Science.gov

Sample records for dark matter sterile

  1. Dark matter and sterility

    NASA Astrophysics Data System (ADS)

    Smith, Peter F.

    2014-10-01

    In reply to Louise Mayor's dark-matter flow-chart "What's the matter?" (July pp30-31), which summarized the most likely candidates for galactic dark matter, and to Jon Cartwright's feature "A fourth type of neutrino" on the possibility of "sterile" neutrinos (August pp24-28).

  2. Sterile neutrinos as dark matter

    SciTech Connect

    Dodelson, S.; Widrow, L.M. |

    1993-03-01

    The simplest model that can accommodate a viable nonbaryonic dark matter candidate is the standard electroweak theory with the addition of right-handed or sterile neutrinos. This model has been studied extensively in the context of the hot dark matter scenario. We reexamine this model and find that hot, warm, and cold dark matter are all possibilities. We focus on the case where sterile neutrinos are the dark matter. Since their only direct coupling is to left-handed or active neutrinos, the most efficient production mechanism is via neutrino oscillations. If the production rate is always less than the expansion rate, then these neutrinos will never be in thermal equilibrium. However, they may still play a significant role in the dynamics of the Universe and possibly provide the missing mass necessary for closure. We consider a single generation of neutrino fields ({nu}{sub L}, {nu}{sub R}) with a Dirac mass, {mu}, and a Majorana mass for the right-handed components only, M. For M {much_gt} {mu} we show that the number density of sterile neutrinos is proportional to {mu}{sup 2}/M so that the energy density today is independent of M. However M is crucial in determining the large scale structure of the Universe. In particular, M {approx_equal} 0.1--1.0 key leads to warm dark matter and a structure formation scenario that may have some advantages over both the standard hot and cold dark matter scenarios.

  3. Sterile neutrinos as dark matter

    SciTech Connect

    Dodelson, S. ); Widrow, L.M. . Dept. of Physics Toronto Univ., ON . Canadian Inst. for Theoretical Astrophysics)

    1993-03-01

    The simplest model that can accommodate a viable nonbaryonic dark matter candidate is the standard electroweak theory with the addition of right-handed or sterile neutrinos. This model has been studied extensively in the context of the hot dark matter scenario. We reexamine this model and find that hot, warm, and cold dark matter are all possibilities. We focus on the case where sterile neutrinos are the dark matter. Since their only direct coupling is to left-handed or active neutrinos, the most efficient production mechanism is via neutrino oscillations. If the production rate is always less than the expansion rate, then these neutrinos will never be in thermal equilibrium. However, they may still play a significant role in the dynamics of the Universe and possibly provide the missing mass necessary for closure. We consider a single generation of neutrino fields ([nu][sub L], [nu][sub R]) with a Dirac mass, [mu], and a Majorana mass for the right-handed components only, M. For M [much gt] [mu] we show that the number density of sterile neutrinos is proportional to [mu][sup 2]/M so that the energy density today is independent of M. However M is crucial in determining the large scale structure of the Universe. In particular, M [approx equal] 0.1--1.0 key leads to warm dark matter and a structure formation scenario that may have some advantages over both the standard hot and cold dark matter scenarios.

  4. Diluted equilibrium sterile neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Patwardhan, Amol V.; Fuller, George M.; Kishimoto, Chad T.; Kusenko, Alexander

    2015-11-01

    We present a model where sterile neutrinos with rest masses in the range ˜keV to ˜MeV can be the dark matter and be consistent with all laboratory, cosmological, and large-scale structure, as well as x-ray constraints. These sterile neutrinos are assumed to freeze out of thermal and chemical equilibrium with matter and radiation in the very early Universe, prior to an epoch of prodigious entropy generation ("dilution") from out-of-equilibrium decay of heavy particles. In this work, we consider heavy, entropy-producing particles in the ˜TeV to ˜EeV rest-mass range, possibly associated with new physics at high-energy scales. The process of dilution can give the sterile neutrinos the appropriate relic densities, but it also alters their energy spectra so that they could act like cold dark matter, despite relatively low rest masses as compared to conventional dark matter candidates. Moreover, since the model does not rely on active-sterile mixing for producing the relic density, the mixing angles can be small enough to evade current x-ray or lifetime constraints. Nevertheless, we discuss how future x-ray observations, future lepton number constraints, and future observations and sophisticated simulations of large-scale structure could, in conjunction, provide evidence for this model and/or constrain and probe its parameters.

  5. Sterile neutrinos as subdominant warm dark matter

    SciTech Connect

    Palazzo, A.; Cumberbatch, D.; Slosar, A.; Silk, J.

    2007-11-15

    In light of recent findings which seem to disfavor a scenario with (warm) dark matter entirely constituted of sterile neutrinos produced via the Dodelson-Widrow mechanism, we investigate the constraints attainable for this mechanism by relaxing the usual hypothesis that the relic neutrino abundance must necessarily account for all of the dark matter. We first study how to reinterpret the limits attainable from x-ray nondetection and Lyman-{alpha} forest measurements in the case that sterile neutrinos constitute only a fraction f{sub s} of the total amount of dark matter. Then, assuming that sterile neutrinos are generated in the early universe solely through the Dodelson-Widrow mechanism, we show how the x-ray and Lyman-{alpha} results jointly constrain the mass-mixing parameters governing their production. Furthermore, we show how the same data allow us to set a robust upper limit f{sub s} < or approx. 0.7 at the 2{sigma} level, rejecting the case of dominant dark matter (f{sub s}=1) at the {approx}3{sigma} level.

  6. Self-interacting dark matter and sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Tang, Yong

    2016-05-01

    We discuss some possible astrophysical and cosmological connections between dark matter and sterile neutrinos. Both the controversies at small scales for traditional cold dark matter (CDM) and anomalies in neutrino experiments seem to suggest that there might be new self-interactions for dark matter and sterile neutrinos. Surprisingly, if the new interaction also mediates between dark matter and sterile neutrinos, “missing satellite problem” in CDM paradigm can also be solved. On the other hand, light sterile neutrinos with self-interacting can also satisfy the cosmological bounds.

  7. Sterile neutrinos as the origin of dark and baryonic matter.

    PubMed

    Canetti, Laurent; Drewes, Marco; Shaposhnikov, Mikhail

    2013-02-01

    We demonstrate for the first time that three sterile neutrinos alone can simultaneously explain neutrino oscillations, the observed dark matter, and the baryon asymmetry of the Universe without new physics above the Fermi scale. The key new point of our analysis is leptogenesis after sphaleron freeze-out, which leads to resonant dark matter production, evading thus the constraints on sterile neutrino dark matter from structure formation and x-ray searches. We identify the range of sterile neutrino properties that is consistent with all known constraints. We find a domain of parameters where the new particles can be found with present day experimental techniques, using upgrades to existing experimental facilities. PMID:23432234

  8. Properties of resonantly produced sterile neutrino dark matter subhaloes

    NASA Astrophysics Data System (ADS)

    Horiuchi, Shunsaku; Bozek, Brandon; Abazajian, Kevork N.; Boylan-Kolchin, Michael; Bullock, James S.; Garrison-Kimmel, Shea; Onorbe, Jose

    2016-03-01

    The anomalous 3.55 keV X-ray line recently detected towards a number of massive dark matter objects may be interpreted as the radiative decays of 7.1 keV mass sterile neutrino dark matter. Depending on its parameters, the sterile neutrino can range from cold to warm dark matter with small-scale suppression that differs in form from commonly adopted thermal warm dark matter. Here, we numerically investigate the subhalo properties for 7.1 keV sterile neutrino dark matter produced via the resonant Shi-Fuller mechanism. Using accurate matter power spectra, we run cosmological zoom-in simulations of a Milky Way-sized halo and explore the abundance of massive subhaloes, their radial distributions, and their internal structure. We also simulate the halo with thermal 2.0 keV warm dark matter for comparison and discuss quantitative differences. We find that the resonantly produced sterile neutrino model for the 3.55 keV line provides a good description of structures in the Local Group, including the number of satellite dwarf galaxies and their radial distribution, and largely mitigates the too-big-to-fail problem. Future searches for satellite galaxies by deep surveys, such as the Dark Energy Survey, Large Synoptic Survey Telescope, and Wide Field Infrared Survey Telescope, will be a strong direct test of warm dark matter scenarios.

  9. Can decaying sterile neutrinos account for all dark matter?

    NASA Astrophysics Data System (ADS)

    Chan, Man Ho

    2016-04-01

    The recent discovery of unexplained X-ray line of 3.5-3.6 keV emitted from the Perseus cluster of galaxies and M31 and the excess X-ray line of 8.7 keV emitted from the Milky Way center may indicate that dark matter would decay. In this article, I show that approximately 80 % of dark matter being 7.1 keV sterile neutrinos and 20 % of dark matter being 17.4 keV sterile neutrinos can satisfactorily explain the observed X-ray lines and account for all missing mass. No free parameter is needed in this model. This scenario is also compatible with current robust observational constraints from the matter power spectrum in large-scale structures and would alleviate the challenges faced by the existing dark matter models.

  10. Astronomical constraints on properties of sterile neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Chan, M. H.; Chu, M.-C.

    2011-04-01

    We consider sterile neutrinos as a component of dark matter in the Milky Way and clusters, and compare their rest mass, decay rate and the mixing angle. A radiative decaying rate of order Γ˜10-19 s-1 for sterile neutrino rest mass m s =18-19 keV can satisfactorily account for the cooling flow problem and heating source in Milky Way center simultaneously. Also, these ranges of decay rate and rest mass match the prediction of the mixing angle sin 22 θ˜10-3 with a low reheating temperature in the inflation model, which enables the sterile-active neutrino oscillation to be visible in future experiments. However, decaying sterile neutrinos have to be ruled out as a major component of dark matter because of the high decay rate.

  11. Tight bonds between sterile neutrinos and dark matter

    SciTech Connect

    Bringmann, Torsten; Hasenkamp, Jasper; Kersten, Jörn E-mail: Jasper.Hasenkamp@nyu.edu

    2014-07-01

    Despite the astonishing success of standard ΛCDM cosmology, there is mounting evidence for a tension with observations at small and intermediate scales. We introduce a simple model where both cold dark matter (DM) and sterile neutrinos are charged under a new U(1){sub X} gauge interaction. The resulting DM self-interactions resolve the tension with the observed abundances and internal density structures of dwarf galaxies. At the same time, the sterile neutrinos can account for both the small hot DM component favored by cosmological observations and the neutrino anomalies found in short-baseline experiments.

  12. Exotic charges, multicomponent dark matter and light sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Heeck, Julian; Zhang, He

    2013-05-01

    Generating small sterile neutrino masses via the same seesaw mechanism that suppresses active neutrino masses requires a specific structure in the neutral fermion mass matrix. We present a model where this structure is enforced by a new U(1)' gauge symmetry, spontaneously broken at the TeV scale. The additional fermions necessary for anomaly cancellation need to carry exotic charges in order not to spoil the neutrino structure and turn out to form multicomponent cold dark matter. The active-sterile mixing then connects the new particles and the Standard Model — opening a new portal in addition to the usual Higgs- and kinetic-mixing portals — which leads to dark matter annihilation almost exclusively into neutrinos.

  13. Sterile neutrino dark matter from freeze-in

    NASA Astrophysics Data System (ADS)

    Shakya, Bibhushan

    2016-01-01

    A sterile neutrino is a well-motivated and widely studied dark matter (DM) candidate. The most straightforward realization of sterile neutrino DM, through the Dodelson-Widrow (DW) mechanism, is now ruled out by a combination of X-ray and Lyman-α measurements. An alternative production mechanism that is becoming increasingly popular in the literature is the freeze-in mechanism, involving frameworks where a feeble coupling to a particle — usually a scalar beyond the Standard Model — in the thermal bath results in a gradual accumulation of the sterile neutrino DM abundance. This paper reviews the various motivations for realizing such frameworks in the literature, their common characteristic features and phenomenological signatures.

  14. Astrophysical constraints on resonantly produced sterile neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Schneider, Aurel

    2016-04-01

    Resonantly produced sterile neutrinos are considered an attractive dark matter (DM) candidate only requiring a minimal, well motivated extension to the standard model of particle physics. With a particle mass restricted to the keV range, sterile neutrinos are furthermore a prime candidate for warm DM, characterised by suppressed matter perturbations at the smallest observable scales. In this paper we take a critical look at the validity of the resonant scenario in the context of constraints from structure formation. We compare predicted and observed number of Milky-Way satellites and we introduce a new method to generalise existing Lyman-α limits based on thermal relic warm DM to the case of resonant sterile neutrino DM . The tightest limits come from the Lyman-α analysis, excluding the entire parameter space (at 2-σ confidence level) still allowed by X-ray observations. Constraints from Milky-Way satellite counts are less stringent, leaving room for resonant sterile neutrino DM most notably around the suggested line signal at 7.1 keV.

  15. The case for mixed dark matter from sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Lello, Louis; Boyanovsky, Daniel

    2016-06-01

    Sterile neutrinos are SU(2) singlets that mix with active neutrinos via a mass matrix, its diagonalization leads to mass eigenstates that couple via standard model vertices. We study the cosmological production of heavy neutrinos via standard model charged and neutral current vertices under a minimal set of assumptions: i) the mass basis contains a hierarchy of heavy neutrinos, ii) these have very small mixing angles with the active (flavor) neutrinos, iii) standard model particles, including light (active-like) neutrinos are in thermal equilibrium. If kinematically allowed, the same weak interaction processes that produce active-like neutrinos also produce the heavier species. We introduce the quantum kinetic equations that describe their production, freeze out and decay and discuss the various processes that lead to their production in a wide range of temperatures assessing their feasibility as dark matter candidates. The final distribution function at freeze-out is a mixture of the result of the various production processes. We identify processes in which finite temperature collective excitations may lead to the production of the heavy species. As a specific example, we consider the production of heavy neutrinos in the mass range Mh lesssim 140 MeV from pion decay shortly after the QCD crossover including finite temperature corrections to the pion form factors and mass. We consider the different decay channels that allow for the production of heavy neutrinos showing that their frozen distribution functions exhibit effects from ``kinematic entanglement'' and argue for their viability as mixed dark matter candidates. We discuss abundance, phase space density and stability constraints and argue that heavy neutrinos with lifetime τ> 1/H0 freeze out of local thermal equilibrium, and conjecture that those with lifetimes τ ll 1/H0 may undergo cascade decay into lighter DM candidates and/or inject non-LTE neutrinos into the cosmic neutrino background. We provide a

  16. Influence of ~7 keV sterile neutrino dark matter on the process of reionization

    NASA Astrophysics Data System (ADS)

    Rudakovskyi, Anton; Iakubovskyi, Dmytro

    2016-06-01

    Recent reports of a weak unidentified emission line at ~3.5 keV found in spectra of several matter-dominated objects may give a clue to resolve the long-standing problem of dark matter. One of the best physically motivated particle candidate able to produce such an extra line is sterile neutrino with the mass of ~7 keV . Previous works show that sterile neutrino dark matter with parameters consistent with the new line measurement modestly affects structure formation compared to conventional cold dark matter scenario. In this work, we concentrate for the first time on contribution of the sterile neutrino dark matter able to produce the observed line at ~3.5 keV, to the process of reionization. By incorporating dark matter power spectra for ~7 keV sterile neutrinos into extended semi-analytical `bubble' model of reionization we obtain that such sterile neutrino dark matter would produce significantly sharper reionization compared to widely used cold dark matter models, impossible to `imitate' within the cold dark matter scenario under any reasonable choice of our model parameters, and would have a clear tendency of lowering both the redshift of reionization and the electron scattering optical depth (although the difference is still below the existing model uncertainties). Further dedicated studies of reionization (such as 21 cm measurements or studies of kinetic Sunyaev-Zeldovich effect) will thus be essential for reconstruction of particle candidate responsible the ~3.5 keV line.

  17. Atomic ionization by sterile-to-active neutrino conversion and constraints on dark matter sterile neutrinos with germanium detectors

    NASA Astrophysics Data System (ADS)

    Chen, Jiunn-Wei; Chi, Hsin-Chang; Lin, Shin-Ted; Liu, C.-P.; Singh, Lakhwinder; Wong, Henry T.; Wu, Chih-Liang; Wu, Chih-Pan

    2016-05-01

    The transition magnetic moment of a sterile neutrino can give rise to its conversion to an active neutrino through radiative decay or nonstandard interaction (NSI) with matter. For sterile neutrinos of keV-mass as dark matter candidates, their decay signals are actively searched for in cosmic x-ray spectra. In this work, we consider the NSI that leads to atomic ionization, which can be detected by direct dark matter experiments. It is found that this inelastic scattering process for a nonrelativistic sterile neutrino has a pronounced enhancement in the differential cross section at energy transfer about half of its mass, manifesting experimentally as peaks in the measurable energy spectra. The enhancement effects gradually smear out as the sterile neutrino becomes relativistic. Using data taken with low-threshold low-background germanium detectors, constraints on sterile neutrino mass and its transition magnetic moment are derived and compared with those from astrophysical observations.

  18. Sterile neutrinos and indirect dark matter searches in IceCube

    SciTech Connect

    Argüelles, Carlos A.; Kopp, Joachim E-mail: jkopp@fnal.gov

    2012-07-01

    If light sterile neutrinos exist and mix with the active neutrino flavors, this mixing will affect the propagation of high-energy neutrinos from dark matter annihilation in the Sun. In particular, new Mikheyev-Smirnov-Wolfenstein resonances can occur, leading to almost complete conversion of some active neutrino flavors into sterile states. We demonstrate how this can weaken IceCube limits on neutrino capture and annihilation in the Sun and how potential future conflicts between IceCube constraints and direct detection or collider data might be resolved by invoking sterile neutrinos. We also point out that, if the dark matter-nucleon scattering cross section and the allowed annihilation channels are precisely measured in direct detection and collider experiments in the future, IceCube can be used to constrain sterile neutrino models using neutrinos from the dark matter annihilation.

  19. Constraining sterile neutrino warm dark matter with Chandra observations of the Andromeda galaxy

    SciTech Connect

    Watson, Casey R.; Polley, Nicholas K.; Li, Zhiyuan E-mail: zyli@astro.ucla.edu

    2012-03-01

    We use the Chandra unresolved X-ray emission spectrum from a 12'–28' (2.8–6.4 kpc) annular region of the Andromeda galaxy to constrain the radiative decay of sterile neutrino warm dark matter. By excising the most baryon-dominated, central 2.8 kpc of the galaxy, we reduce the uncertainties in our estimate of the dark matter mass within the field of view and improve the signal-to-noise ratio of prospective sterile neutrino decay signatures relative to hot gas and unresolved stellar emission. Our findings impose the most stringent limit on the sterile neutrino mass to date in the context of the Dodelson-Widrow model, m{sub s} < 2.2 keV (95% C.L.). Our results also constrain alternative sterile neutrino production scenarios at very small active-sterile neutrino mixing angles.

  20. Neutrino masses and sterile neutrino dark matter from the PeV scale

    NASA Astrophysics Data System (ADS)

    Roland, Samuel B.; Shakya, Bibhushan; Wells, James D.

    2015-12-01

    We show that active neutrino masses and a keV-GeV mass sterile neutrino dark matter candidate can result from a modified, low energy seesaw mechanism if right-handed neutrinos are charged under a new symmetry broken by a scalar field vacuum expectation value at the PeV scale. The dark matter relic abundance can be obtained through active-sterile oscillation, freeze-in through the decay of the heavy scalar, or freeze-in via nonrenormalizable interactions at high temperatures. The low energy effective theory maps onto the widely studied ν MSM framework.

  1. Cosmologically safe eV-scale sterile neutrinos and improved dark matter structure.

    PubMed

    Dasgupta, Basudeb; Kopp, Joachim

    2014-01-24

    We show that sterile neutrinos with masses ≳1  eV, as motivated by several short baseline oscillation anomalies, can be consistent with cosmological constraints if they are charged under a hidden sector force mediated by a light boson. In this case, sterile neutrinos experience a large thermal potential that suppresses mixing between active and sterile neutrinos in the early Universe, even if vacuum mixing angles are large. Thus, the abundance of sterile neutrinos in the Universe remains very small, and their impact on big bang nucleosynthesis, cosmic microwave background, and large-scale structure formation is negligible. It is conceivable that the new gauge force also couples to dark matter, possibly ameliorating some of the small-scale structure problems associated with cold dark matter. PMID:24484131

  2. Accounting for the Unresolved X-ray Background with Sterile Neutrino Dark Matter

    SciTech Connect

    Cumberbatch, D.T.; Silk, Joseph

    2007-11-20

    We consider a scenario where keV sterile neutrinos constitute all of the currently inferred dark matter abundance, whose radiative decays could potentially account for the flux contributions to the X-ray background (XRB) by unresolved sources. Here we apply integrated flux methods to results from the observations of the North/South Chandra deep fields (CDF-N/S) in order to deduce constraints on the sterile neutrino mass-mixing parameters.

  3. Realistic Sterile Neutrino Dark Matter with KeV Mass does not Contradict Cosmological Bounds

    SciTech Connect

    Boyarsky, Alexey; Lesgourgues, Julien; Ruchayskiy, Oleg

    2009-05-22

    Previous fits of sterile neutrino dark matter (DM) models to cosmological data ruled out masses smaller than {approx}8 keV, assuming a production mechanism that is not the best motivated from a particle physics point of view. Here we focus on a realistic extension of the standard model with three sterile neutrinos, consistent with neutrino oscillation data and baryogenesis, with the lightest sterile neutrino being the DM particle. We show that for each mass {>=}2 keV there exists at least one model accounting for 100% of DM and consistent with Lyman-{alpha} and other cosmological, astrophysical, and particle physics data.

  4. Toward a full test of the ν MSM sterile neutrino dark matter model with Athena

    NASA Astrophysics Data System (ADS)

    Neronov, A.; Malyshev, D.

    2016-03-01

    We discuss the potential of Athena x-ray telescope, in particular of its x-ray integral field unit (X-IFU), for detection of the signal from the light-weight decaying dark matter with mass in the keV range. We show that high energy resolution and large collection area of X-IFU will provide an improvement of sensitivity which will be sufficient for the full test of the neutrino minimal extension of the standard model (ν MSM ). Search for the narrow spectral line produced by the decay of the dark matter sterile neutrino in the spectra of dwarf spheroidal galaxies with X-IFU will explore the whole allowed range masses and mixing angles of the ν MSM lightest sterile neutrino and in this way either to find the dark matter signal or rule out the ν MSM model.

  5. Subdominant Dark Matter sterile neutrino resonant production in the light of PLANCK

    NASA Astrophysics Data System (ADS)

    Popa, L. A.; Tonoiu, D.

    2015-09-01

    Few independent detections of a weak X-ray line at an energy of ~ 3.5 keV seen toward a number of astrophysical sites have been reported. If this signal will be confirmed to be the signature of decaying DM sterile neutrino with a mass of ~ 7.1 keV, then the cosmological observables should be consistent with its properties. In this paper we make a coupled treatment of the weak decoupling, primordial nucleosynthesis and photon decoupling epochs in the sterile neutrino resonant production scenario, including the extra radiation energy density via Neff. We compute the radiation and matter perturbations including the full resonance sweep solution for να/bar nuα → νs flavor conversion in the expanding Universe.We show that the cosmological measurements are in agreement with subdominant Dark Matter sterile neutrino resonant production with following parameters (errors at 95% CL): mass mνs=6.08 ± 3.22 keV, mixing angle sin2 2θ < 5.61 × 10-10, lepton number per flavor L4 = 1.23 ± 0.04 (L4 ≡ 104 Lνa) and sterile neutrino mass fraction fνs< 0.078.Our results are in good agreement with the sterile neutrino resonant production parameters inferred in ref. [1] from the linear large scale structure constraints to produce full Dark Matter density.

  6. Satellite galaxies in semi-analytic models of galaxy formation with sterile neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Lovell, Mark R.; Bose, Sownak; Boyarsky, Alexey; Cole, Shaun; Frenk, Carlos S.; Gonzalez-Perez, Violeta; Kennedy, Rachel; Ruchayskiy, Oleg; Smith, Alex

    2016-09-01

    The sterile neutrino is a viable dark matter candidate that can be produced in the early Universe via non-equilibrium processes, and would therefore possess a highly non-thermal spectrum of primordial velocities. In this paper we analyse the process of structure formation with this class of dark matter particles. To this end we construct primordial dark matter power spectra as a function of the lepton asymmetry, L6, that is present in the primordial plasma and leads to resonant sterile neutrino production. We compare these power spectra with those of thermally produced dark matter particles and show that resonantly produced sterile neutrinos are much colder than their thermal relic counterparts. We also demonstrate that the shape of these power spectra is not determined by the free-streaming scale alone. We then use the power spectra as an input for semi-analytic models of galaxy formation in order to predict the number of luminous satellite galaxies in a Milky Way-like halo. By assuming that the mass of the Milky Way halo must be no more than 2 × 1012 M⊙ (the adopted upper bound based on current astronomical observations) we are able to constrain the value of L6 for Ms ≤ 8 keV. We also show that the range of L6 that is in best agreement with the 3.5 keV line (if produced by decays of 7 keV sterile neutrino) requires that the Milky Way halo has a mass no smaller than 1.5 × 1012 M⊙. Finally, we compare the power spectra obtained by direct integration of the Boltzmann equations for a non-resonantly produced sterile neutrino with the fitting formula of Viel et al. and find that the latter significantly underestimates the power amplitude on scales relevant to satellite galaxies.

  7. Satellite galaxies in semi-analytic models of galaxy formation with sterile neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Lovell, Mark R.; Bose, Sownak; Boyarsky, Alexey; Cole, Shaun; Frenk, Carlos S.; Gonzalez-Perez, Violeta; Kennedy, Rachel; Ruchayskiy, Oleg; Smith, Alex

    2016-06-01

    The sterile neutrino is a viable dark matter candidate that can be produced in the early Universe via non-equilibrium processes, and would therefore possess a highly non-thermal spectrum of primordial velocities. In this paper we analyse the process of structure formation with this class of dark matter particles. To this end we construct primordial dark matter power spectra as a function of the lepton asymmetry, L6, that is present in the primordial plasma and leads to resonant sterile neutrino production. We compare these power spectra with those of thermally produced dark matter particles and show that resonantly produced sterile neutrinos are much colder than their thermal relic counterparts. We also demonstrate that the shape of these power spectra are not determined by the free-streaming scale alone. We then use the power spectra as an input for semi-analytic models of galaxy formation in order to predict the number of luminous satellite galaxies in a Milky Way-like halo. By assuming that the mass of the Milky Way halo must be no more than 2 × 1012M⊙ (the adopted upper bound based on current astronomical observations) we are able to constrain the value of L6 for Ms ≤ 8 keV. We also show that the range of L6 that is in best agreement with the 3.5 keV line (if produced by decays of 7 keV sterile neutrino) requires that the Milky Way halo has a mass no smaller than 1.5 × 1012M⊙. Finally, we compare the power spectra obtained by direct integration of the Boltzmann equations for a non-resonantly produced sterile neutrino with the fitting formula of Viel et al. (2005) and find that the latter significantly underestimates the power amplitude on scales relevant to satellite galaxies.

