Science.gov

Sample records for daytime raman lidar

  1. Performance modeling of ultraviolet Raman lidar systems for daytime profiling of atmospheric water vapor

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Whiteman, D. N.; Melfi, S. H.; Goldsmith, J. E. M.; Bisson, S. E.; Lapp, M.

    1991-01-01

    We describe preliminary results from a comprehensive computer model developed to guide optimization of a Raman lidar system for measuring daytime profiles of atmospheric water vapor, emphasizing an ultraviolet, solar-blind approach.

  2. Simulation of improved daytime capabilities to retrieve aerosol extinction coefficient using Rotational Raman lidars

    NASA Astrophysics Data System (ADS)

    Madonna, Fabio; Amodeo, Aldo

    2015-04-01

    So far, most of the multi-wavelength Raman lidar observations of aerosols are performed at night, because Raman signals are weak compared to daylight background. Different techniques have been developed to improve Raman lidar daytime capabilities in the past years. Indeed, the retrieval of aerosol extinction during daytime is feasible through the detection of backscattered radiation due to the pure Rotational Raman Spectrum (PRRS) of molecular nitrogen or oxygen, much brighter than the vibration-rotation spectrum. The existing techniques for the measure of PRRS are based on small-bandwidth emitter and receiver systems and on a small receiver field of view to suppress the daylight background. They have been successfully tested and implemented in a few systems which are already in operational use within EARLINET (European Aerosol research Lidar NETwork). In this work, several different configurations used as receiver for a lidar system detecting the PRRS in daytime conditions are compared by means of numerical simulations. The configurations are mainly differentiated by the design of the spectral selection unit implemented in the receiver of each lidar system, based on a narrow-bandwidth filters, broad-band filters, grating spectrometers, and hybrid solutions. The research of configurations able to be more easily implemented on a large number of lidar systems within ACTRIS are explored. To show the performances of the investigated lidar configurations, a blind test has been carried out to get the simulated performances in the retrieval of the aerosol extinction profile during night-time and daytime starting from a known scenario. The atmospheric scenario used as the reference profile is represented by one of the night-time measurements with MUSA (MUlti-wavelength system for Aerosol) lidar at CNR-IMAA Atmospheric Observatory - CIAO (15.72E, 40.60N , 760 m a.s.l., Potenza, Italy). Though all the configuration considered in the blind test proved to be solid to

  3. Daytime operation of a pure rotational Raman lidar by use of a Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Arshinov, Yuri; Bobrovnikov, Sergey; Serikov, Ilya; Ansmann, Albert; Wandinger, Ulla; Althausen, Dietrich; Mattis, Ina; Müller, Detlef

    2005-06-01

    We propose to use a Fabry-Perot interferometer (FPI) in a pure rotational Raman lidar to isolate return signals that are due to pure rotational Raman scattering from atmospheric nitrogen against the sky background. The main idea of this instrumental approach is that a FPI is applied as a frequency comb filter with the transmission peaks accurately matched to a comb of practically equidistant lines of a pure rotational Raman spectrum (PRRS) of nitrogen molecules. Thus a matched FPI transmission comb cuts out the spectrally continuous sky background light from the spectral gaps between the PRRS lines of nitrogen molecules while it is transparent to light within narrow spectral intervals about these lines. As the width of the spectral gaps between the lines of the PRRS of nitrogen molecules is ~114 times the width of an individual spectral line, cutting out of the sky background from these gaps drastically improves the signal-to-background ratio of the pure rotational Raman lidar returns. This application of the FPI enables one to achieve daytime temperature profiling in the atmosphere with a pure rotational Raman lidar in the visible and near-UV spectral regions. We present an analysis of application of the FPI to filtering out the pure rotational Raman lidar returns against the solar background. To demonstrate the feasibility of the approach proposed, we present temperature profiles acquired during a whole-day measurement session in which a Raman lidar equipped with a FPI was used. For comparison, temperature profiles acquired with Vaisala radiosondes launched from the measurement site are also presented.

  4. Daytime Raman lidar measurements of water vapor during the ARM 1997 water vapor intensive observation period

    SciTech Connect

    Turner, D.D.; Goldsmith, J.E.M.

    1998-04-01

    Because of the importance of water vapor, the ARM program initiated a series of three intensive operating periods (IOPs) at its CART (Cloud And Radiation Testbed) site. The goal of these IOPs is to improve and validate the state-of-the-art capabilities in measuring water vapor. To date, two of the planned three IOPs have occurred: the first was in September of 1996, with an emphasis on the lowest kilometer, while the second was conducted from September--October 1997 with a focus on both the upper troposphere and lowest kilometer. These IOPs provided an excellent opportunity to compare measurements from other systems with those made by the CART Raman lidar. This paper addresses primarily the daytime water vapor measurements made by the lidar system during the second of these IOPs.

  5. Evaluation of Daytime Measurements of Aerosols and Water Vapor made by an Operational Raman Lidar over the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Turner, David; Clayton, Marian; Schmid, Beat; Covert, David; Elleman, Robert; Orgren, John; Andrews, Elisabeth; Goldsmith, John E. M.; Jonsson, Hafidi

    2006-01-01

    Raman lidar water vapor and aerosol extinction profiles acquired during the daytime over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma (36.606 N, 97.50 W, 315 m) are evaluated using profiles measured by in situ and remote sensing instruments deployed during the May 2003 Aerosol Intensive Operations Period (IOP). The automated algorithms used to derive these profiles from the Raman lidar data were first modified to reduce the adverse effects associated with a general loss of sensitivity of the Raman lidar since early 2002. The Raman lidar water vapor measurements, which are calibrated to match precipitable water vapor (PWV) derived from coincident microwave radiometer (MWR) measurements were, on average, 5-10% (0.3-0.6 g/m(exp 3) higher than the other measurements. Some of this difference is due to out-of-date line parameters that were subsequently updated in the MWR PWV retrievals. The Raman lidar aerosol extinction measurements were, on average, about 0.03 km(exp -1) higher than aerosol measurements derived from airborne Sun photometer measurements of aerosol optical thickness and in situ measurements of aerosol scattering and absorption. This bias, which was about 50% of the mean aerosol extinction measured during this IOP, decreased to about 10% when aerosol extinction comparisons were restricted to aerosol extinction values larger than 0.15 km(exp -1). The lidar measurements of the aerosol extinction/backscatter ratio and airborne Sun photometer measurements of the aerosol optical thickness were used along with in situ measurements of the aerosol size distribution to retrieve estimates of the aerosol single scattering albedo (omega(sub o)) and the effective complex refractive index. Retrieved values of omega(sub o) ranged from (0.91-0.98) and were in generally good agreement with omega(sub o) derived from airborne in situ measurements of scattering and absorption. Elevated aerosol

  6. Advances in Raman Lidar Measurements of Water Vapor

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Evans, K.; Demoz, B.; DiGirolamo, P.; Mielke, B.; Stein, B.; Goldsmith, J. E. M.; Tooman, T.; Turner, D.; Starr, David OC. (Technical Monitor)

    2002-01-01

    Recent technology upgrades to the NASA/GSFC Scanning Raman Lidar have permitted significant improvements in the daytime and nighttime measurement of water vapor using Raman lidar. Numerical simulation has been used to study the temperature sensitivity of the narrow spectral band measurements presented here.

  7. Airborne Raman lidar

    NASA Astrophysics Data System (ADS)

    Heaps, Wm. S.; Burris, J.

    1996-12-01

    We designed and tested an airborne lidar system using Raman scattering to make simultaneous measurements of methane, water vapor, and temperature in a series of flights on a NASA-operated C-130 aircraft. We present the results for methane detection, which show that the instrument has the requisite sensitivity to atmospheric trace gases. Ultimately these measurements can be used to examine the transport of chemically processed air from within the polar vortex to mid-latitudinal regions and the exchange of stratospheric air between tropical and mid-latitudinal regions.

  8. Performance Modeling of an Airborne Raman Water Vapor Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Schwemmer, G.; Berkoff, T.; Plotkin, H.; Ramos-Izquierdo, L.; Pappalardo, G.

    2000-01-01

    A sophisticated Raman lidar numerical model had been developed. The model has been used to simulate the performance of two ground-based Raman water vapor lidar systems. After tuning the model using these ground-based measurements, the model is used to simulate the water vapor measurement capability of an airborne Raman lidar under both day-and night-time conditions for a wide range of water vapor conditions. The results indicate that, under many circumstances, the daytime measurements possess comparable resolution to an existing airborne differential absorption water vapor lidar while the nighttime measurement have higher resolution. In addition, a Raman lidar is capable of measurements not possible using a differential absorption system.

  9. Raman Lidar (RL) Handbook

    SciTech Connect

    Newsom, RK

    2009-03-01

    The Raman lidar at the ARM Climate Research Facility (ACRF) Southern Great Plains (SGP) Central Facility (SGPRL) is an active, ground-based laser remote sensing instrument that measures height and time resolved profiles of water vapor mixing ratio and several cloud- and aerosol-related quantities. The system is a non-commercial custom-built instrument developed by Sandia National Laboratories specifically for the ARM Program. It is fully computer automated, and will run unattended for many days following a brief (~5-minute) startup period. The self-contained system (requiring only external electrical power) is housed in a climate-controlled 8’x8’x20’ standard shipping container.

  10. Water Measurements using a Raman Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Demoz, B.; Wang, Z.; Veselovskii, I.; Evans, K.; DiGirolamo, P.

    2002-01-01

    The research record for the usefulness of Raman Lidar in addressing a broad range of important atmospheric research topics is well established. Raman lidar technology has been used to measure tropospheric aerosols, stratospheric aerosols and cirrus clouds. Arguably the most important measurements offered by Raman lidar for both dynamic and radiative studies, however, is that of water vapor. We will describe large improvements in Raman lidar measurements of water vapor made possible through recent technology upgrades. Furthermore, we will present the use of Raman lidar to study liquid water in the atmosphere and describe current research into the use of Raman lidar measurements to estimate ice water content of cirrus clouds.

  11. Improvements in Raman Lidar Measurements Using New Interference Filter Technology

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Potter, John R.; Tola, Rebecca; Veselovskii, Igor; Cadirola, Martin; Rush, Kurt; Comer, Joseph

    2006-01-01

    Narrow-band interference filters with improved transmission in the ultra-violet have been developed under NASA-funded research and used in the Raman Airborne Spectroscopic Lidar (RASL) in ground-based, upward-looking tests. Measurements were made of atmospheric water vapor, cirrus cloud optical properties and carbon dioxide that improve upon any previously demonstrated using Raman lidar. Daytime boundary and mixed layer profiling of water vapor mixing ratio up to an altitude of approximately 4 h is performed with less than 5% random error using temporal and spatial resolution of 2-minutes and 60 - 210, respectively. Daytime cirrus cloud optical depth and extinction-to-backscatter ratio measurements are made using 1 -minute average. Sufficient signal strength is demonstrated to permit the simultaneous profiling of carbon dioxide and water vapor mixing ratio into the free troposphere during the nighttime. A description of the filter technology developments is provided followed by examples of the improved Raman lidar measurements.

  12. Compact airborne Raman lidar for profiling aerosol, water vapor and clouds.

    PubMed

    Liu, Bo; Wang, Zhien; Cai, Yong; Wechsler, Perry; Kuestner, William; Burkhart, Matthew; Welch, Wayne

    2014-08-25

    A compact airborne Raman lidar system, which can perform water vapor and aerosol measurements both during nighttime and daytime is described. The system design, setup and the data processing methods are described in the paper. The Raman lidar was tested on University of Wyoming King Air research aircraft (UWKA) during the Wyoming King Air PBL Exploratory Experiment (KAPEE) in 2010. An observation showing clouds, aerosols and a dry line is presented to illustrate the lidar detection capabilities. Comparisons of the water vapor and aerosol measurements using the Raman lidar and other in situ airborne instruments show good agreement. PMID:25321266

  13. Raman LIDAR Detection of Cloud Base

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Starr, David; Whiteman, David; Evans, Keith; Hlavka, Dennis; Peravali, Ravindra

    1999-01-01

    Advantages introduced by Raman lidar systems for cloud base determination during precipitating periods are explored using two case studies of light rain and virga conditions. A combination of the Raman lidar derived profiles of water vapor mixing ratio and aerosol scattering ratio, together with the Raman scattered signals from liquid drops, can minimize or even eliminate some of the problems associated with cloud boundary detection using elastic backscatter lidars.

  14. Advanced Raman water vapor lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Melfi, S. Harvey; Ferrare, Richard A.; Evans, Keith A.; Ramos-Izquierdo, Luis; Staley, O. Glenn; Disilvestre, Raymond W.; Gorin, Inna; Kirks, Kenneth R.; Mamakos, William A.

    1992-01-01

    Water vapor and aerosols are important atmospheric constituents. Knowledge of the structure of water vapor is important in understanding convective development, atmospheric stability, the interaction of the atmosphere with the surface, and energy feedback mechanisms and how they relate to global warming calculations. The Raman Lidar group at the NASA Goddard Space Flight Center (GSFC) developed an advanced Raman Lidar for use in measuring water vapor and aerosols in the earth's atmosphere. Drawing on the experience gained through the development and use of our previous Nd:YAG based system, we have developed a completely new lidar system which uses a XeF excimer laser and a large scanning mirror. The additional power of the excimer and the considerably improved optical throughput of the system have resulted in approximately a factor of 25 improvement in system performance for nighttime measurements. Every component of the current system has new design concepts incorporated. The lidar system consists of two mobile trailers; the first (13m x 2.4m) houses the lidar instrument, the other (9.75m x 2.4m) is for system control, realtime data display, and analysis. The laser transmitter is a Lambda Physik LPX 240 iCC operating at 400 Hz with a XeF gas mixture (351 nm). The telescope is a .75m horizontally mounted Dall-Kirkham system which is bore sited with a .8m x 1.1m elliptical flat which has a full 180 degree scan capability - horizon to horizon within a plane perpendicular to the long axis of the trailer. The telescope and scan mirror assembly are mounted on a 3.65m x .9m optical table which deploys out the rear of the trailer through the use of a motor driven slide rail system. The Raman returns from water vapor (403 nm), nitrogen (383 nm) and oxygen (372 nm) are measured in addition to the direct Rayleigh/Mie backscatter (351). The signal from each of these is split at about a 5/95 ratio between two photomultiplier detectors. The 5 percent detector is used for

  15. What Good is Raman Water Vapor Lidar?

    NASA Technical Reports Server (NTRS)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  16. Pulsed remote Raman system for daytime measurements of mineral spectra.

    PubMed

    Misra, Anupam K; Sharma, Shiv K; Chio, Chi Hong; Lucey, Paul G; Lienert, Barry

    2005-08-01

    A remote Raman system has been developed utilizing a 532nm pulsed laser and gated intensified charged couple device (ICCD) detector in the oblique geometry. When the system is set for 50m sample distance it is capable of measuring Raman spectra of minerals located at distances in the range of 10-65m from the telescope. Both daytime and nighttime operations are feasible and the spectra of minerals can be measured in a short period of time, of the order of a few seconds. In oblique geometry, measured sampling depth is more than 30m, during which the system maintains very high performance without any adjustments. Much longer sampling depth (0.1-120m) has been observed when the system is configured in the coaxial geometry. Clear advantages of using a gated detection mode over the continuous (CW) mode of operation in reducing the background signal and eliminating long-lived fluorescence signals from the Raman spectra are presented. The performance of the pulsed Raman system is demonstrated by measuring spectra of Raman standards including benzene (C(6)H(6)) and naphthalene (C(10)H(8)), a low Raman cross section silicate mineral muscovite (KAl(2)(Si(3)Al)O(10)(OH)(2)), and a medium Raman cross section mineral calcite (CaCO(3)). PMID:16029850

  17. Raman lidar/AERI PBL Height Product

    DOE Data Explorer

    Ferrare, Richard

    2012-12-14

    Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.

  18. Airborne Raman Lidar and its Applications for Atmospheric Process Studies

    NASA Astrophysics Data System (ADS)

    Wang, Zhien; Wechsler, Perry J.; Mahon, Nick; Wu, Decheng; Liu, Bo; Burkhart, Matthew; Glover, Brent; Kuestner, William; Welch, Wayne; Thomson, Andrew

    2016-06-01

    Although ground-base Raman lidars are widely used for atmospheric observations, the capabilities of airborne Raman lidar is not fully explored. Here we presented two recently developed airborne Raman lidar systems for the studies of atmospheric boundary layer process, aerosols, and clouds. The systems are briefly introduced. Observation examples are presented to illustrate the unique observational capabilities of airborne Raman lidar and their applications for atmospheric process studies.

  19. Raman Lidar Retrievals of Mixed Layer Heights

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Clayton, M.; Turner, D. D.; Newsom, R. K.; Goldsmith, J.

    2012-12-01

    Accurate determination of the atmospheric mixing layer (ML) height is important for modeling the transport of aerosols and aerosol precursors and forecasting air quality. Aerosol and water vapor profiles measured by the DOE ARM SGP and the new TWP (Darwin) ground based Raman lidars provide direct measurements of the vertical structure of ML. We have developed automated algorithms to identify sharp gradients in aerosols and water vapor at the top of the ML and have used these algorithms to derive ML heights for extended periods over the last few years. During the afternoon, these ML heights generally compare favorably with ML heights derived from potential temperature profiles derived from coincident radiosondes. However, retrieving ML heights via lidar measurements of water vapor and aerosol gradients is problematic in the presence of elevated aerosol and water vapor layers which are often observed, especially at night. Consequently, we take advantage of recent modifications to these lidars that permit continuous temperature profiling, and compute ML heights using potential temperature profiles derived from Raman lidar and Atmospheric Emitted Radiance Interferometer (AERI) measurements. The resulting ML heights agree well with ML heights derived from radiosondes and provide a more realistic representation of the diurnal ML behavior. We use the Raman lidar aerosol and water vapor profiles and ML heights to derive the fractions of total column precipitable water vapor and aerosol optical thickness within and above the ML and show how the ML heights and these fractions vary with time of day and season. The SGP Raman lidar measurements show that the fraction of the aerosol optical thickness and precipitable water vapor above the ML increases from 30-60% during the day to 60-80% at night. The Darwin Raman lidar measurements reveal a shallow, moist cloud-topped ML with little diurnal variability during the austral summer and deeper ML with more diurnal variability during

  20. Raman Lidar Measurements during the International HZO Project. 1; Instrumentation and Analysis Techniques, Popular Summary

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Demoz, B.; DiGirolamo, P.; Comer, J.; Veselovskii, I.; Evans, K.; Wang, Z.; Cadirola, M.; Rush, K.; Schwemmer, G.; Gentry, B.

    2005-01-01

    The amount of water vapor in the atmosphere helps to determine the likelihood that severe storms may develop. The concentration of water vapor, though, is highly variable in space and time. And yet small changes in water vapor concentration over a short period of time or over a short spatial distance can determine whether a storm may or may not develop. Therefore, in order to improve the ability to forecast severe weather such as thunderstorms it is important to measure water vapor in the atmosphere with high spatial and temporal resolution. One of the most attractive research tools for measuring water vapor in the atmosphere with high spatial and temporal resolution is a Raman lidar. A Raman lidar consists of a laser transmitter, a telescope receiver and optics and electronics for processing opticand electronic signals. A laser pulse is emitted into the atmosphere and it interacts with molecules in the atmosphere causing them to become excited and to emit, through the Raman process, photons of different wavelength than emitted by the laser. The molecule that emitted these emitted. This is the way that a Raman lidar identifies water vapor molecules in the atmosphere. can be identified based on the wavelength of the photons One of the great challenges in Raman lidar measurements has been to make useful daytime measurements of the water vapor profile under bright daytime conditions. In this first of two papers, we describe the instrumentation and analysis of the first documented Raman lidar that is able to measure water vapor in the daytime with sufficient quality to permit the study of developing storm systems.

  1. Raman lidar characterization of PBL structure during COPS

    NASA Astrophysics Data System (ADS)

    Summa, D.; Di Girolamo, P.; Stelitano, D.; Di Iorio, T.

    2012-04-01

    The planetary boundary layer includes the portion of the atmosphere which is directly influenced by the presence of the Earth's surface. Aerosol particles trapped within the PBL can be used as tracers to study boundary-layer vertical structure and time variability. Aerosols can be dispersed out of the PBL during strong convection or temporary breaks of the capping temperature inversion. As a result of this, elastic backscatter signals collected by lidar systems can be used to determine the height and the internal structure of the PBL. Our analysis considers a method based on the first order derivative of the range-corrected elastic signal (RCS), which is a modified version of the method defined by Seibert et al. (2000) and Sicard et al. (2006). The analysis is focused on selected case studies collected by the Raman lidar system BASIL during the Convective and Orographically-induced Precipitation Study (COPS), held in Southern Germany and Eastern France in the period 01 June - 31 August 2007. Measurements were performed by the Raman lidar system BASIL, which was operational in Achern (Black Forest, Lat: 48.64 ° N, Long: 8.06 ° E, Elev.: 140 m). During COPS, BASIL collected more than 500 hours of measurements, distributed over 58 measurement days and 34 intensive observation periods (IOPs), covering both night-time and daytime and the transitions between the two. Therefore BASIL data during COPS represent a unique source of information for the study of the boundary layer structure and evolution. Potential temperature profiles obtained from the radiosonde data were used to get an additional estimate of the boundary layer height. Estimates of the PBL height and structure for specific case studies obtained from the lidar data and their comparison with estimates obtained from the radiosonde data will be illustrated and discussed at the Conference.

  2. Variation in daytime troposphereic aerosol via LIDAR and sunphotometer measurements in Penang, Malaysia

    NASA Astrophysics Data System (ADS)

    Tan, F. Y.; Hee, W. S.; Hwee, S. L.; Abdullah, K.; Tiem, L. Y.; Matjafri, M. Z.; Lolli, S.; Holben, B.; Welton, E. J.

    2014-03-01

    Aerosol is one of the important factors that will influence the air quality, visibility, clouds, and precipitation processes in the troposphere. In this work, we investigated the variation of aerosol during daytime in Penang, Malaysia in certain days within July 2013. Vertical LIDAR scattering ratio and backscattering profiles, and columnar optical properties (optical depth, Angström exponent) of aerosols were measured using Raymetrics LIDAR and a CIMEL sunphotometer respectively. Specifically, we have determined the daytime variation of intensity and distribution level of aerosol, as well as the planetary boundary layer (PBL) and cloud classification. Subsequently, the data of columnar aerosol optical depth (AOD) and size distribution in the atmospheric were used to quantify the properties of aerosol variation during daytime over Penang, Malaysia.

  3. Advances in Raman Lidar Measurements of Water Vapor, Cirrus Clouds and Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Potter, John R.; Tola, Rebecca; Rush, Kurt; Veselovskii, Igor; Cadirola, Martin; Comer, Joseph

    2006-01-01

    Narrow-band interference filters with improved transmission in the ultraviolet have been developed under NASA-funded research and used in the Raman Airborne Spectroscopic Lidar (RASL) in ground- based, upward-looking tests. RASL is an airborne Raman Lidar system designed to measure water vapor mixing ratio, and aerosol backscatter/extinction/depolarization. It also possesses the capability to make experimental measurements of cloud liquid water and carbon dioxide. It is being prepared for first flight tests during the summer of 2006. With the newly developed filters installed in RASL, measurements were made of atmospheric water vapor, cirrus cloud optical properties and carbon dioxide that improve upon any previously demonstrated using Raman lidar. Daytime boundary layer profiling of water vapor mixing ratio is performed with less than 5% random error using temporal and spatial resolution of 2-minutes and 60 - 210, respectively. Daytime cirrus cloud optical depth and extinction- to-backscatter ratio measurements are made using 1-minute average. Sufficient signal strength is demonstrated to permit the simultaneous profiling of carbon dioxide and water vapor mixing ratio into the free troposphere during the nighttime. Downward-looking from an airborne RASL should possess the same measurement statistics with approximately a factor of 5 - 10 decrease in averaging time. A description of the technology improvements are provided followed by examples of the improved Raman lidar measurements.

  4. Raman lidar observations of cloud liquid water.

    PubMed

    Rizi, Vincenzo; Iarlori, Marco; Rocci, Giuseppe; Visconti, Guido

    2004-12-10

    We report the design and the performances of a Raman lidar for long-term monitoring of tropospheric aerosol backscattering and extinction coefficients, water vapor mixing ratio, and cloud liquid water. We focus on the system's capabilities of detecting Raman backscattering from cloud liquid water. After describing the system components, along with the current limitations and options for improvement, we report examples of observations in the case of low-level cumulus clouds. The measurements of the cloud liquid water content, as well as the estimations of the cloud droplet effective radii and number densities, obtained by combining the extinction coefficient and cloud water content within the clouds, are critically discussed. PMID:15617280

  5. Atmospheric temperature measurements, using Raman lidar

    NASA Technical Reports Server (NTRS)

    Salzman, J. A.; Coney, T. A.

    1974-01-01

    The Raman-shifted return of a lidar system had been used to make atmospheric temperature measurements. The measurements were made along a horizontal path at temperatures ranging from -30 to 30 C and at ranges of about 100 meters. The temperature data were acquired by recording the intensity ratio of two portions of the rotational Raman spectrum, which were simultaneously sampled from a preset range. These tests verified that the theoretical predictions formulated in the design of the system were adequate. Measurements were made to an accuracy of + or - 4 C with 1-minute temporal resolution.

  6. LOSA-M2 aerosol Raman lidar

    SciTech Connect

    Balin, Yu S; Bairashin, G S; Kokhanenko, G P; Penner, I E; Samoilova, S V

    2011-10-31

    The scanning LOSA-M2 aerosol Raman lidar, which is aimed at probing atmosphere at wavelengths of 532 and 1064 nm, is described. The backscattered light is received simultaneously in two regimes: analogue and photon-counting. Along with the signals of elastic light scattering at the initial wavelengths, a 607-nm Raman signal from molecular nitrogen is also recorded. It is shown that the height range of atmosphere probing can be expanded from the near-Earth layer to stratosphere using two (near- and far-field) receiving telescopes, and analogue and photon-counting lidar signals can be combined into one signal. Examples of natural measurements of aerosol stratification in atmosphere along vertical and horizontal paths during the expeditions to the Gobi Desert (Mongolia) and Lake Baikal areas are presented.

  7. Raman lidar profiling of water vapor and aerosols over the ARM SGP Site

    SciTech Connect

    Ferrare, R.A.

    2000-01-09

    The authors have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. The Raman lidar sytem is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols. These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. The authors have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

  8. RAMAN LIDAR PROFILING OF WATER VAPOR AND AEROSOLS OVER THE ARM SGP SITE.

    SciTech Connect

    FERRARE,R.A.

    2000-01-09

    We have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. This Raman lidar system is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols (Goldsmith et al., 1998). These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. We have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES) (Feltz et al., 1998; Turner et al., 1999). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

  9. Daytime lidar measurements of tidal winds in the mesospheric sodium layer at Urbana, Illinois

    NASA Technical Reports Server (NTRS)

    Kwon, K. H.; Senft, D. C.; Gardner, C. S.; Voelz, D. G.; Sechrist, C. F., Jr.; Roesler, F. L.

    1986-01-01

    For more than 15 years lidar systems have been used to study the chemistry and dynamics of the mesospheric sodium layer. Because the layer is an excellent tracer of atmospheric wave motions, sodium lidar has proven to be particularly useful for studying the influence of gravity waves and tides on mesospheric dynamics. These waves, which originate in the troposphere and stratosphere, propagate through the mesosphere and dissipate their energy near the mesopause making important contributions to the momentum and turbulence budget in this region of the atmosphere. Recently, the sodium lidar was modified for daytime operation so that wave phenomena and chemical effects could be monitored throughout the complete diurnal cycle. The results of continuous 24 hour lidar observations of the sodium layer structure are presented alond with measurement of the semidiurnal tidal winds.

  10. Single-pulse standoff Raman detection of chemicals from 120 m distance during daytime.

    PubMed

    Misra, Anupam K; Sharma, Shiv K; Acosta, Tayro E; Porter, John N; Bates, David E

    2012-11-01

    The capability to analyze and detect the composition of distant samples (minerals, organics, and chemicals) in real time is of interest for various fields including detecting explosives, geological surveying, and pollution mapping. For the past 10 years, the University of Hawaii has been developing standoff Raman systems suitable for measuring Raman spectra of various chemicals in daytime or nighttime. In this article we present standoff Raman spectra of various minerals and chemicals obtained from a distance of 120 m using single laser pulse excitation during daytime. The standoff Raman system utilizes an 8-inch Meade telescope as collection optics and a frequency-doubled 532 nm Nd : YAG laser with pulse energy of 100 mJ/pulse and pulse width of 10 ns. A gated intensified charge-coupled device (ICCD) detector is used to measure time-resolved Raman spectra in daytime with detection time of 100 ns. A gate delay of 800 ns (equivalent to target placed at 120 m distance) was used to minimize interference from the atmospheric gases along the laser beam path and near-field scattering. Reproducible, good quality single-shot Raman spectra of various inorganic and organic chemicals and minerals such as ammonium nitrate, potassium perchlorate, sulfur, gypsum, calcite, benzene, nitrobenzene, etc., were obtained through sealed glass vials during daytime. The data indicate that various chemicals could easily be identified from their Raman fingerprint spectra from a far standoff distance in real time using single-shot laser excitation. PMID:23146183

  11. The Zugspitze Raman Lidar: System Testing

    NASA Astrophysics Data System (ADS)

    Höveler, Katharina; Klanner, Lisa; Trickl, Thomas; Vogelmann, Hannes

    2016-06-01

    A high-power Raman lidar system has been installed at the high-altitude research station Schneefernerhaus (Garmisch-Partenkirchen, Germany) at 2675 m a.s.l., at the side of the existing wide-range differrential-absorption lidar. An industrial XeCl laser was modified for polarized single-line operation at an average power of about 175 W. This high power and a 1.5-m-diameter receiver are expected to allow us to extend the operating range for water-vapour sounding to more than 25 km, at an accuracy level of the order of 10 %. In addition, temperature measurements in the free troposphere and to altitudes beyond 80 km are planned. The system is currently thoroughly tested and exhibits an excellent performance up to the lowermost stratosphere. We expect that results for higher altitudes can be presented at the meeting.

  12. Atmospheric Science Research Using Raman Lidar at NASA/GSFC

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Abshire, James B. (Technical Monitor)

    2002-01-01

    A broad overview of the research that is taking place in the Code 924 Raman Lidar group will be presented. The measurement capabilities of two instruments, the Scanning Raman Lidar (SRL) and the Raman Airborne Spectroscopic Lidar (RASL), will be discussed. Case studies to be presented include: 1) high resolution measurements of water vapor during a boundary layer bore wave event; 2) a study of the influence of thin cirrus clouds on satellite retrievals of water vapor; 3) the retrieval of warm cloud properties such as droplet radius and number density; and 4) remote aerosol characterization using multiwavelength lidar and others.

  13. Geometrical constraint experimental determination of Raman lidar overlap profile.

    PubMed

    Li, Jian; Li, Chengcai; Zhao, Yiming; Li, Jing; Chu, Yiqi

    2016-06-20

    A simple experimental method to determine the overlap profile of Raman lidar is presented in this paper. Based on Mie and Raman backscattering signals and a geometrically constrained condition, the overlap profile of a Raman lidar system can be determined. Our approach simultaneously retrieves the lidar ratio of aerosols, which is one of the most important sources of uncertainty in the overlap profile determination. The results indicate that the overlap factor is significantly influenced by the lidar ratio in experimental methods. A representative case study indicates that the correction of the overlap profile obtained by this method is practical and feasible. PMID:27409119

  14. Macrophysical Properties of Tropical Cirrus Clouds from the CALIPSO Satellite and from Ground-based Micropulse and Raman Lidars

    SciTech Connect

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.; Sivaraman, Chitra; Vaughan, Mark A.; Winker, D.; Turner, David D.

    2013-08-27

    Lidar observations of cirrus cloud macrophysical properties over the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program Darwin, Australia site are compared from the Cloud-Aerosol Lidar and In- frared Pathfinder Satellite Observation (CALIPSO) satellite, the ground-based ARM micropulse lidar (MPL), and the ARM Raman lidar (RL). Comparisons are made using the subset of profiles where the lidar beam is not fully attenuated. Daytime measurements using the RL are shown to be relatively unaffected by the solar background and are therefore suited for checking the validity of diurnal cycles. RL and CALIPSO cloud fraction profiles show good agreement while the MPL detects significantly less cirrus, particularly during the daytime. Both MPL and CALIPSO observations show that cirrus clouds occur less frequently during the day than at night at all altitudes. In contrast, the RL diurnal cy- cle is significantly different than zero only below about 11 km; where it is the opposite sign (i.e. more clouds during the daytime). For cirrus geomet- rical thickness, the MPL and CALIPSO observations agree well and both datasets have signficantly thinner clouds during the daytime than the RL. From the examination of hourly MPL and RL cirrus cloud thickness and through the application of daytime detection limits to all CALIPSO data we find that the decreased MPL and CALIPSO cloud thickness during the daytime is very likely a result of increased daytime noise. This study highlights the vast im- provement the RL provides (compared to the MPL) in the ARM program's ability to observe tropical cirrus clouds as well as a valuable ground-based lidar dataset for the validation of CALIPSO observations and to help im- prove our understanding of tropical cirrus clouds.

  15. Ultraviolet Rayleigh-Mie lidar for daytime-temperature profiling of the troposphere.

    PubMed

    Hua, Dengxin; Uchida, Masaru; Kobayashi, Takao

    2005-03-01

    A UV Rayleigh-Mie scattering lidar has been developed for daytime measurement of temperature and aerosol optical properties in the troposphere. The transmitter is a narrowband, injection-seeded, pulsed, third-harmonic Nd:YAG laser at an eye-safe wavelength of 355 nm. Two Fabry-Perot etalons (FPEs) with a dual-pass optical layout filter the molecular Rayleigh scattering components spectrally for retrieval of the temperature and provide a high rejection rate for aerosol Mie scattering in excess of 43 dB. The Mie signal is filtered with a third FPE filter for direct profiling of aerosol optical properties. The Mie scattering component in the Rayleigh signals, which will have influence on temperature measurements, is corrected by using a measure of aerosol scattering because of the relative insufficiency of Mie rejection of Rayleigh filters in the presence of dense aerosols or clouds, and the Mie rejection capability of system is thus improved. A narrowband interference filter is incorporated with the FPEs to block solar radiation. Also, the small field of view (0.1 mrad) of the receiver and the UV wavelength used enhance the ability of the lidar to suppress the solar background signal in daytime measurement. The system is relatively compact, with a power-aperture product of 0.18 W m(-2), and has a high sensitivity to temperature change (0.62%/K). Lidar measurements taken under different weather conditions (winter and summer) are demonstrated. Good agreement between the lidar and the radiosonde measurements was obtained in terms of lapse rates and inversions. Statistical temperature errors of less than 1 K up to a height of 2 km are obtainable, with an averaging time of approximately 12 min for daytime measurements. PMID:15765712

  16. Raman lidar characterization using a reference lamp

    NASA Astrophysics Data System (ADS)

    Landulfo, Eduardo; da Costa, Renata F.; Rodrigues, Patricia F.; da Silva Lopes, Fábio J.

    2014-10-01

    The determination of the amount of water vapor in the atmosphere using lidar is a calibration dependent technique. Different collocated instruments are used for this purpose, like radiossoundings and microwave radiometers. When there are no collocated instruments available, an independente lamp mapping calibration technique can be used. Aiming to stabilish an independ technique for the calibration of the six channels Nd-YAG Raman lidar system located at the Center for Lasers and Applications (CLA), S˜ao Paulo, Brazil, an optical characterization of the system was first performed using a reference tungsten lamp. This characterization is useful to identify any possible distortions in the interference filters, telescope mirror and stray light contamination. In this paper we show three lamp mapping caracterizations (01/16/2014, 01/22/2014, 04/09/2014). The first day is used to demostrate how the tecnique is useful to detect stray light, the second one how it is sensible to the position of the filters and the third one demostrates a well optimized optical system.

  17. High Spectral Resolution Lidar Based on a Potassium Faraday Dispersive Filter for Daytime Temperature Measurement

    NASA Astrophysics Data System (ADS)

    Abo, Makoto; Pham Le Hoai, Phong; Aruga, Kouki; Nagasawa, Chikao; Shibata, Yasukuni

    2016-06-01

    In this paper, a new high-spectral-resolution lidar technique is proposed for measuring the profiles of atmospheric temperature in daytime. Based on the theory of high resolution Rayleigh scattering, the feasibility and advantages of using potassium (K) Faraday dispersive optical filters as blocking filters for measuring atmospheric temperature are demonstrated with a numerical simulation. It was found that temperature profiles could be measured within 1K error for the height of 9 km with a 500 m range resolution in 60 min by using laser pulses with 1mJ/pulse and 1 kHz, and a 50 cm diameter telescope. Furthermore, we are developing compact pulsed laser system for temperature lidar transmitter.

  18. Raman/Rayleigh/fluorescence lidar for atmosphere measurement

    NASA Astrophysics Data System (ADS)

    Gong, Shunsheng; Zheng, Wengang; Li, Hongjun; Yang, Guotao

    1998-08-01

    A Raman/Rayleigh/Fluorescence Lidar established in the Wuhan Institute of Physics & Mathematics, China for the measurements of the atmosphere is described, and the preliminary observation results for the lower, upper atmosphere and the sodium layer over Wuhan, China obtained by this lidar are presented in this paper.

  19. Scanning Raman Lidar Measurements During the WVIOP2000 and AFWEX Field Experiments

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Evans, K. D.; Berkoff, T. B.; Demoz, B. D.; DiGirolamo, P.; Smith, David E. (Technical Monitor)

    2001-01-01

    The NASA/Goddard Space Flight Center Scanning Raman Lidar (SRL) participated in the Water Vapor IOP 2000 (WVIOP2000) and ARM FIRE Water Vapor Experiment (AFWEX) at the DOE SGP CART site in northern Oklahoma. These experiments occurred during the period of September and December, 2000. The goals of both the WVIOP2000 and AFWEX were to better characterize the water vapor measurement capability of numerous sensors in the lower atmosphere and upper troposphere, respectively. The SRL received several hardware upgrades in anticipation of these experiments that permitted improved measurements of water vapor during the daytime and in the upper troposphere (UT). The daytime SRL water vapor error statistics were demonstrated a factor of 2-3 improvement compared to the permanently stationed CART Raman lidar (CARL). The performance of the SRL in the UT showed improvements as well. The technological upgrades that permitted these improved SRL measurements could also be implemented in the CARL system. Data examples demonstrating the new daytime and upper tropospheric measurement capability of the SRL will be shown at the meeting. In addition, preliminary analysis will be presented on several topics: 1) inter comparison of the water vapor measurements for several water vapor sensors including SRL, CARL, the NASA/Langley Lidar Atmospheric Sensing Experiment (LASE) flown onboard the NASA DC-8, in-situ sensors flown on the DC-8, and the Max Planck Institute Differential Absorption Lidar 2) comparison of cirrus cloud measurements using SRL and CARL and 3) case studies of meteorological events that occurred during the IOPs such as a cold frontal passage on the night of September 23.

  20. Use of rotational Raman measurements in multiwavelength aerosol lidar for evaluation of particle backscattering and extinction

    NASA Astrophysics Data System (ADS)

    Veselovskii, I.; Whiteman, D. N.; Korenskiy, M.; Suvorina, A.; Pérez-Ramírez, D.

    2015-10-01

    Vibrational Raman scattering from nitrogen is commonly used in aerosol lidars for evaluation of particle backscattering (β) and extinction (α) coefficients. However, at mid-visible wavelengths, particularly in the daytime, previous measurements have possessed low signal-to-noise ratio. Also, vibrational scattering is characterized by a significant frequency shift of the Raman component, so for the calculation of α and β information about the extinction Ångström exponent is needed. Simulation results presented in this study demonstrate that ambiguity in the choice of Ångström exponent can be the a significant source of uncertainty in the calculation of backscattering coefficients when optically thick aerosol layers are considered. Both of these issues are addressed by the use of pure-rotational Raman (RR) scattering, which is characterized by a higher cross section compared to nitrogen vibrational scattering, and by a much smaller frequency shift, which essentially removes the sensitivity to changes in the Ångström exponent. We describe a practical implementation of rotational Raman measurements in an existing Mie-Raman lidar to obtain aerosol extinction and backscattering at 532 nm. A 2.3 nm width interference filter was used to select a spectral range characterized by low temperature sensitivity within the anti-Stokes branch of the RR spectrum. Simulations demonstrate that the temperature dependence of the scattering cross section does not exceed 1.5 % in the 230-300 K range, making correction for this dependence quite easy. With this upgrade, the NASA GSFC multiwavelength Raman lidar has demonstrated useful α532 measurements and was used for regular observations. Examples of lidar measurements and inversion of optical data to the particle microphysics are given.

  1. UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    di Girolamo, P.; Summa, D.; Lin, R.-F.; Maestri, T.; Rizzi, R.; Masiello, G.

    2009-07-01

    Raman lidar measurements performed in Potenza by the Raman lidar system BASIL in the presence of cirrus clouds are discussed. Measurements were performed on 6 September 2004 in the frame of Italian phase of the EAQUATE Experiment. The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, and consequently relative humidity, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. BASIL is also capable to provide measurements of the particle backscatter and extinction coefficient, and consequently lidar ratio (at the time of these measurements only at one wavelength), which are fundamental to infer geometrical and microphysical properties of clouds. A case study is discussed in order to assess the capability of Raman lidars to measure humidity in presence of cirrus clouds, both below and inside the cloud. While air inside the cloud layers is observed to be always under-saturated with respect to water, both ice super-saturation and under-saturation conditions are found inside these clouds. Upper tropospheric moistening is observed below the lower cloud layer. The synergic use of the data derived from the ground based Raman Lidar and of spectral radiances measured by the NAST-I Airborne Spectrometer allows to determine the temporal evolution of the atmospheric cooling/heating rates due to the presence of the cirrus cloud anvil. Lidar measurements beneath the cirrus cloud layer have been interpreted using a 1-D cirrus cloud model with explicit microphysics. The 1-D simulations indicates that sedimentation-moistening has contributed significantly to the moist anomaly, but other mechanisms are also contributing. This result supports the hypothesis that the observed mid-tropospheric humidification is a real feature which is strongly influenced by the sublimation of precipitating ice crystals. Results

  2. UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    di Girolamo, P.; Summa, D.; Lin, R.-F.; Maestri, T.; Rizzi, R.; Masiello, G.

    2009-11-01

    Raman lidar measurements performed in Potenza by the Raman lidar system BASIL in the presence of cirrus clouds are discussed. Measurements were performed on 6 September 2004 in the frame of the Italian phase of the EAQUATE Experiment. The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, and consequently relative humidity, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. BASIL is also capable to provide measurements of the particle backscatter and extinction coefficient, and consequently lidar ratio (at the time of these measurements, only at one wavelength), which are fundamental to infer geometrical and microphysical properties of clouds. A case study is discussed in order to assess the capability of Raman lidars to measure humidity in presence of cirrus clouds, both below and inside the cloud. While air inside the cloud layers is observed to be always under-saturated with respect to water, both ice super-saturation and under-saturation conditions are found inside these clouds. Upper tropospheric moistening is observed below the lower cloud layer. The synergic use of the data derived from the ground based Raman Lidar and of spectral radiances measured by the NAST-I Airborne Spectrometer allows the determination of the temporal evolution of the atmospheric cooling/heating rates due to the presence of the cirrus cloud. Lidar measurements beneath the cirrus cloud layer have been interpreted using a 1-D cirrus cloud model with explicit microphysics. The 1-D simulations indicate that sedimentation-moistening has contributed significantly to the moist anomaly, but other mechanisms are also contributing. This result supports the hypothesis that the observed mid-tropospheric humidification is a real feature which is strongly influenced by the sublimation of precipitating ice crystals. Results

  3. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China

    PubMed Central

    Wang, Wei; Gong, Wei; Mao, Feiyue; Pan, Zengxin; Liu, Boming

    2016-01-01

    We comprehensively evaluated particle lidar ratios (i.e., particle extinction to backscatter ratio) at 532 nm over Wuhan in Central China by using a Raman lidar from July 2013 to May 2015. We utilized the Raman lidar data to obtain homogeneous aerosol lidar ratios near the surface through the Raman method during no-rain nights. The lidar ratios were approximately 57 ± 7 sr, 50 ± 5 sr, and 22 ± 4 sr under the three cases with obviously different pollution levels. The haze layer below 1.8 km has a large particle extinction coefficient (from 5.4e-4 m−1 to 1.6e-4 m−1) and particle backscatter coefficient (between 1.1e-05 m−1sr−1 and 1.7e-06 m−1sr−1) in the heavily polluted case. Furthermore, the particle lidar ratios varied according to season, especially between winter (57 ± 13 sr) and summer (33 ± 10 sr). The seasonal variation in lidar ratios at Wuhan suggests that the East Asian monsoon significantly affects the primary aerosol types and aerosol optical properties in this region. The relationships between particle lidar ratios and wind indicate that large lidar ratio values correspond well with weak winds and strong northerly winds, whereas significantly low lidar ratio values are associated with prevailing southwesterly and southerly wind. PMID:27213414

  4. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China.

    PubMed

    Wang, Wei; Gong, Wei; Mao, Feiyue; Pan, Zengxin; Liu, Boming

    2016-01-01

    We comprehensively evaluated particle lidar ratios (i.e., particle extinction to backscatter ratio) at 532 nm over Wuhan in Central China by using a Raman lidar from July 2013 to May 2015. We utilized the Raman lidar data to obtain homogeneous aerosol lidar ratios near the surface through the Raman method during no-rain nights. The lidar ratios were approximately 57 ± 7 sr, 50 ± 5 sr, and 22 ± 4 sr under the three cases with obviously different pollution levels. The haze layer below 1.8 km has a large particle extinction coefficient (from 5.4e-4 m(-1) to 1.6e-4 m(-1)) and particle backscatter coefficient (between 1.1e-05 m(-1)sr(-1) and 1.7e-06 m(-1)sr(-1)) in the heavily polluted case. Furthermore, the particle lidar ratios varied according to season, especially between winter (57 ± 13 sr) and summer (33 ± 10 sr). The seasonal variation in lidar ratios at Wuhan suggests that the East Asian monsoon significantly affects the primary aerosol types and aerosol optical properties in this region. The relationships between particle lidar ratios and wind indicate that large lidar ratio values correspond well with weak winds and strong northerly winds, whereas significantly low lidar ratio values are associated with prevailing southwesterly and southerly wind. PMID:27213414

  5. Development of a 266 nm Raman lidar for profiling atmospheric water vapor

    NASA Astrophysics Data System (ADS)

    Uesugi, T.; Tsuda, T.; Yabuki, M.; Liu, Y.

