Science.gov

Sample records for daughter cell formation

  1. A Novel Actin-Related Protein Is Associated with Daughter Cell Formation in Toxoplasma gondii▿ †

    PubMed Central

    Gordon, Jennifer L.; Beatty, Wandy L.; Sibley, L. David

    2008-01-01

    Cell division in Toxoplasma gondii occurs by an unusual budding mechanism termed endodyogeny, during which twin daughters are formed within the body of the mother cell. Cytokinesis begins with the coordinated assembly of the inner membrane complex (IMC), which surrounds the growing daughter cells. The IMC is compiled of both flattened membrane cisternae and subpellicular filaments composed of articulin-like proteins attached to underlying singlet microtubules. While proteins that comprise the elongating IMC have been described, little is known about its initial formation. Using Toxoplasma as a model system, we demonstrate that actin-like protein 1 (ALP1) is partially redistributed to the IMC at early stages in its formation. Immunoelectron microscopy localized ALP1 to a discrete region of the nuclear envelope, on transport vesicles, and on the nascent IMC of the daughter cells prior to the arrival of proteins such as IMC-1. The overexpression of ALP1 under the control of a strong constitutive promoter disrupted the formation of the daughter cell IMC, leading to delayed growth and defects in nuclear and apicoplast segregation. Collectively, these data suggest that ALP1 participates in the formation of daughter cell membranes during cell division in apicomplexan parasites. PMID:18408052

  2. Centriole overduplication through the concurrent formation of multiple daughter centrioles at single maternal templates

    PubMed Central

    Duensing, Anette; Liu, Ying; Perdreau, Sophie A.; Kleylein-Sohn, Julia; Nigg, Erich A.; Duensing, Stefan

    2008-01-01

    Abnormal centrosome numbers are detected in virtually all cancers. The molecular mechanisms that underlie centrosome amplification, however, are poorly characterized. Based on the model that each maternal centriole serves as a template for the formation of one and only one daughter centriole per cell division cycle, the prevailing view is that centriole overduplication arises from successive rounds of centriole reproduction. Here, we provide evidence that a single maternal centriole can concurrently generate multiple daughter centrioles. This mechanism was initially identified in cells treated with the peptide vinyl sulfone proteasome inhibitor Z-L3VS. We subsequently found that the formation of more than one daughter at maternal centrioles required cyclin E/cyclin-dependent kinase 2 (CDK2) as well as Polo-like kinase 4 (PLK4) and that overexpression of these proteins mimics this phenotype in the absence of a proteasome inhibitor. To corroborate that a concurrent formation of multiple daughter centrioles is potentially relevant for centriole overduplication in human cancer, we show that the human papillomavirus type 16 (HPV-16) E7 oncoprotein stimulates aberrant daughter centriole numbers in part through the formation of more than one daughter centriole at single maternal templates. These results help to explain how oncogenic stimuli can rapidly induce abnormal centriole numbers within a single cell division cycle and provide insights into the regulation of centriole duplication. PMID:17438528

  3. Mechanisms of daughter cell-size control during cell division.

    PubMed

    Kiyomitsu, Tomomi

    2015-05-01

    Daughter cell size is tightly regulated during cell division. In animal cells, the position of the anaphase spindle specifies the cell cleavage site to dictate the relative size of the daughter cells. Although spindle orientation is regulated by dynein-dependent cortical pulling forces exerted on astral microtubules in many cell types, it was unclear how these forces are precisely regulated to center or displace the spindle. Recently, intrinsic signals derived from chromosomes or spindle poles have been demonstrated to regulate dynein-dependent pulling forces in symmetrically dividing cells. Unexpectedly, myosin-dependent contractile forces have also been shown to control spindle position by altering the cellular boundaries during anaphase. In this review, I discuss how dynein- and myosin-dependent forces are coordinately regulated to control daughter cell size. PMID:25548067

  4. Mitotic Exit and Separation of Mother and Daughter Cells

    PubMed Central

    Weiss, Eric L.

    2012-01-01

    Productive cell proliferation involves efficient and accurate splitting of the dividing cell into two separate entities. This orderly process reflects coordination of diverse cytological events by regulatory systems that drive the cell from mitosis into G1. In the budding yeast Saccharomyces cerevisiae, separation of mother and daughter cells involves coordinated actomyosin ring contraction and septum synthesis, followed by septum destruction. These events occur in precise and rapid sequence once chromosomes are segregated and are linked with spindle organization and mitotic progress by intricate cell cycle control machinery. Additionally, critical parts of the mother/daughter separation process are asymmetric, reflecting a form of fate specification that occurs in every cell division. This chapter describes central events of budding yeast cell separation, as well as the control pathways that integrate them and link them with the cell cycle. PMID:23212898

  5. Parents' Marital Distress, Divorce, and Remarriage: Links with Daughters' Early Family Formation Transitions

    ERIC Educational Resources Information Center

    Amato, Paul R.; Kane, Jennifer B.

    2011-01-01

    The authors used data from the Add Health study to estimate the effects of parents' marital status and relationship distress on daughters' early family formation transitions. Outcomes included traditional transitions (marriage and marital births) and nontraditional transitions (cohabitation and nonmarital births). Relationship distress among…

  6. Fast Mechanically Driven Daughter Cell Separation Is Widespread in Actinobacteria

    PubMed Central

    Zhou, Xiaoxue; Halladin, David K.

    2016-01-01

    ABSTRACT Dividing cells of the coccoid Gram-positive bacterium Staphylococcus aureus undergo extremely rapid (millisecond) daughter cell separation (DCS) driven by mechanical crack propagation, a strategy that is very distinct from the gradual, enzymatically driven cell wall remodeling process that has been well described in several rod-shaped model bacteria. To determine if other bacteria, especially those in the same phylum (Firmicutes) or with similar coccoid shapes as S. aureus, might use a similar mechanically driven strategy for DCS, we used high-resolution video microscopy to examine cytokinesis in a phylogenetically wide range of species with various cell shapes and sizes. We found that fast mechanically driven DCS is rather rare in the Firmicutes (low G+C Gram positives), observed only in Staphylococcus and its closest coccoid relatives in the Macrococcus genus, and we did not observe this division strategy among the Gram-negative Proteobacteria. In contrast, several members of the high-G+C Gram-positive phylum Actinobacteria (Micrococcus luteus, Brachybacterium faecium, Corynebacterium glutamicum, and Mycobacterium smegmatis) with diverse shapes ranging from coccoid to rod all undergo fast mechanical DCS during cell division. Most intriguingly, similar fast mechanical DCS was also observed during the sporulation of the actinobacterium Streptomyces venezuelae. PMID:27578753

  7. Bacillus thuringiensis peptidoglycan hydrolase SleB171 involved in daughter cell separation during cell division.

    PubMed

    Li, Hua; Hu, Penggao; Zhao, Xiuyun; Yu, Ziniu; Li, Lin

    2016-04-01

    Whole-genome analyses have revealed a putative cell wall hydrolase gene (sleB171) that constitutes an operon with two other genes (ypeBandyhcN) of unknown function inBacillus thuringiensisBMB171. The putative SleB171 protein consists of 259 amino acids and has a molecular weight of 28.3 kDa. Gene disruption ofsleB171in the BMB171 genome causes the formation of long cell chains during the vegetative growth phase and delays spore formation and spore release, although it has no significant effect on cell growth and the ultimate release of the spores. The inseparable vegetative cells were nearly restored through the complementation ofsleB171expression. Real-time quantitative polymerase chain reaction analysis revealed thatsleB171is mainly active in the vegetative growth phase, with a maximum activity at the early stationary growth phase. Western blot analysis also confirmed thatsleB171is preferentially expressed during the vegetative growth phase. These results demonstrated that SleB171 plays an essential role in the daughter cell separation during cell division. PMID:26922318

  8. Parent stem cells can serve as niches for their daughter cells.

    PubMed

    Pardo-Saganta, Ana; Tata, Purushothama Rao; Law, Brandon M; Saez, Borja; Chow, Ryan Dz-Wei; Prabhu, Mythili; Gridley, Thomas; Rajagopal, Jayaraj

    2015-07-30

    Stem cells integrate inputs from multiple sources. Stem cell niches provide signals that promote stem cell maintenance, while differentiated daughter cells are known to provide feedback signals to regulate stem cell replication and differentiation. Recently, stem cells have been shown to regulate themselves using an autocrine mechanism. The existence of a 'stem cell niche' was first postulated by Schofield in 1978 to define local environments necessary for the maintenance of haematopoietic stem cells. Since then, an increasing body of work has focused on defining stem cell niches. Yet little is known about how progenitor cell and differentiated cell numbers and proportions are maintained. In the airway epithelium, basal cells function as stem/progenitor cells that can both self-renew and produce differentiated secretory cells and ciliated cells. Secretory cells also act as transit-amplifying cells that eventually differentiate into post-mitotic ciliated cells . Here we describe a mode of cell regulation in which adult mammalian stem/progenitor cells relay a forward signal to their own progeny. Surprisingly, this forward signal is shown to be necessary for daughter cell maintenance. Using a combination of cell ablation, lineage tracing and signalling pathway modulation, we show that airway basal stem/progenitor cells continuously supply a Notch ligand to their daughter secretory cells. Without these forward signals, the secretory progenitor cell pool fails to be maintained and secretory cells execute a terminal differentiation program and convert into ciliated cells. Thus, a parent stem/progenitor cell can serve as a functional daughter cell niche. PMID:26147083

  9. Bacterial division. Mechanical crack propagation drives millisecond daughter cell separation in Staphylococcus aureus.

    PubMed

    Zhou, Xiaoxue; Halladin, David K; Rojas, Enrique R; Koslover, Elena F; Lee, Timothy K; Huang, Kerwyn Casey; Theriot, Julie A

    2015-05-01

    When Staphylococcus aureus undergoes cytokinesis, it builds a septum, generating two hemispherical daughters whose cell walls are only connected via a narrow peripheral ring. We found that resolution of this ring occurred within milliseconds ("popping"), without detectable changes in cell volume. The likelihood of popping depended on cell-wall stress, and the separating cells split open asymmetrically, leaving the daughters connected by a hinge. An elastostatic model of the wall indicated high circumferential stress in the peripheral ring before popping. Last, we observed small perforations in the peripheral ring that are likely initial points of mechanical failure. Thus, the ultrafast daughter cell separation in S. aureus appears to be driven by accumulation of stress in the peripheral ring and exhibits hallmarks of mechanical crack propagation. PMID:25931560

  10. Mechanical crack propagation drives millisecond daughter cell separation in Staphylococcus aureus

    PubMed Central

    Zhou, Xiaoxue; Halladin, David K.; Rojas, Enrique R.; Koslover, Elena F.; Lee, Timothy K.; Huang, Kerwyn Casey; Theriot, Julie A.

    2016-01-01

    When Staphylococcus aureus undergoes cytokinesis, it builds a septum generating two hemispherical daughters whose cell walls are only connected via a narrow peripheral ring. We found that resolution of this ring occurred within milliseconds (“popping”), without detectable changes in cell volume. The likelihood of popping depended on cell wall stress, and the separating cells split open asymmetrically leaving the daughters connected by a hinge. An elastostatic model of the wall indicated high circumferential stress in the peripheral ring before popping. Finally, we observed small perforations in the peripheral ring that are likely initial points of mechanical failure. Thus, the ultrafast daughter cell separation in S. aureus appears to be driven by accumulation of stress in the peripheral ring, and exhibits hallmarks of mechanical crack propagation. PMID:25931560

  11. The Arabidopsis Receptor Kinase ZAR1 Is Required for Zygote Asymmetric Division and Its Daughter Cell Fate.

    PubMed

    Yu, Tian-Ying; Shi, Dong-Qiao; Jia, Peng-Fei; Tang, Jun; Li, Hong-Ju; Liu, Jie; Yang, Wei-Cai

    2016-03-01

    Asymmetric division of zygote is critical for pattern formation during early embryogenesis in plants and animals. It requires integration of the intrinsic and extrinsic cues prior to and/or after fertilization. How these cues are translated into developmental signals is poorly understood. Here through genetic screen for mutations affecting early embryogenesis, we identified an Arabidopsis mutant, zygotic arrest 1 (zar1), in which zygote asymmetric division and the cell fate of its daughter cells were impaired. ZAR1 encodes a member of the RLK/Pelle kinase family. We demonstrated that ZAR1 physically interacts with Calmodulin and the heterotrimeric G protein Gβ, and ZAR1 kinase is activated by their binding as well. ZAR1 is specifically expressed micropylarly in the embryo sac at eight-nucleate stage and then in central cell, egg cell and synergids in the mature embryo sac. After fertilization, ZAR1 is accumulated in zygote and endosperm. The disruption of ZAR1 and AGB1 results in short basal cell and an apical cell with basal cell fate. These data suggest that ZAR1 functions as a membrane integrator for extrinsic cues, Ca2+ signal and G protein signaling to regulate the division of zygote and the cell fate of its daughter cells in Arabidopsis. PMID:27014878

  12. The Arabidopsis Receptor Kinase ZAR1 Is Required for Zygote Asymmetric Division and Its Daughter Cell Fate

    PubMed Central

    Jia, Peng-Fei; Tang, Jun; Li, Hong-Ju; Liu, Jie; Yang, Wei-Cai

    2016-01-01

    Asymmetric division of zygote is critical for pattern formation during early embryogenesis in plants and animals. It requires integration of the intrinsic and extrinsic cues prior to and/or after fertilization. How these cues are translated into developmental signals is poorly understood. Here through genetic screen for mutations affecting early embryogenesis, we identified an Arabidopsis mutant, zygotic arrest 1 (zar1), in which zygote asymmetric division and the cell fate of its daughter cells were impaired. ZAR1 encodes a member of the RLK/Pelle kinase family. We demonstrated that ZAR1 physically interacts with Calmodulin and the heterotrimeric G protein Gβ, and ZAR1 kinase is activated by their binding as well. ZAR1 is specifically expressed micropylarly in the embryo sac at eight-nucleate stage and then in central cell, egg cell and synergids in the mature embryo sac. After fertilization, ZAR1 is accumulated in zygote and endosperm. The disruption of ZAR1 and AGB1 results in short basal cell and an apical cell with basal cell fate. These data suggest that ZAR1 functions as a membrane integrator for extrinsic cues, Ca2+ signal and G protein signaling to regulate the division of zygote and the cell fate of its daughter cells in Arabidopsis. PMID:27014878

  13. Discontinuous Cyclone Movement of Mediterranean cyclones identified through formation analysis of daughter cyclones

    NASA Astrophysics Data System (ADS)

    Ziv, Baruch; Saaroni, Hadas; Harpaz, Tzvi

    2016-04-01

    A new algorithm developed performs an automated classification methodology for daughter cyclones (DCs) formation, with respect to the thermal field of the parent cyclones (PCs). The classification has been applied to winter Mediterranean Cyclones. The algorithm assigns a DC to one of seven types, according to the following considerations: Has the cyclone formed on a front? Is that a cold, a warm or a quasi-stationary front? Is this front part of the frontal system of the PC or of a non-parental system? If none of the above applies, has the cyclone formed within the warm sector? The measures used are the temperature gradient, temperature advection and temperature Laplacian, computed at the formation location of the DC and the temperature difference between the DC and the PC, each derived from the 850-hPa wind and temperature fields. Out of 4,303 DCs analyzed, 85% were identified to belong to one of the 7 predefined types, implying that 15% cannot be related to either baroclinic or thermal factors. More than half were formed at their PCs' frontal system, third on a non-parental frontal system and only 13% within the warm sector of the PC. Most of the cyclones, formed on the PC's cold front, were found at mountain lee locations, whereas cyclones formed on the warm front were generated mostly over the Aegean and the Adriatic Sea. The new methodology exposed a unique DC formation which is actually a Discontinuous Cyclone Movement (DCM), imposed by an encounter with geographical forcing. This formation was identified in 5.9% of the DC formations and is characterized by the following features: 1) parent-daughter distance (d) <1000 Km, 2) the area enclosed by the inner isobar surrounding both the PC and the DC should be less than 2d, 3) the PC should last no more than 18 hours after the DC has been first detected. DCM events found among DCs formed on warm fronts of PCs, to their east, are suggested as a mechanism which enables the PC to cross topographic barriers

  14. Multi-vesicular pulmonary hydatid cyst, the potent underestimated factor in the formation of daughter cysts of pulmonary hydatid disease.

    PubMed

    Sokouti, Mohsen; Sokouti, Babak; Shokouhi, Behrooz; Rahimi-Rad, Mohammad Hossein

    2015-01-01

    Pulmonary multi-vesicular hydatid disease (HD) with Echinococcus granulosus is rare. A 28-year-old woman presented to our center with cough and respiratory distress. Chest x-ray and computerized tomography scan revealed bilateral giant cysts with water-lily sign (ruptured hydatid cysts). The left cyst was in vicinity of heart. With thoracotomy cysts of both lungs were removed. Thousands of translucent, homogenized small daughter cysts were discovered from the left side cyst. Pathologic examinations revealed the ruptured hydatid cysts of both lungs with daughter cysts on the left lung cyst. To best of our knowledge probably this is the first report of multi-vesicular HD in lung. We suppose that the heart pulsation was effective in the formation of daughter cysts. PMID:26180389

  15. Multi-vesicular pulmonary hydatid cyst, the potent underestimated factor in the formation of daughter cysts of pulmonary hydatid disease

    PubMed Central

    Sokouti, Mohsen; Sokouti, Babak; Shokouhi, Behrooz; Rahimi-Rad, Mohammad Hossein

    2015-01-01

    Pulmonary multi-vesicular hydatid disease (HD) with Echinococcus granulosus is rare. A 28-year-old woman presented to our center with cough and respiratory distress. Chest x-ray and computerized tomography scan revealed bilateral giant cysts with water-lily sign (ruptured hydatid cysts). The left cyst was in vicinity of heart. With thoracotomy cysts of both lungs were removed. Thousands of translucent, homogenized small daughter cysts were discovered from the left side cyst. Pathologic examinations revealed the ruptured hydatid cysts of both lungs with daughter cysts on the left lung cyst. To best of our knowledge probably this is the first report of multi-vesicular HD in lung. We suppose that the heart pulsation was effective in the formation of daughter cysts. PMID:26180389

  16. TopBP1 is required at mitosis to reduce transmission of DNA damage to G1 daughter cells

    PubMed Central

    Pedersen, Rune Troelsgaard; Kruse, Thomas; Nilsson, Jakob

    2015-01-01

    Genome integrity is critically dependent on timely DNA replication and accurate chromosome segregation. Replication stress delays replication into G2/M, which in turn impairs proper chromosome segregation and inflicts DNA damage on the daughter cells. Here we show that TopBP1 forms foci upon mitotic entry. In early mitosis, TopBP1 marks sites of and promotes unscheduled DNA synthesis. Moreover, TopBP1 is required for focus formation of the structure-selective nuclease and scaffold protein SLX4 in mitosis. Persistent TopBP1 foci transition into 53BP1 nuclear bodies (NBs) in G1 and precise temporal depletion of TopBP1 just before mitotic entry induced formation of 53BP1 NBs in the next cell cycle, showing that TopBP1 acts to reduce transmission of DNA damage to G1 daughter cells. Based on these results, we propose that TopBP1 maintains genome integrity in mitosis by controlling chromatin recruitment of SLX4 and by facilitating unscheduled DNA synthesis. PMID:26283799

  17. Phosphorylation of filamin A by Cdk1 regulates filamin A localization and daughter cell separation.

    PubMed

    Szeto, Sandy G Y; Williams, Elizabeth C; Rudner, Adam D; Lee, Jonathan M

    2015-01-15

    In cell culture, many adherent mammalian cells undergo substantial actin cytoskeleton rearrangement prior to mitosis as they detach from the extracellular matrix and become spherical. At the end of mitosis, the actin cytoskeleton is required for cytokinesis and the reassembly of interphase structures as cells spread and reattach to substrate. To understand the processes regulating mitotic cytoskeletal remodeling, we studied how mitotic phosphorylation regulates filamin A (FLNa). FLNa is an actin-crosslinking protein that was previously identified as a cyclin-dependent kinase 1 (Cdk1) binding partner and substrate in vitro. Using quantitative label-based mass spectrometry, we find that FLNa serines 1084, 1459 and 1533 are phosphorylated in mitotic HeLa cells and all three sites match the phosphorylation consensus sequence of Cdk1. To investigate the functional role of mitotic FLNa phosphorylation, we mutated serines 1084, 1459 and 1533 to nonphosphorylatable alanine residues and expressed GFP-tagged FLNa(S1084A,S1459A,S1533A) (FLNa-AAA GFP) in a FLNa-deficient human melanoma cell line called M2. M2 cells expressing FLNa-AAA GFP have enhanced FLNa-AAA GFP and actin localization at sites of contact between daughter cells, impaired post-mitotic daughter cell separation and defects in cell migration. Therefore, mitotic phosphorylation of FLNa is important for successful cell division and interphase cell behavior. PMID:25445790

  18. Sharing of mitotic pre-ribosomal particles between daughter cells.

    PubMed

    Sirri, Valentina; Jourdan, Nathalie; Hernandez-Verdun, Danièle; Roussel, Pascal

    2016-04-15

    Ribosome biogenesis is a fundamental multistep process initiated by the synthesis of 90S pre-ribosomal particles in the nucleoli of higher eukaryotes. Even though synthesis of ribosomes stops during mitosis while nucleoli disappear, mitotic pre-ribosomal particles persist as observed in pre-nucleolar bodies (PNBs) during telophase. To further understand the relationship between the nucleolus and the PNBs, the presence and the fate of the mitotic pre-ribosomal particles during cell division were investigated. We demonstrate that the recently synthesized 45S precursor ribosomal RNAs (pre-rRNAs) as well as the 32S and 30S pre-rRNAs are maintained during mitosis and associated with the chromosome periphery together with pre-rRNA processing factors. Maturation of the mitotic pre-ribosomal particles, as assessed by the stability of the mitotic pre-rRNAs, is transiently arrested during mitosis by a cyclin-dependent kinase (CDK)1-cyclin-B-dependent mechanism and can be restored by CDK inhibitor treatments. At the M-G1 transition, the resumption of mitotic pre-rRNA processing in PNBs does not induce the disappearance of PNBs; this only occurs when functional nucleoli reform. Strikingly, during their maturation process, mitotic pre-rRNAs localize in reforming nucleoli. PMID:26929073

  19. Exine dehiscing induces rape microspore polarity, which results in different daughter cell fate and fixes the apical–basal axis of the embryo

    PubMed Central

    Tang, Xingchun; Liu, Yuan; Sun, Meng-xiang

    2013-01-01

    The roles of cell polarity and the first asymmetric cell division during early embryogenesis in apical–basal cell fate determination remain unclear. Previously, a novel Brassica napus microspore embryogenesis system was established, by which rape exine-dehisced microspores were induced by physical stress. Unlike traditional microspore culture, cell polarity and subsequent asymmetric division appeared in the exine-dehisced microspore, which finally developed into a typical embryo with a suspensor. Further studies indicated that polarity is critical for apical–basal cell fate determination and suspensor formation. However, the pattern of the first division was not only determined by cell polarity but was also regulated by the position of the ruptured exine. The first division could be equal or unequal, with its orientation essentially perpendicular to the polar axis. In both types of cell division, the two daughter cells could have different cell fates and give rise to an embryo with a suspensor, similar to zygotic apical–basal cell differentiation. The alignment of the two daughter cells is consistent with the orientation of the apical–basal axis of future embryonic development. Thus, the results revealed that exine dehiscing induces rape microspore polarization, and this polarity results in a different cell fate and fixes the apical–basal axis of embryogenesis, but is uncoupled from cell asymmetric division. The present study demonstrated the relationships among cell polarity, asymmetric cell division, and cell fate determination in early embryogenesis. PMID:23162119

  20. Exine dehiscing induces rape microspore polarity, which results in different daughter cell fate and fixes the apical-basal axis of the embryo.

    PubMed

    Tang, Xingchun; Liu, Yuan; He, Yuqing; Ma, Ligang; Sun, Meng-Xiang

    2013-01-01

    The roles of cell polarity and the first asymmetric cell division during early embryogenesis in apical-basal cell fate determination remain unclear. Previously, a novel Brassica napus microspore embryogenesis system was established, by which rape exine-dehisced microspores were induced by physical stress. Unlike traditional microspore culture, cell polarity and subsequent asymmetric division appeared in the exine-dehisced microspore, which finally developed into a typical embryo with a suspensor. Further studies indicated that polarity is critical for apical-basal cell fate determination and suspensor formation. However, the pattern of the first division was not only determined by cell polarity but was also regulated by the position of the ruptured exine. The first division could be equal or unequal, with its orientation essentially perpendicular to the polar axis. In both types of cell division, the two daughter cells could have different cell fates and give rise to an embryo with a suspensor, similar to zygotic apical-basal cell differentiation. The alignment of the two daughter cells is consistent with the orientation of the apical-basal axis of future embryonic development. Thus, the results revealed that exine dehiscing induces rape microspore polarization, and this polarity results in a different cell fate and fixes the apical-basal axis of embryogenesis, but is uncoupled from cell asymmetric division. The present study demonstrated the relationships among cell polarity, asymmetric cell division, and cell fate determination in early embryogenesis. PMID:23162119

  1. Polarization of Diploid Daughter Cells Directed by Spatial Cues and GTP Hydrolysis of Cdc42 in Budding Yeast

    PubMed Central

    Narayan, Monisha; Chou, Ching-Shan; Park, Hay-Oak

    2013-01-01

    Cell polarization occurs along a single axis that is generally determined by a spatial cue. Cells of the budding yeast exhibit a characteristic pattern of budding, which depends on cell-type-specific cortical markers, reflecting a genetic programming for the site of cell polarization. The Cdc42 GTPase plays a key role in cell polarization in various cell types. Although previous studies in budding yeast suggested positive feedback loops whereby Cdc42 becomes polarized, these mechanisms do not include spatial cues, neglecting the normal patterns of budding. Here we combine live-cell imaging and mathematical modeling to understand how diploid daughter cells establish polarity preferentially at the pole distal to the previous division site. Live-cell imaging shows that daughter cells of diploids exhibit dynamic polarization of Cdc42-GTP, which localizes to the bud tip until the M phase, to the division site at cytokinesis, and then to the distal pole in the next G1 phase. The strong bias toward distal budding of daughter cells requires the distal-pole tag Bud8 and Rga1, a GTPase activating protein for Cdc42, which inhibits budding at the cytokinesis site. Unexpectedly, we also find that over 50% of daughter cells lacking Rga1 exhibit persistent Cdc42-GTP polarization at the bud tip and the distal pole, revealing an additional role of Rga1 in spatiotemporal regulation of Cdc42 and thus in the pattern of polarized growth. Mathematical modeling indeed reveals robust Cdc42-GTP clustering at the distal pole in diploid daughter cells despite random perturbation of the landmark cues. Moreover, modeling predicts different dynamics of Cdc42-GTP polarization when the landmark level and the initial level of Cdc42-GTP at the division site are perturbed by noise added in the model. PMID:23437206

  2. Quantum Dots Do Not Alter the Differentiation Potential of Pancreatic Stem Cells and Are Distributed Randomly among Daughter Cells.

    PubMed

    Danner, S; Benzin, H; Vollbrandt, T; Oder, J; Richter, A; Kruse, C

    2013-01-01

    With the increasing relevance of cell-based therapies, there is a demand for cell-labeling techniques for in vitro and in vivo studies. For the reasonable tracking of transplanted stem cells in animal models, the usage of quantum dots (QDs) for sensitive cellular imaging has major advances. QDs could be delivered to the cytoplasm of the cells providing intense and stable fluorescence. Although QDs are emerging as favourable nanoparticles for bioimaging, substantial investigations are still required to consider their application for adult stem cells. Therefore, rat pancreatic stem cells (PSCs) were labeled with different concentrations of CdSe quantum dots (Qtracker 605 nanocrystals). The QD labeled PSCs showed normal proliferation and their usual spontaneous differentiation potential in vitro. The labeling of the cell population was concentration dependent, with increasing cell load from 5 nM QDs to 20 nM QDs. With time-lapse microscopy, we observed that the transmission of the QD particles during cell divisions was random, appearing as equal or unequal transmission to daughter cells. We report here that QDs offered an efficient and nontoxic way to label pancreatic stem cells without genetic modifications. In summary, QD nanocrystals are a promising tool for stem cell labeling and facilitate tracking of transplanted cells in animal models. PMID:23997768

  3. Quantum Dots Do Not Alter the Differentiation Potential of Pancreatic Stem Cells and Are Distributed Randomly among Daughter Cells

    PubMed Central

    Danner, S.; Benzin, H.; Vollbrandt, T.; Oder, J.; Richter, A.; Kruse, C.

    2013-01-01

    With the increasing relevance of cell-based therapies, there is a demand for cell-labeling techniques for in vitro and in vivo studies. For the reasonable tracking of transplanted stem cells in animal models, the usage of quantum dots (QDs) for sensitive cellular imaging has major advances. QDs could be delivered to the cytoplasm of the cells providing intense and stable fluorescence. Although QDs are emerging as favourable nanoparticles for bioimaging, substantial investigations are still required to consider their application for adult stem cells. Therefore, rat pancreatic stem cells (PSCs) were labeled with different concentrations of CdSe quantum dots (Qtracker 605 nanocrystals). The QD labeled PSCs showed normal proliferation and their usual spontaneous differentiation potential in vitro. The labeling of the cell population was concentration dependent, with increasing cell load from 5 nM QDs to 20 nM QDs. With time-lapse microscopy, we observed that the transmission of the QD particles during cell divisions was random, appearing as equal or unequal transmission to daughter cells. We report here that QDs offered an efficient and nontoxic way to label pancreatic stem cells without genetic modifications. In summary, QD nanocrystals are a promising tool for stem cell labeling and facilitate tracking of transplanted cells in animal models. PMID:23997768

  4. Control of Neural Daughter Cell Proliferation by Multi-level Notch/Su(H)/E(spl)-HLH Signaling.

    PubMed

    Bivik, Caroline; MacDonald, Ryan B; Gunnar, Erika; Mazouni, Khalil; Schweisguth, Francois; Thor, Stefan

    2016-04-01

    The Notch pathway controls proliferation during development and in adulthood, and is frequently affected in many disorders. However, the genetic sensitivity and multi-layered transcriptional properties of the Notch pathway has made its molecular decoding challenging. Here, we address the complexity of Notch signaling with respect to proliferation, using the developing Drosophila CNS as model. We find that a Notch/Su(H)/E(spl)-HLH cascade specifically controls daughter, but not progenitor proliferation. Additionally, we find that different E(spl)-HLH genes are required in different neuroblast lineages. The Notch/Su(H)/E(spl)-HLH cascade alters daughter proliferation by regulating four key cell cycle factors: Cyclin E, String/Cdc25, E2f and Dacapo (mammalian p21CIP1/p27KIP1/p57Kip2). ChIP and DamID analysis of Su(H) and E(spl)-HLH indicates direct transcriptional regulation of the cell cycle genes, and of the Notch pathway itself. These results point to a multi-level signaling model and may help shed light on the dichotomous proliferative role of Notch signaling in many other systems. PMID:27070787

  5. Control of Neural Daughter Cell Proliferation by Multi-level Notch/Su(H)/E(spl)-HLH Signaling

    PubMed Central

    Bivik, Caroline; MacDonald, Ryan B.; Gunnar, Erika; Mazouni, Khalil; Schweisguth, Francois; Thor, Stefan

    2016-01-01

    The Notch pathway controls proliferation during development and in adulthood, and is frequently affected in many disorders. However, the genetic sensitivity and multi-layered transcriptional properties of the Notch pathway has made its molecular decoding challenging. Here, we address the complexity of Notch signaling with respect to proliferation, using the developing Drosophila CNS as model. We find that a Notch/Su(H)/E(spl)-HLH cascade specifically controls daughter, but not progenitor proliferation. Additionally, we find that different E(spl)-HLH genes are required in different neuroblast lineages. The Notch/Su(H)/E(spl)-HLH cascade alters daughter proliferation by regulating four key cell cycle factors: Cyclin E, String/Cdc25, E2f and Dacapo (mammalian p21CIP1/p27KIP1/p57Kip2). ChIP and DamID analysis of Su(H) and E(spl)-HLH indicates direct transcriptional regulation of the cell cycle genes, and of the Notch pathway itself. These results point to a multi-level signaling model and may help shed light on the dichotomous proliferative role of Notch signaling in many other systems. PMID:27070787

  6. Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals “aging factors” and mechanism of lifespan asymmetry

    PubMed Central

    Yang, Jing; McCormick, Mark A.; Zheng, Jiashun; Xie, Zhengwei; Tsuchiya, Mitsuhiro; Tsuchiyama, Scott; El-Samad, Hana; Ouyang, Qi; Kaeberlein, Matt; Kennedy, Brian K.; Li, Hao

    2015-01-01

    Budding yeast divides asymmetrically, giving rise to a mother cell that progressively ages and a daughter cell with full lifespan. It is generally assumed that mother cells retain damaged, lifespan limiting materials (“aging factors”) through asymmetric division. However, the identity of these aging factors and the mechanisms through which they limit lifespan remain poorly understood. Using a flow cytometry-based, high-throughput approach, we quantified the asymmetric partitioning of the yeast proteome between mother and daughter cells during cell division, discovering 74 mother-enriched and 60 daughter-enriched proteins. While daughter-enriched proteins are biased toward those needed for bud construction and genome maintenance, mother-enriched proteins are biased towards those localized in the plasma membrane and vacuole. Deletion of 23 of the 74 mother-enriched proteins leads to lifespan extension, a fraction that is about six times that of the genes picked randomly from the genome. Among these lifespan-extending genes, three are involved in endosomal sorting/endosome to vacuole transport, and three are nitrogen source transporters. Tracking the dynamic expression of specific mother-enriched proteins revealed that their concentration steadily increases in the mother cells as they age, but is kept relatively low in the daughter cells via asymmetric distribution. Our results suggest that some mother-enriched proteins may increase to a concentration that becomes deleterious and lifespan-limiting in aged cells, possibly by upsetting homeostasis or leading to aberrant signaling. Our study provides a comprehensive resource for analyzing asymmetric cell division and aging in yeast, which should also be valuable for understanding similar phenomena in other organisms. PMID:26351681

  7. Formation of a cylindrical bridge in cell division

    NASA Astrophysics Data System (ADS)

    Citron, Daniel; Schmidt, Laura E.; Reichl, Elizabeth; Ren, Yixin; Robinson, Douglas; Zhang, Wendy W.

    2007-11-01

    In nature, the shape transition associated with the division of a mother cell into two daughter cells proceeds via a variety of routes. In the cylinder-thinning route, which has been observed in Dictyostelium and most animal cells, the mother cell first forms a broad bridge-like region, also known as a furrow, between two daughter cells. The furrow then rapidly evolves into a cylindrical bridge, which thins and eventually severs the mother cell into two. The fundamental mechanism underlying this division route is not understood. Recent experiments on Dictyostelium found that, while the cylinder-thinning route persists even when key actin cross-linking proteins are missing, it is disrupted by the removal of force-generating myosin-II proteins. Other measurements revealed that mutant cells lacking myosin-II have a much more uniform tension over the cell surface than wild-type cells. This suggests that tension variation may be important. Here we use a fluid model, previously shown to reproduce the thinning dynamics [Zhang & Robinson, PNAS 102, 7186 (2005)], to test this idea. Consistent with the experiments, the model shows that the cylinder formation process occurs regardless of the exact viscoelastic properties of the cell. In contrast to the experiments, a tension variation in the model hinders, rather then expedites, the cylinder formation.

  8. Raising Strong Daughters.

    ERIC Educational Resources Information Center

    Gadeberg, Jeanette

    In response to an alarming drop in girls' self-esteem in early adolescence, this parents' guide provides suggestions for raising daughters to become confident, healthy, and independent. Chapter 1, "Yesterday's Daughters," examines how cultural messages inhibit girls' development. Chapter 2, "Raising an Opinionated Daughter," suggests how to help…

  9. Microdosimetry of astatine-211 single-cell irradiation: role of daughter polonium-211 diffusion.

    PubMed

    Palm, Stig; Humm, John L; Rundqvist, Robert; Jacobsson, Lars

    2004-02-01

    A microdosimetric analysis of previously published data on 211At-albumin, free 211At, and 211At-C215 irradiation of Colo-205 cells in a slowly rotating single-cell suspension is presented. A custom-built computer program based on the Monte Carlo method was used to simulate the irradiation and the energy deposition in individual cell nuclei. Separate simulations were made for the assumption that the 211Po atom stays in the position where it is created, and that it diffuses away. The mean event number at which 37% of all cells survived, n37, and the frequency mean specific energy per event, zF, were estimated. The Poisson distribution of events and simulated single and multievent distributions of specific energy were used to find the single-cell specific energy at which the probability of survival is reduced to 37%, z37. The calculated single-cell radiosensitivity values show that 211Po atoms, created on a cell surface by the decay of 211At atoms, will diffuse from the cell during its life-span. The increasing distance to the cell nucleus will drastically decrease the probability of the emitted alpha particle to hit the nucleus. This will result in fewer alpha-particle events in the cell nucleus. For dispersed cells, the diffusion of 211Po atoms will reduce the total dose from cell-bound 211At by a factor of 2. PMID:15000607

  10. An inhibitor of yeast cyclin-dependent protein kinase plays an important role in ensuring the genomic integrity of daughter cells.

    PubMed Central

    Nugroho, T T; Mendenhall, M D

    1994-01-01

    The gene encoding a 40-kDa protein, previously studied as a substrate and inhibitor of the yeast cyclin-dependent protein kinase, Cdc28, has been cloned. The DNA sequence reveals that p40 is a highly charged protein of 32,187 Da with no significant homology to other proteins. Overexpression of the gene encoding p40, SIC1, produces cells with an elongated but morphology similar to that of cells with depleted levels of the CLB gene products, suggesting that p40 acts as an inhibitor of Cdc28-Clb complexes in vivo. A SIC1 deletion is viable and has highly increased frequencies of broken and lost chromosomes. The deletion strain segregates out many dead cells that are primarily arrested at the G2 checkpoint in an asymmetric fashion. Only daughters and young mothers display the lethal defect, while experienced mothers appear to grow normally. These results suggest that negative regulation of Cdc28 protein kinase activity by p40 is important for faithful segregation of chromosomes to daughter cells. Images PMID:8164683

  11. Clonal mature adipocyte production of proliferative-competent daughter cells requires lipid export prior to cell division

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous in vitro observations have been published to show that mature adipocytes may resume proliferation and begin to populate the adipofibroblast fraction or form other cell types. In the present study, we evaluated clonal cultures of mature pig-derived adipocytes as they began to reestablish the...

  12. Diary of a daughter.

    PubMed

    Pradhan, Sheetal

    2016-01-01

    This is a personal account of my struggle as a young medical student after my mother was diagnosed with an incurable illness; she subsequently passed away. Through this story, I share my experience with the medical profession from the perspective of the daughter of a terminally ill mother. PMID:27260825

  13. Your Daughter's First Gynecological Exam

    MedlinePlus

    ... issues to discuss. Stress to your daughter the importance of answering these questions truthfully, even though she might feel uncomfortable about it. For example, the health professional can help determine, based on your daughter's sexual ...

  14. [To begin to believe. Working notes on a mother-daughter incest case and its implications on the formation of the pre-transitional object].

    PubMed

    Haineault, D L

    1990-11-01

    Most psychoanalytic literature dealing with incest holds the premise that the act took place between a parent and a child of opposite sex. Incidentally, most of these cases involve a father-daughter incest (e.g. research by Julien Bigras). However, this is only one of four mathematically possible combinations. For instance, we tend to underestimate the occurrences and, consequently, the repercussions of mother-daughter incest relationships. The biological and psychological importance of the mother in the child's development radically influences the mother-daughter incest. In the reactualizing of transference, analysts, especially if they are female, often find themselves confronted with some of the most fundamental choices in the life of an infant, such as to live or to die, to grow or to cease to grow. It then becomes crucial to understand the most primitive components of the infant's early life. In such a case, an analyst must consult some of the most complex theoretical work covering the subject. The author, for her part, has greatly referred to the experiences of Renatta Gaddini, who insists on the importance of developing a pretransitional space during the analysis. This pretransitional space, however, is useless if the analyst is unable to follow it up by becoming a transformational object in the eyes of the patient, in the way described by Christopher Bollas: an object suggesting that the patient relive the steps leading from pre-thought to thought, from real to symbolic. Indeed, Bollas' research has allowed the author to develop a more accurate vision of what is at stake. At the same time, she was able to assess the amount of work still needed in that area of study, an area which, up to this day, offers only very little research to support the author's exploration. PMID:2094487

  15. The Bacterial Septal Ring Protein RlpA is a Lytic Transglycosylase that Contributes to Rod Shape and Daughter Cell Separation in Pseudomonas aeruginosa

    PubMed Central

    Jorgenson, Matthew A.; Chen, Yan; Yahashiri, Atsushi; Popham, David L.; Weiss, David S.

    2014-01-01

    Summary Rare lipoprotein A (RlpA) is a widely-conserved outer membrane protein of unknown function that has previously only been studied in Escherichia coli, where it localizes to the septal ring and scattered foci along the lateral wall, but mutants have no phenotypic change. Here we show rlpA mutants of Pseudomonas aeruginosa form chains of short, fat cells when grown in low osmotic strength media. These morphological defects indicate RlpA is needed for efficient separation of daughter cells and maintenance of rod shape. Analysis of peptidoglycan sacculi from an rlpA deletion mutant revealed increased tetra and hexasaccharides that lack stem peptides (hereafter called “naked glycans”). Incubation of these sacculi with purified RlpA resulted in release of naked glycans containing 1,6-anhydro N-acetylmuramic acid ends. RlpA did not degrade sacculi from wild-type cells unless the sacculi were subjected to a limited digestion with an amidase to remove some of the stem peptides. Thus, RlpA is a lytic transglycosylase with a strong preference for naked glycan strands. We propose that RlpA activity is regulated in vivo by substrate availability, and that amidases and RlpA work in tandem to degrade peptidoglycan in the division septum and lateral wall. PMID:24806796

  16. Lyme disease and relapsing fever Borrelia elongate through zones of peptidoglycan synthesis that mark division sites of daughter cells.

    PubMed

    Jutras, Brandon Lyon; Scott, Molly; Parry, Bradley; Biboy, Jacob; Gray, Joe; Vollmer, Waldemar; Jacobs-Wagner, Christine

    2016-08-16

    Agents that cause Lyme disease, relapsing fever, leptospirosis, and syphilis belong to the phylum Spirochaetae-a unique lineage of bacteria most known for their long, spiral morphology. Despite the relevance to human health, little is known about the most fundamental aspects of spirochete growth. Here, using quantitative microscopy to track peptidoglycan cell-wall synthesis, we found that the Lyme disease spirochete Borrelia burgdorferi displays a complex pattern of growth. B. burgdorferi elongates from discrete zones that are both spatially and temporally regulated. In addition, some peptidoglycan incorporation occurs along the cell body, with the notable exception of a large region at the poles. Newborn cells inherit a highly active zone of peptidoglycan synthesis at midcell that contributes to elongation for most of the cell cycle. Concomitant with the initiation of nucleoid separation and cell constriction, second and third zones of elongation are established at the 1/4 and 3/4 cellular positions, marking future sites of division for the subsequent generation. Positioning of elongation zones along the cell is robust to cell length variations and is relatively precise over long distances (>30 µm), suggesting that cells ‟sense" relative, as opposed to absolute, cell length to establish zones of peptidoglycan synthesis. The transition from one to three zones of peptidoglycan growth during the cell cycle is also observed in relapsing fever Borrelia. However, this mode of growth does not extend to representative species from other spirochetal genera, suggesting that this distinctive growth mode represents an evolutionary divide in the spirochete phylum. PMID:27506799

  17. Memoir of "a good daughter".

    PubMed

    Brown, Carolyn T

    2013-01-01

    This short memoir reflects on the experience of a "good daughter" caring for both parents through their late aging and deaths. The memoir contemplates their personalities as expressed in their aging and the "good daughter's" experience in the death room. Those on a similar journey, whether as travelers, guides, or witnesses, may draw comfort, perhaps reassurance, from this account. PMID:23159687

  18. Maternal Influences on Daughters' Restrained Eating Behavior

    PubMed Central

    Francis, Lori A.; Birch, Leann L.

    2008-01-01

    This study examined whether mothers' preoccupation with their own weight and eating was linked to daughters' restrained eating behavior. Participants included 173 non-Hispanic, White mother–daughter dyads, measured longitudinally when daughters were ages 5, 7, 9, and 11. Mothers who were preoccupied with their own weight and eating reported higher levels of restricting daughters' intake and encouraging daughters to lose weight over time. Mothers' encouragement of daughters' weight loss was linked to daughters' restrained eating behavior; this relationship was partially mediated by daughters' perception of maternal pressure to lose weight. These findings suggest that mothers' preoccupation with weight and eating, via attempts to influence daughters' weight and eating, may place daughters at risk for developing problematic eating behaviors. PMID:16287400

  19. Maternal influences on daughters' restrained eating behavior.

    PubMed

    Francis, Lori A; Birch, Leann L

    2005-11-01

    This study examined whether mothers' preoccupation with their own weight and eating was linked to daughters' restrained eating behavior. Participants included 173 non-Hispanic, White mother-daughter dyads, measured longitudinally when daughters were ages 5, 7, 9, and 11. Mothers who were preoccupied with their own weight and eating reported higher levels of restricting daughters' intake and encouraging daughters to lose weight over time. Mothers' encouragement of daughters' weight loss was linked to daughters' restrained eating behavior; this relationship was partially mediated by daughters' perception of maternal pressure to lose weight. These findings suggest that mothers' preoccupation with weight and eating, via attempts to influence daughters' weight and eating, may place daughters at risk for developing problematic eating behaviors. PMID:16287400

  20. Positioning of polarity formation by extracellular signaling during asymmetric cell division.

    PubMed

    Seirin Lee, Sungrim

    2016-07-01

    Anterior-posterior (AP) polarity formation of cell membrane proteins plays a crucial role in determining cell asymmetry, which ultimately generates cell diversity. In Caenorhabditis elegans, a single fertilized egg cell (P0), its daughter cell (P1), and the germline precursors (P2 and P3 cells) form two exclusive domains of different PAR proteins on the membrane along the anterior-posterior axis. However, the phenomenon of polarity reversal has been observed in which the axis of asymmetric cell division of the P2 and P3 cells is formed in an opposite manner to that of the P0 and P1 cells. The extracellular signal MES-1/SRC-1 has been shown to induce polarity reversal, but the detailed mechanism remains elusive. Here, using a mathematical model, I explore the mechanism by which MES-1/SRC-1 signaling can induce polarity reversal and ultimately affect the process of polarity formation. I show that a positive correlation between SRC-1 and the on-rate of PAR-2 is the essential mechanism underlying polarity reversal, providing a mathematical basis for the orientation of cell polarity patterns. PMID:27086039

  1. Drosophila neuroblasts as a new model for the study of stem cell self-renewal and tumour formation

    PubMed Central

    Li, Song; Wang, Hongyan; Groth, Casper

    2014-01-01

    Drosophila larval brain stem cells (neuroblasts) have emerged as an important model for the study of stem cell asymmetric division and the mechanisms underlying the transformation of neural stem cells into tumour-forming cancer stem cells. Each Drosophila neuroblast divides asymmetrically to produce a larger daughter cell that retains neuroblast identity, and a smaller daughter cell that is committed to undergo differentiation. Neuroblast self-renewal and differentiation are tightly controlled by a set of intrinsic factors that regulate ACD (asymmetric cell division). Any disruption of these two processes may deleteriously affect the delicate balance between neuroblast self-renewal and progenitor cell fate specification and differentiation, causing neuroblast overgrowth and ultimately lead to tumour formation in the fly. In this review, we discuss the mechanisms underlying Drosophila neural stem cell self-renewal and differentiation. Furthermore, we highlight emerging evidence in support of the notion that defects in ACD in mammalian systems, which may play significant roles in the series of pathogenic events leading to the development of brain cancers. PMID:24965943

  2. We Are Our Mothers' Daughters?

    ERIC Educational Resources Information Center

    Grady, Marilyn L.; LaCost, Barbara Y.

    2004-01-01

    Writing that makes one think, writing that enriches one's understanding of the past and present, that's what Cokie Roberts' book, "We Are Our Mothers' Daughters" provides, and that, too, is what the authors of this issue of the "Journal of Women in Educational Leadership" provide. Roberts' background as a news analyst covering politics, Congress…

  3. Direct formate fuel cells: A review

    NASA Astrophysics Data System (ADS)

    An, L.; Chen, R.

    2016-07-01

    Direct formate fuel cells (DFFC), which convert the chemical energy stored in formate directly into electricity, are recently attracting more attention, primarily because of the use of the carbon-neutral fuel and the low-cost electrocatalytic and membrane materials. As an emerging energy technology, the DFFC has made a rapid progress in recent years (currently, the state-of-the-art power density is 591 mW cm-2 at 60 °C). This article provides a review of past research on the development of this type of fuel cell, including the working principle, mechanisms and materials of the electrocatalytic oxidation of formate, singe-cell designs and performance, as well as innovative system designs. In addition, future perspectives with regard to the development of this fuel cell system are also highlighted.

  4. Parents: Stay Mum on Daughter's Weight

    MedlinePlus

    ... news/fullstory_159269.html Parents: Stay Mum on Daughter's Weight Girls who hear comments on size more ... be cautious about what they say to their daughters about their weight, new research says. The study ...

  5. Characterization and Localization of Insoluble Organic Matrices Associated with Diatom Cell Walls: Insight into Their Roles during Cell Wall Formation

    PubMed Central

    Tesson, Benoit; Hildebrand, Mark

    2013-01-01

    Organic components associated with diatom cell wall silica are important for the formation, integrity, and function of the cell wall. Polysaccharides are associated with the silica, however their localization, structure, and function remain poorly understood. We used imaging and biochemical approaches to describe in detail characteristics of insoluble organic components associated with the cell wall in 5 different diatom species. Results show that an insoluble organic matrix enriched in mannose, likely the diatotepum, is localized on the proximal surface of the silica cell wall. We did not identify any organic matrix embedded within the silica. We also identified a distinct material consisting of glucose polymer with variable localization depending on the species. In some species this component was directly involved in the morphogenesis of silica structure while in others it appeared to be only a structural component of the cell wall. A novel glucose-rich structure located between daughter cells during division was also identified. This work for the first time correlates the structure, composition, and localization of insoluble organic matrices associated with diatom cell walls. Additionally we identified a novel glucose polymer and characterized its role during silica structure formation. PMID:23626714

  6. Mother and Daughter Reports about Upward Transfers

    ERIC Educational Resources Information Center

    Lin, I-Fen

    2008-01-01

    Using 619 mother-daughter dyads interviewed in the 1997 National Longitudinal Surveys of Mature Women and Young Women, this study examines the assistance that adult daughters provide to their mothers and its covariates. Mothers and daughters have low levels of agreement on transfers. Using mothers' reports identifies different covariates of…

  7. Mast cells mediate malignant pleural effusion formation

    PubMed Central

    Giannou, Anastasios D.; Marazioti, Antonia; Spella, Magda; Kanellakis, Nikolaos I.; Apostolopoulou, Hara; Psallidas, Ioannis; Prijovich, Zeljko M.; Vreka, Malamati; Zazara, Dimitra E.; Lilis, Ioannis; Papaleonidopoulos, Vassilios; Kairi, Chrysoula A.; Patmanidi, Alexandra L.; Giopanou, Ioanna; Spiropoulou, Nikolitsa; Harokopos, Vaggelis; Aidinis, Vassilis; Spyratos, Dionisios; Teliousi, Stamatia; Papadaki, Helen; Taraviras, Stavros; Snyder, Linda A.; Eickelberg, Oliver; Kardamakis, Dimitrios; Iwakura, Yoichiro; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Kalomenidis, Ioannis; Blackwell, Timothy S.; Agalioti, Theodora; Stathopoulos, Georgios T.

    2015-01-01

    Mast cells (MCs) have been identified in various tumors; however, the role of these cells in tumorigenesis remains controversial. Here, we quantified MCs in human and murine malignant pleural effusions (MPEs) and evaluated the fate and function of these cells in MPE development. Evaluation of murine MPE-competent lung and colon adenocarcinomas revealed that these tumors actively attract and subsequently degranulate MCs in the pleural space by elaborating CCL2 and osteopontin. MCs were required for effusion development, as MPEs did not form in mice lacking MCs, and pleural infusion of MCs with MPE-incompetent cells promoted MPE formation. Once homed to the pleural space, MCs released tryptase AB1 and IL-1β, which in turn induced pleural vasculature leakiness and triggered NF-κB activation in pleural tumor cells, thereby fostering pleural fluid accumulation and tumor growth. Evaluation of human effusions revealed that MCs are elevated in MPEs compared with benign effusions. Moreover, MC abundance correlated with MPE formation in a human cancer cell–induced effusion model. Treatment of mice with the c-KIT inhibitor imatinib mesylate limited effusion precipitation by mouse and human adenocarcinoma cells. Together, the results of this study indicate that MCs are required for MPE formation and suggest that MC-dependent effusion formation is therapeutically addressable. PMID:25915587

  8. Hormonal regulation of secondary cell wall formation.

    PubMed

    Didi, Vojtěch; Jackson, Phil; Hejátko, Jan

    2015-08-01

    Secondary cell walls (SCWs) have critical functional importance but also constitute a high proportion of the plant biomass and have high application potential. This is true mainly for the lignocellulosic constituents of the SCWs in xylem vessels and fibres, which form a structured layer between the plasma membrane and the primary cell wall (PCW). Specific patterning of the SCW thickenings contributes to the mechanical properties of the different xylem cell types, providing the plant with mechanical support and facilitating the transport of solutes via vessels. In the last decade, our knowledge of the basic molecular mechanisms controlling SCW formation has increased substantially. Several members of the multi-layered regulatory cascade participating in the initiation and transcriptional regulation of SCW formation have been described, and the first cellular components determining the pattern of SCW at the subcellular resolution are being uncovered. The essential regulatory role of phytohormones in xylem development is well known and the molecular mechanisms that link hormonal signals to SCW formation are emerging. Here, we review recent knowledge about the role of individual plant hormones and hormonal crosstalk in the control over the regulatory cascades guiding SCW formation and patterning. Based on the analogy between many of the mechanisms operating during PCW and SCW formation, recently identified mechanisms underlying the hormonal control of PCW remodelling are discussed as potentially novel mechanisms mediating hormonal regulatory inputs in SCW formation. PMID:26002972

  9. Functional modification of adipocytes by grape seed extract impairs their pro-tumorigenic signaling on colon cancer stem cells and the daughter cancer cells

    PubMed Central

    Raina, Komal; Agarwal, Rajesh

    2014-01-01

    With global rise in obesity, it is imperative that we identify obesity-driven factors that increase growth and progression of colorectal cancer (CRC), and also discover and develop agents with anti-CRC efficacy under obese conditions. Here in, we investigated grape seed extract (GSE), a well-defined agent with both preventive and anti-CRC efficacy, for its potential to impair pro-tumorigenic signaling of adipocytes on CRC/colon cancer stem cells (CSCs) and associated molecular mechanisms, to control CRC under obese conditions. GSE treatment significantly decreased the growth and invasion promoting effects of both mouse and human adipocytes on CRC cells. Moreover, GSE exerted a direct inhibitory effect, as well as it strongly reduced the growth promoting signals of adipocytes, on colon CSCs. These GSE effects were associated with a decrease in both mRNA and protein levels of various CSC-associated molecules. Notably, GSE effects on adipocytes were not due to changes in lipid content, but by inducing the ‘browning’ of adipocytes as evidenced by an increase in UCP-1 mRNA level and mitochondriogenesis. Together, these findings, for the first time, suggest the ability of GSE to induce ‘brown remodeling’ of white adipocytes, which causes functional modification of adipocytes thus impairing their pro-tumorigenic signals on colon CSCs/CRC cells. PMID:25294814

  10. A hypothesis of target cell formation in sickle cell disease.

    PubMed

    Wong, P

    2016-08-01

    A fraction of erythrocytes appear as target cells in stained blood smears in sickle cell disease, due to a inheritance of the hemoglobin variant Hb S, polymerizing upon deoxygenation. These cells appear in a three dimension as thin cups. A process of their formation in this disease is proposed based on a band 3-based mechanism of the erythrocyte shape control, able to explain the erythrocyte echinocytosis by glucose depletion. It indicates that their formation is due to a stomatocytogenic slow outward transport of the dibasic form of endogenous Pi with an H(+) by band 3, promoted by the decrease of the Donnan ratio, which decreases cell pH and volume, attributed by a decrease of cell KCl concentration by the higher efflux of K(+)Cl(-) cotransport and Ca(2+) activation of the Gardos channel. Its implications are briefly discussed with respect to target cells per se, target cell formation in other hemoglobinopathies, acquired and inherited disorders of the lipid metabolism and dehydrated hereditary stomatocytosis as well as a stomatocyte presence in a double heterozygote of Hb S and Hb C and of an involvement of the process of target cell formation in acanthocytosis in acquired and inherited disorders. PMID:27372866

  11. Mutagenicity of radon and radon daughters

    SciTech Connect

    Evans, H.H.

    1991-01-01

    The objective of our research is to investigate the dose-response relationship of the lethal and mutagenic effects of exposure of cells to radon and its decay products. Dose rate dependence and the nature of the DNA lesion will be studied, using the thymidine kinase and HPRT loci to measure mutation frequency. A deficiency in DNA repair is shown to lead to a greater proportion of mutants with intergenic lesions. The cytotoxic effects of radon and its daughters are similar in human TK6 lymphoblasts and mouse L5178Y lymphoblasts, the cell line used in previous experiments. The results of molecular analysis of four spontaneous and 25 X-radiation induced HPRT{sup {minus}} mutants. Eleven radon-induced HPRT{sup {minus}} mutants have been isolated, and will be analyzed in a similar fashion. 9 figs.

  12. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2014-07-22

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline materiat layer; and forming conductive contacts in the plurality of contact holes.

  13. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2015-07-21

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  14. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David; Cousins, Peter

    2012-12-04

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  15. Organochlorine formation in magnesium electrowinning cells.

    PubMed

    Deutscher, R L; Cathro, K J

    2001-04-01

    The formation of organochlorines during the electrolytic production of magnesium was investigated using a laboratory-scale electrolytic cell having a graphite anode, a liquid aluminium alloy cathode, and a molten chloride electrolyte. The cell was operated at current densities ranging from 3000 to 10,000 A m(-2) and at temperatures ranging from 660 degrees C to 750 degrees C. Organochlorines were adsorbed from the cell off-gases onto silica gel, extracted with hexane, and determined by gas chromatography. All compounds identified were fully chlorinated aliphatic and aromatic compounds, the major components being hexachlorobutadiene, hexachlorobenzene, hexachloroethylene, and octachlorostyrene. The total amount of organochlorines per tonne of magnesium produced decreased with electrolysis time and with current density and increased with operating temperature; it was also dependent on the type of graphite employed. The output of organochlorines varied from 5 to 20 g t(-1) of magnesium. PMID:11297394

  16. Organic Tandem Solar Cells: Design and Formation

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Chao

    polyelectrolyte layer functioning as the surface dipole formation layer to provide better electrical contact with the photoactive layer. Due to the effectiveness of the conjugated polyelectrolyte layer, performance improvement was also observed. Furthermore, other issues regarding the semi-transparent tandem solar cells (e.g., photocurrent matching, exterior color tuning, and transparency tuning) are all explored to optimize best performance. In Chapter 5 and 6, the architectures of double- and triple-junction tandem solar cells are explored. Theoretically, triple-junction tandem solar cells with three photoactive absorbers with cascaded energy bandgaps have the potential to achieve higher performance, in comparison with double-junction tandem solar cells. Such expectations can be ascribed to the minimized carrier thermalization loss and further improved light absorption. However, the design of triple-junction solar cells often involves sophisticated multiple layer deposition as well as substantial optimization. Therefore, there is a lack of successful demonstrations of triple-junction solar cells outperforming the double-junction counterparts. To solve the incompatible issues related to the layer deposition in the fabrication, we proposed a novel architecture of inverted-structure tandem solar cells with newly designed interconnecting layers. Our design of interconnecting layers does not only focus on maintaining the orthogonal solution processing advantages, but also provides an excellent compatibility in the energy level alignment to allow different absorber materials to be used. Furthermore, we also explored the light management inside the double- and triple-junction tandem solar cells. The study of light management was carried out through optical simulation method based transfer matrix formalism. The intention is to obtain a balanced photocurrent output from each subcells inside the tandem solar cell, thus the minimal recombination loss at the contact of interconnecting

  17. Contribution of radon and radon daughters to respiratory cancer.

    PubMed Central

    Harley, N; Samet, J M; Cross, F T; Hess, T; Muller, J; Thomas, D

    1986-01-01

    This article reviews studies on the contribution of radon and radon daughters to respiratory cancer and proposes recommendations for further research, particularly a national radon survey. The steady-state outdoor radon concentration averages 200 pCi/m3, and indoor levels are about 4 times higher. The primary source of radon in homes is the underlying soil; entry depends on multiple variables and reduced ventilation for energy conservation increases indoor radon levels. Occupational exposures are expressed in units of radon daughter potential energy concentration or working level (WL). Cumulative exposure is the product of the working level and the time exposed. The unit for cumulative exposure is the working level month (WLM). The occupational standard for radon exposure is 4 WLM/year, and 2 WLM/year has been suggested as a guideline for remedial action in homes. Epidemiologic studies show that miners with cumulative radon daughter exposures somewhat below 100 WLM have excess lung cancer mortality. Some 3% to 8% of miners studied have developed lung cancer attributable to radon daughters. All of the underground mining studies show an increased risk of lung cancer with radon daughter exposure. All cell types of lung cancer increased with radon exposure. If radon and smoking act in a multiplicative manner, then the risk for smokers could be 10 times that for nonsmokers. The potential risk of lung cancer appears to be between 1 and 2 per 10,000/WLM, which yields a significant number of lung cancers as some 220 million persons in the United States are exposed on average to 10 to 20 WLM/lifetime. PMID:3830103

  18. Emulsification in turbulent flow: 3. Daughter drop-size distribution.

    PubMed

    Tcholakova, Slavka; Vankova, Nina; Denkov, Nikolai D; Danner, Thomas

    2007-06-15

    Systematic set of experiments is performed to clarify the effects of several factors on the size distribution of the daughter drops, which are formed as a result of drop breakage during emulsification in turbulent flow. The effects of oil viscosity, etaD, interfacial tension, sigma, and rate of energy dissipation in the turbulent flow, epsilon, are studied. As starting oil-water premixes we use emulsions containing monodisperse oil drops, which have been generated by membrane emulsification. By passing these premixes through a narrow-gap homogenizer, working in turbulent regime of emulsification, we monitor the changes in the drop-size distribution with the emulsification time. The experimental data are analyzed by using a new numerical procedure, which is based on the assumption (supported by the experimental data) that the probability for formation of daughter drops with diameter smaller than the maximum diameter of the stable drops, dformation of multiple daughter drops, and that the number and size distribution of these daughter drops depend strongly on the viscosity of the dispersed phase. Different scaling laws are found to describe the experimental results for the oils of low and high viscosity. The obtained results for the daughter drop-size distribution are in a reasonably good agreement with the experimental results reported by other authors. In contrast, the comparison with several basic model functions, proposed in the literature, does not show good agreement and the possible reasons are discussed. The proposed numerical procedure allows us to describe accurately the evolution of all main characteristics of the drop-size distribution during emulsification, such as the number and volume averaged diameters, and the distributive and cumulative functions by

  19. Contact formation in gallium arsenide solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1988-01-01

    Gold and gold-based alloys, commonly used as solar cell contact materials, are known to react readily with gallium arsenide. Experiments were performed to identify the mechanisms involved in these GaAs-metal interactions. It is shown that the reaction of GaAs with gold takes place via a dissociative diffusion process. It is shown further that the GaAs-metal reaction rate is controlled to a very great extent by the condition of the free surface of the contact metal, an interesting example of which is the previously unexplained increase in the reaction rate that has been observed for samples annealed in a vacuum environment as compared to those annealed in a gaseous ambient. A number of other hard-to-explain observations, such as the low-temperature formation of voids in the gold lattice and crystallite growth on the gold surface, are explained by invoking this mechanism.

  20. Lignin Formation in Wheat Coleoptile Cell Walls

    PubMed Central

    Whitmore, F. W.

    1971-01-01

    Four growth-influencing compounds—hydroxyproline, 2,2′-dipyridyl, 2-chloroethylphosphonic acid, and indoleacetic acid—were used to examine the relationship between lignin formation and growth of wheat coleoptile sections. Hydroxyproline and 2-chloroethylphosphonic acid, at low concentrations, inhibited growth and increased lignin content. Dipyridyl, which promoted coleoptile elongation, decreased lignin content. Indoleacetic acid caused a 300% increase in growth at 0.1 mm but resulted in lignin content no different from controls with no auxin. Chemical and anatomical evidence is given which indicates that lignin is present in the epidermal cell walls of the wheat coleoptile. It is thus possible that bonding between lignin and hemicellulose may have some influence on coleoptile growth. Images PMID:16657843

  1. The father-daughter dance: the relationship between father-daughter relationship quality and daughters' stress response.

    PubMed

    Byrd-Craven, Jennifer; Auer, Brandon J; Granger, Douglas A; Massey, Amber R

    2012-02-01

    The goal of the study was to determine whether father-daughter relationship quality is related to activity of the hypothalamic-pituitary-adrenal (HPA) axis (salivary cortisol) and autonomic nervous system (salivary alpha-amylase, sAA) in late adolescence-emerging adulthood during peer interactions. In the 1st study, reported father-daughter relationships characterized by rejection, chaos, and coercion had lower morning cortisol levels and were temperamentally more sensitive to emotional changes. In the 2nd study, young women who reported father-daughter relationships characterized by warmth, autonomy, support, and structure had lower pretask cortisol levels, and they had attenuated cortisol responses to problem discussion with a friend. In contrast, those who reported father-daughter relationships characterized by rejection, chaos, and coercion had higher pretask cortisol levels, had elevated cortisol in response to problem discussion with a friend, and were more likely to self-disclose about psychosocial stressors. No differences were observed between reported father-daughter relationship quality and sAA levels or task-related reactivity. The findings suggest that father-daughter interactions potentially influence both social cognition and HPA reactivity to developmentally salient stressors in young women. PMID:22182338

  2. Plk1 relieves centriole block to reduplication by promoting daughter centriole maturation

    PubMed Central

    Shukla, Anil; Kong, Dong; Sharma, Meena; Magidson, Valentin; Loncarek, Jadranka

    2015-01-01

    Centrosome overduplication promotes mitotic abnormalities, invasion and tumorigenesis. Cells regulate the number of centrosomes by limiting centriole duplication to once per cell cycle. The orthogonal orientation between a mother and a daughter centriole, established at the time of centriole duplication, is thought to block further duplication of the mother centriole. Loss of orthogonal orientation (disengagement) between two centrioles during anaphase is considered a licensing event for the next round of centriole duplication. Disengagement requires the activity of Polo-like kinase 1 (Plk1), but how Plk1 drives this process is not clear. Here we employ correlative live/electron microscopy and demonstrate that Plk1 induces maturation and distancing of the daughter centriole, allowing reduplication of the mother centriole even if the original daughter centriole is still orthogonal to it. We find that mother centrioles can undergo reduplication when original daughter centrioles are only ∼80 nm apart, which is the distance centrioles normally reach during prophase. PMID:26293378

  3. User's manual for the DAD-1 data acquisition daughter board for the SuperCard-2

    SciTech Connect

    Ferron, J.R.

    1993-05-01

    A detailed description of how to use the DAD-1 data acquisition daughter board is given. The DAD-1 daughter board is used with the SuperCard-2, a VME format processor board manufactured by CSP Inc. that is based on the Intel i860 microprocessor. The daughter board provides high speed acquisition of digital data through a general purpose input port. Data are transferred through direct memory access operations to the memory on the SuperCard-2 board at a rate up to 40 million, 14 bit samples per second. A first-in, first-out memory is used to buffer the data during the transfer. Several different data acquisition operating modes are available that make a combination of a SuperCard-2 processor board and a DAD-1 daughter board suitable for a wide range of real time data analysis and feedback control functions.

  4. Radionuclide daughter inventory generator code: DIG

    SciTech Connect

    Fields, D.E.; Sharp, R.D.

    1985-09-01

    The Daughter Inventory Generator (DIG) code accepts a tabulation of radionuclide initially present in a waste stream, specified as amounts present either by mass or by activity, and produces a tabulation of radionuclides present after a user-specified elapsed time. This resultant radionuclide inventory characterizes wastes that have undergone daughter ingrowth during subsequent processes, such as leaching and transport, and includes daughter radionuclides that should be considered in these subsequent processes or for inclusion in a pollutant source term. Output of the DIG code also summarizes radionuclide decay constants. The DIG code was developed specifically to assist the user of the PRESTO-II methodology and code in preparing data sets and accounting for possible daughter ingrowth in wastes buried in shallow-land disposal areas. The DIG code is also useful in preparing data sets for the PRESTO-EPA code. Daughter ingrowth in buried radionuclides and in radionuclides that have been leached from the wastes and are undergoing hydrologic transport are considered, and the quantities of daughter radionuclide are calculated. Radionuclide decay constants generated by DIG and included in the DIG output are required in the PRESTO-II code input data set. The DIG accesses some subroutines written for use with the CRRIS system and accesses files containing radionuclide data compiled by D.C. Kocher. 11 refs.

  5. Maternal effects on daughters' eating pathology and body image.

    PubMed

    Cooley, Eric; Toray, Tamina; Wang, Mei Chuan; Valdez, Noreen N

    2008-01-01

    Effects of maternal eating behaviors and attitudes, maternal feedback to daughter about weight issues, mother-daughter relationship closeness, media influences, and mothers' perceptions of daughters shape on daughters' body image and eating pathology were examined using 91 pairs of mothers and college-aged daughters. Hierarchical multiple regressions using daughters' BMI as the first step were separately performed for daughters' body image and eating pathology. Variables predictive of daughters' body image included negative feedback from mother, mother's disapproval of daughter's figure, and mothers' eating behaviors and attitudes as perceived by daughters. A similar pattern was found for daughters' eating pathology scores with the addition of mothers' tendency to internalize media messages regarding thinness and beauty significantly adding to the prediction. Maternal influence through modeling may be best assessed by using the daughters' perceptions of their mothers because this corresponds to what the daughter was aware of in their mothers' eating attitudes and behaviors. Negative feedback from mothers about daughters' figures and eating patterns significantly increased daughters' difficulties in these areas. Mothers who showed a greater internalization of media messages about thinness were most likely to have daughters with eating pathologies. PMID:18167323

  6. Focal Adhesion Kinase regulates cell-cell contact formation in epithelial cells via modulation of Rho

    SciTech Connect

    Playford, Martin P.; Vadali, Kavita; Cai Xinming; Burridge, Keith; Schaller, Michael D.