  8. Sterile neutrino dark matter: Weak interactions in the strong coupling epoch

    NASA Astrophysics Data System (ADS)

    Venumadhav, Tejaswi; Cyr-Racine, Francis-Yan; Abazajian, Kevork N.; Hirata, Christopher M.

    2016-08-01

    We perform a detailed study of the weak interactions of standard model neutrinos with the primordial plasma and their effect on the resonant production of sterile neutrino dark matter. Motivated by issues in cosmological structure formation on small scales, and reported x-ray signals that could be due to sterile neutrino decay, we consider 7 keV-scale sterile neutrinos. Oscillation-driven production of such sterile neutrinos occurs at temperatures T ≳100 MeV , where we study two significant effects of weakly charged species in the primordial plasma: (1) the redistribution of an input lepton asymmetry; (2) the opacity for active neutrinos. We calculate the redistribution analytically above and below the quark-hadron transition, and match with lattice QCD calculations through the transition. We estimate opacities due to tree-level processes involving leptons and quarks above the quark-hadron transition, and the most important mesons below the transition. We report final sterile neutrino dark matter phase space densities that are significantly influenced by these effects, and yet relatively robust to remaining uncertainties in the nature of the quark-hadron transition. We also provide transfer functions for cosmological density fluctuations with cutoffs at k ≃10 h Mpc-1 , that are relevant to galactic structure formation.

  9. New U(1) gauge model of radiative lepton masses with sterile neutrino and dark matter

    NASA Astrophysics Data System (ADS)

    Adhikari, Rathin; Borah, Debasish; Ma, Ernest

    2016-04-01

    An anomaly-free U(1) gauge extension of the standard model (SM) is presented. Only one Higgs doublet with a nonzero vacuum expectation is required as in the SM. New fermions and scalars as well as all SM particles transform nontrivially under this U(1), resulting in a model of three active neutrinos and one sterile neutrino, all acquiring radiative masses. Charged-lepton masses are also radiative as well as the mixing between active and sterile neutrinos. At the same time, a residual Z2 symmetry of the U(1) gauge symmetry remains exact, allowing for the existence of dark matter.

  10. Restrictions on parameters of sterile neutrino dark matter from observations of galaxy clusters

    SciTech Connect

    Boyarsky, A.; Shaposhnikov, M.; Ruchayskiy, O.

    2006-11-15

    We find restrictions on the mass and mixing angle of the dark matter sterile neutrinos using x-ray observations of Coma and Virgo galaxy clusters with XMM-Newton satellite. In the absence of clearly detectable line, we present detailed analysis of various methods of putting restrictions on mass and mixing angle of sterile neutrino. Our analysis provides significant improvement over our previous results, coming from XRB background measurements. We also discuss restrictions from Virgo cluster by other authors and compare our results with them.

  11. Sterile neutrino dark matter production in the neutrino-phillic two Higgs doublet model

    NASA Astrophysics Data System (ADS)

    Adulpravitchai, Adisorn; Schmidt, Michael A.

    2015-12-01

    Sterile Neutrinos with a mass in the keV range form a good candidate for dark matter. They are naturally produced from neutrino oscillations via their mixing with the active neutrinos. However the production via non-resonant neutrino oscillations has recently been ruled out. The alternative production via Higgs decay is negligibly small compared to neutrino oscillations. We show that in the neutrino-phillic two Higgs doublet model, the contribution from Higgs decay can dominate over the contribution from neutrino oscillations and evade all constraints. We also study the free-streaming horizon and find that a sterile neutrino mass in the range of 4 to 53 keV leads to warm dark matter.

  12. Resonant sterile neutrino dark matter in the local and high-z Universe

    NASA Astrophysics Data System (ADS)

    Bozek, Brandon; Boylan-Kolchin, Michael; Horiuchi, Shunsaku; Garrison-Kimmel, Shea; Abazajian, Kevork; Bullock, James S.

    2016-06-01

    Sterile neutrinos comprise an entire class of dark matter models that, depending on their production mechanism, can be hot, warm, or cold dark matter (CDM). We simulate the Local Group and representative volumes of the Universe in a variety of sterile neutrino models, all of which are consistent with the possible existence of a radiative decay line at ˜3.5 keV. We compare models of production via resonances in the presence of a lepton asymmetry (suggested by Shi & Fuller 1999) to `thermal' models. We find that properties in the highly non-linear regime - e.g. counts of satellites and internal properties of haloes and subhaloes - are insensitive to the precise fall-off in power with wavenumber, indicating that non-linear evolution essentially washes away differences in the initial (linear) matter power spectrum. In the quasi-linear regime at higher redshifts, however, quantitative differences in the 3D matter power spectra remain, raising the possibility that such models can be tested with future observations of the Lyman-α forest. While many of the sterile neutrino models largely eliminate multiple small-scale issues within the CDM paradigm, we show that these models may be ruled out in the near future via discoveries of additional dwarf satellites in the Local Group.

  13. Possible capture of keV sterile neutrino dark matter on radioactive β-decaying nuclei

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Xing, Zhi-Zhong

    2011-01-01

    There exists an observed “desert” spanning six orders of magnitude between O(0.5) eV and O(0.5) MeV in the fermion mass spectrum. We argue that it might accommodate one or more keV sterile neutrinos as a natural candidate for warm dark matter. To illustrate this point of view, we simply assume that there is one keV sterile neutrino ν and its flavor eigenstate ν weakly mixes with three active neutrinos. We clarify different active-sterile neutrino mixing factors for the radiative decay of ν and β decays in a self-consistent parametrization. A direct detection of this keV sterile neutrino dark matter in the laboratory is in principle possible since the ν component of ν can leave a distinct imprint on the electron energy spectrum when it is captured on radioactive β-decaying nuclei. We carry out an analysis of its signatures in the capture reactions ν+H3→He3+e- and ν+Ru106→Rh106+e- against the β-decay backgrounds, and conclude that this experimental approach might not be hopeless in the long run.

  14. Dodelson-Widrow production of sterile neutrino Dark Matter with non-trivial initial abundance

    NASA Astrophysics Data System (ADS)

    Merle, Alexander; Schneider, Aurel; Totzauer, Maximilian

    2016-04-01

    The simplest way to create sterile neutrinos in the early Universe is by their admixture to active neutrinos. However, this mechanism, connected to the Dark Matter (DM) problem by Dodelson and Widrow (DW), cannot simulatenously meet the relic abundance constraint as well as bounds from structure formation and X-rays. Nonetheless, unless a symmetry forces active-sterile mixing to vanish exactly, the DW mechanism will unavoidably affect the sterile neutrino DM population created by any other production mechanism. We present a semi-analytic approach to the DW mechanism acting on an arbitrary initial abundance of sterile neutrinos, allowing to combine DW with any other preceeding production mechanism in a physical and precise way. While previous analyses usually assumed that the spectra produced by DW and another mechanism can simply be added, we use our semi-analytic results to discuss the validity of this assumption and to quantify its accurateness, thereby also scrutinising the DW spectrum and the derived mass bounds. We then map our results to the case of sterile neutrino DM from the decay of a real SM singlet coupled to the Higgs. Finally, we will investigate aspects of structure formation beyond the usual simple free-streaming estimates in order to judge on the effects of the DW modification on the sterile neutrino DM spectra generated by scalar decay.

  15. Constraints on sterile neutrino dark matter production in the light of Planck

    NASA Astrophysics Data System (ADS)

    Popa, Lucia Aurelia

    Distortions of CMB temperature and polarization anisotropy maps caused by gravitational lensing, observable with high angular resolution and sensitivity of the Planck mission are used to constrain the Dark Matter (DM) sterile neutrino mass. This analysis offers several advantages against the analysis based on the combination of CMB, LSS and Ly-alpha forest power spectra. As the gravitational lensing effect depends on the matter distribution, no assumption on light-to-mass bias is required. In addition, unlike the galaxy clustering and Ly-alpha forest power spectra, the projected gravitational potential power spectrum probes a larger range of angular scales, the non-linear corrections being required only at very small scales. Taking into account the changes in the time-temperature relation of the primordial plasma and the modification of the neutrino thermal potential, we compute the projected gravitational potential power spectrum and its correlation with the temperature in the presence of DM sterile neutrino. We show that the cosmological parameters are generally not biased when DM sterile neutrino is included. From this analysis we placed lower limits on DM sterile neutrino for both resonant and non-resonant production. We conclude that although the information that can be obtained from lensing extraction is rather limited due to the high level of the lensing noise of Planck experiment, weak lensing of CMB offers a valuable alternative to constrain the DM sterile neutrino mass.

  16. Can sterile neutrinos be ruled out as warm dark matter candidates?

    PubMed

    Viel, Matteo; Lesgourgues, Julien; Haehnelt, Martin G; Matarrese, Sabino; Riotto, Antonio

    2006-08-18

    We present constraints on the mass of warm dark matter (WDM) particles from a combined analysis of the matter power spectrum inferred from the Sloan Digital Sky Survey Lyman-alpha flux power spectrum at 2.2sterile neutrinos and mWDM greater than or similar to 2 keV (2sigma) for early decoupled thermal relics. If we combine this bound with the constraint derived from x-ray flux observations of the Coma cluster, we find that the allowed sterile neutrino mass is approximately 10 keV (in the standard production scenario). Adding constraints based on x-ray fluxes from the Andromeda galaxy, we find that dark matter particles cannot be sterile neutrinos, unless they are produced by a nonstandard mechanism (resonant oscillations, coupling with the inflation) or get diluted by a large entropy release. PMID:17026219

  17. Can Sterile Neutrinos Be Ruled Out as Warm Dark Matter Candidates?

    SciTech Connect

    Viel, Matteo; Lesgourgues, Julien; Haehnelt, Martin G.; Matarrese, Sabino; Riotto, Antonio

    2006-08-18

    We present constraints on the mass of warm dark matter (WDM) particles from a combined analysis of the matter power spectrum inferred from the Sloan Digital Sky Survey Lyman-{alpha} flux power spectrum at 2.2sterile neutrinos and m{sub WDM}(greater-or-similar sign)2 keV (2{sigma}) for early decoupled thermal relics. If we combine this bound with the constraint derived from x-ray flux observations of the Coma cluster, we find that the allowed sterile neutrino mass is {approx}10 keV (in the standard production scenario). Adding constraints based on x-ray fluxes from the Andromeda galaxy, we find that dark matter particles cannot be sterile neutrinos, unless they are produced by a nonstandard mechanism (resonant oscillations, coupling with the inflaton) or get diluted by a large entropy release.

  18. Direct x-ray constraints on sterile neutrino warm dark matter

    SciTech Connect

    Watson, Casey R.; Yueksel, Hasan; Beacom, John F.; Walker, Terry P.

    2006-08-01

    Warm dark matter might more easily account for small scale clustering measurements than the heavier particles typically invoked in {lambda} cold dark matter ({lambda}CDM) cosmologies. In this paper, we consider a {lambda}WDM cosmology in which sterile neutrinos {nu}{sub s}, with a mass m{sub s} of roughly 1-100 keV, are the dark matter. We use the diffuse x-ray spectrum (total minus resolved point source emission) of the Andromeda galaxy to constrain the rate of sterile neutrino radiative decay: {nu}{sub s}{yields}{nu}{sub e,{mu}}{sub ,{tau}}+{gamma}. Our findings demand that m{sub s}<3.5 keV (95% C.L.) which is a significant improvement over the previous (95% C.L.) limits inferred from the x-ray emission of nearby clusters, m{sub s}<8.2 keV (Virgo A) and m{sub s}<6.3 keV (Virgo A+Coma)

  19. Resonantly produced 7 keV sterile neutrino dark matter models and the properties of Milky Way satellites.

    PubMed

    Abazajian, Kevork N

    2014-04-25

    Sterile neutrinos produced through a resonant Shi-Fuller mechanism are arguably the simplest model for a dark matter interpretation of the origin of the recent unidentified x-ray line seen toward a number of objects harboring dark matter. Here, I calculate the exact parameters required in this mechanism to produce the signal. The suppression of small-scale structure predicted by these models is consistent with Local Group and high-z galaxy count constraints. Very significantly, the parameters necessary in these models to produce the full dark matter density fulfill previously determined requirements to successfully match the Milky Way Galaxy's total satellite abundance, the satellites' radial distribution, and their mass density profile, or the "too-big-to-fail problem." I also discuss how further precision determinations of the detailed properties of the candidate sterile neutrino dark matter can probe the nature of the quark-hadron transition, which takes place during the dark matter production. PMID:24815635

  20. A new life for sterile neutrinos: resolving inconsistencies using hot dark matter

    SciTech Connect

    Hamann, Jan; Hasenkamp, Jasper E-mail: jasper.hasenkamp@nyu.edu

    2013-10-01

    Within the standard ΛCDM model of cosmology, the recent Planck measurements have shown discrepancies with other observations, e.g., measurements of the current expansion rate H{sub 0}, the galaxy shear power spectrum and counts of galaxy clusters. We show that if ΛCDM is extended by a hot dark matter component, which could be interpreted as a sterile neutrino, the data sets can be combined consistently. A combination of Planck data, WMAP-9 polarisation data, measurements of the BAO scale, the HST measurement of H{sub 0}, Planck galaxy cluster counts and galaxy shear data from the CFHTLens survey yields ΔN{sub eff} = 0.61±0.30 and m{sub s}{sup eff} = (0.41±0.13)eV at 1σ. The former is driven mainly by the large H{sub 0} of the HST measurement, while the latter is driven by cluster data. CFHTLens galaxy shear data prefer ΔN{sub eff}> 0 and a non-zero mass. Taken together, we find hints for the presence of a hot dark matter component at 3σ. A sterile neutrino motivated by the reactor and gallium anomalies appears rejected at even higher significance and an accelerator anomaly sterile neutrino is found in tension at 2σ.

  1. Captures of hot and warm sterile antineutrino dark matter on EC-decaying {sup 63}Ho nuclei

    SciTech Connect

    Li, Y.F.; Xing, Zhi-zhong E-mail: xingzz@ihep.ac.cn

    2011-08-01

    Capturing low-energy electron antineutrinos on radioactive {sup 163}Ho nuclei, which decay into {sup 163}Dy via electron capture (EC), is a noteworthy opportunity to detect relic sterile antineutrinos. Such hypothetical particles are more or less implied by current experimental and cosmological data, and they might be a part of hot dark matter or a candidate for warm dark matter in the Universe. Using the isotope {sup 163}Ho as a target and assuming reasonable active-sterile antineutrino mixing angles, we calculate the capture rate of relic electron antineutrinos against the corresponding EC-decay background in the presence of sterile antineutrinos at the sub-eV or keV mass scale. We show that the signature of hot or warm sterile antineutrino dark matter should in principle be observable, provided the target is big enough and the energy resolution is good enough.

  2. Searching for keV Sterile Neutrino Dark Matter with X-Ray Microcalorimeter Sounding Rockets

    NASA Astrophysics Data System (ADS)

    Figueroa-Feliciano, E.; Anderson, A. J.; Castro, D.; Goldfinger, D. C.; Rutherford, J.; Eckart, M. E.; Kelley, R. L.; Kilbourne, C. A.; McCammon, D.; Morgan, K.; Porter, F. S.; Szymkowiak, A. E.; XQC Collaboration

    2015-11-01

    High-resolution X-ray spectrometers onboard suborbital sounding rockets can search for dark matter candidates that produce X-ray lines, such as decaying keV-scale sterile neutrinos. Even with exposure times and effective areas far smaller than XMM-Newton and Chandra observations, high-resolution, wide field of view observations with sounding rockets have competitive sensitivity to decaying sterile neutrinos. We analyze a subset of the 2011 observation by the X-ray Quantum Calorimeter instrument centered on Galactic coordinates l=165°,b=-5° with an effective exposure of 106 s, obtaining a limit on the sterile neutrino mixing angle of {{sin}}22θ < 7.2× {10}-10 at 95% CL for a 7 keV neutrino. Better sensitivity at the level of {{sin}}22θ ∼ 2.1× {10}-11 at 95% CL for a 7 keV neutrino is achievable with future 300-s observations of the galactic center by the Micro-X instrument, providing a definitive test of the sterile neutrino interpretation of the reported 3.56 keV excess from galaxy clusters.

  3. keV sterile neutrino dark matter from singlet scalar decays: basic concepts and subtle features

    NASA Astrophysics Data System (ADS)

    Merle, Alexander; Totzauer, Maximilian

    2015-06-01

    We perform a detailed and illustrative study of the production of keV sterile neutrino Dark Matter (DM) by decays of singlet scalars in the early Universe. In the current study we focus on providing a clear and general overview of this production mechanism. For the first time we study all regimes possible on the level of momentum distribution functions, which we obtain by solving a system of Boltzmann equations. These quantities contain the full information about the production process, which allows us to not only track the evolution of the DM generation but to also take into account all bounds related to the spectrum, such as constraints from structure formation or from avoiding too much dark radiation. In particular we show that this simple production mechanism can, depending on the regime, lead to strongly non-thermal DM spectra which may even feature more than one peak in the momentum distribution. These cases could have particularly interesting consequences for cosmological structure formation, as their analysis requires more refined tools than the simplistic estimate using the free-streaming horizon. Here we present the mechanism including all concepts and subtleties involved, for now using the assumption that the effective number of relativistic degrees of freedom is constant during DM production, which is applicable in a significant fraction of the parameter space. This allows us to derive analytical results to back up our detailed numerical computations, thus leading to the most comprehensive picture of keV sterile neutrino DM production by singlet scalar decays that exists up to now.

  4. keV sterile neutrino dark matter from singlet scalar decays: basic concepts and subtle features

    SciTech Connect

    Merle, Alexander; Totzauer, Maximilian

    2015-06-08

    We perform a detailed and illustrative study of the production of keV sterile neutrino Dark Matter (DM) by decays of singlet scalars in the early Universe. In the current study we focus on providing a clear and general overview of this production mechanism. For the first time we study all regimes possible on the level of momentum distribution functions, which we obtain by solving a system of Boltzmann equations. These quantities contain the full information about the production process, which allows us to not only track the evolution of the DM generation but to also take into account all bounds related to the spectrum, such as constraints from structure formation or from avoiding too much dark radiation. In particular we show that this simple production mechanism can, depending on the regime, lead to strongly non-thermal DM spectra which may even feature more than one peak in the momentum distribution. These cases could have particularly interesting consequences for cosmological structure formation, as their analysis requires more refined tools than the simplistic estimate using the free-streaming horizon. Here we present the mechanism including all concepts and subtleties involved, for now using the assumption that the effective number of relativistic degrees of freedom is constant during DM production, which is applicable in a significant fraction of the parameter space. This allows us to derive analytical results to back up our detailed numerical computations, thus leading to the most comprehensive picture of keV sterile neutrino DM production by singlet scalar decays that exists up to now.

  5. Improved limits on sterile neutrino dark matter using full-sky Fermi Gamma-ray Burst Monitor data

    NASA Astrophysics Data System (ADS)

    Ng, Kenny C. Y.; Horiuchi, Shunsaku; Gaskins, Jennifer M.; Smith, Miles; Preece, Robert

    2015-08-01

    A sterile neutrino of ˜keV mass is a well-motivated dark matter candidate. Its decay generates an x-ray line that offers a unique target for x-ray telescopes. For the first time, we use the Gamma-ray Burst Monitor (GBM) onboard the Fermi Gamma-Ray Space Telescope to search for sterile neutrino decay lines; our analysis covers the energy range 10-25 keV (sterile neutrino mass 20-50 keV), which is inaccessible to x-ray and gamma-ray satellites such as Chandra, Suzaku, XMM-Newton, and INTEGRAL. The extremely wide field of view of the GBM enables a large fraction of the Milky Way dark matter halo to be probed. After implementing careful data cuts, we obtain ˜53 days of full-sky observational data. We observe an excess of photons towards the Galactic center, as expected from astrophysical emission. We search for sterile neutrino decay lines in the energy spectrum, and find no significant signal. From this, we obtain upper limits on the sterile neutrino mixing angle as a function of mass. In the sterile neutrino mass range 25-40 keV, we improve upon previous upper limits by approximately an order of magnitude. Better understanding of detector and astrophysical backgrounds, as well as detector response, will further improve the sensitivity of a search with the GBM.

  6. Sterile neutrino dark matter with gauged U(1){sub B-L} and a low reheating temperature

    SciTech Connect

    Khalil, Shaaban; Seto, Osamu

    2009-04-17

    Sterile right-handed neutrinos can be naturally embedded in a low scale gauged U(1){sub B-L} extension of the standard model. We show that, within a low reheating scenario, such a neutrino can be produced via a novel manner, namely scattering through Z' gauge boson, and becomes an interesting dark matter candidate. In addition, we show that if the neutrino mass is of the order of MeV, then it accounts for the measured dark matter relic density and also accommodates the observed flux of 511 keV photons from the galactic bulge.

  7. Dark Matters

    ScienceCinema

    Joseph Silk

    2010-01-08

    One of the greatest mysteries in the cosmos is that it is mostly dark.  Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe.  I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

  8. Dark Matters

    SciTech Connect

    Joseph Silk

    2009-09-23

    One of the greatest mysteries in the cosmos is that it is mostly dark.  Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe.  I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

  9. Dark matters

    NASA Astrophysics Data System (ADS)

    Steigman, Gary

    The observational evidence for dark matter in the universe is reviewed. Constraints on the baryon density from primordial nucleosynthesis are presented and compared to the dynamical estimates of the mass on various scales. Baryons can account for the observed luminous mass as well as some, perhaps most, of the 'observed' dark mass. However if, as inflation/naturalness suggest, the total density of the universe is equal to the critical density, then nonbaryonic dark matter is required. The assets and liabilities of, as well as the candidates for, hot and cold dark matter are outlined. At present, there is no completely satisfactory candidate for nonbaryonic dark matter.

  10. Sterile neutrino Dark Matter production from scalar decay in a thermal bath

    NASA Astrophysics Data System (ADS)

    Drewes, Marco; Kang, Jin U.

    2016-05-01

    We calculate the production rate of singlet fermions from the decay of neutral or charged scalar fields in a hot plasma. We find that there are considerable thermal corrections when the temperature of the plasma exceeds the mass of the decaying scalar. We give analytic expressions for the temperature-corrected production rates in the regime where the decay products are relativistic. We also study the regime of non-relativistic decay products numerically. Our results can be used to determine the abundance and momentum distribution of Dark Matter particles produced in scalar decays. The inclusion of thermal corrections helps to improve predictions for the free streaming of the Dark Matter particles, which is crucial to test the compatibility of a given model with cosmic structure formation. With some modifications, our results may be generalised to the production of other Dark Matter candidates in scalar decays.

  11. New production mechanism for keV sterile neutrino Dark Matter by decays of frozen-in scalars

    SciTech Connect

    Merle, Alexander; Niro, Viviana; Schmidt, Daniel E-mail: niro@ecm.ub.edu

    2014-03-01

    We propose a new production mechanism for keV sterile neutrino Dark Matter. In our setting, we assume the existence of a scalar singlet particle which never entered thermal equilibrium in the early Universe, since it only couples to the Standard Model fields by a really small Higgs portal interaction. For suitable values of this coupling, the scalar can undergo the so-called freeze-in process, and in this way be efficiently produced in the early Universe. These scalars can then decay into keV sterile neutrinos and produce the correct Dark Matter abundance. While similar settings in which the scalar does enter thermal equilibrium and then freezes out have been studied previously, the mechanism proposed here is new and represents a versatile extension of the known case. We perform a detailed numerical calculation of the DM production using a set of coupled Boltzmann equations, and we illustrate the successful regions in the parameter space. Our production mechanism notably can even work in models where active-sterile mixing is completely absent.

  12. Dark Matter

    SciTech Connect

    Bashir, A.; Cotti, U.; De Leon, C. L.; Raya, A; Villasenor, L.

    2008-07-02

    One of the biggest scientific mysteries of our time resides in the identification of the particles that constitute a large fraction of the mass of our Universe, generically known as dark matter. We review the observations and the experimental data that imply the existence of dark matter. We briefly discuss the properties of the two best dark-matter candidate particles and the experimental techniques presently used to try to discover them. Finally, we mention a proposed project that has recently emerged within the Mexican community to look for dark matter.

  13. Neutrinos and dark matter

    SciTech Connect

    Ibarra, Alejandro

    2015-07-15

    Neutrinos could be key particles to unravel the nature of the dark matter of the Universe. On the one hand, sterile neutrinos in minimal extensions of the Standard Model are excellent dark matter candidates, producing potentially observable signals in the form of a line in the X-ray sky. On the other hand, the annihilation or the decay of dark matter particles produces, in many plausible dark matter scenarios, a neutrino flux that could be detected at neutrino telescopes, thus providing non-gravitational evidence for dark matter. More conservatively, the non-observation of a significant excess in the neutrino fluxes with respect to the expected astrophysical backgrounds can be used to constrain dark matter properties, such as the self-annihilation cross section, the scattering cross section with nucleons and the lifetime.

  14. Structure formation in a mixed dark matter model with decaying sterile neutrino: the 3.5 keV X-ray line and the Galactic substructure

    NASA Astrophysics Data System (ADS)

    Harada, Akira; Kamada, Ayuki

    2016-01-01

    We perform a set of cosmological simulations of structure formation in a mixed dark matter (MDM) model. Our model is motivated by the recently identified 3.5 keV X-ray line, which can be explained by the decay of non-resonantly produced sterile neutrinos accounting for 20-60% of the dark matter in the Universe. These non-resonantly produced sterile neutrinos have a sizable free-streaming length and hence behave effectively as warm dark matter (WDM). Assuming the rest of dark matter is composed of some cold dark matter (CDM) particles, we follow the coevolution of a mixed WDM plus CDM cosmology. Specifically, we consider the models with the warm component fraction of rwarm=0.25 and 0.50. Our MDM models predict that the comoving Jeans length at the matter-radiation equality is close to that of the thermally produced warm dark matter model with particle mass mWDM=2.4 keV, but the suppression in the fluctuation power spectrum is weaker. We perform large N-body simulations to study the structure of non-linear dark halos in the MDM models. The abundance of substructure is significantly reduced in the MDM models, and hence the so-called small-scale crisis is mitigated. The cumulative maximum circular velocity function (CVF) of at least one halo in the MDM models is in good agreement with the CVFs of the observed satellites in the Milky Way and the Andromeda galaxy. We argue that the MDM models open an interesting possibility to reconcile the reported 3.5 keV line and the internal structure of galaxies.

  15. Dark matter.

    PubMed

    Peebles, P James E

    2015-10-01

    The evidence for the dark matter (DM) of the hot big bang cosmology is about as good as it gets in natural science. The exploration of its nature is now led by direct and indirect detection experiments, to be complemented by advances in the full range of cosmological tests, including judicious consideration of the rich phenomenology of galaxies. The results may confirm ideas about DM already under discussion. If we are lucky, we also will be surprised once again. PMID:24794526

  16. Dark matter

    PubMed Central

    Peebles, P. James E.

    2015-01-01

    The evidence for the dark matter (DM) of the hot big bang cosmology is about as good as it gets in natural science. The exploration of its nature is now led by direct and indirect detection experiments, to be complemented by advances in the full range of cosmological tests, including judicious consideration of the rich phenomenology of galaxies. The results may confirm ideas about DM already under discussion. If we are lucky, we also will be surprised once again. PMID:24794526

  17. Multi-Component Dark Matter

    SciTech Connect

    Zurek, Kathryn M.

