Wolter, H. H.; Wu, P.; Yennello, S.; Zambon, P.; Zetta, L.; Zoric, M.

    2014-03-01

    The elliptic-flow ratio of neutrons with respect to protons or light complex particles in reactions of heavy-ions at pre-relativistic energies has been proposed as an observable sensitive to the strength of the symmetry term of the nuclear equation of state at supra-saturation densities. The results obtained from the existing FOPI/LAND data for 197Au+197Au collisions at 400 MeV/nucleon in comparison with the UrQMD model simulations favoured a moderately soft symmetry term, but suffer from a considerable statistical uncertainty. These results have been confirmed by an independent analysis based on the Tübingen QMD simulations. In order to obtain an improved data set for Au+Au collisions and to extend the study to other systems, a new experiment was carried out at the GSI laboratory by the ASY-EOS collaboration. The present status of the data analysis is reported

  14. Dark energy in systems of galaxies

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.

    2013-11-01

    The precise observational data of the Hubble Space Telescope have been used to study nearby galaxy systems. The main result is the detection of dark energy in groups, clusters, and flows of galaxies on a spatial scale of about 1-10 Mpc. The local density of dark energy in these systems, which is determined by various methods, is close to the global value or even coincides with it. A theoretical model of the nearby Universe has been constructed, which describes the Local Group of galaxies with the flow of dwarf galaxies receding from this system. The key physical parameter of the group-flow system is zero gravity radius, which is the distance at which the gravity of dark matter is compensated by dark-energy antigravity. The model predicts the existence of local regions of space where Einstein antigravity is stronger than Newton gravity. Six such regions have been revealed in the data of the Hubble space telescope. The nearest of these regions is at a distance of 1-3 Mpc from the center of the Milky Way. Antigravity in this region is several times stronger than gravity. Quasiregular flows of receding galaxies, which are accelerated by the dark-energy antigravity, exist in these regions. The model of the nearby Universe at the scale of groups of galaxies (˜1 Mpc) can be extended to the scale of clusters (˜10 Mpc). The systems of galaxies with accelerated receding flows constitute a new and probably widespread class of metagalactic populations. Strong dynamic effects of local dark energy constitute the main characteristic feature of these systems.

  15. Advanced Dark Energy Physics Telescope (ADEPT)

    SciTech Connect

    Charles L. Bennett

    2009-03-26

    In 2006, we proposed to NASA a detailed concept study of ADEPT (the Advanced Dark Energy Physics Telescope), a potential space mission to reliably measure the time-evolution of dark energy by conducting the largest effective volume survey of the universe ever done. A peer-review panel of scientific, management, and technical experts reported back the highest possible 'excellent' rating for ADEPT. We have since made substantial advances in the scientific and technical maturity of the mission design. With this Department of Energy (DOE) award we were granted supplemental funding to support specific extended research items that were not included in the NASA proposal, many of which were intended to broadly advance future dark energy research, as laid out by the Dark Energy Task Force (DETF). The proposed work had three targets: (1) the adaptation of large-format infrared arrays to a 2 micron cut-off; (2) analytical research to improve the understanding of the dark energy figure-of- merit; and (3) extended studies of baryon acoustic oscillation systematic uncertainties. Since the actual award was only for {approx}10% of the proposed amount item (1) was dropped and item (2) work was severely restricted, consistent with the referee reviews of the proposal, although there was considerable contradictions between reviewer comments and several comments that displayed a lack of familiarity with the research. None the less, item (3) was the focus of the work. To characterize the nature of the dark energy, ADEPT is designed to observe baryon acoustic oscillations (BAO) in a large galaxy redshift survey and to obtain substantial numbers of high-redshift Type Ia supernovae (SNe Ia). The 2003 Wilkinson Microwave Anisotropy Probe (WMAP) made a precise determination of the BAO 'standard ruler' scale, as it was imprinted on the cosmic microwave background (CMB) at z {approx} 1090. The standard ruler was also imprinted on the pattern of galaxies, and was first detected in 2005 in Sloan

  16. THE LIGHT/DARK UNIVERSE Light from Galaxies, Dark Matter and Dark Energy

    NASA Astrophysics Data System (ADS)

    Overduin, James M.; Wesson, Paul S.

    1. The enigma of the dark night sky. 1.1. Why is the sky dark at night? 1.2. "By reason of distance". 1.3. Island Universe. 1.4. Non-uniform sources. 1.5. Tired light. 1.6. Absorption. 1.7. Fractal Universe. 1.8. Finite age. 1.9. Dark stars. 1.10. Curvature. 1.11. Ether voids. 1.12. Insufficient energy. 1.13. Light-matter interconversion. 1.14. Cosmic expansion. 1.15. Olbers' paradox today -- 2. The intensity of cosmic background light. 2.1. Bolometric intensity. 2.2. Time and redshift. 2.3. Matter, energy and expansion. 2.4. How important is expansion?. 2.5. Simple flat models. 2.6. Curved and multi-fluid models. 2.7. A bright sky at night? -- 3. The spectrum of cosmic background light. 3.1. Spectral intensity. 3.2. Luminosity density. 3.3. The delta function. 3.4. The normal distribution. 3.5. The thermal spectrum. 3.6. The spectra of galaxies. 3.7. The light of the night sky. 3.8. R.I.P. Olbers' paradox -- 4. Dark cosmology. 4.1. The four dark elements. 4.2. Baryons. 4.3. Dark matter. 4.4. Neutrinos. 4.5. Dark energy. 4.6. Cosmological concordance. 4.7. The coincidental Universe -- 5. The radio and microwave backgrounds. 5.1. The cosmological "constant". 5.2. The scalar field. 5.3. Decaying dark energy. 5.4. Energy density. 5.5. Source luminosity. 5.6. Bolometric intensity. 5.7. Spectral energy distribution. 5.8. Dark energy and the background light -- 6. The infrared and visible backgrounds. 6.1. Decaying axions. 6.2. Axion halos. 6.3. Bolometric intensity. 6.4. Axions and the background light -- 7. The ultraviolet background. 7.1. Decaying neutrinos. 7.2. Neutrino halos. 7.3. Halo luminosity. 7.4. Free-streaming neutrinos. 7.5. Extinction by gas and dust. 7.6. Neutrinos and the background light -- 8. The x-ray and gamma-ray backgrounds. 8.1. Weakly interacting massive particles. 8.2. Pair annihilation. 8.3. One-loop decay. 8.4. Tree-level decay. 8.5. Gravitinos. 8.6. WIMPs and the background light -- 9. The high-energy gamma-ray background. 9.1. Primordial

  17. Dark Energy and Dark Matter from the same Vacuum Condensate

    NASA Astrophysics Data System (ADS)

    Sarfatti, Jack

    2003-04-01

    The micro-quantum Dirac negative energy electron Fermi sphere with Planck scale cutoff is unstable to the formation of off-mass-shell Cooper pairs of virtual electrons and positrons from their static Coulomb attraction. The resulting virtual BEC complex macro-quantum coherent local order parameter (0|e+e-|0) gives rise to both spin 2 gravity guv and spin 0 quintessence / from the Goldstone and Higgs oscillations respectively, Susskind's "world hologram" conjecture replaces the Planck scale Lp with Lp^2/3L^1/3 at scale L. Hagen Kleinert's strain tensor for the "world crystal" is Einstein's geometrodynamic field: guv = nuv + Lp^4/3L^2/3Du,Dvarg(0|e+e-|0)/2 nuv = Minkowski metric, = anti-commutator Du = ,u + TaAu^a is the spin 1 gauge covariant derivative for Lie group P with Lie algebra [Ta,Tb] = Cab^cTc / = Lp-4/3L-2/3[1 - Lp^2L|(0|e+e-|0)|^2] When L = size of visible universe 10^28 cm, Lp^2/3L^1/3 1 fermi / > 0 is anti-gravitating zero point vacuum dark energy, i.e. Kip Thorne's "exotic matter" for traversable wormhole time machines. / < 0 is gravitating zero point vacuum dark matter The non-perturbative BCS energy gap equation for a basic vacuum polarization closed loop with one virtual photon Feynman diagram is: z^2 = ge^-(1/gz) z = (Lp/L)^1/3 and the dimensionless coupling vertex is g^1/2 http://stardrive.org/Jack/nambu.pdf http://stardrive.org/Jack/Lambda1.pdf

  18. Interacting Ricci Logarithmic Entropy-Corrected Holographic Dark Energy in Brans-Dicke Cosmology

    NASA Astrophysics Data System (ADS)

    Pasqua, Antonio; Khomenko, Iuliia

    2013-11-01

    In the derivation of Holographic Dark Energy (HDE), the area law of the black hole entropy assumes a crucial role. However, the entropy-area relation can be modified including some quantum effects, motivated from the Loop Quantum Gravity (LQG), string theory and black hole physics. In this paper, we study the cosmological implications of the interacting logarithmic entropy-corrected HDE (LECHDE) model in the framework of Brans-Dicke (BD) cosmology. As system’s infrared (IR) cut-off, we choose the average radius of Ricci scalar curvature, i.e. R -1/2. We obtain the Equation of State (EoS) parameter ω D , the deceleration parameter q and the evolution of energy density parameter of our model in a non-flat universe. Moreover, we study the limiting cases corresponding to our model without corrections and to the Einstein’s gravity.

  19. Supernovae from the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Gupta, Ravi

    2016-03-01

    The nature of dark energy is one of the greatest unsolved problems in physics today. Its existence was inferred from observations of exploding stars known as Type Ia supernovae (SNe Ia). These SNe Ia are standardizable candles that are excellent cosmological tools for probing dark energy through the distance-redshift relation. The Dark Energy Survey (DES) Supernova Program is repeatedly observing 30 square degrees within the full 5000-square-degree DES footprint and has discovered thousands of SNe Ia, in addition to many other types of SNe. DES has recently completed Year 3 of observations, with at least two more years still to go. In this talk, I will highlight the papers that have been published by the DES SN Program as well the ongoing analyses and projects within the group. I will introduce frameworks being developed for cosmological inference using Bayesian hierarchical regression models and discuss the steps needed for this. These include the transient detection pipeline, photometric calibration, host galaxy identification, follow-up spectroscopy of SNe and host galaxies, and SN photometric classification. I will also discuss DES discoveries of several superluminous SNe. On behalf of the Dark Energy Survey collaboration.

  20. Stringy Model of Cosmological Dark Energy

    SciTech Connect

    Aref'eva, Irina Ya.

    2007-11-20

    A string field theory (SFT) nonlocal model of the cosmological dark energy providing w<-1 is briefly surveyed. We summarize recent developments and open problems, as well as point out some theoretical issues related with others applications of the SFT nonlocal models in cosmology, in particular, in inflation and cosmological singularity.

  1. Planck priors for dark energy surveys

    SciTech Connect

    Mukherjee, Pia; Parkinson, David; Kunz, Martin; Wang Yun

    2008-10-15

    Although cosmic microwave background anisotropy data alone cannot constrain simultaneously the spatial curvature and the equation of state of dark energy, CMB data provide a valuable addition to other experimental results. However computing a full CMB power spectrum with a Boltzmann code is quite slow; for instance if we want to work with many dark energy and/or modified gravity models, or would like to optimize experiments where many different configurations need to be tested, it is possible to adopt a quicker and more efficient approach. In this paper we consider the compression of the projected Planck cosmic microwave background data into four parameters, R (scaled distance to last scattering surface), l{sub a} (angular scale of sound horizon at last scattering), {omega}{sub b}h{sup 2} (baryon density fraction) and n{sub s} (powerlaw index of primordial matter power spectrum), all of which can be computed quickly. We show that, although this compression loses information compared to the full likelihood, such information loss becomes negligible when more data is added. We also demonstrate that the method can be used for canonical scalar-field dark energy independently of the parametrization of the equation of state, and discuss how this method should be used for other kinds of dark energy models.

  2. An introduction to the dark energy problem

    NASA Astrophysics Data System (ADS)

    Dobado, Antonio; Maroto, Antonio L.

    2009-04-01

    In this work we review briefly the origin and history of the cosmological constant and its recent reincarnation in the form of the dark energy component of the universe. We also comment on the fundamental problems associated to its existence and magnitude which require an urgent solution for the sake of the internal consistency of theoretical physics.

  3. EOS standards

    SciTech Connect

    Greeff, Carl W

    2011-01-12

    An approach to creating accurate EOS for pressure standards is described. Applications to Cu, Au, and Ta are shown. Extension of the method to high compressions using DFT is illustrated. Comparisons with modern functionals show promise.

  4. Dark Energy Found Stifling Growth in Universe

    NASA Astrophysics Data System (ADS)

    2008-12-01

    WASHINGTON -- For the first time, astronomers have clearly seen the effects of "dark energy" on the most massive collapsed objects in the universe using NASA's Chandra X-ray Observatory. By tracking how dark energy has stifled the growth of galaxy clusters and combining this with previous studies, scientists have obtained the best clues yet about what dark energy is and what the destiny of the universe could be. This work, which took years to complete, is separate from other methods of dark energy research such as supernovas. These new X-ray results provide a crucial independent test of dark energy, long sought by scientists, which depends on how gravity competes with accelerated expansion in the growth of cosmic structures. Techniques based on distance measurements, such as supernova work, do not have this special sensitivity. Scientists think dark energy is a form of repulsive gravity that now dominates the universe, although they have no clear picture of what it actually is. Understanding the nature of dark energy is one of the biggest problems in science. Possibilities include the cosmological constant, which is equivalent to the energy of empty space. Other possibilities include a modification in general relativity on the largest scales, or a more general physical field. People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Ghostly Glow Reveals a Hidden Class of Long-Wavelength Radio Emitters Powerful Nearby Supernova Caught By Web Cassiopeia A Comes Alive Across Time and Space To help decide between these options, a new way of looking at dark energy is required. It is accomplished by observing how cosmic acceleration affects the growth of galaxy clusters over time. "This result could be described as 'arrested development of the universe'," said Alexey Vikhlinin of the Smithsonian Astrophysical Observatory in Cambridge, Mass., who led the research. "Whatever is forcing the expansion of the universe to speed up is also forcing its

  5. Constraints on the coupling between dark energy and dark matter from CMB data

    NASA Astrophysics Data System (ADS)

    Murgia, R.; Gariazzo, S.; Fornengo, N.

    2016-04-01

    We investigate a phenomenological non-gravitational coupling between dark energy and dark matter, where the interaction in the dark sector is parameterized as an energy transfer either from dark matter to dark energy or the opposite. The models are constrained by a whole host of updated cosmological data: cosmic microwave background temperature anisotropies and polarization, high-redshift supernovae, baryon acoustic oscillations, redshift space distortions and gravitational lensing. Both models are found to be compatible with all cosmological observables, but in the case where dark matter decays into dark energy, the tension with the independent determinations of H0 and σ8, already present for standard cosmology, increases: this model in fact predicts lower H0 and higher σ8, mostly as a consequence of the higher amount of dark matter at early times, leading to a stronger clustering during the evolution. Instead, when dark matter is fed by dark energy, the reconstructed values of H0 and σ8 nicely agree with their local determinations, with a full reconciliation between high- and low-redshift observations. A non-zero coupling between dark energy and dark matter, with an energy flow from the former to the latter, appears therefore to be in better agreement with cosmological data.

  6. Agegraphic Dark Energy with the Sign-Changeable Interaction in Non-Flat Universe

    NASA Astrophysics Data System (ADS)

    You-Dong, Xu; Dong-Qing, Yuan

    2016-04-01

    In this paper, we investigate the agegraphic dark energy (ADE) model by including the sign-changeable interaction between ADE and dark matter in non-flat universe. The interaction Q can change its sign from Q < 0 to Q > 0 as the universe expands. This indicates that at first dark matter decays to ADE, and then ADE decays to dark matter. We study the dynamical behavior of the model by using the phase-plane analysis. It is shown numerically that the coupling constant β plays an important role in the evolution of the universe. The equation of state (EoS) of ADE with the sign-changeable interaction is more likely to cross the phantom divide wd = ‑1 from top to bottom with the increasing of the |β|. Whereas in ADE model with usual interaction, wd can cross the phantom divide from bottom to top. We also find that our model is consistent with the observational data. Supported by National Nature Science Foundation of China under Grant No. 51405181, Natural Science Foundation for Youths of Jiangsu Province under Grant No. BK20130407, and Colleges and Universities Natural Science Fundation of Jiangsu Province under Grant No. 13KJB460001

  7. Sub-horizon evolution of cold dark matter perturbations through dark matter-dark energy equivalence epoch

    SciTech Connect

    Piattella, O.F.; Martins, D.L.A.; Casarini, L. E-mail: denilsonluizm@gmail.com

    2014-10-01

    We consider a cosmological model of the late universe constituted by standard cold dark matter plus a dark energy component with constant equation of state w and constant effective speed of sound. By neglecting fluctuations in the dark energy component, we obtain an equation describing the evolution of sub-horizon cold dark matter perturbations through the epoch of dark matter-dark energy equality. We explore its analytic solutions and calculate an exact w-dependent correction for the dark matter growth function, logarithmic growth function and growth index parameter through the epoch considered. We test our analytic approximation with the numerical solution and find that the discrepancy is less than 1% for 0k = during the cosmic evolution up to a = 100.

  8. Thermodynamical description of the interaction between holographic dark energy and dark matter

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Lin, Chi-Yong; Pavón, Diego; Abdalla, Elcio

    2008-04-01

    We present a thermodynamical description of the interaction between holographic dark energy and dark matter. If holographic dark energy and dark matter evolve separately, each of them remains in thermodynamic equilibrium. A small interaction between them may be viewed as a stable thermal fluctuation that brings a logarithmic correction to the equilibrium entropy. From this correction we obtain a physical expression for the interaction which is consistent with phenomenological descriptions and passes reasonably well the observational tests.

  9. Can holographic dark energy increase the mass of the wormhole?

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Surajit; Momeni, Davood; Altaibayeva, Aziza; Myrzakulov, Ratbay

    2015-03-01

    Motivated by the quantum essence of wormholes, in this work, we have studied accretion of dark energy (DE) onto Morris-Thorne wormhole with three different forms, namely, holographic dark energy, holographic Ricci dark energy and modified holographic Ricci dark energy. Considering the scale factor in power-law form we have observed that as the holographic dark energy accretes onto wormhole, the mass of the wormhole is decreasing. In the next phase we considered three parameterization schemes that are able to get hold of quintessence as well as phantom phases. Without any choice of scale factor we reconstructed Hubble parameter from conservation equation and dark energy densities and subsequently got the mass of the wormhole separately for accretion of the three dark energy candidates. It was observed that if these dark energies accrete onto the wormhole, then for quintessence stage, wormhole mass decreases up to a certain finite value and then again increases to aggressively during phantom phase of the universe.

  10. Constraints on generalized dark energy from recent observations

    SciTech Connect

    Ichiki, Kiyotomo; Takahashi, Tomo

    2007-06-15

    Effects of a generalized dark energy fluid are investigated on cosmic density fluctuations such as a cosmic microwave background. As a general dark energy fluid, we take into consideration the possibility of the anisotropic stress for dark energy, which has not been discussed much in the literature. We comprehensively study its effects on the evolution of density fluctuations along with that of the nonadiabatic pressure fluctuation of dark energy, then give constraints on such a generalized dark energy from current observations. We show that, though we cannot find any stringent limits on the anisotropic stress or the nonadiabatic pressure fluctuation themselves, the constraints on the equation of state of dark energy can be affected in some cases by the nature of dark energy fluctuation characterized by these properties. This may have important implications in the strategy to study the nature of dark energy.

  11. Cosmological dynamics of tachyonic teleparallel dark energy

    NASA Astrophysics Data System (ADS)

    Otalora, G.

    2013-09-01

    A detailed dynamical analysis of the tachyonic teleparallel dark energy model, in which a noncanonical scalar field (tachyon field) is nonminimally coupled to gravitation, is performed. It is found that, when the nonminimal coupling is ruled by a dynamically changing coefficient α≡f,ϕ/f, with f(ϕ) an arbitrary function of the scalar field ϕ, the Universe may experience a field-matter-dominated era “ϕMDE,” in which it has some portions of the energy density of ϕ in the matter dominated era. This is the most significant difference in relation to the so-called teleparallel dark energy scenario, in which a canonical scalar field (quintessence) is nonminimally coupled to gravitation.

  12. A divergence-free parametrization of deceleration parameter for scalar field dark energy

    NASA Astrophysics Data System (ADS)

    Al Mamon, Abdulla; Das, Sudipta

    2016-01-01

    In this paper, we have considered a spatially flat FRW universe filled with pressureless matter and dark energy (DE). We have considered a phenomenological parametrization of the deceleration parameter q(z) and from this, we have reconstructed the equation-of-state (EoS) for DE ωϕ(z). This divergence-free parametrization of the deceleration parameter is inspired from one of the most popular parametrization of the DE EoS given by Barboza and Alcaniz [see E. M. Barboza and J. S. Alcaniz, Phys. Lett. B 666 (2008) 415]. Using the combination of datasets (Type Ia Supernova (SN Ia) + Hubble + baryonic acoustic oscillations/cosmic microwave background (BAO/CMB)), we have constrained the transition redshift zt (at which the universe switches from a decelerating to an accelerating phase) and have found the best fit value of zt. We have also compared the reconstructed results of q(z) and ωϕ(z) and have found that the results are compatible with a ΛCDM universe if we consider SN Ia + Hubble data, but inclusion of BAO/CMB data makes q(z) and ωϕ(z) incompatible with ΛCDM model. The potential term for the present toy model is found to be functionally similar to a Higgs potential.

  13. Loop Quantum Corrections to Statefinder Parameters of Dark Energy

    NASA Astrophysics Data System (ADS)

    Jamil, Mubasher; Momeni, D.; Myrzakulov, Ratbay

    2013-09-01

    In this paper, we have calculated the statefinder parameters for the Friedmann-Robertson-Walker (FRW) Universe in the gravitational framework of loop quantum cosmology (LQC). As examples, we study two types of dark energy models namely Holographic dark energy and New-Agegraphic dark energy.

  14. Is the evidence for dark energy secure?

    NASA Astrophysics Data System (ADS)

    Sarkar, Subir

    2008-02-01

    Several kinds of astronomical observations, interpreted in the framework of the standard Friedmann Robertson Walker cosmology, have indicated that our universe is dominated by a Cosmological Constant. The dimming of distant Type Ia supernovae suggests that the expansion rate is accelerating, as if driven by vacuum energy, and this has been indirectly substantiated through studies of angular anisotropies in the cosmic microwave background (CMB) and of spatial correlations in the large-scale structure (LSS) of galaxies. However there is no compelling direct evidence yet for (the dynamical effects of) dark energy. The precision CMB data can be equally well fitted without dark energy if the spectrum of primordial density fluctuations is not quite scale-free and if the Hubble constant is lower globally than its locally measured value. The LSS data can also be satisfactorily fitted if there is a small component of hot dark matter, as would be provided by neutrinos of mass ˜0.5 eV. Although such an Einstein de Sitter model cannot explain the SNe Ia Hubble diagram or the position of the “baryon acoustic oscillation” peak in the autocorrelation function of galaxies, it may be possible to do so, e.g. in an inhomogeneous Lemaitre Tolman Bondi cosmology where we are located in a void which is expanding faster than the average. Such alternatives may seem contrived but this must be weighed against our lack of any fundamental understanding of the inferred tiny energy scale of the dark energy. It may well be an artifact of an oversimplified cosmological model, rather than having physical reality.

  15. New cosmographic constraints on the dark energy and dark matter coupling

    NASA Astrophysics Data System (ADS)

    Bolotin, Yu. L.; Cherkaskiy, V. A.; Lemets, O. A.

    2016-03-01

    We propose a novel approach to obtain limitations on the dark energy (DE) and dark matter (DM) coupling. The suggested approach allows us to express the coupling constant in terms of the cosmographic parameters (CPs). It enables us to find constraints on the coupling constant directly based on observational data and to restrict number of numerous models describing interaction in the dark sector.

  16. Simple implementation of general dark energy models

    SciTech Connect

    Bloomfield, Jolyon K.; Pearson, Jonathan A. E-mail: jonathan.pearson@durham.ac.uk

    2014-03-01

    We present a formalism for the numerical implementation of general theories of dark energy, combining the computational simplicity of the equation of state for perturbations approach with the generality of the effective field theory approach. An effective fluid description is employed, based on a general action describing single-scalar field models. The formalism is developed from first principles, and constructed keeping the goal of a simple implementation into CAMB in mind. Benefits of this approach include its straightforward implementation, the generality of the underlying theory, the fact that the evolved variables are physical quantities, and that model-independent phenomenological descriptions may be straightforwardly investigated. We hope this formulation will provide a powerful tool for the comparison of theoretical models of dark energy with observational data.

  17. Scale Dependence of Dark Energy Antigravity

    NASA Astrophysics Data System (ADS)

    Perivolaropoulos, L.

    2002-09-01

    We investigate the effects of negative pressure induced by dark energy (cosmological constant or quintessence) on the dynamics at various astrophysical scales. Negative pressure induces a repulsive term (antigravity) in Newton's law which dominates on large scales. Assuming a value of the cosmological constant consistent with the recent SnIa data we determine the critical scale $r_c$ beyond which antigravity dominates the dynamics ($r_c \\sim 1Mpc $) and discuss some of the dynamical effects implied. We show that dynamically induced mass estimates on the scale of the Local Group and beyond are significantly modified due to negative pressure. We also briefly discuss possible dynamical tests (eg effects on local Hubble flow) that can be applied on relatively small scales (a few $Mpc$) to determine the density and equation of state of dark energy.

  18. Investigating dark energy experiments with principal components

    SciTech Connect

    Crittenden, Robert G.; Zhao, Gong-Bo; Pogosian, Levon E-mail: levon@sfu.ca

    2009-12-01

    We use a principal component approach to contrast different kinds of probes of dark energy, and to emphasize how an array of probes can work together to constrain an arbitrary equation of state history w(z). We pay particular attention to the role of the priors in assessing the information content of experiments and propose using an explicit prior on the degree of smoothness of w(z) that is independent of the binning scheme. We also show how a figure of merit based on the mean squared error probes the number of new modes constrained by a data set, and use it to examine how informative various experiments will be in constraining the evolution of dark energy.

  19. Dark energy from the string axiverse.

    PubMed

    Kamionkowski, Marc; Pradler, Josef; Walker, Devin G E

    2014-12-19

    String theories suggest the existence of a plethora of axionlike fields with masses spread over a huge number of decades. Here, we show that these ideas lend themselves to a model of quintessence with no super-Planckian field excursions and in which all dimensionless numbers are order unity. The scenario addresses the "Why now?" problem-i.e., Why has accelerated expansion begun only recently?-by suggesting that the onset of dark-energy domination occurs randomly with a slowly decreasing probability per unit logarithmic interval in cosmic time. The standard axion potential requires us to postulate a rapid decay of most of the axion fields that do not become dark energy. The need for these decays is averted, though, with the introduction of a slightly modified axion potential. In either case, a universe like ours arises in roughly 1 in 100 universes. The scenario may have a host of observable consequences. PMID:25554872

  20. The Discovery of Dark Energy: Historical Reflections

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2009-09-01

    The discovery of dark energy by supernovae-culminating in Riess et al. Astron. J. 116, 1998, 1009, and Perlmutter et al. Astrophys. J. 511 1999 565-is likely to become a classic discovery story in the history of science. It exhibits at lease five features that attract the interest of historians: 1) the role of evolving techniques in making a discovery possible; 2) the existence of ambiguities in the discovery process; 3) the existence of ambiguities in discovery announcements; 4) different forms of competition and cooperation; and 5) the way discoveries can open new chapters in science. The dark-energy discovery provides dramatic examples of such features, even apart from the differing memories and judgments that may exist about the events. This article engages in a thought-experiment: what in this discovery story is likely to attract the interest of a science historian looking back on this discovery a hundred years from now?

  1. Dark energy simulacrum in nonlinear electrodynamics

    SciTech Connect

    Labun, Lance; Rafelski, Johann

    2010-03-15

    Quasiconstant external fields in nonlinear electromagnetism generate a global contribution proportional to g{sup {mu}{nu}}in the energy-momentum tensor, thus a simulacrum of dark energy. To provide a thorough understanding of the origin and strength of its effects, we undertake a complete theoretical and numerical study of the energy-momentum tensor T{sup {mu}{nu}}for nonlinear electromagnetism. The Euler-Heisenberg nonlinearity due to quantum fluctuations of spinor and scalar matter fields is considered and contrasted with the properties of classical nonlinear Born-Infeld electromagnetism. We address modifications of charged particle kinematics by strong background fields.

  2. EOS Directory

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This Earth Observing System (EOS) directory is divided into two main sections: white and yellow pages. The white pages list alphabetically the names and addresses -- including e-mail, phone, and fax when available -- of all individuals involved with EOS, from graduate students to panel members to program management and more. The yellow pages list the names, affiliation, and phone number of participants divided by project management, program management, individual project participants, interdisciplinary investigations (listed alphabetically by PI), the Science Executive Committee, various panels, platforms, working groups, fellowships, and contractors.

  3. Dynamical dark energy: Current constraints and forecasts

    NASA Astrophysics Data System (ADS)

    Upadhye, Amol; Ishak, Mustapha; Steinhardt, Paul J.

    2005-09-01

    We consider how well the dark energy equation of state w as a function of redshift z will be measured using current and anticipated experiments. We use a procedure which takes fair account of the uncertainties in the functional dependence of w on z, as well as the parameter degeneracies, and avoids the use of strong prior constraints. We apply the procedure to current data from the Wilkinson Microwave Anisotropy Probe, Sloan Digital Sky Survey, and the supernova searches, and obtain results that are consistent with other analyses using different combinations of data sets. The effects of systematic experimental errors and variations in the analysis technique are discussed. Next, we use the same procedure to forecast the dark energy constraints achievable by the end of the decade, assuming 8 years of Wilkinson Microwave Anisotropy Probe data and realistic projections for ground-based measurements of supernovae and weak lensing. We find the 2σ constraints on the current value of w to be Δw0(2σ)=0.20, and on dw/dz (between z=0 and z=1) to be Δw1(2σ)=0.37. Finally, we compare these limits to other projections in the literature. Most show only a modest improvement; others show a more substantial improvement, but there are serious concerns about systematics. The remaining uncertainty still allows a significant span of competing dark energy models. Most likely, new kinds of measurements, or experiments more sophisticated than those currently planned, are needed to reveal the true nature of dark energy.

  4. Probing dark energy via galaxy cluster outskirts

    NASA Astrophysics Data System (ADS)

    Morandi, Andrea; Sun, Ming

    2016-04-01

    We present a Bayesian approach to combine Planck data and the X-ray physical properties of the intracluster medium in the virialization region of a sample of 320 galaxy clusters (0.056 < z < 1.24, kT ≳ 3 keV) observed with Chandra. We exploited the high level of similarity of the emission measure in the cluster outskirts as cosmology proxy. The cosmological parameters are thus constrained assuming that the emission measure profiles at different redshift are weakly self-similar, that is their shape is universal, explicitly allowing for temperature and redshift dependence of the gas fraction. This cosmological test, in combination with Planck+SNIa data, allows us to put a tight constraint on the dark energy models. For a constant-w model, we have w = -1.010 ± 0.030 and Ωm = 0.311 ± 0.014, while for a time-evolving equation of state of dark energy w(z) we have Ωm = 0.308 ± 0.017, w0 = -0.993 ± 0.046 and wa = -0.123 ± 0.400. Constraints on the cosmology are further improved by adding priors on the gas fraction evolution from hydrodynamic simulations. Current data favour the cosmological constant with w ≡ -1, with no evidence for dynamic dark energy. We checked that our method is robust towards different sources of systematics, including background modelling, outlier measurements, selection effects, inhomogeneities of the gas distribution and cosmic filaments. We also provided for the first time constraints on which definition of cluster boundary radius is more tenable, namely based on a fixed overdensity with respect to the critical density of the Universe. This novel cosmological test has the capacity to provide a generational leap forward in our understanding of the equation of state of dark energy.

  5. Dark energy domination in the Virgocentric flow

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Karachentsev, I. D.; Nasonova, O. G.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2010-09-01

    Context. The standard ΛCDM cosmological model implies that all celestial bodies are embedded in a perfectly uniform dark energy background, represented by Einstein's cosmological constant, and experience its repulsive antigravity action. Aims: Can dark energy have strong dynamical effects on small cosmic scales as well as globally? Continuing our efforts to clarify this question, we now focus on the Virgo Cluster and the flow of expansion around it. Methods: We interpret the Hubble diagram from a new database of velocities and distances of galaxies in the cluster and its environment, using a nonlinear analytical model, which incorporates the antigravity force in terms of Newtonian mechanics. The key parameter is the zero-gravity radius, the distance at which gravity and antigravity are in balance. Results: 1. The interplay between the gravity of the cluster and the antigravity of the dark energy background determines the kinematical structure of the system and controls its evolution. 2. The gravity dominates the quasi-stationary bound cluster, while the antigravity controls the Virgocentric flow, bringing order and regularity to the flow, which reaches linearity and the global Hubble rate at distances ⪆15 Mpc. 3. The cluster and the flow form a system similar to the Local Group and its outflow. In the velocity-distance diagram, the cluster-flow structure reproduces the group-flow structure with a scaling factor of about 10; the zero-gravity radius for the cluster system is also 10 times larger. Conclusions: The phase and dynamical similarity of the systems on the scales of 1-30 Mpc suggests that a two-component pattern may be universal for groups and clusters: a quasi-stationary bound central component and an expanding outflow around it, caused by the nonlinear gravity-antigravity interplay with the dark energy dominating in the flow component.

  6. Electromagnetic dark energy and gravitoelectrodynamics of superconductors

    NASA Astrophysics Data System (ADS)

    de Matos, Clovis Jacinto

    2008-02-01

    It is shown that Beck and Mackey electromagnetic model of dark energy in superconductors can account for the non-classical inertial properties of superconductors, which have been conjectured by the author to explain the Cooper pair’s mass excess reported by Cabrera and Tate. A new fundamental scale of nature (the Planck-Einstein scale) for gravitation in low temperature condensed matter is proposed to host the gravitoelectrodynamic properties of superconductors.

  7. The continuous tower of scalar fields as a system of interacting dark matter-dark energy

    NASA Astrophysics Data System (ADS)

    Santos, Paulo

    2015-10-01

    This paper aims to introduce a new parameterisation for the coupling Q in interacting dark matter and dark energy models by connecting said models with the Continuous Tower of Scalar Fields model. Based upon the existence of a dark matter and a dark energy sectors in the Continuous Tower of Scalar Fields, a simplification is considered for the evolution of a single scalar field from the tower, validated in this paper. This allows for the results obtained with the Continuous Tower of Scalar Fields model to match those of an interacting dark matter-dark energy system, considering that the energy transferred from one fluid to the other is given by the energy of the scalar fields that start oscillating at a given time, rather than considering that the energy transference depends on properties of the whole fluids that are interacting.

  8. Redshift drift exploration for interacting dark energy

    NASA Astrophysics Data System (ADS)

    Geng, Jia-Jia; Li, Yun-He; Zhang, Jing-Fei; Zhang, Xin

    2015-08-01

    By detecting redshift drift in the spectra of the Lyman- forest of distant quasars, the Sandage-Loeb (SL) test directly measures the expansion of the universe, covering the "redshift desert" of . Thus this method is definitely an important supplement to the other geometric measurements and will play a crucial role in cosmological constraints. In this paper, we quantify the ability of the SL test signal by a CODEX-like spectrograph for constraining interacting dark energy. Four typical interacting dark energy models are considered: (i) , (ii) , (iii) , and (iv) . The results show that for all the considered interacting dark energy models, relative to the current joint SN BAO CMB observations, the constraints on and would be improved by about 60 and 30-40 %, while the constraints on w and would be slightly improved, with a 30-year observation of the SL test. We also explore the impact of the SL test on future joint geometric observations. In this analysis, we take the model with as an example, and we simulate future SN and BAO data based on the space-based project WFIRST. We find that with the future geometric constraints, the redshift drift observations would help break the geometric degeneracies in a meaningful way, thus the measurement precisions of , , w, and could be substantially improved using future probes.

  9. Counting voids to probe dark energy

    NASA Astrophysics Data System (ADS)

    Pisani, Alice; Sutter, P. M.; Hamaus, Nico; Alizadeh, Esfandiar; Biswas, Rahul; Wandelt, Benjamin D.; Hirata, Christopher M.

    2015-10-01

    We show that the number of observed voids in galaxy redshift surveys is a sensitive function of the equation of state of dark energy. Using the Fisher matrix formalism, we find the error ellipses in the w0-wa plane when the equation of state of dark energy is assumed to be of the form wCPL(z )=w0+waz /(1 +z ) . We forecast the number of voids to be observed with the ESA Euclid satellite and the NASA WFIRST mission, taking into account updated details of the surveys to reach accurate estimates of their power. The theoretical model for the forecast of the number of voids is based on matches between abundances in simulations and the analytical prediction. To take into account the uncertainties within the model, we marginalize over its free parameters when calculating the Fisher matrices. The addition of the void abundance constraints to the data from Planck, HST and supernova survey data noticeably tighten the w0-wa parameter space. We, thus, quantify the improvement in the constraints due to the use of voids and demonstrate that the void abundance is a sensitive new probe for the dark energy equation of state.

  10. Holographic dark energy with cosmological constant

    NASA Astrophysics Data System (ADS)

    Hu, Yazhou; Li, Miao; Li, Nan; Zhang, Zhenhui

    2015-08-01

    Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ωhde are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ2min=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain -0.07<ΩΛ0<0.68 and correspondingly 0.04<Ωhde0<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.

  11. Two new diagnostics of dark energy

    SciTech Connect

    Sahni, Varun; Shafieloo, Arman; Starobinsky, Alexei A.

    2008-11-15

    We introduce two new diagnostics of dark energy (DE). The first, Om, is a combination of the Hubble parameter and the cosmological redshift and provides a null test of dark energy being a cosmological constant {lambda}. Namely, if the value of Om(z) is the same at different redshifts, then DE{identical_to}{lambda}, exactly. The slope of Om(z) can differentiate between different models of dark energy even if the value of the matter density is not accurately known. For DE with an unevolving equation of state, a positive slope of Om(z) is suggestive of phantom (w<-1) while a negative slope indicates quintessence (w>-1). The second diagnostic--acceleration probe q--is the mean value of the deceleration parameter over a small redshift range. It can be used to determine the cosmological redshift at which the universe began to accelerate, again without reference to the current value of the matter density. We apply the Om and q diagnostics to the Union data set of type Ia supernovae combined with recent data from the cosmic microwave background (Wilkinson Microwave Anisotropy Probe 5) and baryon acoustic oscillations.

  12. Using atom interferometry to detect dark energy

    NASA Astrophysics Data System (ADS)

    Burrage, Clare; Copeland, Edmund J.

    2016-04-01

    We review the tantalising prospect that the first evidence for the dark energy driving the observed acceleration of the universe on giga-parsec scales may be found through metre scale laboratory-based atom interferometry experiments. To do that, we first introduce the idea that scalar fields could be responsible for dark energy and show that in order to be compatible with fifth force constraints, these fields must have a screening mechanism which hides their effects from us within the solar system. Particular emphasis is placed on one such screening mechanism known as the chameleon effect where the field's mass becomes dependent on the environment. The way the field behaves in the presence of a spherical source is determined and we then go on to show how in the presence of the kind of high vacuum associated with atom interferometry experiments, and when the test particle is an atom, it is possible to use the associated interference pattern to place constraints on the acceleration due to the fifth force of the chameleon field - this has already been used to rule out large regions of the chameleon parameter space and maybe one day will be able to detect the force due to the dark energy field in the laboratory.

  13. Present and future evidence for evolving dark energy

    NASA Astrophysics Data System (ADS)

    Liddle, Andrew R.; Mukherjee, Pia; Parkinson, David; Wang, Yun

    2006-12-01

    We compute the Bayesian evidences for one- and two-parameter models of evolving dark energy, and compare them to the evidence for a cosmological constant, using current data from Type Ia supernova, baryon acoustic oscillations, and the cosmic microwave background. We use only distance information, ignoring dark energy perturbations. We find that, under various priors on the dark energy parameters, ΛCDM is currently favored as compared to the dark energy models. We consider the parameter constraints that arise under Bayesian model averaging, and discuss the implication of our results for future dark energy projects seeking to detect dark energy evolution. The model selection approach complements and extends the figure-of-merit approach of the Dark Energy Task Force in assessing future experiments, and suggests a significantly-modified interpretation of that statistic.

  14. Present and future evidence for evolving dark energy

    SciTech Connect

    Liddle, Andrew R.; Mukherjee, Pia; Parkinson, David; Wang Yun

    2006-12-15

    We compute the Bayesian evidences for one- and two-parameter models of evolving dark energy, and compare them to the evidence for a cosmological constant, using current data from Type Ia supernova, baryon acoustic oscillations, and the cosmic microwave background. We use only distance information, ignoring dark energy perturbations. We find that, under various priors on the dark energy parameters, {lambda}CDM is currently favored as compared to the dark energy models. We consider the parameter constraints that arise under Bayesian model averaging, and discuss the implication of our results for future dark energy projects seeking to detect dark energy evolution. The model selection approach complements and extends the figure-of-merit approach of the Dark Energy Task Force in assessing future experiments, and suggests a significantly-modified interpretation of that statistic.

  15. DARK FLUID: A UNIFIED FRAMEWORK FOR MODIFIED NEWTONIAN DYNAMICS, DARK MATTER, AND DARK ENERGY

    SciTech Connect

    Zhao Hongsheng; Li Baojiu E-mail: b.li@damtp.cam.ac.u

    2010-03-20

    Empirical theories of dark matter (DM) like modified Newtonian dynamics (MOND) gravity and of dark energy (DE) like f(R) gravity were motivated by astronomical data. But could these theories be branches rooted from a more general and hence generic framework? Here we propose a very generic Lagrangian of such a framework based on simple dimensional analysis and covariant symmetry requirements, and explore various outcomes in a top-down fashion. The desired effects of quintessence plus cold DM particle fields or MOND-like scalar field(s) are shown to be largely achievable by one vector field only. Our framework preserves the covariant formulation of general relativity, but allows the expanding physical metric to be bent by a single new species of dark fluid flowing in spacetime. Its non-uniform stress tensor and current vector are simple functions of a vector field with variable norm, not coupled with the baryonic fluid and the four-vector potential of the photon fluid. The dark fluid framework generically branches into a continuous spectrum of theories with DE and DM effects, including the f(R) gravity, tensor-vector-scalar-like theories, Einstein-Aether, and nuLAMBDA theories as limiting cases. When the vector field degenerates into a pure scalar field, we obtain the physics for quintessence. Choices of parameters can be made to pass Big Bang nucleosynthesis, parameterized post-Newtonian, and causality constraints. In this broad setting we emphasize the non-constant dynamical field behind the cosmological constant effect, and highlight plausible corrections beyond the classical MOND predictions.

  16. Dark Fluid: A Unified Framework for Modified Newtonian Dynamics, Dark Matter, and Dark Energy

    NASA Astrophysics Data System (ADS)

    Zhao, HongSheng; Li, Baojiu

    2010-03-01

    Empirical theories of dark matter (DM) like modified Newtonian dynamics (MOND) gravity and of dark energy (DE) like f(R) gravity were motivated by astronomical data. But could these theories be branches rooted from a more general and hence generic framework? Here we propose a very generic Lagrangian of such a framework based on simple dimensional analysis and covariant symmetry requirements, and explore various outcomes in a top-down fashion. The desired effects of quintessence plus cold DM particle fields or MOND-like scalar field(s) are shown to be largely achievable by one vector field only. Our framework preserves the covariant formulation of general relativity, but allows the expanding physical metric to be bent by a single new species of dark fluid flowing in spacetime. Its non-uniform stress tensor and current vector are simple functions of a vector field with variable norm, not coupled with the baryonic fluid and the four-vector potential of the photon fluid. The dark fluid framework generically branches into a continuous spectrum of theories with DE and DM effects, including the f(R) gravity, tensor-vector-scalar-like theories, Einstein-Aether, and νΛ theories as limiting cases. When the vector field degenerates into a pure scalar field, we obtain the physics for quintessence. Choices of parameters can be made to pass Big Bang nucleosynthesis, parameterized post-Newtonian, and causality constraints. In this broad setting we emphasize the non-constant dynamical field behind the cosmological constant effect, and highlight plausible corrections beyond the classical MOND predictions.

  17. Statefinder diagnostic of logarithmic entropy corrected holographic dark energy with Granda-Oliveros IR cut-off

    NASA Astrophysics Data System (ADS)

    Khodam-Mohammadi, A.; Pasqua, Antonio; Malekjani, M.; Khomenko, Iuliia; Monshizadeh, M.