    2008-10-15

    Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase that plays a key role in cellular processes such as cell adhesion, migration, proliferation and survival. Recent studies have also implicated FAK in the regulation of cell-cell adhesion. Here, evidence is presented showing that siRNA-mediated suppression of FAK levels in NBT-II cells and expression of dominant negative mutants of FAK caused loss of epithelial cell morphology and inhibited the formation of cell-cell adhesions. Rac and Rho have been implicated in the regulation of cell-cell adhesions and can be regulated by FAK signaling. Expression of active Rac or Rho in NBT-II cells disrupted formation of cell-cell contacts, thus promoting a phenotype similar to FAK-depleted cells. The loss of intercellular contacts in FAK-depleted cells is prevented upon expression of a dominant negative Rho mutant, but not a dominant negative Rac mutant. Inhibition of FAK decreased tyrosine phosphorylation of p190RhoGAP and elevated the level of GTP-bound Rho. This suggests that FAK regulates cell-cell contact formation by regulation of Rho.

  7. Adult Daughters' Descriptions of Their Mother-Daughter Relationship in the Context of Chronic Conflict.

    PubMed

    Pickering, Carolyn E Z; Mentes, Janet C; Moon, Ailee; Pieters, Huibrie C; Phillips, Linda R

    2015-01-01

    The purpose of this article is to describe, from the perspective of the adult daughter, the mother-daughter relationship in the context of chronic conflict. Grounded theory methodology was used. An online recruitment strategy was used to identify a sample of adult daughters (N = 13) who self-identified as having an abusive relationship with their aging mother. Data collection was completed through semi-structured telephone interviews. Daughters framed their relationship around their perceptions of past childhood injustices. These injustices invoked strong negative emotions. Daughters had equally strong motivations for sustaining the relationship, driven by desire to reconcile their negative experience through seeking validation and futile-hoping as well as a sense of obligation to do due diligence. Together these factors created an environment of inevitable confrontation and a relationship defined by chronic conflict. Findings from the study provide theoretical insights to the conceptualization of aggression, power relationships, and the development of elder abuse and neglect. PMID:26421508

  8. Arabidopsis CSLD5 Functions in Cell Plate Formation in a Cell Cycle-Dependent Manner.

    PubMed

    Gu, Fangwei; Bringmann, Martin; Combs, Jonathon R; Yang, Jiyuan; Bergmann, Dominique C; Nielsen, Erik

    2016-07-01

    In plants, the presence of a load-bearing cell wall presents unique challenges during cell division. Unlike other eukaryotes, which undergo contractile cytokinesis upon completion of mitosis, plants instead synthesize and assemble a new dividing cell wall to separate newly formed daughter cells. Here, we mine transcriptome data from individual cell types in the Arabidopsis thaliana stomatal lineage and identify CSLD5, a member of the Cellulose Synthase Like-D family, as a cell wall biosynthesis enzyme uniquely enriched in rapidly dividing cell populations. We further show that CSLD5 is a direct target of SPEECHLESS, the master transcriptional regulator of these divisions during stomatal development. Using a combination of genetic analysis and in vivo localization of fluorescently tagged fusion proteins, we show that CSLD5 preferentially accumulates in dividing plant cells where it participates in the construction of newly forming cell plates. We show that CSLD5 is an unstable protein that is rapidly degraded upon completion of cell division and that the protein turnover characteristics of CSLD5 are altered in ccs52a2 mutants, indicating that CSLD5 turnover may be regulated by a cell cycle-associated E3-ubiquitin ligase, the anaphase-promoting complex. PMID:27354558

  9. Daughters mimic sterile neutrinos (almost!) perfectly

    NASA Astrophysics Data System (ADS)

    Hasenkamp, Jasper

    2014-09-01

    Since only recently, cosmological observations are sensitive to hot dark matter (HDM) admixtures with sub-eV mass, mhdmeff < eV, that are not fully-thermalised, Δ Neff < 1. We argue that their almost automatic interpretation as a sterile neutrino species is neither from theoretical nor practical parsimony principles preferred over HDM formed by decay products (daughters) of an out-of-equilibrium particle decay. While daughters mimic sterile neutrinos in Neff and mhdmeff, there are opportunities to assess this possibility in likelihood analyses. Connecting cosmological parameters and moments of momentum distribution functions, we show that—also in the case of mass-degenerate daughters with indistinguishable main physical effects—the mimicry breaks down when the next moment, the skewness, is considered. Predicted differences of order one in the root-mean-squares of absolute momenta are too small for current sensitivities.

  10. Sample chambers with mother-daughter mode

    SciTech Connect

    Wilk, P.A.; Gregorich, K.E.; Hoffman, D.C.

    2001-07-12

    A set of eight stand-alone sample chambers with a common interface were constructed at LBNL for improved detection of alpha and fission decay chains over currently used designs. The stainless steel chambers (see Figure 1 for a schematic and Figure 2 for a photograph of a completed chamber) were constructed to allow for low background detection of a daughter event by removal of the sample following the detection of a parent event. This mother-daughter mode of operation has been utilized successfully with our Merry-go-Round (MG) detection system [Gregorich 1994].

  11. Closure of supporting cell scar formations requires dynamic actin mechanisms.

    PubMed

    Hordichok, Andrew J; Steyger, Peter S

    2007-10-01

    In many vertebrate inner ear sensory epithelia, dying sensory hair cells are extruded, and the apices of surrounding supporting cells converge to re-seal the epithelial barrier between the electrochemically-distinct endolymph and perilymph. These cellular mechanisms remain poorly understood. Dynamic microtubular mechanisms have been proposed for hair cell extrusion; while contractile actomyosin-based mechanisms are required for cellular extrusion and closure in epithelial monolayers. The hypothesis that cytoskeletal mechanisms are required for hair cell extrusion and supporting cell scar formation was tested using bullfrog saccules incubated with gentamicin (6h), and allowed to recover (18h). Explants were then fixed, labeled for actin and cytokeratins, and viewed with confocal microscopy. To block dynamic cytoskeletal processes, disruption agents for microtubules (colchicine, paclitaxel) myosin (Y-27632, ML-9) or actin (cytochalasin D, latrunculin A) were added during treatment and recovery. Microtubule disruption agents had no effect on hair cell extrusion or supporting cell scar formation. Myosin disruption agents appeared to slow down scar formation but not hair cell extrusion. Actin disruption agents blocked scar formation, and largely prevented hair cell extrusion. These data suggest that actin-based cytoskeletal processes are required for hair cell extrusion and supporting cell scar formation in bullfrog saccules. PMID:17716843

  12. Perivascular mast cells regulate vein graft neointimal formation and remodeling

    PubMed Central

    Grassia, Gianluca; Cambrook, Helen; Ialenti, Armando; MacRitchie, Neil; Carberry, Jaclyn; Lawrence, Catherine

    2015-01-01

    Objective. Emerging evidence suggests an important role for mast cells in vein graft failure. This study addressed the hypothesis that perivascular mast cells regulate in situ vascular inflammatory and proliferative responses and subsequent vein graft neointimal lesion formation, using an optimized local mast cell reconstitution method. Methods and Results. Neointimal hyperplasia was induced by insertion of a vein graft into the right carotid artery in wild type and mast cell deficient KitW−sh/W−sh mice. In some experiments, mast cells were reconstituted systemically (tail vein injection of bone marrow-derived mast cells) or locally (directly into the right neck area) prior to vein grafting. Vein graft neointimal lesion formation was significantly (P < 0.05) reduced in KitW−sh/W−sh mice. Mast cell deficiency reduced the number of proliferating cells, and inhibited L-selectin, CCL2, M-CSF and MIP-3α expression in the vein grafts. Local but not systemic mast cell reconstitution restored a perivascular mast cell population that subsequently promoted neointimal formation in mast cell deficient mice. Conclusion. Our data demonstrate that perivascular mast cells play a key role in promoting neointima formation by inducing local acute inflammatory and proliferative responses. These results suggest that ex vivo intraoperative targeting of mast cells may have therapeutic potential for the prevention of pathological vein graft remodeling. PMID:26312183

  13. Trichinella spiralis: nurse cell formation with emphasis on analogy to muscle cell repair

    PubMed Central

    Wu, Zhiliang; Sofronic-Milosavljevic, Lj; Nagano, Isao; Takahashi, Yuzo

    2008-01-01

    Trichinella infection results in formation of a capsule in infected muscles. The capsule is a residence of the parasite which is composed of the nurse cell and fibrous wall. The process of nurse cell formation is complex and includes infected muscle cell response (de-differentiation, cell cycle re-entry and arrest) and satellite cell responses (activation, proliferation and differentiation). Some events that occur during the nurse cell formation are analogous to those occurring during muscle cell regeneration/repair. This article reviews capsule formation with emphasis on this analogy. PMID:18710582

  14. Zoonotic Anatrichosomiasis in a Mother and Daughter

    PubMed Central

    Hellstein, John W.; Lanzel, Emily A.

    2014-01-01

    Zoonotic anatrichosomiasis in a mother and daughter is reported. Both presented with a 10-week history of multiple painful oral ulcers. Biopsy specimens revealed the presence of small, coiled trichuroid nematodes with distinctive morphological features, including stichocytes and paired bacillary bands. This represents an unusual infection by a zoonotic Anatrichosoma species. PMID:24899034

  15. Melancholic Mothering: Mothers, Daughters and Family Violence

    ERIC Educational Resources Information Center

    Kenway, Jane; Fahey, Johannah

    2008-01-01

    Through selected theories of melancholia, this paper seeks to shed some fresh interpretive light on the reproduction and disruption of gender, violence and family turmoil across generations of mothers and daughters. The originality of the paper lies in its exploratory deployment of theories of melancholia to consider issues of women, violence and…

  16. Catholic Girls: The Mother-Daughter Nexus

    ERIC Educational Resources Information Center

    Keary, Anne

    2011-01-01

    This paper examines Catholic girlhood, womanhood and the mother-daughter relationship, and its socio-historical construction within a range of disparate discourses. The aim of the paper is to deconstruct dominant patriarchal constructions and images of femininity, particularly those embedded within the doctrine of Catholicism. Moreover, the paper…

  17. Do Parents Discriminate against Their Heavyweight Daughters?

    ERIC Educational Resources Information Center

    Crandall, Christian S.

    1995-01-01

    Attempts to support the parental prejudice hypothesis by having students report on their parents' attitudes. Results from two studies indicate that heavyweight women were more likely to pay their own way through college, irrespective of their parents' income. The selection bias against fat women was strongest for daughters of political…

  18. Humanistic Treatment of Father-Daughter Incest.

    ERIC Educational Resources Information Center

    Giarretto, Henry

    1978-01-01

    Following a case study of father-daughter incest, the author comments on the prevalence of incest and describes Santa Clara County's Child Sexual Abuse Treatment Program (CSATP). The founding of CSATP, its treatment model for incestuous families, and its preliminary results are covered. (SJL)

  19. White Piedra in a Mother and Daughter

    PubMed Central

    Roshan, Anupama S; Janaki, C; Parveen, B

    2009-01-01

    White Piedra is a superficial fungal infection of the hair caused by Trichosporon asahii. It is also known as trichomycosis nodosa or trichomycosis nodularis. We report two cases of White Piedra in a mother and her daughter for the rarity of such occurrence. PMID:20927238

  20. White piedra in a mother and daughter.

    PubMed

    Roshan, Anupama S; Janaki, C; Parveen, B

    2009-07-01

    White Piedra is a superficial fungal infection of the hair caused by Trichosporon asahii. It is also known as trichomycosis nodosa or trichomycosis nodularis. We report two cases of White Piedra in a mother and her daughter for the rarity of such occurrence. PMID:20927238

  1. Conflict sources and responses in mother-daughter relationships: perspectives of adult daughters of aging immigrant women.

    PubMed

    Usita, Paul M; Du Bois, Barbara C

    2005-01-01

    Mother-daughter conflict sources and responses among immigrant families are not well understood. In the research reported here, in-depth interview data about conflict were collected from 11 adult daughters of Japanese immigrant mothers. Conflict sources were mothers' unsolicited advice, daughters and mothers not living up to expectations of the other, and daughters' independence of mothers. Responses to conflict included voicing concerns, displaying loyalty, and utilizing the assistance of family. Comparisons between immigrant and nonimmigrant mother-daughter dyads' conflict experiences are discussed, and suggestions for future research on mother-daughter conflict within the immigrant context are provided. PMID:15914425

  2. Mathematical modeling of dormant cell formation in growing biofilm

    PubMed Central

    Chihara, Kotaro; Matsumoto, Shinya; Kagawa, Yuki; Tsuneda, Satoshi

    2015-01-01

    Understanding the dynamics of dormant cells in microbial biofilms, in which the bacteria are embedded in extracellular matrix, is important for developing successful antibiotic therapies against pathogenic bacteria. Although some of the molecular mechanisms leading to bacterial persistence have been speculated in planktonic bacterial cell, how dormant cells emerge in the biofilms of pathogenic bacteria such as Pseudomonas aeruginosa remains unclear. The present study proposes four hypotheses of dormant cell formation; stochastic process, nutrient-dependent, oxygen-dependent, and time-dependent processes. These hypotheses were implemented into a three-dimensional individual-based model of biofilm formation. Numerical simulations of the different mechanisms yielded qualitatively different spatiotemporal distributions of dormant cells in the growing biofilm. Based on these simulation results, we discuss what kinds of experimental studies are effective for discriminating dormant cell formation mechanisms in biofilms. PMID:26074911

  3. Enhanced retention of the alpha-particle-emitting daughters of Actinium-225 by liposome carriers.

    PubMed

    Sofou, Stavroula; Kappel, Barry J; Jaggi, Jaspreet S; McDevitt, Michael R; Scheinberg, David A; Sgouros, George

    2007-01-01

    Targeted alpha-particle emitters hold great promise as therapeutics for micrometastatic disease. Because of their high energy deposition and short range, tumor targeted alpha-particles can result in high cancer-cell killing with minimal normal-tissue irradiation. Actinium-225 is a potential generator for alpha-particle therapy: it decays with a 10-day half-life and generates three alpha-particle-emitting daughters. Retention of (225)Ac daughters at the target increases efficacy; escape and distribution throughout the body increases toxicity. During circulation, molecular carriers conjugated to (225)Ac cannot retain any of the daughters. We previously proposed liposomal encapsulation of (225)Ac to retain the daughters, whose retention was shown to be liposome-size dependent. However, daughter retention was lower than expected: 22% of theoretical maximum decreasing to 14%, partially due to the binding of (225)Ac to the phospholipid membrane. In this study, Multivesicular liposomes (MUVELs) composed of different phospholipids were developed to increase daughter retention. MUVELs are large liposomes with entrapped smaller lipid-vesicles containing (225)Ac. PEGylated MUVELs stably retained over time 98% of encapsulated (225)Ac. Retention of (213)Bi, the last daughter, was 31% of the theoretical maximum retention of (213)Bi for the liposome sizes studied. MUVELs were conjugated to an anti-HER2/neu antibody (immunolabeled MUVELs) and were evaluated in vitro with SKOV3-NMP2 ovarian cancer cells, exhibiting significant cellular internalization (83%). This work demonstrates that immunolabeled MUVELs might be able to deliver higher fractions of generated alpha-particles per targeted (225)Ac compared to the relative fractions of alpha-particles delivered by (225)Ac-labeled molecular carriers. PMID:17935286

  4. Suppression of T cell-induced osteoclast formation

    SciTech Connect

    Karieb, Sahar; Fox, Simon W.

    2013-07-12

    Highlights: •Genistein and coumestrol prevent activated T cell induced osteoclast formation. •Anti-TNF neutralising antibodies prevent the pro-osteoclastic effect of activated T cells. •Phytoestrogens inhibit T cell derived TNF alpha and inflammatory cytokine production. •Phytoestrogens have a broader range of anti-osteoclastic actions than other anti-resorptives. -- Abstract: Inhibition of T cell derived cytokine production could help suppress osteoclast differentiation in inflammatory skeletal disorders. Bisphosphonates are typically prescribed to prevent inflammatory bone loss but are not tolerated by all patients and are associated with an increased risk of osteonecrosis of the jaw. In light of this other anti-resorptives such as phytoestrogens are being considered. However the effect of phytoestrogens on T cell-induced osteoclast formation is unclear. The effect of genistein and coumestrol on activated T cell-induced osteoclastogenesis and cytokine production was therefore examined. Concentrations of genistein and coumestrol (10{sup −7} M) previously shown to directly inhibit osteoclast formation also suppressed the formation of TRAP positive osteoclast induced by con A activated T cells, which was dependent on inhibition of T cell derived TNF-α. While both reduced osteoclast formation their mechanism of action differed. The anti-osteoclastic effect of coumestrol was associated with a dual effect on con A induced T cell proliferation and activation; 10{sup −7} M coumestrol significantly reducing T cell number (0.36) and TNF-α (0.47), IL-1β (0.23) and IL-6 (0.35) expression, whereas genistein (10{sup −7} M) had no effect on T cell number but a more pronounced effect on T cell differentiation reducing expression of TNF-α (0.49), IL-1β (0.52), IL-6 (0.71) and RANKL (0.71). Phytoestrogens therefore prevent the pro-osteoclastic action of T cells suggesting they may have a role in the control of inflammatory bone loss.

  5. 30 CFR 57.5037 - Radon daughter exposure monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Radon daughter exposure monitoring. 57.5037... Radon daughter exposure monitoring. (a) In all mines at least one sample shall be taken in exhaust mine air by a competent person to determine if concentrations of radon daughters are present....

  6. 30 CFR 57.5037 - Radon daughter exposure monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Radon daughter exposure monitoring. 57.5037... Radon daughter exposure monitoring. (a) In all mines at least one sample shall be taken in exhaust mine air by a competent person to determine if concentrations of radon daughters are present....

  7. 30 CFR 57.5037 - Radon daughter exposure monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Radon daughter exposure monitoring. 57.5037... Radon daughter exposure monitoring. (a) In all mines at least one sample shall be taken in exhaust mine air by a competent person to determine if concentrations of radon daughters are present....

  8. Mothers' and Their Adult Daughters' Perceptions of Their Relationship

    ERIC Educational Resources Information Center

    Bojczyk, Kathryn E.; Lehan, Tara J.; McWey, Lenore M.; Melson, Gail F.; Kaufman, Debra R.

    2011-01-01

    This qualitative study explores mother-adult daughter relationships through in-depth, individual interviews with 24 adult daughters and their mothers (N = 48). Using a life-course perspective, the authors examined the kinds of themes that emerged in each woman's narrative and within each mother-daughter pair. Given the periods of adulthood under…

  9. Effects of asbestos fibers on cell division, cell survival, and formation of thioguanine-resistant mutants in Chinese hamster ovary cells

    SciTech Connect

    Kenne, K.; Ljungquist, S.; Ringertz, N.R.

    1986-04-01

    The ability of crocidolite fibers to induce point mutations and mitotic abnormalities in Chinese hamster ovary (CHO) cells was examined in cell cultures. The purpose has been to study the possibilities for establishing in vitro test methods to quantify genetic damage induced by asbestos and other mineral fibers. Results obtained with the CHO/hypoxanthine guanine phosphoribosyl transferase system indicated that crocidolite fibers per se do not significantly increase the number of thioguanine-resistant mutants. Crocidolite fibers also failed to potentiate the mutagenicity of benzo(a)pyrene. Time-lapse cinematography and microscopy showed that asbestos (crocidolite) fibers were markedly cytotoxic. Among surviving cells some underwent abnormal cell divisions which resulted in multi- and micronucleate cells. Many cells that contained a few asbestos fibers, however, underwent mitosis and successfully formed two mononucleate daughter cells capable of further divisions. Individual, fiber-containing cells were examined by time-lapse television recordings for 4-5 days. During this time period some cells underwent six divisions and generated an almost normal number of daughter cells. Cells which contained fibers that were longer or equivalent to the diameter of the mitotic cell (20 ..mu..m), showed different forms of mitotic abnormalities. The frequency of multinucleate cells was drastically increased following exposure to asbestos fibers. Only rarely, however, did these cells divide to produce viable daughter cells capable of continued cell multiplication. The frequency of multinucleate cells was dependent on the dose of exposure to asbestos fibers and could possible be used as an index of the degree of mitotic disturbances induced by mineral fibers.

  10. Convective cell formation in a Z pinch

    NASA Astrophysics Data System (ADS)

    Kesner, J.

    2003-03-01

    Closed field line confinement systems can develop convective cells when the magnetohydrodynamic interchange stability criterion is violated. Using a previously derived set of reduced equations [V. P. Pastukhov and N. V. Chudin, Plasma Phys. Rep. 27, 907 (2001)] it is shown that a true steady state solution can exist. For an assumed large-scale vortex pattern, the plasma pressure profile that is implied by these convective flows as well as the nonlocal heat flux resulting from the convective flows is calculated.

  11. WNT-SHH Antagonism Specifies and Expands Stem Cells prior to Niche Formation.

    PubMed

    Ouspenskaia, Tamara; Matos, Irina; Mertz, Aaron F; Fiore, Vincent F; Fuchs, Elaine

    2016-01-14

    Adult stem cell (SC) maintenance and differentiation are known to depend on signals received from the niche. Here, however, we demonstrate a mechanism for SC specification and regulation that is niche independent. Using immunofluorescence, live imaging, genetics, cell-cycle analyses, in utero lentiviral transduction, and lineage-tracing, we show that in developing hair buds, SCs are born from asymmetric divisions that differentially display WNT and SHH signaling. Displaced WNT(lo) suprabasal daughters become SCs that respond to paracrine SHH and symmetrically expand. By contrast, basal daughters remain WNT(hi). They express but do not respond to SHH and hence maintain slow-cycling, asymmetric divisions. Over time, they become short-lived progenitors, generating differentiating daughters rather than SCs. Thus, in contrast to an established niche that harbors a fixed SC pool whose expelled progeny differentiate, asymmetric divisions first specify and displace early SCs into an environment conducive to expansion and later restrict their numbers by switching asymmetric fates. PMID:26771489

  12. Single cell pattern formation and transient cytoskeletal arrays

    PubMed Central

    Bement, William M.; von Dassow, George

    2015-01-01

    A major goal of developmental biology is to explain the emergence of pattern in cell layers, tissues and organs. Developmental biologists now accept that reaction diffusion-based mechanisms are broadly employed in developing organisms to direct pattern formation. Here we briefly consider these mechanisms and then apply some of the concepts derived from them to several processes that occur in single cells: wound repair, yeast budding, and cytokinesis. Two conclusions emerge from this analysis: first, there is considerable overlap at the level of general mechanisms between developmental and single cell pattern formation; second, dynamic structures based on the actin cytoskeleton may be far more ordered than is generally recognized. PMID:24529246

  13. Daughters mimic sterile neutrinos (almost!) perfectly

    SciTech Connect

    Hasenkamp, Jasper

    2014-09-01

    Since only recently, cosmological observations are sensitive to hot dark matter (HDM) admixtures with sub-eV mass, m{sub hdm}{sup eff} < eV, that are not fully-thermalised, Δ N{sub eff} < 1. We argue that their almost automatic interpretation as a sterile neutrino species is neither from theoretical nor practical parsimony principles preferred over HDM formed by decay products (daughters) of an out-of-equilibrium particle decay. While daughters mimic sterile neutrinos in N{sub eff} and m{sub hdm}{sup eff}, there are opportunities to assess this possibility in likelihood analyses. Connecting cosmological parameters and moments of momentum distribution functions, we show that—also in the case of mass-degenerate daughters with indistinguishable main physical effects—the mimicry breaks down when the next moment, the skewness, is considered. Predicted differences of order one in the root-mean-squares of absolute momenta are too small for current sensitivities.

  14. Nanopore formation in neuroblastoma cells following ultrashort electric pulse exposure

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.; Payne, Jason A.; Wilmink, Gerald J.; Ibey, Bennett L.

    2011-03-01

    Ultrashort or nanosecond electrical pulses (USEP) cause repairable damage to the plasma membranes of cells through formation of nanopores. These nanopores are able to pass small ions such as sodium, calcium, and potassium, but remain impermeable to larger molecules like trypan blue and propidium iodide. What remains uncertain is whether generation of nanopores by ultrashort electrical pulses can inhibit action potentials in excitable cells. In this paper, we explored the sensitivity of excitable cells to USEP using Calcium Green AM 1 ester fluorescence to measure calcium uptake indicative of nanopore formation in the plasma membrane. We determined the threshold for nanopore formation in neuroblastoma cells for three pulse parameters (amplitude, pulse width, and pulse number). Measurement of such thresholds will guide future studies to determine if USEP can inhibit action potentials without causing irreversible membrane damage.

  15. Formation of a Neurosensory Organ by Epithelial Cell Slithering.

    PubMed

    Kuo, Christin S; Krasnow, Mark A

    2015-10-01

    Epithelial cells are normally stably anchored, maintaining their relative positions and association with the basement membrane. Developmental rearrangements occur through cell intercalation, and cells can delaminate during epithelial-mesenchymal transitions and metastasis. We mapped the formation of lung neuroepithelial bodies (NEBs), innervated clusters of neuroendocrine/neurosensory cells within the bronchial epithelium, revealing a targeted mode of cell migration that we named "slithering," in which cells transiently lose epithelial character but remain associated with the membrane while traversing neighboring epithelial cells to reach cluster sites. Immunostaining, lineage tracing, clonal analysis, and live imaging showed that NEB progenitors, initially distributed randomly, downregulate adhesion and polarity proteins, crawling over and between neighboring cells to converge at diametrically opposed positions at bronchial branchpoints, where they reestablish epithelial structure and express neuroendocrine genes. There is little accompanying progenitor proliferation or apoptosis. Activation of the slithering program may explain why lung cancers arising from neuroendocrine cells are highly metastatic. PMID:26435104

  16. Laminin 5 regulates polycystic kidney cell proliferation and cyst formation.

    PubMed

    Joly, Dominique; Berissi, Sophie; Bertrand, Amélie; Strehl, Laetitia; Patey, Natacha; Knebelmann, Bertrand

    2006-09-29

    Renal cyst formation is the hallmark of autosomal dominant polycystic kidney disease (ADPKD). ADPKD cyst-lining cells have an increased proliferation rate and are surrounded by an abnormal extracellular matrix (ECM). We have previously shown that Laminin 5 (Ln-5, a alpha(3)beta(3)gamma(2) trimer) is aberrantly expressed in the pericystic ECM of ADPKD kidneys. We report that ADPKD cells in primary cultures produce and secrete Ln-5 that is incorporated to the pericystic ECM in an in vitro model of cystogenesis. In monolayers, purified Ln-5 induces ERK activation and proliferation of ADPKD cells, whereas upon epidermal growth factor stimulation blocking endogenously produced Ln-5 with anti-gamma(2) chain antibody reduces the sustained ERK activation and inhibits proliferation. In three-dimensional gel culture, addition of purified Ln-5 stimulates cell proliferation and cyst formation, whereas blocking endogenous Ln-5 strongly inhibits cyst formation. Ligation of alpha(6)beta(4) integrin, a major Ln-5 receptor aberrantly expressed by ADPKD cells, induces beta(4) integrin phosphorylation, ERK activation, cell proliferation, and cyst formation. These findings indicate that Ln-5 is an important regulator of ADPKD cell proliferation and cystogenesis and suggest that Ln-5 gamma(2) chain and Ln-5-alpha(6)beta(4) integrin interaction both contribute to these phenotypic changes. PMID:16870608

  17. User`s manual for the DAD-1 data acquisition daughter board for the SuperCard-2

    SciTech Connect

    Ferron, J.R.

    1993-05-01

    A detailed description of how to use the DAD-1 data acquisition daughter board is given. The DAD-1 daughter board is used with the SuperCard-2, a VME format processor board manufactured by CSP Inc. that is based on the Intel i860 microprocessor. The daughter board provides high speed acquisition of digital data through a general purpose input port. Data are transferred through direct memory access operations to the memory on the SuperCard-2 board at a rate up to 40 million, 14 bit samples per second. A first-in, first-out memory is used to buffer the data during the transfer. Several different data acquisition operating modes are available that make a combination of a SuperCard-2 processor board and a DAD-1 daughter board suitable for a wide range of real time data analysis and feedback control functions.

  18. Pulp stem cells: implication in reparative dentin formation.

    PubMed

    Dimitrova-Nakov, Sasha; Baudry, Anne; Harichane, Yassine; Kellermann, Odile; Goldberg, Michel

    2014-04-01

    Many dental pulp stem cells are neural crest derivatives essential for lifelong maintenance of tooth functions and homeostasis as well as tooth repair. These cells may be directly implicated in the healing process or indirectly involved in cell-to-cell diffusion of paracrine messages to resident (pulpoblasts) or nonresident cells (migrating mesenchymal cells). The identity of the pulp progenitors and the mechanisms sustaining their regenerative capacity remain largely unknown. Taking advantage of the A4 cell line, a multipotent stem cell derived from the molar pulp of mouse embryo, we investigated the capacity of these pulp-derived precursors to induce in vivo the formation of a reparative dentin-like structure upon implantation within the pulp of a rodent incisor or a first maxillary molar after surgical exposure. One month after the pulp injury alone, a nonmineralized fibrous matrix filled the mesial part of the coronal pulp chamber. Upon A4 cell implantation, a mineralized osteodentin was formed in the implantation site without affecting the structure and vitality of the residual pulp in the central and distal parts of the pulp chamber. These results show that dental pulp stem cells can induce the formation of reparative dentin and therefore constitute a useful tool for pulp therapies. Finally, reparative dentin was also built up when A4 progenitors were performed by alginate beads, suggesting that alginate is a suitable carrier for cell implantation in teeth. PMID:24698687

  19. Performance of direct formate-peroxide fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Yinshi; Wu, Hao; He, Yaling; Liu, Yue; Jin, Lei

    2015-08-01

    We report the high-performance direct formate-peroxide fuel cells (DFPFCs) that consist of a cation-exchange membrane sandwiched between an alkaline formate anode and an acid peroxide cathode. Much attention has been paid to investigate the effects of different composite parameters and operating parameters, including catalyst loadings at both anode and cathode electrodes, operating temperatures, as well as the concentrations of both formate and electrolyte solutions. It is demonstrated that the optimization of both the electrode composition (anode 2.0 mgPd cm-2, cathode 2.0 mgPt cm-2) and the solution concentration (1.0 M HCOONa-3.0 M NaOH) enables the DFPFC to yield a peak power density as high as 591 mW cm-2 at 60 °C, which is about one times higher than that of state-of-the-art anion-exchange membrane direct formate fuel cells.

  20. African American mother-daughter communication about sex and daughters' sexual behavior: does college racial composition make a difference?

    PubMed

    Bynum, Mia Smith

    2007-04-01

    This study examined the influence of African American mothers' communication about sexual topics on the sexual attitudes and behavior of their college-enrolled daughters. Daughters were enrolled at a historically Black college/university (HBCU) or a predominantly White institution (PWI) to assess whether and how college racial context might affect daughters' sexual attitudes and behavior. Findings indicated that daughters at the HBCU had less permissive attitudes about premarital sex than their counterparts at the PWI. This result was especially true for daughters of mothers with more conservative attitudes about premarital sex and who discussed such topics infrequently. Last, the combination of positive mother-daughter communication and fewer discussions about sexual topics resulted in lower levels of sexual experience among the daughters. PMID:17500604

  1. Shared vision between fathers and daughters in family businesses: the determining factor that transforms daughters into successors

    PubMed Central

    Overbeke, Kathy K.; Bilimoria, Diana; Somers, Toni

    2015-01-01

    Family businesses are critical to the United States economy, employing 63% of the workforce and generating 57% of GDP (University of Vermont, 2014). Family business continuity, however, remains elusive as approximately 70% of family businesses do not survive the second generation (Poza, 2013). In order to augment our understanding of how next generation leaders are chosen in family businesses, we examine daughter succession. Using a sample of pairs of family business fathers and daughters and drawing on an earlier study of the dearth of successor daughters in family businesses (Overbeke et al., 2013), we reveal that shared vision between fathers and daughters is central to daughter succession. Self-efficacy and gender norms influence shared vision and when fathers and daughters share a vision for the future of the company, daughters are likely to be transformed into successors. PMID:26074830

  2. Formation of dimethylthioarsenicals in red blood cells

    SciTech Connect

    Naranmandura, Hua; Suzuki, Kazuo T.

    2008-03-15

    The bladder and skin are the primary targets for arsenic-induced carcinogenicity in mammals. Thioarsenicals dimethylmonothioarsinic (DMMTA{sup V}) and dimethyldithioarsinic (DMDTA{sup V}) acids are common urinary metabolites, the former being much more toxic than non-thiolated dimethylarsinic acid (DMA{sup V}) and comparable to dimethylarsinous acid (DMA{sup III}) in epidermoid cells, suggesting that the metabolic production of thioarsenicals may be a risk factor for the development of cancer in these organs. To reveal their production sites (tissues/body fluids), we examined the uptake and transformation of the four dimethylated arsenicals by incubation with rat and human red blood cells (RBCs). Although DMA{sup V} and DMDTA{sup V} were not taken up by either type of RBCs, DMA{sup III} and DMMTA{sup V} were taken up by both (more efficiently by rat ones), though DMMTA{sup V} was taken up slowly, and then the arsenic transformed into DMDTA{sup V} was excreted from both types of animal RBCs. On the other hand, although DMA{sup III} taken up rapidly by rat RBCs was retained in the RBCs, that taken up by human RBCs was immediately transformed into DMMTA{sup V} and then excreted into the incubation medium without being retained in the RBCs. In a separate experiment, arsenic remaining in primary rat hepatocytes after incubation with 1.5 {mu}M DMA{sup III} was recovered from the incubation medium in the forms of DMA{sup V} and DMMTA{sup V} in the presence of human RBCs, but not in the presence of rat RBCs (in which the arsenic was bound to hemoglobin). Thus, DMMTA{sup V} was detected in the medium only in the presence of human RBCs and increased with incubation time. It was proposed that arsenic is excreted from hepatocytes into the bloodstream in the form of DMA{sup III} and then taken up by RBCs in humans, where it is transformed into DMMTA{sup V} and then excreted again into the bloodstream.

  3. Mutagenicity of radon and radon daughters. Annual progress report

    SciTech Connect

    Evans, H.H.

    1991-12-01

    The objective of our research is to investigate the dose-response relationship of the lethal and mutagenic effects of exposure of cells to radon and its decay products. Dose rate dependence and the nature of the DNA lesion will be studied, using the thymidine kinase and HPRT loci to measure mutation frequency. A deficiency in DNA repair is shown to lead to a greater proportion of mutants with intergenic lesions. The cytotoxic effects of radon and its daughters are similar in human TK6 lymphoblasts and mouse L5178Y lymphoblasts, the cell line used in previous experiments. The results of molecular analysis of four spontaneous and 25 X-radiation induced HPRT{sup {minus}} mutants. Eleven radon-induced HPRT{sup {minus}} mutants have been isolated, and will be analyzed in a similar fashion. 9 figs.

  4. Live Cell Interferometry Quantifies Dynamics of Biomass Partitioning during Cytokinesis

    PubMed Central

    Zangle, Thomas A.; Teitell, Michael A.; Reed, Jason

    2014-01-01

    The equal partitioning of cell mass between daughters is the usual and expected outcome of cytokinesis for self-renewing cells. However, most studies of partitioning during cell division have focused on daughter cell shape symmetry or segregation of chromosomes. Here, we use live cell interferometry (LCI) to quantify the partitioning of daughter cell mass during and following cytokinesis. We use adherent and non-adherent mouse fibroblast and mouse and human lymphocyte cell lines as models and show that, on average, mass asymmetries present at the time of cleavage furrow formation persist through cytokinesis. The addition of multiple cytoskeleton-disrupting agents leads to increased asymmetry in mass partitioning which suggests the absence of active mass partitioning mechanisms after cleavage furrow positioning. PMID:25531652

  5. Human papillomavirus 16 E5 induces bi-nucleated cell formation by cell-cell fusion

    SciTech Connect

    Hu Lulin; Plafker, Kendra; Vorozhko, Valeriya; Zuna, Rosemary E.; Hanigan, Marie H.; Gorbsky, Gary J.; Plafker, Scott M.; Angeletti, Peter C.; Ceresa, Brian P.

    2009-02-05

    Human papillomaviruses (HPV) 16 is a DNA virus encoding three oncogenes - E5, E6, and E7. The E6 and E7 proteins have well-established roles as inhibitors of tumor suppression, but the contribution of E5 to malignant transformation is controversial. Using spontaneously immortalized human keratinocytes (HaCaT cells), we demonstrate that expression of HPV16 E5 is necessary and sufficient for the formation of bi-nucleated cells, a common characteristic of precancerous cervical lesions. Expression of E5 from non-carcinogenic HPV6b does not produce bi-nucleate cells. Video microscopy and biochemical analyses reveal that bi-nucleates arise through cell-cell fusion. Although most E5-induced bi-nucleates fail to propagate, co-expression of HPV16 E6/E7 enhances the proliferation of these cells. Expression of HPV16 E6/E7 also increases bi-nucleated cell colony formation. These findings identify a new role for HPV16 E5 and support a model in which complementary roles of the HPV16 oncogenes lead to the induction of carcinogenesis.

  6. Parents' personality clusters and eating disordered daughters' personality and psychopathology.

    PubMed

    Amianto, Federico; Ercole, Roberta; Marzola, Enrica; Abbate Daga, Giovanni; Fassino, Secondo

    2015-11-30

    The present study explores how parents' personality clusters relate to their eating disordered daughters' personality and psychopathology. Mothers and fathers were tested with the Temperament Character Inventory. Their daughters were assessed with the following: Temperament and Character Inventory, Eating Disorder Inventory-2, Symptom Checklist-90, Parental Bonding Instrument, Attachment Style Questionnaire, and Family Assessment Device. Daughters' personality traits and psychopathology scores were compared between clusters. Daughters' features were related to those of their parents. Explosive/adventurous mothers were found to relate to their daughters' borderline personality profile and more severe interoceptive awareness. Mothers' immaturity was correlated to their daughters' higher character immaturity, inadequacy, and depressive feelings. Fathers who were explosive/methodic correlated with their daughters' character immaturity, severe eating, and general psychopathology. Fathers' character immaturity only marginally related to their daughters' specific features. Both parents' temperament clusters and mothers' character clusters related to patients' personality and eating psychopathology. The cluster approach to personality-related dynamics of families with an individual affected by an eating disorder expands the knowledge on the relationship between parents' characteristics and daughters' illness, suggesting complex and unique relationships correlating parents' personality traits to their daughters' disorder. PMID:26315665

  7. Effective formation of the segregation-competent complex determines successful partitioning of the bovine papillomavirus genome during cell division.

    PubMed

    Silla, Toomas; Männik, Andres; Ustav, Mart

    2010-11-01

    Effective segregation of the bovine papillomavirus type 1 (BPV1), Epstein-Barr virus (EBV), and Kaposi's sarcoma-associated human herpesvirus type 8 (KSHV) genomes into daughter cells is mediated by a single viral protein that tethers viral genomes to host mitotic chromosomes. The linker proteins that mediate BPV1, EBV, and KSHV segregation are E2, LANA1, and EBNA1, respectively. The N-terminal transactivation domain of BPV1 E2 is responsible for chromatin attachment and subsequent viral genome segregation. Because E2 transcriptional activation and chromatin attachment functions are not mutually exclusive, we aimed to determine the requirement of these activities during segregation by analyzing chimeric E2 proteins. This approach allowed us to separate the two activities. Our data showed that attachment of the segregation protein to chromatin is not sufficient for proper segregation. Rather, formation of a segregation-competent complex which carries multiple copies of the segregation protein is required. Complementation studies of E2 functional domains indicated that chromatin attachment and transactivation functions must act in concert to ensure proper plasmid segregation. These data indicate that there are specific interactions between linker molecules and transcription factors/complexes that greatly increase segregation-competent complex formation. We also showed, using hybrid E2 molecules, that restored segregation function does not involve interactions with Brd4. PMID:20810736

  8. Tracing haematopoietic stem cell formation at single-cell resolution.

    PubMed

    Zhou, Fan; Li, Xianlong; Wang, Weili; Zhu, Ping; Zhou, Jie; He, Wenyan; Ding, Meng; Xiong, Fuyin; Zheng, Xiaona; Li, Zhuan; Ni, Yanli; Mu, Xiaohuan; Wen, Lu; Cheng, Tao; Lan, Yu; Yuan, Weiping; Tang, Fuchou; Liu, Bing

    2016-05-26

    Haematopoietic stem cells (HSCs) are derived early from embryonic precursors, such as haemogenic endothelial cells and pre-haematopoietic stem cells (pre-HSCs), the molecular identity of which still remains elusive. Here we use potent surface markers to capture the nascent pre-HSCs at high purity, as rigorously validated by single-cell-initiated serial transplantation. Then we apply single-cell RNA sequencing to analyse endothelial cells, CD45(-) and CD45(+) pre-HSCs in the aorta-gonad-mesonephros region, and HSCs in fetal liver. Pre-HSCs show unique features in transcriptional machinery, arterial signature, metabolism state, signalling pathway, and transcription factor network. Functionally, activation of mechanistic targets of rapamycin (mTOR) is shown to be indispensable for the emergence of HSCs but not haematopoietic progenitors. Transcriptome data-based functional analysis reveals remarkable heterogeneity in cell-cycle status of pre-HSCs. Finally, the core molecular signature of pre-HSCs is identified. Collectively, our work paves the way for dissection of complex molecular mechanisms regulating stepwise generation of HSCs in vivo, informing future efforts to engineer HSCs for clinical applications. PMID:27225119

  9. Aggregation of red blood cells: From rouleaux to clot formation

    NASA Astrophysics Data System (ADS)

    Wagner, Christian; Steffen, Patrick; Svetina, Saša

    2013-06-01

    Red blood cells are known to form aggregates in the form of rouleaux. This aggregation process is believed to be reversible, but there is still no full understanding on the adhesion mechanism. There are at least two competing models, based either on bridging or on depletion. We review recent experimental results on the single cell level and theoretical analyses of the depletion model and of the influence of the cell shape on the adhesion strength. Another important aggregation mechanism is caused by activation of platelets. This leads to clot formation which is life-saving in the case of wound healing, but also a major cause of death in the case of a thrombus induced stroke. We review historical and recent results on the participation of red blood cells in clot formation.

  10. Secondary Sphere Formation Enhances the Functionality of Cardiac Progenitor Cells

    PubMed Central

    Cho, Hyun-Jai; Lee, Ho-Jae; Youn, Seock-Won; Koh, Seok-Jin; Won, Joo-Yun; Chung, Yeon-Ju; Cho, Hyun-Ju; Yoon, Chang-Hwan; Lee, Sae-Won; Lee, Eun Ju; Kwon, Yoo-Wook; Lee, Hae-Young; Lee, Sang Hun; Ho, Won-Kyung; Park, Young-Bae; Kim, Hyo-Soo

    2012-01-01

    Loss of cardiomyocytes impairs cardiac function after myocardial infarction (MI). Recent studies suggest that cardiac stem/progenitor cells could repair the damaged heart. However, cardiac progenitor cells are difficult to maintain in terms of purity and multipotency when propagated in two-dimensional culture systems. Here, we investigated a new strategy that enhances potency and enriches progenitor cells. We applied the repeated sphere formation strategy (cardiac explant → primary cardiosphere (CS) formation → sphere-derived cells (SDCs) in adherent culture condition → secondary CS formation by three-dimensional culture). Cells in secondary CS showed higher differentiation potentials than SDCs. When transplanted into the infarcted myocardium, secondary CSs engrafted robustly, improved left ventricular (LV) dysfunction, and reduced infarct sizes more than SDCs did. In addition to the cardiovascular differentiation of transplanted secondary CSs, robust vascular endothelial growth factor (VEGF) synthesis and secretion enhanced neovascularization in the infarcted myocardium. Microarray pathway analysis and blocking experiments using E-selectin knock-out hearts, specific chemicals, and small interfering RNAs (siRNAs) for each pathway revealed that E-selectin was indispensable to sphere initiation and ERK/Sp1/VEGF autoparacrine loop was responsible for sphere maturation. These results provide a simple strategy for enhancing cellular potency for cardiac repair. Furthermore, this strategy may be implemented to other types of stem/progenitor cell-based therapy. PMID:22713697

  11. Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis.

    PubMed

    Dhonukshe, Pankaj; Baluska, Frantisek; Schlicht, Markus; Hlavacka, Andrej; Samaj, Jozef; Friml, Jirí; Gadella, Theodorus W J

    2006-01-01

    Dividing plant cells perform a remarkable task of building a new cell wall within the cytoplasm in a few minutes. A long-standing paradigm claims that this primordial cell wall, known as the cell plate, is generated by delivery of newly synthesized material from Golgi apparatus-originated secretory vesicles. Here, we show that, in diverse plant species, cell surface material, including plasma membrane proteins, cell wall components, and exogenously applied endocytic tracers, is rapidly delivered to the forming cell plate. Importantly, this occurs even when de novo protein synthesis is blocked. In addition, cytokinesis-specific syntaxin KNOLLE as well as plasma membrane (PM) resident proteins localize to endosomes that fuse to initiate the cell plate. The rate of endocytosis is strongly enhanced during cell plate formation, and its genetic or pharmacological inhibition leads to cytokinesis defects. Our results reveal that endocytic delivery of cell surface material significantly contributes to cell plate formation during plant cytokinesis. PMID:16399085

  12. The Impact of Mother-Daughter Communication on Daughter's Sexual Knowledge, Behavior and Contraceptive Use.

    ERIC Educational Resources Information Center

    Fox, Greer Litton; Inazu, Judith K.

    Family background variables such as race, religion, and gender of household head emerged as significant predictors of communication about sex in interviews conducted with a sample of mothers and teenage daughters. A suprising finding was a strong positive association between family religion and early sexual communication, although this may reflect…

  13. Some Men's Daughters: Teaching D. H. Lawrence's "The Horse Dealer's Daughter."

    ERIC Educational Resources Information Center

    Mallett, Sandra-Lynne J.

    "The Horse Dealer's Daughter" is usually taught as being about love's redeeming power. Usual interpretations of this story, however, ignore its title. It is also about a woman who discovers and uses her sexual power. To begin discussion, students are asked how many have ridden a horse and whether they have ever bought or sold a horse at auction.…

  14. Open-cell cloud formation over the Bahamas

    NASA Technical Reports Server (NTRS)

    2002-01-01

    What atmospheric scientists refer to as open cell cloud formation is a regular occurrence on the back side of a low-pressure system or cyclone in the mid-latitudes. In the Northern Hemisphere, a low-pressure system will draw in surrounding air and spin it counterclockwise. That means that on the back side of the low-pressure center, cold air will be drawn in from the north, and on the front side, warm air will be drawn up from latitudes closer to the equator. This movement of an air mass is called advection, and when cold air advection occurs over warmer waters, open cell cloud formations often result. This MODIS image shows open cell cloud formation over the Atlantic Ocean off the southeast coast of the United States on February 19, 2002. This particular formation is the result of a low-pressure system sitting out in the North Atlantic Ocean a few hundred miles east of Massachusetts. (The low can be seen as the comma-shaped figure in the GOES-8 Infrared image from February 19, 2002.) Cold air is being drawn down from the north on the western side of the low and the open cell cumulus clouds begin to form as the cold air passes over the warmer Caribbean waters. For another look at the scene, check out the MODIS Direct Broadcast Image from the University of Wisconsin. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  15. Proteoglycans support proper granule formation in pancreatic acinar cells.

    PubMed

    Aroso, Miguel; Agricola, Brigitte; Hacker, Christian; Schrader, Michael

    2015-10-01

    Zymogen granules (ZG) are specialized organelles in the exocrine pancreas which allow digestive enzyme storage and regulated secretion. The molecular mechanisms of their biogenesis and the sorting of zymogens are still incompletely understood. Here, we investigated the role of proteoglycans in granule formation and secretion of zymogens in pancreatic AR42J cells, an acinar model system. Cupromeronic Blue cytochemistry and biochemical studies revealed an association of proteoglycans primarily with the granule membrane. Removal of proteoglycans by carbonate treatment led to a loss of membrane curvature indicating a supportive role in the maintenance of membrane shape and stability. Chemical inhibition of proteoglycan synthesis impaired the formation of normal electron-dense granules in AR42J cells and resulted in the formation of unusually small granule structures. These structures still contained the zymogen carboxypeptidase, a cargo molecule of secretory granules, but migrated to lighter fractions after density gradient centrifugation. Furthermore, the basal secretion of amylase was increased in AR42J cells after inhibitor treatment. In addition, irregular-shaped granules appeared in pancreatic lobules. We conclude that the assembly of a proteoglycan scaffold at the ZG membrane is supporting efficient packaging of zymogens and the proper formation of stimulus-competent storage granules in acinar cells of the pancreas. PMID:26105026

  16. Micro-crack formation in direct methanol fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Li, Qing; Spernjak, Dusan; Zelenay, Piotr; Kim, Yu Seung

    2014-12-01

    This study focuses on the micro-crack formation of Nafion®-based membrane electrode assemblies (MEAs) after extended direct methanol fuel cell (DMFC) operation. All electrodes, both with metal-black and carbon-supported catalysts, contain some micro-cracks initially; the area covered by these cracks increases both in the anode and cathode after 100-hours of DMFC test. X-ray tomography shows an increase in the crack area in both anode and cathode that correlates with methanol feed concentration and methanol crossover. The MEAs with carbon-supported catalysts and thicker membrane are more resistant to the formation of micro-cracks compared to those with metal-black catalysts and thinner membrane, respectively. The impact of the micro-crack formation on cell performance and durability is limited over the 100-hour DMFC operation, with the long-term impact remaining unknown.

  17. In vitro myelin formation using embryonic stem cells

    PubMed Central

    Kerman, Bilal E.; Kim, Hyung Joon; Padmanabhan, Krishnan; Mei, Arianna; Georges, Shereen; Joens, Matthew S.; Fitzpatrick, James A. J.; Jappelli, Roberto; Chandross, Karen J.; August, Paul; Gage, Fred H.

    2015-01-01

    Myelination in the central nervous system is the process by which oligodendrocytes form myelin sheaths around the axons of neurons. Myelination enables neurons to transmit information more quickly and more efficiently and allows for more complex brain functions; yet, remarkably, the underlying mechanism by which myelination occurs is still not fully understood. A reliable in vitro assay is essential to dissect oligodendrocyte and myelin biology. Hence, we developed a protocol to generate myelinating oligodendrocytes from mouse embryonic stem cells and established a myelin formation assay with embryonic stem cell-derived neurons in microfluidic devices. Myelin formation was quantified using a custom semi-automated method that is suitable for larger scale analysis. Finally, early myelination was followed in real time over several days and the results have led us to propose a new model for myelin formation. PMID:26015546

  18. Atmosphere purification of radon and radon daughter elements

    DOEpatents

    Stein, L.

    1974-01-01

    A method of removing radon and radon daughter elements from an atmosphere containing these elements by passing the atmosphere through a bed of fluorinating compound whereby the radon and radon daughters are oxidized to their respective fluorides is discussed. These fluorides adhere to the fluorinating compound and are thus removed from the atmosphere which may then be recirculated. A method for recovering radon and separating radon from its daughter elements is also described. (Official Gazette)

  19. Outer Segment Formation of Transplanted Photoreceptor Precursor Cells

    PubMed Central

    Eberle, Dominic; Kurth, Thomas; Santos-Ferreira, Tiago; Wilson, John; Corbeil, Denis; Ader, Marius

    2012-01-01

    Transplantation of photoreceptor precursor cells (PPCs) into the retina represents a promising treatment for cell replacement in blinding diseases characterized by photoreceptor loss. In preclinical studies, we and others demonstrated that grafted PPCs integrate into the host outer nuclear layer (ONL) and develop into mature photoreceptors. However, a key feature of light detecting photoreceptors, the outer segment (OS) with natively aligned disc membrane staples, has not been studied in detail following transplantation. Therefore, we used as donor cells PPCs isolated from neonatal double transgenic reporter mice in which OSs are selectively labeled by green fluorescent protein while cell bodies are highlighted by red fluorescent protein. PPCs were enriched using CD73-based magnetic associated cell sorting and subsequently transplanted into either adult wild-type or a model of autosomal-dominant retinal degeneration mice. Three weeks post-transplantation, donor photoreceptors were identified based on fluorescent-reporter expression and OS formation was monitored at light and electron microscopy levels. Donor cells that properly integrated into the host wild-type retina developed OSs with the formation of a connecting cilium and well-aligned disc membrane staples similar to the surrounding native cells of the host. Surprisingly, the majority of not-integrated PPCs that remained in the sub-retinal space also generated native-like OSs in wild-type mice and those affected by retinal degeneration. Moreover, they showed an improved photoreceptor maturation and OS formation by comparison to donor cells located on the vitreous side suggesting that environmental cues influence the PPC differentiation and maturation. We conclude that transplanted PPCs, whether integrated or not into the host ONL, are able to generate the cellular structure for effective light detection, a phenomenon observed in wild-type as well as in degenerated retinas. Given that patients suffering from

  20. Multiwell cell culture plate format with integrated microfluidic perfusion system

    NASA Astrophysics Data System (ADS)

    Domansky, Karel; Inman, Walker; Serdy, Jim; Griffith, Linda G.

    2006-01-01

    A new cell culture analog has been developed. It is based on the standard multiwell cell culture plate format but it provides perfused three-dimensional cell culture capability. The new capability is achieved by integrating microfluidic valves and pumps into the plate. The system provides a means to conduct high throughput assays for target validation and predictive toxicology in the drug discovery and development process. It can be also used for evaluation of long-term exposure to drugs or environmental agents or as a model to study viral hepatitis, cancer metastasis, and other diseases and pathological conditions.

  1. Feminist attitudes and mother-daughter relationships in adolescence.

    PubMed

    Notar, M; McDaniel, S A

    1986-01-01

    In spite of the growing amount of research on women's issues, there are few empirical studies of mother-daughter relationships, and almost none on the effects of the major women's movement of our times on relationships between mothers and daughters. In this study of late adolescent daughters' perceptions of their relationships with their mothers, two alternative hypotheses are examined: (1) feminism, with its emphasis on bonding among women, strengthens relations between adolescent daughters and their mothers, or (2) feminism as a force of social change, both attitudinal and behavioral, weakens the adolescent daughter-mother relationship. Based on 102 questionnaires completed by university-age women in the winter of 1983, it was found that the majority of daughters who have a good relationship with their mothers see both themselves and their mothers as feminist. However, these daughters do not attribute their positive mother-daughter relationship explicitly to feminism. For the minority of daughters who claim to have a poor relationship with their mothers, they attribute the problems to feminism. PMID:3728127

  2. Upward communication about cancer screening: adolescent daughter to mother.

    PubMed

    Mosavel, Maghboeba; Ports, Katie A

    2015-01-01

    Substantial breast and cervical cancer disparities exist in the United States, particularly among African American women with low socioeconomic status. There is considerable potential for discussions about cancer prevention between mothers and daughters. However, upward communication, from child to parent, remains a relatively novel research area, and it remains unclear how receptive mothers would be to messages from their daughter about cancer, a topic that may be considered culturally inappropriate for daughters to initiate. In this study, the authors simulated cancer message delivery to daughters and then conducted direct observation of daughters as they recalled and shared the message with their mother or female elder. The authors found that daughters were able to successfully recall and deliver a cancer appeal to their mother and mothers were generally receptive to this message. Not only did mothers listen to their daughters' appeals, but also daughters' knowledge of cancer was considerably improved by the opportunity to educate her female elder. Moreover, daughters' nonverbal communication suggested a surprisingly relaxed demeanor. The potential of young people to have an effect on the screening behavior of their female elders is very promising in terms of reducing cancer disparities. PMID:25848895

  3. Actomyosin Ring Formation and Tension Generation in Eukaryotic Cytokinesis.

    PubMed

    Cheffings, Thomas H; Burroughs, Nigel J; Balasubramanian, Mohan K

    2016-08-01

    Cell division facilitated by a contractile ring is an almost universal feature across all branches of cellular life, with the notable exception of higher plants. In all organisms that use a contractile ring for cell division, the process of cytokinesis can be divided into four distinct stages. Firstly, the cell needs to specify a location at which to place the cell division ring to ensure proper separation of the cell contents into two daughter cells. Secondly, the cell needs to be able to transport all the necessary components to this region, and construct the cell division ring reliably and efficiently. Thirdly, the cell division ring needs to generate contractile stress in a regulated manner, to physically cleave the mother cell into two daughter cells. Finally, the ring must be disassembled to allow for the final abscission and separation of the daughter cells. In this review, we will discuss some of the proposed mechanisms by which eukaryotic cells are able to complete the first three of these stages. While there is a good understanding of the mechanisms of division site specification in most organisms, and the mechanisms of actomyosin ring formation are well studied in fission and budding yeast, there is relatively poor understanding of how actomyosin interactions are able to generate contractile stresses during ring constriction, although a number of models have been proposed. We also discuss a number of myosin motor-independent mechanisms that have been proposed to generate contractile stress in various organisms. PMID:27505246

  4. Polydatin Inhibits Formation of Macrophage-Derived Foam Cells

    PubMed Central

    Wu, Min; Liu, Meixia; Guo, Gang; Zhang, Wengao; Liu, Longtao

    2015-01-01

    Rhizoma Polygoni Cuspidati, a Chinese herbal medicine, has been widely used in traditional Chinese medicine for a long time. Polydatin, one of the major active ingredients in Rhizoma Polygoni Cuspidati, has been recently shown to possess extensive cardiovascular pharmacological activities. In present study, we examined the effects of Polydatin on the formation of peritoneal macrophage-derived foam cells in Apolipoprotein E gene knockout mice (ApoE−/−) and explored the potential underlying mechanisms. Peritoneal macrophages were collected from ApoE−/− mice and cultured in vitro. These cells sequentially were divided into four groups: Control group, Model group, Lovastatin group, and Polydatin group. Our results demonstrated that Polydatin significantly inhibits the formation of foam cells derived from peritoneal macrophages. Further studies indicated that Polydatin regulates the metabolism of intracellular lipid and possesses anti-inflammatory effects, which may be regulated through the PPAR-γ signaling pathways. PMID:26557864

  5. Kinetics of Formation and Asymmetrical Distribution of Hsp104-Bound Protein Aggregates in Yeast.

    PubMed

    Paoletti, Camille; Quintin, Sophie; Matifas, Audrey; Charvin, Gilles

    2016-04-12

    Budding yeast cells have a finite replicative life span; that is, a mother cell produces only a limited number of daughter cells before it slows division and dies. Despite the gradual aging of the mother cell, all daughters are born rejuvenated and enjoy a full replicative lifespan. It has been proposed that entry of mother cells into senescence is driven by the progressive accumulation and retention of damaged material, including protein aggregates. This additionally allows the daughter cells to be born damage free. However, the mechanism underlying such asymmetrical segregation of protein aggregates by mother and daughter cells remains controversial, in part because of the difficulties inherent in tracking the dynamics and fate of protein aggregates in vivo. To overcome such limitations, we have developed single-cell real-time imaging methodology to track the formation of heat-induced protein aggregates in otherwise unperturbed dividing cells. By combining the imaging data with a simple computational model of protein aggregation, we show that the establishment of asymmetrical partitioning of protein aggregates upon division is driven by the large bud-specific dilution rate associated with polarized growth and the absence of significant mother/bud exchange of protein aggregates during the budded phase of the cell cycle. To our knowledge, this study sheds new light on the mechanism of establishment of a segregation bias, which can be accounted for by simple physical arguments. PMID:27074685

  6. Characterization of Commercial Li-ion Cells in Pouch Format

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith

    2014-01-01

    The li-ion pouch design cells exhibit similar behavior under off-nominal conditions as those in metal cans that do not have the internal safety devices. Safety should be well characterized before batteries are designed. Some of the li-ion pouch cell designs studied in this program reacted most violently to overcharge conditions at the medium rates but were tolerant to overcharge at very low rates. Some pouch cell designs have higher tolerance to vacuum exposures than some others. A comparison of the pouch material itself does not show a correlation between this tolerance and the number of layers or composition of the pouch indicating that this is a property of the electrode stack design inside the pouch. Reduced pressure (8 to 10 psi) test environments show that the extent of capacity degradation under reduced pressure environments is much less than that observed under vacuum conditions. Lithium-ion Pouch format cells are not necessarily true polymer cells.

  7. Ligand Mobility Modulates Immunological Synapse Formation and T Cell Activation

    PubMed Central

    Hsu, Chih-Jung; Hsieh, Wan-Ting; Waldman, Abraham; Clarke, Fiona; Huseby, Eric S.; Burkhardt, Janis K.; Baumgart, Tobias

    2012-01-01

    T cell receptor (TCR) engagement induces clustering and recruitment to the plasma membrane of many signaling molecules, including the protein tyrosine kinase zeta-chain associated protein of 70 kDa (ZAP70) and the adaptor SH2 domain-containing leukocyte protein of 76 kDa (SLP76). This molecular rearrangement results in formation of the immunological synapse (IS), a dynamic protein array that modulates T cell activation. The current study investigates the effects of apparent long-range ligand mobility on T cell signaling activity and IS formation. We formed stimulatory lipid bilayers on glass surfaces from binary lipid mixtures with varied composition, and characterized these surfaces with respect to diffusion coefficient and fluid connectivity. Stimulatory ligands coupled to these surfaces with similar density and orientation showed differences in their ability to activate T cells. On less mobile membranes, central supramolecular activation cluster (cSMAC) formation was delayed and the overall accumulation of CD3ζ at the IS was reduced. Analysis of signaling microcluster (MC) dynamics showed that ZAP70 MCs exhibited faster track velocity and longer trajectories as a function of increased ligand mobility, whereas movement of SLP76 MCs was relatively insensitive to this parameter. Actin retrograde flow was observed on all surfaces, but cell spreading and subsequent cytoskeletal contraction were more pronounced on mobile membranes. Finally, increased tyrosine phosphorylation and persistent elevation of intracellular Ca2+ were observed in cells stimulated on fluid membranes. These results point to ligand mobility as an important parameter in modulating T cell responses. PMID:22384241

  8. Smooth Muscle Cell-targeted RNA Aptamer Inhibits Neointimal Formation.

    PubMed

    Thiel, William H; Esposito, Carla L; Dickey, David D; Dassie, Justin P; Long, Matthew E; Adam, Joshua; Streeter, Jennifer; Schickling, Brandon; Takapoo, Maysam; Flenker, Katie S; Klesney-Tait, Julia; Franciscis, Vittorio de; Miller, Francis J; Giangrande, Paloma H

    2016-04-01

    Inhibition of vascular smooth muscle cell (VSMC) proliferation by drug eluting stents has markedly reduced intimal hyperplasia and subsequent in-stent restenosis. However, the effects of antiproliferative drugs on endothelial cells (EC) contribute to delayed re-endothelialization and late stent thrombosis. Cell-targeted therapies to inhibit VSMC remodeling while maintaining EC health are necessary to allow vascular healing while preventing restenosis. We describe an RNA aptamer (Apt 14) that functions as a smart drug by preferentially targeting VSMCs as compared to ECs and other myocytes. Furthermore, Apt 14 inhibits phosphatidylinositol 3-kinase/protein kinase-B (PI3K/Akt) and VSMC migration in response to multiple agonists by a mechanism that involves inhibition of platelet-derived growth factor receptor (PDGFR)-β phosphorylation. In a murine model of carotid injury, treatment of vessels with Apt 14 reduces neointimal formation to levels similar to those observed with paclitaxel. Importantly, we confirm that Apt 14 cross-reacts with rodent and human VSMCs, exhibits a half-life of ~300 hours in human serum, and does not elicit immune activation of human peripheral blood mononuclear cells. We describe a VSMC-targeted RNA aptamer that blocks cell migration and inhibits intimal formation. These findings provide the foundation for the translation of cell-targeted RNA therapeutics to vascular disease. PMID:26732878

  9. Effect of supercooling and cell volume on intracellular ice formation.

    PubMed

    Prickett, Richelle C; Marquez-Curtis, Leah A; Elliott, Janet A W; McGann, Locksley E

    2015-04-01

    Intracellular ice formation (IIF) has been linked to death of cells cryopreserved in suspension. It has been assumed that cells can be supercooled by 2 to 10°C before IIF occurs, but measurements of the degree of supercooling that cells can tolerate are often confounded by changing extracellular temperature and solutions of different osmolality (which affect the cell volume). The purpose of this study was to examine how the incidence of IIF in the absence of cryoprotectants is affected by the degree of supercooling and cell volume. Human umbilical vein endothelial cells were suspended in isotonic (300 mOsm) and hypertonic (∼600 to 700 mOsm) solutions and exposed to supercooling ranging from 2 to 10°C before extracellular ice was nucleated. The number of cells undergoing IIF was examined in a cryostage (based on the darkening of cells upon intracellular freezing ("flashing")) as a function of the degree of supercooling, and cell survival post-thaw was assessed using a membrane integrity assay. We found that while the incidence of IIF increased with supercooling in both isotonic and hypertonic solutions, it was higher in the isotonic solution at any given degree of supercooling. Since cells in hypertonic solution were shrunken due to water efflux, we hypothesized that the difference in IIF behavior could be attributed to the decreased volume of cells in the hypertonic solution. Our results confirm that cells with a smaller diameter before extracellular ice nucleation have a decreased probability of IIF and suggest that cell volume could play a more significant role in the incidence of IIF than the extracellular ice nucleation temperature. PMID:25707695

  10. Mother-daughter coping and disordered eating.

    PubMed

    Lantzouni, Eleni; Cox, Molly Havnen; Salvator, Ann; Crosby, Ross D

    2015-03-01

    This study explores whether the coping style of teenage girls with and without an eating disorder is similar to that of their mothers' (biological and adoptive), and whether teens with disordered eating utilize more maladaptive coping compared with those without. Eating disorder was diagnosed using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision criteria, and the Coping Inventory for Stressful Situations was administered to distinguish the coping style of the participants. Our findings suggest that daughters coped very similarly to their mothers in either group. Contrary to previous studies, our sample of teenage girls with eating disorders as well as their mothers utilized less frequently the avoidance-distraction coping compared with the girls without eating disorders and their mothers. These findings reinforce the importance for family involvement and for simultaneous focus on intrapersonal and interpersonal maintenance factors during eating disorder treatment. PMID:25645347

  11. Formation of the tetraploid intermediate is associated with the development of cells with more than four centrioles in the elastase-simian virus 40 tumor antigen transgenic mouse model of pancreatic cancer.

    PubMed Central

    Levine, D S; Sanchez, C A; Rabinovitch, P S; Reid, B J

    1991-01-01

    The development of pancreatic cancer in transgenic mice expressing the simian virus 40 tumor antigen placed under controlling regions of the elastase I gene is characterized by the sequential appearance of tetraploid and then multiple aneuploid cell populations. Pancreatic tissues from such transgenic mice were studied between 8 and 32 days of age. Virtually 100% of acinar cell nuclei had immunohistochemically detectable tumor antigen by 18 days. Tetraploid cells were demonstrated by DNA content flow cytometry by 20 days and were associated with the appearance of interphase cells that had 5-11 centrioles per cell in single thin sections of pancreatic tissue examined by electron microscopy. Mitotic cells also were observed that had 5 or more centrioles per cell that were incorporated into the poles of bipolar or at least tripolar spindle apparatuses. These observations indicate that formation of the tetraploid intermediate in the diploid----tetraploid----aneuploid sequence of pancreatic tumor formation in elastase-simian virus 40 tumor antigen transgenic mice is accompanied by the development of cells with 5 or more centrioles that can be incorporated into the poles of abnormal mitotic spindles. We speculate that cells with more than 4 centrioles are predisposed to the formation of multipolar mitoses that may yield daughter cells with chromosomal gains and losses, resulting in the subsequent development of aneuploid tumors. Images PMID:1650467

  12. Aroma formation by immobilized yeast cells in fermentation processes.

    PubMed

    Nedović, V; Gibson, B; Mantzouridou, T F; Bugarski, B; Djordjević, V; Kalušević, A; Paraskevopoulou, A; Sandell, M; Šmogrovičová, D; Yilmaztekin, M

    2015-01-01

    Immobilized cell technology has shown a significant promotional effect on the fermentation of alcoholic beverages such as beer, wine and cider. However, genetic, morphological and physiological alterations occurring in immobilized yeast cells impact on aroma formation during fermentation processes. The focus of this review is exploitation of existing knowledge on the biochemistry and the biological role of flavour production in yeast for the biotechnological production of aroma compounds of industrial importance, by means of immobilized yeast. Various types of carrier materials and immobilization methods proposed for application in beer, wine, fruit wine, cider and mead production are presented. Engineering aspects with special emphasis on immobilized cell bioreactor design, operation and scale-up potential are also discussed. Ultimately, examples of products with improved quality properties within the alcoholic beverages are addressed, together with identification and description of the future perspectives and scope for cell immobilization in fermentation processes. PMID:25267117

  13. Unequal distribution of plastids during generative cell formation in Impatiens.

    PubMed

    van Went, J L

    1984-07-01

    This paper describes the unequal distribution of plastids in the developing microspores of Impatiens walleriana and Impatiens glandulifera which leads to the exclusion of plastids from the generative cell. During the development from young microspore to the onset of mitosis a change in the organization of the cytoplasm and distribution of organelles is gradually established. This includes the formation of vacuoles at the poles of the elongate-shaped microspores, the movement of the nucleus to a position near the microspore wall in the central part of the cell, and the accumulation of the plastids to a position near the wall at the opposite side of the cell. In Impatiens walleriana, the accumulated plastids are separated from each other by ER cisterns, and some mitochondria are also accumulated. In both Impatiens species, the portion of the microspore in which the generative cell will be formed is completely devoid of plastids at the time mitosis starts. PMID:24257638

  14. Feminist Attitudes and Mother-Daughter Relationships in Adolescence.

    ERIC Educational Resources Information Center

    Notar, Margaret; McDaniel, Susan A.