    2008-11-01

    We explore multi-component dark matter models where the dark sector consists of multiple stable states with different mass scales, and dark forces coupling these states further enrich the dynamics. The multi-component nature of the dark matter naturally arises in supersymmetric models, where both R parity and an additional symmetry, such as a Z{sub 2}, is preserved. We focus on a particular model where the heavier component of dark matter carries lepton number and annihilates mostly to leptons. The heavier component, which is essentially a sterile neutrino, naturally explains the PAMELA, ATIC and synchrotron signals, without an excess in antiprotons which typically mars other models of weak scale dark matter. The lighter component, which may have a mass from a GeV to a TeV, may explain the DAMA signal, and may be visible in low threshold runs of CDMS and XENON, which search for light dark matter.

  18. Dark Matter

    ERIC Educational Resources Information Center

    Lincoln, Don

    2013-01-01

    It's a dark, dark universe out there, and I don't mean because the night sky is black. After all, once you leave the shadow of the Earth and get out into space, you're surrounded by countless lights glittering everywhere you look. But for all of Sagan's billions and billions of stars and galaxies, it's a jaw-dropping fact that the ordinary kind of…

  19. Dark matter and dark radiation

    SciTech Connect

    Ackerman, Lotty; Buckley, Matthew R.; Carroll, Sean M.; Kamionkowski, Marc

    2009-01-15

    We explore the feasibility and astrophysical consequences of a new long-range U(1) gauge field ('dark electromagnetism') that couples only to dark matter, not to the standard model. The dark matter consists of an equal number of positive and negative charges under the new force, but annihilations are suppressed if the dark-matter mass is sufficiently high and the dark fine-structure constant {alpha}-circumflex is sufficiently small. The correct relic abundance can be obtained if the dark matter also couples to the conventional weak interactions, and we verify that this is consistent with particle-physics constraints. The primary limit on {alpha}-circumflex comes from the demand that the dark matter be effectively collisionless in galactic dynamics, which implies {alpha}-circumflex < or approx. 10{sup -3} for TeV-scale dark matter. These values are easily compatible with constraints from structure formation and primordial nucleosynthesis. We raise the prospect of interesting new plasma effects in dark-matter dynamics, which remain to be explored.

  20. Reionization and dark matter decay

    NASA Astrophysics Data System (ADS)

    Oldengott, Isabel M.; Boriero, Daniel; Schwarz, Dominik J.

    2016-08-01

    Cosmic reionization and dark matter decay can impact observations of the cosmic microwave sky in a similar way. A simultaneous study of both effects is required to constrain unstable dark matter from cosmic microwave background observations. We compare two reionization models with and without dark matter decay. We find that a reionization model that fits also data from quasars and star forming galaxies results in tighter constraints on the reionization optical depth τreio, but weaker constraints on the spectral index ns than the conventional parametrization. We use the Planck 2015 data to constrain the effective decay rate of dark matter to Γeff < 2.9 × 10‑25/s at 95% C.L. This limit is robust and model independent. It holds for any type of decaying dark matter and it depends only weakly on the chosen parametrization of astrophysical reionization. For light dark matter particles that decay exclusively into electromagnetic components this implies a limit of Γ < 5.3 × 10‑26/s at 95% C.L. Specifying the decay channels, we apply our result to the case of keV-mass sterile neutrinos as dark matter candidates and obtain constraints on their mixing angle and mass, which are comparable to the ones from the diffuse X-ray background.

  1. Asymmetric dark matter

    SciTech Connect

    Kumar, Jason

    2014-06-24

    We review the theoretical framework underlying models of asymmetric dark matter, describe astrophysical constraints which arise from observations of neutron stars, and discuss the prospects for detecting asymmetric dark matter.

  2. Dark matter from split seesaw

    NASA Astrophysics Data System (ADS)

    Kusenko, Alexander; Takahashi, Fuminobu; Yanagida, Tsutomu T.

    2010-09-01

    The seesaw mechanism in models with extra dimensions is shown to be generically consistent with a broad range of Majorana masses. The resulting democracy of scales implies that the seesaw mechanism can naturally explain the smallness of neutrino masses for an arbitrarily small right-handed neutrino mass. If the scales of the seesaw parameters are split, with two right-handed neutrinos at a high scale and one at a keV scale, one can explain the matter-antimatter asymmetry of the universe, as well as dark matter. The dark matter candidate, a sterile right-handed neutrino with mass of several keV, can account for the observed pulsar velocities and for the recent data from Chandra X-ray Observatory, which suggest the existence of a 5 keV sterile right-handed neutrino.

  3. Nonthermal Supermassive Dark Matter

    NASA Technical Reports Server (NTRS)

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1999-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may he elementary particles of mass much greater than the weak scale. Searches for dark matter should ma be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  4. The Dark Matter Problem

    NASA Astrophysics Data System (ADS)

    Sanders, Robert H.

    2014-02-01

    1. Introduction; 2. Early history of the dark matter hypothesis; 3. The stability of disk galaxies: the dark halo solutions; 4. Direct evidence: extended rotation curves of spiral galaxies; 5. The maximum disk: light traces mass; 6. Cosmology and the birth of astroparticle physics; 7. Clusters revisited: missing mass found; 8. CDM confronts galaxy rotation curves; 9. The new cosmology: dark matter is not enough; 10. An alternative to dark matter: Modified Newtonian Dynamics; 11. Seeing dark matter: the theory and practice of detection; 12. Reflections: a personal point of view; Appendix; References; Index.

  5. Clumpy cold dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  6. Dark Matter 2013

    NASA Astrophysics Data System (ADS)

    Schumann, Marc

    2014-10-01

    This article reviews the status of the exciting and fastly evolving field of dark matter research as of summer 2013, when it was discussed at the International Cosmic Ray Conference (ICRC) 2013 in Rio de Janeiro. It focuses on the three main avenues to detect weakly interacting massive particle (WIMP) dark matter: direct detection, indirect detection, and collider searches. The article is based on the dark matter rapporteur talk summarizing the presentations given at the conference, filling some gaps for completeness.

  7. Dark matter and cosmology

    SciTech Connect

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  8. Dark matter and cosmology

    SciTech Connect

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  9. Analysis of dark matter and dark energy

    NASA Astrophysics Data System (ADS)

    Yongquan, Han

    2016-05-01

    As the law of unity of opposites of the Philosophy tells us, the bright material exists, the dark matter also exists. Dark matter and dark energy should allow the law of unity of opposites. The Common attributes of the matter is radiation, then common attributes of dark matter must be absorb radiation. Only the rotation speed is lower than the speed of light radiation, can the matter radiate, since the speed of the matter is lower than the speed of light, so the matter is radiate; The rotate speed of the dark matter is faster than the light , so the dark matter doesn't radiate, it absorbs radiation. The energy that the dark matter absorb radiation produced (affect the measurement of time and space distribution of variations) is dark energy, so the dark matter produce dark energy only when it absorbs radiation. Dark matter does not radiate, two dark matters does not exist inevitably forces, and also no dark energy. Called the space-time ripples, the gravitational wave is bent radiation, radiation particles should be graviton, graviton is mainly refers to the radiation particles whose wavelength is small. Dark matter, dark energy also confirms the existence of the law of symmetry.

  10. Condensate dark matter stars

    SciTech Connect

    Li, X.Y.; Harko, T.; Cheng, K.S. E-mail: harko@hkucc.hku.hk

    2012-06-01

    We investigate the structure and stability properties of compact astrophysical objects that may be formed from the Bose-Einstein condensation of dark matter. Once the critical temperature of a boson gas is less than the critical temperature, a Bose-Einstein Condensation process can always take place during the cosmic history of the universe. Therefore we model the dark matter inside the star as a Bose-Einstein condensate. In the condensate dark matter star model, the dark matter equation of state can be described by a polytropic equation of state, with polytropic index equal to one. We derive the basic general relativistic equations describing the equilibrium structure of the condensate dark matter star with spherically symmetric static geometry. The structure equations of the condensate dark matter stars are studied numerically. The critical mass and radius of the dark matter star are given by M{sub crit} ≈ 2(l{sub a}/1fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2}M{sub s}un and R{sub crit} ≈ 1.1 × 10{sup 6}(l{sub a}/1 fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2} cm respectively, where l{sub a} and m{sub χ} are the scattering length and the mass of dark matter particle, respectively.

  11. Composite millicharged dark matter

    NASA Astrophysics Data System (ADS)

    Kouvaris, Chris

    2013-07-01

    We study a composite millicharged dark matter model. The dark matter is in the form of pionlike objects emerging from a higher scale QCD-like theory. We present two distinct possibilities with interesting phenomenological consequences based on the choice of the parameters. In the first one, the dark matter is produced nonthermally, and it could potentially account for the 130 GeV Fermi photon line via decays of the “dark pions.” We estimate the self-interaction cross section, which might play an important role both in changing the dark matter halo profile at the center of the galaxy and in making the dark matter warmer. In the second version the dark matter is produced via the freeze-in mechanism. Finally we impose all possible astrophysical, cosmological and experimental constraints. We study in detail generic constraints on millicharged dark matter that can arise from anomalous isotope searches of different elements and we show why constraints based on direct searches from underground detectors are not generally valid.

  12. Ghost dark matter

    SciTech Connect

    Furukawa, Tomonori; Yokoyama, Shuichiro; Ichiki, Kiyotomo; Sugiyama, Naoshi; Mukohyama, Shinji E-mail: shu@a.phys.nagoya-u.ac.jp E-mail: naoshi@a.phys.nagoya-u.ac.jp

    2010-05-01

    We revisit ghost dark matter, the possibility that ghost condensation may serve as an alternative to dark matter. In particular, we investigate the Friedmann-Robertson-Walker (FRW) background evolution and the large-scale structure (LSS) in the ΛGDM universe, i.e. a late-time universe dominated by a cosmological constant and ghost dark matter. The FRW background of the ΛGDM universe is indistinguishable from that of the standard ΛCDM universe if M∼>1eV, where M is the scale of spontaneous Lorentz breaking. From the LSS we find a stronger bound: M∼>10eV. For smaller M, ghost dark matter would have non-negligible sound speed after the matter-radiation equality, and thus the matter power spectrum would significantly differ from observation. These bounds are compatible with the phenomenological upper bound M∼<100GeV known in the literature.

  13. Interacting warm dark matter

    SciTech Connect

    Cruz, Norman; Palma, Guillermo; Zambrano, David; Avelino, Arturo E-mail: guillermo.palma@usach.cl E-mail: avelino@fisica.ugto.mx

    2013-05-01

    We explore a cosmological model composed by a dark matter fluid interacting with a dark energy fluid. The interaction term has the non-linear λρ{sub m}{sup α}ρ{sub e}{sup β} form, where ρ{sub m} and ρ{sub e} are the energy densities of the dark matter and dark energy, respectively. The parameters α and β are in principle not constrained to take any particular values, and were estimated from observations. We perform an analytical study of the evolution equations, finding the fixed points and their stability properties in order to characterize suitable physical regions in the phase space of the dark matter and dark energy densities. The constants (λ,α,β) as well as w{sub m} and w{sub e} of the EoS of dark matter and dark energy respectively, were estimated using the cosmological observations of the type Ia supernovae and the Hubble expansion rate H(z) data sets. We find that the best estimated values for the free parameters of the model correspond to a warm dark matter interacting with a phantom dark energy component, with a well goodness-of-fit to data. However, using the Bayesian Information Criterion (BIC) we find that this model is overcame by a warm dark matter – phantom dark energy model without interaction, as well as by the ΛCDM model. We find also a large dispersion on the best estimated values of the (λ,α,β) parameters, so even if we are not able to set strong constraints on their values, given the goodness-of-fit to data of the model, we find that a large variety of theirs values are well compatible with the observational data used.

  14. Is Cold Dark Matter a Vacuum Effect?

    NASA Astrophysics Data System (ADS)

    Houlden, Michael A.

    Current theories about the Universe based on an FLRW model conclude that it is composed of ~4% normal matter, ~28 % dark matter and ~68% Dark Energy which is responsible for the well-established accelerated expansion: this model works extremely well. As the Universe expands the density of normal and dark matter decreases while the proportion of Dark Energy increases. This model assumes that the amount of dark matter, whose nature at present is totally unknown, has remained constant. This is a natural assumption if dark matter is a particle of some kind - WIMP, sterile neutrino, lightest supersysmmetric particle or axion, etc. - that must have emerged from the early high temperature phase of the Big Bang. This paper proposes that dark matter is not a particle such as these but a vacuum effect, and that the proportion of dark matter in the Universe is actually increasing with time. The idea that led to this suggestion was that a quantum process (possibly the Higgs mechanism) might operate in the nilpotent vacuum that Rowlands postulates is a dual space to the real space where Standard Model fundamental fermions (and we) reside. This could produce a vacuum quantum state that has mass, which interacts gravitationally, and such states would be `dark matter'. It is proposed that the rate of production of dark matter by this process might depend on local circumstances, such as the density of dark matter and/or normal matter. This proposal makes the testable prediction that the ratio of baryonic to dark matter varies with redshift and offers an explanation, within the framework of Rowlands' ideas, of the coincidence problem - why has cosmic acceleration started in the recent epoch at redshift z ~0.55 when the Dark Energy density first became equal to the matter density?. This process also offers a potential solution to the `missing baryon' problem.

  15. Exothermic dark matter

    SciTech Connect

    Graham, Peter W.; Saraswat, Prashant; Harnik, Roni; Rajendran, Surjeet

    2010-09-15

    We propose a novel mechanism for dark matter to explain the observed annual modulation signal at DAMA/LIBRA which avoids existing constraints from every other dark matter direct detection experiment including CRESST, CDMS, and XENON10. The dark matter consists of at least two light states with mass {approx}few GeV and splittings {approx}5 keV. It is natural for the heavier states to be cosmologically long-lived and to make up an O(1) fraction of the dark matter. Direct detection rates are dominated by the exothermic reactions in which an excited dark matter state downscatters off of a nucleus, becoming a lower energy state. In contrast to (endothermic) inelastic dark matter, the most sensitive experiments for exothermic dark matter are those with light nuclei and low threshold energies. Interestingly, this model can also naturally account for the observed low-energy events at CoGeNT. The only significant constraint on the model arises from the DAMA/LIBRA unmodulated spectrum but it can be tested in the near future by a low-threshold analysis of CDMS-Si and possibly other experiments including CRESST, COUPP, and XENON100.

  16. Big Questions: Dark Matter

    SciTech Connect

    Lincoln, Don

    2013-12-05

    Carl Sagan's oft-quoted statement that there are "billions and billions" of stars in the cosmos gives an idea of just how much "stuff" is in the universe. However scientists now think that in addition to the type of matter with which we are familiar, there is another kind of matter out there. This new kind of matter is called "dark matter" and there seems to be five times as much as ordinary matter. Dark matter interacts only with gravity, thus light simply zips right by it. Scientists are searching through their data, trying to prove that the dark matter idea is real. Fermilab's Dr. Don Lincoln tells us why we think this seemingly-crazy idea might not be so crazy after all.

  17. Big Questions: Dark Matter

    ScienceCinema

    Lincoln, Don

    2014-08-07

    Carl Sagan's oft-quoted statement that there are "billions and billions" of stars in the cosmos gives an idea of just how much "stuff" is in the universe. However scientists now think that in addition to the type of matter with which we are familiar, there is another kind of matter out there. This new kind of matter is called "dark matter" and there seems to be five times as much as ordinary matter. Dark matter interacts only with gravity, thus light simply zips right by it. Scientists are searching through their data, trying to prove that the dark matter idea is real. Fermilab's Dr. Don Lincoln tells us why we think this seemingly-crazy idea might not be so crazy after all.

  18. Dark matter universe

    NASA Astrophysics Data System (ADS)

    Bahcall, Neta A.

    2015-10-01

    Most of the mass in the universe is in the form of dark matter-a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations-from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology-a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)-fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  19. Dark matter universe.

    PubMed

    Bahcall, Neta A

    2015-10-01

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091

  20. Dark matter universe

    PubMed Central

    Bahcall, Neta A.

    2015-01-01

    Most of the mass in the universe is in the form of dark matter—a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations—from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is “cold” (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology—a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)—fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091

  1. Resonant SIMP dark matter

    NASA Astrophysics Data System (ADS)

    Choi, Soo-Min; Lee, Hyun Min

    2016-07-01

    We consider a resonant SIMP dark matter in models with two singlet complex scalar fields charged under a local dark U(1)D. After the U(1)D is broken down to a Z5 discrete subgroup, the lighter scalar field becomes a SIMP dark matter which has the enhanced 3 → 2 annihilation cross section near the resonance of the heavier scalar field. Bounds on the SIMP self-scattering cross section and the relic density can be fulfilled at the same time for perturbative couplings of SIMP. A small gauge kinetic mixing between the SM hypercharge and dark gauge bosons can be used to make SIMP dark matter in kinetic equilibrium with the SM during freeze-out.

  2. Inflatable Dark Matter.

    PubMed

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D

    2016-01-22

    We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ∼MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model. PMID:26849584

  3. Xenophobic dark matter

    NASA Astrophysics Data System (ADS)

    Feng, Jonathan L.; Kumar, Jason; Sanford, David

    2013-07-01

    We consider models of xenophobic dark matter, in which isospin-violating dark matter-nucleon interactions significantly degrade the response of xenon direct detection experiments. For models of near-maximal xenophobia, with neutron-to-proton coupling ratio fn/fp≈-0.64, and dark matter mass near 8 GeV, the regions of interest for CoGeNT and CDMS-Si and the region of interest identified by Collar and Fields in CDMS-Ge data can be brought into agreement. This model may be tested in future direct, indirect, and collider searches. Interestingly, because the natural isotope abundance of xenon implies that xenophobia has its limits, we find that this xenophobic model may be probed in the near future by xenon experiments. Near-future data from the LHC and Fermi-LAT may also provide interesting alternative probes of xenophobic dark matter.

  4. Elastically Decoupling Dark Matter

    NASA Astrophysics Data System (ADS)

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2016-06-01

    We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10-3- 1 fb range.

  5. Elastically Decoupling Dark Matter.

    PubMed

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2016-06-01

    We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1  fb range. PMID:27314712

  6. The Local Dark Matter

    SciTech Connect

    Helfer, H.L.

    2005-10-21

    The observations of the extended rotation curves of some galaxies provide important constraints upon the nature of the local dark matter present in the halos of these galaxies. Using these constraints, one can show that the halo dark matter cannot be some population of conventional astronomical objects and (most probably) cannot be a population of exotic non-interacting particles. We suggest that the halos can be regarded as large spatial fluctuations in a classic scalar field.

  7. Dark matter: Theoretical perspectives

    SciTech Connect

    Turner, M.S. |

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ``new physics.`` The compelling candidates are: a very light axion ( 10{sup {minus}6} eV--10{sup {minus}4} eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  8. Dark matter: theoretical perspectives.

    PubMed Central

    Turner, M S

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that (i) there are no dark-matter candidates within the "standard model" of particle physics, (ii) there are several compelling candidates within attractive extensions of the standard model of particle physics, and (iii) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for "new physics." The compelling candidates are a very light axion (10(-6)-10(-4) eV), a light neutrino (20-90 eV), and a heavy neutralino (10 GeV-2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos. PMID:11607395

  9. Dark matter: Theoretical perspectives

    SciTech Connect

    Turner, M.S. . Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL )

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for new physics.'' The compelling candidates are: a very light axion ( 10[sup [minus]6] eV--10[sup [minus]4] eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  10. Dark matter possibilities

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin

    2015-04-01

    In my research I observe signals that penetrate dense matter and I hypothesize that they are due to waves in dark matter. Since they readily penetrate thick matter I hypothesize that they are due to small dark matter particles instead of the usual hypothesized Wimps. For example I observed signals that penetrate my local hill at near 77 m/s. In addition the solar cycle appears to be due to to dark matter oscillating in the sun producing standing waves that have to due with planet placement and stability of the solar system. Dozens of experiments, over the past 20 years, confirm the penetrating waves. Examples of the experiments are presented on my website darkmatterwaves.com and US patent number 8,669,917 B1.

  11. Quirky composite dark matter

    NASA Astrophysics Data System (ADS)

    Kribs, Graham D.; Roy, Tuhin S.; Terning, John; Zurek, Kathryn M.

    2010-05-01

    We propose a new dark matter candidate, “quirky dark matter,” that is a scalar baryonic bound state of a new non-Abelian force that becomes strong below the electroweak scale. The bound state is made of chiral quirks: new fermions that transform under both the new strong force as well as in a chiral representation of the electroweak group, acquiring mass from the Higgs mechanism. Electric charge neutrality of the lightest baryon requires approximately degenerate quirk masses which also causes the charge radius of the bound state to be negligible. The abundance is determined by an asymmetry that is linked to the baryon and lepton numbers of the universe through electroweak sphalerons. Dark matter elastic scattering with nuclei proceeds through Higgs exchange as well as an electromagnetic polarizability operator which is just now being tested in direct detection experiments. A novel method to search for quirky dark matter is to look for a gamma-ray “dark line” spectroscopic feature in galaxy clusters that result from the quirky Lyman-alpha or quirky hyperfine transitions. Colliders are expected to dominantly produce quirky mesons, not quirky baryons, consequently large missing energy is not the primary collider signal of the physics associated with quirky dark matter.

  12. Tunguska dark matter ball

    NASA Astrophysics Data System (ADS)

    Froggatt, C. D.; Nielsen, H. B.

    2015-04-01

    It is suggested that the Tunguska event in June 1908 was due to a cm-large ball of a condensate of bound states of 6 top and 6 antitop quarks containing highly compressed ordinary matter. Such balls are supposed to make up the dark matter as we earlier proposed. The expected rate of impact of this kind of dark matter ball with the earth seems to crudely match a time scale of 200 years between the impacts. The main explosion of the Tunguska event is explained in our picture as material coming out from deep within the earth, where it has been heated and compressed by the ball penetrating to a depth of several thousand km. Thus the effect has some similarity with volcanic activity as suggested by Kundt. We discuss the possible identification of kimberlite pipes with earlier Tunguska-like events. A discussion of how the dark matter balls may have formed in the early universe is also given.

  13. On baryogenesis from dark matter annihilation

    SciTech Connect

    Bernal, Nicolás; Colucci, Stefano; Ubaldi, Lorenzo; Josse-Michaux, François-Xavier; Racker, J. E-mail: colucci@th.physik.uni-bonn.de E-mail: racker@ific.uv.es

    2013-10-01

    We study in detail the conditions to generate the baryon asymmetry of the universe from the annihilation of dark matter. This scenario requires a low energy mechanism for thermal baryogenesis, hence we first discuss some of these mechanisms together with the specific constraints due to the connection with the dark matter sector. Then we show that, contrary to what stated in previous studies, it is possible to generate the cosmological asymmetry without adding a light sterile dark sector, both in models with violation and with conservation of B−L. In addition, one of the models we propose yields some connection to neutrino masses.

  14. Vectorlike sneutrino dark matter

    NASA Astrophysics Data System (ADS)

    Tang, Yi-Lei; Zhu, Shou-hua

    2016-05-01

    In this paper, we discuss the minimal supersymmetric standard model (MSSM) extended with one vectorlike lepton doublet L -L ¯ and one right-handed neutrino N . The neutral vecotorlike sneutrino can be a candidate of dark matter. To avoid the interaction with the nucleons by exchanging a Z boson, the mass splitting between the real part and the imaginary part of the sneutrino field is needed. Compared with the MSSM sneutrino dark matter, the mass splitting between the vectorlike sneutrino field can be more naturally acquired without large A terms and constraints on the neutralino masses. We have also calculated the relic density and the elastic scattering cross sections with the nucleons in the cases that the dark matter particles coannihilate with or without the MSSM slepton doublets. The elastic scattering cross sections with the nucleons are well below the LUX bounds. In the case that the dark matter coannihilates with all the MSSM slepton doublets, the mass of the dark matter can be as light as 370 GeV.

  15. Complex Dark Matter

    SciTech Connect

    Lincoln, Don

    2015-04-16

    After a century of study, scientists have come to the realization that the ordinary matter made of atoms is a minority in the universe. In order to explain observations, it appears that there exists a new and undiscovered kind of matter, called dark matter, that is five times more prevalent than ordinary matter. The evidence for this new matter’s existence is very strong, but scientists know only a little about its nature. In today’s video, Fermilab’s Dr. Don Lincoln talks about an exciting and unconventional idea, specifically that dark matter might have a very complex set of structures and interactions. While this idea is entirely speculative, it is an interesting hypothesis and one that scientists are investigating.

  16. Cosmological Bounds of Sterile Neutrinos in a S U(3) C ⊗ S U(3) L ⊗ S U(3) R ⊗ U(1) N Model as Dark Matter Candidates

    NASA Astrophysics Data System (ADS)

    Ferreira, C. P.; Guzzo, M. M.; de Holanda, P. C.

    2016-08-01

    We study sterile neutrinos in an extension of the standard model, based on the gauge group S U(3) C ⊗ S U(3) L ⊗ S U(3) R ⊗ U(1) N , and use this model to illustrate how to apply cosmological limits to thermalized particles that decouple while relativistic. These neutrinos, N a L , can be dark matter candidates, with a kiloelectron volt mass range arising rather naturally in this model. We analyse the cosmological limits imposed by N e f f and dark matter abundance on these neutrinos. Assuming that these neutrinos have roughly equal masses and are not CDM, we conclude that the N e f f experimental value can be satisfied in some cases and the abundance constraint implies that these neutrinos are hot dark matter. With this information, we give upper bounds on the Yukawa coupling between the sterile neutrinos and a scalar field, the possible values of the VEV of this scalar field and lower bounds to the mass of one gauge boson of the model.

  17. Dark matter candidates

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1989-01-01

    The types of particles which may provide the nonluminous mass required by big-bang cosmological models are listed and briefly characterized. The observational evidence for the existence of dark matter (outweighing the luminous component by at least a factor of 10) is reviewed; the theoretical arguments favoring mainly nonbaryonic dark matter are summarized; and particular attention is given to weakly interacting massive particles (WIMPs) remaining as relics from the early universe. The WIMPs are classified as thermal relics (heavy stable neutrinos and lighter neutralinos), asymmetric relics (including baryons), nonthermal relics (superheavy magnetic monopoles, axions, and soliton stars), and truly exotic relics (relativistic debris or vacuum energy). Explanations for the current apparent baryon/exotica ratio of about 0.1 in different theoretical scenarios are considered, and the problems of experimental and/or observational dark-matter detection are examined.

  18. Asymmetric twin Dark Matter

    SciTech Connect

    Farina, Marco

    2015-11-09

    We study a natural implementation of Asymmetric Dark Matter in Twin Higgs models. The mirroring of the Standard Model strong sector suggests that a twin baryon with mass around 5 GeV is a natural Dark Matter candidate once a twin baryon number asymmetry comparable to the SM asymmetry is generated. We explore twin baryon Dark Matter in two different scenarios, one with minimal content in the twin sector and one with a complete copy of the SM, including a light twin photon. The essential requirements for successful thermal history are presented, and in doing so we address some of the cosmological issues common to many Twin Higgs models. The required interactions we introduce predict signatures at direct detection experiments and at the LHC.