    2014-12-01

    It is projected that localized extreme weather events could increase due to the effects of global warming, resulting in severe weather disasters, such as a torrential rain, floods, and so on. Understanding water vapor's behavior in the atmosphere is essen- tial to understand a fundamental mechanism of these weather events. Therefore, continuous monitoring system to measure the atmospheric water vapor with good spatio-temporal resolution is required. We have developed several water vapor Raman lidar systems employing the laser wavelengths of 355 and 532 nm. However, the signal-to-noise ratio of the Raman lidar strongly depends on the sky background because of the detection of the weak inelastic scattering of light by molecules. Therefore, these systems were mainly used during nighttime. Hence, we have newly developed a water vapor Raman lidar using a quadrupled Nd:YAG laser at a wavelength of 266 nm. This wavelength is in the ultraviolet (UV) range below 300 nm known as the "solar-blind" region, because practically all radiation at these wavelengths is absorbed by the ozone layer in the stratosphere. It has the advantage of having no daytime solar background radiation in the system. The lidar is equipped with a 25 cm receiving telescope and is used for measuring the light separated into an elastic backscatter signal and vibrational Raman signals of nitrogen and water vapor at wavelengths of 266.1, 283.6, and 294.6 nm, respectively. This system can be used for continuous water vapor measurements in the lower troposphere. This study introduces the design of the UV lidar system and shows the preliminary results of water vapor profiles.

  6. Cirrus Cloud Optical and Microphysical Property Measurements with Raman Lidar

    NASA Astrophysics Data System (ADS)

    Demoz, B.; Wang, Z.; Whiteman, D.

    2006-12-01

    To improve our understanding of the impact of cirrus clouds on the current and future climate, improved knowledge of cirrus cloud optical and microphysical properties is needed. However, long-term studies of the problem indicate that accurate cirrus cloud measurements are challenging, especially in the low ice water content regime most frequent in the tropical cirrus layers. Recent advances in Raman lidar techniques have demonstrated that Raman lidar is an excellent tool to provide reliable cirrus cloud optical and microphysical properties, which are important to study cirrus clouds as well as to validate satellite cirrus cloud measurements. Based on elastic and nitrogen Raman signals, cirrus cloud optical depth and extinction to backscatter ratio can be quantified. By utilizing the Raman scattered intensities from ice crystals, a new method to remotely sense cirrus ice water content and general effective radius profiles has been demonstrated with NASA/GSFC Scanning Raman Lidar (SRL) measurements. Since the intensity of Raman scattering is fundamentally proportional to the number of molecules involved, this method provides a more direct way of measuring the ice water content compared with other schemes. Based on the SRL measurements, these Raman lidar capabilities will be illustrated.

  7. Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols.

    PubMed

    Goldsmith, J E; Blair, F H; Bisson, S E; Turner, D D

    1998-07-20

    We describe an operational, self-contained, fully autonomous Raman lidar system that has been developed for unattended, around-the-clock atmospheric profiling of water vapor, aerosols, and clouds. During a 1996 three-week intensive observational period, the system operated during all periods of good weather (339 out of 504 h), including one continuous five-day period. The system is based on a dual-field-of-view design that provides excellent daytime capability without sacrificing nighttime performance. It is fully computer automated and runs unattended following a simple, brief (~5-min) start-up period. We discuss the theory and design of the system and present detailed analyses of the derivation of water-vapor profiles from the lidar measurements. PMID:18285967

  8. A N2-Raman lidar on board ULA for Arctic atmospheric studies

    NASA Astrophysics Data System (ADS)

    de Cacqueray, Victor; Chazette, Patrick; Totems, Julien; Raut, Jean-Christophe; Shang, Xiaoxia; Marpillat, Alexandre

    2016-04-01

    A key scientific question relative to atmospheric studies in the Arctic is the quantification and the vertical distribution of aerosols and their interactions with clouds in the lower troposphere. In May 2016, as part of the PARCS (Pollution in the ARCtic System) project, we will conduct an experiment in order to assess the optical properties and concentrations of aerosols near the North-Cape in Norway. This campaign will involve a new airborne N2-Raman lidar (355 nm) on board an Ultra Light Aircraft (ULA) and an original instrumental synergy between ground-based radar (95 GHz) and N2-H2O Raman lidar. The airborne experimental preparation for this campaign was divided in two weeks: the first week of experiments above the Rhône valley in June 2015 and the second in the Maurienne valley in the French Alps in December 2015. The capability of the N2-Raman lidar to perform measurements from the ULA during daytime has been checked. After the first campaign of tests, the laser emitted energy per pulse has been upgraded to improve the signal to noise ratio. Both the strategies and the main results of the two field campaigns will be presented. We will focus on the error budget for the retrieval of the aerosol optical thickness in the first atmospheric kilometer. We will present in addition the potential of such a lidar to monitor industrial pollution plumes in the planetary boundary layer. The airborne lidar measurements will be analysed taking into account the synergy with an in situ particle sizer (FIDAS) provided by the ADDAIR Company.

  9. A water vapor Raman lidar as part of the Swiss meteorology service

    NASA Astrophysics Data System (ADS)

    Dinoev, T.; Arshinov, Y.; Bobrovnikov, S.; Ristori, P.; Calpini, B.; van den Bergh, H.; Parlange, M. B.; Simeonov, V.

    2009-09-01

    Vertical water vapor profiles with high time resolution are necessary for improved numerical weather prediction (NWP). Meteorological services rely, in part, on NWP models for short to mid-term weather forecasting. Typically vertical water vapor profiles are acquired from twice a day radiosonde observations which have time resolution insufficient to resolve rapidly changing meteorological phenomena. New operational instruments with near real-time sampling of the water vapor field are needed. Raman LIDARs can provide vertical humidity profiles within the troposphere with time and range resolution suitable for NWP model assimilation and validation. That is why in 2004 the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL), and the Swiss National Science Foundation (SNSF), initiated a project to build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor and aerosol properties. Currently RALMO (Raman Lidar for meteorological observations) is operational at MeteoSwiss aerological station at Payerne. It is fully automated, self-contained, eye-safe instrument for day and night-time vertical profiling of water vapor mixing ratio, aerosol backscatter, and extinction within the troposphere. The lidar profiles of water vapor mixing ratio have vertical resolution from 15 m (boundary layer) to 100-450 m (free troposphere) and time resolution of 2 min (boundary layer) to 30 min (free troposphere). The range resolved aerosol extinction and backscatter coefficients are measured with similar resolution. The lidar operational range is from ~50 m to 5 km during daytime (detection limit of 0.2 g/kg), and from ~50 m to 10 km night-time. LabView based software allows continuous fully automated operation. Automated data treatment software reads the accumulated lidar data, derives vertical profiles of water vapor mixing ratio (grams per kilogram of dry air) estimates statistical error, and stores the result

  10. Gluing for Raman lidar systems using the lamp mapping technique.

    PubMed

    Walker, Monique; Venable, Demetrius; Whiteman, David N

    2014-12-20

    In the context of combined analog and photon counting (PC) data acquisition in a Lidar system, glue coefficients are defined as constants used for converting an analog signal into a virtual PC signal. The coefficients are typically calculated using Lidar profile data taken under clear, nighttime conditions since, in the presence of clouds or high solar background, it is difficult to obtain accurate glue coefficients from Lidar backscattered data. Here we introduce a new method in which we use the lamp mapping technique (LMT) to determine glue coefficients in a manner that does not require atmospheric profiles to be acquired and permits accurate glue coefficients to be calculated when adequate Lidar profile data are not available. The LMT involves scanning a halogen lamp over the aperture of a Lidar receiver telescope such that the optical efficiency of the entire detection system is characterized. The studies shown here involve two Raman lidar systems; the first from Howard University and the second from NASA/Goddard Space Flight Center. The glue coefficients determined using the LMT and the Lidar backscattered method agreed within 1.2% for the water vapor channel and within 2.5% for the nitrogen channel for both Lidar systems. We believe this to be the first instance of the use of laboratory techniques for determining the glue coefficients for Lidar data analysis. PMID:25608203

  11. Application of resonance Raman LIDAR for chemical species identification

    SciTech Connect

    Chen, C.L.; Heglund, D.L.; Ray, M.D.; Harder, D.; Dobert, R.; Leung, K.P.; Wu, M.; Sedlacek, A.

    1997-07-01

    BNL has been developing a remote sensing technique for the detection of atmospheric pollutants based on the phenomenon of resonance Raman LIDAR that has also incorporated a number of new techniques/technologies designed to extend it`s performance envelope. When the excitation frequency approaches an allowed electronic transition of the molecule, an enormous enhancement of the inelastic scattering cross-section can occur, often up to 2 to 4 orders-of-magnitude, and is referred to as resonance Raman (RR), since the excitation frequency is in resonance with an allowed electronic transition. Exploitation of this enhancement along with new techniques such as pattern recognition algorithms to take advantage of the spectral fingerprint and a new laser frequency modulation technique designed to suppress broadband fluorescence, referred to as Frequency modulated Excitation Raman Spectroscopy (FreMERS) and recent developments in liquid edge filter technology, for suppression of the elastic channel, all help increase the overall performance of Raman LIDAR.

  12. NASA/GSFC Scanning Raman Lidar Measurements of Water Vapor and Cirrus Clouds during WVIOP2000 and AFWEX

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Evans, K. D.; DiGirolamo, P.; Demoz, B. B.; Turner, D.; Comstock, J.; Ismail, S.; Ferrare, R. A.; Browell, E. V.; Goldsmith, J. E. M.; Abshire, James B. (Technical Monitor)

    2002-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was deployed to the Southern Great Plains CART site from September - December, 2000 and participated in two field campaigns devoted to comparisons of various water vapor measurement technologies and calibrations. These campaigns were the Water Vapor Intensive Operations Period 2000 (WVIOP2000) and the ARM FIRE Water Vapor Experiment (AFWEX). WVIOP2000 was devoted to validating water vapor measurements in the lower atmosphere while AFWEX had similar goals but for measurements in the upper troposphere. The SRL was significantly upgraded both optically and electronically prior to these field campaigns. These upgrades enabled the SRL to demonstrate the highest resolution lidar measurements of water vapor ever acquired during the nighttime and the highest S/N Raman lidar measurements of water vapor in the daytime; more than a factor of 2 increase in S/N versus the DOE CARL Raman Lidar. Examples of these new measurement capabilities along with comparisons of SRL and CARL, LASE, MPI-DIAL, in-situ sensors, radiosonde, and others will be presented. The profile comparisons of the SRL and CARL have revealed what appears to be an overlap correction or countrate correction problem in CARL. This may be involved in an overall dry bias in the precipitable water calibration of CARL with respect to the MWR of approx. 4%. Preliminary analysis indicates that the application of a temperature dependent correction to the narrowband Raman lidar measurements of water vapor improves the lidar/Vaisala radiosonde comparisons of upper tropospheric water vapor. Other results including the comparison of the first-ever simultaneous measurements from four water vapor lidar systems, a bore-wave event captured at high resolution by the SRL and cirrus cloud optical depth studies using the SRL and CARL will be presented at the meeting.

  13. Raman Lidar Profiles–Temperature (RLPROFTEMP) Value-Added Product

    SciTech Connect

    Newsom, RK; Sivaraman, C; McFarlane, SA

    2012-10-31

    The purpose of this document is to describe the Raman Lidar Profiles–Temperature (RLPROFTEMP) value-added product (VAP) and the procedures used to derive atmospheric temperature profiles from the raw RL measurements. Sections 2 and 4 describe the input and output variables, respectively. Section 3 discusses the theory behind the measurement and the details of the algorithm, including calibration and overlap correction.

  14. Temperature measurement error simulation of the pure rotational Raman lidar

    NASA Astrophysics Data System (ADS)

    Jia, Jingyu; Huang, Yong; Wang, Zhirui; Yi, Fan; Shen, Jianglin; Jia, Xiaoxing; Chen, Huabin; Yang, Chuan; Zhang, Mingyang

    2015-11-01

    Temperature represents the atmospheric thermodynamic state. Measure the atmospheric temperature accurately and precisely is very important to understand the physics of the atmospheric process. Lidar has some advantages in the atmospheric temperature measurement. Based on the lidar equation and the theory of pure rotational Raman (PRR), we've simulated the temperature measurement errors of the double-grating-polychromator (DGP) based PRR lidar. First of all, without considering the attenuation terms of the atmospheric transmittance and the range in the lidar equation, we've simulated the temperature measurement errors which are influenced by the beam splitting system parameters, such as the center wavelength, the receiving bandwidth and the atmospheric temperature. We analyzed three types of the temperature measurement errors in theory. We've proposed several design methods for the beam splitting system to reduce the temperature measurement errors. Secondly, we simulated the temperature measurement error profiles by the lidar equation. As the lidar power-aperture product is determined, the main target of our lidar system is to reduce the statistical and the leakage errors.

  15. Raman Lidar Measurements During the International H2O Project. 2; Instrument Comparisons and Case Studies

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Demoz, B.; DiGirolamo, P.; Corner, J.; Veselovskii, I.; Evans, K.; Wang, Z.; Sabatino, D.; Schwemmer, G.; Gentry, B.

    2005-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP) that occurred in May and June, 2002 in the midwestern part of the U. S. The SRL system configuration and methods of data analysis were described in part I of this paper. In this second part, comparisons of SRL water vapor measurements and those of chilled mirror radiosonde and LASE airborne water vapor lidar are performed. Two case studies are presented; one for daytime and one for nighttime. The daytime case study is of a convectively driven boundary layer event and is used to characterize the SRL water vapor random error characteristics. The nighttime case study is of a thunderstorm-generated cirrus cloud case that is studied in it s meteorological context. Upper tropospheric humidification due to precipitation from the cirrus cloud is quantified as is the cirrus cloud ice water content and particle depolarization ratio. These detailed cirrus cloud measurements are being used in a cirrus cloud modeling study.

  16. Progress on the Use of Combined Analog and Photon Counting Detection for Raman Lidar

    NASA Technical Reports Server (NTRS)

    Newsom, Rob; Turner, Dave; Clayton, Marian; Ferrare, Richard

    2008-01-01

    The Atmospheric Radiation Measurement (ARM) program Raman Lidar (CARL) was upgraded in 2004 with a new data system that provides simultaneous measurements of both the photomultiplier analog output voltage and photon counts. The so-called merge value added procedure (VAP) was developed to combine the analog and count-rate signals into a single signal with improved dynamic range. Earlier versions of this VAP tended to cause unacceptably large biases in the water vapor mixing ratio during the daytime as a result of improper matching between the analog and count-rate signals in the presence of elevated solar background levels. We recently identified several problems and tested a modified version of the merge VAP by comparing profiles of water vapor mixing ratio derived from CARL with simultaneous sonde data over a six month period. We show that the modified merge VAP significantly reduces the daytime bias, and results in mean differences that are within approximately 1% for both nighttime and daytime measurements.

  17. CART and GSFC raman lidar measurements of atmospheric aerosol backscattering and extinction profiles for EOS validation and ARM radiation studies

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Turner, D. D.; Melfi, S. H.; Whiteman, D. N.; Schwenner, G.; Evans, K. D.; Goldsmith, J. E. M.; Tooman, T.

    1998-01-01

    The aerosol retrieval algorithms used by the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Multi-Angle Imaging SpectroRadiometer (MISR) sensors on the Earth Observing Satellite (EOS) AM-1 platform operate by comparing measured radiances with tabulated radiances that have been computed for specific aerosol models. These aerosol models are based almost entirely on surface and/or column averaged measurements and so may not accurately represent the ambient aerosol properties. Therefore, to validate these EOS algorithms and to determine the effects of aerosols on the clear-sky radiative flux, we have begun to evaluate the vertical variability of ambient aerosol properties using the aerosol backscattering and extinction profiles measured by the Cloud and Radiation Testbed (CART) and NASA Goddard Space Flight Center (GSFC) Raman Lidars. Using the procedures developed for the GSFC Scanning Raman Lidar (SRL), we have developed and have begun to implement algorithms for the CART Raman Lidar to routinely provide profiles of aerosol extinction and backscattering during both nighttime and ,daytime operations. Aerosol backscattering and extinction profiles are computed for both lidar systems using data acquired during the 1996 and 1997 Water Vapor Intensive Operating Periods (IOPs). By integrating these aerosol extinction profiles, we derive measurements of aerosol optical thickness and compare these with coincident sun photometer measurements. We also use these measurements to measure the aerosol extinction/backscatter ratio S(sub a) (i.e. 'lidar ratio'). Furthermore, we use the simultaneous water vapor measurements acquired by these Raman lidars to investigate the effects of water vapor on aerosol optical properties.

  18. Pure rotational Raman lidar for the measurement of vertical profiles of temperature in the lower atmosphere

    NASA Astrophysics Data System (ADS)

    Satyanarayana, M.; Radhakrishnan, S. R.; Presennakumar, B.; Murty, V. S.; Bindhu, R.

    2006-12-01

    The design and development of the new Raman lidar of the Space Physics Laboratory, Vikram Sarabhai Space Centre is presented here. This station is located at 8 degrees 33 minutes N, 77 degrees E in India. This lidar can monitor atmospheric temperature (using Pure Rotational Raman Spectrum), aerosol extinction coefficient, water vapor profile and clouds. Advantages of Pure Rotational Raman method over Vibrational Raman method are presented with the result obtained using Vibrational Raman lidar. Optical layout of the lidar system, PRRS method and aerosol extinction measurements are described briefly.

  19. Water-Vapor Raman Lidar System Reaches Higher Altitude

    NASA Technical Reports Server (NTRS)

    Leblanc, Thierry; McDermid, I. Stewart

    2010-01-01

    A Raman lidar system for measuring the vertical distribution of water vapor in the atmosphere is located at the Table Mountain Facility (TMF) in California. Raman lidar systems for obtaining vertical water-vapor profiles in the troposphere have been in use for some time. The TMF system incorporates a number of improvements over prior such systems that enable extension of the altitude range of measurements through the tropopause into the lower stratosphere. One major obstacle to extension of the altitude range is the fact that the mixing ratio of water vapor in the tropopause and the lower stratosphere is so low that Raman lidar measurements in this region are limited by noise. Therefore, the design of the TMF system incorporates several features intended to maximize the signal-to-noise ratio. These features include (1) the use of 355-nm-wavelength laser pulses having an energy (0.9 J per pulse) that is high relative to the laser-pulse energy levels of prior such systems, (2) a telescope having a large aperture (91 cm in diameter) and a narrow field of view (angular width .0.6 mrad), and (3) narrow-bandpass (wavelength bandwidth 0.6 nm) filters for the water-vapor Raman spectral channels. In addition to the large-aperture telescope, three telescopes having apertures 7.5 cm in diameter are used to collect returns from low altitudes.

  20. Double-grating monochromator for a pure rotational Raman lidar

    NASA Astrophysics Data System (ADS)

    Ansmann, Albert; Arshinov, Yuri; Bobrovnikov, Sergey M.; Mattis, Ina; Serikov, Il'ya B.; Wandinger, Ulla

    1999-01-01

    We propose a new optical arrangement of the double grating monochromator (DGRM), intended for use in a pure rotational Raman-lidar. The main idea of the construction proposed is in the use of optical monofibers, to couple two chambers of the DGRM. The coupling with optical monofibers enables isolation of two pairs of spectral portions in the S and O branches of the pure rotational Raman spectra (PRRS) of nitrogen and oxygen symmetric relative to the line of exciting radiation. The use of monofibers provides for optically summing the symmetric portions of the PRRS at the exit of the second monochromator, thus increasing the power of PRRS collected for further temperature retrieval. It is important that this approach provides for better than 107 suppression of the spectral line, due to unshifted Mie+Rayleigh scattering. As calculations and laboratory experiments show the end-to-end transmission of the DGRM, with the account of optical summing mentioned, can compare with the transmission of the interference filters available. At the same time, the DGRM provides better spectral purity of the RRS portions isolated, which is a crucial point of the Raman-lidar temperature measurements. Temperature profiles of the atmosphere acquired with the combined Raman- lidar of the Institute for Tropospheric Research in Leipzig, Germany, equipped with the DGRM proposed, showed a good agreement with the profiles measured with a radiosonge.

  1. High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar

    NASA Astrophysics Data System (ADS)

    Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin

    2010-05-01

    Meteorological services rely, in part, on numerical weather prediction (NWP). Twice a day radiosonde observations of water vapor provide the required data for assimilation but this time resolution is insufficient to resolve certain meteorological phenomena. High time resolution temperature profiles from microwave radiometers are available as well but have rather low vertical resolution. The Raman LIDARs are able to provide temperature and humidity profiles with high time and range resolution, suitable for NWP model assimilation and validation. They are as well indispensible tools for continuous aerosol profiling for high resolution atmospheric boundary layer studies. To improve the database available for direct meteorological applications the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL) and the Swiss National Science Foundation (SNSF) initiated a project to design and build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor with the possibility to further upgrade it with an aerosol and temperature channels. The project was initiated in 2004 and RALMO (Raman Lidar for meteorological observations) was inaugurated in August 2008 at MeteoSwiss aerological station at Payerne. RALMO is currently operational and continuously profiles water vapor mixing ratio, aerosol backscatter ratio and aerosol extinction. The instrument is a fully automated, self-contained, eye-safe Raman lidar operated at 355 nm. Narrow field-of-view multi-telescope receiver and narrow band detection allow day and night-time vertical profiling of the atmospheric humidity. The rotational-vibrational Raman lidar responses from water vapor and nitrogen are spectrally separated by a high-throughput fiber coupled diffraction grating polychromator. The elastic backscatter and pure-rotational Raman lidar responses (PRR) from oxygen and nitrogen are spectrally isolated by a double grating polychromator and are used to

  2. Pure rotational Raman lidar based on wavelength division multiplexing technique for temperature profiling of the troposphere

    NASA Astrophysics Data System (ADS)

    Mao, Jiandong; Hua, Dengxin; Hu, Liaolin; Gao, Fei; Wu, Min

    2007-11-01

    A new high-accuracy pure rotational Raman (PRR) lidar system at a laser wavelength of 532.25 nm, based on a technique of wavelength division multiplexing (WDM), has been designed for profiling the atmospheric temperature of the low troposphere. A special WDM, which was usually used in fiber communication field, is designed to separate two PRR signals of N II and O II for temperature retrieval, and to simultaneously block Mie- and Rayleigh-scattering signals with a rejection rate of large than 10 7. A numerical calculation is simulated to verify the feasibility of the lidar system, and the results showed that the PRR lidar based on spectroscopic characteristic of the WDM is capable of measuring the atmospheric temperature vertical profiles in the low troposphere, and a statistical temperature error less then 1K was achieved up to a height of 3.3 km and 5 km for daytime and nighttime measurement, respectively, under conditions of 300 mJ laser energy, 25-cm-diameter telescope, 10 min observation time, solar radiance of 3×10 8 Wm -2sr -1nm -1 and atmospheric backscattering ratio less then 3.4.

  3. Continuous Time Series of Water Vapor Profiles from a Combination of Raman Lidar and Microwave Radiometer

    NASA Astrophysics Data System (ADS)

    Foth, Andreas; Baars, Holger; Di Girolamo, Paolo; Pospichal, Bernhard

    2016-06-01

    In this paper, we present a method to retrieve continuous water vapor profiles from a combination of a Raman lidar and a microwave radiometer. The integrated water vapor from the microwave radiometer is used to calibrate the Raman lidar operationally resulting in small biases compared to radiosondes. The height limitations for Raman lidars (cloud base and daylight contamination) can be well compensated by the application of a two-step algorithm combining the Raman lidars mass mixing ratio and the microwave radiometers brightness temperatures.

  4. Particle backscatter, extinction, and lidar ratio profiling with Raman lidar in south and north China

    SciTech Connect

    Tesche, Matthias; Ansmann, Albert; Mueller, Detlef; Althausen, Dietrich; Engelmann, Ronny; Hu Min; Zhang Yuanghang

    2007-09-01

    Aerosol Raman lidar observations of profiles of the particle extinction and backscatter coefficients and the respective extinction-to-backscatter ratio (lidar ratio) were performed under highly polluted conditions in the Pearl River Delta (PRD) in southern China in October 2004 and at Beijing during a clear period with moderately polluted to background aerosol conditions in January 2005. The anthropogenic haze in the PRD is characterized by volume light-extinction coefficients of particles ranging from approximately 200 to800 Mm-1 and lidar ratios mostly between 40 and 55 sr (average of47{+-}6 sr). Almost clean air masses were observed throughout the measurements of the Beijing campaign. These air masses originated from arid desert-steppe-like regions (greater Gobi area).Extinction values usually varied between 100 and300 Mm-1, and the lidar ratios were considerably lower (compared with PRD values) with values mostly from 30 to 45 sr (average of38{+-}7 sr). Gobi dust partly influenced the observations. Unexpectedly low lidar ratios of approximately 25 sr were found for a case of background aerosol with a low optical depth of 0.05. The low lidar ratios are consistent with Mie-scattering calculations applied to ground-based observations of particle size distributions.

  5. Raman lidar observations of particle hygroscopicity during COPS

    NASA Astrophysics Data System (ADS)

    Stelitano, D.; Di Girolamo, P.; Summa, D.

    2012-04-01

    The characterization of particle hygroscopicity has primary importance for climate monitoring and prediction. Model studies have demonstrated that relative humidity (RH) has a critical influence on aerosol climate forcing. The relationship between aerosol backscattering and relative humidity has been investigated in numerous studies (among others, Pahlow et al., 2006; Wulfmeyer and Feingold, 2000; Veselovskii et al., 2009). Hygroscopic properties of aerosols influence particle size distribution and refractive index and hence their radiative effects. Aerosol particles tend to grow at large relative humidity values as a result of their hygroscopicity. Raman lidars with aerosol, water vapour and temperature measurement capability are potentially attractive tools for studying aerosol hygroscopicity as in fact they can provide continuous altitude-resolved measurements of particle optical, size and microphysical properties, as well as relative humidity, without perturbing the aerosols or their environment. Specifically, the University of Basilicata Raman lidar system (BASIL) considered for the present study, has the capability to perform all-lidar measurements of relative humidity based on the application of both the rotational and the vibrational Raman lidar techniques in the UV. BASIL was operational in Achern (Black Forest, Lat: 48.64 ° N, Long: 8.06 ° E, Elev.: 140 m) between 25 May and 30 August 2007 in the framework of the Convective and Orographically-induced Precipitation Study (COPS). During COPS, BASIL collected more than 500 hours of measurements, distributed over 58 measurement days and 34 intensive observation periods (IOPs). The present analysis is focused on selected case studies characterized by the presence of different aerosol types with different hygroscopic behaviour. The observed behaviour, dependent upon aerosol composition, may range from hygrophobic to strongly hygroscopic. Results from the different case studies will be illustrated and

  6. Improvement of Raman lidar algorithm for quantifying aerosol extinction

    NASA Technical Reports Server (NTRS)

    Russo, Felicita; Whiteman, David; Demoz, Belay; Hoff, Raymond

    2005-01-01

    Aerosols are particles of different composition and origin and influence the formation of clouds which are important in atmospheric radiative balance. At the present there is high uncertainty on the effect of aerosols on climate and this is mainly due to the fact that aerosol presence in the atmosphere can be highly variable in space and time. Monitoring of the aerosols in the atmosphere is necessary to better understanding many of these uncertainties. A lidar (an instrument that uses light to detect the extent of atmospheric aerosol loading) can be particularly useful to monitor aerosols in the atmosphere since it is capable to record the scattered intensity as a function of altitude from molecules and aerosols. One lidar method (the Raman lidar) makes use of the different wavelength changes that occur when light interacts with the varying chemistry and structure of atmospheric aerosols. One quantity that is indicative of aerosol presence is the aerosol extinction which quantifies the amount of attenuation (removal of photons), due to scattering, that light undergoes when propagating in the atmosphere. It can be directly measured with a Raman lidar using the wavelength dependence of the received signal. In order to calculate aerosol extinction from Raman scattering data it is necessary to evaluate the rate of change (derivative) of a Raman signal with respect to altitude. Since derivatives are defined for continuous functions, they cannot be performed directly on the experimental data which are not continuous. The most popular technique to find the functional behavior of experimental data is the least-square fit. This procedure allows finding a polynomial function which better approximate the experimental data. The typical approach in the lidar community is to make an a priori assumption about the functional behavior of the data in order to calculate the derivative. It has been shown in previous work that the use of the chi-square technique to determine the most

  7. About the Potential of Lidars with Different Photodetectors Under Daytime Sky Radiation

    NASA Astrophysics Data System (ADS)

    Agishev, Ravil; Comeron, Adolfo; Gilerson, Alexander

    2016-06-01

    Results of theoretical analysis and experimental developments implemented as advanced methods and means to improve a noise-immunity of lidar systems for practical applications are discussed. A particular attention is paid to assessing the developed methods and technical solutions effectiveness and their comparison with existing lidar systems and real receivers.

  8. Light-detection electronics for a Raman lidar

    NASA Technical Reports Server (NTRS)

    Leser, R. J.; Salzman, J. A.

    1972-01-01

    A light-detection system for an optical radar, or lidar, unit to be used for remote temperature and composition measurements was designed, built, and bench tested. This detection system processes three return signal wavelengths: two Raman wavelengths, and the Rayleigh-Mie wavelength at 694.3 nanometers. Means of coping with photomultiplier tube instabilities and limitations are discussed. Circuits for gain control, ranging, and digitizing are included. The phototube gains can be switched fully on in 80 meters (450 nsec) or off in 30 meters (200 nsec) of range. The range circuit processes signals from 0.1 to 2 kilometers, with an estimated range resolution of less than 5 meters.

  9. Differential absorption and Raman lidar for water vapor profile measurements - A review

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1991-01-01

    Differential absorption lidar and Raman lidar have been applied to the range-resolved measurements of water vapor density for more than 20 years. Results have been obtained using both lidar techniques that have led to improved understanding of water vapor distributions in the atmosphere. This paper reviews the theory of the measurements, including the sources of systematic and random error; the progress in lidar technology and techniques during that period, including a brief look at some of the lidar systems in development or proposed; and the steps being taken to improve such lidar systems.

  10. Twenty-Four-Hour Raman Lidar Water Vapor Measurements During the Atmospheric Radiation Measurement Program's 1996 and 1997 Water Vapor Intensive Observation Periods

    SciTech Connect

    Turner, David D.; Goldsmith, JE M.

    1999-08-01

    Prior to the Atmospheric Radiation Measurement program's first water vapor intensive observation period (WVIOP) at the Cloud and Radiation Testbed site near Lamont, Oklahoma, an automated 24-h Raman lidar was delivered to the site. This instrument, which makes high-resolution measurements of water vapor both spatially and temporally, is capable of making these measurements with no operator interaction (other than initial startup) for days at a time. Water vapor measurements collected during the 1996 and 1997 WVIOPs are discussed here, illustrating both the nighttime and daytime capabilities of this system. System characteristics, calibration issues, and techniques are presented. Finally, detailed intercomparisons of the lidar's data with those from a microwave radiometer, radiosondes, an instrumented tower, a chilled mirror flown on both a tethersonde and a kite, and measurements from aircraft are shown and discussed, highlighting the accuracy and stability of this system for both nighttime and daytime measurements.

  11. Raman lidar observations at Finland, South Africa and India

    NASA Astrophysics Data System (ADS)

    Giannakaki, Elina; Filioglou, Maria; Baars, Holger; Komppula, Mika

    2016-04-01

    The Raman lidar PollyXT has participated in two long-term aerosol experimental campaigns, one close to New Delhi in India (March 2008 - March 2009) and one at Elandsfontein about 150 km from Johannesburg in South Africa (December 2009 - January 2011). Since November 2012, the lidar has performed measurement at Kuopio, Finland. PollyXT is operated automated and continuous for 24/7 observations of clouds and aerosols. The observations are processed in near-real time without manual intervention, and are presented online at http://polly.tropos.de. The three measurement sites cover a wide range of pure aerosol types (biomass burning, volcanic ash, urban, desert dust, rural aerosols); as well as a mixture of these aerosol types. We retrieve the vertical profiles of the aerosol optical properties, i.e. extinction and backscatter coefficients, Ångström exponents, lidar ratio and depolarization ratio. We also study the seasonal variability of the intensive and extensive aerosol properties. Our results reveal typical and extraordinary aerosol conditions as well as seasonal differences at the three observational sites.

  12. Spatial and temporal variation in evapotranspiration using Raman lidar

    NASA Astrophysics Data System (ADS)

    Eichinger, W. E.; Cooper, D. I.; Hipps, L. E.; Kustas, W. P.; Neale, C. M. U.; Prueger, J. H.

    2006-02-01

    The Los Alamos Raman lidar has been used to make high resolution (25 m) estimates of the evapotranspiration rate over adjacent corn and soybean canopies. The lidar makes three-dimensional measurements of the water vapor content of the atmosphere directly above the canopy that are inverted using Monin-Obukhov similarity theory. This may be used to examine the relationship between evapotranspiration and surface moisture/soil type. Lidar estimates of evapotranspiration reveal a high degree of spatial variability over corn and soybean fields that may be associated with small elevation changes in the area. The spatial structure of the variability is characterized using a structure function and correlation function approach. The power law relationship found by other investigators for soil moisture is not clear in the data for evapotranspiration, nor is the data a straight line over the measured lags. The magnitude of the structure function and the slope changes with time of day, with a probable connection to the amount of evapotranspiration and the spatial variability of the water vapor source. The data used was taken during the soil moisture-atmosphere coupling experiment (SMACEX) conducted in the Walnut Creek Watershed near Ames, Iowa in June and July 2002.

  13. New Examination of the Raman Lidar Technique for Water Vapor and Aerosols. Paper 1; Evaluating the Temperature Dependent Lidar Equations

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.

    2003-01-01

    The intent of this paper and its companion is to compile together the essential information required for the analysis of Raman lidar water vapor and aerosol data acquired using a single laser wavelength. In this first paper several details concerning the evaluation of the lidar equation when measuring Raman scattering are considered. These details include the influence of the temperature dependence of both pure rotational and vibrational-rotational Raman scattering on the lidar profile. These are evaluated for the first time using a new form of the lidar equation. The results indicate that, for the range of temperatures encountered in the troposphere, the magnitude of the temperature dependent effect can reach 10% or more for narrowband Raman water vapor measurements. Also the calculation of atmospheric transmission is examined carefully including the effects of depolarization. Different formulations of Rayleigh cross section determination commonly used in the lidar field are compared revealing differences up to 5% among the formulations. The influence of multiple scattering on the measurement of aerosol extinction using the Raman lidar technique is considered as are several photon pulse-pileup correction techniques.

  14. Stable Calibration of Raman Lidar Water-Vapor Measurements

    NASA Technical Reports Server (NTRS)

    Leblanc, Thierry; McDermid, Iain S.

    2008-01-01

    A method has been devised to ensure stable, long-term calibration of Raman lidar measurements that are used to determine the altitude-dependent mixing ratio of water vapor in the upper troposphere and lower stratosphere. Because the lidar measurements yield a quantity proportional to the mixing ratio, rather than the mixing ratio itself, calibration is necessary to obtain the factor of proportionality. The present method involves the use of calibration data from two sources: (1) absolute calibration data from in situ radiosonde measurements made during occasional campaigns and (2) partial calibration data obtained by use, on a regular schedule, of a lamp that emits in a known spectrum determined in laboratory calibration measurements. In this method, data from the first radiosonde campaign are used to calculate a campaign-averaged absolute lidar calibration factor (t(sub 1)) and the corresponding campaign-averaged ration (L(sub 1)) between lamp irradiances at the water-vapor and nitrogen wavelengths. Depending on the scenario considered, this ratio can be assumed to be either constant over a long time (L=L(sub 1)) or drifting slowly with time. The absolutely calibrated water-vapor mixing ratio (q) obtained from the ith routine off-campaign lidar measurement is given by q(sub 1)=P(sub 1)/t(sub 1)=LP(sub 1)/P(sup prime)(sub 1) where P(sub 1) is water-vapor/nitrogen measurement signal ration, t(sub 1) is the unknown and unneeded overall efficiency ratio of the lidar receiver during the ith routine off-campaign measurement run, and P(sup prime)(sub 1) is the water-vapor/nitrogen signal ratio obtained during the lamp run associated with the ith routine off-campaign measurement run. If L is assumed constant, then the lidar calibration is routinely obtained without the need for new radiosonde data. In this case, one uses L=L(sub 1) = P(sup prime)(sub 1)/t(sub 1), where P(sub 1)(sup prime) is the water-vapor/nitrogen signal ratio obtained during the lamp run associated

  15. Development of Three-Wavelength Polarization-Raman Lidar and Application to Shipborne Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Zhangjun; Du, Libin; Li, Xianxin; Zhou, Bin; Meng, Xiangqian; Chen, Chao; Liu, Qiaojun; Liu, Xingtao

    2016-06-01

    A Three-Wavelength Polarization-Raman Lidar (TWPRL) system for aerosol and clouds was developed. This lidar system provides α at 532 and 355 nm, β at 355, 532 and 1064 nm, and σ at 532 nm as well as water vapor content using Raman lidar techniques. The temporal and vertical variation of aerosols and clouds could be determined. We conducted shipborne TWPRL measurements over Yellow Sea of China from August to September in 2014. The derived aerosol optical properties indicate that the developed lidar system worked very well. 24-hour continuous measurements with the shipborne TWPRL during the cruise are presented.

  16. Temperature measurements made with a combined Rayleigh -Mie and Raman lidar.

    PubMed

    Gross, M R; McGee, T J; Ferrare, R A; Singh, U N; Kimvilakani, P

    1997-08-20

    The NASA Goddard Space Flight Center stratospheric ozone lidar system has the capability of collecting both Rayleigh -Mie and Raman backscatter data simultaneously at a number of wavelengths. Here we report on an improved method by which temperature can be derived from a combination of the Rayleigh -Mie return at 351-nm lidar channels and the Raman nitrogen return at 382-nm lidar channels. We also examine some common techniques by which temperatures are retrieved from lidar data. Finally, we show results obtained in 1995 during two Network for the Detection of Stratospheric Change intercomparison campaigns at Lauder, New Zealand and Mauna Loa, Hawaii. PMID:18259441

  17. Daytime measurements of atmospheric temperature profiles (2-15 km) by lidar utilizing Rayleigh-Brillouin scattering.

    PubMed

    Witschas, Benjamin; Lemmerz, Christian; Reitebuch, Oliver

    2014-04-01

    In this Letter, we report on a novel method for measuring atmospheric temperature profiles by lidar during daytime for heights of 2-15.3 km, with a vertical resolution of 0.3-2.2 km, using Rayleigh-Brillouin scattering. The measurements are performed by scanning a laser (λ=355 nm) over a 12 GHz range and using a Fabry-Pérot interferometer as discriminator. The temperature is derived by using a new analytical line shape model assuming standard atmospheric pressure conditions. Two exemplary temperature profiles resulting from measurements over 14 and 27 min are shown. A comparison with radiosonde temperature measurements shows reasonable agreement. In cloud-free conditions, the temperature difference reaches up to 5 K within the boundary layer, and is smaller than 2.5 K above. The statistical error of the derived temperatures is between 0.15 and 1.5 K. PMID:24686652

  18. Airborne compact rotational Raman lidar for temperature measurement.

    PubMed

    Wu, Decheng; Wang, Zhien; Wechsler, Perry; Mahon, Nick; Deng, Min; Glover, Brent; Burkhart, Matthew; Kuestner, William; Heesen, Ben

    2016-09-01

    We developed an airborne compact rotational Raman lidar (CRL) for use on the University of Wyoming King Air (UWKA) aircraft to obtain two-dimensional (2D) temperature disman tributions. It obtained fine-scale 2D temperature distributions within 3 km below the aircraft for the first time during the PECAN (Plains Elevated Convection At Night) campaign in 2015. The CRL provided nighttime temperature measurements with a random error of <0.5 K within 800 m below aircraft at 45 m vertical and 1000 m horizontal resolution. The temperatures obtained by the CRL and a radiosonde agreed. Along with water vapor and aerosol measurements, the CRL provides critical parameters on the state of the lower atmosphere for a wide range of atmospheric research. PMID:27607724

  19. Measurements of Stratospheric Pinatubo Aerosol Extinction Profiles by a Raman Lidar

    NASA Technical Reports Server (NTRS)

    Abo, Makoto; Nagasawa, Chikao

    1992-01-01

    The Raman lidar has been used for remote measurements of water vapor, ozone and atmospheric temperature in the lower troposphere because the Raman cross section is three orders smaller than the Rayleigh cross section. We estimated the extinction coefficients of the Pinatubo volcanic aerosol in the stratosphere using a Raman lidar. If the precise aerosol extinction coefficients are derived, the backscatter coefficient of a Mie scattering lidar will be more accurately estimated. The Raman lidar has performed to measure density profiles of some species using Raman scattering. Here we used a frequency-doubled Nd:YAG laser for transmitter and received nitrogen vibrational Q-branch Raman scattering signal. Ansmann et al. (1990) derived tropospherical aerosol extinction profiles with a Raman lidar. We think that this method can apply to dense stratospheric aerosols such as Pinatubo volcanic aerosols. As dense aerosols are now accumulated in the stratosphere by Pinatubo volcanic eruption, the error of Ramen lidar signal regarding the fluctuation of air density can be ignored.

  20. Design of an Autonomous Polarized Raman Lidar for Arctic Observations

    NASA Astrophysics Data System (ADS)

    Stillwell, R. A.; Neely, R. R., III; O'Neill, M.; Thayer, J. P.; Hayman, M. M.

    2014-12-01

    A dearth of high-spatial and temporal resolution measurements of atmospheric state variables in the Arctic directly inhibits scientific understanding of radiative and precipitation impacts on the changing surface environment. More reliable and frequent measurements are needed to better understand Arctic weather processes and constrain model predictions. To partially address the lack of Artic observations, a new autonomous Raman lidar system, which will measure through the troposphere water vapor mixing ratio, temperature, extinction, and cloud phase profiles, is under development for deployment to Summit Camp, Greenland (72° 36'N, 38° 25'W, 3250m). This high-altitude Arctic field site has co-located ancillary equipment such as a Doppler millimeter cloud radar, microwave radiometers, depolarization lidars, ceiliometer, an infrared interferometer and twice-daily radiosondes which are part of the Integrated Characterization of Energy, Clouds, Atmospheric State and Precipitation at Summit (ICECAPS) project and the Arctic Observing Network (AON). The current suite of instruments allows for a near comprehensive picture of the atmospheric state above Summit but increased spatial and temporal resolution of water vapor and temperature are needed to reveal detailed microphysical information. In this presentation, a system description will be provided with an emphasis on the features necessary for autonomous, full diurnal operation, and how the new system will help fill the observation gap within the already existing sensor suite.

  1. Comparison of measurements by the NASA/GSFC scanning raman lidar and the DOE/ARM CART raman lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David; Turner, David; Evans, Keith; Demoz, Belay; Melfi, Harvey; Schwemmer, Geary; Cadirola, Martin; Ferrare, Richard; Goldsmith, John; Tooman, Tim; Wise, Stacy

    1998-01-01

    Latent heat transfer through evaporation and condensation of water vapor is the most important energy transport mechanism in the atmosphere. In addition, water vapor is the most active greenhouse gas. Any global warming scenario must take accurate account of the spatial and temporal variation of water vapor in order to account for both of these effects. Due to the great importance of water vapor in atmospheric radiation studies, specific intensive operations periods (IOPs) have been hosted by the Department of Energy's Atmospheric Radiation Measurements (ARM) program. One of the goals of these IOPs has been to determine the quality of and explain any discrepancies among a wide variety of water vapor measuring instruments. Raman lidar systems developed by NASA/Goddard Space Flight Center and DOE/Sandia National Laboratories have participated in the two Water Vapor IOPs (WVIOPs) held at the Southern Great Plains (SGP) Cloud and Radiation Testbed Site (CART) site during 1996 (WVIOP1) and 1997 (WVIOP2). Detailed comparisons of these two systems is ongoing but this effort has already resulted in numerous improvements in design and data analysis for both lidar systems.

  2. Comparison of measurements by the NASA/GSFC scanning Raman lidar and the DOE/ARM CART Raman lidar

    SciTech Connect

    Whiteman, D.; Turner, D.; Evans, K.

    1998-04-01

    Latent heat transfer through evaporation and condensation of water vapor is the most important energy transport mechanism in the atmosphere. In addition, water vapor is the most active greenhouse gas. Any global warning scenario must take accurate account of the spatial and temporal variation of water vapor in order to account for both of these effects. Due to the great importance of water vapor in atmospheric radiation studies, specific intensive operations periods (IOPs) have been hosted by the Department of Energy`s Atmospheric Radiation Measurements (ARM) program. One of the goals of these IOPs has been to determine the quality of and explain any discrepancies among a wide variety of water vapor measuring instruments. Raman lidar systems developed by NASA/Goddard Space Flight Center and DOE/Sandia National Laboratories have participated in the two Water Vapor IOPs (WVIOPs) held at the Southern Great Plains (SGP) Cloud and Radiation Testbed Site (CART) site during 1996 (WVIOP1) and 1997 (WVIOP2). Detailed comparisons of these two systems is ongoing but this effort has already resulted in numerous improvements in design and data analysis for both lidar systems.

  3. Compact Raman Lidar Measurement of Liquid and Vapor Phase Water Under the Influence of Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Shiina, Tatsuo; Chigira, Tomoyuki; Saito, Hayato; Manago, Naohiro; Kuze, Hiroaki; Hanyu, Toshinori; Kanayama, Fumihiko; Fukushima, Mineo

    2016-06-01

    A compact Raman lidar has been developed for studying phase changes of water in the atmosphere under the influence of ionization radiation. The Raman lidar is operated at the wavelength of 349 nm and backscattered Raman signals of liquid and vapor phase water are detected at 396 and 400 nm, respectively. Alpha particles emitted from 241Am of 9 MBq ionize air molecules in a scattering chamber, and the resulting ions lead to the formation of liquid water droplets. From the analysis of Raman signal intensities, it has been found that the increase in the liquid water Raman channel is approximately 3 times as much as the decrease in the vapor phase water Raman channel, which is consistent with the theoretical prediction based on the Raman cross-sections. In addition, the radius of the water droplet is estimated to be 0.2 μm.

  4. Near-Range Receiver Unit of Next Generation PollyXT Used with Koldeway Aerosol Raman Lidar in Arctic

    NASA Astrophysics Data System (ADS)

    Stachlewska, Iwona S.; Markowicz, Krzysztof M.; Ritter, Christoph; Neuber, Roland; Heese, Birgit; Engelmann, Ronny; Linne, Holger

    2016-06-01

    The Near-range Aerosol Raman lidar (NARLa) receiver unit, that was designed to enhance the detection range of the NeXT generation PollyXT Aerosol-Depolarization-Raman (ADR) lidar of the University of Warsaw, was employed next the Koldeway Aerosol Raman Lidar (KARL) at the AWI-IPEV German-French station in Arctic during Spring 2015. Here we introduce shortly design of both lidars, the scheme of their installation next to each other, and preliminary results of observations aiming at arctic haze investigation by the lidars and the iCAP a set of particle counter and aethalometer installed under a tethered balloon.

  5. Water vapor variance measurements using a Raman lidar

    NASA Technical Reports Server (NTRS)

    Evans, K.; Melfi, S. H.; Ferrare, R.; Whiteman, D.

    1992-01-01

    Because of the importance of atmospheric water vapor variance, we have analyzed data from the NASA/Goddard Raman lidar to obtain temporal scales of water vapor mixing ratio as a function of altitude over observation periods extending to 12 hours. The ground-based lidar measures water vapor mixing ration from near the earth's surface to an altitude of 9-10 km. Moisture profiles are acquired once every minute with 75 m vertical resolution. Data at each 75 meter altitude level can be displayed as a function of time from the beginning to the end of an observation period. These time sequences have been spectrally analyzed using a fast Fourier transform technique. An example of such a temporal spectrum obtained between 00:22 and 10:29 UT on December 6, 1991 is shown in the figure. The curve shown on the figure represents the spectral average of data from 11 height levels centered on an altitude of 1 km (1 plus or minus .375 km). The spectra shows a decrease in energy density with frequency which generally follows a -5/3 power law over the spectral interval 3x10 (exp -5) to 4x10 (exp -3) Hz. The flattening of the spectrum for frequencies greater than 6x10 (exp -3) Hz is most likely a measure of instrumental noise. Spectra like that shown in the figure are calculated for other altitudes and show changes in spectral features with height. Spectral analysis versus height have been performed for several observation periods which demonstrate changes in water vapor mixing ratio spectral character from one observation period to the next. The combination of these temporal spectra with independent measurements of winds aloft provide an opportunity to infer spatial scales of moisture variance.