    1986-01-01

    Questionnaire results indicated the majority of daughters who have a good relationship with their mothers see themselves and their mothers as feminist. However, they do not attribute their positive relationship explicitly to feminism. For daughters who claim to have a poor relationship with their mothers, they do attribute the problems to…

  15. Two Generations of Mothers and Daughters: Role Status and Interdependence.

    ERIC Educational Resources Information Center

    Walker, Alexis J.; Thompson, Linda

    The mother/daughter relationship is probably one of the most enduring affectional bonds. Addressing the assumption that family members differ in their orientation to and dependence on other generations by virtue of their unique roles, three generations of women, 254 mother and daughter pairs, were studied for role convergence and the effect of…

  16. College Daughters' Relationships with Their Fathers: A 15 Year Study

    ERIC Educational Resources Information Center

    Nielsen, Linda

    2007-01-01

    Data collected from 1990 until 2004 from 423 college women show that, although the majority felt they had a loving relationship with their fathers, the vast majority felt that the mother-daughter relationship was more communicative, more emotionally intimate, and more comfortable. Daughters and mothers knew one another better and were more…

  17. Posttraumatic Stress in Women with Breast Cancer and Their Daughters.

    ERIC Educational Resources Information Center

    Boyer, Bret A.; Bubel, Denise; Jacobs, Sheri R.; Knolls, Michelle L.; Harwell, Valerie D.; Goscicka, Magdalena; Keegan, Anne

    2002-01-01

    Twenty-one percent of the surveyed women (N=133) with cancer and 13% of their daughters (N=64) reported symptoms of posttraumatic stress disorder (PTSD). Prevalence of PTSD symptoms in daughters appears comparable to women with breast cancer. Discusses intergenerational patterns in reaction to breast cancer. (JDM)

  18. Childhood Stress, Behavioural Symptoms and Mother-Daughter Pubertal Development.

    ERIC Educational Resources Information Center

    Kim, Kenneth; Smith, Peter K.

    1998-01-01

    Daughter's early childhood stress, conflict in the family environment, childhood behavioral symptoms, early puberty, and early dating behavior are related to mothers' early menarche and sexual involvement by a retrospective self-report survey (21 mothers; 28 daughters). Intended as a test of Belsky's theory, alternative explanations for findings…

  19. 30 CFR 57.5037 - Radon daughter exposure monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Radon daughter exposure monitoring. 57.5037... Quality, Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5037 Radon daughter exposure monitoring. (a) In all mines at least one sample shall be taken in exhaust...

  20. Impact of Elderly Mother's Death on Middle Age Daughters.

    ERIC Educational Resources Information Center

    Moss, Miriam S.; And Others

    1993-01-01

    Examined middle aged daughters' (n=107) responses to death of their mother. In first six months of bereavement, many daughters experienced themes of holding on and letting go. Depression, grief, somatic reactions, impact on sense of self, acceptance of death, and ways in which ties with mother endure were differentially associated with…

  1. The Effect of Maternal Employment on the Adolescent Daughter.

    ERIC Educational Resources Information Center

    Louw, Anet E.

    While most studies indicate a positive influence of the working mother on adolescent daughters, relatively little research on the effects of maternal employment has been done in South Africa. This study was conducted to determine whether there are differences between South African adolescent daughters of working mothers and non-working mothers in…

  2. Adolescents with Nonresident Fathers: Are Daughters More Disadvantaged than Sons?

    ERIC Educational Resources Information Center

    Mitchell, Katherine Stamps; Booth, Alan; King, Valarie

    2009-01-01

    This study examined sons' and daughters' involvement with nonresident fathers and associated outcomes (N = 4,663). Results indicated that sons and daughters reported equal involvement with nonresident fathers on most measures of father investment, although sons reported more overnight visits, sports, and movies and feeling closer to their fathers…

  3. Bilateral familial Hirayama disease in a father and daughter

    PubMed Central

    Pandey, Sanjay; Jain, Shruti

    2016-01-01

    We are reporting a case of bilateral familial Hirayama disease where a father and daughter are the affected members of the family with the similar distribution of their weakness and wasting. To the best of our knowledge, bilateral familial Hirayama disease has not been described in father and daughter. PMID:27293344

  4. Atmosphere purification of radon and radon daughter elements

    DOEpatents

    Stein, L.

    1973-12-11

    A method for purifying an atmosphere of radon and radon daughter elements which may be contained therein by contacting the atmosphere with a fluorinating solution, whereby the radon and radon daughters are oxidized to their respective fluorides is discussed. The fluorides dissolve in the fluorinating solutlon and are removed from the atmosphere, which may then be recirculated. (Official Gazette)

  5. Incest and Its Meaning: The Perspectives of Fathers and Daughters.

    ERIC Educational Resources Information Center

    Phelan, Patricia

    1995-01-01

    Interviews with 40 fathers and stepfathers and 44 biologic daughters and stepdaughters involved in incestuous activity revealed their recollection of events, their thoughts, and interpretations. Fathers' thoughts were dominated by themes of sexual gratification, control, power, anger, and rights and responsibilities; daughters reported disbelief,…

  6. 30 CFR 57.5037 - Radon daughter exposure monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... every two weeks at random times in all active working areas such as stopes, drift headings, travelways..., travel, or congregate. However, if concentrations of radon daughters are found in excess of 0.3 WL in an active working area, radon daughter concentrations thereafter shall be determined weekly in that...

  7. Blockade of Mast Cell Activation Reduces Cutaneous Scar Formation

    PubMed Central

    Ranzer, Matthew J.; Wilgus, Traci A.; DiPietro, Luisa A.

    2014-01-01

    Damage to the skin initiates a cascade of well-orchestrated events that ultimately leads to repair of the wound. The inflammatory response is key to wound healing both through preventing infection and stimulating proliferation and remodeling of the skin. Mast cells within the tissue are one of the first immune cells to respond to trauma, and upon activation they release pro-inflammatory molecules to initiate recruitment of leukocytes and promote a vascular response in the tissue. Additionally, mast cells stimulate collagen synthesis by dermal fibroblasts, suggesting they may also influence scar formation. To examine the contribution of mast cells in tissue repair, we determined the effects the mast cell inhibitor, disodium cromoglycate (DSCG), on several parameters of dermal repair including, inflammation, re-epithelialization, collagen fiber organization, collagen ultrastructure, scar width and wound breaking strength. Mice treated with DSCG had significantly reduced levels of the inflammatory cytokines IL-1α, IL-1β, and CXCL1. Although DSCG treatment reduced the production of inflammatory mediators, the rate of re-epithelialization was not affected. Compared to control, inhibition of mast cell activity caused a significant decrease in scar width along with accelerated collagen re-organization. Despite the reduced scar width, DSCG treatment did not affect the breaking strength of the healed tissue. Tryptase β1 exclusively produced by mast cells was found to increase significantly in the course of wound healing. However, DSCG treatment did not change its level in the wounds. These results indicate that blockade of mast cell activation reduces scar formation and inflammation without further weakening the healed wound. PMID:24465509

  8. Blockade of mast cell activation reduces cutaneous scar formation.

    PubMed

    Chen, Lin; Schrementi, Megan E; Ranzer, Matthew J; Wilgus, Traci A; DiPietro, Luisa A

    2014-01-01

    Damage to the skin initiates a cascade of well-orchestrated events that ultimately leads to repair of the wound. The inflammatory response is key to wound healing both through preventing infection and stimulating proliferation and remodeling of the skin. Mast cells within the tissue are one of the first immune cells to respond to trauma, and upon activation they release pro-inflammatory molecules to initiate recruitment of leukocytes and promote a vascular response in the tissue. Additionally, mast cells stimulate collagen synthesis by dermal fibroblasts, suggesting they may also influence scar formation. To examine the contribution of mast cells in tissue repair, we determined the effects the mast cell inhibitor, disodium cromoglycate (DSCG), on several parameters of dermal repair including, inflammation, re-epithelialization, collagen fiber organization, collagen ultrastructure, scar width and wound breaking strength. Mice treated with DSCG had significantly reduced levels of the inflammatory cytokines IL-1α, IL-1β, and CXCL1. Although DSCG treatment reduced the production of inflammatory mediators, the rate of re-epithelialization was not affected. Compared to control, inhibition of mast cell activity caused a significant decrease in scar width along with accelerated collagen re-organization. Despite the reduced scar width, DSCG treatment did not affect the breaking strength of the healed tissue. Tryptase β1 exclusively produced by mast cells was found to increase significantly in the course of wound healing. However, DSCG treatment did not change its level in the wounds. These results indicate that blockade of mast cell activation reduces scar formation and inflammation without further weakening the healed wound. PMID:24465509

  9. T Cell factor 1 represses CD8+ effector T cell formation and function.

    PubMed

    Tiemessen, Machteld M; Baert, Miranda R M; Kok, Lianne; van Eggermond, Marja C J A; van den Elsen, Peter J; Arens, Ramon; Staal, Frank J T

    2014-12-01

    The Wnt-responsive transcription factor T cell factor 1 (Tcf1) is well known for its role in thymic T cell development and the formation of memory CD8(+) T cells. However, its role in the initial phases of CD8(+) T effector cell formation has remained unexplored. We report that high levels of Wnt signaling and Tcf1 are operational in naive and memory CD8(+) T cells, whereas Wnt signaling and Tcf1 were low in effector CD8(+) T cells. CD8(+) T cells deficient in Tcf1 produce IFN-γ more rapidly, coinciding with increased demethylation of the IFN-γ enhancer and higher expression of the transcription factors Tbet and Blimp1. Moreover, virus-specific Tcf1(-/-) CD8(+) T cells show accelerated expansion in acute infection, which is associated with increased IFN-γ and TNF production and lower viral load. Genetic complementation experiments with various Tcf1 isoforms indicate that Tcf1 dosage and protein stability are critical in suppressing IFN-γ production. Isoforms lacking the β-catenin binding domain are equally effective in inhibiting CD8(+) effector T cell formation. Thus, Tcf1 functions as a repressor of CD8(+) effector T cell formation in a β-catenin/Wnt-independent manner. PMID:25355919

  10. Exocytosis of macrophage lysosomes leads to digestion of apoptotic adipocytes and foam cell formation[S

    PubMed Central

    Haka, Abigail S.; Barbosa-Lorenzi, Valéria C.; Lee, Hyuek Jong; Falcone, Domenick J.; Hudis, Clifford A.; Dannenberg, Andrew J.

    2016-01-01

    Many types of apoptotic cells are phagocytosed and digested by macrophages. Adipocytes can be hundreds of times larger than macrophages, so they are too large to be digested by conventional phagocytic processes. The nature of the interaction between macrophages and apoptotic adipocytes has not been studied in detail. We describe a cellular process, termed exophagy, that is important for macrophage clearance of dead adipocytes and adipose tissue homeostasis. Using mouse models of obesity, human tissue, and a cell culture model, we show that macrophages form hydrolytic extracellular compartments at points of contact with dead adipocytes using local actin polymerization. These compartments are acidic and contain lysosomal enzymes delivered by exocytosis. Uptake and complete degradation of adipocyte fragments, which are released by extracellular hydrolysis, leads to macrophage foam cell formation. Exophagy-mediated foam cell formation is a highly efficient means by which macrophages internalize large amounts of lipid, which may ultimately overwhelm the metabolic capacity of the macrophage. This process provides a mechanism for degradation of objects, such as dead adipocytes, that are too large to be phagocytosed by macrophages. PMID:27044658

  11. Arabidopsis CSLD5 Functions in Cell Plate Formation in a Cell Cycle-Dependent Manner[OPEN

    PubMed Central

    2016-01-01

    In plants, the presence of a load-bearing cell wall presents unique challenges during cell division. Unlike other eukaryotes, which undergo contractile cytokinesis upon completion of mitosis, plants instead synthesize and assemble a new dividing cell wall to separate newly formed daughter cells. Here, we mine transcriptome data from individual cell types in the Arabidopsis thaliana stomatal lineage and identify CSLD5, a member of the Cellulose Synthase Like-D family, as a cell wall biosynthesis enzyme uniquely enriched in rapidly dividing cell populations. We further show that CSLD5 is a direct target of SPEECHLESS, the master transcriptional regulator of these divisions during stomatal development. Using a combination of genetic analysis and in vivo localization of fluorescently tagged fusion proteins, we show that CSLD5 preferentially accumulates in dividing plant cells where it participates in the construction of newly forming cell plates. We show that CSLD5 is an unstable protein that is rapidly degraded upon completion of cell division and that the protein turnover characteristics of CSLD5 are altered in ccs52a2 mutants, indicating that CSLD5 turnover may be regulated by a cell cycle-associated E3-ubiquitin ligase, the anaphase-promoting complex. PMID:27354558

  12. Guanylic nucleotide starvation affects Saccharomyces cerevisiae mother-daughter separation and may be a signal for entry into quiescence

    PubMed Central

    Sagot, Isabelle; Schaeffer, Jacques; Daignan-Fornier, Bertrand

    2005-01-01

    Background Guanylic nucleotides are both macromolecules constituents and crucial regulators for a variety of cellular processes. Therefore, their intracellular concentration must be strictly controlled. Consistently both yeast and mammalian cells tightly correlate the transcription of genes encoding enzymes critical for guanylic nucleotides biosynthesis with the proliferation state of the cell population. Results To gain insight into the molecular relationships connecting intracellular guanylic nucleotide levels and cellular proliferation, we have studied the consequences of guanylic nucleotide limitation on Saccharomyces cerevisiae cell cycle progression. We first utilized mycophenolic acid, an immunosuppressive drug that specifically inhibits inosine monophosphate dehydrogenase, the enzyme catalyzing the first committed step in de novo GMP biosynthesis. To approach this system physiologically, we next developed yeast mutants for which the intracellular guanylic nucleotide pools can be modulated through changes of growth conditions. In both the pharmacological and genetic approaches, we found that guanylic nucleotide limitation generated a mother-daughter separation defect, characterized by cells with two unseparated daughters. We then showed that this separation defect resulted from cell wall perturbations but not from impaired cytokinesis. Importantly, cells with similar separation defects were found in a wild type untreated yeast population entering quiescence upon nutrient limitation. Conclusion Our results demonstrate that guanylic nucleotide limitation slows budding yeast cell cycle progression, with a severe pause in telophase. At the cellular level, guanylic nucleotide limitation causes the emergence of cells with two unseparated daughters. By fluorescence and electron microscopy, we demonstrate that this phenotype arises from defects in cell wall partition between mother and daughter cells. Because cells with two unseparated daughters are also observed in

  13. Regulation of lamellipodia formation and cell invasion by CLIP-170 in invasive human breast cancer cells.

    PubMed

    Suzuki, Katsuo; Takahashi, Kazuhide

    2008-04-01

    Lamellipodia formation necessary for cell invasion is regulated by Rac1. We report here that lamellipodia formation and three-dimensional invasion were significantly promoted by HGF and serum, respectively, in invasive human breast cancer cells. Rac1 formed a complex with CLIP-170, IQGAP1, and kinesin in serum-starved cells, and stimulation of the cells with HGF and serum caused the partial release of IQGAP1 and kinesin from Rac1-CLIP-170 complex. The HGF-induced release of the proteins and promotion of lamellipodia formation were inhibited by an inhibitor of PI3K. Moreover, downregulation of CLIP-170 by siRNA released IQGAP1 and kinesin from Rac1 and promoted lamellipodia formation and invasion, independent of HGF and serum. The results suggest that promotion of lamellipodia formation and invasion by HGF or serum requires PI3K-dependent release of IQGAP1 and kinesin from Rac1-CLIP-170 complex and that CLIP-170 prevents cells from the extracellular stimulus-independent lamellipodia formation and invasion by tethering IQGAP1 and kinesin to Rac1. PMID:18237546

  14. Cell collectivity regulation within migrating cell cluster during Kupffer's vesicle formation in zebrafish

    PubMed Central

    Matsui, Takaaki; Ishikawa, Hiroshi; Bessho, Yasumasa

    2015-01-01

    Although cell adhesion is thought to fasten cells tightly, cells that adhere to each other can migrate directionally. This group behavior, called “collective cell migration,” is observed during normal development, wound healing, and cancer invasion. Loss-of-function of cell adhesion molecules in several model systems of collective cell migration results in delay or inhibition of migration of cell groups but does not lead to dissociation of the cell groups, suggesting that mechanisms of cells staying assembled as a single cell cluster, termed as “cell collectivity,” remain largely unknown. During the formation of Kupffer's vesicle (KV, an organ of laterality in zebrafish), KV progenitors form a cluster and migrate together toward the vegetal pole. Importantly, in this model system of collective cell migration, knockdown of cell adhesion molecules or signal components leads to failure of cell collectivity. In this review, we summarize recent findings in cell collectivity regulation during collective migration of KV progenitor cells and describe our current understanding of how cell collectivity is regulated during collective cell migration. PMID:26000276

  15. Hydroxyl radical formation in phagocytic cells of the rat.

    PubMed

    Drath, D B; Karnovsky, M L; Huber, G L

    1979-01-01

    Polymorphonuclear leukocytes (PMN) and macrophages, harvested from the peritoneum and lung, release superoxide (O-.2) and hydrogen peroxide (H2O2) during phagocytosis. These two agents are thought to react with each other to produce a highly active oxidative substance known as hydroxyl radical (OH.). We present evidence suggesting that these radicals are generated by phagocytic cells of the rat. Our findings are based upon an assay where ethylene gas is generated from methional by the action of this radical. Ethylene generation was shown to be inhibited by superoxide dismutase, catalase, and scavengers of OH.. Of the cells examined, PMN generated the most ethylene from methional, exhibiting a fourfold increase during phagocytosis. Pulmonary and peritoneal macrophages caused smaller amounts of this gas to be formed. Regardless of cell type, an intact cell was required for ethylene generation. Zymosan appeared to be the most effective particle for all cells in ethylene formation from methional, although opsonization was critical only for PMN. Ethylene generation was dependent on cell concentration to an extent and increased with time. PMID:222719

  16. The cytoskeletal mechanisms of cell–cell junction formation in endothelial cells

    PubMed Central

    Hoelzle, Matthew K.; Svitkina, Tatyana

    2012-01-01

    The actin cytoskeleton and associated proteins play a vital role in cell–cell adhesion. However, the procedure by which cells establish adherens junctions remains unclear. We investigated the dynamics of cell–cell junction formation and the corresponding architecture of the underlying cytoskeleton in cultured human umbilical vein endothelial cells. We show that the initial interaction between cells is mediated by protruding lamellipodia. On their retraction, cells maintain contact through thin bridges formed by filopodia-like protrusions connected by VE-cadherin–rich junctions. Bridges share multiple features with conventional filopodia, such as an internal actin bundle associated with fascin along the length and vasodilator-stimulated phosphoprotein at the tip. It is striking that, unlike conventional filopodia, transformation of actin organization from the lamellipodial network to filopodial bundle during bridge formation occurs in a proximal-to-distal direction and is accompanied by recruitment of fascin in the same direction. Subsequently, bridge bundles recruit nonmuscle myosin II and mature into stress fibers. Myosin II activity is important for bridge formation and accumulation of VE-cadherin in nascent adherens junctions. Our data reveal a mechanism of cell–cell junction formation in endothelial cells using lamellipodia as the initial protrusive contact, subsequently transforming into filopodia-like bridges connected through adherens junctions. Moreover, a novel lamellipodia-to-filopodia transition is used in this context. PMID:22090347

  17. Vesicle Size Regulates Nanotube Formation in the Cell

    PubMed Central

    Su, Qian Peter; Du, Wanqing; Ji, Qinghua; Xue, Boxin; Jiang, Dong; Zhu, Yueyao; Lou, Jizhong; Yu, Li; Sun, Yujie

    2016-01-01

    Intracellular membrane nanotube formation and its dynamics play important roles for cargo transportation and organelle biogenesis. Regarding the regulation mechanisms, while much attention has been paid on the lipid composition and its associated protein molecules, effects of the vesicle size has not been studied in the cell. Giant unilamellar vesicles (GUVs) are often used for in vitro membrane deformation studies, but they are much larger than most intracellular vesicles and the in vitro studies also lack physiological relevance. Here, we use lysosomes and autolysosomes, whose sizes range between 100 nm and 1 μm, as model systems to study the size effects on nanotube formation both in vivo and in vitro. Single molecule observations indicate that driven by kinesin motors, small vesicles (100–200 nm) are mainly transported along the tracks while a remarkable portion of large vesicles (500–1000 nm) form nanotubes. This size effect is further confirmed by in vitro reconstitution assays on liposomes and purified lysosomes and autolysosomes. We also apply Atomic Force Microscopy (AFM) to measure the initiation force for nanotube formation. These results suggest that the size-dependence may be one of the mechanisms for cells to regulate cellular processes involving membrane-deformation, such as the timing of tubulation-mediated vesicle recycling. PMID:27052881

  18. Vesicle Size Regulates Nanotube Formation in the Cell.

    PubMed

    Su, Qian Peter; Du, Wanqing; Ji, Qinghua; Xue, Boxin; Jiang, Dong; Zhu, Yueyao; Lou, Jizhong; Yu, Li; Sun, Yujie

    2016-01-01

    Intracellular membrane nanotube formation and its dynamics play important roles for cargo transportation and organelle biogenesis. Regarding the regulation mechanisms, while much attention has been paid on the lipid composition and its associated protein molecules, effects of the vesicle size has not been studied in the cell. Giant unilamellar vesicles (GUVs) are often used for in vitro membrane deformation studies, but they are much larger than most intracellular vesicles and the in vitro studies also lack physiological relevance. Here, we use lysosomes and autolysosomes, whose sizes range between 100 nm and 1 μm, as model systems to study the size effects on nanotube formation both in vivo and in vitro. Single molecule observations indicate that driven by kinesin motors, small vesicles (100-200 nm) are mainly transported along the tracks while a remarkable portion of large vesicles (500-1000 nm) form nanotubes. This size effect is further confirmed by in vitro reconstitution assays on liposomes and purified lysosomes and autolysosomes. We also apply Atomic Force Microscopy (AFM) to measure the initiation force for nanotube formation. These results suggest that the size-dependence may be one of the mechanisms for cells to regulate cellular processes involving membrane-deformation, such as the timing of tubulation-mediated vesicle recycling. PMID:27052881

  19. A microfluidic direct formate fuel cell on paper.

    PubMed

    Copenhaver, Thomas S; Purohit, Krutarth H; Domalaon, Kryls; Pham, Linda; Burgess, Brianna J; Manorothkul, Natalie; Galvan, Vicente; Sotez, Samantha; Gomez, Frank A; Haan, John L

    2015-08-01

    We describe the first direct formate fuel cell on a paper microfluidic platform. In traditional membrane-less microfluidic fuel cells (MFCs), external pumping consumes power produced by the fuel cell in order to maintain co-laminar flow of the anode stream and oxidant stream to prevent mixing. However, in paper microfluidics, capillary action drives flow while minimizing stream mixing. In this work, we demonstrate a paper MFC that uses formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using these materials we achieve a maximum power density of nearly 2.5 mW/mg Pd. In a series configuration, our MFC achieves an open circuit voltage just over 1 V, and in a parallel configuration, short circuit of 20 mA absolute current. We also demonstrate that the MFC does not require continuous flow of fuel and oxidant to produce power. We found that we can pre-saturate the materials on the paper, stop the electrolyte flow, and still produce approximately 0.5 V for 15 min. This type of paper MFC has potential applications in point-of-care diagnostic devices and other electrochemical sensors. PMID:25546700

  20. Notch1-Dll4 signaling and mechanical force regulate leader cell formation during collective cell migration

    PubMed Central

    Riahi, Reza; Sun, Jian; Wang, Shue; Long, Min; Zhang, Donna D.; Wong, Pak Kin

    2015-01-01

    At the onset of collective cell migration, a subset of cells within an initially homogenous population acquires a distinct “leader” phenotype with characteristic morphology and motility. However, the factors driving leader cell formation as well as the mechanisms regulating leader cell density during the migration process remain to be determined. Here, we use single cell gene expression analysis and computational modeling to show that leader cell identity is dynamically regulated by Dll4 signaling through both Notch1 and cellular stress in a migrating epithelium. Time-lapse microscopy reveals that Dll4 is induced in leader cells after the creation of the cell-free region and leader cells are regulated via Notch1-Dll4 lateral inhibition. Furthermore, mechanical stress inhibits Dll4 expression and leader cell formation in the monolayer. Collectively, our findings suggest that a reduction of mechanical force near the boundary promotes Notch1-Dll4 signaling to dynamically regulate the density of leader cells during collective cell migration. PMID:25766473

  1. Activity ratios of thorium daughters in vivo

    SciTech Connect

    Toohey, R.E.; Rundo, J.; Sha, J.Y.; Essling, M.A.; Pedersen, J.C.; Slane, J.M.

    1984-01-01

    A computerized method of least squares has been used to analyze the /sup 228/Ac and /sup 212/Pb-/sup 212/Bi and daughter ..gamma..-ray spectra obtained in vivo from 133 former workers at a thorium refinery. In addition, the exhalation rate of /sup 220/Rn was determined for each subject and expressed as pCi of emanating /sup 224/Ra. This value was added to the /sup 212/Pb value determined from the ..gamma..-ray measurements to obtain the total /sup 224/Ra present, and the ratio of /sup 224/Ra to /sup 228/Ac was calculated. Values of the ratio ranged from 0.52 +- 0.32 to 2.1 +- 1.7, with a weighted mean of 0.92 +- 0.17. However, it appears that the ratio observed in a given case is characteristic for that case alone; the computed mean value may not be meaningful. The least squares fitting procedure and the overall calibration of the counting system were validated by measurements of /sup 224/Ra in the lungs of one subject postmortem, compared with results obtained from the same subject in vivo. 6 references, 5 figures.

  2. Lawson Wilkins: recollections by his daughter

    PubMed Central

    2014-01-01

    Lawson Wilkins is well known as the “father” of the field of pediatric endocrinology, and his scientific accomplishments and legacy are thoroughly documented in this edition and elsewhere. Less well known, though, is what the man himself was like. Here, his daughter, Elizabeth McMaster, recalls the personal side of Dr. Wilkins including his upbringing as the son of a prominent Baltimore doctor, his medical education, establishment of a successful pediatric practice, and eventually the founding of the endocrine clinic at Johns Hopkins. Interwoven with anecdotes and reminiscences, this account provides a vivid sense of Wilkins’ personality and life, from his boisterous nature and devotion to his family and career, to the tragic personal losses he endured. He was a man who threw himself fully into everything he did, whether it was making his own liqueur during Prohibition, collecting specimens from abnormally large circus performers as part of his earliest endocrine research, arranging raucous, impromptu singing parties, sailing the Chesapeake with friends, writing a definitive textbook of Pediatric Endocrinology, training a legion of fellows, or the pioneering work for which he is still known today. PMID:25024712

  3. Lawson Wilkins: recollections by his daughter.

    PubMed

    McMaster, Elizabeth Wilkins

    2014-01-01

    Lawson Wilkins is well known as the "father" of the field of pediatric endocrinology, and his scientific accomplishments and legacy are thoroughly documented in this edition and elsewhere. Less well known, though, is what the man himself was like. Here, his daughter, Elizabeth McMaster, recalls the personal side of Dr. Wilkins including his upbringing as the son of a prominent Baltimore doctor, his medical education, establishment of a successful pediatric practice, and eventually the founding of the endocrine clinic at Johns Hopkins. Interwoven with anecdotes and reminiscences, this account provides a vivid sense of Wilkins' personality and life, from his boisterous nature and devotion to his family and career, to the tragic personal losses he endured. He was a man who threw himself fully into everything he did, whether it was making his own liqueur during Prohibition, collecting specimens from abnormally large circus performers as part of his earliest endocrine research, arranging raucous, impromptu singing parties, sailing the Chesapeake with friends, writing a definitive textbook of Pediatric Endocrinology, training a legion of fellows, or the pioneering work for which he is still known today. PMID:25024712

  4. A Jupiter Orbiter mother/daughter spacecraft concept

    NASA Technical Reports Server (NTRS)

    Duxbury, J. H.

    1975-01-01

    The feasibility of a tandem launch of a mother/daughter spacecraft pair with a single launch vehicle for a 1981 Mariner Jupiter Orbiter mission is described. The mother is a close derivative of the three-axis stabilized Mariner Jupiter Saturn 1977 spacecraft with the addition of a Viking-type propulsion module for orbit capture; it concentrates on the planetology and satellite science objectives. The daughter is a small, simple spin-stabilized spacecraft taking advantage of the mother's transit and delivery capabilities; it obtains in-situ measurements of the surrounding planetary environment. A conceptual design of the daughter spacecraft is presented.

  5. Relationships between caregiving daughters and their elderly mothers.

    PubMed

    Walker, A J; Allen, K R

    1991-06-01

    In this qualitative study of 29 pairs of widowed mothers and their caregiving daughters, we employ social exchange theory to identify three relationship types: intrinsic (45%), ambivalent (34%), and conflicted (21%). These types differ in the extent to which the women receive rewards from interacting with their partner, experience costs in their interaction, handle conflicts that arise in their relationship, and express feelings of concern for each other. They also differ in that daughters in intrinsic pairs have fewer children and shorter caregiving histories than daughters in ambivalent or conflicted pairs. PMID:1879715

  6. Molecular Mechanisms for Vascular Development and Secondary Cell Wall Formation

    PubMed Central

    Yang, Jung Hyun; Wang, Huanzhong

    2016-01-01

    Vascular tissues are important for transporting water and nutrients throughout the plant and as physical support of upright growth. The primary constituents of vascular tissues, xylem, and phloem, are derived from the meristematic vascular procambium and cambium. Xylem cells develop secondary cell walls (SCWs) that form the largest part of plant lignocellulosic biomass that serve as a renewable feedstock for biofuel production. For the last decade, research on vascular development and SCW biosynthesis has seen rapid progress due to the importance of these processes to plant biology and to the biofuel industry. Plant hormones, transcriptional regulators and peptide signaling regulate procambium/cambium proliferation, vascular patterning, and xylem differentiation. Transcriptional regulatory pathways play a pivot role in SCW biosynthesis. Although most of these discoveries are derived from research in Arabidopsis, many genes have shown conserved functions in biofuel feedstock species. Here, we review the recent advances in our understanding of vascular development and SCW formation and discuss potential biotechnological uses. PMID:27047525

  7. mRNA retroposition in human cells: processed pseudogene formation.

    PubMed Central

    Maestre, J; Tchénio, T; Dhellin, O; Heidmann, T

    1995-01-01

    Using a sensitive assay for detection of reverse transcription events, we demonstrate that human HeLa cells can 'retropose', i.e. reverse transcribe and integrate, the mRNA of a naive reporter gene, at a low but detectable frequency. Furthermore, we show that the retroposed copies have all the hallmarks of the processed pseudogenes naturally found in the mammalian genome: they lack intron and 5' promoter sequence, they have acquired a 3' poly(A) tail, and they are flanked by short repeats (< 15 bp) of target DNA sequence. These results demonstrate that human cells possess an endogenous reverse transcription activity, which is not restricted to transcripts of transposable elements, and which is likely to be involved in the formation, still ongoing, of a large fraction of the eukaryotic genome. Images PMID:8557053

  8. Molecular Mechanisms for Vascular Development and Secondary Cell Wall Formation.

    PubMed

    Yang, Jung Hyun; Wang, Huanzhong

    2016-01-01

    Vascular tissues are important for transporting water and nutrients throughout the plant and as physical support of upright growth. The primary constituents of vascular tissues, xylem, and phloem, are derived from the meristematic vascular procambium and cambium. Xylem cells develop secondary cell walls (SCWs) that form the largest part of plant lignocellulosic biomass that serve as a renewable feedstock for biofuel production. For the last decade, research on vascular development and SCW biosynthesis has seen rapid progress due to the importance of these processes to plant biology and to the biofuel industry. Plant hormones, transcriptional regulators and peptide signaling regulate procambium/cambium proliferation, vascular patterning, and xylem differentiation. Transcriptional regulatory pathways play a pivot role in SCW biosynthesis. Although most of these discoveries are derived from research in Arabidopsis, many genes have shown conserved functions in biofuel feedstock species. Here, we review the recent advances in our understanding of vascular development and SCW formation and discuss potential biotechnological uses. PMID:27047525

  9. Arsenic promotes centrosome abnormalities and cell colony formation in p53 compromised human lung cells

    SciTech Connect

    Liao Weiting; Lin Pinpin; Cheng, T.-S.; Yu, H.-S.; Chang, Louis W.

    2007-12-01

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus, an interaction between arsenic and cigarette smoking in lung carcinogenesis was suspected. p53 dysfunction or mutation in lung epithelial cells was frequently observed in cigarette smokers. Our present study was to explore the differential effects by arsenic on H1355 cells (human lung adenocarcinoma cell line with mutation in p53), BEAS-2B (immortalized lung epithelial cell with functional p53) and pifithrin-{alpha}-treated BEAS-2B cells (p53-inhibited cells). These cells were treated with different doses of sodium arsenite (0, 0.1, 1, 5 and 10 {mu}M) for 48 h. A greater reduction in cell viability was observed in the BEAS-2B cells vs. p53 compromised cells (H1355 or p53-inhibited BEAS-2B). Similar observation was also made on 7-day cell survival (growth) study. TUNEL analysis confirmed that there was indeed a significantly reduced arsenite-induced apoptosis found in p53-compromised cells. Centrosomal abnormality has been attributed to eventual chromosomal missegregation, aneuploidy and tumorigenesis. In our present study, reduced p21 and Gadd45a expressions and increased centrosomal abnormality (atopic and multiple centrosomes) were observed in both arsenite-treated H1355 and p53-inhibited BEAS-2B cells as compared with similarly treated BEAS-2B cells. Increased anchorage-independent growth (colony formation) of BEAS-2B cells co-treated with pifithrin-{alpha} and 5 {mu}M sodium arsenite was also observed in soft agar. Our present investigation demonstrated that arsenic would act specifically on p53 compromised cells (either with p53 dysfunction or inhibited) to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenic, especially under the condition of p53 dysfunction.

  10. Cadmium stimulates osteoclast-like multinucleated cell formation in mouse bone marrow cell cultures

    SciTech Connect

    Miyahara, Tatsuro; Takata, Masakazu; Miyata, Masaki; Nagai, Miyuki; Sugure, Akemi; Kozuka, Hiroshi; Kuze, Shougo )

    1991-08-01

    Most of cadmium (Cd)-treated animals have been reported to show osteoporosis-like changes in bones. This suggests that Cd may promote bone loss by a direct action on bone. It was found that Cd stimulated prostaglandin E{sub 2}(PGE{sub 2}) production in the osteoblast-like cell, MC3T3-E1. Therefore, Cd stimulates bone resorption by increasing PGE{sub 2} production. Recently, several bone marrow cell culture systems have been developed for examining the formation of osteoclast-like multinucleated cells in vitro. As osteoblasts produce PGE{sub 2} by Cd-induced cyclooxygenase and may play an important role in osteoclast formation, the present study was undertaken to clarify the possibility that Cd might stimulate osteoclast formation in a mouse bone marrow culture system.

  11. 155. GWMP FROM COLLINGWOOD VICINITY NEAR THE 1932 UNITED DAUGHTERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    155. GWMP FROM COLLINGWOOD VICINITY NEAR THE 1932 UNITED DAUGHTERS OF CONFEDERACY, DISTRICT CHAPTER MEMORIAL PLAQUE. - George Washington Memorial Parkway, Along Potomac River from McLean to Mount Vernon, VA, Mount Vernon, Fairfax County, VA

  12. 156. 1932 UNITED DAUGHTERS OF CONFEDERACY, DISTRICT CHAPTERS MEMORIAL PLAQUE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    156. 1932 UNITED DAUGHTERS OF CONFEDERACY, DISTRICT CHAPTERS MEMORIAL PLAQUE AND REPLACEMENT RED OAK MEMORIAL PLANTING. - George Washington Memorial Parkway, Along Potomac River from McLean to Mount Vernon, VA, Mount Vernon, Fairfax County, VA

  13. Residential radon daughter monitor based on alpha spectroscopy

    SciTech Connect

    Nazaroff, W.W.

    1980-05-01

    The radioactive daughters of radon-222 pose a serious indoor air quality problem in some circumstances. A technique for measuring the concentrations of these radioisotopes in air is presented. The method involves drawing air through a filter; then, for two time intervals after sampling, counting the alpha decays from polonium-218 and polonium-214 on the filter. The time intervals are optimized to yield the maximum resolution between the individual daughter concentrations. For a total measurement time of 50 minutes, individual daughter concentrations of 1.0 nanocuries per cubic meter are measured with an uncertainty of 20%. A prototype of a field monitor based on this technique is described, as is a field test in which the prototype was used to measure radon daughter concentrations as a function of ventilation conditions in an energy-efficient house.

  14. Mother-daughter in vitro fertilization triplet surrogate pregnancy.

    PubMed

    Michelow, M C; Bernstein, J; Jacobson, M J; McLoughlin, J L; Rubenstein, D; Hacking, A I; Preddy, S; Van der Wat, I J

    1988-02-01

    A successful triplet pregnancy has been established in a surrogate gestational mother following the transfer of five embryos fertilized in vitro. The oocytes were donated by her biological daughter, and the sperm obtained from the daughter's husband. The daughter's infertility followed a total abdominal hysterectomy performed for a postpartum hemorrhage as a result of a placenta accreta. Synchronization of both their menstrual cycles was obtained using oral contraceptive suppression for 2 months, followed by stimulation of both the surrogate gestational mother and her daughter such that embryo transfer would occur at least 48 hr after the surrogate gestational mother's own ovulation. This case raises a number of medical, social, psychological, and ethical issues. PMID:3367072

  15. Regulation of midbody formation and function by mitotic kinases.

    PubMed

    D'Avino, Pier Paolo; Capalbo, Luisa

    2016-05-01

    Cytokinesis is the final phase of cell division and safeguards the correct distribution of genomic and cytoplasmic materials between the two nascent daughter cells. The final separation, or abscission, of the daughter cells depends on the proper assembly of an organelle at the intercellular bridge, the midbody, which acts as a platform for the recruitment and organisation of various proteins involved in both the control and execution of the abscission process. Recent studies have led to the identification of the mechanisms, signalling pathways and molecules that control the two tightly linked processes of midbody formation and abscission. Here we review our current knowledge of the role that mitotic kinases play in these processes and offer our perspectives on the potential future challenges that await researchers in the field. PMID:26802517

  16. Upward Communication About Cancer Screening—Adolescent Daughter to Mother

    PubMed Central

    MOSAVEL, MAGHBOEBA; PORTS, KATIE A.

    2015-01-01

    Substantial breast and cervical cancer disparities exist in the United States, particularly among African American women with low social economic status. There is considerable potential for discussions about cancer prevention between mothers and daughters. However, upward communication, from child to parent, remains a relatively novel research area, and it remains unclear how receptive mothers would be to messages from their daughter about cancer, a topic that may be considered culturally inappropriate for daughters to initiate. In this study, we simulated cancer message delivery to daughters and then conducted direct observation of daughters as they recalled and shared the message with their mother or female elder. We found that daughters were able to successfully recall and deliver a cancer appeal to their mother and mothers were generally receptive to this message. Not only did mothers listen to their daughters’ appeals, but also daughters’ knowledge of cancer was considerably improved by the opportunity to educate her female elder. Moreover, daughters’ nonverbal communication suggested a surprisingly relaxed demeanor. The potential of young people to impact the screening behavior of their female elders is very promising in terms of reducing cancer disparities. PMID:25848895

  17. Stem Cell-Soluble Signals Enhance Multilumen Formation in SMG Cell Clusters.

    PubMed

    Maruyama, C L M; Leigh, N J; Nelson, J W; McCall, A D; Mellas, R E; Lei, P; Andreadis, S T; Baker, O J

    2015-11-01

    Saliva plays a major role in maintaining oral health. Patients with salivary hypofunction exhibit difficulty in chewing and swallowing foods, tooth decay, periodontal disease, and microbial infections. At this time, treatments for hyposalivation are limited to medications (e.g., muscarinic receptor agonists: pilocarpine and cevimeline) that induce saliva secretion from residual acinar cells as well as artificial salivary substitutes. Therefore, advancement of restorative treatments is necessary to improve the quality of life in these patients. Our previous studies indicated that salivary cells are able to form polarized 3-dimensional structures when grown on growth factor-reduced Matrigel. This basement membrane is rich in laminin-III (L1), which plays a critical role in salivary gland formation. Mitotically inactive feeder layers have been used previously to support the growth of many different cell types, as they provide factors necessary for cell growth and organization. The goal of this study was to improve salivary gland cell differentiation in primary cultures by using a combination of L1 and a feeder layer of human hair follicle-derived mesenchymal stem cells (hHF-MSCs). Our results indicated that the direct contact of mouse submandibular (mSMG) cell clusters and hHF-MSCs was not required for mSMG cells to form acinar and ductal structures. However, the hHF-MSC conditioned medium enhanced cell organization and multilumen formation, indicating that soluble signals secreted by hHF-MSCs play a role in promoting these features. PMID:26285810

  18. Protective layer formation on magnesium in cell culture medium.

    PubMed

    Wagener, V; Virtanen, S

    2016-06-01

    In the past, different studies showed that hydroxyapatite (HA) or similar calcium phosphates can be precipitated on Mg during immersion in simulated body fluids. However, at the same time, in most cases a dark grey or black layer is built under the white HA crystals. This layer seems to consist as well of calcium phosphates. Until now, neither the morphology nor its influence on Mg corrosion have been investigated in detail. In this work commercially pure magnesium (cp) was immersed in cell culture medium for one, three and five days at room temperature and in the incubator (37 °C, 5% CO2). In addition, the influence of proteins on the formation of a corrosion layer was investigated by adding 20% of fetal calf serum (FCS) to the cell culture medium in the incubator. In order to analyze the formed layers, SEM images of cross sections, X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX) and Fourier Transformed Infrared Spectroscopy (FTIR) measurements were carried out. Characterization of the corrosion behavior was achieved by electrochemical impedance spectroscopy (EIS) and by potentio-dynamic polarization in Dulbecco's Modified Eagle's Medium (DMEM) at 37°C. Surface analysis showed that all formed layers consist mainly of amorphous calcium phosphate compounds. For the immersion at room temperature the Ca/P ratio indicates the formation of HA, while in the incubator probably pre-stages to HA are formed. The different immersion conditions lead to a variation in layer thicknesses. However, electrochemical characterization shows that the layer thickness does not influence the corrosion resistance of magnesium. The main influencing factor for the corrosion behavior is the layer morphology. Thus, immersion at room temperature leads to the highest corrosion protection due to the formation of a compact outer layer. Layers formed in the incubator show much worse performances due to completely porous structures. The

  19. Mothers' and Fathers' Perceptions of Their Adolescent Daughters' Shape, Weight, and Body Esteem: Are They Accurate?

    ERIC Educational Resources Information Center

    Geller, Josie; Srikameswaran, Suja; Zaitsoff, Shannon L.; Cockell, Sarah J.; Poole, Gary D.

    2003-01-01

    Examined parents' awareness of their daughters' attitudes, beliefs, and feelings about their bodies. Sixty-six adolescent daughters completed an eating disorder scale, a body figure rating scale, and made ratings of their shape and weight. Greater discrepancies between parents' estimates of daughters' body esteem and daughters' self-reported body…

  20. Monoacylated Cellular Prion Protein Modifies Cell Membranes, Inhibits Cell Signaling, and Reduces Prion Formation*

    PubMed Central

    Bate, Clive; Williams, Alun

    2011-01-01

    Prion diseases occur following the conversion of the cellular prion protein (PrPC) into a disease related, protease-resistant isoform (PrPSc). In these studies, a cell painting technique was used to introduce PrPC to prion-infected neuronal cell lines (ScGT1, ScN2a, or SMB cells). The addition of PrPC resulted in increased PrPSc formation that was preceded by an increase in the cholesterol content of cell membranes and increased activation of cytoplasmic phospholipase A2 (cPLA2). In contrast, although PrPC lacking one of the two acyl chains from its glycosylphosphatidylinositol (GPI) anchor (PrPC-G-lyso-PI) bound readily to cells, it did not alter the amount of cholesterol in cell membranes, was not found within detergent-resistant membranes (lipid rafts), and did not activate cPLA2. It remained within cells for longer than PrPC with a conventional GPI anchor and was not converted to PrPSc. Moreover, the addition of high amounts of PrPC-G-lyso-PI displaced cPLA2 from PrPSc-containing lipid rafts, reduced the activation of cPLA2, and reduced PrPSc formation in all three cell lines. In addition, ScGT1 cells treated with PrPC-G-lyso-PI did not transmit infection following intracerebral injection to mice. We propose that that the chemical composition of the GPI anchor attached to PrPC modified the local membrane microenvironments that control cell signaling, the fate of PrPC, and hence PrPSc formation. In addition, our observations raise the possibility that pharmacological modification of GPI anchors might constitute a novel therapeutic approach to prion diseases. PMID:21212283

  1. Retinoic acid, local cell-cell interactions, and pattern formation in vertebrate limbs.

    PubMed

    Bryant, S V; Gardiner, D M

    1992-07-01

    Retinoic acid (RA), a derivative of vitamin A, has remarkable effects on developing and regenerating limbs. These effects include teratogenesis, arising from RA's ability to inhibit growth and pattern formation. They also include pattern duplication, arising as a result of the stimulation of additional growth and pattern formation. In this review we present evidence that the diverse effects of RA are consistent with a singular, underlying explanation. We propose that in all cases exogenously applied RA causes the positional information of pattern formation-competent cells to be reset to a value that is posterior-ventral-proximal with respect to the limb. The diversity of outcomes can be seen as a product of the mode of application of exogenous RA (global versus local) coupled with the unifying concept that growth and pattern formation in both limb development and limb regeneration are controlled by local cell-cell interactions, as formulated in the polar coordinate model. We explore the possibility that the major role of endogenous RA in limb development is in the establishment of the limb field rather than as a diffusible morphogen that specifies graded positional information across the limb as previously proposed. Finally, we interpret the results of the recent finding that RA can turn tail regenerates into limbs, as evidence that intercalary interactions may also be involved in the formation of the primary body axis. PMID:1628749

  2. Vitamin K2-induced cell growth inhibition via autophagy formation in cholangiocellular carcinoma cell lines.

    PubMed

    Enomoto, Masanobu; Tsuchida, Akihiko; Miyazawa, Keisuke; Yokoyama, Tomohisa; Kawakita, Hideaki; Tokita, Hiromi; Naito, Munekazu; Itoh, Masahiro; Ohyashiki, Kazuma; Aoki, Tatsuya

    2007-12-01

    Vitamin K2 (MK4) has antitumor effects on various types of cancer cell lines in vitro, and its efficacy has also been reported in clinical applications for patients with leukemia, myelodysplastic syndrome, and hepatocellular carcinoma (HCC). However, details of the mechanism of the antitumor effects of MK4 remain unclear. In the present study, we examined the antitumor effects of MK4 on cholangiocellular carcinoma (CCC) cell lines and its mechanism of action using the HL-60 leukemia cell line that exerts MK4-induced cell growth inhibition via apoptosis induction and cell cycle arrest as a control. MK4 exerted dose-dependent antitumor effects on all three types of CCC cell lines. However, apoptosis occurred in a smaller percentage of cells and there was less cell cycle arrest compared with other cancer cell lines studied previously, which suggested slight MK4-induced cell growth inhibition via apoptosis induction and cell cycle arrest. On the contrary, histopathological fidings showed a large number of cells containing vacuoles in their cytoplasm, and electron microscopic findings showed a large number of cytoplasmic autophagosomes and autolysosomes. These findings suggested evidence of autophagy-related cell death. Fluorescence microscopy following acridine orange staining revealed an increase in the number of cytoplasmic acidic vesicular organelles characteristic of autophagy. Moreover, there were few cells forming autophagic vesicles in the control group, while the percentage of cells containing vacuoles in the MK4-treated group increased with the duration of culture. These results suggested that, unlike in leukemia, gastric cancer, HCC, and other cancer cells, the antitumor effects of MK4 on CCC cells are induced via autophagy formation. PMID:17982686

  3. Myosin II-mediated cell shape changes and cell intercalation contribute to primitive streak formation

    PubMed Central

    Song, Feifei; Sang, Helen M.; Martin, René; Knölker, Hans-Joachim; MacDonald, Michael P; Weijer, Cornelis J

    2016-01-01

    Primitive streak formation in the chick embryo involves large scale highly coordinated flows of over 100.000 cells in the epiblast. These large scale tissue flows and deformations can be correlated with specific anisotropic cell behaviours in the forming mesendoderm through a combined light-sheet microscopy and computational analysis. Relevant behaviours include apical contraction, elongation along the apical-basal axis followed by ingression as well as asynchronous directional cell intercalation of small groups of mesendoderm cells. Cell intercalation is associated with sequential, directional contraction of apical junctions, the onset, localisation and direction of which correlate strongly with the appearance of active Myosin II cables in aligned apical junctions in neighbouring cells. Use of a class specific Myosin inhibitors and gene specific knockdowns show that apical contraction and intercalation are Myosin II dependent and also reveal critical roles for Myosin I and Myosin V family members in the assembly of junctional Myosin II cables. PMID:25812521

  4. Regulation of germinal center, B-cell memory, and plasma cell formation by histone modifiers.

    PubMed

    Good-Jacobson, Kim L

    2014-01-01

    Understanding the regulation of antibody production and B-cell memory formation and function is core to finding new treatments for B-cell-derived cancers, antibody-mediated autoimmune disorders, and immunodeficiencies. Progression from a small number of antigen-specific B-cells to the production of a large number of antibody-secreting cells is tightly regulated. Although much progress has been made in revealing the transcriptional regulation of B-cell differentiation that occurs during humoral immune responses, there are still many questions that remain unanswered. Recent work on the expression and roles of histone modifiers in lymphocytes has begun to shed light on this additional level of regulation. This review will discuss the recent advancements in understanding how humoral immune responses, in particular germinal centers and memory cells, are modulated by histone modifiers. PMID:25477884

  5. The cytological changes of tobacco zygote and proembryo cells induced by beta-glucosyl Yariv reagent suggest the involvement of arabinogalactan proteins in cell division and cell plate formation

    PubMed Central

    2012-01-01

    Background In dicotyledonous plant, the first asymmetric zygotic division and subsequent several cell divisions are crucial for proembryo pattern formation and later embryo development. Arabinogalactan proteins (AGPs) are a family of extensively glycosylated cell surface proteins that are thought to have important roles in various aspects of plant growth and development, including embryogenesis. Previous results from our laboratory show that AGPs are concerned with tobacco egg cell fertilization and zygotic division. However, how AGPs interact with other factors involved in zygotic division and proembryo development remains unknown. Results In this study, we used the tobacco in vitro zygote culture system and series of meticulous cell biology techniques to investigate the roles of AGPs in zygote and proembryo cell division. For the first time, we examined tobacco proembryo division patterns detailed to every cell division. The bright-field images and statistical results both revealed that with the addition of an exogenous AGPs inhibitor, beta-glucosyl Yariv (beta-GlcY) reagent, the frequency of aberrant division increased remarkably in cultured tobacco zygotes and proembryos, and the cell plate specific locations of AGPs were greatly reduced after beta-GlcY treatment. In addition, the accumulations of new cell wall materials were also significantly affected by treating with beta-GlcY. Detection of cellulose components by Calcofluor white stain showed that strong fluorescence was located in the newly formed wall of daughter cells after the zygotic division of in vivo samples and the control samples from in vitro culture without beta-GlcY treatment; while there was only weak fluorescence in the newly formed cell walls with beta-GlcY treatment. Immunocytochemistry examination with JIM5 and JIM7 respectively against the low- and high-esterified pectins displayed that these two pectins located in opposite positions of zygotes and proembryos in vivo and the polarity was

  6. Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells

    NASA Astrophysics Data System (ADS)

    Kaushik, Nagendra K.; Uhm, Hansup; Ha Choi, Eun

    2012-02-01

    Induction of micronucleus formation (cytogenetic damage) in brain cancer cells upon exposure of dielectric barrier discharge plasma has been investigated. We have investigated the influence of exposure and incubation times on T98G brain cancer cells by using growth kinetic, clonogenic, and micronucleus formation assay. We found that micronucleus formation rate directly depends on the plasma exposure time. It is also shown that colony formation capacity of cells has been inhibited by the treatment of plasma at all doses. Cell death and micronucleus formation are shown to be significantly elevated by 120 and 240 s exposure of dielectric barrier discharge plasma.

  7. An improved alkaline direct formate paper microfluidic fuel cell.

    PubMed

    Galvan, Vicente; Domalaon, Kryls; Tang, Catherine; Sotez, Samantha; Mendez, Alex; Jalali-Heravi, Mehdi; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A

    2016-02-01

    Paper-based microfluidic fuel cells (MFCs) are a potential replacement for traditional FCs and batteries due to their low cost, portability, and simplicity to operate. In MFCs, separate solutions of fuel and oxidant migrate through paper due to capillary action and laminar flow and, upon contact with each other and catalyst, produce electricity. In the present work, we describe an improved microfluidic paper-based direct formate FC (DFFC) employing formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. The dimensions of the lateral column, current collectors, and cathode were optimized. A maximum power density of 2.53 mW/cm(2) was achieved with a DFFC of surface area 3.0 cm(2) , steel mesh as current collector, 5% carbon to paint mass ratio for cathode electrode and, 30% hydrogen peroxide. The longevity of the MFC's detailed herein is greater than eight hours with continuous flow of streams. In a series configuration, the MFCs generate sufficient energy to power light-emitting diodes and a handheld calculator. PMID:26572774

  8. Light induced polaron formation in perovskite solar cell devices

    NASA Astrophysics Data System (ADS)

    Neukirch, Amanda; Nie, Wanyi; Blancon, Jean-Christophe; Appavoo, Kannatassen; Tsai, Hsinhan; Chhowalla, Manish; Alam, Muhammad; Sfeir, Matthew; Katan, Claudine; Even, Jacky; Crochet, Jared; Gupta, Gautum; Mohite, Aditya; Tretiak, Sergei

    The need for a low-cost, clean, and abundant source of energy has generated large amounts of research in solution processed solar cell materials. The lead halide perovskite has rapidly developed as a serious candidate for the active layer of photovoltaic devices. The efficiencies of devices made with this material have increased from 3.5% to over 20% in around 5 years. Despite the remarkable progress associated with perovskite materials, there are still fundamental questions regarding their lack of photo-stability over prolonged solar irradiation that need to be addressed. Recent experiments on photo-degradation under constant illumination have found fast self-healing by resting the device in the dark for less than 1 minute. Density functional theory and symmetry analysis show that localized charge states couple to local structural lattice distortions and methyl ammonium quasistatic configurations. Once translational symmetry is lost, additional bonding configurations become symmetry allowed, triggering localized charges in the vicinity over time under constant illumination, thus seeding the formation of macroscopic charged domains and preventing efficient charge extraction. Here we present an in-depth study of polaron formation and binding energy at the atomistic level.

  9. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner.

    PubMed

    Takegahara, Yuki; Yamanouchi, Keitaro; Nakamura, Katsuyuki; Nakano, Shin-ichi; Nishihara, Masugi

    2014-05-15

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether direct cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. PMID:24720912

  10. Mother-daughter and father-daughter attachment of college student ACOAs.

    PubMed

    Kelley, Michelle L; French, Alexis; Schroeder, Valarie; Bountress, Kaitlin; Fals-Stewart, William; Steer, Kate; Cooke, Cathy G

    2008-01-01

    This 2005 study compared parent-child attachment in 89 American female Adult Children of Alcoholics (ACOAs) as compared to 201 non-ACOAs. Women attended a large university in the southeastern United States. Participants categorized as ACOA on the Children of Alcoholics Screen Test (CAST; Jones, 1983) reported significantly more negative affect and less support from their fathers as indicated on the Parental Attachment Questionnaire (Kenney, 1987). When results were examined by the gender of the alcohol-abusing(1) parent, participants who suspected their fathers were problem drinkers did not differ from non-ACOAs in their attachment to either parent. As compared to non-ACOAs, women who self-identified as daughters of problem-drinking mothers reported poorer attachment both to mothers and fathers. PMID:18752160

  11. 'Dark' cell formation under protein malnutrition: process of conversion and concept of 'semi-dark' type Purkinje cells.

    PubMed

    James, T J; Sharma, S P; Gupta, S K; Patro, I K

    1992-06-01

    This paper deals with some deleterious effects of protein malnourishment in rat cerebellum. Severe protein deprivation enhanced the formation of 'dark' cells in white rats. It is postulated that abnormal changes in the neuronal contents induced by nutritional stress play a vital role in the formation of the 'dark' cells through an intermediary stage, 'semi-dark' cells. Centrophenoxine a lipofuscinolytic agent, however, seems to interfere with the process of formation of 'dark' cells and/or helps reconversion of the 'dark' cells into the normal or 'light' type Purkinje cells. PMID:1506025

  12. Quality of Adult Daughters' Relationships with Their Mothers and Fathers: Effects on Daughters' Well-Being and Psychological Distress. Working Paper No. 175.

    ERIC Educational Resources Information Center

    Barnett, Rosalind C.; And Others

    Until recently, adult daughter-parent relationships have received little research attention. This study examined the quality of experiences adult daughters (N=308) have in their current relationships with their mothers and fathers and the effects of the quality of these relationships on the daughter's psychological well-being/distress. The sample…

  13. Spheroid Formation of Hepatocarcinoma Cells in Microwells: Experiments and Monte Carlo Simulations.

    PubMed

    Wang, Yan; Kim, Myung Hee; Tabaei, Seyed R; Park, Jae Hyeok; Na, Kyuhwan; Chung, Seok; Zhdanov, Vladimir P; Cho, Nam-Joon

    2016-01-01

    The formation of spherical aggregates during the growth of cell population has long been observed under various conditions. We observed the formation of such aggregates during proliferation of Huh-7.5 cells, a human hepatocarcinoma cell line, in a microfabricated low-adhesion microwell system (SpheroFilm; formed of mass-producible silicone elastomer) on the length scales up to 500 μm. The cell proliferation was also tracked with immunofluorescence staining of F-actin and cell proliferation marker Ki-67. Meanwhile, our complementary 3D Monte Carlo simulations, taking cell diffusion and division, cell-cell and cell-scaffold adhesion, and gravity into account, illustrate the role of these factors in the formation of spheroids. Taken together, our experimental and simulation results provide an integrative view of the process of spheroid formation for Huh-7.5 cells. PMID:27571565

  14. Spheroid Formation of Hepatocarcinoma Cells in Microwells: Experiments and Monte Carlo Simulations

    PubMed Central

    Tabaei, Seyed R.; Park, Jae Hyeok; Na, Kyuhwan; Chung, Seok; Zhdanov, Vladimir P.

    2016-01-01

    The formation of spherical aggregates during the growth of cell population has long been observed under various conditions. We observed the formation of such aggregates during proliferation of Huh-7.5 cells, a human hepatocarcinoma cell line, in a microfabricated low-adhesion microwell system (SpheroFilm; formed of mass-producible silicone elastomer) on the length scales up to 500 μm. The cell proliferation was also tracked with immunofluorescence staining of F-actin and cell proliferation marker Ki-67. Meanwhile, our complementary 3D Monte Carlo simulations, taking cell diffusion and division, cell-cell and cell-scaffold adhesion, and gravity into account, illustrate the role of these factors in the formation of spheroids. Taken together, our experimental and simulation results provide an integrative view of the process of spheroid formation for Huh-7.5 cells. PMID:27571565

  15. Polymer Solar Cells: Solubility Controls Fiber Network Formation.

    PubMed

    van Franeker, Jacobus J; Heintges, Gaël H L; Schaefer, Charley; Portale, Giuseppe; Li, Weiwei; Wienk, Martijn M; van der Schoot, Paul; Janssen, René A J

    2015-09-16

    The photoactive layer of polymer solar cells is commonly processed from a four-component solution, containing a semiconducting polymer and a fullerene derivative dissolved in a solvent-cosolvent mixture. The nanoscale dimensions of the polymer-fullerene morphology that is formed upon drying determines the solar cell performance, but the fundamental processes that govern the size of the phase-separated polymer and fullerene domains are poorly understood. Here, we investigate morphology formation of an alternating copolymer of diketopyrrolopyrrole and a thiophene-phenyl-thiophene oligomer (PDPPTPT) with relatively long 2-decyltetradecyl (DT) side chains blended with [6,6]-phenyl-C71-butyric acid methyl ester. During solvent evaporation the polymer crystallizes into a fibrous network. The typical width of these fibers is analyzed by quantification of transmission electron microscopic images, and is mainly determined by the solubility of the polymer in the cosolvent and the molecular weight of the polymer. A higher molecular weight corresponds to a lower solubility and film processing results in a smaller fiber width. Surprisingly, the fiber width is not related to the drying rate or the amount of cosolvent. We have made solar cells with fiber widths ranging from 28 to 68 nm and found an inverse relation between fiber width and photocurrent. Finally, by mixing two cosolvents, we develop a ternary solvent system to tune the fiber width. We propose a model based on nucleation-and-growth which can explain these measurements. Our results show that the width of the semicrystalline polymer fibers is not the result of a frozen dynamical state, but determined by the nucleation induced by the polymer solubility. PMID:26306585

  16. Apicoplast fatty acid synthesis is essential for pellicle formation at the end of cytokinesis in Toxoplasma gondii.

    PubMed

    Martins-Duarte, Érica S; Carias, Maira; Vommaro, Rossiane; Surolia, Namita; de Souza, Wanderley

    2016-09-01

    The apicomplexan protozoan Toxoplasma gondii, the causative agent of toxoplasmosis, harbors an apicoplast, a plastid-like organelle with essential metabolic functions. Although the FASII fatty acid biosynthesis pathway located in the apicoplast is essential for parasite survival, the cellular effects of FASII disruption in T. gondii had not been examined in detail. Here, we combined light and electron microscopy techniques - including focused ion beam scanning electron microscopy (FIB-SEM) - to characterize the effect of FASII disruption in T. gondii, by treatment with the FASII inhibitor triclosan or by inducible knockdown of the FASII component acyl carrier protein. Morphological analyses showed that FASII disruption prevented cytokinesis completion in T. gondii tachyzoites, leading to the formation of large masses of 'tethered' daughter cells. FIB-SEM showed that tethered daughters had a mature basal complex, but a defect in new membrane addition between daughters resulted in incomplete pellicle formation. Addition of exogenous fatty acids to medium suppressed the formation of tethered daughter cells and supports the notion that FASII is essential to generate lipid substrates required for the final step of parasite division. PMID:27457282

  17. Correlation between cell-cell contact formation and activation of protein kinase C in a human squamous cell carcinoma cell line.

    PubMed

    Nagao, S; Kitajima, Y; Nagata, K; Inoue, S; Yaoita, H; Nozawa, Y

    1989-02-01

    Formation of desmosomal cell-cell contact associated with reorganization of keratin intermediate filaments (KIFs) was observed when cultured cells of a cell line of human skin squamous cell carcinoma were transferred from low (0.07 mM) calcium to high (1.87 mM) calcium medium. At low calcium, cells were dispersed without desmosomal cell-cell contact and the KIFs were mostly concentrated around the nucleus. After 15 min of the transfer, cells contacted each other and formed small colonies and the KIFs initiated to show a radial arrangement. In addition to the cell-cell contact formation and rearrangement of KIFs, the transfer induced fourfold increase of particulate-associated protein kinase C (C-kinase) activity. When 12-O-tetradecanoyl phorbol-13-acetate (PMA), which specifically activates C-kinase, was added to the cells grown at low calcium medium, cell-cell contact formation and radial arrangement of KIF bundles almost identical to those induced by the transfer to high calcium medium were observed. These data suggest a correlation between an increase in C-kinase activity and formation of cell-cell contacts associated with rearrangements of KIFs. PMID:2465349

  18. Influence of cell-to-cell variability on spatial pattern formation.

    PubMed

    Greese, B; Wester, K; Bensch, R; Ronneberger, O; Timmer, J; Huulskamp, M; Fleck, C

    2012-08-01

    Many spatial patterns in biology arise through differentiation of selected cells within a tissue, which is regulated by a genetic network. This is specified by its structure, parameterisation and the noise on its components and reactions. The latter, in particular, is not well examined because it is rather difficult to trace. The authors use suitable local mathematical measures based on the Voronoi diagram of experimentally determined positions of epidermal plant hairs (trichomes) to examine the variability or noise in pattern formation. Although trichome initiation is a highly regulated process, the authors show that the experimentally observed trichome pattern is substantially disturbed by cell-to-cell variations. Using computer simulations, they find that the rates concerning the availability of the protein complex that triggers trichome formation plays a significant role in noise-induced variations of the pattern. The focus on the effects of cell noise yields further insights into pattern formation of trichomes. The authors expect that similar strategies can contribute to the understanding of other differentiation processes by elucidating the role of naturally occurring fluctuations in the concentration of cellular components or their properties. PMID:23039695

  19. A channel connecting the mother cell and forespore during bacterial endospore formation

    PubMed Central

    Meisner, Jeffrey; Wang, Xin; Serrano, Monica; Henriques, Adriano O.; Moran, Charles P.

    2008-01-01

    At an early stage during Bacillus subtilis endospore development the bacterium divides asymmetrically to produce two daughter cells. The smaller cell (forespore) differentiates into the endospore, while the larger cell (mother cell) becomes a terminally differentiated cell that nurtures the developing forespore. During development the mother cell engulfs the forespore to produce a protoplast, surrounded by two bilayer membranes, which separate it from the cytoplasm of the mother cell. The activation of σG, which drives late gene expression in the forespore, follows forespore engulfment and requires expression of the spoIIIA locus in the mother cell. One of the spoIIIA-encoded proteins SpoIIIAH is targeted specifically to the membrane surrounding the forespore, through an interaction of its C-terminal extracellular domain with the C-terminal extracellular domain of the forespore membrane protein SpoIIQ. We identified a homologous relationship between the C-terminal domain of SpoIIIAH and the YscJ/FliF protein family, members of which form multimeric rings involved in type III secretion systems and flagella. If SpoIIIAH forms a similar ring structure, it may also form a channel between the mother cell and forespore membranes. To test this hypothesis we developed a compartmentalized biotinylation assay, which we used to show that the C-terminal extracellular domain of SpoIIIAH is accessible to enzymatic modification from the forespore cytoplasm. These and other results lead us to suggest that SpoIIIAH forms part of a channel between the forespore and mother cell that is required for the activation of σG. PMID:18812514

  20. Lateral inhibition-induced pattern formation controlled by the size and geometry of the cell.

    PubMed

    Seirin Lee, Sungrim

    2016-09-01

    Pattern formation in development biology is one of the fundamental processes by which cells change their functions. It is based on the communication of cells via intra- and intercellular dynamics of biochemicals. Thus, the cell is directly involved in biochemical interactions. However, many theoretical approaches describing biochemical pattern formation have usually neglected the cell's role or have simplified the subcellular process without considering cellular aspects despite the cell being the environment where biochemicals interact. On the other hand, recent experimental observations suggest that a change in the physical conditions of cell-to-cell contact can result in a change in cell fate and tissue patterning in a lateral inhibition system. Here we develop a mathematical model by which biochemical dynamics can be directly observed with explicitly expressed cell structure and geometry in higher dimensions, and reconsider pattern formation by lateral inhibition of the Notch-Delta signaling pathway. We explore how the physical characteristic of cell, such as cell geometry or size, influences the biochemical pattern formation in a multi-cellular system. Our results suggest that a property based on cell geometry can be a novel mechanism for symmetry breaking inducing cell asymmetry. We show that cell volume can critically influence cell fate determination and pattern formation at the tissue level, and the surface area of the cell-to-cell contact can directly affect the spatial range of patterning. PMID:27229622

  1. Velocardiofacial syndrome in father and daughter: What is the mechanism for the deletion 22(q11.2q11.2) in only the daughter?

    SciTech Connect

    Magenis, R.E.; Gunter, K.; Toth-Fejel, S.

    1994-09-01

    E.G. had marked feeding difficulty noted at birth; the cause was determined to be a paralyzed palate. In 1992 chromosome studies were performed because of the provisional diagnosis of velocardiofacial syndrome, and a small interstitial deletion of chromosome 22 was found. Recently the family was seen in our Genetics Clinic. The father had unusual facial features shared by his daughter, a paralyzed upper lip and a history of repaired Tetralogy of Fallot. His chromosomes appeared normal. FISH studies were performed on the child`s peripheral blood using the ONCOR DiGeorge region probe (D22S75) and the deletion verified. However, the father`s chromosomes were not deleted for the ONCOR probe (D22S75) and probe DO832 sent to us by Peter Scambler. Skin cells were then obtained and no deletion was detected in a total of 66 cells examined using both probes. Several questions arise from these data: does the father have velocardiofacial syndrome? Does he have occult mosaicism? Does he have a molecular deletion not detected by the probes used? And was this deletion somehow {open_quotes}amplified{close_quotes} in his daughter?

  2. [Brachyonychia of different types in a mother and daughter].