  19. Axion dark matter searches

    SciTech Connect

    Stern, Ian P.; Collaboration: ADMX Collaboration; ADMX-HF Collaboration

    2014-06-24

    Nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axions at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.

  20. Axion dark matter searches

    DOE PAGESBeta

    Stern, Ian P.

    2014-01-01

    We report nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axionsmore » at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.« less

  1. Axion dark matter searches

    SciTech Connect

    Stern, Ian P.

    2014-01-01

    We report nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axions at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.

  2. Signatures of dark matter

    NASA Astrophysics Data System (ADS)

    Baltz, Edward Anthony

    It is well known that most of the mass in the universe remains unobserved save for its gravitational effect on luminous matter. The nature of this ``dark matter'' remains a mystery. From measurements of the primordial deuterium abundance, the theory of big bang nucleosynthesis predicts that there are not enough baryons to account for the amount of dark matter observed, thus the missing mass must take an exotic form. Several promising candidates have been proposed. In this work I will describe my research along two main lines of inquiry into the dark matter puzzle. The first possibility is that the dark matter is exotic massive particles, such as those predicted by supersymmetric extensions to the standard model of particle physics. Such particles are generically called WIMPs, for weakly interacting massive particles. Focusing on the so-called neutralino in supersymmetric models, I discuss the possible signatures of such particles, including their direct detection via nuclear recoil experiments and their indirect detection via annihilations in the halos of galaxies, producing high energy antiprotons, positrons and gamma rays. I also discuss signatures of the possible slow decays of such particles. The second possibility is that there is a population of black holes formed in the early universe. Any dark objects in galactic halos, black holes included, are called MACHOs, for massive compact halo objects. Such objects can be detected by their gravitational microlensing effects. Several possibilities for sources of baryonic dark matter are also interesting for gravitational microlensing. These include brown dwarf stars and old, cool white dwarf stars. I discuss the theory of gravitational microlensing, focusing on the technique of pixel microlensing. I make predictions for several planned microlensing experiments with ground based and space based telescopes. Furthermore, I discuss binary lenses in the context of pixel microlensing. Finally, I develop a new technique for

  3. Light dark matter and dark radiation

    NASA Astrophysics Data System (ADS)

    Heo, Jae Ho; Kim, C. S.

    2016-03-01

    Light ( M ≤ 20 MeV) dark-matter particles freeze out after neutrino decoupling. If the dark-matter particle couples to a neutrino or an electromagnetic plasma, the late time entropy production from dark-matter annihilation can change the neutrino-to-photon temperature ratio, and equally the effective number of neutrinos N eff. We study the non-equilibrium effects of dark-matter annihilation on the N eff and the effects by using a thermal equilibrium approximation. Both results are constrained with Planck observations. We demonstrate that the lower bounds of the dark-matter mass and the possibilities of the existence of additional radiation particles are more strongly constrained for dark-matter annihilation process in non-equilibrium.

  4. Asymmetric condensed dark matter

    NASA Astrophysics Data System (ADS)

    Aguirre, Anthony; Diez-Tejedor, Alberto

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  5. Dark matter detection

    NASA Astrophysics Data System (ADS)

    Baudis, Laura

    2016-08-01

    More than 80 years after its first postulation in modern form, the existence and distribution of dark matter in our Universe is well established. Dark matter is the gravitational glue that holds together galaxies, galaxy clusters and structures on the largest cosmological scales, and an essential component to explain the observed fluctuations in the cosmic microwave background. Yet its existence is inferred indirectly, through its gravitational influence on luminous matter, and its nature is not known. A viable hypothesis is that dark matter is made of new, elementary particles, with allowed masses and interaction strengths spanning a wide range. Two well-motivated classes of candidates are axions and weakly interacting massive particles (WIMPs), and experimental efforts have now reached sensitivities that allow them to test this hypothesis. Axions, produced non-thermally in the early Universe, can be detected by exploiting their predicted couplings to photons and electrons. WIMPs can be detected directly by looking for their collisions with atomic nuclei ultra-low background detectors, or indirectly, through the observation of their annihilation products such as neutrinos, gamma rays, positrons and antiprotons over the astrophysical background. A complementary method is the production of dark matter particles at colliders such as the Large Hadron Collider, where they could be observed indirectly via missing transverse energy, or via associated particle production. I will review the main experimental efforts to search for dark matter particles, and the existing constraints on the interaction cross sections. I will also discuss future experiments, their complementarity and their ability to measure the properties of these particles.

  6. Inflatable dark matter

    DOE PAGESBeta

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel

    2016-01-22

    Here, we describe a general scenario, dubbed “inflatable dark matter,” in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levelsmore » without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ~MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.« less

  7. Dark matter on top

    SciTech Connect

    Gómez, M.A.; Jackson, C.B.; Shaughnessy, G. E-mail: chris@uta.edu

    2014-12-01

    We consider a simplified model of fermionic dark matter which couples exclusively to the right-handed top quark via a renormalizable interaction with a color-charged scalar. We first compute the relic abundance of this type of dark matter and investigate constraints placed on the model parameter space by the latest direct detection data. We also perform a detailed analysis for the production of dark matter at the LHC for this model. We find several kinematic variables that allow for a clean signal extraction and we show that the parameter space of this model will be well probed during LHC Run-II. Finally, we investigate the possibility of detecting this type of dark matter via its annihilations into gamma rays. We compute the continuum and the line emission (which includes a possible ''Higgs in Space!'' line) and its possible discovery by future gamma-ray telescopes. We find that the annihilation spectrum has distinctive features which may distinguish it from other models.

  8. Little Higgs dark matter

    SciTech Connect

    Birkedal, Andreas; Noble, Andrew; Perelstein, Maxim; Spray, Andrew

    2006-08-01

    The introduction of T parity dramatically improves the consistency of little Higgs models with precision electroweak data, and renders the lightest T-odd particle (LTP) stable. In the littlest Higgs model with T parity, the LTP is typically the T-odd heavy photon, which is weakly interacting and can play the role of dark matter. We analyze the relic abundance of the heavy photon, including its coannihilations with other T-odd particles, and map out the regions of the parameter space where it can account for the observed dark matter. We evaluate the prospects for direct and indirect discovery of the heavy photon dark matter. The direct detection rates are quite low and a substantial improvement in experimental sensitivity would be required for observation. A substantial flux of energetic gamma rays is produced in the annihilation of the heavy photons in the galactic halo. This flux can be observed by the GLAST telescope, and, if the distribution of dark matter in the halo is favorable, by ground-based telescope arrays such as VERITAS and HESS.

  9. Cold dark matter halos

    NASA Astrophysics Data System (ADS)

    Dubinski, John Joseph

    The dark halos arising in the Cold Dark Matter (CDM) cosmology are simulated to investigate the relationship between the structure and kinematics of dark halos and galaxies. Realistic cosmological initial conditions and tidal field boundary conditions are used in N-body simulations of the collapse of density peaks to form dark halos. The core radii of dark halos are no greater than the softening radius, rs = 1.4 kpc. The density profiles can be fit with an analytical Hernquist (1990) profile with an effective power law which varies between -1 in the center to -4 at large radii. The rotation curves of dark halos resemble the flat rotation curves of spiral galaxies in the observed range, 1.5 approximately less than r approximately less than 30 kpc. The halos are strongly triaxial and very flat with (c/a) = 0.50 and (b/a) = 0.71. The distribution of ellipticities for dark halos reaches a maximum at epsilon = 0.5 in contrast to the distribution for elliptical galaxies which peaks at epsilon = 0.2 suggesting that ellipticals are much rounder than dark halos. Dark halos are generally flatter than their progenitor density peaks. The final shape and orientation of a dark halo are largely determined by tidal torquing and are sensitive to changes in the strength and orientation of a tidal field. Dark halos are pressure supported objects with negligible rotational support as indicated by the mean dimensionless spin, lamda = 0.042 +/- 0.024. The angular momentum vector tends to align with the true minor axis of dark halos. Elliptical galaxies have a similar behavior implied by the observation of the tendency for alignment of the rotation vector and the apparent minor axis. The origin of this behavior may be traced to the tendency for tidal torques to misalign with the major axis of a density peak. Tidal torques are found to isotropize the velocity ellipsoids of dark halos at large radii, contrary to the expectation of radially anisotropic velocity ellipsoids in cold collapse

  10. The Search for Dark Matter

    SciTech Connect

    Orrell, John

    2013-11-20

    More than 25 years ago, PNNL scientists began the first underground measurements searching for dark matter using specialized radiation detector technology. Dark matter is yet to be discovered says Physicist John L. Orrell.

  11. The Search for Dark Matter

    ScienceCinema

    Orrell, John

    2014-07-24

    More than 25 years ago, PNNL scientists began the first underground measurements searching for dark matter using specialized radiation detector technology. Dark matter is yet to be discovered says Physicist John L. Orrell.

  12. Levitating dark matter

    NASA Astrophysics Data System (ADS)

    Kaloper, Nemanja; Padilla, Antonio

    2009-10-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra `antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < -1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger `Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.

  13. Levitating dark matter

    SciTech Connect

    Kaloper, Nemanja; Padilla, Antonio E-mail: antonio.padilla@nottingham.ac.uk

    2009-10-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra 'antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < −1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger 'Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.

  14. Inflatable Dark Matter

    SciTech Connect

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D.

    2015-07-30

    We describe a general scenario, dubbed “Inflatable Dark Matter”, in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early universe. The overproduction of dark matter that is predicted within many otherwise well-motivated models of new physics can be elegantly remedied within this context, without the need to tune underlying parameters or to appeal to anthropic considerations. Thermal relics that would otherwise be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the non-thermal abundance of GUT or Planck scale axions can be brought to acceptable levels, without invoking anthropic tuning of initial conditions. Additionally, a period of late-time inflation could have occurred over a wide range of scales from ~ MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the Standard Model.

  15. Inflatable Dark Matter

    DOE PAGESBeta

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D.

    2016-01-22

    We describe a general scenario, dubbed “Inflatable Dark Matter”, in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early universe. The overproduction of dark matter that is predicted within many otherwise well-motivated models of new physics can be elegantly remedied within this context, without the need to tune underlying parameters or to appeal to anthropic considerations. Thermal relics that would otherwise be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the non-thermal abundance of GUTmore » or Planck scale axions can be brought to acceptable levels, without invoking anthropic tuning of initial conditions. Additionally, a period of late-time inflation could have occurred over a wide range of scales from ~ MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the Standard Model.« less

  16. Dark matter candidates

    SciTech Connect

    Turner, M.S.

    1989-01-01

    One of the simplest, yet most profound, questions we can ask about the Universe is, how much stuff is in it, and further what is that stuff composed of. Needless to say, the answer to this question has very important implications for the evolution of the Universe, determining both the ultimate fate and the course of structure formation. Remarkably, at this late date in the history of the Universe we still do not have a definitive answer to this simplest of questions---although we have some very intriguing clues. It is known with certainty that most of the material in the Universe is dark, and we have the strong suspicion that the dominant component of material in the Cosmos is not baryons, but rather is exotic relic elementary particles left over from the earliest, very hot epoch of the Universe. If true, the Dark Matter question is a most fundamental one facing both particle physics and cosmology. The leading particle dark matter candidates are: the axion, the neutralino, and a light neutrino species. All three candidates are accessible to experimental tests, and experiments are now in progress. In addition, there are several dark horse, long shot, candidates, including the superheavy magnetic monopole and soliton stars. 13 refs.

  17. Dark matter axions revisited

    NASA Astrophysics Data System (ADS)

    Visinelli, Luca; Gondolo, Paolo

    2009-08-01

    We study for what specific values of the theoretical parameters the axion can form the totality of cold dark matter. We examine the allowed axion parameter region in the light of recent data collected by the WMAP5 mission plus baryon acoustic oscillations and supernovae, and assume an inflationary scenario and standard cosmology. We also upgrade the treatment of anharmonicities in the axion potential, which we find important in certain cases. If the Peccei-Quinn symmetry is restored after inflation, we recover the usual relation between axion mass and density, so that an axion mass ma=(85±3)μeV makes the axion 100% of the cold dark matter. If the Peccei-Quinn symmetry is broken during inflation, the axion can instead be 100% of the cold dark matter for ma<15meV provided a specific value of the initial misalignment angle θi is chosen in correspondence to a given value of its mass ma. Large values of the Peccei-Quinn symmetry breaking scale correspond to small, perhaps uncomfortably small, values of the initial misalignment angle θi.

  18. EDITORIAL: Focus on Dark Matter and Particle Physics

    NASA Astrophysics Data System (ADS)

    Aprile, Elena; Profumo, Stefano

    2009-10-01

    Doetinchem, H Gast, T Kirn and S Schael Axion searches with helioscopes and astrophysical signatures for axion(-like) particles K Zioutas, M Tsagri, Y Semertzidis, T Papaevangelou, T Dafni and V Anastassopoulos The indirect search for dark matter with IceCube Francis Halzen and Dan Hooper DIRECT DARK MATTER SEARCHES:EXPERIMENTS Gaseous dark matter detectors G Sciolla and C J Martoff Search for dark matter with CRESST Rafael F Lang and Wolfgang Seidel DIRECT AND INDIRECT PARTICLE DARK MATTER SEARCHES:THEORY Dark matter annihilation around intermediate mass black holes: an update Gianfranco Bertone, Mattia Fornasa, Marco Taoso and Andrew R Zentner Update on the direct detection of dark matter in MSSM models with non-universal Higgs masses John Ellis, Keith A Olive and Pearl Sandick Dark stars: a new study of the first stars in the Universe Katherine Freese, Peter Bodenheimer, Paolo Gondolo and Douglas Spolyar Determining the mass of dark matter particles with direct detection experiments Chung-Lin Shan The detection of subsolar mass dark matter halos Savvas M Koushiappas Neutrino coherent scattering rates at direct dark matter detectors Louis E Strigari Gamma rays from dark matter annihilation in the central region of the Galaxy Pasquale Dario Serpico and Dan Hooper DARK MATTER MODELS The dark matter interpretation of the 511 keV line Céline Boehm Axions as dark matter particles Leanne D Duffy and Karl van Bibber Sterile neutrinos Alexander Kusenko Dark matter candidates Lars Bergström Minimal dark matter: model and results Marco Cirelli and Alessandro Strumia Shedding light on the dark sector with direct WIMP production Partha Konar, Kyoungchul Kong, Konstantin T Matchev and Maxim Perelstein Axinos as dark matter particles Laura Covi and Jihn E Kim

  19. Direct search for dark matter

    SciTech Connect

    Yoo, Jonghee; /Fermilab

    2009-12-01

    Dark matter is hypothetical matter which does not interact with electromagnetic radiation. The existence of dark matter is only inferred from gravitational effects of astrophysical observations to explain the missing mass component of the Universe. Weakly Interacting Massive Particles are currently the most popular candidate to explain the missing mass component. I review the current status of experimental searches of dark matter through direct detection using terrestrial detectors.

  20. Coupling dark energy to dark matter inhomogeneities

    NASA Astrophysics Data System (ADS)

    Marra, Valerio

    2016-09-01

    We propose that dark energy in the form of a scalar field could effectively couple to dark matter inhomogeneities. Through this coupling energy could be transferred to/from the scalar field, which could possibly enter an accelerated regime. Though phenomenological, this scenario is interesting as it provides a natural trigger for the onset of the acceleration of the universe, since dark energy starts driving the expansion of the universe when matter inhomogeneities become sufficiently strong. Here we study a possible realization of this idea by coupling dark energy to dark matter via the linear growth function of matter perturbations. The numerical results show that it is indeed possible to obtain a viable cosmology with the expected series of radiation, matter and dark-energy dominated eras. In particular, the current density of dark energy is given by the value of the coupling parameters rather than by very special initial conditions for the scalar field. In other words, this model-unlike standard models of cosmic late acceleration-does not suffer from the so-called "coincidence problem" and its related fine tuning of initial conditions.

  1. Dark Forces and Light Dark Matter

    SciTech Connect

    Hooper, Dan; Weiner, Neal; Xue, Wei

    2012-09-01

    We consider a simple class of models in which the dark matter, X, is coupled to a new gauge boson, phi, with a relatively low mass (m_phi \\sim 100 MeV-3 GeV). Neither the dark matter nor the new gauge boson have tree-level couplings to the Standard Model. The dark matter in this model annihilates to phi pairs, and for a coupling of g_X \\sim 0.06 (m_X/10 GeV)^1/2 yields a thermal relic abundance consistent with the cosmological density of dark matter. The phi's produced in such annihilations decay through a small degree of kinetic mixing with the photon to combinations of Standard Model leptons and mesons. For dark matter with a mass of \\sim10 GeV, the shape of the resulting gamma-ray spectrum provides a good fit to that observed from the Galactic Center, and can also provide the very hard electron spectrum required to account for the observed synchrotron emission from the Milky Way's radio filaments. For kinetic mixing near the level naively expected from loop-suppressed operators (epsilon \\sim 10^{-4}), the dark matter is predicted to scatter elastically with protons with a cross section consistent with that required to accommodate the signals reported by DAMA/LIBRA, CoGeNT and CRESST-II.

  2. Imperfect Dark Matter

    NASA Astrophysics Data System (ADS)

    Mirzagholi, Leila; Vikman, Alexander

    2015-06-01

    We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models.

  3. Dark Matter Velocity Spectroscopy.

    PubMed

    Speckhard, Eric G; Ng, Kenny C Y; Beacom, John F; Laha, Ranjan

    2016-01-22

    Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications. PMID:26849582

  4. Gravitino Dark Matter

    SciTech Connect

    Buchmueller, Wilfried

    2010-02-10

    Gravitino dark matter, together with thermal leptogenesis, implies an upper bound on the masses of superparticles. In the case of broken R-parity the constraints from primordial nucleosynthesis are naturally satisfied and decaying gravitinos lead to characteristic signatures in high energy cosmic rays. Electron and positron fluxes from gravitino decays cannot explain both, the PAMELA positron fraction and the electron+positron flux recently measured by Fermi LAT. The observed fluxes require astrophysical sources. The measured antiproton flux allows for a sizable contribution of decaying gravitinos to the gamma-ray spectrum, in particular a line at an energy below 300 GeV.

  5. Dark matter axions

    SciTech Connect

    Sikivie, P. |

    1992-09-01

    The physics of axions is briefly reviewed theoretically, and various constraints on the axion mass are recounted. Then the two main contributions to the present cosmological axion energy density, that due to the realignment of the vacuum during the QCD phase transition and that from axions radiated by cosmic axion strings, are discussed. Next, two detection schemes for axions that are sensitive to different mass ranges, an electromagnetic cavity permeated by a strong magnetic field and a system of superconducting wires embedded in a material transparent to microwave radiation, are described. Finally, the phase space structure of cold dark matter galactic halos is considered. (RWR)

  6. Dark matter axions

    SciTech Connect

    Sikivie, P. . Inst. for Theoretical Physics Florida Univ., Gainesville, FL . Dept. of Physics)

    1992-01-01

    The physics of axions is briefly reviewed theoretically, and various constraints on the axion mass are recounted. Then the two main contributions to the present cosmological axion energy density, that due to the realignment of the vacuum during the QCD phase transition and that from axions radiated by cosmic axion strings, are discussed. Next, two detection schemes for axions that are sensitive to different mass ranges, an electromagnetic cavity permeated by a strong magnetic field and a system of superconducting wires embedded in a material transparent to microwave radiation, are described. Finally, the phase space structure of cold dark matter galactic halos is considered. (RWR)

  7. Dark Matter Velocity Spectroscopy

    NASA Astrophysics Data System (ADS)

    Speckhard, Eric G.; Ng, Kenny C. Y.; Beacom, John F.; Laha, Ranjan

    2016-01-01

    Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy—the measurement of energy shifts induced by relative motion of source and observer—can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.

  8. Direct detection of Dark Matter

    NASA Astrophysics Data System (ADS)

    Belli, P.

    2016-07-01

    An overview of the latest results of Dark Matter direct detection will be summarized, with particular care to the DAMA/LIBRA-phase1 results and the evidence with high confidence level obtained by exploiting the model independent Dark Matter annual modulation signature for the presence of Dark Matter particles in the galactic halo. Results from other experiments using different procedures, different techniques and different target-materials will be shortly discussed. Results, implications and experimental perspectives will be addressed.

  9. DarkSide search for dark matter

    NASA Astrophysics Data System (ADS)

    Alexander, T.; Alton, D.; Arisaka, K.; Back, H. O.; Beltrame, P.; Benziger, J.; Bonfini, G.; Brigatti, A.; Brodsky, J.; Bussino, S.; Cadonati, L.; Calaprice, F.; Candela, A.; Cao, H.; Cavalcante, P.; Chepurnov, A.; Chidzik, S.; Cocco, A. G.; Condon, C.; D'Angelo, D.; Davini, S.; De Vincenzi, M.; De Haas, E.; Derbin, A.; Di Pietro, G.; Dratchnev, I.; Durben, D.; Empl, A.; Etenko, A.; Fan, A.; Fiorillo, G.; Franco, D.; Fomenko, K.; Forster, G.; Gabriele, F.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M.; Guo, C.; Guray, G.; Hungerford, E. V.; Ianni, Al; Ianni, An; Joliet, C.; Kayunov, A.; Keeter, K.; Kendziora, C.; Kidner, S.; Klemmer, R.; Kobychev, V.; Koh, G.; Komor, M.; Korablev, D.; Korga, G.; Li, P.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Lukyanchenko, L.; Lund, A.; Lung, K.; Ma, Y.; Machulin, I.; Mari, S.; Maricic, J.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P.; Mohayai, T.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Nelson, A.; Nemtzow, A.; Nurakhov, N.; Orsini, M.; Ortica, F.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Parsells, R.; Pelliccia, N.; Perasso, L.; Perasso, S.; Perfetto, F.; Pinsky, L.; Pocar, A.; Pordes, S.; Randle, K.; Ranucci, G.; Razeto, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Saggese, P.; Saldanha, R.; Salvo, C.; Sands, W.; Seigar, M.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvarov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Thompson, J.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wang, H.; Westerdale, S.; Wojcik, M.; Wright, A.; Xu, J.; Yang, C.; Zavatarelli, S.; Zehfus, M.; Zhong, W.; Zuzel, G.

    2013-11-01

    The DarkSide staged program utilizes a two-phase time projection chamber (TPC) with liquid argon as the target material for the scattering of dark matter particles. Efficient background reduction is achieved using low radioactivity underground argon as well as several experimental handles such as pulse shape, ratio of ionization over scintillation signal, 3D event reconstruction, and active neutron and muon vetos. The DarkSide-10 prototype detector has proven high scintillation light yield, which is a particularly important parameter as it sets the energy threshold for the pulse shape discrimination technique. The DarkSide-50 detector system, currently in commissioning phase at the Gran Sasso Underground Laboratory, will reach a sensitivity to dark matter spin-independent scattering cross section of 10-45 cm2 within 3 years of operation.

  10. Dark matter and cosmological nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Schramm, D. N.

    1986-01-01

    Existing dark matter problems, i.e., dynamics, galaxy formation and inflation, are considered, along with a model which proposes dark baryons as the bulk of missing matter in a fractal universe. It is shown that no combination of dark, nonbaryonic matter can either provide a cosmological density parameter value near unity or, as in the case of high energy neutrinos, allow formation of condensed matter at epochs when quasars already existed. The possibility that correlations among galactic clusters are scale-free is discussed. Such a distribution of matter would yield a fractal of 1.2, close to a one-dimensional universe. Biasing, cosmic superstrings, and percolated explosions and hot dark matter are theoretical approaches that would satisfy the D = 1.2 fractal model of the large-scale structure of the universe and which would also allow sufficient dark matter in halos to close the universe.

  11. Dark Matter, Waves, and Identification

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin

    2011-10-01

    In 1994 I wrote article for Physics Essays (Waves in Dark Matter) showing how the solar system is organized and stabilized by dark matter standing waves from the dark matter oscillating sun. Wave velocity is apparently inversely proportional to the square root of the dark matter density. At the sun's surface the wave velocity is near 1.25 m/s. More recently I have found local dark matter waves that appear to travel near 25 m/s near April 1 and appear to organize plants. They travel between plants and artificial transmitters and receivers, and penetrate my local hill. From my measurements the local dark matter density is a function of the time of year. The data indicate that dark matter interacts much more than just with gravity as others have surmised. I present experimental proofs and a local dark matter density equation in terms of the measured velocity. The waves and the earth's location may be very important for nature's organization. The observed behavior appears to go a long way towards dark matter identification. These waves also may explain the rings of the gaseous planets in terms of oscillating layers. See the ring article on the web site Darkmatterwaves.com.

  12. Dark Matter and Dark Energy Explained

    NASA Astrophysics Data System (ADS)

    Aisenberg, Sol

    2006-03-01

    The standard model of the universe has many mysteries and defects requiring the use of large fudge factors such as Dark Matter and Dark Energy. We will show that Dark Matter is needed when we try to extend Newton's law of gravity (based upon observations in our solar system) to galactic distances. Dark Matter was introduced to explain the observed flat velocity rotation curves of the outer parts of spiral galaxies, as observed by Vera. Rubin. Much earlier, the (under appreciated) Fritz Zwicky introduced the need for large amounts of missing invisible matter to explain the surprising observed motion of groups of remote galaxies. In our hypothesis, the modification of Newton's laws by the addition of a linear term to the gravitational constant that increases with distance will eliminate the need for dark matter. Our hypothesis is different from the MOND theory of Milgrom, which depends upon acceleration. The Red shift observations by Hubble as a function of distance, and interpreted as ``apparent Doppler effect'' led to the unproven belief that the universe is expanding, and thus to the Big Bang. In turn the apparent acceleration of the expansion required the introduction of Dark Energy. Actually there are three additional components of the red shift that are solely due to gravity and distance and can be larger than the Doppler contribution.

  13. (Mainly) axion dark matter

    NASA Astrophysics Data System (ADS)

    Baer, Howard

    2016-06-01

    The strong CP problem of QCD is at heart a problem of naturalness: why is the FF ˜ term highly suppressed in the QCD Lagrangian when it seems necessary to explain why there are three and not four light pions? The most elegant solution posits a spontaneously broken Peccei-Quinn (PQ) symmetry which requires the existence of the axion field a. The axion field settles to the minimum of its potential thus removing the offensive term but giving rise to the physical axion whose coherent oscillations can make up the cold dark matter. Only now are experiments such as ADMX beginning to explore QCD axion parameter space. Since a bonafide scalar particle- the Higgs boson- has been discovered, one might expect its mass to reside at the axion scale fa ˜ 1011 GeV. The Higgs mass is elegantly stabilized by supersymmetry: in this case the axion is accompanied by its axino and saxion superpartners. Requiring naturalness also in the electroweak sector implies higgsino-like WIMPs so then we expect mixed axion-WIMP dark matter. Ultimately we would expect detection of both an axion and a WIMP while signals for light higgsinos may show up at LHC and must show up at ILC.