  6. Raman lidar profiling of atmospheric water vapor: Simultaneous measurements with two collocated systems

    NASA Technical Reports Server (NTRS)

    Goldsmith, J. E. M.; Bisson, Scott E.; Ferrare, Richard A.; Evans, Keith D.; Whiteman, David N.; Melfi, S. H.

    1994-01-01

    Raman lidar is a leading candidate for providing the detailed space- and time-resolved measurements of water vapor needed by a variety of atmospheric studies. Simultaneous measurements of atmospheric water vapor are described using two collocated Raman lidar systems. These lidar systems, developed at the NASA/Goddard Space Flight Center and Sandia National Laboratories, acquired approximately 12 hours of simultaneous water vapor data during three nights in November 1992 while the systems were collocated at the Goddard Space Flight Center. Although these lidar systems differ substantially in their design, measured water vapor profiles agreeed within 0.15 g/kg between altitudes of 1 and 5 km. Comparisons with coincident radiosondes showed all instruments agreed within 0.2 g/kg in this same altitude range. Both lidars also clearly showed the advection of water vapor in the middle troposphere and the pronounced increase in water vapor in the nocturnal boundary layer that occurred during one night.

  7. The Refurbishment and Upgrade of the Atmospheric Radiation Measurement Raman Lidar

    SciTech Connect

    Turner, D.D.; Goldsmith, J.E.M.

    2005-03-18

    The Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) Raman lidar (CARL) is an autonomous, turn-key system that profiles water vapor, aerosols, and clouds throughout the diurnal cycle for days without attention (Goldsmith et al. 1998). CARL was first deployed to the Southern Great Plains CRF during the summer of 1996 and participated in the 1996 and 1997 water vapor intensive operational periods (IOPs). Since February 1998, the system has collected over 38,000 hrs of data (equivalent of almost 4.4 years), with an average monthly uptime of 62% during this time period. This unprecedented performance by CARL makes it the premier operational Raman lidar in the world. Unfortunately, CARL began degrading in early 2002. This loss of sensitivity, which affected all observed variables, was very gradual and thus was not identified until the autumn of 2003. Analysis of the data suggested the problem was not associated with the laser or transmit portion of the system, but rather in the detection subsystem, as both the background values and the peak signals showed a marked decreases over this time period. The loss of sensitivity of a factor of 2-4, depending on the channel, resulted in higher random error in the retrieved products, such as the aerosol backscatter coefficient and water vapor mixing ratio. Figure 1 shows the random error at 2 km for aerosol backscatter coefficient (top) and water vapor mixing ratio (middle), in terms of percent of the signal for both average daytime (red) and nighttime (blue) data from 1998 to 2005. The seasonal variation of water vapor is easily seen in the random error in the water vapor mixing ratio data. The loss of sensitivity also affected the maximum range of the usable data, as illustrated by the dramatic decrease in the maximum height seen in the water vapor mixing ratio data (bottom). This degradation, which results in much larger random errors, greatly hinders the analysis of data sets such as the Aerosol

  8. Tropical and Midlatitude Cirrus Cloud Extinction and Backscatter From Multiyear Raman Lidar Measurements.

    NASA Astrophysics Data System (ADS)

    Thorsen, T. J.; Fu, Q.

    2014-12-01

    Lidars have the capability to provide unparalleled range-resolved observations of particulate extinction. However, lidars fundamentally measure backscattered energy, not extinction, and for widely prevalent single-channel elastic backscatter lidars extinction must be obtained by assuming a backscatter-extinction relationship. Our knowledge of this relationship, known as the lidar ratio, mainly consists values determined via the transmission-loss method: which can only provide layer-averaged values and is only applicable to a subset of all cloud layers. Directly-retrieved, vertically resolved extinction coefficients and lidar ratios are obtainable through the use of more advance high spectral resolution lidars (HSRL) or Raman lidars (RL). However, the complexity of operating a HSRL or RL has limited their use for cloud observations to very limited time periods: typical only a few months or less. In this work, we present a newly developed retrieval for the Atmospheric Radiation Measurement (ARM) program's Raman lidars for Feature detection and EXtinction retrieval (FEX). FEX improves upon existing ARM products by using multiple, complimentary quantities to identify both clouds and aerosols and retrieve their extinction and backscatter profiles. Multiple years of data are examined at both the Lamont, Oklahoma and Darwin, Australia ARM sites; providing the most comprehensive climatology to date of cirrus extinction and lidar ratios. Variations in these optical properties with classification of the synoptic state and their relationship with microphysical parameters (temperature, relative humidity and depolarization) are examined.

  9. Dual-field-of-view Raman lidar measurements for the retrieval of cloud microphysical properties.

    PubMed

    Schmidt, Jörg; Wandinger, Ulla; Malinka, Aleksey

    2013-04-10

    Dual-field-of-view Raman lidar measurements, detecting Raman-scattered light with two fields of view simultaneously, are used for the first time to retrieve cloud microphysical properties. The measurements are performed with the Multiwavelength Atmospheric Raman Lidar for Temperature, Humidity, and Aerosol Profiling (MARTHA) at the Leibniz Institute for Tropospheric Research in Leipzig, Germany. Light that is scattered in forward direction by cloud droplets and inelastically backscattered by N2 molecules is detected. A forward iterative algorithm uses the measured signals to derive profiles of the effective cloud droplet radius, extinction coefficient, and liquid-water content of the investigated clouds. The setup, algorithm, error analysis, and a measurement example are presented. The obtained liquid-water path is validated by observations with a microwave radiometer. With the capability to retrieve aerosol properties as well as cloud microphysical properties, the Raman lidar MARTHA is an ideal tool for studies of the aerosol indirect effect. PMID:23670751

  10. An evaluation of PBL parameterizations utilizing compact airborne raman Lidar

    NASA Astrophysics Data System (ADS)

    Pauly, Rebecca

    The water vapor structure within and above the planetary boundary layer (PBL) plays an essential role in many weather and climate phenomena including the water vapor feedback, thunderstorm formation and maintenance, and precipitation amounts. As a result, the accurate modeling of the PBL and its water vapor structure is critical for accurate climate and weather predictions. The University of Wyoming Compact Airborne Raman Lidar (CARL) is an ideal instrument with which to conduct model evaluation studies because of its ability to measure the fine scale water vapor mixing ratio (WVMR) on a mobile platform. A PBL scheme comparison and sensitivity study was conducted using the Weather Research and Forecasting (WRF) Model and CARL data from two days in June 2010. The three PBL schemes used were the Mellor, Yamada, Janjic (MYJ) scheme, Yonsei University (YSU) scheme, and the Asymmetric Convective Model Version 2 (ACM2) scheme. The analysis revealed that the MYJ scheme performed best on modeling the magnitude of WVMR in the PBL but that the ACM2 and YSU schemes modeled the vertical structure better. Sensitivity studies modifying the assumptions made to determine the PBL top, k-diffusivity profiles, and surface heat fluxes were conducted. The magnitude of WVMR was improved within the YSU and ACM2 schemes by modifying the vertical diffusivity as well as in the YSU scheme by decreasing the surface sensible heat flux. The convective storms, which formed in each case, were also studied, and results show that runs with higher magnitudes of WVMR modeled these storms more accurately.

  11. PollyNET: a network of multiwavelength polarization Raman lidars

    NASA Astrophysics Data System (ADS)

    Althausen, Dietrich; Engelmann, Ronny; Baars, Holger; Heese, Birgit; Kanitz, Thomas; Komppula, Mika; Giannakaki, Eleni; Pfüller, Anne; Silva, Ana Maria; Preißler, Jana; Wagner, Frank; Rascado, Juan Luis; Pereira, Sergio; Lim, Jae-Hyun; Ahn, Joon Young; Tesche, Matthias; Stachlewska, Iwona S.

    2013-10-01

    PollyNET is a growing global network of automatized multiwavelength polarization Raman lidars of type Polly (Althausen et al., 2009). The goal of this network is to conduct advanced remote measurements of aerosol profiles and clouds by the same type of instrument. Since 2006 this network assists the controlling and adjustment activities of Polly systems. A central facility receives the data from the Polly measurements. The observational data are displayed in terms of quicklooks at http://polly:tropos.de in near real time. In this way, the network serves as a central information platform for inquisitive scientists. PollyNET comprises permanent stations at Leipzig (Germany), Kuopio (Finland), Evora (Portugal), Baengnyeong Island (South Korea), Stockholm (Sweden), and Warsaw (Poland). Non-permanent stations have been used during several field experiments under both urban and very remote conditions - like the Amazon rainforest. These non-permanent stations were lasting from several weeks up to one year and have been located in Brazil, India, China, South Africa, Chile, and also aboard the German research vessels Polarstern and Meteor across the Atlantic. Within PollyNET the interaction and knowledge exchange is encouraged between the Polly operators. This includes maintenance support in system calibration procedures and distribution of latest hardware and software improvements. This presentation introduces the PollyNET. Main features of the Polly systems will be presented as well as recent instrumental developments. Some measurement highlights achieved within PollyNET are depicted.

  12. Analysis and Calibration of CRF Raman Lidar Cloud Liquid Water Measurements

    SciTech Connect

    Turner, D.D. Whiteman, D.N. Russo, F.

    2007-10-31

    The Atmospheric Radiation Measurement (ARM) Raman lidar (RL), located at the Southern Great Plains (SGP) Climate Research Facility (CRF), is a unique state-of-the-art active remote sensor that is able to measure profiles of water vapor, aerosol, and cloud properties at high temporal and vertical resolution throughout the diurnal cycle. In October 2005, the capability of the RL was extended by the addition of a new detection channel that is sensitive to the Raman scattering of liquid water. This new channel permits the system, in theory, to measure profiles of liquid water content (LWC) by the RL. To our knowledge, the ARM RL is the only operation lidar with this capability. The liquid water Raman backscattering cross-section is a relatively weak and spectrally broad feature, relative to the water vapor Raman backscatter signal. The wide bandpass required to achieve reasonable signal-to-noise in the liquid water channel essentially eliminates the ability to measure LWC profiles during the daytime in the presence of large solar background, and thus all LWC observations are nighttime only. Additionally, the wide bandpass increases the probability that other undesirable signals, such as fluorescence from aerosols, may contaminate the observation. The liquid water Raman cross-section has a small amount of overlap with the water vapor Raman cross-section, and thus there will be a small amount of ‘cross-talk’ between the two signals, with water vapor contributing a small amount of signal to the LWC observation. And finally, there is significant uncertainty in the actual strength of the liquid water Raman cross-section in the literature. The calibrated LWC profiles, together with the coincident cloud backscatter observations also made by the RL, can be used to derive profiles of cloud droplet effective radius. By combining these profiles of effective radius in the lower portion of the cloud with the aerosol extinction measurements made below the cloud by the RL, the

  13. Water Vapor Measurements by Howard University Raman Lidar during the WAVES 2006 Campaign

    NASA Technical Reports Server (NTRS)

    Adam, M.; Demoz, B. B.; Whiteman, D. N.; Venable, D. D.; Joseph E.; Gambacorta, A.; Wei, J.; Shephard, M. W.; Miloshevich, L. M.; Barnet, C. D.; Herman, R. L.; Fitzgibbon, J.; Connell, R.

    2009-01-01

    Retrieval of water vapor mixing ratio using the Howard University Raman Lidar is presented with emphasis on three aspects: i) performance of the lidar against collocated radiosondes and Raman lidar, ii) investigation of the atmospheric state variables when poor agreement between lidar and radiosondes values occurred and iii) a comparison with satellite-based measurements. The measurements were acquired during the Water Vapor Validation Experiment Sondes/Satellites 2006 field campaign. Ensemble averaging of water vapor mixing ratio data from ten night-time comparisons with Vaisala RS92 radiosondes shows on average an agreement within 10 % up to approx. 8 km. A similar analysis of lidar-to-lidar data of over 700 profiles revealed an agreement to within 20 % over the first 7 km (10 % below 4 km). A grid analysis, defined in the temperature - relative humidity space, was developed to characterize the lidar - radiosonde agreement and quantitatively localizes regions of strong and weak correlations as a function of altitude, temperature or relative humidity. Three main regions of weak correlation emerge: i) regions of low relative humidity and low temperature, ii) moderate relative humidity at low temperatures and iii) low relative humidity at moderate temperatures. Comparison of Atmospheric InfraRed Sounder and Tropospheric Emission Sounder satellites retrievals of moisture with that of Howard University Raman Lidar showed a general agreement in the trend but the formers miss a lot of the details in atmospheric structure due to their low resolution. A relative difference of about 20 % is usually found between lidar and satellites measurements.

  14. Towards quantifying mesoscale flows in the troposphere using Raman lidar and Sondes

    NASA Technical Reports Server (NTRS)

    Demoz, B.; Starr, D.; Evans, K.; Whiteman, D.; Melfi, S.; Turner, D.; Ferrare, R.; Goldsmith, J.; Schwemmer, G.; Cadirola, M.

    1998-01-01

    Water vapor plays an important role in the energetics of the boundary layer processes which in turn play a key role in regulating regional and global climate. It plays a primary role in Earth's hydrological cycle, in radiation balance as a direct absorber of infrared radiation, and in atmospheric circulation as a latent heat energy source, as well as in determining cloud development and atmospheric stability. Water vapor concentration, expressed as a mass mixing ratio (g kg(exp -l)), is conserved in all meteorological processes except condensation and evaporation. This property makes it an ideal choice for studying many of the atmosphere's dynamic features. Raman scattering measurements from lidar also allow retrieval of water vapor mixing ratio profiles at high temporal and vertical resolution. Raman lidars sense water vapor to altitudes not achievable with towers and surface systems, sample the atmosphere at much higher temporal resolution than radiosondes or satellites, and do not require strong vertical gradients or turbulent fluctuations in temperature that is required by acoustic sounders and radars. Analysis of highly-resolved water vapor profiles are used here to characterize two important mesoscale flows: thunderstorm outflows and a cold front passage. The data were obtained at the Atmospheric Radiation Measurement Site (CART) by the groundbased Department of Energy/Sandia National Laboratories lidar (CART Raman lidar or CARL) and Goddard Space Flight Center Scanning Raman Lidar (SRL). A detailed discussion of the SRL and CARL performance during the IOPs is given by others in this meeting.

  15. Optimisation of frequency-modulated characteristics of output radiation in a lidar with Raman amplification

    NASA Astrophysics Data System (ADS)

    Grigorievsky, V. I.; Tezadov, Ya A.

    2016-03-01

    The reported study is aimed at increasing the power in the transmission path of a lidar with Raman amplification for longpath sensing of methane by optimising the frequency-modulated characteristics of the output radiation. The pump current of the used distributed-feedback master laser was modulated by a linearfrequency signal with simultaneous application of a non-synchronous high-frequency signal. For such a modulation regime, the Raman amplifier provided the mean output power of 2.5 W at a wavelength of 1650 nm. The spectral broadening did not significantly decrease the lidar sensitivity at long paths.

  16. Temperature profiling in the atmosphere using lidars

    NASA Astrophysics Data System (ADS)

    Arshinov, Yuri; Bobrovnikov, Sergey M.; Serikov, Il'ya B.; Althausen, Dietrich; Mattis, Ina; Wandinger, Ulla; Ansmann, Albert

    2001-04-01

    This lecture describes the development of lidar techniques to measure the atmospheric temperature profile. Particular attention is given in the lecture to the technique that uses pure rotational Raman scattering of light by molecular nitrogen and oxygen. At present, this approach to temperature profiling in the atmosphere with lidars has received a new impulse because of recent advances in laser and optoelectronics technologies. The instrumentation aspects that determine the feasibility of one or another lidar technique to measure temperature profiles based on the pure rotational Raman spectrum (PRRS) of N2 and O2 molecules are considered. The primary instrumental problem is isolation of extremely weak Raman-lidar returns within the PRRS of N2 and O2 against the background from the much stronger line of unshifted scattering. Mie + Rayleigh, that simultaneously contributes to lidar returns. Besides, the daytime sky background is the factor that severely hampers daytime lidar measurements especially in the case with Raman lidars. So it is an important task of Raman-lidar technologists to find proper ways to overcome this difficulty that would made it possible the temperature profiling in the atmosphere to be performed whole day round. The approach to achieving this task by use of a Fabry-Perot interferometer (FPI) is discussed in the lecture.

  17. Cloud Liquid Water, Mean Droplet Radius and Number Density Measurements Using a Raman Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Melfi, S. Harvey

    1999-01-01

    A new technique for measuring cloud liquid water, mean droplet radius and droplet number density is outlined. The technique is based on simultaneously measuring Raman and Mie scattering from cloud liquid droplets using a Raman lidar. Laboratory experiments on liquid micro-spheres have shown that the intensity of Raman scattering is proportional to the amount of liquid present in the spheres. This fact is used as a constraint on calculated Mie intensity assuming a gamma function particle size distribution. The resulting retrieval technique is shown to give stable solutions with no false minima. It is tested using Raman lidar data where the liquid water signal was seen as an enhancement to the water vapor signal. The general relationship of retrieved average radius and number density is consistent with traditional cloud physics models. Sensitivity to the assumed maximum cloud liquid water amount and the water vapor mixing ratio calibration are tested. Improvements to the technique are suggested.

  18. Research on the Relationship Between Cloud Temperature and Optical Depth Using Rotational and Vibrational Raman Lidar

    NASA Astrophysics Data System (ADS)

    Su, Jia; McCormick, M. Patrick; Lei, Liqiao

    2016-06-01

    Clouds play a key role in the climate system, for they can result in a warming or a cooling effect according to their characteristics and altitudes. Raman Lidars have been proven to be a very useful remote sensing tool to characterize cloud properties and locations. In this paper, cloud temperature and optical depth are obtained using rotational Raman (RR) and vibrational Raman techniques. Results of cloud temperature and optical depth (OD) observed by the Hampton University (HU) Rotational-Vibrational Raman Lidar are presented. The paper discusses the influence of cloud OD on temperature of the cloud base and top. From these measurements, the relation of low-altitude cloud OD and temperature is summarized. These analyses are unique in that they combine simultaneous measurements of these quantities that can lead to an improvement in the understanding of cloud radiation transfer and effects.

  19. Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar

    SciTech Connect

    Whiteman, David N.; Melfi, S. Harvey

    1999-12-27

    A new technique for measuring cloud liquid water, mean droplet radius, and droplet number density is outlined. The technique is based on simultaneously measuring Raman and Mie scattering from cloud liquid droplets using a Raman lidar. Laboratory experiments on liquid microspheres have shown that the intensity of Raman scattering is proportional to the amount of liquid present in the spheres. This fact is used as a constraint on calculated Mie intensity assuming a gamma function particle size distribution. The resulting retrieval technique is shown to give stable solutions with no false minima. It is tested using Raman lidar data where the liquid water signal was seen as an enhancement to the water vapor signal. The general relationship of retrieved average radius and number density is consistent with traditional cloud physics models. Sensitivity to the assumed maximum cloud liquid water amount and the water vapor mixing ratio calibration are tested. Improvements to the technique are suggested. (c) 1999 American Geophysical Union.

  20. An accurate modeling, simulation, and analysis tool for predicting and estimating Raman LIDAR system performance

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Russo, Leonard P.; Barrett, John L.; Odhner, Jefferson E.; Egbert, Paul I.

    2007-09-01

    BAE Systems presents the results of a program to model the performance of Raman LIDAR systems for the remote detection of atmospheric gases, air polluting hydrocarbons, chemical and biological weapons, and other molecular species of interest. Our model, which integrates remote Raman spectroscopy, 2D and 3D LADAR, and USAF atmospheric propagation codes permits accurate determination of the performance of a Raman LIDAR system. The very high predictive performance accuracy of our model is due to the very accurate calculation of the differential scattering cross section for the specie of interest at user selected wavelengths. We show excellent correlation of our calculated cross section data, used in our model, with experimental data obtained from both laboratory measurements and the published literature. In addition, the use of standard USAF atmospheric models provides very accurate determination of the atmospheric extinction at both the excitation and Raman shifted wavelengths.

  1. Aerosol content survey by mini N 2 -Raman lidar: Application to local and long-range transport aerosols

    NASA Astrophysics Data System (ADS)

    Royer, Philippe; Chazette, Patrick; Lardier, Melody; Sauvage, Laurent

    2011-12-01

    This study shows an aerosol content survey in the low and middle troposphere over Paris with a compact and light Nitrogen-Raman lidar which has been recently developed by the Commissariat à l'Energie Atomique (CEA) and LEOSPHERE company. This eye-safe and wide field-of-view system (full overlap between 150 and 200 m) is particularly well-adapted to air pollution survey in the vicinity of Megalopolis. Extinction-to-backscatter coefficient (so-called Lidar Ratio LR) profiles obtained with a Tikhonov regularization scheme are presented for long-range transport events of aerosols (volcanic ash plume LR = 48 ± 10 sr, and desert dust, LR = 45 ± 8 sr) which may contribute to the local load of aerosols emitted by traffic and industries in Megalopolis. Due to an insufficient signal to noise ratio (SNR < 30), a new dichotomous algorithm has been developed to perform daytime inversions every hour which is in accordance with the typical time evolution of aerosols within the planetary boundary layer. This inversion scheme is based on the constraint of the elastic channel with the aerosol optical depth (between typically 0.2 and 0.7 km) determined with the N 2-Raman channel and thus only gives access to an equivalent LR between 0.2 and 0.7 km with a relative uncertainty lower than 15%. This approach has been applied to retrieve diurnal cycle of LR for polluted continental aerosols over Paris and is compared with Tikhonov regularization applied during the night. We found a mean value of 85 ± 18 sr for polluted continental aerosols which is in agreement with other studies performed around the Paris urban area. Results for aerosol optical properties are presented and the error sources are discussed for each approach.

  2. Study of absolute detection technique with the rotational Raman lidar for atmospheric temperature

    NASA Astrophysics Data System (ADS)

    Li, Shichun; Wei, Pengpeng; Gong, Xin; Hua, Dengxin

    2015-10-01

    The rotational Raman lidar is a valid tool to profile atmospheric temperature. But the fact that its proper operation generally needs a certain collocated device for calibration seriously restricts application in the meteorology and environment fields. We propose an absolute detection technique of atmospheric temperature with the rotational Raman lidar, which is based on the dependence of rotational Raman spectral envelope on temperature. To retrieve atmospheric temperature without calibration, six rotational Raman spectra of nitrogen molecule are chosen from the anti-Strokes branch. A temperature retrieval algorithm is presented and analyzed based on the least square principle. A two-cascade Raman spectroscopic filter is constructed by one first-order diffraction grating, one convex lens, one linear fiber array and 6 groups of fiber Bragg gratings. This lidar is configured with a 300-mJ pulse energy laser and a 250-mm clear aperture telescope. Simulation results show that it can extract the nitrogen molecules rotational Raman spectral lines, and that atmospheric temperature profile obtained through absolute retrieval algorithm can be up to 3.5 km with less than 0.5-K deviation within 17 minutes interval.

  3. Assessing the temperature dependence of narrow-band Raman water vapor lidar measurements: a practical approach.

    PubMed

    Whiteman, David N; Venable, Demetrius D; Walker, Monique; Cadirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-08-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author. PMID:23913054

  4. Assessing the Temperature Dependence of Narrow-Band Raman Water Vapor Lidar Measurements: A Practical Approach

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Venable, Demetrius D.; Walker, Monique; Cardirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-01-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

  5. Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements.

    PubMed

    Leblanc, Thierry; McDermid, I Stuart

    2008-10-20

    A Raman lidar calibration method adapted to the long-term monitoring of atmospheric water vapor is proposed. The accuracy of Raman lidar water vapor profiles is limited by that of the calibration process. Typically, calibration using in situ balloon-borne measurements suffers from the nonsimultaneity and noncollocation of the lidar and in situ measurements, while calibration from passive remote sensors suffers from the lower accuracy of the retrievals and incomplete sampling of the water vapor column observed by lidar. We propose a new hybrid calibration method using a combination of absolute calibration from radiosonde campaigns and routine-basis (off-campaign) partial calibration using a standard lamp. This new method takes advantage of the stability of traceable calibrated lamps as reliable sources of known spectral irradiance combined with the best available in situ measurements. An integrated approach is formulated, which can be used for the future long-term monitoring of water vapor by Raman lidars within the international Network for the Detection of Atmospheric Composition Change and other networks. PMID:18936807

  6. Characterization of the planetary boundary layer height and structure by Raman lidar: comparison of different approaches

    NASA Astrophysics Data System (ADS)

    Summa, D.; Di Girolamo, P.; Stelitano, D.; Cacciani, M.

    2013-06-01

    The Planetary Boundary Layer (PBL) includes the portion of the atmosphere which is directly influenced by the presence of the Earth's surface. Aerosol particles trapped within the PBL can be used as tracers to study the boundary-layer vertical structure and time variability. As a result of this, elastic backscatter signals collected by lidar systems can be used to determine the height and the internal structure of the PBL. The present analysis considers three different methods to estimate the PBL height. A first method is based on the determination of the first order derivative of the logarithm of the range-corrected elastic lidar signals. Estimates of the PBL height for specific case studies obtained from this approach are compared with simultaneous estimates from the potential temperature profiles measured by radiosondes launched simultaneously to lidar operation. Additional estimates of the boundary layer height are based on the determination of the first order derivative of the range-corrected rotational Raman lidar signals. This latter approach results to be successfully applicable also in the afternoon-evening decaying phase of the PBL, when the effectiveness of the approach based on the elastic lidar signals may be compromised or altered by the presence of the residual layer. Results from these different approaches are compared and discussed in the paper, with a specific focus on selected case studies collected by the University of Basilicata Raman lidar system BASIL during the Convective and Orographically-induced Precipitation Study (COPS).

  7. Characterization of the planetary boundary layer height and structure by Raman lidar: comparison of different approaches

    NASA Astrophysics Data System (ADS)

    Summa, D.; Di Girolamo, P.; Stelitano, D.; Cacciani, M.

    2013-12-01

    The planetary boundary layer (PBL) includes the portion of the atmosphere which is directly influenced by the presence of the earth's surface. Aerosol particles trapped within the PBL can be used as tracers to study the boundary-layer vertical structure and time variability. As a result of this, elastic backscatter signals collected by lidar systems can be used to determine the height and the internal structure of the PBL. The present analysis considers three different methods to estimate the PBL height. The first method is based on the determination of the first-order derivative of the logarithm of the range-corrected elastic lidar signals. Estimates of the PBL height for specific case studies obtained through this approach are compared with simultaneous estimates from the potential temperature profiles measured by radiosondes launched simultaneously to lidar operation. Additional estimates of the boundary layer height are based on the determination of the first-order derivative of the range-corrected rotational Raman lidar signals. This latter approach results to be successfully applicable also in the afternoon-evening decaying phase of the PBL, when the effectiveness of the approach based on the elastic lidar signals may be compromised or altered by the presence of the residual layer. Results from these different approaches are compared and discussed in the paper, with a specific focus on selected case studies collected by the University of Basilicata Raman lidar system BASIL during the Convective and Orographically-induced Precipitation Study (COPS).

  8. On retrieval of lidar extinction profiles using Two-Stream and Raman techniques

    NASA Astrophysics Data System (ADS)

    Stachlewska, I. S.; Ritter, C.

    2010-03-01

    The Two-Stream technique employs simultaneous measurements performed by two elastic backscatter lidars pointing at each other to sample into the same atmosphere. It allows for a direct retrieval of the extinction coefficient profile from the ratio of the two involved lidar signals. During a number of Alfred-Wegener-Institute (AWI) campaigns dedicated to Arctic research, the AWI's Polar 2 aircraft with the integrated onboard nadir-pointing Airborne Mobile Aerosol Lidar (AMALi) was utilised. The aircraft flew over a vicinity of Ny Ålesund on Svalbard, where the zenith-pointing Koldewey Aerosol Raman Lidar (KARL) has been located. This experimental approach gave the unique opportunity to retrieve the extinction profiles with a rarely used Two-Stream technique against a well established Raman technique. Both methods were applied to data obtained for clean Arctic conditions during the Arctic Study of Tropospheric clouds and Radiation (ASTAR 2004) campaign, and slightly polluted Arctic conditions during the Svalbard Experiment (SvalEx 2005) campaign. Successful comparison of both evaluation tools in different measurement conditions demonstrates sensitivity and feasibility of the Two-Stream method to obtain particle extinction and backscatter coefficients profiles without assumption of their relationship (lidar ratio). The method has the potential to serve as an extinction retrieval tool for KARL or AMALi simultaneous observations with the space borne CALIPSO lidar overpasses during the ASTAR 2007.

  9. Laser remote sensing of tropospheric aerosol over Southern Ireland using a backscatter Raman LIDAR

    NASA Astrophysics Data System (ADS)

    Ruth, Albert A.; Acheson, Karen; Apituley, Arnoud; Chaikovsky, Anatoli; Nicolae, Doina; Ortiz-Amezcua, Pablo; Stoyanov, Dimitar; Trickl, Thomas

    2016-04-01

    Raman backscatter coefficients, extinction coefficients and lidar ratios were measured with a ground based Raman lidar system at University College Cork, Ireland, during the periods of July 2012 - August 2012, April 2013 - December 2013 and March 2014 - May 2014. Statistical analysis of these parameters in this time provided information about seasonal effects of Raman backscatter coefficients and the altitude of the top of the planetary boundary layer. The mean of the altitude of the top of the planetary boundary layer over these time periods is 950 ± 302 m. The values are larger in summer, 1206 ± 367 m, than in winter, 735 m. The altitude of the top of the planetary boundary layer measured at Cork is lower than most EARLINET stations. Raman backscatter coefficients above and altitude of 2 km are highest in summer and spring where the values are greater than 0.28 Mm‑1 sr‑1. Winter values of Raman backscatter coefficient are less than 0.06 Mm‑1 sr‑1. These seasonal effects are consistent with most EARLINET stations. Large aerosol loads were detected in July 2013 due to a Canadian forest fire event. HYSPLIT air-mass back trajectory models were used to trace the origin of the detected aerosol layers. The aerosol forecast model, MACC, was used to further investigate and verify the propagation of the smoke. The Lidar ratio values and Klett and Raman backscatter coefficients at Cork, for the 4th July, the 7th to 9th of July and the 11th July were compared with observations at Cabauw, Minsk, Granada, Bucharest, Sofia and Garmisch. Lidar ratio values for the smoke detected at Cork were determined to be between 33 sr and 62 sr. The poster will discuss the seasonal changes of Raman backscatter coefficients and the altitude of the top of the planetary boundary layer at Cork. An investigation of a Canadian forest fire event measured at Cork will be compared with other data from the EARLINET database.

  10. Design and daytime performance of laser-induced fluorescence spectrum lidar for simultaneous detection of multiple components, dissolved organic matter, phycocyanin, and chlorophyll in river water.

    PubMed

    Saito, Yasunori; Kakuda, Kei; Yokoyama, Mizuho; Kubota, Tomoki; Tomida, Takayuki; Park, Ho-Dong

    2016-08-20

    In this work, we developed mobile laser-induced fluorescence spectrum (LIFS) lidar based on preliminary experiments on the excitation emission matrix of a water sample and a method for reducing solar background light using the synchronous detection technique. The combination of a UV short-pulse laser (355 nm, 6 ns) for fluorescence excitation with a 10-100 ns short-time synchronous detection using a gated image-intensified multi-channel CCD of the fluorescence made the LIFS lidar operation possible even in daytime. The LIFS lidar with this construction demonstrated the potential of natural river/lake water quality monitoring at the Tenryu River/Lake Suwa. Three main components in the fluorescence data of the water, dissolved organic matter, phycocyanin, and chlorophyll, were extracted by spectral analysis using the standard spectral functions of these components. Their concentrations were estimated by adapting experimentally calibrated data. Results of long-term field observations using our LIFS lidar from 2010 to 2012 show the necessity of simultaneous multi-component detection to understand the natural water environment. PMID:27556995

  11. Ceilometer aerosol profiling versus Raman lidar in the frame of the INTERACT campaign of ACTRIS

    NASA Astrophysics Data System (ADS)

    Madonna, F.; Amato, F.; Vande Hey, J.; Pappalardo, G.

    2015-05-01

    Despite their differences from more advanced and more powerful lidars, the low construction and operation cost of ceilometers (originally designed for cloud base height monitoring) has fostered their use for the quantitative study of aerosol properties. The large number of ceilometers available worldwide represents a strong motivation to investigate both the extent to which they can be used to fill in the geographical gaps between advanced lidar stations and also how their continuous data flow can be linked to existing networks of the more advanced lidars, like EARLINET (European Aerosol Research Lidar Network). In this paper, multi-wavelength Raman lidar measurements are used to investigate the capability of ceilometers to provide reliable information about atmospheric aerosol properties through the INTERACT (INTERcomparison of Aerosol and Cloud Tracking) campaign carried out at the CNR-IMAA Atmospheric Observatory (760 m a.s.l., 40.60° N, 15.72° E), in the framework of the ACTRIS (Aerosol Clouds Trace gases Research InfraStructure) FP7 project. This work is the first time that three different commercial ceilometers with an advanced Raman lidar are compared over a period of 6 months. The comparison of the attenuated backscatter coefficient profiles from a multi-wavelength Raman lidar and three ceilometers (CHM15k, CS135s, CT25K) reveals differences due to the expected discrepancy in the signal to noise ratio (SNR) but also due to changes in the ambient temperature on the short and mid-term stability of ceilometer calibration. Therefore, technological improvements are needed to move ceilometers towards operational use in the monitoring of atmospheric aerosols in the low and free troposphere.

  12. Ceilometer aerosol profiling vs. Raman lidar in the frame of INTERACT campaign of ACTRIS

    NASA Astrophysics Data System (ADS)

    Madonna, F.; Amato, F.; Vande Hey, J.; Pappalardo, G.

    2014-12-01

    Despite their differences from more advanced and more powerful lidars, the low construction and operation cost of ceilometers, originally designed for cloud base height monitoring, has fostered their use for the quantitative study of aerosol properties. The large number of ceilometers available worldwide represents a strong motivation to investigate both the extent to which they can be used to fill in the geographical gaps between advanced lidar stations and also how their continuous data flow can be linked to existing networks of the more advanced lidars, like EARLINET (European Aerosol Research LIdar NETwork). In this paper, multi-wavelength Raman lidar measurements are used to investigate the capability of ceilometers to provide reliable information about atmospheric aerosol content through the INTERACT (INTERcomparison of Aerosol and Cloud Tracking) campaign carried out at the CNR-IMAA Atmospheric Observatory (760 m a.s.l., 40.60° N, 15.72° E), in the framework of ACTRIS (Aerosol Clouds Trace gases Research InfraStructure) FP7 project. This work is the first time that three different commercial ceilometers with an advanced Raman lidar are compared over a period of six months. The comparison of the attenuated backscatter profiles from a multi-wavelength Raman lidar and three ceilometers (CHM15k, CS135s, CT25K) reveals differences due to the expected discrepancy in the SNR but also due to effect of changes in the ambient temperature on the short and mid-term stability of ceilometer calibration. A large instability of ceilometers in the incomplete overlap region has also been observed, making the use of a single overlap correction function for the whole duration of the campaign critical. Therefore, technological improvements of ceilometers towards their operational use in the monitoring of the atmospheric aerosol in the low and free troposphere are needed.

  13. Pure Rotational Raman Lidar for Temperature Measurements from 5-40 Km Over Wuhan, China

    NASA Astrophysics Data System (ADS)

    Li, Yajuan; Song, Shalei; Yang, Yong; Li, Faquan; Cheng, Xuewu; Chen, Zhenwei; Liu, Linmei; McCormick, M. Patrick; Gong, Shunsheng

    2016-06-01

    In this paper a pure rotational Raman lidar (PRR) was established for the atmospheric temperature measurements from 5 km to 40 km over Wuhan, China (30.5°N, 114.5°E). To extract the expected PRR signals and simultaneously suppress the elastically backscattered light, a high-spectral resolution polychromator for light splitting and filtering was designed. Observational results revealed that the temperature difference measured by PRR lidar and the local radiosonde below 30 km was less than 3.0 K. The good agreement validated the reliability of the PRR lidar. With the 1-h integration and 150-m spatial resolution, the statistical temperature error for PRR lidar increases from 0.4 K at 10 km up to 4 K at altitudes of about 30 km. In addition, the whole night temperature profiles were obtained for study of the long-term observation of atmospheric fluctuations.

  14. Mobile Multiwavelength Polarization Raman Lidar for Water Vapor, Cloud and Aerosol Measurement

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Song, Xiaoquan; Liu, Bingyi; Dai, Guangyao; Zhang, Kailin; Qin, Shengguang; Gao, Fei; Hua, Dengxin

    2016-06-01

    Aiming at the detection of water vapor mixing ratio, particle linear depolarization ratio, extinction coefficient and cloud information, the Water vapor, Cloud and Aerosol Lidar (WVCAL) was developed by the lidar group at Ocean University of China. The Lidar consists of transmitting subsystem, receiving subsystem, data acquisition and controlling subsystem and auxiliary subsystem. These parts were presented and described in this paper. For the measurement of various physical properties, three channels including Raman channel, polarization channel and infrared channel are integrated in this Lidar system. In this paper, the integration and working principle of these channels is introduced in details. Finally, a measurement example which was operated in coastal area-Qingdao, Shandong province, during 2014 is provided.

  15. Application of the lamp mapping technique for overlap function for Raman lidar systems.

    PubMed

    Walker, Monique; Venable, Demetrius; Whiteman, David N; Sakai, Tetsu

    2016-04-01

    Traditionally, the lidar water vapor mixing ratio (WVMR) is corrected for overlap using data from another instrument, such as a radiosonde. Here we introduce a new experimental method to determine the overlap function using the lamp mapping technique (LMT), which relies on the lidar optics and detection system. The LMT discussed here involves a standard halogen lamp being scanned over the aperture of a Raman lidar telescope in synchronization with the lidar detection system [Appl. Opt.50, 4622 (2011)APOPAI0003-693510.1364/AO.50.004622, Appl. Opt.53, 8538 (2014)APOPAI0003-693510.1364/AO.53.008535]. In this paper, we show results for a LMT-determined overlap function for individual channels, as well as a WVMR overlap function. We found that the LMT-determined WVMR overlap functions deviate within 5% of the traditional radiosonde-determined overlap. PMID:27139656

  16. Collision broadening effect upon tropospheric temperature calibration functions for pure rotational Raman lidars

    NASA Astrophysics Data System (ADS)

    Gerasimov, V. V.; Zuev, V. V.; Pravdin, V. L.; Nakhtigalova, D. P.; Pavlinskiy, A. V.

    2015-11-01

    We present the general calibration function for temperature retrievals in the cloud-free troposphere using pure rotational Raman (PRR) lidars under the condition of the laser-beam receiver-field-of-view complete overlap. The function is derived within the framework of the semiclassical theory and takes account of the broadened by collision effects elastic backscattered signal leakage into the nearest (to the laser line) lidar PRR channel. The two simplest nonlinear special cases of the general calibration function are considered to be applied in the temperature retrieval algorithm. The vertical temperature profiles retrieved from nighttime lidar measurements in Tomsk (56.48°N, 85.05°E), on October 2, 2014, are given as an example. The measurements were performed using a PRR lidar designed in Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences (IMCES SB RAS) for lower-atmosphere temperature-profile retrievals.

  17. New Examination of the Traditional Raman Lidar Technique. 1; Temperature Dependence and the Calculation of Atmospheric Transmission

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Abshire, James B. (Technical Monitor)

    2002-01-01

    The intent of this paper and its companion paper is to pull together the essential information required for the traditional Raman lidar data analysis to be performed. As a part of this, complications such as the temperature dependence of the water vapor signal is evaluated through numerical simulation. A new form of the lidar equation is presented that accounts for the temperature dependence of Raman scattering. Also the calculation of atmospheric transmission is examined carefully. Several photon correction techniques are considered as is the influence of multiple scattering on the measurement of aerosol extinction using the Raman lidar technique.

  18. Development of Multi-Wavelength Raman Lidar and its Application on Aerosol and Cloud Research

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Wang, Yingjian; Wang, Zhenzhu; Tao, Zongming; Wu, Decheng; Wang, Bangxin; Zhong, Zhiqing; Xie, Chenbo

    2016-06-01

    A movable multi-wavelength Raman lidar (TMPRL) was built in Hefei, China. Emitting with three wavelengths at 1064, 532, and 355nm, receiving three above Mie scattering signals and two nitrogen Raman signals at 386 and 607nm, and depolarization signal at 532nm, TMPRL has the capacity to investigate the height resolved optical and microphysical properties of aerosol and cloud. The retrieval algorithms of optical parameters base on Mie-Raman technique and the microphysical parameters based on Bayesian optimization method were also developed and applied to observed lidar data. Designing to make unattended operation and 24/7 continuous working, TMPRL has joined several field campaigns to study on the aerosol, cloud and their interaction researches. Some observed results of aerosol and cloud optical properties and the first attempt to validate the vertical aerosol size distribution retrieved by TMPRL and in-situ measurement by airplane are presented and discussed.

  19. Calibration of a water vapour Raman lidar with a kite-based humidity sensor

    NASA Astrophysics Data System (ADS)

    Totems, Julien; Chazette, Patrick

    2016-03-01

    We present a calibration method for a water vapour Raman lidar using a meteorological probe lifted by a kite, flown steadily above the lidar site, within the framework of the Hydrological Cycle in the Mediterranean Experiment (HyMeX) and Chemistry-Aerosol Mediterranean Experiment (ChArMEx) campaigns. The experiment was carried out in Menorca (Spain) during June 2013, using the mobile water vapour and aerosol lidar WALI. Calibration using a kite demonstrated a much better degree of co-location with the lidar system than that which could be achieved with radiosondes, and it allowed us to determine the overlap function and calibration factor simultaneously. The range-dependent water vapour lidar calibration was thus determined with an uncertainty of 2 % in the 90-8000 m altitude range. Lidar water vapour measurements are further compared with radiosondes, showing very good agreement in the lower troposphere (1-5 km) and a relative difference and standard deviation of 5 and 9 % respectively. Moreover, a reasonable agreement with MODIS-integrated water vapour content is found, with a relative mean and standard deviation of 3 and 16 % respectively. However, a discrepancy is found with AERONET retrievals, showing the latter to be underestimated by 28 %. Reanalyses by the ECMWF/IFS numerical weather prediction model also agree with the temporal evolution highlighted with the lidar, with no measurable drift in integrated water vapour content over the period.

  20. A new Raman-N2 lidar dedicated to air quality survey

    NASA Astrophysics Data System (ADS)

    Royer, P.; Chazette, P.; Lardier, M.; Raut, J.-C.; Sauvage, L.

    2010-05-01

    The Commissariat à l'Energie Atomique (CEA) and the Centre National de la Recherche Scientifique (CNRS) have developed the Lidar Aérosols UltraViolet Aéroporté (LAUVA). The new version of this prototype is now commercialized with success under license by the LEOSPHERE Company with the name EZ LIDAR®. This eye-safe lidar is based on a Nd:YAG laser giving pulses of 16 mJ at 355 nm with a frequency of 20 Hz. The CEA and LEOSPHERE have recently upgraded this instrument into a three detection channels lidar measuring the two elastic cross-polarizations and the Raman-N2 backscatter signal at 387 nm. It is able to retrieve aerosol optical properties (extinction, backscatter coefficients and depolarization ratio) and atmospheric structures (boundary layer height and clouds) with a resolution of 1.5 m along the line-of-sight in analog mode and 15 m in photon-counting mode. This new lidar is particularly well-adapted to air quality survey thanks to a full overlap reached at ~150 m. This compact (90x50x20 cm) and light (less than50 kg) instrument has been integrated into the Mobile Aerosol Station (MAS) onboard a small truck and enables mobile measurements. We will here present and analyze some results obtained around Paris area with this Raman-N2 lidar.

  1. Automated retrieval of cloud and aerosol properties from the ARM Raman lidar, part 1: feature detection

    SciTech Connect

    Thorsen, Tyler J.; Fu, Qiang; Newsom, Rob K.; Turner, David D.; Comstock, Jennifer M.

    2015-11-01

    A Feature detection and EXtinction retrieval (FEX) algorithm for the Atmospheric Radiation Measurement (ARM) program’s Raman lidar (RL) has been developed. Presented here is part 1 of the FEX algorithm: the detection of features including both clouds and aerosols. The approach of FEX is to use multiple quantities— scattering ratios derived using elastic and nitro-gen channel signals from two fields of view, the scattering ratio derived using only the elastic channel, and the total volume depolarization ratio— to identify features using range-dependent detection thresholds. FEX is designed to be context-sensitive with thresholds determined for each profile by calculating the expected clear-sky signal and noise. The use of multiple quantities pro-vides complementary depictions of cloud and aerosol locations and allows for consistency checks to improve the accuracy of the feature mask. The depolarization ratio is shown to be particularly effective at detecting optically-thin features containing non-spherical particles such as cirrus clouds. Improve-ments over the existing ARM RL cloud mask are shown. The performance of FEX is validated against a collocated micropulse lidar and observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite over the ARM Darwin, Australia site. While we focus on a specific lidar system, the FEX framework presented here is suitable for other Raman or high spectral resolution lidars.

  2. Lidar investigations of atmospheric dynamics

    NASA Astrophysics Data System (ADS)

    Philbrick, C. Russell; Hallen, Hans D.

    2015-09-01

    Ground based lidar techniques using Raleigh and Raman scattering, differential absorption (DIAL), and supercontinuum sources are capable of providing unique signatures to study dynamical processes in the lower atmosphere. The most useful profile signatures of dynamics in the lower atmosphere are available in profiles of time sequences of water vapor and aerosol optical extinction obtained with Raman and DIAL lidars. Water vapor profiles are used to study the scales and motions of daytime convection cells, residual layer bursts into the planetary boundary layer (PBL), variations in height of the PBL layer, cloud formation and dissipation, scale sizes of gravity waves, turbulent eddies, as well as to study the seldom observed phenomena of Brunt-Väisälä oscillations and undular bore waves. Aerosol optical extinction profiles from Raman lidar provide another tracer of dynamics and motion using sequential profiles atmospheric aerosol extinction, where the aerosol distribution is controlled by dynamic, thermodynamic, and photochemical processes. Raman lidar profiles of temperature describe the stability of the lower atmosphere and measure structure features. Rayleigh lidar can provide backscatter profiles of aerosols in the troposphere, and temperature profiles in the stratosphere and mesosphere, where large gravity waves, stratospheric clouds, and noctilucent clouds are observed. Examples of several dynamical features are selected to illustrate interesting processes observed with Raman lidar. Lidar experiments add to our understanding of physical processes that modify atmospheric structure, initiate turbulence and waves, and describe the relationships between energy sources, atmospheric stability parameters, and the observed dynamics.