    2013-06-01

    In this work, we have studied the logarithmic entropy corrected holographic dark energy (LECHDE) model with Granda-Oliveros (G-O) IR cutoff. The evolution of dark energy (DE) density {\\varOmega}'D, the deceleration parameter, q, and equation of state parameter (EoS), ω Λ , are calculated. We show that the phantom divide may be crossed by choosing proper model parameters, even in absence of any interaction between dark energy and dark matter. By studying the statefinder diagnostic and ω_{{\\varLambda}}-ω_{{\\varLambda}}^' analysis, the pair parameters { r, s} and (ω_{{\\varLambda}}-ω_{{\\varLambda}}^') is calculated for flat GO-LECHDE universe. At present time, the pair { r, s} can mimic the ΛCDM scenario for a value of α/ β≃0.87, which is lower than the corresponding one for observational data ( α/ β=1.76) and for Ricci scale ( α/ β=2). We find that at present, by taking the various values of ( α/ β), the different points in r- s and (ω_{{\\varLambda}}-ω_{{\\varLambda}}^') plans are given. Moreover, in the limiting case for a flat dark dominated universe at infinity ( t→∞), we calculate { r, s} at G-O scale. For Ricci scale ( α=2, β=1) we obtain { r=0, s=2/3}.

  18. A look to nonlinear interacting Ghost dark energy cosmology

    NASA Astrophysics Data System (ADS)

    Khurshudyan, Martiros

    2016-07-01

    In this paper, we organize a look to nonlinear interacting Ghost dark energy cosmology involving a discussion on the thermodynamics of the Ghost dark energy, when the universe is bounded via the Hubble horizon. One of the ways to study a dark energy model, is to reconstruct thermodynamics of it. Ghost dark energy is one of the models of the dark energy which has an explicitly given energy density as a function of the Hubble parameter. There is an active discussion towards various cosmological scenarios, where the Ghost dark energy interacts with the pressureless cold dark matter (CDM). Recently, various models of the varying Ghost dark energy has been suggested, too. To have a comprehensive understanding of suggested models, we will discuss behavior of the cosmological parameters on parameter-redshift z plane. Some discussion on Om and statefinder hierarchy analysis of these models is presented. Moreover, up to our knowledge, suggested forms of interaction between the Ghost dark energy and cold dark matter (CDM) are new, therefore, within obtained results, we provide new contribution to previously discussed models available in the literature. Our study demonstrates that the forms of the interactions considered in the Ghost dark energy cosmology are not exotic and the justification of this is due to the recent observational data.

  19. New Light on Dark Energy

    NASA Astrophysics Data System (ADS)

    2008-01-01

    observations show that the temperature changes with radius are much steeper than predicted by the currently favoured models, indicating that most of the near-infrared emission emerges from hot material located very close to the star, that is, within one or two times the Earth-Sun distance (1-2 AU). This also implies that dust cannot exist so close to the star, since the strong energy radiated by the star heats and ultimately destroys the dust grains. ESO PR Photo 03/08 ESO PR Photo 03b/08 The Region Around MWC 147 "We have performed detailed numerical simulations to understand these observations and reached the conclusion that we observe not only the outer dust disc, but also measure strong emission from a hot inner gaseous disc. This suggests that the disc is not a passive one, simply reprocessing the light from the star," explained Kraus. "Instead, the disc is active, and we see the material, which is just transported from the outer disc parts towards the forming star." ESO PR Photo 03/08 ESO PR Photo 03c/08 Close-up on MWC 147 The best-fit model is that of a disc extending out to 100 AU, with the star increasing in mass at a rate of seven millionths of a solar mass per year. "Our study demonstrates the power of ESO's VLTI to probe the inner structure of discs around young stars and to reveal how stars reach their final mass," said Stefan Kraus. More Information The authors report their results in a paper in the Astrophysical Journal ("Detection of an inner gaseous component in a Herbig Be star accretion disk: Near- and mid-infrared spectro-interferometry and radiative transfer modeling of MWC 147", by Stefan Kraus, Thomas Preibisch, Keichii Ohnaka").

  20. Dark Energy and Key Physical Parameters of Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Bisnovatyi-Kogan, G. S.

    We discuss the physics of clusters of galaxies embedded in the cosmic dark energy background and show that 1) the halo cut-off radius of a cluster like the Virgo cluster is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; 2) the halo averaged density is equal to two densities of dark energy; 3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile.

  1. A transitioning universe with anisotropic dark energy

    NASA Astrophysics Data System (ADS)

    Yadav, Anil Kumar

    2016-08-01

    In this paper, we present a model of transitioning universe with minimal interaction between perfect fluid and anisotropic dark energy in Bianchi I space-time. The two sources are assumed to minimally interacted and therefore their energy momentum tensors are conserved separately. The explicit expression for average scale factor are considered in hybrid form that gives time varying deceleration parameter which describes both the early and late time physical features of universe. We also discuss the physical and geometrical properties of the model derived in this paper. The solution is interesting physically as it explain accelerating universe as well as singularity free universe.

  2. Interacting vacuum energy in the dark sector

    NASA Astrophysics Data System (ADS)

    Chimento, L. P.; Carneiro, S.

    2015-03-01

    We analyse three cosmological scenarios with interaction in the dark sector, which are particular cases of a general expression for the energy flux from vacuum to matter. In the first case the interaction leads to a transition from an unstable de Sitter phase to a radiation dominated universe, avoiding in this way the initial singularity. In the second case the interaction gives rise to a slow-roll power-law inflation. Finally, the third scenario is a concordance model for the late-time universe, with the vacuum term decaying into cold dark matter. We identify the physics behind these forms of interaction and show that they can be described as particular types of the modified Chaplygin gas.

  3. Interacting vacuum energy in the dark sector

    SciTech Connect

    Chimento, L. P.; Carneiro, S.

    2015-03-26

    We analyse three cosmological scenarios with interaction in the dark sector, which are particular cases of a general expression for the energy flux from vacuum to matter. In the first case the interaction leads to a transition from an unstable de Sitter phase to a radiation dominated universe, avoiding in this way the initial singularity. In the second case the interaction gives rise to a slow-roll power-law inflation. Finally, the third scenario is a concordance model for the late-time universe, with the vacuum term decaying into cold dark matter. We identify the physics behind these forms of interaction and show that they can be described as particular types of the modified Chaplygin gas.

  4. Dark energy and the hierarchy problem

    NASA Astrophysics Data System (ADS)

    Chen, Pisin

    2009-03-01

    The well-known hierarchy between the Planck scale (˜10GeV) and the TeV scale, namely a ratio of ˜10 between the two, is coincidentally repeated in a inverted order between the TeV scale and the dark energy scale at ˜10eV implied by the observations. We argue that this is not a numerical coincidence. The same brane-world setups to address the first hierarchy problem may also in principle address this second hierarchy issue. Specifically, we consider supersymmetry in the bulk and its breaking on the brane and resort to the Casimir energy induced by the bulk graviton-gravitino mass-shift on the brane as the dark energy. For the ADD model we found that our notion is sensible only if the number of extra dimension n=2. We extend our study to the Randall-Sundrum model. Invoking the chirality-flip on the boundaries for SUSY-breaking, the zero-mode gravitino contribution to the Casimir energy does give rise to the double hierarchy. Unfortunately since the higher Kaluza-Klein modes acquire relative mass-shifts at the TeV level, the zero-mode contribution to Casimir energy is overshadowed.

  5. Dark energy and key physical parameters of clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Chernin, A. D.

    2012-04-01

    We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: (1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; (2) the halo averaged density is equal to two densities of dark energy; (3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.

  6. Non-adiabatic perturbations in Ricci dark energy model

    SciTech Connect

    Karwan, Khamphee; Thitapura, Thiti E-mail: nanodsci2523@hotmail.com

    2012-01-01

    We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter α of Ricci dark energy equals to 1/2. In the case where α = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included.

  7. Limits on dark radiation, early dark energy, and relativistic degrees of freedom

    SciTech Connect

    Calabrese, Erminia; Melchiorri, Alessandro; Huterer, Dragan; Linder, Eric V.; Pagano, Luca

    2011-06-15

    Recent cosmological data analyses hint at the presence of an extra relativistic energy component in the early universe. This component is often parametrized as an excess of the effective neutrino number N{sub eff} over the standard value of 3.046. The excess relativistic energy could be an indication for an extra (sterile) neutrino, but early dark energy and barotropic dark energy also contribute to the relativistic degrees of freedom. We examine the capabilities of current and future data to constrain and discriminate between these explanations, and to detect the early dark energy density associated with them. We find that while early dark energy does not alter the current constraints on N{sub eff}, a dark radiation component, such as that provided by barotropic dark energy models, can substantially change current constraints on N{sub eff}, bringing its value back to agreement with the theoretical prediction. Both dark energy models also have implications for the primordial mass fraction of Helium Y{sub p} and the scalar perturbation index n{sub s}. The ongoing Planck satellite mission will be able to further discriminate between sterile neutrinos and early dark energy.

  8. EOS workstation

    NASA Technical Reports Server (NTRS)

    Leberl, Franz; Karspeck, Milan; Millot, Michel; Maurice, Kelly; Jackson, Matt

    1992-01-01

    This final report summarizes the work done from mid-1989 until January 1992 to develop a prototype set of tools for the analysis of EOS-type images. Such images are characterized by great multiplicity and quantity. A single 'snapshot' of EOS-type imagery may contain several hundred component images so that on a particular pixel, one finds multiple gray values. A prototype EOS-sensor, AVIRIS, has 224 gray values at each pixel. The work focused on the ability to utilize very large images and continuously roam through those images, zoom and be able to hold more than one black and white or color image, for example for stereo viewing or for image comparisons. A second focus was the utilization of so-called 'image cubes', where multiple images need to be co-registered and then jointly analyzed, viewed, and manipulated. The target computer platform that was selected was a high-performance graphics superworkstation, Stardent 3000. This particular platform offered many particular graphics tools such as the Application Visualization System (AVS) or Dore, but it missed availability of commercial third-party software for relational data bases, image processing, etc. The project was able to cope with these limitations and a phase-3 activity is currently being negotiated to port the software and enhance it for use with a novel graphics superworkstation to be introduced into the market in the Spring of 1993.

  9. New perspective on the relation between dark energy perturbations and the late-time integrated Sachs-Wolfe effect

    SciTech Connect

    Dent, James B.; Dutta, Sourish; Weiler, Thomas J.

    2009-01-15

    The effect of quintessence perturbations on the integrated Sachs-Wolfe (ISW) effect is studied for a mixed dynamical scalar field dark energy (DDE) and pressureless perfect fluid dark matter. A new and general methodology is developed to track the growth of the perturbations, which uses only the equation of state (EoS) parameter w{sub DDE}(z){identical_to}p{sub DDE}/{rho}{sub DDE} of the scalar field DDE, and the initial values of the relative entropy perturbation (between the matter and DDE) and the intrinsic entropy perturbation of the scalar field DDE as inputs. We also derive a relation between the rest-frame sound speed c-circumflex{sub s,DDE}{sup 2} of an arbitrary scalar field DDE component and its EoS w{sub DDE}(z). We show that the ISW signal differs from that expected in a {lambda}CDM cosmology by as much as +20% to -80% for parametrizations of w{sub DDE} consistent with SNIa data, and about {+-}20% for parametrizations of w{sub DDE} consistent with SNIa+CMB+BAO data, at 95% confidence. Our results indicate that, at least in principle, the ISW effect can be used to phenomenologically distinguish a cosmological constant from DDE.

  10. Structure formation in inhomogeneous Early Dark Energy models

    SciTech Connect

    Batista, R.C.; Pace, F. E-mail: francesco.pace@port.ac.uk

    2013-06-01

    We study the impact of Early Dark Energy fluctuations in the linear and non-linear regimes of structure formation. In these models the energy density of dark energy is non-negligible at high redshifts and the fluctuations in the dark energy component can have the same order of magnitude of dark matter fluctuations. Since two basic approximations usually taken in the standard scenario of quintessence models, that both dark energy density during the matter dominated period and dark energy fluctuations on small scales are negligible, are not valid in such models, we first study approximate analytical solutions for dark matter and dark energy perturbations in the linear regime. This study is helpful to find consistent initial conditions for the system of equations and to analytically understand the effects of Early Dark Energy and its fluctuations, which are also verified numerically. In the linear regime we compute the matter growth and variation of the gravitational potential associated with the Integrated Sachs-Wolf effect, showing that these observables present important modifications due to Early Dark Energy fluctuations, though making them more similar to the ΛCDM model. We also make use of the Spherical Collapse model to study the influence of Early Dark Energy fluctuations in the nonlinear regime of structure formation, especially on δ{sub c} parameter, and their contribution to the halo mass, which we show can be of the order of 10%. We finally compute how the number density of halos is modified in comparison to the ΛCDM model and address the problem of how to correct the mass function in order to take into account the contribution of clustered dark energy. We conclude that the inhomogeneous Early Dark Energy models are more similar to the ΛCDM model than its homogeneous counterparts.

  11. Heavy ion reaction measurements with the EOS TPC (looking for central collisions with missing energy)

    SciTech Connect

    Wieman, H.H.; EOS Collaboration

    1994-05-01

    The EOS TPC was constructed for complete event measurement of heavy ion collisions at the Bevalac. We report here on the TPC design and some preliminary measurements of conserved event quantities such as total invariant mass, total momentum, total A and Z.

  12. Probing dark energy with atom interferometry

    NASA Astrophysics Data System (ADS)

    Burrage, Clare; Copeland, Edmund J.; Hinds, E. A.

    2015-03-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  13. Aetherizing Lambda: Barotropic fluids as dark energy

    SciTech Connect

    Linder, Eric V.; Scherrer, Robert J.

    2009-07-15

    We examine the class of barotropic fluid models of dark energy, in which the pressure is an explicit function of the density, p=f({rho}). Through general physical considerations we constrain the asymptotic past and future behaviors and show that this class is equivalent to the sum of a cosmological constant and a decelerating perfect fluid, or 'aether', with w{sub AE}{>=}0. Barotropic models give substantially disjoint predictions from quintessence, except in the limit of {lambda}CDM. They are also interesting in that they simultaneously can ameliorate the coincidence problem and yet 'predict' a value of w{approx_equal}-1.

  14. The Dark Energy Survey CCD imager design

    SciTech Connect

    Cease, H.; DePoy, D.; Diehl, H.T.; Estrada, J.; Flaugher, B.; Guarino, V.; Kuk, K.; Kuhlmann, S.; Schultz, K.; Schmitt, R.L.; Stefanik, A.; /Fermilab /Ohio State U. /Argonne

    2008-06-01

    The Dark Energy Survey is planning to use a 3 sq. deg. camera that houses a {approx} 0.5m diameter focal plane of 62 2kx4k CCDs. The camera vessel including the optical window cell, focal plate, focal plate mounts, cooling system and thermal controls is described. As part of the development of the mechanical and cooling design, a full scale prototype camera vessel has been constructed and is now being used for multi-CCD readout tests. Results from this prototype camera are described.

  15. Matter sourced anisotropic stress for dark energy

    NASA Astrophysics Data System (ADS)

    Chang, Baorong; Lu, Jianbo; Xu, Lixin

    2014-11-01

    Usually a dark energy as a perfect fluid is characterized by the ratio of pressure to energy density (w =p /ρ ) and the ratio of their perturbations in its rest frame (cs2=δ p /δ ρ ). However, a dark energy would have other characteristics beyond its equation of state and the effective speed of sound. Here the extra property is the anisotropic stress sourced by matter as a simple extension to the perfect fluid model. At the background level, this anisotropic stress is zero with respect to the cosmological principle, but not at the first-order perturbation. We tested the viability of the existence of this kind of anisotropic stress by using the currently available cosmic observations through the geometrical and dynamical measurements. Using the Markov-chain Monte Carlo method, we found that the upper bounds on the anisotropic stress which enters into the summation of the Newtonian potentials should be of the order O (1 0-3)Δm . We did not find any strong evidence for the existence of this matter-sourced anisotropic stress, even in the 1 σ region.

  16. Imperfect dark energy from kinetic gravity braiding

    SciTech Connect

    Deffayet, Cédric; Pujolàs, Oriol; Sawicki, Ignacy; Vikman, Alexander E-mail: oriol.pujolas@cern.ch E-mail: alexander.vikman@nyu.edu

    2010-10-01

    We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding, the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energy. As an example, we study in detail a simple one-parameter model. The possible observational signatures of this model include a sizeable Early Dark Energy and a specific equation of state evolving into the final de-Sitter state from a healthy phantom regime.

  17. Holographic Ricci dark energy as running vacuum

    NASA Astrophysics Data System (ADS)

    George, Paxy; Mathew, Titus K.

    2016-04-01

    Holographic Ricci dark energy (DE) that has been proposed ago has faced problems of future singularity. In the present work, we consider the Ricci DE with an additive constant in its density as running vacuum energy. We have analytically solved the Friedmann equations and also the role played by the general conservation law followed by the cosmic components together. We have shown that the running vacuum energy status of the Ricci DE helps to remove the possible future singularity in the model. The additive constant in the density of the running vacuum played an important role, such that, without that, the model predicts either eternal deceleration or eternal acceleration. But along with the additive constant, equivalent to a cosmological constant, the model predicts a late time acceleration in the expansion of the universe, and in the far future of the evolution it tends to de Sitter universe.

  18. Understanding the Fundamental Properties of Dark Matter & Dark Energy in Structure formation and Cosmology

    SciTech Connect

    Ellis, Richard, S.

    2008-02-01

    This program is concerned with developing and verifying the validityof observational methods for constraining the properties of dark matter and dark energy in the universe. Excellent progress has been made in comparing observational projects involving weak gravitational lensing using both ground and space-based instruments, in further constraining the nature of dark matter via precise measures of its distribution in clusters of galaxies using strong gravitational lensing, in demonstrating the possible limitations of using distant supernovae in future dark energy missions, and in investigating the requirement for ground-based surveys of baryonic acoustic oscillations.

  19. Can the Existence of Dark Energy be Directly Detected?

    SciTech Connect

    Perl, Martin L.; /SLAC /KIPAC, Menlo Park

    2011-11-23

    The majority of astronomers and physicists accept the reality of dark energy and also believe that it can only be studied indirectly through observation of the motions of stars and galaxies. In this paper I open the experimental question of whether it is possible to directly detect dark energy through the presence of dark energy density. Two thirds of this paper outlines the major aspects of dark energy density as now comprehended by the astronomical and physics community. The final third summarizes various proposals for direct detection of dark energy density or its possible effects. At this time I do not have a fruitful answer to the question: Can the Existence of Dark Energy Be Directly Detected?

  20. New cosmic accelerating scenario without dark energy

    NASA Astrophysics Data System (ADS)

    Lima, J. A. S.; Basilakos, S.; Costa, F. E. M.

    2012-11-01

    We propose an alternative, nonsingular, cosmic scenario based on gravitationally induced particle production. The model is an attempt to evade the coincidence and cosmological constant problems of the standard model (ΛCDM) and also to connect the early and late time accelerating stages of the Universe. Our space-time emerges from a pure initial de Sitter stage thereby providing a natural solution to the horizon problem. Subsequently, due to an instability provoked by the production of massless particles, the Universe evolves smoothly to the standard radiation dominated era thereby ending the production of radiation as required by the conformal invariance. Next, the radiation becomes subdominant with the Universe entering in the cold dark matter dominated era. Finally, the negative pressure associated with the creation of cold dark matter (CCDM model) particles accelerates the expansion and drives the Universe to a final de Sitter stage. The late time cosmic expansion history of the CCDM model is exactly like in the standard ΛCDM model; however, there is no dark energy. The model evolves between two limiting (early and late time) de Sitter regimes. All the stages are also discussed in terms of a scalar field description. This complete scenario is fully determined by two extreme energy densities, or equivalently, the associated de Sitter Hubble scales connected by ρI/ρf=(HI/Hf)2˜10122, a result that has no correlation with the cosmological constant problem. We also study the linear growth of matter perturbations at the final accelerating stage. It is found that the CCDM growth index can be written as a function of the Λ growth index, γΛ≃6/11. In this framework, we also compare the observed growth rate of clustering with that predicted by the current CCDM model. Performing a χ2 statistical test we show that the CCDM model provides growth rates that match sufficiently well with the observed growth rate of structure.

  1. An accelerating cosmology without dark energy

    SciTech Connect

    Steigman, G.; Santos, R.C.; Lima, J.A.S. E-mail: cliviars@astro.iag.usp.br

    2009-06-01

    The negative pressure accompanying gravitationally-induced particle creation can lead to a cold dark matter (CDM) dominated, accelerating Universe (Lima et al. 1996 [1]) without requiring the presence of dark energy or a cosmological constant. In a recent study, Lima et al. 2008 [2] (LSS) demonstrated that particle creation driven cosmological models are capable of accounting for the SNIa observations [3] of the recent transition from a decelerating to an accelerating Universe, without the need for Dark Energy. Here we consider a class of such models where the particle creation rate is assumed to be of the form Γ = βH+γH{sub 0}, where H is the Hubble parameter and H{sub 0} is its present value. The evolution of such models is tested at low redshift by the latest SNe Ia data provided by the Union compilation [4] and at high redshift using the value of z{sub eq}, the redshift of the epoch of matter — radiation equality, inferred from the WMAP constraints on the early Integrated Sachs-Wolfe (ISW) effect [5]. Since the contributions of baryons and radiation were ignored in the work of LSS, we include them in our study of this class of models. The parameters of these more realistic models with continuous creation of CDM are constrained at widely-separated epochs (z{sub eq} ≈ 3000 and z ≈ 0) in the evolution of the Universe. The comparison of the parameter values, (β, γ), determined at these different epochs reveals a tension between the values favored by the high redshift CMB constraint on z{sub eq} from the ISW and those which follow from the low redshift SNIa data, posing a potential challenge to this class of models. While for β = 0 this conflict is only at ∼< 2σ, it worsens as β increases from zero.

  2. Thermodynamical description of the ghost dark energy model

    NASA Astrophysics Data System (ADS)

    Honarvaryan, M.; Sheykhi, A.; Moradpour, H.

    2015-04-01

    In this paper, we point out thermodynamical description of ghost dark energy (GDE) and its generalization to the early universe. Thereinafter, we find expressions for the entropy changes of these dark energy (DE) candidates. In addition, considering thermal fluctuations, thermodynamics of the DE component interacting with a dark matter (DM) sector is addressed. We will also find the effects of considering the coincidence problem on the mutual interaction between the dark sectors, and thus the equation of state parameter of DE. Finally, we derive a relation between the mutual interaction of the dark components of the universe, accelerated with the either GDE or its generalization, and the thermodynamic fluctuations.

  3. The growth of structure in interacting dark energy models

    SciTech Connect

    Caldera-Cabral, Gabriela; Maartens, Roy; Schaefer, Bjoern Malte E-mail: roy.maartens@port.ac.uk

    2009-07-01

    If dark energy interacts with dark matter, there is a change in the background evolution of the universe, since the dark matter density no longer evolves as a{sup −3}. In addition, the non-gravitational interaction affects the growth of structure. In principle, these changes allow us to detect and constrain an interaction in the dark sector. Here we investigate the growth factor and the weak lensing signal for a new class of interacting dark energy models. In these models, the interaction generalises the simple cases where one dark fluid decays into the other. In order to calculate the effect on structure formation, we perform a careful analysis of the perturbed interaction and its effect on peculiar velocities. Assuming a normalization to today's values of dark matter density and overdensity, the signal of the interaction is an enhancement (suppression) of both the growth factor and the lensing power, when the energy transfer in the background is from dark matter to dark energy (dark energy to dark matter)

  4. Quintessence interacting dark energy and a scalar dark fluid from 5D vacuum

    NASA Astrophysics Data System (ADS)

    Reyes, L. M.; Madriz Aguilar, José Edgar

    2011-11-01

    Considering a five-dimensional (5D) spacetime empty of matter, we develop a procedure from which an interacting scalar field and its potential are induced on our 4D spacetime by the 5D geometry. We use the procedure to derive a new 4D interacting quintessence scenario, where the quintessence field, its potential and the interaction between the dark matter and dark energy components have a geometrical origin. The mass of the interacting quintessence field depends on the extra dimension, thus giving more freedom to avoid conflicts with nucleosynthesis. Then, inspired from some scalar dark matter models, we extend the geometrical formalism to derive a novel 4D late-time cosmological scenario, where the whole dark sector of the universe (scalar dark matter plus dark energy) admits a unified description by a single geometrical scalar field.

  5. Interacting warm dark matter

    SciTech Connect

    Cruz, Norman; Palma, Guillermo; Zambrano, David; Avelino, Arturo E-mail: guillermo.palma@usach.cl E-mail: avelino@fisica.ugto.mx

    2013-05-01

    We explore a cosmological model composed by a dark matter fluid interacting with a dark energy fluid. The interaction term has the non-linear λρ{sub m}{sup α}ρ{sub e}{sup β} form, where ρ{sub m} and ρ{sub e} are the energy densities of the dark matter and dark energy, respectively. The parameters α and β are in principle not constrained to take any particular values, and were estimated from observations. We perform an analytical study of the evolution equations, finding the fixed points and their stability properties in order to characterize suitable physical regions in the phase space of the dark matter and dark energy densities. The constants (λ,α,β) as well as w{sub m} and w{sub e} of the EoS of dark matter and dark energy respectively, were estimated using the cosmological observations of the type Ia supernovae and the Hubble expansion rate H(z) data sets. We find that the best estimated values for the free parameters of the model correspond to a warm dark matter interacting with a phantom dark energy component, with a well goodness-of-fit to data. However, using the Bayesian Information Criterion (BIC) we find that this model is overcame by a warm dark matter – phantom dark energy model without interaction, as well as by the ΛCDM model. We find also a large dispersion on the best estimated values of the (λ,α,β) parameters, so even if we are not able to set strong constraints on their values, given the goodness-of-fit to data of the model, we find that a large variety of theirs values are well compatible with the observational data used.

  6. The effective field theory of dark energy

    NASA Astrophysics Data System (ADS)

    Gubitosi, Giulia; Piazza, Federico; Vernizzi, Filippo

    2013-02-01

    We propose a universal description of dark energy and modified gravity that includes all single-field models. By extending a formalism previously applied to inflation, we consider the metric universally coupled to matter fields and we write in terms of it the most general unitary gauge action consistent with the residual unbroken symmetries of spatial diffeomorphisms. Our action is particularly suited for cosmological perturbation theory: the background evolution depends on only three operators. All other operators start at least at quadratic order in the perturbations and their effects can be studied independently and systematically. In particular, we focus on the properties of a few operators which appear in non-minimally coupled scalar-tensor gravity and galileon theories. In this context, we study the mixing between gravity and the scalar degree of freedom. We assess the quantum and classical stability, derive the speed of sound of fluctuations and the renormalization of the Newton constant. The scalar can always be de-mixed from gravity at quadratic order in the perturbations, but not necessarily through a conformal rescaling of the metric. We show how to express covariant field-operators in our formalism and give several explicit examples of dark energy and modified gravity models in our language. Finally, we discuss the relation with the covariant EFT methods recently appeared in the literature.

  7. Probing Dark Energy with Constellation-X

    SciTech Connect

    Rapetti, David; Allen, Steven W.; /KIPAC, Menlo Park

    2006-09-08

    Constellation-X (Con-X) will carry out two powerful and independent sets of tests of dark energy based on X-ray observations of galaxy clusters, providing comparable accuracy to other leading dark energy probes. The first group of tests will measure the absolute distances to clusters, primarily using measurements of the X-ray gas mass fraction in the largest, dynamically relaxed clusters, but with additional constraining power provided by follow-up observations of the Sunyaev-Zel'dovich (SZ) effect. As with supernovae studies, such data determine the transformation between redshift and true distance, d(z), allowing cosmic acceleration to be measured directly. The second, independent group of tests will use the exquisite spectroscopic capabilities of Con-X to determine scaling relations between X-ray observables and mass. Together with forthcoming X-ray and SZ cluster surveys, these data will help to constrain the growth of structure, which is also a strong function of cosmological parameters.

  8. HUBBLE PARAMETER MEASUREMENT CONSTRAINTS ON DARK ENERGY

    SciTech Connect

    Farooq, Omer; Mania, Data; Ratra, Bharat E-mail: mania@phys.ksu.edu

    2013-02-20

    We use 21 Hubble parameter versus redshift data points from Simon et al., Gaztanaga et al., Stern et al., and Moresco et al. to place constraints on model parameters of constant and time-evolving dark energy cosmologies. The inclusion of the eight new measurements results in H(z) constraints more restrictive than those derived by Chen and Ratra. These constraints are now almost as restrictive as those that follow from current Type Ia supernova (SNIa) apparent magnitude versus redshift data, which now more carefully account for systematic uncertainties. This is a remarkable result. We emphasize, however, that SNIa data have been studied for a longer time than the H(z) data, possibly resulting in a better estimate of potential systematic errors in the SNIa case. A joint analysis of the H(z), baryon acoustic oscillation peak length scale, and SNIa data favors a spatially flat cosmological model currently dominated by a time-independent cosmological constant but does not exclude slowly evolving dark energy.

  9. Examining the evidence for dynamical dark energy.

    PubMed

    Zhao, Gong-Bo; Crittenden, Robert G; Pogosian, Levon; Zhang, Xinmin

    2012-10-26

    We apply a new nonparametric Bayesian method for reconstructing the evolution history of the equation of state w of dark energy, based on applying a correlated prior for w(z), to a collection of cosmological data. We combine the latest supernova (SNLS 3 year or Union 2.1), cosmic microwave background, redshift space distortion, and the baryonic acoustic oscillation measurements (including BOSS, WiggleZ, and 6dF) and find that the cosmological constant appears consistent with current data, but that a dynamical dark energy model which evolves from w<-1 at z~0.25 to w>-1 at higher redshift is mildly favored. Estimates of the Bayesian evidence show little preference between the cosmological constant model and the dynamical model for a range of correlated prior choices. Looking towards future data, we find that the best fit models for current data could be well distinguished from the ΛCDM model by observations such as Planck and Euclid-like surveys. PMID:23215174

  10. The Dark Energy Survey instrument design

    SciTech Connect

    Flaugher, B.; /Fermilab

    2006-05-01

    We describe a new project, the Dark Energy Survey (DES), aimed at measuring the dark energy equation of state parameter, w, to a statistical precision of {approx}5%, with four complementary techniques. The survey will use a new 3 sq. deg. mosaic camera (DECam) mounted at the prime focus of the Blanco 4m telescope at the Cerro-Tololo International Observatory (CTIO). DECam includes a large mosaic camera, a five element optical corrector, four filters (g,r,i,z), and the associated infrastructure for operation in the prime focus cage. The focal plane consists of 62 2K x 4K CCD modules (0.27''/pixel) arranged in a hexagon inscribed within the 2.2 deg. diameter field of view. We plan to use the 250 micron thick fully-depleted CCDs that have been developed at the Lawrence Berkeley National Laboratory (LBNL). At Fermilab, we will establish a packaging factory to produce four-side buttable modules for the LBNL devices, as well as to test and grade the CCDs. R&D is underway and delivery of DECam to CTIO is scheduled for 2009.

  11. A unifying description of dark energy

    NASA Astrophysics Data System (ADS)

    Gleyzes, Jérôme; Langlois, David; Vernizzi, Filippo

    2014-01-01

    We review and extend a novel approach that we recently introduced, to describe general dark energy or scalar-tensor models. Our approach relies on an Arnowitt-Deser-Misner (ADM) formulation based on the hypersurfaces where the underlying scalar field is uniform. The advantage of this approach is that it can describe in the same language and in a minimal way a vast number of existing models, such as quintessence, F(R) theories, scalar tensor theories, their Horndeski extensions and beyond. It also naturally includes Horava-Lifshitz theories. As summarized in this review, our approach provides a unified treatment of the linear cosmological perturbations about a Friedmann-Lemaître-Robertson-Walker (FLRW) universe, obtained by a systematic expansion of our general action up to quadratic order. This shows that the behavior of these linear perturbations is generically characterized by five time-dependent functions. We derive the full equations of motion in the Newtonian gauge. In the Horndeski case, we obtain the equation of state for dark energy perturbations in terms of these functions. Our unifying description thus provides the simplest and most systematic way to confront theoretical models with current and future cosmological observations.

  12. The Hubble constant and dark energy from cosmological distance measures

    SciTech Connect

    Ichikawa, Kazuhide; Takahashi, Tomo E-mail: tomot@cc.saga-u.ac.jp

    2008-04-15

    We study how the determination of the Hubble constant from cosmological distance measures is affected by models of dark energy and vice versa. For this purpose, constraints on the Hubble constant and dark energy are investigated using the cosmological observations of cosmic microwave background, baryon acoustic oscillations and type Ia supernovae. When one investigates dark energy, the Hubble constant is often a nuisance parameter; thus it is usually marginalized over. On the other hand, when one focuses on the Hubble constant, simple dark energy models such as a cosmological constant and a constant equation of state are usually assumed. Since we do not know the nature of dark energy yet, it is interesting to investigate the Hubble constant assuming some types of dark energy and see to what extent the constraint on the Hubble constant is affected by the assumption concerning dark energy. We show that the constraint on the Hubble constant is not affected much by the assumption for dark energy. We furthermore show that this holds true even if we remove the assumption that the universe is flat. We also discuss how the prior on the Hubble constant affects the constraints on dark energy and/or the curvature of the universe.

  13. Nonparametric dark energy reconstruction from supernova data.

    PubMed

    Holsclaw, Tracy; Alam, Ujjaini; Sansó, Bruno; Lee, Herbert; Heitmann, Katrin; Habib, Salman; Higdon, David

    2010-12-10

    Understanding the origin of the accelerated expansion of the Universe poses one of the greatest challenges in physics today. Lacking a compelling fundamental theory to test, observational efforts are targeted at a better characterization of the underlying cause. If a new form of mass-energy, dark energy, is driving the acceleration, the redshift evolution of the equation of state parameter w(z) will hold essential clues as to its origin. To best exploit data from observations it is necessary to develop a robust and accurate reconstruction approach, with controlled errors, for w(z). We introduce a new, nonparametric method for solving the associated statistical inverse problem based on Gaussian process modeling and Markov chain Monte Carlo sampling. Applying this method to recent supernova measurements, we reconstruct the continuous history of w out to redshift z=1.5. PMID:21231517

  14. Observational effects of the early episodically dominating dark energy

    NASA Astrophysics Data System (ADS)

    Park, Chan-Gyung; Lee, Jae-heon; Hwang, Jai-chan; Noh, Hyerim

    2014-10-01

    We investigate the observational consequences of the early episodically dominating dark energy on the evolution of cosmological structures. For this aim, we introduce the minimally coupled scalar-field dark energy model with the Albrecht-Skordis potential, which allows a sudden ephemeral domination of a dark energy component during the radiation or early matter era. The conventional cosmological parameters in the presence of such an early dark energy are constrained with WMAP and Planck cosmic microwave background radiation data including other external data sets. It is shown that in the presence of such an early dark energy, the estimated cosmological parameters can deviate substantially from the currently known Λ cold dark matter (Λ CDM )-based parameters, with best-fit values differing by several percent for WMAP and by a percent level for Planck data. For the latter case, only a limited amount of dark energy with episodic nature is allowed since the Planck data strongly favor the Λ CDM model. Compared with the conventional dark energy model, the early dark energy dominating near the radiation-matter equality or at the early matter era results in the shorter cosmic age or the presence of tensor-type perturbation, respectively. Our analysis demonstrates that the alternative cosmological parameter estimation is allowed based on the same observations even in Einstein's gravity.

  15. Cosmological anisotropy from non-comoving dark matter and dark energy

    SciTech Connect

    Harko, Tiberiu; Lobo, Francisco S. N. E-mail: flobo@cii.fc.ul.pt

    2013-07-01

    We consider a cosmological model in which the two major fluid components of the Universe, dark energy and dark matter, flow with distinct four-velocities. This cosmological configuration is equivalent to a single anisotropic fluid, expanding with a four-velocity that is an appropriate combination of the two fluid four-velocities. The energy density of the single cosmological fluid is larger than the sum of the energy densities of the two perfect fluids, i.e., dark energy and dark matter, respectively, and contains a correction term due to the anisotropy generated by the differences in the four-velocities. Furthermore, the gravitational field equations of the two-fluid anisotropic cosmological model are obtained for a Bianchi type I geometry. By assuming that the non-comoving motion of the dark energy and dark matter induces small perturbations in the homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker type cosmological background, and that the anisotropy parameter is small, the equations of the cosmological perturbations due to the non-comoving nature of the two major components are obtained. The time evolution of the metric perturbations is explicitly obtained for the cases of the exponential and power law background cosmological expansion. The imprints of a non-comoving dark energy - dark matter on the Cosmic Microwave Background and on the luminosity distance are briefly discussed, and the temperature anisotropies and the quadrupole are explicitly obtained in terms of the metric perturbations of the flat background metric. Therefore, if there is a slight difference between the four-velocities of the dark energy and dark matter, the Universe would acquire some anisotropic characteristics, and its geometry will deviate from the standard FLRW one. In fact, the recent Planck results show that the presence of an intrinsic large scale anisotropy in the Universe cannot be excluded a priori, so that the model presented in this work can be considered as a

  16. BOOK REVIEW Dark Energy: Theory and Observations Dark Energy: Theory and Observations

    NASA Astrophysics Data System (ADS)

    Faraoni, Valerio

    2011-02-01

    The 1998 discovery of what seems an acceleration of the cosmic expansion was made using type Ia supernovae and was later confirmed by other cosmological observations. It has made a huge impact on cosmology, prompting theoreticians to explain the observations and introducing the concept of dark energy into modern physics. A vast literature on dark energy and its alternatives has appeared since then, and this is the first comprehensive book devoted to the subject. This book is addressed to an advanced audience comprising graduate students and researchers in cosmology. Although it contains forty four fully solved problems and the first three chapters are rather introductory, they do not constitute a self-consistent course in cosmology and this book assumes graduate level knowledge of cosmology and general relativity. The fourth chapter focuses on observations, while the rest of this book addresses various classes of models proposed, including the cosmological constant, quintessence, k-essence, phantom energy, coupled dark energy, etc. The title of this book should not induce the reader into believing that only dark energy models are addressed—the authors devote two chapters to discussing conceptually very different approaches alternative to dark energy, including ƒ(R) and Gauss-Bonnet gravity, braneworld and void models, and the backreaction of inhomogeneities on the cosmic dynamics. Two chapters contain a general discussion of non-linear cosmological perturbations and statistical methods widely applicable in cosmology. The final chapter outlines future perspectives and the most likely lines of observational research on dark energy in the future. Overall, this book is carefully drafted, well presented, and does a good job of organizing the information available in the vast literature. The reader is pointed to the essential references and guided in a balanced way through the various proposals aimied at explaining the cosmological observations. Not all classes of

  17. Constraining interacting dark energy models with latest cosmological observations

    NASA Astrophysics Data System (ADS)

    Xia, Dong-Mei; Wang, Sai

    2016-08-01

    The local measurement of H0 is in tension with the prediction of ΛCDM model based on the Planck data. This tension may imply that dark energy is strengthened in the late-time Universe. We employ the latest cosmological observations on CMB, BAO, LSS, SNe, H(z) and H0 to constrain several interacting dark energy models. Our results show no significant indications for the interaction between dark energy and dark matter. The H0 tension can be moderately alleviated, but not totally released.

  18. The traces of anisotropic dark energy in light of Planck

    SciTech Connect

    Cardona, Wilmar; Kunz, Martin; Hollenstein, Lukas E-mail: lukas.hollenstein@zhaw.ch

    2014-07-01

    We study a dark energy model with non-zero anisotropic stress, either linked to the dark energy density or to the dark matter density. We compute approximate solutions that allow to characterise the behaviour of the dark energy model and to assess the stability of the perturbations. We also determine the current limits on such an anisotropic stress from the cosmic microwave background data by the Planck satellite, and derive the corresponding constraints on the modified growth parameters like the growth index, the effective Newton's constant and the gravitational slip.

  19. About Dark Energy and Dark Matter in a Three-Dimensional Quantum Vacuum Model

    NASA Astrophysics Data System (ADS)

    Fiscaletti, Davide

    2016-06-01

    A model of a three-dimensional quantum vacuum based on Planck energy density as a universal property of a granular space is suggested. The possibility to provide an unifying explanation of dark matter and dark energy as phenomena linked with the fluctuations of the three-dimensional quantum vacuum is explored. The changes and fluctuations of the quantum vacuum energy density generate a curvature of space-time similar to the curvature produced by a "dark energy" density. The formation of large scale structures in the universe associated to the flattening of the orbital speeds of the spiral galaxies can be explained in terms of primary fluctuations of the quantum vacuum energy density without attracting the idea of dark matter.

  20. Weak lensing in the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Troxel, Michael

    2016-03-01

    I will present the current status of weak lensing results from the Dark Energy Survey (DES). DES will survey 5000 square degrees in five photometric bands (grizY), and has already provided a competitive weak lensing catalog from Science Verification data covering just 3% of the final survey footprint. I will summarize the status of shear catalog production using observations from the first year of the survey and discuss recent weak lensing science results from DES. Finally, I will report on the outlook for future cosmological analyses in DES including the two-point cosmic shear correlation function and discuss challenges that DES and future surveys will face in achieving a control of systematics that allows us to take full advantage of the available statistical power of our shear catalogs.

  1. Neutrino dark energy in grand unified theories

    NASA Astrophysics Data System (ADS)

    Bhatt, Jitesh R.; Gu, Pei-Hong; Sarkar, Utpal; Singh, Santosh K.

    2009-10-01

    We studied a left-right symmetric model that can accommodate the neutrino dark energy (νDE) proposal. The type-III seesaw mechanism is implemented to give masses to the neutrinos. After explaining the model, we study the consistency of the model by minimizing the scalar potential and obtaining the conditions for the required vacuum expectation values of the different scalar fields. This model is then embedded in an SO(10) grand unified theory and the allowed symmetry breaking scales are determined by the condition of the gauge coupling unification. Although SU(2)R breaking is required to be high, its Abelian subgroup U(1)R is broken in the TeV range, which can then give the required neutrino masses and predicts new gauge bosons that could be detected at LHC. The neutrino masses are studied in detail in this model, which shows that at least 3 singlet fermions are required.

  2. On cosmic acceleration without dark energy

    SciTech Connect

    Kolb, E.W.; Matarrese, S.; Riotto, A.; ,

    2005-06-01

    We elaborate on the proposal that the observed acceleration of the Universe is the result of the backreaction of cosmological perturbations, rather than the effect of a negative-pressure dark energy fluid or a modification of general relativity. Through the effective Friedmann equations describing an inhomogeneous Universe after smoothing, we demonstrate that acceleration in our local Hubble patch is possible even if fluid elements do not individually undergo accelerated expansion. This invalidates the no-go theorem that there can be no acceleration in our local Hubble patch if the Universe only contains irrotational dust. We then study perturbatively the time behavior of general-relativistic cosmological perturbations, applying, where possible, the renormalization group to regularize the dynamics. We show that an instability occurs in the perturbative expansion involving sub-Hubble modes, which indicates that acceleration in our Hubble patch may originate from the backreaction of cosmological perturbations on observable scales.

  3. Calibration Monitor for Dark Energy Experiments

    SciTech Connect

    Kaiser, M. E.

    2009-11-23

    The goal of this program was to design, build, test, and characterize a flight qualified calibration source and monitor for a Dark Energy related experiment: ACCESS - 'Absolute Color Calibration Experiment for Standard Stars'. This calibration source, the On-board Calibration Monitor (OCM), is a key component of our ACCESS spectrophotometric calibration program. The OCM will be flown as part of the ACCESS sub-orbital rocket payload in addition to monitoring instrument sensitivity on the ground. The objective of the OCM is to minimize systematic errors associated with any potential changes in the ACCESS instrument sensitivity. Importantly, the OCM will be used to monitor instrument sensitivity immediately after astronomical observations while the instrument payload is parachuting to the ground. Through monitoring, we can detect, track, characterize, and thus correct for any changes in instrument senstivity over the proposed 5-year duration of the assembled and calibrated instrument.

  4. Neutrino dark energy in grand unified theories

    SciTech Connect

    Bhatt, Jitesh R.; Sarkar, Utpal; Singh, Santosh K.; Gu, P.-H.

    2009-10-01

    We studied a left-right symmetric model that can accommodate the neutrino dark energy ({nu}DE) proposal. The type-III seesaw mechanism is implemented to give masses to the neutrinos. After explaining the model, we study the consistency of the model by minimizing the scalar potential and obtaining the conditions for the required vacuum expectation values of the different scalar fields. This model is then embedded in an SO(10) grand unified theory and the allowed symmetry breaking scales are determined by the condition of the gauge coupling unification. Although SU(2){sub R} breaking is required to be high, its Abelian subgroup U(1){sub R} is broken in the TeV range, which can then give the required neutrino masses and predicts new gauge bosons that could be detected at LHC. The neutrino masses are studied in detail in this model, which shows that at least 3 singlet fermions are required.