    PubMed

    Zaun, H; Payeur, M; Stenger, D

    1987-02-01

    Different types of brachyonychia were observed in a mother and her daughter. The mother presented a unilateral racket thumb-nail (localized brachyonychia "en raquette" of Basset). In the case of the daughter the thumbs and three middle fingers of both hands were involved, the nails of the little fingers being normal (generalized brachyonychia "en raquette" of Basset). Also, the daughter's toe-nails were short and wide. There was a family history of short nails "on all fingers" occurring in the two sisters of the mother's father. We believe that localized and generalized types of racket nails are variants of the same inherited anomaly. As far as we know, this is the first report of brachyonychia of the toe-nails. PMID:3570776

  3. Daughters of cardiac patients: the process of caregiving.

    PubMed

    Gage-Rancoeur, Donna-Michelle; Purden, Margaret A

    2003-06-01

    This prospective, exploratory study examined the caregiving role that adult daughters play when a parent is hospitalized for a cardiac condition. Specifically, the study addressed the development and evolution of the caregiving role during the hospital stay and in the post-discharge period. Data were collected from 9 daughters using participant observation and unstructured and semi-structured interviews. Daughters' caregiving was characterized by a non-linear process of "knowing" that included knowledge seeking, consolidation of knowledge, and acting on the knowledge. In a secondary process of self-assessment concerning their knowledge, the participants moved back and forth among the 3 dimensions. In addition, their level of involvement was defined by 4 different caregiving styles, based on the family's caregiving culture. Nurses might collaborate more effectively with women caring for a parent by determining their position in the "knowing" process and tailoring the intervention accordingly. Nurses should also be sensitive to families' opinions and traditions regarding caregiving. PMID:12908199

  4. Commensal Microbiota and CD8+ T Cells Shape the Formation of Invariant NKT Cells

    PubMed Central

    Wei, Bo; Wingender, Gerhard; Fujiwara, Daisuke; Chen, Diana YuHui; McPherson, Michael; Brewer, Sarah; Borneman, James; Kronenberg, Mitchell; Braun, Jonathan

    2012-01-01

    Commensal bacteria play an important role in formation of the immune system, but the mechanisms involved are incompletely understood. In this study, we analyze CD1d-restricted invariant NKT (iNKT) cells in germfree mice and in two colonies of C57BL/6 mice termed conventional flora and restricted flora (RF), stably bearing commensal microbial communities of diverse but distinct composition. In germfree mice, iNKT cells were moderately reduced, suggesting that commensal microbiota were partially required for the antigenic drive in maintaining systemic iNKT cells. Surprisingly, even greater depletion of iNKT cell population occurred in RF mice. This was in part attributable to reduced RF levels of intestinal microbial taxa (Sphingomonas spp.) known to express antigenic glycosphingolipid products. However, memory and activated CD8+ T cells were also expanded in RF mice, prompting us to test whether CD8+ T cell activity might be further depleting iNKT cells. Indeed, iNKT cell numbers were restored in RF mice bearing the CD8α−/− genotype or in adult wild-type RF mice acutely depleted with anti-CD8 Ab. Moreover, iNKT cells were restored in RF mice bearing the Prf1−/− phenotype, a key component of cytolytic function. These findings indicate that commensal microbiota, through positive (antigenic drive) and negative (cytolytic depletion by CD8+ T cells) mechanisms, profoundly shape the iNKT cell compartment. Because individuals greatly vary in the composition of their microbial communities, enteric microbiota may play an important epigenetic role in the striking differences in iNKT cell abundance in humans and therefore in their potential contribution to host immune status. PMID:20048124

  5. Formation of thin walled ceramic solid oxide fuel cells

    DOEpatents

    Claar, Terry D.; Busch, Donald E.; Picciolo, John J.

    1989-01-01

    To reduce thermal stress and improve bonding in a high temperature monolithic solid oxide fuel cell (SOFC), intermediate layers are provided between the SOFC's electrodes and electrolyte which are of different compositions. The intermediate layers are comprised of a blend of some of the materials used in the electrode and electrolyte compositions. Particle size is controlled to reduce problems involving differential shrinkage rates of the various layers when the entire structure is fired at a single temperature, while pore formers are provided in the electrolyte layers to be removed during firing for the formation of desired pores in the electrode layers. Each layer includes a binder in the form of a thermosetting acrylic which during initial processing is cured to provide a self-supporting structure with the ceramic components in the green state. A self-supporting corrugated structure is thus formed prior to firing, which the organic components of the binder and plasticizer removed during firing to provide a high strength, high temperature resistant ceramic structure of low weight and density.

  6. Kaede-Centrin1 labeling of mother and daughter centrosomes in mammalian neocortical neural progenitors

    PubMed Central

    Imai, Janice H.; Wang, Xiaoqun; Shi, Song-Hai

    2010-01-01

    The importance of the centrosome in regulating basic cellular processes and cell fate decisions has become increasingly evident from recent studies tracing the etiology of developmental disorders to mutations in genes encoding centrosomal proteins (Nigg and Raff, 2009). This unit details a protocol for a fluorescence-based pulse-labeling of centrioles of neural progenitor cells in the developing neocortex of mice. In utero electroporation of Kaede-Centrin1 followed by in utero or ex vivo photoconversion allows a direct monitoring of the inheritance of centrosomes containing centrioles of different ages in dividing neocortical neural progenitors (i.e., radial glial cells). This is achieved by combining the irreversible photoconversion capacity of Kaede protein from green to red fluorescence with the faithful duplication of the centrosome during each cell cycle. After two mitotic divisions following photoconversion, mother centrosomes containing the original labeled centriole appear in both red and green fluorescence, and can be distinguished from daughter centrosomes which appear in green fluorescence only. This facilitates the study of the inheritance and behavior of the mother and daughter centrosomes in asymmetric cell divisions in the developing mammalian neocortex. PMID:20938915

  7. A microfluidic device for uniform-sized cell spheroids formation, culture, harvesting and flow cytometry analysis.

    PubMed

    Patra, Bishnubrata; Chen, Ying-Hua; Peng, Chien-Chung; Lin, Shiang-Chi; Lee, Chau-Hwang; Tung, Yi-Chung

    2013-01-01

    Culture of cells as three-dimensional (3D) aggregates, named spheroids, possesses great potential to improve in vitro cell models for basic biomedical research. However, such cell spheroid models are often complicated, cumbersome, and expensive compared to conventional Petri-dish cell cultures. In this work, we developed a simple microfluidic device for cell spheroid formation, culture, and harvesting. Using this device, cells could form uniformly sized spheroids due to strong cell-cell interactions and the spatial confinement of microfluidic culture chambers. We demonstrated cell spheroid formation and culture in the designed devices using embryonic stem cells, carcinoma cells, and fibroblasts. We further scaled up the device capable of simultaneously forming and culturing 5000 spheroids in a single chip. Finally, we demonstrated harvesting of the cultured spheroids from the device with a simple setup. The harvested spheroids possess great integrity, and the cells can be exploited for further flow cytometry assays due to the ample cell numbers. PMID:24396525

  8. Biofuel cells: Electro-enzymatic oxidation of formate using formate dehydrogenase, NAD{sup +}, diaphorase, benzyl viologen, and graphite

    SciTech Connect

    Palmmore, G.T.R.; Bertschy, H.; Bergens, S.H.; Whitesides, G.M.

    1993-12-31

    The authors have developed an effective electrochemical method to regenerate nicotinamide adenine dinucleotide (NAD{sup +}) from NADH. Diaphorase (D) was used to oxidize NADH to NAD{sup +} with the concomitant reduction of two equivalents of benzylviologen (BV{sup 2+}) to the mono cation, BV{sup +} to the mono cation, BV{sup +}. The BV{sup +} was then electrochemically oxidized to BV{sup 2+} at a carbon-felt anode: NADH + 2BV{sup 2+} --(D)--> NAD{sup +} + 2BV{sup +} 2BV{sup +}-->(anode)-->2BV{sup 2+}. This system was incorporated into an enzymatic fuel cell that used formate as fuel. Formate dehydrogenase (FDH) was used to oxidize formate to CO{sub 2} with the concomitant 2 e{sup {minus}}, 2H{sup +} reduction of NAD{sup +} to NADH. The NADH was then regenerated using the system described above. The anode of the fuel cell was used to oxidize BV{sup +} to BV{sup 2+}. Blackened Pt gauze as used as the cathode of the fuel cell. The working parameters of the formate/O{sub 2} biofuel cell will be presented including methods to develop this system into the more complex methanol/O{sub 2} biofuel cell.

  9. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner

    SciTech Connect

    Takegahara, Yuki; Yamanouchi, Keitaro Nakamura, Katsuyuki; Nakano, Shin-ichi; Nishihara, Masugi

    2014-05-15

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether direct cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. - Highlights: • We examined the effects of pre- and mature adipocytes on myogenesis in vitro. • Preadipocytes and mature adipocytes affect myoblast fusion. • Preadipocytes play an important role in maintaining skeletal muscle mass. • Mature adipocytes lead to muscle deterioration observed in skeletal muscle pathologies.

  10. Cutting edge: Bcl6-interacting corepressor contributes to germinal center T follicular helper cell formation and B cell helper function.

    PubMed

    Yang, Jessica A; Tubo, Noah J; Gearhart, Micah D; Bardwell, Vivian J; Jenkins, Marc K

    2015-06-15

    CD4(+) germinal center (GC)-T follicular helper (Tfh) cells help B cells become long-lived plasma cells and memory cells. The transcriptional repressor Bcl6 plays a key role in GC-Tfh formation by inhibiting the expression of genes that promote differentiation into other lineages. We determined whether BCOR, a component of a Polycomb repressive complex that interacts with the Bcl6 BTB domain, influences GC-Tfh differentiation. T cell-targeted BCOR deficiency led to a substantial loss of peptide:MHC class II-specific GC-Tfh cells following Listeria monocytogenes infection and a 2-fold decrease following immunization with a peptide in CFA. The reduction in GC-Tfh cells was associated with diminished plasma cell and GC B cell formation. Thus, T cell-expressed BCOR is critical for optimal GC-Tfh cell differentiation and humoral immunity. PMID:25964495

  11. Humor in Father-Daughter Immigration Narratives of Resistance

    ERIC Educational Resources Information Center

    Gallo, Sarah

    2016-01-01

    This article draws from an ethnography on Mexican immigrant fathers and their children to examine humor in immigration narratives as acts of resistance. The analysis focuses on the devices employed by a father and daughter during their everyday talk and co-narration of an incident with police officers. Findings illustrate how the form and content…

  12. Household Chores: Under What Conditions Do Mothers Lean on Daughters?

    ERIC Educational Resources Information Center

    Crouter, Ann C.; Head, Melissa R.; Bumpus, Matthew F.; McHale, Susan M.

    2001-01-01

    Levels of involvement in household work were compared for sibling pairs in 172 families. In families where mothers had high work demands, daughters performed significantly more work than sons, and younger sisters did more work than older brothers. The gap in siblings' gender role attitudes was significantly greater in families wherein girls…

  13. Hoping for a Phoenix: Shanghai Fathers and Their Daughters

    ERIC Educational Resources Information Center

    Xu, Qiong; Yeung, Wei-Jun Jean

    2013-01-01

    Intergenerational relationships and gender roles in China are in transition because of ideational and structural changes resulting from social movements and policies in the past half a century. Using a mixed-methods design, we examine Shanghai fathers' involvement in their adolescent daughters' lives. In contrast to traditional…

  14. Relationships between Caregiving Daughters and Their Elderly Mothers.

    ERIC Educational Resources Information Center

    Walker, Alexis J.; Allen, Katherine R.

    1991-01-01

    Qualitative study of 29 pairs of widowed mothers and caregiving daughters employed social exchange theory to identify three relationship types: intrinsic, ambivalent, and conflicted. Found types differed in extent to which women received rewards from interacting with partner, experienced costs in interactions, handled conflicts in relationships,…

  15. Working Mothers and Daughters' Sex-Role Indentification in Brazil.

    ERIC Educational Resources Information Center

    Pasquali, Luiz; Callegari, Anna Irma

    1978-01-01

    Responses of 104 female adolescents to the Thematic Apperception Test (TAT) 7GF card and to the Scenotest (SCT) were analyzed in order to determine the influence of the mother's place of work (at home or away) and her job satisfaction on the daughter's sex-role identification. (Author/JMB)

  16. Dissident Daughters? The Psychic Life of Class Inheritance

    ERIC Educational Resources Information Center

    Hey, Valerie; George, Rosalyn

    2013-01-01

    This paper arose through a chance meeting between the two authors who are feminist mothers of teenage and 20 years plus daughters. We were attending an Economic and Social Research Council-funded seminar focusing on "new femininities" in the light of post-feminism and their worth and currency within the new politics of consumption and lifestyle.…

  17. Daughters of Tradition: An Educational Program for Girls.

    ERIC Educational Resources Information Center

    Simonelli, Richard

    2001-01-01

    Daughters of Tradition is a facilitated educational program that addresses current issues such as alcohol and drug abuse, domestic violence, and the empowerment of young American Indian women, in a way that blends the spiritual, emotional, mental, physical, and cultural parts of living into a seamless whole. Mind mapping and journal keeping affirm…

  18. A Case Study of a Mother/Daughter Science Club.

    ERIC Educational Resources Information Center

    Chandler, Frances Tate; Parsons, Sharon

    This paper describes a case study of a Mother/Daughter Science Club which was established to explore the issue of adolescent girls' increasingly negative attitudes towards science and math. Data was collected on participants' (n=40, 20 pre-adolescent fifth-grade girls and their mothers) attitudes toward math and science through the use of…

  19. Discovering and Constructing Our Identities: Reading "The Favorite Daughter"

    ERIC Educational Resources Information Center

    Elijah, Rosebud

    2014-01-01

    For everyone--children, parents, teachers--who have experienced instances in their lives where they have been teased, alienated, isolated, shunned, Allen Say gives us the beautifully illustrated book "The Favorite Daughter." In this book (a Notable Social Studies Trade Book for 2013), author and illustrator Say wraps and unwraps issues…

  20. Daughters as caregivers of aging parents: the shattering myth.

    PubMed

    Ron, Pnina

    2009-01-01

    This research study examines adult daughters' measures of coping in their roles as caregivers of aging parents, thus affirming Pearlin, Lieberman, Menaghan & Mullan' model (1981). The model presents the mental health of caregiver daughters as a function of demographic variables, role burden and stresses resulting from other relationships within the family, as well as personality variables such as mastery and self-esteem. The research examined 224 women in Israel and presented four major assumptions relating to the extent of the correlation between: a) the characteristics of the daughter and her emotional wellbeing; b) the stresses and role burden of the caregiver and her emotional wellbeing; c) the caregiver's self image and her emotional wellbeing, and d) gender role orientation and family support and the emotional wellbeing of the caregiver. Research main finding is that gender role orientation of female caregivers affects their well being. The findings indicate mutual relations between all elements of the research model and actually validate all of the four research assumptions. Findings show that of the mediating variables in the model, family support and male gender role orientation moderate the intensity of the stresses experienced by the daughter in her role as caregiver. PMID:19197636

  1. Father-Daughter Incest: Data from an Anonymous Computerized Survey

    ERIC Educational Resources Information Center

    Stroebel, Sandra S.; O'Keefe, Stephen L.; Beard, Keith W.; Kuo, Shih-Ya; Swindell, Samuel V. S.; Kommor, Martin J.

    2012-01-01

    Retrospective data were entered anonymously by 1,521 adult women using computer-assisted self-interview. Nineteen were classified as victims of father-daughter incest, and 241 were classified as victims of sexual abuse by an adult other than their father before reaching 18 years of age. The remaining 1,261 served as controls. Incest victims were…

  2. Energy deposition and radiation quality of radon and radon daughters. Final report

    SciTech Connect

    Karam, L.R.; Caswell, R.S.

    1996-09-09

    This program was aimed at creating a quantitative physical description, at the micrometer and nanometer levels, of the physical interactions of the alpha particles from radon and its daughters with cells at risk in the bronchial epithelium. The authors calculated alpha-particle energy spectra incident upon the cells and also energy deposition spectra in micrometer- and nanometer-sized sites as a function of cell depth, site size, airway diameter, activities of {sup 218}Po and {sup 214}Po, and other parameters. These data are now being applied, using biophysical models of radiation effects, to predict cell killing, mutations, and cell transformation. The model predictions are then compared to experimental biophysical, biochemical, and biological information. These studies contribute to a detailed understanding of the mechanisms of the biological effectiveness of the radiations emitted by radon and its progeny.

  3. Shear flow-induced formation of tubular cell protrusions in multiple myeloma cells

    PubMed Central

    Porat, Ziv; Yaron, Itamar; Katz, Ben-Zion; Kam, Zvi; Geiger, Benjamin

    2011-01-01

    Exposure of live cells to shear flow induces major changes in cell shape, adhesion to the extracellular matrix, and migration. In the present study, we show that exposure of cultured multiple myeloma (MM) cells to shear flow of 4–36 dynes/cm2 triggers the extension of long tubular protrusions (denoted FLow-Induced Protrusions, or FLIPs) in the direction of the flow. These FLIPs were found to be rich in actin, contain few or no microtubules and, apart from endoplasmic reticulum (ER)-like membranal structures, are devoid of organelles. Studying the dynamics of this process revealed that FLIPs elongate at their tips in a shear force-dependent manner, and retract at their bases. Examination of this force dependence revealed considerable heterogeneity in the mechanosensitivity of individual cells, most likely reflecting the diversity of the malignant B-cell population. The mechanisms underlying FLIP formation following mechanical perturbation, and their relevance to the cellular trafficking of MM cells, are discussed. PMID:21344380

  4. Multinuclear giant cell formation is enhanced by down-regulation of Wnt signaling in gastric cancer cell line, AGS

    SciTech Connect

    Kim, Shi-Mun; Kim, Rockki; Ryu, Jae-Hyun; Jho, Eek-Hoon; Song, Ki-Joon; Jang, Shyh-Ing; Kee, Sun-Ho . E-mail: keesh@korea.ac.kr

    2005-08-01

    AGS cells, which were derived from malignant gastric adenocarcinoma tissue, lack E-cadherin-mediated cell adhesion but have a high level of nuclear {beta}-catenin, which suggests altered Wnt signal. In addition, approximately 5% of AGS cells form multinuclear giant cells in the routine culture conditions, while taxol treatment causes most AGS cells to become giant cells. The observation of reduced nuclear {beta}-catenin levels in giant cells induced by taxol treatment prompted us to investigate the relationship between Wnt signaling and giant cell formation. After overnight serum starvation, the shape of AGS cells became flattened, and this morphological change was accompanied by decrease in Myc expression and an increase in the giant cell population. Lithium chloride treatment, which inhibits GSK3{beta} activity, reversed these serum starvation effects, which suggests an inverse relationship between Wnt signaling and giant cell formation. Furthermore, the down-regulation of Wnt signaling caused by the over-expression of ICAT, E-cadherin, and Axin enhanced giant cell formation. Therefore, down-regulation of Wnt signaling may be related to giant cell formation, which is considered to be a survival mechanism against induced cell death.

  5. Parental Encouragement of Dieting Promotes Daughters' Early Dieting

    PubMed Central

    Balantekin, Katherine N.; Savage, Jennifer S.; Marini, Michele E.; Birch, Leann L.

    2014-01-01

    Dieting to lose weight is common among female adolescents. This research investigated the association between maternal and paternal encouragement to diet and their daughters' self-reported “early dieting” (prior to age 11y) and adolescent dieting (between 11y and 15y), and how parental encouragement to diet is related to changes in daughter BMI percentiles. Participants in this study were 174 non-Hispanic white girls and their parents, assessed when daughters were age 9-, 11-, 13-, and 15y. The Parent Encouragement of Child Weight Loss Scale was used to measure encouragement to diet. Logistic regression was used to examine the relationship between parental encouragement to diet and daughters' reports of dieting by 11y and by 15y, adjusting for daughters' weight status at baseline. Compared to girls whose mothers didn't encourage dieting, girls who were encouraged to diet were twice as likely to diet by 11y; girls who were encouraged by their fathers were also twice as likely to diet by 11y. Girls who were encouraged to diet by both parents were 8 times more likely to report early dieting than girls who were not. Neither maternal nor paternal encouragement predicted the emergence of dieting during adolescence. Girls who dieted and had parental encouragement to do so had increases in BMI percentile from 9y to 15y. Findings reveal that parental encouragement to diet may be counterproductive and that parents need alternative approaches to promote healthy patterns of intake and growth among young girls. PMID:24858835

  6. Collagen formation by transformed smooth muscle cells after arterial injury.

    PubMed

    Chidi, C C; DePalma, R G

    1981-01-01

    Twenty-five normocholesterolemic rabbits were sacrificed at intervals up to 60 days after the thoracic aortas were de-endothelialized. Ultrastructural studies of both the re-endothelialized and nonendothelialized intima were done. The smooth muscle cells in the re-endothelialized intima showed segmental structural changes typically associated with transformation to a secretory cell type; abundant accumulations of collagen were in juxtaposition with these cells. The nonendothelialized intima did not demonstrate similar smooth muscle cell changes and collagen accumulation. These observations suggest that regenerating endothelial cells and intimal smooth muscle cells interact to cause smooth muscle cell transformation and collagen accumulation during arterial repair. PMID:7455897

  7. Cutaneous leiomyomatosis in a mother and daughter*

    PubMed Central

    Lencastre, André; Cabete, Joana; Gonçalves, Rui; João, Alexandre; Fidalgo, Ana

    2013-01-01

    A 34-year-old woman with no known medical history was evaluated for multiple painful brown nodules and papules on the anterior aspect of the trunk. She mentioned a history of similar cutaneous findings on her mother. Biopsies of three lesions revealed piloleiomyomata. Renal and adrenal ultrasound revealed an isolated simple cortical cyst, and pelvic and endovaginal ultrasound revealed two uterine myomata. The clinical diagnosis of hereditary leiomyomatosis and renal cell cancer was corroborated by the identification of a heterozygous variant on exon 5 of the fumarate hydratase gene (c.578C>T p.T193I). Identification of the tumor piloleiomyoma should alert the dermatologist to this rare genodermatosis, which is associated with an increased risk of renal cell tumors, demanding multidisciplinary follow-up, and personal and family counseling. PMID:24346898

  8. Mipu1 overexpression protects macrophages from oxLDL-induced foam cell formation and cell apoptosis.

    PubMed

    Qu, Shun-Lin; Fan, Wen-Jing; Zhang, Chi; Guo, Fang; Han, Dan; Pan, Wen-Jun; Li, Wei; Feng, Da-Ming; Jiang, Zhi-Sheng

    2014-12-01

    Mipu1 (myocardial ischemic preconditioning upregulated protein 1) is a novel N-terminal Kruppel-associated box (KRAB)/C2H2 zinc finger superfamily protein, that displays a powerful effect in protecting H9c2 cells from oxidative stress-induced cell apoptosis. The present study aims to investigate the effect of Mipu1 overexpression on oxidized low-density lipoprotein (oxLDL)-induced foam cell formation, cell apoptosis, and its possible mechanisms. New Zealand healthy rabbits were used to establish atherosclerosis model, and serum levels of triglycerides, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol were detected by an automatic biochemical analyzer. Sudan IV staining was used to detect atherosclerotic lesions. The RAW264.7 macrophage cell line was selected as the experimental material. Oil red O staining, high-performance liquid chromatography, and Dil-labeled lipoprotein were used to detect cholesterol accumulation qualitatively and quantitatively, respectively. Flow cytometry was used to determine cell apoptosis. Real-time quantitative polymerase chain reaction (PCR) was used to detect the mRNA expression of the main proteins that are associated with the transport of cholesterol, such as ABCA1, ABCG1, SR-BI, and CD36. Western blot analysis was used to detect the protein expression of Mipu1. There were atherosclerotic lesions in the high-fat diet group with Sudan IV staining. High-fat diet decreased Mipu1 expression and increased CD36 expression significantly at the 10th week compared with standard-diet rabbits. Mipu1 overexpression decreased oxLDL-induced cholesterol accumulation, oxLDL uptake, cell apoptosis, and cleaved caspase-3. Mipu1 overexpression inhibited the oxLDL-induced CD36 mRNA and protein expression, but it did not significantly inhibit the mRNA expression of ABCA1, ABCG1, and SR-BI. Mipu1 overexpression inhibits oxLDL-induced foam cell formation and cell apoptosis. Mipu1 overexpression reduces the

  9. The Daughter's Disenchantment: Incest as Pedagogy in Fairy Tales and Kathryn Harrison's the Kiss

    ERIC Educational Resources Information Center

    Marshall, Elizabeth

    2004-01-01

    The Kiss, is described as a controversial memoir about father-daughter incest that disturbed the cultural silence in a "well heeled" home. The emotional and psychological terrain of the daughter's experience is discussed.

  10. The formation of electronically excited species in the human multiple myeloma cell suspension

    PubMed Central

    Rác, Marek; Sedlářová, Michaela; Pospíšil, Pavel

    2015-01-01

    In this study, evidence is provided on the formation of electronically excited species in human multiple myeloma cells U266 in the growth medium exposed to hydrogen peroxide (H2O2). Two-dimensional imaging of ultra-weak photon emission using highly sensitive charge coupled device camera revealed that the addition of H2O2 to cell suspension caused the formation of triplet excited carbonyls 3(R = O)*. The kinetics of 3(R = O)* formation in the real time, as measured by one-dimensional ultra-weak photon emission using low-noise photomultiplier, showed immediate enhancement followed by a slow decay. In parallel to the formation of 3(R = O)*, the formation of singlet oxygen (1O2) in U266 cells caused by the addition of H2O2 was visualized by the imaging of 1O2 using the green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Additionally, the formation of 1O2 after the addition of H2O2 to cell suspension was detected by electron paramagnetic resonance spin-trapping spectroscopy using 2,2,6,6-tetramethyl-4-piperidone. Presented results indicate that the addition of H2O2 to cell suspension results in the formation of 3(R = O)* and 1O2 in U266 cell suspension. The contribution of the cell-free medium to the formation of electronically excited species was discussed. PMID:25744165

  11. The formation of electronically excited species in the human multiple myeloma cell suspension.

    PubMed

    Rác, Marek; Sedlářová, Michaela; Pospíšil, Pavel

    2015-01-01

    In this study, evidence is provided on the formation of electronically excited species in human multiple myeloma cells U266 in the growth medium exposed to hydrogen peroxide (H2O2). Two-dimensional imaging of ultra-weak photon emission using highly sensitive charge coupled device camera revealed that the addition of H2O2 to cell suspension caused the formation of triplet excited carbonyls (3)(R = O)*. The kinetics of (3)(R = O)* formation in the real time, as measured by one-dimensional ultra-weak photon emission using low-noise photomultiplier, showed immediate enhancement followed by a slow decay. In parallel to the formation of (3)(R = O)*, the formation of singlet oxygen ((1)O2) in U266 cells caused by the addition of H2O2 was visualized by the imaging of (1)O2 using the green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Additionally, the formation of (1)O2 after the addition of H2O2 to cell suspension was detected by electron paramagnetic resonance spin-trapping spectroscopy using 2,2,6,6-tetramethyl-4-piperidone. Presented results indicate that the addition of H2O2 to cell suspension results in the formation of (3)(R = O)* and (1)O2 in U266 cell suspension. The contribution of the cell-free medium to the formation of electronically excited species was discussed. PMID:25744165

  12. Minimally oxidized LDL inhibits macrophage selective cholesteryl ester uptake and native LDL-induced foam cell formation[S

    PubMed Central

    Meyer, Jason M.; Ji, Ailing; Cai, Lei; van der Westhuyzen, Deneys R.

    2014-01-01

    Scavenger receptor-mediated uptake of oxidized LDL (oxLDL) is thought to be the major mechanism of foam cell generation in atherosclerotic lesions. Recent data has indicated that native LDL is also capable of contributing to foam cell formation via low-affinity receptor-independent LDL particle pinocytosis and selective cholesteryl ester (CE) uptake. In the current investigation, Cu2+-induced LDL oxidation was found to inhibit macrophage selective CE uptake. Impairment of selective CE uptake was significant with LDL oxidized for as little as 30 min and correlated with oxidative fragmentation of apoB. In contrast, LDL aggregation, LDL CE oxidation, and the enhancement of scavenger receptor-mediated LDL particle uptake required at least 3 h of oxidation. Selective CE uptake did not require expression of the LDL receptor (LDL-R) and was inhibited similarly by LDL oxidation in LDL-R−/− versus WT macrophages. Inhibition of selective uptake was also observed when cells were pretreated or cotreated with minimally oxidized LDL, indicating a direct inhibitory effect of this oxLDL on macrophages. Consistent with the effect on LDL CE uptake, minimal LDL oxidation almost completely prevented LDL-induced foam cell formation. These data demonstrate a novel inhibitory effect of mildly oxidized LDL that may reduce foam cell formation in atherosclerosis. PMID:24891335

  13. A tale of mother and daughter.

    PubMed

    Yamashita, Yukiko M

    2010-01-01

    Loving science and nature and being a scientist can be very different, yet the two are so intertwined in a scientist's life that you will certainly experience both aspects. This essay presents my perspective on how, as one who loves science and nature, I came to fall in love with centrosome behavior in stem cells and how I came to run a lab as a scientist. When I started, there was a big gap between my love for science and my experience as a scientist. I filled this gap by learning a "laid-back confidence." PMID:20048256

  14. Latina Daughters' Childbearing Attitudes: The Role of Maternal Expectations and Education Communication

    ERIC Educational Resources Information Center

    Mireles-Rios, Rebeca; Romo, Laura F.

    2014-01-01

    Adolescent girls' and their mothers' expectations for their daughters' college attainment, mother-daughter communication about education, and daughters' early childbearing attitudes were examined in 146 U.S.-raised Latina girls (mean age = 14.4 years) and their mostly immigrant mothers. Through structural equation modeling, we…

  15. Staying in School: Maternal Employment and the Timing of Black and White Daughters' School Exit.

    ERIC Educational Resources Information Center

    Wolfer, Loreen T.; Moen, Phyllis

    1996-01-01

    Examines how temporal and status aspects of mothers' jobs during daughters' early childhood, preadolescence, and adolescence affect rate that daughters leave school. Studied 246 white and 188 black daughters aged 18-23. Findings suggest that part-time maternal employment during any point in childhood increases likelihood that black, but not white,…

  16. Homework Headaches: How I Got My Special Needs Daughter to Do Homework

    ERIC Educational Resources Information Center

    Frye, Cyndi

    2007-01-01

    In this article, the author, a graduate student in special education, relates how she got her daughter with special needs to do homework. Her daughter's temper tantrums, when asked to do her homework, ruined the whole evening for their family. The author describes her daughter's homework intervention program which she developed and implemented.…

  17. Adult Daughters and Their Mothers: Harmony or Hostility? Working Paper No. 209.

    ERIC Educational Resources Information Center

    Barnett, Rosalind C.

    This paper addresses the mother-daughter relationship from the perspective of adult daughters. The first section focuses on information and myths about adult daughter-older mother relationships, including popular images and assumptions, misunderstandings, taboos, and mother-bashing. The second section describes initial research into the nature of…

  18. Daughter's Perceptions of Being Mothered by an Incest Survivor: A Phenomenological Study.

    ERIC Educational Resources Information Center

    Voth, Peggy Funk; Tutty, Leslie M.

    1999-01-01

    Presents results of an analysis on the experiences of daughters of incest survivors. Reports that daughters responded with a lack of affection toward their mothers, and had complications in differentiation and integration of a negative self-view. Notes that mother's ultimate disclosure of incest history helped the daughter offset difficulties.…

  19. Stressful and Satisfying Links between Young-Adult Daughters, Their Parents and Society.

    ERIC Educational Resources Information Center

    Watts, Janine A.

    The interpersonal linkages between adult children, their parents, and society are complex. In order to measure the levels of stress and satisfaction present in the relationship of young-adult daughters and their mothers, the Parent-Adult Child Relationships Inventory was administered to 163 mother-daughter pairs. The daughters were 18 to 25 years…

  20. (Mutagenicity of radon and radon daughters)

    SciTech Connect

    Not Available

    1990-01-01

    The current objective of our research is to investigate the dose-response relationship of the lethal and mutagenic effects of exposure of cells to radon and its decay products. Dose-rate dependence will be studied, as well as the nature of the DNA lesions. The effect of DNA repair on the lethal and mutagenic effects of exposure and on the character of the DNA lesions will be investigated by comparing the response of L5178Y strains which differ in their ability to rejoin X radiation-induced DNA double-strand breaks. This report discusses progress incurred from 4/1/1988--10/1/1990. 5 refs., 9 figs., 6 tabs.

  1. Daughter neglect, women's work, and marriage: Pakistan and Bangladesh compared.

    PubMed

    Miller, B D

    1984-01-01

    This article looks at juvenile sex ratios, juvenile mortality, women's work roles and marriage patterns in Pakistan and bangladesh in order to assess whether patterns previously observed in India, namely, daughter neglect in the northwest and equal juvenile sex ratios in the eastern part of the country, are carried over into the 2 adjacent nations, Pakistan and Bangladesh, respectively. The Indian study indicates that nationwide sex ratio data, sample survey data on childhood mortality, longitudinal population records in several locations and ethonographic evidence all point to inequalities in mortality as the prime cause of unbalanced sex ratios. The juvenile sex ratios of Pakistan and Bangladesh are very different from 1 another. Whereas there are no regional contrasts among juvenile sex ratios within Bangladesh, it is greater within Pakistan. Sex ratio data correspond roughly to what the mortality data indicate in terms of the contrast between Pakistan and Bangladesh. The evidence on juvenile mortality in both countries is too scant to support an airtight argument that juvenile females in Pakistan have much higher mortality rates than boys, while mortality rates are more balanced in Bangladesh. But the existing evidence clearly points to that conclusion. The immediate causes of the greater sex-differential mortality in Pakistan cannot be documented in the available ethnographic literature. Biased allocation of food, medical care, and love might be operating. Looking at the economic and sociocultural complex that promotes much differences between Pakistan and Bangladesh, it is argued that, in both countries, class-based variations in both women's work and marriage patterns exist and are important. It is hypothesized that females in Pakistan are little valued for agricultural labor, and pose an economic liability on their families who need to provide a large dowry with her marriage to compensate for the daughter's low economic utility to the agrucultural workforce

  2. Sodium formate induces autophagy and apoptosis via the JNK signaling pathway of photoreceptor cells

    PubMed Central

    WANG, YING; XU, SHAO-LIN; XU, WEN-JING; YANG, HAI-YAN; HU, PING; LI, YU-XIN

    2016-01-01

    Incidents associated with methanol intoxication resulting from the consumption of fake wine occur not infrequently worldwide. Certain individuals are made blind due to methanol poisoning. The present study aimed to investigate the effects of sodium formate exposure on photoreceptor cells (661W cells). The 661W cells were exposed to sodium formate for 6–24 h and cell viability was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Subsequently, the 661W cells were exposed to 15 or 30 mM sodium formate for 24 h. The level of apoptosis was determined using Hoechst 33342/propidium iodide staining, visualizing the cells under a fluorescence microscope, and annexin V-fluorescein isothiocyanate staining, using flow cytometric analysis. Intracellular reactive oxygen species (ROS) were measured using 2′,7′-dichlorofluorescein diacetate (DCFH-DA) staining, followed by flow cytometric analysis. Autophagy of the 661W cells was measured by monodansylcadaverine staining. The activation of phosphorylated c-Jun N-terminal kinase (p-JNK), B-cell lymphoma (Bcl-2), Bcl-2-associated X protein, cleaved caspase-3, cleaved caspase-9 and microtubule-associated protein 1A/1B-light chain 3 (LC3) was assessed by western blotting. The effects of Z-VAD-fmk (a pan-caspase inhibitor) and SP600125 (a JNK inhibitor) on the viability of the sodium formate-induced 661W cells were determined using an MTT assay. Sodium formate treatment induced a decrease in the viability of the 661W cells in a time- and a dose-dependent manner. In addition, sodium formate at concentrations of 15 or 30 mM markedly increased the level of apoptosis and the ROS levels, as measured by DCFH-DA staining of the 661W cells. Additionally, 661W cells exposed to sodium formate for 24 h exhibited increased levels of p-JNK, Bax, cleaved caspase-3, cleaved caspase-9 and LC3II (the phosphatidylethanolamine-modified form of LC3), although the level of Bcl-2 was decreased

  3. Single cell motility and trail formation in populations of microglia

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung Jin

    2009-03-01

    Microglia are a special type of glia cell in brain that has immune responses. They constitute about 20 % of the total glia population within the brain. Compared to other glia cells, microglia are very motile, constantly moving to destroy pathogens and to remove dead neurons. While doing so, they exhibit interesting body shapes, have cell-to-cell communications, and have chemotatic responses to each other. Interestingly, our recent in vitro studies show that their unusual motile behaviors can self-organize to form trails, similar to those in populations of ants. We have studied the changes in the physical properties of these trails by varying the cell population density and by changing the degree of spatial inhomogeneities (``pathogens''). Our experimental observations can be quite faithfully reproduced by a simple mathematical model involving many motile cells whose mechanical motion are driven by actin polymerization and depolymerization process within the individual cell body and by external chemical gradients.

  4. Effects of irradiated biodegradable polymer in endothelial cell monolayer formation

    NASA Astrophysics Data System (ADS)

    Arbeitman, Claudia R.; del Grosso, Mariela F.; Behar, Moni; García Bermúdez, Gerardo

    2013-11-01

    In this work we study cell adhesion, proliferation and cell morphology of endothelial cell cultured on poly-L-lactide acid (PLLA) modified by heavy ion irradiation. Thin films of PLLA samples were irradiated with sulfur (S) at energies of 75 MeV and gold (Au) at 18 MeV ion-beams. Ion beams were provided by the Tandar (Buenos Aires, Argentina) and Tandetron (Porto Alegre, Brazil) accelerators, respectively. The growth of a monolayer of bovine aortic endothelial cells (BAEC) onto unirradiated and irradiated surfaces has been studied by in vitro techniques in static culture. Cell viability and proliferation increased on modified substrates. But the results on unirradiated samples, indicate cell death (necrosis/apoptosis) with the consequent decrease in proliferation. We analyzed the correlation between irradiation parameters and cell metabolism and morphology.

  5. Foreign Body Giant Cell Formation Is Preceded by Lamellipodia Formation and Can Be Attenuated by Inhibition of Rac1 Activation

    PubMed Central

    Jay, Steven M.; Skokos, Eleni; Laiwalla, Farah; Krady, Marie-Marthe; Kyriakides, Themis R.

    2007-01-01

    Macrophages that are recruited to the site of implanted biomaterials undergo fusion to form surface-damaging foreign body giant cells. Exposure of peripheral blood monocytes to interleukin-4 can recapitulate the fusion process in vitro. In this study, we used interleukin-4 to induce multinucleation of murine bone marrow-derived macrophages and observed changes in cell shape, including elongation and lamellipodia formation, before fusion. Because cytoskeletal rearrangements are regulated by small GTPases, we examined the effects of inhibitors of Rho kinase (Y-32885) and Rac activation (NSC23766) on fusion. Y-32885 did not prevent cytoskeletal changes or fusion but limited the extent of multinucleation. NSC23766, on the other hand, inhibited lamellipodia formation and fusion in a dose-dependent manner. In addition, we found that in control cells, these changes were preceded by Rac1 activation. However, NSC23766 did not block the uptake of polystyrene microspheres. Likewise, short interfering RNA knockdown of Rac1 limited fusion without limiting phagocytosis. Thus, phagocytosis and fusion can be partially decoupled based on their susceptibility to NSC23766. Furthermore, poly(ethylene-co-vinyl acetate) scaffolds containing NSC23766 attenuated foreign body giant cell formation in vivo. These observations suggest that targeting Rac1 activation could protect biomaterials without compromising the ability of macrophages to perform beneficial phagocytic functions at implantation sites. PMID:17556592

  6. Formate: an Energy Storage and Transport Bridge between Carbon Dioxide and a Formate Fuel Cell in a Single Device.

    PubMed

    Vo, Tracy; Purohit, Krutarth; Nguyen, Christopher; Biggs, Brenna; Mayoral, Salvador; Haan, John L

    2015-11-01

    We demonstrate the first device to our knowledge that uses a solar panel to power the electrochemical reduction of dissolved carbon dioxide (carbonate) into formate that is then used in the same device to operate a direct formate fuel cell (DFFC). The electrochemical reduction of carbonate is carried out on a Sn electrode in a reservoir that maintains a constant carbon balance between carbonate and formate. The electron-rich formate species is converted by the DFFC into electrical energy through electron release. The product of DFFC operation is the electron-deficient carbonate species that diffuses back to the reservoir bulk. It is possible to continuously charge the device using alternative energy (e.g., solar) to convert carbonate to formate for on-demand use in the DFFC; the intermittent nature of alternative energy makes this an attractive design. In this work, we demonstrate a proof-of-concept device that performs reduction of carbonate, storage of formate, and operation of a DFFC. PMID:26510492

  7. Attitudes and Beliefs of African Immigrant Mothers Living in the US Towards Providing Comprehensive Sex Education to Daughters Aged 12-17 Years: A Pilot Study.

    PubMed

    Agbemenu, Kafuli; Terry, Martha Ann; Hannan, Margaret; Kitutu, Julius; Doswell, Willa

    2016-10-01

    The literature currently contains no comprehensive sex education (CSE) interventions targeting the African immigrant population. African immigrant mothers have been inhibited by several factors from providing their daughters with CSE. The primary aim of this study was to identify attitudes and beliefs of Sub-Saharan immigrant mothers living in the United States towards providing comprehensive sex education to their daughters aged 12-17 years. The study utilized a one-time anonymous nine-question survey. Fifteen women who met the inclusion criteria completed the study survey online or via paper format. African immigrant mothers are willing to allow comprehensive sex to be taught in schools and at home. Accepted education appears to range from religious and moral teaching to some factual information. This research will potentially assist in the designing of more culturally appropriate comprehensive sex education programs for African immigrant mothers and their daughters. PMID:26438661

  8. Nicotinate-Curcumin Impedes Foam Cell Formation from THP-1 Cells through Restoring Autophagy Flux

    PubMed Central

    Gu, Hong-Feng; Li, Hai-Zhe; Tang, Ya-Ling; Tang, Xiao-Qing; Zheng, Xi-Long; Liao, Duan-Fang

    2016-01-01

    Our previous studies have indicated that a novel curcumin derivate nicotinate-curcumin (NC) has beneficial effects on the prevention of atherosclerosis, but the precise mechanisms are not fully understood. Given that autophagy regulates lipid metabolism, the present study was designed to investigate whether NC decreases foam cell formation through restoring autophagy flux in oxidized low-density lipoprotein (ox-LDL)-treated THP-1 cells. Our results showed that ox-LDL (100 μg/ml) was accumulated in THP-1 cells and impaired autophagy flux. Ox-LDL-induced impairment of autophagy was enhanced by treatment with the autophagy inhibitor chloroquine (CQ) and rescued by the autophagy inducer rapamycin. The aggregation of ox-LDL was increased by CQ, but decreased by rapamycin. In addition, colocalization of lipid droplets with LC3-II was remarkably reduced in ox-LDL group. In contrast, NC (10 μM) rescued the impaired autophagy flux by significantly increasing level of LC3-II, the number of autophagolysosomes, and the degradation of p62 in ox-LDL-treated THP-1 cells. Inhibition of the PI3K-Akt-mTOR signaling was required for NC-rescued autophagy flux. Notably, our results showed that NC remarkably promoted the colocalization of lipid droplets with autophagolysosomes, increased efflux of cholesterol, and reduced ox-LDL accumulation in THP-1 cells. However, treatment with 3-methyladenine (3-MA) or CQ reduced the protective effects of NC on lipid accumulation. Collectively, the findings suggest that NC decreases lipid accumulation in THP-1 cells through restoring autophagy flux, and further implicate that NC may be a potential therapeutic reagent to reverse atherosclerosis. PMID:27128486

  9. Nicotinate-Curcumin Impedes Foam Cell Formation from THP-1 Cells through Restoring Autophagy Flux.

    PubMed

    Gu, Hong-Feng; Li, Hai-Zhe; Tang, Ya-Ling; Tang, Xiao-Qing; Zheng, Xi-Long; Liao, Duan-Fang

    2016-01-01

    Our previous studies have indicated that a novel curcumin derivate nicotinate-curcumin (NC) has beneficial effects on the prevention of atherosclerosis, but the precise mechanisms are not fully understood. Given that autophagy regulates lipid metabolism, the present study was designed to investigate whether NC decreases foam cell formation through restoring autophagy flux in oxidized low-density lipoprotein (ox-LDL)-treated THP-1 cells. Our results showed that ox-LDL (100 μg/ml) was accumulated in THP-1 cells and impaired autophagy flux. Ox-LDL-induced impairment of autophagy was enhanced by treatment with the autophagy inhibitor chloroquine (CQ) and rescued by the autophagy inducer rapamycin. The aggregation of ox-LDL was increased by CQ, but decreased by rapamycin. In addition, colocalization of lipid droplets with LC3-II was remarkably reduced in ox-LDL group. In contrast, NC (10 μM) rescued the impaired autophagy flux by significantly increasing level of LC3-II, the number of autophagolysosomes, and the degradation of p62 in ox-LDL-treated THP-1 cells. Inhibition of the PI3K-Akt-mTOR signaling was required for NC-rescued autophagy flux. Notably, our results showed that NC remarkably promoted the colocalization of lipid droplets with autophagolysosomes, increased efflux of cholesterol, and reduced ox-LDL accumulation in THP-1 cells. However, treatment with 3-methyladenine (3-MA) or CQ reduced the protective effects of NC on lipid accumulation. Collectively, the findings suggest that NC decreases lipid accumulation in THP-1 cells through restoring autophagy flux, and further implicate that NC may be a potential therapeutic reagent to reverse atherosclerosis. PMID:27128486

  10. A spindle-independent cleavage pathway controls germ cell formation in Drosophila.

    PubMed

    Cinalli, Ryan M; Lehmann, Ruth

    2013-07-01

    The primordial germ cells (PGCs) are the first cells to form during Drosophila melanogaster embryogenesis. Whereas the process of somatic cell formation has been studied in detail, the mechanics of PGC formation are poorly understood. Here, using four-dimensional multi-photon imaging combined with genetic and pharmacological manipulations, we find that PGC formation requires an anaphase spindle-independent cleavage pathway. In addition to using core regulators of cleavage, including the small GTPase RhoA (Drosophila rho1) and the Rho-associated kinase, ROCK (Drosophila drok), we show that this pathway requires Germ cell-less (GCL), a conserved BTB-domain protein not previously implicated in cleavage mechanics. This alternative form of cell formation suggests that organisms have evolved multiple molecular strategies for regulating the cytoskeleton during cleavage. PMID:23728423

  11. Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels

    NASA Astrophysics Data System (ADS)

    Lai, Janice H.; Kajiyama, Glen; Smith, Robert Lane; Maloney, William; Yang, Fan

    2013-12-01

    Cartilage loss is a leading cause of disability among adults and effective therapy remains elusive. Neonatal chondrocytes (NChons) are an attractive allogeneic cell source for cartilage repair, but their clinical translation has been hindered by scarce donor availability. Here we examine the potential for catalyzing cartilage tissue formation using a minimal number of NChons by co-culturing them with adipose-derived stem cells (ADSCs) in 3D hydrogels. Using three different co-culture models, we demonstrated that the effects of co-culture on cartilage tissue formation are dependent on the intercellular distance and cell distribution in 3D. Unexpectedly, increasing ADSC ratio in mixed co-culture led to increased synergy between NChons and ADSCs, and resulted in the formation of large neocartilage nodules. This work raises the potential of utilizing stem cells to catalyze tissue formation by neonatal chondrocytes via paracrine signaling, and highlights the importance of controlling cell distribution in 3D matrices to achieve optimal synergy.

  12. Human NK cell development requires CD56-mediated motility and formation of the developmental synapse

    PubMed Central

    Mace, Emily M.; Gunesch, Justin T.; Dixon, Amera; Orange, Jordan S.

    2016-01-01

    While distinct stages of natural killer (NK) cell development have been defined, the molecular interactions that shape human NK cell maturation are poorly understood. Here we define intercellular interactions between developing NK cells and stromal cells which, through contact-dependent mechanisms, promote the generation of mature, functional human NK cells from CD34+ precursors. We show that developing NK cells undergo unique, developmental stage-specific sustained and transient interactions with developmentally supportive stromal cells, and that the relative motility of NK cells increases as they move through development in vitro and ex vivo. These interactions include the formation of a synapse between developing NK cells and stromal cells, which we term the developmental synapse. Finally, we identify a role for CD56 in developmental synapse structure, NK cell motility and NK cell development. Thus, we define the developmental synapse leading to human NK cell functional maturation. PMID:27435370

  13. Human NK cell development requires CD56-mediated motility and formation of the developmental synapse.

    PubMed

    Mace, Emily M; Gunesch, Justin T; Dixon, Amera; Orange, Jordan S

    2016-01-01

    While distinct stages of natural killer (NK) cell development have been defined, the molecular interactions that shape human NK cell maturation are poorly understood. Here we define intercellular interactions between developing NK cells and stromal cells which, through contact-dependent mechanisms, promote the generation of mature, functional human NK cells from CD34(+) precursors. We show that developing NK cells undergo unique, developmental stage-specific sustained and transient interactions with developmentally supportive stromal cells, and that the relative motility of NK cells increases as they move through development in vitro and ex vivo. These interactions include the formation of a synapse between developing NK cells and stromal cells, which we term the developmental synapse. Finally, we identify a role for CD56 in developmental synapse structure, NK cell motility and NK cell development. Thus, we define the developmental synapse leading to human NK cell functional maturation. PMID:27435370

  14. A Critical Review of Alpha Radionuclide Therapy-How to Deal with Recoiling Daughters?

    PubMed

    de Kruijff, Robin M; Wolterbeek, Hubert T; Denkova, Antonia G

    2015-01-01

    This review presents an overview of the successes and challenges currently faced in alpha radionuclide therapy. Alpha particles have an advantage in killing tumour cells as compared to beta or gamma radiation due to their short penetration depth and high linear energy transfer (LET). Touching briefly on the clinical successes of radionuclides emitting only one alpha particle, the main focus of this article lies on those alpha-emitting radionuclides with multiple alpha-emitting daughters in their decay chain. While having the advantage of longer half-lives, the recoiled daughters of radionuclides like 224Ra (radium), 223Ra, and 225Ac (actinium) can do significant damage to healthy tissue when not retained at the tumour site. Three different approaches to deal with this problem are discussed: encapsulation in a nano-carrier, fast uptake of the alpha emitting radionuclides in tumour cells, and local administration. Each approach has been shown to have its advantages and disadvantages, but when larger activities need to be used clinically, nano-carriers appear to be the most promising solution for reducing toxic effects, provided there is no accumulation in healthy tissue. PMID:26066613

  15. A Critical Review of Alpha Radionuclide Therapy—How to Deal with Recoiling Daughters?

    PubMed Central

    de Kruijff, Robin M.; Wolterbeek, Hubert T.; Denkova, Antonia G.

    2015-01-01

    This review presents an overview of the successes and challenges currently faced in alpha radionuclide therapy. Alpha particles have an advantage in killing tumour cells as compared to beta or gamma radiation due to their short penetration depth and high linear energy transfer (LET). Touching briefly on the clinical successes of radionuclides emitting only one alpha particle, the main focus of this article lies on those alpha-emitting radionuclides with multiple alpha-emitting daughters in their decay chain. While having the advantage of longer half-lives, the recoiled daughters of radionuclides like 224Ra (radium), 223Ra, and 225Ac (actinium) can do significant damage to healthy tissue when not retained at the tumour site. Three different approaches to deal with this problem are discussed: encapsulation in a nano-carrier, fast uptake of the alpha emitting radionuclides in tumour cells, and local administration. Each approach has been shown to have its advantages and disadvantages, but when larger activities need to be used clinically, nano-carriers appear to be the most promising solution for reducing toxic effects, provided there is no accumulation in healthy tissue. PMID:26066613

  16. Biodistribution of 225Ra citrate in mice: retention of daughter radioisotopes in bone.

    PubMed

    Kennel, Stephen J; Lankford, Trish; Garland, Marc; Sundberg, John P; Mirzadeh, Saed

    2005-11-01

    Alpha-particle-emitting radionuclides have potential for therapy of localized disease due to their high linear energy transformation and short pathlengths. Radiometals that home naturally to bone can be exploited for this purpose, and 223Ra (t(1/2)=11.4 days) recently has been studied for therapy of bone tumors in mice and rats. Actinium-225 (t(1/2)=10 days) is also an attractive radioisotope for endoradiotherapy. In a single decay of a 225Ac nucleus and its subsequent decay daughters, over 27 MeV ( approximately 90% of total energy) is released by sequential emission of four alpha particles, ranging in energy from 5.7 to 8.4 MeV. Although Ac3+ does not home naturally to bone, its parent radioisotope 225Ra (beta(-), t(1/2)=15 days) can be used as an in vivo source for 225Ac. Thus, injection of 225Ra takes advantage of the bone-homing properties of radium coupled with the significant amount of energy released from the 225Ac decay chain. Our data confirm that a large fraction of radium citrate injected intravenously into mice localizes rapidly in bone. Injected doses per gram (ID/g) for 225Ra range from 25% in skull to about 10% in sternum. Once deposited, the 225Ra remains in the bone with a biological half life of >40 days. Furthermore, >95% of the daughter radioisotope, 225Ac, is retained in the bone. However, a significant fraction of one of the daughter radioisotopes, 213Bi, is found in kidney. The biodistribution data indicate that 225Ra injection should be a powerful agent for killing cells associated with bone; however, the toxicity of this radioisotope which is similar to that of other alpha emitters limits the dose that can be tolerated. PMID:16253811

  17. Chemical methods for removing radon and radon daughters from air.

    PubMed

    Stein, L

    1972-03-31

    Liquid bromine trifluoride and the solid complexes ClF(2)SbF(6), BrF(2)SbF(6), BrF(4)Sb(2)F(11), IF(4)(SbF(6))(3) and BrF(2)BiF(6) react spontaneously with radon and radon daughters at 25 degrees C, converting the radioelements to nonvolatile ions and compounds. The reagents can be used in gas-scrubbing units to remove radon and radon daughters from air. The halogen fluoride-antimony pentafluoride complexes may be suitable for purifying air in uranium mines and analyzing radon in air, since they have low dissociation pressures at 25 degrees C and are less hazardous to handle than liquid halogen fluorides. PMID:5013675

  18. Velo-facio-skeletal syndrome in a mother and daughter

    SciTech Connect

    Teebi, A.S.; Meyn, M.S.; Meyers-Seifer, C.H.

    1995-07-31

    We present a woman and her daughter with an apparently new short stature syndrome associated with facial and skeletal anomalies and hypernasality. Manifestations included hypertelorism with broad and high nasal bridge, epicanthal folds, narrow and high arched palate, mild mesomelic brachymelia, short broad hands, prominent finger pads, hyperextensibility of hand joints, small feet, nasal voice, and normal intelligence. The mother had short stubby thumbs and the daughter had posteriorly angulated ears and delayed bone age. The morphology of the nose and the hypernasality are reminiscent to those in the velo-cardio-facial syndrome. High resolution banding and fluorescent in situ hybridization studies showed no evidence of 22q11 deletions. Differentiation from Aarskog syndrome and Robinow syndrome is discussed. 9 refs., 5 figs., 3 tabs.

  19. Sodium formate induces autophagy and apoptosis via the JNK signaling pathway of photoreceptor cells.

    PubMed

    Wang, Ying; Xu, Shao-Lin; Xu, Wen-Jing; Yang, Hai-Yan; Hu, Ping; Li, Yu-Xin

    2016-02-01

    Incidents associated with methanol intoxication resulting from the consumption of fake wine occur not infrequently worldwide. Certain individuals are made blind due to methanol poisoning. The present study aimed to investigate the effects of sodium formate exposure on photoreceptor cells (661W cells). The 661W cells were exposed to sodium formate for 6‑24 h and cell viability was determined using a 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyl‑2H‑tetrazolium bromide (MTT) assay. Subsequently, the 661W cells were exposed to 15 or 30 mM sodium formate for 24 h. The level of apoptosis was determined using Hoechst 33342/propidium iodide staining, visualizing the cells under a fluorescence microscope, and annexin V‑fluorescein isothiocyanate staining, using flow cytometric analysis. Intracellular reactive oxygen species (ROS) were measured using 2',7'‑dichlorofluorescein diacetate (DCFH‑DA) staining, followed by flow cytometric analysis. Autophagy of the 661W cells was measured by monodansylcadaverine staining. The activation of phosphorylated c‑Jun N‑terminal kinase (p‑JNK), B‑cell lymphoma (Bcl‑2), Bcl‑2‑associated X protein, cleaved caspase‑3, cleaved caspase‑9 and microtubule‑associated protein 1A/1B‑light chain 3 (LC3) was assessed by western blotting. The effects of Z‑VAD‑fmk (a pan‑caspase inhibitor) and SP600125 (a JNK inhibitor) on the viability of the sodium formate‑induced 661W cells were determined using an MTT assay. Sodium formate treatment induced a decrease in the viability of the 661W cells in a time‑ and a dose‑dependent manner. In addition, sodium formate at concentrations of 15 or 30 mM markedly increased the level of apoptosis and the ROS levels, as measured by DCFH‑DA staining of the 661W cells. Additionally, 661W cells exposed to sodium formate for 24 h exhibited increased levels of p‑JNK, Bax, cleaved caspase‑3, cleaved caspase‑9 and LC3II (the phosphatidylethanolamine‑modified form

  20. The muscle satellite cell at 50: the formative years

    PubMed Central

    2011-01-01

    In February 1961, Alexander Mauro described a cell 'wedged' between the plasma membrane of the muscle fibre and the surrounding basement membrane. He postulated that it could be a dormant myoblast, poised to repair muscle when needed. In the same month, Bernard Katz also reported a cell in a similar location on muscle spindles, suggesting that it was associated with development and growth of intrafusal muscle fibres. Both Mauro and Katz used the term 'satellite cell' in relation to their discoveries. Today, the muscle satellite cell is widely accepted as the resident stem cell of skeletal muscle, supplying myoblasts for growth, homeostasis and repair. Since 2011 marks both the 50th anniversary of the discovery of the satellite cell, and the launch of Skeletal Muscle, it seems an opportune moment to summarise the seminal events in the history of research into muscle regeneration. We start with the 19th-century pioneers who showed that muscle had a regenerative capacity, through to the descriptions from the mid-20th century of the underlying cellular mechanisms. The journey of the satellite cell from electron microscope curio, to its gradual acceptance as a bona fide myoblast precursor, is then charted: work that provided the foundations for our understanding of the role of the satellite cell. Finally, the rapid progress in the age of molecular biology is briefly discussed, and some ongoing debates on satellite cell function highlighted. PMID:21849021

  1. Programmed cell death for defense against anomaly and tumor formation

    SciTech Connect

    Kondo, Sohei; Norimura, Toshiyuki; Nomura, Taisei

    1995-12-31

    Cell death after exposure to low-level radiation is often considered evidence that radiation is poisonous, however small the dose. Evidence has been accumulating to support the notion that cell death after low-level exposure to radiation results from activation of suicidal genes {open_quote}programmed cell death{close_quote} or {open_quote}apoptosis{close_quote} - for the health of the whole body. This paper gives experimental evidence that embryos of fruit flies and mouse fetuses have potent defense mechanisms against teratogenic or tumorigenic injury caused by radiation and carcinogens, which function through programmed cell death.

  2. Short-lived Rn-222 daughters in cryogenic liquids

    NASA Astrophysics Data System (ADS)

    Pelczar, Krzysztof; Frodyma, Nikodem; Wójcik, Marcin

    2013-08-01

    In this paper a detection method of α emitters from 222Rn decay chain, present in cryogenic liquids, using bare Si-PIN diodes immersed in the liquids is presented. Properties of ionized 222Rn daughters deduced from conducted measurements are outlined. Life-time of positive ions was found to be of the order of 10 s, and nonzero content of electronegative ions was observed.

  3. STS-75 Pilot Horowitz with wife and daughter at SLF

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-75 Pilot Scott J. Horowitz is greeted by wife Lisa Marie and their newborn daughter Arielle after he and six fellow crew members arrived at KSC's Shuttle Landing Facility. The second Shuttle flight of 1996 will be highlighted by the re-flight of the Italian Tethered Satellite System (TSS-1R). Liftoff is slated to occur during a two-and-a-half window opening at 3:18 p.m. EST, Feb. 22.

  4. Short-lived Rn-222 daughters in cryogenic liquids

    SciTech Connect

    Pelczar, Krzysztof; Frodyma, Nikodem; Wójcik, Marcin

    2013-08-08

    In this paper a detection method of α emitters from {sup 222}Rn decay chain, present in cryogenic liquids, using bare Si-PIN diodes immersed in the liquids is presented. Properties of ionized {sup 222}Rn daughters deduced from conducted measurements are outlined. Life-time of positive ions was found to be of the order of 10 s, and nonzero content of electronegative ions was observed.

  5. Cell contact regulates neuroblast formation in the Caenorhabditis elegans lateral epidermis.

    PubMed

    Austin, J; Kenyon, C

    1994-02-01

    A single line of epidermal seam cells lies along each side of the nematode C. elegans. During normal development, one of these cells, V5, produces a neuroblast that will give rise to a sensory structure, the postdeirid. If seam cells located either anterior or posterior to V5 are ablated however, this neuroblast formation is blocked. Because of this requirement for the presence of adjacent seam cells, we have asked whether V5's ability to produce a neuroblast depends on direct contact with its seam cell neighbors. We find that direct contact between seam cells is required for commitment to neuroblast production. Seam cells lose and reform their contacts with each other as they go through rounds of cell division during larval development. Signaling required for neuroblast formation occurs when the seam cells make contact after their first round of division. If this contact is prevented, no neuroblast is made; when it is delayed, the time of signaling is also delayed. The characteristics of these signals suggest that a seam cell must be part of a continuous epithelium in order to develop normally and that signaling may occur via a cell recognition/cell adhesion pathway. The effect of seam cell ablations on neuroblast formation is altered in mab-5(-) animals, suggesting that this HOM-C gene is part of the pathway by which seam cell signaling controls the decision to make a postdeirid neuroblast. PMID:8149911

  6. miR-17 inhibition enhances the formation of kidney cancer spheres with stem cell/tumor initiating cell properties

    PubMed Central

    Lichner, Zsuzsanna; Saleh, Carol; Subramaniam, Venkateswaran; Seivwright, Annetta; Prud'homme, Gerald Joseph; Yousef, George Makram

    2015-01-01

    Renal cell carcinoma (RCC) is an aggressive disease, with 35% chance of metastasis. The ‘cancer stem cell’ hypothesis suggests that a subset of cancer cells possess stem cell properties and is crucial in tumor initiation, metastasis and treatment resistance. We isolated RCC spheres and showed that they exhibit cancer stem cell/tumor initiating cell-like properties including the formation of self-renewing spheres, high tumorigenicity and the ability to differentiate to cell types of the original tumor. Spheres showed increased expression of stem cell-related transcription factors and mesenchymal markers.  miRNAs were differentially expressed between RCC spheres and their parental cells. Inhibition of miR-17 accelerated the formation of RCC spheres which shared molecular characteristics with the spontaneous RCC spheres. Target prediction pointed out TGFβ pathway activation as a possible mechanism to drive RCC sphere formation. We demonstrate that miR-17 overexpression interferes with the TGFβ-EMT axis and hinders RCC sphere formation; and validated TGFBR2 as a direct and biologically relevant target during this process. Thus, a single miRNA may have an impact on the formation of highly tumorigenic cancer spheres of kidney cancer. PMID:25011053

  7. Latina Mother–Daughter Dyads: Relations Between Attachment and Sexual Behavior Under the Influence of Alcohol or Drugs

    PubMed Central

    Dillon, Frank R.; Rojas, Patria; Schwartz, Seth J.; Duan, Rui

    2009-01-01

    Associations among mother-daughter attachment, mother and daughter substance abuse, and daughter’s sexual behavior under the influence of drugs and alcohol were investigated among 158 adult U.S. Latina daughters. Latina daughters were sampled from four mother–daughter dyad types: substance abusing mother and daughter, substance abusing mother only, substance abusing daughter only, and nonsubstance-abusing mother and daughter. Substance abusing daughters with substance abusing mothers, and daughters who were less strongly attached to their mothers, reported more sex under the influence of drugs. Age, marital status, substance abuse, and mother’s substance abuse all influenced the daughter’s sex under the influence of alcohol. An unexpected positive association between attachment and sex under the influence of alcohol was found for daughters who were more closely attached to a substance abusing mother. Implications for future research, and HIV/AIDS and drug prevention and treatment programs for Latinas are discussed. PMID:19399605

  8. Aurora B–mediated localized delays in nuclear envelope formation facilitate inclusion of late-segregating chromosome fragments

    PubMed Central

    Karg, Travis; Warecki, Brandt; Sullivan, William

    2015-01-01

    To determine how chromosome segregation is coordinated with nuclear envelope formation (NEF), we examined the dynamics of NEF in the presence of lagging acentric chromosomes in Drosophila neuroblasts. Acentric chromosomes often exhibit delayed but ultimately successful segregation and incorporation into daughter nuclei. However, it is unknown whether these late-segregating acentric fragments influence NEF to ensure their inclusion in daughter nuclei. Through live analysis, we show that acentric chromosomes induce highly localized delays in the reassembly of the nuclear envelope. These delays result in a gap in the nuclear envelope that facilitates the inclusion of lagging acentrics into telophase daughter nuclei. Localized delays of nuclear envelope reassembly require Aurora B kinase activity. In cells with reduced Aurora B activity, there is a decrease in the frequency of local nuclear envelope reassembly delays, resulting in an increase in the frequency of acentric-bearing, lamin-coated micronuclei. These studies reveal a novel role of Aurora B in maintaining genomic integrity by promoting the formation of a passageway in the nuclear envelope through which late-segregating acentric chromosomes enter the telophase daughter nucleus. PMID:25877868

  9. Endothelial cell motility, coordination and pattern formation during vasculogenesis.

    PubMed

    Czirok, Andras

    2013-01-01

    How vascular networks assemble is a fundamental problem of developmental biology that also has medical importance. To explain the organizational principles behind vascular patterning, we must understand how can tissue level structures be controlled through cell behavior patterns like motility and adhesion that, in turn, are determined by biochemical signal transduction processes? We discuss the various ideas that have been proposed as mechanisms for vascular network assembly: cell motility guided by extracellular matrix alignment (contact guidance), chemotaxis guided by paracrine and autocrine morphogens, and multicellular sprouting guided by cell-cell contacts. All of these processes yield emergent patterns, thus endothelial cells can form an interconnected structure autonomously, without guidance from an external pre-pattern. PMID:23857825

  10. A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells

    PubMed Central

    Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Takigawa-Imamura, Hisako; Yoshimura, Kenji; Miura, Takashi

    2016-01-01

    Plant leaf epidermal cells exhibit a jigsaw puzzle–like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo. PMID:27054467

  11. A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells.

    PubMed

    Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Takigawa-Imamura, Hisako; Yoshimura, Kenji; Miura, Takashi

    2016-04-01

    Plant leaf epidermal cells exhibit a jigsaw puzzle-like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo. PMID:27054467

  12. Mechanical Model of Geometric Cell and Topological Algorithm for Cell Dynamics from Single-Cell to Formation of Monolayered Tissues with Pattern

    PubMed Central

    Kachalo, Sëma; Naveed, Hammad; Cao, Youfang; Zhao, Jieling; Liang, Jie

    2015-01-01

    Geometric and mechanical properties of individual cells and interactions among neighboring cells are the basis of formation of tissue patterns. Understanding the complex interplay of cells is essential for gaining insight into embryogenesis, tissue development, and other emerging behavior. Here we describe a cell model and an efficient geometric algorithm for studying the dynamic process of tissue formation in 2D (e.g. epithelial tissues). Our approach improves upon previous methods by incorporating properties of individual cells as well as detailed description of the dynamic growth process, with all topological changes accounted for. Cell size, shape, and division plane orientation are modeled realistically. In addition, cell birth, cell growth, cell shrinkage, cell death, cell division, cell collision, and cell rearrangements are now fully accounted for. Different models of cell-cell interactions, such as lateral inhibition during the process of growth, can be studied in detail. Cellular pattern formation for monolayered tissues from arbitrary initial conditions, including that of a single cell, can also be studied in detail. Computational efficiency is achieved through the employment of a special data structure that ensures access to neighboring cells in constant time, without additional space requirement. We have successfully generated tissues consisting of more than 20,000 cells starting from 2 cells within 1 hour. We show that our model can be used to study embryogenesis, tissue fusion, and cell apoptosis. We give detailed study of the classical developmental process of bristle formation on the epidermis of D. melanogaster and the fundamental problem of homeostatic size control in epithelial tissues. Simulation results reveal significant roles of solubility of secreted factors in both the bristle formation and the homeostatic control of tissue size. Our method can be used to study broad problems in monolayered tissue formation. Our software is publicly

  13. The direct formate fuel cell with an alkaline anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Bartrom, Amy M.; Haan, John L.

    2012-09-01

    We demonstrate for the first time an operating Direct Formate Fuel Cell employing formate salts as the anode fuel, air or oxygen as the oxidant, a polymer anion exchange membrane, and metal catalysts at the anode and cathode. Operation of the DFFC at 60 °C using 1 M KOOCH and 2 M KOH as the anode fuel and electrolyte and oxygen gas at the cathode produces 144 mW cm-2 of peak power density, 181 mA cm-2 current density at 0.6 V, and an open circuit voltage of 0.931 V. This performance is competitive with alkaline Direct Liquid Fuel Cells (DLFCs) previously reported in the literature and demonstrates that formate fuel is a legitimate contender with alcohol fuels for alkaline DLFCs. A survey of the literature shows that a formate-oxygen fuel cell has a high theoretical potential, and the safe, renewable formate fuel does not poison the anode catalyst.

  14. Talking about familial breast cancer risk: topics and strategies to enhance mother-daughter interactions.

    PubMed

    Fisher, Carla L; Maloney, Erin; Glogowski, Emily; Hurley, Karen; Edgerson, Shawna; Lichtenthal, Wendy G; Kissane, David; Bylund, Carma

    2014-04-01

    A hereditary cancer predisposition can rattle families, creating dysfunctional interactions. Families need assistance navigating conversations about risk. Because mothers and daughters uniquely share breast cancer experiences and risk, there is a particular need for practitioners to assist them with communication. Three focus groups were conducted with 11 mothers with an elevated cancer risk (with adolescent daughters) receiving genetic counseling. We explored three inquiries to capture mother-daughter communication: emergent challenging topics (e.g., health-promotion behavior, daughter's risk, mother's risk of death), factors complicating discussions (e.g., balancing what to share and when, guilt and blaming, confusion about risk and prevention), and strategies enhancing conversations initiated by mothers (e.g., paying attention to daughter's cues) or practitioners (e.g., inviting daughters to appointments). Findings suggested that mothers struggle to balance eliciting daughters' concerns, providing them with support, and imparting knowledge without overwhelming them. We offer mothers and practitioners guidance to help facilitate these conversations. PMID:24633365

  15. Morphology and ultrastructure of Interfilum and Klebsormidium (Klebsormidiales, Streptophyta) with special reference to cell division and thallus formation

    PubMed Central

    Mikhailyuk, Tatiana; Holzinger, Andreas; Massalski, Andrzej; Karsten, Ulf

    2014-01-01

    Representatives of the closely related genera, Interfilum and Klebsormidium, are characterized by unicells, dyads or packets in Interfilum and contrasting uniseriate filaments in Klebsormidium. According to the literature, these distinct thallus forms originate by different types of cell division, sporulation (cytogony) versus vegetative cell division (cytotomy), but investigations of their morphology and ultrastructure show a high degree of similarity. Cell walls of both genera are characterized by triangular spaces between cell walls of neighbouring cells and the parental wall or central space among the walls of a cell packet, exfoliations and projections of the parental wall and cap-like and H-like fragments of the cell wall. In both genera, each cell has its individual cell wall and it also has part of the common parental wall or its remnants. Therefore, vegetative cells of Interfilum and Klebsormidium probably divide by the same type of cell division (sporulation-like). Various strains representing different species of the two genera are characterized by differences in cell wall ultrastructure, particularly the level of preservation, rupture or gelatinization of the parental wall surrounding the daughter cells. The differing morphologies of representatives of various lineages result from features of the parental wall during cell separation and detachment. Cell division in three planes (usual in Interfilum and a rare event in Klebsormidium) takes place in spherical or short cylindrical cells, with the chloroplast positioned perpendicularly or obliquely to the filament (dyad) axis. The morphological differences are mainly a consequence of differing fates of the parental wall after cell division and detachment. The development of different morphologies within the two genera mostly depends on characters such as the shape of cells, texture of cell walls, mechanical interactions between cells and the influence of environmental conditions. PMID:26504365

  16. Functional Anatomy of T Cell Activation and Synapse Formation

    PubMed Central

    Fooksman, David R.; Vardhana, Santosh; Vasiliver-Shamis, Gaia; Liese, Jan; Blair, David; Waite, Janelle; Sacristán, Catarina; Victora, Gabriel; Zanin-Zhorov, Alexandra; Dustin, Michael L.