  3. Remote sensing of the atmosphere by resonance Raman LIDAR

    SciTech Connect

    Sedlacek, A.J.; Harder, D.; Leung, K.P.; Zuhoski, P.B. Jr.; Burr, D.; Chen, C.L.

    1994-12-01

    When in resonance, Raman scattering exhibits strong enhancement ranging from four to six orders of magnitude. This physical phenomenon has been applied to remote sensing of the Earth`s atmosphere. With a 16 inch Cassegrain telescope and spectrometer/ CCD-detector system, 70-150 ppm-m of SO{sub 2} in the atmosphere has been detected at a distance of 0.5 kilometer. This system can be used to detect/monitor chemical effluence in the atmosphere by their unique Raman fingerprints. Experimental result together with detailed resonance Raman and atmospheric laser propagation effects will be discussed.

  4. Raman Lidar Water Vapor Measurements at the DOE SGP CART Site

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Smith, David E. (Technical Monitor)

    2001-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was deployed to the Department of Energy's (DOE) Cloud and Radiation Testbed site in northern Oklahoma September - December, 2000 for two DOE sponsored field campaigns: 1) the Water Vapor Intensive Operations Experiment 2000 and 2) the Atmospheric Radiations Measurement First International Satellite Cloud Climatology Experiment Experiment (AFWEX). WvIOP2000 focussed on water vapor measurements in the lower troposphere while AFWEX focussed on upper tropospheric water vapor. For the first time ever, four water vapor lidars were operated simultaneously: one airborne and three ground-based systems. Intercomparisons of these measurements and others will be presented at the meeting.

  5. Rayleigh/raman Greenland Lidar Observations of Atmospheric Temperature During a Major Arctic Stratospheric Warming Event

    NASA Technical Reports Server (NTRS)

    Meriwether, John W.; Farley, Robert; Mcnutt, R.; Dao, Phan D.; Moskowitz, Warren P.

    1992-01-01

    Between Jan. 22 1991 to Feb. 5 1991, we made numerous observations of atmospheric temperature profiles between 10 and 70 km by using the combination of Rayleigh and Raman lidar systems contained in the PL Mobile Lidar Facility located at the National Science Foundation Incoherent Radar Facility of Sondrestrom in Greenland. The purpose of these measurements was to observe the dynamics of the winter Arctic stratosphere and mesosphere regions during a winter period from the succession of temperature profiles obtained in our campaign observations. Various aspects of this investigation are presented.

  6. Central Asian Dust Experiment (CADEX): Multiwavelength Polarization Raman Lidar Observations in Tajikistan

    NASA Astrophysics Data System (ADS)

    Hofer, Julian; Althausen, Dietrich; Abdullaev, Sabur F.; Engelmann, Ronny; Baars, Holger

    2016-06-01

    For the first time lidar measurements of vertical aerosol profiles are conducted in Tajikistan/Central Asia. These measurements just started on March 17th, 2015. They are performed within the Central Asian Dust Experiment (CADEX) in Dushanbe and they will last at least one year. The deployed system for these observations is an updated version of the multiwavelength polarization Raman lidar PollyXT. Vertical profiles of the backscatter coefficient, the extinction coefficient, and the particle depolarization ratio are measured by this instrument. A first and preliminary measurement example of an aerosol layer over Dushanbe is shown.

  7. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 1; Methods and Comparisons

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Leifer, R.

    1998-01-01

    This paper examines the aerosol backscattering and extinction profiles measured at night by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site in April 1994. These lidar data are used to derive aerosol profiles for altitudes between 0.0 1 5 and 5 km. Since this lidar detects Raman scattering from nitrogen and oxygen molecules as well as the elastic scattering from molecules and aerosols, it measures both aerosol backscattering and extinction simultaneously. The aerosol extinction/backscattering ratio varied between approximately 30 sr and 75 sr at 351 nm. Aerosol optical thicknesses derived by integrating the lidar profiles of aerosol extinction measured at night between 0. I and 5 km are found to be about 10-40% lower than those measured by a Sun photometer during the day. This difference is attributed to the contribution by stratospheric aerosols not included in the lidar estimates as well as to diurnal differences in aerosol properties and concentrations. Aerosol profiles close to the surface were acquired by pointing the lidar nearly horizontally. Measurements of aerosol scattering from a tower-mounted nephelometer are found to be 40% lower than lidar measurements of aerosol extinction over a wide range of relative humidities even after accounting for the difference in wavelengths. The reasons for this difference are not clear but may be due to the inability of the nephelometer to accurately measure scattering by large particles.

  8. Raman lidar measurements of aerosol extinction and backscattering: 1. Methods and comparisons

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Leifer, R.

    1998-08-01

    This paper examines the aerosol backscattering and extinction profiles measured at night by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site in April 1994. These lidar data are used to derive aerosol profiles for altitudes between 0.015 and 5 km. Since this lidar detects Raman scattering from nitrogen and oxygen molecules as well as the elastic scattering from molecules and aerosols, it measures both aerosol backscattering and extinction simultaneously. The aerosol extinction/backscattering ratio varied between approximately 30 sr and 75 sr at 351 nm. Aerosol optical thicknesses derived by integrating the lidar profiles of aerosol extinction measured at night between 0.1 and 5 km are found to be about 10-40% lower than those measured by a Sun photometer during the day. This difference is attributed to the contribution by stratospheric aerosols not included in the lidar estimates as well as to diurnal differences in aerosol properties and concentrations. Aerosol profiles close to the surface were acquired by pointing the lidar nearly horizontally. Measurements of aerosol scattering from a tower-mounted nephelometer are found to be 40% lower than lidar measurements of aerosol extinction over a wide range of relative humidities even after accounting for the difference in wavelengths. The reasons for this difference are not clear but may be due to the inability of the nephelometer to accurately measure scattering by large particles.

  9. Liquid Water Cloud Measurements Using the Raman Lidar Technique: Current Understanding and Future Research Needs

    NASA Technical Reports Server (NTRS)

    Tetsu, Sakai; Whiteman, David N.; Russo, Felicita; Turner, David D.; Veselovskii, Igor; Melfi, S. Harvey; Nagai, Tomohiro; Mano, Yuzo

    2013-01-01

    This paper describes recent work in the Raman lidar liquid water cloud measurement technique. The range-resolved spectral measurements at the National Aeronautics and Space Administration Goddard Space Flight Center indicate that the Raman backscattering spectra measured in and below low clouds agree well with theoretical spectra for vapor and liquid water. The calibration coefficients of the liquid water measurement for the Raman lidar at the Atmospheric Radiation Measurement Program Southern Great Plains site of the U.S. Department of Energy were determined by comparison with the liquid water path (LWP) obtained with Atmospheric Emitted Radiance Interferometer (AERI) and the liquid water content (LWC) obtained with the millimeter wavelength cloud radar and water vapor radiometer (MMCR-WVR) together. These comparisons were used to estimate the Raman liquid water cross-sectional value. The results indicate a bias consistent with an effective liquid water Raman cross-sectional value that is 28%-46% lower than published, which may be explained by the fact that the difference in the detectors' sensitivity has not been accounted for. The LWP of a thin altostratus cloud showed good qualitative agreement between lidar retrievals and AERI. However, the overall ensemble of comparisons of LWP showed considerable scatter, possibly because of the different fields of view of the instruments, the 350-m distance between the instruments, and the horizontal inhomogeneity of the clouds. The LWC profiles for a thick stratus cloud showed agreement between lidar retrievals andMMCR-WVR between the cloud base and 150m above that where the optical depth was less than 3. Areas requiring further research in this technique are discussed.

  10. Study and mitigation of calibration error sources in a water vapour Raman lidar

    NASA Astrophysics Data System (ADS)

    David, Leslie; Bock, Olivier; Bosser, Pierre; Thom, Christian; Pelon, Jacques

    2014-05-01

    The monitoring of water vapour throughout the atmosphere is important for many scientific applications (weather forecasting, climate research, calibration of GNSS altimetry measurements). Measuring water vapour remains a technical challenge because of its high variability in space and time. The major issues are achieving long-term stability (e.g., for climate trends monitoring) and high accuracy (e.g. for calibration/validation applications). LAREG and LOEMI at Institut National de l'Information Géographique et Forestière (IGN) have developed a mobile scanning water vapour Raman lidar in collaboration with LATMOS at CNRS. This system aims at providing high accuracy water vapour measurements throughout the troposphere for calibrating GNSS wet delay signals and thus improving vertical positioning. Current developments aim at improving the calibration method and long term stability of the system to allow the Raman lidar to be used as a reference instrument. The IGN-LATMOS lidar was deployed in the DEMEVAP (Development of Methodologies for Water Vapour Measurement) campaign that took place in 2011 at the Observatoire de Haute Provence. The goals of DEMEVAP were to inter-compare different water vapour sounding techniques (lidars, operational and research radiosondes, GPS,…) and to study various calibration methods for the Raman lidar. A significant decrease of the signals and of the calibration constants of the IGN-LATMOS Raman lidar has been noticed all along the campaign. This led us to study the likely sources of uncertainty and drifts in each part of the instrument: emission, reception and detection. We inventoried several error sources as well as instability sources. The impact of the temperature dependence of the Raman lines on the filter transmission or the fluorescence in the fibre, are examples of the error sources. We investigated each error source and each instability source (uncontrolled laser beam jitter, temporal fluctuations of the photomultiplier

  11. New Examination of the Traditional Raman Lidar Technique II: Temperature Dependence Aerosol Scattering Ratio and Water Vapor Mixing Ratio Equations

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Abshire, James B. (Technical Monitor)

    2002-01-01

    In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman water vapor signal and the lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here we use those results to derive the temperature dependent forms of the equations for the aerosol scattering ratio, aerosol backscatter coefficient, extinction to backscatter ratio and water vapor mixing ratio. Pertinent analysis examples are presented to illustrate each calculation.

  12. Development and applications of tunable, narrow band lasers and stimulated Raman scattering devices for atmospheric lidar

    NASA Technical Reports Server (NTRS)

    Wilkerson, Thomas D.

    1993-01-01

    The main thrust of the program was the study of stimulated Raman processes for application to atmospheric lidar measurements. This has involved the development of tunable lasers, the detailed study of stimulated Raman scattering, and the use of the Raman-shifted light for new measurements of molecular line strengths and line widths. The principal spectral region explored in this work was the visible and near-IR wavelengths between 500 nm and 1.5 microns. Recent alexandrite ring laser experiments are reported. The experiments involved diode injection-locking, Raman shifting, and frequency-doubling. The experiments succeeded in producing tunable light at 577 and 937 nm with line widths in the range 80-160 MHz.

  13. Rotational Raman lidar with a multispectral detector for temperature profiling in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Yoshikawa, K.; Yabuki, M.; Tsuda, T.

    2013-12-01

    Temperature profiling in the atmospheric boundary layer is essential for studying atmospheric processes such as dynamics, thermodynamics, and cloud physics. The rotational Raman (RR) lidar has the ability to conduct continuous observation of the spatial distributions of atmospheric temperature. In this study, a combination of the temperature lidar with a multispectral detector is proposed, in order to construct a system that is compact, robust, and easy to align for the detection of RR signals. The multispectral detector enables simultaneous acquisition of multi-channel photon counts and provides spectral and range-resolved data by applying lidar techniques. Conventional temperature lidar detects the ratio of two RR lidar signals of opposite temperature dependence in combination with several edge- and interference-filters. Conversely, the multispectral detector can define the shape of the RR spectrum. Therefore, the proposed system with a multispectral detector detects the variation of the lidar signals by temperature as well as that of the wavelength shift of the emitted laser. It is suggested that this technique can reduce uncertainties in the optical alignment of the polychromator and in the stability of laser wavelength. The statistical temperature-error derived from the proposed method depends on both the spectral resolution and the spectral range of the multispectral detector. The ideal settings for multispectral observation were estimated by the theoretical simulation of the effect of both spectral resolution and spectral range on the accuracy of temperature estimation. Further, we construct the temperature lidar by employing the multispectral detector with the ideal spectral resolution derived from the simulation. In this presentation, we introduce our proposed system and the preliminary results of the temperature observation from RR lidar with a multi spectral detector.

  14. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Rush, Kurt; Rabenhorst, Scott; Welch, Wayne; Cadirola, Martin; McIntire, Gerry; Russo, Felicita; Adam, Mariana; Venable, Demetrius; Connell, Rasheen; Veselovskii, Igor; Forno, Ricardo; Mielke, Bernd; Stein, Bernhard; Leblanc, Thierry; McDermid, Stuart; Voemel, Holger

    2010-01-01

    A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire, for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, aerosol depolarization and research mode measurements of cloud liquid water, cloud droplet radius, and number density. The Raman Airborne Spectroscopic Lidar (RASL) system was installed in a Beechcraft King Air B200 aircraft and was flown over the mid-Atlantic United States during July August 2007 at altitudes ranging between 5 and 8 km. During these flights, despite suboptimal laser performance and subaperture use of the telescope, all RASL measurement expectations were met, except that of aerosol extinction. Following the Water Vapor Validation Experiment Satellite/Sondes (WAVES_2007) field campaign in the summer of 2007, RASL was installed in a mobile trailer for groundbased use during the Measurements of Humidity and Validation Experiment (MOHAVE-II) field campaign held during October 2007 at the Jet Propulsion Laboratory s Table Mountain Facility in southern California. This ground-based configuration of the lidar hardware is called Atmospheric Lidar for Validation, Interagency Collaboration and Education (ALVICE). During theMOHAVE-II field campaign, during which only nighttime measurements were made, ALVICE demonstrated significant sensitivity to lower-stratospheric water vapor. Numerical simulation and comparisons with a cryogenic frost-point hygrometer are used to demonstrate that a system with the performance characteristics of RASL ALVICE should indeed be able to quantify water vapor well into the lower stratosphere with extended averaging from an elevated location like Table Mountain. The same design considerations that optimize Raman lidar for airborne use on a small research aircraft are, therefore, shown to yield significant dividends in the quantification of lower-stratospheric water vapor. The MOHAVE

  15. Aerosol Properties over Southeastern China from Multi-Wavelength Raman and Depolarization Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Heese, Birgit; Althausen, Dietrich; Baars, Holger; Bohlmann, Stephanie; Deng, Ruru

    2016-06-01

    A dataset of particle optical properties of highly polluted urban aerosol over the Pearl River Delta, Guangzhou, China is presented. The data were derived from multi-wavelengths Raman and depolarization lidar PollyXT and AERONET sun photometer measurements. The measurement campaign was conducted from Nov 2011 to June 2012. High aerosol optical depth was observed in the polluted atmosphere over this megacity, with a mean value of 0.54 ± 0.33 and a peak value of even 1.9. For the particle characterization the lidar ratio and the linear particle depolarization ratio, both at 532 nm, were used. The mean values of these properties are 48.0 sr ± 10.7 sr for the lidar ratio and 4%+-4% for the particle depolarization ratio, which means most depolarization measurements stayed below 10%. So far, most of these results indicate urban pollution particles mixed with particles arisen from biomass and industrial burning.

  16. Evidence of High Ice Supersaturation in Cirrus Clouds Using ARM Raman Lidar Measurements

    SciTech Connect

    Comstock, Jennifer M.; Ackerman, Thomas P.; Turner, David D.

    2004-06-05

    Water vapor amounts in the upper troposphere are crucial to understanding the radiative feedback of cirrus clouds on the Earth’s climate. We use a unique, year-long dataset of water vapor mixing ratio inferred from ground-based Raman lidar measurements to study the role of ice supersaturation in ice nucleation processes. We find that ice supersaturation occurs 31% of the time in over 300,000 data points. We also examine the distribution of ice supersaturation with height and find that in the uppermost portion of a cloud layer, the air is ice supersaturated 43% of the time. These measurements show that large ice supersaturation is common in cirrus clouds, which supports the theory of ice forming homogeneously. Given the continuous nature of these Raman lidar measurements, our results have important implications for studying ice nucleation processes using cloud microphysical models.

  17. ARM Raman Lidar Measurements of High Ice Supersaturation in Cirrus Clouds

    SciTech Connect

    Comstock, Jennifer M.; Ackerman, Thomas P.; Turner, David D.

    2004-09-01

    Water vapor amounts in the upper troposphere are crucial to understanding the radiative feedback of cirrus clouds on the Earth's climate. We use a unique, year-long dataset of water vapor mixing ratio inferred from ground-based Raman lidar measurements to study the role of ice supersaturation in ice nucleation processes. We find that ice supersaturation occurs 31% of the time in over 300,000 data points. We also examine the distribution of ice supersaturation with height and find that in the uppermost portion of a cloud layer, the air is ice supersaturated 43% of the time. These measurements show that large ice supersaturation is common in cirrus clouds, which supports the theory of ice forming homogeneously. Given the continuous nature of these Raman lidar measurements, our results have important implications for studying ice nucleation processes using cloud microphysical models.

  18. Observations of water vapor by ground-based micro-wave radiometers and Raman lidar

    NASA Astrophysics Data System (ADS)

    Han, Yong; Snider, J. B.; Westwater, E. R.; Melfi, S. H.; Ferrare, R. A.

    1994-09-01

    In November to December 1991, a substantial number of remote sensors and in situ instruments were operated together in Coffeyville, Kansas, during the climate experiment FIRE II. Included in the suite of instruments were (1) the NOAA Environmental Technology Laboratory (ETL) three-channel microwave radiometer, (2) the NASA GSFC Raman lidar, (3) ETL radio acoustic sounding system (RASS), and (4) frequent, research-quality radiosondes. The Raman lidar operated only at night and the focus of this portion of the experiment concentrated on clear conditions. The lidar data, together with frequent radiosondes and measurements of temperature profiles (every 15 min) by RASS allowed profiles of temperature and absolute humidity to be estimated every minute. We compared 2-min measurements of brightness temperature (Tb) with calculations of Tb that were based on the Liebe and Lay ton (1987) and Liebe et al. (1993) microwave propagation models, as well as the Waters (1976) model. The comparisons showed the best agreement at 20.6 GHz with the Waters model, with the Liebe et al. (1993) model being best at 31.65 GHz. The results at 90 GHz gave about equal success with the Liebe and Layton (1987) and Liebe et al. (1993) models. Comparisons of precipitable water vapor derived independently from the two instruments also showed excellent agreement, even for averages as short as 2 min. The rms difference between Raman and radiometric determinations of precipitable water vapor was 0.03 cm which is roughly 2%. The experiments clearly demonstrate the potential of simultaneous operation of radiometers and Raman lidars for fundamental physical studies of water vapor.

  19. Observations of water vapor by ground-based microwave radiometers and Raman lidar

    NASA Technical Reports Server (NTRS)

    Han, Yong; Snider, J. B.; Westwater, E. R.; Melfi, S. H.; Ferrare, R. A.

    1994-01-01

    In November to December 1991, a substantial number of remote sensors and in situ instruments were operated together in Coffeyville, Kansas, during the climate experiment First ISCCP Regional Experiment Phase 2 (FIRE 2). Includede in the suite of instruments were (1) the NOAA Environmental Technology Laboratory (ETL) three-channel microwave radiometer, (2) the NASA GSFC Raman lidar, (3) ETL radio acoustic sounding system (RASS), and (4) frequent, research-quality radiosondes. The Raman lidar operated only at night and the focus of this portion of the experiment concentrated on clear conditions. The lidar data, together with frequent radiosondes and measurements of temperature profiles (every 15 min) by RASS allowed profiles of temperature and absolute humidity to be estimated every minute. We compared 20 min measurements of brightness temperature (T(sub b) with calculations of T(sub b) that were based on the Liebe and Layton (1987) and Liebe et al. (1993) microwave propagation models, as well as the Waters (1976) model. The comparisons showed the best agreement at 20.6 GHz with the Waters model, with the Liebe et al. (1993) model being best at 31.65 GHz. The results at 90 GHz gave about equal success with the Liebe and Layton (1987) and Liebe et al. (1993) models. Comparisons of precipitable water vapor derived independently from the two instruments also showed excellent agreement, even for averages as short as 2 min. The rms difference between Raman and radiometric determinations of precipitable water vapor was 0.03 cm which is roughly 2%. The experiments clearly demonstrate the potential of simultaneous operation of radiometers and Raman lidars for fundamental physical studies of water vapor.

  20. Lidar-measured atmospheric N₂ vibrational-rotational Raman spectra and consequent temperature retrieval.

    PubMed

    Liu, Fuchao; Yi, Fan

    2014-11-17

    We have built a spectrally resolved Raman lidar to measure atmospheric N₂ Stokes vibrational-rotational Raman spectra. The lidar applies a double-grating polychromator with a reciprocal linear dispersion of ~0.12 nm mm(-1) for the wavelength separation and a 32-channel linear-array photomultiplier tube for sampling the spectral signals. The lidar can together measure the individual S- and O-branch line signals from J = 0 (2) through 14 (16). A comparison shows an excellent agreement between the lidar-measured and theoretically-calculated spectra. Based on the signal ratio of two individual lines (e.g., S-branch J = 6 and 12), the atmospheric temperature profiles are derived without requiring a calibration from another reference temperature. In terms of the envelope shape of an even-J section of the measured S-branch lines, we have also developed a new temperature retrieval approach without needing a calibration from reference temperature data. Both the approaches can give rise to reasonable temperature profiles comparable to that from local radiosonde. PMID:25402026

  1. Remote sensing of seawater and drifting ice in Svalbard fjords by compact Raman lidar.

    PubMed

    Bunkin, Alexey F; Klinkov, Vladimir K; Lednev, Vasily N; Lushnikov, Dmitry L; Marchenko, Aleksey V; Morozov, Eugene G; Pershin, Sergey M; Yulmetov, Renat N

    2012-08-01

    A compact Raman lidar system for remote sensing of sea and drifting ice was developed at the Wave Research Center at the Prokhorov General Physics Institute of the Russian Academy of Sciences. The developed system is based on a diode-pumped solid-state YVO(4):Nd laser combined with a compact spectrograph equipped with a gated detector. The system exhibits high sensitivity and can be used for mapping or depth profiling of different parameters within many oceanographic problems. Light weight (∼20 kg) and low power consumption (300 W) make it possible to install the device on any vehicle, including unmanned aircraft or submarine systems. The Raman lidar presented was used for study and analysis of the different influence of the open sea and glaciers on water properties in Svalbard fjords. Temperature, phytoplankton, and dissolved organic matter distributions in the seawater were studied in the Ice Fjord, Van Mijen Fjord, and Rinders Fjord. Drifting ice and seawater in the Rinders Fjord were characterized by the Raman spectroscopy and fluorescence. It was found that the Paula Glacier strongly influences the water temperature and chlorophyll distributions in the Van Mijen Fjord and Rinders Fjord. Possible applications of compact lidar systems for express monitoring of seawater in places with high concentrations of floating ice or near cold streams in the Arctic Ocean are discussed. PMID:22859038

  2. Raman Lidar Profiles Best Estimate Value-Added Product Technical Report

    SciTech Connect

    Newson, R

    2012-01-18

    The ARM Raman lidars are semi-autonomous ground-based systems that transmit at a wavelength of 355 nm with 300 mJ, {approx}5 ns pulses, and a pulse repetition frequency of 30Hz. Signals from the various detection channels are processed to produce time- and height-resolved estimates of several geophysical quantities, such as water vapor mixing ratio, relative humidity, aerosol scattering ratio, backscatter, optical depth, extinction, and depolarization ratio. Data processing is currently handled by a suite of six value-added product (VAP) processes. Collectively, these processes are known as the Raman Lidar Profiles VAP (RLPROF). The top-level best-estimate (BE) VAP process was introduced in order to bring together the most relevant information from the intermediate-level VAPs. As such, the BE process represents the final stage in data processing for the Raman lidar. Its principal function is to extract the primary variables from each of the intermediate-level VAPs, perform additional quality control, and combine all of this information into a single output file for the end-user. The focus of this document is to describe the processing performed by the BE VAP process.

  3. Ceilometer Aerosol Profiling versus Raman Lidar in the Frame of Interact Campaign of Actris

    NASA Astrophysics Data System (ADS)

    Madonna, F.; Amato, F.; Rosoldi, M.; Vande Hey, J.; Pappalardo, G.

    2016-06-01

    In this paper, multi-wavelength Raman lidar measurements are used to investigate the capability of ceilometers to provide reliable information about atmospheric aerosol properties through the INTERACT (INTERcomparison of Aerosol and Cloud Tracking) campaign carried out at the CNR-IMAA Atmospheric Observatory (760 m a.s.l., 40.60 N, 15.72 E), in the framework of ACTRIS (Aerosol Clouds Trace gases Research InfraStructure) FP7 project. This work is the first time that three different commercial ceilometers with an advanced Raman lidar are compared over a period of six month. The comparison of the attenuated backscatter coefficient profiles from a multi-wavelength Raman lidar and three ceilometers (CHM15k, CS135s, CT25K) reveals differences due to the expected discrepancy in the SNR but also due to effect of changes in the ambient temperature on the stability of ceilometer calibration over short and mid-term. Technological improvements of ceilometers towards their operational use in the monitoring of the atmospheric aerosol in the low and free troposphere are likely needed.

  4. Atmospheric aerosol characterization combining multi-wavelength Raman lidar and MAX-DOAS measurements in Gwanjgu

    NASA Astrophysics Data System (ADS)

    Chong, Jihyo; Shin, Dong Ho; Kim, Kwang Chul; Lee, Kwon-Ho; Shin, Sungkyun; Noh, Young M.; Müller, Detlef; Kim, Young J.

    2011-11-01

    Integrated approach has been adopted at the ADvanced Environmental Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST), Korea for effective monitoring of atmospheric aerosol. Various active and passive optical remote sensing techniques such as multi-wavelength (3β+2α+1δ) Raman LIDAR, sun-photometry, MAX-DOAS, and satellite retrieval have been utilized. This integrated monitoring system approach combined with in-situ surface measurement is to allow better characterization of physical and optical properties of atmospheric aerosol. Information on the vertical distribution and microphysical properties of atmospheric aerosol is important for understanding its transport characteristics as well as radiative effect. The GIST multi-wavelength (3β + 2α+1δ) Raman lidar system can measure vertical profiles of optical properties of atmospheric aerosols such as extinction coefficients at 355 and 532nm, particle backscatter coefficients at 355, 532 and 1064 nm, and depolarization ratio at 532nm. The incomplete overlap between the telescope field-of-view and beam divergence of the transmitting laser significantly affects lidar measurement, resulting in higher uncertainty near the surface where atmospheric aerosols of interest are concentrated. Differential Optical Absorption Spectroscopy (DOAS) technique is applied as a complementary tool for the detection of atmospheric aerosols near the surface. The passive Multi-Axis DOAS (MAX-DOAS) technique uses scattered sunlight as a light source from several viewing directions. Recently developed aerosol retrieval algorithm based on O4 slant column densities (SCDs) measured at UV and visible wavelengths has been utilized to derive aerosol information (e.g., aerosol optical depth (AOD) and aerosol extinction coefficients (AECs)) in the lower troposphere. The aerosol extinction coefficient at 356 nm was retrieved for the 0-1 and 1-2 km layers based on the MAX-DOAS measurements using the retrieval algorithm

  5. A New Way to Measure Cirrus Ice Water Content by Using Ice Raman Scatter with Raman Lidar

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Whiteman, David N.; Demoz, Belay; Veselovskii, Igor

    2004-01-01

    High and cold cirrus clouds mainly contain irregular ice crystals, such as, columns, hexagonal plates, bullet rosettes, and dendrites, and have different impacts on the climate system than low-level clouds, such as stratus, stratocumulus, and cumulus. The radiative effects of cirrus clouds on the current and future climate depend strongly on cirrus cloud microphysical properties including ice water content (IWC) and ice crystal sizes, which are mostly an unknown aspect of cinus clouds. Because of the natural complexity of cirrus clouds and their high locations, it is a challenging task to get them accurately by both remote sensing and in situ sampling. This study presents a new method to remotely sense cirrus microphysical properties by using ice Raman scatter with a Raman lidar. The intensity of Raman scattering is fundamentally proportional to the number of molecules involved. Therefore, ice Raman scattering signal provides a more direct way to measure IWC than other remote sensing methods. Case studies show that this method has the potential to provide essential information of cirrus microphysical properties to study cloud physical processes in cirrus clouds.

  6. Gas dispersion measurements using a mobile Raman lidar system

    NASA Technical Reports Server (NTRS)

    Houston, J. D.; Brown, D. R.

    1986-01-01

    The exploitation of natural gas resources to supply energy demands has resulted in the need to engineer pipelines and plants capable of handling extremely high pressures and throughputs. Consequently, more attention has been directed to evaluating the consequences of releases of material whether accidental or deliberate in nature. An important aspect of assessing the consequences of a release is an understanding of how gas disperses in the atmosphere over a wide range of release and atmospheric conditions. The most cost effective way of providing such information is through the development and use of reliable theoretical prediction methods. The need for some form of remote sensing device was identified. The various possibilities studied led to the conclusion that LIDAR (Light Detection And Ranging) offered the most suitable method. The system designed and built is described, and its recent use in monitoring operational ventings from a high pressure transmission system is discussed.

  7. Estimation of black carbon content for biomass burning aerosols from multi-channel Raman lidar data

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Marmureanu, Luminita; Nicolae, Doina

    2015-04-01

    Biomass burning due to natural processes (forest fires) or anthropical activities (agriculture, thermal power stations, domestic heating) is an important source of aerosols with a high content of carbon components (black carbon and organic carbon). Multi-channel Raman lidars provide information on the spectral dependence of the backscatter and extinction coefficients, embedding information on the black carbon content. Aerosols with a high content of black carbon have large extinction coefficients and small backscatter coefficients (strong absorption), while aerosols with high content of organic carbon have large backscatter coefficients (weak absorption). This paper presents a method based on radiative calculations to estimate the black carbon content of biomass burning aerosols from 3b+2a+1d lidar signals. Data is collected at Magurele, Romania, at the cross-road of air masses coming from Ukraine, Russia and Greece, where burning events are frequent during both cold and hot seasons. Aerosols are transported in the free troposphere, generally in the 2-4 km altitude range, and reaches the lidar location after 2-3 days. Optical data are collected between 2011-2012 by a multi-channel Raman lidar and follows the quality assurance program of EARLINET. Radiative calculations are made with libRadTran, an open source radiative model developed by ESA. Validation of the retrievals is made by comparison to a co-located C-ToF Aerosol Mass Spectrometer. Keywords: Lidar, aerosols, biomass burning, radiative model, black carbon Acknowledgment: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project no. 39/2012 - SIAFIM, and by Romanian Partnerships in priority areas PNII implemented with MEN-UEFISCDI support, project no. 309/2014 - MOBBE

  8. Comments on: Accuracy of Raman Lidar Water Vapor Calibration and its Applicability to Long-Term Measurements

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Venable, Demetrius; Landulfo, Eduardo

    2012-01-01

    In a recent publication, LeBlanc and McDermid proposed a hybrid calibration technique for Raman water vapor lidar involving a tungsten lamp and radiosondes. Measurements made with the lidar telescope viewing the calibration lamp were used to stabilize the lidar calibration determined by comparison with radiosonde. The technique provided a significantly more stable calibration constant than radiosondes used alone. The technique involves the use of a calibration lamp in a fixed position in front of the lidar receiver aperture. We examine this configuration and find that such a configuration likely does not properly sample the full lidar system optical efficiency. While the technique is a useful addition to the use of radiosondes alone for lidar calibration, it is important to understand the scenarios under which it will not provide an accurate quantification of system optical efficiency changes. We offer examples of these scenarios.

  9. Progress report of FY 1999 activities: The application of Kalman filtering to derive water vapor profiles from combined ground-based sensors: Raman lidar, microwave radiometers, GPS, and radiosondes

    SciTech Connect

    Edgeworth R. Westwater; Yong Han

    1999-09-10

    Previously, the proposers have delivered to ARM a documented algorithm, that is now applied operationally, and which derives water vapor profiles from combined remote sensor measurements of water vapor radiometers, cloud-base ceilometers, and radio acoustic sounding systems (RASS). With the expanded deployment of a Raman lidar at the CART Central Facility, high quality, high vertical-resolution, water vapor profiles will be provided during nighttime clear conditions, and during clear daytime conditions, to somewhat lower altitudes. The object of this effort is to use Kalman Filtering, previously applied to the combination of nighttime Raman lidar and microwave radiometer data, to derive high-quality water vapor profiles, during non-precipitating conditions, from data routinely available at the CART site. Input data to the algorithm would include: Raman lidar data, highly quality-controlled data of integrated moisture from microwave radiometers and GPS, RASS, and radiosondes. While analyzing data obtained during the Water Vapor Intensive Operating Period'97 at the SGP CART site in central Oklahoma, several questions arose about the calibration of the ARM microwave radiometers (MWR). A large portion of this years effort was a thorough analysis of the many factors that are important for the calibration of this instrument through the tip calibration method and the development of algorithms to correct this procedure. An open literature publication describing this analysis has been accepted.

  10. Progress report of FY 1998 activities: The application of Kalman filtering to derive water vapor profiles from combined ground-based sensors: Raman lidar, microwave radiometers, GPS, and radiosondes

    SciTech Connect

    Edgeworth R. Westwater; Yong Han

    1999-10-01

    Previously, the proposers have delivered to ARM a documented algorithm, that is now applied operationally, and which derives water vapor profiles from combined remote sensor measurements of water vapor radiometers, cloud-base ceilometers, and radio acoustic sounding systems (RASS). With the expanded deployment of a Raman lidar at the CART Central Facility, high quality, high vertical-resolution, water vapor profiles will be provided during nighttime clear conditions, and during clear daytime conditions, to somewhat lower altitudes. The object of this effort is to use Kalman Filtering, previously applied to the combination of nighttime Raman lidar and microwave radiometer data, to derive high-quality water vapor profiles, during non-precipitating conditions, from data routinely available at the CART site. Input data to the algorithm would include: Raman lidar data, highly quality-controlled data of integrated moisture from microwave radiometers and GPS, RASS, and radiosondes. The focus of this years activities has been on the intercomparison of data obtained during the Water Vapor Intensive Operating Period'97 at the SGP CART site in central Oklahoma.

  11. Progress report of FY 1997 activities: The application of Kalman filtering to derive water vapor profiles from combined ground-based sensors: Raman lidar, microwave radiometers, GPS, and radiosondes

    SciTech Connect

    Edgeworth R. Westwater; Yong Han

    1997-10-05

    Previously, the proposers have delivered to ARM a documented algorithm, that is now applied operationally, and which derives water vapor profiles from combined remote sensor measurements of water vapor radiometers, cloud-base ceilometers, and radio acoustic sounding systems (RASS). With the expanded deployment of a Raman lidar at the CART Central Facility, high quality, high vertical-resolution, water vapor profiles will be provided during nighttime clear conditions, and during clear daytime conditions, to somewhat lower altitudes. The object of this proposal was to use Kalman Filtering, previously applied to the combination of nighttime Raman lidar and microwave radiometer data, to derive high-quality water vapor profiles, during non-precipitating conditions, from data routinely available at the CART site. Input data to the algorithm would include: Raman lidar data, highly quality-controlled data of integrated moisture from microwave radiometers and GPS, RASS, and radiosondes. The algorithm will include recently-developed quality control procedures for radiometers. The focus of this years activities has been on the intercomparison of data obtained during an intensive operating period at the SGP CART site in central Oklahoma.

  12. Raman Lidar Measurements of Water Vapor and Cirrus Clouds During the Passage of Hurricane Bonnie

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Evans, K. D.; Demoz, B.; Starr, D. OC; Tobin, D.; Feltz, W.; Jedlovec, G. J.; Gutman, S. I.; Schwemmer, G. K.; Cardirola, M.; Melfi, S. H.; Schmidlin, F. J.

    2000-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island in the Bahamas during August - September, 1998 as a part of the third Convection and Moisture Experiment (CAMEX-3) which focussed on hurricane development and tracking. During the period August 21 - 24, hurricane Bonnie passed near Andros Island and influenced the water vapor and cirrus cloud measurements acquired by the SRL. Two drying signatures related to the hurricane were recorded by the SRL (Scanning Raman Lidar) and other sensors. Cirrus cloud optical depths (at 351 nm) were also measured during this period. Optical depth values ranged from approximately 0.01 to 1.4. The influence of multiple scattering on these optical depth measurements was studied with the conclusion that the measured values of optical depth are less than the actual value by up to 20% . The UV/IR cirrus cloud optical depth ratio was estimated based on a comparison of lidar and GOES measurements. Simple radiative transfer model calculations compared with GOES satellite brightness temperatures indicate that satellite radiances are significantly affected by the presence of cirrus clouds if IR optical depths are approximately 0.02 or greater. This has implications for satellite cirrus detection requirements.

  13. Lidar Observations of Raman Scattering from S02 in a Power Plant Stack Plume

    NASA Technical Reports Server (NTRS)

    Melfi, S. H.; Storey, R. W., Jr.; Brumfield, M. L.

    1973-01-01

    LIDAR techniques have been successfully applied to the detection of the Raman backscatter from S02 in the plume of a 200 megawatt coal-burning electrical- generating plant from a distance of 210 meters. The LIDAR system used consists of a 61-centimeter-diameter, f /4 Newtonian telescope and a 1.0-1.5-joules per pulse, 1-pulse-per-second ruby laser. Narrow band interference filters are used to select the 7546-angstrom v (sub 1) vibrational line of S02. The signal from a photomultiplier tube was sequentially applied to each 254-nanosecond-wide channel of a 15-cihannel photon counting system, resulting in a direct correlation between channel number and range increment. Photon counts were accumulated from the backscatter of a number of laser pulses (typically 50 or 100), and the accumulated counts per channel printed on paper tape. One sequence of measurements was made during a two-hour period while the plant electrical output was being reduced by approximately 50 percent. Although the Raman system had not been quantitatively calibrated, the LIDAR data correlated well with the varying plant electrical output. N2 scattering observations were also made and an approximate quantitative S02 concentration obtained by ratioing the S02 data to N2 data. This ratio compared well to the in-situ measurements made during the same period by Environmental Protection Agency sampling instruments.

  14. EARLINET Raman Lidar PollyXT: the neXT generation

    NASA Astrophysics Data System (ADS)

    Engelmann, R.; Kanitz, T.; Baars, H.; Heese, B.; Althausen, D.; Skupin, A.; Wandinger, U.; Komppula, M.; Stachlewska, I. S.; Amiridis, V.; Marinou, E.; Mattis, I.; Linné, H.; Ansmann, A.

    2015-07-01

    The atmospheric science community demands for autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. For this purpose, a portable lidar called Polly was developed at TROPOS in 2003. The lidar system was continuously improved with gained experience from EARLINET, worldwide field campaigns and institute collaborations within the last 10 years. Here we present recent changes of the setup of our portable multiwavelength Raman and polarization lidar PollyXT and the improved capabilities of the system by means of a case study. Our latest developed system includes an additional near-range receiver unit for Raman measurements of the backscatter and extinction coefficient down to 120 m above ground, a water-vapor channel, and channels for simultaneous measurements of the particle linear depolarization at 355 and 532 nm. Quality improvements were achieved by following consequently the EARLINET guidelines and own developments. A modified ship radar ensures measurements in agreement with air-traffic safety regulations and allows 24/7 monitoring of the atmospheric state with PollyXT.

  15. A permanent Raman lidar station in the Amazon: description, characterization, and first results

    NASA Astrophysics Data System (ADS)

    Barbosa, H. M. J.; Barja, B.; Pauliquevis, T.; Gouveia, D. A.; Artaxo, P.; Cirino, G. G.; Santos, R. M. N.; Oliveira, A. B.

    2014-06-01

    A permanent UV Raman lidar station, designed to perform continuous measurements of aerosols and water vapor and aiming to study and monitor the atmosphere from weather to climatic time scales, became operational in the central Amazon in July 2011. The automated data acquisition and internet monitoring enabled extended hours of daily measurements when compared to a manually operated instrument. This paper gives a technical description of the system, presents its experimental characterization and the algorithms used for obtaining the aerosol optical properties and identifying the cloud layers. Data from one week of measurements during the dry season of 2011 were analyzed as a mean to assess the overall system capability and performance. Both Klett and Raman inversions were successfully applied. A comparison of the aerosol optical depth from the lidar and from a co-located Aerosol Robotic Network (AERONET) sun photometer showed a correlation coefficient of 0.86. By combining nighttime measurements of the aerosol lidar ratio (50-65 sr), back-trajectory calculations and fire spots observed from satellites, we showed that observed particles originated from biomass burning. Cirrus clouds were observed in 60% of our measurements. Most of the time they were distributed into three layers between 11.5 and 13.4 km a.g.l. The systematic and long-term measurements being made by this new scientific facility have the potential to significantly improve our understanding of the climatic implications of the anthropogenic changes in aerosol concentrations over the pristine Amazonia.

  16. Mobile multi-wavelength polarization Raman lidar for water vapor, cloud and aerosol measurement.

    PubMed

    Wu, Songhua; Song, Xiaoquan; Liu, Bingyi; Dai, Guangyao; Liu, Jintao; Zhang, Kailin; Qin, Shengguang; Hua, Dengxin; Gao, Fei; Liu, Liping

    2015-12-28

    Aiming at the detection of atmospheric water vapor mixing ratio, depolarization ratio, backscatter coefficient, extinction coefficient and cloud information, the Water vapor, Cloud and Aerosol Lidar (WACAL) is developed by the lidar group at Ocean University of China. The lidar consists of transmitter, receiver, data acquisition and auxiliary system. For the measurement of various atmospheric physical properties, three channels including Raman channel, polarization channel and infrared channel are integrated in WACAL. The integration and working principle of these channels are introduced in details. The optical setup, the housekeeping of the system and the data retrieval routines are also presented. After the completion of the construction of the lidar, the WACAL system was installed in Ocean University of China (36.165°N, 120.5°E), Qingdao for the measurement of atmosphere during 2013 and 2014. The measurement principles and some case studies corresponding to various atmospheric physical properties are provided. Finally, the result of one continuous measurement example operated on 13 June 2014 is presented. The WACAL can measure the aerosol and cloud optical properties as well as the water vapor mixing ratio. It is useful for studying the direct and indirect effects of the aerosol on the climate change. PMID:26832047

  17. CALIPSO-inferred aerosol direct radiative effects: Bias estimates using ground-based Raman lidars

    NASA Astrophysics Data System (ADS)

    Thorsen, Tyler J.; Fu, Qiang

    2015-12-01

    Observational constraints on the change in the radiative energy budget caused by the presence of aerosols, i.e., the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically resolved aerosol retrievals over all surface types and over cloud. In this study, uncertainties in CALIPSO-inferred aerosol DRE are estimated using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars at midlatitude and tropical sites. We find that CALIPSO is unable to detect all radiatively significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE by 30-50% at the two ARM sites. The undetected aerosol is likely the consequence of random noise in CALIPSO measurements and therefore will affect global observations as well. This suggests that the global aerosol DRE inferred from CALIPSO observations are likely too weak. Also examined is the impact of the ratio of extinction-to-backscatter (i.e., the lidar ratio) whose value CALIPSO retrievals must assume to obtain the aerosol extinction profile. It is shown that if CALIPSO can reproduce the climatological value of the lidar ratio at a given location, then the aerosol DRE there can be accurately calculated (within about 3%).

  18. CALIPSO-inferred aerosol direct radiative effects: Bias estimates using ground-based Raman lidars

    NASA Astrophysics Data System (ADS)

    Thorsen, T. J.; Fu, Q.

    2015-12-01

    Observational constraints on the change in radiative energy budget caused by the presence of aerosols, i.e. the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically-resolved aerosol retrievals over all surface types and over cloud. In this study we estimate the uncertainties in CALIPSO-inferred aerosol DRE using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars (RL) at midlatitude and tropical sites. Examined are assumptions about the ratio of extinction-to-backscatter (i.e. the lidar ratio) made by the CALIPSO retrievals, which are needed to retrieve the aerosol extinction profile. The lidar ratio is shown to introduce minimal error in the mean aerosol DRE at the top-of-atmosphere and surface. It is also shown that CALIPSO is unable to detection all radiatively-significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE. Therefore, global estimates of the aerosol DRE inferred from CALIPSO are likely too weak.

  19. Lidar Observations of Tropical High-altitude Cirrus Clouds: Results form Dual Wavelength Raman Lidar Measurements During the ALBATROSS Campaign 1996

    NASA Technical Reports Server (NTRS)

    Neuber, R.; Wegener, Alfred; Schrems, O.; McDermid, I. S.

    1997-01-01

    Results from dual wavelength Raman Lidar Observations of tropical high-altitude cirrus clouds are reported. Based on 107 hours of night-time measurements cirrus cloud were present in more than 50% of the observations at latitudes between 23.5 degress S and 23.5 degrees N and altitudes between 11 and 16km.

  20. Lidar measurements of Raman scattering at ultraviolet wavelength from mineral dust over East Asia.

    PubMed

    Tatarov, Boyan; Müller, Detlef; Shin, Dong Ho; Shin, Sung Kyun; Mattis, Ina; Seifert, Patric; Noh, Young Min; Kim, Y J; Sugimoto, Nobuo

    2011-01-17

    We developed a novel measurement channel that utilizes Raman scattering from silicon dioxide (SiO2) quartz at an ultraviolet wavelength (361 nm). The excitation of the Raman signals is done at the primary wavelength of 355 nm emitted from a lidar instrument. In combination with Raman signals from scattering from nitrogen molecules, we may infer the mineral-quartz-related backscatter coefficient. This technique thus allows us to identify in a comparably direct way the mineral quartz content in mixed pollution plumes that consist, e.g., of a mix of desert dust and urban pollution. We tested the channel for the complex situation of East Asian pollution. We find good agreement of the inferred mineral-quartz-related backscatter coefficient to results obtained with another mineral quartz channel which was operated at 546 nm (primary emission wavelength at 532 nm), the functionality of which has already been shown for a lidar system in Tsukuba (Japan). The advantage of the novel channel is that it provides a better signal-to-noise ratio because of the shorter measurement wavelength. PMID:21263697

  1. RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements.

    PubMed

    Reichardt, Jens; Wandinger, Ulla; Klein, Volker; Mattis, Ina; Hilber, Bernhard; Begbie, Robert

    2012-12-01

    The Raman lidar for atmospheric moisture sensing (RAMSES) for unattended, continuous multiparameter atmospheric profiling is presented. A seeded frequency-tripled Nd:YAG laser serves as the light source. A nine-channel polychromator, nonfiber coupled to the main telescope (790 mm diameter), is used for far-range measurements. Near-range observations are performed with a three-channel polychromator, fiber coupled to a secondary telescope (200 mm diameter). Measurement parameters are water-vapor mixing ratio (MR), temperature, and the optical particle parameters, which are extinction coefficient, backscatter coefficient, lidar ratio, and depolarization ratio at 355 nm. Profiles of water-vapor MR are measured from close to the surface up to 14 km at night and 5 km during the day under favorable atmospheric conditions in 20 min. Temperature profiles of the troposphere and lower stratosphere are determined with the rotational-Raman technique. For the detection of the rotational Raman signals, a new beamsplitter/interference-filter experimental setup is implemented that is compact, robust, and easy to align. Furthermore, the polychromator design allows two independent methods for calibrating measurements of depolarization ratio. RAMSES optical design concept and experimental setup are detailed, and a description of the operational near-real-time data evaluation software is given. A multiday observation is discussed to illustrate the measurement capabilities of RAMSES. PMID:23207381

  2. Scanning Raman lidar measurements of atmospheric water vapor during a cold frontal passage

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Melfi, S. H.; Starr, D. O. C.; Ferrare, R. A.; Evans, K. D.; Lare, A. R.