  5. Frustrated expectations: Defect networks and dark energy

    SciTech Connect

    Avelino, P.P.; Oliveira, J.C.R.E.; Martins, C.J.A.P.; Menezes, J.; Menezes, R.

    2006-06-15

    We discuss necessary conditions for a network of cosmic domain walls to have a chance of providing the dark energy that might explain the recent acceleration of the Universe. We derive a strong bound on the curvature of the walls, which shows that viable candidate networks must be fine-tuned and nonstandard. We also discuss various requirements that any stable lattice of frustrated walls must obey. We conjecture that, even though one can build (by hand) lattices that would be stable, no such lattices will ever come out of realistic domain wall forming cosmological phase transitions. We provide some simple numerical simulations that illustrate our results and correct some misconceptions in the published literature, but a detailed numerical analysis is left for a companion paper.

  6. Readout electronics for the Dark Energy Camera

    NASA Astrophysics Data System (ADS)

    Castilla, Javier; Ballester, Otger; Cardiel, Laia; Chappa, Steve; de Vicente, Juan; Holm, Scott; Huffman, David; Kozlovsky, Mark; Martinez, Gustavo; Olsen, Jamieson; Shaw, Theresa; Stuermer, Walter

    2010-07-01

    The goal of the Dark Energy Survey (DES) is to measure the dark energy equation of state parameter with four complementary techniques: galaxy cluster counts, weak lensing, angular power spectrum and type Ia supernovae. DES will survey a 5000 sq. degrees area of the sky in five filter bands using a new 3 deg2 mosaic camera (DECam) mounted at the prime focus of the Blanco 4-meter telescope at the Cerro-Tololo International Observatory (CTIO). DECam is a ~520 megapixel optical CCD camera that consists of 62 2k x 4k science sensors plus 4 2k x 2k sensors for guiding. The CCDs, developed at the Lawrence Berkeley National Laboratory (LBNL) and packaged and tested at Fermilab, have been selected to obtain images efficiently at long wavelengths. A front-end electronics system has been developed specifically to perform the CCD readout. The system is based in Monsoon, an open source image acquisition system designed by the National Optical Astronomy Observatory (NOAO). The electronics consists mainly of three types of modules: Control, Acquisition and Clock boards. The system provides a total of 132 video channels, 396 bias levels and around 1000 clock channels in order to readout the full mosaic at 250 kpixel/s speed with 10 e- noise performance. System configuration and data acquisition is done by means of six 0.8 Gbps optical links. The production of the whole system is currently underway. The contribution will focus on the testing, calibration and general performance of the full system in a realistic environment.

  7. Logarithmic Entropy-Corrected Holographic Dark Energy in Hořava-Lifshitz cosmology with Granda-Oliveros cut-off

    NASA Astrophysics Data System (ADS)

    Pasqua, Antonio; Chattopadhyay, Surajit

    2013-12-01

    In this work, we studied the Logarithmic Entropy-Corrected Holographic Dark Energy (LECHDE) model in a spatially non-flat universe and in the framework of Hořava-Lifshitz cosmology. As infrared cutoff of the system we considered the cut-off recently proposed by Granda and Oliveros which contains two terms, one proportional to H 2 and one to . For the two cases containing non-interacting and interacting Dark Energy (DE) and Dark Matter (DM), we obtained the exact differential equation that determines the evolution of the density parameter. Moreover, we derived the expressions of the deceleration parameter q and, using a parametrization of the equation of state (EoS) parameter ω D of our model as ω D ( z)= ω 0+ ω 1 z, we derived both the expressions of ω 0 and ω 1 for both non-interacting and interacting cases. All derivations made in this work are done in small redshift approximation and for low redshift expansion of the equation of state (EoS) parameter.

  8. Dynamics of minimally coupled dark energy in spherical halos of dark matter

    NASA Astrophysics Data System (ADS)

    Novosyadlyj, Bohdan; Tsizh, Maksym; Kulinich, Yurij

    2016-03-01

    We analyse the evolution of scalar field dark energy in the spherical halos of dark matter at the late stages of formation of gravitationally bound systems in the expanding Universe. The dynamics of quintessential dark energy at the center of dark matter halo strongly depends on the value of effective sound speed c_s (in units of speed of light). If c_s˜ 1 (classical scalar field) then the dark energy in the gravitationally bound systems is only slightly perturbed and its density is practically the same as in cosmological background. The dark energy with small value of sound speed (c_s<0.1), on the contrary, is important dynamical component of halo at all stages of their evolution: linear, non-linear, turnaround, collapse, virialization and later up to current epoch. These properties of dark energy can be used for constraining the value of effective sound speed c_s by comparison the theoretical predictions with observational data related to the large scale gravitationally bound systems.

  9. Logarithmic entropy corrected holographic dark energy with nonminimal kinetic coupling

    NASA Astrophysics Data System (ADS)

    Amani, Ali R.; Sadeghi, J.; Farajollahi, H.; Pourali, M.

    2012-01-01

    In this paper, we have considered a cosmological model with the non--minimal kinetic coupling terms and investigated its cosmological implications with respect to the logarithmic entropy-- corrected holographic dark energy (LECHDE). The correspondence between LECHDE in flat FRW cosmology and the phantom dark energy model with the aim to interpret the current universe acceleration is also examined.

  10. Dark energy and normalization of the cosmological wave function

    NASA Astrophysics Data System (ADS)

    Huang, Peng; Huang, Yue; Li, Miao; Li, Nan

    2016-08-01

    Dark energy is investigated from the perspective of quantum cosmology. It is found that, together with an appropriate normal ordering factor q, only when there is dark energy can the cosmological wave function be normalized. This interesting observation may require further attention.

  11. CONSTRAINING DARK ENERGY WITH GAMMA-RAY BURSTS

    SciTech Connect

    Samushia, Lado; Ratra, Bharat E-mail: ratra@phys.ksu.ed

    2010-05-10

    We use the measurement of gamma-ray burst (GRB) distances to constrain dark energy cosmological model parameters. We employ two methods for analyzing GRB data-fitting luminosity relation of GRBs in each cosmology and using distance measures computed from binned GRB data. Current GRB data alone cannot tightly constrain cosmological parameters and allow for a wide range of dark energy models.

  12. The CHASE laboratory search for chameleon dark energy

    SciTech Connect

    Steffen, Jason H.; /Fermilab

    2010-11-01

    A scalar field is a favorite candidate for the particle responsible for dark energy. However, few theoretical means exist that can simultaneously explain the observed acceleration of the Universe and evade tests of gravity. The chameleon mechanism, whereby the properties of a particle depend upon the local environment, is one possible avenue. We present the results of the Chameleon Afterglow Search (CHASE) experiment, a laboratory probe for chameleon dark energy. CHASE marks a significant improvement other searches for chameleons both in terms of its sensitivity to the photon/chameleon coupling as well as its sensitivity to the classes of chameleon dark energy models and standard power-law models. Since chameleon dark energy is virtually indistinguishable from a cosmological constant, CHASE tests dark energy models in a manner not accessible to astronomical surveys.

  13. Baryon Acoustic Oscillation Intensity Mapping of Dark Energy

    NASA Astrophysics Data System (ADS)

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B.; McDonald, Patrick

    2008-03-01

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called “dark energy.” To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 109 individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

  14. Baryon acoustic oscillation intensity mapping of dark energy.

    PubMed

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B; McDonald, Patrick

    2008-03-01

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called "dark energy." To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 10(9) individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy. PMID:18352692

  15. Reconstructing the interaction between dark energy and dark matter using Gaussian processes

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Guo, Zong-Kuan; Cai, Rong-Gen

    2015-06-01

    We present a nonparametric approach to reconstruct the interaction between dark energy and dark matter directly from SNIa Union 2.1 data using Gaussian processes, which is a fully Bayesian approach for smoothing data. In this method, once the equation of state (w ) of dark energy is specified, the interaction can be reconstructed as a function of redshift. For the decaying vacuum energy case with w =-1 , the reconstructed interaction is consistent with the standard Λ CDM model, namely, there is no evidence for the interaction. This also holds for the constant w cases from -0.9 to -1.1 and for the Chevallier-Polarski-Linder (CPL) parametrization case. If the equation of state deviates obviously from -1 , the reconstructed interaction exists at 95% confidence level. This shows the degeneracy between the interaction and the equation of state of dark energy when they get constraints from the observational data.

  16. Dodging the dark matter degeneracy while determining the dynamics of dark energy

    NASA Astrophysics Data System (ADS)

    Busti, Vinicius C.; Clarkson, Chris

    2016-05-01

    One of the key issues in cosmology is to establish the nature of dark energy, and to determine whether the equation of state evolves with time. When estimating this from distance measurements there is a degeneracy with the matter density. We show that there exists a simple function of the dark energy equation of state and its first derivative which is independent of this degeneracy at all redshifts, and so is a much more robust determinant of the evolution of dark energy than just its derivative. We show that this function can be well determined at low redshift from supernovae using Gaussian Processes, and that this method is far superior to a variety of parameterisations which are also subject to priors on the matter density. This shows that parametrised models give very biased constraints on the evolution of dark energy.

  17. Linear and nonlinear instabilities in unified dark energy models

    SciTech Connect

    Avelino, P. P.; Beca, L. M. G.; Martins, C. J. A. P.

    2008-03-15

    We revisit the paradigm of unified dark energy discussing in detail the averaging problem in this type of scenario, highlighting the need for a full nonlinear treatment. We also address the question of if and how models with one or several dark fluids can be observationally distinguished. Simpler and physically clearer derivations of some key results, most notably on the relation between the generalized Chaplygin gas and the standard ({lambda}CDM) 'concordance' model and on a Jeans-type small-scale instability of some coupled dark energy/dark matter models are presented.

  18. Scalar perturbations in cosmological models with dark energy-dark matter interaction

    NASA Astrophysics Data System (ADS)

    Eingorn, Maxim; Kiefer, Claus

    2015-07-01

    Scalar cosmological perturbations are investigated in the framework of a model with interacting dark energy and dark matter. In addition to these constituents, the inhomogeneous Universe is supposed to be filled with the standard noninteracting constituents corresponding to the conventional ΛCDM model. The interaction term is chosen in the form of a linear combination of dark sector energy densities with evolving coefficients. The methods of discrete cosmology are applied, and strong theoretical constraints on the parameters of the model are derived. A brief comparison with observational data is performed.

  19. Fingerprinting dark energy. III. Distinctive marks of viscosity

    NASA Astrophysics Data System (ADS)

    Sapone, Domenico; Majerotto, Elisabetta

    2012-06-01

    The characterization of dark energy is one of the primary goals in cosmology especially now that many new experiments are being planned with the aim of reaching a high sensitivity on cosmological parameters. It is known that if we move away from the simple cosmological constant model then we need to consider perturbations in the dark energy fluid. This means that dark energy has two extra degrees of freedom: the sound speed cs2 and the anisotropic stress σ. If dark energy is inhomogenous at the scales of interest then the gravitational potentials are modified and the evolution of the dark matter perturbations is also directly affected. In this paper we add an anisotropic component to the dark energy perturbations. Following the idea introduced in D. Sapone and M. Kunz, Phys. Rev. DPRVDAQ1550-7998 80, 083519 (2009)10.1103/PhysRevD.80.083519, we solve analytically the equations of perturbations in the dark sector, finding simple and accurate approximated solutions. We also find that the evolution of the density perturbations is governed by an effective sound speed that depends on both the sound speed and the anisotropic stress parameter. We then use these solutions to look at the impact of the dark energy perturbations on the matter power spectrum and on the integrated Sachs-Wolfe effect in the cosmic microwave background.

  20. Interacting holographic dark energy models: a general approach

    NASA Astrophysics Data System (ADS)

    Som, S.; Sil, A.

    2014-08-01

    Dark energy models inspired by the cosmological holographic principle are studied in homogeneous isotropic spacetime with a general choice for the dark energy density . Special choices of the parameters enable us to obtain three different holographic models, including the holographic Ricci dark energy (RDE) model. Effect of interaction between dark matter and dark energy on the dynamics of those models are investigated for different popular forms of interaction. It is found that crossing of phantom divide can be avoided in RDE models for β>0.5 irrespective of the presence of interaction. A choice of α=1 and β=2/3 leads to a varying Λ-like model introducing an IR cutoff length Λ -1/2. It is concluded that among the popular choices an interaction of the form Q∝ Hρ m suits the best in avoiding the coincidence problem in this model.

  1. Holographic dark energy and f(R) gravity

    NASA Astrophysics Data System (ADS)

    Aghamohammadi, A.; Saaidi, Kh

    2011-02-01

    We investigate the corresponding relation between f(R) gravity and holographic dark energy. We introduce a type of energy density from f(R) that has the same role as holographic dark energy. We obtain the differential equation that specifies the evolution of the introduced energy density parameter based on a varying gravitational constant. We discover the relation for the equation of state parameter for low redshifts that contains varying G correction.

  2. Technically natural dark energy from Lorentz breaking

    SciTech Connect

    Blas, D.

    2011-07-01

    We construct a model of dark energy with a technically natural small contribution to cosmic acceleration, i.e. this contribution does not receive corrections from other scales in the theory. The proposed acceleration mechanism appears generically in the low-energy limit of gravity theories with violation of Lorentz invariance that contain a derivatively coupled scalar field Θ. The latter may be the Goldstone field of a broken global symmetry. The model, that we call ΘCDM, is a valid effective field theory up to a high cutoff just a few orders of magnitude below the Planck scale. Furthermore, it can be ultraviolet-completed in the context of Hořava gravity. We discuss the observational predictions of the model. Even in the absence of a cosmological constant term, the expansion history of the Universe is essentially indistinguishable from that of ΛCDM. The difference between the two theories appears at the level of cosmological perturbations. We find that in ΘCDM the matter power spectrum is enhanced at subhorizon scales compared to ΛCDM. This property can be used to discriminate the model from ΛCDM with current cosmological data.

  3. Spectroscopic Needs for Imaging Dark Energy Experiments

    DOE PAGESBeta

    Newman, Jeffrey A.; Slosar, Anze; Abate, Alexandra; Abdalla, Filipe B.; Allam, Sahar; Allen, Steven W.; Ansari, Reza; Bailey, Stephen; Barkhouse, Wayne A.; Beers, Timothy C.; et al

    2015-03-15

    Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-z’s): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-z’s will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments. Hence, to achieve their full potential, imaging-based experiments will require large setsmore » of objects with spectroscopically-determined redshifts, for two purposes: Training: Objects with known redshift are needed to map out the relationship between object color and z (or, equivalently, to determine empirically-calibrated templates describing the rest-frame spectra of the full range of galaxies, which may be used to predict the color-z relation). The ultimate goal of training is to minimize each moment of the distribution of differences between photometric redshift estimates and the true redshifts of objects, making the relationship between them as tight as possible. The larger and more complete our “training set” of spectroscopic redshifts is, the smaller the RMS photo-z errors should be, increasing the constraining power of imaging experiments; Requirements: Spectroscopic redshift measurements for ~30,000 objects over >~15 widely-separated regions, each at least ~20 arcmin in diameter, and reaching the faintest objects used in a given experiment, will likely be necessary if photometric redshifts are to be trained and calibrated with conventional techniques. Larger, more complete samples (i.e., with longer exposure times) can improve photo-z algorithms and reduce

  4. Planck constraints on holographic dark energy

    SciTech Connect

    Li, Miao; Zhang, Zhenhui; Li, Xiao-Dong; Ma, Yin-Zhe; Zhang, Xin E-mail: xiaodongli@kias.re.kr E-mail: zhangxin@mail.neu.edu.cn

    2013-09-01

    We perform a detailed investigation on the cosmological constraints on the holographic dark energy (HDE) model by using the Plank data. We find that HDE can provide a good fit to the Plank high-l (l ∼> 40) temperature power spectrum, while the discrepancy at l ≅ 20-40 found in the ΛCDM model remains unsolved in the HDE model. The Plank data alone can lead to strong and reliable constraint on the HDE parameter c. At the 68% confidence level (CL), we obtain c = 0.508 ± 0.207 with Plank+WP+lensing, favoring the present phantom behavior of HDE at the more than 2σ CL. By combining Plank+WP with the external astrophysical data sets, i.e. the BAO measurements from 6dFGS+SDSS DR7(R)+BOSS DR9, the direct Hubble constant measurement result (H{sub 0} = 73.8 ± 2.4 kms{sup −1}Mpc{sup −1}) from the HST, the SNLS3 supernovae data set, and Union2.1 supernovae data set, we get the 68% CL constraint results c = 0.484 ± 0.070, 0.474 ± 0.049, 0.594 ± 0.051, and 0.642 ± 0.066, respectively. The constraints can be improved by 2%-15% if we further add the Plank lensing data into the analysis. Compared with the WMAP-9 results, the Plank results reduce the error by 30%-60%, and prefer a phantom-like HDE at higher significant level. We also investigate the tension between different data sets. We find no evident tension when we combine Plank data with BAO and HST. Especially, we find that the strong correlation between Ω{sub m}h{sup 3} and dark energy parameters is helpful in relieving the tension between the Plank and HST measurements. The residual value of χ{sup 2}{sub Plank+WP+HST}−χ{sup 2}{sub Plank+WP} is 7.8 in the ΛCDM model, and is reduced to 1.0 or 0.3 if we switch the dark energy to w model or the holographic model. When we introduce supernovae data sets into the analysis, some tension appears. We find that the SNLS3 data set is in tension with all other data sets; for example, for the Plank+WP, WMAP-9 and BAO+HST, the corresponding Δχ{sup 2} is equal to 6

  5. Spectroscopic Needs for Imaging Dark Energy Experiments

    SciTech Connect

    Newman, Jeffrey A.; Slosar, Anze; Abate, Alexandra; Abdalla, Filipe B.; Allam, Sahar; Allen, Steven W.; Ansari, Reza; Bailey, Stephen; Barkhouse, Wayne A.; Beers, Timothy C.; Blanton, Michael R.; Brodwin, Mark; Brownstein, Joel R.; Brunner, Robert J.; Carrasco-Kind, Matias; Cervantes-Cota, Jorge; Chisari, Nora Elisa; Colless, Matthew; Comparat, Johan; Coupon, Jean; Cheu, Elliott; Cunha, Carlos E.; de la Macorra, Alex; Dell’Antonio, Ian P.; Frye, Brenda L.; Gawiser, Eric J.; Gehrels, Neil; Grady, Kevin; Hagen, Alex; Hall, Patrick B.; Hearin, Andrew P.; Hildebrandt, Hendrik; Hirata, Christopher M.; Ho, Shirley; Honscheid, Klaus; Huterer, Dragan; Ivezic, Zeljko; Kneib, Jean -Paul; Kruk, Jeffrey W.; Lahav, Ofer; Mandelbaum, Rachel; Marshall, Jennifer L.; Matthews, Daniel J.; Menard, Brice; Miquel, Ramon; Moniez, Marc; Moos, H. W.; Moustakas, John; Papovich, Casey; Peacock, John A.; Park, Changbom; Rhodes, Jason; Sadeh, Iftach; Schmidt, Samuel J.; Stern, Daniel K.; Tyson, J. Anthony; von der Linden, Anja; Wechsler, Risa H.; Wood-Vasey, W. M.; Zentner, A.

    2015-03-15

    Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-z’s): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-z’s will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments. Hence, to achieve their full potential, imaging-based experiments will require large sets of objects with spectroscopically-determined redshifts, for two purposes: Training: Objects with known redshift are needed to map out the relationship between object color and z (or, equivalently, to determine empirically-calibrated templates describing the rest-frame spectra of the full range of galaxies, which may be used to predict the color-z relation). The ultimate goal of training is to minimize each moment of the distribution of differences between photometric redshift estimates and the true redshifts of objects, making the relationship between them as tight as possible. The larger and more complete our “training set” of spectroscopic redshifts is, the smaller the RMS photo-z errors should be, increasing the constraining power of imaging experiments; Requirements: Spectroscopic redshift measurements for ~30,000 objects over >~15 widely-separated regions, each at least ~20 arcmin in diameter, and reaching the faintest objects used in a given experiment, will likely be necessary if photometric redshifts are to be trained and calibrated with conventional techniques. Larger, more complete samples (i.e., with longer exposure times) can improve photo-z algorithms and reduce scatter

  6. Observational Constraints of Red-shift Parametrization Parameters of Dark Energy in Horava-Lifshitz Gravity

    NASA Astrophysics Data System (ADS)

    Biswas, Ritabrata; Debnath, Ujjal

    2015-02-01

    We have assumed that the FRW universe filled with baryonic matter, radiation and dark matter along with dark energy in the frame-work of Horava-Lifshitz gravity. Here three parameterizations like Linear, CPL and JBP for the dark energy have been assumed for the variations of EOS parameter w( z). The observational data analysis by χ 2 minimum test have been analyzed for our models. From Stern, Stern+BAO and Stern+BAO+CMB joint data analysis, we have obtained the bounds of the arbitrary parameters w 0 and w 1. The best fit values of the parameters w 0 and w 1 for these three models and the minimum values of χ 2 have been obtained by observational data analysis. Also the bounds of the parameters w 0 and w 1 are obtained by 66 %, 90 % and 99 % confidence levels for linear, CPL and JBP models. Next red shift-magnitude observational data points from type Ia supernovae have been considered and which contains 557 data points. From this observation, the distance modulus μ( z) against red shift z has been investigated for our predicted theoretical model (three DE models) for the best fit values of the parameters and the observed SNe Ia Union2 data sample. Finally, we have investigated that our predicted theoretical three models permitted the observational data sets.

  7. Cosmological consequences of interacting modified holographic Ricci dark energy

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Surajit

    2016-07-01

    In this present work, we have studied various aspects of modified holographic Ricci dark energy interacting with pressureless dark matter in a flat Friedman-Robertson-Walker universe. We have observed that reconstructed Hubble parameter H={dot{a}}/{a}, expressed as a function of redshift z=a^{-1}-1, exhibits an increasing pattern with evolution of the universe. The equation of state parameter has behaved like ``quintessence" for various combinations of α and β. Deceleration parameter has stayed in negative level and this has indicated accelerated expansion of the universe. Fractional densities expressed as function of z has indicated transition of the universe from a matter dominated to dark energy dominated phase. Finally we have created statefinder trajectories in {r-s} plane and we have observed that for modified holographic Ricci dark energy interacting with pressureless dark matter it is possible to attain ΛCDM phase of the universe.

  8. New constraints on interacting dark energy from cosmic chronometers

    NASA Astrophysics Data System (ADS)

    Nunes, Rafael C.; Pan, Supriya; Saridakis, Emmanuel N.

    2016-07-01

    We use the latest compilation of observational Hubble parameter measurements estimated with the differential evolution of cosmic chronometers, in combination with the local value of the Hubble constant recently measured with 2.4% precision, to constrain the cosmological scenario where dark energy interacts directly with the dark matter sector. To diminish the degeneracy between the parameters we additionally consider standard probes, such as supernovae type Ia from joint light-curve analysis samples, baryon acoustic oscillation distance measurements (BAO), and cosmic microwave background data from Planck 2015 estimations. Our analysis shows that the direct interaction between dark energy and dark matter is mildly favored, while the dark energy equation-of-state parameter is w <-1 at a 3 σ confidence level.

  9. Dark matter and dark energy interactions: theoretical challenges, cosmological implications and observational signatures.

    PubMed

    Wang, B; Abdalla, E; Atrio-Barandela, F; Pavón, D

    2016-09-01

    Models where dark matter and dark energy interact with each other have been proposed to solve the coincidence problem. We review the motivations underlying the need to introduce such interaction, its influence on the background dynamics and how it modifies the evolution of linear perturbations. We test models using the most recent observational data and we find that the interaction is compatible with the current astronomical and cosmological data. Finally, we describe the forthcoming data sets from current and future facilities that are being constructed or designed that will allow a clearer understanding of the physics of the dark sector. PMID:27517328

  10. Dark matter and dark energy interactions: theoretical challenges, cosmological implications and observational signatures

    NASA Astrophysics Data System (ADS)

    Wang, B.; Abdalla, E.; Atrio-Barandela, F.; Pavón, D.

    2016-09-01

    Models where dark matter and dark energy interact with each other have been proposed to solve the coincidence problem. We review the motivations underlying the need to introduce such interaction, its influence on the background dynamics and how it modifies the evolution of linear perturbations. We test models using the most recent observational data and we find that the interaction is compatible with the current astronomical and cosmological data. Finally, we describe the forthcoming data sets from current and future facilities that are being constructed or designed that will allow a clearer understanding of the physics of the dark sector.

  11. Unified model of k-inflation, dark matter, and dark energy

    SciTech Connect

    Bose, Nilok; Majumdar, A. S.

    2009-11-15

    We present a k-essence model where a single scalar field is responsible for the early expansion of the Universe through the process of k inflation and at appropriate subsequent stages acts both as dark matter and dark energy. The Lagrangian contains a potential for the scalar field as well as a noncanonical kinetic term, and is of the form F(X)V({phi}) which has been widely used as a k-essence Lagrangian. After the period of inflation is over the model can be approximated as purely kinetic k essence, generating dark matter and dark energy at late times. We show how observational results are used to put constraints on the parameters of this model.

  12. k-essence model of inflation, dark matter, and dark energy

    SciTech Connect

    Bose, Nilok; Majumdar, A. S.

    2009-05-15

    We investigate the possibility for k-essence dynamics to reproduce the primary features of inflation in the early universe, generate dark matter subsequently, and finally account for the presently observed acceleration. We first show that for a purely kinetic k-essence model the late-time energy density of the universe when expressed simply as a sum of a cosmological constant and a dark matter term leads to a static universe. We then study another k-essence model in which the Lagrangian contains a potential for the scalar field as well as a noncanonical kinetic term. We show that such a model generates the basic features of inflation in the early universe, and also gives rise to dark matter and dark energy at appropriate subsequent stages. Observational constraints on the parameters of this model are obtained.

  13. Dark Energy and Dark Matter in Some Cosmological Models (as remnants of visible universe)

    NASA Astrophysics Data System (ADS)

    El Fady Morcos, Abd

    2016-07-01

    Homogeneity and isotropy distribution of matter, have been considered in most of cosmological models. The formation possibility of clusters of galaxies in some stable models, have been studied. In the present work we are going to consider the dark energy and dark matter as the rest of the visible universe. The self-consistent model formulated in the context of the Generalized Field Theory , the standard model built in the General Theory of Relativity, and Saez and de Juan model constructed in the background of Møller Tetrad Theory of gravitation have been used. It is found these the dark matter and dark energy is related to a parameter ɛ. This parameter depends on the used model and availability of formation of condensations in it.

  14. Generalizing a unified model of dark matter, dark energy, and inflation with a noncanonical kinetic term

    NASA Astrophysics Data System (ADS)

    de-Santiago, Josue; Cervantes-Cota, Jorge L.

    2011-03-01

    We study a unification model for dark energy, dark matter, and inflation with a single scalar field with noncanonical kinetic term. In this model, the kinetic term of the Lagrangian accounts for the dark matter and dark energy, and at early epochs, a quadratic potential accounts for slow roll inflation. The present work is an extension to the work by Bose and Majumdar [Phys. Rev. DPRVDAQ1550-7998 79, 103517 (2009).10.1103/PhysRevD.79.103517] with a more general kinetic term that was proposed by Chimento in Phys. Rev. DPRVDAQ0556-2821 69, 123517 (2004).10.1103/PhysRevD.69.123517 We demonstrate that the model is viable at the background and linear perturbation levels.

  15. Probing Dark Energy models with neutrons

    NASA Astrophysics Data System (ADS)

    Pignol, Guillaume

    2015-07-01

    There is a deep connection between cosmology — the science of the infinitely large — and particle physics — the science of the infinitely small. This connection is particularly manifest in neutron particle physics. Basic properties of the neutron — its Electric Dipole Moment and its lifetime — are intertwined with baryogenesis and nucleosynthesis in the early Universe. I will cover this topic in the first part, that will also serve as an introduction (or rather a quick recap) of neutron physics and Big Bang cosmology. Then, the rest of the paper will be devoted to a new idea: using neutrons to probe models of Dark Energy. In the second part, I will present the chameleon theory: a light scalar field accounting for the late accelerated expansion of the Universe, which interacts with matter in such a way that it does not mediate a fifth force between macroscopic bodies. However, neutrons can alleviate the chameleon mechanism and reveal the presence of the scalar field with properly designed experiments. In the third part, I will describe a recent experiment performed with a neutron interferometer at the Institut Laue Langevin that sets already interesting constraints on the chameleon theory. Last, the chameleon field can be probed by measuring the quantum states of neutrons bouncing over a mirror. In the fourth part, I will present the status and prospects of the GRANIT experiment at the ILL.

  16. Essential building blocks of dark energy

    SciTech Connect

    Gleyzes, Jerome; Vernizzi, Filippo; Langlois, David; Piazza, Federico E-mail: langlois@apc.univ-paris7.fr E-mail: filippo.vernizzi@cea.fr

    2013-08-01

    We propose a minimal description of single field dark energy/modified gravity within the effective field theory formalism for cosmological perturbations, which encompasses most existing models. We start from a generic Lagrangian given as an arbitrary function of the lapse and of the extrinsic and intrinsic curvature tensors of the time hypersurfaces in unitary gauge, i.e. choosing as time slicing the uniform scalar field hypersurfaces. Focusing on linear perturbations, we identify seven Lagrangian operators that lead to equations of motion containing at most two (space or time) derivatives, the background evolution being determined by the time-dependent coefficients of only three of these operators. We then establish a dictionary that translates any existing or future model whose Lagrangian can be written in the above form into our parametrized framework. As an illustration, we study Horndeski's — or generalized Galileon — theories and show that they can be described, up to linear order, by only six of the seven operators mentioned above. This implies, remarkably, that the dynamics of linear perturbations can be more general than that of Horndeski while remaining second order. Finally, in order to make the link with observations, we provide the entire set of linear perturbation equations in Newtonian gauge, the effective Newton constant in the quasi-static approximation and the ratio of the two gravitational potentials, in terms of the time-dependent coefficients of our Lagrangian.

  17. Black Hole Universe Model and Dark Energy

    NASA Astrophysics Data System (ADS)

    Zhang, Tianxi

    2011-01-01

    Considering black hole as spacetime and slightly modifying the big bang theory, the author has recently developed a new cosmological model called black hole universe, which is consistent with Mach principle and Einsteinian general relativity and self consistently explains various observations of the universe without difficulties. According to this model, the universe originated from a hot star-like black hole and gradually grew through a supermassive black hole to the present universe by accreting ambient material and merging with other black holes. The entire space is infinitely and hierarchically layered and evolves iteratively. The innermost three layers are the universe that we lives, the outside space called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and zero limits for both the mass density and absolute temperature. All layers or universes are governed by the same physics, the Einstein general relativity with the Robertson-Walker metric of spacetime, and tend to expand outward physically. When one universe expands out, a new similar universe grows up from its inside black holes. The origin, structure, evolution, expansion, and cosmic microwave background radiation of black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published in peer-review journals. This study will show how this new model explains the acceleration of the universe and why dark energy is not required. We will also compare the black hole universe model with the big bang cosmology.

  18. Galaxy Clustering in the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Ross, Ashley; Dark Energy Survey Large-Scale Structure Working Group

    2016-01-01

    I will present the status of galaxy clustering results in the Dark Energy Survey (DES).DES will image the sky over 5000 deg2 in five photometric bands (grizY) to a nominal depth (iAB ~ 24), enabling the structure of the Universe to be studied to redshift 1.2 and beyond. I will present results of the clustering analyses performed to date, including those from Crocce et al. (2015), who studied the clustering of DES data over five tomographic bins, with photometric redshifts, z, in the range 0.2 < z < 1.2, and those from the `redMaGiC' sample (Rozo et al. 2015), which provides accurate (better than 2%) photometric redshifts for luminous red galaxies. I will describe how these measurements can be combined with weak lensing analyses to probe the growth of structure. Finally, I will report on how DES data can provide a 2% measurement of the angular diameter distance to z~0.9 by measuring the position of baryon acoustic oscillation feature in the clustering of DES galaxies.

  19. Quantum Yang-Mills Dark Energy

    NASA Astrophysics Data System (ADS)

    Pasechnik, Roman

    2016-02-01

    In this short review, I discuss basic qualitative characteristics of quantum non-Abelian gauge dynamics in the non-stationary background of the expanding Universe in the framework of the standard Einstein--Yang--Mills formulation. A brief outlook of existing studies of cosmological Yang--Mills fields and their properties will be given. Quantum effects have a profound impact on the gauge field-driven cosmological evolution. In particular, a dynamical formation of the spatially-homogeneous and isotropic gauge field condensate may be responsible for both early and late-time acceleration, as well as for dynamical compensation of non-perturbative quantum vacua contributions to the ground state of the Universe. The main properties of such a condensate in the effective QCD theory at the flat Friedmann--Lema\\'itre--Robertson--Walker (FLRW) background will be discussed within and beyond perturbation theory. Finally, a phenomenologically consistent dark energy can be induced dynamically as a remnant of the QCD vacua compensation arising from leading-order graviton-mediated corrections to the QCD ground state.

  20. Cooling the dark energy camera instrument

    SciTech Connect

    Schmitt, R.L.; Cease, H.; DePoy, D.; Diehl, H.T.; Estrada, J.; Flaugher, B.; Kuhlmann, S.; Onal, Birce; Stefanik, A.; /Fermilab

    2008-06-01

    DECam, camera for the Dark Energy Survey (DES), is undergoing general design and component testing. For an overview see DePoy, et al in these proceedings. For a description of the imager, see Cease, et al in these proceedings. The CCD instrument will be mounted at the prime focus of the CTIO Blanco 4m telescope. The instrument temperature will be 173K with a heat load of 113W. In similar applications, cooling CCD instruments at the prime focus has been accomplished by three general methods. Liquid nitrogen reservoirs have been constructed to operate in any orientation, pulse tube cryocoolers have been used when tilt angles are limited and Joule-Thompson or Stirling cryocoolers have been used with smaller heat loads. Gifford-MacMahon cooling has been used at the Cassegrain but not at the prime focus. For DES, the combined requirements of high heat load, temperature stability, low vibration, operation in any orientation, liquid nitrogen cost and limited space available led to the design of a pumped, closed loop, circulating nitrogen system. At zenith the instrument will be twelve meters above the pump/cryocooler station. This cooling system expected to have a 10,000 hour maintenance interval. This paper will describe the engineering basis including the thermal model, unbalanced forces, cooldown time, the single and two-phase flow model.

  1. Dark energy and the quietness of the local Hubble flow

    NASA Astrophysics Data System (ADS)

    Axenides, M.; Perivolaropoulos, L.

    2002-06-01

    The linearity and quietness of the local (<10 Mpc) Hubble flow (LHF) in view of the very clumpy local universe is a long standing puzzle in standard and in open CDM (cold dark matter) cosmogony. The question addressed in this paper is whether the antigravity component of the recently discovered dark energy can cool the velocity flow enough to provide a solution to this puzzle. We calculate the growth of matter fluctuations in a flat universe containing a fraction ΩX(t0) of dark energy obeying the time independent equation of state pX=wρX. We find that dark energy can indeed cool the LHF. However the dark energy parameter values required to make the predicted velocity dispersion consistent with the observed value vrms~=40 km/s have been ruled out by other observational tests constraining the dark energy parameters w and ΩX. Therefore despite the claims of recent qualitative studies, dark energy with time independent equation of state cannot by itself explain the quietness and linearity of the local Hubble flow.

  2. Scalar field dark energy perturbations and their scale dependence

    SciTech Connect

    Unnikrishnan, Sanil; Seshadri, T. R.; Jassal, H. K.

    2008-12-15

    We estimate the amplitude of perturbation in dark energy at different length scales for a quintessence model with an exponential potential. It is shown that on length scales much smaller than Hubble radius, perturbation in dark energy is negligible in comparison to that in dark matter. However, on scales comparable to the Hubble radius ({lambda}{sub p}>1000 Mpc) the perturbation in dark energy in general cannot be neglected. As compared to the {lambda}CDM model, the large-scale matter power spectrum is suppressed in a generic quintessence dark energy model. We show that on scales {lambda}{sub p}<1000 Mpc, this suppression is primarily due to different background evolution compared to the {lambda}CDM model. However, on much larger scales perturbation in dark energy can affect the matter power spectrum significantly. Hence this analysis can act as a discriminator between the {lambda}CDM model and other generic dark energy models with w{sub de}{ne}-1.

  3. Neutrino mass and dark energy from weak lensing.

    PubMed

    Abazajian, Kevork N; Dodelson, Scott

    2003-07-25

    Weak gravitational lensing of background galaxies by intervening matter directly probes the mass distribution in the Universe. This distribution is sensitive to both the dark energy and neutrino mass. We examine the potential of lensing experiments to measure features of both simultaneously. Focusing on the radial information contained in a future deep 4000 deg(2) survey, we find that the expected (1-sigma) error on a neutrino mass is 0.1 eV, if the dark-energy parameters are allowed to vary. The constraints on dark-energy parameters are similarly restrictive, with errors on w of 0.09. PMID:12906650

  4. Studies of dark energy with X-ray observatories.

    PubMed

    Vikhlinin, Alexey

    2010-04-20

    I review the contribution of Chandra X-ray Observatory to studies of dark energy. There are two broad classes of observable effects of dark energy: evolution of the expansion rate of the Universe, and slow down in the rate of growth of cosmic structures. Chandra has detected and measured both of these effects through observations of galaxy clusters. A combination of the Chandra results with other cosmological datasets leads to 5% constraints on the dark energy equation-of-state parameter, and limits possible deviations of gravity on large scales from general relativity. PMID:20404207

  5. Studies of dark energy with x-ray observatories

    PubMed Central

    Vikhlinin, Alexey

    2010-01-01

    I review the contribution of Chandra X-ray Observatory to studies of dark energy. There are two broad classes of observable effects of dark energy: evolution of the expansion rate of the Universe, and slow down in the rate of growth of cosmic structures. Chandra has detected and measured both of these effects through observations of galaxy clusters. A combination of the Chandra results with other cosmological datasets leads to 5% constraints on the dark energy equation-of-state parameter, and limits possible deviations of gravity on large scales from general relativity. PMID:20404207

  6. Dark Energy Domination In The Virgocentric Flow

    NASA Astrophysics Data System (ADS)

    Byrd, Gene; Chernin, A. D.; Karachentsev, I. D.; Teerikorpi, P.; Valtonen, M.; Dolgachev, V. P.; Domozhilova, L. M.

    2011-04-01

    Dark energy (DE) was first observationally detected at large Gpc distances. If it is a vacuum energy formulated as Einstein's cosmological constant, Λ, DE should also have dynamical effects at much smaller scales. Previously, we found its effects on much smaller Mpc scales in our Local Group (LG) as well as in other nearby groups. We used new HST observations of member 3D distances from the group centers and Doppler shifts. We find each group's gravity dominates a bound central system of galaxies but DE antigravity results in a radial recession increasing with distance from the group center of the outer members. Here we focus on the much larger (but still cosmologically local) Virgo Cluster and systems around it using new observations of velocities and distances. We propose an analytic model whose key parameter is the zero-gravity radius (ZGR) from the cluster center where gravity and DE antigravity balance. DE brings regularity to the Virgocentric flow. Beyond Virgo's 10 Mpc ZGR, the flow curves to approach a linear global Hubble law at larger distances. The Virgo cluster and its outer flow are similar to the Local Group and its local outflow with a scaling factor of about 10; the ZGR for Virgo is 10 times larger than that of the LG. The similarity of the two systems on the scales of 1 to 30 Mpc suggests that a quasi-stationary bound central component and an expanding outflow applies to a wide range of groups and clusters due to small scale action of DE as well as gravity. Chernin, et al 2009 Astronomy and Astrophysics 507, 1271 http://arxiv.org/abs/1006.0066 http://arxiv.org/abs/1006.0555

  7. Effective dark energy models and dark energy models with bounce in frames of F( T) gravity

    NASA Astrophysics Data System (ADS)

    Astashenok, Artyom V.

    2014-05-01

    Various cosmological models in frames of F( T) gravity are considered. The general scheme of constructing effective dark energy models with various evolution is presented. It is showed that these models in principle are compatible with ΛCDM model. The dynamics of universe governed by F( T) gravity can mimics ΛCDM evolution in past but declines from it in a future. We also construct some dark energy models with the "real" (non-effective) equation-of-state parameter w such that w≤-1. It is showed that in F( T) gravity the Universe filled phantom field not necessarily ends its existence in singularity. There are two possible mechanisms permitting the final singularity. Firstly due to the nonlinear dependence between energy density and H 2 ( H is the Hubble parameter) the universe can expands not so fast as in the general relativity and in fact Little Rip regime take place instead Big Rip. We also considered the models with possible bounce in future. In these models the universe expansion can mimics the dynamics with future singularity but due to bounce in future universe begin contracts.

  8. Testing the interaction between dark energy and dark matter with H(z) data

    NASA Astrophysics Data System (ADS)

    Yu, Pan; Li, Li; Shuo, Cao; Na-na, Pan; Yi, Zhang; Zi-xuan, Hu

    2016-04-01

    With the Markov Chain Monte Carlo (MCMC) method, we constrain an interactive dark energy model by combing the up-to-date observational data of Hubble parameter H(z) with the 7-year baryon acoustic oscillation (BAO) data, and the cosmic microwave background (CMB) data observed by the Planck satellite. Under the joint constraint of the three kinds of data, the best-fit values of the model parameters and their 1-σ errors are obtained as follows: the energy density Ωm =0.266-0.028+0.028 (1 σ) , the interaction factor γ =0.090-0.098+0.100 (1 σ) , the parameter of state equation of dark matter wX = -1.307-0.269+0.263 (1 σ) , and the Hubble Constant H0 =7420-4.56+4.66 (1 σ) , where the coupling parameter γ > 0 means that the energy is transferred from dark matter to dark energy, and the coincidence problem in the Lambda-Cold Dark Matter (ΛCDM) model is slightly alleviated in the 1σ range. For comparisons, we constrain the same model with the BAO+CMB observations and H(z) data separately. The results are as follows: (1) The H(z) data could put stricter constraint on the parameter γ than the BAO+CMB observations. (2) The ΛCDM model is best fitted, and the coupling parameter γ is correlated with parameters Ωm and H0. (3) The inconsistency of the constraint results of H0 between the local distance ladder measurements and the Planck observations can be alleviated after taking account of the interaction between dark energy and dark matter.

  9. Searching for dark energy with matter wave interferometry

    NASA Astrophysics Data System (ADS)

    Hamilton, Paul

    2016-05-01

    The nature of dark energy, which makes up 70% of the mass-energy of the universe, remains completely unknown. Chameleons are a simple scalar model for dark energy that mediate a force which is screened by bulk matter. However we can now probe these scalar fields using atoms as nearly ideal test masses in the vacuum of our cavity-based matter wave interferometer. Our first measurements ruled out a range of chameleons that would reproduce the observed cosmic acceleration. Since then we have improved sensitivity by a factor of 100. With a similar future improvement, we will be sensitive to any possible chameleon field and other exotic models for dark energy and dark matter, such as symmetrons or f(R) gravity.

  10. Model selection as a science driver for dark energy surveys

    NASA Astrophysics Data System (ADS)

    Mukherjee, Pia; Parkinson, David; Corasaniti, Pier Stefano; Liddle, Andrew R.; Kunz, Martin

    2006-07-01

    A key science goal of upcoming dark energy surveys is to seek time-evolution of the dark energy. This problem is one of model selection, where the aim is to differentiate between cosmological models with different numbers of parameters. However, the power of these surveys is traditionally assessed by estimating their ability to constrain parameters, which is a different statistical problem. In this paper, we use Bayesian model selection techniques, specifically forecasting of the Bayes factors, to compare the abilities of different proposed surveys in discovering dark energy evolution. We consider six experiments - supernova luminosity measurements by the Supernova Legacy Survey, SNAP, JEDI and ALPACA, and baryon acoustic oscillation measurements by WFMOS and JEDI - and use Bayes factor plots to compare their statistical constraining power. The concept of Bayes factor forecasting has much broader applicability than dark energy surveys.

  11. Cosmological viability conditions for f(T) dark energy models

    SciTech Connect

    Setare, M.R.; Mohammadipour, N. E-mail: N.Mohammadipour@uok.ac.ir

    2012-11-01

    Recently f(T) modified teleparallel gravity where T is the torsion scalar has been proposed as the natural gravitational alternative for dark energy. We perform a detailed dynamical analysis of these models and find conditions for the cosmological viability of f(T) dark energy models as geometrical constraints on the derivatives of these models. We show that in the phase space exists two cosmologically viable trajectory which (i) The universe would start from an unstable radiation point, then pass a saddle standard matter point which is followed by accelerated expansion de sitter point. (ii) The universe starts from a saddle radiation epoch, then falls onto the stable matter era and the system can not evolve to the dark energy dominated epoch. Finally, for a number of f(T) dark energy models were proposed in the more literature, the viability conditions are investigated.