    2010-01-01

    T cell activation and function require a structured engagement of antigen-presenting cells. These cell contacts are characterized by two distinct dynamics in vivo: transient contacts resulting from promigratory junctions called immunological kinapses or prolonged contacts from stable junctions called immunological synapses. Kinapses operate in the steady state to allow referencing to self-peptide-MHC (pMHC) and searching for pathogen-derived pMHC. Synapses are induced by T cell receptor (TCR) interactions with agonist pMHC under specific conditions and correlate with robust immune responses that generate effector and memory T cells. High-resolution imaging has revealed that the synapse is highly coordinated, integrating cell adhesion, TCR recognition of pMHC complexes, and an array of activating and inhibitory ligands to promote or prevent T cell signaling. In this review, we examine the molecular components, geometry, and timing underlying kinapses and synapses. We integrate recent molecular and physiological data to provide a synthesis and suggest ways forward. PMID:19968559

  17. Colony formation and interleukin 2 production by leukaemic human T cells.

    PubMed Central

    Krajewski, A S; Dewar, A E; Seidelin, P H; Murray, R

    1983-01-01

    PHA-induced colony formation and interleukin 2 (IL-2) production were studied in four patients with T cell leukaemia (three cases OKT4+/T helper and one case OKT8+/T cytotoxic suppressor). Cases of T helper cell leukaemia showed colony formation that was comparable to normal purified blood T cells and was not dependent on the addition of conditioned medium, containing IL-2 activity, to cultures. In contrast the T suppressor cell leukaemia formed colonies only when cultures were supplemented with IL-2 containing medium. When IL-2 production by PHA stimulated cells was measured culture supernatants from the three T helper cell leukaemias all showed normal or high levels of activity, when compared to normal blood mononuclear cells, whereas the T suppressor cell leukaemia showed no activity. PMID:6604606

  18. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation

    NASA Astrophysics Data System (ADS)

    Huebsch, Nathaniel; Lippens, Evi; Lee, Kangwon; Mehta, Manav; Koshy, Sandeep T.; Darnell, Max C.; Desai, Rajiv M.; Madl, Christopher M.; Xu, Maria; Zhao, Xuanhe; Chaudhuri, Ovijit; Verbeke, Catia; Kim, Woo Seob; Alim, Karen; Mammoto, Akiko; Ingber, Donald E.; Duda, Georg N.; Mooney, David J.

    2015-12-01

    The effectiveness of stem cell therapies has been hampered by cell death and limited control over fate. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype. Stem cell behaviour can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials, yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel’s elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel’s elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem cell behaviours in situ.

  19. Intact vinculin protein is required for control of cell shape, cell mechanics, and rac-dependent lamellipodia formation

    NASA Technical Reports Server (NTRS)

    Goldmann, Wolfgang H.; Ingber, Donald E.

    2002-01-01

    Studies were carried out using vinculin-deficient F9 embryonic carcinoma (gamma229) cells to analyze the relationship between structure and function within the focal adhesion protein vinculin, in the context of control of cell shape, cell mechanics, and movement. Atomic force microscopy studies revealed that transfection of the head (aa 1-821) or tail (aa 811-1066) domain of vinculin, alone or together, was unable to fully reverse the decrease in cell stiffness, spreading, and lamellipodia formation caused by vinculin deficiency. In contrast, replacement with intact vinculin completely restored normal cell mechanics and spreading regardless of whether its tyrosine phosphorylation site was deleted. Constitutively active rac also only induced extension of lamellipodia when microinjected into cells that expressed intact vinculin protein. These data indicate that vinculin's ability to physically couple integrins to the cytoskeleton, to mechanically stabilize cell shape, and to support rac-dependent lamellipodia formation all appear to depend on its intact three-dimensional structure.

  20. TCPs, WUSs, and WINDs: families of transcription factors that regulate shoot meristem formation, stem cell maintenance, and somatic cell differentiation

    PubMed Central

    Ikeda, Miho; Ohme-Takagi, Masaru

    2014-01-01

    In contrast to somatic mammalian cells, which cannot alter their fate, plant cells can dedifferentiate to form totipotent callus cells and regenerate a whole plant, following treatment with specific phytohormones. However, the regulatory mechanisms and key factors that control differentiation-dedifferentiation and cell totipotency have not been completely clarified in plants. Recently, several plant transcription factors that regulate meristem formation and dedifferentiation have been identified and include members of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP), WUSCHEL (WUS), and WOUND INDUCED DEDIFFERENTIATION (WIND1) families. WUS and WIND positively control plant cell totipotency, while TCP negatively controls it. Interestingly, TCP is a transcriptional activator that acts as a negative regulator of shoot meristem formation, and WUS is a transcriptional repressor that positively maintains totipotency of the stem cells of the shoot meristem. We describe here the functions of TCP, WUS, and WIND transcription factors in the regulation of differentiation-dedifferentiation by positive and negative transcriptional regulators. PMID:25232356

  1. Directional Bleb Formation in Spherical Cells under Temperature Gradient

    PubMed Central

    Oyama, Kotaro; Arai, Tomomi; Isaka, Akira; Sekiguchi, Taku; Itoh, Hideki; Seto, Yusuke; Miyazaki, Makito; Itabashi, Takeshi; Ohki, Takashi; Suzuki, Madoka; Ishiwata, Shin'ichi

    2015-01-01

    Living cells sense absolute temperature and temporal changes in temperature using biological thermosensors such as ion channels. Here, we reveal, to our knowledge, a novel mechanism of sensing spatial temperature gradients within single cells. Spherical mitotic cells form directional membrane extensions (polar blebs) under sharp temperature gradients (≥∼0.065°C μm−1; 1.3°C temperature difference within a cell), which are created by local heating with a focused 1455-nm laser beam under an optical microscope. On the other hand, multiple nondirectional blebs are formed under gradual temperature gradients or uniform heating. During heating, the distribution of actomyosin complexes becomes inhomogeneous due to a break in the symmetry of its contractile force, highlighting the role of the actomyosin complex as a sensor of local temperature gradients. PMID:26200871

  2. Methanolic Extract Isolated from Root of Lycoris aurea Inhibits Cancer Cell Growth and Endothelial Cell Tube Formation In Vitro

    PubMed Central

    Kang, Moo Rim; Lee, Chang Woo; Yun, Jieun; Oh, Soo Jin; Park, Song-Kyu; Lee, Kiho; Kim, Hwan Mook; Han, Sang-Bae; Kim, Hyoung-Chin

    2012-01-01

    In this study, we investigated the effect of methanolic extract isolated from the root of Lycoris aurea (LA) on the growth of cancer cells and the tube formation activity of endothelial cells. Various cancer cells were treated with LA at doses of 0.3, 1, 3, 10 or 30 μg/ml and LA significantly suppressed the growth of several cancer cell lines, including ACHN, HCT-15, K-562, MCF-7, PC-3 and SK-OV-3, in a dose-dependent manner. We also found that LA induced cell cycle arrest at G2/M phase in ACHN renal cell adenocarcinoma cells. Further study demonstrated that LA concentration-dependently inhibited the tube formation, which is a widely used in vitro model of reorganization stage of angiogenesis, in human umbilical vein endothelial cells. Collectively, these results show that LA inhibits the growth of cancer cells and tube formation of endothelial cells and the growth-inhibitory effect of LA might be mediated, at least in part, by blocking cell cycle progression. PMID:24278587

  3. Midbody remnant licenses primary cilia formation in epithelial cells.

    PubMed

    Ott, Carolyn M

    2016-08-01

    Tethered midbody remnants dancing across apical microvilli, encountering the centrosome, and beckoning forth a cilium-who would have guessed this is how polarized epithelial cells coordinate the end of mitosis and the beginning of ciliogenesis? New evidence from Bernabé-Rubio et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201601020) supports this emerging model. PMID:27482049

  4. Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 macrophage cells

    SciTech Connect

    Islam, Shamima; Hassan, Ferdaus; Tumurkhuu, Gantsetseg; Dagvadorj, Jargalsaikhan; Koide, Naoki; Naiki, Yoshikazu; Mori, Isamu; Yoshida, Tomoaki; Yokochi, Takashi . E-mail: yokochi@aichi-med-u.ac.jp

    2007-08-24

    Lipopolysaccharide (LPS) is a potent bone resorbing factor. The effect of LPS on osteoclast formation was examined by using murine RAW 264.7 macrophage cells. LPS-induced the formation of multinucleated giant cells (MGC) in RAW 264.7 cells 3 days after the exposure. MGCs were positive for tartrate-resistant acid phosphatase (TRAP) activity. Further, MGC formed resorption pits on calcium-phosphate thin film that is a substrate for osteoclasts. Therefore, LPS was suggested to induce osteoclast formation in RAW 264.7 cells. LPS-induced osteoclast formation was abolished by anti-tumor necrosis factor (TNF)-{alpha} antibody, but not antibodies to macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-{kappa}B ligand (RANKL). TNF-{alpha} might play a critical role in LPS-induced osteoclast formation in RAW 264.7 cells. Inhibitors of NF-{kappa}B and stress activated protein kinase (SAPK/JNK) prevented the LPS-induced osteoclast formation. The detailed mechanism of LPS-induced osteoclast formation is discussed.

  5. Conversion of quiescent niche cells to somatic stem cells causes ectopic niche formation in the Drosophila testis

    PubMed Central

    Hétié, Phylis; de Cuevas, Margaret; Matunis, Erika

    2014-01-01

    Summary Adult stem cells reside in specialized regulatory microenvironments, or niches, where local signals ensure stem cell maintenance. The Drosophila testis contains a well-characterized niche wherein signals from post-mitotic hub cells promote maintenance of adjacent germline stem cells and somatic cyst stem cells (CySCs). Hub cells were considered to be terminally differentiated; here we show that they can give rise to CySCs. Genetic ablation of CySCs triggers hub cells to transiently exit quiescence, delaminate from the hub, and convert into functional CySCs. Ectopic Cyclin D-Cdk4 expression in hub cells is also sufficient to trigger their conversion into CySCs. In both cases, this conversion causes the formation of multiple ectopic niches over time. Therefore, our work provides a model for understanding how oncogenic mutations in quiescent niche cells could promote loss of quiescence, changes in cell fate, and aberrant niche expansion more generally. PMID:24746819

  6. Gastrodin inhibits cell proliferation in vascular smooth muscle cells and attenuates neointima formation in vivo

    PubMed Central

    ZHU, LIHUA; GUAN, HONGJING; CUI, CHANGPING; TIAN, SONG; YANG, DA; WANG, XINAN; ZHANG, SHUMING; WANG, LANG; JIANG, HONG

    2012-01-01

    Vascular smooth muscle cell (VSMC) proliferation plays a critical role in the development of vascular diseases. In the present study, we tested the efficacy and the mechanisms of action of gastrodin, a bioactive component of the Chinese herb Gastrodia elata Bl, in relation to platelet-derived growth factor-BB (PDGF-BB)-dependent cell proliferation and neointima formation after acute vascular injury. Cell experiments were performed with VSMCs isolated from rat aortas. WST and BrdU incorporation assays were used to evaluate VSMC proliferation. Eight-week-old C57BL/6 mice were used for the animal experiments. Gastrodin (150 mg/kg/day) was administered in the animal chow for 14 days, and the mice were subjected to wire injury of the left carotid artery. Our data demonstrated that gastrodin attenuated the VSMC proliferation induced by PDGF-BB, as assessed by WST assay and BrdU incorporation. Gastrodin influenced the S-phase entry of VSMCs and stabilised p27Kip1 expression. In addition, pre-incubation with sinomenine prior to PDGF-BB stimulation led to increased smooth muscle-specific gene expression, thereby inhibiting VSMC dedifferentiation. Gastrodin treatment also reduced the intimal area and the number of PCNA-positive cells. Furthermore, PDGF-BB-induced phosphorylation of ERK1/2, p38 MAPK, Akt and GSK3β was suppressed by gastrodin. Our results suggest that gastrodin can inhibit VSMC proliferation and attenuate neointimal hyperplasia in response to vascular injury. Furthermore, the ERK1/2, p38 MAPK and Akt/GSK3β signalling pathways were found to be involved in the effects of gastrodin. PMID:22922870

  7. Fibrinogen-Induced Streptococcus mutans Biofilm Formation and Adherence to Endothelial Cells

    PubMed Central

    Lombardo Bedran, Telma Blanca; Azelmat, Jabrane; Palomari Spolidorio, Denise

    2013-01-01

    Streptococcus mutans, the predominant bacterial species associated with dental caries, can enter the bloodstream and cause infective endocarditis. The aim of this study was to investigate S. mutans biofilm formation and adherence to endothelial cells induced by human fibrinogen. The putative mechanism by which biofilm formation is induced as well as the impact of fibrinogen on S. mutans resistance to penicillin was also evaluated. Bovine plasma dose dependently induced biofilm formation by S. mutans. Of the various plasma proteins tested, only fibrinogen promoted the formation of biofilm in a dose-dependent manner. Scanning electron microscopy observations revealed the presence of complex aggregates of bacterial cells firmly attached to the polystyrene support. S. mutans in biofilms induced by the presence of fibrinogen was markedly resistant to the bactericidal effect of penicillin. Fibrinogen also significantly increased the adherence of S. mutans to endothelial cells. Neither S. mutans cells nor culture supernatants converted fibrinogen into fibrin. However, fibrinogen is specifically bound to the cell surface of S. mutans and may act as a bridging molecule to mediate biofilm formation. In conclusion, our study identified a new mechanism promoting S. mutans biofilm formation and adherence to endothelial cells which may contribute to infective endocarditis. PMID:24222906

  8. Dynamics of vegetative cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Musgrave, M. E.

    1996-01-01

    Ultrastructural changes of pollen cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana were studied. The pollen cytoplasm develops a complicated ultrastructure and changes dramatically during these stages. Lipid droplets increase after generative cell formation and their organization and distribution change with the developmental stage. Starch grains in amyloplasts increase in number and size during generative and sperm cell formation and decrease at pollen maturity. The shape and membrane system of mitochondria change only slightly. Dictyosomes become very prominent, and numerous associated vesicles are observed during and after sperm cell formation. Endoplasmic reticulum appears extensively as stacks during sperm cell formation. Free and polyribosomes are abundant in the cytoplasm at all developmental stages although they appear denser at certain stages and in some areas. In mature pollen, all organelles are randomly distributed throughout the vegetative cytoplasm and numerous small particles appear. Organization and distribution of storage substances and appearance of these small particles during generative and sperm cell formation and pollen maturation are discussed.

  9. Biofilm formation on polystyrene in detached vs. planktonic cells of polyhydroxyalkanoate-accumulating Halomonas venusta.

    PubMed

    Berlanga, Mercedes; Domènech, Òscar; Guerrero, Ricardo

    2014-12-01

    Biofilm development is characterized by distinct stages of initial attachment, microcolony formation and maturation (sessile cells), and final detachment (dispersal of new, planktonic cells). In this work we examined the influence of polyhydroxyalkanoate (PHA) accumulation on bacterial surface properties and biofilm formation on polystyrene in detached vs. planktonic cells of an environmental strain isolated from microbial mats, Halomonas venusta MAT28. This strain was cultured either in an artificial biofilm in which the cells were immobilized on alginate beads (sessile) or as free-swimming (planktonic) cells. For the two modes of growth, conditions allowing or preventing PHA accumulation were established. Cells detached from alginate beads and their planktonic counterparts were used to study cell surface properties and cellular adhesion on polystyrene. Detached cells showed a slightly higher affinity than planktonic cells for chloroform (Lewis-acid) and a greater hydrophobicity (affinity for hexadecane and hexane). Those surface characteristics of the detached cells may explain their better adhesion on polystyrene compared to planktonic cells. Adhesion to polystyrene was not significantly different between H. venusta cells that had accumulated PHA vs. those that did not. These observations suggest that the surface properties of detached cells clearly differ from those of planktonic cells and that for at least the first 48 h after detachment from alginate beads H. venusta retained the capacity of sessile cells to adhere to polystyrene and to form a biofilm. PMID:26421734

  10. Collagen-IV supported embryoid bodies formation and differentiation from buffalo (Bubalus bubalis) embryonic stem cells

    SciTech Connect

    Taru Sharma, G.; Dubey, Pawan K.; Verma, Om Prakash; Pratheesh, M.D.; Nath, Amar; Sai Kumar, G.

    2012-08-03

    Graphical abstract: EBs formation, characterization and expression of germinal layers marker genes of in vivo developed teratoma using four different types of extracellular matrices. Highlights: Black-Right-Pointing-Pointer Collagen-IV matrix is found cytocompatible for EBs formation and differentiation. Black-Right-Pointing-Pointer Established 3D microenvironment for ES cells development and differentiation into three germ layers. Black-Right-Pointing-Pointer Collagen-IV may be useful as promising candidate for ES cells based therapeutic applications. -- Abstract: Embryoid bodies (EBs) are used as in vitro model to study early extraembryonic tissue formation and differentiation. In this study, a novel method using three dimensional extracellular matrices for in vitro generation of EBs from buffalo embryonic stem (ES) cells and its differentiation potential by teratoma formation was successfully established. In vitro derived inner cell masses (ICMs) of hatched buffalo blastocyst were cultured on buffalo fetal fibroblast feeder layer for primary cell colony formation. For generation of EBs, pluripotent ES cells were seeded onto four different types of extracellular matrices viz; collagen-IV, laminin, fibronectin and matrigel using undifferentiating ES cell culture medium. After 5 days of culture, ESCs gradually grew into aggregates and formed simple EBs having circular structures. Twenty-six days later, they formed cystic EBs over collagen matrix with higher EBs formation and greater proliferation rate as compared to other extracellular matrices. Studies involving histological observations, fluorescence microscopy and RT-PCR analysis of the in vivo developed teratoma revealed that presence of all the three germ layer derivatives viz. ectoderm (NCAM), mesoderm (Flk-1) and endoderm (AFP). In conclusion, the method described here demonstrates a simple and cost-effective way of generating EBs from buffalo ES cells. Collagen-IV matrix was found cytocompatible as it

  11. Biophysical Properties of Scaffolds Modulate Human Blood Vessel Formation from Circulating Endothelial Colony-Forming Cells

    NASA Astrophysics Data System (ADS)

    Critser, Paul J.; Yoder, Mervin C.

    A functional vascular system forms early in development and is continually remodeled throughout the life of the organism. Impairment to the regeneration or repair of this system leads to tissue ischemia, dysfunction, and disease. The process of vascular formation and remodeling is complex, relying on local microenvironmental cues, cytokine signaling, and multiple cell types to function properly. Tissue engineering strategies have attempted to exploit these mechanisms to develop functional vascular networks for the generation of artificial tissues and therapeutic strategies to restore tissue homeostasis. The success of these strategies requires the isolation of appropriate progenitor cell sources which are straightforward to obtain, display high proliferative potential, and demonstrate an ability to form functional vessels. Several populations are of interest including endothelial colony-forming cells, a subpopulation of endothelial progenitor cells. Additionally, the development of scaffolds to deliver and support progenitor cell survival and function is crucial for the formation of functional vascular networks. The composition and biophysical properties of these scaffolds have been shown to modulate endothelial cell behavior and vessel formation. However, further investigation is needed to better understand how these mechanical properties and biophysical properties impact vessel formation. Additionally, several other cell populations are involved in neoangiogenesis and formation of tissue parenchyma and an understanding of the potential impact of these cell populations on the biophysical properties of scaffolds will also be needed to advance these strategies. This chapter examines how the biophysical properties of matrix scaffolds can influence vessel formation and remodeling and, in particular, the impact on in vivo human endothelial progenitor cell vessel formation.

  12. High-Throughput Single-Cell Derived Sphere Formation for Cancer Stem-Like Cell Identification and Analysis

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Chih; Ingram, Patrick N.; Fouladdel, Shamileh; McDermott, Sean P.; Azizi, Ebrahim; Wicha, Max S.; Yoon, Euisik

    2016-06-01

    Considerable evidence suggests that many malignancies are driven by a cellular compartment that displays stem cell properties. Cancer stem-like cells (CSCs) can be identified by expression of cell surface markers or enzymatic activity, but these methods are limited by phenotypic heterogeneity and plasticity of CSCs. An alternative phenotypic methodology based on in-vitro sphere formation has been developed, but it is typically labor-intensive and low-throughput. In this work, we present a 1,024-microchamber microfluidic platform for single-cell derived sphere formation. Utilizing a hydrodynamic capturing scheme, more than 70% of the microchambers capture only one cell, allowing for monitoring of sphere formation from heterogeneous cancer cell populations for identification of CSCs. Single-cell derived spheres can be retrieved and dissociated for single-cell analysis using a custom 96-gene panel to probe heterogeneity within the clonal CSC spheres. This microfluidic platform provides reliable and high-throughput sphere formation for CSC identification and downstream clonal analysis.

  13. High-Throughput Single-Cell Derived Sphere Formation for Cancer Stem-Like Cell Identification and Analysis

    PubMed Central

    Chen, Yu-Chih; Ingram, Patrick N.; Fouladdel, Shamileh; McDermott, Sean P.; Azizi, Ebrahim; Wicha, Max S.; Yoon, Euisik

    2016-01-01

    Considerable evidence suggests that many malignancies are driven by a cellular compartment that displays stem cell properties. Cancer stem-like cells (CSCs) can be identified by expression of cell surface markers or enzymatic activity, but these methods are limited by phenotypic heterogeneity and plasticity of CSCs. An alternative phenotypic methodology based on in-vitro sphere formation has been developed, but it is typically labor-intensive and low-throughput. In this work, we present a 1,024-microchamber microfluidic platform for single-cell derived sphere formation. Utilizing a hydrodynamic capturing scheme, more than 70% of the microchambers capture only one cell, allowing for monitoring of sphere formation from heterogeneous cancer cell populations for identification of CSCs. Single-cell derived spheres can be retrieved and dissociated for single-cell analysis using a custom 96-gene panel to probe heterogeneity within the clonal CSC spheres. This microfluidic platform provides reliable and high-throughput sphere formation for CSC identification and downstream clonal analysis. PMID:27292795

  14. Kinetics of Lipofuscin Formation in Aging Retinal Pigment Epithelium Cells

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon; Mazzitello, K. I.; Arizmendi, C. M.; Grossniklaus, Hans E.

    2010-03-01

    Lipofuscin is a deposit that is formed over time by aggregation and clustering of incompletely degraded membrane material in various types of cells. Lipofuscin is made of free-radical-damaged protein and fat and is known to be present in age- related macular dgeneration (AMD), Alzheimer disease, and Parkinson disease. AMD is the leading cause of blindness in adults. The degradation of retinal pigment epithelium cells (RPE) through accumulation of lipsofuscin is considered a significant pathogenic factor in the development of AMD. We will present the results of a study of the kinetics of lipofuscin growth in RPE cells using Kinetic Monte Carlo simulations and scaling theory on a cluster aggregation model. The model captures the essential physics of lipofuscin growth in the cells. A remarkable feature is that small particles may be removed from the cells while the larger ones become fixed and grow by aggregation. We compare our results with the number of lipofuscin granules in eyes with early age-related degeneration.

  15. Rap1 integrates tissue polarity, lumen formation, and tumorigenicpotential in human breast epithelial cells

    SciTech Connect

    Itoh, Masahiko; Nelson, Celeste M.; Myers, Connie A.; Bissell,Mina J.

    2006-09-29

    Maintenance of apico-basal polarity in normal breast epithelial acini requires a balance between cell proliferation, cell death, and proper cell-cell and cell-extracellular matrix signaling. Aberrations in any of these processes can disrupt tissue architecture and initiate tumor formation. Here we show that the small GTPase Rap1 is a crucial element in organizing acinar structure and inducing lumen formation. Rap1 activity in malignant HMT-3522 T4-2 cells is appreciably higher than in S1 cells, their non-malignant counterparts. Expression of dominant-negative Rap1 resulted in phenotypic reversion of T4-2 cells, led to formation of acinar structures with correct apico-basal polarity, and dramatically reduced tumor incidence despite the persistence of genomic abnormalities. The resulting acini contained prominent central lumina not observed when other reverting agents were used. Conversely, expression of dominant-active Rap1 in T4-2 cells inhibited phenotypic reversion and led to increased invasiveness and tumorigenicity. Thus, Rap1 acts as a central regulator of breast architecture, with normal levels of activation instructing apical polarity during acinar morphogenesis, and increased activation inducing tumor formation and progression to malignancy.

  16. Lumen formation by epithelial cell lines in response to collagen overlay: a morphogenetic model in culture

    SciTech Connect

    Hall, H.G.; Farson, D.A.; Bissel, M.J.

    1982-08-01

    Two cells lines--Madin-Darby canine kidney (MDCK) and normal murine mammary gland (NMuMG)--growing as monolayers on collagen gels were overlaid with another collagen gel. The cells responded to the overlay by undergoing reorganization resulting in the creation of lumina. MDCK cells formed lumina that coalesced to form large cavities comparable in size with a tubule. NMuMG cells formed clusters surrounding small lumina, which appeared similar to acini of glandular tissue. The characteristic arrangements, described here by light and electron microscopy, resembled the morphology of the tissues of cell line origin. MDCK cells, grown in the presence of serum, formed lumina whether or not serum was removed at the time of overlay, whereas NMuMG cells required either a nondialyzable component of serum or hormonal supplements in serum-free defined media. Lumen formation was delayed by MDCK cells in the presence of the glutamine analog 6-diazo-5-oxo-L-norleucine, but this compound did not affect NMuMG lumen formation. In both cell lines, lumen formation was unaffected by the absence of sulfate, the presence of an inhibitor of sulfate glycosaminoglycan synthesis, or an inhibitor of collagen synthesis. DNA synthesis accompanied lumen formation but was not required.

  17. Application of laser annealing to solar cell junction formation

    NASA Technical Reports Server (NTRS)

    Katzeff, J. S.; Lopez, M.; Josephs, R. H.

    1981-01-01

    The possibility of using high-energy Q-switched Nd:glass lasers to form pn junctions in solar cells by annealing ion-implanted substrates is investigated. The properties of laser annealed cells are analyzed by electrical, transmission electron microscopy, Rutherford backscattering and secondary ion mass spectrometry techniques. Tests indicate the laser annealed substrates to be damage-free and electrically active. Similar reference analysis of ion-implanted furnace-annealed substrates reveals the presence of residual defects in the form of dislocation lines and loops with substantial impurity redistribution evident for some anneal temperature/time regimes. Fabricated laser annealed cells exhibit excellent conversion efficiency. It is noted that additional improvements are anticipated once the anneal parameters for a back surface field are optimized.

  18. Rapid Formation of Cell Aggregates and Spheroids Induced by a "Smart" Boronic Acid Copolymer.

    PubMed

    Amaral, Adérito J R; Pasparakis, George

    2016-09-01

    Cell surface engineering has emerged as a powerful approach to forming cell aggregates/spheroids and cell-biomaterial ensembles with significant uses in tissue engineering and cell therapeutics. Herein, we demonstrate that cell membrane remodeling with a thermoresponsive boronic acid copolymer induces the rapid formation of spheroids using either cancer or cardiac cell lines under conventional cell culture conditions at minute concentrations. It is shown that the formation of well-defined spheroids is accelerated by at least 24 h compared to non-polymer-treated controls, and, more importantly, the polymer allows for fine control of the aggregation kinetics owing to its stimulus response to temperature and glucose content. On the basis of its simplicity and effectiveness to promote cellular aggregation, this platform holds promise in three-dimensional tissue/tumor modeling and tissue engineering applications. PMID:27571512

  19. Inhibition of macrophage-derived foam cell formation by ezetimibe via the caveolin-1/MAPK pathway.

    PubMed

    Qin, Li; Yang, Yun-Bo; Yang, Yi-Xin; Zhu, Neng; Liu, Zheng; Ni, Ya-Guang; Li, Shun-Xiang; Zheng, Xi-Long; Liao, Duan-Fang

    2016-02-01

    Ezetimibe, a selective inhibitor of intestinal cholesterol absorption, effectively reduces plasma cholesterol, but its effect on atherosclerosis is unclear. Foam cell formation has been implicated as a key mediator during the development of atherosclerosis. The purpose of this study was to investigate the effects of ezetimibe on foam cell formation and explore the underlying mechanism. The results presented here show that ezetimibe reduces atherosclerotic lesions in apolipoprotein E deficient (apoE-/-) mice by lowering cholesterol levels. Treatment of macrophages with Chol:MβCD resulted in foam cell formation, which was concentration-dependently inhibited by the presence of ezetimibe. Mechanically, ezetimibe treatment downregulated the expression of CD36 and scavenger receptor class B1 (SR-B1), but upregulated the expression of apoE and caveolin-1 in macrophage-derived foam cells, which kept consistent with our microarray results. Moreover, treatment with ezetimibe abrogated the increase of phospho-extracellular signal regulated kinase (ERK) 1/2 and their nuclear accumulation in foam cells. Inhibition of the MAPK pathway by the MEK inhibitor PD98059 attenuated the inhibitory effect of ezetimibe on the expression of p-ERK1/2 and caveolin-1. Taken together, these results showed that ezetimibe suppressed foam cell formation via the caveolin-1/MAPK signalling pathway, suggesting that inhibition of foam cell formation might be a novel mechanism underlying the anti-atherosclerotic effect of ezetimibe. PMID:26666965

  20. Down-regulation of MUC1 in cancer cells inhibits cell migration by promoting E-cadherin/catenin complex formation

    SciTech Connect

    Yuan Zhenglong; Wong, Sandy; Borrelli, Alexander; Chung, Maureen A.

    2007-10-26

    MUC1, a tumor associated glycoprotein, is over-expressed in most cancers and can promote proliferation and metastasis. The objective of this research was to study the role of MUC1 in cancer metastasis and its potential mechanism. Pancreatic (PANC1) and breast (MCF-7) cancer cells with stable 'knockdown' of MUC1 expression were created using RNA interference. {beta}-Catenin and E-cadherin protein expression were upregulated in PANC1 and MCF-7 cells with decreased MUC1 expression. Downregulation of MUC1 expression also induced {beta}-catenin relocation from the nucleus to the cytoplasm, increased E-cadherin/{beta}-catenin complex formation and E-cadherin membrane localization in PANC1 cells. PANC1 cells with 'knockdown' MUC1 expression had decreased in vitro cell invasion. This study suggested that MUC1 may affect cancer cell migration by increasing E-cadherin/{beta}-catenin complex formation and restoring E-cadherin membrane localization.

  1. Mesenchymal Stem Cell (MSC) Aggregate Formation in vivo

    PubMed Central

    Bartosh, Thomas J.; Ylostalo, Joni H.

    2016-01-01

    Human mesenchymal stem/progenitor cells (MSCs) isolated from various adult tissues show remarkable therapeutic potential and are being employed in clinical trials for the treatment of numerous diseases (Prockop et al., 2010). While routes of cell administration vary, profound beneficial effects of MSCs in animal models have been observed following intraperitoneal injections of the cells (Roddy et al., 2011). Similar to MSC spheres formed in culture under conditions where attachment to plastic is not permitted (Bartosh et al., 2010), MSCs injected into the peritoneum of mice spontaneously aggregate into 3D sphere-like structures (Bartosh et al., 2013). During the process of sphere assembly and compaction, MSCs upregulate expression of numerous therapeutic anti-inflammatory and immune modulatory factors. Here we describe the method we previously used for the generation of human bone marrow-derived MSC aggregates/spheres in vivo (Bartosh et al., 2013). By tagging the MSCs with green fluorescent protein (GFP), the aggregates formed can be easily visualized, collected and analyzed for changes in cellular properties and interactions with host immune cells.

  2. Photosynthetic Apparatus Formation during the Cell Cycle of Chlorella

    PubMed Central

    Venediktov, Pavel S.; Chemeris, Yuree K.; Grishina, Natalia A.

    1981-01-01

    Synchronous cell division in cultures of Chlorella vulgaris Beijerinck was induced by intermittent illumination: 9 hours light, 6 hours darkness. The rate of photosynthetic O2 evolution per cell increases 4-fold in a one-step manner at the beginning of the light period, to the same extent as the increase in cell number. Over the division cycle, the following accumulation times during the light period were found: chlorophyll a, between 2 and 8 hours, chlorophyll b, between 5 and 8 hours, reaction centers of photosystems I and II, between 2 and 6 hours; and cytochrome f, between 2.5 and 5 hours. Cytochrome f accumulation is closely followed by an increase in amplitude of the rapid phase in light-induced absorption increase at 520 nanometers and in intensity of the delayed light emission. Enhancement of the delayed fluorescence yield per flash under continuous illumination (caused by the establishment of the pH difference across the thylakoid membrane) is maximal by the first hour of the light period. These findings, and others described in the text, suggested that the 4-fold growth of photosynthetic apparatus in the course of the cell cycle cannot be the result of gradual rise of electron-transport chain number. Rather, it is the result of a series of successive syntheses of its individual components. The rate-limiting step of electron transport is probably located between plastoquinone and cytochrome f. PMID:16661795

  3. Dominant regulation of interendothelial cell gap formation by calcium-inhibited type 6 adenylyl cyclase

    PubMed Central

    Cioffi, Donna L.; Moore, Timothy M.; Schaack, Jerry; Creighton, Judy R.; Cooper, Dermot M.F.; Stevens, Troy

    2002-01-01

    Acute transitions in cytosolic calcium ([Ca2+]i) through store-operated calcium entry channels catalyze interendothelial cell gap formation that increases permeability. However, the rise in [Ca2+]i only disrupts barrier function in the absence of a rise in cAMP. Discovery that type 6 adenylyl cyclase (AC6; EC 4.6.6.1) is inhibited by calcium entry through store-operated calcium entry pathways provided a plausible explanation for how inflammatory [Ca2+]i mediators may decrease cAMP necessary for endothelial cell gap formation. [Ca2+]i mediators only modestly decrease global cAMP concentrations and thus, to date, the physiological role of AC6 is unresolved. Present studies used an adenoviral construct that expresses the calcium-stimulated AC8 to convert normal calcium inhibition into stimulation of cAMP, within physiologically relevant concentration ranges. Thrombin stimulated a dose-dependent [Ca2+]i rise in both pulmonary artery (PAECs) and microvascular (PMVEC) endothelial cells, and promoted intercellular gap formation in both cell types. In PAECs, gap formation was progressive over 2 h, whereas in PMVECs, gap formation was rapid (within 10 min) and gaps resealed within 2 h. Expression of AC8 resulted in a modest calcium stimulation of cAMP, which virtually abolished thrombin-induced gap formation in PMVECs. Findings provide the first direct evidence that calcium inhibition of AC6 is essential for endothelial gap formation. PMID:12082084

  4. Maternal weight status modulates the effects of restriction on daughters' eating and weight

    PubMed Central

    Francis, LA; Birch, LL

    2008-01-01

    OBJECTIVE To examine the effects of overweight and normal-weight mothers' restriction in child feeding on daughters' eating in the absence of hunger (EAH) and body mass index (BMI) change from age 5 to age 9 y. DESIGN Longitudinal study of the health and development of young girls. SUBJECTS A total of 91 overweight and 80 normal-weight mothers and their daughters, assessed when daughters were ages 5, 7, and 9 y. MEASUREMENTS Measures included maternal restriction of daughters' intake at age 5 y, and daughters' EAH and BMI change from age 5 to 9 y. RESULTS There were no overall differences in the level of restriction that overweight and normal-weight mothers used. However, overweight mothers' restrictive feeding practices when daughters were age 5 y predicted daughters' EAH over time, and higher EAH scores were associated with greater BMI change from age 5 to 9 y. These relationships did not hold for daughters of normal-weight mothers. CONCLUSION More adverse effects of restriction on daughters' EAH, and links between EAH and BMI change were only noted among daughters of overweight mothers. These findings highlight the need for a better understanding of factors that contribute to within-group variation in eating behavior and weight status. PMID:15782227

  5. Pattern formation of Rho GTPases in single cell wound healing

    PubMed Central

    Simon, Cory M.; Vaughan, Emily M.; Bement, William M.; Edelstein-Keshet, Leah

    2013-01-01

    The Rho GTPases—Rho, Rac, and Cdc42—control an enormous variety of processes, many of which reflect activation of these GTPases in spatially confined and mutually exclusive zones. By using mathematical models and experimental results to establish model parameters, we analyze the formation and segregation of Rho and Cdc42 zones during Xenopus oocyte wound repair and the role played by Abr, a dual guanine nucleotide exchange factor–GTPase-activating protein, in this process. The Rho and Cdc42 zones are found to be best represented as manifestations of spatially modulated bistability, and local positive feedback between Abr and Rho can account for the maintenance and dynamic properties of the Rho zone. In contrast, the invocation of an Abr-independent positive feedback loop is required to account for Cdc42 spatial bistability. In addition, the model replicates the results of previous in vivo experiments in which Abr activity is manipulated. Further, simulating the model with two closely spaced wounds made nonintuitive predictions about the Rho and Cdc42 patterns; these predictions were confirmed by experiment. We conclude that the model is a useful tool for analysis of Rho GTPase signaling and that the Rho GTPases can be fruitfully considered as components of intracellular pattern formation systems. PMID:23264464

  6. Study of budding yeast colony formation and its characterizations by using circular granular cell

    NASA Astrophysics Data System (ADS)

    Aprianti, D.; Haryanto, F.; Purqon, A.; Khotimah, S. N.; Viridi, S.

    2016-03-01

    Budding yeast can exhibit colony formation in solid substrate. The colony of pathogenic budding yeast can colonize various surfaces of the human body and medical devices. Furthermore, it can form biofilm that resists drug effective therapy. The formation of the colony is affected by the interaction between cells and with its growth media. The cell budding pattern holds an important role in colony expansion. To study this colony growth, the molecular dynamic method was chosen to simulate the interaction between budding yeast cells. Every cell was modelled by circular granular cells, which can grow and produce buds. Cohesion force, contact force, and Stokes force govern this model to mimic the interaction between cells and with the growth substrate. Characterization was determined by the maximum (L max) and minimum (L min) distances between two cells within the colony and whether two lines that connect the two cells in the maximum and minimum distances intersect each other. Therefore, it can be recognized the colony shape in circular, oval, and irregular shapes. Simulation resulted that colony formation are mostly in oval shape with little branch. It also shows that greater cohesion strength obtains more compact colony formation.

  7. Fibroblast cluster formation on 3D collagen matrices requires cell contraction dependent fibronectin matrix organization.

    PubMed

    da Rocha-Azevedo, Bruno; Ho, Chin-Han; Grinnell, Frederick

    2013-02-15

    Fibroblasts incubated on 3D collagen matrices in serum or lysophosphatidic acid (LPA)-containing medium self-organize into clusters through a mechanism that requires cell contraction. However, in platelet-derived growth factor (PDGF)-containing medium, cells migrate as individuals and do not form clusters even though they constantly encounter each other. Here, we present evidence that a required function of cell contraction in clustering is formation of fibronectin (FN) fibrillar matrix. We found that in serum or LPA but not in PDGF or basal medium, cells organized FN (both serum and cellular) into a fibrillar, detergent-insoluble matrix. Cell clusters developed concomitant with FN matrix formation. FN fibrils accumulated beneath cells and along the borders of cell clusters in regions of cell-matrix tension. Blocking Rho kinase or myosin II activity prevented FN matrix assembly and cell clustering. Using siRNA silencing and function-blocking antibodies and peptides, we found that cell clustering and FN matrix assembly required α5β1 integrins and fibronectin. Cells were still able to exert contractile force and compact the collagen matrix under the latter conditions, which showed that contraction was not sufficient for cell clustering to occur. Our findings provide new insights into how procontractile (serum/LPA) and promigratory (PDGF) growth factor environments can differentially regulate FN matrix assembly by fibroblasts interacting with collagen matrices and thereby influence mesenchymal cell morphogenetic behavior under physiologic circumstances such as wound repair, morphogenesis and malignancy. PMID:23117111

  8. Dscam-Mediated Cell Recognition Regulates Neural Circuit Formation

    PubMed Central

    Hattori, Daisuke; Millard, S. Sean; Wojtowicz, Woj M.; Zipursky, S. Lawrence

    2009-01-01

    The Dscam family of immunoglobulin cell surface proteins mediates recognition events between neurons that play an essential role in the establishment of neural circuits. The Drosophila Dscam1 locus encodes tens of thousands of cell surface proteins via alternative splicing. These isoforms exhibit exquisite isoform-specific binding in vitro that mediates homophilic repulsion in vivo. These properties provide the molecular basis for self-avoidance, an essential developmental mechanism that allows axonal and dendritic processes to uniformly cover their synaptic fields. In a mechanistically similar fashion, homophilic repulsion mediated by Drosophila Dscam2 prevents processes from the same class of cells from occupying overlapping synaptic fields through a process called tiling. Genetic studies in the mouse visual system support the view that vertebrate DSCAM also promotes both self-avoidance and tiling. By contrast, DSCAM and DSCAM-L promote layer-specific targeting in the chick visual system, presumably through promoting homophilic adhesion. The fly and mouse studies underscore the importance of homophilic repulsion in regulating neural circuit assembly, whereas the chick studies suggest that DSCA Mproteins may mediate a variety of different recognition events during wiring in a context-dependent fashion. PMID:18837673

  9. Oligomer Formation of Tau Protein Hyperphosphorylated in Cells*

    PubMed Central

    Tepper, Katharina; Biernat, Jacek; Kumar, Satish; Wegmann, Susanne; Timm, Thomas; Hübschmann, Sabrina; Redecke, Lars; Mandelkow, Eva-Maria; Müller, Daniel J.; Mandelkow, Eckhard

    2014-01-01

    Abnormal phosphorylation (“hyperphosphorylation”) and aggregation of Tau protein are hallmarks of Alzheimer disease and other tauopathies, but their causative connection is still a matter of debate. Tau with Alzheimer-like phosphorylation is also present in hibernating animals, mitosis, or during embryonic development, without leading to pathophysiology or neurodegeneration. Thus, the role of phosphorylation and the distinction between physiological and pathological phosphorylation needs to be further refined. So far, the systematic investigation of highly phosphorylated Tau was difficult because a reliable method of preparing reproducible quantities was not available. Here, we generated full-length Tau (2N4R) in Sf9 cells in a well defined phosphorylation state containing up to ∼20 phosphates as judged by mass spectrometry and Western blotting with phospho-specific antibodies. Despite the high concentration in living Sf9 cells (estimated ∼230 μm) and high phosphorylation, the protein was not aggregated. However, after purification, the highly phosphorylated protein readily formed oligomers, whereas fibrils were observed only rarely. Exposure of mature primary neuronal cultures to oligomeric phospho-Tau caused reduction of spine density on dendrites but did not change the overall cell viability. PMID:25339173

  10. Oxygen-consuming chlor alkali cell configured to minimize peroxide formation

    DOEpatents

    Chlistunoff, Jerzy B.; Lipp, Ludwig; Gottesfeld, Shimshon

    2006-08-01

    Oxygen-consuming zero gap chlor-alkali cell was configured to minimize peroxide formation. The cell included an ion-exchange membrane that divided the cell into an anode chamber including an anode and a cathode chamber including an oxygen gas diffusion cathode. The cathode included a single-piece of electrically conducting graphitized carbon cloth. Catalyst and polytetrafluoroethylene were attached to only one side of the cloth. When the cathode was positioned against the cation exchange membrane with the catalyst side away from the membrane, electrolysis of sodium chloride to chlorine and caustic (sodium hydroxide) proceeded with minimal peroxide formation.

  11. Effect of deformations and orientations in 100Sn daughter radioactivity

    NASA Astrophysics Data System (ADS)

    Sawhney, Gudveen; Sharma, Kanishka; Sharma, Manoj K.; Gupta, Raj K.

    2016-05-01

    Based on the preformed cluster model (PCM), we have extended our earlier study to investigate the effects of nuclear deformations and orientations of nuclei in context of ground-state de-excitation of Xe to Gd parents, resulting in a doubly closed shell 100Sn daughter and the complementary clusters. The comparison is also made with spherical choice of fragments to extract exclusive picture of the dynamics involved. Since PCM is based on collective clusterization picture, the preformation and penetration probabilities are shown to get modified considerably by inclusion of the quadrupole deformations (β2i) alone, which in turn affects the decay half-lives of the clusters.

  12. STS-75 Cmmdr and Pilot greets Horowitz's wife and daughter

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-75 Pilot Scott J. Horowitz is greeted by wife Lisa Marie and their newborn daughter Arielle after he and six fellow crew members -- including Mission Commander Andrew M. Allen at right - - arrived at KSC's Shuttle Landing Facility. The second Shuttle flight of 1996 will be highlighted by the re-flight of the Italian Tethered Satellite System (TSS-1R). Liftoff is slated to occur during a two-and-a-half window opening at 3:18 p.m. EST, Feb. 22.

  13. Daughters' obligation to care in the context of past abuse.

    PubMed

    Wuest, Judith; Malcolm, Jean; Merritt-Gray, Marilyn

    2010-12-01

    Using theoretical sampling, we extended a previous grounded theory study of women's caring through interviews with 16 women currently giving care to parents who had abused them as children to more fully understand daughters' obligation to care in the context of past abuse. Past relationship was characterized by emotional distance, "never being good enough," degradation, control, and unpredictability. Obligation to care was grounded not only in duty to others but also in duty to self. Caregiving was seen as an opportunity for validation and reconciliation. These findings advance knowledge by illuminating how survivors of child maltreatment become caregivers for their abusers. PMID:21058090

  14. Renin, angiotensins, and angiotensin-converting enzyme in neuroblastoma cells: evidence for intracellular formation of angiotensins.

    PubMed Central

    Okamura, T; Clemens, D L; Inagami, T

    1981-01-01

    The mechanism of formation of various peptide hormones in neuronal cells in the brain is not clear. The question of whether brain angiotensin II is formed by an extracellular mechanism as in the peripheral system or by an intracellular mechanism can be answered by using cloned cells in culture. We have screened several neuroblastoma cell lines of rat and mouse origin and found at least three cell lines that contain renin (EC 3.4.99.19), angiotensin-converting enzyme (dipeptidyl carboxypeptidase; peptidyldipeptide hydrolase, EC 3.4.15.1), and angiotensins I and II. This finding was interpreted to indicate that in these cells angiotensin formation takes place by an intracellular mechanism, in contrast to the extracellular mechanism well known to occur in plasma. This study also demonstrates the existence of viable and cloned cell lines that produce renin. PMID:6273896

  15. Inhibition of pluripotent stem cell-derived teratoma formation by small molecules.

    PubMed

    Lee, Mi-Ok; Moon, Sung Hwan; Jeong, Ho-Chang; Yi, Ji-Yeon; Lee, Tae-Hee; Shim, Sung Han; Rhee, Yong-Hee; Lee, Sang-Hun; Oh, Seok-Jeong; Lee, Moo-Yeol; Han, Min-Joon; Cho, Yee Sook; Chung, Hyung-Min; Kim, Kwang-Soo; Cha, Hyuk-Jin

    2013-08-27

    The future of safe cell-based therapy rests on overcoming teratoma/tumor formation, in particular when using human pluripotent stem cells (hPSCs), such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Because the presence of a few remaining undifferentiated hPSCs can cause undesirable teratomas after transplantation, complete removal of these cells with no/minimal damage to differentiated cells is a prerequisite for clinical application of hPSC-based therapy. Having identified a unique hESC signature of pro- and antiapoptotic gene expression profile, we hypothesized that targeting hPSC-specific antiapoptotic factor(s) (i.e., survivin or Bcl10) represents an efficient strategy to selectively eliminate pluripotent cells with teratoma potential. Here we report the successful identification of small molecules that can effectively inhibit these antiapoptotic factors, leading to selective and efficient removal of pluripotent stem cells through apoptotic cell death. In particular, a single treatment of hESC-derived mixed population with chemical inhibitors of survivin (e.g., quercetin or YM155) induced selective and complete cell death of undifferentiated hPSCs. In contrast, differentiated cell types (e.g., dopamine neurons and smooth-muscle cells) derived from hPSCs survived well and maintained their functionality. We found that quercetin-induced selective cell death is caused by mitochondrial accumulation of p53 and is sufficient to prevent teratoma formation after transplantation of hESC- or hiPSC-derived cells. Taken together, these results provide the "proof of concept" that small-molecule targeting of hPSC-specific antiapoptotic pathway(s) is a viable strategy to prevent tumor formation by selectively eliminating remaining undifferentiated pluripotent cells for safe hPSC-based therapy. PMID:23918355

  16. Practical strategies for modulating foam cell formation and behavior

    PubMed Central

    Uitz, Elisabeth; Bahadori, Babak; McCarty, Mark F; Moghadasian, Mohammed H

    2014-01-01

    Although high density lipoprotein (HDL)-mediated reverse cholesterol transport is crucial to the prevention and reversal of atheroma, a recent meta-analysis makes evident that current pharmaceutical strategies for modulating HDL cholesterol levels lower cardiovascular risk only to the extent that they concurrently decrease low density lipoprotein (LDL) cholesterol. This corresponds well with findings of a recent Mendelian randomization analysis, in which genetic polymorphisms associated with HDL cholesterol but no other known cardiovascular risk factors failed to predict risk for myocardial infarction. Although it is still seems appropriate to search for therapies that could improve the efficiency with which HDL particles induce reverse cholesterol transport, targeting HDL cholesterol levels per se with current measures appears to be futile. It may therefore be more promising to promote reverse cholesterol transport with agents that directly target foam cells. Macrophage expression of the cholesterol transport proteins adenosine triphosphate binding cassette transporter A1, adenosine triphosphate binding cassette transporter G1, and scavenger receptor class B member 1 is transcriptionally up-regulated by activated liver X receptors (LXR), whereas nuclear factor (NF)-kappaB antagonizes their expression. Taurine, which inhibits atherogenesis in rodent studies, has just been discovered to act as a weak agonist for LXRalpha. Conversely, it may be possible to oppose NF-kappaB activation in macrophages with a range of measures. Induction of heme oxygenase-1, which can be attained with phase 2 inducer phytochemicals such as lipoic acid and green tea catechins, promotes reverse cholesterol transport in macrophages and inhibits atherogenesis in rodents, likely due to, in large part, NF-kappaB antagonism. Inhibition of macrophage nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity with the spirulina-derived bilirubin-mimetic phycocyanobilin may also oppose

  17. Pattern formation in solutal convection: vermiculated rolls and isolated cells

    NASA Astrophysics Data System (ADS)

    Cartwright, Julyan H. E.; Piro, Oreste; Villacampa, Ana I.

    2002-11-01

    Observations of the peculiar behaviour of a drink of liqueur topped with cream led us to perform experiments showing that the instability is a convection phenomenon that arises through destabilizing surface-tension forces. The convection is solutal: driven by gradients of concentration of a solute, rather than by heat gradients as in the more commonly studied thermal convection. The convective patterns, vermiculated rolls and isolated cells, are quite unlike the usual planforms. They are associated with an elastic surface film, and the Marangoni number is high, characteristic of solutal convection. We have conducted further experiments that reproduce these patterns in simpler working fluids.

  18. Practical strategies for modulating foam cell formation and behavior.

    PubMed

    Uitz, Elisabeth; Bahadori, Babak; McCarty, Mark F; Moghadasian, Mohammed H

    2014-10-16

    Although high density lipoprotein (HDL)-mediated reverse cholesterol transport is crucial to the prevention and reversal of atheroma, a recent meta-analysis makes evident that current pharmaceutical strategies for modulating HDL cholesterol levels lower cardiovascular risk only to the extent that they concurrently decrease low density lipoprotein (LDL) cholesterol. This corresponds well with findings of a recent Mendelian randomization analysis, in which genetic polymorphisms associated with HDL cholesterol but no other known cardiovascular risk factors failed to predict risk for myocardial infarction. Although it is still seems appropriate to search for therapies that could improve the efficiency with which HDL particles induce reverse cholesterol transport, targeting HDL cholesterol levels per se with current measures appears to be futile. It may therefore be more promising to promote reverse cholesterol transport with agents that directly target foam cells. Macrophage expression of the cholesterol transport proteins adenosine triphosphate binding cassette transporter A1, adenosine triphosphate binding cassette transporter G1, and scavenger receptor class B member 1 is transcriptionally up-regulated by activated liver X receptors (LXR), whereas nuclear factor (NF)-kappaB antagonizes their expression. Taurine, which inhibits atherogenesis in rodent studies, has just been discovered to act as a weak agonist for LXRalpha. Conversely, it may be possible to oppose NF-kappaB activation in macrophages with a range of measures. Induction of heme oxygenase-1, which can be attained with phase 2 inducer phytochemicals such as lipoic acid and green tea catechins, promotes reverse cholesterol transport in macrophages and inhibits atherogenesis in rodents, likely due to, in large part, NF-kappaB antagonism. Inhibition of macrophage nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity with the spirulina-derived bilirubin-mimetic phycocyanobilin may also oppose

  19. Formation of a defect-free uniform lying helix in a thick cholesteric liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Inoue, Yo; Moritake, Hiroshi

    2015-07-01

    We report on the formation of a uniform lying helix (ULH) in a thick cholesteric liquid crystal cell, using an oscillatory shear flow and an electric field across the cell. The helix axis was formed perpendicularly to the shear flow in the cell-plane direction. The cholesteric liquid crystal transitioned from a focal conic texture to the ULH at a critical shear rate. The critical shear rate was inversely proportional to the cell thickness, and thus our method easily demonstrated a defect-free ULH even in a 54-µm-thick cell.

  20. Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation.

    PubMed

    Devoto, S H; Melançon, E; Eisen, J S; Westerfield, M

    1996-11-01

    We have examined the development of specific muscle fiber types in zebrafish axial muscle by labeling myogenic precursor cells with vital fluorescent dyes and following their subsequent differentiation and fate. Two populations of muscle precursors, medial and lateral, can be distinguished in the segmental plate by position, morphology and gene expression. The medial cells, known as adaxial cells, are large, cuboidal cells adjacent to the notochord that express myoD. Surprisingly, after somite formation, they migrate radially away from the notochord, becoming a superficial layer of muscle cells. A subset of adaxial cells develop into engrailed-expressing muscle pioneers. Adaxial cells differentiate into slow muscle fibers of the adult fish. We have named the lateral population of cells in the segmental plate, lateral presomitic cells. They are smaller, more irregularly shaped and separated from the notochord by adaxial cells; they do not express myoD until after somite formation. Lateral presomitic cells remain deep in the myotome and they differentiate into fast muscle fibers. Thus, slow and fast muscle fiber types in zebrafish axial muscle arise from distinct populations of cells in the segmental plate that develop in different cellular environments and display distinct behaviors. PMID:8951054

  1. A cell line with multinucleated giant cell formation established from a human giant cell tumor of tendon sheath--preliminary report.

    PubMed

    Hosaka, M; Hatori, M; Smith, R A; Kokubun, S

    2001-01-01

    We first established a cell line with unique giant cell formation properties from a human giant cell tumor of tendon sheath (GCTTS) arising in the right ankle of a 7-year-old girl. The specimen for cell culture taken from the tumor was heterotransplanted into the back of a BALB/c (nu/nu) nude mouse. An in-vitro cell line was established from a tumor that grew after this heterotransplantation. Only mononuclear cells were observed in the primary culture, and these remained constant in growth. Multinucleated giant cells appeared at passage 3 and were constantly observed thereafter. The fusion of mononuclear cells into giant cells was verified by light and phase-contrast microscopy. This cell line was confirmed to be derived from a human by karyotype analysis and DNA fingerprinting. The cell-doubling time was 150 h. This cell line should be useful for studies of the mechanism of multinucleation in giant cell tumors. PMID:11845350

  2. Influence of random daughter exposure rate, unattachment fraction, and disequilibrium on occurrence of lung tumors

    SciTech Connect

    Cross, F.T.; Palmer, R.F.; Dagle, G.E.; Busch, R.H.; Buschbom, R.L.

    1983-10-01

    Groups of male, specific-pathogen-free (SPF), Wistar rats were exposed to several concentrations of radon daughters and uranium ore dust to clarify the roles of exposure rate, unattached RaA daughters, and the degree of radon daughter disequilibrium, in the development of respiratory system disease. Modeled, human-dosimetric data indicate that the dose to sensitive tissues of the respiratory tract increases with increasing radon-daughter unattachment fraction and degree of disequilibrium. Experimental verification of these dose-effect relationships is needed to protect the health of workers and of the public exposed to radon-daughter environments. Data bearing on these relationships as well as updated results of experiments designed to test the role of radon-daughter exposure rate on lung-tumor incidence are reported. 13 references, 3 tables.

  3. Latino Mother/Daughter Dyadic Attachment as a Mediator for Substance Use Disorder and Emotional Abuse.

    PubMed

    Kanamori, Mariano; Weissman, Jessica; De La Rosa, Mario; Trepka, Mary Jo; Rojas, Patria; Cano, Miguel Angel; Melton, James; Unterberger, Alayne

    2016-08-01

    To date, no studies have investigated emotional abuse of adult Latina women by their mothers despite evidence that emotional maternal abuse may significantly contribute to the emotional abuse experienced by Latina women in their lifetime. Cross-sectional data including 316 women was analyzed using mediation and logistic regression. Overall, 7.1 % of mothers and 24.1 % of daughters abused drugs; and, 19.5 % of daughters were emotionally abused by their mothers. Mother's attachment to her daughter mediated the association between mother's drug abuse and emotionally abusing her adult daughter (indirect effect: 0.863). Latina women can serve as perpetrators of emotional abuse of their adult children. Since drug-abusing daughters are more likely to be victims of emotional abuse by their mothers and drug-abusing mothers are more likely to abuse their daughters, drug-rehabilitation practitioners should incorporate a family abuse component into rehabilitation programs. PMID:26614091

  4. Collective Motion of Cells Mediates Segregation and Pattern Formation in Co-Cultures

    PubMed Central

    Méhes, Előd; Mones, Enys; Németh, Valéria; Vicsek, Tamás

    2012-01-01

    Pattern formation by segregation of cell types is an important process during embryonic development. We show that an experimentally yet unexplored mechanism based on collective motility of segregating cells enhances the effects of known pattern formation mechanisms such as differential adhesion, mechanochemical interactions or cell migration directed by morphogens. To study in vitro cell segregation we use time-lapse videomicroscopy and quantitative analysis of the main features of the motion of individual cells or groups. Our observations have been extensive, typically involving the investigation of the development of patterns containing up to 200,000 cells. By either comparing keratocyte types with different collective motility characteristics or increasing cells' directional persistence by the inhibition of Rac1 GTP-ase we demonstrate that enhanced collective cell motility results in faster cell segregation leading to the formation of more extensive patterns. The growth of the characteristic scale of patterns generally follows an algebraic scaling law with exponent values up to 0.74 in the presence of collective motion, compared to significantly smaller exponents in case of diffusive motion. PMID:22359617

  5. Scatter factor influences the formation of prostate epithelial cell colonies on bone marrow stroma in vitro.

    PubMed

    Lang, S H; Clarke, N W; George, N J; Testa, N G

    1999-06-01

    Prostate cancer metastases form selectively in the bone marrow. Previously we demonstrated motility was important for the formation of primary prostatic epithelial cell colonies in bone marrow stroma (BMS) co-culture. In this study we looked at the influence of motility factors on the colony formation of epithelial cells derived from benign (bPEC) or malignant (mPEC) prostate tissue. After 7 days co-culture we found that anti-scatter factor consistently inhibited prostate epithelial cell colony formation on BMS (7/7 mPEC and 4/7 bPEC samples showed significant inhibition). Antibodies against bFGF and 5T4 did not significantly affect colony formation. Addition of fibroblast conditioned media (derived from benign prostates) to co-cultures stimulated the colony formation of bPEC (170%) and mPEC (252%). This stimulation was eliminated by depletion of SF from the conditioned media. Immunohistochemical staining found c-Met expression in 5/6 bPEC cultures and 7/9 mPEC cultures. When grown in BMS co-culture expression of c-Met was positive in 3/6 bPEC and 2/7 mPEC samples. In conclusion, scatter factor influences the in vitro formation of prostate epithelial cell colonies on BMS co-culture. PMID:10545020

  6. A MORN1-associated HAD phosphatase in the basal complex is essential for Toxoplasma gondii daughter budding.

    PubMed

    Engelberg, Klemens; Ivey, F Douglas; Lin, Angela; Kono, Maya; Lorestani, Alexander; Faugno-Fusci, Dave; Gilberger, Tim-Wolf; White, Michael; Gubbels, Marc-Jan

    2016-08-01

    Apicomplexan parasites replicate by several budding mechanisms with two well-characterized examples being Toxoplasma endodyogeny and Plasmodium schizogony. Completion of budding requires the tapering of the nascent daughter buds toward the basal end, driven by contraction of the basal complex. This contraction is not executed by any of the known cell division associated contractile mechanisms and in order to reveal new components of the unusual basal complex we performed a yeast two-hybrid screen with its major scaffolding protein, TgMORN1. Here we report on a conserved protein with a haloacid dehalogenase (HAD) phosphatase domain, hereafter named HAD2a, identified by yeast two-hybrid. HAD2a has demonstrated enzyme-activity in vitro, localizes to the nascent daughter buds, and co-localizes with MORN1 to the basal complex during its contraction. Conditional knockout of HAD2a in Toxoplasma interferes with basal complex assembly, which leads to incomplete cytokinesis and conjoined daughters that ultimately results in disrupted proliferation. In Plasmodium, we further confirmed localization of the HAD2a ortholog to the basal complex toward the end of schizogony. In conclusion, our work highlights an essential role for this HAD phosphatase across apicomplexan budding and suggests a regulatory mechanism of differential phosphorylation on the structure and/or contractile function of the basal complex. PMID:26840427

  7. Nuclear F-actin formation and reorganization upon cell spreading.

    PubMed

    Plessner, Matthias; Melak, Michael; Chinchilla, Pilar; Baarlink, Christian; Grosse, Robert

    2015-05-01

    We recently discovered signal-regulated nuclear actin network assembly. However, in contrast to cytoplasmic actin regulation, polymeric nuclear actin structures and functions remain only poorly understood. Here we describe a novel molecular tool to visualize real-time nuclear actin dynamics by targeting the Actin-Chromobody-TagGFP to the nucleus, thus establishing a nuclear Actin-Chromobody. Interestingly, we observe nuclear actin polymerization into dynamic filaments upon cell spreading and fibronectin stimulation, both of which appear to be triggered by integrin signaling. Furthermore, we show that nucleoskeletal proteins such as the LINC (linker of nucleoskeleton and cytoskeleton) complex and components of the nuclear lamina couple cell spreading or integrin activation by fibronectin to nuclear actin polymerization. Spreading-induced nuclear actin polymerization results in serum response factor (SRF)-mediated transcription through nuclear retention of myocardin-related transcription factor A (MRTF-A). Our results reveal a signaling pathway, which links integrin activation by extracellular matrix interaction to nuclear actin polymerization through the LINC complex, and therefore suggest a role for nuclear actin polymerization in the context of cellular adhesion and mechanosensing. PMID:25759381

  8. Formation of bipolar spindles with two centrosomes in tetraploid cells established from normal human fibroblasts.

    PubMed

    Ohshima, Susumu; Seyama, Atsushi

    2012-09-01

    Tetraploid cells with unstable chromosomes frequently arise as an early step in tumorigenesis and lead to the formation of aneuploid cells. The mechanisms responsible for the chromosome instability of polyploid cells are not fully understood, although the supernumerary centrosomes in polyploid cells have been considered the major cause of chromosomal instability. The aim of this study was to examine the integrity of mitotic spindles and centrosomes in proliferative polyploid cells established from normal human fibroblasts. TIG-1 human fibroblasts were treated with demecolcine (DC) for 4 days to induce polyploidy, and the change in DNA content was monitored. Localization of centrosomes and mitotic spindles in polyploid mitotic cells was examined by immunohistochemistry and laser scanning cytometry. TIG-1 cells treated with DC became almost completely tetraploid at 2 weeks after treatment and grew at the same rate as untreated diploid cells. Most mitotic cells with 8C DNA content had only two centrosomes with bipolar spindles in established tetraploid cells, although they had four or more centrosomes with multipolar spindles at 3 days after DC treatment. The frequency of aneuploid cells increased as established tetraploid cells were propagated. These results indicate that tetraploid cells that form bipolar spindles with two centrosomes in mitosis can proliferate as diploid cells. These cells may serve as a useful model for studying the chromosome instability of polyploid cells. PMID:22696268

  9. TRPM7 triggers Ca2+ sparks and invadosome formation in neuroblastoma cells

    PubMed Central

    Visser, Daan; Langeslag, Michiel; Kedziora, Katarzyna M.; Klarenbeek, Jeffrey; Kamermans, Alwin; Horgen, F. David; Fleig, Andrea; van Leeuwen, Frank N.; Jalink, Kees

    2016-01-01

    Cell migration depends on the dynamic formation and turnover of cell adhesions and is tightly controlled by actomyosin contractility and local Ca2+ signals. The divalent cation channel TRPM7 (Transient Receptor Potential cation channel, subfamily Melastatin, member 7) has recently received much attention as a regulator of cell adhesion, migration and (localized) Ca2+ signaling. Overexpression and knockdown of TRPM7 affects actomyosin contractility and the formation of cell adhesions such as invadosomes and focal adhesions, but the role of TRPM7-mediated Ca2+ signals herein is currently not understood. Using Total Internal Reflection Fluorescence (TIRF) Ca2+ fluorometry and a novel automated analysis routine we have addressed the role of Ca2+ in the control of invadosome dynamics in N1E-115 mouse neuroblastoma cells. We find that TRPM7 promotes the formation of highly repetitive and localized Ca2+ microdomains or “Ca2+ sparking hotspots” at the ventral plasma membrane. Ca2+ sparking appears strictly dependent on extracellular Ca2+ and is abolished by TRPM7 channel inhibitors such as waixenicin-A. TRPM7 inhibition also induces invadosome dissolution. However, invadosome formation is (functionally and spatially) dissociated from TRPM7-mediated Ca2+ sparks. Rather, our data indicate that TRPM7 affects actomyosin contractility and invadosome formation independent of Ca2+ influx. PMID:24176224

  10. Over-expression of stomatin causes syncytium formation in nonfusogenic JEG-3 choriocarcinoma placental cells.

    PubMed

    Chen, Tung-Wei; Liu, Hong-Wen; Liou, Yi-Jia; Lee, Jui-Hao; Lin, Chi-Hung

    2016-08-01

    Placental trophoblast differentiation involves the continuous fusion of mononuclear cytotrophoblasts. However, except for syncytin, little is known about the detailed mechanisms underlying trophoblast fusion. A previous study indicated that lipid rafts play an important role in HTLV-1 syncytium formation. To identify proteins that may be involved in placental trophoblast differentiation, we examined stomatin, an important lipid-raft protein that localizes to detergent-resistant membrane domains. The syncytium and human chorionic gonadotropin (β-hCG; a marker of placental trophoblast differentiation) were visualized by immunofluorescence staining. We found that overexpression of stomatin in the nonfusogenic JEG-3 cell line caused syncytium formation and increased the fusion index of cells. Treating these cells with N(6) ,2'-O-dibutyryladenosine 3',5'-cyclic monophosphate further increased cell fusion by stomatin. β-hCG was found in a few JEG-3 cells overexpressing stomatin at 48 h, and its levels increased dramatically at 72 h along with the formation of the multinuclear syncytium. RNA interference was used to decrease stomatin expression in BeWo cells, a fusogenic human choriocarcinoma cell line. After knockdown for 72 h, stomatin levels decreased by almost 95%. The fusion indexes of control and stomatin-knockdown cells at 72 h were 9.4 and 6.5%, respectively. Our data indicated that stomatin could trigger syncytium formation and upregulate β-hCG for cell fusion in nonfusogenic JEG-3 cells. Downregulation of stomatin slightly inhibited the fusion index of fusogenic BeWo cells. Thus, these data suggested that stomatin plays an important role in trophoblast differentiation. PMID:27306251

  11. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    PubMed

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation. PMID:27107260

  12. Daughter praising, mother bashing: a case study from Hong Kong.

    PubMed

    Chan, Zenobia C Y; Ma, Joyce L C

    2004-02-01

    In this paper, we present the case of a mother and daughter in family therapy. We call for a critical examination of Western literature that describes how a mother praises her child. I illustrate how one observer (the first author) perceives the issue of maternal praise differently from other observers. To illustrate the interaction between this family and the family therapist (the second author), some representative vignettes of the sixth session have been extracted for discussion. Ten observers from the Chinese University of Hong Kong, 7 of whom were master's students and 3 were doctoral students, observed the therapy sessions from the adjoining room. The article is composed of four parts: (a) parental styles and relationships in families with an anorectic daughter literature review; (b) vignettes of the sixth family therapy session; (c) the observers' comments about the therapist; and (d) discussion. The paper concludes with a question of whether the impact of praise on a child's development in Western society functions in the same way and produces the same effects on a child's development as it does in Chinese society. PMID:14766433

  13. Becoming the Parent of a GLB Son or Daughter

    PubMed Central

    GRAFSKY, ERIKA L.