    1995-01-01

    The NASA/Goddard Space Flight Center Scanning Raman Lidar (SRL) had a highly successful deployment at the Department of Energy Cloud and Radiation Testbed (CART) Site in Billings, OK during April, 1994 for the first Intensive Operation Period (IOP) hosted there. During the IOP, the SRL operated from just after sundown to just before sunrise for all declared evenings of operation. The lidar acquired more than 123 hours of data over 15 nights with less than 1 hour of data lost due to minor system malfunction. The SRL acquired data both on the vertical and in scanning mode toward an instrumented 60 m tower during various meteorological conditions such as an intense cold frontal passage on April 15 which is the focus of this presentation.

  3. PollyNET: a global network of automated Raman-polarization lidars for continuous aerosol profiling

    NASA Astrophysics Data System (ADS)

    Baars, H.; Kanitz, T.; Engelmann, R.; Althausen, D.; Heese, B.; Komppula, M.; Preißler, J.; Tesche, M.; Ansmann, A.; Wandinger, U.; Lim, J.-H.; Ahn, J. Y.; Stachlewska, I. S.; Amiridis, V.; Marinou, E.; Seifert, P.; Hofer, J.; Skupin, A.; Schneider, F.; Bohlmann, S.; Foth, A.; Bley, S.; Pfüller, A.; Giannakaki, E.; Lihavainen, H.; Viisanen, Y.; Hooda, R. K.; Pereira, S.; Bortoli, D.; Wagner, F.; Mattis, I.; Janicka, L.; Markowicz, K. M.; Achtert, P.; Artaxo, P.; Pauliquevis, T.; Souza, R. A. F.; Sharma, V. P.; van Zyl, P. G.; Beukes, J. P.; Sun, J. Y.; Rohwer, E. G.; Deng, R.; Mamouri, R. E.; Zamorano, F.

    2015-10-01

    A global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63° N to 52° S and 72° W to 124° E has been achieved within the Raman and polarization lidar network PollyNET. This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols. PollyNET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design and apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at http://polly.tropos.de. The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash) are identified by their Ångström exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the PollyNET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of PollyNET to support the establishment of a global aerosol climatology that covers the entire troposphere.

  4. Midlatitude cirrus classification at Rome Tor Vergata through a multichannel Raman-Mie-Rayleigh lidar

    NASA Astrophysics Data System (ADS)

    Dionisi, D.; Keckhut, P.; Liberti, G. L.; Cardillo, F.; Congeduti, F.

    2013-12-01

    A methodology to identify and characterize cirrus clouds has been developed and applied to the multichannel-multiwavelength Rayleigh-Mie-Raman (RMR) lidar in Rome Tor Vergata (RTV). A set of 167 cirrus cases, defined on the basis of quasi-stationary temporal period conditions, has been selected in a data set consisting of about 500 h of nighttime lidar sessions acquired between February 2007 and April 2010. The derived lidar parameters (effective height, geometrical and optical thickness and mean back-scattering ratio) and the cirrus mid-height temperature (estimated from the radiosonde data of Pratica di Mare, WMO, World Meteorological Organization, site no. 16245) of this sample have been analyzed by the means of a clustering multivariate analysis. This approach identified four cirrus classes above the RTV site: two thin cirrus clusters in mid- and upper troposphere and two thick cirrus clusters in mid-upper troposphere. These results, which are very similar to those derived through the same approach at the lidar site of the Observatoire de Haute-Provence (OHP), allows characterization of cirrus clouds over the RTV site and attests to the robustness of such classification. To acquire some indications about the cirrus generation methods for the different classes, analyses of the extinction-to-backscatter ratio (lidar ratio, LReff, in terms of frequency distribution functions and dependencies on the mid-height cirrus temperature, have been performed. A preliminary study relating some meteorological parameters (e.g., relative humidity, wind components) to cirrus clusters has also been conducted. The RTV cirrus results, recomputed through the cirrus classification by Sassen and Cho (1992), show good agreement with other midlatitude lidar cirrus observations for the relative occurrence of subvisible (SVC), thin and opaque cirrus classes (10%, 49% and 41%, respectively). The overall mean value of cirrus optical depth is 0.37 ± 0.18, while most retrieved LReff values

  5. Characterization of convection-related parameters by Raman lidar: Selected case studies from the convective and orographically-induced precipitation study

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario

    2013-05-01

    An approach to determine the convective available potential energy (CAPE) and the convective inhibition (CIN) based on the use of data from a Raman lidar system is illustrated in this work. The use of Raman lidar data allows to provide high temporal resolution measurements (5 min) of CAPE and CIN and follow their evolution over extended time periods covering the full cycle of convective activity. Lidar-based measurements of CAPE and CIN are obtained from Raman lidar measurements of the temperature and water vapor mixing ratio profiles and the surface measurements of temperature, pressure and dew point temperature provided by a surface weather station. The approach is applied to the data collected by the Raman lidar system BASIL in the frame of COPS. Attention was focused on 15 July and 25-26 July 2007. Lidar-based measurements are in good agreement with simultaneous measurements from radiosondes and with estimates from different mesoscale models.

  6. Implementation of Rotational Raman Channel in Multiwavelength Aerosol Lidar to Improve Measurements of Particle Extinction and Backscattering at 532 NM

    NASA Astrophysics Data System (ADS)

    Veselovskii, Igor; Whiteman, David N.; Korenskiy, Michael; Suvorina, A.; Perez-Ramirez, Daniel

    2016-06-01

    We describe a practical implementation of rotational Raman (RR) measurements in an existing Mie-Raman lidar to obtain measurements of aerosol extinction and backscattering at 532 nm. A 2.3 nm width interference filter was used to select a spectral range characterized by low temperature sensitivity within the anti-Stokes branch of the RR spectrum. Simulations demonstrate that the temperature dependence of the scattering cross section does not exceed 1.0% in the 230-300K range making accurate correction for this dependence quite easy. With this upgrade, the NASA/GSFC multiwavelength Raman lidar has demonstrated useful α532 measurements and was used for regular observations. Examples of lidar measurements and inversion of optical data to the particle microphysics will be given in presentation.

  7. An innovative rotational Raman lidar to measure the temperature profile from the surface to 30 km altitude

    NASA Astrophysics Data System (ADS)

    Hauchecorne, Alain; Keckhut, Philippe; Mariscal, Jean-François; d'Almeida, Eric; Dahoo, Pierre-Richard; Porteneuve, Jacques

    2016-06-01

    A concept of innovative rotational Raman lidar with daylight measurement capability is proposed to measure the vertical profile of temperature from the ground to the middle stratosphere. The optical filtering is made using a Fabry-Pérot Interferometer with line spacing equal to the line spacing of the Raman spectrum. The detection is made using a linear PMT array operated in photon counting mode. We plan to build a prototype and to test it at the Haute-Provence Observatory lidar facility. to achieve a time resolution permitting the observation of small-scale atmospheric processes playing a role in the troposphere-stratosphere interaction as gravity waves. If successful, this project will open the possibility to consider a Raman space lidar for the global observation of atmospheric temperature profiles.

  8. High resolution Raman lidar measurements for the characterization of the water vapour inflow in the frame of the Hydrological Cycle in the Mediterranean Experiment

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Cacciani, Marco; Stelitano, Dario; Summa, Donato

    2013-04-01

    The University of BASILicata Raman Lidar system (BASIL) was deployed in Candillargues (Southern France, Lat: 43°37' N, Long: 4° 4' E) in the frame of the Hydrological Cycle in the Mediterranean Experiment - HyMeX. Within this experiment a major field campaign (Special Observation Period 1-SOP1, September to November 2012) took place over the Northwestern Mediterranean Sea and its surrounding coastal regions in France, Italy and Spain, with a specific focus on the study of heavy precipitation and flash-flood events. During HyMeX-SOP1, BASIL operated between 5 September and 5 November 2012, collecting more than 600 hours of measurements, distributed over 51 measurement days and 19 intensive observation periods (IOPs). The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV (Di Girolamo et al., 2004, 2006, 2009). This makes it an ideal tool for the characterization of the water vapour inflow in Southern France, which is important piece of information to improve the comprehension and forecasting capabilities of heavy precipitations in the Northwestern Mediterranean basin. Preliminary measurements from this field deployment will be illustrated and discussed at the Conference. These measurements allow to monitor and characterize the marine atmospheric flow that transport moist and conditionaly unstable air towards the coasts, which is feeding into the HPE events in Southern France. Measurements from BASIL can also be used to better characterize Planetary Boundary Layer moisture transport mechanisms from the surface to deep-convection systems. Besides temperature and water vapour, BASIL also provides measurements of the particle (aerosol/cloud) backscattering coefficient at 355, 532 and 1064 nm, of the particle extinction coefficient at 355 and 532

  9. Water vapor measurements by Raman lidar during the ARM 1997 water vapor intensive observation period

    SciTech Connect

    Turner, D.D.; Whiteman, D.N.; Schwemmer, G.K.; Evans, K.D. |; Melfi, S.H.; Goldsmith, J.E.

    1998-04-01

    Water vapor is the most important greenhouse gas in the atmosphere, as it is the most active infrared absorber and emitter of radiation, and it also plays an important role in energy transport and cloud formation. Accurate, high resolution measurements of this variable are critical in order to improve the understanding of these processes and thus their ability to model them. Because of the importance of water vapor, the Department of Energy`s Atmospheric Radiation Measurement (ARM) program initiated a series of three intensive operating periods (IOPs) at its Cloud and Radiation Testbed (CART) site in northern Oklahoma. The goal of these IOPs is to improve and validate the state-of-the-art capabilities in measuring water vapor. To date, two of the planned three IOPs have occurred: the first was in September of 1996, with an emphasis on the lowest kilometer, while the second was conducted from September--October 1997 with a focus on both the upper troposphere and lowest kilometer. The ARM CART site is the home of several different water vapor measurement systems. These systems include a Raman lidar, a microwave radiometer, a radiosonde launch site, and an instrumented tower. During these IOPs, additional instrumentation was brought to the site to augment the normal measurements in the attempt to characterize the CART instruments and to address the need to improve water vapor measurement capabilities. Some of the instruments brought to the CART site include a scanning Raman lidar system from NASA/GSFC, additional microwave radiometers from NOAA/ETL, a chilled mirror that was flown on a tethersonde and kite system, and dewpoint hygrometer instruments flow on the North Dakota Citation. This paper will focus on the Raman lidar intercomparisons from the second IOP.

  10. CART Raman Lidar Aerosol and Water Vapor Measurements in the Vicinity of Clouds

    NASA Technical Reports Server (NTRS)

    Clayton, Marian B.; Ferrare, Richard A.; Turner, David; Newsom, Rob; Sivaraman, Chitra

    2008-01-01

    Aerosol and water vapor profiles acquired by the Raman lidar instrument located at the Climate Research Facility (CRF) at Southern Great Plains (SGP) provide data necessary to investigate the atmospheric variability in the vicinity of clouds near the top of the planetary boundary layer (PBL). Recent CARL upgrades and modifications to the routine processing algorithms afforded the necessarily high temporal and vertical data resolutions for these investigations. CARL measurements are used to investigate the behavior of aerosol backscattering and extinction and their correlation with water vapor and relative humidity.

  11. NASA/GSFC Scanning Raman Lidar Measurements of Water Vapor and Clouds During IHOP

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Demoz, Belay; DiGirolamo, Paolo; Comer, Joe; Wang, Zhien; Lin, Rei-Fong; Evans, Keith; Veselovskii, Igor

    2004-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP) that occurred in May and June, 2002 in the midwestern part of the U.S. The SRL acquired measurements of water vapor, aerosols, cloud liquid and ice water, and temperature for more than 200 hours during IHOP. Here we report on the SRL water vapor and cirrus cloud measurements with particular emphasis being given to the measurements of June 19-20, 2002, which are motivating cirrus cloud model comparison studies.

  12. Importance of Raman Lidar Aerosol Extinction Measurements for Aerosol-Cloud Interaction Studies

    NASA Astrophysics Data System (ADS)

    Han, Zaw; Wu, Yonghua; Moshary, Fred; Gross, Barry; Gilerson, Alex

    2016-06-01

    Using a UV Raman Lidar for aerosol extinction, and combining Microwave Radiometer derived Liquid Water Path (LWP) with Multifilter Rotating Shadowband Radiometer derived Cloud Optical depth, to get cloud effective radius (Reff), we observe under certain specialized conditions, clear signatures of the Twomey Aerosol Indirect effect on cloud droplet properties which are consistent with the theoretical bounds. We also show that the measurement is very sensitive to how far the aerosol layer is from the cloud base and demonstrate that surface PM25 is far less useful. Measurements from both the DOE ARM site and new results at CCNY are presented.

  13. Overlap determination for temperature measurements from a pure rotational Raman lidar

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Chen, Siying; Zhang, Yinchao; Guo, Pan; Chen, He; Chen, Binglong

    2016-03-01

    We propose a new method to calibrate the effect of overlap for temperature measurements made with a pure rotational Raman lidar. This method is based on the construction of a factor in the signal intensity ratio, which has an approximately linear relationship with altitude within the troposphere and can be obtained from radiosonde temperature measurements. Using this relationship, the effect of overlap on the signal intensity ratio can be calibrated. The method has been verified by simulations and an experiment. Comparisons with results obtained from using the existing calibration method show that the overlap determined using the new method is more accurate.

  14. Characterization of fresh and aged biomass burning events using multiwavelength Raman lidar and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Nicolae, D.; Nemuc, A.; Müller, D.; Talianu, C.; Vasilescu, J.; Belegante, L.; Kolgotin, A.

    2013-04-01

    This paper focuses on optical and microphysical properties of long-range transported biomass burning (BB) aerosols and their variation with atmospheric evolution (ageing), as observed by a multiwavelength Raman lidar, part of EARLINET (European Aerosol LIdar NETwork). Chemical analysis of the atmospheric aerosol was done using a colocated aerosol mass spectrometer (AMS). One relevant optical parameter for the ageing process is the Ångström exponent. In our study, we find that it decreases from 2 for fresh to 1.4-0.5 for aged smoke particles. The ratio of lidar (extinction-to-backscatter) ratios (LR532/LR355) changes rapidly from values <1 for fresh to >1 for aged particles. The imaginary part of the refractive index is the most sensitive microphysical parameter. It decreases sharply from 0.05 to less than 0.01 for fresh and aged smoke particles, respectively. Single-scattering albedo (SSA) varies from 0.74 to 0.98 depending on aerosol age and source. The AMS was used to measure the marker ions of wood-burning particles during 2 days of measurements when the meteorological conditions favored the downward mixing of aerosols from lofted layers. Particle size distribution and particle effective radius from both AMS and lidar are similar, i.e., particle effective radii were approximately 0.27 µm for fresh BB aerosol particles. Microphysical aerosol properties from inversion of the lidar data agree with similar studies carried out in different regions on the globe. Our study shows that the Ångström exponent LR532/LR355 and the imaginary part of the refractive index can be used to clearly distinguish between fresh and aged smoke particles.

  15. Calibration of the Purple Crow Lidar vibrational Raman water-vapour mixing ratio and temperature measurements

    NASA Astrophysics Data System (ADS)

    Argall, P. S.; Sica, R. J.; Bryant, C. R.; Algara-Siller, M.; Schijns, H.

    2007-02-01

    Purple Crow Lidar (PCL) measurements of the vibrational Raman-shifted backscatter from water vapour and nitrogen molecules allows height profiles of the water-vapour mixing ratio to be measured from 500 m up into the lower stratosphere. In addition, the Raman nitrogen measurements allow the determination of temperature profiles from about 10 to 40 km altitude. However, external calibration of these measurements is necessary to compensate for instrumental effects, uncertainties in our knowledge of the relevant molecular cross sections, and atmospheric transmission. A comparison of the PCL-derived water-vapour concentration and temperature profiles with routine radiosonde measurements from Detroit and Buffalo on 37 and 141 nights, respectively, was undertaken to provide this calibration. The calibration is then applied to the measurements and monthly mean-temperature and water-vapour profiles are determined.

  16. Comparing Water Vapor Mixing Ratio Profiles and Cloud Vertical Structure from Multiwavelength Raman Lidar Retrievals and Radiosounding Measurements

    NASA Astrophysics Data System (ADS)

    Costa-Surós, Montserrat; Stachlewska, Iwona S.; Markowicz, Krzysztof

    2016-06-01

    A study of comparison of water vapor mixing ratio profiles, relative humidity profiles, and cloud vertical structures using two different instruments, a multiwavelength Aerosol-Depolarization-Raman lidar and radiosoundings, is presented. The observations were taken by the lidar located in Warsaw center and the radiosoundings located about 30km to the North in Legionowo (Poland). We compared the ground-based remote sensing technology with in-situ method in order to improve knowledge about water content thought the atmosphere and cloud formation. The method used for retrieving the cloud vertical structure can be improved comparing the radiosonde results with the lidar observations, which show promising results.

  17. Measurement of tropospheric aerosol in São Paulo area using a new upgraded Raman LIDAR system

    NASA Astrophysics Data System (ADS)

    Landulfo, Eduardo; Rodrigues, Patrícia F.; da Silva Lopes, Fábio Juliano; Bourayou, Riad

    2012-11-01

    Elastic backscatter LIDAR systems have been used to determine aerosol profile concentration in several areas such as weather, pollution and air quality monitoring. In order to determine the aerosol extinction and backscattering profiles, the Klett inversion method is largely used, but this method suffers from lack of information since there are two unknown variables to be determined using only one measured LIDAR signal, and assumption of the LIDAR ratio (the relation between the extinction and backscattering coefficients) is needed. When a Raman LIDAR system is used, the inelastic backscattering signal is affected by aerosol extinction but not by aerosol backscatter, which allows this LIDAR to uniquely determine extinction and backscattering coefficients without any assumptions or any collocated instruments. The MSP-LIDAR system, set-up in a highly dense suburban area in the city of São Paulo, has been upgraded to a Raman LIDAR, and in its actual 6-channel configuration allows it to monitor elastic backscatter at 355 and 532 nm together with nitrogen and water vapor Raman backscatters at 387nm and 608 nm and 408nm and 660 nm, respectively. Thus, the measurements of aerosol backscattering, extinction coefficients and water vapor mixing ratio in the Planetary Boundary Layer (PBL) are becoming available. The system will provide the important meteorological parameters such as Aerosol Optical Depth (AOD) and will be used for the study of aerosol variations in lower troposphere over the city of São Paulo, air quality monitoring and for estimation of humidity impact on the aerosol optical properties, without any a priori assumption. This study will present the first results obtained with this upgraded LIDAR system, demonstrating the high quality of obtained aerosol and water vapor data. For that purpose, we compared the data obtained with the new MSP-Raman LIDAR with a mobile Raman LIDAR collocated at the Center for Lasers and Applications, Nuclear and Energy Research

  18. Error analysis of Raman differential absorption lidar ozone measurements in ice clouds.

    PubMed

    Reichardt, J

    2000-11-20

    A formalism for the error treatment of lidar ozone measurements with the Raman differential absorption lidar technique is presented. In the presence of clouds wavelength-dependent multiple scattering and cloud-particle extinction are the main sources of systematic errors in ozone measurements and necessitate a correction of the measured ozone profiles. Model calculations are performed to describe the influence of cirrus and polar stratospheric clouds on the ozone. It is found that it is sufficient to account for cloud-particle scattering and Rayleigh scattering in and above the cloud; boundary-layer aerosols and the atmospheric column below the cloud can be neglected for the ozone correction. Furthermore, if the extinction coefficient of the cloud is ?0.1 km(-1), the effect in the cloud is proportional to the effective particle extinction and to a particle correction function determined in the limit of negligible molecular scattering. The particle correction function depends on the scattering behavior of the cloud particles, the cloud geometric structure, and the lidar system parameters. Because of the differential extinction of light that has undergone one or more small-angle scattering processes within the cloud, the cloud effect on ozone extends to altitudes above the cloud. The various influencing parameters imply that the particle-related ozone correction has to be calculated for each individual measurement. Examples of ozone measurements in cirrus clouds are discussed. PMID:18354611

  19. Study of African Dust with Multi-Wavelength Raman Lidar During "Shadow" Campaign in Senegal

    NASA Astrophysics Data System (ADS)

    Veselovskii, Igor; Goloub, Philippe; Podvin, Thierry; Bovchaliuk, Valentyn; Tanre, Didier; Derimian, Yevgeny; Korenskiy, Mikhail; Dubovik, Oleg

    2016-06-01

    West Africa and the adjacent oceanic regions are very important locations for studying dust properties and their influence on weather and climate. The SHADOW (Study of SaHAran Dust Over West Africa) campaign is performing a multi-scale and multi-laboratory study of aerosol properties and dynamics using a set of in situ and remote sensing instruments at an observation site located at IRD (Institute for Research and Development) Center, Mbour, Senegal (14°N, 17°W). In this paper, we present the results of lidar measurements performed during the first phase of SHADOW which occurred in March-April, 2015. The multiwavelength Mie-Raman lidar acquired 3β+2α+1δ measurements during this period. This set of measurements has permitted particle intensive properties such as extinction and backscattering Ångström exponents (BAE) for 355/532 nm wavelengths corresponding lidar ratios and depolarization ratio at 532 nm to be determined. The backscattering Ångström exponent during the dust episodes decreased to ~-0.7, while the extinction Ångström exponent though being negative, was greater than -0.2. Low values of BAE can likely be explained by an increase in the imaginary part of the dust refractive index at 355 nm compared to 532 nm.

  20. Towards quantifying mesoscale flows in the troposphere using Raman lidar and sondes

    SciTech Connect

    Demoz, B.; Evans, K.; Starr, D.

    1998-03-01

    Water vapor plays an important role in the energetics of the boundary layer processes which in turn play a key role in regulating regional and global climate. It plays a primary role in Earth`s hydrological cycle, in radiation balance as a direct absorber of infrared radiation, and in atmospheric circulation as a latent heat energy source as well as in determining cloud development and atmospheric stability. Water vapor concentration, expressed as a mass mixing ratio, is conserved in all meteorological processes except condensation and evaporation. This property makes it an ideal choice for studying many of the atmosphere`s dynamic features. Raman scattering measurements from lidar also allow retrieval of water vapor mixing ratio profiles at high temporal and vertical resolution. Raman lidars sense water vapor to altitudes not achievable with towers and surface systems, sample the atmosphere at much higher temporal resolution than radiosondes or satellites, and do not require strong vertical gradients or turbulent fluctuations in temperature that is required by acoustic sounders and radars. Analysis of highly resolved water vapor profiles are used here to characterize two important mesoscale flows: thunderstorm outflows and a cold front passage.

  1. Temporal evolution of aerosol derived from N2-Raman lidar at a Mediterranean coastal site

    NASA Astrophysics Data System (ADS)

    Shang, Xiaoxia; Chazette, Patrick; Totems, Julien

    2016-04-01

    Following the temporal variability of the aerosols in the atmospheric column on coastal areas is challenging. In situ ground-based or integrated column properties are not enough to understand the sea-continent exchange processes and identify the sources of particles. Now classical approach using the synergy between passive (e.g. sunphotometer) and active (e.g. backscatter lidar) instruments gives only a partial view of the aerosol properties, because they could be highly heterogeneous in the lower and middle troposphere. On June-July 2014, an automatic N2-Raman lidar (355 nm) was installed at a coastal site close to Toulon in the South of France. Using the coupling between cross-polarized elastic and N2-Raman channels, various aerosol natures are identified all along the time and against the altitude. Specific regularization algorithms have been tested to improve the aerosol classification. The results of these tests will be presented in terms of sensitivity studies based on the Monte Carlo approach. Selecting the most appropriate inversion method of the lidar profiles, the aerosol types encountered during the field campaign will be presented. We will also discuss their origin and the sea-continent exchanges including the sea breeze effect. We will see that a proper identification of particles passes through analyses coupling satellite observations and air mass trajectory studies. Acknowledgments: The experiments have been funded by the Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), the Centre National d'Etudes Spatiales (CNES), and the Centre national de la recherchescientifique (CNRS). We thank Université de Toulon (SeaTech Engineering School) for their hosts. The Institut Pierre Simon Laplace (IPSL), Labex IPSL, is also acknowledged for its support in the data simulations and analyses.

  2. Raman Lidar Measurements of Aerosol Optical Properties Performed at CNR- IMAA

    NASA Astrophysics Data System (ADS)

    Mona, L.; Amodeo, A.; Cornacchia, C.; D'Amico, G.; Madonna, F.; Pandolfi, M.; Pappalardo, G.

    2005-12-01

    The lidar system for tropospheric aerosol study, located at CNR-IMAA in Tito Scalo, Potenza (40 °36'N, 15°44' E, 760 m above sea level), is a Raman/elastic lidar system operational since May 2000 in the framework of EARLINET (European Aerosol Research LIdar NETwork), the first lidar network for tropospheric aerosol study on continental scale. It provides independent measurements of aerosol extinction and backscatter coefficient profiles at 355 nm and aerosol backscatter profiles at 532 nm. Both the IMAA aerosol lidar system and the used algorithms for the retrieval of aerosol optical parameters have been successfully tested with different intercomparison exercises in the frame of the EARLINET quality assurance program. In the frame of EARLINET, regular measurements are performed three times per week, allowing to study the aerosol content typically present in the planetary boundary layer over Potenza. Particular attention is devoted to Saharan dust intrusions in Europe, and Saharan dust forecasts are distributed to all EARLINET stations. The large dataset of Saharan dust optical properties profiles collected at IMAA allowed to study the contribution of dust particles to the aerosol load typically present in our area as well as to investigate transformations of aerosol optical properties during the transport. Several intensive measurement campaigns have been performed at IMAA with this system to study optical properties of different types of aerosol, and how the transport and modification mechanisms and the water content affect these optical properties. In particular, direct transport of volcanic aerosol emitted in 2002 during the Etna eruptions was observed, and in summer 2004, aerosol layers related to forest fires smoke or pollution plume transported from Alaska, Canada and North America were observed at IMAA during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) field campaign. Moreover, this system has been used

  3. Retrieval of water vapor mixing ratio from a multiple channel Raman-scatter lidar using an optimal estimation method.

    PubMed

    Sica, R J; Haefele, A

    2016-02-01

    Lidar measurements of the atmospheric water vapor mixing ratio provide an excellent complement to radiosoundings and passive, ground-based remote sensors. Lidars are now routinely used that can make high spatial-temporal resolution measurements of water vapor from the surface to the stratosphere. Many of these systems can operate during the day and night, with operation only limited by clouds thick enough to significantly attenuate the laser beam. To enhance the value of these measurements for weather and climate studies, this paper presents an optimal estimation method (OEM) to retrieve the water vapor mixing ratio, aerosol optical depth profile, Ångstrom exponent, lidar constants, detector dead times, and measurement backgrounds from multichannel vibrational Raman-scatter lidars. The OEM retrieval provides the systematic uncertainties due to the overlap function, calibration factor, air density and Rayleigh-scatter cross sections, in addition to the random uncertainties of the retrieval due to measurement noise. The OEM also gives the vertical resolution of the retrieval as a function of height, as well as the height to which the contribution of the a priori is small. The OEM is applied to measurements made by the Meteoswiss Raman Lidar for Meteorological Observations (RALMO) in the day and night for clear and cloudy conditions. The retrieved water vapor mixing ratio is in excellent agreement with both the traditional lidar retrieval method and coincident radiosoundings. PMID:26836078

  4. Raman Lidar Profiling of Aerosols Over the Central US; Diurnal Variability and Comparisons with the GOCART Model

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Chin, M.; Clayton, M.; Turner, D.

    2002-01-01

    We use profiles of aerosol extinction, water vapor mixing ratio, and relative humidity measured by the ARM SGP Raman lidar in northern Oklahoma to show how the vertical distributions of aerosol extinction and water vapor vary throughout the diurnal cycle. While significant (20-30%) variations in aerosol extinction occurred near the surface as well as aloft, smaller (approximately 10%) variations were observed in the diurnal variability of aerosol optical thickness (AOT). The diurnal variations in aerosol extinction profiles are well correlated with corresponding variations in the average relative humidity profiles. The water vapor mixing ratio profiles and integrated water vapor amounts generally show less diurnal variability. The Raman lidar profiles are also used to evaluate the aerosol optical thickness and aerosol extinction profiles simulated by the GOCART global aerosol model. Initial comparisons show that the AOT simulated by GOCART was in closer agreement with the AOT derived from the Raman lidar and Sun photometer measurements during November 2000 than during September 2000. For both months, the vertical variability in average aerosol extinction profiles simulated by GOCART is less than the variability in the corresponding Raman lidar profiles.

  5. Instrumental correction of the uneven PMT aging effect on the calibration constant of a water vapor Raman lidar

    NASA Astrophysics Data System (ADS)

    Simeonov, Valentin; Fastig, Shlomo; Haefele, Alexander; Martucci, Giovanni; Calpini, Bertrand

    2015-04-01

    The water vapor profile derived from Raman lidar measurements is obtained from the ratio of water vapor to nitrogen Raman-shifted returns. The proportionality factor converting the signal ratio to water vapor/air mixing ratio is referred to as lidar calibration constant. The calibration constant is a function of the water vapor and nitrogen Raman cross sections and the efficiencies of the respective Raman channels including the photomultiplier tubes (PMT) efficiencies. Unequal, gradual changes in the water vapor and nitrogen channels PMT efficiencies due to aging effects lead to steady alteration of the calibration constant. This effect has been observed during the seven- year continuous operation of the RAman Lidar for Meteorological Observations (RALMO)1. A more detailed research2, has shown that the calibration constant change is more pronounced during summer time, which is explained by the higher daylight exposure of the PMTs during this period. Periodical recalibration of the lidar with radiosonde measurements is used to correct the calibration constant. This approach, however, induces additional systematic errors due to the nature of the calibration procedure and because of sonde-to-sonde accuracy variations. The systematic errors could induce artefacts leading to an incorrect interpretation of certain data points in the framework of climatological studies. To resolve this problem we developed a new, instrumental method for automated correction of the lidar calibration constant. By this method, the change in the water vapor and the nitrogen PMTs efficiencies are estimated from the PMTs responses measured when they are illuminated simultaneously by a single stabilized LED light source. A correction factor is deduced from the ratio of the signals of the two photomultipliers. The correction measurements are taken automatically once daily before midnight. The correction is applied when the correction factor exceeds a predefined threshold for several days. The

  6. Correlation Study of Water Vapor and Aerosol Distributions in Troposphere Using Scanning Raman Lidar

    NASA Astrophysics Data System (ADS)

    Gao, F.; Stanic, S.; Bergant, K.; He, T.-Y.

    2012-04-01

    Aiming at the study of water vapor and aerosol distributions in the lower atmosphere from the Otlica observatory, Slovenia (45.93°N, 13.91°E, elevation 945 m above sea level), we have built a new Raman lidar in parallel to the existing Mie lidar. The new system is oriented towards the Adriatic coast with a fixed azimuth angle of 235.1° and shares the transmitter (tripled Nd:YAG pulsed laser at 355 nm with pulse energy of 100 mJ and repetition rate of 20 Hz) and mechanical support with scanning functionality in zenith angle with the Mie lidar. The receiver part of the Raman lidar employs custom optics using a low f-number aspheric lens, designed to maximize the coupling of lidar returns collected by a parabolic mirror with a diameter of 800 mm and focal length of 410 mm and the 1000 μm core multi-mode optical fiber used to transport the light to the polychromator for spectral analysis. In the polychromator, 5-nm bandwidth interference filters combined with dichroic beam splitters were used to separate the vibrational Raman signals of nitrogen and water wapor molecules. The three return signals were detected by photo-multiplier tubes and sampled by transient recorders in photon-counting mode. System functionality was assessed in a number of preliminary experiments, where water vapor concentrations were calibrated using radiosonde data. During the nights of 24-25 August 2011 a series of measurements of water vapor and aerosol distributions along the lidar line of sight were performed at various elevation angles. In the vertical measurements, two layers with larger water vapor content were visible at altitudes of 1.5 km and 4.0 km with relative humidity in both cases exceeding 75%. Aerosol extinction decreased linearly between the altitudes of 2 km and 4.5 km, with aerosol layers appearing at 4.0 km, 4.7 km and 5.6 km. In horizontal measurements, the water vapor mixing ratio and the relative humidity were found to be almost constant in the range of 1.5 km to 4.5 km

  7. Daytime rapid detection of minerals and organics from 50 and 100 m distances using a remote Raman system

    NASA Astrophysics Data System (ADS)

    Misra, Anupam K.; Sharma, Shiv K.; Lucey, Paul G.; Lentz, Rachel C. F.; Chio, Chi Hong

    2007-09-01

    We have developed a remote Raman system, using an 8-in telescope and a 532-nm pulse laser (20 Hz and 20 mJ/pulse), which is capable of operating in daylight. From distances of 50 and 100 m and with an integration time of just 1 second (equivalent to 20 laser pulses at 20 Hz), good quality Raman spectra with high signal-to-noise ratios were readily obtained. The Raman system was also tested using only single-laser-pulse excitation (8 ns pulse width) with an integration time of 2 μs. The spectra obtained from single-laser-pulse excitation also show clear Raman features and can be used for rapid, unambiguous identification of various chemical substances. We successfully identified a number of substances, including organic chemicals (acetone, naphthalene, nitro-methane, nitro-benzene and cyclohexane); inorganic chemicals and minerals (nitric acids, sulfuric acid, potassium perchlorate, gypsum, ammonium nitrate, epsomite, melanterite, calcite and sulfur); and amino acids. The remote Raman system has a range of applications, such as environmental monitoring (e.g., detection of hazardous chemicals and chemical spills from a safe distance in real time) or homeland security (e.g., rapid identification of chemicals on a conveyor belt or from a fast-moving object).

  8. Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations

    SciTech Connect

    Di Girolamo, Paolo; Behrendt, Andreas; Wulfmeyer, Volker

    2006-04-10

    The performance of a spaceborne temperature lidar based on the pure rotational Raman (RR) technique in the UV has been simulated. Results show that such a system deployed onboard a low-Earth-orbit satellite would provide global-scale clear-sky temperature measurements in the troposphere and lower stratosphere with precisions that satisfy World Meteorological Organization (WMO) threshold observational requirements for numerical weather prediction and climate research applications. Furthermore, nighttime temperature measurements would still be within the WMO threshold observational requirements in the presence of several cloud structures. The performance of aerosol extinction measurements from space, which can be carried out simultaneously with temperature measurements by RR lidar, is also assessed. Furthermore, we discuss simulations of relative humidity measurements from space obtained from RR temperature measurements and water-vapor data measured with the differential absorption lidar (DIAL) technique.

  9. Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations.

    PubMed

    Di Girolamo, Paolo; Behrendt, Andreas; Wulfmeyer, Volker

    2006-04-10

    The performance of a spaceborne temperature lidar based on the pure rotational Raman (RR) technique in the UV has been simulated. Results show that such a system deployed onboard a low-Earth-orbit satellite would provide global-scale clear-sky temperature measurements in the troposphere and lower stratosphere with precisions that satisfy World Meteorological Organization (WMO) threshold observational requirements for numerical weather prediction and climate research applications. Furthermore, nighttime temperature measurements would still be within the WMO threshold observational requirements in the presence of several cloud structures. The performance of aerosol extinction measurements from space, which can be carried out simultaneously with temperature measurements by RR lidar, is also assessed. Furthermore, we discuss simulations of relative humidity measurements from space obtained from RR temperature measurements and water-vapor data measured with the differential absorption lidar (DIAL) technique. PMID:16623245

  10. Observation of Arabian and Saharan Dust in Cyprus with a New Generation of the Smart Raman Lidar Polly

    NASA Astrophysics Data System (ADS)

    Engelmann, Ronny; Ansmann, Albert; Bühl, Johannes; Heese, Birgit; Baars, Holger; Althausen, Dietrich; Marinou, Eleni; Amiridis, Vassilis; Mamouri, Rodanthi-Elisavet; Vrekoussis, Mihalis

    2016-06-01

    The atmospheric science community demands for autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. Aiming this goal, TROPOS developed the fully automated multiwavelength polarization Raman lidar Polly since over 10 years [1, 2]. In cooperation with different partner research institutes the system was improved continuously. Our latest lidar developments include aside the "3+2" measurements also a near-range receiver to measure aerosol extinction and backscatter down to 120 m above the lidar, a water-vapor channel, and measurements of the linear depolarization at two wavelengths. The latest system was built in cooperation with the National Observatory of Athens (NOA). Its first campaign however was performed at the Cyprus Institute of Nicosia from March to April 2015, aiming specifically at the observation of ice nuclei with in-situ and lidar remote sensing techniques in the framework of BACCHUS [3, 4].

  11. Upper tropospheric water vapor: A field campaign of two Raman lidars, Airborne hygrometers, and Radiosondes

    NASA Technical Reports Server (NTRS)

    Melfi, S. Harvey; Turner, Dave; Evans, Keith; Whiteman, Dave; Schwemmer, Geary; Ferrare, Richard

    1998-01-01

    from: two Raman Lidars, the NASA Goddard Scanning Raman Lidar (SRL) and the CART Raman Lidar (CARL), a number of Vaisala radiosondes launched during the IOP campaign, and a dew point hygrometer flown on the University of North Dakota Cessna Citation Aircraft.

  12. LABVIEW graphical user interface for precision multichannel alignment of Raman lidar at Jet Propulsion Laboratory, Table Mountain Facility.

    PubMed

    Aspey, R A; McDermid, I S; Leblanc, T; Howe, J W; Walsh, T D

    2008-09-01

    The Jet Propulsion Laboratory operates lidar systems at Table Mountain Facility (TMF), California (34.4 degrees N, 117.7 degrees W) and Mauna Loa Observatory, Hawaii (19.5 degrees N, 155.6 degrees W) under the framework of the Network for the Detection of Atmospheric Composition Change. To complement these systems a new Raman lidar has been developed at TMF with particular attention given to optimizing water vapor profile measurements up to the tropopause and lower stratosphere. The lidar has been designed for accuracies of 5% up to 12 km in the free troposphere and a detection capability of <5 ppmv. One important feature of the lidar is a precision alignment system using range resolved data from eight Licel transient recorders, allowing fully configurable alignment via a LABVIEW/C++ graphical user interface (GUI). This allows the lidar to be aligned on any channel while simultaneously displaying signals from other channels at configurable altitude/bin combinations. The general lidar instrumental setup and the details of the alignment control system, data acquisition, and GUI alignment software are described. Preliminary validation results using radiosonde and lidar intercomparisons are briefly presented. PMID:19044439

  13. Femtosecond Coherent Anti-Stokes Raman Spectroscopy (CARS) As Next Generation Nonlinear LIDAR Spectroscopy and Microscopy

    SciTech Connect

    Ooi, C. H. Raymond

    2009-07-10

    Nonlinear spectroscopy using coherent anti-Stokes Raman scattering and femtosecond laser pulses has been successfully developed as powerful tools for chemical analysis and biological imaging. Recent developments show promising possibilities of incorporating CARS into LIDAR system for remote detection of molecular species in airborne particles. The corresponding theory is being developed to describe nonlinear scattering of a mesoscopic particle composed of complex molecules by laser pulses with arbitrary shape and spectral content. Microscopic many-body transform theory is used to compute the third order susceptibility for CARS in molecules with known absorption spectrum and vibrational modes. The theory is combined with an integral scattering formula and Mie-Lorentz formulae, giving a rigorous formalism which provides powerful numerical experimentation of CARS spectra, particularly on the variations with the laser parameters and the direction of detection.

  14. Recent improvements to the Raman-shifted eye-safe aerosol lidar (REAL)

    NASA Astrophysics Data System (ADS)

    Mayor, Shane D.; Petrova-Mayor, Anna; Morley, Bruce; Spuler, Scott

    2013-09-01

    Improvements to the original NCAR/NSF Raman-shifted Eye-safe Aerosol Lidar (REAL) made between 2008 and 2013 are described. They are aimed mainly at optimizing and stabilizing the performance of the system for long-term, unattended, network-controlled, remote monitoring of the horizontal vector wind field and boundary layer height, and observing atmospheric boundary layer phenomena such as fine-scale waves and density current fronts. In addition, we have improved the polarization purity of the transmitted laser radiation and studied in the laboratory the effect of the beam-steering unit mirrors on the transmitted polarization as part of a longer-term effort to make absolute polarization measurements of aerosols and clouds.

  15. Femtosecond Coherent Anti-Stokes Raman Spectroscopy (CARS) As Next Generation Nonlinear LIDAR Spectroscopy and Microscopy

    NASA Astrophysics Data System (ADS)

    Ooi, C. H. Raymond

    2009-07-01

    Nonlinear spectroscopy using coherent anti-Stokes Raman scattering and femtosecond laser pulses has been successfully developed as powerful tools for chemical analysis and biological imaging. Recent developments show promising possibilities of incorporating CARS into LIDAR system for remote detection of molecular species in airborne particles. The corresponding theory is being developed to describe nonlinear scattering of a mesoscopic particle composed of complex molecules by laser pulses with arbitrary shape and spectral content. Microscopic many-body transform theory is used to compute the third order susceptibility for CARS in molecules with known absorption spectrum and vibrational modes. The theory is combined with an integral scattering formula and Mie-Lorentz formulae, giving a rigorous formalism which provides powerful numerical experimentation of CARS spectra, particularly on the variations with the laser parameters and the direction of detection.

  16. A New Raman Water Vapor Lidar Calibration Technique and Measurements in the Vicinity of Hurricane Bonnie

    NASA Technical Reports Server (NTRS)

    Evans, Keith D.; Demoz, Belay B.; Cadirola, Martin P.; Melfi, S. H.; Whiteman, David N.; Schwemmer, Geary K.; Starr, David OC.; Schmidlin, F. J.; Feltz, Wayne

    2000-01-01

    The NAcA/Goddard Space Flight Center Scanning Raman Lidar has made measurements of water vapor and aerosols for almost ten years. Calibration of the water vapor data has typically been performed by comparison with another water vapor sensor such as radiosondes. We present a new method for water vapor calibration that only requires low clouds, and surface pressure and temperature measurements. A sensitivity study was performed and the cloud base algorithm agrees with the radiosonde calibration to within 10- 15%. Knowledge of the true atmospheric lapse rate is required to obtain more accurate cloud base temperatures. Analysis of water vapor and aerosol measurements made in the vicinity of Hurricane Bonnie are discussed.

  17. Experimental Evaluation of the UV Raman Lidar Sensitivity in Detection of Traces of Chemical Compounds

    NASA Astrophysics Data System (ADS)

    Bobrovnikov, Sergey; Gorlov, Evgeny; Zharkov, Viktor

    2016-06-01

    Experimental results are presented on the remote detection of traces of some chemical compounds on the surface with the help of Raman lidar built on the basis of an excimer KrF laser with a narrow line emission and multi-channel spectrum analyzer based on the diffraction spectrograph and a time gated ICCD camera. The sensitivity of the system is evaluated for the sensing range of 10 m. At the accumulation of the signal over 1000 laser pulses, the detection threshold of the nitrogencontaining chemical compounds of about of units of μg/cm2 has been reached. The effect of the substrate material on the sensitivity of the Ramanlidar method for detecting traces of chemicals on the surface is analyzed.

  18. Temperature Variability in the Stratosphere Obtained from 7 years of Vibrational-Raman- lidar Measurements

    NASA Astrophysics Data System (ADS)

    Iserhienrhien, B.; Sica, R. J.; Argall, P. S.

    2009-05-01

    The Purple Crow Lidar (PCL) is a large power-aperture product monostatic laser radar located at the Delaware Observatory (42° 52' N, 81° 23' W, 225 m elevation above sea level) near the campus of The University of Western Ontario. It is capable of measuring temperature and wave parameters from 10 to 110 km altitude, as well as water vapor in the troposphere and stratosphere. We use upper tropospheric and stratospheric vibrational Raman N2 backscatter-derived temperatures to form a climatology for the years 1999 to 2007 from 10 to 30 km altitude. The lidar temperatures are validated using coincident radiosondes measurements from Detroit and Buffalo. The measured temperatures show good agreement with the radiosonde soundings. An agreement of ±1 K is found during summer months and ±2.5 K during the winter months, validating the calibration of the lidar to within the geophysical variability of the measurements. Comparison between the PCL measurements and atmospheric models shows the PCL measurements are 5 K or less colder than CIRA-86 below 25 km and 2.5 K warmer above during the summer months. Below 16 km the PCL measurements are 5 K or less colder than the MSIS-90 model, while above this region, the PCL agrees to about ±3.5 K or less. The temperature differences between the PCL measurements and the models are consistent with the differences between the atmospheric models and the Detroit and Buffalo radiosonde measurements. The temperature differences compared to the models are consistent with previous comparisons between other radiosondes and satellite data sets, confirming that these differences with the models are real. We will highlight nights which show significant variations from the long-term averages, and when possible, the evolution of the variations.

  19. A permanent raman lidar station in the Amazon: description, characterization and first results

    NASA Astrophysics Data System (ADS)

    Barbosa, H. M. J.; Barja, B.; Pauliquevis, T.; Gouveia, D. A.; Artaxo, P.; Cirino, G. G.; Santos, R. M. N.; Oliveira, A. B.

    2014-01-01

    A permanent UV Raman Lidar station, designed to perform continuous measurements of aerosols and water vapor and aiming to study and monitor the atmosphere on the weather to climatic time scales, became operational in central Amazon in July 2011. The automated data acquisition and internet monitoring enabled extended hours of daily measurements when compared to a manually operated instrument. This paper gives a technical description of the system, presents its experimental characterization and the algorithms used for obtaining the aerosol optical properties and identifying the cloud layers. Data from one week of measurements during the dry season of 2011 were analyzed as a mean to assess the overall system capability and performance. A comparison of the aerosol optical depth from the Lidar and a co-located AERONET sun photometer showed a root mean square error of about 0.06, small compared to the range of observed AOD values (0.1 to 0.75) and to the typical AERONET AOD uncertainty (0.02). By combining nighttime measurements of the aerosol lidar ratio (50-65 sr), backtrajectories calculations and fire spots observed from satellites we showed that observed particles originated from biomass burning. Cirrus clouds were observed in 60% of our measurements. Most of the time they were distributed into three layers between 11.5 and 13.4 km a.g.l. The systematic and long-term measurements being made by this new scientific facility have the potential to significantly improve our understanding of the climatic implications of the anthropogenic changes in aerosol concentrations over the pristine Amazônia.

  20. Optimization of spectral filtering parameters of acousto-optic pure rotational Raman lidar for atmospheric temperature profiling

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhua; Wan, Lei; Nie, Guosheng; Guo, Xiaowei

    2003-12-01

    In this paper, as far as we know, it is the first time that a novel acousto-optic pure rotational Raman lidar based on acousto-optic tunable filter (AOTF) is put forward for the application of atmospheric temperature measurements. AOTF is employed in the novel lidar system as narrow band-pass filter and high-speed single-channel wavelength scanner. This new acousto-optic filtering technique can solve the problems of conventional pure rotational Raman lidar, e.g., low temperature detection sensitivity, untunability of filtering parameters, and signal interference between different detection channels. This paper will focus on the PRRS physical model calculation and simulation optimization of system parameters such as the central wavelengths and the bandwidths of filtering operation, and the required sensitivity. The theoretical calculations and optimization of AOTF spectral filtering parameters are conducted to achieve high temperature dependence and sensitivity, high signal intensities, high temperature of filtered spectral passbands, and adequate blocking of elastic Mie and Rayleigh scattering signals. The simulation results can provide suitable proposal and theroetical evaluation before the integration of a practical Raman lidar system.