  12. "CosmoMicroPhysics" Approach to Study the Dark Matter and Dark Energy

    NASA Astrophysics Data System (ADS)

    Vavilova, Iryna; Shulga, Valery M.

    In 2007-2009 the Complex Research Program of the NAS of Ukraine titled "Study of the Structure of the Universe, Dark Matter and Dark Energy" (CosmoMicroPhysics) was con-ducted with the aim to join efforts of the Ukrainian scientists for resolving this actual task (http://www.nas.gov.ua/ResearchActivities/ComplexProgram/Pages/17.aspx). Our research team is presented by the scientists and post-graduated students from 15 institutes and univer-sities of Ukraine ()about 70 persons) working in the different fields (astrophysics, mathematics, theoretical physics, and nuclear physics). The main scientific goals, which were put forwards on the observational and theoretical revelations of dark matter/dark energy, were the follow-ing: -Observational base of the astronomical revelations of dark matter and dark energy as well as candidates to the different baryonic components of the hidden mass of the Universe; -Observational base of the earlier evolution of the Universe and properties of the large-scale structure; -Theoretical support for such observational data and creation of the cosmological models; -Experimental search of the WIMPs and study of the neutrino properties as one of the main components of a dark matter; -Theoretical research of the classical and quantum fields in astrophysics and cosmology. We will discuss the main results obtained by our team as the essential contribution to resolve this problem: * Observations, data analysis, and estimation as regarding the various LMS components of the Universe, at the first turn as the candidates to the dark matter (AGNs, black holes in double stars, halo of galaxies and galaxy groups/clusters, mass-to-luminosity estimation for isolated galaxies and galaxies in clusters/groups, brawn dwarfs etc.); * Gravitational lenses as the sources of the mass distribution data in the Universe; *Theoretical models of the Universe with cosmological fields, Dark energy models, and research of the dark energy impact on the evolution of the

  13. Pathfinder for a HI Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Bandura, Kevin; Cylindrical Radio Telescope Team

    2011-05-01

    The 21cm Hydrogen spin flip transition has great potential to constrain the standard model of cosmology. A standard galaxy survey requires high resolution and sensitivity to identify individual galaxies. Instead using 21-cm emission, a low-resolution intensity mapping technique that resolves only large-scale linear cosmic structure will be much more efficient. At the frequencies 500-1000MHz redshifted 21cm emission can be used to study dark energy. At these frequencies, neither a standard phased array nor single dish is optimal. The Pittsburgh Cylindrical Prototype Telescope (PCPT) is a hybrid of these designs, close spaced parabolic cylinders. A cylinder views a strip of the sky, broken into as many beams as there are feeds along the focal line. This hybrid allows for much higher survey speed than a single dish, and a much larger collecting area than a traditional synthesis array. The PCPT is comprised of two 10m by 25m cylinders, centers spaced 25m apart. The telescope is a fixed drift-scan design. The cylinders are oriented N-S, such that the entire sky is swept through its 2o by 90o primary beam every day. Each feed line has 16 dipoles for each polarization spaced by 0.7λ, giving a 2o by 5o resolution after digital beam-forming. The dipoles directly feed a room temperature low noise amplifier made on the same circuit board. These LNA's have a measured noise temperature of 20K. Since the radio environment of Pittsburgh is full of strong terrestrial sources, a filter was added in front of the LNA, which raised the system temperature to about 100 Kelvin. We present continuum maps as well as 21cm maps of the galaxy made with the PCPT.

  14. The Dark Energy Survey Data Management System

    SciTech Connect

    Mohr, Joseph J.; Barkhouse, Wayne; Beldica, Cristina; Bertin, Emmanuel; Dora Cai, Y.; Nicolaci da Costa, Luiz A.; Darnell, J.Anthony; Daues, Gregory E.; Jarvis, Michael; Gower, Michelle; Lin, Huan; /Fermilab /Rio de Janeiro Observ.

    2008-07-01

    The Dark Energy Survey (DES) collaboration will study cosmic acceleration with a 5000 deg2 griZY survey in the southern sky over 525 nights from 2011-2016. The DES data management (DESDM) system will be used to process and archive these data and the resulting science ready data products. The DESDM system consists of an integrated archive, a processing framework, an ensemble of astronomy codes and a data access framework. We are developing the DESDM system for operation in the high performance computing (HPC) environments at the National Center for Supercomputing Applications (NCSA) and Fermilab. Operating the DESDM system in an HPC environment offers both speed and flexibility. We will employ it for our regular nightly processing needs, and for more compute-intensive tasks such as large scale image coaddition campaigns, extraction of weak lensing shear from the full survey dataset, and massive seasonal reprocessing of the DES data. Data products will be available to the Collaboration and later to the public through a virtual-observatory compatible web portal. Our approach leverages investments in publicly available HPC systems, greatly reducing hardware and maintenance costs to the project, which must deploy and maintain only the storage, database platforms and orchestration and web portal nodes that are specific to DESDM. In Fall 2007, we tested the current DESDM system on both simulated and real survey data. We used TeraGrid to process 10 simulated DES nights (3TB of raw data), ingesting and calibrating approximately 250 million objects into the DES Archive database. We also used DESDM to process and calibrate over 50 nights of survey data acquired with the Mosaic2 camera. Comparison to truth tables in the case of the simulated data and internal crosschecks in the case of the real data indicate that astrometric and photometric data quality is excellent.

  15. New Light on Dark Energy (LBNL Science at the Theater)

    ScienceCinema

    Linder, Eric; Ho, Shirly; Aldering, Greg; Fraiknoi, Andrew

    2011-06-08

    A panel of Lab scientists ? including Eric Linder, Shirly Ho, and Greg Aldering ? along with Andrew Fraiknoi, the Bay Area's most popular astronomy explainer, gathered at the Berkeley Repertory Theatre on Monday, April 25, 2011, for a discussion about "New Light on Dark Energy." Topics will include hunting down Type 1a supernovae, measuring the universe using baryon oscillation, and whether dark energy is the true driver of the universe.

  16. New Light on Dark Energy (LBNL Science at the Theater)

    SciTech Connect

    Linder, Eric; Ho, Shirly; Aldering, Greg; Fraiknoi, Andrew

    2011-04-25

    A panel of Lab scientists — including Eric Linder, Shirly Ho, and Greg Aldering — along with Andrew Fraiknoi, the Bay Area's most popular astronomy explainer, gathered at the Berkeley Repertory Theatre on Monday, April 25, 2011, for a discussion about "New Light on Dark Energy." Topics will include hunting down Type 1a supernovae, measuring the universe using baryon oscillation, and whether dark energy is the true driver of the universe.

  17. Dark energy domination in the local flow of giant galaxies

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Emelyanov, N. V.; Karachentsev, I. D.

    2015-05-01

    A dozen of the most luminous galaxies, at distances of up to 10 Mpc from the Local Group, move away from the group, forming the local expansion flow of giants. We use recent Hubble Space Telescope data on local giants and their numerous fainter companions to study the dynamical structure and evolutionary trends of the flow. An N-body computer model, which reproduces the observed kinematics of the flow, is constructed under the assumption that the flow is embedded in the universal dark energy background. In the model, the motions of the flow members are controlled by their mutual attraction force and the repulsion force produced by the dark energy. It is found that the dark energy repulsion dominates the force field of the flow. Because of this, the flow expands with acceleration. The dark energy domination is enhanced by the environment effect of the low mean matter density on the spatial scale of 50 Mpc in the local Universe. The dark energy domination increases with time and introduces to the flow an asymptotically linear velocity-distance relation with the universal time-rate that depends on the dark energy density only.

  18. An interacting dark energy model with nonminimal derivative coupling

    NASA Astrophysics Data System (ADS)

    Nozari, Kourosh; Behrouz, Noushin

    2016-09-01

    We study cosmological dynamics of an extended gravitational theory that gravity is coupled non-minimally with derivatives of a dark energy component and there is also a phenomenological interaction between the dark energy and dark matter. Depending on the direction of energy flow between the dark sectors, the phenomenological interaction gets two different signs. We show that this feature affects the existence of attractor solution, the rate of growth of perturbations and stability of the solutions. By considering an exponential potential as a self-interaction potential of the scalar field, we obtain accelerated scaling solutions that are attractors and have the potential to alleviate the coincidence problem. While in the absence of the nonminimal derivative coupling there is no attractor solution for phantom field when energy transfers from dark matter to dark energy, we show an attractor solution exists if one considers an explicit nonminimal derivative coupling for phantom field in this case of energy transfer. We treat the cosmological perturbations in this setup with details to show that with phenomenological interaction, perturbations can grow faster than the minimal case.

  19. Reconstruction of dark energy and expansion dynamics using Gaussian processes

    SciTech Connect

    Seikel, Marina; Clarkson, Chris; Smith, Mathew E-mail: chris.clarkson@uct.ac.za

    2012-06-01

    An important issue in cosmology is reconstructing the effective dark energy equation of state directly from observations. With few physically motivated models, future dark energy studies cannot only be based on constraining a dark energy parameter space, as the errors found depend strongly on the parametrisation considered. We present a new non-parametric approach to reconstructing the history of the expansion rate and dark energy using Gaussian Processes, which is a fully Bayesian approach for smoothing data. We present a pedagogical introduction to Gaussian Processes, and discuss how it can be used to robustly differentiate data in a suitable way. Using this method we show that the Dark Energy Survey - Supernova Survey (DES) can accurately recover a slowly evolving equation of state to σ{sub w} = ±0.05 (95% CL) at z = 0 and ±0.25 at z = 0.7, with a minimum error of ±0.025 at the sweet-spot at z ∼ 0.16, provided the other parameters of the model are known. Errors on the expansion history are an order of magnitude smaller, yet make no assumptions about dark energy whatsoever. A code for calculating functions and their first three derivatives using Gaussian processes has been developed and is available for download.

  20. GALAXY CLUSTERS AS A PROBE OF EARLY DARK ENERGY

    SciTech Connect

    Alam, Ujjaini; Lukic, Zarija; Bhattacharya, Suman E-mail: zarija@lanl.gov

    2011-02-01

    We study a class of early dark energy (EDE) models, in which, unlike in standard dark energy models, a substantial amount of dark energy exists in the matter-dominated era. We self-consistently include dark energy perturbations, and show that these models may be successfully constrained using future observations of galaxy clusters, in particular the redshift abundance, and the Sunyaev-Zel'dovich (SZ) power spectrum. We make predictions for EDE models, as well as {Lambda}CDM for incoming X-ray (eROSITA) and microwave (South Pole Telescope) observations. We show that galaxy clusters' mass function and the SZ power spectrum will put strong constraints both on the equation of state of dark energy today and the redshift at which EDE transits to present-day {Lambda}CDM-like behavior for these models, thus providing complementary information to the geometric probes of dark energy. Not including perturbations in EDE models leads to those models being practically indistinguishable from {Lambda}CDM. An MCMC analysis of future galaxy cluster surveys provides constraints for EDE parameters that are competitive with and complementary to background expansion observations such as supernovae.

  1. Ghost Dark Energy with Non-Linear Interaction Term

    NASA Astrophysics Data System (ADS)

    Ebrahimi, E.

    2016-06-01

    Here we investigate ghost dark energy (GDE) in the presence of a non-linear interaction term between dark matter and dark energy. To this end we take into account a general form for the interaction term. Then we discuss about different features of three choices of the non-linear interacting GDE. In all cases we obtain equation of state parameter, w D = p/ ρ, the deceleration parameter and evolution equation of the dark energy density parameter (Ω D ). We find that in one case, w D cross the phantom line ( w D < -1). However in two other classes w D can not cross the phantom divide. The coincidence problem can be solved in these models completely and there exist good agreement between the models and observational values of w D , q. We study squared sound speed {vs2}, and find that for one case of non-linear interaction term {vs2} can achieves positive values at late time of evolution.

  2. Reconstruction of the dark matter-vacuum energy interaction

    NASA Astrophysics Data System (ADS)

    Wang, Yuting; Zhao, Gong-Bo; Wands, David; Pogosian, Levon; Crittenden, Robert G.

    2015-11-01

    An interaction between the vacuum energy and dark matter is an intriguing possibility which may offer a way of solving the cosmological constant problem. Adopting a general prescription for momentum exchange between the two dark components, we reconstruct α (a ), the temporal evolution of the coupling strength between dark matter and vacuum energy, in a nonparametric Bayesian approach using combined observational data sets from the cosmic microwave background, supernovae and large scale structure. An evolving interaction between the vacuum energy and dark matter removes some of the tensions between different data sets. However, it is not preferred over Λ CDM in the Bayesian sense, as improvement in the fit is not sufficient to compensate for the increase in the volume of the parameter space.

  3. Using dark energy to suppress power at small scales

    NASA Astrophysics Data System (ADS)

    Kunz, Martin; Nesseris, Savvas; Sawicki, Ignacy

    2015-09-01

    The latest Planck results reconfirm the existence of a slight but chronic tension between the best-fit cosmic microwave background (CMB) and low-redshift observables: power seems to be consistently lacking in the late universe across a range of observables (e.g. weak lensing, cluster counts). We propose a two-parameter model for dark energy where the dark energy is sufficiently like dark matter at large scales to keep the CMB unchanged but where it does not cluster at small scales, preventing concordance collapse and erasing power. We thus exploit the generic scale-dependence of dark energy instead of the more usual time-dependence to address the tension in the data. The combination of CMB, distance and weak lensing data somewhat prefer our model to Λ CDM , at Δ χ2=2.4 . Moreover, this improved solution has σ8=0.79 ±0.02 , consistent with the value implied by cluster counts.

  4. Generalized ghost dark energy in Horava-Lifshitz cosmology

    NASA Astrophysics Data System (ADS)

    Borah, Bharat; Ansari, M.

    2015-12-01

    Purpose of this paper is to study generalized quantum chromodynamics ghost dark energy (GDE) in the frame work of Horava-Lifshitz cosmology. Considering interacting and non-interacting scenario of GDE with dark matter in a spatially non-flat universe, we investigate the cosmological implications of this model in detail. We obtain equation of state parameter, deceleration parameter and the evolution of dark energy density to explain the expansion of the universe. Also, we show that the results we calculate have a good compatibility with previous work and restore it in limiting case. Further, we investigate validity of generalized second law of thermodynamics in this scenario. Finally, we find out a cosmological application of our work by evaluating a relation for the equation of state of dark energy for law redshifts.

  5. Ray-tracing simulations of coupled dark energy models

    NASA Astrophysics Data System (ADS)

    Pace, Francesco; Baldi, Marco; Moscardini, Lauro; Bacon, David; Crittenden, Robert

    2015-02-01

    Dark matter and dark energy are usually assumed to couple only gravitationally. An extension to this picture is to model dark energy as a scalar field coupled directly to cold dark matter. This coupling leads to new physical effects, such as a fifth force and a time-dependent dark matter particle mass. In this work we examine the impact that coupling has on weak lensing statistics by constructing realistic simulated weak lensing maps using ray-tracing techniques through N-body cosmological simulations. We construct maps for different lensing quantities, covering a range of scales from a few arcminutes to several degrees. The concordance Λ cold dark matter (ΛCDM) model is compared to different coupled dark energy models, described either by an exponential scalar field potential (standard coupled dark energy scenario) or by a SUGRA potential (bouncing model). We analyse several statistical quantities and our results, with sources at low redshifts are largely consistent with previous work on cosmic microwave background lensing by Carbone et al. The most significant differences from the ΛCDM model are due to the enhanced growth of the perturbations and to the effective friction term in non-linear dynamics. For the most extreme models, we see differences in the power spectra up to 40 per cent compared to the ΛCDM model. The different time evolution of the linear matter overdensity can account for most of the differences, but when controlling for this using a ΛCDM model having the same normalization, the overall signal is smaller due to the effect of the friction term appearing in the equation of motion for dark matter particles.

  6. Unified dark energy and dark matter from a scalar field different from quintessence

    SciTech Connect

    Gao Changjun; Kunz, Martin; Liddle, Andrew R.; Parkinson, David

    2010-02-15

    We explore unification of dark matter and dark energy in a theory containing a scalar field of non-Lagrangian type, obtained by direct insertion of a kinetic term into the energy-momentum tensor. This scalar is different from quintessence, having an equation of state between -1 and 0 and a zero sound speed in its rest frame. We solve the equations of motion for an exponential potential via a rewriting as an autonomous system, and demonstrate the observational viability of the scenario, for sufficiently small exponential potential parameter {lambda}, by comparison to a compilation of kinematical cosmological data.

  7. Interacting ghost dark energy models with variable G and Λ

    SciTech Connect

    Sadeghi, J.; Farahani, H.; Khurshudyan, M.; Movsisyan, A. E-mail: martiros.khurshudyan@nano.cnr.it E-mail: h.farahani@umz.ac.ir

    2013-12-01

    In this paper we consider several phenomenological models of variable Λ. Model of a flat Universe with variable Λ and G is accepted. It is well known, that varying G and Λ gives rise to modified field equations and modified conservation laws, which gives rise to many different manipulations and assumptions in literature. We will consider two component fluid, which parameters will enter to Λ. Interaction between fluids with energy densities ρ{sub 1} and ρ{sub 2} assumed as Q = 3Hb(ρ{sub 1}+ρ{sub 2}). We have numerical analyze of important cosmological parameters like EoS parameter of the composed fluid and deceleration parameter q of the model.

  8. An ecological approach to problems of Dark Energy, Dark Matter, MOND and Neutrinos

    NASA Astrophysics Data System (ADS)

    Zhao, Hong Sheng

    2008-11-01

    Modern astronomical data on galaxy and cosmological scales have revealed powerfully the existence of certain dark sectors of fundamental physics, i.e., existence of particles and fields outside the standard models and inaccessible by current experiments. Various approaches are taken to modify/extend the standard models. Generic theories introduce multiple de-coupled fields A, B, C, each responsible for the effects of DM (cold supersymmetric particles), DE (Dark Energy) effect, and MG (Modified Gravity) effect respectively. Some theories use adopt vanilla combinations like AB, BC, or CA, and assume A, B, C belong to decoupled sectors of physics. MOND-like MG and Cold DM are often taken as antagnising frameworks, e.g. in the muddled debate around the Bullet Cluster. Here we argue that these ad hoc divisions of sectors miss important clues from the data. The data actually suggest that the physics of all dark sectors is likely linked together by a self-interacting oscillating field, which governs a chameleon-like dark fluid, appearing as DM, DE and MG in different settings. It is timely to consider an interdisciplinary approach across all semantic boundaries of dark sectors, treating the dark stress as one identity, hence accounts for several "coincidences" naturally.

  9. The abnormally weighting energy hypothesis: the missing link between dark matter and dark energy

    SciTech Connect

    Alimi, J-M; Fuezfa, A E-mail: andre.fuzfa@fundp.ac.be

    2008-09-15

    We generalize tensor-scalar theories of gravitation by the introduction of an 'abnormally weighting' type of energy. This theory of tensor-scalar anomalous gravity is based on a relaxation of the weak equivalence principle that is currently restricted to ordinary visible matter only. As a consequence, the mechanism of convergence toward general relativity is modified and produces cosmic acceleration naturally as an inescapable gravitational feedback induced by the mass variation of some invisible sector. The cosmological implications of this new theoretical framework are studied. From the Hubble diagram cosmological test alone, this theory provides estimates of the amount of baryons and dark matter in the Universe that are consistent with the independent cosmological tests of the cosmic microwave background and big bang nucleosynthesis. Cosmic coincidence is naturally achieved from an equally natural assumption on the amplitude of the scalar coupling strength. Finally, from the adequacy for supernovae data, we derive a new intriguing relation between the space-time dependences of the gravitational coupling and the dark matter mass, providing an example of a crucial constraint on microphysics from cosmology. This provides glimpses of an enticing new symmetry between the visible and invisible sectors, namely that the scalar charges of visible and invisible matter are exactly opposite.

  10. Thermodynamics of Interacting new Agegraphic Dark Energy and Dark Matter Due to Bianchi Type I Model

    NASA Astrophysics Data System (ADS)

    Hossienkhani, Hossien

    2016-07-01

    We study a thermodynamical description of the interaction between new agegraphic dark energy (NADE) and dark matter (DM) in an anisotropic universe. We find expressions for the entropy changes of these dark energy (DE) candidates. In addition, considering thermal fluctuations, thermodynamics of the DE component interacting with a DM sector is addressed. We also show that if one wants to solve the coincidence problem by using this mutual interaction, then the coupling constants of the interaction will be constrained. Finally, we obtain a physical expression for the interaction which is consistent with phenomenological descriptions and passes reasonably well the observational tests. Our study shows that, with the local equilibrium assumption, the generalized second law of thermodynamics is fulfilled in a region enclosed by the apparent horizon.

  11. The Higgs Portal and AN Unified Model for Dark Energy and Dark Matter

    NASA Astrophysics Data System (ADS)

    Bertolami, O.; Rosenfeld, R.

    We examine a scenario where the Higgs boson is coupled to an additional Standard Model singlet scalar field from a hidden sector. We show that, in the case where this field is very light and has already relaxed to its nonzero vacuum expectation value, one gets a very stringent limit on the mixing angle between the hidden sector scalar and the Higgs field from fifth force experiments. However, this limit does not imply in a small coupling due to the large difference of vacuum expectation values. In the case that the hidden sector scalar is identified with the quintessence field, responsible for the recent acceleration of the universe, the most natural potential describing the interaction is disfavored since it results in a time-variation of the Fermi scale. We show that an ad hoc modification of the potential describing the Higgs interaction with the quintessence field may result in an unified picture of dark matter and dark energy, where dark energy is the zero-mode classical field rolling the usual quintessence potential and the dark matter candidate is the quantum excitation (particle) of the field, which is produced in the universe due to its coupling to the Higgs boson. This coupling also generates a mass for the new particle that, contrary to usual quintessence models, does not have to be small, since it does not affect the evolution of classical field. In this scenario, a feasible dark matter density can be, under conditions, obtained.

  12. Study on a Unified Model of Dark Matter and Dark Energy from Dbi Theory

    NASA Astrophysics Data System (ADS)

    Lu, Jianbo; Xu, Lixin; Wu, Yabo; Liu, Molin; Li, Tianqiang

    2013-07-01

    In this paper, we study a unified model of dark matter and dark energy obtained from Dirac-Born-Infeld (DBI) action in string theory. Two accelerated expansions in universe can be unified in this action. By using the Markov Chain Monte Carlo method, we fit the current observational data to constrain the model parameters in this unified model, where various density parameters as model parameters are included, and their constraint values are: Ω K = -0.0012+0.0037+0.0072-0.0036-0.0071, Ω b = 0.0461+0.0009+0.0017-0.0009-0.0017, Ω f = 0.171+0.108+0.195-0.108-0.160 and Ω 0m = 0.281+0.011+0.020-0.011-0.021. In addition, the Hubble constant and cosmic age are H0 = 70.163+1.029+2.045-1.029-1.988 and Age =13.788+0.160+0.318-0.160-0.312 (Gyr), respectively. According to the constraint results on model parameters we discuss the evolutions of some cosmological quantities in structure formation, such as the density contrast and the growth variable. At last, the evolution of geometrical quantity is studied to distinguish the unified models of dark sectors with the cosmological constant model. It is shown that this unified model of dark matter and dark energy is attractive to interpret the accelerating universe.

  13. Shedding Light on the EOS-Gravity Degeneracy and Constraining the Nuclear Symmetry Energy from the Gravitational Binding Energy of Neutron Stars

    NASA Astrophysics Data System (ADS)

    He, Xiao-Tao; Fattoyev, F. J.; Li, Bao-An; Newton, W. G.

    2016-02-01

    A thorough understanding of properties of neutron stars requires both a reliable knowledge of the equation of state (EOS) of super-dense nuclear matter and the strong-field gravity theories simultaneously. To provide information that may help break this EOS-gravity degeneracy, we investigate effects of nuclear symmetry energy on the gravitational binding energy of neutron stars within GR and the scalar-tensor subset of alternative gravity models. We focus on effects of the slope L of nuclear symmetry energy at saturation density and the high-density behavior of nuclear symmetry energy. We find that the variation of either the density slope L or the high-density behavior of nuclear symmetry energy leads to large changes in the binding energy of neutron stars. The difference in predictions using the GR and the scalar-tensor theory appears only for massive neutron stars, and even then is significantly smaller than the difference resulting from variations in the symmetry energy.

  14. Redshift parametrizations of dark energy and observational constraint on their parameters: Galileon gravity as background

    NASA Astrophysics Data System (ADS)

    Rudra, Prabir; Ranjit, Chayan; Kundu, Sujata

    2015-08-01

    In this work, Friedmann-Robertson-Walker (FRW) universe filled with dark matter (DM) (perfect fluid with negligible pressure) along with dark energy (DE) in the background of Galileon gravity is considered. Four DE models with different equation of state (EoS) parametrizations have been employed namely, linear, Chevallier-Polarski-Lindler (CPL), Jassal-Bagla-Padmanabhan (JBP) and logarithmic parametrizations. From Stern, Stern+Baryonic Acoustic Oscillation (BAO) and Stern+BAO+Cosmic Microwave Background (CMB) joint data analysis, we have obtained the bounds of the arbitrary parameters ω0 and ω1 by minimizing the χ2 test. The best fit values and bounds of the parameters are obtained at 66%, 90% and 99% confidence levels which are shown by closed confidence contours in the figures. For the logarithmic model unbounded confidence contours are obtained and hence the model parameters could not be finitely constrained. The distance modulus μ(z) against redshift z has also been plotted for our predicted theoretical models for the best fit values of the parameters and compared with the observed Union2 data sample and SNe Type Ia 292 data and we have shown that our predicted theoretical models permits the observational datasets. From the data fitting it is seen that at lower redshifts (z < 0.3) the SNe Type Ia 292 data gives a better fit with our theoretical models compared to the Union2 data sample. So, from the data analysis, SNe Type Ia 292 data is the more favored data sample over its counterpart given the present choice of free parameters. From the study, it is also seen that the logarithmic parametrization model is less supported by the observational data. Finally, we have generated the plot for the deceleration parameter against the redshift parameter for all the theoretical models and compared the results with the work of Farooq et al., (2013).

  15. Probing Dark Energy with Weak Lensing with LSST

    NASA Astrophysics Data System (ADS)

    Dell'Antonio, Ian P.; Wittman, D.; Jain, B.; Bosch, J.; Clowe, D.; Jarvis, M.; Jee, M.; Tyson, J.; Zhan, H.; LSST Weak Lensing Science Collaboration

    2011-01-01

    LSST will measure the shape, magnitude, and colors of more than 3x109 galaxies over 20,000 square degrees. These data will be used in several complementary ways to measure the properties of dark energy. Reconstruction of the shear power spectrum on linear and non-linear scales l /< 2000, and of the cross-correlation of shear measured in different photometric redshift bins, provides a constraint on the evolution of dark energy that is complementary to the purely geometric measures provided by Supernovae and BAO. Combining weak lensing and BAO measurements breaks degeneracies and results in tighter constraints on dark energy than each method can provide individually. Cross-correlation of the shear and galaxy number density signal within redshift shells minimizes the sensitivity to photo-z errors. Measurements of the shear bispectrum constrain dark energy and allow an independent test of theories of gravity. In addition to the galaxy shape correlations, LSST will detect 50,000 shear peaks with significance greater than 4σ, and 10,000 securely detected clusters of galaxies with line-of-sight velocity dispersions greater than 700 km/s. These allow independent constraints on the dark energy signature in the growth of structure. Tomographic study of the shear of background galaxies as a function of redshift allows the a geometric test of dark energy to be extracted from the weak lensing data. Finally, lensing signatures beyond the shear (magnification and flexion) will be accessible with LSST with unprecedented statistical power. The ability of LSST to extract the dark energy signal will depend on the accuracy with which the stellar PSF can be determined, and on the unbiased reconstruction of object shapes from long sequences of exposures in which the objects are detected at low significance. We discuss the prospects for cosmological constraints from weak lensing studies with LSST.

  16. Understanding the origin of CMB constraints on dark energy

    NASA Astrophysics Data System (ADS)

    Jassal, H. K.; Bagla, J. S.; Padmanabhan, T.

    2010-07-01

    We study the observational constraints of cosmic microwave background (CMB) temperature and polarization anisotropies on models of dark energy, with special focus on models with variation in properties of dark energy with time. We demonstrate that the key constraint from CMB observations arises from the location of acoustic peaks. An additional constraint arises from the limits on ΩNR from the relative amplitudes of acoustic peaks. Further, we show that the distance to the last scattering surface is not how the CMB observations constrain the combination of parameters for models of dark energy. We also use constraints from supernova observations and show that unlike the gold and silver samples, the Supernova Legacy Survey (SNLS) sample prefers a region of parameter space that has a significant overlap with the region preferred by the CMB observations. This is a verification of a conjecture made by us in an earlier work. We discuss combined constraints from Wilkinson Microwave Anisotropy Probe 5-yr and SNLS observations. We find that models with w ~= - 1 are preferred for models with a constant equation-of-state parameters. In case of models with a time-varying dark energy, we show that constraints on evolution of dark energy density are almost independent of the type of variation assumed for the equation-of-state parameter. This makes it easy to get approximate constraints from CMB observations on arbitrary models of dark energy. Constraints on models with a time-varying dark energy are predominantly due to CMB observations, with supernova constraints playing only a marginal role.

  17. Phenomenology of hybrid scenarios of neutrino dark energy

    SciTech Connect

    Antusch, Stefan; Dutta, Koushik; Das, Subinoy E-mail: subinoy@nyu.edu

    2008-10-15

    We study the phenomenology of hybrid scenarios of neutrino dark energy, where in addition to a so-called mass-varying neutrino (MaVaN) sector a cosmological constant (from a false vacuum) is driving the accelerated expansion of the universe today. For general power law potentials we calculate the effective equation of state parameter w{sub eff}(z) in terms of the neutrino mass scale. Due to the interaction of the dark energy field ('acceleron') with the neutrino sector, w{sub eff}(z) is predicted to become smaller than -1 for z>0, which could be tested in future cosmological observations. For the scenarios considered, the neutrino mass scale additionally determines which fraction of the dark energy is dynamical, and which originates from the 'cosmological-constant-like' vacuum energy of the false vacuum. On the other hand, the field value of the 'acceleron' field today as well as the masses of the right-handed neutrinos, which appear in the seesaw-type mechanism for small neutrino masses, are not fixed. This, in principle, allows us to realize hybrid scenarios of neutrino dark energy with a 'high-scale' seesaw where the right-handed neutrino masses are close to the GUT scale. We also comment on how MaVaN hybrid scenarios with 'high-scale' seesaw might help to resolve stability problems of dark energy models with non-relativistic neutrinos.

  18. Interacting Holographic Dark Energy, Future Singularity and Polytropic Gas Model of Dark Energy in Closed FRW Universe

    NASA Astrophysics Data System (ADS)

    Sarkar, Sanjay

    2016-01-01

    The present work deals with the accretion of two interacting fluids: dark matter and a hypothetical fluid as the holographic dark energy components onto wormhole in a non-flat FRW universe. First of all, following Cruz et al. (Phys. Lett. B 669, 271 2008), we obtained an exact solution of the Einstein's field equations. Solution describes effectively the actual acceleration and indicates a big rip type future singularity of the universe. After that we have studied the evolution of the mass of wormhole embedded in this FRW universe in order to reproduce a stable universe protected against future-time singularity. We found that the accretion of these dark components leads to a gradual increase of wormhole mass. It is also observed that contrary to the case as shown by Cruz et al. (Phys. Lett. B 669, 271 2008), the big rip singularity of the universe with a divergent Hubble parameter of this dark energy model may be avoided by a big trip. We have established a correspondence between the holographic dark energy with the polytropic gas dark energy model and obtained the potential as well as dynamics of the scalar field which describes the polytropic cosmology.

  19. Structure formation in cosmologies with oscillating dark energy

    NASA Astrophysics Data System (ADS)

    Pace, F.; Fedeli, C.; Moscardini, L.; Bartelmann, M.

    2012-05-01

    We study the imprints on the formation and evolution of cosmic structures of a particular class of dynamical dark energy models, characterized by an oscillating equation of state. This investigation complements earlier work on the topic that focused exclusively on the expansion history of the Universe for such models. Oscillating dark energy cosmologies were introduced in an attempt to solve the coincidence problem, since in the course of cosmic history matter and dark energy would have had periodically comparable energy densities. In this class of models the redshift evolution of the equation of state parameter w(z) for dark energy is characterized by two parameters, describing the amplitude and the frequency of the oscillations (the phase is usually set by the boundary condition that w(z) should be close to -1 at recent times). We consider six different oscillating dark energy models, each characterized by a different set of parameter values. For one of these models w(z) is lower than -1 at present and larger than -1 in the past, in agreement with some marginal evidence from recent Type Ia supernova studies. Under the common assumption that dark energy is not clustering on the scales of interest, we study different aspects of cosmic structure formation. In particular, we self-consistently solve the spherical collapse problem based on the Newtonian hydrodynamical approach, and compute the resulting spherical overdensity as a function of cosmic time. We then estimate the behaviour of several cosmological observables, such as the linear growth factor, the integrated Sachs-Wolfe effect, the number counts of massive structures and the matter and cosmic shear power spectra. We show that, independently of the amplitude and the frequency of the dark energy oscillations, none of the aforementioned observables shows an oscillating behaviour as a function of redshift. This is a consequence of the said observables' being integrals over some functions of the expansion rate

  20. Power-Law entropy corrected holographic dark energy model

    NASA Astrophysics Data System (ADS)

    Sheykhi, Ahmad; Jamil, Mubasher

    2011-10-01

    Among various scenarios to explain the acceleration of the universe expansion, the holographic dark energy (HDE) model has got a lot of enthusiasm recently. In the derivation of holographic energy density, the area relation of the black hole entropy plays a crucial role. Indeed, the power-law corrections to entropy appear in dealing with the entanglement of quantum fields in and out the horizon. Inspired by the power-law corrected entropy, we propose the so-called "power-law entropy-corrected holographic dark energy" (PLECHDE) in this Letter. We investigate the cosmological implications of this model and calculate some relevant cosmological parameters and their evolution. We also briefly study the so-called "power-law entropy-corrected agegraphic dark energy" (PLECADE).

  1. Higgs seesaw mechanism as a source for dark energy.

    PubMed

    Krauss, Lawrence M; Dent, James B

    2013-08-01

    Motivated by the seesaw mechanism for neutrinos which naturally generates small neutrino masses, we explore how a small grand-unified-theory-scale mixing between the standard model Higgs boson and an otherwise massless hidden sector scalar can naturally generate a small mass and vacuum expectation value for the new scalar which produces a false vacuum energy density contribution comparable to that of the observed dark energy dominating the current expansion of the Universe. This provides a simple and natural mechanism for producing the correct scale for dark energy, even if it does not address the long-standing question of why much larger dark energy contributions are not produced from the visible sector. The new scalar produces no discernible signatures in existing terrestrial experiments so that one may have to rely on other cosmological tests of this idea. PMID:23971559

  2. Dark energy and dark matter from hidden symmetry of gravity model with a non-Riemannian volume form

    NASA Astrophysics Data System (ADS)

    Guendelman, Eduardo; Nissimov, Emil; Pacheva, Svetlana

    2015-10-01

    We show that dark energy and dark matter can be described simultaneously by ordinary Einstein gravity interacting with a single scalar field provided the scalar field Lagrangian couples in a symmetric fashion to two different spacetime volume forms (covariant integration measure densities) on the spacetime manifold - one standard Riemannian given by √{-g} (square root of the determinant of the pertinent Riemannian metric) and another non-Riemannian volume form independent of the Riemannian metric, defined in terms of an auxiliary antisymmetric tensor gauge field of maximal rank. Integration of the equations of motion of the latter auxiliary gauge field produce an a priori arbitrary integration constant that plays the role of a dynamically generated cosmological constant or dark energy. Moreover, the above modified scalar field action turns out to possess a hidden Noether symmetry whose associated conserved current describes a pressureless "dust" fluid which we can identify with the dark matter completely decoupled from the dark energy. The form of both the dark energy and dark matter that results from the above class of models is insensitive to the specific form of the scalar field Lagrangian. By adding an appropriate perturbation, which breaks the above hidden symmetry and along with this couples dark matter and dark energy, we also suggest a way to obtain growing dark energy in the present universe's epoch without evolution pathologies.

  3. Nonparametric reconstruction of the dark energy equation of state

    SciTech Connect

    Heitmann, Katrin; Holsclaw, Tracy; Alam, Ujjaini; Habib, Salman; Higdon, David; Sanso, Bruno; Lee, Herbie

    2009-01-01

    The major aim of ongoing and upcoming cosmological surveys is to unravel the nature of dark energy. In the absence of a compelling theory to test, a natural approach is to first attempt to characterize the nature of dark energy in detail, the hope being that this will lead to clues about the underlying fundamental theory. A major target in this characterization is the determination of the dynamical properties of the dark energy equation of state w. The discovery of a time variation in w(z) could then lead to insights about the dynamical origin of dark energy. This approach requires a robust and bias-free method for reconstructing w(z) from data, which does not rely on restrictive expansion schemes or assumed functional forms for w(z). We present a new non parametric reconstruction method for the dark energy equation of state based on Gaussian Process models. This method reliably captures nontrivial behavior of w(z) and provides controlled error bounds. We demollstrate the power of the method on different sets of simulated supernova data. The GP model approach is very easily extended to include diverse cosmological probes.

  4. Interacting Generalized Ghost Dark Energy in Non-isotropic Background

    NASA Astrophysics Data System (ADS)

    Barati, F.

    2016-04-01

    In this work, the generalized Quantum Chromodynamics (QCD) ghost model of dark energy in the framework of Einstein gravity is investigated. At first, the non-interacting generalized ghost dark energy in a Bianchi type I (BI) background is discussed. Then the equation of state parameter, ω D = p D / ρ D , the deceleration parameter, and the evolution equation of the generalized ghost dark energy are obtained. It was found that, in this case, ω D cannot cross the phantom line (ω D >-1) and eventually the universe approaches a de-Sitter phase of expansion (ω D →-1). Then, this investigation was extended to the interacting ghost dark energy in a non-isotropic universe. It was found that the equation of state parameter of the interacting generalized ghost dark energy can cross the phantom line (ω D <-1) provided the parameters of the model are chosen suitably. It was considered a specific model which permits the standard continuity equation in this theory. Besides ΩΛ and Ω m in standard Einstein cosmology, another density parameter, Ω σ , is expected by the anisotropy. The anisotropy of the universe decreases and the universe transits to an isotropic flat FRW universe accommodating the present acceleration.

  5. A possible connection between massive fermions and dark energy

    SciTech Connect

    Goldman, Terrance; Stephenson, G J; Alsing, P M; Mckellar, B H J

    2009-01-01

    In a dense cloud of massive fermions interacting by exchange of a light scalar field, the effective mass of the fermion can become negligibly small. As the cloud expands, the effective mass and the total energy density eventually increase with decreasing density. In this regime, the pressure-density relation can approximate that required for dark energy. They apply this phenomenon to the expansion of the Universe with a very light scalar field and infer relations between the parameters available and cosmological observations. Majorana neutrinos at a mass that may have been recently determined, and fermions such as the Lightest Supersymmetric Particle (LSP) may both be consistent with current observations of dark energy.

  6. Instability in interacting dark sector: an appropriate holographic Ricci dark energy model

    NASA Astrophysics Data System (ADS)

    Herrera, Ramón; Hipólito-Ricaldi, W. S.; Videla, Nelson

    2016-08-01

    In this paper we investigate the consequences of phantom crossing considering the perturbative dynamics in models with interaction in their dark sector. By mean of a general study of gauge-invariant variables in comoving gauge, we relate the sources of instabilities in the structure formation process with the phantom crossing. In order to illustrate these relations and its consequences in more detail, we consider a specific case of an holographic dark energy interacting with dark matter. We find that in spite of the model is in excellent agreement with observational data at background level, however it is plagued of instabilities in its perturbative dynamics. We reconstruct the model in order to avoid these undesirable instabilities, and we show that this implies a modification of the concordance model at background. Also we find drastic changes on the parameters space in our model when instabilities are avoided.

  7. Observational constraints on a unified dark matter and dark energy model based on generalized Chaplygin gas

    SciTech Connect

    Park, Chan-Gyung; Hwang, Jai-chan; Park, Jaehong; Noh, Hyerim

    2010-03-15

    We study a generalized version of Chaplygin gas as unified model of dark matter and dark energy. Using realistic theoretical models and the currently available observational data from the age of the universe, the expansion history based on the type Ia supernovae, the matter power spectrum, the cosmic microwave background radiation anisotropy power spectra, and the perturbation growth factor we put the unified model under observational test. As the model has only two free parameters in the flat Friedmann background [{Lambda}CDM (cold dark matter) model has only one free parameter] we show that the model is already tightly constrained by currently available observations. The only parameter space extremely close to the {Lambda}CDM model is allowed in this unified model.

  8. Non-virialized clusters for detection of dark energy-dark matter interaction

    NASA Astrophysics Data System (ADS)

    Le Delliou, M.; Marcondes, R. J. F.; Lima Neto, G. B.; Abdalla, E.

    2015-10-01

    The observation of galaxy and gas distributions, as well as cosmological simulations in a ΛCDM cold dark matter universe, suggests that clusters of galaxies are still accreting mass and are not expected to be in equilibrium. In this work, we investigate the possibility to evaluate the departure from virial equilibrium in order to detect, in that balance, effects from a dark matter-dark energy interaction. We continue, from previous works, using a simple model of interacting dark sector, the Layzer-Irvine equation for dynamical virial evolution, and employ optical observations in order to obtain the mass profiles through weak-lensing and X-ray observations giving the intracluster gas temperatures. Through a Monte Carlo method, we generate, for a set of clusters, measurements of observed virial ratios, interaction strength, rest virial ratio and departure from equilibrium factors. We found a compounded interaction strength of -1.99^{+2.56}_{-16.00}, compatible with no interaction, but also a compounded rest virial ratio of -0.79 ± 0.13, which would entail a 2σ detection. We confirm quantitatively that clusters of galaxies are out of equilibrium but further investigation is needed to constrain a possible interaction in the dark sector.

  9. Dark Energy and Dark Matter as w = -1 Virtual Particles and the World Hologram Model

    NASA Astrophysics Data System (ADS)

    Sarfatti, Jack

    2011-04-01

    The elementary physics battle-tested principles of Lorentz invariance, Einstein equivalence principle and the boson commutation and fermion anti-commutation rules of quantum field theory explain gravitationally repulsive dark energy as virtual bosons and gravitationally attractive dark matter as virtual fermion-antifermion pairs. The small dark energy density in our past light cone is the reciprocal entropy-area of our future light cone's 2D future event horizon in a Novikov consistent loop in time in our accelerating universe. Yakir Aharonov's "back-from-the-future" post-selected final boundary condition is set at our observer-dependent future horizon that also explains why the irreversible thermodynamic arrow of time of is aligned with the accelerating dark energy expansion of the bulk 3D space interior to our future 2D horizon surrounding it as the hologram screen. Seth Lloyd has argued that all 2D horizon surrounding surfaces are pixelated quantum computers projecting interior bulk 3D quanta of volume (Planck area)Sqrt(area of future horizon) as their hologram images in 1-1 correspondence.