    2014-01-01

    Recent research has documented the importance of parental reactions to disclosure for sexual minority youth (SMY) (e.g., Ryan, Huebner, Diaz, & Sanchez, 2009). The purpose of this study was to develop a deeper understanding of the parent perspective of the disclosure to family experience of SMY ages 14-21. In-depth interviews were conducted with eight parents in the United States who had experienced a child disclose their lesbian, gay, or bisexual (LGB) orientation to them. Constructivist grounded theory and symbolic interaction theory informed the methodology and data analysis for the project. Analysis revealed that the process of becoming the parent of an LGB son or daughter is an appropriate narrative to conceptualize the parental experience of the disclosure to family process. The findings highlight how disclosure introduces new roles into the existing family system, which affects the consideration and interpretation of the salience of particular identities, such as being the parent of an LGB son or daughter. Understanding how parents experience the disclosure to family process - particularly, how they understand and re-envision the meaning of being a parent - is crucial for research and intervention to help families become supportive of SMY. Limitations and suggestions for future research are presented. PMID:25685111

  14. Retention of Radium-225 and Its Daughter Radioisotopes in Bone

    SciTech Connect

    Mirzadeh, Saed; Garland, Marc A; Kennel, Steve J

    2008-01-01

    The natural bone seeking tendency of Ra+2, similar to the other alkali metal ions, coupled with the short range high LET of -particle emissions are an ideal combination for localized therapy, and recently 11.4 d 223Ra has been studied for therapy of bone tumors in rats and humans [1,2]. Actinium-225 is also an attractive radioisotope for endo-radiotherapy in a single decay chain from 225Ac, over 26 MeV (~70% of total) is carried by four - particles ranging in energy from 5.7 to 8.4 MeV [3,4]. Although Ac+3 does not home naturally to bone (rather to liver) [5,6], its parent, 225Ra ( -, t1/2 = 15 d), can be used as an in vivo source for 225Ac. A pivotal question for the 225Ra/225Ac in vivo generator system is whether translocation of the daughter nuclei occurs prior to or following the uptake of 225Ra by the bone. In order to assess potential collateral damage to soft tissue organs it is essential to quantitate the extent to which 225Ac is retained in organs following the uptake of 225Ra. We have attempted to answer these questions by investigating the extent of translocation of 225Ac and 213Bi, two daughter radioisotopes of 225Ra, following retention of initially pure 225Ra in bone in normal mice.

  15. Growth factor induced proliferation, migration, and lumen formation of rat endometrial epithelial cells in vitro.

    PubMed

    Islam, Md Rashedul; Yamagami, Kazuki; Yoshii, Yuka; Yamauchi, Nobuhiko

    2016-06-17

    Endometrial modulation is essential for the preservation of normal uterine physiology, and this modulation is driven by a number of growth factors. The present study investigated the mitogenic, motogenic, and morphogenic effects of epidermal growth factor (EGF) and hepatocyte growth factor (HGF) on rat endometrial epithelial (REE) cells. The REE cells were isolated and cultured and then characterized based on their morphology and their expression of epithelial cell markers. The MTT assay revealed that EGF and HGF induce proliferation of REE cells. Consistent with increased proliferation, we found that the cell cycle regulatory factor Cyclin D1 was also upregulated upon EGF and HGF addition. REE cell migration was prompted by EGF, as observed with the Oris Cell Migration Assay. The morphogenic impact of growth factors on REE cells was studied in a three-dimensional BD Matrigel cell culture system, wherein these growth factors also increased the frequency of lumen formation. In summary, we show that EGF and HGF have a stimulatory effect on REE cells, promoting proliferation, cell migration, and lumen formation. Our findings provide important insights that further the understanding of endometrial regeneration and its regulation. PMID:26946922

  16. Growth factor induced proliferation, migration, and lumen formation of rat endometrial epithelial cells in vitro

    PubMed Central

    ISLAM, Md. Rashedul; YAMAGAMI, Kazuki; YOSHII, Yuka; YAMAUCHI, Nobuhiko

    2016-01-01

    Endometrial modulation is essential for the preservation of normal uterine physiology, and this modulation is driven by a number of growth factors. The present study investigated the mitogenic, motogenic, and morphogenic effects of epidermal growth factor (EGF) and hepatocyte growth factor (HGF) on rat endometrial epithelial (REE) cells. The REE cells were isolated and cultured and then characterized based on their morphology and their expression of epithelial cell markers. The MTT assay revealed that EGF and HGF induce proliferation of REE cells. Consistent with increased proliferation, we found that the cell cycle regulatory factor Cyclin D1 was also upregulated upon EGF and HGF addition. REE cell migration was prompted by EGF, as observed with the Oris Cell Migration Assay. The morphogenic impact of growth factors on REE cells was studied in a three-dimensional BD Matrigel cell culture system, wherein these growth factors also increased the frequency of lumen formation. In summary, we show that EGF and HGF have a stimulatory effect on REE cells, promoting proliferation, cell migration, and lumen formation. Our findings provide important insights that further the understanding of endometrial regeneration and its regulation. PMID:26946922

  17. Ionizing radiation decreases capillary-like structure formation by endothelial cells in vitro.

    PubMed

    Ahmad, Mansur; Khurana, Neerja R; Jaberi, Joby E

    2007-01-01

    For successful tissue engineering in surgical radiotherapy patients, irradiated endothelial cells (EC) must form new blood vessels to nourish and build connections with the engineered segment. Therefore, it is critical to understand neovasculogenesis by irradiated EC. The objective of this study was to determine the effects of ionizing radiation on endothelial cell proliferation and capillary-like structures (CLS) formation. Human Umbilical Vein Endothelial Cells (HUVEC) were irradiated with single or fractionated doses of radiation. Proliferation was determined by counting cells. CLS morphology was analyzed from photomicrographs. A single dose of 8 Gy radiation was highly lethal to HUVEC compared to lower dosage. A single dose had more of an inhibitory effect on cell proliferation compared to the same dose delivered in a fractionated manner. CLS formation began after cells reached confluency. To form a CLS, a single cell expanded, and a number of cells rearranged around its periphery in an oval fashion (mimicking a vessel wall). The central cell later disintegrated leaving a void, mimicking the lumen. Irradiated EC can form CLS, although they are fewer and smaller compared to those by sham cells. By disrupting the peripheral cells, >or=4 Gy doses significantly reduced the number of CLS. The disruptive affect was seen more with large CLS compared to small CLS. At different doses, the shapes of CLS were not significantly different. PMID:17028041

  18. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis1

    PubMed Central

    Lin, Andrew M.; Rubin, Cory J.; Khandpur, Ritika; Wang, Jennifer Y.; Riblett, MaryBeth; Yalavarthi, Srilakshmi; Villanueva, Eneida C.; Shah, Parth; Kaplan, Mariana J.; Bruce, Allen T.

    2011-01-01

    IL-17 and IL-23 are absolutely central to psoriasis pathogenesis as drugs targeting either cytokine are highly effective treatments for this disease. The efficacy of these drugs has been attributed to blocking the function of IL-17-producing T cells and their IL-23-induced expansion. However, we demonstrate that mast cells and neutrophils, not T cells, are the predominant cell types that contain IL-17 in human skin. IL-17+ mast cells and neutrophils are found at higher densities than IL-17+ T cells in psoriasis lesions and frequently release IL-17 in the process of forming specialized structures called extracellular traps (MCETs and NETs, respectively). Furthermore, we find that IL-23 and IL-1β can induce MCET formation and degranulation of human mast cells. Release of IL-17 from innate immune cells may be central to the pathogenesis of psoriasis, representing a fundamental mechanism by which the IL-23-IL-17 axis mediates host defense and autoimmunity. PMID:21606249

  19. Autophagy is essential for effector CD8 T cell survival and memory formation

    PubMed Central

    Xu, Xiaojin; Araki, Koichi; Li, Shuzhao; Han, Jin-Hwan; Ye, Lilin; Tan, Wendy G.; Konieczny, Bogumila T.; Bruinsma, Monique W.; Martinez, Jennifer; Pearce, Erika L; Green, Douglas R.; Jones, Dean P.; Virgin, Herbert W.; Ahmed, Rafi

    2014-01-01

    The importance of autophagy in memory CD8 T cell differentiation in vivo is not well defined. We show here that autophagy is dynamically regulated in virus-specific CD8 T cells during acute lymphocytic choriomeningitis virus infection. Autophagy decreased in activated proliferating T cells, and was then upregulated at the peak of the effector T cell response. Consistent with this model, deletion of the key autophagy genes Atg7 or Atg5 in virus-specific CD8 T cells had minimal effect on generating effector cells but greatly enhanced their death during the contraction phase resulting in compromised memory formation. These findings provide insight into when autophagy is needed during effector and memory T cell differentiation in vivo and also warrant a re-examination of our current concepts about the relationship between T cell activation and autophagy. PMID:25362489

  20. In vivo bone formation by human bone marrow cells: effect of osteogenic culture supplements and cell densities.

    PubMed

    Mendes, S C; Van Den Brink, I; De Bruijn, J D; Van Blitterswijk, C A

    1998-12-01

    Bone marrow is known to contain a population of osteoprogenitor cells that can go through complete differentiation when cultured in a medium containing appropriate bioactive factors. In this study, porous particles of a calcium phosphate material were seeded with adult human bone marrow cells in the second passage. After an additional culture period of 1 wk in the particles, these hybrid constructs were subcutaneouslly implanted in nude mice with a survival period of 4 wk. The cell seeding densities range from 0-200 000 cells per particle and the cell culture system was designed to investigate the single and combined effects of dexamethasone and recombinant human bone morphogenetic protein 2 (rhBMP-2). The hybrid "material/tissue" constructs were processed for histology and the amount of de novo bone formation was quantified, for each culture condition, by histomorphometric techniques. The relative percentage of mineralized bone formation reached a maximal value of 19.77+/-5.06, for samples cultured in the presence of rhBMP-2 and with a seeding density of 200 000 cells/particle, compared to 0.52+/-0.45 for samples in which no cells had been cultured and had been incubated in culture medium supplemented with Dex and rhBMP-2. For the tested conditions and for the low cell numbers used in this study, rhBMP-2 proved to be an essential bioactive factor to obtain in vivo bone formation by our culture system. The results from this study prove the potential of cultured adult human bone marrow cells to initiate and accelerate de novo bone formation after transplantation into an ectopic site. PMID:15348953

  1. Pdcd4 deficiency enhances macrophage lipoautophagy and attenuates foam cell formation and atherosclerosis in mice

    PubMed Central

    Wang, L; Jiang, Y; Song, X; Guo, C; Zhu, F; Wang, X; Wang, Q; Shi, Y; Wang, J; Gao, F; Zhao, W; Chen, Y H; Zhang, L

    2016-01-01

    Macrophage foam cells, a major component of the atherosclerotic lesion, have vital roles in the development of atherosclerosis. Lipoautophagy, a type of autophagy characterized by selective delivery of lipid droplet for lysosomal degradation, may impact atherosclerosis by regulating macrophage foam cell formation. Previously, we reported that programmed cell death 4 (PDCD4), a tumor suppressor, negatively regulated autophagy in tumor cells. However, its roles in macrophage lipoautophagy, foam cell formation and atherosclerosis remain to be established. Here we found that Pdcd4 deficiency clearly improved oxidized low-density lipoproteins-impaired autophagy efflux, promoted autophagy-mediated lipid breakdown in murine macrophages and thus prevented macrophage conversion into foam cells. Importantly, Pdcd4 deficiency in mice significantly upregulated macrophage autophagy in local plaques along with attenuated lipid accumulation and atherosclerotic lesions in high-fat-fed Apolipoprotein E knockout mice. Bone marrow transplantation experiment demonstrated that PDCD4-mediated autophagy in hematopoietic cells contributed to the development of atherosclerosis. These results indicate that endogenous PDCD4 promotes for macrophage foam cell formation and atherosclerosis development via inhibiting autophagy and provides new insights into atherogenesis, suggesting that promoting macrophage autophagy through downregulating PDCD4 expression may be beneficial for treating atherosclerosis. PMID:26775706

  2. Pdcd4 deficiency enhances macrophage lipoautophagy and attenuates foam cell formation and atherosclerosis in mice.

    PubMed

    Wang, L; Jiang, Y; Song, X; Guo, C; Zhu, F; Wang, X; Wang, Q; Shi, Y; Wang, J; Gao, F; Zhao, W; Chen, Y H; Zhang, L

    2016-01-01

    Macrophage foam cells, a major component of the atherosclerotic lesion, have vital roles in the development of atherosclerosis. Lipoautophagy, a type of autophagy characterized by selective delivery of lipid droplet for lysosomal degradation, may impact atherosclerosis by regulating macrophage foam cell formation. Previously, we reported that programmed cell death 4 (PDCD4), a tumor suppressor, negatively regulated autophagy in tumor cells. However, its roles in macrophage lipoautophagy, foam cell formation and atherosclerosis remain to be established. Here we found that Pdcd4 deficiency clearly improved oxidized low-density lipoproteins-impaired autophagy efflux, promoted autophagy-mediated lipid breakdown in murine macrophages and thus prevented macrophage conversion into foam cells. Importantly, Pdcd4 deficiency in mice significantly upregulated macrophage autophagy in local plaques along with attenuated lipid accumulation and atherosclerotic lesions in high-fat-fed Apolipoprotein E knockout mice. Bone marrow transplantation experiment demonstrated that PDCD4-mediated autophagy in hematopoietic cells contributed to the development of atherosclerosis. These results indicate that endogenous PDCD4 promotes for macrophage foam cell formation and atherosclerosis development via inhibiting autophagy and provides new insights into atherogenesis, suggesting that promoting macrophage autophagy through downregulating PDCD4 expression may be beneficial for treating atherosclerosis. PMID:26775706

  3. An Improved Model for Nucleation-Limited Ice Formation in Living Cells during Freezing

    PubMed Central

    Zhao, Gang; He, Xiaoming

    2014-01-01

    Ice formation in living cells is a lethal event during freezing and its characterization is important to the development of optimal protocols for not only cryopreservation but also cryotherapy applications. Although the model for probability of ice formation (PIF) in cells developed by Toner et al. has been widely used to predict nucleation-limited intracellular ice formation (IIF), our data of freezing Hela cells suggest that this model could give misleading prediction of PIF when the maximum PIF in cells during freezing is less than 1 (PIF ranges from 0 to 1). We introduce a new model to overcome this problem by incorporating a critical cell volume to modify the Toner's original model. We further reveal that this critical cell volume is dependent on the mechanisms of ice nucleation in cells during freezing, i.e., surface-catalyzed nucleation (SCN) and volume-catalyzed nucleation (VCN). Taken together, the improved PIF model may be valuable for better understanding of the mechanisms of ice nucleation in cells during freezing and more accurate prediction of PIF for cryopreservation and cryotherapy applications. PMID:24852166

  4. Sorafenib, a multikinase inhibitor, induces formation of stress granules in hepatocarcinoma cells

    PubMed Central

    Adjibade, Pauline; St-Sauveur, Valérie Grenier; Huberdeau, Miguel Quevillon; Fournier, Marie-Josée; Savard, Andreanne; Coudert, Laetitia; Khandjian, Edouard W.; Mazroui, Rachid

    2015-01-01

    Stress granules (SGs) are cytoplasmic RNA multimeric bodies that form under stress conditions known to inhibit translation initiation. In most reported stress cases, the formation of SGs was associated with the cell recovery from stress and survival. In cells derived from cancer, SGs formation was shown to promote resistance to either proteasome inhibitors or 5-Fluorouracil used as chemotherapeutic agents. Despite these studies, the induction of SGs by chemotherapeutic drugs contributing to cancer cells resistance is still understudied. Here we identified sorafenib, a tyrosine kinase inhibitor used to treat hepatocarcinoma, as a potent chemotherapeutic inducer of SGs. The formation of SGs in sorafenib-treated hepatocarcionoma cells correlates with inhibition of translation initiation; both events requiring the phosphorylation of the translation initiation factor eIF2α. Further characterisation of the mechanism of sorafenib-induced SGs revealed PERK as the main eIF2α kinase responsible for SGs formation. Depletion experiments support the implication of PERK-eIF2α-SGs pathway in hepatocarcinoma cells resistance to sorafenib. This study also suggests the existence of an unexpected complex regulatory balance between SGs and phospho-eIF2α where SGs dampen the activation of the phospho-eIF2α-downstream ATF4 cell death pathway. PMID:26556863

  5. mTOR Enhances Foam Cell Formation by Suppressing the Autophagy Pathway

    PubMed Central

    Li, Lingxia; Niu, Xiaolin; Dang, Xiaoyan; Li, Ping; Qu, Li; Bi, Xiaoju; Gao, Yanxia; Hu, Yanfen; Li, Manxiang; Qiao, Wanhai; Peng, Zhuo; Pan, Longfei

    2014-01-01

    Recently, autophagy has drawn more attention in cardiovascular disease as it has important roles in lipid metabolism. Mammalian target of rapamycin (mTOR) is a key regulator of autophagy; however, its effect on atherosclerosis and the underlying mechanism remains undefined. In this study, an obvious upregulation of mTOR and p-mTOR protein was observed in macrophage-derived foam cells. Blocking mTOR expression with specific small interference RNA (siRNA) dramatically suppressed foam cell formation, accompanied by a decrease of lipid deposition. Further mechanistic analysis indicated that suppressing mTOR expression significantly upregulated autophagic marker LC3 expression and downregulated autophagy substrate p62 levels, indicating that mTOR silencing triggered autophagosome formation. Moreover, blocking mTOR expression obviously accelerated neutral lipid delivery to lysosome and cholesterol efflux from foam cells, implying that mTOR could induce macrophage foam cell formation by suppressing autophagic pathway. Further, mTOR silencing significantly upregulated ULK1 expression, which was accounted for mTOR-induced foam cell formation via autophagic pathway as treatment with ULK1 siRNA dampened LC3-II levels and increased p62 expression, concomitant with lipid accumulation and decreased cholesterol efflux from foam cells. Together, our data provide an insight into how mTOR accelerates the pathological process of atherosclerosis. Accordingly, blocking mTOR levels may be a promising therapeutic agent against atherosclerotic complications. PMID:24512183

  6. Promotion of experimental thrombus formation by the procoagulant activity of breast cancer cells

    NASA Astrophysics Data System (ADS)

    Berny-Lang, M. A.; Aslan, J. E.; Tormoen, G. W.; Patel, I. A.; Bock, P. E.; Gruber, A.; McCarty, O. J. T.

    2011-02-01

    The routine observation of tumor emboli in the peripheral blood of patients with carcinomas raises questions about the clinical relevance of these circulating tumor cells. Thrombosis is a common clinical manifestation of cancer, and circulating tumor cells may play a pathogenetic role in this process. The presence of coagulation-associated molecules on cancer cells has been described, but the mechanisms by which circulating tumor cells augment or alter coagulation remains unclear. In this study we utilized suspensions of a metastatic adenocarcinoma cell line, MDA-MB-231, and a non-metastatic breast epithelial cell line, MCF-10A, as models of circulating tumor cells to determine the thromobogenic activity of these blood-foreign cells. In human plasma, both metastatic MDA-MB-231 cells and non-metastatic MCF-10A cells significantly enhanced clotting kinetics. The effect of MDA-MB-231 and MCF-10A cells on clotting times was cell number-dependent and inhibited by a neutralizing antibody to tissue factor (TF) as well as inhibitors of activated factor X and thrombin. Using fluorescence microscopy, we found that both MDA-MB-231 and MCF-10A cells supported the binding of fluorescently labeled thrombin. Furthermore, in a model of thrombus formation under pressure-driven flow, MDA-MB-231 and MCF-10A cells significantly decreased the time to occlusion. Our findings indicate that the presence of breast epithelial cells in blood can stimulate coagulation in a TF-dependent manner, suggesting that tumor cells that enter the circulation may promote the formation of occlusive thrombi under shear flow conditions.

  7. Promotion of experimental thrombus formation by the procoagulant activity of breast cancer cells

    PubMed Central

    Berny-Lang, MA; Aslan, JE; Tormoen, GW; Patel, IA; Bock, PE; Gruber, A

    2011-01-01

    The routine observation of tumor emboli in the peripheral blood of patients with carcinomas raises questions about the clinical relevance of these circulating tumor cells. Thrombosis is a common clinical manifestation of cancer and circulating tumor cells may play a pathogenetic role in this process. The presence of coagulation-associated molecules on cancer cells has been described, but the mechanisms by which circulating tumor cells augment or alter coagulation remains unclear. In this study we utilized suspensions of a metastatic adenocarcinoma cell line, MDA-MB-231, and a non-metastatic breast epithelial cell line, MCF-10A, as models of circulating tumor cells to determine the thromobogenic activity of these blood-foreign cells. In human plasma, both metastatic MDA-MB-231 cells and non-metastatic MCF-10A cells significantly enhanced clotting kinetics. The effect of MDA-MB-231 and MCF-10A cells on clotting times was cell number-dependent and inhibited by a neutralizing antibody to tissue factor (TF) as well as inhibitors of activated factor X and thrombin. Using fluorescence microscopy, we found that both MDA-MB-231 and MCF-10A cells supported the binding of fluorescently-labeled thrombin. Furthermore, in a model of thrombus formation under pressure-driven flow, MDA-MB-231 and MCF-10A cells significantly decreased the time to occlusion. Our findings indicate that the presence of breast epithelial cells in blood can stimulate coagulation in a TF-dependent manner, suggesting that tumor cells that enter the circulation may promote the formation of occlusive thrombi under shear flow conditions. PMID:21301066

  8. Glyceraldehyde-3-phosphate Dehydrogenase Aggregate Formation Participates in Oxidative Stress-induced Cell Death*

    PubMed Central

    Nakajima, Hidemitsu; Amano, Wataru; Kubo, Takeya; Fukuhara, Ayano; Ihara, Hideshi; Azuma, Yasu-Taka; Tajima, Hisao; Inui, Takashi; Sawa, Akira; Takeuchi, Tadayoshi

    2009-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)2 is a classic glycolytic enzyme that also mediates cell death by its nuclear translocation under oxidative stress. Meanwhile, we previously presented that oxidative stress induced disulfide-bonded GAPDH aggregation in vitro. Here, we propose that GAPDH aggregate formation might participate in oxidative stress-induced cell death both in vitro and in vivo. We show that human GAPDH amyloid-like aggregate formation depends on the active site cysteine-152 (Cys-152) in vitro. In SH-SY5Y neuroblastoma, treatment with dopamine decreases the cell viability concentration-dependently (IC50 = 202 μm). Low concentrations of dopamine (50–100 μm) mainly cause nuclear translocation of GAPDH, whereas the levels of GAPDH aggregates correlate with high concentrations of dopamine (200–300 μm)-induced cell death. Doxycycline-inducible overexpression of wild-type GAPDH in SH-SY5Y, but not the Cys-152-substituted mutant (C152A-GAPDH), accelerates cell death accompanying both endogenous and exogenous GAPDH aggregate formation in response to high concentrations of dopamine. Deprenyl, a blocker of GAPDH nuclear translocation, fails to inhibit the aggregation both in vitro and in cells but reduced cell death in SH-SY5Y treated with only a low concentration of dopamine (100 μm). These results suggest that GAPDH participates in oxidative stress-induced cell death via an alternative mechanism in which aggregation but not nuclear translocation of GAPDH plays a role. Moreover, we observe endogenous GAPDH aggregate formation in nigra-striatum dopaminergic neurons after methamphetamine treatment in mice. In transgenic mice overexpressing wild-type GAPDH, increased dopaminergic neuron loss and GAPDH aggregate formation are observed. These data suggest a critical role of GAPDH aggregates in oxidative stress-induced brain damage. PMID:19837666

  9. Plant metabolism and cell wall formation in space (microgravity) and on Earth

    NASA Technical Reports Server (NTRS)

    Lewis, Norman G.

    1994-01-01

    Variations in cell wall chemistry provide vascular plants with the ability to withstand gravitational forces, as well as providing facile mechanisms for correctional responses to various gravitational stimuli, e.g., in reaction wood formation. A principal focus of our current research is to precisely and systematically dissect the essentially unknown mechanism(s) of vascular plant cell wall assembly, particularly with respect to formation of its phenolic constituents, i.e., lignins and suberins, and how gravity impacts upon these processes. Formation of these phenolic polymers is of particular interest, since it appears that elaboration of their biochemical pathways was essential for successful land adaptation. By extrapolation, we are also greatly intrigued as to how the microgravity environment impacts upon 'normal' cell wall assembly mechanisms/metabolism.

  10. Vacuole formation in mast cells responding to osmotic stress and to F-actin disassembly.

    PubMed

    Koffer, Anna; Williams, Mark; Johansen, Torben

    2002-01-01

    Fluorescent probes were used to visualize the morphology of membranes and of F-actin in rat peritoneal mast cells, exposed to hyperosmotic medium and consequently reversed to isotonicity. Hypertonicity induced cell shrinkage followed by a regulatory volume increase, and cell alkalinization that was sensitive to amiloride, an inhibitor of the Na(+)/H(+) exchanger (NHE), but not to Latrunculin B, an inhibitor of actin polymerization. Using Bodipy-Sphingomyelin, we have observed formation of vacuole-like dilations (VLDs), primarily at or close to the adhesion plane, following the reversal from hyper- to isotonic medium. VLD formation was not inhibited by Latrunculin B or by amiloride. Phalloidin staining has shown that actin filaments do not surround the vacuoles and latrunculin-induced depolymerization of actin has actually promoted vacuole formation, even in isotonic conditions. The results support the idea that a decrease in membrane tension promotes the internalization of the plasma membrane. PMID:12421579

  11. Miniature fuel cell with monolithically fabricated Si electrodes - Alloy catalyst formation -

    NASA Astrophysics Data System (ADS)

    Ogura, Daiki; Suzuki, Takahiro; Katayama, Noboru; Dowaki, Kiyoshi; Hayase, Masanori

    2013-12-01

    A novel Pd-Pt catalyst formation process was proposed for reduction of Pt usage. In our miniature fuel cells, porous Pt was used as the catalyst, and the Pt usage was quite high. To reduce the Pt usage, we have attempted to deposit Pt on porous Pd by galvanic replacement, and relatively large output was demonstrated. In this study, in order to reduce more Pt usage and explore the alloy catalyst formation process, atomic layer deposition by UPD-SLRR (Under Potential Deposition - Surface Limited Redox Replacement) was applied to the Pd-Pt catalyst formation. The new process was verified at each process steps by EDS elemental analysis, and the expected spectra were obtained. Prototype cells were constructed by the new process, and cell output was raised to 420mW/cm2 by the Pd-Pt catalyst from 125mW/cm2 with Pd catalyst.

  12. Formation of embryogenic cell clumps from carrot epidermal cells is suppressed by 5-azacytidine, a DNA methylation inhibitor.

    PubMed

    Yamamoto, Nozomi; Kobayashi, Hatsumi; Togashi, Takashi; Mori, Yukiko; Kikuchi, Koji; Kuriyama, Kyoko; Tokuji, Yoshihiko

    2005-01-01

    Using a direct somatic embryogenesis system in carrot, we examined the role of DNA methylation in the change of cellular differentiation state, from somatic to embryogenic. 5-Azacytidine (aza-C), an inhibitor of DNA methylation suppressed the formation of embryogenic cell clumps from epidermal carrot cells. Aza-C also downregulated the expression of DcLEC1c, a LEC1-like embryonic gene in carrot, during morphogenesis of embryos. A carrot DNA methyltransferase gene, Met1-5 was expressed transiently after the induction of somatic embryogenesis by 2,4-dichlorophenoxyacetic acid (2,4-D), before the formation of embryogenic cell clumps. These findings suggested the significance of DNA methylation in acquiring the embryogenic competence in somatic cells in carrot. PMID:15700420

  13. Formation of osteoclast-like cells is suppressed by low frequency, low intensity electric fields.

    PubMed

    Rubin, J; McLeod, K J; Titus, L; Nanes, M S; Catherwood, B D; Rubin, C T

    1996-01-01

    With use of a solenoid to generate uniform time-varying electric fields, the effect of extremely low frequency electric fields on osteoclast-like cell formation stimulated by 1,25(OH)2D3 was studied in primary murine marrow culture. Recruitment of osteoclast-like cells was assessed by counting multinuclear, tartrate-resistant acid phosphatase positive cells on day 8 of culture. A solenoid was used to impose uniform time-varying electric fields on cells; sham exposures were performed with an identical solenoid with a null net electric field. During the experiments, both solenoids heated interiorly to approximately 1.5 degrees C above ambient incubator temperature. As a result of the heating, cultures in the sham solenoid formed more osteoclast-like cells than those on the incubator shelf (132 +/- 12%). For this reason, cells exposed to the sham solenoid were used for comparison with cultures exposed to the active coil. Marrow cells were plated at 1.4 x 10(6)/cm2 in square chamber dishes and exposed to 60 Hz electric fields at 9.6 muV/cm from days 1 to 8. Field exposure inhibited osteoclast-like cell recruitment by 17 +/- 3% as compared with sham exposure (p < 0.0001). Several variables, including initial cell plating density, addition of prostaglandin E2 to enhance osteoclast-like cell recruitment, and field parameters, were also assessed. In this secondary series, extremely low frequency fields inhibited osteoclast-like cell formation by 24 +/- 4% (p < 0.0001), with their inhibitory effect consistent throughout all variations in protocol. These experiments demonstrate that extremely low intensity, low frequency sinusoidal electric fields suppress the formation of osteoclast-like cells in marrow culture. The in vitro results support in vivo findings that demonstrate that electric fields inhibit the onset of osteopenia and the progression of osteonecrosis; this suggests that extremely low frequency fields may inhibit osteoclast recruitment in vivo. PMID:8618169

  14. Actinomyces naeslundii GroEL-dependent initial attachment and biofilm formation in a flow cell system.

    PubMed

    Arai, Toshiaki; Ochiai, Kuniyasu; Senpuku, Hidenobu

    2015-02-01

    Actinomyces naeslundii is an early colonizer with important roles in the development of the oral biofilm. The effects of butyric acid, one of short chain fatty acids in A. naeslundii biofilm formation was observed using a flow cell system with Tryptic soy broth without dextrose and with 0.25% sucrose (TSB sucrose). Significant biofilms were established involving live and dead cells in TSB sucrose with 60mM butyric acid but not in concentrations of 6, 30, 40, and 50mM. Biofilm formation failed in 60mM sodium butyrate but biofilm level in 60mM sodium butyrate (pH4.7) adjusted with hydrochloric acid as 60mM butyric media (pH4.7) was similar to biofilm levels in 60mM butyric acid. Therefore, butyric acid and low pH are required for significant biofilm formation in the flow cell. To determine the mechanism of biofilm formation, we investigated initial A. naeslundii colonization in various conditions and effects of anti-GroEL antibody. The initial colonization was observed in the 60mM butyric acid condition and anti-GroEL antibody inhibited the initial colonization. In conclusion, we established a new biofilm formation model in which butyric acid induces GroEL-dependent initial colonization of A. naeslundii resulting in significant biofilm formation in a flow system. PMID:25555820

  15. Synergy of cell–cell repulsion and vacuolation in a computational model of lumen formation

    PubMed Central

    Boas, Sonja E. M.; Merks, Roeland M. H.

    2014-01-01

    A key step in blood vessel development (angiogenesis) is lumen formation: the hollowing of vessels for blood perfusion. Two alternative lumen formation mechanisms are suggested to function in different types of blood vessels. The vacuolation mechanism is suggested for lumen formation in small vessels by coalescence of intracellular vacuoles, a view that was extended to extracellular lumen formation by exocytosis of vacuoles. The cell–cell repulsion mechanism is suggested to initiate extracellular lumen formation in large vessels by active repulsion of adjacent cells, and active cell shape changes extend the lumen. We used an agent-based computer model, based on the cellular Potts model, to compare and study both mechanisms separately and combined. An extensive sensitivity analysis shows that each of the mechanisms on its own can produce lumens in a narrow region of parameter space. However, combining both mechanisms makes lumen formation much more robust to the values of the parameters, suggesting that the mechanisms may work synergistically and operate in parallel, rather than in different vessel types. PMID:24430123

  16. Non-local models for the formation of hepatocyte-stellate cell aggregates.

    PubMed

    Green, J E F; Waters, S L; Whiteley, J P; Edelstein-Keshet, L; Shakesheff, K M; Byrne, H M

    2010-11-01

    Liver cell aggregates may be grown in vitro by co-culturing hepatocytes with stellate cells. This method results in more rapid aggregation than hepatocyte-only culture, and appears to enhance cell viability and the expression of markers of liver-specific functions. We consider the early stages of aggregate formation, and develop a new mathematical model to investigate two alternative hypotheses (based on evidence in the experimental literature) for the role of stellate cells in promoting aggregate formation. Under Hypothesis 1, each population produces a chemical signal which affects the other, and enhanced aggregation is due to chemotaxis. Hypothesis 2 asserts that the interaction between the two cell types is by direct physical contact: the stellates extend long cellular processes which pull the hepatocytes into the aggregates. Under both hypotheses, hepatocytes are attracted to a chemical they themselves produce, and the cells can experience repulsive forces due to overcrowding. We formulate non-local (integro-partial differential) equations to describe the densities of cells, which are coupled to reaction-diffusion equations for the chemical concentrations. The behaviour of the model under each hypothesis is studied using a combination of linear stability analysis and numerical simulations. Our results show how the initial rate of aggregation depends upon the cell seeding ratio, and how the distribution of cells within aggregates depends on the relative strengths of attraction and repulsion between the cell types. Guided by our results, we suggest experiments which could be performed to distinguish between the two hypotheses. PMID:20709085

  17. Pattern formation by a cell surface-associated morphogen in Myxococcus xanthus

    PubMed Central

    Jelsbak, Lars; Søgaard-Andersen, Lotte

    2002-01-01

    In response to starvation, an unstructured population of identical Myxococcus xanthus cells rearranges into an asymmetric, stable pattern of multicellular fruiting bodies. Central to this pattern formation process are changes in organized cell movements from swarming to aggregation. Aggregation is induced by the cell surface-associated C-signal. To understand how aggregation is accomplished, we have analyzed how C-signal modulates cell behavior. We show that C-signal induces a motility response that includes increases in transient gliding speeds and in the duration of gliding intervals and decreases in stop and reversal frequencies. This response results in a switch in cell behavior from an oscillatory to a unidirectional type of behavior in which the net-distance traveled by a cell per minute is increased. We propose that the C-signal-dependent regulation of the reversal frequency is essential for aggregation and that the remaining C-signal-dependent changes in motility parameters contribute to aggregation by increasing the net-distance traveled by starving cells per minute. In our model for symmetry-breaking and aggregation, C-signal transmission is a local event involving direct contacts between cells that results in a global organization of cells. This pattern formation mechanism does not require a diffusible substance or other actions at a distance. Rather it depends on contact-induced changes in motility behavior to direct cells appropriately PMID:11842199

  18. Diversity in cell motility reveals the dynamic nature of the formation of zebrafish taste sensory organs.

    PubMed

    Soulika, Marina; Kaushik, Anna-Lila; Mathieu, Benjamin; Lourenço, Raquel; Komisarczuk, Anna Z; Romano, Sebastian Alejo; Jouary, Adrien; Lardennois, Alicia; Tissot, Nicolas; Okada, Shinji; Abe, Keiko; Becker, Thomas S; Kapsimali, Marika

    2016-06-01

    Taste buds are sensory organs in jawed vertebrates, composed of distinct cell types that detect and transduce specific taste qualities. Taste bud cells differentiate from oropharyngeal epithelial progenitors, which are localized mainly in proximity to the forming organs. Despite recent progress in elucidating the molecular interactions required for taste bud cell development and function, the cell behavior underlying the organ assembly is poorly defined. Here, we used time-lapse imaging to observe the formation of taste buds in live zebrafish larvae. We found that tg(fgf8a.dr17)-expressing cells form taste buds and get rearranged within the forming organs. In addition, differentiating cells move from the epithelium to the forming organs and can be displaced between developing organs. During organ formation, tg(fgf8a.dr17) and type II taste bud cells are displaced in random, directed or confined mode relative to the taste bud they join or by which they are maintained. Finally, ascl1a activity in the 5-HT/type III cell is required to direct and maintain tg(fgf8a.dr17)-expressing cells into the taste bud. We propose that diversity in displacement modes of differentiating cells acts as a key mechanism for the highly dynamic process of taste bud assembly. PMID:27122167

  19. Formation of reactive oxygen species in rat epithelial cells upon stimulation with fly ash.

    PubMed

    Voelkel, K; Krug, H F; Diabaté, S

    2003-02-01

    Fly ash was used as a model for ambient particulate matter which is under suspicion to cause adverse pulmonary health effects. The fly ash was pre-sized and contained only particles < 20 microm including an ultrafine fraction (< 100 nm) that contributed 31% to the particle number. In our study, we investigated the influence of fly ash on the promotion of early inflammatory reactions like the formation of reactive oxygen species (ROS) in rat lung epithelial cells (RLE-6TN). Furthermore, we determined the formation of nitric oxide (NO). The cells show a clear dose-response relationship concerning the formation of ROS with regard to the mass of particles applied. Lipopolysaccharide (LPS) added as a co-stimulus did not increase the formation of ROS induced by fly ash. Furthermore, in LPS (0.1 microg/ml) and tumour necrosis factor-alpha (TNF-alpha; 1 ng/ml) pre-treated cells no increase in reactive oxygen species comparable to fly ash alone is observable. In presence of the metal chelator, desferrioxamine (DFO), ROS formation can be significantly reduced. Neither fly ash nor LPS induced a significant NO release in RLE-6TN cells. PMID:12682424

  20. Dazl is a critical player for primordial germ cell formation in medaka

    PubMed Central

    Li, Mingyou; Zhu, Feng; Li, Zhendong; Hong, Ni; Hong, Yunhan

    2016-01-01

    The DAZ family genes boule, daz and dazl have conserved functions in primordial germ cell (PGC) migration, germ stem cell proliferation, differentiation and meiosis progression. It has remained unknown whether this family is required for PGC formation in developing embryos. Our recent study in the fish medaka (Oryzias latipes) has defined dnd as the critical PGC specifier and predicted the presence of additional factors essential for PGC formation. Here we report that dazl is a second key player for medaka PGC formation. Dazl knockdown did not prevent PGC formation even in the absence of normal somatic structures. It turned out that a high level of Dazl protein was maternally supplied and persisted until gastrulation, and hardly affected by two antisense morpholino oligos targeting the dazl RNA translation. Importantly, microinjection of a Dazl antibody remarkably reduced the number of PGCs and even completely abolished PGC formation without causing detectable somatic abnormality. Therefore, medaka PGC formation requires the Dazl protein as maternal germ plasm component, offering first evidence that dazl is a critical player in PGC formation in vivo. Our results demonstrate that antibody neutralization is a powerful tool to study the roles of maternal protein factors in PGC development in vivo. PMID:27328644

  1. Dazl is a critical player for primordial germ cell formation in medaka.

    PubMed

    Li, Mingyou; Zhu, Feng; Li, Zhendong; Hong, Ni; Hong, Yunhan

    2016-01-01

    The DAZ family genes boule, daz and dazl have conserved functions in primordial germ cell (PGC) migration, germ stem cell proliferation, differentiation and meiosis progression. It has remained unknown whether this family is required for PGC formation in developing embryos. Our recent study in the fish medaka (Oryzias latipes) has defined dnd as the critical PGC specifier and predicted the presence of additional factors essential for PGC formation. Here we report that dazl is a second key player for medaka PGC formation. Dazl knockdown did not prevent PGC formation even in the absence of normal somatic structures. It turned out that a high level of Dazl protein was maternally supplied and persisted until gastrulation, and hardly affected by two antisense morpholino oligos targeting the dazl RNA translation. Importantly, microinjection of a Dazl antibody remarkably reduced the number of PGCs and even completely abolished PGC formation without causing detectable somatic abnormality. Therefore, medaka PGC formation requires the Dazl protein as maternal germ plasm component, offering first evidence that dazl is a critical player in PGC formation in vivo. Our results demonstrate that antibody neutralization is a powerful tool to study the roles of maternal protein factors in PGC development in vivo. PMID:27328644

  2. Guided extracellular matrix formation from fibroblast cells cultured on bio-inspired configurable multiscale substrata

    PubMed Central

    Bae, Won-Gyu; Kim, Jangho; Choung, Yun-Hoon; Chung, Yesol; Suh, Kahp Y.; Pang, Changhyun; Chung, Jong Hoon; Jeong, Hoon Eui

    2015-01-01

    Engineering complex extracellular matrix (ECM) is an important challenge for cell and tissue engineering applications as well as for understanding fundamental cell biology. We developed the methodology for fabrication of precisely controllable multiscale hierarchical structures using capillary force lithography in combination with original wrinkling technique for the generation of well-defined native ECM-like platforms by culturing fibroblast cells on the multiscale substrata [1]. This paper provides information on detailed characteristics of polyethylene glycol-diacrylate multiscale substrata. In addition, a possible model for guided extracellular matrix formation from fibroblast cells cultured on bio-inspired configurable multiscale substrata is proposed. PMID:26543882

  3. Monolayer formation of human osteoblastic cells on vertically aligned multiwalled carbon nanotube scaffolds.

    PubMed

    Lobo, Anderson O; Antunes, Erica F; Palma, Mariana Bs; Pacheco-Soares, Cristina; Trava-Airoldi, Vladimir J; Corat, Evaldo J

    2010-04-01

    Monolayer formation of SaOS-2 (human osteoblast-like cells) was observed on VACNT (vertically aligned multiwalled carbon nanotubes) scaffolds without purification or functionalization. The VACNT were produced by a microwave plasma chemical vapour deposition on titanium surfaces with nickel or iron as catalyst. Cell viability and morphology studies were evaluated by LDH (lactate dehydrogenase) release assay and SEM (scanning electron microscopy), respectively. The non-toxicity and the flat spreading with monolayer formation of the SaOs-2 on VACNT scaffolds surface indicate that they can be used for biomedical applications. PMID:19947917

  4. Plant-derived decapeptide OSIP108 interferes with Candida albicans biofilm formation without affecting cell viability.

    PubMed

    Delattin, Nicolas; De Brucker, Katrijn; Craik, David J; Cheneval, Olivier; Fröhlich, Mirjam; Veber, Matija; Girandon, Lenart; Davis, Talya R; Weeks, Anne E; Kumamoto, Carol A; Cos, Paul; Coenye, Tom; De Coninck, Barbara; Cammue, Bruno P A; Thevissen, Karin

    2014-05-01

    We previously identified a decapeptide from the model plant Arabidopsis thaliana, OSIP108, which is induced upon fungal pathogen infection. In this study, we demonstrated that OSIP108 interferes with biofilm formation of the fungal pathogen Candida albicans without affecting the viability or growth of C. albicans cells. OSIP108 displayed no cytotoxicity against various human cell lines. Furthermore, OSIP108 enhanced the activity of the antifungal agents amphotericin B and caspofungin in vitro and in vivo in a Caenorhabditis elegans-C. albicans biofilm infection model. These data point to the potential use of OSIP108 in combination therapy with conventional antifungal agents. In a first attempt to unravel its mode of action, we screened a library of 137 homozygous C. albicans mutants, affected in genes encoding cell wall proteins or transcription factors important for biofilm formation, for altered OSIP108 sensitivity. We identified 9 OSIP108-tolerant C. albicans mutants that were defective in either components important for cell wall integrity or the yeast-to-hypha transition. In line with these findings, we demonstrated that OSIP108 activates the C. albicans cell wall integrity pathway and that its antibiofilm activity can be blocked by compounds inhibiting the yeast-to-hypha transition. Furthermore, we found that OSIP108 is predominantly localized at the C. albicans cell surface. These data point to interference of OSIP108 with cell wall-related processes of C. albicans, resulting in impaired biofilm formation. PMID:24566179

  5. Identification of a molecular target of psychosine and its role in globoid cell formation.

    PubMed

    Im, D S; Heise, C E; Nguyen, T; O'Dowd, B F; Lynch, K R

    2001-04-16

    Globoid cell leukodystrophy (GLD) is characterized histopathologically by apoptosis of oligodendrocytes, progressive demyelination, and the existence of large, multinuclear (globoid) cells derived from perivascular microglia. The glycosphingolipid, psychosine (d-galactosyl-beta-1,1' sphingosine), accumulates to micromolar levels in GLD patients who lack the degradative enzyme galactosyl ceramidase. Here we document that an orphan G protein-coupled receptor, T cell death-associated gene 8, is a specific psychosine receptor. Treatment of cultured cells expressing this receptor with psychosine or structurally related glycosphingolipids results in the formation of globoid, multinuclear cells. Our discovery of a molecular target for psychosine suggests a mechanism for the globoid cell histology characteristic of GLD, provides a tool with which to explore the disjunction of mitosis and cytokinesis in cell cultures, and provides a platform for developing a medicinal chemistry for psychosine. PMID:11309421

  6. Transcriptional profiling of Legionella pneumophila biofilm cells and the influence of iron on biofilm formation.

    PubMed

    Hindré, Thomas; Brüggemann, Holger; Buchrieser, Carmen; Héchard, Yann

    2008-01-01

    In aquatic environments, biofilms constitute an ecological niche where Legionella pneumophila persists as sessile cells. However, very little information on the sessile mode of life of L. pneumophila is currently available. We report here the development of a model biofilm of L. pneumophila strain Lens and the first transcriptome analysis of L. pneumophila biofilm cells. Global gene expression analysis of sessile cells as compared to two distinct populations of planktonic cells revealed that a substantial proportion of L. pneumophila genes is differentially expressed, as 2.3 % of the 2932 predicted genes exhibited at least a twofold change in gene expression. Comparison with previous results defining the gene expression profile of replicative- and transmissive-phase Legionella suggests that sessile cells resemble bacteria in the replicative phase. Further analysis of the most strongly regulated genes in sessile cells identified two induced gene clusters. One contains genes that encode alkyl hydroperoxide reductases known to act against oxidative stress. The second encodes proteins similar to PvcA and PvcB that are involved in siderophore biosynthesis in Pseudomonas aeruginosa. Since iron has been reported to modify biofilm formation in other species, we further focused on iron control of gene expression and biofilm formation. Among the genes showing the greatest differences in expression between planktonic cells and biofilm, only pvcA and pvcB were regulated by iron concentration. A DeltapvcA L. pneumophila mutant showed no changes in biofilm formation compared to the wild-type, suggesting that the pvcA product is not mandatory for biofilm formation. However, biofilm formation by L. pneumophila wild-type and a DeltapvcA strain was clearly inhibited in iron-rich conditions. PMID:18174123

  7. Effect of reproductive status changes on family functioning and well-being of mothers and daughters.

    PubMed

    Paikoff, R L; Brooks-gunn, J; Carlton-ford, S

    1991-05-01

    The effects of mother and daughter reproductive changes on maternal perceptions regarding the family are assessed. Mother and daughter reproductive status changes were examined in terms of their effects on family relations and mother and daughter well-being. Controls were made for mother and daughter age and heaviness. 144 mothers (37-59 years) and daughters (14-18 years) were selected from a study of white, middle to upper middle income families in large Eastern metropolitan areas. Mothers were typically well educated and employed and from 2-parent homes; 50% were 1st born. Moos' Family Environment Scale was used to measure family functioning; other measures included daughter's age at menarche, mother's menstrual status, the Ponderal index of mother and daughter heaviness, the Center for Epidemiological Studies-Depression scale, an abbreviated version of the Eating Attitudes Test, and Satisfaction with Body Parts scale of Padin, Lerner and Spiro. Self-administered questionnaires were mailed after agreement to participate was confirmed by phone. Analysis of covariance was used to analyze the effect of menstrual status controlling for age on family cohesion or conflict, and the effect of perception of family cohesion or conflict on well-being. Factor-covariate interactions were tested for, and none were found based on the Bonferroni procedure. The cross-sectional results show that early adolescent maturation is not related to increases in family conflict compared with on-time or late maturers, in contrast to Hill's study results. There was no link between perceptions of family conflict on the well-being of mother or daughter. Family cohesion was important to mother and daughter well-being, but was not associated with mother's reproductive status or daughter's reproductive timing. For mothers, the effect was on depression and body image. For daughters, the most important variable was maternal perceptions of family cohesion for all measures of well-being. Daughters

  8. Endothelial progenitor cells promote tumor growth and progression by enhancing new vessel formation

    PubMed Central

    Zhao, Xin; Liu, Huan-Qiu; Li, Ji; Liu, Xiao-Liang

    2016-01-01

    Tumor growth and progression require new blood vessel formation to deliver nutrients and oxygen for further cell proliferation and to create a neovascular network exit for tumor cell metastasis. Endothelial progenitor cells (EPCs) are a bone marrow (BM)-derived stem cell population that circulates in the peripheral circulation and homes to the tumor bed to participate in new blood vessel formation. In addition to structural support to nascent vessels, these cells can also regulate the angiogenic process by paracrine secretion of a number of proangiogenic growth factors and cytokines, thus playing a crucial role in tumor neovascularization and development. Inhibition of EPC-mediated new vessel formation may be a promising therapeutic strategy in tumor treatment. EPC-mediated neovascularization is a complex process that includes multiple steps and requires a series of cytokines and modulators, thus understanding the underlying mechanisms may provide anti-neovasculogenesis targets that may be blocked for the prevention of tumor development. The present review stresses the process and contribution of EPCs to the formation of new blood vessels in solid tumors, in an attempt to gain an improved understanding of the underlying cellular and molecular mechanisms involved, and to provide a potential effective therapeutic target for cancer treatment. PMID:27446353

  9. Inhibitory effect of CGRP on osteoclast formation by mouse bone marrow cells treated with isoproterenol.

    PubMed

    Ishizuka, Kyoko; Hirukawa, Koji; Nakamura, Hiroshi; Togari, Akifumi

    2005-04-29

    The present study was designed to elucidate the mode of action of isoproterenol (Isp; adrenergic beta-agonist) and to characterize the effect of the calcitonin gene-related peptide (CGRP; sensory neuropeptide) on osteoclast formation induced by Isp in a mouse bone marrow culture system. Treatment of mouse bone marrow cells with Isp generated tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (MNCs) capable of excavating resorptive pits on dentine slices, and caused an increase in receptor activator of NF-kappaB ligand (RANKL) and a decrease in osteoprotegerin (OPG) production by the marrow cells. The osteoclast formation was significantly inhibited by OPG, suggesting the involvement of the RANKL-RANK system. CGRP inhibited the osteoclast formation caused by Isp or soluble RANKL (s-RANKL) but had no influence on RANKL or OPG production by the bone marrow cells treated with Isp, suggesting that CGRP inhibited the osteoclast formation by interfering with the action of RANKL produced by the Isp-treated bone marrow cells without affecting RANKL or OPG production. This in vitro data suggest the physiological interaction of sympathetic and sensory nerves in osteoclastogenesis in vivo. PMID:15814197

  10. Local antigen in nonlymphoid tissue promotes resident memory CD8+ T cell formation during viral infection.

    PubMed

    Khan, Tahsin N; Mooster, Jana L; Kilgore, Augustus M; Osborn, Jossef F; Nolz, Jeffrey C

    2016-05-30

    Tissue-resident memory (Trm) CD8(+) T cells are functionally distinct from their circulating counterparts and are potent mediators of host protection against reinfection. Whether local recognition of antigen in nonlymphoid tissues during infection can impact the formation of Trm populations remains unresolved. Using skin infections with vaccinia virus (VacV)-expressing model antigens, we found that local antigen recognition had a profound impact on Trm formation. Activated CD8(+) T cells trafficked to VacV-infected skin in an inflammation-dependent, but antigen-independent, manner. However, after viral clearance, there was a subsequent ∼50-fold increase in Trm formation when antigen was present in the tissue microenvironment. Secondary antigen stimulation in nonlymphoid tissue caused CD8(+) T cells to rapidly express CD69 and be retained at the site of infection. Finally, Trm CD8(+) T cells that formed during VacV infection in an antigen-dependent manner became potent stimulators of localized antigen-specific inflammatory responses in the skin. Thus, our studies indicate that the presence of antigen in the nonlymphoid tissue microenvironment plays a critical role in the formation of functional Trm CD8(+) T cell populations, a finding with relevance for both vaccine design and prevention of inflammatory disorders. PMID:27217536

  11. Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation.

    PubMed

    Ouyang, Liliang; Yao, Rui; Mao, Shuangshuang; Chen, Xi; Na, Jie; Sun, Wei

    2015-12-01

    With the ability to manipulate cells temporarily and spatially into three-dimensional (3D) tissue-like construct, 3D bioprinting technology was used in many studies to facilitate the recreation of complex cell niche and/or to better understand the regulation of stem cell proliferation and differentiation by cellular microenvironment factors. Embryonic stem cells (ESCs) have the capacity to differentiate into any specialized cell type of the animal body, generally via the formation of embryoid body (EB), which mimics the early stages of embryogenesis. In this study, extrusion-based 3D bioprinting technology was utilized for biofabricating ESCs into 3D cell-laden construct. The influence of 3D printing parameters on ESC viability, proliferation, maintenance of pluripotency and the rule of EB formation was systematically studied in this work. Results demonstrated that ESCs were successfully printed with hydrogel into 3D macroporous construct. Upon process optimization, about 90% ESCs remained alive after the process of bioprinting and cell-laden construct formation. ESCs continued proliferating into spheroid EBs in the hydrogel construct, while retaining the protein expression and gene expression of pluripotent markers, like octamer binding transcription factor 4, stage specific embryonic antigen 1 and Nanog. In this novel technology, EBs were formed through cell proliferation instead of aggregation, and the quantity of EBs was tuned by the initial cell density in the 3D bioprinting process. This study introduces the 3D bioprinting of ESCs into a 3D cell-laden hydrogel construct for the first time and showed the production of uniform, pluripotent, high-throughput and size-controllable EBs, which indicated strong potential in ESC large scale expansion, stem cell regulation and fabrication of tissue-like structure and drug screening studies. PMID:26531008

  12. Daughter preference and contraceptive-use in matrilineal tribal societies in Meghalaya, India.

    PubMed

    Narzary, Pralip Kumar; Sharma, Shilpi Mishra

    2013-06-01

    Although son preference in patrilineal society is an established fact, daughter preference in matrilineal society is not thoroughly examined. Very few studies have been carried out on the issue. This paper attempts to explore the daughter preference and contraceptive-use in matrilineal tribal societies in Meghalaya, India. Data from the National Family Health Survey 1998-1999 have been used in this study because, among the large-scale surveys, only this dataset allows identification of matrilineal sample. Mean, percentage, and standard deviation are computed in the present study. Further, the data have been cross-tabulated, and logistic regression has been run through SPSS (version 15). Among the ever-married matrilineal women, 17% desired more sons than daughters but 18.2% desired more daughters than sons. About 11% of ever-married women could achieve their desired sex composition of children. However, a very striking finding suggests that, even after achieving desired sex composition of children, as high as 61.8% of women were still not using contraception mainly because of programme factors while one-fourth were still depending on temporary methods. The rest 13.2% adopted terminal method of contraception, which calls for immediate attention of planners. With the increase in the number of sons but without daughter, contraceptive-use drastically decreased. The most desired sex composition of children seems to be two daughters and a son. Absence of daughter with increase in the total number of sons increased the desire for additional children. Every woman with two or more sons but without daughter wanted the next child to be a daughter. Thus, there are ample evidences to draw the conclusion that there is, in fact, a daughter preference in the matrilineal tribal societies in Meghalaya, India. Policy-makers may, thus, target the women who have achieved fertility and should ensure that daughter preference does not lead to the negligence to sons. PMID:23930347

  13. Daughter Preference and Contraceptive-use in Matrilineal Tribal Societies in Meghalaya, India

    PubMed Central

    Sharma, Shilpi Mishra

    2013-01-01

    Although son preference in patrilineal society is an established fact, daughter preference in matrilineal society is not thoroughly examined. Very few studies have been carried out on the issue. This paper attempts to explore the daughter preference and contraceptive-use in matrilineal tribal societies in Meghalaya, India. Data from the National Family Health Survey 1998-1999 have been used in this study because, among the large-scale surveys, only this dataset allows identification of matrilineal sample. Mean, percentage, and standard deviation are computed in the present study. Further, the data have been cross-tabulated, and logistic regression has been run through SPSS (version 15). Among the ever-married matrilineal women, 17% desired more sons than daughters but 18.2% desired more daughters than sons. About 11% of ever-married women could achieve their desired sex composition of children. However, a very striking finding suggests that, even after achieving desired sex composition of children, as high as 61.8% of women were still not using contraception mainly because of programme factors while one-fourth were still depending on temporary methods. The rest 13.2% adopted terminal method of contraception, which calls for immediate attention of planners. With the increase in the number of sons but without daughter, contraceptive-use drastically decreased. The most desired sex composition of children seems to be two daughters and a son. Absence of daughter with increase in the total number of sons increased the desire for additional children. Every woman with two or more sons but without daughter wanted the next child to be a daughter. Thus, there are ample evidences to draw the conclusion that there is, in fact, a daughter preference in the matrilineal tribal societies in Meghalaya, India. Policy-makers may, thus, target the women who have achieved fertility and should ensure that daughter preference does not lead to the negligence to sons. PMID:23930347

  14. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo

    PubMed Central

    Lotti, Roberta; Palazzo, Elisabetta; Petrachi, Tiziana; Dallaglio, Katiuscia; Saltari, Annalisa; Truzzi, Francesca; Quadri, Marika; Puviani, Mario; Maiorana, Antonino; Marconi, Alessandra; Pincelli, Carlo

    2016-01-01

    Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC) originate from alterations in keratinocyte stem cells (KSC) gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD) and non-RAD (NRAD) cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin), while it increases the level of differentiation markers (K10, involucrin). Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development. PMID:26771605

  15. Cholate-Stimulated Biofilm Formation by Lactococcus lactis Cells ▿ †

    PubMed Central

    Zaidi, Arsalan Haseeb; Bakkes, Patrick J.; Krom, Bastiaan P.; van der Mei, Henny C.; Driessen, Arnold J. M.

    2011-01-01

    Bile acid resistance by Lactococcus lactis depends on the ABC-type multidrug transporter LmrCD. Upon deletion of the lmrCD genes, cells can reacquire bile acid resistance upon prolonged exposure to cholate, yielding the ΔlmrCDr strain. The resistance mechanism in this strain is non-transporter based. Instead, cells show a high tendency to flocculate, suggesting cell surface alterations. Contact angle measurements demonstrate that the ΔlmrCDr cells are equipped with an increased cell surface hydrophilicity compared to those of the parental and wild-type strains, while the surface hydrophilicity is reduced in the presence of cholate. ΔlmrCDr cells are poor in biofilm formation on a hydrophobic polystyrene surface, but in the presence of subinhibitory concentrations of cholate, biofilm formation is strongly stimulated. Biofilm cells show an enhanced extracellular polymeric substance production and are highly resistant to bile acids. These data suggest that non-transporter-based cholate resistance in L. lactis is due to alterations in the cell surface that stimulate cells to form resistant biofilms. PMID:21335382

  16. Sequential Salinomycin Treatment Results in Resistance Formation through Clonal Selection of Epithelial-Like Tumor Cells.

    PubMed

    Kopp, Florian; Hermawan, Adam; Oak, Prajakta Shirish; Ulaganathan, Vijay Kumar; Herrmann, Annika; Elnikhely, Nefertiti; Thakur, Chitra; Xiao, Zhiguang; Knyazev, Pjotr; Ataseven, Beyhan; Savai, Rajkumar; Wagner, Ernst; Roidl, Andreas

    2014-12-01

    Acquiring therapy resistance is one of the major obstacles in the treatment of patients with cancer. The discovery of the cancer stem cell (CSC)-specific drug salinomycin raised hope for improved treatment options by targeting therapy-refractory CSCs and mesenchymal cancer cells. However, the occurrence of an acquired salinomycin resistance in tumor cells remains elusive. To study the formation of salinomycin resistance, mesenchymal breast cancer cells were sequentially treated with salinomycin in an in vitro cell culture assay, and the resulting differences in gene expression and salinomycin susceptibility were analyzed. We demonstrated that long-term salinomycin treatment of mesenchymal cancer cells resulted in salinomycin-resistant cells with elevated levels of epithelial markers, such as E-cadherin and miR-200c, a decreased migratory capability, and a higher susceptibility to the classic chemotherapeutic drug doxorubicin. The formation of salinomycin resistance through the acquisition of epithelial traits was further validated by inducing mesenchymal-epithelial transition through an overexpression of miR-200c. The transition from a mesenchymal to a more epithelial-like phenotype of salinomycin-treated tumor cells was moreover confirmed in vivo, using syngeneic and, for the first time, transgenic mouse tumor models. These results suggest that the acquisition of salinomycin resistance through the clonal selection of epithelial-like cancer cells could become exploited for improved cancer therapies by antagonizing the tumor-progressive effects of epithelial-mesenchymal transition. PMID:25500079

  17. Bortezomib induces AMPK-dependent autophagosome formation uncoupled from apoptosis in drug resistant cells

    PubMed Central

    Jaganathan, Sajjeev; Malek, Ehsan; Vallabhapurapu, Subrahmanya; Vallabhapurapu, Sivakumar; Driscoll, James J.

    2014-01-01

    The proteasome inhibitor bortezomib is an effective anti-cancer agent for the plasma cell malignancy multiple myeloma but clinical response is hindered by the emergence of drug resistance through unknown mechanisms. Drug sensitive myeloma cells were exposed to bortezomib to generate drug resistant cells that displayed a significant increase in subunits of the energy sensor AMP-activated protein kinase (AMPK). AMPK activity in resistant cells was increased and bortezomib resistant cells contained a ~4-fold greater level of autophagosomes than drug sensitive cells. Real-time measurements indicated that bortezomib reduced the oxygen consumption rate in drug sensitive cells more readily than in resistant cells. Genetic ablation of AMPK activity reduced the bortezomib effect on autophagy. The autophagy-related gene (Atg)5 is required for autophagosome formation and enhances cellular susceptibility to apoptotic stimuli. Atg5 knockout eliminated bortezomib-induced autophagosome formation and reduced susceptibility to bortezomib. Bortezomib treatment of myeloma cells lead to ATG5 cleavage through a calpain-dependent manner while calpain inhibition or a calpain-insensitive Atg5 mutant promoted bortezomib-resistance. In contrast, AICAR, an AMPK activator, enhanced bortezomib-induced cleavage of ATG5 and increased bortezomib-induced killing. Taken together, the results demonstrate that ATG5 cleavage provokes apoptosis and represents a molecular link between autophagy and apoptosis with therapeutic implications. PMID:25481044

  18. Gravity-induced buds formation from protonemata apical cells in the mosses

    NASA Astrophysics Data System (ADS)

    Kyyak, Natalia; Khorkavtsiv, Yaroslava

    The acceleration of moss protonemata development after the exit it to light from darkness is important gravidependent morphogenetic manifestation of the moss protonemata. The accelerated development of mosses shows in transformation of apical protonemata cells into the gametophores buds (Ripetskyj et al., 1999). In order to establish, that such reaction on gravitation is general property of gravisensity species, or its typical only for single moss species, experiments with the following moss species - Bryum intermedium (Ludw.) Brig., Bryum caespiticium Hedw., Bryum argenteum Hedw., Dicranodontium denudatum (Brid.) Britt. were carried out. All these species in response to influence of gravitation were capable to form rich bunches of gravitropical protonemata in darkness, that testified to their gravisensity. After the transference of Petri dishes with gravitropical protonemata from darkness on light was revealed, that in 3 of the investigated species the gametophores buds were absent. Only B. argenteum has reacted to action of gravitation by buds formation from apical cells of the gravitropical protonemata. With the purpose of strengthening of buds formation process, the experiments with action of exogenous kinetin (in concentration of 10 (-6) M) were carried out. Kinetin essentially stimulated apical buds formation of B. argenteum. The quantity of apical buds has increased almost in three times in comparison with the control. Besides, on separate stolons a few (3-4) buds from one apical cell were formed. Experimentally was established, that the gametophores buds formation in mosses is controlled by phytohormones (Bopp, 1985; Demkiv et al., 1991). In conditions of gravity influence its essentially accelerated. Probably, gravity essentially strengthened acropetal transport of phytohormones and formation of attractive center in the protonemata apical cell. Our investigations have allowed to make the conclusion, that gravi-dependent formation of the apical buds is

  19. Chibby promotes ciliary vesicle formation and basal body docking during airway cell differentiation.

    PubMed

    Burke, Michael C; Li, Feng-Qian; Cyge, Benjamin; Arashiro, Takeshi; Brechbuhl, Heather M; Chen, Xingwang; Siller, Saul S; Weiss, Matthew A; O'Connell, Christopher B; Love, Damon; Westlake, Christopher J; Reynolds, Susan D; Kuriyama, Ryoko; Takemaru, Ken-Ichi

    2014-10-13

    Airway multiciliated epithelial cells play crucial roles in the mucosal defense system, but their differentiation process remains poorly understood. Mice lacking the basal body component Chibby (Cby) exhibit impaired mucociliary transport caused by defective ciliogenesis, resulting in chronic airway infection. In this paper, using primary cultures of mouse tracheal epithelial cells, we show that Cby facilitates basal body docking to the apical cell membrane through proper formation of ciliary vesicles at the distal appendage during the early stages of ciliogenesis. Cby is recruited to the distal appendages of centrioles via physical interaction with the distal appendage protein CEP164. Cby then associates with the membrane trafficking machinery component Rabin8, a guanine nucleotide exchange factor for the small guanosine triphosphatase Rab8, to promote recruitment of Rab8 and efficient assembly of ciliary vesicles. Thus, our study identifies Cby as a key regulator of ciliary vesicle formation and basal body docking during the differentiation of airway ciliated cells. PMID:25313408

  20. Microfabric Vessels for Embryoid Body Formation and Rapid Differentiation of Pluripotent Stem Cells

    PubMed Central

    Sato, Hiroki; Idiris, Alimjan; Miwa, Tatsuaki; Kumagai, Hiromichi

    2016-01-01

    Various scalable three-dimensional culture systems for regenerative medicine using human induced pluripotent stem cells (hiPSCs) have been developed to date. However, stable production of hiPSCs with homogeneous qualities still remains a challenge. Here, we describe a novel and simple embryoid body (EB) formation system using unique microfabricated culture vessels. Furthermore, this culture system is useful for high throughput EB formation and rapid generation of differentiated cells such as neural stem cells (NSCs) from hiPSCs. The period of NSC differentiation was significantly shortened under high EB density culture conditions. Simultaneous mass production of a pure population of NSCs was possible within 4 days. These results indicate that the novel culture system might not only become a unique tool to obtain new insights into developmental biology based on human stem cells, but also provide an important tractable platform for efficient and stable production of NSCs for clinical applications. PMID:27507707

  1. Microfabric Vessels for Embryoid Body Formation and Rapid Differentiation of Pluripotent Stem Cells.

    PubMed

    Sato, Hiroki; Idiris, Alimjan; Miwa, Tatsuaki; Kumagai, Hiromichi

    2016-01-01

    Various scalable three-dimensional culture systems for regenerative medicine using human induced pluripotent stem cells (hiPSCs) have been developed to date. However, stable production of hiPSCs with homogeneous qualities still remains a challenge. Here, we describe a novel and simple embryoid body (EB) formation system using unique microfabricated culture vessels. Furthermore, this culture system is useful for high throughput EB formation and rapid generation of differentiated cells such as neural stem cells (NSCs) from hiPSCs. The period of NSC differentiation was significantly shortened under high EB density culture conditions. Simultaneous mass production of a pure population of NSCs was possible within 4 days. These results indicate that the novel culture system might not only become a unique tool to obtain new insights into developmental biology based on human stem cells, but also provide an important tractable platform for efficient and stable production of NSCs for clinical applications. PMID:27507707

  2. Comparative study on DBPs formation profiles of intermediate organics from hydroxyl radicals oxidation of microbial cells.

    PubMed

    Ou, Tai-You; Wang, Gen-Shuh

    2016-05-01

    This study assessed the characteristics of disinfection byproducts (DBPs) formation from intermediate organics during UV/H2O2 treatment of activated sludge and algae cells under various reaction conditions. The DBPs including trihalomethanes (THMs), haloacetic acids (HAAs), haloketones (HKs) and haloacetonitriles (HANs) in UV/H2O2-treated and chlorinated water were measured. The results showed that both dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) increased during the initial stage of UV/H2O2 treatment due to the lysis of sludge and algae cells, which enhanced the formation of both C- and N-DBPs; however, both DOC and DON decreased after longer reaction times. During the UV/H2O2 treatments, THMs formation potential (THMFP) peaked earlier than did HAAs formation potential (HAAFP). This shows that the dissolved organics released from lysis of microbial cells in the early stages of oxidation favor the production of THMs over HAAs; however, HAAs precursors increased with the oxidation time. Chlorination with bromide increased the formation of THMs and HAAs but less HKs and HANs were produced. Comparisons of normalized DBP formation potential (DBPFP) of samples collected during UV/H2O2 treatments of four different types of organic matter showed that the highest DBPFP occurred in filtered treated wastewater effluent, followed by samples of activated sludge, filtered eutrophicated pond water, and samples of algae cells. With increasing oxidation time, the dominant DBP species shifted from THMs to HAAs in the samples of activated sludge and algae cells. The DBPFP tests also showed that more HAAs were formed in biologically treated wastewater effluent, while the eutrophicated source water produced more THMs. PMID:26894677

  3. Daughters at Risk of Female Genital Mutilation: Examining the Determinants of Mothers’ Intentions to Allow Their Daughters to Undergo Female Genital Mutilation

    PubMed Central

    Pashaei, Tahereh; Ponnet, Koen; Moeeni, Maryam; Khazaee-pool, Maryam; Majlessi, Fereshteh

    2016-01-01

    Female genital mutilation (FGM) is still a common practice in many countries in Africa and the Middle East. Understanding the determinants of FGM can lead to more active interventions to prevent this harmful practice. The goal of this study is to explore factors associated with FGM behavior among Iranian mothers and their daughters. Based on Ajzen’s theory of planned behavior, we examined the predictive value of attitudes, subjective norms, perceived behavioral control and several socio-demographic variables in relation to mothers’ intentions to mutilate their daughters. A paper-and-pencil survey was conducted among 300 mothers (mean age = 33.20, SD = 9.09) who had at least one daughter and who lived in Ravansar, a county in Kermanshah Province in Iran. Structural equation modeling was used to investigate the relationships among the study variables. Our results indicate that attitude is the strongest predictor of mothers’ intentions to allow their daughters to undergo FGM, followed by subjective norms. Compared to younger mothers, older mothers have more positive attitudes toward FGM, perceive themselves as having more control over their behavior and demonstrate a greater intention to allow their daughter to undergo FGM. Furthermore, we found that less educated mothers and mothers living in rural areas had more positive attitudes toward FGM and feel more social pressure to allow FGM. The model accounts for 93 percent of the variance in the mothers’ intentions to allow their daughters to undergo FGM. Intervention programs that want to decrease FGM might focus primarily on converting mothers’ neutral or positive feelings toward FGM into negative attitudes and on alleviating the perceived social pressure to mutilate one’s daughter. Based on our findings, we provide recommendations about how to curtail mothers’ intentions to allow their daughters to undergo FGM. PMID:27031613

  4. Daughters at Risk of Female Genital Mutilation: Examining the Determinants of Mothers' Intentions to Allow Their Daughters to Undergo Female Genital Mutilation.