  1. Characterization of particle hygroscopicity by Raman lidar: Selected case studies from the convective and orographically-induced precipitation study

    NASA Astrophysics Data System (ADS)

    Stelitano, Dario; Di Girolamo, Paolo; Summa, Donato

    2013-05-01

    The characterization of particle hygroscopicity has primary importance for climate monitoring and prediction. Model studies have demonstrated that relative humidity (RH) has a critical influence on aerosol climate forcing. Hygroscopic properties of aerosols influence particle size distribution and refractive index and hence their radiative effects. Aerosol particles tend to grow at large relative humidity values as a result of their hygroscopicity. Raman lidars with aerosol, water vapor and temperature measurement capability are potentially attractive tools for studying aerosol hygroscopicity as in fact they can provide continuous altitude-resolved measurements of particle optical, size and microphysical properties, as well as relative humidity, without perturbing the aerosols or their environment. Specifically, the University of Basilicata Raman lidar system (BASIL) considered for the present study, has the capability to perform all-lidar measurements of relative humidity based on the application of both the rotational and the vibrational Raman lidar techniques in the UV. BASIL was operational in Achern (Black Forest, Lat: 48.64° N, Long: 8.06° E, Elev.: 140 m) between 25 May and 30 August 2007 in the framework of the Convective and Orographically-induced Precipitation Study (COPS). The present analysis is focused on selected case studies characterized by the presence of different aerosol types with different hygroscopic behavior. The observed behavior, dependent upon aerosol composition, may range from hygrophobic to strongly hygroscopic.

  2. Raman Lidar Measurements of Water Vapor and Cirrus Clouds During The Passage of Hurricane Bonnie

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Evans, K. D.; Demoz, B.; Starr, D OC.; Eloranta, E. W.; Tobin, D.; Feltz, W.; Jedlovec, G. J.; Gutman, S. I.; Schwemmer, G. K.; Smith, David E. (Technical Monitor)

    2000-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island in the Bahamas during August - September, 1998 as a part of the third Convection and Moisture Experiment (CAMEX-3) which focussed on hurricane development and tracking. During the period August 21 - 24, hurricane Bonnie passed near Andros Island and influenced the water vapor and cirrus cloud measurements acquired by the SRL. Two drying signatures related to the hurricane were recorded by the SRL and other sensors. Cirrus cloud optical depths (at 351 nm) were also measured during this period. Optical depth values ranged from less than 0.01 to 1.5. The influence of multiple scattering on these optical depth measurements was studied. A correction technique is presented which minimizes the influences of multiple scattering and derives information about cirrus cloud optical and physical properties. The UV/IR cirrus cloud optical depth ratio was estimated based on a comparison of lidar and GOES measurements. Simple radiative transfer model calculations compared with GOES satellite brightness temperatures indicate that satellite radiances are significantly affected by the presence of cirrus clouds if IR optical depths are approximately 0.005 or greater. Using the ISCCP detection threshold for cirrus clouds on the GOES data presented here, a high bias of up to 40% in the GOES precipitable water retrieval was found.

  3. Subtropical Cirrus Properties Derived from GSFC Scanning Raman Lidar Measurements during CAMEX 3

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Wang, Z.; Demoz, B.

    2004-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island, Bahamas for the third Convection and Moisture Experiment (CAMEX 3) held in August - September, 1998 and acquired an extensive set of water vapor and cirrus cloud measurements (Whiteman et al., 2001). The cirrus data studied here have been segmented by generating mechanism. Distinct differences in the optical properties of the clouds are found when the cirrus are hurricane-induced versus thunderstom-induced. Relationships of cirrus cloud optical depth, mean cloud temperature, and layer mean extinction-to-backscatter ratio (S) are presented and compared with mid-latitude and tropical results. Hurricane-induced cirrus clouds are found to generally possess lower values of S than thunderstorm induced clouds. Comparison of these measurements of S are made with other studies revealing at times large differences in the measurements. Given that S is a required parameter for spacebased retrievals of cloud optical depth using backscatter lidar, these large diffaences in S measurements present difficulties for space-based retrievals of cirrus cloud extinction and optical depth.

  4. Raman lidar and sun photometer measurements of aerosols and water vapor during the ARM RCS experiment

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Whiteman, D. N.; Melfi, S. H.; Evans, K. D.; Holben, B. N.

    1995-01-01

    The first Atmospheric Radiation Measurement (ARM) Remote Cloud Study (RCS) Intensive Operations Period (IOP) was held during April 1994 at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site near Lamont, Oklahoma. This experiment was conducted to evaluate and calibrate state-of-the-art, ground based remote sensing instruments and to use the data acquired by these instruments to validate retrieval algorithms developed under the ARM program. These activities are part of an overall plan to assess general circulation model (GCM) parameterization research. Since radiation processes are one of the key areas included in this parameterization research, measurements of water vapor and aerosols are required because of the important roles these atmospheric constituents play in radiative transfer. Two instruments were deployed during this IOP to measure water vapor and aerosols and study their relationship. The NASA/Goddard Space Flight Center (GSFC) Scanning Raman Lidar (SRL) acquired water vapor and aerosol profile data during 15 nights of operations. The lidar acquired vertical profiles as well as nearly horizontal profiles directed near an instrumented 60 meter tower. Aerosol optical thickness, phase function, size distribution, and integrated water vapor were derived from measurements with a multiband automatic sun and sky scanning radiometer deployed at this site.

  5. An Autonomous Polarized Raman Lidar System Designed for Summit Camp, Greenland

    NASA Astrophysics Data System (ADS)

    Stillwell, Robert A.; Neely, Ryan R.; Pilewskie, Peter; O'Neill, Michael; Thayer, Jeffrey P.; Hayman, Matthew

    2016-06-01

    A dearth of high-spatial and temporal resolution measurements of atmospheric state variables in the Arctic directly inhibits scientific understanding of radiative and precipitation impacts on the changing surface environment. More reliable and frequent measurements are needed to better understand Arctic weather processes and constrain model predictions. To partially address the lack of Artic observations, a new autonomous Raman lidar system, which will measure water vapor mixing ratio, temperature, extinction, and cloud phase profiles through the troposphere, is designed for deployment to Summit Camp, Greenland (72° 36' N, 38° 25' W, 3250 [m]). This high-altitude Arctic field site has co-located ancillary equipment such as a Doppler millimeter cloud radar, microwave radiometers, depolarization lidars, ceiliometer, an infrared interferometer and twice-daily radiosondes. The current suite of instruments allows for a near comprehensive picture of the atmospheric state above Summit but increased spatial and temporal resolution of water vapor and temperature will reveal detailed microphysical information. A system description will be provided with an emphasis on the Monte Carlo safety analysis done to ensure eye safety in all relevant weather conditions.

  6. Raman Lidar Measurements of Water Vapor and Cirrus Clouds During the Passage of Hurricane Bonnie

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Evans, K. D.; Demoz, B.; Starr, O C.; Tobin, D.; Feltz, W.; Jedlovec, G. J.; Gutman, S. I.; Schwemmer, G. K.; Cadirola, M.; Melfi, S. H.; Schmidlin, F.

    2000-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island in the Bahamas during August - September, 1998 as a part of the third Convection and Moisture Experiment (CAMEX-3) which focussed on hurricane development and tracking. During the period August 21 - 24, hurricane Bonnie passed near Andros Island and influenced the water vapor and cirrus cloud measurements acquired by the SRL. Two drying signatures related to the hurricane were recorded by the SRL and other sensors. Cirrus cloud optical depths (at 351 nm) were also measured during this period. Optical depth values ranged from approximately 0.01 to 1.4. The influence of multiple scattering on these optical depth measurements was studied with the conclusion that the measured values of optical depth are less than the actual value by up to 20%. The UV/lR cirrus cloud optical depth ratio was estimated based on a comparison of lidar and GOES measurements. Simple radiative transfer model calculations compared with GOES satellite brightness temperatures indicate that satellite radiances are significantly affected by the presence of cirrus clouds if IR optical depths are approximately 0.02 or greater. This has implications for satellite cirrus detection requirements.

  7. Validation of Temperature Measurements from the Airborne Raman Ozone Temperature and Aerosol Lidar During SOLVE

    NASA Technical Reports Server (NTRS)

    Burris, John; McGee, Thomas; Hoegy, Walter; Lait, Leslie; Twigg, Laurence; Sumnicht, Grant; Heaps, William; Hostetler, Chris; Bui, T. Paul; Neuber, Roland; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    The Airborne Raman Ozone, Temperature and Aerosol Lidar (AROTEL) participated in the recent Sage III Ozone Loss and Validation Experiment (SOLVE) by providing profiles of aerosols, polar stratospheric clouds (PSCs), ozone and temperature with high vertical and horizontal resolution. Temperatures were derived from just above the aircraft to approximately 60 kilometers geometric altitude with a reported vertical resolution of between 0.5 and 1.5 km. The horizontal footprint varied from 4 to 70 km. This paper explores the measurement uncertainties associated with the temperature retrievals and makes comparisons with independent, coincident, measurements of temperature. Measurement uncertainties range from 0.1 K to approximately 4 K depending on altitude and integration time. Comparisons between AROTEL and balloon sonde temperatures retrieved under clear sky conditions using both Rayleigh and Raman scattered data showed AROTEL approximately 1 K colder than sonde values. Comparisons between AROTEL and the Meteorological Measurement System (MMS) on NASA's ER-2 show AROTEL being from 2-3 K colder for altitudes ranging from 14 to 18 km. Temperature comparisons between AROTEL and the United Kingdom Meteorological Office's model showed differences of approximately 1 K below approximately 25 km and a very strong cold bias of approximately 12 K at altitudes between 30 and 35 km.

  8. Comments on "Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements".

    PubMed

    Whiteman, David N; Venable, Demetrius; Landulfo, Eduardo

    2011-05-20

    In a recent publication, Leblanc and McDermid [Appl. Opt., 47, 5592 (2008)]APOPAI0003-693510.1364/AO.47.005592 proposed a hybrid calibration technique for Raman water vapor lidar involving a tungsten lamp and radiosondes. Measurements made with the lidar telescope viewing the calibration lamp were used to stabilize the lidar calibration determined by comparison with radiosonde. The technique provided a significantly more stable calibration constant than radiosondes used alone. The technique involves the use of a calibration lamp in a fixed position in front of the lidar receiver aperture. We examine this configuration and find that such a configuration likely does not properly sample the full lidar system optical efficiency. While the technique is a useful addition to the use of radiosondes alone for lidar calibration, it is important to understand the scenarios under which it will not provide an accurate quantification of system optical efficiency changes. We offer examples of these scenarios. Scanning of the full telescope aperture with the calibration lamp can circumvent most of these limitations. Based on the work done to date, it seems likely that the use of multiple calibration lamps in different fixed positions in front of the telescope may provide sufficient redundancy for long-term calibration needs. Further full-aperture scanning experiments, performed over an extended period of time, are needed to determine a "best practice" for the use of multiple calibration lamps in the hybrid technique. PMID:21614108

  9. Comments on ''Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements''

    SciTech Connect

    Whiteman, David N.; Venable, Demetrius; Landulfo, Eduardo

    2011-05-20

    In a recent publication, Leblanc and McDermid [Appl. Opt., 47, 5592 (2008)]APOPAI0003-693510.1364/AO.47.005592 proposed a hybrid calibration technique for Raman water vapor lidar involving a tungsten lamp and radiosondes. Measurements made with the lidar telescope viewing the calibration lamp were used to stabilize the lidar calibration determined by comparison with radiosonde. The technique provided a significantly more stable calibration constant than radiosondes used alone. The technique involves the use of a calibration lamp in a fixed position in front of the lidar receiver aperture. We examine this configuration and find that such a configuration likely does not properly sample the full lidar system optical efficiency. While the technique is a useful addition to the use of radiosondes alone for lidar calibration, it is important to understand the scenarios under which it will not provide an accurate quantification of system optical efficiency changes. We offer examples of these scenarios. Scanning of the full telescope aperture with the calibration lamp can circumvent most of these limitations. Based on the work done to date, it seems likely that the use of multiple calibration lamps in different fixed positions in front of the telescope may provide sufficient redundancy for long-term calibration needs. Further full-aperture scanning experiments, performed over an extended period of time, are needed to determine a ''best practice'' for the use of multiple calibration lamps in the hybrid technique.

  10. Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide.

    PubMed

    Nakazato, Masahisa; Nagai, Tomohiro; Sakai, Tetsu; Hirose, Yasuo

    2007-04-20

    A UV ozone differential-absorption lidar (DIAL) utilizing a Nd:YAG laser and a single Raman cell filled with carbon dioxide (CO(2)) is designed, developed, and evaluated. The generated wavelengths are 276, 287, and 299 nm, comprising the first to third Stokes lines of the stimulated Raman scattering technique. The correction terms originated from the aerosol extinction, the backscatter, and the absorption by other gases are estimated using a model atmosphere. The experimental results demonstrate that the emitted output energies were 13 mJ/pulse at 276 nm and 287 nm and 5 mJ/pulse at 299 nm, with pump energy of 91 mJ/pulse and a CO(2) pressure of 0.7 MPa. The three Stokes lines account for 44.0% of the available energy. The use of argon or helium as a buffer gas in the Raman cell was also investigated, but this leads to a dramatic decrease in the third Stokes line, which makes this wavelength practically unusable. Our observations confirmed that 30 min of integration were sufficient to observe ozone concentration profiles up to 10 km. Aerosol extinction and backscatter correction are estimated and applied. The aerosol backscatter correction profile using 287 and 299 nm as reference wavelengths is compared with that using 355 nm. The estimated statistical error is less than 5% at 1.5 km and 10% at 2.6 km. Comparisons with the operational carbon-iodine type chemical ozonesondes demonstrate 20% overestimation of the ozone profiles by the DIAL technique. PMID:17415396

  11. Intercomparisons of high-resolution solar blind Raman lidar atmospheric profiles of water vapor with radiosondes and kytoon

    NASA Technical Reports Server (NTRS)

    Petri, K.; Salik, A.; Cooney, J.

    1986-01-01

    A report is given of measurements of atmospheric profiles of water vapor in the boundary layer by use of solar blind Raman lidar. These measurement episodes, occuring twice a day over a two week period, were accompanied by a dense net of supporting measurements. The support included two radiosonde launches per measurement episodes as well as a kytoon support measurement of water vapor using a wet bulb-dry bulb instrument. The kytoon strategy included ten minute stops at strategic altitudes. Additional kytoon measurements included ozone profiles and nephelometric extinction profiles in the visible. Typically, six or seven 1000 shot lidar profile averages were collected during a measurement episode. Overall performance comparisons are provided and intercomparisons between auxiliary measurement devices are presented. Data on the accuracy of the lidar water vapor profiles are presented.

  12. New Examination of the Traditional Raman Lidar Technique II: Evaluating the Ratios for Water Vapor and Aerosols

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.

    2003-01-01

    In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman and Rayleigh-Mie lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here those results are used to derive the temperature dependent forms of the equations for the water vapor mixing ratio, aerosol scattering ratio, aerosol backscatter coefficient, and extinction to backscatter ratio (Sa). The error equations are developed, the influence of differential transmission is studied and different laser sources are considered in the analysis. The results indicate that the temperature functions become significant when using narrowband detection. Errors of 5% and more can be introduced in the water vapor mixing ratio calculation at high altitudes and errors larger than 10% are possible for calculations of aerosol scattering ratio and thus aerosol backscatter coefficient and extinction to backscatter ratio.

  13. An investigation of Raman lidar aerosol measurements and their application to the study of the aerosol indirect effect

    NASA Astrophysics Data System (ADS)

    Russo, Felicita

    The problem of the increasing global atmospheric temperature has motivated a large interest in studying the mechanisms that can influence the radiative balance of the planet. Aerosols are responsible for several radiative effects in the atmosphere: an increase of aerosol loading in the atmosphere increases the reflectivity of the atmosphere and has an estimated cooling effect and is called the aerosol direct effect. Another process involving aerosols is the effect that an increase in their concentration in the atmosphere has on the formation of clouds and is called the aerosol indirect effect. In the latest IPCC report, the aerosol indirect effect was estimated to be responsible for a radiative forcing ranging between -0.3 W/m2 to -1.8 W/m2, which can be as large as, but opposite in sign to, the radiative forcing due to greenhouse gases. The main goal of this dissertation is to study the Raman lidar measurements of quantities relevant for the investigation of the aerosol indirect effect and ultimately to apply these measurements to a quantification of the aerosol indirect effect. In particular we explore measurements of the aerosol extinction from both the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) and the US Department of Energy (DOE) ARM Climate Research Facility Raman Lidar (CARL). An algorithm based on the chi-squared technique to calculate the aerosol extinction, which was introduced first by Whiteman (1999), is here validated using both simulated and experimental data. It has been found as part of this validation that the aerosol extinction uncertainty retrieved with this technique is on average smaller that the uncertainty calculated with the technique traditionally used. This algorithm was then used to assess the performance of the CARL aerosol extinction retrieval for low altitudes. Additionally, since CARL has been upgraded with a channel for measuring Raman liquid water scattering, measurements of cloud liquid water content, droplet

  14. Multiple-Scattering Influence on Extinction-and Backscatter-Coefficient Measurements with Raman and High-Spectral-Resolution Lidars.

    PubMed

    Wandinger, U

    1998-01-20

    A formalism describing the influence of multiple scattering on cloud measurements with Raman and high-spectral-resolution lidars is presented. Model calculations including both particulate and molecular scattering processes are performed to describe the general effects of multiple scattering on both particulate and molecular lidar backscatter signals. It is found that, for typical measurement geometries of ground-based lidars, as many as five scattering orders contribute significantly to the backscattered light. The relative intensity of multiple-scattered light is generally larger in signals backscattered from molecules than in signals backscattered from particles. The multiple-scattering formalism is applied to measurements of water and ice clouds taken with a Raman lidar. Multiple-scattering errors of measured extinction coefficients are typically of the order of 50% at the bases of both water and ice clouds and decrease with increasing penetration depth to below 20%. In contrast, the multiple-scattering errors of backscatter coefficients are negligible in ice clouds and below 20% in water clouds. PMID:18268599

  15. Polar stratospheric clouds over Finland in the 2012/2013 Arctic winter measured by two Raman lidars

    NASA Astrophysics Data System (ADS)

    Hoffmann, Anne; Giannakaki, Eleni; Kivi, Rigel; Schrems, Otto; Immler, Franz; Komppula, Mika

    2013-04-01

    Already in December 2012, the Arctic stratospheric vortex reached temperatures sufficiently low for polar stratospheric cloud (PSC) formation over wide areas of Northern Europe and whole Finland. Within Finland, stratospheric aerosol lidar measurements have been and are performed with two Raman lidar systems, the PollyXT, owned by the Finnish Meteorological Institute (FMI) and situated well below the Arctic circle close to Kuopio (63 N, 27 E) and the MARL lidar owned by the Alfred-Wegener-Institute for Polar and Marine Research (AWI), and situated at the FMI Arctic Research Centre in Sodankylä (67 N, 26 E). The PollyXT has been designed as an autonomous tropospheric lidar system, but it has proven to be able to detect aerosol backscatter and depolarization at least as high up as 25 km. Measurements are ongoing as far as low clouds allow for stratospheric analysis with both lidars until the end of PSC season in February. For the winter 2012/2013, PSC occurrence frequency, types and characteristics will be determined. Comparative analysis with Calipso lidar profiles covering Finland will be performed. Preliminary results from December 17-24 show PSCs detected in Kuopio during seven days with the PollyXT lidar. The altitude of the clouds varied in the range of 17-25 km. In Sodankylä the measurements were running on one day during the period and PSCs were observed between altitudes 17-25 km. For the same time period (December 17-24, 2012) CALIPSO has observed stratospheric layers at all overpasses over Finland (9 tracks on five days). The clouds were observed between 18.5 and 26 km, with varying geometric and optical thickness.

  16. Sensitivity of Particle Extinction and Backscattering Calculation from Mie-Raman Lidar Measurements to the Choice of Ångström Exponent

    NASA Astrophysics Data System (ADS)

    Suvorina, Anastasia; Veselovskii, Igor; Whiteman, David N.; Korenskiy, Michael

    2016-06-01

    Vibrational Raman scattering from nitrogen is commonly used in Mie-Raman lidars for evaluation of particle backscattering (β) and extinction (α) coefficients. However, vibrational scattering is characterized by significant frequency shift of the Raman component, so for the calculation of α and β the assumption about the extinction Ångström exponent is needed. Simulation results presented in this study demonstrate that ambiguity in the choice of this exponent can be the significant source of uncertainty in the calculation of backscattering coefficients when optically thick aerosol layers are considered. Examples of lidar measurements and optical data calculated for different values of Ångström exponent are given.

  17. Elastic and Raman Lidar Temperature Measurements from Poker Flat, Alaska During February 1992

    NASA Technical Reports Server (NTRS)

    Burka, Michael; Dao, Phan; Davidson, Gilbert; Farley, Robert; Meriwether, John; Wilson, Alex

    1992-01-01

    Ground-based lidar observations are increasingly used to elucidate the dynamical structure of the stratosphere and mesosphere. Observations made from Poker Flat, Alaska during Feb. 1992 using the Phillips Laboratory Mobile Lidar Facility are reported.

  18. Investigation of aerosol and cloud properties using multiwavelength Raman lidar measurements

    NASA Astrophysics Data System (ADS)

    Verghese, Sachin John

    Lidar measurements obtained during several field campaigns have provided an extensive dataset for investigating aerosol characteristics and cloud properties. In this thesis we use measurements of multi-wavelength optical extinction measured with a Raman lidar to infer aerosol and cloud particle size variations. Aerosol extinction depends on both size and number density of the scatterers. The optical extinction at different wavelengths depends on the sixth power of the size parameter for aerosols much smaller than the scattering wavelength, and on the second power of the size parameter for aerosols much larger than the wavelength. Changes in the density of a particular size aerosol lead to a proportional response. The extinction profiles at several wavelengths are simultaneously examined to study changes in the aerosol size distribution over an interesting range of sizes corresponding to accumulation-mode particles. Model calculations based on Mie scattering theory are compared with extinction profiles at different wavelengths, water vapor profiles, and other simultaneous measurements, to investigate the formation and dissipation of cloud structures. The optical scattering measurements from aerosols and cloud particles demonstrate that various characteristics of aerosols and visibility can be determined. We demonstrate the capability of the new technique using the multi-wavelength extinction ratios to profile information about changes in CCN particle size in the range of 50 nm to 0.5 mum. Examples taken from three different field campaigns demonstrate that changes in the size of the cloud particles during the different stages of growth and dissipation are observed in the multi-wavelength aerosol extinction using this technique. We also show the relationship that exists between particle size increase or decrease in cloud regions, based on the extinction coefficients and changes in relative humidity. The deliquescence relative humidity (DRH) is found to exert a strong

  19. Oceanic Lidar

    NASA Technical Reports Server (NTRS)

    Carder, K. L. (Editor)

    1981-01-01

    Instrument concepts which measure ocean temperature, chlorophyll, sediment and Gelbstoffe concentrations in three dimensions on a quantitative, quasi-synoptic basis were considered. Coastal zone color scanner chlorophyll imagery, laser stimulated Raman temperaure and fluorescence spectroscopy, existing airborne Lidar and laser fluorosensing instruments, and their accuracies in quantifying concentrations of chlorophyll, suspended sediments and Gelbstoffe are presented. Lidar applications to phytoplankton dynamics and photochemistry, Lidar radiative transfer and signal interpretation, and Lidar technology are discussed.

  20. Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 observational prototype experiment

    NASA Astrophysics Data System (ADS)

    Hammann, E.; Behrendt, A.; Le Mounier, F.; Wulfmeyer, V.

    2014-11-01

    The temperature measurements of the Rotational Raman Lidar of the University of Hohenheim (UHOH RRL) during the High Definition of Clouds and Precipitation for advancing Climate Prediction (HD(CP)2 Prototype Experiment (HOPE) in April and May 2013 are discussed. The lidar consists of a frequency-tripled Nd:YAG laser at 355 nm with 10 W average power at 50 Hz, a two-mirror scanner, a 40 cm receiving telescope and a highly efficient polychromator with cascading interference filters for separating four signals: the elastic backscatter signal, two rotational Raman signals with different temperature dependence, and the vibrational Raman signal of water vapor. The main measurement variable of the UHOH RRL is temperature. For the HOPE campaign, the lidar receiver was optimized for high and low background levels, respectively, with a novel switch for the passband of the second rotational Raman channel. The instrument delivers atmospheric profiles of water vapor mixing ratio as well as particle backscatter coefficient and particle extinction coefficient as further products. As examples for the measurement performance, measurements of the temperature gradient and water vapor mixing ratio revealing the development of the atmospheric boundary layer within 25 h are presented. As expected from simulations, a significant advance during nighttime was achieved with the new low-background setting. A two-mirror scanner allows for measurements in different directions. When pointing the scanner to low elevation, measurements close to the ground become possible which are otherwise impossible due to the non-total overlap of laser beam and receiving telescope field-of-view in the near range. We present an example of a low-level temperature measurement which resolves the temperature gradient at the top of the stable nighttime boundary layer a hundred meters above the ground.

  1. Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 Observational Prototype Experiment

    NASA Astrophysics Data System (ADS)

    Hammann, E.; Behrendt, A.; Le Mounier, F.; Wulfmeyer, V.

    2015-03-01

    The temperature measurements of the rotational Raman lidar of the University of Hohenheim (UHOH RRL) during the High Definition of Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observation Prototype Experiment (HOPE) in April and May 2013 are discussed. The lidar consists of a frequency-tripled Nd:YAG laser at 355 nm with 10 W average power at 50 Hz, a two-mirror scanner, a 40 cm receiving telescope, and a highly efficient polychromator with cascading interference filters for separating four signals: the elastic backscatter signal, two rotational Raman signals with different temperature dependence, and the vibrational Raman signal of water vapor. The main measurement variable of the UHOH RRL is temperature. For the HOPE campaign, the lidar receiver was optimized for high and low background levels, with a novel switch for the passband of the second rotational Raman channel. The instrument delivers atmospheric profiles of water vapor mixing ratio as well as particle backscatter coefficient and particle extinction coefficient as further products. As examples for the measurement performance, measurements of the temperature gradient and water vapor mixing ratio revealing the development of the atmospheric boundary layer within 25 h are presented. As expected from simulations, a reduction of the measurement uncertainty of 70% during nighttime was achieved with the new low-background setting. A two-mirror scanner allows for measurements in different directions. When pointing the scanner to low elevation, measurements close to the ground become possible which are otherwise impossible due to the non-total overlap of laser beam and receiving telescope field of view in the near range. An example of a low-level temperature measurement is presented which resolves the temperature gradient at the top of the stable nighttime boundary layer 100 m above the ground.

  2. The mobile Water vapor Aerosol Raman LIdar and its implication in the framework of the HyMeX and ChArMEx programs: application to a dust transport process

    NASA Astrophysics Data System (ADS)

    Chazette, P.; Marnas, F.; Totems, J.

    2014-06-01

    The increasing importance of the coupling of water and aerosol cycles in environmental applications requires observation tools that allow simultaneous measurements of these two fundamental processes for climatological and meteorological studies. For this purpose, a new mobile Raman lidar, WALI (Water vapor and Aerosol LIdar), has been developed and implemented within the framework of the international HyMeX and ChArMEx programs. This paper presents the key properties of this new device and its first applications to scientific studies. The lidar uses an eye-safe emission in the ultraviolet range at 354.7 nm and a set of compact refractive receiving telescopes. Cross-comparisons between rawinsoundings performed from balloon or aircraft and lidar measurements have shown a good agreement in the derived water vapor mixing ratio (WVMR). The discrepancies are generally less than 0.5 g kg-1 and therefore within the error bars of the respective instruments. A detailed study of the uncertainty of the WVMR retrieval was conducted and shows values between 7 and 11%, which is largely constrained by the quality of the lidar calibration. It also proves that the lidar is able to measure the WVMR during daytime over a range of about 1 km. In addition the WALI system provides measurements of aerosol optical properties such as the lidar ratio (LR) or the particulate depolarization ratio (PDR). An important example of scientific application addressing the main objectives of the HyMeX and ChArMEx programs is then presented, following an event of desert dust aerosols over the Balearic Islands in October 2012. This dust intrusion may have had a significant impact on the intense precipitations that occurred over southwestern France and the Spanish Mediterranean coasts. During this event, the LR and PDR values obtained are in the ranges of ~45-63 ± 6 and 0.10-0.19 ± 0.01 sr, respectively, which is representative of dust aerosols. The dust layers are also shown to be associated with

  3. Analysis of Raman Lidar and Radiosonde Measurements from the AWEX-G Field Campaign and Its Relation to Aqua Validation

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Russo, F.; Demoz, B.; Miloshevich, L. M.; Veselovskii, I.; Hannon, S.; Wang, Z.; Vomel, H.; Schmidlin, F.; Lesht, B.; Moore, P. J.; Beebe, A. S.; Gambacorta, A.; Barnet, C.

    2006-01-01

    Early work within the Aqua validation activity revealed there to be large differences in water vapor measurement accuracy among the various technologies in use for providing validation data. The validation measurements were made at globally distributed sites making it difficult to isolate the sources of the apparent measurement differences among the various sensors, which included both Raman lidar and radiosonde. Because of this, the AIRS Water Vapor Experiment-Ground (AWEX-G) was held in October-November 2003 with the goal of bringing validation technologies to a common site for intercomparison and resolving the measurement discrepancies. Using the University of Colorado Cryogenic Frostpoint Hygrometer (CFH) as the water vapor reference, the AWEX-G field campaign permitted correction techniques to be validated for Raman lidar, Vaisala RS80-H and RS90/92 that significantly improve the absolute accuracy of water vapor measurements from these systems particularly in the upper troposphere. Mean comparisons of radiosondes and lidar are performed demonstrating agreement between corrected sensors and the CFH to generally within 5% thereby providing data of sufficient accuracy for Aqua validation purposes. Examples of the use of the correction techniques in radiance and retrieval comparisons are provided and discussed.

  4. The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: the neXT generation

    NASA Astrophysics Data System (ADS)

    Engelmann, Ronny; Kanitz, Thomas; Baars, Holger; Heese, Birgit; Althausen, Dietrich; Skupin, Annett; Wandinger, Ulla; Komppula, Mika; Stachlewska, Iwona S.; Amiridis, Vassilis; Marinou, Eleni; Mattis, Ina; Linné, Holger; Ansmann, Albert

    2016-04-01

    The atmospheric science community demands autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. For this purpose, a portable lidar called Polly was developed at TROPOS in 2003. The lidar system was continuously improved with gained experience from the EARLINET community, involvement in worldwide field campaigns, and international institute collaborations within the last 10 years. Here we present recent changes of the setup of the portable multiwavelength Raman and polarization lidar PollyXT and discuss the improved capabilities of the system by means of a case study. The latest system developments include an additional near-range receiver unit for Raman measurements of the backscatter and extinction coefficient down to 120 m above ground, a water-vapor channel, and channels for simultaneous measurements of the particle linear depolarization ratio at 355 and 532 nm. Quality improvements were achieved by systematically following the EARLINET guidelines and the international PollyNET quality assurance developments. A modified ship radar ensures measurements in agreement with air-traffic safety regulations and allows for 24/7 monitoring of the atmospheric state with PollyXT.

  5. Analysis of Raman Lidar and radiosonde measurements from the AWEX-G field campaign and its relation to Aqua validation

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Russo, F.; Demoz, B.; Miloshevich, L. M.; Veselovskii, I.; Hannon, S.; Wang, Z.; Vomel, H.; Schmidlin, F.; Lesht, B.

    2005-01-01

    Early work within the Aqua validation activity revealed there to be large differences in water vapor measurement accuracy among the various technologies in use for providing validation data. The validation measurements were made at globally distributed sites making it difficult to isolate the sources of the apparent measurement differences among the various sensors, which included both Raman lidar and radiosonde. Because of this, the AIRS Water Vapor Experiment-Ground (AWEX-G) was held in October - November, 2003 with the goal of bringing validation technologies to a common site for intercomparison and resolution of the measurement discrepancies. Using the University of Colorado Cryogenic Frostpoint Hygrometer (CFH) as the water vapor reference, the AWEX-G field campaign resulted in new correction techniques for both Raman lidar, Vaisala RS80-H and RS90/92 measurements that significantly improve the absolute accuracy of those measurement systems particularly in the upper troposphere. Mean comparisons of radiosondes and lidar are performed demonstrating agreement between corrected sensors and the CFH to generally within 5% thereby providing data of sufficient accuracy for Aqua validation purposes. Examples of the use of the correction techniques in radiance and retrieval comparisons are provided and discussed.

  6. Improved method for retrieving the aerosol optical properties without the numerical derivative for Raman-Mie lidar

    NASA Astrophysics Data System (ADS)

    Gong, Wei; Wang, Wei; Mao, Feiyue; Zhang, Jinye

    2015-08-01

    Raman-Mie light detection and ranging (lidar) is a very useful tool for research on atmospheric aerosol optical properties with high spatial-temporal resolution. However, many uncertainties still exist in data retrieval because traditional retrieval methods need to calculate the numerical derivative for aerosol extinction coefficient (AEC), which may cause large errors, particularly with low signal-to-noise ratios. Thus, we present an improved method for retrieving aerosol optical properties. We re-formulate the N2-Raman lidar equation to obtain an unknown term which contains the AEC at the Mie wavelength. We replace the unknown term of the equation in traditional method for retrieving aerosol backscatter coefficient (ABC). Then, AEC can be retrieved by the accurate ABC and Mie lidar signal without calculating the numerical derivative. Tests on the simulated and measured signals show that results of our method and those of the traditional method have similar tendencies. However, our method is more accurate and robust, and the significant errors of AEC caused by the numerical derivative can be reduced.

  7. Self-Raman Nd:YVO4 laser and electro-optic technology for space-based sodium lidar instrument

    NASA Astrophysics Data System (ADS)

    Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2014-02-01

    We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nm. A CW External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nm. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nm. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9W @ 532 nm wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.

  8. Water vapor observations up to the lower stratosphere through the Raman lidar during the MAïdo LIdar Calibration Campaign

    NASA Astrophysics Data System (ADS)

    Dionisi, D.; Keckhut, P.; Courcoux, Y.; Hauchecorne, A.; Porteneuve, J.; Baray, J. L.; Leclair de Bellevue, J.; Vérèmes, H.; Gabarrot, F.; Payen, G.; Decoupes, R.; Cammas, J. P.

    2014-10-01

    A new lidar system devoted to tropospheric and lower stratospheric water vapor measurements has been installed at the Maïdo altitude station facility of La Reunion Island, in the southern subtropics. The main objectives of the MAïdo LIdar Calibration Campaign (MALICCA), performed in April 2013, were to validate the system, to set up a calibration methodology, to compare the acquired water profiles with radiosonde measurements and to evaluate its performances and capabilities with a particular focus on the UTLS measurements. Varying the characteristics of the transmitter and the receiver components, different system configuration scenarios were tested and possible parasite signals (fluorescent contamination, rejection) were investigated. A hybrid calibration methodology has been set up and validated to insure optimal lidar calibration stability with time. In particular, the receiver transmittance is monitored through the calibration lamp method that, at the moment, can detect transmittance variations greater than 10-15%. Calibration coefficients are then calculated through the hourly values of IWV provided by the co-located GPS. The comparison between the constants derived by GPS and Vaisala RS92 radiosondes launched at Maïdo during MALICCA, points out an acceptable agreement in terms of accuracy of the mean calibration value (with a difference of approximately 2-3%), but a significant difference in terms of variability (14 vs. 7-9%, for GPS and RS92 calibration procedures, respectively). We obtained a relatively good agreement between the lidar measurements and 15 co-located and simultaneous RS92 radiosondes. A relative difference below 10% is measured in low and middle troposphere (2-10 km). The upper troposphere (up to 15 km) is characterized by a larger spread (approximately 20%), because of the increasing distance between the two sensors. To measure water vapor in the UTLS region, nighttime and monthly water vapor profiles are presented and compared. The

  9. Observation and analysis of the temperature inversion layer by Raman lidar up to the lower stratosphere.

    PubMed

    Wang, Yufeng; Cao, Xiaoming; He, Tingyao; Gao, Fei; Hua, Dengxin; Zhao, Meina

    2015-12-01

    The vibration-rotational Raman lidar system built in Xi'an, China (34.233°N, 108.911°E) was used to simultaneously detect atmospheric temperature, water vapor, and aerosols under different weather conditions. Temperature measurement examples showed good agreement with radiosonde data in terms of the lapse rates and heights of the inversion layer under the lower stratosphere. The statistical temperature error due to the signal-to-noise ratio is less than 1 K up to a height of 15 km, and is estimated to be less than 3 K below a height of 22 km. High-quality temperature data were collected from 70 nighttime observations from October 2013 to May 2014, and were used to analyze the temperature inversion characteristics at Xi'an, which is a typical city in the northwest of China. The tropopause height over the Xi'an area was almost 17-18 km, and the inversion layer often formed above the cloud layer. In the winter at night, inversions within the boundary layer can easily form with a high occurrence of ∼60% based on 47 nights from 01 November 2013 to 21 January 2014. Continuous observation of atmospheric temperature, water vapor (relative humidity), and aerosols was carried out during one night, and the relevant changes were analyzed in the boundary layer via the joint observation of atmospheric visibility, PM2.5 and PM10 from a ground visibility meter and from a monitoring site, which revealed that the temperature inversion layer has a great influence on the formation of fog and haze during the winter night and early morning. PMID:26836664

  10. Mid-latitude cirrus classification at Rome Tor Vergata through a multi-channel Raman-Mie-Rayleigh lidar

    NASA Astrophysics Data System (ADS)

    Dionisi, D.; Keckhut, P.; Liberti, G. L.; Cardillo, F.; Congeduti, F.

    2013-04-01

    A methodology to identify and characterize cirrus clouds has been developed and applied to the multichannel-multiwavelength Rayleigh-Mie-Raman (RMR) lidar in Rome-Tor Vergata (RTV). A set of 167 cirrus cases, defined on the basis of quasi-stationary temporal period conditions, has been selected in a dataset consisting of about 500 h of nighttime lidar sessions acquired between February 2007 and April 2010. The derived lidar parameters (effective height, geometrical and optical thickness and mean back-scattering ratio) and the cirrus mid-height temperature (estimated from the radiosoundings of Pratica di Mare, WMO site #16245) of this sample have been analyzed by the means of a clustering multivariate analysis. This approach identified four cirrus classes above the RTV site: two thin cirrus clusters in mid and upper troposphere and two thick cirrus clusters in mid-upper troposphere. These results, which are very similar to those derived through the same approach in the lidar site of the Observatoire of Haute Provence (OHP), allows characterizing cirrus clouds over RTV site and attests the robustness of such classification. To have some indications about the cirrus generation methods for the different classes, the analyses of the extinction-to-backscatter ratio (lidar ratio, LReff), in terms of the frequency distribution functions and depending on the mid-height cirrus temperature have been performed. This study suggests that smaller (larger) ice crystals compose thin (thick) cirrus classes. This information, together with the value of relative humidity over ice (110 ± 30%), calculated through the simultaneous WV Raman measurements for the mid-tropospheric thin class, indicates that this class could be formed by an heterogeneous nucleation mechanism. The RTV cirrus results, re-computed through the cirrus classification by Sassen and Cho (1992), shows good agreement to other mid-latitude lidar cirrus observation for the relative occurrence of subvisible (SVC), thin

  11. Study Case of Air-Mass Modification over Poland and Romania Observed by the Means of Multiwavelength Raman Depolarization Lidars

    NASA Astrophysics Data System (ADS)

    Costa-Surós, Montserrat; Janicka, Lucja; Stachlewska, Iwona S.; Nemuc, Anca; Talianu, Camelia; Heese, Birgit; Engelmann, Ronny

    2016-06-01

    An air-mass modification, on its way from Poland to Romania, observed between 19-21 July 2014 is discussed. The air-mass was investigated using data of two multi-wavelength lidars capable of performing regular elastic, depolarization and Raman measurements in Warsaw, Poland, and in Magurele, Romania. The analysis was focused on evaluating optical properties of aerosol in order to search for similarities and differences in the vertical profiles describing the atmospheric layers above the two stations within given period.

  12. Intercomparison of aerosol optical parameters from WALI and R-MAN510 aerosol Raman lidars in the framework of HyMeX campaign

    NASA Astrophysics Data System (ADS)

    Boytard, Mai-Lan; Royer, Philippe; Chazette, Patrick; Shang, Xiaoxia; Marnas, Fabien; Totems, Julien; Bizard, Anthony; Bennai, Baya; Sauvage, Laurent

    2013-04-01

    The HyMeX program (Hydrological cycle in Mediterranean eXperiment) aims at improving our understanding of hydrological cycle in the Mediterranen and at a better quantification and forecast of high-impact weather events in numerical weather prediction models. The first Special Observation Period (SOP1) took place in September/October 2012. During this period two aerosol Raman lidars have been deployed at Menorca Island (Spain) : one Water-vapor and Aerosol Raman LIdar (WALI) operated by LSCE/CEA (Laboratoire des Sciences du Climat et de l'Environnement/Commissariat à l'Energie Atomique) and one aerosol Raman and dual-polarization lidar (R-Man510) developed and commercialized by LEOSPHERE company. Both lidars have been continuously running during the campaign and have provided information on aerosol and cloud optical properties under various atmospheric conditions (maritime background aerosols, dust events, cirrus clouds...). We will present here the results of intercomparisons between R-Man510, and WALI aerosol lidar systems and collocated sunphotometer measurements. Limitations and uncertainties on the retrieval of extinction coefficients, depolarization ratio, aerosol optical depths and detection of atmospheric structures (planetary boundary layer height, aerosol/cloud layers) will be discussed according atmospheric conditions. The results will also be compared with theoretical uncertainty assessed with direct/inverse model of lidar profiles.

  13. Vertical profiles of microphysical particle properties derived from inversion with two-dimensional regularization of multiwavelength Raman lidar data: experiment.

    PubMed

    Müller, Detlef; Kolgotin, Alexei; Mattis, Ina; Petzold, Andreas; Stohl, Andreas

    2011-05-10

    Inversion with two-dimensional (2-D) regularization is a new methodology that can be used for the retrieval of profiles of microphysical properties, e.g., effective radius and complex refractive index of atmospheric particles from complete (or sections) of profiles of optical particle properties. The optical profiles are acquired with multiwavelength Raman lidar. Previous simulations with synthetic data have shown advantages in terms of retrieval accuracy compared to our so-called classical one-dimensional (1-D) regularization, which is a method mostly used in the European Aerosol Research Lidar Network (EARLINET). The 1-D regularization suffers from flaws such as retrieval accuracy, speed, and ability for error analysis. In this contribution, we test for the first time the performance of the new 2-D regularization algorithm on the basis of experimental data. We measured with lidar an aged biomass-burning plume over West/Central Europe. For comparison, we use particle in situ data taken in the smoke plume during research aircraft flights upwind of the lidar. We find good agreement for effective radius and volume, surface-area, and number concentrations. The retrieved complex refractive index on average is lower than what we find from the in situ observations. Accordingly, the single-scattering albedo that we obtain from the inversion is higher than what we obtain from the aircraft data. In view of the difficult measurement situation, i.e., the large spatial and temporal distances between aircraft and lidar measurements, this test of our new inversion methodology is satisfactory. PMID:21556108

  14. Characterization of convection-related parameters by Raman lidar: Analysis of selected case studies from the Convective and Orographically-induced Precipitation Study

    NASA Astrophysics Data System (ADS)

    Di Girolamo, P.; Summa, D.; Stelitano, D.

    2012-04-01

    This paper illustrates an approach to determine the convective available potential energy (CAPE) and the convective inhibition (CIN) based on the use of data from a Raman lidar system. The use of Raman lidar data allows to provide high temporal resolution (5 min) measurements of CAPE and CIN and follow their evolution over extended time period covering the full cycle of convective activity. Lidar-based measurements of CAPE and CIN are obtained from Raman lidar measurements of the temperature profile and the surface measurements of temperature, pressure and dew point temperature provided from a surface weather station. The approach is tested and applied to the data collected by the Raman lidar system BASIL, which was operational in Achern (Black Forest, Lat: 48.64 ° N, Long: 8.06 ° E, Elev.: 140 m) in the period 01 June - 31 August 2007 in the frame of the Convective and Orographically-induced Precipitation Study (COPS), held in Southern Germany and Eastern France. Reported measurements are found to be in good agreement with simultaneous measurements obtained from the radiosondes launched in Achern and with estimates from different mesoscale models. An estimate of the different random error sources affecting the measurements of CAPE and CIN has also been performed, together with a detail sensitivity study to quantify the different systematic error sources. Preliminary results from this study will be illustrated and discussed at the Conference.

  15. A Case Study on Observed and Simulated CO2 Concentration Profiles in Hefei based on Raman Lidar and GEOS-Chem Model

    NASA Astrophysics Data System (ADS)

    Wang, Yinan; Lü, Daren; Pan, Weilin; Yuan, Kee

    2016-06-01

    Observations of atmospheric CO2 concentration profiles provide significative constraints on the global/regional inversions of carbon sources and sinks. Anhui Institute of Optics and Fine Mechanics of Chinese Academy of Sciences developed a Raman Lidar system to detect the vertical distribution of atmospheric CO2. This paper compared the observations with the modeled results from a three-dimensional global chemistry transport model-GEOS-Chem, which showed a good agreement in the trend of change with lidar measurements. The case study indicated a potential for better simulating vertical distribution of atmospheric CO2 by combining with lidar measurements.

  16. Vertical Resolved Dust Mass Concentration and Backscatter Coefficient Retrieval of Asian Dust Plume Using Quartz Raman Channel in Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Noh, Young M.; Mueller, Detlef; Shin, Sungkyun

    2016-06-01

    In this work, we present a method for estimating vertical resolved mass concentration of dust immersed in Asian dust plume using Raman scattering of quartz (silicon dioxide, silica). During the Asian dust period of March 15, 16, and 21 in 2010, Raman lidar measurements detected the presence of quartz, and successfully showed the vertical profiles of the quartz backscatter coefficient. Since the Raman backscatter coefficient was connected with the Raman backscatter differential cross section and the number density of quartz molecules, the mass concentration of quartz in the atmosphere can be estimated from the quartz backscatter coefficient. The weight percentage from 40 to 70 % for quartz in the Asian dust was estimated from references. The vertical resolved mass concentration of dust was estimated by quartz mass concentration and weight percentage. We also present a retrieval method to obtain dust backscatter coefficient from the mixed Asian dust and pollutant layer. OPAC (Optical Properties of Aerosol and Clouds) simulations were conducted to calculate dust backscatter coefficient. The retrieved dust mass concentration was used as an input parameter for the OPAC calculations. These approaches in the study will be useful for characterizing the quartz dominated in the atmospheric aerosols and estimating vertical resolved mass concentration of dust. It will be especially applicable for optically distinguishing the dust and non-dust aerosols in studies on the mixing state of Asian dust plume. Additionally, the presented method combined with satellite observations is enable qualitative and quantitative monitoring for Asian dust.