  10. Can a galaxy redshift survey measure dark energy clustering?

    SciTech Connect

    Takada, Masahiro

    2006-08-15

    A wide-field galaxy redshift survey allows one to probe galaxy clustering at largest spatial scales, which carries invaluable information on horizon-scale physics complementarily to the cosmic microwave background (CMB). Assuming the planned survey consisting of z{approx}1 and z{approx}3 surveys with areas of 2000 and 300 deg.{sup 2}, respectively, we study the prospects for probing dark energy clustering from the measured galaxy power spectrum, assuming the dynamical properties of dark energy are specified in terms of the equation of state and the effective sound speed c{sub e} in the context of an adiabatic cold dark dominated matter model. The dark energy clustering adds a power to the galaxy power spectrum amplitude at spatial scales greater than the sound horizon, and the enhancement is sensitive to redshift evolution of the net dark energy density, i.e. the equation of state. We find that the galaxy survey, when combined with CMB expected from the Planck satellite mission, can distinguish dark energy clustering from a smooth dark energy model such as the quintessence model (c{sub e}=1), when c{sub e} < or approx. 0.04 (0.02) in the case of the constant equation of state w{sub 0}=-0.9 (-0.95). An ultimate full-sky survey of z{approx}1 galaxies allows the detection when c{sub e}(less-or-similar sign)0.08 (0.04) for w{sub 0}=0.9 (-0.95). These forecasts show a compatible power with an all-sky CMB and galaxy cross correlation that probes the integrated Sachs-Wolfe effect. We also investigate a degeneracy between the dark energy clustering and the nonrelativistic neutrinos implied from the neutrino oscillation experiments, because the two effects both induce a scale-dependent modification in the galaxy power spectrum shape at largest spatial scales accessible from the galaxy survey. It is shown that a wider redshift coverage can efficiently separate the two effects by utilizing the different redshift dependences, where dark energy clustering is apparent only at

  11. Determination of Dark Matter Properties at High-Energy Colliders

    SciTech Connect

    Baltz, Edward A.; Battaglia, Marco; Peskin, Michael E.; Wizansky, Tommer

    2006-11-05

    If the cosmic dark matter consists of weakly-interacting massive particles, these particles should be produced in reactions at the nextgeneration of high-energy accelerators. Measurements at these accelerators can then be used to determine the microscopic properties of the dark matter. From this, we can predict the cosmic density, the annihilation cross sections, and the cross sections relevant to direct detection. In this paper, we present studies in supersymmetry models with neutralino dark matter that give quantitative estimates of the accuracy that can be expected. We show that these are well matched to the requirements of anticipated astrophysical observations of dark matter. The capabilities of the proposed International Linear Collider (ILC) are expected to play a particularly important role in this study.

  12. Revisit of the interaction between holographic dark energy and dark matter

    SciTech Connect

    Zhang, Zhenhui; Li, Xiao-Dong; Li, Song; Li, Miao; Zhang, Xin E-mail: sli@itp.ac.cn E-mail: zhangxin@mail.neu.edu.cn

    2012-06-01

    In this paper we investigate the possible direct, non-gravitational interaction between holographic dark energy (HDE) and dark matter. Firstly, we start with two simple models with the interaction terms Q∝ρ{sub dm} and Q∝ρ{sub de}, and then we move on to the general form Q∝ρ{sub m}{sup α}ρ{sub de}{sup β}. The cosmological constraints of the models are obtained from the joint analysis of the present Union2.1+BAO+CMB+H{sub 0} data. We find that the data slightly favor an energy flow from dark matter to dark energy, although the original HDE model still lies in the 95.4% confidence level (CL) region. For all models we find c < 1 at the 95.4% CL. We show that compared with the cosmic expansion, the effect of interaction on the evolution of ρ{sub dm} and ρ{sub de} is smaller, and the relative increment (decrement) amount of the energy in the dark matter component is constrained to be less than 9% (15%) at the 95.4% CL. By introducing the interaction, we find that even when c < 1 the big rip still can be avoided due to the existence of a de Sitter solution at z→−1. We show that this solution can not be accomplished in the two simple models, while for the general model such a solution can be achieved with a large β, and the big rip may be avoided at the 95.4% CL.

  13. Precision Photometry to Study the Nature of Dark Energy

    SciTech Connect

    Lorenzon, Wolfgang; Schubnell, Michael

    2011-01-30

    Over the past decade scientists have collected convincing evidence that the expansion of the universe is accelerating, leading to the conclusion that the content of our universe is dominated by a mysterious 'dark energy'. The fact that present theory cannot account for the dark energy has made the determination of the nature of dark energy central to the field of high energy physics. It is expected that nothing short of a revolution in our understanding of the fundamental laws of physics is required to fully understand the accelerating universe. Discovering the nature of dark energy is a very difficult task, and requires experiments that employ a combination of different observational techniques, such as type-Ia supernovae, gravitational weak lensing surveys, galaxy and galaxy cluster surveys, and baryon acoustic oscillations. A critical component of any approach to understanding the nature of dark energy is precision photometry. This report addresses just that. Most dark energy missions will require photometric calibration over a wide range of intensities using standardized stars and internal reference sources. All of the techniques proposed for these missions rely on a complete understanding of the linearity of the detectors. The technical report focuses on the investigation and characterization of 'reciprocity failure', a newly discovered count-rate dependent nonlinearity in the NICMOS cameras on the Hubble Space Telescope. In order to quantify reciprocity failure for modern astronomical detectors, we built a dedicated reciprocity test setup that produced a known amount of light on a detector, and to measured its response as a function of light intensity and wavelength.

  14. Can we distinguish early dark energy from a cosmological constant?

    NASA Astrophysics Data System (ADS)

    Shi, Difu; Baugh, Carlton M.

    2016-04-01

    Early dark energy (EDE) models are a class of quintessence dark energy with a dynamically evolving scalar field which display a small but non-negligible amount of dark energy at the epoch of matter-radiation equality. Compared with a cosmological constant, the presence of dark energy at early times changes the cosmic expansion history and consequently the shape of the linear theory power spectrum and potentially other observables. We constrain the cosmological parameters in the EDE cosmology using recent measurements of the cosmic microwave background and baryon acoustic oscillations. The best-fitting models favour no EDE; here we consider extreme examples which are in mild tension with current observations in order to explore the observational consequences of a maximally allowed amount of EDE. We study the non-linear evolution of cosmic structure in EDE cosmologies using large volume N-body simulations. Many large-scale structure statistics are found to be very similar between the Λ cold dark matter (ΛCDM) and EDE models. We find that EDE cosmologies predict fewer massive halos in comparison to ΛCDM, particularly at high redshifts. The most promising way to distinguish EDE from ΛCDM is to measure the power spectrum on large scales, where differences of up to 15% are expected.

  15. Can we distinguish early dark energy from a cosmological constant?

    NASA Astrophysics Data System (ADS)

    Shi, Difu; Baugh, Carlton M.

    2016-07-01

    Early dark energy (EDE) models are a class of quintessence dark energy with a dynamically evolving scalar field which display a small but non-negligible amount of dark energy at the epoch of matter-radiation equality. Compared with a cosmological constant, the presence of dark energy at early times changes the cosmic expansion history and consequently the shape of the linear theory power spectrum and potentially other observables. We constrain the cosmological parameters in the EDE cosmology using recent measurements of the cosmic microwave background and baryon acoustic oscillations. The best-fitting models favour no EDE; here we consider extreme examples which are in mild tension with current observations in order to explore the observational consequences of a maximally allowed amount of EDE. We study the non-linear evolution of cosmic structure in EDE cosmologies using large-volume N-body simulations. Many large-scale structure statistics are found to be very similar between the Λ cold dark matter (ΛCDM) and EDE models. We find that EDE cosmologies predict fewer massive haloes in comparison to ΛCDM, particularly at high redshifts. The most promising way to distinguish EDE from ΛCDM is to measure the power spectrum on large scales, where differences of up to 15 per cent are expected.

  16. New limits on coupled dark energy from Planck

    SciTech Connect

    Xia, Jun-Qing

    2013-11-01

    Recently, the Planck collaboration has released the first cosmological papers providing the high resolution, full sky, maps of the cosmic microwave background (CMB) temperature anisotropies. It is crucial to understand that whether the accelerating expansion of our universe at present is driven by an unknown energy component (Dark Energy) or a modification to general relativity (Modified Gravity). In this paper we study the coupled dark energy models, in which the quintessence scalar field nontrivially couples to the cold dark matter, with the strength parameter of interaction β. Using the Planck data alone, we obtain that the strength of interaction between dark sectors is constrained as β < 0.102 at 95% confidence level, which is tighter than that from the WMAP9 data alone. Combining the Planck data with other probes, like the Baryon Acoustic Oscillation (BAO), Type-Ia supernovae ''Union2.1 compilation'' and the CMB lensing data from Planck measurement, we find the tight constraint on the strength of interaction β < 0.052 (95% C.L.). Interestingly, we also find a non-zero coupling β = 0.078±0.022 (68% C.L.) when we use the Planck, the ''SNLS'' supernovae samples, and the prior on the Hubble constant from the Hubble Space Telescope (HST) together. This evidence for the coupled dark energy models mainly comes from a tension between constraints on the Hubble constant from the Planck measurement and the local direct H{sub 0} probes from HST.

  17. What We Know About Dark Energy From Supernovae

    ScienceCinema

    Filippenko, Alex [University of California, Berkeley, California, United States

    2010-01-08

    The measured distances of type Ia (white dwarf) supernovae as a function of redshift (z) have shown that the expansion of the Universe is currently accelerating, probably due to the presence of dark energy (X) having a negative pressure. Combining all of the data with existing results from large-scale structure surveys, we find a best fit for Omega M and Omega X of 0.28 and 0.72 (respectively), in excellent agreement with the values derived independently from WMAP measurements of the cosmic microwave background radiation. Thus far, the best-fit value for the dark energy equation-of-state parameter is -1, and its first derivative is consistent with zero, suggesting that the dark energy may indeed be Einstein's cosmological constant.

  18. Low redshift universe and a varying ghost dark energy

    NASA Astrophysics Data System (ADS)

    Khurshudyan, M.

    2016-03-01

    Recently, a phenomenological modification of ghost dark energy has been suggested and appropriate models of low redshift universe have been constructed. In this paper, we will consider a model of low redshift universe in General Relativity containing another model of varying ghost dark energy. In this model, an effective fluid is a radiation-like fluid in an early universe and evolves to quintessence dark energy in large scale universe. Cosmographic analysis of new model is performed and appropriate constraints on the parameters of the model are obtained. We have a look at suggested model via statefinder hierarchy in addition to thermodynamical description of it. We also study massless particle creation possibility in a radiation dominated universe of our cosmological model. According to our theoretical results, massless particle production is possible. To study particle creation, a straight analogy between quantization in Minkowski background and canonical quantization of a scalar field in curved dynamical backgrounds is taken into account.

  19. Voids as a precision probe of dark energy

    SciTech Connect

    Biswas, Rahul; Alizadeh, Esfandiar; Wandelt, Benjamin D.

    2010-07-15

    The shapes of cosmic voids, as measured in spectroscopic galaxy redshift surveys, constitute a promising new probe of dark energy (DE). We forecast constraints on the DE equation of state and its variation from current and future surveys and find that the promise of void shape measurements compares favorably to that of standard methods such as supernovae and cluster counts even for currently available data. Owing to the complementary nature of the constraints, void shape measurements improve the Dark Energy Task Force figure of merit by 2 orders of magnitude for a future large scale experiment such as EUCLID when combined with other probes of dark energy available on a similar time scale. Modeling several observational and theoretical systematics has only moderate effects on these forecasts. We discuss additional systematics which will require further study using simulations.

  20. Status of the Dark Energy Survey Camera (DECam) Project

    SciTech Connect

    Flaugher, Brenna L.; Abbott, Timothy M.C.; Angstadt, Robert; Annis, Jim; Antonik, Michelle, L.; Bailey, Jim; Ballester, Otger.; Bernstein, Joseph P.; Bernstein, Rebbeca; Bonati, Marco; Bremer, Gale; /Fermilab /Cerro-Tololo InterAmerican Obs. /ANL /Texas A-M /Michigan U. /Illinois U., Urbana /Ohio State U. /University Coll. London /LBNL /SLAC /IFAE

    2012-06-29

    The Dark Energy Survey Collaboration has completed construction of the Dark Energy Camera (DECam), a 3 square degree, 570 Megapixel CCD camera which will be mounted on the Blanco 4-meter telescope at CTIO. DECam will be used to perform the 5000 sq. deg. Dark Energy Survey with 30% of the telescope time over a 5 year period. During the remainder of the time, and after the survey, DECam will be available as a community instrument. All components of DECam have been shipped to Chile and post-shipping checkout finished in Jan. 2012. Installation is in progress. A summary of lessons learned and an update of the performance of DECam and the status of the DECam installation and commissioning will be presented.

  1. Status of the Dark Energy Survey Camera (DECam) project

    NASA Astrophysics Data System (ADS)

    Flaugher, Brenna L.; Abbott, Timothy M. C.; Angstadt, Robert; Annis, Jim; Antonik, Michelle L.; Bailey, Jim; Ballester, Otger; Bernstein, Joseph P.; Bernstein, Rebecca A.; Bonati, Marco; Bremer, Gale; Briones, Jorge; Brooks, David; Buckley-Geer, Elizabeth J.; Campa, Juila; Cardiel-Sas, Laia; Castander, Francisco; Castilla, Javier; Cease, Herman; Chappa, Steve; Chi, Edward C.; da Costa, Luis; DePoy, Darren L.; Derylo, Gregory; de Vincente, Juan; Diehl, H. Thomas; Doel, Peter; Estrada, Juan; Eiting, Jacob; Elliott, Anne E.; Finley, David A.; Flores, Rolando; Frieman, Josh; Gaztanaga, Enrique; Gerdes, David; Gladders, Mike; Guarino, V.; Gutierrez, G.; Grudzinski, Jim; Hanlon, Bill; Hao, Jiangang; Holland, Steve; Honscheid, Klaus; Huffman, Dave; Jackson, Cheryl; Jonas, Michelle; Karliner, Inga; Kau, Daekwang; Kent, Steve; Kozlovsky, Mark; Krempetz, Kurt; Krider, John; Kubik, Donna; Kuehn, Kyler; Kuhlmann, Steve E.; Kuk, Kevin; Lahav, Ofer; Langellier, Nick; Lathrop, Andrew; Lewis, Peter M.; Lin, Huan; Lorenzon, Wolfgang; Martinez, Gustavo; McKay, Timothy; Merritt, Wyatt; Meyer, Mark; Miquel, Ramon; Morgan, Jim; Moore, Peter; Moore, Todd; Neilsen, Eric; Nord, Brian; Ogando, Ricardo; Olson, Jamieson; Patton, Kenneth; Peoples, John; Plazas, Andres; Qian, Tao; Roe, Natalie; Roodman, Aaron; Rossetto, B.; Sanchez, E.; Soares-Santos, Marcelle; Scarpine, Vic; Schalk, Terry; Schindler, Rafe; Schmidt, Ricardo; Schmitt, Richard; Schubnell, Mike; Schultz, Kenneth; Selen, M.; Serrano, Santiago; Shaw, Terri; Simaitis, Vaidas; Slaughter, Jean; Smith, R. Christopher; Spinka, Hal; Stefanik, Andy; Stuermer, Walter; Sypniewski, Adam; Talaga, R.; Tarle, Greg; Thaler, Jon; Tucker, Doug; Walker, Alistair R.; Weaverdyck, Curtis; Wester, William; Woods, Robert J.; Worswick, Sue; Zhao, Allen

    2012-09-01

    The Dark Energy Survey Collaboration has completed construction of the Dark Energy Camera (DECam), a 3 square degree, 570 Megapixel CCD camera which will be mounted on the Blanco 4-meter telescope at CTIO. DECam will be used to perform the 5000 sq. deg. Dark Energy Survey with 30% of the telescope time over a 5 year period. During the remainder of the time, and after the survey, DECam will be available as a community instrument. All components of DECam have been shipped to Chile and post-shipping checkout finished in Jan. 2012. Installation is in progress. A summary of lessons learned and an update of the performance of DECam and the status of the DECam installation and commissioning will be presented.

  2. Accretions of dark matter and dark energy onto (n+2)-dimensional Schwarzschild black hole and Morris-Thorne wormhole

    NASA Astrophysics Data System (ADS)

    Debnath, Ujjal

    2015-12-01

    In this work, we have studied accretion of the dark matter and dark energy onto of (n+2)-dimensional Schwarzschild black hole and Morris-Thorne wormhole. The mass and the rate of change of mass for (n+2)-dimensional Schwarzschild black hole and Morris-Thorne wormhole have been found. We have assumed some candidates of dark energy like holographic dark energy, new agegraphic dark energy, quintessence, tachyon, DBI-essence, etc. The black hole mass and the wormhole mass have been calculated in term of redshift when dark matter and above types of dark energies accrete onto them separately. We have shown that the black hole mass increases and wormhole mass decreases for holographic dark energy, new agegraphic dark energy, quintessence, tachyon accretion and the slope of increasing/decreasing of mass sensitively depends on the dimension. But for DBI-essence accretion, the black hole mass first increases and then decreases and the wormhole mass first decreases and then increases and the slope of increasing/decreasing of mass not sensitively depends on the dimension.

  3. Unified dark energy and dust dark matter dual to quadratic purely kinetic K-essence

    NASA Astrophysics Data System (ADS)

    Guendelman, Eduardo; Nissimov, Emil; Pacheva, Svetlana

    2016-02-01

    We consider a modified gravity plus single scalar-field model, where the scalar Lagrangian couples symmetrically both to the standard Riemannian volume-form (spacetime integration measure density) given by the square root of the determinant of the Riemannian metric, as well as to another non-Riemannian volume-form in terms of an auxiliary maximal-rank antisymmetric tensor gauge field. As shown in a previous paper, the pertinent scalar-field dynamics provides an exact unified description of both dark energy via dynamical generation of a cosmological constant, and dark matter as a "dust" fluid with geodesic flow as a result of a hidden Noether symmetry. Here we extend the discussion by considering a non-trivial modification of the purely gravitational action in the form of f(R) = R - α R^2 generalized gravity. Upon deriving the corresponding "Einstein-frame" effective action of the latter modified gravity-scalar-field theory we find explicit duality (in the sense of weak versus strong coupling) between the original model of unified dynamical dark energy and dust fluid dark matter, on one hand, and a specific quadratic purely kinetic "k-essence" gravity-matter model with special dependence of its coupling constants on only two independent parameters, on the other hand. The canonical Hamiltonian treatment and Wheeler-DeWitt quantization of the dual purely kinetic "k-essence" gravity-matter model is also briefly discussed.

  4. A New Viewpoint (The expanding universe, Dark energy and Dark matter)

    NASA Astrophysics Data System (ADS)

    Cwele, Daniel

    2011-10-01

    Just as the relativity paradox once threatened the validity of physics in Albert Einstein's days, the cosmos paradox, the galaxy rotation paradox and the experimental invalidity of the theory of dark matter and dark energy threaten the stability and validity of physics today. These theories and ideas and many others, including the Big Bang theory, all depend almost entirely on the notion of the expanding universe, Edwin Hubble's observations and reports and the observational inconsistencies of modern day theoretical Physics and Astrophysics on related subjects. However, much of the evidence collected in experimental Physics and Astronomy aimed at proving many of these ideas and theories is ambiguous, and can be used to prove other theories, given a different interpretation of its implications. The argument offered here is aimed at providing one such interpretation, attacking the present day theories of dark energy, dark matter and the Big Bang, and proposing a new Cosmological theory based on a modification of Isaac Newton's laws and an expansion on Albert Einstein's theories, without assuming any invalidity or questionability on present day cosmological data and astronomical observations.

  5. Reducing Zero-point Systematics in Dark Energy Supernova Experiments

    SciTech Connect

    Faccioli, Lorenzo; Kim, Alex G; Miquel, Ramon; Bernstein, Gary; Bonissent, Alain; Brown, Matthew; Carithers, William; Christiansen, Jodi; Connolly, Natalia; Deustua, Susana; Gerdes, David; Gladney, Larry; Kushner, Gary; Linder, Eric; McKee, Shawn; Mostek, Nick; Shukla, Hemant; Stebbins, Albert; Stoughton, Chris; Tucker, David

    2011-04-01

    We study the effect of filter zero-point uncertainties on future supernova dark energy missions. Fitting for calibration parameters using simultaneous analysis of all Type Ia supernova standard candles achieves a significant improvement over more traditional fit methods. This conclusion is robust under diverse experimental configurations (number of observed supernovae, maximum survey redshift, inclusion of additional systematics). This approach to supernova fitting considerably eases otherwise stringent mission cali- bration requirements. As an example we simulate a space-based mission based on the proposed JDEM satellite; however the method and conclusions are general and valid for any future supernova dark energy mission, ground or space-based.

  6. Quintessence and phantom dark energy from ghost D-branes

    SciTech Connect

    Saridakis, Emmanuel N.; Ward, John

    2009-10-15

    We present a novel dark-energy candidate, based upon the existence and dynamics of ghost D-branes in a warped compactification of type IIB string theory. Gp-branes cancel the combined BPS sectors of the Dp-branes, while they preserve the same supersymmetries. We show that this scenario can naturally lead to either quintessence or phantomlike behaviors, depending on the form of the involved potentials and brane tension. As a specific example we investigate the static, dark-energy dominated solution subclass.

  7. Quantisation of the holographic Ricci dark energy model

    NASA Astrophysics Data System (ADS)

    Albarran, Imanol; Bouhmadi-López, Mariam

    2015-08-01

    While general relativity is an extremely robust theory to describe the gravitational interaction in our Universe, it is expected to fail close to singularities like the cosmological ones. On the other hand, it is well known that some dark energy models might induce future singularities; this can be the case for example within the setup of the Holographic Ricci Dark Energy model (HRDE). On this work, we perform a cosmological quantisation of the HRDE model and obtain under which conditions a cosmic doomsday can be avoided within the quantum realm. We show as well that this quantum model not only avoid future singularities but also the past Big Bang.

  8. Time arrow is influenced by the dark energy.

    PubMed

    Allahverdyan, A E; Gurzadyan, V G

    2016-05-01

    The arrow of time and the accelerated expansion are two fundamental empirical facts of the universe. We advance the viewpoint that the dark energy (positive cosmological constant) accelerating the expansion of the universe also supports the time asymmetry. It is related to the decay of metastable states under generic perturbations, as we show on example of a microcanonical ensemble. These states will not be metastable without dark energy. The latter also ensures a hyperbolic motion leading to dynamic entropy production with the rate determined by the cosmological constant. PMID:27300848

  9. Dark energy properties from large future galaxy surveys

    SciTech Connect

    Basse, Tobias; Bjælde, Ole Eggers; Hannestad, Steen; Hamann, Jan; Wong, Yvonne Y.Y. E-mail: oeb@phys.au.dk E-mail: sth@phys.au.dk

    2014-05-01

    We perform a detailed forecast on how well a Euclid-like survey will be able to constrain dark energy and neutrino parameters from a combination of its cosmic shear power spectrum, galaxy power spectrum, and cluster mass function measurements. We find that the combination of these three probes vastly improves the survey's potential to measure the time evolution of dark energy. In terms of a dark energy figure-of-merit defined as (σ(w{sub p})σ(w{sub a})){sup −1}, we find a value of 690 for Euclid-like data combined with Planck-like measurements of the cosmic microwave background anisotropies in a 10-dimensional cosmological parameter space, assuming a ΛCDM fiducial cosmology. For the more commonly used 7-parameter model, we find a figure-of-merit of 1900 for the same data combination. We consider also the survey's potential to measure dark energy perturbations in models wherein the dark energy is parameterised as a fluid with a nonstandard non-adiabatic sound speed, and find that in an optimistic scenario in which w{sub 0} deviates from -1 by as much as is currently observationally allowed, models with c-circumflex {sub s}{sup 2} = 10{sup −6} and c-circumflex {sub s}{sup 2} = 1 can be distinguished from one another at more than 2σ significance. We emphasise that constraints on the dark energy sound speed from cluster measurements are strongly dependent on the modelling of the cluster mass function; significantly weaker sensitivities ensue if we modify our model to include fewer features of nonlinear dark energy clustering. Finally, we find that the sum of neutrino masses can be measured with a 1σ precision of 0.015 eV, even in complex cosmological models in which the dark energy equation of state varies with time. The 1σ sensitivity to the effective number of relativistic species N{sub eff}{sup ml} is approximately 0.03, meaning that the small deviation of 0.046 from 3 in the standard value of N{sub eff}{sup ml} due to non-instantaneous decoupling and

  10. Clusters of Galaxies in the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Jeltema, Tesla E.; DES Collaboration

    2016-01-01

    The growth rate of clusters of galaxies is highly sensitive to the underlying cosmology. In fact, clusters will provide one of the most precise methods of constraining dark energy with large-area optical surveys like the Dark Energy Survey (DES). However, extracting precision cosmology from cluster surveys necessarily depends on having a well-understood method of selecting clusters and accurately translating their observed properties to underlying mass. I will discuss the status of the DES cluster survey as well as efforts to calibrate the cluster richness-mass relation.

  11. The phenomenological approach to modeling the dark energy

    NASA Astrophysics Data System (ADS)

    Kunz, Martin

    2012-07-01

    In this mini-review we discuss first why we should investigate cosmological models beyond ΛCDM. We then show how to describe dark energy or modified gravity models in a fluid language with the help of one background and two perturbation quantities. We review a range of dark energy models and study how they fit into the phenomenological framework, including generalizations like phantom crossing, sound speeds different from c and non-zero anisotropic stress, and how these effective quantities are linked to the underlying physical models. We also discuss the limits of what can be measured with cosmological data, and some challenges for the framework.

  12. Quintom dark energy models with nearly flat potentials

    SciTech Connect

    Setare, M. R.; Saridakis, E. N.

    2009-02-15

    We examine quintom dark energy models, produced by the combined consideration of a canonical and a phantom field, with nearly flat potentials and dark energy equation-of-state parameter w{sub DE} close to -1. We find that all such models converge to a single expression for w{sub DE}(z), depending only on the initial field values and their derivatives. We show that this quintom paradigm allows for a description of the transition through -1 in the near cosmological past. In addition, we provide the necessary conditions for the determination of the direction of the -1 crossing.

  13. A new class of parametrization for dark energy without divergence

    SciTech Connect

    Feng, Chao-Jun; Shen, Xian-Yong; Li, Ping; Li, Xin-Zhou E-mail: 1000304237@smail.shnu.edu.cn E-mail: kychz@shnu.edu.cn

    2012-09-01

    A new class of parametrization of the equation of state of dark energy is proposed in this paper. In contrast with the famous CPL parametrization, the equation of state with this new kind of parametrization does not divergent during the evolution of the Universe even in the future. By using the Markov Chain Monte Carlo (MCMC) method, we perform an observational constraint on two simplest dark energy models belonging to this new class of parametrization with the combined latest observational data from the type Ia supernova compilations including Union2(557), cosmic microwave background, and baryon acoustic oscillation.

  14. First SN Discoveries from the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Abbott, T.; Abdalla, F.; Achitouv, I.; Ahn, E.; Aldering, G.; Allam, S.; Alonso, D.; Amara, A.; Annis, J.; Antonik, M.; Aragon-Salamanca, A.; Armstrong, R.; Ashall, C.; Asorey, J.; Bacon, D.; Balbinot, E.; Banerji, M.; Barbary, K.; Barkhouse, W.; Baruah, L.; Bauer, A.; Bechtol, K.; Becker, M.; Bender, R.; Benoist, C.; Benoit-Levy, A.; Bernardi, M.; Bernstein, G.; Bernstein, J. P.; Bernstein, R.; Bertin, E.; Beynon, E.; Bhattacharya, S.; Biesiadzinski, T.; Biswas, R.; Blake, C.; Bloom, J. S.; Bocquet, S.; Brandt, C.; Bridle, S.; Brooks, D.; Brown, P. J.; Brunner, R.; Buckley-Geer, E.; Burke, D.; Burkert, A.; Busha, M.; Campa, J.; Campbell, H.; Cane, R.; Capozzi, D.; Carlstrom, J.; Rosell, A. Carnero; Carollo, M.; Carrasco-Kind, M.; Carretero, J.; Carter, M.; Casas, R.; Castander, F. J.; Chen, Y.; Chiu, I.; Chue, C.; Clampitt, J.; Clerkin, L.; Cohn, J.; Colless, M.; Copeland, E.; Covarrubias, R. A.; Crittenden, R.; Crocce, M.; Cunha, C.; Costa, L. da; D, C.; #39; Andrea; Das, S.; Das, R.; Davis, T. M.; Deb, S.; DePoy, D.; Derylo, G.; Desai, S.; de Simoni, F.; Devlin, M.; Diehl, H. T.; Dietrich, J.; Dodelson, S.; Doel, P.; Dolag, K.; Efstathiou, G.; Eifler, T.; Erickson, B.; Eriksen, M.; Estrada, J.; Etherington, J.; Evrard, A.; Farrens, S.; Neto, A. Fausti; Fernandez, E.; Ferreira, P. C.; Finley, D.; Fischer, J. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Furlanetto, C.; Garcia-Bellido, J.; Gaztanaga, E.; Gelman, M.; Gerdes, D.; Giannantonio, T.; Gilhool, S.; Gill, M.; Gladders, M.; Gladney, L.; Glazebrook, K.; Gray, M.; Gruen, D.; Gruendl, R.; Gupta, R.; Gutierrez, G.; Habib, S.; Hall, E.; Hansen, S.; Hao, J.; Heitmann, K.; Helsby, J.; Henderson, R.; Hennig, C.; High, W.; Hirsch, M.; Hoffmann, K.; Holhjem, K.; Honscheid, K.; Host, O.; Hoyle, B.; Hu, W.; Huff, E.; Huterer, D.; Jain, B.; James, D.; Jarvis, M.; Jarvis, M. J.; Jeltema, T.; Johnson, M.; Jouvel, S.; Kacprzak, T.; Karliner, I.; Katsaros, J.; Kent, S.; Kessler, R.; Kim, A.; Kim-Vy, T.; King, L.; Kirk, D.; Kochanek, C.; Kopp, M.; Koppenhoefer, J.; Kovacs, E.; Krause, E.; Kravtsov, A.; Kron, R.; Kuehn, K.; Kuemmel, M.; Kuhlmann, S.; Kunder, A.; Kuropatkin, N.; Kwan, J.; Lahav, O.; Leistedt, B.; Levi, M.; Lewis, P.; Liddle, A.; Lidman, C.; Lilly, S.; Lin, H.; Liu, J.; Lopez-Arenillas, C.; Lorenzon, W.; LoVerde, M.; Ma, Z.; Maartens, R.; Maccrann, N.; Macri, L.; Maia, M.; Makler, M.; Manera, M.; Maraston, C.; March, M.; Markovic, K.; Marriner, J.; Marshall, J.; Marshall, S.; Martini, P.; Sanahuja, P. Marti; Mayers, J.; McKay, T.; McMahon, R.; Melchior, P.; Merritt, K. W.; Merson, A.; Miller, C.; Miquel, R.; Mohr, J.; Moore, T.; Mortonson, M.; Mosher, J.; Mould, J.; Mukherjee, P.; Neilsen, E.; Ngeow, C.; Nichol, R.; Nidever, D.; Nord, B.; Nugent, P.; Ogando, R.; Old, L.; Olsen, J.; Ostrovski, F.; Paech, K.; Papadopoulos, A.; Papovich, C.; Patton, K.; Peacock, J.; Pellegrini, P. S. S.; Peoples, J.; Percival, W.; Perlmutter, S.; Petravick, D.; Plazas, A.; Ponce, R.; Poole, G.; Pope, A.; Refregier, A.; Reyes, R.; Ricker, P.; Roe, N.; Romer, K.; Roodman, A.; Rooney, P.; Ross, A.; Rowe, B.; Rozo, E.; Rykoff, E.; Sabiu, C.; Saglia, R.; Sako, M.; Sanchez, A.; Sanchez, C.; Sanchez, E.; Sanchez, J.; Santiago, B.; Saro, A.; Scarpine, V.; Schindler, R.; Schmidt, B. P.; Schmitt, R. L.; Schubnell, M.; Seitz, S.; Senger, R.; Sevilla, I.; Sharp, R.; Sheldon, E.; Sheth, R.; Smith, R. C.; Smith, M.; Snigula, J.; Soares-Santos, M.; Sobreira, F.; Song, J.; Soumagnac, M.; Spinka, H.; Stebbins, A.; Stoughton, C.; Suchyta, E.; Suhada, R.; Sullivan, M.; Sun, F.; Suntzeff, N.; Sutherland, W.; Swanson, M. E. C.; Sypniewski, A. J.; Szepietowski, R.; Talaga, R.; Tarle, G.; Tarrant, E.; Balan, S. Thaithara; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker, D.; Uddin, S. A.; Ural, S.; Vikram, V.; Voigt, L.; Walker, A. R.; Walker, T.; Wechsler, R.; Weinberg, D.; Weller, J.; Wester, W.; Wetzstein, M.; White, M.; Wilcox, H.; Wilman, D.; Yanny, B.; Young, J.; Zablocki, A.; Zenteno, A.; Zhang, Y.; Zuntz, J.

    2012-12-01

    The Dark Energy Survey (DES) report the discovery of the first set of supernovae (SN) from the project. Images were observed as part of the DES Science Verification phase using the newly-installed 570-Megapixel Dark Energy Camera on the CTIO Blanco 4-m telescope by observers J. Annis, E. Buckley-Geer, and H. Lin. SN observations are planned throughout the observing campaign on a regular cadence of 4-6 days in each of the ten 3-deg2 fields in the DES griz filters.

  15. Cosmography of Interacting Generalized QCD Ghost Dark Energy

    NASA Astrophysics Data System (ADS)

    Malekjani, Mohammad

    2013-12-01

    Exploring the accelerated expansion of the universe, we investigate the generalized ghost dark energy (GGDE) model from the statefinder diagnostic analysis in a flat Friedmann-Robertson-Walker universe. First, we calculate the cosmological evolution and statefinder trajectories for noninteracting case and then extend this work by considering the interaction between dark matter and dark energy components. We show that in the noninteracting case the phantom line cannot be crossed and also the evolutionary trajectories of model in s - r plane cannot be discriminated. It has been shown that the present location of model in s - r plane would be close to observational value for negative values of the model parameter. In the presence of interaction between dark matter and dark energy, the phantom regime is achieved, the accelerated phase of expansion occurs sooner compared with the noninteracting case. The GGDE model is also discussed from the viewpoint of perturbation theory by calculating the adiabatic sound speed of the model. Finally, unlike the noninteracting case, the evolutionary trajectories in s - r plane can be discriminated in the interacting model. Like the noninteracting model, in the interacting case the present location of GGDE model is closer to observational value for negative values of the model parameter.

  16. LSST as a precision probe of dark energy

    NASA Astrophysics Data System (ADS)

    Tyson, Tony; Wittman, David; Hennawi, Joe; Spergel, David

    2002-04-01

    The distortion of images of high-redshift background galaxies can be used to probe the intervening mass distribution. This weak gravitational lens effect can be used to detect clusters of dark matter, weigh them, image their mass distribution, and determine their 3-D location. The number of mass clusters detected and their redshift distribution are very sensitive to the density of matter Ωm and the equation of state of dark energy w. The degeneracy curve in the Ωm -- w plane is nearly orthogonal to that from the CMB measurements, so that a combination of CMB data with weak lensing by clusters can yield precision measurements of Ωm and w, independently of the supernova observations. The planned Large Synoptic Survey Telescope (LSST) will repeatedly survey 14,000 square degrees of the sky to unprecedented depths. LSST will create a 3-D mass tomographic assay of mass overdensities back to half the age of the universe by measuring the weak gravitational shear and color-redshift of billions of high redshift galaxies. LSST measurements of shear versus source redshift and lens redshift constrain the dark energy density and equation of state. By simultaneously measuring a range of properties of cosmic shear and cluster abundance, the LSST is able to provide a number of independent constraints on the dark energy density and the equation of state. LSST will determine the dark energy equation of state w to within one percent, sharply constraining the nature of dark energy. See the web site http://lssto.org for plots.

  17. LSST Dark Energy Science Final Report

    SciTech Connect

    Asztalos, S

    2007-02-15

    Three decadal surveys recommend a large-aperture synoptic survey telescope (LSST) to allow time-domain and cosmological studies of distant objects. LLNL designed the optical system and also is expected to play a significant role in the engineering associated with the camera. Precision cosmology from ground-based instruments is in a sense terra incognita. Numerous systematic effects occur that would be minimal or absent in their space-based counterparts. We proposed developing some basic tools and techniques for investigating ''dark sector'' cosmological science with such next-generation, large-aperture, real-time telescopes. The critical research involved determining whether systematic effects might dominate the extremely small distortions (''shears'') in images of faint background galaxies. To address these issues we carried out a comprehensive data campaign and developed detailed computer simulations.

  18. New Approaches To Off-Shore Wind Energy Management Exploiting Satellite EO Data

    NASA Astrophysics Data System (ADS)

    Morelli, Marco; Masini, Andrea; Venafra, Sara; Potenza, Marco Alberto Carlo

    2013-12-01

    Wind as an energy resource has been increasingly in focus over the past decades, starting with the global oil crisis in the 1970s. The possibility of expanding wind power production to off-shore locations is attractive, especially in sites where wind levels tend to be higher and more constant. Off-shore high-potential sites for wind energy plants are currently being looked up by means of wind atlases, which are essentially based on NWP (Numerical Weather Prediction) archive data and that supply information with low spatial resolution and very low accuracy. Moreover, real-time monitoring of active off- shore wind plants is being carried out using in-situ installed anemometers, that are not very reliable (especially on long time periods) and that should be periodically substituted when malfunctions or damages occur. These activities could be greatly supported exploiting archived and near real-time satellite imagery, that could provide accurate, global coverage and high spatial resolution information about both averaged and near real-time off-shore windiness. In this work we present new methodologies aimed to support both planning and near-real-time monitoring of off-shore wind energy plants using satellite SAR(Synthetic Aperture Radar) imagery. Such methodologies are currently being developed in the scope of SATENERG, a research project funded by ASI (Italian Space Agency). SAR wind data are derived from radar backscattering using empirical geophysical model functions, thus achieving greater accuracy and greater resolution with respect to other wind measurement methods. In detail, we calculate wind speed from X-band and C- band satellite SAR data, such as Cosmo-SkyMed (XMOD2) and ERS and ENVISAT (CMOD4) respectively. Then, using also detailed models of each part of the wind plant, we are able to calculate the AC power yield expected behavior, which can be used to support either the design of potential plants (using historical series of satellite images) or the

  19. General Coordinate Transformations as the Origins of Dark Energy

    NASA Astrophysics Data System (ADS)

    Rodgers, Vincent G. J.; Yasuda, Takeshi

    In this note we demonstrate that the algebra associated with coordinate transformations might contain the origins of a scalar field that can behave as an inflaton and/or a source for dark energy. We will call this particular scalar field the diffeomorphism scalar field. In one dimension, the algebra of coordinate transformations is the Virasoro algebra while the algebra of gauge transformations is the Kac-Moody algebra. An interesting representation of these algebras corresponds to certain field theories that have meaning in any dimension. In particular, the so-called Kac-Moody sector corresponds to Yang-Mills theories and the Virasoro sector corresponds to the diffeomorphism field theory that contains the scalar field and a rank-two symmetric, traceless tensor. We will focus on the contributions of the diffeomorphism scalar field to cosmology. We show that this scalar field can, qualitatively, act as a phantom dark energy, an inflaton, a dark matter source, and the cosmological constant Λ.

  20. Dynamical behavior of the extended holographic dark energy with the Hubble horizon

    SciTech Connect

    Liu Jie; Gong Yungui; Chen Ximing

    2010-04-15

    The extended holographic dark energy model with the Hubble horizon as the infrared cutoff avoids the problem of the circular reasoning of the holographic dark energy model. Unfortunately, it is hit with the no-go theorem. In this paper, we consider the extended holographic dark energy model with a potential, V({phi}), for the Brans-Dicke scalar field. With the addition of a potential for the Brans-Dicke scalar field, the extended holographic dark energy model using the Hubble horizon as the infrared cutoff is a viable dark energy model, and the model has the dark energy dominated attractor solution.

  1. Encircling the dark: constraining dark energy via cosmic density in spheres

    NASA Astrophysics Data System (ADS)

    Codis, S.; Pichon, C.; Bernardeau, F.; Uhlemann, C.; Prunet, S.

    2016-05-01

    The recently published analytic probability density function for the mildly non-linear cosmic density field within spherical cells is used to build a simple but accurate maximum likelihood estimate for the redshift evolution of the variance of the density, which, as expected, is shown to have smaller relative error than the sample variance. This estimator provides a competitive probe for the equation of state of dark energy, reaching a few percent accuracy on wp and wa for a Euclid-like survey. The corresponding likelihood function can take into account the configuration of the cells via their relative separations. A code to compute one-cell density probability density functions for arbitrary initial power spectrum, top-hat smoothing and various spherical collapse dynamics is made available online so as to provide straightforward means of testing the effect of alternative dark energy models and initial power-spectra on the low-redshift matter distribution.

  2. Encircling the dark: constraining dark energy via cosmic density in spheres

    NASA Astrophysics Data System (ADS)

    Codis, S.; Pichon, C.; Bernardeau, F.; Uhlemann, C.; Prunet, S.

    2016-08-01

    The recently published analytic probability density function for the mildly non-linear cosmic density field within spherical cells is used to build a simple but accurate maximum likelihood estimate for the redshift evolution of the variance of the density, which, as expected, is shown to have smaller relative error than the sample variance. This estimator provides a competitive probe for the equation of state of dark energy, reaching a few per cent accuracy on wp and wa for a Euclid-like survey. The corresponding likelihood function can take into account the configuration of the cells via their relative separations. A code to compute one-cell-density probability density functions for arbitrary initial power spectrum, top-hat smoothing and various spherical-collapse dynamics is made available online, so as to provide straightforward means of testing the effect of alternative dark energy models and initial power spectra on the low-redshift matter distribution.

  3. Interaction Between Dark Energy and Dark Matter: Observational Constraints from Ohd, BAO, CMB and SNe Ia

    NASA Astrophysics Data System (ADS)

    Cao, Shuo; Liang, Nan

    2013-12-01

    In order to test if there is energy transfer between dark energy (DE) and dark matter (DM), we investigate cosmological constraints on two forms of nontrivial interaction between the DM sector and the sector responsible for the acceleration of the universe, in light of the newly revised observations including OHD, CMB, BAO and SNe Ia. More precisely, we find the same tendencies for both phenomenological forms of the interaction term Q = 3γHρ, i.e. the parameter γ to be a small number, |γ| ≈ 10-2. However, concerning the sign of the interaction parameter, we observe that γ > 0 when the interaction between dark sectors is proportional to the energy density of dust matter, whereas the negative coupling (γ < 0) is preferred by observations when the interaction term is proportional to DE density. We further discuss two possible explanations to this incompatibility and apply a quantitative criteria to judge the severity of the coincidence problem. Results suggest that the γmIDE model with a positive coupling may alleviate the coincidence problem, since its coincidence index C is smaller than that for the γdIDE model, the interacting quintessence and phantom models by four orders of magnitude.

  4. Dark Energy and the Cosmological Constant: A Brief Introduction

    ERIC Educational Resources Information Center

    Harvey, Alex

    2009-01-01

    The recently observed acceleration of the expansion of the universe is a topic of intense interest. The favoured causes are the "cosmological constant" or "dark energy". The former, which appears in the Einstein equations as the term [lambda]g[subscript [mu]v], provides an extremely simple, well-defined mechanism for the acceleration. However,…

  5. Dark energy as double N-flation - observational predictions

    NASA Astrophysics Data System (ADS)

    Gott, J. Richard; Slepian, Zachary

    2011-09-01

    We propose a simple model for dark energy useful for comparison with observations. It is based on the idea that dark energy and inflation should be caused by the same physical process. As motivation, we note that Linde's simple chaotic inflation ? produces values of ns= 0.967 and r= 0.13, which are consistent with the Wilkinson Microwave Anisotropy Probe (WMAP) 1σ error bars. We therefore propose ? with m1˜ 10-5 and m2≤ 10-60, where c= 1 =ℎ and the reduced Planck mass is set to unity. The field φ1 drives inflation and has damped by now (φ1, 0= 0), while φ2 is currently rolling down its potential to produce dark energy. Using this model, we derive the formula δw(z) ≡w(z) + 1 =δw0(H0/H(z))2 via the slow-roll approximation. Our numerical results from exact and self-consistent solution of the equations of motion for φ2 and the Friedmann equations support this formula, and it should hold for any slow-roll dark energy. Our potential can be easily realized in N-flation models with many fields, and is easily falsifiable by upcoming experiments - for example, if Linde's chaotic inflation is ruled out. But if r values consistent with Linde's chaotic inflation are detected then one should take this model seriously indeed.

  6. Has dark energy really been discovered in the Lab?

    NASA Astrophysics Data System (ADS)

    Jetzer, Philippe; Straumann, Norbert

    2005-01-01

    We show that dark energy contributions can not be determined from noise measurements of Josephson junctions, as was recently suggested in a paper by C. Beck and M.C. Mackey [Phys. Lett. B 605 (2005) 295, http://arXiv.org/astro-ph/0406504].