    PubMed

    Pashaei, Tahereh; Ponnet, Koen; Moeeni, Maryam; Khazaee-pool, Maryam; Majlessi, Fereshteh

    2016-01-01

    Female genital mutilation (FGM) is still a common practice in many countries in Africa and the Middle East. Understanding the determinants of FGM can lead to more active interventions to prevent this harmful practice. The goal of this study is to explore factors associated with FGM behavior among Iranian mothers and their daughters. Based on Ajzen's theory of planned behavior, we examined the predictive value of attitudes, subjective norms, perceived behavioral control and several socio-demographic variables in relation to mothers' intentions to mutilate their daughters. A paper-and-pencil survey was conducted among 300 mothers (mean age = 33.20, SD = 9.09) who had at least one daughter and who lived in Ravansar, a county in Kermanshah Province in Iran. Structural equation modeling was used to investigate the relationships among the study variables. Our results indicate that attitude is the strongest predictor of mothers' intentions to allow their daughters to undergo FGM, followed by subjective norms. Compared to younger mothers, older mothers have more positive attitudes toward FGM, perceive themselves as having more control over their behavior and demonstrate a greater intention to allow their daughter to undergo FGM. Furthermore, we found that less educated mothers and mothers living in rural areas had more positive attitudes toward FGM and feel more social pressure to allow FGM. The model accounts for 93 percent of the variance in the mothers' intentions to allow their daughters to undergo FGM. Intervention programs that want to decrease FGM might focus primarily on converting mothers' neutral or positive feelings toward FGM into negative attitudes and on alleviating the perceived social pressure to mutilate one's daughter. Based on our findings, we provide recommendations about how to curtail mothers' intentions to allow their daughters to undergo FGM. PMID:27031613

  5. [The ultrastructure of mixed mammary gland tumors in bitches. IV. The incidence of myoepithelial cells in formation of spindle cells (author's transl)].

    PubMed

    von Bomhard, D; von Sandersleben, J

    1976-09-21

    Spindle cells of myomatous formations of 19 canine mixed mammary tumors were studied by light and electron microscopy. The EM findings indicate that the spindle-shaped tumor cells are mostly of myoepithelial origin. However there were also formations of spindle cells which consisted of fibroblasts or fibrocytes. By light microscopy they are not always clearly distinguishable. PMID:823695

  6. John Blaha with his wife and daughter in crew quarters

    NASA Technical Reports Server (NTRS)

    1997-01-01

    U. S. astronaut John E. Blaha poses with his wife, Brenda (left), and daughter, Carolyn (right), in the crew quarters at KSC after answering questions about his four-month stay aboard the Russian Mir space station. Blaha returned to Earth earlier today aboard the Space Shuttle orbiter Atlantis when it touched down at 9:22:44 a.m. EST Jan. 22 on Runway 33 of KSCs Shuttle Landing Facility at the conclusion of the STS-81 mission. Blaha and the other five returning STS-81 crew members are spending the night here in the Operations and Checkout Building before returning to Johnson Space Center in Houston tomorrow morning. Blaha will undergo a two-week series of medical tests to help determine the physiological effects of his long-duration mission.

  7. John Blaha, his wife, and daughter after STS-81 landing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    U. S. astronaut John E. Blaha and his family are all smiles as they embrace in the crew quarters at KSC after he answered questions about his four-month stay aboard the Russian Mir space station. Blahas wife, Brenda, is on the left and his daughter, Carolyn, is on the right. Blaha returned to Earth earlier today aboard the Space Shuttle orbiter Atlantis when it touched down at 9:22:44 a.m. EST Jan. 22 on Runway 33 of KSCs Shuttle Landing Facility at the conclusion of the STS-81 mission. Blaha and the other five returning STS-81 crew members are spending the night here in the Operations and Checkout Building before returning to Johnson Space Center in Houston tomorrow morning. Blaha will undergo a two-week series of medical tests to help determine the physiological effects of his long-duration mission.

  8. Reduction of radon daughter concentrations in structures. [UMTRA project

    SciTech Connect

    Not Available

    1982-12-01

    A structure was identified in Salt Lake City wherein uranium mill tailings had been used in the construction and where unusually high levels of radon daughter concentrations (RDC's) existed. The physical and radiological characteristics of the structure were assessed. Ventilation techniques were investigated to assess their effectiveness in reducing RDC's. A preferred set of equipment was identified, installed in the structure and operated to reduce RDC's. Parametric studies were conducted to determine if supplying fresh air or recirculating air through electrostatic precipitators is more effective in reducing RDC's. Fresh air was found to be more effective in reducing RDC's. RDC's have been reduced to levels at or near the target of 0.03 working level under optimal ventilation conditions. Natural gas consumption with the new equipment is about 39% higher than with the original equipment. Electrical energy usage and electrical demand are respectively 50 and 44% higher with the new equipment than with the original equipment. 16 refs., 14 figs., 8 tabs.

  9. Process for recovery of daughter isotopes from a source material

    DOEpatents

    Tranter, Troy J.; Todd, Terry A.; Lewis, Leroy C.; Henscheid, Joseph P.

    2005-10-04

    The invention includes a method of separating isotopes from a mixture containing at least two isotopes in a solution. A first isotope is precipitated and is collected from the solution. A daughter isotope is generated and collected from the first isotope. The invention includes a method of producing an actinium-225/bismuth-213 product from a material containing thorium-229 and thorium-232. A solution is formed containing nitric acid and the material and iodate is added to form a thorium iodate precipitate. A supernatant is separated from the thorium iodate precipitate and a second volume of nitric acid is added to the precipitate. The precipitate is stored and a decay product comprising actinium-225 and bismuth-213 is generated in the second volume of nitric acid which is then separated from the thorium iodate precipitate, filtered, and treated using at least one chromatographic procedure. The invention also includes a system for producing an actinium-225/bismuth-213 product.

  10. Removal of {sup 222}Rn daughters from metal surfaces

    SciTech Connect

    Zuzel, G.; Wojcik, M.; Majorovits, B.; Lampert, M. O.; Wendling, P.

    2015-08-17

    Removal of the long-lived {sup 222}Rn daughters ({sup 210}Pb, {sup 210}Bi and {sup 210}Po) from copper, stainless steel and germanium surfaces was investigated. As cleaning techniques etching and electro-polishing was applied to samples in a form of discs exposed earlier to a strong radon source. Reduction of the {sup 210}Pb activity was tested using a HPGe spectrometer, for {sup 210}Bi a beta spectrometer and for {sup 210}Po an alpha spectrometer was used. According to the conducted measurements electro-polishing was always more efficient compared to etching and in case of copper the activity reduction factors for {sup 210}Pb, {sup 210}Bi and {sup 210}Po were between 200 and 400. Etching does not remove {sup 210}Po from copper but works very efficiently from germanium. Results obtained for {sup 210}Pb and {sup 210}Bi for etched stainless steel were worse but still slightly better than those achieved for copper.

  11. Removal of 222Rn daughters from metal surfaces

    NASA Astrophysics Data System (ADS)

    Zuzel, G.; Wojcik, M.; Majorovits, B.; Lampert, M. O.; Wendling, P.

    2015-08-01

    Removal of the long-lived 222Rn daughters (210Pb, 210Bi and 210Po) from copper, stainless steel and germanium surfaces was investigated. As cleaning techniques etching and electro-polishing was applied to samples in a form of discs exposed earlier to a strong radon source. Reduction of the 210Pb activity was tested using a HPGe spectrometer, for 210Bi a beta spectrometer and for 210Po an alpha spectrometer was used. According to the conducted measurements electro-polishing was always more efficient compared to etching and in case of copper the activity reduction factors for 210Pb, 210Bi and 210Po were between 200 and 400. Etching does not remove 210Po from copper but works very efficiently from germanium. Results obtained for 210Pb and 210Bi for etched stainless steel were worse but still slightly better than those achieved for copper.

  12. Father-daughter incest: data from an anonymous computerized survey.

    PubMed

    Stroebel, Sandra S; O'Keefe, Stephen L; Beard, Keith W; Kuo, Shih-Ya; Swindell, Samuel V S; Kommor, Martin J

    2012-01-01

    Retrospective data were entered anonymously by 1,521 adult women using computer-assisted self-interview. Nineteen were classified as victims of father-daughter incest, and 241 were classified as victims of sexual abuse by an adult other than their father before reaching 18 years of age. The remaining 1,261 served as controls. Incest victims were more likely than controls to endorse feeling damaged, psychologically injured, estranged from one or both parents, and shamed by others when they tried to open up about their experience. They had been eroticized early on by the incest experience, and it interfered with their adult sexuality. Incest victims experienced coitus earlier than controls and after reaching age 18 had more sex partners and were more likely to have casual sex outside their primary relationship and engage in sex for money than controls. They also had worse scores on scales measuring depression, sexual satisfaction, and communication about sex than controls. PMID:22452300

  13. [The "daughterly" existence. Unanswered questions about the female Oedipus complex].

    PubMed

    Rohde-Dachser, C

    1990-01-01

    The author investigates the structural difficulties currently involved in arriving at a conclusive definition of the female Oedipus complex. She shows how Freud's theory of the female Oedipus complex, originally a theory of non-individuation, now figures as a theory of individuation, with old, partriarchally oriented constructs and modern ideas of emancipation having entered into complex combinations that can sometimes be disentangled only with difficulty. Finally, three aspects of the female Oedipus complex are examined: 1. its importance in the acquisition of female sexual identity, 2. its function as a locus for finding the heterosexual object, and 3. its role as a locus for the resolution or fixation of the "daughterly" existence. PMID:2288169

  14. Effects of Nicotine on Streptococcus gordonii Growth, Biofilm Formation, and Cell Aggregation.

    PubMed

    Huang, R; Li, M; Ye, M; Yang, K; Xu, X; Gregory, R L

    2014-12-01

    Streptococcus gordonii is a commensal species of human oral flora. It initiates dental biofilm formation and provides binding sites for later colonizers to attach to and generate mature biofilm. Smoking is the second highest risk factor for periodontal disease, and cigarette smoke extract has been reported to facilitate Porphyromonas gingivalis-S. gordonii dual-species biofilm formation. Our hypothesis is that nicotine, one of the most important and active components of tobacco, stimulates S. gordonii multiplication and aggregation. In the present study, S. gordonii planktonic cell growth (kinetic absorbance and CFU), biofilm formation (crystal violet stain and confocal laser scanning microscopy [CLSM]), aggregation with/without sucrose, and 11 genes that encode binding proteins or regulators of gene expression were investigated. Results demonstrated planktonic cell growth was stimulated by 1 to 4 mg/ml nicotine treatment. Biofilm formation was increased at 0.5 to 4 mg/ml nicotine. CLSM indicated bacterial cell mass was increased by 2 and 4 mg/ml nicotine, but biofilm extracellular polysaccharide was not significantly affected by nicotine. Cell aggregation was upregulated by 4, 8, and 16 mg/ml nicotine with sucrose and by 16 mg/ml nicotine without sucrose. Quantitative reverse transcriptase PCR indicated S. gordonii abpA, scaA, ccpA, and srtA were upregulated in planktonic cells by 2 mg/ml nicotine. In conclusion, nicotine stimulates S. gordonii planktonic cell growth, biofilm formation, aggregation, and gene expression of binding proteins. Those effects may promote later pathogen attachment to tooth surfaces, the accumulation of tooth calculus, and the development of periodontal disease in cigarette smokers. PMID:25217021

  15. Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces

    PubMed Central

    Monier, J.-M.; Lindow, S. E.

    2003-01-01

    The survival of individual Pseudomonas syringae cells was determined on bean leaf surfaces maintained under humid conditions or periodically exposed to desiccation stress. Cells of P. syringae strain B728a harboring a GFP marker gene were visualized by epifluorescence microscopy, either directly in situ or after recovery from leaves, and dead cells were identified as those that were stained with propidium iodide in such populations. Under moist, conducive conditions on plants, the proportion of total live cells was always high, irrespective of their aggregated state. In contrast, the proportion of the total cells that remained alive on leaves that were periodically exposed to desiccation stress decreased through time and was only ≈15% after 5 days. However, the fraction of cells in large aggregates that were alive on such plants in both condition was much higher than more solitary cells. Immediately after inoculation, cells were randomly distributed over the leaf surface and no aggregates were observed. However, a very aggregated pattern of colonization was apparent within 7 days, and >90% of the living cells were located in aggregates of 100 cells or more. Our results strongly suggest that, although conducive conditions favor aggregate formation, such cells are much more capable of tolerating environmental stresses, and the preferential survival of cells in aggregates promotes a highly clustered spatial distribution of bacteria on leaf surfaces. PMID:14665692

  16. Hard tissue formation of STRO-1-selected rat dental pulp stem cells in vivo.

    PubMed

    Yang, Xuechao; Walboomers, X Frank; van den Beucken, Jeroen J J P; Bian, Zhuan; Fan, Mingwen; Jansen, John A

    2009-02-01

    The objective of this study was to examine hard tissue formation of STRO-1-selected rat dental pulp-derived stem cells, seeded into a calcium phosphate ceramic scaffold, and implanted subcutaneously in mice. Previously, STRO-1 selection was used to obtain a mesenchymal stem cell progenitor subpopulation from primary dental pulp-derived stem cells. In the current study, these cells were cultured with three different media: "BMP-plus" medium containing dexamethasone and 100 ng/mL of rhBMP-2, "odontogenic" medium containing dexamethasone, and "control" medium without supplements. The cell-scaffold complexes were cultured in these media for 1, 4, or 8 days before implantation. Histological analysis demonstrated that the cultures with BMP-plus and 4 days of culture gave the highest percentage of hard tissue formation per implant (36 +/- 9% of pore area). Real-time PCR confirmed these results. In conclusion, STRO-1-selected dental pulp stem cells show effective hard tissue formation in vivo, and a short in vitro culture period and addition of BMP-2 can enhance this effect. PMID:18652538

  17. Daughter Species Abundances in Comet C/2014 Q2 (Lovejoy)

    NASA Astrophysics Data System (ADS)

    McKay, Adam; Cochran, Anita; Dello Russo, Neil; Kelley, Michael

    2015-11-01

    We present analysis of high spectral resolution optical spectra of C/2014 Q2 (Lovejoy) acquired with the Tull Coude spectrometer on the 2.7-meter Harlan J. Smith Telescope at McDonald Observatory and the ARCES spectrometer mounted on the 3.5-meter Astrophysical Research Consortium Telescope at Apache Point Observatory. Both Tull Coude and ARCES provide high spectral resolution (R=30,000-60,000) and a large spectral range of approximately 3500-10000 Angstroms. We obtained two observation epochs, one in February 2015 at a heliocentric distance of 1.3 AU, and another in May 2015 at a heliocentric distance of 1.9 AU. Another epoch in late August 2015 at a heliocentric distance of 3.0 AU is scheduled. We will present production rates of the daughter species CN, C3, CH, C2, and NH2. We will also present H2O production rates derived from the [OI]6300 emission, as well as measurements of the flux ratio of the [OI]5577 Angstrom line to the sum of the [OI]6300 and [OI]6364 Angstrom lines (sometimes referred to as the oxygen line ratio). This ratio is indicative of the CO2 abundance of the comet. As we have observations at several heliocentric distances, we will examine how production rates and mixing ratios of the various species change with heliocentric distance. We will compare our oxygen line measurements to observations of CO2 made with Spitzer, as well as our other daughter species observations to those of candidate parent molecules made at IR wavelengths.

  18. Deletion of Brg1 causes abnormal hair cell planer polarity, hair cell anchorage, and scar formation in mouse cochlea.

    PubMed

    Jin, Yecheng; Ren, Naixia; Li, Shiwei; Fu, Xiaolong; Sun, Xiaoyang; Men, Yuqin; Xu, Zhigang; Zhang, Jian; Xie, Yue; Xia, Ming; Gao, Jiangang

    2016-01-01

    Hair cells (HCs) are mechanosensors that play crucial roles in perceiving sound, acceleration, and fluid motion. The precise architecture of the auditory epithelium and its repair after HC loss is indispensable to the function of organ of Corti (OC). In this study, we showed that Brg1 was highly expressed in auditory HCs. Specific deletion of Brg1 in postnatal HCs resulted in rapid HC degeneration and profound deafness in mice. Further experiments showed that cell-intrinsic polarity of HCs was abolished, docking of outer hair cells (OHCs) by Deiter's cells (DCs) failed, and scar formation in the reticular lamina was deficient. We demonstrated that Brg1 ablation disrupted the Gαi/Insc/LGN and aPKC asymmetric distributions, without overt effects on the core planer cell polarity (PCP) pathway. We also demonstrated that Brg1-deficient HCs underwent apoptosis, and that leakage in the reticular lamina caused by deficient scar formation shifted the mode of OHC death from apoptosis to necrosis. Together, these data demonstrated a requirement for Brg1 activity in HC development and suggested a role for Brg1 in the proper cellular structure formation of HCs. PMID:27255603

  19. Deletion of Brg1 causes abnormal hair cell planer polarity, hair cell anchorage, and scar formation in mouse cochlea

    PubMed Central

    Jin, Yecheng; Ren, Naixia; Li, Shiwei; Fu, Xiaolong; Sun, Xiaoyang; Men, Yuqin; Xu, Zhigang; Zhang, Jian; Xie, Yue; Xia, Ming; Gao, Jiangang

    2016-01-01

    Hair cells (HCs) are mechanosensors that play crucial roles in perceiving sound, acceleration, and fluid motion. The precise architecture of the auditory epithelium and its repair after HC loss is indispensable to the function of organ of Corti (OC). In this study, we showed that Brg1 was highly expressed in auditory HCs. Specific deletion of Brg1 in postnatal HCs resulted in rapid HC degeneration and profound deafness in mice. Further experiments showed that cell-intrinsic polarity of HCs was abolished, docking of outer hair cells (OHCs) by Deiter’s cells (DCs) failed, and scar formation in the reticular lamina was deficient. We demonstrated that Brg1 ablation disrupted the Gαi/Insc/LGN and aPKC asymmetric distributions, without overt effects on the core planer cell polarity (PCP) pathway. We also demonstrated that Brg1-deficient HCs underwent apoptosis, and that leakage in the reticular lamina caused by deficient scar formation shifted the mode of OHC death from apoptosis to necrosis. Together, these data demonstrated a requirement for Brg1 activity in HC development and suggested a role for Brg1 in the proper cellular structure formation of HCs. PMID:27255603

  20. Timing of natural menopause covaries with timing of birth of a first daughter: evidence for a mother-daughter evolutionary contract?

    PubMed

    Galbarczyk, A; Jasienska, G

    2013-06-01

    Age at natural menopause is characterized by significant variability, but the factors responsible for this observed variation are still not well recognized. Humans are cooperative breeders and non-reproducing grandmothers play important roles in raising children. We propose an evolutionary "mother-daughter contract" hypothesis that suggests that the oldest daughter helps her mother to raise younger siblings but, in return, expects her mother to cease her reproduction, shifting energy and time once her daughter's children are born. Data were collected by a questionnaire from 914 Polish postmenopausal women. From among those, 506 women, 44-98 years old, who had at least one child and who went through a natural menopause were included in the analysis. A woman's age at menopause was sensitive to the age at which she had her first daughter. The age of giving birth to the first daughter, even when she was not her first child, positively correlated with the age of the mother's menopause (N=332, p<0.02), while the age of giving birth to a first son did not have a statistically significant effect (N=332, p=0.36). Results of our study suggest that research on the menopausal transition should take into account mother-daughter relationships as potentially important determinants of the timing of menopause. PMID:23642798

  1. Biofilm formation of Salmonella serotypes in simulated meat processing environments and its relationship to cell characteristics.

    PubMed

    Wang, Huhu; Ding, Shijie; Dong, Yang; Ye, Keping; Xu, Xinglian; Zhou, Guanghong

    2013-10-01

    Salmonella attached to meat contact surfaces encountered in meat processing facilities may serve as a source of cross-contamination. In this study, the influence of serotypes and media on biofilm formation of Salmonella was investigated in a simulated meat processing environment, and the relationships between biofilm formation and cell characteristics were also determined. All six serotypes (Salmonella enterica serotype Heidelberg, Salmonella Derby, Salmonella Agona, Salmonella Indiana, Salmonella Infantis, and Salmonella Typhimurium) can readily form biofilms on stainless steel surfaces, and the amounts of biofilms were significantly influenced by the serotypes, incubation media, and incubation time used in this study. Significant differences in cell surface hydrophobicity, autoaggregation, motility, and growth kinetic parameters were observed between individual serotypes tested. Except for growth kinetic parameters, the cell characteristics were correlated with the ability of biofilm formation incubated in tryptic soy broth, whereas no correlation with biofilm formation incubated in meat thawing-loss broth (an actual meat substrate) was found. Salmonella grown in meat thawing-loss broth showed a "cloud-shaped" morphology in the mature biofilm, whereas when grown in tryptic soy broth it had a "reticulum-shaped" appearance. Our study provides some practical information to understand the process of biofilm formation on meat processing contact surfaces. PMID:24112581

  2. EpCAM expression in breast cancer cells is associated with enhanced bone metastasis formation.

    PubMed

    Hiraga, Toru; Ito, Susumu; Nakamura, Hiroaki

    2016-04-01

    Epithelial cell adhesion molecule (EpCAM) has been implicated in multiple cellular functions including cell adhesion. EpCAM has also recently been identified as a marker for cancer stem cells (CSCs). Here, we examined the roles of EpCAM in the development of bone metastasis of breast cancer by using well-characterized animal models. Morphological and real-time reverse transcriptase-polymerase chain reaction data showed that the EpCAM-negative and -positive (EpCAM(neg) and EpCAM(pos) ) cell populations isolated from breast cancer cell lines exhibited mesenchymal and epithelial phenotypes, respectively. Flow cytometric analysis revealed that EpCAM(pos) , but not EpCAM(neg) , cells possessed self-renewal and differentiation potentials. Tumorsphere formation in suspension cultures and tumorigenicity in the orthotopic mammary fat pad of mice were significantly greater in EpCAM(pos) cells than in EpCAM(neg) cells. The development of bone metastases induced by an intracardiac injection was markedly increased in mice inoculated with EpCAM(pos) cells. Furthermore, intracardiac inoculations of parental cells demonstrated that the EpCAM(pos) population in cancer cells that colonized in bone was significantly higher than that in parental cells. However, stable transduction of EpCAM into EpCAM(neg) cells failed to reproduce the phenotypes of EpCAM(pos) cells. These results suggest that the expression of EpCAM in breast cancer cells is associated with CSC-like phenotypes, which contribute to the promotion of bone metastases by enhancing tumorigenicity. Our results also support the possibility that the epithelial phenotypes of EpCAM-expressing cells confer advantageous properties for the development of bone metastases, at least after entering the circulation, while EpCAM is likely not solely responsible for the phenotypes of EpCAM(pos) cells. PMID:26576938

  3. Autocrine netrin function inhibits glioma cell motility and promotes focal adhesion formation.

    PubMed

    Jarjour, Andrew A; Durko, Margaret; Luk, Tamarah L; Marçal, Nathalie; Shekarabi, Masoud; Kennedy, Timothy E

    2011-01-01

    Deregulation of mechanisms that control cell motility plays a key role in tumor progression by promoting tumor cell dissemination. Secreted netrins and their receptors, Deleted in Colorectal Cancer (DCC), neogenin, and the UNC5 homologues, regulate cell and axon migration, cell adhesion, and tissue morphogenesis. Netrin and netrin receptor expression have previously been shown to be disrupted in invasive tumors, including glioblastoma. We determined that the human glioblastoma cell lines U87, U343, and U373 all express neogenin, UNC5 homologues, and netrin-1 or netrin-3, but only U87 cells express DCC. Using transfilter migration assays, we demonstrate DCC-dependent chemoattractant migration of U87 cells up a gradient of netrin-1. In contrast, U343 and U373 cells, which do not express DCC, were neither attracted nor repelled. Ectopic expression of DCC by U343 and U373 cells resulted in these cells becoming competent to respond to a gradient of netrin-1 as a chemoattractant, and also slowed their rate of spontaneous migration. Here, in addition to netrins' well-characterized chemotropic activity, we demonstrate an autocrine function for netrin-1 and netrin-3 in U87 and U373 cells that slows migration. We provide evidence that netrins promote the maturation of focal complexes, structures associated with cell movement, into focal adhesions. Consistent with this, netrin, DCC, and UNC5 homologues were associated with focal adhesions, but not focal complexes. Disrupting netrin or DCC function did not alter cell proliferation or survival. Our findings provide evidence that DCC can slow cell migration, and that neogenin and UNC5 homologues are not sufficient to substitute for DCC function in these cells. Furthermore, we identify a role for netrins as autocrine inhibitors of cell motility that promote focal adhesion formation. These findings suggest that disruption of netrin signalling may disable a mechanism that normally restrains inappropriate cell migration. PMID

  4. Mothers’ Perspectives about Reproductive Health Discussions with Adolescent Daughters with Diabetes

    PubMed Central

    Hannan, Margaret; Happ, Mary Beth; Charron-Prochownik, Denise

    2010-01-01

    Purpose The purpose of this study was to explore mothers’ perspectives about reproductive health (RH) discussions with their adolescent daughters with diabetes. Methods This study of mothers used a sequential explanatory mixed method design with 2 phases. Phase 2, the focus of this report, was a qualitative descriptive study using open-ended semi-structured telephone interviews. Ten mothers from a larger study sample were selected by purposeful sampling. Qualitative content analysis techniques were used to analyze the interview transcripts. Results The following 4 themes describing mothers’ perspectives about RH discussions with their adolescent daughters with diabetes were identified: 1) maternal awareness; 2) maternal knowledge; 3) triggers for initiating RH discussions; and, 4) maternal fears/concerns. Several mothers were aware of their daughters’ sexual activity and were aware that their daughters should preplan a pregnancy. They knew that an unplanned pregnancy may have detrimental effects on their daughters’ health and feared that their daughters would have an unplanned pregnancy. A major trigger for mothers to initiate RH discussions was when a daughter had a steady boyfriend. Mothers’ fears and concerns were focused around their daughters having an unplanned pregnancy. Overall, mothers reported they were not comfortable with RH conversations. Conclusions Mothers fear unplanned pregnancies for their daughters with diabetes and want to discuss RH issues with them, but are uncomfortable doing so. Diabetes educators could be instrumental in educating and providing communication skills to mothers to help foster RH communication with their adolescent daughters with diabetes. PMID:19213674

  5. Impact of selection for increased daughter fertility on productive life and culling for reproduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selection for increased daughter pregnancy rate (DPR) over 2 generations was examined to determine if such selection had affected cow fertility and productive life (PL). Holstein artificial-insemination bulls with a predicted transmitting ability (PTA) for DPR based on >=35 daughters were grouped by...

  6. Reciprocity in Intergenerational Support: A Comparison of Chinese and German Adult Daughters

    ERIC Educational Resources Information Center

    Schwarz, Beate; Trommsdorff, Gisela; Zheng, Gang; Shi, Shaohua

    2010-01-01

    This study investigates how Chinese and German adult daughters evaluate the norm of reciprocity and the unbalanced exchange of support in relation to their aging parents. Women from rural and urban China (n = 292) and from Germany (n = 264) have participated in this study. Results show that for the German daughters, differently from rural Chinese…

  7. Adult Daughters' Family Structure and the Association between Reciprocity and Relationship Quality

    ERIC Educational Resources Information Center

    Schwarz, Beate

    2006-01-01

    The study explores whether family structure is a moderator of the associations between help exchange, reciprocity of this exchange, and the quality of the mother and adult daughter relationship. A total of 183 daughters (mean age = 42.13; SD = 4.91) are either in first marriage (n = 87), living with a new partner after divorce (n = 77), or…

  8. How My Daughter Taught Me to Teach: The Importance of Active Communication

    ERIC Educational Resources Information Center

    Hunt-Gierut, Deborah

    2011-01-01

    In this article, the author shares how her daughter, who was diagnosed with a profound hearing loss when she was a year old, taught her to teach, and demonstrates the importance of active communication. Teaching her daughter English as her second language has posed many challenges, but has also revealed successful strategies that the author has…

  9. Intergenerational Support and Depression among Elders in Rural China: Do Daughters-in-Law Matter?

    ERIC Educational Resources Information Center

    Cong, Zhen; Silverstein, Merril

    2008-01-01

    This study examined the influence of intergenerational assistance with household chores and personal care from sons, daughters, and daughters-in-law on the depressive symptoms of older adults in rural China. The sample derived from rural Anhui Province, a region with a strong hierarchy of support preferences that leads with sons and their…

  10. Caring for a Daughter with Intellectual Disabilities in Managing Menstruation: A Mother's Perspective

    ERIC Educational Resources Information Center

    Chou, Yueh-Ching; Lu, Zxy-Yann Jane

    2012-01-01

    Background: The concerns of mothers and their experiences while providing help to their daughters with intellectual disability (ID) and considerable support needs during menstruation have rarely been addressed. This qualitative study explored mothers' experiences and perceptions of managing their daughters' menstruation. Method: Twelve Taiwanese…

  11. Adolescent Daughters' Romantic Competence: The Role of Divorce, Quality of Parenting, and Maternal Romantic History

    ERIC Educational Resources Information Center

    Shulman, Shmuel; Zlotnik, Aynat; Shachar-Shapira, Lital; Connolly, Jennifer; Bohr, Yvonne

    2012-01-01

    This study examined the links between parental divorce, quality of maternal parenting, spousal relationships and middle adolescent romantic competence in 80 mother-adolescent daughter pairs (40 divorced). Mothers were asked to describe their attitudes and behaviors with regard to their daughters' romantic behavior. In addition, mothers were…

  12. Using the Theory of Planned Behavior to Predict Mothers' Intentions to Vaccinate Their Daughters against HPV

    ERIC Educational Resources Information Center

    Askelson, Natoshia M.; Campo, Shelly; Lowe, John B.; Smith, Sandi; Dennis, Leslie K.; Andsager, Julie

    2010-01-01

    This study assessed mothers' intentions to vaccinate their daughters against human papillomavirus (HPV) using the theory of planned behavior (TPB). Experience with sexually transmitted infections (STIs), beliefs about the vaccine encouraging sexual activity, and perception of daughters' risk for HPV were also examined for a relationship with…

  13. A Healthy Lifestyle Program for Latino Daughters and Mothers: The BOUNCE Overview and Process Evaluation

    ERIC Educational Resources Information Center

    Olvera, Norma N.; Knox, Brook; Scherer, Rhonda; Maldonado, Gabriela; Sharma, Shreela V.; Alastuey, Lisa; Bush, Jill A.

    2008-01-01

    Background: Few family-based healthy lifestyle programs for Latinos have been conducted, especially family programs targeting mother-daughter dyads. Purpose: To assess the acceptability and feasibility of the Behavior Opportunities Uniting Nutrition Counseling and Exercise (BOUNCE) program designed for Latino mother-daughter pairs. Methods: 92…

  14. Sociobiology, Status, and Parental Investment in Sons and Daughters: Testing the Trivers-Willard Hypothesis.

    ERIC Educational Resources Information Center

    Powell, Brian; Freese, Jeremy

    1999-01-01

    Explains that the Trivers-Willard hypothesis says that high-status parents favor sons over daughters while low-status parents favor daughters over sons. Examines whether the Trivers-Willard hypothesis is warranted by testing whether its predictions hold true among parents of adolescents in the United States. Finds little evidence to support the…

  15. Epistolary and Emotional Education: The Letters of an Irish Father to His Daughter, 1747-1752

    ERIC Educational Resources Information Center

    Ruberg, Willemijn

    2008-01-01

    The letters Bishop Edward Synge (1691-1762) wrote to his daughter Alicia (1733-1807) in 1747-1752 are discussed to show how correspondence from a father to a daughter could be used to teach a teenage girl how to spell and write letters. Moreover, these letters are an excellent source to show how emotional behaviour was taught. Instructions on…

  16. Common Themes in the Experiences of Mother-Daughter Incest Survivors: Implications for Counseling.

    ERIC Educational Resources Information Center

    Ogilvie, Beverly; Daniluk, Judith

    1995-01-01

    Studied mother-daughter incest. Common themes were extracted from in-depth interviews with survivors of mother-perpetrated sexual abuse, some of which parallel the experience of survivors of other forms of child sexual abuse, and some of which are more specific to mother-daughter incest. Discusses themes and counseling implications. (JBJ)

  17. Internal and Interpersonal: The Family Transmission of Father-Daughter Incest.

    ERIC Educational Resources Information Center

    Greenspun, Wendy S.

    1994-01-01

    Utilizes psychoanalytic and family systems theories to describe dynamics in families with father-daughter incest. The pattern in incest is explained via the concept of projective identification; experiences of victimization are played out in the marriage. The victimized daughter is later triangulated into this marital dynamic, setting the stage…

  18. Marital and Parent-Child Relationships in Families with Daughters Who Have Eating Disorders

    ERIC Educational Resources Information Center

    Latzer, Yael; Lavee, Yoav; Gal, Sharon

    2009-01-01

    This study assesses and compares the relationship between parents' marital quality, parent-child relationship, and severity of eating-related psychopathology in families with and without eating disorders. Data are collected from the mother, father, and daughter of 30 families with a daughter diagnosed with anorexia or bulimia and from 30 matched…

  19. Low-Income Latina Mothers' Expectations for Their Pregnant Daughters' Autonomy and Interdependence

    ERIC Educational Resources Information Center

    Nadeem, Erum; Romo, Laura F.

    2008-01-01

    Forty-five pregnant Latina adolescents and their mothers (23 English-speaking, 22 Spanish-speaking) were videotaped conversing about feelings and plans related to the adolescent's pregnancy. The prevalence of the mothers' messages about the daughter's reliance on the family unit (interdependence) and the daughter's self-sufficiency (autonomy) were…

  20. From Mother to Daughter: Changes in Intergenerational Educational and Occupational Mobility in Germany

    ERIC Educational Resources Information Center

    Minello, Alessandra; Blossfeld, Hans-Peter

    2014-01-01

    Recent decades have seen a dramatic expansion in the educational attainment and occupational opportunities of German women. Both the educational and occupational positions of the mothers and those of their daughters are continuously changing across cohorts. Our study aims to detect the probability of daughters to experience maternal-line…

  1. She Has Great Spirit: Insight into Relationships between American Indian Dads and Daughters

    ERIC Educational Resources Information Center

    Reinhardt, Martin James; Perry Evenstad, Jan; Faircloth, Susan

    2012-01-01

    Data from this preliminary study, the American Indian--Dads and Daughters Survey, shed light on how American Indian fathers think and feel about their relationships with their daughters. Respondents represent an array of tribal affiliations, age, occupations, socioeconomic status, and geographical/geopolitical locations, helping to ensure that…

  2. Work and Eldercare: Reciprocity between Older Mothers and Their Employed Daughters.

    ERIC Educational Resources Information Center

    Keefe, Janice M.; Fancey, Pamela J.

    2002-01-01

    A study of older women and their employed daughters used social exchange theory and a life-course perspective in focus groups with 12 daughters/caregivers. Results showed that being reliant on a busy employee for care has negative consequences. (Contains 55 references.) (JOW)

  3. Formation of Lignans(-)-Secoisolariciresinol and (-)-Matairesinol with Forsythia intermedia Cell-Free Extracts

    NASA Technical Reports Server (NTRS)

    Umezawa, Toshiaki; Davin, Laurence B.; Lewis, Norman G.

    1991-01-01

    In vivo labeling experiments of Forsythia intermedia plant tissue with [8-(C-14)]- and [9,9-(2)H2,OC(2)H3]coniferyl alcohols revealed that the lignans, (-)-secoisolariciresinol and (-)-matairesinol, were derived from two coniferyl alcohol molecules; no evidence for the formation of the corresponding (+)-enantiomers was found. Administration of (+/-)-[Ar-(H-3)] secoisolariciresinols to excised shoots of F.intermedia resulted in a significant conversion into (-)-matairesinol; again, the (+)-antipode was not detected. Experiments using cell-free extracts of F.intermedia confirmed and extended these findings. In the presence of NAD(P)H and H2O2, the cell-free extracts catalyzed the formation of (-)- secoisolariciresinol, with either [8-(C-14)]- or [9,9-(2)H2,OC(2)H3]coniferyl alcohols as substrates. The (+)- enantiomer was not formed. Finally, when either (-)-[Ar-(H-3)] or (+/-)-[Ar-(H-2)]secoisolariciresinols were used as substrates, in the presence of NAD(P), only (-)- and not (+)-matairesinol formation occurred. The other antipode, (+)-secoisolariciresinol, did not serve as a substrate for the formation of either (+)- or (-)-matairesinol. Thus, in F.intermedia, the formation of the lignan, (-)-secoisolariciresinol, occurs under strict stereochemical control, in a reaction or reactions requiring NAD(P)H and H2O2 as cofactors. This stereoselectivity is retained in the subsequent conversion into (-)-matairesinol, since (+)-secoisolariciresinol is not a substrate. These are the first two enzymes to be discovered in lignan formation.

  4. Development of Large-Format Lithium-Ion Cells with Silicon Anode and Low Flammable Electrolyte

    NASA Technical Reports Server (NTRS)

    Wu, James J.; Hernandez-Lugo, D. M.; Smart, M. C.; Ratnakumar, B. V.; Miller, T. B.; Lvovich, V. F.; Lytle, J. K.

    2014-01-01

    NASA is developing safe, high energy and high capacity lithium-ion cell designs and batteries for future missions under NASAs Advanced Space Power System (ASPS) project. Advanced cell components, such as high specific capacity silicon anodes and low-flammable electrolytes have been developed for improving the cell specific energy and enhancing safety. To advance the technology readiness level, we have developed large-format flight-type hermetically sealed battery cells by incorporating high capacity silicon anodes, commercially available lithium nickel, cobalt, aluminum oxide (NCA) cathodes, and low-flammable electrolytes. In this report, we will present the performance results of these various battery cells. In addition, we will also discuss the post-test cell analysis results as well.

  5. NACA deficiency reveals the crucial role of somite-derived stromal cells in haematopoietic niche formation.

    PubMed

    Murayama, Emi; Sarris, Milka; Redd, Michael; Le Guyader, Dorothée; Vivier, Catherine; Horsley, Wyatt; Trede, Nikolaus; Herbomel, Philippe

    2015-01-01

    The ontogeny of haematopoietic niches in vertebrates is essentially unknown. Here we show that the stromal cells of the caudal haematopoietic tissue (CHT), the first niche where definitive haematopoietic stem/progenitor cells (HSPCs) home in zebrafish development, derive from the caudal somites through an epithelial-mesenchymal transition (EMT). The resulting stromal cell progenitors accompany the formation of the caudal vein sinusoids, the other main component of the CHT niche, and mature into reticular cells lining and interconnecting sinusoids. We characterize a zebrafish mutant defective in definitive haematopoiesis due to a deficiency in the nascent polypeptide-associated complex alpha subunit (NACA). We demonstrate that the defect resides not in HSPCs but in the CHT niche. NACA-deficient stromal cell progenitors initially develop normally together with the sinusoids, and HSPCs home to the resulting niche, but stromal cell maturation is compromised, leading to a niche that is unable to support HSPC maintenance, expansion and differentiation. PMID:26411530

  6. Disturbance of the bacterial cell wall specifically interferes with biofilm formation.

    PubMed

    Bucher, Tabitha; Oppenheimer-Shaanan, Yaara; Savidor, Alon; Bloom-Ackermann, Zohar; Kolodkin-Gal, Ilana

    2015-12-01

    In nature, bacteria communicate via chemical cues and establish complex communities referred to as biofilms, wherein cells are held together by an extracellular matrix. Much research is focusing on small molecules that manipulate and prevent biofilm assembly by modifying cellular signalling pathways. However, the bacterial cell envelope, presenting the interface between bacterial cells and their surroundings, is largely overlooked. In our study, we identified specific targets within the biosynthesis pathways of the different cell wall components (peptidoglycan, wall teichoic acids and teichuronic acids) hampering biofilm formation and the anchoring of the extracellular matrix with a minimal effect on planktonic growth. In addition, we provide convincing evidence that biofilm hampering by transglycosylation inhibitors and D-Leucine triggers a highly specific response without changing the overall protein levels within the biofilm cells or the overall levels of the extracellular matrix components. The presented results emphasize the central role of the Gram-positive cell wall in biofilm development, resistance and sustainment. PMID:26472159

  7. Matrix Elasticity of Void-Forming Hydrogels Controls Transplanted Stem Cell-Mediated Bone Formation

    PubMed Central

    Huebsch, Nathaniel; Lippens, Evi; Lee, Kangwon; Mehta, Manav; Koshy, Sandeep T; Darnell, Max C; Desai, Rajiv; Madl, Christopher M.; Xu, Maria; Zhao, Xuanhe; Chaudhuri, Ovijit; Verbeke, Catia; Kim, Woo Seob; Alim, Karen; Mammoto, Akiko; Ingber, Donald E.; Duda, Georg N; Mooney, David J.

    2015-01-01

    The effectiveness of stem-cell therapies has been hampered by cell death and limited control over fate1. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype2–4. Stem cell behavior can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials5–7, yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel's elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel's elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem-cell behaviors in situ. PMID:26366848

  8. Human Neutrophil Peptides Mediate Endothelial-Monocyte Interaction, Foam Cell Formation, and Platelet Activation

    PubMed Central

    Quinn, Kieran L.; Henriques, Melanie; Tabuchi, Arata; Han, Bing; Yang, Hong; Cheng, Wei-Erh; Tole, Soumitra; Yu, Hanpo; Luo, Alice; Charbonney, Emmanuel; Tullis, Elizabeth; Lazarus, Alan; Robinson, Lisa A.; Ni, Heyu; Peterson, Blake R.; Kuebler, Wolfgang M.; Slutsky, Arthur S.; Zhang, Haibo

    2016-01-01

    Objective Neutrophils are involved in the inflammatory responses during atherosclerosis. Human neutrophil peptides (HNPs) released from activated neutrophils exert immune modulating properties. We hypothesized that HNPs play an important role in neutrophil-mediated inflammatory cardiovascular responses in atherosclerosis. Methods and Results We examined the role of HNPs in endothelial-leukocyte interaction, platelet activation, and foam cell formation in vitro and in vivo. We demonstrated that stimulation of human coronary artery endothelial cells with clinically relevant concentrations of HNPs resulted in monocyte adhesion and transmigration; induction of oxidative stress in human macrophages, which accelerates foam cell formation; and activation and aggregation of human platelets. The administration of superoxide dismutase or anti-CD36 antibody reduced foam cell formation and cholesterol efflux. Mice deficient in double genes of low-density lipoprotein receptor and low-density lipoprotein receptor–related protein (LRP), and mice deficient in a single gene of LRP8, the only LRP phenotype expressed in platelets, showed reduced leukocyte rolling and decreased platelet aggregation and thrombus formation in response to HNP stimulation. Conclusion HNPs exert proatherosclerotic properties that appear to be mediated through LRP8 signaling pathways, suggesting an important role for HNPs in the development of inflammatory cardiovascular diseases. PMID:21817096

  9. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells.

    PubMed

    Yu, Qilin; Li, Jianrong; Zhang, Yueqi; Wang, Yufan; Liu, Lu; Li, Mingchun

    2016-01-01

    Owing to the growing infectious diseases caused by eukaryotic and prokaryotic pathogens, it is urgent to develop novel antimicrobial agents against clinical pathogenic infections. Biofilm formation and invasion into the host cells are vital processes during pathogenic colonization and infection. In this study, we tested the inhibitory effect of Au nanoparticles (AuNPs) on pathogenic growth, biofilm formation and invasion. Interestingly, although the synthesized AuNPs had no significant toxicity to the tested pathogens, Candida albicans and Pseudomonas aeruginosa, the nanoparticles strongly inhibited pathogenic biofilm formation and invasion to dental pulp stem cells (DPSCs). Further investigations revealed that AuNPs abundantly bound to the pathogen cells, which likely contributed to their inhibitory effect on biofilm formation and invasion. Moreover, treatment of AuNPs led to activation of immune response-related genes in DPSCs, which may enhance the activity of host immune system against the pathogens. Zeta potential analysis and polyethylene glycol (PEG)/polyethyleneimine (PEI) coating tests further showed that the interaction between pathogen cells and AuNPs is associated with electrostatic attractions. Our findings shed novel light on the application of nanomaterials in fighting against clinical pathogens, and imply that the traditional growth inhibition test is not the only way to evaluate the drug effect during the screening of antimicrobial agents. PMID:27220400

  10. Defective PDI release from platelets and endothelial cells impairs thrombus formation in Hermansky-Pudlak syndrome

    PubMed Central

    Sharda, Anish; Kim, Sarah H.; Jasuja, Reema; Gopal, Srila; Flaumenhaft, Robert; Furie, Barbara C.

    2015-01-01

    Protein disulfide isomerase (PDI), secreted from platelets and endothelial cells after injury, is required for thrombus formation. The effect of platelet and endothelial cell granule contents on PDI-mediated thrombus formation was studied by intravital microscopy using a mouse model of Hermansky-Pudlak syndrome in which platelet dense granules are absent. Platelet deposition and fibrin generation were nearly absent, and extracellular PDI was significantly reduced in HPS6−/− mice after vascular injury. HPS6−/− platelets displayed impaired PDI secretion and impaired exocytosis of α granules, lysosomes, and T granules due to decreased sensitivity to thrombin, but these defects could be corrected by addition of subthreshold amounts of adenosine 5′-diphosphate (ADP). Human Hermansky-Pudlak syndrome platelets demonstrated similar characteristics. Infusion of wild-type platelets rescued thrombus formation in HPS6−/− mice. Human umbilical vein endothelial cells in which the HPS6 gene was silenced displayed impaired PDI secretion and exocytosis of Weibel-Palade bodies. Defective thrombus formation in Hermansky-Pudlak syndrome, associated with impaired exocytosis of residual granules in endothelial cells and platelets, the latter due to deficiency of ADP, is characterized by a defect in T granule secretion, a deficiency in extracellular PDI secretion, and impaired fibrin generation and platelet aggregation. Hermansky-Pudlak syndrome is an example of a hereditary disease whereby impaired PDI secretion contributes to a bleeding phenotype. PMID:25593336

  11. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells

    PubMed Central

    Yu, Qilin; Li, Jianrong; Zhang, Yueqi; Wang, Yufan; Liu, Lu; Li, Mingchun

    2016-01-01

    Owing to the growing infectious diseases caused by eukaryotic and prokaryotic pathogens, it is urgent to develop novel antimicrobial agents against clinical pathogenic infections. Biofilm formation and invasion into the host cells are vital processes during pathogenic colonization and infection. In this study, we tested the inhibitory effect of Au nanoparticles (AuNPs) on pathogenic growth, biofilm formation and invasion. Interestingly, although the synthesized AuNPs had no significant toxicity to the tested pathogens, Candida albicans and Pseudomonas aeruginosa, the nanoparticles strongly inhibited pathogenic biofilm formation and invasion to dental pulp stem cells (DPSCs). Further investigations revealed that AuNPs abundantly bound to the pathogen cells, which likely contributed to their inhibitory effect on biofilm formation and invasion. Moreover, treatment of AuNPs led to activation of immune response-related genes in DPSCs, which may enhance the activity of host immune system against the pathogens. Zeta potential analysis and polyethylene glycol (PEG)/polyethyleneimine (PEI) coating tests further showed that the interaction between pathogen cells and AuNPs is associated with electrostatic attractions. Our findings shed novel light on the application of nanomaterials in fighting against clinical pathogens, and imply that the traditional growth inhibition test is not the only way to evaluate the drug effect during the screening of antimicrobial agents. PMID:27220400

  12. Free Energies of Formation Measurements on Solid-State Electrochemical Cells

    ERIC Educational Resources Information Center

    Rollino, J. A.; Aronson, S.

    1972-01-01

    A simple experiment is proposed that can provide the student with some insight into the chemical properties of solids. It also demonstrates the relationship between the Gibbs free energy of formation of an ionic solid and the emf of an electrochemical cell. (DF)

  13. Matrix metalloproteinase-14 mediates formation of bile ducts and hepatic maturation of fetal hepatic progenitor cells.

    PubMed

    Otani, Satoshi; Kakinuma, Sei; Kamiya, Akihide; Goto, Fumio; Kaneko, Shun; Miyoshi, Masato; Tsunoda, Tomoyuki; Asano, Yu; Kawai-Kitahata, Fukiko; Nitta, Sayuri; Nakata, Toru; Okamoto, Ryuichi; Itsui, Yasuhiro; Nakagawa, Mina; Azuma, Seishin; Asahina, Yasuhiro; Yamaguchi, Tomoyuki; Koshikawa, Naohiko; Seiki, Motoharu; Nakauchi, Hiromitsu; Watanabe, Mamoru

    2016-01-22

    Fetal hepatic stem/progenitor cells, called hepatoblasts, play central roles in liver development; however, the molecular mechanisms regulating the phenotype of these cells have not been completely elucidated. Matrix metalloproteinase (MMP)-14 is a type I transmembrane proteinase regulating pericellular proteolysis of the extracellular matrix and is essential for the activation of several MMPs and cytokines. However, the physiological functions of MMP-14 in liver development are unknown. Here we describe a functional role for MMP-14 in hepatic and biliary differentiation of mouse hepatoblasts. MMP-14 was upregulated in cells around the portal vein in perinatal stage liver. Formation of bile duct-like structures in MMP-14-deficient livers was significantly delayed compared with wild-type livers in vivo. In vitro biliary differentiation assays showed that formation of cholangiocytic cysts derived from MMP-14-deficient hepatoblasts was completely impaired, and that overexpression of MMP-14 in hepatoblasts promoted the formation of bile duct-like cysts. In contrast, the expression of molecules associated with metabolic functions in hepatocytes, including hepatic nuclear factor 4α and tryptophan 2,3-dioxygenase, were significantly increased in MMP-14-deficient livers. Expression of the epidermal growth factor receptor and phosphorylation of mitogen-activated protein kinases were significantly upregulated in MMP-14-deficient livers. We demonstrate that MMP-14-mediated signaling in fetal hepatic progenitor cells promotes biliary luminal formation around the portal vein and negatively controls the maturation of hepatocytes. PMID:26724533

  14. Synaptotagmin-Like Proteins Control Formation of a Single Apical Membrane Domain in Epithelial Cells

    PubMed Central

    Gálvez-Santisteban, Manuel; Rodriguez-Fraticelli, Alejo E.; Bryant, David M.; Vergarajauregui, Silvia; Yasuda, Takao; Bañón-Rodríguez, Inmaculada; Bernascone, Ilenia; Datta, Anirban; Spivak, Natalie; Young, Kitty; Slim, Christiaan L.; Brakeman, Paul R.; Fukuda, Mitsunori; Mostov, Keith E.; Martín-Belmonte, Fernando

    2012-01-01

    SUMMARY The formation of epithelial tissues requires both the generation of apical-basal polarity and the co-ordination of this polarity between neighboring cells to form a central lumen. During de novo lumen formation, vectorial membrane transport contributes to formation of a singular apical membrane, resulting in contribution of each cell to only a single lumen. Here, from a functional screen for genes required for 3D epithelial architecture we identify key roles for Synaptotagmin-like proteins 2-a and 4-a (Slp2-a/4-a) in generation of a single apical surface per cell. Slp2-a localizes to the luminal membrane in a PI(4,5)P2-dependent manner, where it targets Rab27-loaded vesicles to initiate a single lumen. Vesicle tethering and fusion is controlled by Slp4-a, in conjunction with Rab27/Rab3/Rab8 and the SNARE Syntaxin-3. Together, Slp2-a/4-a co-ordinate the spatiotemporal organization of vectorial apical transport to ensure only a single apical surface, and thus formation of a single lumen, occurs per cell. PMID:22820376

  15. Defective PDI release from platelets and endothelial cells impairs thrombus formation in Hermansky-Pudlak syndrome.

    PubMed

    Sharda, Anish; Kim, Sarah H; Jasuja, Reema; Gopal, Srila; Flaumenhaft, Robert; Furie, Barbara C; Furie, Bruce

    2015-03-01

    Protein disulfide isomerase (PDI), secreted from platelets and endothelial cells after injury, is required for thrombus formation. The effect of platelet and endothelial cell granule contents on PDI-mediated thrombus formation was studied by intravital microscopy using a mouse model of Hermansky-Pudlak syndrome in which platelet dense granules are absent. Platelet deposition and fibrin generation were nearly absent, and extracellular PDI was significantly reduced in HPS6(-/-) mice after vascular injury. HPS6(-/-) platelets displayed impaired PDI secretion and impaired exocytosis of α granules, lysosomes, and T granules due to decreased sensitivity to thrombin, but these defects could be corrected by addition of subthreshold amounts of adenosine 5'-diphosphate (ADP). Human Hermansky-Pudlak syndrome platelets demonstrated similar characteristics. Infusion of wild-type platelets rescued thrombus formation in HPS6(-/-) mice. Human umbilical vein endothelial cells in which the HPS6 gene was silenced displayed impaired PDI secretion and exocytosis of Weibel-Palade bodies. Defective thrombus formation in Hermansky-Pudlak syndrome, associated with impaired exocytosis of residual granules in endothelial cells and platelets, the latter due to deficiency of ADP, is characterized by a defect in T granule secretion, a deficiency in extracellular PDI secretion, and impaired fibrin generation and platelet aggregation. Hermansky-Pudlak syndrome is an example of a hereditary disease whereby impaired PDI secretion contributes to a bleeding phenotype. PMID:25593336

  16. Paraoxonases 1, 2, and 3, oxidative stress, and macrophage foam cell formation during atherosclerosis development.

    PubMed

    Aviram, Michael; Rosenblat, Mira

    2004-11-01

    Paraoxonases PON1 and PON3, which are both associated in serum with HDL, protect the serum lipids from oxidation, probably as a result of their ability to hydrolyze specific oxidized lipids. The activity of HDL-associated PON1 seems to involve an activity (phospholipase A2-like activity, peroxidase-like activity, lactonase activity) which produces LPC. To study the possible role of PON1 in macrophage foam cell formation and atherogenesis we used macrophages from control mice, from PON1 knockout mice, and from PON1 transgenic mice. Furthermore, we analyzed PON1-treated macrophages and PON1-transfected cells to demonstrate the contribution of PON1 to the attenuation of macrophage cholesterol and oxidized lipid accumulation and foam cell formation. PON1 was shown to inhibit cholesterol influx [by reducing the formation of oxidized LDL (Ox-LDL), increasing the breakdown of specific oxidized lipids in Ox-LDL, and decreasing macrophage uptake of Ox-LDL]. PON1 also inhibits cholesterol biosynthesis and stimulates HDL-mediated cholesterol efflux from macrophages. PON2 and PON3 protect against oxidative stress, with PON2 acting mainly at the cellular level. Whereas serum PON1 and PON3 were inactivated under oxidative stress, macrophage PON2 expression and activity were increased under oxidative stress, probably as a compensatory mechanism against oxidative stress. Intervention to increase the paraoxonases (cellular and humoral) by dietary or pharmacological means can reduce macrophage foam cell formation and attenuate atherosclerosis development. PMID:15454271

  17. Neurofibromin Deficient Myeloid Cells are Critical Mediators of Aneurysm Formation In Vivo

    PubMed Central

    Li, Fang; Downing, Brandon D.; Smiley, Lucy C.; Mund, Julie A.; DiStasi, Matthew R.; Bessler, Waylan K.; Sarchet, Kara N.; Hinds, Daniel M.; Kamendulis, Lisa M.; Hingtgen, Cynthia M.; Case, Jamie; Clapp, D. Wade; Conway, Simon J.; Stansfield, Brian K.; Ingram, David A.

    2014-01-01

    Background Neurofibromatosis Type 1 (NF1) is a genetic disorder resulting from mutations in the NF1 tumor suppressor gene. Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity in circulating hematopoietic and vascular wall cells, which are critical for maintaining vessel wall homeostasis. NF1 patients have evidence of chronic inflammation resulting in development of premature cardiovascular disease, including arterial aneurysms, which may manifest as sudden death. However, the molecular pathogenesis of NF1 aneurysm formation is unknown. Method and Results Utilizing an angiotensin II-induced aneurysm model, we demonstrate that heterozygous inactivation of Nf1 (Nf1+/−) enhanced aneurysm formation with myeloid cell infiltration and increased oxidative stress in the vessel wall. Using lineage-restricted transgenic mice, we show loss of a single Nf1 allele in myeloid cells is sufficient to recapitulate the Nf1+/− aneurysm phenotype in vivo. Finally, oral administration of simvastatin or the antioxidant apocynin, reduced aneurysm formation in Nf1+/− mice. Conclusion These data provide genetic and pharmacologic evidence that Nf1+/− myeloid cells are the cellular triggers for aneurysm formation in a novel model of NF1 vasculopathy and provide a potential therapeutic target. PMID:24370551

  18. HDAC6 Deacetylase Activity Is Required for Hypoxia-Induced Invadopodia Formation and Cell Invasion

    PubMed Central

    Arsenault, Dominique; Brochu-Gaudreau, Karine; Charbonneau, Martine; Dubois, Claire M.

    2013-01-01

    Despite significant progress in the cancer field, tumor cell invasion and metastasis remain a major clinical challenge. Cell invasion across tissue boundaries depends largely on extracellular matrix degradation, which can be initiated by formation of actin-rich cell structures specialized in matrix degradation called invadopodia. Although the hypoxic microenvironment within solid tumors has been increasingly recognized as an important driver of local invasion and metastasis, little is known about how hypoxia influences invadopodia biogenesis. Here, we show that histone deacetylase 6 (HDAC6), a cytoplasmic member of the histone deacetylase family, is a novel modulator of hypoxia-induced invadopodia formation. Hypoxia was found to enhance HDAC6 tubulin deacetylase activity through activation of the EGFR pathway. Activated HDAC6, in turn, triggered Smad3 phosphorylation resulting in nuclear accumulation. Inhibition of HDAC6 activity or knockdown of the protein inhibited both hypoxia-induced Smad3 activation and invadopodia formation. Our data provide evidence that hypoxia influences invadopodia formation in a biphasic manner, which involves the activation of HDAC6 deacetylase activity by EGFR, resulting in enhanced Smad phosphorylation and nuclear accumulation. The identification of HDAC6 as a key participant of hypoxia-induced cell invasion may have important therapeutic implications for the treatment of metastasis in cancer patients. PMID:23405166

  19. Formation of thin films of organic-inorganic perovskites for high-efficiency solar cells.

    PubMed

    Stranks, Samuel D; Nayak, Pabitra K; Zhang, Wei; Stergiopoulos, Thomas; Snaith, Henry J

    2015-03-01

    Organic-inorganic perovskites are currently one of the hottest topics in photovoltaic (PV) research, with power conversion efficiencies (PCEs) of cells on a laboratory scale already competing with those of established thin-film PV technologies. Most enhancements have been achieved by improving the quality of the perovskite films, suggesting that the optimization of film formation and crystallization is of paramount importance for further advances. Here, we review the various techniques for film formation and the role of the solvents and precursors in the processes. We address the role chloride ions play in film formation of mixed-halide perovskites, which is an outstanding question in the field. We highlight the material properties that are essential for high-efficiency operation of solar cells, and identify how further improved morphologies might be achieved. PMID:25663077

  20. Retinoic Acid-Treated Pluripotent Stem Cells Undergoing Neurogenesis Present Increased Aneuploidy and Micronuclei Formation

    PubMed Central

    Sartore, Rafaela C.; Campos, Priscila B.; Trujillo, Cleber A.; Ramalho, Bia L.; Negraes, Priscilla D.; Paulsen, Bruna S.; Meletti, Tamara; Costa, Elaine S.; Chicaybam, Leonardo; Bonamino, Martin H.; Ulrich, Henning; Rehen, Stevens K.

    2011-01-01

    The existence of loss and gain of chromosomes, known as aneuploidy, has been previously described within the central nervous system. During development, at least one-third of neural progenitor cells (NPCs) are aneuploid. Notably, aneuploid NPCs may survive and functionally integrate into the mature neural circuitry. Given the unanswered significance of this phenomenon, we tested the hypothesis that neural differentiation induced by all-trans retinoic acid (RA) in pluripotent stem cells is accompanied by increased levels of aneuploidy, as previously described for cortical NPCs in vivo. In this work we used embryonal carcinoma (EC) cells, embryonic stem (ES) cells and induced pluripotent stem (iPS) cells undergoing differentiation into NPCs. Ploidy analysis revealed a 2-fold increase in the rate of aneuploidy, with the prevalence of chromosome loss in RA primed stem cells when compared to naïve cells. In an attempt to understand the basis of neurogenic aneuploidy, micronuclei formation and survivin expression was assessed in pluripotent stem cells exposed to RA. RA increased micronuclei occurrence by almost 2-fold while decreased survivin expression by 50%, indicating possible mechanisms by which stem cells lose their chromosomes during neural differentiation. DNA fragmentation analysis demonstrated no increase in apoptosis on embryoid bodies treated with RA, indicating that cell death is not the mandatory fate of aneuploid NPCs derived from pluripotent cells. In order to exclude that the increase in aneuploidy was a spurious consequence of RA treatment, not related to neurogenesis, mouse embryonic fibroblasts were treated with RA under the same conditions and no alterations in chromosome gain or loss were observed. These findings indicate a correlation amongst neural differentiation, aneuploidy, micronuclei formation and survivin downregulation in pluripotent stem cells exposed to RA, providing evidence that somatically generated chromosomal variation accompanies

  1. Polyanhydride Nanovaccines Induce Germinal Center B Cell Formation and Sustained Serum Antibody Responses.

    PubMed

    Vela Ramirez, Julia E; Tygrett, Lorraine T; Hao, Jihua; Habte, Habtom H; Cho, Michael W; Greenspan, Neil S; Waldschmidt, Thomas J; Narasimhan, Balaji

    2016-06-01

    Biodegradable polymeric nanoparticle-based subunit vaccines have shown promising characteristics by enhancing antigen presentation and inducing protective immune responses when compared with soluble protein. Specifically, polyanhydride nanoparticle-based vaccines (i.e., nanovaccines) have been shown to successfully encapsulate and release antigens, activate B and T cells, and induce both antibody- and cell-mediated immunity towards a variety of immunogens. One of the characteristics of strong thymus-dependent antibody responses is the formation of germinal centers (GC) and the generation of GC B cells, which is part of the T helper cell driven cellular response. In order to further understand the role of nanovaccines in the induction of antigen-specific immune responses, their ability to induce germinal center B cell formation and isotype switching and the effects thereof on serum antibody responses were investigated in these studies. Polyanhydride nanovaccines based on 1,6-bis(p-carboxyphenoxy)hexane and 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane were used to subcutaneously administer a viral antigen. GC B cell formation and serum antibody responses induced by the nanovaccines were compared to that induced by alum-based vaccine formulations. It was demonstrated that a single dose of polyanhydride nanovaccines resulted in the formation of robust GCs and serum antibody in comparison to that induced by the alum-based formulation. This was attributed to the sustained release of antigen provided by the nanovaccines. When administered in a multiple dose regimen, the highest post-immunization titer and GC B cell number was enhanced, and the immune response induced by the nanovaccines was further sustained. These studies provide foundational information on the mechanism of action of polyanhydride nanovaccines. PMID:27319223

  2. Compassion Fatigue in Adult Daughter Caregivers of a Parent with Dementia

    PubMed Central

    Day, Jennifer R.; Anderson, Ruth A.; Davis, Linda L.

    2015-01-01

    Adult daughters face distinct challenges caring for parents with dementia and may experience compassion fatigue: the combination of helplessness, hopelessness, an inability to be empathic, and a sense of isolation resulting from prolonged exposure to perceived suffering. Prior research on compassion fatigue has focused on professional healthcare providers and has overlooked filial caregivers. This study attempts to identify and explore risk factors for compassion fatigue in adult daughter caregivers and to substantiate further study of compassion fatigue in family caregivers. We used content analysis of baseline interviews with 12 adult daughter caregivers of a parent with dementia who participated in a randomized trial of homecare training. Four themes were identified in adult daughter caregiver interviews: (a) uncertainty; (b) doubt; (c) attachment; and (d) strain. Findings indicated adult daughter caregivers are at risk for compassion fatigue, supporting the need for a larger study exploring compassion fatigue in this population. PMID:25259643

  3. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation

    PubMed Central

    Yoshida, Kouki; Sakamoto, Shingo; Kawai, Tetsushi; Kobayashi, Yoshinori; Sato, Kazuhito; Ichinose, Yasunori; Yaoi, Katsuro; Akiyoshi-Endo, Miho; Sato, Hiroko; Takamizo, Tadashi; Ohme-Takagi, Masaru; Mitsuda, Nobutaka

    2013-01-01

    Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs) can regulate secondary wall formation in rice (Oryza sativa) and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S) has very low transcriptional activation ability, but the longer protein (OsSWN2L) and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions) due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications. PMID:24098302

  4. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation.

    PubMed

    Yoshida, Kouki; Sakamoto, Shingo; Kawai, Tetsushi; Kobayashi, Yoshinori; Sato, Kazuhito; Ichinose, Yasunori; Yaoi, Katsuro; Akiyoshi-Endo, Miho; Sato, Hiroko; Takamizo, Tadashi; Ohme-Takagi, Masaru; Mitsuda, Nobutaka

    2013-01-01

    Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs) can regulate secondary wall formation in rice (Oryza sativa) and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S) has very low transcriptional activation ability, but the longer protein (OsSWN2L) and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions) due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications. PMID:24098302

  5. The role of proto-oncogene GLI1 in pituitary adenoma formation and cell survival regulation.

    PubMed

    Lampichler, Katharina; Ferrer, Patricio; Vila, Greisa; Lutz, Mirjam I; Wolf, Florian; Knosp, Engelbert; Wagner, Ludwig; Luger, Anton; Baumgartner-Parzer, Sabina

    2015-10-01

    The Hedgehog (Hh) pathway is an important regulator of early tissue patterning and stem cell propagation. It was found to be aberrantly activated in numerous types of human cancer and might be relevant in cancer stem cells. The identification of adult stem cells in the pituitary raised the question if tumor-initiating cells and Hh signaling are involved in pituitary adenoma formation. The present study aimed at the evaluation of Hh signaling in relation to stem cell and cell cycle markers in 30 human pituitary adenomas and in cultured murine adenoma cells. Therefore, expression levels of components of the Hh pathway, stem cell marker SOX2, cell cycle regulator tumor-protein 53 (TP53), proliferation marker Ki67 (MKI67) and superoxide dismutase 1 (SOD1) were evaluated in 30 human pituitary adenomas in comparison to control tissue. Modulation of cell function and target gene expression by the inhibition and activation of the Hh pathway were studied in murine adenoma cells. We show that transcription factor glioma-associated oncogene 1 (GLI1) is overexpressed in 87% of all pituitary adenomas. The expression of GLI1 significantly correlated with that of SOX2, TP53, MKI67 and SOD1. Inhibition of GLI1 resulted in the downregulation of the above genes and severe cell death in mouse adenoma cells. On the other hand, activation of the Hh pathway increased cell viability and target gene expression. In conclusion, our findings point toward an alternative, ligand-independent Hh pathway activation with GLI1 playing a major role in the cell survival of pituitary adenoma cells. PMID:26219678

  6. Liver type I regulatory T cells suppress germinal center formation in HBV-tolerant mice.

    PubMed

    Xu, Long; Yin, Wenwei; Sun, Rui; Wei, Haiming; Tian, Zhigang

    2013-10-15

    The liver plays a critical role in inducing systemic immune tolerance, for example, during limiting hypersensitivity to food allergy and in rendering acceptance of allotransplant or even hepatotropic pathogens. We investigated the unknown mechanisms of liver tolerance by using an established hepatitis B virus (HBV)-carrier mouse model, and found that these mice exhibited an antigen-specific tolerance toward peripheral HBsAg vaccination, showing unenlarged draining lymph node (DLN), lower number of germinal centers (GC), and inactivation of GC B cells and follicular T helper (Tfh) cells. Both in vivo and in vitro immune responses toward HBsAg were suppressed by mononuclear cells from HBV-carrier mice, which were CD4(+) Foxp3(-) type 1 regulatory T (Tr1)-like cells producing IL-10. Using recipient Rag1(-/-) mice, hepatic Tr1-like cells from day 7 of HBV-persistent mice acquired the ability to inhibit anti-HBV immunity 3 d earlier than splenic Tr1-like cells, implying that hepatic Tr1-like cells were generated before those in spleen. Kupffer cell depletion or IL-10 deficiency led to impairment of Tr1-like cell generation, along with breaking HBV persistence. The purified EGFP(+)CD4(+) T cells (containing Tr1-like cells) from HBV-carrier mice trafficked in higher numbers to DLN in recipient mice after HBsAg vaccination, and subsequently inactivated both Tfh cells and GC B cells via secreting IL-10, resulting in impaired GC formation and anti-HB antibody production. Thus, our results indicate Tr1-like cells migrate from the liver to the DLN and inhibit peripheral anti-HBV immunity by negatively regulating GC B cells and Tfh cells. PMID:24089450

  7. Three-Dimensional Culture Assay to Explore Cancer Cell Invasiveness and Satellite Tumor Formation.

    PubMed

    Côté, Marie-France; Turcotte, Audrey; Doillon, Charles; Gobeil, Stephane

    2016-01-01

    Mammalian cell culture in monolayers is widely used to study various physiological and molecular processes. However, this approach to study growing cells often generates unwanted artifacts. Therefore, cell culture in a three-dimensional (3D) environment, often using extracellular matrix components, emerged as an interesting alternative due to its close similarity to the native in vivo tissue or organ. We developed a 3D cell culture system using two compartments, namely (i) a central compartment containing cancer cells embedded in a collagen gel acting as a pseudo-primary macrospherical tumor and (ii) a peripheral cell-free compartment made of a fibrin gel, i.e. an extracellular matrix component different from that used in the center, in which cancer cells can migrate (invasion front) and/or form microspherical tumors representing secondary or satellite tumors. The formation of satellite tumors in the peripheral compartment is remarkably correlated to the known aggressiveness or metastatic origin of the native tumor cells, which makes this 3D culture system unique. This cell culture approach might be considered to assess cancer cell invasiveness and motility, cell-extracellular matrix interactions and as a method to evaluate anti-cancer drug properties. PMID:27585303

  8. Cultured dermal papilla cells induce follicle formation and hair growth by transdifferentiation of an adult epidermis.