  14. Baryonic dark matter

    SciTech Connect

    Lynden-Bell, D. ); Gilmore, G. )

    1990-01-01

    Dark matter, first definitely found in the large clusters of galaxies, is now known to be dominant mass in the outer parts of galaxies. All the mass definitely deduced could be made up of baryons, and this would fit well with the requirements of nucleosynthesis in a big bang of small {Omega}{sub B}. However, if inflation is the explanation of the expansion and large scale homogeneity of the universe and of baryon synthesis, and if the universe did not have an infinite extent at the big bang, then {Omega} should be minutely greater than unity. It is commonly hypothesized that most mass is composed of some unknown, non-baryonic form. This book first discusses the known forms, comets, planets, brown dwarfs, stars, gas, galaxies and Lyman {alpha} clouds in which baryons are known to exist. Limits on the amount of dark matter in baryonic form are discussed in the context of the big bang. Inhomogeneities of the right type alleviate the difficulties associated with {Omega}{sub B} = 1 cosmological nucleosynthesis.

  15. Growth of black holes and dark matter accretion

    NASA Astrophysics Data System (ADS)

    Munyaneza, Faustin; Biermann, Peter L.

    2006-12-01

    We investigate the distribution of fermion dark matter in the Milky Way galaxy and find that dark matter could gravitationally condensate in a degenerate core of mass of 3 × 106Mdot o embedded in a dark matter halo of 3 × 1012Mdot o with a size of about 200 kpc. We then show that the galactic black hole of mass of about 3 × 106Mdot o might have grown from a stellar seed black hole by mainly accreting dark matter from the compact degenerate fermion core. This leads to a lower limit on the mass of the fermion dark matter of about (6 10) keV. It is then argued that the constrained dark matter could be a sterile neutrino.

  16. Quantum vacuum and dark matter

    NASA Astrophysics Data System (ADS)

    Hajdukovic, Dragan Slavkov

    2012-01-01

    Recently, the gravitational polarization of the quantum vacuum was proposed as alternative to the dark matter paradigm. In the present paper we consider four benchmark measurements: the universality of the central surface density of galaxy dark matter haloes, the cored dark matter haloes in dwarf spheroidal galaxies, the non-existence of dark disks in spiral galaxies and distribution of dark matter after collision of clusters of galaxies (the Bullet cluster is a famous example). Only some of these phenomena (but not all of them) can (in principle) be explained by the dark matter and the theories of modified gravity. However, we argue that the framework of the gravitational polarization of the quantum vacuum allows the understanding of the totality of these phenomena.

  17. Dark Matter Production in Non-Standard Early Universe Cosmologies

    NASA Astrophysics Data System (ADS)

    Rehagen, Thomas Joseph

    Many dark matter candidates, including asymmetric Weakly Interacting Massive Particles (WIMPs) and sterile neutrinos, are produced in the very early Universe, prior to Big Bang Nucleosynthesis (BBN). We show that the relic abundance of asymmetric WIMPs and sterile neutrinos can be very sensitive to the expansion rate of the Universe prior to BBN. In particular, we find that if the production of asymmetric WIMPs occurs during a non-standard cosmological phase, a larger WIMP annihilation cross section is required to produce the present dark matter density than if the WIMPs were produced during a standard, radiation dominated phase. Because of this, the present dark matter annihilation rate could be larger than that of symmetric dark matter produced in the standard cosmology. We also show that if the production of sterile neutrinos occurs during a non-standard cosmological phase, the relic number density of sterile neutrinos could be reduced with respect to the number expected in the standard cosmology, consequently relaxing current bounds on active-sterile neutrino mixing. Finally, we examine whether low reheating temperature cosmologies are allowed by current Cosmic Microwave Background measurements. We find the allowed range of reheating temperatures using monomial and binomial inflationary potentials, and a variety of reheating models. We show that an inflationary model with a φ1 potential and canonical reheating allows the possibility that dark matter could be produced during the reheating epoch, instead of when the Universe is radiation dominated.

  18. New Efforts to Identify Dark Matter

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    Could the dark matter in our universe be warm instead of cold? Recent observations have placed new constraints on the warm dark matter model.Whats the Deal with Cold/Warm/Hot Dark Matter?An example of cold dark matter: MACHOs, massive objects like black holes that are hiding in the halo of our galaxy. [Alain r]Nobody knows what dark matter is made of, but we have a few theories. The objects or particles that could make up dark matter fall into three broad categories cold, warm, and hot dark matter based on something called their free streaming length, or how far they moved due to random motions in the early universe.Neutrinos are an example of hot dark matter: very light particles with free streaming lengths much longer than the size of a typical galaxy. Cold dark matter could consist of objects like black holes or brown dwarfs, or particles like WIMPs all of which are very heavy and therefore have free streaming lengths much shorter than the size of a galaxy.Warm dark matter is whats in between: middle-mass particles with free streaming lengths roughly the size of a galaxy. There arent any known particles that fit this description, but there are theorized particles such as sterile neutrinos or gravitinos that do.Cumulative mass functions at z = 6 for different values of the warm dark matter particle mass mX. The shaded boxs on the left correspond to the observed number density of faint galaxies within different confidence levels. [Menci et al. 2016]Smoothing Out the UniverseThe widely favored model is lambda-CDM, in which cold dark matter makes up the missing matter in our universe. This model nicely explains much of what we observe, but it still has a few problems. The biggest issue with lambda-CDM is that it predicts that there should be many more small, dwarf galaxies than we observe.While this could just mean that we havent yet managed to see all the existing, faint dwarf galaxies, we should also consider alternative models the warm dark matter model chief

  19. New Efforts to Identify Dark Matter

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    Could the dark matter in our universe be warm instead of cold? Recent observations have placed new constraints on the warm dark matter model.Whats the Deal with Cold/Warm/Hot Dark Matter?An example of cold dark matter: MACHOs, massive objects like black holes that are hiding in the halo of our galaxy. [Alain r]Nobody knows what dark matter is made of, but we have a few theories. The objects or particles that could make up dark matter fall into three broad categories cold, warm, and hot dark matter based on something called their free streaming length, or how far they moved due to random motions in the early universe.Neutrinos are an example of hot dark matter: very light particles with free streaming lengths much longer than the size of a typical galaxy. Cold dark matter could consist of objects like black holes or brown dwarfs, or particles like WIMPs all of which are very heavy and therefore have free streaming lengths much shorter than the size of a galaxy.Warm dark matter is whats in between: middle-mass particles with free streaming lengths roughly the size of a galaxy. There arent any known particles that fit this description, but there are theorized particles such as sterile neutrinos or gravitinos that do.Cumulative mass functions at z = 6 for different values of the warm dark matter particle mass mX. The shaded boxs on the left correspond to the observed number density of faint galaxies within different confidence levels. [Menci et al. 2016]Smoothing Out the UniverseThe widely favored model is lambda-CDM, in which cold dark matter makes up the missing matter in our universe. This model nicely explains much of what we observe, but it still has a few problems. The biggest issue with lambda-CDM is that it predicts that there should be many more small, dwarf galaxies than we observe.While this could just mean that we havent yet managed to see all the existing, faint dwarf galaxies, we should also consider alternative models the warm dark matter model chief

  20. The Hunt for Dark Matter

    NASA Astrophysics Data System (ADS)

    Gelmini, Graciela B.

    These lectures, given at the 2014 Theoretical Advanced Study Institute (TASI), are an introduction to what we know at present about dark matter and the major current experimental and observational efforts to identify what it consists of. They attempt to present the complexities of the subject, making clear common simplifying assumptions, to better understand the reach of dark matter searches.

  1. Bright galaxies, dark matters.

    NASA Astrophysics Data System (ADS)

    Rubin, V.

    This book charts two extraordinary journeys: the road to a better understanding of the structure and composition of the universe, and V. Rubin's own pathbreaking career. The scientific papers included here offer an overview of the topic that has been the major focus of her career: the motions of stars within galaxies and the evidence from these motions that most of the matter in the universe is dark. Elsewhere the author examines some of the tools of her trade - from star charts to the Hubble Telescope to some of the observatories where she has worked. The concluding section, "The astronomical life", finds V. Rubin writing candidly about the demands and rewards of her career, offering insightful portraits of colleagues, friends, and other notable women in science.

  2. Indirect Dark Matter Signals

    SciTech Connect

    Boer, Wim de

    2008-11-23

    Dark Matter annihilation (DMA) may yield an excess of gamma rays and antimatter particles, like antiprotons and positrons, above the background from cosmic ray interactions. Several signatures, ranging from the positron excess, as observed by HEAT, AMS-01 and PAMELA, the gamma ray excess, as observed by the EGRET spectrometer, the WMAP-haze, and constraints from antiprotons, as observed by CAPRICE, BESS and PAMELA, have been discussed in the literature. Unfortunately, the different signatures all lead to different WIMP masses, indicating that at least some of these interpretations are likely to be incorrect. Here we review them and discuss their relative merits and uncertainties. New x-ray data from ROSAT suggests non-negligible convection in our Galaxy, which leads to an order of magnitude uncertainty in the yield of charged particles from DMA, since even a rather small convection will let drift the charged particles in the halo to outer space.

  3. Estimating Dark Matter Distributions

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Woodroofe, Michael; Walker, Matthew G.; Mateo, Mario; Olszewski, Edward

    2005-06-01

    Thanks to instrumental advances, new, very large kinematic data sets for nearby dwarf spheroidal (dSph) galaxies are on the horizon. A key aim of these data sets is to help determine the distribution of dark matter in these galaxies. Past analyses have generally relied on specific dynamical models or highly restrictive dynamical assumptions. We describe a new, nonparametric analysis of the kinematics of nearby dSph galaxies designed to take full advantage of the future large data sets. The method takes as input the projected positions and radial velocities of stars known to be members of the galaxies but does not use any parametric dynamical model or the assumption that the mass distribution follows that of the visible matter. The problem of estimating the radial mass distribution M(r) (the mass within the true radius r) is converted into a problem of estimating a regression function nonparametrically. From the Jeans equation we show that the unknown regression function is subject to fundamental shape restrictions, which we exploit in our analysis using statistical techniques borrowed from isotonic estimation and spline smoothing. Simulations indicate that M(r) can be estimated to within a factor of 2 or better with samples as small as 1000 stars over almost the entire radial range sampled by the kinematic data. The technique is applied to a sample of 181 stars in the Fornax dSph galaxy. We show that the galaxy contains a significant, extended dark halo some 10 times more massive than its baryonic component. Although applied here to dSph kinematics, this approach can be used in the analysis of any kinematically hot stellar system in which the radial velocity field is discretely sampled.

  4. The search for dark matter

    NASA Astrophysics Data System (ADS)

    Cline, David B.

    2016-03-01

    We discuss the search for dark matter. We first review the data from LUX that excludes the low-mass WIMP region and slightly lowers the XENON100 limits. We provide a brief review of the problems with the claimed low-mass signals. We discuss the current expectations for SUSY-WIMP dark matter and show why very massive detectors like Darwin may be required. We discuss some theoretical predictions from the meeting. There was compelling evidence from events observed in the Galactic Center by Fermi-LAT of WIMP dark matter at the UCLA meeting. We recount the Richard Arnowitt Lectures at UCLA dark matter symposiums and his role in the development of the strategy to detect SUGRA dark matter. In Honor of Richard Arnowitt.

  5. Alternatives to dark matter and dark energy

    NASA Astrophysics Data System (ADS)

    Mannheim, Philip D.

    2006-04-01

    We review the underpinnings of the standard Newton Einstein theory of gravity, and identify where it could possibly go wrong. In particular, we discuss the logical independence from each other of the general covariance principle, the equivalence principle and the Einstein equations, and discuss how to constrain the matter energy momentum tensor which serves as the source of gravity. We identify the a priori assumption of the validity of standard gravity on all distance scales as the root cause of the dark matter and dark energy problems, and discuss how the freedom currently present in gravitational theory can enable us to construct candidate alternatives to the standard theory in which the dark matter and dark energy problems could then be resolved. We identify three generic aspects of these alternate approaches: that it is a universal acceleration scale which determines when a luminous Newtonian expectation is to fail to fit data, that there is a global cosmological effect on local galactic motions which can replace galactic dark matter, and that to solve the cosmological constant problem it is not necessary to quench the cosmological constant itself, but only the amount by which it gravitates.

  6. Solving the Dark Matter Problem

    ScienceCinema

    Baltz, Ted

    2009-09-01

    Cosmological observations have firmly established that the majority of matter in the universe is of an unknown type, called 'dark matter'. A compelling hypothesis is that the dark matter consists of weakly interacting massive particles (WIMPs) in the mass range around 100 GeV. If the WIMP hypothesis is correct, such particles could be created and studied at accelerators. Furthermore they could be directly detected as the primary component of our galaxy. Solving the dark matter problem requires that the connection be made between the two. We describe some theoretical and experimental avenues that might lead to this connection.

  7. Dark matter, dark energy and gravity

    NASA Astrophysics Data System (ADS)

    Robson, B. A.

    2015-02-01

    Within the framework of the Generation Model (GM) of particle physics, gravity is identified with the very weak, universal and attractive residual color interactions acting between the colorless particles of ordinary matter (electrons, neutrons and protons), which are composite structures. This gravitational interaction is mediated by massless vector bosons (hypergluons), which self-interact so that the interaction has two additional features not present in Newtonian gravitation: (i) asymptotic freedom and (ii) color confinement. These two additional properties of the gravitational interaction negate the need for the notions of both dark matter and dark energy.

  8. Dark Matter Searches With GLAST

    SciTech Connect

    Wai, Lawrence; Nuss, E.

    2007-02-05

    Indirect detection of particle dark matter relies upon pair annihilation of Weakly Interaction Massive Particles (WIMPs), which is complementary to the well known techniques of direct detection (WIMP-nucleus scattering) and collider production (WIMP pair production). Pair annihilation of WIMPs results in the production of gamma-rays, neutrinos, and anti-matter. Of the various experiments sensitive to indirect detection of dark matter, the Gamma-ray Large Area Space Telescope (GLAST) may play the most crucial role in the next few years. After launch in late 2007, The GLAST Large Area Telescope (LAT) will survey the gamma-ray sky in the energy range of 20MeV-300GeV. By eliminating charged particle background above 100 MeV, GLAST may be sensitive to as yet to be observed Milky Way dark matter subhalos, as well as WIMP pair annihilation spectral lines from the Milky Way halo. Discovery of gamma-ray signals from dark matter in the Milky Way would not only demonstrate the particle nature of dark matter; it would also open a new observational window on galactic dark matter substructure. Location of new dark matter sources by GLAST would dramatically alter the experimental landscape; ground based gamma ray telescopes could follow up on the new GLAST sources with precision measurements of the WIMP pair annihilation spectrum.

  9. Dark energy and extended dark matter halos

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  10. Novel Frameworks for Dark Matter and Neutrino Masses

    NASA Astrophysics Data System (ADS)

    Schmidt, Daniel

    2013-12-01

    The established light neutrino masses and the Dark Matter of the Universe both require physics beyond the Standard Model for their theoretical explanation. Models that provide a common framework for these two issues are very attractive. In particular, radiative mechanisms naturally yield light neutrino masses due to loop suppression factors. These corrections can comprise a link to the physics of Dark Matter. In most considerations, the Dark Matter relic density is produced by freeze-out. This thesis contributes to the elds of radiative neutrino masses and frozen-out Dark Matter. In detail, it is shown that in the Ma-model, right-handed neutrino Dark Matter can be directly detected by photon exchange at one-loop level. The Zee{Babu-model is extended such that it enjoys a global symmetry based on baryon and lepton number. This symmetry generates light neutrino masses and a mass for a stable Dark Matter particle by its spontaneous breaking. Moreover, this thesis provides a new production mechanism for keV sterile neutrino Dark Mattetr, which is based on the freeze-in scenario. In particular, keV sterile neutrino Dark Matter produced by the decay of a frozen-in scalar is investigated.

  11. Plasma dark matter direct detection

    NASA Astrophysics Data System (ADS)

    Clarke, J. D.; Foot, R.

    2016-01-01

    Dark matter in spiral galaxies like the Milky Way may take the form of a dark plasma. Hidden sector dark matter charged under an unbroken U(1)' gauge interaction provides a simple and well defined particle physics model realising this possibility. The assumed U(1)' neutrality of the Universe then implies (at least) two oppositely charged dark matter components with self-interactions mediated via a massless "dark photon" (the U(1)' gauge boson). In addition to nuclear recoils such dark matter can give rise to keV electron recoils in direct detection experiments. In this context, the detailed physical properties of the dark matter plasma interacting with the Earth is required. This is a complex system, which is here modelled as a fluid governed by the magnetohydrodynamic equations. These equations are numerically solved for some illustrative examples, and implications for direct detection experiments discussed. In particular, the analysis presented here leaves open the intriguing possibility that the DAMA annual modulation signal is due primarily to electron recoils (or even a combination of electron recoils and nuclear recoils). The importance of diurnal modulation (in addition to annual modulation) as a means of probing this kind of dark matter is also emphasised.

  12. Asymmetric Dark Matter and Dark Radiation

    SciTech Connect

    Blennow, Mattias; Martinez, Enrique Fernandez; Mena, Olga; Redondo, Javier; Serra, Paolo E-mail: enfmarti@cern.ch E-mail: redondo@mppmu.mpg.de

    2012-07-01

    Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, precise measurements of the number of relativistic species, such as those expected from the Planck satellite, can provide information on the structure of the dark sector. We also discuss the constraints of the interactions between DM and Dark Radiation from their imprint in the matter power spectrum.

  13. Direct Dark Matter Detection Phenomenology

    NASA Astrophysics Data System (ADS)

    Newstead, Jayden L.

    The identity and origin of dark matter is one of the more elusive mysteries in the fields of particle physics and cosmology. In the near future, direct dark matter detectors will offer a chance at observing dark matter non-gravitationally for the first time. In this thesis, formalisms are developed to analyze direct detection experiments and to quantify the extent to which properties of the dark matter can be determined. A range of non-standard assumptions about the dark matter are considered, including inelastic scattering, isospin violation and momentum dependent scattering. Bayesian inference is applied to realistic detector configurations to evaluate parameter estimation and model selection ability. A complete set of simplified models for spin-0, spin-1/2 and spin-1 dark matter candidates are formulated. The corresponding non-relativistic operators are found, and are used to derive observational signals for the simplified models. The ability to discern these simplified models with direct detection experiments is demonstrated. In the near future direct dark matter detectors will be sensitive to coherent neutrino scattering, which will limit the discovery potential of these experiments. It was found that eleven of the fourteen non-relativistic operators considered produce signals distinct from coherent scattering, and thus the neutrino background does not greatly affect the discovery potential in these cases.

  14. AMS-02 fits dark matter

    NASA Astrophysics Data System (ADS)

    Balázs, Csaba; Li, Tong

    2016-05-01

    In this work we perform a comprehensive statistical analysis of the AMS-02 electron, positron fluxes and the antiproton-to-proton ratio in the context of a simplified dark matter model. We include known, standard astrophysical sources and a dark matter component in the cosmic ray injection spectra. To predict the AMS-02 observables we use propagation parameters extracted from observed fluxes of heavier nuclei and the low energy part of the AMS-02 data. We assume that the dark matter particle is a Majorana fermion coupling to third generation fermions via a spin-0 mediator, and annihilating to multiple channels at once. The simultaneous presence of various annihilation channels provides the dark matter model with additional flexibility, and this enables us to simultaneously fit all cosmic ray spectra using a simple particle physics model and coherent astrophysical assumptions. Our results indicate that AMS-02 observations are not only consistent with the dark matter hypothesis within the uncertainties, but adding a dark matter contribution improves the fit to the data. Assuming, however, that dark matter is solely responsible for this improvement of the fit, it is difficult to evade the latest CMB limits in this model.

  15. Astrophysical Probes of Dark Matter

    NASA Astrophysics Data System (ADS)

    Profumo, S.

    2013-08-01

    What is the connection between how the dark matter was produced in the early universe and how we can detect it today? Where does the WIMP miracle come from, and is it really a "WIMP" miracle? What brackets the mass range for thermal relics? Where does <συ> come from, and what does it mean? What is the difference between chemical and kinetic decoupling? Why do some people think that dark matter cannot be lighter than 40 GeV? Why is bbar b such a popular annihilation final state? Why is antimatter a good way to look for dark matter? Why should the cosmic-ray positron fraction decline with energy? How do you calculate the flux of neutrinos from dark matter annihilation in a celestial body, and when is it independent of the dark matter pair-annihilation rate? How does dark matter produce photons? -- Read these lecture notes, do the suggested 10 exercises, and you will find answers to all of these questions (and to many more on what You Always Wanted to Know About Dark Matter But Were Afraid to Ask).

  16. Light Dark Matter in the NO$\

    SciTech Connect

    Hatzikoutelis, Athanasios

    2015-01-01

    The neutrino oscillations experiment NOA is the agship of Fermi National Laboratory. The neutrino source NuMI is delivering record numbers of protons-on-target surpassing the most stringent dark matter production upper limits of current models in the under-10 GeV mass range. We take advantage of the sophisticated particle identication algorithms of the experiment to interrogate the data from the 300-ton, o-axis, low-Z, Near Detector of NOvA during the rst physics runs. We search for signatures of sub-GeV or Light Dark Matter (LDM), Axion-like-particles, and Heavy or Sterile Neutrinos that may scatter or decay in the volume of the detector.

  17. The dark side of cosmology: dark matter and dark energy.

    PubMed

    Spergel, David N

    2015-03-01

    A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales. PMID:25745164

  18. Probing gravitational dark matter

    NASA Astrophysics Data System (ADS)

    Ren, Jing; He, Hong-Jian

    2015-03-01

    So far all evidences of dark matter (DM) come from astrophysical and cosmological observations, due to the gravitational interactions of DM. It is possible that the true DM particle in the universe joins gravitational interactions only, but nothing else. Such a Gravitational DM (GDM) may act as a weakly interacting massive particle (WIMP), which is conceptually simple and attractive. In this work, we explore this direction by constructing the simplest scalar GDM particle χs. It is a Bbb Z2 odd singlet under the standard model (SM) gauge group, and naturally joins the unique dimension-4 interaction with Ricci curvature, ξsχs2Script R, where ξs is the dimensionless nonminimal coupling. We demonstrate that this gravitational interaction ξsχs2Script R, together with Higgs-curvature nonminimal coupling term ξhH†HScript R, induces effective couplings between χs2 and SM fields, and can account for the observed DM thermal relic abundance. We analyze the annihilation cross sections of GDM particles and derive the viable parameter space for realizing the DM thermal relic density. We further study the direct/indirect detections and the collider signatures of such a scalar GDM. These turn out to be highly predictive and testable.

  19. Oscillating asymmetric dark matter

    SciTech Connect

    Tulin, Sean; Yu, Hai-Bo; Zurek, Kathryn M. E-mail: haiboyu@umich.edu

    2012-05-01

    We study the dynamics of dark matter (DM) particle-antiparticle oscillations within the context of asymmetric DM. Oscillations arise due to small DM number-violating Majorana-type mass terms, and can lead to recoupling of annihilation after freeze-out and washout of the DM density. Asymmetric DM oscillations 'interpolate' between symmetric and asymmetric DM freeze-out scenarios, and allow for a larger DM model-building parameter space. We derive the density matrix equations for DM oscillations and freeze-out from first principles using nonequilibrium field theory, and our results are qualitatively different than in previous studies. DM dynamics exhibits particle-vs-antiparticle 'flavor' effects, depending on the interaction type, analogous to neutrino oscillations in a medium. 'Flavor-sensitive' DM interactions include scattering or annihilation through a new vector boson, while 'flavor-blind' interactions include scattering or s-channel annihilation through a new scalar boson. In particular, we find that flavor-sensitive annihilation does not recouple when coherent oscillations begin, and that flavor-blind scattering does not lead to decoherence.

  20. Bright Galaxies, Dark Matters

    NASA Astrophysics Data System (ADS)

    Rubin, Vera

    In 1965, Vera Rubin was the first woman permitted to observe at Palomar Observatory. In the intervening years, she has become one of the world's finest and most respected astronomers. This particular collection of essays is compiled from work written over the past 15 years and deals with a variety of subjects in astronomy and astrophysics, specifically galaxies and dark matter. The book also contains biographical sketches of astronomers who have been colleagues and friends, providing a stimulating view of a woman in science. About the Author Since 1965 Vera Rubin has been a staff member at the Department of Terrestrial Magnetism of the Carnegie Institution of Washington. Dr. Rubin has authored nearly 200 papers on the structure of our galaxy, motions within other galaxies, and large scale motions in the universe. She has been a distinguished visiting astronomer at the Cerro Tololo Inter American Observatory in Chile; a Chancellor's Distinguished Professor at the University of California, Berkeley; a President's Distinguished Visitor at Vassar College; and a Beatrice Tinsley visiting professor at the University of Texas, Austin.

  1. Probing gravitational dark matter

    SciTech Connect

    Ren, Jing; He, Hong-Jian

    2015-03-27

    So far all evidences of dark matter (DM) come from astrophysical and cosmological observations, due to the gravitational interactions of DM. It is possible that the true DM particle in the universe joins gravitational interactions only, but nothing else. Such a Gravitational DM (GDM) may act as a weakly interacting massive particle (WIMP), which is conceptually simple and attractive. In this work, we explore this direction by constructing the simplest scalar GDM particle χ{sub s}. It is a ℤ{sub 2} odd singlet under the standard model (SM) gauge group, and naturally joins the unique dimension-4 interaction with Ricci curvature, ξ{sub s}χ{sub s}{sup 2}R, where ξ{sub s} is the dimensionless nonminimal coupling. We demonstrate that this gravitational interaction ξ{sub s}χ{sub s}{sup 2}R, together with Higgs-curvature nonminimal coupling term ξ{sub h}H{sup †}HR, induces effective couplings between χ{sub s}{sup 2} and SM fields, and can account for the observed DM thermal relic abundance. We analyze the annihilation cross sections of GDM particles and derive the viable parameter space for realizing the DM thermal relic density. We further study the direct/indirect detections and the collider signatures of such a scalar GDM. These turn out to be highly predictive and testable.

  2. Triplet-quadruplet dark matter

    NASA Astrophysics Data System (ADS)

    Tait, Tim M. P.; Yu, Zhao-Huan

    2016-03-01

    We explore a dark matter model extending the standard model particle content by one fermionic SU(2) L triplet and two fermionic SU(2) L quadruplets, leading to a minimal realistic UV-complete model of electroweakly interacting dark matter which interacts with the Higgs doublet at tree level via two kinds of Yukawa couplings. After electroweak symmetry-breaking, the physical spectrum of the dark sector consists of three Majorana fermions, three singly charged fermions, and one doubly charged fermion, with the lightest neutral fermion χ 1 0 serving as a dark matter candidate. A typical spectrum exhibits a large degree of degeneracy in mass between the neutral and charged fermions, and we examine the one-loop corrections to the mass differences to ensure that the lightest particle is neutral. We identify regions of parameter space for which the dark matter abundance is saturated for a standard cosmology, including coannihilation channels, and find that this is typically achieved for {m}_{χ_1^0}˜ 2.4 TeV. Constraints from precision electroweak measurements, searches for dark matter scattering with nuclei, and dark matter annihilation are important, but leave open a viable range for a thermal relic.