  7. Impacts of dark energy on weighing neutrinos after Planck 2015

    NASA Astrophysics Data System (ADS)

    Zhang, Xin

    2016-04-01

    We investigate how dark energy properties impact the cosmological limits on the total mass of active neutrinos. We consider two typical, simple dark energy models (that have only one more additional parameter than Λ CDM ), i.e., the w CDM model and the holographic dark energy (HDE) model, as examples, to make an analysis. In the cosmological fits, we use the Planck 2015 temperature and polarization data, in combination with other low-redshift observations, including the baryon acoustic oscillations, type Ia supernovae, and Hubble constant measurement, as well as the Planck lensing measurements. We find that, once dynamical dark energy is considered, the degeneracy between ∑mν and H0 will be changed, i.e., in the Λ CDM model, ∑mν is anticorrelated with H0, but in the w CDM and HDE models, ∑mν becomes positively correlated with H0. Compared to Λ CDM , in the w CDM model the limit on ∑mν becomes much looser, but in the HDE model the limit becomes much tighter. In the HDE model, we obtain ∑mν<0.113 eV (95% C.L.) with the combined data sets, which is perhaps the most stringent upper limit by far on neutrino mass. Thus, our result in the HDE model is nearly ready to diagnose the neutrino mass hierarchy with the current cosmological observations.

  8. James Webb Space Telescope Synergy with Dark Energy Missions

    NASA Astrophysics Data System (ADS)

    Gardner, Jonathan P.

    2014-01-01

    As the successor to the Hubble Space Telescope (HST), the James Webb Space Telescope (JWST) will be a general-purpose observatory which will impact all areas of observational astronomy. Two future dark energy missions are being planned: Euclid in Europe and the Wide-Field Infrared Survey Telescope (WFIRST) in the US. While JWST is designed to go very deep in the infrared, the dark energy missions will conduct wide-area surveys of a substantial fraction of the sky in the optical and near-infrared. Synergy between JWST and Euclid or WFIRST could proceed in several ways. (1) JWST will make contributions to dark energy science that will be complementary to the results from the wide-area surveys. These contributions could include a more precise measurement of the current value of the Hubble constant, and rest-frame near-infrared light curves for high-redshift type Ia supernovae. (2) JWST could directly contribute to the dark energy science of the wide-area missions by providing additional calibration, investigating anomalies in the dataset, or with complementary observations that are deeper over a smaller area. (3) JWST could make follow-up observations of Euclid or WFIRST discoveries of rare objects, such as high-redshift quasars, strong-lens systems, galaxy clusters and supernovae.

  9. Dark energy oscillations in mimetic F (R ) gravity

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-08-01

    In this paper we address the problem of dark energy oscillations in the context of mimetic F (R ) gravity with potential. The issue of dark energy oscillations can be a problem in some models of ordinary F (R ) gravity, and a remedy that can make the oscillations milder is to introduce additional modifications in the functional form of the F (R ) gravity. As we demonstrate, the power-law modifications are not necessary in the mimetic F (R ) case, and by appropriately choosing the mimetic potential and the Lagrange multiplier, it is possible to make the oscillations almost vanish at the end of the matter domination era and during the late-time acceleration era. We examine the behavior of the dark energy equation of state parameter and of the total effective equation of state parameter as functions of the redshift, and we compare the resulting picture with the ordinary F (R ) gravity case. As we also show that the present day values of the dark energy equation of state parameter and of the total effective equation of state parameter are in better agreement with the observational data, in comparison to the ordinary F (R ) gravity case. Finally, we study the evolution of the growth factor as a function of the redshift for all the mimetic models we use.

  10. Inflation, Dark Energy, and the Fate of the Universe

    SciTech Connect

    Linde, Andrei

    2003-11-12

    Inflationary theory, which describes an accelerated expansion of the early universe, gradually becomes a standard cosmological paradigm. It solves many complicated problems of the usual big bang theory, explains the origin of galaxies, and makes several predictions, which, so far, are in a good agreement with cosmological observations. Recently we learned that few billion years ago the universe entered the second stage of acceleration, driven by mysterious 'dark energy'. According to the simplest version of inflationary theory, the universe is an eternally existing self-reproducing fractal consisting of different balloons of exponentially large size. The universe as a whole can be immortal, but the fate of each of these balloons, including the one in which we live now, depends on the properties of dark energy. According to some of the theories of dark energy, our part of the universe will continue its accelerated expansion forever. Other theories predict that eventually our part of the universe will become ten-dimensional and stop accelerating. Still another possibility is that our part of the universe will collapse. I will describe recent developments in inflationary theory and the theory of dark energy, and discuss the possibility to find our fate by cosmological observations.

  11. DOE/NASA Joint Dark Energy Mission (JDEM)

    NASA Astrophysics Data System (ADS)

    Gehrels, Neil; Albrecht, Andreas

    2009-05-01

    Dr. Neil Gehrels, Chair JDEM Science Coordination Group, and others will provide information about the current status of the JDEM project including the Reference Mission, Timeline, Observing Strategy, and Ancillary Science. Time will be provided for questions and input from the community on topics including the mission plan and the dark energy and ancillary science enabled by JDEM.

  12. The solutions and thermodynamic dark energy in the accelerating universe

    NASA Astrophysics Data System (ADS)

    Demirel, E. C. Günay

    2016-03-01

    Recently, Tachyonic matter expressed in terms of scalar field is suggested to be the reason of acceleration of the universe as dark energy [1]-[3]. In this study, dynamic solutions and thermodynamic properties of matters such as Tachyonic matters were investigated.

  13. Thermodynamics of ghost dark energy in case of various nonlinear interactions

    NASA Astrophysics Data System (ADS)

    Khurshudyan, M.

    2016-05-01

    In this paper we discuss thermodynamics of interacting ghost dark energy models in a flat FRW universe. During the discussion our attention will be concentrated on nonlinear interactions of particular form. In the considered models dark matter is assumed to be a pressureless matter and allows to complete the darkness of the low-redshift universe. Ghost dark energy it is one of the models of dark energy among others with an explicitly given energy density as a function of the Hubble parameter of the universe. Our study aims to have a contribution towards recently suggested interacting ghost dark energy models.

  14. Distance measurements from supernovae and dark energy constraints

    SciTech Connect

    Wang Yun

    2009-12-15

    Constraints on dark energy from current observational data are sensitive to how distances are measured from Type Ia supernova (SN Ia) data. We find that flux averaging of SNe Ia can be used to test the presence of unknown systematic uncertainties, and yield more robust distance measurements from SNe Ia. We have applied this approach to the nearby+SDSS+ESSENCE+SNLS+HST set of 288 SNe Ia, and the 'Constitution' set of 397 SNe Ia. Combining the SN Ia data with cosmic microwave background anisotropy data from Wilkinson Microwave Anisotropy Probe 5 yr observations, the Sloan Digital Sky Survey baryon acoustic oscillation measurements, the data of 69 gamma-ray bursts (GRBs) , and the Hubble constant measurement from the Hubble Space Telescope project SHOES, we measure the dark energy density function X(z){identical_to}{rho}{sub X}(z)/{rho}{sub X}(0) as a free function of redshift (assumed to be a constant at z>1 or z>1.5). Without the flux averaging of SNe Ia, the combined data using the Constitution set of SNe Ia seem to indicate a deviation from a cosmological constant at {approx}95% confidence level at 0 < or apporx. z < or approx. 0.8; they are consistent with a cosmological constant at {approx}68% confidence level when SNe Ia are flux averaged. The combined data using the nearby+SDSS+ESSENCE+SNLS+HST data set of SNe Ia are consistent with a cosmological constant at 68% confidence level with or without flux averaging of SNe Ia, and give dark energy constraints that are significantly more stringent than that using the Constitution set of SNe Ia. Assuming a flat Universe, dark energy is detected at >98% confidence level for z{<=}0.75 using the combined data with 288 SNe Ia from nearby+SDSS+ESSENCE+SNLS+HST, independent of the assumptions about X(z{>=}1). We quantify dark energy constraints without assuming a flat Universe using the dark energy figure of merit for both X(z) and a dark energy equation-of-state linear in the cosmic scale factor.

  15. Interacting dark energy collapse with matter components separation

    SciTech Connect

    Delliou, M. Le; Barreiro, T. E-mail: tmbarreiro@ulusofona.pt

    2013-02-01

    We use the spherical collapse model of structure formation to investigate the separation in the collapse of uncoupled matter (essentially baryons) and coupled dark matter in an interacting dark energy scenario. Following the usual assumption of a single radius of collapse for all species, we show that we only need to evolve the uncoupled matter sector to obtain the evolution for all matter components. This gives us more information on the collapse with a simplified set of evolution equations compared with the usual approaches. We then apply these results to four quintessence potentials and show how we can discriminate between different quintessence models.

  16. Topology and Dark Energy: Testing Gravity in Voids

    NASA Astrophysics Data System (ADS)

    Spolyar, Douglas; Sahlén, Martin; Silk, Joe

    2013-12-01

    Modified gravity has garnered interest as a backstop against dark matter and dark energy (DE). As one possible modification, the graviton can become massive, which introduces a new scalar field—here with a Galileon-type symmetry. The field can lead to a nontrivial equation of state of DE which is density and scale dependent. Tension between type Ia supernovae and Planck could be reduced. In voids, the scalar field dramatically alters the equation of state of DE, induces a soon-observable gravitational slip between the two metric potentials, and develops a topological defect (domain wall) due to a nontrivial vacuum structure for the field.

  17. Growth of Cosmic Structure: Probing Dark Energy Beyond Expansion

    SciTech Connect

    Huterer, Dragan; Kirkby, David; Bean, Rachel; Connolly, Andrew; Dawson, Kyle; Dodelson, Scott; Evrard, August; Jain, Bhuvnesh; Jarvis, Michael; Linder, Eric; Mandelbaum, Rachel; May, Morgan; Raccanelli, Alvise; Reid, Beth; Rozo, Eduardo; Schmidt, Fabian; Sehgal, Neelima; Slosar, Anze; Van Engelen, Alex; Wu, Hao-Yi; Zhao, Gongbo

    2014-03-15

    The quantity and quality of cosmic structure observations have greatly accelerated in recent years, and further leaps forward will be facilitated by imminent projects. These will enable us to map the evolution of dark and baryonic matter density fluctuations over cosmic history. The way that these fluctuations vary over space and time is sensitive to several pieces of fundamental physics: the primordial perturbations generated by GUT-scale physics; neutrino masses and interactions; the nature of dark matter and dark energy. We focus on the last of these here: the ways that combining probes of growth with those of the cosmic expansion such as distance-redshift relations will pin down the mechanism driving the acceleration of the Universe.

  18. Growth of Cosmic Structure: Probing Dark Energy Beyond Expansion

    DOE PAGESBeta

    Huterer, Dragan; Kirkby, David; Bean, Rachel; Connolly, Andrew; Dawson, Kyle; Dodelson, Scott; Evrard, August; Jain, Bhuvnesh; Jarvis, Michael; Linder, Eric; et al

    2014-03-15

    The quantity and quality of cosmic structure observations have greatly accelerated in recent years, and further leaps forward will be facilitated by imminent projects. These will enable us to map the evolution of dark and baryonic matter density fluctuations over cosmic history. The way that these fluctuations vary over space and time is sensitive to several pieces of fundamental physics: the primordial perturbations generated by GUT-scale physics; neutrino masses and interactions; the nature of dark matter and dark energy. We focus on the last of these here: the ways that combining probes of growth with those of the cosmic expansionmore » such as distance-redshift relations will pin down the mechanism driving the acceleration of the Universe.« less

  19. On the observability of coupled dark energy with cosmic voids

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Carlesi, Edoardo; Wandelt, Benjamin D.; Knebe, Alexander

    2015-01-01

    Taking N-body simulations with volumes and particle densities tuned to match the sloan digital sky survey DR7 spectroscopic main sample, we assess the ability of current void catalogues to distinguish a model of coupled dark matter-dark energy from Λ cold dark matter cosmology using properties of cosmic voids. Identifying voids with the VIDE toolkit, we find no statistically significant differences in the ellipticities, but find that coupling produces a population of significantly larger voids, possibly explaining the recent result of Tavasoli et al. In addition, we use the universal density profile of Hamaus et al. to quantify the relationship between coupling and density profile shape, finding that the coupling produces broader, shallower, undercompensated profiles for large voids by thinning the walls between adjacent medium-scale voids. We find that these differences are potentially measurable with existing void catalogues once effects from survey geometries and peculiar velocities are taken into account.

  20. A Clifford-gravity-based cosmology, dark matter and dark energy

    NASA Astrophysics Data System (ADS)

    Castro, Carlos

    2015-02-01

    A Clifford-gravity-based model is exploited to build a generalized action (beyond the current ones used in the literature) and arrive at relevant numerical results which are consistent with the presently-observed de Sitter accelerating expansion of the universe driven by a very small vacuum energy density ρobs 10-120(MP)4 (MP is the Planck mass) and provide promising dark energy/matter candidates in terms of the 16 scalars corresponding to the degrees of freedom associated with a Cl(3, 1)-algebra-valued scalar field Φ in four dimensions.

  1. Integrated Sachs-Wolfe effect in interacting dark energy models

    SciTech Connect

    Olivares, German; Pavon, Diego; Atrio-Barandela, Fernando

    2008-05-15

    Models with dark energy decaying into dark matter have been proposed in cosmology to solve the coincidence problem. We study the effect of such coupling on the cosmic microwave background temperature anisotropies. The interaction changes the rate of evolution of the metric potentials and the growth rate of matter density perturbations and modifies the integrated Sachs-Wolfe component of cosmic microwave background temperature anisotropies, enhancing the effect. Cross correlation of galaxy catalogs with cosmic microwave background maps provides a model-independent test to constrain the interaction. We particularize our analysis for a specific interacting model and show that galaxy catalogs with median redshifts z{sub m}=0.1-0.9 can rule out models with an interaction parameter strength of c{sup 2}{approx_equal}0.1 better than 99.95% confidence level. Values of c{sup 2}{<=}0.01 are compatible with the data and may account for the possible discrepancy between the fraction of dark energy derived from Wilkinson microwave anisotropy probe 3 yr data and the fraction obtained from the integrated Sachs-Wolfe effect. Measuring the fraction of dark energy by these two methods could provide evidence of an interaction.

  2. Clustering GCG: a viable option for unified dark matter-dark energy?

    SciTech Connect

    Kumar, Sumit; Sen, Anjan A E-mail: aasen@jmi.ac.in

    2014-10-01

    We study the clustering Generalized Chaplygin Gas (GCG) as a possible candidate for dark matter-dark energy unification. The vanishing speed of sound 0c{sub s}{sup 2} = ) for the GCG fluid can be obtained by incorporating higher derivative operator in the original K-essence Lagrangian. The evolution of the density fluctuations in the GCG+Baryon fluid is studied in the linear regime. The observational constraints on the model are obtained using latest data from SNIa, H(z), BAO and also for the fσ{sub 8} measurements. The matter power spectra for the allowed parameter values are well behaved without any unphysical features.

  3. Quartet-metric general relativity: scalar graviton, dark matter, and dark energy

    NASA Astrophysics Data System (ADS)

    Pirogov, Yury F.

    2016-04-01

    General relativity extended through a dynamical scalar quartet is proposed as a theory of the scalar-vector-tensor gravity, generically describing the unified gravitational dark matter (DM) and dark energy (DE). The implementation in the weak-field limit of the Higgs mechanism for the extended gravity, with a redefinition of metric field, is exposed in a generally covariant form. Under a natural restriction on the parameters, the redefined theory possesses in the linearized approximation a residual transverse-diffeomorphism invariance, and consistently comprises the massless tensor graviton and a massive scalar one as a DM particle. The number of adjustable parameters in the full nonlinear theory and a partial decoupling of the latter from its weak-field limit noticeably extend the perspectives for the unified description of the gravity DM and DE in the various phenomena at the different scales.

  4. Chandra Opens New Line of Investigation on Dark Energy

    NASA Astrophysics Data System (ADS)

    2004-05-01

    Astronomers have detected and probed dark energy by applying a powerful, new method that uses images of galaxy clusters made by NASA's Chandra X-ray Observatory. The results trace the transition of the expansion of the Universe from a decelerating to an accelerating phase several billion years ago, and give intriguing clues about the nature of dark energy and the fate of the Universe. "Dark energy is perhaps the biggest mystery in physics," said Steve Allen of the Institute of Astronomy (IoA) at the University of Cambridge in England, and leader of the study. "As such, it is extremely important to make an independent test of its existence and properties." Abell 2029 Chandra X-ray Image of Abell 2029 Allen and his colleagues used Chandra to study 26 clusters of galaxies at distances corresponding to light travel times of between one and eight billion years. These data span the time when the Universe slowed from its original expansion, before speeding up again because of the repulsive effect of dark energy. "We're directly seeing that the expansion of the Universe is accelerating by measuring the distances to these galaxy clusters," said Andy Fabian also of the IoA, a co-author on the study. The new Chandra results suggest that the dark energy density does not change quickly with time and may even be constant, consistent with the "cosmological constant" concept first introduced by Albert Einstein. If so, the Universe is expected to continue expanding forever, so that in many billions of years only a tiny fraction of the known galaxies will be observable. More Animations Animation of the "Big Rip" If the dark energy density is constant, more dramatic fates for the Universe would be avoided. These include the "Big Rip," where dark energy increases until galaxies, stars, planets and eventually atoms are eventually torn apart. The "Big Crunch," where the Universe eventually collapses on itself, would also be ruled out. Chandra's probe of dark energy relies on the unique

  5. Quintessence in a quandary: Prior dependence in dark energy models

    NASA Astrophysics Data System (ADS)

    Marsh, David J. E.; Bull, Philip; Ferreira, Pedro G.; Pontzen, Andrew

    2014-11-01

    The archetypal theory of dark energy is quintessence: a minimally coupled scalar field with a canonical kinetic energy and potential. By studying random potentials, we show that quintessence imposes a restricted set of priors on the equation of state of dark energy. Focusing on the commonly used parametrization, w (a )≈w0+wa(1 -a ) , we show that there is a natural scale and direction in the (w0,wa) plane that distinguishes quintessence as a general framework. We calculate the expected information gain for a given survey and show that, because of the nontrivial prior information, it is a function of more than just the figure of merit. This allows us to make a quantitative case for novel survey strategies. We show that the scale of the prior sets target observational requirements for gaining significant information. This corresponds to a figure of merit FOM ≳200 , a requirement that future galaxy redshift surveys will meet.

  6. Testing the cosmological constant as a candidate for dark energy

    SciTech Connect

    Kratochvil, Jan; Linde, Andrei; Linder, Eric V.; Shmakova, Marina

    2003-12-03

    It may be difficult to single out the best model of dark energy on the basis of the existing and planned cosmological observations, because many different models can lead to similar observational consequences. However, each particular model can be studied and either found consistent with observations or ruled out. In this paper, we concentrate on the possibility to test and rule out the simplest and by far the most popular of the models of dark energy, the theory described by general relativity with positive vacuum energy (the cosmological constant). We evaluate the conditions under which this model could be ruled out by the future observations made by the Supernova/Acceleration Probe SNAP (both for supernovae and weak lensing) and by the Planck Surveyor cosmic microwave background satellite.

  7. Fine Structure of Dark Energy and New Physics

    DOE PAGESBeta

    Jejjala, Vishnu; Kavic, Michael; Minic, Djordje

    2007-01-01

    Following our recent work on the cosmological constant problem, in this letter we make a specific proposal regarding the fine structure (i.e., the spectrum) of dark energy. The proposal is motivated by a deep analogy between the blackbody radiation problem, which led to the development of quantum theory, and the cosmological constant problem, for which we have recently argued calls for a conceptual extension of the quantum theory. We argue that the fine structure of dark energy is governed by a Wien distribution, indicating its dual quantum and classical nature. We discuss observational consequences of such a picture of darkmore » energy and constrain the distribution function.« less

  8. Semi-analytic galaxy formation in coupled dark energy cosmologies

    NASA Astrophysics Data System (ADS)

    Fontanot, Fabio; Baldi, Marco; Springel, Volker; Bianchi, Davide

    2015-09-01

    Among the possible alternatives to the standard cosmological model (ΛCDM), coupled dark energy models postulate that dark energy (DE), seen as a dynamical scalar field, may interact with dark matter (DM), giving rise to a `fifth-force', felt by DM particles only. In this paper, we study the impact of these cosmologies on the statistical properties of galaxy populations by combining high-resolution numerical simulations with semi-analytic models (SAMs) of galaxy formation and evolution. New features have been implemented in the reference SAM in order to have it run self-consistently and calibrated on these cosmological simulations. They include an appropriate modification of the mass-temperature relation and of the baryon fraction in DM haloes, due to the different virial scalings and to the gravitational bias, respectively. Our results show that the predictions of our coupled-DE SAM do not differ significantly from theoretical predictions obtained with standard SAMs applied to a reference Λ cold dark matter (ΛCDM) simulation, implying that the statistical properties of galaxies provide only a weak probe for these alternative cosmological models. On the other hand, we show that both galaxy bias and the galaxy pairwise velocity distribution are sensitive to coupled DE models: this implies that these probes might be successfully applied to disentangle among quintessence, f(R)-gravity and coupled DE models.

  9. Testing coupled dark energy with large scale structure observation

    SciTech Connect

    Yang, Weiqiang; Xu, Lixin E-mail: lxxu@dlut.edu.cn

    2014-08-01

    The coupling between the dark components provides a new approach to mitigate the coincidence problem of cosmological standard model. In this paper, dark energy is treated as a fluid with a constant equation of state, whose coupling with dark matter is Q-bar =3Hξ{sub x}ρ-bar {sub x}. In the frame of dark energy, we derive the evolution equations for the density and velocity perturbations. According to the Markov Chain Monte Carlo method, we constrain the model by currently available cosmic observations which include cosmic microwave background radiation, baryon acoustic oscillation, type Ia supernovae, and fσ{sub 8}(z) data points from redshift-space distortion. The results show the interaction rate in σ regions: ξ{sub x} = 0.00328{sub -0.00328-0.00328-0.00328}{sup +0.000736+0.00549+0.00816}, which means that the recently cosmic observations favor a small interaction rate which is up to the order of 10{sup -2}, meanwhile, the measurement of redshift-space distortion could rule out the large interaction rate in the σ region.

  10. James Webb Space Telescope Studies of Dark Energy

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.; Stiavelli, Massimo; Mather, John C.

    2010-01-01

    The Hubble Space Telescope (HST) has contributed significantly to studies of dark energy. It was used to find the first evidence of deceleration at z=1.8 (Riess et al. 2001) through the serendipitous discovery of a type 1a supernova (SN1a) in the Hubble Deep Field. The discovery of deceleration at z greater than 1 was confirmation that the apparent acceleration at low redshift (Riess et al. 1998; Perlmutter et al. 1999) was due to dark energy rather than observational or astrophysical effects such as systematic errors, evolution in the SN1a population or intergalactic dust. The GOODS project and associated follow-up discovered 21 SN1a, expanding on this result (Riess et al. 2007). HST has also been used to constrain cosmological parameters and dark energy through weak lensing measurements in the COSMOS survey (Massey et al 2007; Schrabback et al 2009) and strong gravitational lensing with measured time delays (Suyu et al 2010). Constraints on dark energy are often parameterized as the equation of state, w = P/p. For the cosmological constant model, w = -1 at all times; other models predict a change with time, sometimes parameterized generally as w(a) or approximated as w(sub 0)+(1-a)w(sub a), where a = (1+z)(sup -1) is the scale factor of the universe relative to its current scale. Dark energy can be constrained through several measurements. Standard candles, such as SN1a, provide a direct measurement of the luminosity distance as a function of redshift, which can be converted to H(z), the change in the Hubble constant with redshift. An analysis of weak lensing in a galaxy field can be used to derive the angular-diameter distance from the weak-lensing equation and to measure the power spectrum of dark-matter halos, which constrains the growth of structure in the Universe. Baryonic acoustic oscillations (BAO), imprinted on the distribution of matter at recombination, provide a standard rod for measuring the cosmological geometry. Strong gravitational lensing of a

  11. Unification of inflation, dark energy, and dark matter within the Salam-Sezgin cosmological model

    SciTech Connect

    Henriques, Alfredo B.; Potting, Robertus; Sa, Paulo M.

    2009-05-15

    We investigate a cosmological model, based on the Salam-Sezgin six-dimensional supergravity theory and on previous work by Anchordoqui, Goldberg, Nawata, and Nunez. Assuming a period of warm inflation, we show that it is possible to extend the evolution of the model back in time, to include the inflationary period, thus unifying inflation, dark matter, and dark energy within a single framework. Like the previous authors, we were not able to obtain the full dark matter content of the universe from the Salam-Sezgin scalar fields. However, even if only partially successful, this work shows that present-day theories, based on superstrings and supergravity, may eventually lead to a comprehensive modeling of the evolution of the universe. We find that the gravitational-wave spectrum of the model has a nonconstant negative slope in the frequency range (10{sup -15}-10{sup 6}) rad/s, and that, unlike standard (cold) inflation models, it shows no structure in the MHz/GHz range of frequencies.

  12. An Intimate Relationship between Higgs Forces, Dark Matter, and Dark Energy

    NASA Astrophysics Data System (ADS)

    Colella, Antonio

    2015-04-01

    Our universe's 8 permanent matter particles were: up quark, down quark, electron, electron-neutrino, muon-neutrino, tau-neutrino, zino, and photino. Zino and photino were dark matter particles. Each permanent matter particle had an associated supersymmetric Higgs force. Sum of the 8 Higgs force energies was dark energy. Amplifications of Higgs theory included: 16 SM matter/force particles, 16 superpartners, 32 anti-particles, and 64 associated supersymmetric Higgs particles; 17 Higgs forces and 15 Higgsinos; Higgs force was a residual super force; Matter particles and associated Higgs forces were one and inseparable and modeled as underweight porcupine with overgrown spines; Mass given to a matter particle via associated Higgs force and gravitational force messenger particles; Super force condensed into 17 matter/Higgs forces at 17 extremely high temperatures; 9 transient matter particles/Higgs forces evaporated to super force and condensed to 8 permanent matter particles/Higgs forces (decay); Spontaneous symmetry breaking was bidirectional; Matter/Higgs force creation was time synchronous with inflation and one to seven Planck cubes energy to matter expansion; 128 matter/force particles required for Conservation of Energy/Mass accountability at t = 100s.

  13. Constraining competing models of dark energy with cosmological observations

    NASA Astrophysics Data System (ADS)

    Pavlov, Anatoly

    The last decade of the 20th century was marked by the discovery of the accelerated expansion of the universe. This discovery puzzles physicists and has yet to be fully understood. It contradicts the conventional theory of gravity, i.e. Einstein's General Relativity (GR). According to GR, a universe filled with dark matter and ordinary matter, i.e. baryons, leptons, and photons, can only expand with deceleration. Two approaches have been developed to study this phenomenon. One attempt is to assume that GR might not be the correct description of gravity, hence a modified theory of gravity has to be developed to account for the observed acceleration of the universe's expansion. This approach is known as the "Modified Gravity Theory". The other way is to assume that the energy budget of the universe has one more component which causes expansion of space with acceleration on large scales. Dark Energy (DE) was introduced as a hypothetical type of energy homogeneously filling the entire universe and very weakly or not at all interacting with ordinary and dark matter. Observational data suggest that if DE is assumed then its contribution to the energy budget of the universe at the current epoch should be about 70% of the total energy density of the universe. In the standard cosmological model a DE term is introduced into the Einstein GR equations through the cosmological constant, a constant in time and space, and proportional to the metric tensor gmunu. While this model so far fits most available observational data, it has some significant conceptual shortcomings. Hence there are a number of alternative cosmological models of DE in which the dark energy density is allowed to vary in time and space.

  14. On the internal consistency of holographic dark energy models

    SciTech Connect

    Horvat, R

    2008-10-15

    Holographic dark energy (HDE) models, underpinned by an effective quantum field theory (QFT) with a manifest UV/IR connection, have become convincing candidates for providing an explanation of the dark energy in the universe. On the other hand, the maximum number of quantum states that a conventional QFT for a box of size L is capable of describing relates to those boxes which are on the brink of experiencing a sudden collapse to a black hole. Another restriction on the underlying QFT is that the UV cut-off, which cannot be chosen independently of the IR cut-off and therefore becomes a function of time in a cosmological setting, should stay the largest energy scale even in the standard cosmological epochs preceding a dark energy dominated one. We show that, irrespective of whether one deals with the saturated form of HDE or takes a certain degree of non-saturation in the past, the above restrictions cannot be met in a radiation dominated universe, an epoch in the history of the universe which is expected to be perfectly describable within conventional QFT.

  15. Dark energy and the return of the phoenix universe

    SciTech Connect

    Lehners, Jean-Luc; Steinhardt, Paul J.

    2009-03-15

    In cyclic universe models based on a single scalar field (e.g., the radion determining the distance between branes in M theory), virtually the entire Universe makes it through the ekpyrotic smoothing and flattening phase, bounces, and enters a new epoch of expansion and cooling. This stable evolution cannot occur, however, if scale-invariant curvature perturbations are produced by the entropic mechanism because it requires two scalar fields (e.g., the radion and the Calabi-Yau dilaton) evolving along an unstable classical trajectory. In fact, we show here that an overwhelming fraction of the Universe fails to make it through the ekpyrotic phase; nevertheless, a sufficient volume survives and cycling continues forever provided the dark energy phase of the cycle lasts long enough, of order a trillion years. Two consequences are a new role for dark energy and a global structure of the Universe radically different from that of eternal inflation.

  16. System Architecture of the Dark Energy Survey Camera Readout Electronics

    SciTech Connect

    Shaw, Theresa; Ballester, Otger; Cardiel-Sas, Laia; Castilla, Javier; Chappa, Steve; de Vicente, Juan; Holm, Scott; Huffman, Dave; Kozlovsky, Mark; Martinez, Gustavo; Moore, Todd; /Madrid, CIEMAT /Fermilab /Illinois U., Urbana /Fermilab

    2010-05-27

    The Dark Energy Survey makes use of a new camera, the Dark Energy Camera (DECam). DECam will be installed in the Blanco 4M telescope at Cerro Tololo Inter-American Observatory (CTIO). DECam is presently under construction and is expected to be ready for observations in the fall of 2011. The focal plane will make use of 62 2Kx4K and 12 2kx2k fully depleted Charge-Coupled Devices (CCDs) for guiding, alignment and focus. This paper will describe design considerations of the system; including, the entire signal path used to read out the CCDs, the development of a custom crate and backplane, the overall grounding scheme and early results of system tests.

  17. Dark energy from Gauss-Bonnet and nonminimal couplings

    NASA Astrophysics Data System (ADS)

    Granda, L. N.; Jimenez, D. F.

    2014-12-01

    We consider a scalar-tensor model of dark energy with Gauss-Bonnet and nonminimal couplings. Exact cosmological solutions were found in the absence of potential that give equations of state of dark energy consistent with current observational constraints, but with different asymptotic behaviors depending on the couplings of the model. A detailed reconstruction procedure is given for the scalar potential and the Gauss-Bonnet coupling for any given cosmological scenario. In particular we consider conditions for the existence of a variety of cosmological solutions with accelerated expansion, including quintessence, phantom, de Sitter, and Little Rip. For the case of quintessence and phantom we have found a scalar potential of the Albrecht-Skordis type, where the potential is an exponential with a polynomial factor.

  18. Reconstructing f(R, t) Gravity from Holographic Dark Energy

    NASA Astrophysics Data System (ADS)

    Houndjo, M. J. S.; Piattella, Oliver F.

    2012-03-01

    We consider cosmological scenarios based on f(R, T) theories of gravity (R is the Ricci scalar and T is the trace of the energy-momentum tensor) and numerically reconstruct the function f(R, T) which is able to reproduce the same expansion history generated, in the standard General Relativity theory, by dark matter and holographic dark energy. We consider two special f(R, T) models: in the first instance, we investigate the modification R + 2f(T), i.e. the usual Einstein-Hilbert term plus a f(T) correction. In the second instance, we consider a f(R) + λT theory, i.e. a T correction to the renown f(R) theory of gravity.

  19. Shifting the Universe: early dark energy and standard rulers

    SciTech Connect

    Linder, Eric V; Robbers, Georg E-mail: g.robbers@thphys.uni-heidelberg.de

    2008-06-15

    The presence of dark energy at high redshift influences both the cosmic sound horizon and the distance to last scattering of the cosmic microwave background. We demonstrate that, through the degeneracy in their ratio, early dark energy can lie hidden in the CMB temperature and polarization spectra, leading to an unrecognized shift in the sound horizon. If the sound horizon is then used as a standard ruler, as in baryon acoustic oscillations, then the derived cosmological parameters can be nontrivially biased. Fitting for the absolute ruler scale (just as supernovae must be fitted for the absolute candle magnitude) removes the bias but decreases the leverage of the BAO technique by a factor of two.

  20. ASTROPHYSICS. Atom-interferometry constraints on dark energy.

    PubMed

    Hamilton, P; Jaffe, M; Haslinger, P; Simmons, Q; Müller, H; Khoury, J

    2015-08-21

    If dark energy, which drives the accelerated expansion of the universe, consists of a light scalar field, it might be detectable as a "fifth force" between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms, however, can evade these tests by suppressing the forces in regions of high density, such as the laboratory. Using a cesium matter-wave interferometer near a spherical mass in an ultrahigh-vacuum chamber, we reduced the screening mechanism by probing the field with individual atoms rather than with bulk matter. We thereby constrained a wide class of dark energy theories, including a range of chameleon and other theories that reproduce the observed cosmic acceleration. PMID:26293958

  1. Fundamental Constants as Monitors of Particle Physics and Dark Energy

    NASA Astrophysics Data System (ADS)

    Thompson, Rodger

    2016-03-01

    This contribution considers the constraints on particle physics and dark energy parameter space imposed by the astronomical observational constraints on the variation of the proton to electron mass ratio μ and the fine structure constant α. These constraints impose limits on the temporal variation of these parameters on a time scale greater than half the age of the universe, a time scale inaccessible by laboratory facilities such as the Large Hadron Collider. The limits on the variance of μ and α constrain combinations of the QCD Scale, the Higgs VEV and the Yukawa coupling on the particle physics side and a combination of the temporal variation of rolling scalar field and its coupling to the constants on the dark energy side.

  2. Covariant extrinsic gravity and the geometric origin of dark energy

    NASA Astrophysics Data System (ADS)

    Jalalzadeh, S.; Rostami, T.

    2015-01-01

    In this paper, we construct the covariant or model independent induced Einstein-Yang-Mills field equations on a four-dimensional brane embedded isometrically in an D-dimensional bulk space, assuming the matter fields are confined to the brane. Applying this formalism to cosmology, we derive the generalized Friedmann equations. We derive the density parameter of dark energy in terms of width of the brane, normal curvature radii and the number of extra large dimensions. We show that dark energy could actually be the manifestation of the local extrinsic shape of the brane. It is shown that the predictions of this model are in good agreement with observation if we consider an 11-dimensional bulk space.

  3. The scale factor in a Universe with dark energy

    NASA Astrophysics Data System (ADS)

    Sazhin, M. V.; Sazhina, O. S.

    2016-04-01

    The solution of the Friedmann cosmological equations for the scale factor in a model of the Universe containing matter having the equation of state of dust and dark energy is considered. The equation-of-state parameter of the dark energy is taken to be an arbitrary constant w = -1.006 ± 0.045, whose value is constrained by the current observational limits. An exact solution for the scale factor as a function of physical time and conformal time is obtained. Approximate solutions have been found for the entire admissible conformal time interval with an accuracy better than 1%, which exceeds the accuracy of the determined global parameters of our Universe. This is the first time an exact solution for the scale factor describing the evolution of the Universe in a unified way, beginning with the matter-dominated epoch and ending with the infinitely remote future, has been obtained.

  4. No-Go Theorem for k-Essence Dark Energy

    SciTech Connect

    Bonvin, Camille; Caprini, Chiara; Durrer, Ruth

    2006-08-25

    We demonstrate that if k-essence can solve the coincidence problem and play the role of dark energy in the Universe, the fluctuations of the field have to propagate superluminally at some stage. We argue that this implies that successful k-essence models violate causality. It is not possible to define a time ordered succession of events in a Lorentz invariant way. Therefore, k-essence cannot arise as a low energy effective field theory of a causal, consistent high energy theory.

  5. Dark energy and the cosmic microwave background radiation.

    PubMed

    Dodelson, S; Knox, L

    2000-04-17

    We find that current cosmic microwave background anisotropy data strongly constrain the mean spatial curvature of the Universe to be near zero, or, equivalently, the total energy density to be near critical-as predicted by inflation. This result is robust to editing of data sets, and variation of other cosmological parameters (totaling seven, including a cosmological constant). Other lines of argument indicate that the energy density of nonrelativistic matter is much less than critical. Together, these results are evidence, independent of supernovae data, for dark energy in the Universe. PMID:11019136

  6. Dark energy and the cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Dodelson, S.; Knox, L.

    2000-01-01

    We find that current cosmic microwave background anisotropy data strongly constrain the mean spatial curvature of the Universe to be near zero, or, equivalently, the total energy density to be near critical-as predicted by inflation. This result is robust to editing of data sets, and variation of other cosmological parameters (totaling seven, including a cosmological constant). Other lines of argument indicate that the energy density of nonrelativistic matter is much less than critical. Together, these results are evidence, independent of supernovae data, for dark energy in the Universe.

  7. Constraining dark energy through the stability of cosmic structures

    SciTech Connect

    Pavlidou, V.; Tetradis, N.; Tomaras, T.N. E-mail: ntetrad@phys.uoa.gr

    2014-05-01

    For a general dark-energy equation of state, we estimate the maximum possible radius of massive structures that are not destabilized by the acceleration of the cosmological expansion. A comparison with known stable structures constrains the equation of state. The robustness of the constraint can be enhanced through the accumulation of additional astrophysical data and a better understanding of the dynamics of bound cosmic structures.

  8. COnstrain Dark Energy with X-ray (CODEX) clusters

    NASA Astrophysics Data System (ADS)

    Finoguenov, Alexis; SDSS Team; Cfht Team; Carma Team

    2012-09-01

    We describe the construction and follow-up observations of the most massive clusters in the Universe, selected in the SDSS-III survey using RASS data down to an unprecedented flux limit of -13 dex. In application to the cosmology studies, we demonstrate that we will achieve a 3% constraint on the dark energy equation of state, and in a combination with BOSS BAO measurement reach a FoM of 160.

  9. EOS mapping accuracy study

    NASA Technical Reports Server (NTRS)

    Forrest, R. B.; Eppes, T. A.; Ouellette, R. J.

    1973-01-01

    Studies were performed to evaluate various image positioning methods for possible use in the earth observatory satellite (EOS) program and other earth resource imaging satellite programs. The primary goal is the generation of geometrically corrected and registered images, positioned with respect to the earth's surface. The EOS sensors which were considered were the thematic mapper, the return beam vidicon camera, and the high resolution pointable imager. The image positioning methods evaluated consisted of various combinations of satellite data and ground control points. It was concluded that EOS attitude control system design must be considered as a part of the image positioning problem for EOS, along with image sensor design and ground image processing system design. Study results show that, with suitable efficiency for ground control point selection and matching activities during data processing, extensive reliance should be placed on use of ground control points for positioning the images obtained from EOS and similar programs.

  10. The readout and control system of the Dark Energy Camera

    NASA Astrophysics Data System (ADS)

    Honscheid, Klaus; Elliott, Ann; Annis, James; Bonati, Marco; Buckley-Geer, Elizabeth; Castander, Francisco; daCosta, Luiz; Fausti, Angelo; Karliner, Inga; Kuhlmann, Steve; Neilsen, Eric; Patton, Kenneth; Reil, Kevin; Roodman, Aaron; Thaler, Jon; Serrano, Santiago; Soares Santos, Marcelle; Suchyta, Eric

    2012-09-01

    The Dark Energy Camera (DECam) is a new 520 Mega Pixel CCD camera with a 3 square degree field of view designed for the Dark Energy Survey (DES). DES is a high precision, multi-bandpass, photometric survey of 5000 square degrees of the southern sky. DECam is currently being installed at the prime focus of the Blanco 4-m telescope at the Cerro- Tololo International Observatory (CTIO). In this paper we describe SISPI, the data acquisition and control system of the Dark Energy Camera. SISPI is implemented as a distributed multi-processor system with a software architecture based on the Client-Server and Publish-Subscribe design patterns. The underlying message passing protocol is based on PYRO, a powerful distributed object technology system written entirely in Python. A distributed shared variable system was added to support exchange of telemetry data and other information between different components of the system. We discuss the SISPI infrastructure software, the image pipeline, the observer console and user interface architecture, image quality monitoring, the instrument control system, and the observation strategy tool.

  11. Effective field theory of dark energy: a dynamical analysis

    SciTech Connect

    Frusciante, Noemi; Raveri, Marco; Silvestri, Alessandra E-mail: mraveri@sissa.it

    2014-02-01

    The effective field theory (EFT) of dark energy relies on three functions of time to describe the dynamics of background cosmology. The viability of these functions is investigated here by means of a thorough dynamical analysis. While the system is underdetermined, and one can always find a set of functions reproducing any expansion history, we are able to determine general compatibility conditions for these functions by requiring a viable background cosmology. In particular, we identify a set of variables that allows us to transform the non-autonomous system of equations into an infinite-dimensional one characterized by a significant recursive structure. We then analyze several autonomous sub-systems, obtained truncating the original one at increasingly higher dimension, that correspond to increasingly general models of dark energy and modified gravity. Furthermore, we exploit the recursive nature of the system to draw some general conclusions on the different cosmologies that can be recovered within the EFT formalism and the corresponding compatibility requirements for the EFT functions. The machinery that we set up serves different purposes. It offers a general scheme for performing dynamical analysis of dark energy and modified gravity models within the model independent framework of EFT; the general results, obtained with this technique, can be projected into specific models, as we show in one example. It also can be used to determine appropriate ansätze for the three EFT background functions when studying the dynamics of cosmological perturbations in the context of large scale structure tests of gravity.

  12. Nature of dark energy and polarization measurements

    NASA Astrophysics Data System (ADS)

    Mainini, R.; Colombo, L. P. L.; Bonometto, S. A.

    2003-11-01

    High sensitivity polarization measures, on wide angular scales, together with data on anisotropy, can be used to fix DE parameters. In this paper, first of all, we aim to determine the sensitivity needed to provide significant limits. Our analysis puts in evidence that there is a class of DE models that polarization measures can possibly exclude soon. This class includes models with DE due to a Ratra-Peebles (RP) potential. Using a likelihood analysis, we show that it is possible to distinguish RP models from ΛCDM and other dynamical DE models, already with the sensitivity of experiments like SPOrt or WMAP, thanks to their negative TE correlation at low- l, when the optical depth τ is sufficiently large. On the contrary, fixing the energy scale Λ for RP potentials or distinguishing between ΛCDM and other DE potentials requires a much lower pixel noise, that no planned polarization experiment will achieve. While reviewing this paper after the referee report, the first-year WMAP data were released. WMAP finds large positive anisotropy-polarization correlations at low l; this apparently excludes DE models with RP potentials.

  13. Local dark matter and dark energy as estimated on a scale of ~1 Mpc in a self-consistent way

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2009-12-01

    Context: Dark energy was first detected from large distances on gigaparsec scales. If it is vacuum energy (or Einstein's Λ), it should also exist in very local space. Here we discuss its measurement on megaparsec scales of the Local Group. Aims: We combine the modified Kahn-Woltjer method for the Milky Way-M 31 binary and the HST observations of the expansion flow around the Local Group in order to study in a self-consistent way and simultaneously the local density of dark energy and the dark matter mass contained within the Local Group. Methods: A theoretical model is used that accounts for the dynamical effects of dark energy on a scale of ~1 Mpc. Results: The local dark energy density is put into the range 0.8-3.7ρv (ρv is the globally measured density), and the Local Group mass lies within 3.1-5.8×1012 M⊙. The lower limit of the local dark energy density, about 4/5× the global value, is determined by the natural binding condition for the group binary and the maximal zero-gravity radius. The near coincidence of two values measured with independent methods on scales differing by ~1000 times is remarkable. The mass ~4×1012 M⊙ and the local dark energy density ~ρv are also consistent with the expansion flow close to the Local Group, within the standard cosmological model. Conclusions: One should take into account the dark energy in dynamical mass estimation methods for galaxy groups, including the virial theorem. Our analysis gives new strong evidence in favor of Einstein's idea of the universal antigravity described by the cosmological constant.