    PubMed

    Reynolds, A J; Jahoda, C A

    1992-06-01

    Adult rat pelage follicle dermal papilla cells induced follicle neogenesis and external hair growth when associated with adult footpad skin epidermis. They thus demonstrated a capacity to completely change the structural arrangement and gene expression of adult epidermis--an ability previously undocumented for cultured adult cells. Isolation chambers ensured that de novo follicle formation must have occurred by eliminating the possibility of cellular contributions, and/or inductive influences, from local skin follicles. These findings argue against previous suggestions of vibrissa follicle specificity, and imply that the potential for hair follicle induction may be common to all adult papilla cells. PMID:1425341

  9. Ezrin/Radixin/Moesin Proteins and Flotillins Cooperate to Promote Uropod Formation in T Cells

    PubMed Central

    Martinelli, Sibylla; Chen, Emily J. H.; Clarke, Fiona; Lyck, Ruth; Affentranger, Sarah; Burkhardt, Janis K.; Niggli, Verena

    2013-01-01

    T cell uropods are enriched in specific proteins including adhesion receptors such as P-selectin glycoprotein ligand-1 (PSGL-1), lipid raft-associated proteins such as flotillins and ezrin/radixin/moesin (ERM) proteins which associate with cholesterol-rich raft domains and anchor adhesion receptors to the actin cytoskeleton. Using dominant mutants and siRNA technology we have tested the interactions among these proteins and their role in shaping the T cell uropod. Expression of wild type (WT) ezrin-EGFP failed to affect the morphology of human T cells or chemokine-induced uropod recruitment of PSGL-1 and flotillin-1 and -2. In contrast, expression of constitutively active T567D ezrin-EGFP induced a motile, polarized phenotype in some of the transfected T cells, even in the absence of chemokine. These cells featured F-actin-rich ruffles in the front and uropod enrichment of PSGL-1 and flotillins. T567D ezrin-EGFP was itself strongly enriched in the rear of the polarized T cells. Uropod formation induced by T567D ezrin-EGFP was actin-dependent as it was attenuated by inhibition of Rho-kinase or myosin II, and abolished by disruption of actin filaments. While expression of constitutively active ezrin enhanced cell polarity, expression of a dominant-negative deletion mutant of ezrin, 1–310 ezrin-EGFP, markedly reduced uropod formation induced by the chemokine SDF-1, T cell front-tail polarity, and capping of PSGL-1 and flotillins. Transfection of T cells with WT or T567D ezrin did not affect chemokine-mediated chemotaxis whereas 1–310 ezrin significantly impaired spontaneous 2D migration and chemotaxis. siRNA-mediated downregulation of flotillins in murine T cells attenuated moesin capping and uropod formation, indicating that ERM proteins and flotillins cooperate in uropod formation. In summary, our results indicate that activated ERM proteins function together with flotillins to promote efficient chemotaxis of T cells by structuring the uropod of migrating T

  10. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation

    PubMed Central

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5–10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles. PMID:26039692

  11. Heavy particle radioactivity from superheavy nuclei leading to 298114 daughter nuclei

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Priyanka, B.

    2014-09-01

    The feasibility for the alpha decay and the heavy particle decay from the even-even superheavy (SH) nuclei with Z = 116- 124 has been studied within the Coulomb and proximity potential model (CPPM). Our predicted half lives agree well with the values evaluated using the Universal formula for cluster decay (UNIV) of Poenaru et al., the Universal Decay Law (UDL) of Qi et al., and the Scaling Law of Horoi et al. The spontaneous fission half lives of the corresponding parents have also been evaluated using the semi-empirical formula of Santhosh et al. Within our fission model, we have studied the cluster formation probability for various clusters and the maximum cluster formation probability is found for the decay accompanying 298114. In the plots for log10 (T1/2) against the neutron number of the daughter in the corresponding decay, the half life is found to be the minimum for the decay leading to 298114 (Z = 114, N = 184). Most of the predicted half lives are well within the present upper limit for measurements (T1/2 <1030 s) and the computed alpha half lives for 290,292Lv agree well with the experimental data.

  12. Meiotic germ cells antagonize mesonephric cell migration and testis cord formation in mouse gonads

    PubMed Central

    Yao, Humphrey H.-C.; DiNapoli, Leo; Capel, Blanche

    2014-01-01

    Summary The developmental fate of primordial germ cells in the mammalian gonad depends on their environment. In the XY gonad, Sry induces a cascade of molecular and cellular events leading to the organization of testis cords. Germ cells are sequestered inside testis cords by 12.5 dpc where they arrest in mitosis. If the testis pathway is not initiated, germ cells spontaneously enter meiosis by 13.5 dpc, and the gonad follows the ovarian fate. We have previously shown that some testis-specific events, such as mesonephric cell migration, can be experimentally induced into XX gonads prior to 12.5 dpc. However, after that time, XX gonads are resistant to the induction of cell migration. In current experiments, we provide evidence that this effect is dependent on XX germ cells rather than on XX somatic cells. We show that, although mesonephric cell migration cannot be induced into normal XX gonads at 14.5 dpc, it can be induced into XX gonads depleted of germ cells. We also show that when 14.5 dpc XX somatic cells are recombined with XY somatic cells, testis cord structures form normally; however, when XX germ cells are recombined with XY somatic cells, cord structures are disrupted. Sandwich culture experiments suggest that the inhibitory effect of XX germ cells is mediated through short-range interactions rather than through a long-range diffusible factor. The developmental stage at which XX germ cells show a disruptive effect on the male pathway is the stage at which meiosis is normally initiated, based on the immunodetection of meiotic markers. We suggest that at the stage when germ cells commit to meiosis, they reinforce ovarian fate by antagonizing the testis pathway. PMID:14561636

  13. Lymphotoxin-Dependent B Cell-FRC Crosstalk Promotes De Novo Follicle Formation and Antibody Production following Intestinal Helminth Infection.

    PubMed

    Dubey, Lalit Kumar; Lebon, Luc; Mosconi, Ilaria; Yang, Chen-Ying; Scandella, Elke; Ludewig, Burkhard; Luther, Sanjiv A; Harris, Nicola L

    2016-05-17

    Secondary lymphoid tissues provide specialized niches for the initiation of adaptive immune responses and undergo a remarkable expansion in response to inflammatory stimuli. Although the formation of B cell follicles was previously thought to be restricted to the postnatal period, we observed that the draining mesenteric lymph nodes (mLN) of helminth-infected mice form an extensive number of new, centrally located, B cell follicles in response to IL-4Rα-dependent inflammation. IL-4Rα signaling promoted LTα1β2 (lymphotoxin) expression by B cells, which then interacted with CCL19 positive stromal cells to promote lymphoid enlargement and the formation of germinal center containing B cell follicles. Importantly, de novo follicle formation functioned to promote both total and parasite-specific antibody production. These data reveal a role for type 2 inflammation in promoting stromal cell remodeling and de novo follicle formation by promoting B cell-stromal cell crosstalk. PMID:27160906

  14. Influence of the mother's reproductive state on the hormonal status of daughters in marmosets (Callithrix kuhlii).

    PubMed

    Puffer, Alyssa M; Fite, Jeffrey E; French, Jeffrey A; Rukstalis, Michael; Hopkins, Elizabeth C; Patera, Kimberly J

    2004-09-01

    Behavioral and endocrine suppression of reproduction in subordinate females produces the high reproductive skew that characterizes callitrichid primate mating systems. Snowdon et al. [American Journal of Primatology 31:11-21, 1993] reported that the eldest daughters in tamarin families exhibit further endocrinological suppression immediately following the birth of siblings, and suggested that dominant females exert greater control over subordinate endocrinology during this energetically challenging phase of reproduction. We monitored the endocrine status of five Wied's black tufted-ear marmoset daughters before and after their mother delivered infants by measuring concentrations of urinary estradiol (E(2)), pregnanediol glucuronide (PdG), testosterone (T), and cortisol (CORT). Samples were collected from marmoset daughters 4 weeks prior to and 9 weeks following three consecutive sibling-litter births when the daughters were prepubertal (M=6.1 months of age), peripubertal (M=11.9 months), and postpubertal (M=17.6 months). The birth of infants was associated with reduced ovarian steroid excretion only in the prepubertal daughters. In contrast, ovarian steroid levels tended to increase in the postpubertal daughters. Urinary E(2) and T levels in the postpubertal daughters were 73.8% and 37.6% higher, respectively, in the 3 weeks following the birth of infants, relative to prepartum levels. In addition, peak urinary PdG concentrations in peri- and postpubertal daughters were equivalent to luteal phase concentrations in nonpregnant, breeding adult females, and all of the peri- and postpubertal daughters showed clear ovulatory cycles. Cortisol excretion did not change in response to the reproductive status of the mother, nor did the concentrations change across age. Our data suggest that marmoset daughters of potential breeding age are not hormonally suppressed during the mother's peripartum period or her return to fertility. These findings provide an additional example

  15. Engineered Nanostructures of Haptens Lead to Unexpected Formation of Membrane Nanotubes Connecting Rat Basophilic Leukemia Cells

    SciTech Connect

    Li, Jie-Ren; Ross, Shailise S.; Liu, Yang; Liu, Ying X.; Wang, Kang-hsin; Chen, Huan-Yuan; Liu, Fu-Tong; Laurence, Ted A.; Liu, Gang-yu

    2015-06-09

    We report here on a recent finding that co-stimulation of the high-affinity immunoglobulin E (IgE) receptor (FcεRI) and the chemokine receptor 1 (CCR1) triggered formation of membrane nanotubes among bone-marrow-derived mast cells. The co-stimulation was attained using corresponding ligands: IgE binding antigen and macrophage inflammatory protein 1α (MIP1 α), respectively. However, this approach failed to trigger formation of nanotubes among rat basophilic leukemia (RBL) cells due to the lack of CCR1 on the cell surface (Int. Immunol. 2010, 22 (2), 113–128). RBL cells are frequently used as a model for mast cells and are best known for antibody-mediated activation via FcεRI. This work reports the successful formation of membrane nanotubes among RBLs using only one stimulus, a hapten of 2,4-dinitrophenyl (DNP) molecules, which are presented as nanostructures with our designed spatial arrangements. This observation underlines the significance of the local presentation of ligands in the context of impacting the cellular signaling cascades. In the case of RBL, certain DNP nanostructures suppress antigen-induced degranulation and facilitate the rearrangement of the cytoskeleton to form nanotubes. We conclude that these results demonstrate an important scientific concept; engineered nanostructures enable cellular signaling cascades, where current technologies encounter great difficulties. More importantly, nanotechnology offers a new platform to selectively activate and/or inhibit desired cellular signaling cascades.

  16. Engineered Nanostructures of Haptens Lead to Unexpected Formation of Membrane Nanotubes Connecting Rat Basophilic Leukemia Cells

    DOE PAGESBeta

    Li, Jie-Ren; Ross, Shailise S.; Liu, Yang; Liu, Ying X.; Wang, Kang-hsin; Chen, Huan-Yuan; Liu, Fu-Tong; Laurence, Ted A.; Liu, Gang-yu

    2015-06-09

    We report here on a recent finding that co-stimulation of the high-affinity immunoglobulin E (IgE) receptor (FcεRI) and the chemokine receptor 1 (CCR1) triggered formation of membrane nanotubes among bone-marrow-derived mast cells. The co-stimulation was attained using corresponding ligands: IgE binding antigen and macrophage inflammatory protein 1α (MIP1 α), respectively. However, this approach failed to trigger formation of nanotubes among rat basophilic leukemia (RBL) cells due to the lack of CCR1 on the cell surface (Int. Immunol. 2010, 22 (2), 113–128). RBL cells are frequently used as a model for mast cells and are best known for antibody-mediated activation viamore » FcεRI. This work reports the successful formation of membrane nanotubes among RBLs using only one stimulus, a hapten of 2,4-dinitrophenyl (DNP) molecules, which are presented as nanostructures with our designed spatial arrangements. This observation underlines the significance of the local presentation of ligands in the context of impacting the cellular signaling cascades. In the case of RBL, certain DNP nanostructures suppress antigen-induced degranulation and facilitate the rearrangement of the cytoskeleton to form nanotubes. We conclude that these results demonstrate an important scientific concept; engineered nanostructures enable cellular signaling cascades, where current technologies encounter great difficulties. More importantly, nanotechnology offers a new platform to selectively activate and/or inhibit desired cellular signaling cascades.« less

  17. Engineered Nanostructures of Haptens Lead to Unexpected Formation of Membrane Nanotubes Connecting Rat Basophilic Leukemia Cells.

    PubMed

    Li, Jie-Ren; Ross, Shailise S; Liu, Yang; Liu, Ying X; Wang, Kang-Hsin; Chen, Huan-Yuan; Liu, Fu-Tong; Laurence, Ted A; Liu, Gang-Yu

    2015-07-28

    A recent finding reports that co-stimulation of the high-affinity immunoglobulin E (IgE) receptor (FcεRI) and the chemokine receptor 1 (CCR1) triggered formation of membrane nanotubes among bone-marrow-derived mast cells. The co-stimulation was attained using corresponding ligands: IgE binding antigen and macrophage inflammatory protein 1α (MIP1 α), respectively. However, this approach failed to trigger formation of nanotubes among rat basophilic leukemia (RBL) cells due to the lack of CCR1 on the cell surface (Int. Immunol. 2010, 22 (2), 113-128). RBL cells are frequently used as a model for mast cells and are best known for antibody-mediated activation via FcεRI. This work reports the successful formation of membrane nanotubes among RBLs using only one stimulus, a hapten of 2,4-dinitrophenyl (DNP) molecules, which are presented as nanostructures with our designed spatial arrangements. This observation underlines the significance of the local presentation of ligands in the context of impacting the cellular signaling cascades. In the case of RBL, certain DNP nanostructures suppress antigen-induced degranulation and facilitate the rearrangement of the cytoskeleton to form nanotubes. These results demonstrate an important scientific concept; engineered nanostructures enable cellular signaling cascades, where current technologies encounter great difficulties. More importantly, nanotechnology offers a new platform to selectively activate and/or inhibit desired cellular signaling cascades. PMID:26057701

  18. Formation of Deposits on the Cathode Surface of Aluminum Electrolysis Cells

    NASA Astrophysics Data System (ADS)

    Allard, François; Soucy, Gervais; Rivoaland, Loig

    2014-12-01

    The efficiency of electrolysis cells for aluminum production is reduced when deposits are formed on the cathode block surface. Overfeeding of alumina or excessive heat loss in industrial cells leads to the formation of highly resistive deposits. In this study, the chemical composition of sludge, ledge toe, and thin deposits was investigated at the bottom of both industrial and experimental electrolysis cells. The formation of deposits in laboratory experiments was demonstrated in acidic, neutral, and basic electrolytic bath. A gradient of chiolite (Na5Al3F14) and α-Al2O3 was observed in the deposits. The bath at the bottom of the experimental electrolysis cell had a higher cryolite ratio implying a higher liquidus temperature. The sludge formed at the bottom of the cell can lift the aluminum metal resulting in an important reduction of the contact surface between the aluminum and the cathode block. Moreover, the deposits disturb the current path and generate horizontal current components in the metal which enhance the motion and lower the current efficiency. A thin film of bath supersaturated in alumina was observed under the metal. This work provides clarification on the formation mechanisms of the various deposits responsible for the deterioration of the cathode surface.

  19. Staufen1 impairs stress granule formation in skeletal muscle cells from myotonic dystrophy type 1 patients

    PubMed Central

    Ravel-Chapuis, Aymeric; Klein Gunnewiek, Amanda; Bélanger, Guy; Crawford Parks, Tara E.; Côté, Jocelyn; Jasmin, Bernard J.

    2016-01-01

    Myotonic dystrophy (DM1) is caused by an expansion of CUG repeats (CUGexp) in the DMPK mRNA 3′UTR. CUGexp-containing mRNAs become toxic to cells by misregulating RNA-binding proteins. Here we investigated the consequence of this RNA toxicity on the cellular stress response. We report that cell stress efficiently triggers formation of stress granules (SGs) in proliferating, quiescent, and differentiated muscle cells, as shown by the appearance of distinct cytoplasmic TIA-1– and DDX3-containing foci. We show that Staufen1 is also dynamically recruited into these granules. Moreover, we discovered that DM1 myoblasts fail to properly form SGs in response to arsenite. This blockage was not observed in DM1 fibroblasts, demonstrating a cell type–specific defect. DM1 myoblasts display increased expression and sequestration of toxic CUGexp mRNAs compared with fibroblasts. Of importance, down-regulation of Staufen1 in DM1 myoblasts rescues SG formation. Together our data show that Staufen1 participates in the inhibition of SG formation in DM1 myoblasts. These results reveal that DM1 muscle cells fail to properly respond to stress, thereby likely contributing to the complex pathogenesis of DM1. PMID:27030674

  20. Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells

    SciTech Connect

    Grayson, Warren L.; Zhao, Feng; Bunnell, Bruce; Ma, Teng . E-mail: teng@eng.fsu.edu

    2007-07-06

    Changes in oxygen concentrations affect many of the innate characteristics of stem and progenitor cells. Human mesenchymal stem cells (hMSCs) were maintained under hypoxic atmospheres (2% O{sub 2}) for up to seven in vitro passages. This resulted in approximately 30-fold higher hMSC expansion over 6 weeks without loss of multi-lineage differentiation capabilities. Under hypoxia, hMSCs maintained their growth-rates even after reaching confluence, resulting in the formation of multiple cell layers. Hypoxic hMSCs also displayed differences in the cell and nuclear morphologies as well as enhanced ECM formation and organization. These changes in cellular characteristics were accompanied by higher mRNA levels of Oct-4 and HIF-2{alpha}, as well as increased expression levels of connexin-43, a protein used in gap junction formation. The results from this study demonstrated that oxygen concentrations affected many aspects of stem-cell physiology, including growth and in vitro development, and may be a critical parameter during expansion and differentiation.

  1. Strain-specific differences in pili formation and the interaction of Corynebacterium diphtheriae with host cells

    PubMed Central

    2010-01-01

    Background Corynebacterium diphtheriae, the causative agent of diphtheria, is well-investigated in respect to toxin production, while little is known about C. diphtheriae factors crucial for colonization of the host. In this study, we investigated strain-specific differences in adhesion, invasion and intracellular survival and analyzed formation of pili in different isolates. Results Adhesion of different C. diphtheriae strains to epithelial cells and invasion of these cells are not strictly coupled processes. Using ultrastructure analyses by atomic force microscopy, significant differences in macromolecular surface structures were found between the investigated C. diphtheriae strains in respect to number and length of pili. Interestingly, adhesion and pili formation are not coupled processes and also no correlation between invasion and pili formation was found. Using RNA hybridization and Western blotting experiments, strain-specific pili expression patterns were observed. None of the studied C. diphtheriae strains had a dramatic detrimental effect on host cell viability as indicated by measurements of transepithelial resistance of Detroit 562 cell monolayers and fluorescence microscopy, leading to the assumption that C. diphtheriae strains might use epithelial cells as an environmental niche supplying protection against antibodies and macrophages. Conclusions The results obtained suggest that it is necessary to investigate various isolates on a molecular level to understand and to predict the colonization process of different C. diphtheriae strains. PMID:20942914

  2. Blockade of irradiation-induced autophagosome formation impairs proliferation but does not enhance cell death in HCT-116 human colorectal carcinoma cells

    PubMed Central

    DE ALBUQUERQUE-XAVIER, ANA CRISTINA; BASTOS, LILIAN GONÇALVES R.; DE FREITAS, JULIO CESAR MADUREIRA; LEVE, FERNANDA; DE SOUZA, WALDEMIR FERNÁNDEZ; DE ARAUJO, WALLACE MARTINS; WANDERLEY, JOÃO LUIZ MENDES; TANAKA, MARCELO NEVES; DE SOUZA, WANDERLEY; MORGADO-DÍAZ, JOSÉ ANDRÉS

    2012-01-01

    This work was undertaken to gain further information on the molecular mechanisms underlying autophagosome formation and its relation with tumor cell survival in response to radiation in colon cancer. A human colon cancer cell line, HCT-116, was examined with respect to cell survival after blockade of irradiation-induced autophagosome formation by pharmacological interference. Autophagosome formation was confirmed using a kinetic study with incorporated bovine serum albumin gold-conjugate (BSA-Au) analyzed by electron microscopy and an autophagosome-associated LC3B antibody measured by immunofluorescence and Western blotting. Annexin V/PI double staining was used to monitor cell death by apoptosis, and cell cycle profiles by flow cytometry. Ionizing radiation (IR) promoted autophagosome formation in the HCT-116 IR-surviving cells. Pharmacological interference showed that PI3K/Akt and Src were involved in early stages of autophagosome formation. IR alone decreased cell proliferation by arresting cells in the G2/M phase, and pharmacological interference of autophagosome formation decreased proliferation, but did not affect cell survival. Also, our data suggest that decreased proliferation caused by PI3K and Src inhibitors could be through S phase cell cycle delay. Our results clearly indicate that blockade of IR-induced autophagosome formation impairs proliferation but does not enhance cell death in colon cancer cells. PMID:22246348

  3. Engineering Strategies for the Formation of Embryoid Bodies from Human Pluripotent Stem Cells.

    PubMed

    Pettinato, Giuseppe; Wen, Xuejun; Zhang, Ning

    2015-07-15

    Human pluripotent stem cells (hPSCs) are powerful tools for regenerative therapy and studying human developmental biology, attributing to their ability to differentiate into many functional cell types in the body. The main challenge in realizing hPSC potential is to guide their differentiation in a well-controlled manner. One way to control the cell differentiation process is to recapitulate during in vitro culture the key events in embryogenesis to obtain the three developmental germ layers from which all cell types arise. To achieve this goal, many techniques have been tested to obtain a cellular cluster, an embryoid body (EB), from both mouse and hPSCs. Generation of EBs that are homogeneous in size and shape would allow directed hPSC differentiation into desired cell types in a more synchronous manner and define the roles of cell-cell interaction and spatial organization in lineage specification in a setting similar to in vivo embryonic development. However, previous success in uniform EB formation from mouse PSCs cannot be extrapolated to hPSCs possibly due to the destabilization of adherens junctions on cell surfaces during the dissociation into single cells, making hPSCs extremely vulnerable to cell death. Recently, new advances have emerged to form uniform human embryoid bodies (hEBs) from dissociated single cells of hPSCs. In this review, the existing methods for hEB production from hPSCs and the results on the downstream differentiation of the hEBs are described with emphases on the efficiency, homogeneity, scalability, and reproducibility of the hEB formation process and the yield in terminal differentiation. New trends in hEB production and directed differentiation are discussed. PMID:25900308

  4. Excess centrosomes perturb dynamic endothelial cell repolarization during blood vessel formation

    PubMed Central

    Kushner, Erich J.; Ferro, Luke S.; Yu, Zhixian; Bautch, Victoria L.

    2016-01-01

    Blood vessel formation requires dynamic movements of endothelial cells (ECs) within sprouts. The cytoskeleton regulates migratory polarity, and centrosomes organize the microtubule cytoskeleton. However, it is not well understood how excess centrosomes, commonly found in tumor stromal cells, affect microtubule dynamics and interphase cell polarity. Here we find that ECs dynamically repolarize during sprouting angiogenesis, and excess centrosomes block repolarization and reduce migration and sprouting. ECs with excess centrosomes initially had more centrosome-derived microtubules but, paradoxically, fewer steady-state microtubules. ECs with excess centrosomes had elevated Rac1 activity, and repolarization was rescued by blockade of Rac1 or actomyosin blockers, consistent with Rac1 activity promoting cortical retrograde actin flow and actomyosin contractility, which precludes cortical microtubule engagement necessary for dynamic repolarization. Thus normal centrosome numbers are required for dynamic repolarization and migration of sprouting ECs that contribute to blood vessel formation. PMID:27099371

  5. Tetraspanin 3c requirement for pigment cell interactions and boundary formation in zebrafish adult pigment stripes

    PubMed Central

    Inoue, Shinya; Kondo, Shigeru; Parichy, David M.; Watanabe, Masakatsu

    2014-01-01

    Summary Skin pigment pattern formation in zebrafish requires pigment-cell autonomous interactions between melanophores and xanthophores, yet the molecular bases for these interactions remain largely unknown. Here, we examined the dali mutant that exhibits stripes in which melanophores are intermingled abnormally with xanthophores. By in vitro cell culture, we found that melanophores of dali mutants have a defect in motility and that interactions between melanophores and xanthophores are defective as well. Positional cloning and rescue identified dali as tetraspanin 3c (tspan3c), encoding a transmembrane scaffolding protein expressed by melanophores and xanthophores. We further showed that dali mutant Tspan3c expressed in HeLa cell exhibits a defect in N-glycosylation and is retained inappropriately in the endoplasmic reticulum. Our results are the first to identify roles for a tetraspanin superfamily protein in skin pigment pattern formation and suggest new mechanisms for the establishment and maintenance of zebrafish stripe boundaries. PMID:24734316

  6. Vicenistatin induces early endosome-derived vacuole formation in mammalian cells.

    PubMed

    Nishiyama, Yuko; Ohmichi, Tomohiro; Kazami, Sayaka; Iwasaki, Hiroki; Mano, Kousuke; Nagumo, Yoko; Kudo, Fumitaka; Ichikawa, Sosaku; Iwabuchi, Yoshiharu; Kanoh, Naoki; Eguchi, Tadashi; Osada, Hiroyuki; Usui, Takeo

    2016-05-01

    Homotypic fusion of early endosomes is important for efficient protein trafficking and sorting. The key controller of this process is Rab5 which regulates several effectors and PtdInsPs levels, but whose mechanisms are largely unknown. Here, we report that vicenistatin, a natural product, enhanced homotypic fusion of early endosomes and induced the formation of large vacuole-like structures in mammalian cells. Unlike YM201636, another early endosome vacuolating compound, vicenistatin did not inhibit PIKfyve activity in vitro but activated Rab5-PAS pathway in cells. Furthermore, vicenistatin increased the membrane surface fluidity of cholesterol-containing liposomes in vitro, and cholesterol deprivation from the plasma membrane stimulated vicenistatin-induced vacuolation in cells. These results suggest that vicenistatin is a novel compound that induces the formation of vacuole-like structures by activating Rab5-PAS pathway and increasing membrane fluidity. PMID:27104762

  7. Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells

    NASA Technical Reports Server (NTRS)

    Boyd, Nolan L.; Park, Heonyong; Yi, Hong; Boo, Yong Chool; Sorescu, George P.; Sykes, Michelle; Jo, Hanjoong

    2003-01-01

    Caveolae are plasmalemmal domains enriched with cholesterol, caveolins, and signaling molecules. Endothelial cells in vivo are continuously exposed to shear conditions, and their caveolae density and location may be different from that of static cultured cells. Here, we show that chronic shear exposure regulates formation and localization of caveolae and caveolin-1 in bovine aortic endothelial cells (BAEC). Chronic exposure (1 or 3 days) of BAEC to laminar shear increased the total number of caveolae by 45-48% above static control. This increase was due to a rise in the luminal caveolae density without changing abluminal caveolae numbers or increasing caveolin-1 mRNA and protein levels. Whereas some caveolin-1 was found in the plasma membrane in static-cultured cells, it was predominantly localized in the Golgi. In contrast, chronic shear-exposed cells showed intense caveolin-1 staining in the luminal plasma membrane with minimum Golgi association. The preferential luminal localization of caveolae may play an important role in endothelial mechanosensing. Indeed, we found that chronic shear exposure (preconditioning) altered activation patterns of two well-known shear-sensitive signaling molecules (ERK and Akt) in response to a step increase in shear stress. ERK activation was blunted in shear preconditioned cells, whereas the Akt response was accelerated. These results suggest that chronic shear stimulates caveolae formation by translocating caveolin-1 from the Golgi to the luminal plasma membrane and alters cell signaling responses.

  8. Foam Cell Formation In Vivo Converts Macrophages to a Pro-Fibrotic Phenotype

    PubMed Central

    Thomas, Anita C.; Eijgelaar, Wouter J.; Daemen, Mat J. A. P.; Newby, Andrew C.

    2015-01-01

    Formation of foam cell macrophages, which sequester extracellular modified lipids, is a key event in atherosclerosis. How lipid loading affects macrophage phenotype is controversial, with evidence suggesting either pro- or anti-inflammatory consequences. To investigate this further, we compared the transcriptomes of foamy and non-foamy macrophages that accumulate in the subcutaneous granulomas of fed-fat ApoE null mice and normal chow fed wild-type mice in vivo. Consistent with previous studies, LXR/RXR pathway genes were significantly over-represented among the genes up-regulated in foam cell macrophages. Unexpectedly, the hepatic fibrosis pathway, associated with platelet derived growth factor and transforming growth factor-β action, was also over-represented. Several collagen polypeptides and proteoglycan core proteins as well as connective tissue growth factor and fibrosis-related FOS and JUN transcription factors were up-regulated in foam cell macrophages. Increased expression of several of these genes was confirmed at the protein level in foam cell macrophages from subcutaneous granulomas and in atherosclerotic plaques. Moreover, phosphorylation and nuclear translocation of SMAD2, which is downstream of several transforming growth factor-β family members, was also detected in foam cell macrophages. We conclude that foam cell formation in vivo leads to a pro-fibrotic macrophage phenotype, which could contribute to plaque stability, especially in early lesions that have few vascular smooth muscle cells. PMID:26197235

  9. The formation of ordered nanoclusters controls cadherin anchoring to actin and cell–cell contact fluidity

    PubMed Central

    Strale, Pierre-Olivier; Duchesne, Laurence; Peyret, Grégoire; Montel, Lorraine; Nguyen, Thao; Png, Evelyn; Tampé, Robert; Troyanovsky, Sergey; Hénon, Sylvie; Ladoux, Benoit

    2015-01-01

    Oligomerization of cadherins could provide the stability to ensure tissue cohesion. Cadherins mediate cell–cell adhesion by forming trans-interactions. They form cis-interactions whose role could be essential to stabilize intercellular junctions by shifting cadherin clusters from a fluid to an ordered phase. However, no evidence has been provided so far for cadherin oligomerization in cellulo and for its impact on cell–cell contact stability. Visualizing single cadherins within cell membrane at a nanometric resolution, we show that E-cadherins arrange in ordered clusters, providing the first demonstration of the existence of oligomeric cadherins at cell–cell contacts. Studying the consequences of the disruption of the cis-interface, we show that it is not essential for adherens junction formation. Its disruption, however, increased the mobility of junctional E-cadherin. This destabilization strongly affected E-cadherin anchoring to actin and cell–cell rearrangement during collective cell migration, indicating that the formation of oligomeric clusters controls the anchoring of cadherin to actin and cell–cell contact fluidity. PMID:26195669

  10. Vitrified canine testicular cells allow the formation of spermatogonial stem cells and seminiferous tubules following their xenotransplantation into nude mice

    PubMed Central

    Lee, Kyung Hoon; Lee, Won Young; Kim, Dong Hoon; Lee, Seung Hoon; Do, Jung Tae; Park, Chankyu; Kim, Jae Hwan; Choi, Young Suk; Song, Hyuk

    2016-01-01

    Belgian Malinois (BM), one of the excellent military dog breeds in South Korea, is usually castrated before sexual maturation. Therefore, the transfer of their genetic features to the next generation is difficult. To overcome this, testicular cells from 4-month-old BMs were frozen. Testicular cells were thawed after 3 months and cultured in StemPro-34 medium. Spermatogonial stem cell (SSC) characteristics were determined by the transplantation of the cultured germ cell-derived colonies (GDCs) into empty testes, containing only several endogenous SSCs and Sertoli cells, of immunodeficient mice, 4 weeks after busulfan treatment. Following the implantation, the transplanted cells localized in the basement membrane of the seminiferous tubules, and ultimately colonized the recipient testes. Xenotransplantation of GDCs together with testicular somatic cells conjugated with extracellular matrix (ECM), led to the formation of de novo seminiferous tubules. These seminiferous tubules were mostly composed of Sertoli cells. Some germ cells were localized in the basement membrane of seminiferous tubules. This study revealed that BM-derived SSCs, obtained from the castrated testes, might be a valuable tool for the transfer of BM genetic features to the next generation. PMID:26907750

  11. Vitrified canine testicular cells allow the formation of spermatogonial stem cells and seminiferous tubules following their xenotransplantation into nude mice.

    PubMed

    Lee, Kyung Hoon; Lee, Won Young; Kim, Dong Hoon; Lee, Seung Hoon; Do, Jung Tae; Park, Chankyu; Kim, Jae Hwan; Choi, Young Suk; Song, Hyuk

    2016-01-01

    Belgian Malinois (BM), one of the excellent military dog breeds in South Korea, is usually castrated before sexual maturation. Therefore, the transfer of their genetic features to the next generation is difficult. To overcome this, testicular cells from 4-month-old BMs were frozen. Testicular cells were thawed after 3 months and cultured in StemPro-34 medium. Spermatogonial stem cell (SSC) characteristics were determined by the transplantation of the cultured germ cell-derived colonies (GDCs) into empty testes, containing only several endogenous SSCs and Sertoli cells, of immunodeficient mice, 4 weeks after busulfan treatment. Following the implantation, the transplanted cells localized in the basement membrane of the seminiferous tubules, and ultimately colonized the recipient testes. Xenotransplantation of GDCs together with testicular somatic cells conjugated with extracellular matrix (ECM), led to the formation of de novo seminiferous tubules. These seminiferous tubules were mostly composed of Sertoli cells. Some germ cells were localized in the basement membrane of seminiferous tubules. This study revealed that BM-derived SSCs, obtained from the castrated testes, might be a valuable tool for the transfer of BM genetic features to the next generation. PMID:26907750

  12. Measles Virus Transmission from Dendritic Cells to T Cells: Formation of Synapse-Like Interfaces Concentrating Viral and Cellular Components

    PubMed Central

    Koethe, Susanne; Avota, Elita

    2012-01-01

    Transmission of measles virus (MV) to T cells by its early CD150+ target cells is considered to be crucial for viral dissemination within the hematopoietic compartment. Using cocultures involving monocyte-derived dendritic cells (DCs) and T cells, we now show that T cells acquire MV most efficiently from cis-infected DCs rather than DCs having trapped MV (trans-infection). Transmission involves interactions of the viral glycoprotein H with its receptor CD150 and is therefore more efficient to preactivated T cells. In addition to rare association with actin-rich filopodial structures, the formation of contact interfaces consistent with that of virological synapses (VS) was observed where viral proteins accumulated and CD150 was redistributed in an actin-dependent manner. In addition to these molecules, activated LFA-1, DC-SIGN, CD81, and phosphorylated ezrin-radixin-moesin proteins, which also mark the HIV VS, redistributed toward the MV VS. Most interestingly, moesin and substance P receptor, both implicated earlier in assisting MV entry or cell-to-cell transmission, also partitioned to the transmission structure. Altogether, the MV VS shares important similarities to the HIV VS in concentrating cellular components potentially regulating actin dynamics, conjugate stability, and membrane fusion as required for efficient entry of MV into target T cells. PMID:22761368

  13. The Diaphanous-Related Formins Promote Protrusion Formation and Cell-to-Cell Spread of Listeria monocytogenes

    PubMed Central

    Fattouh, Ramzi; Kwon, Hyunwoo; Czuczman, Mark A.; Copeland, John W.; Pelletier, Laurence; Quinlan, Margot E.; Muise, Aleixo M.; Higgins, Darren E.; Brumell, John H.

    2015-01-01

    The Gram-positive bacterium Listeria monocytogenes is a facultative intracellular pathogen whose virulence depends on its ability to spread from cell to cell within an infected host. Although the actin-related protein 2/3 (Arp2/3) complex is necessary and sufficient for Listeria actin tail assembly, previous studies suggest that other actin polymerization factors, such as formins, may participate in protrusion formation. Here, we show that Arp2/3 localized to only a minor portion of the protrusion. Moreover, treatment of L. monocytogenes–infected HeLa cells with a formin FH2-domain inhibitor significantly reduced protrusion length. In addition, the Diaphanous-related formins 1–3 (mDia1–3) localized to protrusions, and knockdown of mDia1, mDia2, and mDia3 substantially decreased cell-to-cell spread of L. monocytogenes. Rho GTPases are known to be involved in formin activation. Our studies also show that knockdown of several Rho family members significantly influenced bacterial cell-to-cell spread. Collectively, these findings identify a Rho GTPase–formin network that is critically involved in the cell-to-cell spread of L. monocytogenes. PMID:25281757

  14. The diaphanous-related formins promote protrusion formation and cell-to-cell spread of Listeria monocytogenes.

    PubMed

    Fattouh, Ramzi; Kwon, Hyunwoo; Czuczman, Mark A; Copeland, John W; Pelletier, Laurence; Quinlan, Margot E; Muise, Aleixo M; Higgins, Darren E; Brumell, John H

    2015-04-01

    The Gram-positive bacterium Listeria monocytogenes is a facultative intracellular pathogen whose virulence depends on its ability to spread from cell to cell within an infected host. Although the actin-related protein 2/3 (Arp2/3) complex is necessary and sufficient for Listeria actin tail assembly, previous studies suggest that other actin polymerization factors, such as formins, may participate in protrusion formation. Here, we show that Arp2/3 localized to only a minor portion of the protrusion. Moreover, treatment of L. monocytogenes-infected HeLa cells with a formin FH2-domain inhibitor significantly reduced protrusion length. In addition, the Diaphanous-related formins 1-3 (mDia1-3) localized to protrusions, and knockdown of mDia1, mDia2, and mDia3 substantially decreased cell-to-cell spread of L. monocytogenes. Rho GTPases are known to be involved in formin activation. Our studies also show that knockdown of several Rho family members significantly influenced bacterial cell-to-cell spread. Collectively, these findings identify a Rho GTPase-formin network that is critically involved in the cell-to-cell spread of L. monocytogenes. PMID:25281757

  15. Trypanosoma cruzi: Entry into Mammalian Host Cells and Parasitophorous Vacuole Formation

    PubMed Central

    Barrias, Emile Santos; de Carvalho, Tecia Maria Ulisses; De Souza, Wanderley

    2013-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, is transmitted to vertebrate hosts by blood-sucking insects. This protozoan is an obligate intracellular parasite. The infective forms of the parasite are the metacyclic trypomastigotes, amastigotes, and bloodstream trypomastigotes. The recognition between the parasite and mammalian host cell, involves numerous molecules present in both cell types, and similar to several intracellular pathogens, T. cruzi is internalized by host cells via multiple endocytic pathways. Morphological studies demonstrated that after the interaction of the infective forms of T. cruzi with phagocytic or non-phagocytic cell types, plasma membrane (PM) protrusions can form, showing similarity with those observed during canonical phagocytosis or macropinocytic events. Additionally, several molecules known to be molecular markers of membrane rafts, macropinocytosis, and phagocytosis have been demonstrated to be present at the invasion site. These events may or may not depend on the host cell lysosomes and cytoskeleton. In addition, after penetration, components of the host endosomal-lysosomal system, such as early endosomes, late endosomes, and lysosomes, participate in the formation of the nascent parasitophorous vacuole (PV). Dynamin, a molecule involved in vesicle formation, has been shown to be involved in the PV release from the host cell PM. This review focuses on the multiple pathways that T. cruzi can use to enter the host cells until complete PV formation. We will describe different endocytic processes, such as phagocytosis, macropinocytosis, and endocytosis using membrane microdomains and clathrin-dependent endocytosis and show results that are consistent with their use by this smart parasite. We will also discuss others mechanisms that have been described, such as active penetration and the process that takes advantage of cell membrane wound repair. PMID:23914186

  16. Mechanisms of ectopic bone formation by human osteoprogenitor cells on CaP biomaterial carriers.

    PubMed

    Chai, Yoke Chin; Roberts, Scott J; Desmet, Eline; Kerckhofs, Greet; van Gastel, Nick; Geris, Liesbet; Carmeliet, Geert; Schrooten, Jan; Luyten, Frank P

    2012-04-01

    Stem cell-based strategies for bone regeneration, which use calcium phosphate (CaP)-based biomaterials in combination with developmentally relevant progenitor populations, have significant potential for clinical repair of skeletal defects. However, the exact mechanism of action and the stem cell-host-material interactions are still poorly understood. We studied if pre-conditioning of human periosteum-derived cells (hPDCs) in vitro could enhance, in combination with a CaP-based biomaterial carrier, ectopic bone formation in vivo. By culturing hPDCs in a biomimetic calcium (Ca(2+)) and phosphate (P(i)) enriched culture conditions, we observed an enhanced cell proliferation, decreased expression of mesenchymal stem cell (MSC) markers and upregulation of osteogenic genes including osterix, Runx2, osteocalcin, osteopontin, and BMP-2. However, the in vitro pre-conditioning protocols were non-predictive for in vivo ectopic bone formation. Surprisingly, culturing in the presence of Ca(2+) and P(i) supplements resulted in partial or complete abrogation of in vivo ectopic bone formation. Through histological, immunohistochemical and microfocus X-ray computed tomography (μCT) analysis of the explants, we found that in situ proliferation, collagen matrix deposition and the mediation of osteoclastic activity by hPDCs are associated to their ectopic bone forming capacity. These data were validated by the multivariate analysis and partial least square regression modelling confirming the non-predictability of in vitro parameters on in vivo ectopic bone formation. Our series of experiments provided further insights on the stem cell-host-material interactions that govern in vivo ectopic bone induction driven by hPDCs on CaP-based biomaterials. PMID:22269651

  17. Pattern Formation and Force Generation by Cell Ensembles in a Filamentous Matrix

    NASA Astrophysics Data System (ADS)

    Paul, R.; Schwarz, U. S.

    Adhesion-dependent soft tissue cells both create and sense tension in the extracellular matrix. Therefore cells can actively interact through the mechanics of the surrounding matrix. An intracellular positive feedback loop upregulates cellular contractility in stiff or tensed environments. Here we theoretically address the resulting pattern formation and force generation for the case of a filamentous matrix, which we model as a two-dimensional cable network. Cells are modeled as anisotropic contraction dipoles which move in favor of tensed directions in the matrix. Our Monte Carlo simulations suggest that at small densities, cells align in strings, while at high densities, they form interconnected meshworks. Cellular activation both by biochemical factors and by tension leads to a hyperbolic increase in tissue tension. We also discuss the effect of cell density on tissue tension and shape.

  18. Fluctuation Methods To Study Protein Aggregation in Live Cells: Concanavalin A Oligomers Formation

    PubMed Central

    Vetri, V.; Ossato, G.; Militello, V.; Digman, M.A.; Leone, M.; Gratton, E.

    2011-01-01

    Prefibrillar oligomers of proteins are suspected to be the primary pathogenic agents in several neurodegenerative diseases. A key approach for elucidating the pathogenic mechanisms is to probe the existence of oligomers directly in living cells. In this work, we were able to monitor the process of aggregation of Concanavalin A in live cells. We used number and brightness analysis, two-color cross number and brightness analysis, and Raster image correlation spectroscopy to obtain the number of molecules, aggregation state, and diffusion coefficient as a function of time and cell location. We observed that binding of Concanavalin A to the membrane and the formation of small aggregates paralleled cell morphology changes, indicating progressive cell compaction and death. Upon protein aggregation, we observed increased membrane water penetration as reported by Laurdan generalized polarization imaging. PMID:21281593

  19. Laser annealing of ion implanted CZ silicon for solar cell junction formation

    NASA Technical Reports Server (NTRS)

    Katzeff, J. S.

    1981-01-01

    The merits of large spot size pulsed laser annealing of phosphorus implanted, Czochralski grown silicon for function formation of solar cells are evaluated. The feasibility and requirements are also determined to scale-up a laser system to anneal 7.62 cm diameter wafers at a rate of one wafer/second. Results show that laser annealing yields active, defect-free, shallow junction devices. Functional cells with AM 1 conversion efficiencies up to 15.4% for 2 x 2 cm and 2 x 4 cm sizes were attained. For larger cells, 7.62 cm dia., conversion efficiencies ranged up to 14.5%. Experiments showed that texture etched surfaces are not compatible with pulsed laser annealing due to the surface melting caused by the laser energy. When compared with furnace annealed cells, the laser annealed cells generally exhibited conversion efficiencies which were equal to or better than those furnace annealed. In addition, laser annealing has greater throughput potential.

  20. Mic13 Is Essential for Formation of Crista Junctions in Mammalian Cells

    PubMed Central

    Anand, Ruchika; Strecker, Valentina; Urbach, Jennifer; Wittig, Ilka; Reichert, Andreas S.

    2016-01-01

    Mitochondrial cristae are connected to the inner boundary membrane via crista junctions which are implicated in the regulation of oxidative phosphorylation, apoptosis, and import of lipids and proteins. The MICOS complex determines formation of crista junctions. We performed complexome profiling and identified Mic13, also termed Qil1, as a subunit of the MICOS complex. We show that MIC13 is an inner membrane protein physically interacting with MIC60, a central subunit of the MICOS complex. Using the CRISPR/Cas method we generated the first cell line deleted for MIC13. These knockout cells show a complete loss of crista junctions demonstrating that MIC13 is strictly required for the formation of crista junctions. MIC13 is required for the assembly of MIC10, MIC26, and MIC27 into the MICOS complex. However, it is not needed for the formation of the MIC60/MIC19/MIC25 subcomplex suggesting that the latter is not sufficient for crista junction formation. MIC13 is also dispensable for assembly of respiratory chain complexes and for maintaining mitochondrial network morphology. Still, lack of MIC13 resulted in a moderate reduction of mitochondrial respiration. In summary, we show that MIC13 has a fundamental role in crista junction formation and that assembly of respiratory chain supercomplexes is independent of mitochondrial cristae shape. PMID:27479602

  1. Mic13 Is Essential for Formation of Crista Junctions in Mammalian Cells.

    PubMed

    Anand, Ruchika; Strecker, Valentina; Urbach, Jennifer; Wittig, Ilka; Reichert, Andreas S

    2016-01-01

    Mitochondrial cristae are connected to the inner boundary membrane via crista junctions which are implicated in the regulation of oxidative phosphorylation, apoptosis, and import of lipids and proteins. The MICOS complex determines formation of crista junctions. We performed complexome profiling and identified Mic13, also termed Qil1, as a subunit of the MICOS complex. We show that MIC13 is an inner membrane protein physically interacting with MIC60, a central subunit of the MICOS complex. Using the CRISPR/Cas method we generated the first cell line deleted for MIC13. These knockout cells show a complete loss of crista junctions demonstrating that MIC13 is strictly required for the formation of crista junctions. MIC13 is required for the assembly of MIC10, MIC26, and MIC27 into the MICOS complex. However, it is not needed for the formation of the MIC60/MIC19/MIC25 subcomplex suggesting that the latter is not sufficient for crista junction formation. MIC13 is also dispensable for assembly of respiratory chain complexes and for maintaining mitochondrial network morphology. Still, lack of MIC13 resulted in a moderate reduction of mitochondrial respiration. In summary, we show that MIC13 has a fundamental role in crista junction formation and that assembly of respiratory chain supercomplexes is independent of mitochondrial cristae shape. PMID:27479602

  2. Regulation of product formation during glucose or lactose limitation in nongrowing cells of Streptococcus lactis.

    PubMed Central

    Fordyce, A M; Crow, V L; Thomas, T D

    1984-01-01

    Nongrowing cells of Streptococcus lactis in a pH-stat were dosed with sugar to allow fermentation at the maximum rate or were fed a continuous supply of sugar at rates less than the maximum. Under anaerobic conditions, rapid fermentation of either glucose or lactose was essentially homolactic. However, with strain ML3, limiting the fermentation rate diverted approximately half of the pyruvate to formate, acetate, and ethanol. At limiting glucose fermentation rates, cells contained lower concentrations of lactate dehydrogenase activator (fructose 1,6-diphosphate) and pyruvate formate-lyase inhibitors (triose phosphates). As a result, pyruvate formate-lyase and pyruvate dehydrogenase play a greater role in pyruvate metabolism. In contrast to strain ML3, strain ML8 did not give the same diversion of products under anaerobic conditions, and cells retained higher concentrations of the above effector compounds. Lactose metabolism under aerobic conditions resulted in pyruvate excretion by both S. lactis ML3 and ML8. At 7% of the maximum utilization rate, pyruvate accounted for 69 and 35% of the lactose metabolized by ML3 and ML8, respectively. Acetate was also a major product, especially with ML8. The data suggest that NADH oxidase is involved in coenzyme recycling in the presence of oxygen and that pyruvate formate-lyase is inactivated, but the pyruvate dehydrogenase complex still functions. PMID:6435521

  3. Ice formation in PEM fuel cells operated isothermally at sub-freezing temperatures

    SciTech Connect

    Mukundan, Rangachary; Luhan, Roger W; Davey, John R; Spendelow, Jacob S; Borup, Rodney L; Hussey, Daniel S; Jacobson, David L; Arif, Muhammad

    2009-01-01

    The effect of MEA and GDL structure and composition on the performance of single-PEM fuel cells operated isothermally at subfreezing temperatures is presented. The cell performance and durability are not only dependent on the MEA/GDL materials used but also on their interfaces. When a cell is operated isothermally at sub-freezing temperatures in constant current mode, the water formation due to the current density initially hydrates the membrane/ionomer and then forms ice in the catalyst layer/GDL. An increase in high frequency resistance was also observed in certain MEAs where there is a possibility of ice formation between the catalyst layer and GDL leading to a loss in contact area. The total water/ice holding capacity for any MEA was lower at lower temperatures and higher current densities. The durability of MEAs subjected to multiple isothermal starts was better for LANL prepared MEAs as compared to commercial MEAs, and cloth GDLs when compared to paper GDLs. The ice formation was monitored using high-resolution neutron radiography and was found to be concentrated near the cathode catalyst layer. However, there was significant ice formation in the GDLs especially at the higher temperature ({approx} -10 C) and lower current density (0.02 A/cm{sup 2}) operations. These results are consistent with the longer-term durability observations that show more severe degradation at the lower temperatures.

  4. Controlling shape and position of vascular formation in engineered tissues by arbitrary assembly of endothelial cells.

    PubMed

    Takehara, Hiroaki; Sakaguchi, Katsuhisa; Kuroda, Masatoshi; Muraoka, Megumi; Itoga, Kazuyoshi; Okano, Teruo; Shimizu, Tatsuya

    2015-12-01

    Cellular self-assembly based on cell-to-cell communication is a well-known tissue organizing process in living bodies. Hence, integrating cellular self-assembly processes into tissue engineering is a promising approach to fabricate well-organized functional tissues. In this research, we investigated the capability of endothelial cells (ECs) to control shape and position of vascular formation using arbitral-assembling techniques in three-dimensional engineered tissues. To quantify the degree of migration of ECs in endothelial network formation, image correlation analysis was conducted. Positive correlation between the original positions of arbitrarily assembled ECs and the positions of formed endothelial networks indicated the potential for controlling shape and position of vascular formations in engineered tissues. To demonstrate the feasibility of controlling vascular formations, engineered tissues with vascular networks in triangle and circle patterns were made. The technique reported here employs cellular self-assembly for tissue engineering and is expected to provide fundamental beneficial methods to supply various functional tissues for drug screening and regenerative medicine. PMID:26545138

  5. Engineering Strategies for the Formation of Embryoid Bodies from Human Pluripotent Stem Cells

    PubMed Central

    Pettinato, Giuseppe

    2015-01-01

    Human pluripotent stem cells (hPSCs) are powerful tools for regenerative therapy and studying human developmental biology, attributing to their ability to differentiate into many functional cell types in the body. The main challenge in realizing hPSC potential is to guide their differentiation in a well-controlled manner. One way to control the cell differentiation process is to recapitulate during in vitro culture the key events in embryogenesis to obtain the three developmental germ layers from which all cell types arise. To achieve this goal, many techniques have been tested to obtain a cellular cluster, an embryoid body (EB), from both mouse and hPSCs. Generation of EBs that are homogeneous in size and shape would allow directed hPSC differentiation into desired cell types in a more synchronous manner and define the roles of cell–cell interaction and spatial organization in lineage specification in a setting similar to in vivo embryonic development. However, previous success in uniform EB formation from mouse PSCs cannot be extrapolated to hPSCs possibly due to the destabilization of adherens junctions on cell surfaces during the dissociation into single cells, making hPSCs extremely vulnerable to cell death. Recently, new advances have emerged to form uniform human embryoid bodies (hEBs) from dissociated single cells of hPSCs. In this review, the existing methods for hEB production from hPSCs and the results on the downstream differentiation of the hEBs are described with emphases on the efficiency, homogeneity, scalability, and reproducibility of the hEB formation process and the yield in terminal differentiation. New trends in hEB production and directed differentiation are discussed. PMID:25900308

  6. Ionizing Radiation Induces Macrophage Foam Cell Formation and Aggregation Through JNK-Dependent Activation of CD36 Scavenger Receptors

    SciTech Connect

    Katayama, Ikuo; Hotokezaka, Yuka; Matsuyama, Toshifumi; Sumi, Tadateru; Nakamura, Takashi

    2008-03-01

    Purpose: Irradiated arteries of cancer patients can be associated with atherosclerosis-like lesions containing cholesterol-laden macrophages (foam cells). Endothelial cell damage by irradiation does not completely explain the foam cell formation. We investigated the possible underlying mechanisms for ionizing radiation (IR)-induced foam cell formation. Methods and Materials: Human peripheral blood monocytes were activated by macrophage colony-stimulating factor and then treated with varying doses of IR in vitro in the absence of endothelial cells. Scavenger receptor expression and foam cell formation of IR-treated macrophages were investigated in the presence or absence of oxidized low-density lipoprotein. We also assessed the importance of mitogen-activated protein kinase activity in the macrophage colony-stimulating factor-activated human monocytes (macrophages) for the foam cell formation. Results: We found that IR treatment of macrophage colony-stimulating factor-activated human peripheral blood monocytes resulted in the enhanced expression of CD36 scavenger receptors and that cholesterol accumulated in the irradiated macrophages with resultant foam cell formation in the presence of oxidized low-density lipoprotein. Furthermore, when cultured on collagen gels, human macrophages formed large foam cell aggregates in response to IR. Antibodies against CD36 inhibited the IR-induced foam cell formation and aggregation, indicating that the IR-induced foam cell formation and the subsequent aggregation are dependent on functional CD36. In addition, we found that IR of human macrophages resulted in c-Jun N-terminal kinase activation and that c-Jun N-terminal kinase inhibition suppressed IR-induced CD36 expression and the subsequent foam cell formation and aggregation. Conclusion: Taken together, these results suggest that IR-induced foam cell formation is mediated by c-Jun N-terminal kinase-dependent CD36 activation.

  7. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation

    SciTech Connect

    Suzuki, Yuka; Tada-Oikawa, Saeko; Ichihara, Gaku; Yabata, Masayuki; Izuoka, Kiyora; Suzuki, Masako; Sakai, Kiyoshi; Ichihara, Sahoko

    2014-07-01

    Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO{sub 2} and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocyte chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO{sub 2} particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. - Highlights: • Effects of metal oxide nanoparticles on foam cell formation were investigated. • Exposure to ZnO nanoparticles induced migration and adhesion of monocytes. • Exposure to ZnO nanoparticles increased macrophage cholesterol uptake. • Expression of membrane scavenger receptors of modified LDL was also increased. • These effects were not observed after exposure to TiO{sub 2} nanoparticles.

  8. Homotypic cell competition regulates proliferation and tiling of zebrafish pigment cells during colour pattern formation

    PubMed Central

    Walderich, Brigitte; Singh, Ajeet Pratap; Mahalwar, Prateek; Nüsslein-Volhard, Christiane

    2016-01-01

    The adult striped pattern of zebrafish is composed of melanophores, iridophores and xanthophores arranged in superimposed layers in the skin. Previous studies have revealed that the assembly of pigment cells into stripes involves heterotypic interactions between all three chromatophore types. Here we investigate the role of homotypic interactions between cells of the same chromatophore type. Introduction of labelled progenitors into mutants lacking the corresponding cell type allowed us to define the impact of competitive interactions via long-term in vivo imaging. In the absence of endogenous cells, transplanted iridophores and xanthophores show an increased rate of proliferation and spread as a coherent net into vacant space. By contrast, melanophores have a limited capacity to spread in the skin even in the absence of competing endogenous cells. Our study reveals a key role for homotypic competitive interactions in determining number, direction of migration and individual spacing of cells within chromatophore populations. PMID:27118125

  9. Fuels for fuel cells: Fuel and catalyst effects on carbon formation

    SciTech Connect

    Borup, R. L.; Inbody, M. A.; Perry, W. L.; Parkinson, W. J. ,

    2002-01-01

    The goal of this research is to explore the effects of fuels, fuel constituents, additives and impurities on the performance of on-board hydrogen generation devices and consequently on the overall performance of fuel cell systems using reformed hydrocarbon fuels. Different fuels and components have been tested in automotive scale, adiabatic autothermal reactors to observe their relative reforming characteristics with various operating conditions. Carbon formation has been modeled and was experimentally monitored in situ during operation by laser measurements of the effluent reformate. Ammonia formation was monitored, and conditions varied to observe under what conditions N H 3 is made.

  10. Positively charged supported lipid bilayer formation on gold surfaces for neuronal cell culture.

    PubMed

    Choi, Sung-Eun; Greben, Kyrylo; Wördenweber, Roger; Offenhäusser, Andreas

    2016-06-01

    Supported lipid bilayers are widely used as cell membrane models and sensor platforms, but the usage on gold surface needs additional surface modification or optimized experimental conditions. In this work, the authors show lipid bilayer formation on plasma activated gold surfaces in physiological conditions without any other modification if at least 30% positively charged lipids are present. Details of bilayer formation from small unilamellar vesicles were monitored using quartz crystal microbalance with dissipation in both basic and acidic environment. The authors also confirmed that this positively charged bilayer system can sustain primary cortical neuron growth and lipid transfer. This method will provide simple means to construct biomimetic interface on gold electrodes. PMID:27052005

  11. Targeted mutagenesis in mammalian cells mediated by intracellular triple helix formation.

    PubMed Central

    Wang, G; Levy, D D; Seidman, M M; Glazer, P M

    1995-01-01

    As an alternative to standard gene transfer techniques for genetic manipulation, we have investigated the use of triple helix-forming oligonucleotides to target mutations to selected genes within mammalian cells. By treating monkey COS cells with oligonucleotides linked to psoralen, we have generated targeted mutations in a simian virus 40 (SV40) vector contained within the cells via intracellular triple helix formation. Oligonucleotide entry into the cells and sequence-specific triplex formation within the SV40 DNA deliver the psoralen to the targeted site. Photoactivation of the psoralen by long-wavelength UV light yields adducts and thereby mutations at that site. We engineered into the SV40 vector novel supF mutation reporter genes containing modified polypurine sites amenable to triplex formation. By comparing the abilities of a series of oligonucleotides to target these new sites, we show that targeted mutagenesis in vivo depends on the strength and specificity of the third-strand binding. Oligonucleotides with weak target site binding affinity or with only partial target site homology were ineffective at inducing mutations in the SV40 vectors within the COS cells. We also show that the targeted mutagenesis is dependent on the oligonucleotide concentration and is influenced by the timing of the oligonucleotide treatment and of the UV irradiation of the cells. Frequencies of intracellular targeted mutagenesis in the range of 1 to 2% were observed, depending upon the conditions of the experiment. DNA sequence analysis revealed that most of the mutations were T.A-to-A.T transversions precisely at the targeted psoralen intercalation site. Several deletions encompassing that site were also seen. The ability to target mutations to selected sites within mammalian cells by using modified triplex-forming oligonucleotides may provide a new research tool and may eventually lead to therapeutic applications. PMID:7862165

  12. Primary Phenomenon in the Network Formation of Endothelial Cells: Effect of Charge

    PubMed Central

    Arai, Shunto

    2015-01-01

    Blood vessels are essential organs that are involved in the supply of nutrients and oxygen and play an important role in regulating the body’s internal environment, including pH, body temperature, and water homeostasis. Many studies have examined the formation of networks of endothelial cells. The results of these studies have revealed that vascular endothelial growth factor (VEGF) affects the interactions of these cells and modulates the network structure. Though almost all previous simulation studies have assumed that the chemoattractant VEGF is present before network formation, vascular endothelial cells secrete VEGF only after the cells bind to the substrate. This suggests VEGF is not essential for vasculogenesis especially at the early stage. Using a simple experiment, we find chain-like structures which last quite longer than it is expected, unless the energetically stable cluster should be compact. Using a purely physical model and simulation, we find that the hydrodynamic interaction retard the compaction of clusters and that the chains are stabilized through the effects of charge. The charge at the surface of the cells affect the interparticle potential, and the resulting repulsive forces prevent the chains from folding. The ions surrounding the cells may also be involved in this process. PMID:26690133

  13. Differentiation of Mouse Embryonic Stem Cells into Endoderm without Embryoid Body Formation

    PubMed Central

    Kim, Peter T. W.; Hoffman, Brad G.; Plesner, Annette; Helgason, Cheryl D.; Verchere, C. Bruce; Chung, Stephen W.; Warnock, Garth L.; Mui, Alice L. F.; Ong, Christopher J.

    2010-01-01

    Pluripotent embryonic stem cells hold a great promise as an unlimited source of tissue for treatment of chronic diseases such as Type 1 diabetes. Herein, we describe a protocol using all-trans-retinoic acid, basic fibroblast growth factor and dibutyryl cAMP (DBcAMP) in the absence of embryoid body formation, for differentiation of murine embryonic stem cells into definitive endoderm that may serve as pancreatic precursors. The produced cells were analyzed by quantitative PCR, immunohistochemistry and static insulin release assay for markers of trilaminar embryo, and pancreas. Differentiated cells displayed increased Sox17 and Foxa2 expression consistent with definitive endoderm production. There was minimal production of Sox7, an extraembryonic endoderm marker, and Oct4, a marker of pluripotency. There was minimal mesoderm or neuroectoderm formation based on expression levels of the markers brachyury and Sox1, respectively. Various assays revealed that the cell clusters generated by this protocol express markers of the pancreatic lineage including insulin I, insulin II, C-peptide, PDX-1, carboxypeptidase E, pan-cytokeratin, amylase, glucagon, PAX6, Ngn3 and Nkx6.1. This protocol using all-trans-retinoic acid, DBcAMP, in the absence of embryoid bodies, generated cells that have features of definitive endoderm that may serve as pancreatic endocrine precursors. PMID:21152387

  14. Serum amyloid A stimulates macrophage foam cell formation via lectin-like oxidized low-density lipoprotein receptor 1 upregulation

    SciTech Connect

    Lee, Ha Young; Kim, Sang Doo; Baek, Suk-Hwan; Choi, Joon Hyuk; Cho, Kyung-Hyun; Zabel, Brian A.; Bae, Yoe-Sik

    2013-03-29

    Highlights: ► SAA induced macrophage foam cell formation. ► SAA stimulated upregulation of lectin-like oxidized low-density lipoprotein receptor 1 (LOX1). ► SAA-induced LOX1 expression and foam cell formation is mediated by JNK/NF-κB signaling. ► HDL-conjugated SAA also stimulates foam cell formation via LOX1 upregulation. ► The finding reveals a novel mechanism of action of SAA in the pathogenesis of atherosclerosis. -- Abstract: Elevated levels of serum amyloid A (SAA) is a risk factor for cardiovascular diseases, however, the role of SAA in the pathophysiology of atherosclerosis remains unclear. Here we show that SAA induced macrophage foam cell formation. SAA-stimulated foam cell formation was mediated by c-jun N-terminal kinase (JNK) signaling. Moreover, both SAA and SAA-conjugated high density lipoprotein stimulated the expression of the important scavenger receptor lectin-like oxidized low-density lipoprotein receptor 1 (LOX1) via nuclear factor-κB (NF-κB). A LOX1 antagonist carrageenan significantly blocked SAA-induced foam cell formation, indicating that SAA promotes foam cell formation via LOX1 expression. Our findings therefore suggest that SAA stimulates foam cell formation via LOX1 induction, and thus likely contributes to atherogenesis.

  15. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation.

    PubMed

    Suzuki, Yuka; Tada-Oikawa, Saeko; Ichihara, Gaku; Yabata, Masayuki; Izuoka, Kiyora; Suzuki, Masako; Sakai, Kiyoshi; Ichihara, Sahoko

    2014-07-01

    Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO2 and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocyte chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO2 particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. PMID:24746987

  16. Lamellar Spacing in Cuboid Hydroxyapatite Scaffolds Regulates Bone Formation by Human Bone Marrow Stromal Cells

    PubMed Central

    Afghani, Shahrzad; Franco, Jaime; Launey, Max; Marshall, Sally; Marshall, Grayson W.; Nissenson, Robert; Lee, Janice; Tomsia, Antoni P.; Saiz, Eduardo

    2011-01-01

    Background A major goal in bone engineering is the creation of large volume constructs (scaffolds and stem cells) that bear load. The scaffolds must satisfy two competing requirements—they need be sufficiently porous to allow nutrient flow to maintain cell viability, yet sufficiently dense to bear load. We studied the effect of scaffold macroporosity on bone formation and scaffold strength, for bone formed by human bone marrow stromal cells. Methods Rigid cubical hydroxyapatite/tricalcium phosphate scaffolds were produced by robo-casting. The ceramic line thickness was held constant, but the distance between adjacent lines was either 50, 100, 200, 500, or 1000 μm. Cultured human bone marrow stromal cells were combined with the scaffolds in vitro; transplants were placed into the subcutis of immunodeficient mice. Transplants were harvested 9, 18, 23, 38, or 50 weeks later. Bone formation and scaffold strength were analyzed using histology and compression testing. Results Sixty transplants were evaluated. Cortical bone increased with transplant age, and was greatest among 500 μm transplants. In contrast, maximum transplant strength was greatest among 200 μm transplants. Conclusions Lamellar spacing within scaffolds regulates the extent of bone formation; 500 μm yields the most new bone, whereas 200 μm yields the strongest transplants. PMID:21294634

  17. Translation suppression promotes stress granule formation and cell survival in response to cold shock

    PubMed Central

    Hofmann, Sarah; Cherkasova, Valeria; Bankhead, Peter; Bukau, Bernd; Stoecklin, Georg

    2012-01-01

    Cells respond to different types of stress by inhibition of protein synthesis and subsequent assembly of stress granules (SGs), cytoplasmic aggregates that contain stalled translation preinitiation complexes. Global translation is regulated through the translation initiation factor eukaryotic initiation factor 2α (eIF2α) and the mTOR pathway. Here we identify cold shock as a novel trigger of SG assembly in yeast and mammals. Whereas cold shock–induced SGs take hours to form, they dissolve within minutes when cells are returned to optimal growth temperatures. Cold shock causes eIF2α phosphorylation through the kinase PERK in mammalian cells, yet this pathway is not alone responsible for translation arrest and SG formation. In addition, cold shock leads to reduced mitochondrial function, energy depletion, concomitant activation of AMP-activated protein kinase (AMPK), and inhibition of mTOR signaling. Compound C, a pharmacological inhibitor of AMPK, prevents the formation of SGs and strongly reduces cellular survival in a translation-dependent manner. Our results demonstrate that cells actively suppress protein synthesis by parallel pathways, which induce SG formation and ensure cellular survival during hypothermia. PMID:22875991

  18. Controlled synthesis of the DSF cell-cell signal is required for biofilm formation and virulence in Xanthomonas campestris.

    PubMed

    Torres, Pablo S; Malamud, Florencia; Rigano, Luciano A; Russo, Daniela M; Marano, María Rosa; Castagnaro, Atilio P; Zorreguieta, Angeles; Bouarab, Kamal; Dow, John Maxwell; Vojnov, Adrián A

    2007-08-01

    Virulence of the black rot pathogen Xanthomonas campestris pv. campestris (Xcc) is regulated by cell-cell signalling involving the diffusible signal factor DSF. Synthesis and perception of DSF require products of genes within the rpf cluster (for regulation of pathogenicity factors). RpfF directs DSF synthesis whereas RpfC and RpfG are involved in DSF perception. Here we have examined the role of the rpf/DSF system in biofilm formation in minimal medium using confocal laser-scanning microscopy of GFP-labelled bacteria. Wild-type Xcc formed microcolonies that developed into a structured biofilm. In contrast, an rpfF mutant (DSF-minus) and an rpfC mutant (DSF overproducer) formed only unstructured arrangements of bacteria. A gumB mutant, defective in xanthan biosynthesis, was also unable to develop the typical wild-type biofilm. Mixed cultures of gumB and rpfF mutants formed a typical biofilm in vitro. In contrast, in mixed cultures the rpfC mutant prevented the formation of the structured biofilm by the wild-type and did not restore wild-type biofilm phenotypes to gumB or rpfF mutants. These effects on structured biofilm formation were correlated with growth and disease development by Xcc strains in Nicotiana benthamiana leaves. These findings suggest that DSF signalling is finely balanced during both biofilm formation and virulence. PMID:17635553

  19. 29 CFR 825.122 - Definitions of covered servicemember, spouse, parent, son or daughter, next of kin of a covered...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of the major life activities of an individual. Regulations at 29 CFR 1630.2(h), (i), and (j), issued... or daughter, next of kin of a covered servicemember, adoption, foster care, son or daughter on covered active duty or call to covered active duty status, son or daughter of a covered servicemember,...

  20. The Impact of Social Class and Social Cognitive Domain on Northeastern Brazilian Mothers' and Daughters' Conceptions of Parental Control

    ERIC Educational Resources Information Center

    Lins-Dyer, Maria Tereza; Nucci, Larry

    2007-01-01

    The impact of social class was explored on Brazilian mothers' and daughters' conceptions of who should, and who actually would control decisions regarding the daughters' actions. Participants were 126 middle class and 126 lower class girls aged 11-16 years, and their mothers. No social class differences were found in daughters' judgments about who…