  3. Skew-flavored dark matter

    NASA Astrophysics Data System (ADS)

    Agrawal, Prateek; Chacko, Zackaria; Fortes, Elaine C. F. S.; Kilic, Can

    2016-05-01

    We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects minimal flavor violation and is, therefore, naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in which dark matter couples to right-handed charged leptons. In large regions of parameter space, the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. These events exhibit a characteristic flavor pattern that may allow this class of models to be distinguished from other theories of dark matter.

  4. Skew-flavored dark matter

    DOE PAGESBeta

    Agrawal, Prateek; Chacko, Zackaria; Fortes, Elaine C. F. S.; Kilic, Can

    2016-05-10

    We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects minimal flavor violation and is, therefore, naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in whichmore » dark matter couples to right-handed charged leptons. In large regions of parameter space, the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. In conclusion, these events exhibit a characteristic flavor pattern that may allow this class of models to be distinguished from other theories of dark matter.« less

  5. Cosmology of atomic dark matter

    NASA Astrophysics Data System (ADS)

    Cyr-Racine, Francis-Yan; Sigurdson, Kris

    2013-05-01

    While, to ensure successful cosmology, dark matter (DM) must kinematically decouple from the standard model plasma very early in the history of the Universe, it can remain coupled to a bath of “dark radiation” until a relatively late epoch. One minimal theory that realizes such a scenario is the atomic dark matter model, in which two fermions oppositely charged under a new U(1) dark force are initially coupled to a thermal bath of “dark photons” but eventually recombine into neutral atomlike bound states and begin forming gravitationally bound structures. As dark atoms have (dark) atom-sized geometric cross sections, this model also provides an example of self-interacting DM with a velocity-dependent cross section. Delayed kinetic decoupling in this scenario predicts novel DM properties on small scales but retains the success of cold DM on larger scales. We calculate the atomic physics necessary to capture the thermal history of this dark sector and show significant improvements over the standard atomic hydrogen calculation are needed. We solve the Boltzmann equations that govern the evolution of cosmological fluctuations in this model and find in detail the impact of the atomic DM scenario on the matter power spectrum and the cosmic microwave background (CMB). This scenario imprints a new length scale, the dark-acoustic-oscillation scale, on the matter density field. This dark-acoustic-oscillation scale shapes the small-scale matter power spectrum and determines the minimal DM halo mass at late times, which may be many orders of magnitude larger than in a typical weakly interacting-massive-particle scenario. This model necessarily includes an extra dark radiation component, which may be favored by current CMB experiments, and we quantify CMB signatures that distinguish an atomic DM scenario from a standard ΛCDM model containing extra free-streaming particles. We finally discuss the impacts of atomic DM on galactic dynamics and show that these provide the

  6. The Dark Matter of Biology.

    PubMed

    Ross, Jennifer L

    2016-09-01

    The inside of the cell is full of important, yet invisible species of molecules and proteins that interact weakly but couple together to have huge and important effects in many biological processes. Such "dark matter" inside cells remains mostly hidden, because our tools were developed to investigate strongly interacting species and folded proteins. Example dark-matter species include intrinsically disordered proteins, posttranslational states, ion species, and rare, transient, and weak interactions undetectable by biochemical assays. The dark matter of biology is likely to have multiple, vital roles to regulate signaling, rates of reactions, water structure and viscosity, crowding, and other cellular activities. We need to create new tools to image, detect, and understand these dark-matter species if we are to truly understand fundamental physical principles of biology. PMID:27602719

  7. Galactic Interactions and Dark Matter

    NASA Astrophysics Data System (ADS)

    Willig, T.; Storrs, A.

    2005-12-01

    In studying galactic interactions is it possible with present instrumentation to find evidence of dark matter within these interactions? The present theory is that dark matter and its gravitational force is what accounts for much of spiral galaxy rotation curves. If this is true, we should be able to find evidence of dark matter when two galaxies (one being a spiral galaxy) interact. Several pairs of interacting galaxies in various stages of interaction will be studied. In addition, several non interacting spiral galaxies will be studied for comparisons. We present analysis of a variety of archival imaging data from radio maps through x-ray images in an attempt to observe the effects of dark matter in galaxy interactions.

  8. The LZ dark matter experiment

    NASA Astrophysics Data System (ADS)

    McKinsey, D. N.; LZ Collaboration

    2016-05-01

    The LUX and ZEPLIN collaborations have merged to construct a 7 tonne two-phase Xe dark matter detector, known as LUX-ZEPLIN or LZ. Chosen as one of the Generation 2 suite of dark matter direct detection experiments, LZ will probe spin-independent WIMP-nucleon cross sections down to 2 × 10-48 cm2 at 50 GeV/c2 within 3 years of operation, covering a substantial range of theoretically-motivated dark matter candidates. Along with dark matter interactions with Xe nuclei, LZ will also be sensitive to solar neutrinos emitted by the pp fusion process in the sun, neutrinos emitted by a nearby supernova and detected by coherent neutrino-nucleus scattering, certain classes of axions and axion-like particles, and neutrinoless double-beta decay of 136Xe. The design of LZ is presented, along with its expected backgrounds and projected sensitivity.

  9. Double-Disk Dark Matter

    NASA Astrophysics Data System (ADS)

    Fan, JiJi; Katz, Andrey; Randall, Lisa; Reece, Matthew

    2013-09-01

    Based on observational tests of large scale structure and constraints on halo structure, dark matter is generally taken to be cold and essentially collisionless. On the other hand, given the large number of particles and forces in the visible world, a more complex dark sector could be a reasonable or even likely possibility. This hypothesis leads to testable consequences, perhaps portending the discovery of a rich hidden world neighboring our own. We consider a scenario that readily satisfies current bounds that we call Partially Interacting Dark Matter (PIDM). This scenario contains self-interacting dark matter, but it is not the dominant component. Even if PIDM contains only a fraction of the net dark matter density, comparable to the baryonic fraction, the subdominant component’s interactions can lead to interesting and potentially observable consequences. Our primary focus will be the special case of Double-Disk Dark Matter (DDDM), in which self-interactions allow the dark matter to lose enough energy to lead to dynamics similar to those in the baryonic sector. We explore a simple model in which DDDM can cool efficiently and form a disk within galaxies, and we evaluate some of the possible observational signatures. The most prominent signal of such a scenario could be an enhanced indirect detection signature with a distinctive spatial distribution. Even though subdominant, the enhanced density at the center of the galaxy and possibly throughout the plane of the galaxy (depending on precise alignment) can lead to large boost factors, and could even explain a signature as large as the 130 GeV Fermi line. Such scenarios also predict additional dark radiation degrees of freedom that could soon be detectable and would influence the interpretation of future data, such as that from Planck and from the Gaia satellite. We consider this to be the first step toward exploring a rich array of new possibilities for dark matter dynamics.

  10. Dark matter in massive galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin

    2013-07-01

    The spatial distributions of luminous and dark matter in massive early-type galaxies (ETGs) reflect the formation processes which shaped these systems. This article reviews the predictions of cosmological simulations for the dark and baryonic components of ETGs, and the observational constraints from lensing, hydrostatic X-ray gas atmospheres, and outer halo stellar dynamics.

  11. Dark matter triggers of supernovae

    NASA Astrophysics Data System (ADS)

    Graham, Peter W.; Rajendran, Surjeet; Varela, Jaime

    2015-09-01

    The transit of primordial black holes through a white dwarf causes localized heating around the trajectory of the black hole through dynamical friction. For sufficiently massive black holes, this heat can initiate runaway thermonuclear fusion causing the white dwarf to explode as a supernova. The shape of the observed distribution of white dwarfs with masses up to 1.25 M⊙ rules out primordial black holes with masses ˜1019- 1020 gm as a dominant constituent of the local dark matter density. Black holes with masses as large as 1024 gm will be excluded if recent observations by the NuStar Collaboration of a population of white dwarfs near the galactic center are confirmed. Black holes in the mass range 1020- 1022 gm are also constrained by the observed supernova rate, though these bounds are subject to astrophysical uncertainties. These bounds can be further strengthened through measurements of white dwarf binaries in gravitational wave observatories. The mechanism proposed in this paper can constrain a variety of other dark matter scenarios such as Q balls, annihilation/collision of large composite states of dark matter and models of dark matter where the accretion of dark matter leads to the formation of compact cores within the star. White dwarfs, with their astronomical lifetimes and sizes, can thus act as large spacetime volume detectors enabling a unique probe of the properties of dark matter, especially of dark matter candidates that have low number density. This mechanism also raises the intriguing possibility that a class of supernova may be triggered through rare events induced by dark matter rather than the conventional mechanism of accreting white dwarfs that explode upon reaching the Chandrasekhar mass.

  12. Light Dark Matter

    NASA Astrophysics Data System (ADS)

    Cassé, M.; Fayet, P.

    The SPI spectrometer aboard of the INTEGRAL satellite has released a map of the e^+e- annihilation emission line of unprecedented quality, showing that most of the photons arise from a region coinciding with the stellar bulge of the Milky Way. The impressive intensity (≃ 10-3 photon cm-2 s-1) and morphology (round and wide) of the emission is begging an explanation. Different classes of astrophysical objects could inject positrons in the interstellar medium of the bulge, but the only acceptable ones should inject them at energies low enough to avoid excessive bremsstrahlung emission in the soft gamma ray regime. Among the ~ MeV injectors, none seems generous enough to sustain the high level of annihilation observed. Even the most profuse candidate, namely the β+ radioactivity of 56Co nuclei created and expelled in the interstellar medium by explosive nucleosynthesis of type Ia supernovae, falls short explaining the phenomenon due to the small fraction of positrons leaking out from the ejecta (≈ 3%), together with the low SNIa rate in the bulge (≈ 0.03 per century). It is therefore worth exploring alternative solutions, as for instance, the idea that the source of the positrons is the annihilation of light dark matter (LDM) particles of the kind recently proposed, totally independently, by Bœhm and Fayet. Assuming that LDM is the culprit, crucial constraints on the characteristics (mass and annihilation cross-section) of the associated particle may be discussed, combining direct gamma ray observations and models of the early Universe. In particular, the mass of the LDM particles should be significantly less than 100 MeV, so that the e+ and e- resulting from their annihilations do not radiate exceedingly through bremsstrahlung in the interstellar gas of the galactic bulge.

  13. Dark matter and global symmetries

    NASA Astrophysics Data System (ADS)

    Mambrini, Yann; Profumo, Stefano; Queiroz, Farinaldo S.

    2016-09-01

    General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left-Right, Singlet Fermionic, Zee-Babu, 3-3-1 and Radiative See-Saw models. Assuming that (i) global symmetries are broken at the Planck scale, that (ii) the non-renormalizable operators mediating dark matter decay have O (1) couplings, that (iii) the dark matter is a singlet field, and that (iv) the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV-TeV), including the WIMP regime.

  14. Dark matter beams at LBNF

    DOE PAGESBeta

    Coloma, Pilar; Dobrescu, Bogdan A.; Frugiuele, Claudia; Harnik, Roni

    2016-04-08

    High-intensity neutrino beam facilities may produce a beam of light dark matter when protons strike the target. Searches for such a dark matter beam using its scattering in a nearby detector must overcome the large neutrino background. We characterize the spatial and energy distributions of the dark matter and neutrino beams, focusing on their differences to enhance the sensitivity to dark matter. We find that a dark matter beam produced by a Zmore » $$^{'}$$ boson in the GeV mass range is both broader and more energetic than the neutrino beam. The reach for dark matter is maximized for a detector sensitive to hard neutral-current scatterings, placed at a sizable angle off the neutrino beam axis. In the case of the Long-Baseline Neutrino Facility (LBNF), a detector placed at roughly 6 degrees off axis and at a distance of about 200 m from the target would be sensitive to Z$$^{'}$$ couplings as low as 0.05. This search can proceed symbiotically with neutrino measurements. We also show that the MiniBooNE and MicroBooNE detectors, which are on Fermilab’s Booster beamline, happen to be at an optimal angle from the NuMI beam and could perform searches with existing data. As a result, this illustrates potential synergies between LBNF and the short-baseline neutrino program if the detectors are positioned appropriately.« less

  15. Dark matter beams at LBNF

    NASA Astrophysics Data System (ADS)

    Coloma, Pilar; Dobrescu, Bogdan A.; Frugiuele, Claudia; Harnik, Roni

    2016-04-01

    High-intensity neutrino beam facilities may produce a beam of light dark matter when protons strike the target. Searches for such a dark matter beam using its scattering in a nearby detector must overcome the large neutrino background. We characterize the spatial and energy distributions of the dark matter and neutrino beams, focusing on their differences to enhance the sensitivity to dark matter. We find that a dark matter beam produced by a Z ' boson in the GeV mass range is both broader and more energetic than the neutrino beam. The reach for dark matter is maximized for a detector sensitive to hard neutral-current scatterings, placed at a sizable angle off the neutrino beam axis. In the case of the Long-Baseline Neutrino Facility (LBNF), a detector placed at roughly 6 degrees off axis and at a distance of about 200 m from the target would be sensitive to Z ' couplings as low as 0.05. This search can proceed symbiotically with neutrino measurements. We also show that the MiniBooNE and MicroBooNE detectors, which are on Fermilab's Booster beamline, happen to be at an optimal angle from the NuMI beam and could perform searches with existing data. This illustrates potential synergies between LBNF and the short-baseline neutrino program if the detectors are positioned appropriately.

  16. Cosmological Simulations of Dark Matter

    NASA Astrophysics Data System (ADS)

    Vogelsberger, Mark

    2015-04-01

    Dark matter is supposed to be the backbone of structure formation in the universe. It dominates the energy content of the universe together with dark energy. Modern computer simulation allow the detailed prediction of the distribution of dark matter on very large and small scales. The main inputs for these simulations are the initial conditions observed through the cosmic microwave background and gravity as the main force behind structure formation. I will present in my talk recent advances in cosmological simulations and how state-of-the-art simulations lead to virtual universes which agree remarkably well with observations of the real universe. Despite this success the small-scale structure predicted by these simulations does not agree perfectly with observations. I will discuss possible solutions to these problems that might also point to new theories of dark matter.

  17. Cold dark matter heats up.

    PubMed

    Pontzen, Andrew; Governato, Fabio

    2014-02-13

    A principal discovery in modern cosmology is that standard model particles comprise only 5 per cent of the mass-energy budget of the Universe. In the ΛCDM paradigm, the remaining 95 per cent consists of dark energy (Λ) and cold dark matter. ΛCDM is being challenged by its apparent inability to explain the low-density 'cores' of dark matter measured at the centre of galaxies, where centrally concentrated high-density 'cusps' were predicted. But before drawing conclusions, it is necessary to include the effect of gas and stars, historically seen as passive components of galaxies. We now understand that these can inject heat energy into the cold dark matter through a coupling based on rapid gravitational potential fluctuations, explaining the observed low central densities. PMID:24522596

  18. Composite strongly interacting dark matter

    NASA Astrophysics Data System (ADS)

    Cline, James M.; Liu, Zuowei; Moore, Guy D.; Xue, Wei

    2014-07-01

    It has been suggested that cold dark matter (CDM) has difficulties in explaining tentative evidence for noncuspy halo profiles in small galaxies, and the low velocity dispersions observed in the largest Milky Way satellites ("too-big-to-fail" problem). Strongly self-interacting dark matter has been noted as a robust solution to these problems. The elastic cross sections required are much larger than predicted by generic CDM models, but could naturally be of the right size if dark matter is composite. We explore in a general way the constraints on models where strongly interacting CDM is in the form of dark "atoms" or "molecules," or bound states of a confining gauge interaction ("hadrons"). These constraints include considerations of relic density, direct detection, big bang nucleosynthesis, the cosmic microwave background, and LHC data.

  19. Dark-matter 'paparazzi' exposed

    NASA Astrophysics Data System (ADS)

    Harris, Margaret

    2008-10-01

    After waiting almost two years for data that may shed light on the mysterious substance that makes up almost a quarter of the universe, some physicists thought a new result on dark matter was just too exciting to keep quiet. So when a member of the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) team recently gave a conference talk, a few audience members could not resist taking photos of the slides. By incorporating their snapshots into papers posted on the arXiv preprint server, these "paparazzi" physicists sparked a debate on both dark matter and datasharing etiquette in a digital world.

  20. Cryogenic Dark Matter Search (CDMS): The Hunt for Dark Matter

    SciTech Connect

    Sadoulet, Bernard

    2006-03-06

    Deciphering the nature of dark matter has great scientific importance. A leading hypothesis is that dark matter is made of Weakly Interactive Massive Particles (WIMPs), which may result from supersymmetry or additional spatial dimensions. The underground search for elastic scattering of WIMPs on suitable targets (the so-called 'direct detection') is currently led by the Cryogenic Dark Matter Search II (CDMS II) experiment. Its sensitivity is ten times better than any other experiment and we hope to obtain another factor ten in the coming two years. After a brief recall of our recent results, I will describe the complementarity between direct detection experiments, the LHC and the ILC and I will outline the role that SLAC could play in this SuperCDMS program.

  1. Dark Energy and The Dark Matter Relic Abundance

    SciTech Connect

    Rosati, Francesca

    2004-11-17

    Two mechanisms by which the quintessence scalar could enhance the relic abundance of dark matter particles are discussed. These effects can have an impact on supersymmetric candidates for dark matter.

  2. Dark matter versus Mach's principle.

    NASA Astrophysics Data System (ADS)

    von Borzeszkowski, H.-H.; Treder, H.-J.

    1998-02-01

    Empirical and theoretical evidence show that the astrophysical problem of dark matter might be solved by a theory of Einstein-Mayer type. In this theory up to global Lorentz rotations the reference system is determined by the motion of cosmic matter. Thus one is led to a "Riemannian space with teleparallelism" realizing a geometric version of the Mach-Einstein doctrine. The field equations of this gravitational theory contain hidden matter terms where the existence of hidden matter is inferred safely from its gravitational effects. It is argued that in the nonrelativistic mechanical approximation they provide an inertia-free mechanics where the inertial mass of a body is induced by the gravitational action of the comic masses. Interpreted form the Newtonian point of view this mechanics shows that the effective gravitational mass of astrophysical objects depends on r such that one expects the existence of dark matter.

  3. Scalar graviton as dark matter

    SciTech Connect

    Pirogov, Yu. F.

    2015-06-15

    The basics of the theory of unimodular bimode gravity built on the principles of unimodular gauge invariance/relativity and general covariance are exposed. Besides the massless tensor graviton of General Relativity, the theory includes an (almost) massless scalar graviton treated as the gravitational dark matter. A spherically symmetric vacuum solution describing the coherent scalar-graviton field for the soft-core dark halos, with the asymptotically flat rotation curves, is demonstrated as an example.

  4. Dark matter via massive bigravity

    NASA Astrophysics Data System (ADS)

    Blanchet, Luc; Heisenberg, Lavinia

    2015-05-01

    In this work we investigate the existence of relativistic models for dark matter in the context of bimetric gravity, used here to reproduce the modified Newtonian dynamics (MOND) at galactic scales. For this purpose we consider two different species of dark matter particles that separately couple to the two metrics of bigravity. These two sectors are linked together via an internal U (1 ) vector field, and some effective composite metric built out of the two metrics. Among possible models only certain classes of kinetic and interaction terms are allowed without invoking ghost degrees of freedom. Along these lines we explore the number of allowed kinetic terms in the theory and point out the presence of ghosts in a previous model. Finally, we propose a promising class of ghost-free candidate theories that could provide the MOND phenomenology at galactic scales while reproducing the standard cold dark matter model at cosmological scales.

  5. Dark matter in 3D

    NASA Astrophysics Data System (ADS)

    Alves, Daniele S. M.; El Hedri, Sonia; Wacker, Jay G.

    2016-03-01

    We discuss the relevance of directional detection experiments in the post-discovery era and propose a method to extract the local dark matter phase space distribution from directional data. The first feature of this method is a parameterization of the dark matter distribution function in terms of integrals of motion, which can be analytically extended to infer properties of the global distribution if certain equilibrium conditions hold. The second feature of our method is a decomposition of the distribution function in moments of a model independent basis, with minimal reliance on the ansatz for its functional form. We illustrate our method using the Via Lactea II N-body simulation as well as an analytical model for the dark matter halo. We conclude that {O}(1000) events are necessary to measure deviations from the Standard Halo Model and constrain or measure the presence of anisotropies.

  6. The DAMIC Dark Matter Experiment

    SciTech Connect

    de Mello Neto, J. R.T.

    2015-10-07

    The DAMIC (DArk Matter In CCDs) experiment uses high-resistivity, scientific-grade CCDs to search for dark matter. The CCD’s low electronic noise allows an unprecedently low energy threshold of a few tens of eV; this characteristic makes it possible to detect silicon recoils resulting from interactions of low-mass WIMPs. In addition, the CCD’s high spatial resolution and the excellent energy response results in very effective background identification techniques. The experiment has a unique sensitivity to dark matter particles with masses below 10 GeV/c2. Previous results have motivated the construction of DAMIC100, a 100 grams silicon target detector currently being installed at SNOLAB. The mode of operation and unique imaging capabilities of the CCDs, and how they may be exploited to characterize and suppress backgrounds are discussed, as well as physics results after one year of data taking.

  7. Dark Matter in 3D

    SciTech Connect

    Alves, Daniele S.M.; Hedri, Sonia El; Wacker, Jay G.

    2012-04-01

    We discuss the relevance of directional detection experiments in the post-discovery era and propose a method to extract the local dark matter phase space distribution from directional data. The first feature of this method is a parameterization of the dark matter distribution function in terms of integrals of motion, which can be analytically extended to infer properties of the global distribution if certain equilibrium conditions hold. The second feature of our method is a decomposition of the distribution function in moments of a model independent basis, with minimal reliance on the ansatz for its functional form. We illustrate our method using the Via Lactea II N-body simulation as well as an analytical model for the dark matter halo. We conclude that O(1000) events are necessary to measure deviations from the Standard Halo Model and constrain or measure the presence of anisotropies.

  8. Dark matter in 3D

    DOE PAGESBeta

    Alves, Daniele S. M.; El Hedri, Sonia; Wacker, Jay G.

    2016-03-21

    We discuss the relevance of directional detection experiments in the post-discovery era and propose a method to extract the local dark matter phase space distribution from directional data. The first feature of this method is a parameterization of the dark matter distribution function in terms of integrals of motion, which can be analytically extended to infer properties of the global distribution if certain equilibrium conditions hold. The second feature of our method is a decomposition of the distribution function in moments of a model independent basis, with minimal reliance on the ansatz for its functional form. We illustrate our methodmore » using the Via Lactea II N-body simulation as well as an analytical model for the dark matter halo. Furthermore, we conclude that O(1000) events are necessary to measure deviations from the Standard Halo Model and constrain or measure the presence of anisotropies.« less

  9. Natural supersymmetric minimal dark matter

    NASA Astrophysics Data System (ADS)

    Fabbrichesi, Marco; Urbano, Alfredo

    2016-03-01

    We show how the Higgs boson mass is protected from the potentially large corrections due to the introduction of minimal dark matter if the new physics sector is made supersymmetric. The fermionic dark matter candidate (a 5-plet of S U (2 )L) is accompanied by a scalar state. The weak gauge sector is made supersymmetric, and the Higgs boson is embedded in a supersymmetric multiplet. The remaining standard model states are nonsupersymmetric. Nonvanishing corrections to the Higgs boson mass only appear at three-loop level, and the model is natural for dark matter masses up to 15 TeV—a value larger than the one required by the cosmological relic density. The construction presented stands as an example of a general approach to naturalness that solves the little hierarchy problem which arises when new physics is added beyond the standard model at an energy scale around 10 TeV.

  10. Decoupling dark energy from matter

    SciTech Connect

    Brax, Philippe; Davis, Anne-Christine; Martin, Jérôme E-mail: c.vandebruck@sheffield.ac.uk E-mail: jmartin@iap.fr

    2009-09-01

    We examine the embedding of dark energy in high energy models based upon supergravity and extend the usual phenomenological setting comprising an observable sector and a hidden supersymmetry breaking sector by including a third sector leading to the acceleration of the expansion of the universe. We find that gravitational constraints on the non-existence of a fifth force naturally imply that the dark energy sector must possess an approximate shift symmetry. When exact, the shift symmetry provides an example of a dark energy sector with a runaway potential and a nearly massless dark energy field whose coupling to matter is very weak, contrary to the usual lore that dark energy fields must couple strongly to matter and lead to gravitational inconsistencies. Moreover, the shape of the potential is stable under one-loop radiative corrections. When the shift symmetry is slightly broken by higher order terms in the Kähler potential, the coupling to matter remains small. However, the cosmological dynamics are largely affected by the shift symmetry breaking operators leading to the appearance of a minimum of the scalar potential such that dark energy behaves like an effective cosmological constant from very early on in the history of the universe.

  11. Z-portal dark matter

    SciTech Connect

    Arcadi, Giorgio; Mambrini, Yann; Richard, Francois

    2015-03-11

    We propose to generalize the extensions of the Standard Model where the Z boson serves as a mediator between the Standard Model sector and the dark sector χ. We show that, like in the Higgs portal case, the combined constraints from the recent direct searches restrict severely the nature of the coupling of the dark matter to the Z boson and set a limit m{sub χ}≳200 GeV (except in a very narrow region around the Z-pole region). Using complementarity between spin dependent, spin independent and FERMI limits, we predict the nature of this coupling, more specifically the axial/vectorial ratio that respects a thermal dark matter coupled through a Z-portal while not being excluded by the current observations. We also show that the next generation of experiments of the type LZ or XENON1T will test Z-portal scenario for dark matter mass up to 2 TeV. The condition of a thermal dark matter naturally predicts the spin-dependent scattering cross section on the neutron to be σ{sub χn}{sup SD}≃10{sup −40} cm{sup 2}, which then becomes a clear prediction of the model and a signature testable in the near future experiments.

  12. Exploring Baryons for Dark Matter

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    There is on-going research for the detection of WIMP's based on a speculative idea of supersymmetry, which attempts to unify the fundamental forces of nature, including gravity. The detection of WIMP's is expected to find a solution to the issue of dark matter. We continue to hold and support our view of the millennium that gravity is not a fundamental force of Nature. We are therefore exploring baryons as the particles to address the issue of dark matter. We poster present our analyses to support our proposal.

  13. Dark matter searches at ATLAS

    NASA Astrophysics Data System (ADS)

    Mehlhase, Sascha

    2016-06-01

    The large excess of Dark Matter observed in the Universe and its particle nature is one of the key problems yet to be solved in particle physics. Despite the extensive success of the Standard Model, it is not able to explain this excess, which instead might be due to yet unknown particles, such as Weakly Interacting Massive Particles, that could be produced at the Large Hadron Collider. This contribution will give an overview of different approaches to finding evidence for Dark Matter with the ATLAS experiment in √{s }=8 TeV Run-1 data.

  14. Did LIGO Detect Dark Matter?

    NASA Astrophysics Data System (ADS)

    Bird, Simeon; Cholis, Ilias; Muñoz, Julian B.; Ali-Haïmoud, Yacine; Kamionkowski, Marc; Kovetz, Ely D.; Raccanelli, Alvise; Riess, Adam G.