  14. Growth of cosmic structure: Probing dark energy beyond expansion

    NASA Astrophysics Data System (ADS)

    Huterer, Dragan; Kirkby, David; Bean, Rachel; Connolly, Andrew; Dawson, Kyle; Dodelson, Scott; Evrard, August; Jain, Bhuvnesh; Jarvis, Michael; Linder, Eric; Mandelbaum, Rachel; May, Morgan; Raccanelli, Alvise; Reid, Beth; Rozo, Eduardo; Schmidt, Fabian; Sehgal, Neelima; Slosar, Anže; van Engelen, Alex; Wu, Hao-Yi; Zhao, Gongbo

    2015-03-01

    The quantity and quality of cosmic structure observations have greatly accelerated in recent years, and further leaps forward will be facilitated by imminent projects. These will enable us to map the evolution of dark and baryonic matter density fluctuations over cosmic history. The way that these fluctuations vary over space and time is sensitive to several pieces of fundamental physics: the primordial perturbations generated by GUT-scale physics; neutrino masses and interactions; the nature of dark matter and dark energy. We focus on the last of these here: the ways that combining probes of growth with those of the cosmic expansion such as distance-redshift relations will pin down the mechanism driving the acceleration of the Universe. One way to explain the acceleration of the Universe is invoke dark energy parameterized by an equation of state w. Distance measurements provide one set of constraints on w, but dark energy also affects how rapidly structure grows; the greater the acceleration, the more suppressed the growth of structure. Upcoming surveys are therefore designed to probe w with direct observations of the distance scale and the growth of structure, each complementing the other on systematic errors and constraints on dark energy. A consistent set of results will greatly increase the reliability of the final answer. Another possibility is that there is no dark energy, but that General Relativity does not describe the laws of physics accurately on large scales. While the properties of gravity have been measured with exquisite precision at stellar system scales and densities, within our solar system and by binary pulsar systems, its properties in different environments are poorly constrained. To fully understand if General Relativity is the complete theory of gravity we must test gravity across a spectrum of scales and densities. Rapid developments in gravitational wave astronomy and numerical relativity are directed at testing gravity in the high

  15. Black Holes, Dark Matter, and Dark Energy: Measuring the Invisible through X Rays

    NASA Astrophysics Data System (ADS)

    Jones, Christine

    2009-05-01

    X-ray telescopes allow us to ``see'' the high energy radiation from objects that cannot be seen at other wavelengths including black holes and the very hot gas in galaxies and clusters of galaxies. Since soft X-rays are absorbed by our atmosphere, X-ray detectors must be flown above most of the Earth's atmosphere. The first orbiting X-ray telescope flew on Skylab in the early 1970's and recorded images of the Sun on film. Observing fainter X-ray sources required both the development of large, high-incidence mirrors and the development of electronic detectors capable of measuring the arrival of an X-ray photon in two dimensions. This talk will review the development of X-ray observatories from the early Einstein observatory through the current Chandra, SWIFT and XMM-Newton missions. While X-ray observations have changed our views in many areas of astronomy from stars to quasars, this talk will focus on the advances in our knowledge of supermassive black holes, dark matter and dark energy.

  16. Inflation, Dark Energy and the AFTA: Survey Evaluation Tools

    NASA Astrophysics Data System (ADS)

    Bennett, Charles

    We propose to address these questions about the Astrophysics Focused Telescope Assets (AFTA) implementation of the Wide-Field Infra-Red Survey Telescope (WFIRST): (1) What constraints does WFIRST/AFTA place on inflationary and dark energy cosmological parameters for a given set of nominal instrument design and observing parameters? (2) How do these constraints change with variations in mission parameters (sky area, observing duration, sensitivity, purity, astrophysical assumptions, etc.)? and (3) How should requirements or capabilities be included in the design to ensure the dark energy and inflation parameter estimates can be met? To answer these questions we propose to develop a set of simulation tools to better understand the dependencies of the cosmological results on the mission design. We emphasize that it is not our intent to argue for particular changes to the mission, but rather to provide the WFIRST/AFTA Study Office with insights, specific numbers, and functional dependencies so that the Study Office can make informed decisions. Early time accelerated expansion (inflation) and late time accelerated expansion (from dark energy) have physical similarities and differences. They are both, in their simplest form, exponential expansions with the equation of state parameter w = -1, yet they appear unrelated in the sense that they occur on vastly different energy scales. Neither is well understood, hence the strong desire for improved measurements. In a practical sense, the interpretation of future measurements are interdependent. Flatness (Omega_k=0) is often assumed to deduce limits on w, or alternatively w = -1 is assumed to deduce limits on flatness. Baryon acoustic oscillations (BAO) are effectively differential and hence approximately independent of the detailed shape of the power spectrum, P(k), but if the AFTA galaxy redshift survey is used to deduce P(k), then there is a strong interaction between the interpretation of P(k) and inflation, including its

  17. A geometric measure of dark energy with pairs of galaxies.

    PubMed

    Marinoni, Christian; Buzzi, Adeline

    2010-11-25

    Observations indicate that the expansion of the Universe is accelerating, which is attributed to a ‘dark energy’ component that opposes gravity. There is a purely geometric test of the expansion of the Universe (the Alcock–Paczynski test), which would provide an independent way of investigating the abundance (Ω(X)) and equation of state (W(X)) of dark energy. It is based on an analysis of the geometrical distortions expected from comparing the real-space and redshift-space shape of distant cosmic structures, but it has proved difficult to implement. Here we report an analysis of the symmetry properties of distant pairs of galaxies from archival data. This allows us to determine that the Universe is flat. By alternately fixing its spatial geometry at Ω(k)≡0 and the dark energy equation-of-state parameter at W(X)≡-1, and using the results of baryon acoustic oscillations, we can establish at the 68.3% confidence level that and -0.85>W(X)>-1.12 and 0.60<Ω(X)<0.80. PMID:21107424

  18. Inflation and dark energy from f(R) gravity

    SciTech Connect

    Artymowski, Michał; Lalak, Zygmunt E-mail: Zygmunt.Lalak@fuw.edu.pl

    2014-09-01

    The standard Starobinsky inflation has been extended to the R + α R{sup n} - β R{sup 2-n} model to obtain a stable minimum of the Einstein frame scalar potential of the auxiliary field. As a result we have obtained obtain a scalar potential with non-zero value of residual vacuum energy, which may be a source of Dark Energy. Our results can be easily consistent with PLANCK or BICEP2 data for appropriate choices of the value of n.

  19. Galactic cluster winds in presence of a dark energy

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Merafina, M.

    2013-10-01

    We obtain a solution for the hydrodynamic outflow of the polytropic gas from the gravitating centre, in the presence of the uniform dark energy (DE). The antigravity of DE is enlightening the outflow and makes the outflow possible at smaller initial temperature, at the same density. The main property of the wind in the presence of DE is its unlimited acceleration after passing the critical point. In application of this solution to the winds from galaxy clusters, we suggest that collision of the strongly accelerated wind with another galaxy cluster, or with another galactic cluster wind, could lead to the formation of a highest energy cosmic rays.

  20. Inflation and dark energy from the Brans-Dicke theory

    SciTech Connect

    Artymowski, Michał; Lalak, Zygmunt; Lewicki, Marek

    2015-06-17

    We consider the Brans-Dicke theory motivated by the f(R)=R+αR{sup n}−βR{sup 2−n} model to obtain a stable minimum of the Einstein frame scalar potential of the Brans-Dicke field. As a result we have obtained an inflationary scalar potential with non-zero value of residual vacuum energy, which may be a source of dark energy. In addition we discuss the probability of quantum tunnelling from the minimum of the potential. Our results can be easily consistent with PLANCK or BICEP2 data for appropriate choices of the value of n and ω.

  1. Quantum gravity and the holographic dark energy cosmology

    NASA Astrophysics Data System (ADS)

    Nastase, Horatiu

    2016-04-01

    The holographic dark energy model is obtained from a cosmological constant generated by generic quantum gravity effects giving a minimum length. By contrast, the usual bound for the energy density to be limited by the formation of a black hole simply gives the Friedmann equation. The scale of the current cosmological constant relative to the inflationary scale is an arbitrary parameter characterizing initial conditions, which however can be fixed by introducing a physical principle during inflation, as a function of the number of e-folds and the inflationary scale.

  2. Unification of dark energy and dark matter based on the Petrov classification and space-time symmetry

    NASA Astrophysics Data System (ADS)

    Dymnikova, Irina

    2016-01-01

    The Petrov classification of stress-energy tensors provides a model-independent definition of a vacuum by the algebraic structure of its stress-energy tensor and implies the existence of vacua whose symmetry is reduced as compared with the maximally symmetric de Sitter vacuum associated with the Einstein cosmological term. This allows to describe a vacuum in general setting by dynamical vacuum dark fluid, presented by a variable cosmological term with the reduced symmetry which makes vacuum dark fluid essentially anisotropic and allows it to be evolving and clustering. The relevant regular solutions to the Einstein equations describe regular cosmological models with time-evolving and spatially inhomogeneous vacuum dark energy, and compact vacuum objects generically related to a dark energy through the de Sitter vacuum interior: regular black holes, their remnants and self-gravitating vacuum solitons — which can be responsible for observational effects typically related to a dark matter. The mass of objects with de Sitter interior is generically related to vacuum dark energy and to breaking of space-time symmetry.

  3. A scalar field dark energy model: Noether symmetry approach

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Panja, Madan Mohan; Chakraborty, Subenoy

    2016-04-01

    Scalar field dark energy cosmology has been investigated in the present paper in the frame work of Einstein gravity. In the context of Friedmann-Lemaitre-Robertson-Walker space time minimally coupled scalar field with self interacting potential and non-interacting perfect fluid with barotropic equation of state (dark matter) is chosen as the matter context. By imposing Noether symmetry on the Lagrangian of the system the symmetry vector is obtained and the self interacting potential for the scalar field is determined. Then we choose a point transformation (a, φ )→ (u, v) such that one of the transformation variable (say u) is cyclic for the Lagrangian. Subsequently, using conserved charge (corresponding to the cyclic co-ordinate) and the constant of motion, solutions are obtained. Finally, the cosmological implication of the solutions in the perspective of recent observation has been examined.

  4. Neutrino oscillations as a probe of dark energy.

    PubMed

    Kaplan, David B; Nelson, Ann E; Weiner, Neal

    2004-08-27

    We consider a class of theories in which neutrino masses depend significantly on environment, as a result of interactions with the dark sector. Such theories of mass varying neutrinos were recently introduced to explain the origin of the cosmological dark energy density and why its magnitude is apparently coincidental with that of neutrino mass splittings. In this Letter we argue that in such theories neutrinos can exhibit different masses in matter and in vacuum, dramatically affecting neutrino oscillations. As an example of modifications to the standard picture, we consider simple models that may simultaneously account for the LSND anomaly, KamLAND, K2K, and studies of solar and atmospheric neutrinos, while providing motivation to continue to search for neutrino oscillations in short baseline experiments such as BooNE. PMID:15447091

  5. Vector dark energy and high-z massive clusters

    NASA Astrophysics Data System (ADS)

    Carlesi, Edoardo; Knebe, Alexander; Yepes, Gustavo; Gottlöber, Stefan; Jiménez, Jose Beltrán.; Maroto, Antonio L.

    2011-12-01

    The detection of extremely massive clusters at z > 1 such as SPT-CL J0546-5345, SPT-CL J2106-5844 and XMMU J2235.3-2557 has been considered by some authors as a challenge to the standard Λ cold dark matter cosmology. In fact, assuming Gaussian initial conditions, the theoretical expectation of detecting such objects is as low as ≤1 per cent. In this paper we discuss the probability of the existence of such objects in the light of the vector dark energy paradigm, showing by means of a series of N-body simulations that chances of detection are substantially enhanced in this non-standard framework.

  6. Cosmological properties and reconstruction of scalar field models of the Holographic Dark Energy model with Granda-Oliveros cut-off in Kaluza-Klein cosmology

    NASA Astrophysics Data System (ADS)

    Pasqua, Antonio; Chattopadhyay, Surajit; Assaf, Khudhair A.; Salako, Ines G.

    2016-06-01

    In this paper, we study the properties of the Holographic Dark Energy (HDE) model in the context of Kaluza-Klein (KK) cosmology with infrared cut-off given by the recently proposed by Granda-Oliveros cut-off, which contains a term proportional to the time derivative of the Hubble parameter and one proportional to the Hubble parameter squared. Moreover, this cut-off is characterized by two free parameters which are the proportional constants of the two terms of the cut-off. We derive the expression of the Equation of State (EoS) parameter ωD and of the deceleration parameter q for both non-interacting and interacting Dark Sectors and in the limiting case of a flat Dark Dominated Universe. Moreover, we study the squared speed of the sound vs2 and the statefinder diagnostic \\{r,s\\} in order to understand the cosmological properties of the model considered. We also develop a correspondence between the model considered and three scalar field models: the tachyon, the k-essence and the quintessence ones.

  7. Instability of Interacting Ghost Dark Energy Model in an Anisotropic Universe

    NASA Astrophysics Data System (ADS)

    Azimi, N.; Barati, F.

    2016-02-01

    A new dark energy model called "ghost dark energy" was recently suggested to explain the observed accelerating expansion of the universe. This model originates from the Veneziano ghost of QCD. The dark energy density is proportional to Hubble parameter, ρ Λ = α H, where α is a constant of order {Λ }3_{QCD} and Λ Q C D ˜ 100M e V is QCD mass scale. In this paper, we investigate about the stability of generalized QCD ghost dark energy model against perturbations in the anisotropic background. At first, the ghost dark energy model of the universe with spatial BI model with/without the interaction between dark matter and dark energy is discussed. In particular, the equation of state and the deceleration parameters and a differential equation governing the evolution of this dark energy model are obtained. Then, we use the squared sound speed {vs2} the sign of which determines the stability of the model. We explore the stability of this model in the presence/absence of interaction between dark energy and dark matter in both flat and non-isotropic geometry. In conclusion, we find evidence that the ghost dark energy might can not lead to a stable universe favored by observations at the present time in BI universe.

  8. Instability of Interacting Ghost Dark Energy Model in an Anisotropic Universe

    NASA Astrophysics Data System (ADS)

    Azimi, N.; Barati, F.

    2016-07-01

    A new dark energy model called "ghost dark energy" was recently suggested to explain the observed accelerating expansion of the universe. This model originates from the Veneziano ghost of QCD. The dark energy density is proportional to Hubble parameter, ρ Λ = α H, where α is a constant of order {Λ }3_{QCD} and Λ Q C D ˜ 100 M e V is QCD mass scale. In this paper, we investigate about the stability of generalized QCD ghost dark energy model against perturbations in the anisotropic background. At first, the ghost dark energy model of the universe with spatial BI model with/without the interaction between dark matter and dark energy is discussed. In particular, the equation of state and the deceleration parameters and a differential equation governing the evolution of this dark energy model are obtained. Then, we use the squared sound speed {vs2} the sign of which determines the stability of the model. We explore the stability of this model in the presence/absence of interaction between dark energy and dark matter in both flat and non-isotropic geometry. In conclusion, we find evidence that the ghost dark energy might can not lead to a stable universe favored by observations at the present time in BI universe.

  9. Has ESA's XMM-Newton cast doubt over dark energy?

    NASA Astrophysics Data System (ADS)

    2003-12-01

    Galaxy cluster RXJ0847 hi-res Size hi-res: 100k Galaxy cluster RXJ0847 The fuzzy object at the centre of the frame is one of the galaxy clusters observed by XMM-Newton in its investigation of the distant Universe. The cluster, designated RXJ0847.2+3449, is about 7 000 million light years away, so we see it here as it was 7 000 million years ago, when the Universe was only about half of its present age. This cluster is made up of several dozen galaxies. Observations of eight distant clusters of galaxies, the furthest of which is around 10 thousand million light years away, were studied by an international group of astronomers led by David Lumb of ESA's Space Research and Technology Centre (ESTEC) in the Netherlands. They compared these clusters to those found in the nearby Universe. This study was conducted as part of the larger XMM-Newton Omega Project, which investigates the density of matter in the Universe under the lead of Jim Bartlett of the College de France. Clusters of galaxies are prodigious emitters of X-rays because they contain a large quantity of high-temperature gas. This gas surrounds galaxies in the same way as steam surrounds people in a sauna. By measuring the quantity and energy of X-rays from a cluster, astronomers can work out both the temperature of the cluster gas and also the mass of the cluster. Theoretically, in a Universe where the density of matter is high, clusters of galaxies would continue to grow with time and so, on average, should contain more mass now than in the past. Most astronomers believe that we live in a low-density Universe in which a mysterious substance known as 'dark energy' accounts for 70% of the content of the cosmos and, therefore, pervades everything. In this scenario, clusters of galaxies should stop growing early in the history of the Universe and look virtually indistinguishable from those of today. In a paper soon to be published by the European journal Astronomy and Astrophysics, astronomers from the XMM

  10. A Terrestrial Search for Dark Contents of the Vacuum, Such as Dark Energy, Using Atom Interferometry

    SciTech Connect

    Adler, Ronald J.; Muller, Holger; Perl, Martin L.; /KIPAC, Menlo Park /SLAC

    2012-06-11

    We describe the theory and first experimental work on our concept for searching on earth for the presence of dark contents of the vacuum (DCV) using atom interferometry. Specifically, we have in mind any DCV that has not yet been detected on a laboratory scale, but which might manifest itself as dark energy on the cosmological scale. The experimental method uses two atom interferometers to cancel the effect of earth's gravity and diverse noise sources. It depends upon two assumptions: first, that the DCV possesses some space inhomogeneity in density, and second that it exerts a sufficiently strong nongravitational force on matter. The motion of the apparatus through the DCV should then lead to an irregular variation in the detected matter-wave phase shift. We discuss the nature of this signal and note the problem of distinguishing it from instrumental noise. We also discuss the relation of our experiment to what might be learned by studying the noise in gravitational wave detectors such as LIGO. The paper concludes with a projection that a future search of this nature might be carried out using an atom interferometer in an orbiting satellite. The laboratory apparatus is now being constructed.

  11. a Terrestrial Search for Dark Contents of the Vacuum, such as Dark Energy, Using Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Adler, Ronald J.; Mueller, Holger; Perl, Martin L.

    We describe the theory and first experimental work on our concept for searching on earth for the presence of dark contents of the vacuum (DCV) using atom interferometry. Specifically, we have in mind any DCV that has not yet been detected on a laboratory scale, but which might manifest itself as dark energy on the cosmological scale. The experimental method uses two atom interferometers to cancel the effect of earth's gravity and diverse noise sources. It depends upon two assumptions: first, that the DCV possesses some space inhomogeneity in density, and second that it exerts a sufficiently strong nongravitational force on matter. The motion of the apparatus through the DCV should then lead to an irregular variation in the detected matter-wave phase shift. We discuss the nature of this signal and note the problem of distinguishing it from instrumental noise. We also discuss the relation of our experiment to what might be learned by studying the noise in gravitational wave detectors such as LIGO. The paper concludes with a projection that a future search of this nature might be carried out using an atom interferometer in an orbiting satellite. The laboratory apparatus is now being constructed

  12. EOS-WEBSTER

    EPA Science Inventory

    The mission of EOS-WEBSTER (Earth, Oceans, and Space - WEB-based System for Terrestrial Environmental Reasearch) is to make data and information products and services concerning terrestrial, ecological and hydrological processesavailable to the Earth System Science community and...

  13. Cosmic acceleration without dark energy: background tests and thermodynamic analysis

    SciTech Connect

    Lima, J.A.S.; Graef, L.L.; Pavón, D.; Basilakos, Spyros E-mail: leilagraef@usp.br E-mail: svasil@academyofathens.gr

    2014-10-01

    A cosmic scenario with gravitationally induced particle creation is proposed. In this model the Universe evolves from an early to a late time de Sitter era, with the recent accelerating phase driven only by the negative creation pressure associated with the cold dark matter component. The model can be interpreted as an attempt to reduce the so-called cosmic sector (dark matter plus dark energy) and relate the two cosmic accelerating phases (early and late time de Sitter expansions). A detailed thermodynamic analysis including possible quantum corrections is also carried out. For a very wide range of the free parameters, it is found that the model presents the expected behavior of an ordinary macroscopic system in the sense that it approaches thermodynamic equilibrium in the long run (i.e., as it nears the second de Sitter phase). Moreover, an upper bound is found for the Gibbons–Hawking temperature of the primordial de Sitter phase. Finally, when confronted with the recent observational data, the current 'quasi'-de Sitter era, as predicted by the model, is seen to pass very comfortably the cosmic background tests.

  14. Cosmic acceleration without dark energy: background tests and thermodynamic analysis

    NASA Astrophysics Data System (ADS)

    Lima, J. A. S.; Graef, L. L.; Pavón, D.; Basilakos, Spyros

    2014-10-01

    A cosmic scenario with gravitationally induced particle creation is proposed. In this model the Universe evolves from an early to a late time de Sitter era, with the recent accelerating phase driven only by the negative creation pressure associated with the cold dark matter component. The model can be interpreted as an attempt to reduce the so-called cosmic sector (dark matter plus dark energy) and relate the two cosmic accelerating phases (early and late time de Sitter expansions). A detailed thermodynamic analysis including possible quantum corrections is also carried out. For a very wide range of the free parameters, it is found that the model presents the expected behavior of an ordinary macroscopic system in the sense that it approaches thermodynamic equilibrium in the long run (i.e., as it nears the second de Sitter phase). Moreover, an upper bound is found for the Gibbons-Hawking temperature of the primordial de Sitter phase. Finally, when confronted with the recent observational data, the current `quasi'-de Sitter era, as predicted by the model, is seen to pass very comfortably the cosmic background tests.

  15. Dissipation of 'dark energy' by cortex in knowledge retrieval.

    PubMed

    Capolupo, Antonio; Freeman, Walter J; Vitiello, Giuseppe

    2013-03-01

    We have devised a thermodynamic model of cortical neurodynamics expressed at the classical level by neural networks and at the quantum level by dissipative quantum field theory. Our model is based on features in the spatial images of cortical activity newly revealed by high-density electrode arrays. We have incorporated the mechanism and necessity for so-called dark energy in knowledge retrieval. We have extended the model first using the Carnot cycle to define our measures for energy, entropy and temperature, and then using the Rankine cycle to incorporate criticality and phase transitions. We describe the dynamics of two interactive fields of neural activity that express knowledge, one at high and the other at low energy density, and the two operators that create and annihilate the fields. We postulate that the extremely high density of energy sequestered briefly in cortical activity patterns can account for the vividness, richness of associations, and emotional intensity of memories recalled by stimuli. PMID:23333569

  16. The EOS Aura Mission

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Douglass, A. R.; Hilsenrath, E.; Luce, M.; Barnett, J.; Beer, R.; Waters, J.; Gille, J.; Levelt, P. F.; DeCola, P.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The EOS Aura Mission is designed to make comprehensive chemical measurements of the troposphere and stratosphere. In addition the mission will make measurements of important climate variables such as aerosols, and upper tropospheric water vapor and ozone. Aura will launch in late 2003 and will fly 15 minutes behind EOS Aqua in a polar sun synchronous ascending node orbit with a 1:30 pm equator crossing time.

  17. Linear perturbation constraints on multi-coupled dark energy

    NASA Astrophysics Data System (ADS)

    Piloyan, Arpine; Marra, Valerio; Baldi, Marco; Amendola, Luca

    2014-02-01

    The Multi-coupled Dark Energy (McDE) scenario has been recently proposed as a specific example of a cosmological model characterized by a non-standard physics of the dark sector of the universe that nevertheless gives an expansion history which does not significantly differ from the one of the standard ΛCDM model. Thanks to a dynamical screening mechanism, in fact, the interaction between the Dark Energy field and the Dark Matter sector is effectively suppressed at the background level during matter domination. As a consequence, background observables cannot discriminate a McDE cosmology from ΛCDM for a wide range of model parameters. On the other hand, linear perturbations are expected to provide tighter bounds due to the existence of attractive and repulsive fifth-forces associated with the dark interactions. In this work, we present the first constraints on the McDE scenario obtained by comparing the predicted evolution of linear density perturbations with a large compilation of recent data sets for the growth rate fσ8, including 6dFGS, LRG, BOSS, WiggleZ and VIPERS. Confirming qualitative expectations, growth rate data provide much tighter bounds on the model parameters as compared to the extremely loose bounds that can be obtained when only the background expansion history is considered. In particular, the 95% confidence level on the coupling strength |β| is reduced from |β| <= 83 (background constraints only) to |β| <= 0.88 (background and linear perturbation constraints). We also investigate how these constraints further improve when using data from future wide-field surveys such as supernova data from LSST and growth rate data from Euclid-type missions. In this case the 95% confidence level on the coupling further reduce to |β| <= 0.85. Such constraints are in any case still consistent with a scalar fifth-force of gravitational strength, and we foresee that tighter bounds might be possibly obtained from the investigation of nonlinear structure

  18. Linear perturbation constraints on multi-coupled dark energy

    SciTech Connect

    Piloyan, Arpine; Marra, Valerio; Amendola, Luca; Baldi, Marco E-mail: valerio.marra@me.com E-mail: l.amendola@thphys.uni-heidelberg.de

    2014-02-01

    The Multi-coupled Dark Energy (McDE) scenario has been recently proposed as a specific example of a cosmological model characterized by a non-standard physics of the dark sector of the universe that nevertheless gives an expansion history which does not significantly differ from the one of the standard ΛCDM model. Thanks to a dynamical screening mechanism, in fact, the interaction between the Dark Energy field and the Dark Matter sector is effectively suppressed at the background level during matter domination. As a consequence, background observables cannot discriminate a McDE cosmology from ΛCDM for a wide range of model parameters. On the other hand, linear perturbations are expected to provide tighter bounds due to the existence of attractive and repulsive fifth-forces associated with the dark interactions. In this work, we present the first constraints on the McDE scenario obtained by comparing the predicted evolution of linear density perturbations with a large compilation of recent data sets for the growth rate fσ{sub 8}, including 6dFGS, LRG, BOSS, WiggleZ and VIPERS. Confirming qualitative expectations, growth rate data provide much tighter bounds on the model parameters as compared to the extremely loose bounds that can be obtained when only the background expansion history is considered. In particular, the 95% confidence level on the coupling strength |β| is reduced from |β| ≤ 83 (background constraints only) to |β| ≤ 0.88 (background and linear perturbation constraints). We also investigate how these constraints further improve when using data from future wide-field surveys such as supernova data from LSST and growth rate data from Euclid-type missions. In this case the 95% confidence level on the coupling further reduce to |β| ≤ 0.85. Such constraints are in any case still consistent with a scalar fifth-force of gravitational strength, and we foresee that tighter bounds might be possibly obtained from the investigation of nonlinear

  19. Early Science Results from the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Ross, Ashley

    2015-04-01

    The Dark Energy Survey (DES) is a next-generation large galaxy survey designed to unravel the mystery of the nature of the dark energy that powers the current accelerated expansion of the Universe. The DES collaboration built and participated in the installation and commissioning of DECam, a 570 mega-pixel optical and near-infrared camera with a large 3 deg2 field of view, set at the prime focus of the Víctor M. Blanco 4-meter telescope in at the Cerro Tololo Inter-American Observatory in Chile. Using DECam, DES will map 5000 deg2 to a depth IAB ~ 24 and observe designated supernova survey fields at high cadence. These data will allow DES to measure positions, approximate redshifts, and shapes for 300 million galaxies, the light-curves of several thousand supernovae, and the masses of tens of thousands of galaxy clusters. Using these data, DES will use four main probes to study the properties of dark energy: galaxy clustering on large scales, weak gravitational lensing, galaxy-cluster abundance, and supernova distances. I describe the early progress of the survey and provide highlights of the science analyses that have been completed so far. These include: large-scale galaxy clustering measurements; significant detection of a cross-correlation with SPT CMB lensing maps; galaxy-shear and shear-shear correlation function measurements; discoveries of super-luminous supernovae, dozens of strong lenses, and redshift > 6 quasars; and characterization of DES galaxy clusters and SNe1a light-curves.

  20. The Dark Energy Survey: Prospects for resolved stellar populations

    SciTech Connect

    Rossetto, Bruno M.; Santiago, Basílio X.; Girardi, Léo; Camargo, Julio I. B.; Balbinot, Eduardo; da Costa, Luiz N.; Yanny, Brian; Maia, Marcio A. G.; Makler, Martin; Ogando, Ricardo L. C.; Pellegrini, Paulo S.; Ramos, Beatriz; de Simoni, Fernando; Armstrong, R.; Bertin, E.; Desai, S.; Kuropatkin, N.; Lin, H.; Mohr, J. J.; Tucker, D. L.

    2011-05-06

    Wide angle and deep surveys, regardless of their primary purpose, always sample a large number of stars in the Galaxy and in its satellite system. We here make a forecast of the expected stellar sample resulting from the Dark Energy Survey and the perspectives that it will open for studies of Galactic structure and resolved stellar populations in general. An estimated 1.2 x 108 stars will be sampled in DES grizY filters in the southern equatorial hemisphere. This roughly corresponds to 20% of all DES sources. Most of these stars belong to the stellar thick disk and halo of the Galaxy.

  1. DES exposure checker: Dark Energy Survey image quality control crowdsourcer

    NASA Astrophysics Data System (ADS)

    Melchior, Peter; Sheldon, Erin; Drlica-Wagner, Alex; Rykoff, Eli S.

    2015-11-01

    DES exposure checker renders science-grade images directly to a web browser and allows users to mark problematic features from a set of predefined classes, thus allowing image quality control for the Dark Energy Survey to be crowdsourced through its web application. Users can also generate custom labels to help identify previously unknown problem classes; generated reports are fed back to hardware and software experts to help mitigate and eliminate recognized issues. These problem reports allow rapid correction of artifacts that otherwise may be too subtle or infrequent to be recognized.

  2. New constraints on the dark energy equation of state

    NASA Astrophysics Data System (ADS)

    Said, Najla; Baccigalupi, Carlo; Martinelli, Matteo; Melchiorri, Alessandro; Silvestri, Alessandra

    2013-08-01

    We combine recent measurements of cosmic microwave background anisotropies, supernovae luminosity distances, and baryonic acoustic oscillations to derive constraints on the dark energy equation of state w in the redshift range 0

  3. Magnetic domain walls of relic fermions as Dark Energy

    SciTech Connect

    Yajnik, Urjit A.

    2005-12-02

    We show that relic fermions of the Big Bang can enter a ferromagnetic state if they possess a magnetic moment and satisfy the requirements of Stoner theory of itinerant ferromagnetism. The domain walls of this ferromagnetism can successfully simulate Dark Energy over the observable epoch spanning {approx} 10 billion years. We obtain conditions on the anomalous magnetic moment of such fermions and their masses. Known neutrinos fail to satisfy the requirements thus pointing to the possibility of a new ultralight sector in Particle Physics.

  4. Dark Energy: Anatomy of a Paradigm Shift in Cosmology

    NASA Astrophysics Data System (ADS)

    Hocutt, Hannah

    2016-03-01

    Science is defined by its ability to shift its paradigm on the basis of observation and data. Throughout history, the worldviews of the scientific community have been drastically changed to fit that which was scientifically determined to be fact. One of the latest paradigm shifts happened over the shape and fate of the universe. This research details the progression from the early paradigm of a decelerating expanding universe to the discovery of dark energy and the movement to the current paradigm of a universe that is not only expanding but is also accelerating. Advisor: Dr. Kristine Larsen.

  5. General Astrophysics with TPF: Not Just Dark Energy

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2006-01-01

    Besides searching for Earth-LIke Planets, TPF can study Jupiters, Neptunes, and all sorts of exotic planets. It can image debris-disks, YSO disks, AGN disks, maybe even AGB disks. And you are probably aware that a large optical space telescope like TPF-C or TPF-O can be a fantastic tool for studying the equation of state of the Dark Energy. I will review some of the future science of TPF-C, TPF-I and TPF-O, focusing on the applications of TPF to the study of objects in our Galaxy: especially circumstellar disks and planets other than exo-Earths.

  6. Attaining the Photometric Precision Required by Future Dark Energy Projects

    SciTech Connect

    Stubbs, Christopher

    2013-01-21

    This report outlines our progress towards achieving the high-precision astronomical measurements needed to derive improved constraints on the nature of the Dark Energy. Our approach to obtaining higher precision flux measurements has two basic components: 1) determination of the optical transmission of the atmosphere, and 2) mapping out the instrumental photon sensitivity function vs. wavelength, calibrated by referencing the measurements to the known sensitivity curve of a high precision silicon photodiode, and 3) using the self-consistency of the spectrum of stars to achieve precise color calibrations.

  7. Supernova Acceleration Probe: Studying Dark Energy with Type Ia Supernovae

    SciTech Connect

    Albert, J.; Aldering, G.; Allam, S.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Aumeunier, M.; Bailey, S.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstom, L.; Bernstein, G.; Bester, M.; Besuner, B.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; /Caltech /LBL, Berkeley /Fermilab /SLAC /Stockholm U. /Paris, IN2P3 /Marseille, CPPM /Marseille, Lab. Astrophys. /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Indiana U. /Caltech, JPL /Australian Natl. U., Canberra /American Astron. Society /Chicago U. /Cambridge U. /Saclay /Lyon, IPN

    2005-08-08

    The Supernova Acceleration Probe (SNAP) will use Type Ia supernovae (SNe Ia) as distance indicators to measure the effect of dark energy on the expansion history of the Universe. (SNAP's weak-lensing program is described in a separate White Paper.) The experiment exploits supernova distance measurements up to their fundamental systematic limit; strict requirements on the monitoring of each supernova's properties leads to the need for a space-based mission. Results from pre-SNAP experiments, which characterize fundamental SN Ia properties, will be used to optimize the SNAP observing strategy to yield data, which minimize both systematic and statistical uncertainties. With early R&D funding, we have achieved technological readiness and the collaboration is poised to begin construction. Pre-JDEM AO R&D support will further reduce technical and cost risk. Specific details on the SNAP mission can be found in Aldering et al. (2004, 2005). The primary goal of the SNAP supernova program is to provide a dataset which gives tight constraints on parameters which characterize the dark-energy, e.g. w{sub 0} and w{sub a} where w(a) = w{sub 0} + w{sub a}(1-a). SNAP data can also be used to directly test and discriminate among specific dark energy models. We will do so by building the Hubble diagram of high-redshift supernovae, the same methodology used in the original discovery of the acceleration of the expansion of the Universe that established the existence of dark energy (Perlmutter et al. 1998; Garnavich et al. 1998; Riess et al. 1998; Perlmutter et al. 1999). The SNAP SN Ia program focuses on minimizing the systematic floor of the supernova method through the use of characterized supernovae that can be sorted into subsets based on subtle signatures of heterogeneity. Subsets may be defined based on host-galaxy morphology, spectral-feature strength and velocity, early-time behavior, inter alia. Independent cosmological analysis of each subset of ''like'' supernovae can be

  8. Mutually interacting tachyon dark energy with variable G and Λ

    NASA Astrophysics Data System (ADS)

    Sadeghi, Jafar; Khurshudyan, Martiros; Hakobyan, Margarit; Farahani, Hoda

    2015-02-01

    We consider a tachyonic scalar field as a model of dark energy with interaction between components in the case of variable G and Λ. We assume a flat Universe with a specific form of scale factor and study cosmological parameters numerically and graphically. Statefinder analysis is also performed. For a particular choice of interaction parameters we succeed in obtaining an analytical expression of densities. We find that our model will be stable at the late stage but there is an instability in the early Universe, so we propose this model as a realistic model of our Universe.

  9. Probing the large scale structure with the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Leistedt, Boris

    2016-03-01

    I will present the latest cosmological results from the Dark Energy Survey (DES), a 5000 square degree optical galaxy survey in the Southern Hemisphere started in 2012. I will focus on the constraints on Baryon Acoustic Oscillations and other cosmological parameters obtained with galaxy clustering measurements from the first years of DES data. I will highlight the various tests and methods that make these results not only precise but also robust against observational systematics and modeling uncertainties. Finally, I will describe the future phases of the survey, the expected increase in constraining power, and the challenges that need to be addressed to fully exploit the data from surveys such as DES and LSST.

  10. Computing model independent perturbations in dark energy and modified gravity

    SciTech Connect

    Battye, Richard A.; Pearson, Jonathan A. E-mail: jonathan.pearson@durham.ac.uk

    2014-03-01

    We present a methodology for computing model independent perturbations in dark energy and modified gravity. This is done from the Lagrangian for perturbations, by showing how field content, symmetries, and physical principles are often sufficient ingredients for closing the set of perturbed fluid equations. The fluid equations close once ''equations of state for perturbations'' are identified: these are linear combinations of fluid and metric perturbations which construct gauge invariant entropy and anisotropic stress perturbations for broad classes of theories. Our main results are the proof of the equation of state for perturbations presented in a previous paper, and the development of the required calculational tools.

  11. Early Weak Lensing Results From The Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Maccrann, Niall; Dark Energy Survey Collaboration

    2016-01-01

    I present the early weak lensing results, including cosmological constraints, from the Dark Energy Survey (DES). Although only 3% of the final survey, DES Science Verification data already constituted a competitive weak lensing dataset, and the thoroughly tested shear catalogs allowed a number of interesting science analyses including cosmology from cosmic shear, mass mapping, combining lensing with galaxy clustering and combining with CMB lensing. I will summarize the main results of these analyses, discuss common systematic effects which need to be addressed to take advantage of the greater statistical power of main survey data, and outline some of improvements at various stages of the analysis pipeline that aim to do this.

  12. Dark energy as a modification of the Friedmann equation

    SciTech Connect

    Dvali, Gia; Turner, Michael S.; /Chicago U., Astron. Astrophys. Ctr. /KICP, Chicago /Chicago U., EFI /Fermilab

    2003-01-01

    Dark energy could actually be the manifestation of a modification to the Friendmann equation arising from new physics (e.g., extra dimensions). Writing the correction as (1 - {Omega}{sub M})H{sup {alpha}}/H{sub 0}{sup {alpha}-2}, they explore the phenomenology and detectability of such. They show that: (1) {alpha} must be {approx}< 1; (2) such a correction behaves like dark energy with equation-of-state w{sub eff} = -1 + {alpha}/2 in the recent past (10{sup 4} > z >> 1) and w = -1 in the distant future and can mimic w < -1 without violating the weak-energy condition; (3) w{sub eff} changes, dz/dw|{sub z {approx} 0.5} {approx} {Omicron}(0.2), which is likely detectable; and (4) a future supernova experiment like SNAP that can determine w with precision {sigma}{sub w}, could determine {alpha} to precision {sigma}{sub {alpha}} {approx} 2{sigma}{sub w}.

  13. Indirect dark matter signatures in the cosmic dark ages. II. Ionization, heating, and photon production from arbitrary energy injections

    NASA Astrophysics Data System (ADS)

    Slatyer, Tracy R.

    2016-01-01

    Any injection of electromagnetically interacting particles during the cosmic dark ages will lead to increased ionization, heating, production of Lyman-α photons and distortions to the energy spectrum of the cosmic microwave background, with potentially observable consequences. In this paper we describe numerical results for the low-energy electrons and photons produced by the cooling of particles injected at energies from keV to multi-TeV scales, at arbitrary injection redshifts (but focusing on the post-recombination epoch). We use these data, combined with existing calculations modeling the cooling of these low-energy particles, to estimate the resulting contributions to ionization, excitation and heating of the gas, and production of low-energy photons below the threshold for excitation and ionization. We compute corrected deposition-efficiency curves for annihilating dark matter, and demonstrate how to compute equivalent curves for arbitrary energy-injection histories. These calculations provide the necessary inputs for the limits on dark matter annihilation presented in the accompanying paper I, but also have potential applications in the context of dark matter decay or deexcitation, decay of other metastable species, or similar energy injections from new physics. We make our full results publicly available at http://nebel.rc.fas.harvard.edu/epsilon, to facilitate further independent studies. In particular, we provide the full low-energy electron and photon spectra, to allow matching onto more detailed codes that describe the cooling of such particles at low energies.

  14. Holographic Dark Energy in Higher Derivative Gravity with Varying Gravitational Constant

    NASA Astrophysics Data System (ADS)

    Borah, Bharat; Ansari, M.

    2013-09-01

    In this paper we investigate the holographic dark energy scenario in higher derivative gravity with a varying gravitational constant. We introduce a kind of energy density from higher derivative gravity which has role of the same as holographic dark energy. We obtain the exact differential equation , which determine the evolution of the dark energy density based on varying gravitational constant G. We also find out a cosmological application of our work by evaluating a relation for the equation of state of dark energy for low redshifts containing varying G correction.

  15. Disordered locality as an explanation for the dark energy

    SciTech Connect

    Prescod-Weinstein, Chanda; Smolin, Lee

    2009-09-15

    We discuss a novel explanation of the dark energy as a manifestation of macroscopic nonlocality coming from quantum gravity, as proposed by Markopoulou [F. Markopoulou (private communication)]. It has been previously suggested that in a transition from an early quantum geometric phase of the Universe to a low temperature phase characterized by an emergent spacetime metric, locality might have been 'disordered'. This means that there is a mismatch of micro-locality, as determined by the microscopic quantum dynamics and macro-locality as determined by the classical metric that governs the emergent low energy physics. In this paper we discuss the consequences for cosmology by studying a simple extension of the standard cosmological models with disordered locality. We show that the consequences can include a naturally small vacuum energy.

  16. Electromagnetic energy transport in nanoparticle chains via dark plasmon modes.

    PubMed

    Solis, David; Willingham, Britain; Nauert, Scott L; Slaughter, Liane S; Olson, Jana; Swanglap, Pattanawit; Paul, Aniruddha; Chang, Wei-Shun; Link, Stephan

    2012-03-14

    Using light to exchange information offers large bandwidths and high speeds, but the miniaturization of optical components is limited by diffraction. Converting light into electron waves in metals allows one to overcome this problem. However, metals are lossy at optical frequencies and large-area fabrication of nanometer-sized structures by conventional top-down methods can be cost-prohibitive. We show electromagnetic energy transport with gold nanoparticles that were assembled into close-packed linear chains. The small interparticle distances enabled strong electromagnetic coupling causing the formation of low-loss subradiant plasmons, which facilitated energy propagation over many micrometers. Electrodynamic calculations confirmed the dark nature of the propagating mode and showed that disorder in the nanoparticle arrangement enhances energy transport, demonstrating the viability of using bottom-up nanoparticle assemblies for ultracompact opto-electronic devices. PMID:22292470

  17. Dark Energy and Dark Matter as Components of Cosmological Term Stand for Vorticity and Shear

    NASA Astrophysics Data System (ADS)

    Nurgaliev, Ildus S.

    2015-01-01

    This report brings attention to the ignored components of the kinetic energy related to vorticity and shear in the standard cosmological dynamics. It is concluded that averaged term of squared vorticity is term attributed as an accelerated expansion caused by negative energy of an enigmatic repulsive factor. Cosmological singularity has been a consequence of the unrealistically excessive cosmological principle (too detailed symmetry of flow) such as "Hubble law". Appropriate realistic one is suggested, which is also linear function of space coordinates (because of homogeneity principle) but has tensor character. Cosmological principle is applied to irregularities - they are homogeneous and isotropic in average to some extend within the corresponding Megagalactic scales. The "Big Bang" is nothing but the local bounce of the Meta-galaxy which is typical among myriads others. Exact solutions are presented (dynamic, steady and static) of the cosmologic dynamics. "Negative radiation" equation of state p =∈/3 with p≤0, ∈≤0 is generated by vorticity which is dynamic carrier of the dark energy. This fact dismisses the need in any other artificial cosmologic term, the need in any other modifications of the gravity theory or in an exotic matter as a cause for cosmological accelerated expansion. New conception of material point established. Social and educational aspects of the findings touched slightly.

  18. Dark matter, dark energy and the time evolution of masses in the universe

    NASA Astrophysics Data System (ADS)

    Solà, Joan

    2014-08-01

    The traditional "explanation" for the observed acceleration of the universe is the existence of a positive cosmological constant. However, this can hardly be a truly convincing explanation, as an expanding universe is not expected to have a static vacuum energy density. So, it must be an approximation. This reminds us of the so-called fundamental "constants" of nature. Recent and past measurements of the fine structure constant and of the proton-electron mass ratio suggest that basic quantities of the standard model, such as the QCD scale parameter, ΛQCD, might not be conserved in the course of the cosmological evolution. The masses of the nucleons and of the atomic nuclei would be time-evolving. This can be consistent with General Relativity provided the vacuum energy itself is a dynamical quantity. Another framework realizing this possibility is QHD (Quantum Haplodynamics), a fundamental theory of bound states. If one assumes that its running couplings unify at the Planck scale and that such scale changes slowly with cosmic time, the masses of the nucleons and of the DM particles, including the cosmological term, will evolve with time. This could explain the dark energy of the universe.

  19. Photooxidative removal of the herbicide Acid Blue 9 in the presence of hydrogen peroxide: modeling of the reaction for evaluation of electrical energy per order (E EO).