  17. Remote sensing of water vapour from the synergy of Raman lidar, GPS and in-situ observations during the DEMEVAP 2011 campaign

    NASA Astrophysics Data System (ADS)

    Bock, Olivier; David, Leslie; Bosser, Pierre; Thom, Christian; Pelon, Jacques; Keckhut, Philippe; Sarkissian, Alain; Bourcy, Thomas; Tzanos, Diane; Tournois, Guy

    2013-04-01

    The DEMEVAP (DEvelopment of MEthods for remote sensing of water VAPor) project aims at developing improved reference humidity sounding methods based on the combined used of scanning Raman lidars, ground-based sensors and GPS. The goal is to achieve absolute accuracy better than 3% on the column integrated water vapour (IWV). An intensive observing period was conducted in September-October 2011 at Observatoire de Haute Provence (OHP), France, with the aim of intercomparing several different techniques and instruments. It involved two Raman lidars, four radiosonde measurement systems, five GPS stations, a stellar spectrometer, and several ground-based capacitive and dew-point sensors. Observations were collected over 17 nights during which 26 balloons were released which carried a total of 79 radiosondes. Most of the balloons carried 3 or 4 different sonde types simultaneously (Vaisala RS92, MODEM M2K2-DC and M10, and Meteolabor Snow-White). The comparison of IWV measurements from the four radiosonde types to GPS reveals biases of -11% to +7%. Comparison of water vapour profiles from the radiosondes to the IGN scanning Raman lidar profiles reveals mostly dry and wet biases in the radiosondes data in dry layers in the middle and upper troposphere. Several Raman lidar calibration methods are evaluated which adjust the lidar measurements either on ground-based capacitive or dew-point sensors measurements, on radiosonde data or on GPS PWV data. Another method adjusts the lidar calibration constant as an extra parameter during GPS processing. All these methods show a good degree of consistency and yield a repeatability of 2 to 5% during the first 3-week period of the experiment. A drift in the calibration constant is observed throughout the full time of the experiment which is partly explained by a temperature-dependent bias in the lidar measurements induced by the progressive cooling of the atmosphere. Modelling and correcting this effect or modifying the Raman lidar

  18. Correction Technique for Raman Water Vapor Lidar Signal-Dependent Bias and Suitability for Water Wapor Trend Monitoring in the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Cadirola, M.; Venable, D.; Calhoun, M.; Miloshevich, L; Vermeesch, K.; Twigg, L.; Dirisu, A.; Hurst, D.; Hall, E.; Jordan, A.; Voemel, H.

    2012-01-01

    The MOHAVE-2009 campaign brought together diverse instrumentation for measuring atmospheric water vapor. We report on the participation of the ALVICE (Atmospheric Laboratory for Validation, Interagency Collaboration and Education) mobile laboratory in the MOHAVE-2009 campaign. In appendices we also report on the performance of the corrected Vaisala RS92 radiosonde measurements during the campaign, on a new radiosonde based calibration algorithm that reduces the influence of atmospheric variability on the derived calibration constant, and on other results of the ALVICE deployment. The MOHAVE-2009 campaign permitted the Raman lidar systems participating to discover and address measurement biases in the upper troposphere and lower stratosphere. The ALVICE lidar system was found to possess a wet bias which was attributed to fluorescence of insect material that was deposited on the telescope early in the mission. Other sources of wet biases are discussed and data from other Raman lidar systems are investigated, revealing that wet biases in upper tropospheric (UT) and lower stratospheric (LS) water vapor measurements appear to be quite common in Raman lidar systems. Lower stratospheric climatology of water vapor is investigated both as a means to check for the existence of these wet biases in Raman lidar data and as a source of correction for the bias. A correction technique is derived and applied to the ALVICE lidar water vapor profiles. Good agreement is found between corrected ALVICE lidar measurments and those of RS92, frost point hygrometer and total column water. The correction is offered as a general method to both quality control Raman water vapor lidar data and to correct those data that have signal-dependent bias. The influence of the correction is shown to be small at regions in the upper troposphere where recent work indicates detection of trends in atmospheric water vapor may be most robust. The correction shown here holds promise for permitting useful upper

  19. Correction technique for Raman water vapor lidar signal-dependent bias and suitability for water vapor trend monitoring in the upper troposphere

    NASA Astrophysics Data System (ADS)

    Whiteman, D. N.; Cadirola, M.; Venable, D.; Calhoun, M.; Miloshevich, L.; Vermeesch, K.; Twigg, L.; Dirisu, A.; Hurst, D.; Hall, E.; Jordan, A.; Vömel, H.

    2012-11-01

    The MOHAVE-2009 campaign brought together diverse instrumentation for measuring atmospheric water vapor. We report on the participation of the ALVICE (Atmospheric Laboratory for Validation, Interagency Collaboration and Education) mobile laboratory in the MOHAVE-2009 campaign. In appendices we also report on the performance of the corrected Vaisala RS92 radiosonde measurements during the campaign, on a new radiosonde based calibration algorithm that reduces the influence of atmospheric variability on the derived calibration constant, and on other results of the ALVICE deployment. The MOHAVE-2009 campaign permitted the Raman lidar systems participating to discover and address measurement biases in the upper troposphere and lower stratosphere. The ALVICE lidar system was found to possess a wet bias which was attributed to fluorescence of insect material that was deposited on the telescope early in the mission. Other sources of wet biases are discussed and data from other Raman lidar systems are investigated, revealing that wet biases in upper tropospheric (UT) and lower stratospheric (LS) water vapor measurements appear to be quite common in Raman lidar systems. Lower stratospheric climatology of water vapor is investigated both as a means to check for the existence of these wet biases in Raman lidar data and as a source of correction for the bias. A correction technique is derived and applied to the ALVICE lidar water vapor profiles. Good agreement is found between corrected ALVICE lidar measurments and those of RS92, frost point hygrometer and total column water. The correction is offered as a general method to both quality control Raman water vapor lidar data and to correct those data that have signal-dependent bias. The influence of the correction is shown to be small at regions in the upper troposphere where recent work indicates detection of trends in atmospheric water vapor may be most robust. The correction shown here holds promise for permitting useful upper

  20. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 2; Derivation of Aerosol Real Refractive Index, Single-Scattering Albedo, and Humidification Factor using Raman Lidar and Aircraft Size Distribution

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Poellot, M.; Kaufman, Y. J.

    1998-01-01

    Aerosol backscattering and extinction profiles measured by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site during two nights in April 1994 are discussed. These profiles are shown to be consistent with the simultaneous aerosol size distribution measurements made by a PCASP (Passive Cavity Aerosol Spectrometer Probe) optical particle counter flown on the University of North Dakota Citation aircraft. We describe a technique which uses both lidar and PCASP measurements to derive the dependence of particle size on relative humidity, the aerosol real refractive index n, and estimate the effective single-scattering albedo Omega(sub 0). Values of n ranged between 1.4-1.5 (dry) and 1.37-1.47 (wet); Omega(sub 0) varied between 0.7 and 1.0. The single-scattering albedo derived from this technique is sensitive to the manner in which absorbing particles are represented in the aerosol mixture; representing the absorbing particles as an internal mixture rather than the external mixture assumed here results in generally higher values of Omega(sub 0). The lidar measurements indicate that the change in particle size with relative humidity as measured by the PCASP can be represented in the form discussed by Hattel with the exponent gamma = 0.3 + or - 0.05. The variations in aerosol optical and physical characteristics captured in the lidar and aircraft size distribution measurements are discussed in the context of the meteorological conditions observed during the experiment.

  1. Forest Fire Smoke Layers Observed in the Free Troposphere over Portugal with a Multiwavelength Raman Lidar: Optical and Microphysical Properties

    PubMed Central

    Nepomuceno Pereira, Sérgio; Guerrero-Rascado, Juan Luis; Silva, Ana Maria; Wagner, Frank

    2014-01-01

    Vertically resolved optical and microphysical properties of biomass burning aerosols, measured in 2011 with a multiwavelength Raman lidar, are presented. The transportation time, within 1-2 days (or less), pointed towards the presence of relatively fresh smoke particles over the site. Some strong layers aloft were observed with particle backscatter and extinction coefficients (at 355 nm) greater than 5 Mm−1 sr−1 and close to 300 Mm−1, respectively. The particle intensive optical properties showed features different from the ones reported for aged smoke, but rather consistent with fresh smoke. The Ångström exponents were generally high, mainly above 1.4, indicating a dominating accumulation mode. Weak depolarization values, as shown by the small depolarization ratio of 5% or lower, were measured. Furthermore, the lidar ratio presented no clear wavelength dependency. The inversion of the lidar signals provided a set of microphysical properties including particle effective radius below 0.2 μm, which is less than values previously observed for aged smoke particles. Real and imaginary parts of refractive index of about 1.5-1.6 and 0.02i, respectively, were derived. The single scattering albedo was in the range between 0.85 and 0.93; these last two quantities indicate the nonnegligible absorbing characteristics of the observed particles. PMID:25114964

  2. Forest fire smoke layers observed in the free troposphere over Portugal with a multiwavelength Raman lidar: optical and microphysical properties.

    PubMed

    Nepomuceno Pereira, Sérgio; Preißler, Jana; Guerrero-Rascado, Juan Luis; Silva, Ana Maria; Wagner, Frank

    2014-01-01

    Vertically resolved optical and microphysical properties of biomass burning aerosols, measured in 2011 with a multiwavelength Raman lidar, are presented. The transportation time, within 1-2 days (or less), pointed towards the presence of relatively fresh smoke particles over the site. Some strong layers aloft were observed with particle backscatter and extinction coefficients (at 355 nm) greater than 5 Mm(-1)sr(-1) and close to 300 Mm(-1), respectively. The particle intensive optical properties showed features different from the ones reported for aged smoke, but rather consistent with fresh smoke. The Ångström exponents were generally high, mainly above 1.4, indicating a dominating accumulation mode. Weak depolarization values, as shown by the small depolarization ratio of 5% or lower, were measured. Furthermore, the lidar ratio presented no clear wavelength dependency. The inversion of the lidar signals provided a set of microphysical properties including particle effective radius below 0.2 μm, which is less than values previously observed for aged smoke particles. Real and imaginary parts of refractive index of about 1.5-1.6 and 0.02i, respectively, were derived. The single scattering albedo was in the range between 0.85 and 0.93; these last two quantities indicate the nonnegligible absorbing characteristics of the observed particles. PMID:25114964

  3. Study of Droplet Activation in Thin Clouds Using Ground-Based Raman Lidar and Ancillary Remote Sensors

    NASA Astrophysics Data System (ADS)

    Rosoldi, Marco; Madonna, Fabio; Gumà Claramunt, Pilar; Pappalardo, Gelsomina

    2016-06-01

    A methodology for the study of cloud droplet activation based on the measurements performed with ground-based multi-wavelength Raman lidars and ancillary remote sensors collected at CNR-IMAA observatory, Potenza, South Italy, is presented. The study is focused on the observation of thin warm clouds. Thin clouds are often also optically thin: this allows the cloud top detection and the full profiling of cloud layers using ground-based Raman lidar. Moreover, broken clouds are inspected to take advantage of their discontinuous structure in order to study the variability of optical properties and water vapor content in the transition from cloudy regions to cloudless regions close to the cloud boundaries. A statistical study of this variability leads to identify threshold values for the optical properties, enabling the discrimination between clouds and cloudless regions. These values can be used to evaluate and improve parameterizations of droplet activation within numerical models. A statistical study of the co-located Doppler radar moments allows to retrieve droplet size and vertical velocities close to the cloud base. First evidences of a correlation between droplet vertical velocities measured at the cloud base and the aerosol effective radius observed in the cloud-free regions of the broken clouds are found.

  4. Use of In Situ Data to Test a Raman Lidar-Based Cloud Condensation Nuclei Remote Sensing Method

    SciTech Connect

    Ghan, Steven J.; Collins, Donald R.

    2004-02-01

    A method of retrieving vertical profiles of cloud condensation nuclei (CCN) concentration from surface measurements is proposed. Surface measurements of the CCN concentration are scaled by the ratio of the backscatter (or extinction) vertical profile to the backscatter (or extinction) at or near the surface. The backscatter (or extinction) profile is measured by Raman lidar, and is corrected to dry conditions using the vertical profile of relative humidity (also measured by Raman lidar) and surface measurements of the dependence of backscatter (or extinction) on relative humidity. The method assumes the surface aerosol size distribution and composition are representative of the vertical column. Aircraft measurements of aerosol size distribution are used to test the dependence of the retrieval on the uniformity of aerosol size distribution. The retrieval is found to be robust for supersaturations less than 0.02%, but breaks down at higher supersaturations if the vertical profile of aerosol size distribution differs markedly from the distribution at the surface. Such conditions can be detected from the extinction/backscatter ratio.

  5. Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data.

    PubMed

    Chemyakin, Eduard; Müller, Detlef; Burton, Sharon; Kolgotin, Alexei; Hostetler, Chris; Ferrare, Richard

    2014-11-01

    We present the results of a feasibility study in which a simple, automated, and unsupervised algorithm, which we call the arrange and average algorithm, is used to infer microphysical parameters (complex refractive index, effective radius, total number, surface area, and volume concentrations) of atmospheric aerosol particles. The algorithm uses backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm as input information. Testing of the algorithm is based on synthetic optical data that are computed from prescribed monomodal particle size distributions and complex refractive indices that describe spherical, primarily fine mode pollution particles. We tested the performance of the algorithm for the "3 backscatter (β)+2 extinction (α)" configuration of a multiwavelength aerosol high-spectral-resolution lidar (HSRL) or Raman lidar. We investigated the degree to which the microphysical results retrieved by this algorithm depends on the number of input backscatter and extinction coefficients. For example, we tested "3β+1α," "2β+1α," and "3β" lidar configurations. This arrange and average algorithm can be used in two ways. First, it can be applied for quick data processing of experimental data acquired with lidar. Fast automated retrievals of microphysical particle properties are needed in view of the enormous amount of data that can be acquired by the NASA Langley Research Center's airborne "3β+2α" High-Spectral-Resolution Lidar (HSRL-2). It would prove useful for the growing number of ground-based multiwavelength lidar networks, and it would provide an option for analyzing the vast amount of optical data acquired with a future spaceborne multiwavelength lidar. The second potential application is to improve the microphysical particle characterization with our existing inversion algorithm that uses Tikhonov's inversion with regularization. This advanced algorithm has recently undergone development to allow automated and

  6. Comparison of aerosol properties retrieved using GARRLiC, LIRIC, and Raman algorithms applied to multi-wavelength lidar and sun/sky-photometer data

    NASA Astrophysics Data System (ADS)

    Bovchaliuk, Valentyn; Goloub, Philippe; Podvin, Thierry; Veselovskii, Igor; Tanre, Didier; Chaikovsky, Anatoli; Dubovik, Oleg; Mortier, Augustin; Lopatin, Anton; Korenskiy, Mikhail; Victori, Stephane

    2016-07-01

    Aerosol particles are important and highly variable components of the terrestrial atmosphere, and they affect both air quality and climate. In order to evaluate their multiple impacts, the most important requirement is to precisely measure their characteristics. Remote sensing technologies such as lidar (light detection and ranging) and sun/sky photometers are powerful tools for determining aerosol optical and microphysical properties. In our work, we applied several methods to joint or separate lidar and sun/sky-photometer data to retrieve aerosol properties. The Raman technique and inversion with regularization use only lidar data. The LIRIC (LIdar-Radiometer Inversion Code) and recently developed GARRLiC (Generalized Aerosol Retrieval from Radiometer and Lidar Combined data) inversion methods use joint lidar and sun/sky-photometer data. This paper presents a comparison and discussion of aerosol optical properties (extinction coefficient profiles and lidar ratios) and microphysical properties (volume concentrations, complex refractive index values, and effective radius values) retrieved using the aforementioned methods. The comparison showed inconsistencies in the retrieved lidar ratios. However, other aerosol properties were found to be generally in close agreement with the AERONET (AErosol RObotic NETwork) products. In future studies, more cases should be analysed in order to clearly define the peculiarities in our results.

  7. Comparison of Riparian Evapotranspiration Estimated Using Raman LIDAR and Water Balance Based Estimates from a Soil Moisture Sensor Network

    NASA Astrophysics Data System (ADS)

    Solis, J. A.; Rajaram, H.; Whittemore, D. O.; Butler, J. J.; Eichinger, W. E.; Reboulet, E. C.

    2013-12-01

    Riparian evapotranspiration (RET) is an important component of basin-wide evapotranspiration (ET), especially in subhumid to semi-arid regions, with significant impacts on water management and conservation. A common method of measuring ET is using the eddy correlation technique. However, since most riparian zones are narrow, eddy correlation techniques are not applicable because of limited fetch distance. Techniques based on surface-subsurface water balance are applicable in these situations, but their accuracy is not well constrained. In this study, we estimated RET within a 100 meter long and 40 meter wide riparian zone along Rock Creek in the Whitewater Basin in central Kansas using a water balance approach and Raman LIDAR measurements. A total of six soil moisture profiles (with six soil moisture sensors in each profile) and water-table measurements were used to estimate subsurface water storage (total soil moisture, TSM). The Los Alamos National Laboratory (LANL)-University of Iowa (UI) Raman LIDAR was used to measure the water vapor concentrations in three dimensions where the Monin-Obukhov similarity theory was used to obtain the spatially resolved fluxes. The LIDAR system included a 1.064 micron Nd:YAG laser with a Cassagrain telescope with a laser pulse of 50Hz with 25mJ of energy per pulse. Estimates of RET obtained from TSM changes were compared to LIDAR estimates obtained from three-dimensional water vapor concentrations of the atmosphere directly above and downwind of the riparian vegetation. The LIDAR measurements help to validate the TSM based estimates of RET and constrain their accuracy. RET estimates obtained from TSM changes in individual soil moisture profiles exhibited a large variability (up to a factor 8). This variability results from the highly heterogeneous soils in the vadose zone (2-3 m thick), where soil moisture (rather than groundwater) is the major source of water for riparian vegetation. Variable vegetation density and species also

  8. New lidar facility at Lindenberg Meteorological Observatory, Germany

    NASA Astrophysics Data System (ADS)

    Reichardt, J.; Begbie, R.; Wolf, V.; Reigert, Andrew; Wandinger, U.; Engelmann, R.; Hilber, B.

    2014-10-01

    Since 2005, the high-performance multiparameter Raman lidar RAMSES (Raman lidar for atmospheric moisture sensing) for water vapor, temperature, cloud and aerosol measurements is part of the broad suite of active and passive remote-sensing instruments monitoring the atmosphere at the German Meteorological Services observatory in Lindenberg. Initially housed in a 20-foot container, continued expansion of RAMSES made accommodation of the instrument increasingly difficult, and caused problems in air-conditioning. For these reasons, a new lidar facility was built on site in 2013. It is now home to RAMSES, and it also provides extra laboratory space for (lidar) experiments. The Lindenberg lidar facility is described in detail. One of its features is the precision air-conditioning system which is designed to keep the temperature field of the RAMSES room stable within 1 K at all times. Migration from the container to the new building offered an opportunity to make changes to the RAMSES instrument itself. For instance, stray light suppression was further improved, selection of photomultiplier tubes was optimized, and the near-range receiver was redesigned to enhance its daytime capabilities. Further, in addition to the water spectrometer for calibrated measurements of cloud Raman backscatter-coefficient spectra, a second spectrometer was implemented for studies of the fluorescence spectra of atmospheric aerosols. At the conference, these technical modifications are discussed, and first measurement examples with the improved lidar are presented.

  9. In-situ, sunphotometer and Raman lidar observations of aerosol transport events in the western Mediterranean during the June 2013 ChArMEx campaign

    NASA Astrophysics Data System (ADS)

    Totems, Julien; Sicard, Michael; Bertolin, Santi; Boytard, Mai-Lan; Chazette, Patrick; Comeron, Adolfo; Dulac, Francois; Hassanzadeh, Sahar; Lange, Diego; Marnas, Fabien; Munoz, Constantino; Shang, Xiaoxia

    2014-05-01

    We present a preliminary analysis of aerosol observations performed in June 2013 in the western Mediterranean at two stations set up in Barcelona and Menorca (Spain) in the framework of the ChArMEx (Chemistry Aerosol Mediterranean Experiment) project. The Barcelona station was equipped with the following fixed instruments belonging to the Universitat Politècnica de Catalunya (UPC): an AERONET (Aerosol Robotic Network) sun-photometer, an MPL (Micro Pulse Lidar) lidar and the UPC multi-wavelength lidar. The MPL lidar works at 532 nm and has a depolarization channel, while the UPC lidar works at 355, 532 and 1064 nm, and also includes two N2- (at 387 and 607 nm) and one H2O-Raman (at 407 nm) channels. The MPL system works continuously 24 hour/day. The UPC system was operated on alert in coordination with the research aircrafts plans involved in the campaign. In Cap d'en Font, Menorca, the mobile laboratory of the Laboratoire des Sciences du Climat et de l'Environnement hosted an automated (AERONET) and a manual (Microtops) 5-lambda sunphotometer, a 3-lambda nephelometer, a 7-lambda aethalometer, as well as the LSCE Water vapor Aerosol LIdar (WALI). This mini Raman lidar, first developed and validated for the HyMEX (Hydrological cycle in the Mediterranean eXperiment) campaign in 2012, works at 355 nm for eye safety and is designed with a short overlap distance (<300m) to probe the lower troposphere. It includes depolarization, N2- and H2O-Raman channels. H2O observations have been calibrated on-site by different methods and show good agreement with balloon measurements. Observations at Cap d'en Font were quasi-continuous from June 10th to July 3rd, 2013. The lidar data at both stations helped direct the research aircrafts and balloon launches to interesting plumes of particles in real time for in-situ measurements. Among some light pollution background from the European continent, a typical Saharan dust event and an unusual American dust/biomass burning event are

  10. Study of Droplet Activation in Thin Clouds Using Ground-based Raman Lidar and Ancillary Remote Sensors

    NASA Astrophysics Data System (ADS)

    Rosoldi, Marco; Madonna, Fabio; Gumà Claramunt, Pilar; Pappalardo, Gelsomina

    2015-04-01

    Studies on global climate change show that the effects of aerosol-cloud interactions (ACI) on the Earth's radiation balance and climate, also known as indirect aerosol effects, are the most uncertain among all the effects involving the atmospheric constituents and processes (Stocker et al., IPCC, 2013). Droplet activation is the most important and challenging process in the understanding of ACI. It represents the direct microphysical link between aerosols and clouds and it is probably the largest source of uncertainty in estimating indirect aerosol effects. An accurate estimation of aerosol-clouds microphysical and optical properties in proximity and within the cloud boundaries represents a good frame for the study of droplet activation. This can be obtained by using ground-based profiling remote sensing techniques. In this work, a methodology for the experimental investigation of droplet activation, based on ground-based multi-wavelength Raman lidar and Doppler radar technique, is presented. The study is focused on the observation of thin liquid water clouds, which are low or midlevel super-cooled clouds characterized by a liquid water path (LWP) lower than about 100 gm-2(Turner et al., 2007). These clouds are often optically thin, which means that ground-based Raman lidar allows the detection of the cloud top and of the cloud structure above. Broken clouds are primarily inspected to take advantage of their discontinuous structure using ground based remote sensing. Observations are performed simultaneously with multi-wavelength Raman lidars, a cloud Doppler radar and a microwave radiometer at CIAO (CNR-IMAA Atmospheric Observatory: www.ciao.imaa.cnr.it), in Potenza, Southern Italy (40.60N, 15.72E, 760 m a.s.l.). A statistical study of the variability of optical properties and humidity in the transition from cloudy regions to cloud-free regions surrounding the clouds leads to the identification of threshold values for the optical properties, enabling the

  11. A Raman Lidar as Operational Tool for Long-Term Water Vapor, Temperature and Aerosol Profiling in the Swiss Meteorological Office

    NASA Astrophysics Data System (ADS)

    Simeonov, Dr; Dinoev, Dr; Serikov, Dr; Calpini, Dr; Bobrovnikov, Dr; Arshinov, Dr; Ristori, Dr; van den Bergh, Dr; Parlange, Dr

    2010-09-01

    To satisfy the rising demands on the quality and frequency of atmospheric water vapor, temperature and aerosol measurements used for numerical weather prediction models, climate change observations and special events (volcanoes, dust and smoke transport) monitoring, MeteoSwiss decided to implement a lidar at his main aerological station in Payerne. The instrument is narrow field of view, narrowband UV Raman lidar designed for continuous day and night operational profiling of tropospheric water vapor, aerosol and temperature The lidar was developed and built by the Swiss Federal Institute of Technology- Lausanne (EPFL) within a joint project with MeteoSwiss. To satisfy the requirements for operational exploitation in a meteorological network the lidar had to satisfy a number of criteria, the most important of which are: accuracy and precision, traceability of the measurement, long-term data consistency, long-term system stability, automated operation, requiring minimal maintenance by a technician, and eye safety. All this requirements were taken into account during the design phase of the lidar. After a ten months test phase of the lidar at Payerne it has been in regular operation since August 2008. Selected data illustrating interesting atmospheric phenomena captured by the lidar as well as long-term intercomparison with collocated microwave radiometer, GPS, radiosonding and an airborne DIAL will be presented and discussed. The talk will address also the technical availability, alignment and calibration stabilities of the instrument.

  12. Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Murphy, William F.; Walsh, Nita W.; Evans, Keith D.

    1993-01-01

    The temperature sensitivity of Raman backscattering from atmospheric nitrogen, oxygen, and water vapor is considered over the range of temperatures expected in the troposphere. These results are applied to the Raman spectrum induced by a XeF excimer laser, which produces three line groups centered at approximately 349, 351, and 353 nm. Bandpass filter characteristics are determined for this case.

  13. Using Raman-lidar-based regularized microphysical retrievals and Aerosol Mass Spectrometer measurements for the characterization of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Samaras, Stefanos; Nicolae, Doina; Böckmann, Christine; Vasilescu, Jeni; Binietoglou, Ioannis; Labzovskii, Lev; Toanca, Florica; Papayannis, Alexandros

    2015-10-01

    In this work we extract the microphysical properties of aerosols for a collection of measurement cases with low volume depolarization ratio originating from fire sources captured by the Raman lidar located at the National Institute of Optoelectronics (INOE) in Bucharest. Our algorithm was tested not only for pure smoke but also for mixed smoke and urban aerosols of variable age and growth. Applying a sensitivity analysis on initial parameter settings of our retrieval code was proved vital for producing semi-automatized retrievals with a hybrid regularization method developed at the Institute of Mathematics of Potsdam University. A direct quantitative comparison of the retrieved microphysical properties with measurements from a Compact Time of Flight Aerosol Mass Spectrometer (CToF-AMS) is used to validate our algorithm. Microphysical retrievals performed with sun photometer data are also used to explore our results. Focusing on the fine mode we observed remarkable similarities between the retrieved size distribution and the one measured by the AMS. More complicated atmospheric structures and the factor of absorption appear to depend more on particle radius being subject to variation. A good correlation was found between the aerosol effective radius and particle age, using the ratio of lidar ratios (LR: aerosol extinction to backscatter ratios) as an indicator for the latter. Finally, the dependence on relative humidity of aerosol effective radii measured on the ground and within the layers aloft show similar patterns.

  14. Estimation of spatially distributed latent energy flux over complex terrain using a scanning water-vapor Raman lidar

    SciTech Connect

    Cooper, D.I.; Eichinger, W.; Archuleta, J.; Cottingame, W.; Osborne, M.; Tellier, L.

    1995-09-01

    Evapotranspiration is one of the critical variables in both water and energy balance models of the hydrological system. The hydrologic system is driven by the soil-plant-atmosphere continuum, and as such is a spatially distributed process. Traditional techniques rely on point sensors to collect information that is then averaged over a region. The assumptions involved in spatially average point data is of limited value (1) because of limited sensors in the arrays, (2) the inability to extend and interpret the Measured scalars and estimated fluxes at a point over large areas in complex terrain, and (3) the limited understanding of the relationship between point measurements of spatial processes. Remote sensing technology offers the ability to collect detailed spatially distributed data. However, the Los Alamos National Laboratory`s volume-imaging, scanning water-vapor Raman lidar has been shown to be able to estimate the latent energy flux at a point. The extension of this capability to larger scales over complex terrain represents a step forward. This abstract Outlines the techniques used to estimate the spatially resolved latent energy flux. The following sections describe the site, model, data acquired, and lidar estimated latent energy ``map``.

  15. Raman Lidar Observations of a MCS in the frame of the Convective and Orographically-induced Precipitation Study

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Bhawar, Rohini; Summa, Donato; Di Iorio, Tatiana; Demoz, Belay B.

    2009-03-01

    The Raman lidar system BASIL was deployed in Achern (Supersite R, Lat: 48.64° N, Long: 8.06° E, Elev.: 140 m) in the frame of the Convective and Orographically-induced Precipitation Study. On 20 July 2007 a frontal zone passed over the COPS region, with a Mesoscale Convective System (MCS) imbedded in it. BASIL was operated continuously during this day, providing measurements of temperature, water vapour, particle backscattering coefficient at 355, 532 and 1064 nm, particle extinction coefficient at 355 and 532 nm and particle depolarization at 355 and 532 nm. The thunderstorm approaching determined the lowering of the anvil clouds, which is clearly visible in the lidar data. A cloud deck is present at 2 km, which represents a mid-level outflow from the thunderstorm/MCS. The mid-level outflow spits out hydrometeor-debris (mostly virga) and it is recycled back into it. The MCS modified the environment at 1.6-2.5 km levels directly (outflow) and the lower levels through the virga/precipitation. Wave structures were observed in the particle backscatter data. The wave activity seems to be a reflection of the shear that is produced by the MCS and the inflow environmental wind. Measurements in terms of particle backscatter and water vapour mixing ratio are discussed to illustrate the above phenomena.

  16. Comparison of upper tropospheric water vapor from GOES, Raman lidar, and Cross-chain Loran Atmospheric Sounding System measurements

    NASA Technical Reports Server (NTRS)

    Soden, B. J.; Ackerman, S. A.; Starr, D. O'C.; Melfi, S. H.; Ferrare, R. A.

    1994-01-01

    Observations of upper tropospheric relative humidity obtained from Raman lidar and Cross-chain Loran Atmospheric Sounding System (CLASS) sonde instruments obtained during the First ISCCP Regional Experiment (FIRE) Cirrus-II field program are compared with satellite measurements from the GOES 6.7-micron channel. The 6.7-micron channel is sensitive to water vapor integrated over a broad layer in the upper troposphere (roughly 500-200 mbar). Instantaneous measurements of the upper tropospheric relative humidity from GOES are shown to agree to within roughly 6% of the nearest lidar observations and 9% of the nearest CLASS observations. The CLASS data exhibit a slight yet systematic dry bias in upper tropospheric humidity, a result which is consistent with previous radiosonde intercomparisons. Temporal stratification of the CLASS data indicates that the magnitude of the bias is dependent upon the time of day, suggesting a solar heating effect in the radiosonde sensor. Using CLASS profiles, the impact of vertical variability in relative humidity upon the GOES upper tropospheric humidity measurements is also examined. The upper tropospheric humidity inferred from the GOES 6.7-micron channel is demonstrated to agree to within roughly 5% of the relative humidity vertically averaged over the depth of atmosphere to which the 6.7-micron channel is sensitive. The results of this study encourage the use of satellite measurements in the 6.7-micron channel to quantitatively describe the distribution and temporal evolution of the upper tropospheric humidity field.

  17. Powerful eyesafe infrared aerosol lidar: Application of stimulated Raman backscattering of 1.06 micron radiation

    NASA Astrophysics Data System (ADS)

    Carnuth, W.; Trickl, T.

    1994-11-01

    Usually, lidar investigations of light backscattering and extinction by aerosols are most commonly carried out near infrared. In the study, the background noise from Rayleigh backscattering is substantially reduced, there is a sufficiently large number of wavelength windows with high atmospheric transmittance, powerful pulsed laser sources exist, and efficient detectors are available.

  18. Methodological developments for the remote sensing of water vapor combining Raman lidar, GPS and in-situ observations: results from the DEMEVAP 2011 campaign

    NASA Astrophysics Data System (ADS)

    Bosser, P.; Bock, O.; Thom, C.; Pelon, J.; Keckhut, P.; Bourcy, T.; Tzanos, D.

    2012-12-01

    Measuring water vapour in the atmosphere is still a challenging topic for ever more demanding geophysical applications requiring high absolute accuracy, both at high and low water vapour concentrations, and long term stability. Changes in instruments or sensor types make this task very difficult and require a reference technique for inter-calibration purposes. Scanning Raman lidars have been shown in the past to be a potential candidate technique for transferring absolute calibration from ground-based sensors to other systems such as profilers (e.g. radiosondes and remote-sensing techniques like spectrometers and radiometers) and/or precipitable water vapour (PWV) measurements (e.g. from GPS or dual-channel microwave radiometers). The DEMEVAP (DEvelopment of MEthods for remote sensing of water VAPor) project aims at developing improved reference humidity sounding methods based on the combined used of scanning Raman lidars, ground-based sensors and GPS. The ultimate goal is to achieve absolute accuracy better than 3% on the total column water vapour. An intensive observing period was conducted in September-October 2011 at Observatoire de Haute Provence (OHP), France, which involved two Raman lidars, four radiosonde measurement systems, five GPS stations, a stellar spectrometer, and several ground-based capacitive and dew-point sensors. Observations were collected over 17 nights during which 26 balloons were released which carried a total of 79 radiosondes. Most of the balloons carried 3 or 4 different sonde types simultaneously (Vaisala RS92, MODEM M2K2-DC and M10, and Meteolabor Snow-White) for comparison purposes. The dataset collected during DEMEVAP 2011 is used to assess several GPS and Raman lidar calibration methods and evaluate the humidity bias of different operational radiosonde types. The four radiosonde systems show biases of -11 to +7% compared to GPS PWV. Several Raman lidar calibration methods using either radiosonde profiles or GPS PWV measurements

  19. Purple Crow Lidar Vibrational Raman water vapor mixing ratio and temperature measurements in the Upper Troposphere and Lower Stratosphere

    NASA Astrophysics Data System (ADS)

    Sica, R. J.; Argall, P. S.

    2006-12-01

    Purple Crow Lidar (PCL) measurements of the vibrational Raman-shifted backscatter from water vapor and nitrogen molecules allows height profiles of water vapor mixing ratio to be measured from 500 m to up into the lower stratosphere from the Delaware Observatory near London, Canada. In addition, the Raman nitrogen measurements allow the determination of temperature profiles from about 10 km to 40 km altitude. External calibration of these measurements is necessary to compensate for instrumental effects, uncertainties in our knowledge of the relevant molecular cross sections, and atmospheric transmission. A comparison of the PCL derived water vapor concentration and temperature profiles with routine radiosonde measurements from Detroit and Buffalo on 37 and 141 nights respectively, was undertaken to provide this calibration, which showed mean temperature differences over all flights for altitudes above 9 km of about 0.5 K, with agreement for water vapor below 7 km to within ±12%. Comparisons of the cold point temperature with the coincident water vapor measurements will be presented to investigate the transport of air from the tropics to midlatitudes.

  20. Retrieval of optical and physical properties of African dust from multiwavelength Raman lidar measurements during the SHADOW campaign in Senegal

    NASA Astrophysics Data System (ADS)

    Veselovskii, I.; Goloub, P.; Podvin, T.; Bovchaliuk, V.; Derimian, Y.; Augustin, P.; Fourmentin, M.; Tanre, D.; Korenskiy, M.; Whiteman, D. N.; Diallo, A.; Ndiaye, T.; Kolgotin, A.; Dubovik, O.

    2016-06-01

    West Africa and the adjacent oceanic regions are very important locations for studying dust properties and their influence on weather and climate. The SHADOW (study of SaHAran Dust Over West Africa) campaign is performing a multiscale and multilaboratory study of aerosol properties and dynamics using a set of in situ and remote sensing instruments at an observation site located at the IRD (Institute for Research and Development) in Mbour, Senegal (14° N, 17° W). In this paper, we present the results of lidar measurements performed during the first phase of SHADOW (study of SaHAran Dust Over West Africa) which occurred in March-April 2015. The multiwavelength Mie-Raman lidar acquired 3β + 2α + 1δ measurements during this period. This set of measurements has permitted particle-intensive properties, such as extinction and backscattering Ångström exponents (BAE) for 355/532 nm wavelengths' corresponding lidar ratios and depolarization ratio at 532 nm, to be determined. The mean values of dust lidar ratios during the observation period were about 53 sr at both 532 and 355 nm, which agrees with the values observed during the SAMUM-1 and SAMUM-2 campaigns held in Morocco and Cabo Verde in 2006 and 2008. The mean value of the particle depolarization ratio at 532 nm was 30 ± 4.5 %; however, during strong dust episodes this ratio increased to 35 ± 5 %, which is also in agreement with the results of the SAMUM campaigns. The backscattering Ångström exponent during the dust episodes decreased to ˜ -0.7, while the extinction Ångström exponent, though negative, was greater than -0.2. Low values of BAE can likely be explained by an increase in the imaginary part of the dust refractive index at 355 nm compared to 532 nm. The dust extinction and backscattering coefficients at multiple wavelengths were inverted to the particle microphysics using the regularization algorithm and the model of randomly oriented spheroids. The analysis performed has demonstrated that the

  1. Profiles of second- to third-order moments of turbulent temperature fluctuations in the convective boundary layer: first measurements with Rotational Raman Lidar

    NASA Astrophysics Data System (ADS)

    Behrendt, A.; Wulfmeyer, V.; Hammann, E.; Muppa, S. K.; Pal, S.

    2014-11-01

    The rotational Raman lidar of the University of Hohenheim (UHOH) measures atmospheric temperature profiles during daytime with high resolution (10 s, 109 m). The data contain low noise errors even in daytime due to the use of strong UV laser light (355 nm, 10 W, 50 Hz) and a very efficient interference-filter-based polychromator. In this paper, we present the first profiling of the second- to forth-order moments of turbulent temperature fluctuations as well as of skewness and kurtosis in the convective boundary layer (CBL) including the interfacial layer (IL). The results demonstrate that the UHOH RRL resolves the vertical structure of these moments. The data set which is used for this case study was collected in western Germany (50°53'50.56'' N, 6°27'50.39'' E, 110 m a.s.l.) within one hour around local noon on 24 April 2013 during the Intensive Observations Period (IOP) 6 of the HD(CP)2 Observational Prototype Experiment (HOPE), which is embedded in the German project HD(CP)2 (High-Definition Clouds and Precipitation for advancing Climate Prediction). First, we investigated profiles of the noise variance and compared it with estimates of the statistical temperature measurement uncertainty Δ T based on Poisson statistics. The agreement confirms that photon count numbers obtained from extrapolated analog signal intensities provide a lower estimate of the statistical errors. The total statistical uncertainty of a 20 min temperature measurement is lower than 0.1 K up to 1050 m a.g.l. at noontime; even for single 10 s temperature profiles, it is smaller than 1 K up to 1000 m a.g.l.. Then we confirmed by autocovariance and spectral analyses of the atmospheric temperature fluctuations that a temporal resolution of 10 s was sufficient to resolve the turbulence down to the inertial subrange. This is also indicated by the profile of the integral scale of the temperature fluctuations, which was in the range of 40 to 120 s in the CBL. Analyzing then profiles of the second

  2. A theoretical/experimental program to develop active optical pollution sensors: Quantitative remote Raman lidar measurements of pollutants from stationary sources

    NASA Technical Reports Server (NTRS)

    Poultney, S. K.; Brumfield, M. L.; Siviter, J. S.

    1975-01-01

    Typical pollutant gas concentrations at the stack exits of stationary sources can be estimated to be about 500 ppm under the present emission standards. Raman lidar has a number of advantages which makes it a valuable tool for remote measurements of these stack emissions. Tests of the Langley Research Center Raman lidar at a calibration tank indicate that night measurements of SO2 concentrations and stack opacity are possible. Accuracies of 10 percent are shown to be achievable from a distance of 300 m within 30 min integration times for 500 ppm SO2 at the stack exits. All possible interferences were examined quantitatively (except for the fluorescence of aerosols in actual stack emissions) and found to have negligible effect on the measurements. An early test at an instrumented stack is strongly recommended.

  3. NASA/GSFC Scanning Raman Lidar Measurements of Water Vapor and Clouds during the International H2O Project (IHOP) Field Campaign

    NASA Technical Reports Server (NTRS)

    Whiteman, David; Demoz, Belay; DiGirolamo, Paolo; Wang, Zhi-En; Evans, Keith; Lin, Ruei-Fong

    2003-01-01

    The NASA/GSFC Scanning Raman Lidar (SFL) acquired approximately 200 hours of water vapor, aerosol and cloud measurements during the IHOP field campaign. The detailed water vapor structure of events such as a dryline passage and internal bores were revealed. We discuss the error characteristics of the instrument as well as the water vapor and cirrus cloud structure during the 19-20 June bore event.

  4. Aerosol characteristics in Phimai, Thailand determined by continuous observation with a polarization sensitive Mie-Raman lidar and a sky radiometer

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Shimizu, Atsushi; Nishizawa, Tomoaki; Matsui, Ichiro; Jin, Yoshitaka; Khatri, Pradeep; Irie, Hitoshi; Takamura, Tamio; Aoki, Kazuma; Thana, Boossarasiri

    2015-06-01

    Distributions and optical characteristics of aerosols were continuously observed with a polarization-sensitive (532 nm), Mie-scattering (532 and 1064 nm) and Raman-scattering (607 nm) lidar and a sky radiometer in Phimai, Thailand. Polarization lidar measurements indicated that high concentration plumes of spherical aerosols considered as biomass burning smoke were often observed in the dry season. Plumes of non-spherical aerosols considered as long-range transported soil dust from Africa, the Middle East, or Northeast Asia were occasionally observed. Furthermore, low-concentration non-spherical aerosols were almost always observed in the atmospheric mixing layer. Extinction coefficient profiles of spherical aerosols and non-spherical dust exhibited different diurnal variations, and spherical aerosols including smoke were distributed in higher altitudes in the mixing layer and residual layer. The difference can be explained by hygroscopic growth of smoke particles and buoyancy of the smoke. Analysis of seasonal variations of optical properties derived from the Raman lidar and the sky radiometer confirmed that the lidar ratio, aerosol optical depth, and Angstrom exponent were higher in the dry season (October-May) and lower in the wet season (June-September). The single scattering albedo was lower in the dry season. These seasonal variations are explained by frequent biomass burning in the dry season consistent with previous studies in Southeast Asian region. At the same time, the present work confirmed that soil dust was a major aerosol component in Phimai, Thailand.

  5. Final Technical Report. Cloud and Radiation Testbed (CART) Raman Lidar measurement of atmospheric aerosols for the Atmospheric Radiation Measurement (ARM) Program

    SciTech Connect

    Ferrare, Richard A.

    2002-08-19

    Vertical profiles of aerosol extinction are required for determination of the effects of aerosols on the clear-sky radiative flux. Since recent studies have demonstrated the inability to compute these profiles on surface aerosol measurements alone, vertical profiles of aerosol optical properties must be acquired to compute aerosol radiative effects throughout the entire atmospheric column. Following the recommendation of the ARM Aerosol Working Group, the investigator developed, evaluated, and implemented algorithms for the CART Raman Lidar to provide profiles of aerosol extinction and backscattering. By virtue of its ability to measure vertical profiles of both aerosol extinction and water vapor simultaneously in the same scattering volume, we used the resulting profiles from the CART Raman Lidar to investigate the impact of water vapor and relative humidity on aerosol extinction throughout the column on a continuous and routine basis. The investigator used these the CART Raman Lidar aerosol extinction and backscattering profiles to evaluate the vertical variability of aerosol extinction and the extinction/backscatter ratio over the ARM SGP site.

  6. Case study of Raman lidar measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan

    NASA Astrophysics Data System (ADS)

    Sakai, Tetsu; Shibata, Takashi; Iwasaka, Yasunobu; Nagai, Tomohiro; Nakazato, Masahisa; Matsumura, Takatsugu; Ichiki, Akinori; Kim, Yoon-Suk; Tamura, Koichi; Troshkin, Dmitry; Hamdi, Saipul

    Vertical distributions of aerosol optical properties and relative humidity were measured with a Raman lidar at Nagoya and Tsukuba, Japan, during the Asian dust events in 2000 and 2001. The data obtained on 23 April 2001 showed a maximum of aerosol backscattering ratio ( R) of 3.5-4.0 at 532 nm at an altitude of 5 km over both measurement sites. Around that height the aerosol depolarization ratios ( δa), which indicate the aerosol nonsphericity, were higher than 20% and the relative humidities (RH) were lower than 30%. The aerosol optical thickness between 4 and 7 km was 0.18±0.02 and the average aerosol extinction-to-backscatter ratio (lidar ratio) was 46±5 sr at Tsukuba. This aerosol layer was present for over 6 h and finally showed the highest δa value of about 33% and the lidar ratio of 10±3 sr at the uppermost region, where the RH was almost saturated with respect to ice. The data obtained on 4 May 2000 at Nagoya showed relatively high R values (˜2.5) below 5 km. The values of δa were higher than 15% between 3.5 and 8 km in which the maximum RH was about 60%. The values of δa and RH showed a weak negative correlation below 3.5 km, where the RH varied between 30% and 70%. In the 5- 8 km region, the δa values were correlated negatively with the wavelength exponent of the aerosol backscattering coefficient ( α), whereas they showed the lowest value (˜7%) at smaller α values (<0) in the 2- 5 km region. We hypothesized that these relations of δa to α and RH are due to the mixing state of mineral dust, sea-salt, and sulfate-containing particles that are major aerosol constituents in the free troposphere during the Asian dust period and to the dependence of their shape and size on RH.

  7. Stand-off detection of plant-produced volatile organic compounds using short-range Raman LIDAR

    NASA Astrophysics Data System (ADS)

    Johnson, Lewis; Barnett, Cleon; Brown, Christopher; Crawford, Devron; Tumlinson, James

    2004-03-01

    Several plant species release volatile organic compounds (VOCs) when under stresses such as herbivore feeding attack. The release of these plant-produced VOCs (i.e. terpenes) triggers the release of active biochemical defenses, which target the attacker. In some cases, the VOCs send cues to nearby carnivorous predators to attract them to the feeding herbivore. Volatile compounds are released both locally by damaged leaves and systemically by the rest of the plant. These compounds are released in large quantities, which facilitate detection of pests in the field by parasitoids. Detecting the plant"s VOC emissions as a function of various parameters (e.g. ambient temperature, atmospheric nitrogen levels, etc.) is essential to designing effective biological control systems. In addition these VOC releases may serve as early warning indicator of chemo-bio attacks. By combining Raman spectroscopy techniques with Laser Remote Sensing (LIDAR) systems, we are developing a Standoff detection system. Initial results indicate that is it possible to detect and differentiate between various terpenes, plant species, and other chemical compounds at distances greater than 12 meters. Currently, the system uses the 2nd harmonic of a Nd:YAG; however plans are underway to improve the Raman signal by moving the illumination wavelength into the solar-blind UV region. We report on our initial efforts of designing and characterizing this in a laboratory proof of concept system. We envision that this effort will lead to the design of a portable field-deployable system to rapidly characterize, with a high spatial resolution, large crops and other fields.