    2016-05-01

    We consider the possibility that the black-hole (BH) binary detected by LIGO may be a signature of dark matter. Interestingly enough, there remains a window for masses 20 M⊙≲Mbh≲100 M⊙ where primordial black holes (PBHs) may constitute the dark matter. If two BHs in a galactic halo pass sufficiently close, they radiate enough energy in gravitational waves to become gravitationally bound. The bound BHs will rapidly spiral inward due to the emission of gravitational radiation and ultimately will merge. Uncertainties in the rate for such events arise from our imprecise knowledge of the phase-space structure of galactic halos on the smallest scales. Still, reasonable estimates span a range that overlaps the 2 - 53 Gpc-3 yr-1 rate estimated from GW150914, thus raising the possibility that LIGO has detected PBH dark matter. PBH mergers are likely to be distributed spatially more like dark matter than luminous matter and have neither optical nor neutrino counterparts. They may be distinguished from mergers of BHs from more traditional astrophysical sources through the observed mass spectrum, their high ellipticities, or their stochastic gravitational wave background. Next-generation experiments will be invaluable in performing these tests.

  15. Did LIGO Detect Dark Matter?

    PubMed

    Bird, Simeon; Cholis, Ilias; Muñoz, Julian B; Ali-Haïmoud, Yacine; Kamionkowski, Marc; Kovetz, Ely D; Raccanelli, Alvise; Riess, Adam G

    2016-05-20

    We consider the possibility that the black-hole (BH) binary detected by LIGO may be a signature of dark matter. Interestingly enough, there remains a window for masses 20M_{⊙}≲M_{bh}≲100M_{⊙} where primordial black holes (PBHs) may constitute the dark matter. If two BHs in a galactic halo pass sufficiently close, they radiate enough energy in gravitational waves to become gravitationally bound. The bound BHs will rapidly spiral inward due to the emission of gravitational radiation and ultimately will merge. Uncertainties in the rate for such events arise from our imprecise knowledge of the phase-space structure of galactic halos on the smallest scales. Still, reasonable estimates span a range that overlaps the 2-53  Gpc^{-3} yr^{-1} rate estimated from GW150914, thus raising the possibility that LIGO has detected PBH dark matter. PBH mergers are likely to be distributed spatially more like dark matter than luminous matter and have neither optical nor neutrino counterparts. They may be distinguished from mergers of BHs from more traditional astrophysical sources through the observed mass spectrum, their high ellipticities, or their stochastic gravitational wave background. Next-generation experiments will be invaluable in performing these tests. PMID:27258861

  16. Dark matter and dark energy: The critical questions

    SciTech Connect

    Michael S. Turner

    2002-11-19

    Stars account for only about 0.5% of the content of the Universe; the bulk of the Universe is optically dark. The dark side of the Universe is comprised of: at least 0.1% light neutrinos; 3.5% {+-} 1% baryons; 29% {+-} 4% cold dark matter; and 66% {+-} 6% dark energy. Now that we have characterized the dark side of the Universe, the challenge is to understand it. The critical questions are: (1) What form do the dark baryons take? (2) What is (are) the constituent(s) of the cold dark matter? (3) What is the nature of the mysterious dark energy that is causing the Universe to speed up.

  17. Dark matter from dark energy-baryonic matter couplings

    NASA Astrophysics Data System (ADS)

    Avilés, Alejandro; Cervantes-Cota, Jorge L.

    2011-01-01

    We present a scenario in which a scalar field dark energy is coupled to the trace of the energy momentum tensor of the baryonic matter fields. In the slow-roll regime, this interaction could give rise to the cosmological features of dark matter. We work out the cosmological background solutions and fit the parameters of the model using the Union 2 supernovae data set. Then, we develop cosmological perturbations up to linear order, and we find that the perturbed variables have an acceptable behavior, in particular, the density contrast of baryonic matter grows similar to that in the ΛCDM model for a suitable choice of the strength parameter of the coupling.

  18. Two-portal dark matter

    NASA Astrophysics Data System (ADS)

    Ghorbani, Karim; Ghorbani, Hossein

    2015-06-01

    We propose a renormalizable dark matter model in which a fermionic dark matter (DM) candidate communicates with the standard model particles through two distinct portals: Higgs and vector portals. The dark sector is charged under a U (1 )' gauge symmetry while the standard model has a leptophobic interaction with the dark vector boson. The leading contribution of the DM-nucleon elastic scattering cross section begins at one-loop level. The model meets all the constraints imposed by direct detection experiments provided by LUX and XENON100, observed relic abundance according to WMAP and Planck, and the invisible Higgs decay width measured at the LHC. It turns out that the dark matter mass in the viable parameter space can take values from a few GeV up to 1 TeV. This is a new feature which is absent in the models with only one portal. In addition, we can find in the constrained regions of the parameter space a DM mass of ˜34 GeV annihilating into b quark pair, which explains the Fermi-LAT gamma-ray excess.

  19. Dark matter in NGC 4472

    NASA Technical Reports Server (NTRS)

    Loewenstein, Michael

    1992-01-01

    An attempt is made to constrain the total mass distribution of the giant elliptical galaxy NGC 4472 by constructing simultaneous equilibrium models for the gas and stars. Emphasis is given to reconciling the value of the emission-weighted average value of kT derived from the Ginga spectrum with the amount of dark matter needed to account for velocity dispersion observations.

  20. Wino dark matter under siege

    SciTech Connect

    Cohen, Timothy; Lisanti, Mariangela; Pierce, Aaron; Slatyer, Tracy R. E-mail: mlisanti@princeton.edu E-mail: tslatyer@mit.edu

    2013-10-01

    A fermion triplet of SU(2){sub L} — a wino — is a well-motivated dark matter candidate. This work shows that present-day wino annihilations are constrained by indirect detection experiments, with the strongest limits coming from H.E.S.S. and Fermi. The bounds on wino dark matter are presented as a function of mass for two scenarios: thermal (winos constitute a subdominant component of the dark matter for masses less than 3.1 TeV) and non-thermal (winos comprise all the dark matter). Assuming the NFW halo model, the H.E.S.S. search for gamma-ray lines excludes the 3.1 TeV thermal wino; the combined H.E.S.S. and Fermi results completely exclude the non-thermal scenario. Uncertainties in the exclusions are explored. Indirect detection may provide the only probe for models of anomaly plus gravity mediation where the wino is the lightest superpartner and scalars reside at the 100 TeV scale.

  1. Diphoton resonance confronts dark matter

    NASA Astrophysics Data System (ADS)

    Choi, Soo-Min; Kang, Yoo-Jin; Lee, Hyun Min

    2016-07-01

    As an interpretation of the 750 GeV diphoton excesses recently reported by both ATLAS and CMS collaborations, we consider a simple extension of the Standard Model with a Dirac fermion dark matter where a singlet complex scalar field mediates between dark matter and SM particles via effective couplings to SM gauge bosons and/or Higgs-portal. In this model, we can accommodate the diphoton events through the direct and/or cascade decays of pseudo-scalar and real scalar partners of the complex scalar field. We show that mono-jet searches and gamma-ray observations are complementary in constraining the region where the width of the diphoton resonance can be enhanced due to the couplings of the resonance to dark matter and the correct relic density is obtained. In the case of cascade decay of the resonance, the effective couplings of singlet scalars can be smaller, but the model is still testable by the future discrimination between single photon and photon-jet at the LHC as well as the gamma-ray searches for the cascade annihilation of dark matter.

  2. Dissipative hidden sector dark matter

    NASA Astrophysics Data System (ADS)

    Foot, R.; Vagnozzi, S.

    2015-01-01

    A simple way of explaining dark matter without modifying known Standard Model physics is to require the existence of a hidden (dark) sector, which interacts with the visible one predominantly via gravity. We consider a hidden sector containing two stable particles charged under an unbroken U (1 )' gauge symmetry, hence featuring dissipative interactions. The massless gauge field associated with this symmetry, the dark photon, can interact via kinetic mixing with the ordinary photon. In fact, such an interaction of strength ε ˜10-9 appears to be necessary in order to explain galactic structure. We calculate the effect of this new physics on big bang nucleosynthesis and its contribution to the relativistic energy density at hydrogen recombination. We then examine the process of dark recombination, during which neutral dark states are formed, which is important for large-scale structure formation. Galactic structure is considered next, focusing on spiral and irregular galaxies. For these galaxies we modeled the dark matter halo (at the current epoch) as a dissipative plasma of dark matter particles, where the energy lost due to dissipation is compensated by the energy produced from ordinary supernovae (the core-collapse energy is transferred to the hidden sector via kinetic mixing induced processes in the supernova core). We find that such a dynamical halo model can reproduce several observed features of disk galaxies, including the cored density profile and the Tully-Fisher relation. We also discuss how elliptical and dwarf spheroidal galaxies could fit into this picture. Finally, these analyses are combined to set bounds on the parameter space of our model, which can serve as a guideline for future experimental searches.

  3. Dark matter axions and caustic rings

    SciTech Connect

    Sikivie, P.

    1997-11-01

    This report contains discussions on the following topics: the strong CP problem; dark matter axions; the cavity detector of galactic halo axions; and caustic rings in the density distribution of cold dark matter halos.

  4. Dark matter in a bouncing universe

    SciTech Connect

    Cheung, Yeuk-Kwan E.; Kang, Jin U; Li, Changhong E-mail: jin.u.kang2@gmail.com

    2014-11-01

    We investigate a new scenario of dark matter production in a bouncing universe, in which dark matter was produced completely out of equilibrium in the contracting as well as expanding phase. We explore possibilities of using dark matter as a probe of the bouncing universe, focusing on the relationship between a critical temperature of the bouncing universe and the present relic abundance of dark matter.

  5. New spectral features from bound dark matter

    NASA Astrophysics Data System (ADS)

    Catena, Riccardo; Kouvaris, Chris

    2016-07-01

    We demonstrate that dark matter particles gravitationally bound to the Earth can induce a characteristic nuclear recoil signal at low energies in direct detection experiments. The new spectral feature that we predict can provide a complementary verification of dark matter discovery at experiments with positive signal but unclear background. The effect is generically expected, in that the ratio of bound over halo dark matter event rates at detectors is independent of the dark matter-nucleon cross section.

  6. Nonthermal dark matter in mirage mediation

    SciTech Connect

    Nagai, Minoru; Nakayama, Kazunori

    2007-12-15

    In mirage-mediation models there exists a modulus field whose mass is O(1000) TeV and its late decay may significantly change the standard thermal relic scenario of the dark matter. We study nonthermal production of the dark matter directly from the modulus decay, and find that for some parameter regions nonthermally produced neutralinos can become the dark matter.

  7. Dark matter in elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Carollo, C. M.; Zeeuw, P. T. DE; Marel, R. P. Van Der; Danziger, I. J.; Qian, E. E.

    1995-01-01

    We present measurements of the shape of the stellar line-of-sight velocity distribution out to two effective radii along the major axes of the four elliptical galaxies NGC 2434, 2663, 3706, and 5018. The velocity dispersion profiles are flat or decline gently with radius. We compare the data to the predictions of f = f(E, L(sub z)) axisymmetric models with and without dark matter. Strong tangential anisotropy is ruled out at large radii. We conclude from our measurements that massive dark halos must be present in three of the four galaxies, while for the fourth galaxy (NGC 2663) the case is inconclusive.

  8. Dark matter annihilation at the galactic center

    NASA Astrophysics Data System (ADS)

    Linden, Tim

    Observations by the WMAP and PLANCK satellites have provided extraordinarily accurate observations on the densities of baryonic matter, dark matter, and dark energy in the universe. These observations indicate that our universe is composed of approximately five times as much dark matter as baryonic matter. However, efforts to detect a particle responsible for the energy density of dark matter have been unsuccessful. Theoretical models have indicated that a leading candidate for the dark matter is the lightest supersymmetric particle, which may be stable due to a conserved R-parity. This dark matter particle would still be capable of interacting with baryons via weak-force interactions in the early universe, a process which was found to naturally explain the observed relic abundance of dark matter today. These residual annihilations can persist, albeit at a much lower rate, in the present universe, providing a detectable signal from dark matter annihilation events which occur throughout the universe. Simulations calculating the distribution of dark matter in our galaxy almost universally predict the galactic center of the Milky Way Galaxy (GC) to provide the brightest signal from dark matter annihilation due to its relative proximity and large simulated dark matter density. Recent advances in telescope technology have allowed for the first multiwavelength analysis of the GC, with suitable effective exposure, angular resolution, and energy resolution in order to detect dark matter particles with properties similar to those predicted by the WIMP miracle. In this work, I describe ongoing efforts which have successfully detected an excess in gamma-ray emission from the region immediately surrounding the GC, which is difficult to describe in terms of standard diffuse emission predicted in the GC region. While the jury is still out on any dark matter interpretation of this excess, I describe several related observations which may indicate a dark matter origin. Finally, I

  9. Dark Matter Annihilation at the Galactic Center

    SciTech Connect

    Linden, Timothy Ryan

    2013-06-01

    Observations by the WMAP and PLANCK satellites have provided extraordinarily accurate observations on the densities of baryonic matter, dark matter, and dark energy in the universe. These observations indicate that our universe is composed of approximately ve times as much dark matter as baryonic matter. However, e orts to detect a particle responsible for the energy density of dark matter have been unsuccessful. Theoretical models have indicated that a leading candidate for the dark matter is the lightest supersymmetric particle, which may be stable due to a conserved R-parity. This dark matter particle would still be capable of interacting with baryons via weak-force interactions in the early universe, a process which was found to naturally explain the observed relic abundance of dark matter today. These residual annihilations can persist, albeit at a much lower rate, in the present universe, providing a detectable signal from dark matter annihilation events which occur throughout the universe. Simulations calculating the distribution of dark matter in our galaxy almost universally predict the galactic center of the Milky Way Galaxy (GC) to provide the brightest signal from dark matter annihilation due to its relative proximity and large simulated dark matter density. Recent advances in telescope technology have allowed for the rst multiwavelength analysis of the GC, with suitable e ective exposure, angular resolution, and energy resolution in order to detect dark matter particles with properties similar to those predicted by the WIMP miracle. In this work, I describe ongoing e orts which have successfully detected an excess in -ray emission from the region immediately surrounding the GC, which is di cult to describe in terms of standard di use emission predicted in the GC region. While the jury is still out on any dark matter interpretation of this excess, I describe several related observations which may indicate a dark matter origin. Finally, I discuss the

  10. Propagation of Light through Composite Dark Matter

    NASA Astrophysics Data System (ADS)

    Kvam, Audrey; Latimer, David

    2013-10-01

    A concordance of observations indicates that around 80% of the matter in the universe is some unknown dark matter. This dark matter could be comprised of a single structureless particle, but much richer theories exist. Signals from the DAMA, CoGeNT, and CDMS-II dark matter detectors along with the non-observation of dark matter by other detectors motivate theories of composite dark matter along with a ``dark'' electromagnetic sector. The composite models propose baryon-like or atom-like dark matter. If photons kinetically mix with the ``dark'' photons, then light traveling through dark matter will experience dispersion. We expect the dispersion to be approximated by the Drude-Lorentz model where the model parameters are particular to a given dark matter candidate. As light travels through the dispersive medium, it can accrue to a frequency-dependent time lag. Measurement of such a time lag can yield clues as to the nature of the dark matter. As a first application, we model hydrogenic dark atoms and use astrophysical data to constrain the mass, binding energy, and the fractional electric charge of the dark atoms.

  11. Alternative to particle dark matter

    NASA Astrophysics Data System (ADS)

    Khoury, Justin

    2015-01-01

    We propose an alternative to particle dark matter that borrows ingredients of modified Newtonian dynamics (MOND) while adding new key components. The first new feature is a dark matter fluid, in the form of a scalar field with small equation of state and sound speed. This component is critical in reproducing the success of cold dark matter for the expansion history and the growth of linear perturbations, but does not cluster significantly on nonlinear scales. Instead, the missing mass problem on nonlinear scales is addressed by a modification of the gravitational force law. The force law approximates MOND at large and intermediate accelerations, and therefore reproduces the empirical success of MOND at fitting galactic rotation curves. At ultralow accelerations, the force law reverts to an inverse-square law, albeit with a larger Newton's constant. This latter regime is important in galaxy clusters and is consistent with their observed isothermal profiles, provided the characteristic acceleration scale of MOND is mildly varying with scale or mass, such that it is 12 times higher in clusters than in galaxies. We present an explicit relativistic theory in terms of two scalar fields. The first scalar field is governed by a Dirac-Born-Infeld action and behaves as a dark matter fluid on large scales. The second scalar field also has single-derivative interactions and mediates a fifth force that modifies gravity on nonlinear scales. Both scalars are coupled to matter via an effective metric that depends locally on the fields. The form of this effective metric implies the equality of the two scalar gravitational potentials, which ensures that lensing and dynamical mass estimates agree. Further work is needed in order to make both the acceleration scale of MOND and the fraction at which gravity reverts to an inverse-square law explicitly dynamical quantities, varying with scale or mass.

  12. Free streaming in mixed dark matter

    NASA Astrophysics Data System (ADS)

    Boyanovsky, Daniel

    2008-01-01

    Free streaming in a mixture of collisionless nonrelativistic dark matter (DM) particles is studied by solving the linearized Vlasov equation implementing methods from the theory of multicomponent plasmas. The mixture includes fermionic, condensed and noncondensed bosonic particles decoupling in equilibrium while relativistic, heavy thermal relics that decoupled when nonrelativistic [weakly interacting massive particles (WIMPs)], and sterile neutrinos that decouple out of equilibrium when they are relativistic. The different components interact via the self-consistent gravitational potential that they source. The free-streaming length λfs is obtained from the marginal zero of the gravitational polarization function, which separates short wavelength Landau-damped from long-wavelength Jeans-unstable collective modes. At redshift z I find (1)/(λfs2(z))=(1)/((1+z))[(0.071)/(kpc)]2∑aνagd,a2/3(ma/keV)2Ia, where 0≤νa≤1 are the fractions of the respective DM components of mass ma that decouple when the effective number of ultrarelativistic degrees of freedom is gd,a, and Ia are dimensionless ratios of integrals of the distribution functions which only depend on the microphysics at decoupling and are obtained explicitly in all the cases considered. If sterile neutrinos produced either resonantly or nonresonantly that decouple near the QCD scale are the only DM component, I find λfs(0)≃7kpc(keV/m) (nonresonant), λfs(0)≃1.73kpc(keV/m) (resonant). If WIMPs with mwimp≳100GeV decoupling at Td≳10MeV are present in the mixture with νwimp≫10-12, λfs(0)≲6.5×10-3pc is dominated by cold dark matter (CDM). If a Bose-Einstein condensate is a DM component its free-streaming length is consistent with CDM because of the infrared enhancement of the distribution function.

  13. Superconducting Detectors for Superlight Dark Matter

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Zhao, Yue; Zurek, Kathryn M.

    2016-01-01

    We propose and study a new class of superconducting detectors that are sensitive to O (meV ) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark-matter limit, mX≳1 keV . We compute the rate of dark-matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological or astrophysical constraints could be detected by such detectors with a moderate size exposure.

  14. Large Extra Dimension and Dark Matter Detection

    SciTech Connect

    Qin Bo; Starkman, Glenn D.; Silk, Joseph

    2008-01-03

    If our space has the large extra dimensions as proposed by Arkani-Hamed, Dimopoulos and Dvali (ADD), then gravity would start to deviate from Newtonian gravity and be greatly enhanced in sub-millimeter scales. Here we show that in the ADD scenario, gravity could play an important role (compared to the weak interaction) in the interactions between dark matter particles and the electron. We find that for typical WIMP dark matter, such dark matter-electron 'gravitational' scattering cross section may be much larger than the dark matter-nucleon cross section constrained by current dark matter experiments.

  15. Non-baryonic dark matter in cosmology

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.

    2013-07-01

    This paper is based on lectures given at the IX Mexican School on Gravitation and Mathematical Physics. The lectures (as the paper) were a broad-band review of the current status of non-baryonic dark matter research. I start with a historical overview of the evidences of dark matter existence, then I discuss how dark matter is distributed from small scale to large scale, and I then verge the attention to dark matter nature: dark matter candidates and their detection. I finally discuss some of the limits of the ΛCDM model, with particular emphasis on the small scale problems of the paradigm.

  16. Superconducting Detectors for Superlight Dark Matter.

    PubMed

    Hochberg, Yonit; Zhao, Yue; Zurek, Kathryn M

    2016-01-01

    We propose and study a new class of superconducting detectors that are sensitive to O(meV) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark-matter limit, m(X)≳1  keV. We compute the rate of dark-matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological or astrophysical constraints could be detected by such detectors with a moderate size exposure. PMID:26799009

  17. Large Extra Dimension and Dark Matter Detection

    NASA Astrophysics Data System (ADS)

    Qin, Bo; Starkman, Glenn D.; Silk, Joseph

    2008-01-01

    If our space has the large extra dimensions as proposed by Arkani-Hamed, Dimopoulos and Dvali (ADD), then gravity would start to deviate from Newtonian gravity and be greatly enhanced in sub-millimeter scales. Here we show that in the ADD scenario, gravity could play an important role (compared to the weak interaction) in the interactions between dark matter particles and the electron. We find that for typical WIMP dark matter, such dark matter-electron ``gravitational'' scattering cross section may be much larger than the dark matter-nucleon cross section constrained by current dark matter experiments.

  18. The local dark matter density

    NASA Astrophysics Data System (ADS)

    Read, J. I.

    2014-06-01

    I review current efforts to measure the mean density of dark matter near the Sun. This encodes valuable dynamical information about our Galaxy and is also of great importance for ‘direct detection’ dark matter experiments. I discuss theoretical expectations in our current cosmology; the theory behind mass modelling of the Galaxy; and I show how combining local and global measures probes the shape of the Milky Way dark matter halo and the possible presence of a ‘dark disc’. I stress the strengths and weaknesses of different methodologies and highlight the continuing need for detailed tests on mock data—particularly in the light of recently discovered evidence for disequilibria in the Milky Way disc. I collate the latest measurements of ρdm and show that, once the baryonic surface density contribution Σb is normalized across different groups, there is remarkably good agreement. Compiling data from the literature, I estimate Σb = 54.2 ± 4.9 M⊙pc-2, where the dominant source of uncertainty is in the H i gas contribution. Assuming this contribution from the baryons, I highlight several recent measurements of ρdm in order of increasing data complexity and prior, and, correspondingly, decreasing formal error bars. Comparing these measurements with spherical extrapolations from the Milky Way’s rotation curve, I show that the Milky Way is consistent with having a spherical dark matter halo at R0 ˜ 8 kpc. The very latest measures of ρdm based on ˜10 000 stars from the Sloan Digital Sky Survey appear to favour little halo flattening at R0, suggesting that the Galaxy has a rather weak dark matter disc, with a correspondingly quiescent merger history. I caution, however, that this result hinges on there being no large systematics that remain to be uncovered in the SDSS data, and on the local baryonic surface density being Σb ˜ 55 M⊙pc-2. I conclude by discussing how the new Gaia satellite will be transformative. We will obtain much tighter

  19. Dark energy and dark matter from primordial QGP

    NASA Astrophysics Data System (ADS)

    Vaidya, Vaishali; Upadhyaya, G. K.

    2015-07-01

    Coloured relics servived after hadronization might have given birth to dark matter and dark energy. Theoretical ideas to solve mystery of cosmic acceleration, its origin and its status with reference to recent past are of much interest and are being proposed by many workers. In the present paper, we present a critical review of work done to understand the earliest appearance of dark matter and dark energy in the scenario of primordial quark gluon plasma (QGP) phase after Big Bang.

  20. Dark energy and dark matter from primordial QGP

    SciTech Connect

    Vaidya, Vaishali Upadhyaya, G. K.

    2015-07-31

    Coloured relics servived after hadronization might have given birth to dark matter and dark energy. Theoretical ideas to solve mystery of cosmic acceleration, its origin and its status with reference to recent past are of much interest and are being proposed by many workers. In the present paper, we present a critical review of work done to understand the earliest appearance of dark matter and dark energy in the scenario of primordial quark gluon plasma (QGP) phase after Big Bang.

  1. Constraining dark matter through 21-cm observations

    NASA Astrophysics Data System (ADS)

    Valdés, M.; Ferrara, A.; Mapelli, M.; Ripamonti, E.

    2007-05-01

    Beyond reionization epoch cosmic hydrogen is neutral and can be directly observed through its 21-cm line signal. If dark matter (DM) decays or annihilates, the corresponding energy input affects the hydrogen kinetic temperature and ionized fraction, and contributes to the Lyα background. The changes induced by these processes on the 21-cm signal can then be used to constrain the proposed DM candidates, among which we select the three most popular ones: (i) 25-keV decaying sterile neutrinos, (ii) 10-MeV decaying light dark matter (LDM) and (iii) 10-MeV annihilating LDM. Although we find that the DM effects are considerably smaller than found by previous studies (due to a more physical description of the energy transfer from DM to the gas), we conclude that combined observations of the 21-cm background and of its gradient should be able to put constrains at least on LDM candidates. In fact, LDM decays (annihilations) induce differential brightness temperature variations with respect to the non-decaying/annihilating DM case up to ΔδTb = 8 (22) mK at about 50 (15) MHz. In principle, this signal could be detected both by current single-dish radio telescopes and future facilities as Low Frequency Array; however, this assumes that ionospheric, interference and foreground issues can be properly taken care of.

  2. Number-theory dark matter

    NASA Astrophysics Data System (ADS)

    Nakayama, Kazunori; Takahashi, Fuminobu; Yanagida, Tsutomu T.

    2011-05-01

    We propose that the stability of dark matter is ensured by a discrete subgroup of the U(1)B-L gauge symmetry, Z(B-L). We introduce a set of chiral fermions charged under the U(1)B-L in addition to the right-handed neutrinos, and require the anomaly-cancellation conditions associated with the U(1)B-L gauge symmetry. We find that the possible number of fermions and their charges are tightly constrained, and that non-trivial solutions appear when at least five additional chiral fermions are introduced. The Fermat theorem in the number theory plays an important role in this argument. Focusing on one of the solutions, we show that there is indeed a good candidate for dark matter, whose stability is guaranteed by Z(B-L).

  3. Baryon asymmetry and dark matter

    NASA Astrophysics Data System (ADS)

    Bolz, M.; Buchmüller, W.; Plümacher, M.

    1998-12-01

    We study the implications of a large baryogenesis temperature, TB=≀(1010 GeV), on the mass spectrum of superparticles in supersymmetric extensions of the standard model. Models with a neutralino as lightest superparticle (LSP) are excluded. A consistent picture is obtained with the gravitino as LSP, followed by a higgsino-like neutralino (NSP). Gravitinos with masses from 10 to 100 GeV may be the dominant component of dark matter.

  4. Implications of quaternionic dark matter

    NASA Astrophysics Data System (ADS)

    Brumby, S. P.; Hanlon, B. E.; Joshi, G. C.