    PubMed

    Khataee, Ali R; Khataee, Hamid R

    2008-09-01

    The present work deals with photooxidative removal of the herbicide, Acid Blue 9 (AB9), in water in the presence of hydrogen peroxide (H2O2) under UV light illumination (30 W). The influence of the basic operational parameters such as amount of H2O2, irradiation time and initial concentration of AB9 on the photodegradation efficiency of the herbicide was investigated. The degradation rate of AB9 was not appreciably high when the photolysis was carried out in the absence of H2O2 and it was negligible in the absence of UV light. The photooxidative removal of the herbicide was found to follow pseudo-first-order kinetic, and hence the figure-of-merit electrical energy per order (E Eo) was considered appropriate for estimating the electrical energy efficiency. A mathematical relation between the apparent reaction rate constant and H2O2 used was applied for prediction of the electricity consumption in the photooxidative removal of AB9. The results indicated that this kinetic model, based on the initial rates of degradation, provided good prediction of the E Eo values for a variety of conditions. The results also indicated that the UV/H2O2 process was appropriate as the effective treatment method for removal of AB9 from the contaminated wastewater. PMID:18803110

  20. Holographic dark energy with varying gravitational constant in Hořava-Lifshitz cosmology

    SciTech Connect

    Setare, M.R.; Jamil, Mubasher E-mail: mjamil@camp.nust.edu.pk

    2010-02-01

    We investigate the holographic dark energy scenario with a varying gravitational constant in a flat background in the context of Hořava-Lifshitz gravity. We extract the exact differential equation determining the evolution of the dark energy density parameter, which includes G variation term. Also we discuss a cosmological implication of our work by evaluating the dark energy equation of state for low redshifts containing varying G corrections.

  1. Interacting varying ghost dark energy models in general relativity

    NASA Astrophysics Data System (ADS)

    Khurshudyan, Martiros; Khurshudyan, Amalya; Myrzakulov, Ratbay

    2015-06-01

    Motivated by recent developments in Cosmology we would like to consider an extension of the Ghost DE which we will name as varying Ghost DE. Ghost DE like other models was introduced recently as a possible way to explain accelerated expansion of the Universe. For the phenomenological origin of the varying Ghost dark energy in our Universe we can suggest an existence of some unknown dynamics between the Ghost Dark energy and a fluid which evaporated completely making sense of the proposed effect. Moreover, we assume that this was in the epochs and scales which are unreachable by present-day experiments, like in very early Universe. In this study we will investigate the model for cosmological validity. We will apply observational and causality constraints to illuminate physically correct behavior of the model from the phenomenological one. We saw that an interaction between the varying Ghost DE and cold DM (CDM) also provides a solution to the cosmological coincidence problem. And we found that the Ghost DE behaves as a fluid-like matter in early Universe.

  2. Statefinder diagnosis for holographic dark energy in the DGP braneworld

    NASA Astrophysics Data System (ADS)

    Ghaffari, S.; Sheykhi, A.; Dehghani, M. H.

    2015-01-01

    Many dark energy (DE) models have been proposed, in recent years, to explain the acceleration of the expansion of the Universe. It seems necessary to differentiate the various DE models in order to check the viability of each model. The statefinder diagnostic is a useful method to accomplish this. In this paper, we investigate the statefinder diagnosis parameters for the holographic dark energy (HDE) model in two cosmological setups. First, we study the statefinder diagnosis for HDE in the context of a flat Friedmann-Robertson-Walker Universe in Einstein gravity. Then, we extend our study to the Dvali-Gabadadze-Porrati braneworld framework. For the system's IR cutoff we choose the Hubble radius and the Granda-Oliveros cutoff inspired by the Ricci scalar curvature. We plot the evolution of statefinder parameters {r ,s } in terms of the redshift parameter z . We also compare the results with those obtained for statefinder diagnosis parameters of other DE models, in particular the Λ CDM model.

  3. Analysis of dark energy models in DGP braneworld

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul

    2015-12-01

    In this paper, we reconsider the accelerated expansion phenomenon in the DGP braneworld scenario which leads to an accelerated universe without cosmological constant or other form of dark energy for the positive branch (ɛ= +1) which is not more attractive model. Thus, we assume the DGP braneworld scenario with (ɛ= -1) and also interacting Hubble and event horizons pilgrim dark energy models. We extract various cosmological parameters in this scenario and displayed our results with respect to redshift parameter. It is found that the ranges of Hubble parameter are coincided with observational results. The equation of state parameter lies within the suggested ranges of different observational schemes. The squared speed of sound shows stability for all present models in DGP braneworld scenario. The ω_{\\vartheta}-ω'_{\\vartheta} planes lie in the range (ω_{\\vartheta}=-1.13^{+0.24}_{-0.25},ω'_{\\vartheta}<1.32) which has been obtained through different observational schemes. It is remarked that our results of various cosmological parameters shows consistency with different observational data like Planck, WP, BAO, H0 and SNLS.

  4. Reconstruction of the dark energy equation of state

    SciTech Connect

    Vázquez, J. Alberto; Bridges, M.; Lasenby, A.N.; Hobson, M.P. E-mail: mb435@mrao.cam.ac.uk E-mail: a.n.lasenby@mrao.cam.ac.uk

    2012-09-01

    One of the main challenges of modern cosmology is to investigate the nature of dark energy in our Universe. The properties of such a component are normally summarised as a perfect fluid with a (potentially) time-dependent equation-of-state parameter w(z). We investigate the evolution of this parameter with redshift by performing a Bayesian analysis of current cosmological observations. We model the temporal evolution as piecewise linear in redshift between 'nodes', whose w-values and redshifts are allowed to vary. The optimal number of nodes is chosen by the Bayesian evidence. In this way, we can both determine the complexity supported by current data and locate any features present in w(z). We compare this node-based reconstruction with some previously well-studied parameterisations: the Chevallier-Polarski-Linder (CPL), the Jassal-Bagla-Padmanabhan (JBP) and the Felice-Nesseris-Tsujikawa (FNT). By comparing the Bayesian evidence for all of these models we find an indication towards possible time-dependence in the dark energy equation-of-state. It is also worth noting that the CPL and JBP models are strongly disfavoured, whilst the FNT is just significantly disfavoured, when compared to a simple cosmological constant w = −1. We find that our node-based reconstruction model is slightly disfavoured with respect to the ΛCDM model.

  5. Dark energy or modified gravity? An effective field theory approach

    SciTech Connect

    Bloomfield, Jolyon; Flanagan, Éanna É.; Park, Minjoon; Watson, Scott E-mail: eef3@cornell.edu E-mail: gswatson@syr.edu

    2013-08-01

    We take an Effective Field Theory (EFT) approach to unifying existing proposals for the origin of cosmic acceleration and its connection to cosmological observations. Building on earlier work where EFT methods were used with observations to constrain the background evolution, we extend this program to the level of the EFT of the cosmological perturbations — following the example from the EFT of Inflation. Within this framework, we construct the general theory around an assumed background which will typically be chosen to mimic ΛCDM, and identify the parameters of interest for constraining dark energy and modified gravity models with observations. We discuss the similarities to the EFT of Inflation, but we also identify a number of subtleties including the relationship between the scalar perturbations and the Goldstone boson of the spontaneously broken time translations. We present formulae that relate the parameters of the fundamental Lagrangian to the speed of sound, anisotropic shear stress, effective Newtonian constant, and Caldwell's varpi parameter, emphasizing the connection to observations. It is anticipated that this framework will be of use in constraining individual models, as well as for placing model-independent constraints on dark energy and modified gravity model building.

  6. Avoiding Boltzmann Brain domination in holographic dark energy models

    NASA Astrophysics Data System (ADS)

    Horvat, R.

    2015-11-01

    In a spatially infinite and eternal universe approaching ultimately a de Sitter (or quasi-de Sitter) regime, structure can form by thermal fluctuations as such a space is thermal. The models of Dark Energy invoking holographic principle fit naturally into such a category, and spontaneous formation of isolated brains in otherwise empty space seems the most perplexing, creating the paradox of Boltzmann Brains (BB). It is thus appropriate to ask if such models can be made free from domination by Boltzmann Brains. Here we consider only the simplest model, but adopt both the local and the global viewpoint in the description of the Universe. In the former case, we find that if a dimensionless model parameter c, which modulates the Dark Energy density, lies outside the exponentially narrow strip around the most natural c = 1 line, the theory is rendered BB-safe. In the latter case, the bound on c is exponentially stronger, and seemingly at odds with those bounds on c obtained from various observational tests.

  7. Neutrino mass, dark energy, and the linear growth factor

    NASA Astrophysics Data System (ADS)

    Kiakotou, Angeliki; Elgarøy, Øystein; Lahav, Ofer

    2008-03-01

    We study the degeneracies between neutrino mass and dark energy as they manifest themselves in cosmological observations. In contradiction to a popular formula in the literature, the suppression of the matter power spectrum caused by massive neutrinos is not just a function of the ratio of neutrino to total mass densities fν=Ων/Ωm, but also each of the densities independently. We also present a fitting formula for the logarithmic growth factor of perturbations in a flat universe, f(z,k;fν,w,ΩDE)≈[1-A(k)ΩDEfν+B(k)fν2-C(k)fν3]Ωmα(z), where α depends on the dark energy equation of state parameter w. We then discuss cosmological probes where the f factor directly appears: peculiar velocities, redshift distortion, and the integrated Sachs-Wolfe effect. We also modify the approximation of Eisenstein and Hu [Astrophys. J.ASJOAB0004-637X 511, 5 (1999)10.1086/306640] for the power spectrum of fluctuations in the presence of massive neutrinos and provide a revised code [http://www.star.ucl.ac.uk/~lahav/nu_matter_power.f].

  8. An Astrophysical Peek into Einstein's Static Universe: No Dark Energy

    NASA Astrophysics Data System (ADS)

    Mitra, Abhas

    It is shown that in order that the fluid pressure and acceleration are uniform and finite in Einstein's Static Universe (ESU), , the cosmological constant, is zero. being a fundamental constant, should be same everywhere including the Friedman model. Independent proofs show that it must be so. Accordingly, the supposed acceleration of the universe and the attendant concept of "Dark Energy"(DE) could be an illusion; an artifact of explaining cosmological observations in terms of an oversimplified model which is fundamentally inappropriate. Indeed observations show that the actual universe is lumpy and inhomogeneous at the largest scales. Further in order that there is no preferred centre, such inhomogeneity might be expressed in terms of infinite hierarchial fractals. Also, the recent finding that the Friedman model intrinsically corresponds to zero pressure (and hence zero temperature) in accordance with the fact that an ideal Hubble flow implies no collision, no randomness (Mitra, Astrophys. Sp. Sc., 333,351, 2011) too shows that the Friedman model cannot represent the real universe having pressure, temperature and radiation. Dark Energy might also be an artifact of the neglect of dust absorption of distant Type 1a supernovae coupled with likely evolution of supernovae luminosities or imprecise calibration of cosmic distance ladders or other systemetic errors (White, Rep. Prog. Phys., 70, 883, 2007).

  9. White Dwarfs for Calibrating the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Allyn Smith, J.; Wester, William; Tucker, Douglas Lee; Fix, Mees B.; Tremblay, Pier-Emmanuel; Gulledge, Deborah J.; McDonald, Christopher P.; Allam, Sahar S.; James, David

    2016-01-01

    The Dark Energy Survey (DES) is surveying some 5000 square degrees in the southern hemisphere in the grizY filter system using the new Dark Energy Camera. In order to verify meeting photometric calibration requirements, we are obtaining imaging of several hundred white dwarfs (confirmed and candidates) to select nearly 100 or more hydrogen atmosphere (DA) white dwarfs for spectroscopy in the DES footprint. The spectra that are obtained will be extracted and used to derive synthetic spectra that can be compared with DES measurements from imaging in each of the DES grizY filters. This comparison should be able to verify and help calibrate the survey to a level better than 2% photometrically and to better than 0.5% in colors. We will discuss the observational and modeling effort required to develop a well-characterized DAs sample and present some preliminary results. This set would form the basis of a larger set of southern hemisphere survey calibration stars, and additionally serve as a legacy calibration set in the upcoming era of the LSST survey and the giant segmented mirror observatories. These stars will be used to establish and monitor the color zero points for the DES photometric system and can be used to search for systematic errors in the color zero points over the DES footprint. These stars will also be used as some of the primary standards for the DES photometric system which will allow nightly atmospheric monitoring during DES operations.

  10. Cosmological constraints on induced gravity dark energy models

    NASA Astrophysics Data System (ADS)

    Ballardini, M.; Finelli, F.; Umiltà, C.; Paoletti, D.

    2016-05-01

    We study induced gravity dark energy models coupled with a simple monomial potential propto σn and a positive exponent n. These simple potentials lead to viable dark energy models with a weak dependence on the exponent, which characterizes the accelerated expansion in the asymptotic attractor, when ordinary matter becomes negligible. We use recent cosmological data to constrain the coupling γ to the Ricci curvature, under the assumptions that the scalar field starts at rest deep in the radiation era and that the gravitational constant in the Einstein equations is compatible with the one measured in a Cavendish-like experiment. By using Planck 2015 data only, we obtain the 95 % CL bound γ < 0.0017 for n=4, which is further tightened to γ < 0.00075 by adding Baryonic Acoustic Oscillations (BAO) data. This latter bound improves by ~ 30 % the limit obtained with the Planck 2013 data and the same compilation of BAO data. We discuss the dependence of the γ and ˙ GN/GN (z=0) on n.

  11. The Dark Energy Survey and Operations: Years 1 to 3

    SciTech Connect

    Diehl, H. T.

    2016-01-01

    The Dark Energy Survey (DES) is an operating optical survey aimed at understanding the accelerating expansion of the universe using four complementary methods: weak gravitational lensing, galaxy cluster counts, baryon acoustic oscillations, and Type Ia supernovae. To perform the 5000 sq-degree wide field and 30 sq-degree supernova surveys, the DES Collaboration built the Dark Energy Camera (DECam), a 3 square-degree, 570-Megapixel CCD camera that was installed at the prime focus of the Blanco 4-meter telescope at the Cerro Tololo Inter-American Observatory (CTIO). DES has completed its third observing season out of a nominal five. This paper describes DES “Year 1” (Y1) to “Year 3” (Y3), the strategy, an outline of the survey operations procedures, the efficiency of operations and the causes of lost observing time. It provides details about the quality of the first three season's data, and describes how we are adjusting the survey strategy in the face of the El Niño Southern Oscillation

  12. Observational constraints on a variable dark energy model

    SciTech Connect

    Movahed, M. Sadegh; Rahvar, Sohrab

    2006-04-15

    We study the effect of a phenomenological parameterized quintessence model on low, intermediate and high redshift observations. At low and intermediate redshifts, we use the Gold sample of supernova Type Ia (SNIa) data and recently observed size of baryonic acoustic peak from Sloan Digital Sky Survey (SDSS), to put constraint on the parameters of the quintessence model. At the high redshift, the same fitting procedure is done using WAMP data, comparing the location of acoustic peak with that obtain from the dark energy model. As a complementary analysis in a flat universe, we combine the results from the SNIa, CMB and SDSS. The best fit values for the model parameters are {omega}{sub m}=0.27{sub -0.02}{sup +0.02} (the present matter content) and w{sub 0}=-1.45{sub -0.60}{sup +0.35} (dark energy equation of state). Finally we calculate the age of universe in this model and compare it with the age of old stars and high redshift objects.

  13. Observational constraints on holographic dark energy with varying gravitational constant

    SciTech Connect

    Lu, Jianbo; Xu, Lixin; Saridakis, Emmanuel N.; Setare, M.R. E-mail: msaridak@phys.uoa.gr E-mail: lxxu@dlut.edu.cn

    2010-03-01

    We use observational data from Type Ia Supernovae (SN), Baryon Acoustic Oscillations (BAO), Cosmic Microwave Background (CMB) and observational Hubble data (OHD), and the Markov Chain Monte Carlo (MCMC) method, to constrain the cosmological scenario of holographic dark energy with varying gravitational constant. We consider both flat and non-flat background geometry, and we present the corresponding constraints and contour-plots of the model parameters. We conclude that the scenario is compatible with observations. In 1σ we find Ω{sub Λ0} = 0.72{sup +0.03}{sub −0.03}, Ω{sub k0} = −0.0013{sup +0.0130}{sub −0.0040}, c = 0.80{sup +0.19}{sub −0.14} and Δ{sub G}≡G'/G = −0.0025{sup +0.0080}{sub −0.0050}, while for the present value of the dark energy equation-of-state parameter we obtain w{sub 0} = −1.04{sup +0.15}{sub −0.20}.

  14. Is the effective field theory of dark energy effective?

    NASA Astrophysics Data System (ADS)

    Linder, Eric V.; Sengör, Gizem; Watson, Scott

    2016-05-01

    The effective field theory of cosmic acceleration systematizes possible contributions to the action, accounting for both dark energy and modifications of gravity. Rather than making model dependent assumptions, it includes all terms, subject to the required symmetries, with four (seven) functions of time for the coefficients. These correspond respectively to the Horndeski and general beyond Horndeski class of theories. We address the question of whether this general systematization is actually effective, i.e. useful in revealing the nature of cosmic acceleration when compared with cosmological data. The answer is no and yes: there is no simple time dependence of the free functions—assumed forms in the literature are poor fits, but one can derive some general characteristics in early and late time limits. For example, we prove that the gravitational slip must restore to general relativity in the de Sitter limit of Horndeski theories, and why it doesn't more generally. We also clarify the relation between the tensor and scalar sectors, and its important relation to observations; in a real sense the expansion history H(z) or dark energy equation of state w(z) is 1/5 or less of the functional information! In addition we discuss the de Sitter, Horndeski, and decoupling limits of the theory utilizing Goldstone techniques.

  15. Plane Symmetric Dark Energy Models in the Form of Wet Dark Fluid in f ( R, T) Gravity

    NASA Astrophysics Data System (ADS)

    Chirde, V. R.; Shekh, S. H.

    2016-06-01

    In this paper, we have investigated the plane symmetric space-time with wet dark fluid (WDF), which is a candidate for dark energy, in the framework of f ( R, T) gravity Harko et al. 2011, Phys. Rev. D, 84, 024020), where R and T denote the Ricci scalar and the trace of the energy-momentum tensor respectively. We have used the equation of state in the form of WDF for the dark energy component of the Universe. It is modeled on the equation of state p = ω( ρ - ρ ∗). The exact solutions to the corresponding field equations are obtained for power-law and exponential volumetric expansion. The geometrical and physical parameters for both the models are studied. Also, we have discussed the well-known astrophysical phenomena, namely the look-back time, proper distance, the luminosity distance and angular diameter distance with red shift.

  16. Dark Energy, Anthropic Selection Effects, Entropy and Life

    NASA Astrophysics Data System (ADS)

    Egan, Chas A.

    2010-05-01

    According to the standard LCDM model, the matter and dark energy densities (rho_m and rho_DE) are only comparable for a brief time. We address the cosmic coincidence problem under LCDM and generalized dark energy models by considering the temporal distribution of terrestrial planets. We compare the Sun to representative stellar samples in 11 properties plausibly related to life. We find the Sun to be most anomalous in mass and galactic orbital eccentricity. When the 11 properties are considered together, the observed "anomalies" are consistent with statistical noise. This contrasts with previous work suggesting anthropic explanations for the Sun's high mass. The long-term future of dissipative processes (such as life) depends on the continued ability to use free energy to increase the total entropy. The entropy budget of the present observable Universe is dominated by supermassive black holes in galactic cores. We report a new entropy budget of the Universe with quantified uncertainties for all components. We find the total entropy in the observable Universe to be S_{obs} = 3.1^{+3.0}_{-1.7} x 10^{104} k, at least an order of magnitude higher than previous estimates due to improved measurements of the mass function of supermassive black holes (which dominate the budget). We evaluate upper bounds on the entropy of a comoving volume. Under the assumption that energy in matter is constant in a comoving volume, the availability of free energy is found to be finite and the future entropy in the volume is limited to a constant of order 10^{123} k. Through this work we uncover a number of unresolved questions with implications for the ultimate fate of the Universe.

  17. A dynamical system analysis of holographic dark energy models with different IR cutoff

    NASA Astrophysics Data System (ADS)

    Mahata, Nilanjana; Chakraborty, Subenoy

    2015-07-01

    The paper deals with a dynamical system analysis of the cosmological evolution of an holographic dark energy (HDE) model interacting with dark matter (DM) which is chosen in the form of dust. The infrared cutoff of the holographic model is considered as future event horizon or Ricci length scale. The interaction term between dark energy (DE) and DM is chosen of following three types: (i) proportional to the sum of the energy densities of the two dark components, (ii) proportional to the product of the matter energy densities and (iii) proportional to DE density. The dynamical equations are reduced to an autonomous system for the three cases and corresponding phase space is analyzed.

  18. Cosmic accelerated expansion and the entropy-corrected holographic dark energy

    NASA Astrophysics Data System (ADS)

    Sadjadi, H. Mohseni; Jamil, Mubasher

    2011-06-01

    By considering the logarithmic correction to the energy density, we study the behavior of Hubble parameter in the holographic dark energy model. We assume that the universe is dominated by interacting dark energy and matter and the accelerated expansion of the universe, which may be occurred in the early universe or late time, is studied.

  19. Supernova constraints on multi-coupled dark energy

    SciTech Connect

    Piloyan, Arpine; Marra, Valerio; Amendola, Luca; Baldi, Marco E-mail: valerio.marra@me.com E-mail: l.amendola@thphys.uni-heidelberg.de

    2013-07-01

    The persisting consistency of ever more accurate observational data with the predictions of the standard ΛCDM cosmological model puts severe constraints on possible alternative scenarios, but still does not shed any light on the fundamental nature of the cosmic dark sector. As large deviations from a ΛCDM cosmology are ruled out by data, the path to detect possible features of alternative models goes necessarily through the definition of cosmological scenarios that leave almost unaffected the background and — to a lesser extent — the linear perturbations evolution of the universe. In this context, the Multi-coupled DE (McDE) model was proposed by Baldi [9] as a particular realization of an interacting Dark Energy field characterized by an effective screening mechanism capable of suppressing the effects of the coupling at the background and linear perturbation level. In the present paper, for the first time, we challenge the McDE scenario through a direct comparison with real data, in particular with the luminosity distance of Type Ia supernovae. By studying the existence and stability conditions of the critical points of the associated background dynamical system, we select only the cosmologically consistent solutions, and confront their background expansion history with data. Confirming previous qualitative results, the McDE scenario appears to be fully consistent with the adopted sample of Type Ia supernovae, even for coupling values corresponding to an associated scalar fifth-force about four orders of magnitude stronger than standard gravity. Our analysis demonstrates the effectiveness of the McDE background screening, and shows some new non-trivial asymptotic solutions for the future evolution of the universe. Clearly, linear perturbation data and, even more, nonlinear structure formation properties are expected to put much tighter constraints on the allowed coupling range. Nonetheless, our results show how the background expansion history might be

  20. Parameter splitting in dark energy: is dark energy the same in the background and in the cosmic structures?

    NASA Astrophysics Data System (ADS)

    Bernal, José Luis; Verde, Licia; Cuesta, Antonio J.

    2016-02-01

    We perform an empirical consistency test of General Relativity/dark energy by disentangling expansion history and growth of structure constraints. We replace each late-universe parameter that describes the behavior of dark energy with two meta-parameters: one describing geometrical information in cosmological probes, and the other controlling the growth of structure. If the underlying model (a standard wCDM cosmology with General Relativity) is correct, that is under the null hypothesis, the two meta-parameters coincide. If they do not, it could indicate a failure of the model or systematics in the data. We present a global analysis using state-of-the-art cosmological data sets which points in the direction that cosmic structures prefer a weaker growth than that inferred by background probes. This result could signify inconsistencies of the model, the necessity of extensions to it or the presence of systematic errors in the data. We examine all these possibilities. The fact that the result is mostly driven by a specific sub-set of galaxy clusters abundance data, points to the need of a better understanding of this probe.

  1. EOS Terra Validation Program

    NASA Technical Reports Server (NTRS)

    Starr, David

    2000-01-01

    The EOS Terra mission will be launched in July 1999. This mission has great relevance to the atmospheric radiation community and global change issues. Terra instruments include Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multi-Angle Imaging Spectroradiometer (MISR), Moderate Resolution Imaging Spectroradiometer (MODIS) and Measurements of Pollution in the Troposphere (MOPITT). In addition to the fundamental radiance data sets, numerous global science data products will be generated, including various Earth radiation budget, cloud and aerosol parameters, as well as land surface, terrestrial ecology, ocean color, and atmospheric chemistry parameters. Significant investments have been made in on-board calibration to ensure the quality of the radiance observations. A key component of the Terra mission is the validation of the science data products. This is essential for a mission focused on global change issues and the underlying processes. The Terra algorithms have been subject to extensive pre-launch testing with field data whenever possible. Intensive efforts will be made to validate the Terra data products after launch. These include validation of instrument calibration (vicarious calibration) experiments, instrument and cross-platform comparisons, routine collection of high quality correlative data from ground-based networks, such as AERONET, and intensive sites, such as the SGP ARM site, as well as a variety field experiments, cruises, etc. Airborne simulator instruments have been developed for the field experiment and underflight activities including the MODIS Airborne Simulator (MAS) AirMISR, MASTER (MODIS-ASTER), and MOPITT-A. All are integrated on the NASA ER-2 though low altitude platforms are more typically used for MASTER. MATR is an additional sensor used for MOPITT algorithm development and validation. The intensive validation activities planned for the first year of the Terra

  2. Unification of Dark Matter and Dark Energy in a Modified Entropic Force Model

    NASA Astrophysics Data System (ADS)

    Chang, Zhe; Li, Ming-Hua; Li, Xin

    2011-07-01

    In Verlinde's entropic force scenario of gravity, Newton's laws and Einstein equations can be obtained from the first principles and general assumptions. However, the equipartition law of energy is invalid at very low temperatures. We show clearly that the threshold of the equipartition law of energy is related with horizon of the universe. Thus, a one-dimensional Debye (ODD) model in the direction of radius of the modified entropic force (MEF) may be suitable in description of the accelerated expanding universe. We present a Friedmann cosmic dynamical model in the ODD-MEF framework. We examine carefully constraints on the ODD-MEF model from the Union2 compilation of the Supernova Cosmology Project (SCP) collaboration, the data from the observation of the large-scale structure (LSS) and the cosmic microwave background (CMB), i.e. SNe Ia+LSS+CMB. The combined numerical analysis gives the best-fit value of the model parameters ζ ≃ 10-9 and Ωm0 = 0.224, with χ2min = 591.156. The corresponding age of the universe agrees with the result of D. Spergel et al. [J.M. Bardeen, B. Carter, and S.W. Hawking, Commun. Math. Phys. 31 (1973) 161] at 95% confidence level. The numerical result also yields an accelerated expanding universe without invoking any kind of dark energy. Taking ζ(≡ 2πωD/H0) as a running parameter associated with the structure scale r, we obtain a possible unified scenario of the asymptotic flatness of the radial velocity dispersion of spiral galaxies, the accelerated expanding universe and the Pioneer 10/11 anomaly in the entropic force framework of Verlinde.

  3. Probing the imprint of interacting dark energy on very large scales

    NASA Astrophysics Data System (ADS)

    Duniya, Didam G. A.; Bertacca, Daniele; Maartens, Roy

    2015-03-01

    The observed galaxy power spectrum acquires relativistic corrections from light-cone effects, and these corrections grow on very large scales. Future galaxy surveys in optical, infrared and radio bands will probe increasingly large wavelength modes and reach higher redshifts. In order to exploit the new data on large scales, an accurate analysis requires inclusion of the relativistic effects. This is especially the case for primordial non-Gaussianity and for extending tests of dark energy models to horizon scales. Here we investigate the latter, focusing on models where the dark energy interacts nongravitationally with dark matter. Interaction in the dark sector can also lead to large-scale deviations in the power spectrum. If the relativistic effects are ignored, the imprint of interacting dark energy will be incorrectly identified and thus lead to a bias in constraints on interacting dark energy on very large scales.

  4. Radio Astronomers Develop New Technique for Studying Dark Energy

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Pioneering observations with the National Science Foundation's giant Robert C. Byrd Green Bank Telescope (GBT) have given astronomers a new tool for mapping large cosmic structures. The new tool promises to provide valuable clues about the nature of the mysterious "dark energy" believed to constitute nearly three-fourths of the mass and energy of the Universe. Dark energy is the label scientists have given to what is causing the Universe to expand at an accelerating rate. While the acceleration was discovered in 1998, its cause remains unknown. Physicists have advanced competing theories to explain the acceleration, and believe the best way to test those theories is to precisely measure large-scale cosmic structures. Sound waves in the matter-energy soup of the extremely early Universe are thought to have left detectable imprints on the large-scale distribution of galaxies in the Universe. The researchers developed a way to measure such imprints by observing the radio emission of hydrogen gas. Their technique, called intensity mapping, when applied to greater areas of the Universe, could reveal how such large-scale structure has changed over the last few billion years, giving insight into which theory of dark energy is the most accurate. "Our project mapped hydrogen gas to greater cosmic distances than ever before, and shows that the techniques we developed can be used to map huge volumes of the Universe in three dimensions and to test the competing theories of dark energy," said Tzu-Ching Chang, of the Academia Sinica in Taiwan and the University of Toronto. To get their results, the researchers used the GBT to study a region of sky that previously had been surveyed in detail in visible light by the Keck II telescope in Hawaii. This optical survey used spectroscopy to map the locations of thousands of galaxies in three dimensions. With the GBT, instead of looking for hydrogen gas in these individual, distant galaxies -- a daunting challenge beyond the technical

  5. AIC, BIC, Bayesian evidence against the interacting dark energy model

    NASA Astrophysics Data System (ADS)

    Szydłowski, Marek; Krawiec, Adam; Kurek, Aleksandra; Kamionka, Michał

    2015-01-01

    Recent astronomical observations have indicated that the Universe is in a phase of accelerated expansion. While there are many cosmological models which try to explain this phenomenon, we focus on the interacting CDM model where an interaction between the dark energy and dark matter sectors takes place. This model is compared to its simpler alternative—the CDM model. To choose between these models the likelihood ratio test was applied as well as the model comparison methods (employing Occam's principle): the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Bayesian evidence. Using the current astronomical data: type Ia supernova (Union2.1), , baryon acoustic oscillation, the Alcock-Paczynski test, and the cosmic microwave background data, we evaluated both models. The analyses based on the AIC indicated that there is less support for the interacting CDM model when compared to the CDM model, while those based on the BIC indicated that there is strong evidence against it in favor of the CDM model. Given the weak or almost non-existing support for the interacting CDM model and bearing in mind Occam's razor we are inclined to reject this model.

  6. Free-Energy Minimization and the Dark-Room Problem

    PubMed Central

    Friston, Karl; Thornton, Christopher; Clark, Andy

    2012-01-01

    Recent years have seen the emergence of an important new fundamental theory of brain function. This theory brings information-theoretic, Bayesian, neuroscientific, and machine learning approaches into a single framework whose overarching principle is the minimization of surprise (or, equivalently, the maximization of expectation). The most comprehensive such treatment is the “free-energy minimization” formulation due to Karl Friston (see e.g., Friston and Stephan, 2007; Friston, 2010a,b – see also Fiorillo, 2010; Thornton, 2010). A recurrent puzzle raised by critics of these models is that biological systems do not seem to avoid surprises. We do not simply seek a dark, unchanging chamber, and stay there. This is the “Dark-Room Problem.” Here, we describe the problem and further unpack the issues to which it speaks. Using the same format as the prolog of Eddington’s Space, Time, and Gravitation (Eddington, 1920) we present our discussion as a conversation between: an information theorist (Thornton), a physicist (Friston), and a philosopher (Clark). PMID:22586414

  7. Free-energy minimization and the dark-room problem.

    PubMed

    Friston, Karl; Thornton, Christopher; Clark, Andy

    2012-01-01

    Recent years have seen the emergence of an important new fundamental theory of brain function. This theory brings information-theoretic, Bayesian, neuroscientific, and machine learning approaches into a single framework whose overarching principle is the minimization of surprise (or, equivalently, the maximization of expectation). The most comprehensive such treatment is the "free-energy minimization" formulation due to Karl Friston (see e.g., Friston and Stephan, 2007; Friston, 2010a,b - see also Fiorillo, 2010; Thornton, 2010). A recurrent puzzle raised by critics of these models is that biological systems do not seem to avoid surprises. We do not simply seek a dark, unchanging chamber, and stay there. This is the "Dark-Room Problem." Here, we describe the problem and further unpack the issues to which it speaks. Using the same format as the prolog of Eddington's Space, Time, and Gravitation (Eddington, 1920) we present our discussion as a conversation between: an information theorist (Thornton), a physicist (Friston), and a philosopher (Clark). PMID:22586414

  8. Bianchi type I Universe and instability of new agegraphic dark energy in Brans-Dicke theories

    NASA Astrophysics Data System (ADS)

    Fayaz, V.

    2016-02-01

    In this paper, we consider the new agegraphic dark energy (NADE) in a Bianchi type-I metric (which is a spatially homogeneous and anisotropic) in the framework of Brans-Dicke theory. For this purpose, we use the squared sound speed vs2 whose sign determines the stability of the model. We explore the stability of this model in the presence/absence of interaction between dark energy and dark matter in both flat and non-isotropic geometry. The equation of state and the deceleration parameter of the new agegraphic dark energy in a anisotropic Universe is obtained. We show that the combination of Brans-Dicke field and new agegraphic dark energy can accommodate ω_{\\varLambda}=-1 crossing for the equation of state of noninteracting dark energy. When an interaction between dark energy and dark matter is taken into account, the transition of ω_{\\varLambda} to phantom regime can be more easily accounted when the Einstein field equations is being resort. In conclusion, we find evidences that the new agegraphic dark energy in BD theory can not lead to a stable Universe favored by observations at the present time. The anisotropy of the Universe decreases and the Universe transits to an isotropic flat FRW Universe accommodating the present acceleration.

  9. Conformal invariance, dark energy, and CMB non-gaussianity

    NASA Astrophysics Data System (ADS)

    Antoniadis, Ignatios; Mazur, Pawel O.; Mottola, Emil

    2012-09-01

    In addition to simple scale invariance, a universe dominated by dark energy naturally gives rise to correlation functions possessing full conformal invariance. This is due to the mathematical isomorphism between the conformal group of certain three dimensional slices of de Sitter space and the de Sitter isometry group SO(4,1). In the standard homogeneous, isotropic cosmological model in which primordial density perturbations are generated during a long vacuum energy dominated de Sitter phase, the embedding of flat spatial Bbb R3 sections in de Sitter space induces a conformal invariant perturbation spectrum and definite prediction for the shape of the non-Gaussian CMB bispectrum. In the case in which the density fluctuations are generated instead on the de Sitter horizon, conformal invariance of the Bbb S2 horizon embedding implies a different but also quite definite prediction for the angular correlations of CMB non-Gaussianity on the sky. Each of these forms for the bispectrum is intrinsic to the symmetries of de Sitter space, and in that sense, independent of specific model assumptions. Each is different from the predictions of single field slow roll inflation models, which rely on the breaking of de Sitter invariance. We propose a quantum origin for the CMB fluctuations in the scalar gravitational sector from the conformal anomaly that could give rise to these non-Gaussianities without a slow roll inflaton field, and argue that conformal invariance also leads to the expectation for the relation nS-1 = nT between the spectral indices of the scalar and tensor power spectrum. Confirmation of this prediction or detection of non-Gaussian correlations in the CMB of one of the bispectral shape functions predicted by conformal invariance can be used both to establish the physical origins of primordial density fluctuations, and distinguish between different dynamical models of cosmological vacuum dark energy.

  10. Conformal invariance, dark energy, and CMB non-gaussianity

    SciTech Connect

    Antoniadis, Ignatios; Mazur, Pawel O.; Mottola, Emil E-mail: mazur@physics.sc.edu

    2012-09-01

    In addition to simple scale invariance, a universe dominated by dark energy naturally gives rise to correlation functions possessing full conformal invariance. This is due to the mathematical isomorphism between the conformal group of certain three dimensional slices of de Sitter space and the de Sitter isometry group SO(4,1). In the standard homogeneous, isotropic cosmological model in which primordial density perturbations are generated during a long vacuum energy dominated de Sitter phase, the embedding of flat spatial R{sup 3} sections in de Sitter space induces a conformal invariant perturbation spectrum and definite prediction for the shape of the non-Gaussian CMB bispectrum. In the case in which the density fluctuations are generated instead on the de Sitter horizon, conformal invariance of the S{sup 2} horizon embedding implies a different but also quite definite prediction for the angular correlations of CMB non-Gaussianity on the sky. Each of these forms for the bispectrum is intrinsic to the symmetries of de Sitter space, and in that sense, independent of specific model assumptions. Each is different from the predictions of single field slow roll inflation models, which rely on the breaking of de Sitter invariance. We propose a quantum origin for the CMB fluctuations in the scalar gravitational sector from the conformal anomaly that could give rise to these non-Gaussianities without a slow roll inflaton field, and argue that conformal invariance also leads to the expectation for the relation n{sub S}−1 = n{sub T} between the spectral indices of the scalar and tensor power spectrum. Confirmation of this prediction or detection of non-Gaussian correlations in the CMB of one of the bispectral shape functions predicted by conformal invariance can be used both to establish the physical origins of primordial density fluctuations, and distinguish between different dynamical models of cosmological vacuum dark energy.

  11. Large-scale magnetic fields, dark energy, and QCD

    SciTech Connect

    Urban, Federico R.; Zhitnitsky, Ariel R.

    2010-08-15

    Cosmological magnetic fields are being observed with ever increasing correlation lengths, possibly reaching the size of superclusters, therefore disfavoring the conventional picture of generation through primordial seeds later amplified by galaxy-bound dynamo mechanisms. In this paper we put forward a fundamentally different approach that links such large-scale magnetic fields to the cosmological vacuum energy. In our scenario the dark energy is due to the Veneziano ghost (which solves the U(1){sub A} problem in QCD). The Veneziano ghost couples through the triangle anomaly to the electromagnetic field with a constant which is unambiguously fixed in the standard model. While this interaction does not produce any physical effects in Minkowski space, it triggers the generation of a magnetic field in an expanding universe at every epoch. The induced energy of the magnetic field is thus proportional to cosmological vacuum energy: {rho}{sub EM{approx_equal}}B{sup 2{approx_equal}}(({alpha}/4{pi})){sup 2{rho}}{sub DE}, {rho}{sub DE} hence acting as a source for the magnetic energy {rho}{sub EM}. The corresponding numerical estimate leads to a magnitude in the nG range. There are two unique and distinctive predictions of our proposal: an uninterrupted active generation of Hubble size correlated magnetic fields throughout the evolution of the Universe; the presence of parity violation on the enormous scales 1/H, which apparently has been already observed in CMB. These predictions are entirely rooted into the standard model of particle physics.

  12. Thermodynamics of Interacting Entropy-Corrected Holographic Dark Energy in a Non-Flat FRW Universe

    NASA Astrophysics Data System (ADS)

    Jamil, Mubasher; Sheykhi, Ahmad; Farooq, M. Umar

    An entropy-corrected holographic dark energy (ECHDE) was recently proposed to explain the dark energy-dominated universe with the help of quantum corrections to the entropy-area relation in the setup of loop quantum cosmology. Using this new definition, we investigate its thermodynamical features including entropy and energy conservation. We describe the thermodynamical interpretation of the interaction between ECHDE and dark matter in a non-flat universe. We obtain a relation between the interaction term of the dark components and thermal fluctuation. Our study further generalizes the earlier works86, 87 in this direction.

  13. Study of Entropy-corrected Logarithmic and Power-law Versions of Pilgrim Dark Energy

    NASA Astrophysics Data System (ADS)

    Saha, Pameli; Debnath, Ujjal

    2016-03-01

    In the present work, first, we have described pilgrim dark energy, entropy-corrected pilgrim dark energy for logarithmic and power law versions. Secondly, we have done the work on the aforementioned entropy-corrected versions by choosing an interacting framework with cold dark matter and three cutoffs such as Hubble, event and conformal age of the universe. We have also made the analysis of w_{de}-w^' }_{de} and point out freezing region and thawing region in that plane.

  14. EOS Aura Mission Status

    NASA Technical Reports Server (NTRS)

    Guit, William J.

    2015-01-01

    This PowerPoint presentation will discuss EOS Aura mission and spacecraft subsystem summary, recent and planned activities, inclination adjust maneuvers, propellant usage lifetime estimate. Eric Moyer, ESMO Deputy Project Manager-Technical (code 428) has reviewed and approved the slides on April 30, 2015.

  15. Eos visible imagers

    NASA Technical Reports Server (NTRS)

    Barnes, W. L.

    1990-01-01

    Some of the proposed Earth Observing System (Eos) optical imagers are examined. These imagers include: moderate resolution imaging spectrometer (MODIS); geoscience laser ranging system (GLRS); high resolution imaging spectrometer (HIRIS); the intermediate thermal infrared spectrometer (ITIR); multi-angle imaging spectrometer (MISR); earth observing scanning polarimeter (EOSP); and the lightening imaging sensor (LIS).

  16. Zero cosmological constant and nonzero dark energy from the holographic principle

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Weon

    2013-09-01

    The first law of thermodynamics and the holographic principle applied to an arbitrary large cosmic causal horizon are shown to naturally demand a zero cosmological constant and a non-zero dynamical dark energy in the form of the holographic dark energy. A semiclassical analysis shows that the holographic dark energy has a parameter d = 1 and an equation of state comparable to current observational data if the entropy of the horizon saturates the Bekenstein-Hawking bound. This result indicates that quantum field theory should be modified on a large scale to explain the dark energy. The relations among the dark energy, the quantum vacuum energy and the entropic gravity are also discussed.

  17. CMB lensing constraints on dark energy and modified gravity scenarios

    SciTech Connect

    Calabrese, Erminia; Cooray, Asantha; Martinelli, Matteo; Melchiorri, Alessandro; Pagano, Luca; Slosar, Anze; Smoot, George F.

    2009-11-15

    Weak gravitational lensing leaves a characteristic imprint on the cosmic microwave background temperature and polarization angular power spectra. Here, we investigate the possible constraints on the integrated lensing potential from future cosmic microwave background angular spectra measurements expected from Planck and EPIC. We find that Planck and EPIC will constrain the amplitude of the integrated projected potential responsible for lensing at 6% and 1% level, respectively, with very little sensitivity to the shape of the lensing potential. We discuss the implications of such a measurement in constraining dark energy and modified gravity scalar-tensor theories. We then discuss the impact of a wrong assumption on the weak lensing potential amplitude on cosmological parameter inference.

  18. Cosmological and astrophysical constraints on tachyon dark energy models

    NASA Astrophysics Data System (ADS)

    Martins, C. J. A. P.; Moucherek, F. M. O.

    2016-06-01

    Rolling tachyon field models are among the candidates suggested as explanations for the recent acceleration of the Universe. In these models the field is expected to interact with gauge fields and lead to variations of the fine-structure constant α . Here we take advantage of recent observational progress and use a combination of background cosmological observations of type Ia supernovas and astrophysical and local measurements of α to improve constraints on this class of models. We show that the constraints on α imply that the field dynamics must be extremely slow, leading to a constraint of the present-day dark energy equation of state (1 +w0)<2.4 ×10-7 at the 99.7% confidence level. Therefore current and forthcoming standard background cosmology observational probes cannot distinguish this class of models from a cosmological constant, while detections of α variations could possibly do so since they would have a characteristic redshift dependence.

  19. Intrinsic uncertainty on the nature of dark energy

    NASA Astrophysics Data System (ADS)

    Valkenburg, Wessel; Kunz, Martin; Marra, Valerio

    2013-12-01

    We argue that there is an intrinsic noise on measurements of the equation of state parameter w = p/ρ from large-scale structure around us. The presence of the large-scale structure leads to an ambiguity in the definition of the background universe and thus there is a maximal precision with which we can determine the equation of state of dark energy. To study the uncertainty due to local structure, we model density perturbations stemming from a standard inflationary power spectrum by means of the exact Lemaître-Tolman-Bondi solution of Einstein’s equation, and show that the usual distribution of matter inhomogeneities in a ΛCDM cosmology causes a variation of w - as inferred from distance measures - of several percent. As we observe only one universe, or equivalently because of the cosmic variance, this uncertainty is systematic in nature.

  20. Thermodynamical Aspects of Modified Holographic Dark Energy Model

    NASA Astrophysics Data System (ADS)

    Li, Hui; Zhang, Yi

    2014-07-01

    We investigate the unified first law and the generalized second law in a modified holographic dark energy model. The thermodynamical analysis on the apparent horizon can work and the corresponding entropy formula is extracted from the systematic algorithm. The entropy correction term depends on the extra-dimension number of the brane as expected, but the interplay between the correction term and the extra dimensions is more complicated. With the unified first law of thermodynamics well-founded, the generalized second law of thermodynamics is discussed and it is found that the second law can be violated in certain circumstances. Particularly, if the number of the extra dimensions is larger than one, the generalized law of thermodynamics is always satisfied; otherwise, the validity of the second law can only be guaranteed with the Hubble radius greatly smaller than the crossover scale rc of the 5-dimensional DGP model.