    1997-02-01

    Taking the complex nature of quantum mechanics which we observe today as a low energy effect of a broken quaternionic theory we explore the possibility that dark matter arises as a consequence of this underlying quaternionic structure to our universe. We introduce a low energy, effective, Lagrangian which incorporates the remnants of a local quaternionic algebra, investigate the stellar production of the resultant exotic bosons and explore the possible low energy consequences of our remnant extended Hilbert space.

  5. Axion cold dark matter revisited

    NASA Astrophysics Data System (ADS)

    Visinelli, L.; Gondolo, P.

    2010-01-01

    We study for what specific values of the theoretical parameters the axion can form the totality of cold dark matter. We examine the allowed axion parameter region in the light of recent data collected by the WMAP5 mission plus baryon acoustic oscillations and supernovae [1], and assume an inflationary scenario and standard cosmology. We also upgrade the treatment of anharmonicities in the axion potential, which we find important in certain cases. If the Peccei-Quinn symmetry is restored after inflation, we recover the usual relation between axion mass and density, so that an axion mass ma = (85 ± 3) μeV makes the axion 100% of the cold dark matter. If the Peccei-Quinn symmetry is broken during inflation, the axion can instead be 100% of the cold dark matter for ma < 15 meV provided a specific value of the initial misalignment angle θi is chosen in correspondence to a given value of its mass ma. Large values of the Peccei-Quinn symmetry breaking scale correspond to small, perhaps uncomfortably small, values of the initial misalignment angle θi.

  6. Collisional versus Collisionless Dark Matter.

    PubMed

    Moore; Gelato; Jenkins; Pearce; Quilis

    2000-05-20

    We compare the structure and substructure of dark matter halos in model universes dominated by collisional, strongly self-interacting dark matter (SIDM) and collisionless, weakly interacting dark matter (CDM). While SIDM virialized halos are more nearly spherical than CDM halos, they can be rotationally flattened by as much as 20% in their inner regions. Substructure halos suffer ram-pressure truncation and drag, which are more rapid and severe than their gravitational counterparts tidal stripping and dynamical friction. Lensing constraints on the size of galactic halos in clusters are a factor of 2 smaller than predicted by gravitational stripping, and the recent detection of tidal streams of stars escaping from the satellite galaxy Carina suggests that its tidal radius is close to its optical radius of a few hundred parsecs-an order of magnitude smaller than predicted by CDM models but consistent with SIDM models. The orbits of SIDM satellites suffer significant velocity bias, sigmaSIDM&solm0;sigmaCDM=0.85, and are more circular than CDM satellites, betaSIDM approximately 0.5, in agreement with the inferred orbits of the Galaxy's satellites. In the limit of a short mean free path, SIDM halos have singular isothermal density profiles; thus, in its simplest incarnation SIDM, is inconsistent with galactic rotation curves. PMID:10828999

  7. Isocurvature cold dark matter fluctuations

    NASA Technical Reports Server (NTRS)

    Efstathiou, G.; Bond, J. R.

    1986-01-01

    According to Preskill et al. (1983), the axion field represents a particularly attractive candidate for the dark matter in the universe. In many respects it behaves like other forms of cold dark matter, such as massive gravitinos, photinos, and monopoles. It is, however, a pseudo-Goldstone boson of very low mass, and it is only because of rapid coherent oscillations of the field that it can dominate the mass density of the universe. In the present paper it is assumed that the isocurvature mode is dominant. The linear evolution calculations conducted do not depend upon specific details of particle physics. For this reason, the conducted discussion is applicable to any cold dark matter model with isocurvature perturbations. The results of the study lead to the conclusion that scale-invariant isocurvature perturbations do not seem an attractive possibility for the origin of large-scale structure. The findings strengthen the review that primordial adiabatic perturbations were the dominant fluctuations in the early stages of the Big Bang.

  8. Dark matter in the universe

    SciTech Connect

    Turner, M.S. Chicago Univ., IL . Enrico Fermi Inst.)

    1990-11-01

    What is the quantity and composition of material in the Universe This is one of the most fundamental questions we can ask about the Universe, and its answer bears on a number of important issues including the formation of structure in the Universe, and the ultimate fate and the earliest history of the Universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand: Most of the material in the Universe does not give off detectable radiation, i.e., is dark;'' the dark matter associated with bright galaxies contributes somewhere between 10% and 30% of the critical density (by comparison luminous matter contributes less than 1%); baryonic matter contributes between 1.1% and 12% of critical. The case for the spatially-flat, Einstein-de Sitter model is supported by three compelling theoretical arguments--structure formation, the temporal Copernican principle, and inflation--and by some observational data. If {Omega} is indeed unity--or even just significantly greater than 0.1--then there is a strong case for a Universe comprised of nonbaryonic matter. There are three well motivated particle dark-matter candidates: an axion of mass 10{sup {minus}6} eV to 10{sup {minus}4} eV; a neutralino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either being planned or are underway. 63 refs.

  9. Dark matter in the Universe

    SciTech Connect

    Turner, M.S. Chicago Univ., IL . Enrico Fermi Inst.)

    1991-03-01

    What is the quantity and composition of material in the universe This is one of the most fundamental questions we can ask about the universe, and its answer bears on a number of important issues including the formation of structure in the universe, and the ultimate fate and the earliest history of the universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand: most of the material in the universe does not give off detectable radiation, i.e., is dark;'' the dark matter associated with bright galaxies contributes somewhere between 10% and 30% of the critical density (by comparison luminous matter contributes less than 1%); baryonic matter contributes between 1.1% and 12% of critical. The case for the spatially-flat, Einstein-de Sitter model is supported by three compelling theoretical arguments -- structure formation, the temporal Copernican principle, and inflation -- and by some observational data. If {Omega} is indeed unity--or even just significantly greater than 0.1--then there is a strong case for a universe comprised of nonbaryonic matter. There are three well motivated particle dark-matter candidates: an axion of mass 10{sup {minus}6} eV to 10{sup {minus}4} eV; a neutralino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either being planned or are underway. 71 refs., 6 figs.

  10. Flavored dark matter beyond Minimal Flavor Violation

    SciTech Connect

    Agrawal, Prateek; Blanke, Monika; Gemmler, Katrin

    2014-10-13

    We study the interplay of flavor and dark matter phenomenology for models of flavored dark matter interacting with quarks. We allow an arbitrary flavor structure in the coupling of dark matter with quarks. This coupling is assumed to be the only new source of violation of the Standard Model flavor symmetry extended by a U(3) χ associated with the dark matter. We call this ansatz Dark Minimal Flavor Violation (DMFV) and highlight its various implications, including an unbroken discrete symmetry that can stabilize the dark matter. As an illustration we study a Dirac fermionic dark matter χ which transforms as triplet under U(3) χ , and is a singlet under the Standard Model. The dark matter couples to right-handed down-type quarks via a colored scalar mediator Φ with a coupling λ. We identify a number of “flavor-safe” scenarios for the structure of λ which are beyond Minimal Flavor Violation. Also, for dark matter and collider phenomenology we focus on the well-motivated case of b-flavored dark matter. Furthermore, the combined flavor and dark matter constraints on the parameter space of λ turn out to be interesting intersections of the individual ones. LHC constraints on simplified models of squarks and sbottoms can be adapted to our case, and monojet searches can be relevant if the spectrum is compressed.

  11. Flavored dark matter beyond Minimal Flavor Violation

    DOE PAGESBeta

    Agrawal, Prateek; Blanke, Monika; Gemmler, Katrin

    2014-10-13

    We study the interplay of flavor and dark matter phenomenology for models of flavored dark matter interacting with quarks. We allow an arbitrary flavor structure in the coupling of dark matter with quarks. This coupling is assumed to be the only new source of violation of the Standard Model flavor symmetry extended by a U(3) χ associated with the dark matter. We call this ansatz Dark Minimal Flavor Violation (DMFV) and highlight its various implications, including an unbroken discrete symmetry that can stabilize the dark matter. As an illustration we study a Dirac fermionic dark matter χ which transforms asmore » triplet under U(3) χ , and is a singlet under the Standard Model. The dark matter couples to right-handed down-type quarks via a colored scalar mediator Φ with a coupling λ. We identify a number of “flavor-safe” scenarios for the structure of λ which are beyond Minimal Flavor Violation. Also, for dark matter and collider phenomenology we focus on the well-motivated case of b-flavored dark matter. Furthermore, the combined flavor and dark matter constraints on the parameter space of λ turn out to be interesting intersections of the individual ones. LHC constraints on simplified models of squarks and sbottoms can be adapted to our case, and monojet searches can be relevant if the spectrum is compressed.« less

  12. Dark matter and the equivalence principle

    NASA Technical Reports Server (NTRS)

    Frieman, Joshua A.; Gradwohl, Ben-Ami

    1993-01-01

    A survey is presented of the current understanding of dark matter invoked by astrophysical theory and cosmology. Einstein's equivalence principle asserts that local measurements cannot distinguish a system at rest in a gravitational field from one that is in uniform acceleration in empty space. Recent test-methods for the equivalence principle are presently discussed as bases for testing of dark matter scenarios involving the long-range forces between either baryonic or nonbaryonic dark matter and ordinary matter.

  13. The Dark Matter Problem: A Historical Perspective

    NASA Astrophysics Data System (ADS)

    Sanders, Robert H.

    2010-04-01

    1. Introduction; 2. Early history of the dark matter hypothesis; 3. The stability of disk galaxies: the dark halo solutions; 4. Direct evidence: extended rotation curves of spiral galaxies; 5. The maximum disk: light traces mass; 6. Cosmology and the birth of astroparticle physics; 7. Clusters revisited: missing mass found; 8. CDM confronts galaxy rotation curves; 9. The new cosmology: dark matter is not enough; 10. An alternative to dark matter: Modified Newtonian Dynamics; 11. Seeing dark matter: the theory and practice of detection; 12. Reflections: a personal point of view; Appendix; References; Index.

  14. Astrophysical Probes of Dark Matter Interactions

    NASA Astrophysics Data System (ADS)

    Reece, Matthew

    The majority of matter in the universe is dark matter, made up of some particle beyond those in the Standard Model of particle physics. So far we have very little information about what dark matter is and how it interacts, except through gravity. Constraints from halo shapes and the Bullet Cluster give upper bounds on the self-interaction strength of dark matter, but these bounds are very weak: roughly the same size as nuclear physics cross sections, which are very large by the standards of particle physics. Given how little we know about dark matter, it is important to search for it in as broad a context as possible. Existing direct and indirect detection analyses are typically motivated by simple particle physics models like WIMP dark matter. This research will aim to widen the scope of searches for dark matter by considering a more complete range of particle physics models, working out their implications for astrophysical data, and interpreting existing data in terms of these new models. New models of dark matter can affect searches in a variety of ways. Signals may show up in conventional indirect detection searches, e.g. in gamma rays detected by Fermi-LAT or in antiprotons detected by AMS-02. The new particle physics content of the models could be reflected in surprising spectral shapes or other features of such signals, or in gamma rays with a different profile on the sky than expected in typical models. The PI has worked, for example, on a model in which signals may arise from a dark disk, which is just one of many possibilities. Signals of new dark matter models might also arise in more subtle ways. Structure in the dark sector could influence the development of structure in the visible sector, indirectly. For instance, a dark matter disk or other dark structures could alter the orbits of stars in the galaxy and may be detectable through detailed studies of the kinematics of stellar populations. Dark accretion disks could exist around astrophysical objects

  15. The Cosmology of Composite Inelastic Dark Matter

    SciTech Connect

    Spier Moreira Alves, Daniele; Behbahani, Siavosh R.; Schuster, Philip; Wacker, Jay G.; /SLAC

    2011-08-19

    Composite dark matter is a natural setting for implementing inelastic dark matter - the O(100 keV) mass splitting arises from spin-spin interactions of constituent fermions. In models where the constituents are charged under an axial U(1) gauge symmetry that also couples to the Standard Model quarks, dark matter scatters inelastically off Standard Model nuclei and can explain the DAMA/LIBRA annual modulation signal. This article describes the early Universe cosmology of a minimal implementation of a composite inelastic dark matter model where the dark matter is a meson composed of a light and a heavy quark. The synthesis of the constituent quarks into dark hadrons results in several qualitatively different configurations of the resulting dark matter composition depending on the relative mass scales in the system.

  16. Baryon destruction by asymmetric dark matter

    SciTech Connect

    Davoudiasl H.; Morrissey, D.; Sigurdson, K.; Tulin, S.

    2011-11-10

    We investigate new and unusual signals that arise in theories where dark matter is asymmetric and carries a net antibaryon number, as may occur when the dark matter abundance is linked to the baryon abundance. Antibaryonic dark matter can cause induced nucleon decay by annihilating visible baryons through inelastic scattering. These processes lead to an effective nucleon lifetime of 10{sup 29}-10{sup 32} yrs in terrestrial nucleon decay experiments, if baryon number transfer between visible and dark sectors arises through new physics at the weak scale. The possibility of induced nucleon decay motivates a novel approach for direct detection of cosmic dark matter in nucleon decay experiments. Monojet searches (and related signatures) at hadron colliders also provide a complementary probe of weak-scale dark-matter-induced baryon number violation. Finally, we discuss the effects of baryon-destroying dark matter on stellar systems and show that it can be consistent with existing observations.

  17. Baryon destruction by asymmetric dark matter

    SciTech Connect

    Davoudiasl, Hooman; Morrissey, David E.; Tulin, Sean; Sigurdson, Kris

    2011-11-01

    We investigate new and unusual signals that arise in theories where dark matter is asymmetric and carries a net antibaryon number, as may occur when the dark matter abundance is linked to the baryon abundance. Antibaryonic dark matter can cause induced nucleon decay by annihilating visible baryons through inelastic scattering. These processes lead to an effective nucleon lifetime of 10{sup 29}-10{sup 32} yrs in terrestrial nucleon decay experiments, if baryon number transfer between visible and dark sectors arises through new physics at the weak scale. The possibility of induced nucleon decay motivates a novel approach for direct detection of cosmic dark matter in nucleon decay experiments. Monojet searches (and related signatures) at hadron colliders also provide a complementary probe of weak-scale dark-matter-induced baryon number violation. Finally, we discuss the effects of baryon-destroying dark matter on stellar systems and show that it can be consistent with existing observations.

  18. Cosmological evolution with interaction between dark energy and dark matter

    NASA Astrophysics Data System (ADS)

    Bolotin, Yuri L.; Kostenko, Alexander; Lemets, Oleg A.; Yerokhin, Danylo A.

    2015-12-01

    In this review we consider in detail different theoretical topics associated with interaction in the dark sector. We study linear and nonlinear interactions which depend on the dark matter and dark energy densities. We consider a number of different models (including the holographic dark energy and dark energy in a fractal universe), with interacting dark energy and dark matter, have done a thorough analysis of these models. The main task of this review was not only to give an idea about the modern set of different models of dark energy, but to show how much can be diverse dynamics of the universe in these models. We find that the dynamics of a universe that contains interaction in the dark sector can differ significantly from the Standard Cosmological Model.

  19. Chaotic spin precession in anisotropic universes and fermionic dark matter

    NASA Astrophysics Data System (ADS)

    Kamenshchik, A. Yu.; Teryaev, O. V.

    2016-05-01

    We consider the precession of a Dirac particle spin in some anisotropic Bianchi universes. This effect is present already in the Bianchi-I universe. In the Bianchi-IX universe it acquires the chaotic character due to the stochasticity of the oscillatory approach to the cosmological singularity. The related helicity flip of fermions in the veryearly Universe may produce the sterile particles contributing to dark matter.

  20. Dark matter in the universe

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1991-01-01

    What is the quantity and composition of material in the Universe? This is one of the most fundamental questions we can ask about the Universe, and its answer bears on a number of important issues including the formation of structure in the Universe, and the ultimate fate and the earliest history of the Universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand. Most of the radiation in the Universe does not give off detectable radiation; it is dark. The dark matter associated with bright galaxies contributes somewhere between 10 and 30 percent of the critical density; baryonic matter contributes between 1.1 and 12 percent of the critical. The case for the spatially flat, Einstein-de Sitter model is supported by three compelling theoretical arguments - structure formation, the temporal Copernican principle, and inflation - and by some observational data. If Omega is indeed unity, or even just significantly greater than 0.1, then there is a strong case for a Universe comprised of nonbaryonic matter. There are three well motivated particle dark matter candidates: an axion of mass 10 (exp -6) eV to 10 (exp -4) eV; a neutrino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either planned or are underway.

  1. Twin Higgs Asymmetric Dark Matter

    NASA Astrophysics Data System (ADS)

    García García, Isabel; Lasenby, Robert; March-Russell, John

    2015-09-01

    We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)'×SU(2)', atwin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD' scale ΛQCD'≃0.5 - 20 GeV , and that t' is heavy. We focus on the light b' quark regime, mb'≲ΛQCD', where QCD' is characterized by a single scale ΛQCD' with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3 /2 twin baryon, Δ'˜b'b'b', with a dynamically determined mass (˜5 ΛQCD') in the preferred range for the DM-to-baryon ratio ΩDM/Ωbaryon≃5 . Gauging the U (1 )' group leads to twin atoms (Δ'-τ' ¯ bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors.

  2. Twin Higgs Asymmetric Dark Matter.

    PubMed

    García García, Isabel; Lasenby, Robert; March-Russell, John

    2015-09-18

    We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)^{'}×SU(2)^{'}, a twin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD^{'} scale Λ_{QCD}^{'}≃0.5-20  GeV, and that t^{'} is heavy. We focus on the light b^{'} quark regime, m_{b^{'}}≲Λ_{QCD}^{'}, where QCD^{'} is characterized by a single scale Λ_{QCD}^{'} with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3/2 twin baryon, Δ^{'}∼b^{'}b^{'}b^{'}, with a dynamically determined mass (∼5Λ_{QCD}^{'}) in the preferred range for the DM-to-baryon ratio Ω_{DM}/Ω_{baryon}≃5. Gauging the U(1)^{'} group leads to twin atoms (Δ^{'}-τ^{'}[over ¯] bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors. PMID:26430985

  3. Dissipative dark matter explains rotation curves

    NASA Astrophysics Data System (ADS)

    Foot, R.

    2015-06-01

    Dissipative dark matter, where dark matter particles interact with a massless (or very light) boson, is studied. Such dark matter can arise in simple hidden sector gauge models, including those featuring an unbroken U (1 )' gauge symmetry, leading to a dark photon. Previous work has shown that such models can not only explain the large scale structure and cosmic microwave background, but potentially also dark matter phenomena on small scales, such as the inferred cored structure of dark matter halos. In this picture, dark matter halos of disk galaxies not only cool via dissipative interactions but are also heated via ordinary supernovae (facilitated by an assumed photon-dark photon kinetic mixing interaction). This interaction between the dark matter halo and ordinary baryons, a very special feature of these types of models, plays a critical role in governing the physical properties of the dark matter halo. Here, we further study the implications of this type of dissipative dark matter for disk galaxies. Building on earlier work, we develop a simple formalism which aims to describe the effects of dissipative dark matter in a fairly model independent way. This formalism is then applied to generic disk galaxies. We also consider specific examples, including NGC 1560 and a sample of dwarf galaxies from the LITTLE THINGS survey. We find that dissipative dark matter, as developed here, does a fairly good job accounting for the rotation curves of the galaxies considered. Not only does dissipative dark matter explain the linear rise of the rotational velocity of dwarf galaxies at small radii, but it can also explain the observed wiggles in rotation curves which are known to be correlated with corresponding features in the disk gas distribution.

  4. EXTRAGALACTIC DARK MATTER AND DIRECT DETECTION EXPERIMENTS

    SciTech Connect

    Baushev, A. N.

    2013-07-10

    Recent astronomical data strongly suggest that a significant part of the dark matter content of the Local Group and Virgo Supercluster is not incorporated into the galaxy halos and forms diffuse components of these galaxy clusters. A portion of the particles from these components may penetrate the Milky Way and make an extragalactic contribution to the total dark matter containment of our Galaxy. We find that the particles of the diffuse component of the Local Group are apt to contribute {approx}12% to the total dark matter density near Earth. The particles of the extragalactic dark matter stand out because of their high speed ({approx}600 km s{sup -1}), i.e., they are much faster than the galactic dark matter. In addition, their speed distribution is very narrow ({approx}20 km s{sup -1}). The particles have an isotropic velocity distribution (perhaps, in contrast to the galactic dark matter). The extragalactic dark matter should provide a significant contribution to the direct detection signal. If the detector is sensitive only to the fast particles (v > 450 km s{sup -1}), then the signal may even dominate. The density of other possible types of the extragalactic dark matter (for instance, of the diffuse component of the Virgo Supercluster) should be relatively small and comparable with the average dark matter density of the universe. However, these particles can generate anomaly high-energy collisions in direct dark matter detectors.

  5. New astrophysical probes of dark matter

    NASA Astrophysics Data System (ADS)

    Wang, Mei-Yu

    In my thesis, I present four studies to explore astrophysical methods for understanding dark matter properties. To understand the nature of dark matter, I explore a few unstable dark matter models that are invoked as ways to address apparent discrepancies between the predictions of standard cold dark matter and observations of small-scale galactic structure. My studies are aimed at developing independent large-scale constraints on these models. One of the model is a decaying dark matter model such that one dark matter particle decays into two relativistic non-interacting particles. In the second model, a dark matter particle decays into a less massive, stable dark matter particle with a recoil kick velocity Vk and a relativistic non-interacting particle. I consider two types of experiments: one is weak lensing cosmic shear with future or forthcoming surveys like Dark Energy Survey (DES) and Large Synoptic Survey Telescope (LSST); the other one is Lyman-alpha forest spectrum, which has contemporary data from Sloan Digital Sky Survey (SDSS) and other observations. I found that large-scale structure growth is sensitive to the change of dark matter properties due to these decay processes, and they can provide competitive constraints comparing to other existing limits. On small scale, the gravitational interplay of baryon and dark matter can affect the clustering of dark matter. I examine adiabatic contraction (AC) models what are traditionally used to parametrize the dark matter response to the cooling of baryons by investigating a suite of numerical simulations. We found that the errors in AC reconstructions are correlated with baryonic physics and certain halo properties. Our results indicate that existing AC models need significant calibration in order to predicting realistic matter distribution.

  6. Dark matter in the minimal inverse seesaw mechanism

    SciTech Connect

    Abada, Asmaa; Lucente, Michele; Arcadi, Giorgio E-mail: arcadi@theorie.physik.uni-goettingen.de

    2014-10-01

    We consider the possibility of simultaneously addressing the dark matter problem and neutrino mass generation in the minimal inverse seesaw realisation. The Standard Model is extended by two right-handed neutrinos and three sterile fermionic states, leading to three light active neutrino mass eigenstates, two pairs of (heavy) pseudo-Dirac mass eigenstates and one (mostly) sterile state with mass around the keV, possibly providing a dark matter candidate, and accounting for the recently observed and still unidentified monochromatic 3.5 keV line in galaxy cluster spectra. The conventional production mechanism through oscillation from active neutrinos can account only for ∼ 43% of the observed relic density. This can be slightly increased to ∼ 48% when including effects of entropy injection from the decay of light (with mass below 20 GeV) pseudo-Dirac neutrinos. The correct relic density can be achieved through freeze-in from the decay of heavy (above the Higgs mass) pseudo-Dirac neutrinos. This production is only effective for a limited range of masses, such that the decay occurs not too far from the electroweak phase transition. We thus propose a simple extension of the inverse seesaw framework, with an extra scalar singlet coupling to both the Higgs and the sterile neutrinos, which allows to achieve the correct dark matter abundance in a broader region of the parameter space, in particular in the low mass region for the pseudo-Dirac neutrinos.

  7. Stealth dark matter: Dark scalar baryons through the Higgs portal

    NASA Astrophysics Data System (ADS)

    Appelquist, T.; Brower, R. C.; Buchoff, M. I.; Fleming, G. T.; Jin, X.-Y.; Kiskis, J.; Kribs, G. D.; Neil, E. T.; Osborn, J. C.; Rebbi, C.; Rinaldi, E.; Schaich, D.; Schroeder, C.; Syritsyn, S.; Vranas, P.; Weinberg, E.; Witzel, O.; Lattice Strong Dynamics LSD Collaboration

    2015-10-01

    We present a new model of stealth dark matter: a composite baryonic scalar of an S U (ND) strongly coupled theory with even ND≥4 . All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vectorlike representations of the electroweak group that permit both electroweak-breaking and electroweak-preserving mass terms. This gives a tunable coupling of stealth dark matter to the Higgs boson independent of the dark matter mass itself. We specialize to S U (4 ), and investigate the constraints on the model from dark meson decay, electroweak precision measurements, basic collider limits, and spin-independent direct detection scattering through Higgs exchange. We exploit our earlier lattice simulations that determined the composite spectrum as well as the effective Higgs coupling of stealth dark matter in order to place bounds from direct detection, excluding constituent fermions with dominantly electroweak-breaking masses. A lower bound on the dark baryon mass mB≳300 GeV is obtained from the indirect requirement that the lightest dark meson not be observable at LEP II. We briefly survey some intriguing properties of stealth dark matter that are worthy of future study, including collider studies of dark meson production and decay; indirect detection signals from annihilation; relic abundance estimates for both symmetric and asymmetric mechanisms; and direct detection through electromagnetic polarizability, a detailed study of which will appear in a companion paper.

  8. Dynamics of dark energy with a coupling to dark matter

    SciTech Connect

    Boehmer, Christian G.; Caldera-Cabral, Gabriela; Maartens, Roy; Lazkoz, Ruth

    2008-07-15

    Dark energy and dark matter are the dominant sources in the evolution of the late universe. They are currently only indirectly detected via their gravitational effects, and there could be a coupling between them without violating observational constraints. We investigate the background dynamics when dark energy is modeled as exponential quintessence and is coupled to dark matter via simple models of energy exchange. We introduce a new form of dark sector coupling, which leads to a more complicated dynamical phase space and has a better physical motivation than previous mathematically similar couplings.

  9. Turning off the lights: How dark is dark matter?

    NASA Astrophysics Data System (ADS)

    McDermott, Samuel D.; Yu, Hai-Bo; Zurek, Kathryn M.

    2011-03-01

    We consider current observational constraints on the electromagnetic charge of dark matter. The velocity dependence of the scattering cross section through the photon gives rise to qualitatively different constraints than standard dark matter scattering through massive force carriers. In particular, recombination epoch observations of dark matter density perturbations require that ɛ, the ratio of the dark matter to electronic charge, is less than 10-6 for mX=1GeV, rising to ɛ<10-4 for mX=10TeV. Though naively one would expect that dark matter carrying a charge well below this constraint could still give rise to large scattering in current direct detection experiments, we show that charged dark matter particles that could be detected with upcoming experiments are expected to be evacuated from the Galactic disk by the Galactic magnetic fields and supernova shock waves and hence will not give rise to a signal. Thus dark matter with a small charge is likely not a source of a signal in current or upcoming dark matter direct detection experiments.

  10. Dark matter from Affleck-Dine baryogenesis

    SciTech Connect

    Kusenko, Alexander

    1999-07-15

    Fragmentation of the Affleck-Dine condensate into Q-balls could fill the Universe with dark matter either in the form of stable baryonic balls, or LSP produced from the decay of unstable Q-balls. The dark matter and the ordinary matter in the Universe may share the same origin.