  8. An overview of the first decade of PollyNET: an emerging network of automated Raman-polarization lidars for continuous aerosol profiling

    NASA Astrophysics Data System (ADS)

    Baars, Holger; Kanitz, Thomas; Engelmann, Ronny; Althausen, Dietrich; Heese, Birgit; Komppula, Mika; Preißler, Jana; Tesche, Matthias; Ansmann, Albert; Wandinger, Ulla; Lim, Jae-Hyun; Ahn, Joon Young; Stachlewska, Iwona S.; Amiridis, Vassilis; Marinou, Eleni; Seifert, Patric; Hofer, Julian; Skupin, Annett; Schneider, Florian; Bohlmann, Stephanie; Foth, Andreas; Bley, Sebastian; Pfüller, Anne; Giannakaki, Eleni; Lihavainen, Heikki; Viisanen, Yrjö; Hooda, Rakesh Kumar; Nepomuceno Pereira, Sérgio; Bortoli, Daniele; Wagner, Frank; Mattis, Ina; Janicka, Lucja; Markowicz, Krzysztof M.; Achtert, Peggy; Artaxo, Paulo; Pauliquevis, Theotonio; Souza, Rodrigo A. F.; Prakesh Sharma, Ved; Gideon van Zyl, Pieter; Beukes, Johan Paul; Sun, Junying; Rohwer, Erich G.; Deng, Ruru; Mamouri, Rodanthi-Elisavet; Zamorano, Felix

    2016-04-01

    A global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63° N to 52° S and 72° W to 124° E has been achieved within the Raman and polarization lidar network PollyNET. This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols. PollyNET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design with different capabilities ranging from single wavelength to multiwavelength systems, and now apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at http://polly.tropos.de/. The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash) are identified by their Ångström exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the PollyNET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm as this operating wavelength is available for all Polly lidar systems. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of PollyNET to support the establishment of a global aerosol climatology that covers the entire troposphere.

  9. Study of aerosol hygroscopic events over the Cabauw experimental site for atmospheric research (CESAR) using the multi-wavelength Raman lidar Caeli

    NASA Astrophysics Data System (ADS)

    Fernández, A. J.; Apituley, A.; Veselovskii, I.; Suvorina, A.; Henzing, J.; Pujadas, M.; Artíñano, B.

    2015-11-01

    This article presents a study of aerosol optical and microphysical properties under different relative humidity (RH) but well mixed layer conditions using optical and microphysical aerosol properties from multi-wavelength (MW) Raman lidar and in-situ aerosol observations collected at the Cabauw Experimental Site for Atmospheric Research (CESAR). Two hygroscopic events are described through 3 backscatter (β) and 2 extinction (α) coefficients which in turn provide intensive parameters such as the backscatter-related Ångström exponent (åβ) and the lidar ratio (LR). Along with it, profiles of RH were inferred from Raman lidar observations and therefore, as a result of varying humidity conditions, a shift on the aerosol optical properties can be described. Thus, it is observed that as RH increases, aerosols uptake water vapour, augment their size and consequently the åβ diminishes whereas the LR increases. The enhancement factor based on the backscatter coefficient at 532 nm, which characterizes the aerosol from hygroscopic standpoint, is also estimated. Finally, microphysical properties that are necessary for aerosol radiative forcing estimates - such as volume, effective radii, refractive index and size distribution, all vertically resolved - are retrieved using the inversion with regularization. Using this method, two hygroscopic events are described in detail.

  10. 2014 iAREA campaign on aerosol in Spitsbergen - Part 2: Optical properties from Raman-lidar and in-situ observations at Ny-Ålesund

    NASA Astrophysics Data System (ADS)

    Ritter, C.; Neuber, R.; Schulz, Alexander; Markowicz, K. M.; Stachlewska, I. S.; Lisok, J.; Makuch, P.; Pakszys, P.; Markuszewski, P.; Rozwadowska, A.; Petelski, T.; Zielinski, T.; Becagli, S.; Traversi, R.; Udisti, R.; Gausa, M.

    2016-09-01

    In this work multi wavelength Raman lidar data from Ny-Ålesund, Spitsbergen have been analysed for the spring 2014 Arctic haze season, as part of the iAREA campaign. Typical values and probability distributions for aerosol backscatter, extinction and depolarisation, the lidar ratio and the color ratio for 4 different altitude intervals within the troposphere are given. These quantities and their dependencies are analysed and the frequency of altitude-dependent observed aerosol events are given. A comparison with ground-based size distribution and chemical composition is performed. Hence the aim of this paper is to provide typical and statistically meaningful properties of Arctic aerosol, which may be used in climate models or to constrain the radiative forcing. We have found that the 2014 season was only moderately polluted with Arctic haze and that sea salt and sulphate were the most dominant aerosol species. Moreover the drying of an aerosol layer after cloud disintegration has been observed. Hardly any clear temporal evolution over the 4 week data set on Arctic haze is obvious with the exception of the extinction coefficient and the lidar ratio, which significantly decreased below 2 km altitude by end April. In altitudes between 2 and 5 km the haze season lasted longer and the aerosol properties were generally more homogeneous than closer to the surface. Above 5 km only few particles were found. The variability of the lidar ratio is discussed. It was found that knowledge of the aerosol's size and shape does not determine the lidar ratio. Contrary to shape and lidar ratio, there is a clear correlation between size and backscatter: larger particles show a higher backscatter coefficient.

  11. Laboratory investigation of perchlorate deliquescence at the surface of Mars with a Raman scattering lidar

    NASA Astrophysics Data System (ADS)

    Nikolakakos, George; Whiteway, James A.

    2015-10-01

    A sample of magnesium perchlorate hexahydrate was subjected to the water vapor pressure and temperatures found at the landing site of the Phoenix Mars mission. Laser Raman scattering was applied to detect the onset of deliquescence and provide a relative estimate of the quantity of water taken up and subsequently released by the sample. As the temperature of the sample decreased at the same rate as measured on Mars during the evening, significant uptake of water from the atmosphere was observed to occur prior to the frost point temperature being reached. As the temperature was lowered further, the relative humidity over ice increased to 100% and frost formed on the surface surrounding the perchlorate sample. Freezing of the brine film was observed at the eutectic temperature of -67°C, and thawing occurred at a temperature of -62°C.

  12. Operational detection of aerosols by the calibrated RAman LIDAR for Meteorological Observation (RALMO) and the CHM15K ceilometer at Payerne, Switzerland

    NASA Astrophysics Data System (ADS)

    Martucci, Giovanni; Haefele, Alexander; Calpini, Bertrand; Simeonov, Valentin

    2014-05-01

    Ceilometers have become increasingly present across the globe at airports, national meteorological Services and research centers. More sophisticated LIDARs based on both elastic and inelastic scattering principles are currently available at several national research institutions and meteorological services. A growing need to optimize the generation of real-time data from these Automatic LIDARs and ceilometers (ALC) is also proven by new European programmes aiming at integrating a significant number of ALC instruments into large networks (e.g. E-PROFILE, http://www.eumetnet.eu/e-profile). The use of ALC instruments for operational detection of aerosols and clouds is submitted to their cost effectiveness as well as to the availability of scientific expertise for data monitoring and interpretation. Essential for data use and interpretation is the calibration procedure aimed to provide system-independent LIDAR products. An example of data calibration for backscatter and extinction coefficient measured with an automated RAman LIDAR (RALMO) and a CHM15K ceilometer will be presented. The temporal and vertical stability of the incomplete overlap correction function and of the Rayleigh calibration constant have been studied for both systems. Two cases of detection of long-range transported aerosol, from Canadian biomass burning and Saharan dust by the two calibrated systems will also be presented.

  13. Profiles of second- to fourth-order moments of turbulent temperature fluctuations in the convective boundary layer: first measurements with rotational Raman lidar

    NASA Astrophysics Data System (ADS)

    Behrendt, A.; Wulfmeyer, V.; Hammann, E.; Muppa, S. K.; Pal, S.

    2015-05-01

    The rotational Raman lidar (RRL) of the University of Hohenheim (UHOH) measures atmospheric temperature profiles with high resolution (10 s, 109 m). The data contain low-noise errors even in daytime due to the use of strong UV laser light (355 nm, 10 W, 50 Hz) and a very efficient interference-filter-based polychromator. In this paper, the first profiling of the second- to fourth-order moments of turbulent temperature fluctuations is presented. Furthermore, skewness profiles and kurtosis profiles in the convective planetary boundary layer (CBL) including the interfacial layer (IL) are discussed. The results demonstrate that the UHOH RRL resolves the vertical structure of these moments. The data set which is used for this case study was collected in western Germany (50°53'50.56'' N, 6°27'50.39'' E; 110 m a.s.l.) on 24 April 2013 during the Intensive Observations Period (IOP) 6 of the HD(CP)2 (High-Definition Clouds and Precipitation for advancing Climate Prediction) Observational Prototype Experiment (HOPE). We used the data between 11:00 and 12:00 UTC corresponding to 1 h around local noon (the highest position of the Sun was at 11:33 UTC). First, we investigated profiles of the total noise error of the temperature measurements and compared them with estimates of the temperature measurement uncertainty due to shot noise derived with Poisson statistics. The comparison confirms that the major contribution to the total statistical uncertainty of the temperature measurements originates from shot noise. The total statistical uncertainty of a 20 min temperature measurement is lower than 0.1 K up to 1050 m a.g.l. (above ground level) at noontime; even for single 10 s temperature profiles, it is smaller than 1 K up to 1020 m a.g.l. Autocovariance and spectral analyses of the atmospheric temperature fluctuations confirm that a temporal resolution of 10 s was sufficient to resolve the turbulence down to the inertial subrange. This is also indicated by the integral scale of

  14. Water Vapor Profiles up to the UT/LS from Raman Lidar at Reunion Island (21°S, 55°E) : Technical Description, Data Processing and Comparison with Sondes

    NASA Astrophysics Data System (ADS)

    Vérèmes, Hélène; Keckhut, Philippe; Baray, Jean-Luc; Cammas, Jean-Pierre; Dionisi, Davide; Payen, Guillaume; Duflot, Valentin; Gabarrot, Franck; Leclair De Bellevue, Jimmy; Posny, Françoise; Evan, Stéphanie; Meier, Susanne; Vömel, Holger; Dirksen, Ruud

    2016-06-01

    The Maïdo high-altitude observatory located in Reunion Island (21°S, 55°E) is equipped with an innovative lidar designed to monitor the water vapor in the whole troposphere up to the lower stratosphere with a Raman system and to monitor, simultaneously, the temperature in the stratosphere and in the mesosphere based on a Rayleigh scattering technique. Several improvements have been performed on the new instrument to optimize the water vapor mixing ratio measurements thanks to the experience of the previous system. The choice of the operational configuration of the system and the calibration methodology were realized during the campaign MALICCA-1 (MAïdo LIdar Calibration CAmpaign) which provided simultaneous measurements of water vapor and ozone in April 2013. The lidar water vapor profiles are calibrated with water vapor columns obtained from a collocated GNSS receiver. By comparing CFH and Vaisala radiosondes and satellites water vapor mixing ratio profiles with the Raman lidar profiles, the performances of the lidar are shown to be good in the troposphere. With a suitable integration time period, the ability of measuring quantities of a few ppmv in the lower stratosphere is demonstrated. This Raman lidar will provide regular measurements to international networks with high vertical resolution profiles of water vapor in order to document various studies and to insure a long-term survey of the troposphere and of the lower stratosphere.

  15. Aerosol characterization with lidar methods

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Nishizawa, Tomoaki; Shimizu, Atsushi; Matsui, Ichiro

    2014-08-01

    Aerosol component analysis methods for characterizing aerosols were developed for various types of lidars including polarization-sensitive Mie scattering lidars, multi-wavelength Raman scattering lidars, and multi-wavelength highspectral- resolution lidars. From the multi-parameter lidar data, the extinction coefficients for four aerosol components can be derived. The microphysical parameters such as single scattering albedo and effective radius can be also estimated from the derived aerosol component distributions.

  16. Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational pure-rotational Raman lidar

    NASA Astrophysics Data System (ADS)

    Balin, I.; Serikov, I.; Bobrovnikov, S.; Simeonov, V.; Calpini, B.; Arshinov, Y.; van den Bergh, H.

    2004-10-01

    Implementation of the pure-rotational Raman (PRR) lidar method for simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients is reported. The isolation of two wavelength domains of the PRR spectrum and the suppression of the elastically scattered light is carried out by a double-grating polychromator. Experiments involving elastic backscatter from dense clouds and a solid target confirm the high level of suppression of the elastic light in the corresponding acquisition channels of the two selected PRR domains. Calibration of the temperature channel was done both by comparison with an experimentally verified atmospheric temperature model profile and by inter-comparison with radiosondes. Night-time temperature profiles with high vertical resolution were obtained up to the lower stratosphere. The PRR temperature profile combined with the water vapor mixing ratio obtained from the ro-vibrational Raman channel is used to estimate the relative humidity.

  17. Water Vapor Measurements by Mobile Raman Lidar Over The Mediterranean Sea in the Framework of HyMex: Application to Multi-Platform Validation of Moisture Profiles

    NASA Astrophysics Data System (ADS)

    Totems, Julien; Chazette, Patrick; Shang, Xiaoxia; Flamant, Cyrille; Raut, Jean-Christophe; Doerenbecher, Alexis; Ducroq, Véronique; Bock, Olivier; Marnas, Fabien

    2016-06-01

    The Water Aerosol Lidar (WALI) system, deployed for 14 weeks during 2012 & 2013 on the island of Menorca, provided the Hydrological cycle in the Mediterranean eXperiment (HyMeX) with an opportunity to perform a multi-platform comparison on moisture retrievals at the timescales relevant for extreme precipitation events in the West Mediterranean basin. After calibration, the WALI lidar yields nighttime profiles of water vapor with ~7% accuracy from the ground up to 7 km, and daytime coverage of the lower layers, alongside common aerosol retrievals. It is used to characterize the water vapor profile product given by the IASI instrument on-board MetOp-B, and the fields simulated by the Météo-France AROME-WMED model and the open-source WRF model. IASI is found to be reliable above 1 km altitude, and the two models obtain similar high scores in the middle troposphere; WRF beneficiates from a more accurate modelling of the planetary boundary layer.

  18. Water vapor observations up to the lower stratosphere through the Raman lidar during the Maïdo Lidar Calibration Campaign

    NASA Astrophysics Data System (ADS)

    Dionisi, D.; Keckhut, P.; Courcoux, Y.; Hauchecorne, A.; Porteneuve, J.; Baray, J. L.; Leclair de Bellevue, J.; Vérèmes, H.; Gabarrot, F.; Payen, G.; Decoupes, R.; Cammas, J. P.

    2015-03-01

    A new lidar system devoted to tropospheric and lower stratospheric water vapor measurements has been installed at the Maïdo altitude station facility of Réunion island, in the southern subtropics. To evaluate the performances and the capabilities of the new system with a particular focus on UTLS (Upper Troposphere Lower Stratosphere) measurements, the Maïdo Lidar Calibration Campaign (MALICCA) was performed in April 2013. Varying the characteristics of the transmitter and the receiver components, different system configuration scenarios were tested and possible parasite signals (fluorescent contamination, rejection) were investigated. A hybrid calibration methodology has been set up and validated to insure optimal lidar calibration stability with time. In particular, the receiver transmittance is monitored through the calibration lamp method that, at the moment, can detect transmittance variations greater than 10-15%. Calibration coefficients are then calculated through the hourly values of IWV (Integrated Water Vapor) provided by the co-located GPS. The comparison between the constants derived by GPS and Vaisala RS92 radiosondes launched at Maïdo during MALICCA, points out an acceptable agreement in terms of accuracy of the mean calibration value (with a difference of approximately 2-3%), but a significant difference in terms of variability (14% vs. 7-9%, for GPS and RS92 calibration procedures, respectively). We obtained a relatively good agreement between the lidar measurements and 15 co-located and simultaneous RS92 radiosondes. A relative difference below 10% is measured in the low and middle troposphere (2-10 km). The upper troposphere (up to 15 km) is characterized by a larger spread (approximately 20%), because of the increasing distance between the two sensors. To measure water vapor in the UTLS region, nighttime and monthly water vapor profiles are presented and compared. The good agreement between the lidar monthly profile and the mean WVMR profile

  19. Optical and microphysical characterization of aerosol layers over South Africa by means of multi-wavelength depolarization and Raman lidar measurements

    NASA Astrophysics Data System (ADS)

    Giannakaki, Elina; van Zyl, Pieter G.; Müller, Detlef; Balis, Dimitris; Komppula, Mika

    2016-07-01

    Optical and microphysical properties of different aerosol types over South Africa measured with a multi-wavelength polarization Raman lidar are presented. This study could assist in bridging existing gaps relating to aerosol properties over South Africa, since limited long-term data of this type are available for this region. The observations were performed under the framework of the EUCAARI campaign in Elandsfontein. The multi-wavelength PollyXT Raman lidar system was used to determine vertical profiles of the aerosol optical properties, i.e. extinction and backscatter coefficients, Ångström exponents, lidar ratio and depolarization ratio. The mean microphysical aerosol properties, i.e. effective radius and single-scattering albedo, were retrieved with an advanced inversion algorithm. Clear differences were observed for the intensive optical properties of atmospheric layers of biomass burning and urban/industrial aerosols. Our results reveal a wide range of optical and microphysical parameters for biomass burning aerosols. This indicates probable mixing of biomass burning aerosols with desert dust particles, as well as the possible continuous influence of urban/industrial aerosol load in the region. The lidar ratio at 355 nm, the lidar ratio at 532 nm, the linear particle depolarization ratio at 355 nm and the extinction-related Ångström exponent from 355 to 532 nm were 52 ± 7 sr, 41 ± 13 sr, 0.9 ± 0.4 % and 2.3 ± 0.5, respectively, for urban/industrial aerosols, while these values were 92 ± 10 sr, 75 ± 14 sr, 3.2 ± 1.3 % and 1.7 ± 0.3, respectively, for biomass burning aerosol layers. Biomass burning particles are larger and slightly less absorbing compared to urban/industrial aerosols. The particle effective radius were found to be 0.10 ± 0.03, 0.17 ± 0.04 and 0.13 ± 0.03 µm for urban/industrial, biomass burning, and mixed aerosols, respectively, while the single-scattering albedo at 532 nm was 0.87 ± 0.06, 0.90 ± 0.06, and 0.88 ± 0.07 (at 532

  20. Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 mum by airborne hard-target-calibrated Nd:YAG /methane Raman lidar.

    PubMed

    Spinhirne, J D; Chudamani, S; Cavanaugh, J F; Bufton, J L

    1997-05-20

    A lidar instrument was developed to make simultaneous measurements at three distinct wavelengths in the visible and near infrared at 0.532, 1.064, and 1.54 mum with high cross-sectional calibration accuracy. Aerosol and cloud backscatter cross sections were acquired during November and December 1989 and May and June 1990 by the NASA DC-8 aircraft as part of the Global Backscatter Experiment. The instrument, methodology, and measurement results are described. A Nd:YAG laser produced 1.064- and 0.532-mum energy. The 1.54-mum transmitted pulse was generated by Raman-shifted downconversion of the 1.064-mum pulse through a Raman cell pressured with methane gas. The lidar could be pointed in the nadir or zenith direction from the aircraft. A hard-target-based calibration procedure was used to obtain the ratio of the system calibration between the three wavelengths, and the absolute calibration was referenced to the 0.532-mum lidar molecular backscatter cross section for the clearest scattering regions. From the relative wavelength calibration, the aerosol backscatter cross sections at the longer wavelengths are resolved for values as small as 1% of the molecular cross section. Backscatter measurement accuracies are better than 10(-9) (m sr)(-1) at 1.064 and 1.54 mum. Results from the Pacific Ocean region of the multiwavelength backscatter dependence are presented. Results show extensive structure and variation for the aerosol cross sections. The range of observed aerosol cross section is over 4 orders of magnitude, from less than 10(-9) (m sr)(-1) to greater than 10(-5) (m sr)(-1). PMID:18253366

  1. Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis

    NASA Astrophysics Data System (ADS)

    Papayannis, A.; Mamouri, R. E.; Amiridis, V.; Remoundaki, E.; Tsaknakis, G.; Kokkalis, P.; Veselovskii, I.; Kolgotin, A.; Nenes, A.; Fountoukis, C.

    2012-05-01

    A strong Saharan dust event that occurred over the city of Athens, Greece (37.9° N, 23.6° E) between 27 March and 3 April 2009 was followed by a synergy of three instruments: a 6-wavelength Raman lidar, a CIMEL sun-sky radiometer and the MODIS sensor. The BSC-DREAM model was used to forecast the dust event and to simulate the vertical profiles of the aerosol concentration. Due to mixture of dust particles with low clouds during most of the reported period, the dust event could be followed by the lidar only during the cloud-free day of 2 April 2009. The lidar data obtained were used to retrieve the vertical profile of the optical (extinction and backscatter coefficients) properties of aerosols in the troposphere. The aerosol optical depth (AOD) values derived from the CIMEL ranged from 0.33-0.91 (355 nm) to 0.18-0.60 (532 nm), while the lidar ratio (LR) values retrieved from the Raman lidar ranged within 75-100 sr (355 nm) and 45-75 sr (532 nm). Inside a selected dust layer region, between 1.8 and 3.5 km height, mean LR values were 83 ± 7 and 54 ± 7 sr, at 355 and 532 nm, respectively, while the Ångström-backscatter-related (ABR355/532) and Ångström-extinction-related (AER355/532) were found larger than 1 (1.17 ± 0.08 and 1.11 ± 0.02, respectively), indicating mixing of dust with other particles. Additionally, a retrieval technique representing dust as a mixture of spheres and spheroids was used to derive the mean aerosol microphysical properties (mean and effective radius, number, surface and volume density, and mean refractive index) inside the selected atmospheric layers. Thus, the mean value of the retrieved refractive index was found to be 1.49( ± 0.10) + 0.007( ± 0.007)i, and that of the effective radiuses was 0.30 ± 0.18 μm. The final data set of the aerosol optical and microphysical properties along with the water vapor profiles obtained by Raman lidar were incorporated into the ISORROPIA II model to provide a possible aerosol composition

  2. Optical and microphysical characterization of aerosol layers over South Africa by means of multi-wavelength depolarization and Raman lidar measurements

    NASA Astrophysics Data System (ADS)

    Giannakaki, E.; van Zyl, P. G.; Müller, D.; Balis, D.; Komppula, M.

    2015-12-01

    Optical and microphysical properties of different aerosol types over South Africa measured with a multi-wavelength polarization Raman lidar are presented. This study could assist in bridging existing gaps relating to aerosol properties over South Africa, since limited long-term data of this type is available for this region. The observations were performed under the framework of the EUCAARI campaign in Elandsfontein. The multi-wavelength PollyXT Raman lidar system was used to determine vertical profiles of the aerosol optical properties, i.e. extinction and backscatter coefficients, Ångström exponents, lidar ratio and depolarization ratio. The mean microphysical aerosol proper ties, i.e. effective radius and single scattering, albedo were retrieved with an advanced inversion algorithm. Clear differences were observed for the intensive optical properties of atmospheric layers of biomass burning and urban/industrial aerosols. Our results reveal a wide range of optical and microphysical parameters for biomass burning aerosols. This indicates probable mixing of biomass burning aerosols with desert dust particles, as well as the possible continuous influence of urban/industrial aerosol load in the region. The lidar ratio at 355 nm, the linear particle depolarization ratio at 355 nm and the extinction-related Ångström exponent from 355 to 532 nm were 52 ± 7 sr; 0.9 ± 0.4 % and 2.3 ± 0.5, respectively for urban/industrial aerosols, while these values were 92 ± 10 sr; 3.2 ± 1.3 %; 2.0 ± 0.4 respectively for biomass burning aerosols layers. Biomass burning particles are larger and slightly less absorbing compared to urban/industrial aerosols. The particle effective radius were found to be 0.10 ± 0.03, 0.17 ± 0.04 and 0.13 ± 0.03 μm for urban/industrial, biomass burning, and mixed biomass burning and desert dust aerosols, respectively, while the single scattering albedo at 532 nm were 0.87 ± 0.06, 0.90 ± 0.06, and 0.88 ± 0.07 (at 532 nm), respectively for

  3. Characterization of Water Vapor Fluxes by the Raman Lidar System Basil and the Univeristy of Cologne Wind Lidar in the Frame of the HD(CP)2 Observational Prototype Experiment - Hope

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Cacciani, Marco; Scoccione, Andrea; Schween, Jan H.

    2016-06-01

    Measurements carried out by the Raman lidar system BASIL and the University of Cologne wind lidar are reported to demonstrate the capability of these instruments to characterize water vapour fluxes within the Convective Boundary Layer (CBL). In order to determine the water vapour flux vertical profiles, high resolution water vapour and vertical wind speed measurements, with a temporal resolution of 1 sec and a vertical resolution of 15-90, are considered. Measurements of water vapour flux profiles are based on the application of covariance approach to the water vapour mixing ratio and vertical wind speed time series. The algorithms are applied to a case study (IOP 11, 04 May 2013) from the HD(CP)2 Observational Prototype Experiment (HOPE), held in Central Germany in the spring 2013. For this case study, the water vapour flux profile is characterized by increasing values throughout the CBL with lager values (around 0.1 g/kg m/s) in the entrainment region. The noise errors are demonstrated to be small enough to allow the derivation of water vapour flux profiles with sufficient accuracy.

  4. New Raman Water Vapor and Temperature Lidar at JPL Table Mountain Facility: Optimization, Validations and Sonde Intercomparison

    NASA Technical Reports Server (NTRS)

    Aspey, R. A.; McDermid, I. S.; Leblanc, T.; Walsh, D.; Howe, J.

    2006-01-01

    Jet Propulsion Laboratory currently operates lidar systems at Table Mountain Facility (TMF), California (34.4 deg N, 117.7 deg W at 2300m) and Mauna Loa Observatory (MLO), Hawaii (19.5 deg N, 155.6 deg W at 3400m) under the Network for the Detection of Atmospheric Composition Change (NDACC, formerly NDSC). To complement existing NDACC lidars at TMF, which acts as a primary site for inter-comparisons, a new water vapor and temperature lidar has begun routine operation with typically 3-4 nightly profiles per week. As water vapor is a key greenhouse gas, and is highly variable on annual and seasonal cycles, accurate long term measurements are necessary for predictions of climate change and to increase our understanding of the atmospheric processes it contributes to. The new TMF lidar has demonstrated high spatial and temporal resolution, with a high degree of optimization being achieved over the past year, although the authors believe further improvement may yet be possible. The lidar has been designed for accuracies of 5% up to 12km in the free troposphere with the capability to measure to the tropopause and lower stratosphere with accuracies of 1 ppm. It is anticipated that the data sets produced will be used for Aura validation and for incorporation into NDACC archives. Validation results for the optimized system are presented with intercomparisons using Vaisala RS92-K radiosondes.

  5. Imaginary refractive-index effects on desert-aerosol extinction versus backscatter relationships at 351 nm: numerical computations and comparison with Raman lidar measurements.

    PubMed

    Perrone, Maria Rita; Barnaba, Francesca; De Tomasi, Ferdinando; Gobbi, Gian Paolo; Tafuro, Anna Maria

    2004-10-10

    A numerical model is used to investigate the dependence at 351 nm of desert-aerosol extinction and backscatter coefficients on particle imaginary refractive index (mi). Three ranges (-0.005 < or = mi < or = -0.001, -0.01 < or = mi < or = -0.001, and -0.02 < or = mi < or = -0.001) are considered, showing that backscatter coefficients are reduced as /mi/ increases, whereas extinction coefficients are weakly dependent on mi. Numerical results are compared with extinction and backscatter coefficients retrieved by elastic Raman lidar measurements performed during Saharan dust storms over the Mediterranean Sea. The comparison indicates that a range of -0.01 to -0.001 can be representative of Saharan dust aerosols and that the nonsphericity of mineral particles must be considered. PMID:15508611

  6. Development of the Wuhan lidar system

    NASA Astrophysics Data System (ADS)

    Hu, Zhilin; Liu, Yiping; Hu, Xiong; Zeng, Xizhi

    1998-08-01

    This paper reports new progress of the Wuhan lidar system. At the present time, our lidar works both at nighttime, to measure the sodium layer in menopause region, and at daytime to measure the aerosol in lower atmosphere region. The daytime working lidar system is equipped with a Faraday Anomalous Dispersion Optical Filter (FADOF), working at the Na resonance line (589 nm) and having an ultra-narrow bandwidth of 2 GHz. The daytime system uses this FADOF to obtain the lidar signal from an altitude of 20 km in our primary experiment. We will also report a comparison of the rms velocity measured by MF radar and Na lidar. A 90% confidence in rms velocity has been achieved.

  7. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar. Part 2; Ground Based

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Cadirola, Martin; Venable, Demetrius; Connell, Rasheen; Rush, Kurt; Leblanc, Thierry; McDermid, Stuart

    2009-01-01

    The same RASL hardware as described in part I was installed in a ground-based mobile trailer and used in a water vapor lidar intercomparison campaign, hosted at Table Mountain, CA, under the auspices of the Network for the Detection of Atmospheric Composition Change (NDACC). The converted RASL hardware demonstrated high sensitivity to lower stratospheric water vapor indicating that profiling water vapor at those altitudes with sufficient accuracy to monitor climate change is possible. The measurements from Table Mountain also were used to explain the reason, and correct , for sub-optimal airborne aerosol extinction performance during the flight campaign.

  8. Characterization of Turbulent Processes by the Raman Lidar System Basil in the Frame of the HD(CP)2 Observational Prototype Experiment - Hope

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Cacciani, Marco; Scoccione, Andrea; Behrendt, Andreas; Wulfmeyer, Volker

    2016-06-01

    Measurements carried out by the Raman lidar system BASIL are reported to demonstrate the capability of this instrument to characterize turbulent processes within the Convective Boundary Layer (CBL). In order to resolve the vertical profiles of turbulent variables, high resolution water vapour and temperature measurements, with a temporal resolution of 10 sec and a vertical resolution of 90 and 210 m, respectively, are considered. Measurements of higher-order moments of the turbulent fluctuations of water vapour mixing ratio and temperature are obtained based on the application of spectral and auto-covariance analyses to the water vapour mixing ratio and temperature time series. The algorithms are applied to a case study (IOP 5, 20 April 2013) from the HD(CP)2 Observational Prototype Experiment (HOPE), held in Central Germany in the spring 2013. The noise errors are demonstrated to be small enough to allow the derivation of up to fourth-order moments for both water vapour mixing ratio and temperature fluctuations with sufficient accuracy.

  9. Raman lidar observations of a Saharan dust outbreak event: Characterization of the dust optical properties and determination of particle size and microphysical parameters

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Summa, Donato; Bhawar, Rohini; Di Iorio, Tatiana; Cacciani, Marco; Veselovskii, Igor; Dubovik, Oleg; Kolgotin, Alexey

    2012-04-01

    The Raman lidar system BASIL was operational in Achern (Black Forest) between 25 May and 30 August 2007 in the framework of the Convective and Orographically-induced Precipitation Study (COPS). The system performed continuous measurements over a period of approx. 36 h from 06:22 UTC on 1 August to 18:28 UTC on 2 August 2007, capturing the signature of a severe Saharan dust outbreak episode. The data clearly reveal the presence of two almost separate aerosol layers: a lower layer located between 1.5 and 3.5 km above ground level (a.g.l.) and an upper layer extending between 3.0 and 6.0 km a.g.l. The time evolution of the dust cloud is illustrated and discussed in the paper in terms of several optical parameters (particle backscatter ratio at 532 and 1064 nm, the colour ratio and the backscatter Angström parameter). An inversion algorithm was used to retrieve particle size and microphysical parameters, i.e., mean and effective radius, number, surface area, volume concentration, and complex refractive index, as well as the parameters of a bimodal particle size distribution (PSD), from the multi-wavelength lidar data of particle backscattering, extinction and depolarization. The retrieval scheme employs Tikhonov's inversion with regularization and makes use of kernel functions for randomly oriented spheroids. Size and microphysical parameters of dust particles are estimated as a function of altitude at different times during the dust outbreak event. Retrieval results reveal the presence of a fine mode with radii of 0.1-0.2 μm and a coarse mode with radii of 3-5 μm both in the lower and upper dust layers, and the dominance in the upper dust layer of a coarse mode with radii of 4-5 μm. Effective radius varies with altitude in the range 0.1-1.5 μm, while volume concentration is found to not exceed 92 μm3 cm-3. The real and imaginary part of the complex refractive index vary in the range 1.4-1.6 and 0.004-0.008, respectively.

  10. Cloud properties derived from two lidars over the ARM SGP site

    NASA Astrophysics Data System (ADS)

    Dupont, Jean-Charles; Haeffelin, Martial; Morille, Yohann; Comstock, Jennifer M.; Flynn, Connor; Long, Charles N.; Sivaraman, Chitra; Newson, Rob K.

    2011-04-01

    Active remote sensors such as lidars or radars can be used with other data to quantify the cloud properties at regional scale and at global scale. Relative to radar, lidar remote sensing is sensitive to very thin and high clouds but has a significant limitation due to signal attenuation in the ability to precisely quantify the properties of clouds with a cloud optical thickness larger than 3. The cloud properties for all levels of clouds are derived and distributions of cloud base height (CBH), top height (CTH), physical cloud thickness (CT), and optical thickness (COT) from local statistics are compared. The goal of this study is (1) to establish a climatology of macrophysical and optical properties for all levels of clouds observed over the ARM SGP site and (2) to estimate the discrepancies between the two remote sensing systems (pulse energy, sampling, resolution, etc.). Our first results tend to show that the MPL, which are the primary ARM lidars, have a distinctly limited range within which all of these cloud properties are detectable, especially cloud top and cloud thickness, but this can include cloud base particularly during summer daytime period. According to the comparisons between RL and MPL, almost 50% of situations show a signal to noise ratio too low (smaller than 3) for the MPL in order to detect clouds higher than 7km during daytime period in summer. Consequently, the MPL-derived annual cycle of cirrus cloud base (top) altitude is biased low, especially for daylight periods, compared with those derived from the RL data, which detects cloud base ranging from 7.5 km in winter to 9.5 km in summer (and tops ranging from 8.6 to 10.5 km). The optically thickest cirrus clouds (COT > 0.3) reach 50% of the total population for the Raman lidar and only 20% for the Micropulse lidar due to the difference of pulse energy and the effect of solar irradiance contamination. A complementary study using the cloud fraction derived from the Micropulse lidar for clouds

  11. Micro pulse lidar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering has been demonstrated. The transmitter of the micropulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited by optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that systems built on the micropulse lidar concept are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  12. Seasonal and height variations of gravity waves in the middle atmosphere over Syowa Station (69S, 40E) in the Antarctic using Rayleigh/Raman lidar

    NASA Astrophysics Data System (ADS)

    Nakamura, Takuji; Tsutsumi, Masaki; Ejiri, Mitsumu K.; Nishiyama, Takanori; Tomikawa, Yoshihiro; Kogure, Masaru

    2016-07-01

    Gravity waves generated in the lower atmosphere, or near the surface, propagate upward and transfer significant momentum and energy into the middle atmosphere/lower thermosphere. Recently it is known gravity waves are extensively generated in the high latitudes in the southern hemisphere, but not many have been reported on the generation, propagation and dissipation of such waves. In this study, we investigated gravity wave profiles in the high latitude southern hemisphere by potential energy (Ep) in the height range of 15-70 km from May 2011 to October 2013 by using Rayleigh/Raman lidar located at Syowa station (69S, 40E), in the Antarctic. Above 35km altitude, Ep was maximized during winter. The seasonal dependence of Ep over Syowa was similar to those observed at Davis (69S,79E) [Alexander et al., 2011]. Below 35 km altitude, Ep was enhanced in around May, and did not decrease in September. Almost all monthly mean profiles showed similar growth rate (corresponding scale height of about 12-14 km) above 30 km altitude. Furthermore, almost all Ep profiles have a local minimum around 25 km altitude and a local maximum around 20 km altitude, suggesting significant loss of the gravity waves between 20-25 km. In October 2012, The profile of Ep in October 2012 was quite different from those in the other months. Comparisons with zonal wind in the NASA/MERRA reanalysis data suggests that a height region of weak zonal winds descended earlier in 2012 than in the other years. This also suggests gravity waves below stratosphere include waves with slow phase speed.

  13. Cloud properties derived from two lidars over the ARM SGP site

    SciTech Connect

    Dupont, Jean-Charles; Haeffelin, Martial; Morille, Y.; Comstock, Jennifer M.; Flynn, Connor J.; Long, Charles N.; Sivaraman, Chitra; Newsom, Rob K.

    2011-02-16

    [1] Active remote sensors such as lidars or radars can be used with other data to quantify the cloud properties at regional scale and at global scale (Dupont et al., 2009). Relative to radar, lidar remote sensing is sensitive to very thin and high clouds but has a significant limitation due to signal attenuation in the ability to precisely quantify the properties of clouds with a 20 cloud optical thickness larger than 3. In this study, 10-years of backscatter lidar signal data are analysed by a unique algorithm called STRucture of ATmosphere (STRAT, Morille et al., 2007). We apply the STRAT algorithm to data from both the collocated Micropulse lidar (MPL) and a Raman lidar (RL) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site between 1998 and 2009. Raw backscatter lidar signal is processed and 25 corrections for detector deadtime, afterpulse, and overlap are applied. (Campbell et al.) The cloud properties for all levels of clouds are derived and distributions of cloud base height (CBH), top height (CTH), physical cloud thickness (CT), and optical thickness (COT) from local statistics are compared. The goal of this study is (1) to establish a climatology of macrophysical and optical properties for all levels of clouds observed over the ARM SGP site 30 and (2) to estimate the discrepancies induced by the two remote sensing systems (pulse energy, sampling, resolution, etc.). Our first results tend to show that the MPLs, which are the primary ARM lidars, have a distinctly limited range where all of these cloud properties are detectable, especially cloud top and cloud thickness, but even actual cloud base especially during summer daytime period. According to the comparisons between RL and MPL, almost 50% of situations show a signal to noise ratio too low (smaller than 3) for the MPL in order to detect clouds higher than 7km during daytime period in summer. Consequently, the MPLderived annual cycle of cirrus cloud base (top) altitude is

  14. Daytime Temperatures on Europa

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This infrared image of Europa, showing heat radiation from its surface at a wavelength of 27 microns (millionths of a meter), provides the best view yet of Europa's daytime temperatures. Temperatures, derived from the brightness of the infrared radiation, can be determined from the colors by reference to the scale at the bottom of the image.

    The image, taken by NASA's Galileo spacecraft, shows the full disk of Europa, highly distorted by the relative motion of Europa and the spacecraft, centered on longitude 190 degrees, with north at the top. The data show that midday temperatures at Europa's equator reach about 130 degrees Kelvin (-225 F). The surface is even colder toward the poles and before or after midday. Small patches of different colors on Europa's disk show regions that are warmer or cooler than their immediate surroundings: the warm patches are generally relatively dark, and thus absorb more sunlight, than neighboring regions, while the cool patches are relatively bright. In the lower left corner, heat radiation from Jupiter itself, appearing orange-red in this representation, can be seen peeking out from behind Europa's disk.

    The image was taken with Galileo's PPR (Photopolarimeter-Radiometer) instrument on the spacecraft's seventh orbit around Jupiter, from a range of about 65,000 kilometers (40,389 miles). Surface temperatures derived from the strength of infrared radiation, as was done here, are called 'brightness temperatures', and may be slightly in error.

    The PPR instrument builds up an image by slowly scanning across the target over a period of up to one hour. The motion of Galileo relative to Europa during this time causes distortions in the satellite shape on the image, which therefore does not appear circular. The small overlapping circles that make up the image show the size of the area, about 160 kilometers (99 miles) across, covered by each individual PPR measurement. Blue spots in the dark sky in the right-hand portion of the

  15. NDSC and JPL stratospheric lidars

    NASA Technical Reports Server (NTRS)

    McDermid, I. Stuart

    1995-01-01

    The Network for the Detection of Stratospheric Change is an international cooperation providing a set of high-quality, remote-sensing instruments at observing stations around the globe. A brief description of the NDSC and its goals is presented. Lidar has been selected as the NDSC instrument for measurements of stratospheric profiles of ozone, temperature, and aerosol. The Jet Propulsion Laboratory has developed and implemented two stratospheric lidar systems for NDSC. These are located at Table Mountain, California, and at Mauna Loa, Hawaii. These systems, which utilize differential absorption lidar, Rayleigh lidar, raman lidar, and backscatter lidar, to measure ozone, temperature, and aerosol profiles in the stratosphere are briefly described. Examples of results obtained for both long-term and individual profiles are presented.

  16. The mobile Water vapor Aerosol Raman LIdar and its implication in the frame of the HyMeX and ChArMEx programs: application to a dust transport process

    NASA Astrophysics Data System (ADS)

    Chazette, P.; Marnas, F.; Totems, J.

    2013-12-01

    The increasing importance of the coupling of water and aerosol cycles in environmental applications requires observation tools which allow simultaneous measurements of these two fundamental processes for climatological and meteorological studies. In this purpose, a new mobile Raman lidar, WALI (Water vapor and Aerosol LIDAR), has been developed and implemented within the framework of the international HyMeX/IODA-MED and ChArMEx programs. This paper presents the key properties of this new device and its first applications to scientific studies. The lidar uses an eye-safe emission in the ultra-violet range at 354.7 nm and a set of compact refractive receptors. Cross-comparisons between rawindsoundings performed from balloon or aircraft and lidar measurements have shown a good agreement in the derived water vapor mixing ratio (WVMR). The discrepancies are generally less than 0.5 g kg-1 and therefore within the error bars of the instruments. A detailed study of the uncertainties was conducted and shows a 7 to 11% accuracy of the WVMR retrieval, which is largely constrained by the quality of the calibration. It also proves that the lidar is able to measure the WVMR during the day over a range of about 1 km. The WALI system otherwise provides measurements of aerosol optical properties such as the lidar ratio (LR) or the particulate depolarization ratio (PDR). An important example of scientific application addressing the main objectives of the HyMeX and ChArMEx programs is then presented, following an event of desert dust aerosols over the Balearic Islands. This dust intrusion may have had a significant impact on the intense precipitations that occurred over southwestern France and the Spanish Mediterranean coasts. During this event, the LR and PDR values obtained are in the ranges of ~ 45-63 ± 6 sr and 0.1-0.19 ± 0.01, respectively, which is representative of dust aerosols. The dust layers are also shown to be associated with significant WVMR, i.e. between 4 and 6.7 g

  17. Revised Calibration Strategy for the CALIOP 532 nm Channel. Part II; Daytime

    NASA Technical Reports Server (NTRS)

    Powell, Kathleen A.; Vaughan, Mark A.; Kuehn, Ralph; Hunt, William H.; Pee, Kam-Pui

    2008-01-01

    The CALIPSO lidar (CALIOP) makes backscatter measurements at 532 nm and 1064 nm and linear depolarization ratios at 532 nm. Accurate calibration of the backscatter measurements is essential in the retrieval of optical properties. An assessment of the nighttime 532 nm parallel channel calibration showed that the calibration strategy used for the initial release (Release 1) of the CALIOP lidar level 1B data was acceptable. In general, the nighttime calibration coefficients are relatively constant over the darkest segment of the orbit, but then change rapidly over a short period as the satellite enters sunlight. The daytime 532 nm parallel channel calibration scheme implemented in Release 1 derived the daytime calibration coefficients from the previous nighttime coefficients. A subsequent review of the daytime 532 nm parallel channel calibration revealed that the daytime calibration coefficients do not remain constant, but vary considerably over the course of the orbit, due to thermally-induced misalignment of the transmitter and receiver. A correction to the daytime calibration scheme is applied in Release 2 of the data. Results of both nighttime and daytime calibration performance are presented in this paper.

  18. Two-day period fluctuation of PMC occurrence over Syowa Station, Antarctica observed by a ground-based lidar and AIM satellite.

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Suzuki, H.; Tsutsumi, M.; Ejiri, M. K.; Tomikawa, Y.; Abo, M.; Kawahara, T.; Tsuda, T. T.; Nishiyama, T.

    2014-12-01

    A Rayleigh/Raman lidar system has been operated by the Japanese Antarctic Research Expedition (JARE) since February, 2011 (JARE 52nd) in Syowa Station Antarctica (69.0S, 39.5E). The lidar system consists of a pulsed Nd:YAG laser (355nm) as a transmitter and two telescopes with four photo multiplier tubes which are to detect Rayleigh scattered light from low and high atmosphere at 355 nm and N2 Raman emission at 387nm. Polar Mesospheric Cloud (PMC) was detected by the lidar at 22:30UT (+3hr for LT) on Feb 4th, 2011, the first day of a routine operation. This event was the first time to detect PMC over Syowa Station by a lidar [Suzuki et al., Ann. Geophys., 2013]. However, signal to noise ratio (SNR) of the PMC event was not so good due to large shot noises from daytime background signals. Moreover, a receiver system was designed mainly for nighttime observations. In this way, observation of PMC during the midnight sun, which also corresponds to most frequent PMC season, was difficult. Thus, to improve SNR of the PMC observation with the lidar during daytime, a narrow band-pass Fabry-Perot etalon unit has been developed and installed in the receiver system on Dec 2013 by JARE 55th. By using this new system, clear PMC signals were successfully detected under daylight condition during the period of summer operation of JARE55th. During this period of 53 days (from 17 Dec. 2013 to 7 Feb. 2014), only 11 days were with a clear sky and suitable for PMC observation. Thus, it was difficult to study temporal variations on a PMC activity only by using the lidar data. Fortunately, NASA's AIM satellite had passed near Syowa Station and provided with complimentary PMC data during observation gap of the lidar. By combining our lidar data with the AIM/CIPS data, nearly continuous monitoring of PMC variability over Syowa Station was achieved for period between 13th and 18th in January 2014. PMC occurrence with an interval of two days over Syowa Station during the period was clearly

  19. Lidar Inter-Comparison Exercise Final Campaign Report

    SciTech Connect

    Protat, A; Young, S

    2015-02-01

    The objective of this field campaign was to evaluate the performance of the new Leosphere R-MAN 510 lidar, procured by the Australian Bureau of Meteorology, by testing it against the MicroPulse Lidar (MPL) and Raman lidars, at the Darwin Atmospheric Radiation Measurement (ARM) site. This lidar is an eye-safe (355 nm), turn-key mini Raman lidar, which allows for the detection of aerosols and cloud properties, and the retrieval of particulate extinction profiles. To accomplish this evaluation, the R-MAN 510 lidar has been operated at the Darwin ARM site, next to the MPL, Raman lidar, and Vaisala ceilometer (VCEIL) for three months (from 20 January 2013 to 20 April 2013) in order to collect a sufficient sample size for statistical comparisons.

  20. Lidar applications to pollution studies.

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Fuller, W. H., Jr.

    1971-01-01

    This paper discusses the application of lidar (laser radar) to the measurement of air pollution. Lidar techniques and instrumentation utilizing elastic, Raman, and fluorescence scattering are discussed. Data showing measurements of the mixing of particulate pollutants in the atmosphere are presented. These data include: simultaneous two-wavelength results, isopleths showing the temporal dynamics of particulate mixing, measurements of the top of the earth's mixing layer, and measurements in a valley with restricted circulation and mixing. All measurements are compared with simultaneous radiosonde and/or aircraft-mounted temperature probe support. In addition, a second generation lidar system presently under development is described.

  1. Atmospheric Turbulence Estimates from a Pulsed Lidar

    NASA Technical Reports Server (NTRS)

    Pruis, Matthew J.; Delisi, Donald P.; Ahmad, Nash'at N.; Proctor, Fred H.

    2013-01-01

    Estimates of the eddy dissipation rate (EDR) were obtained from measurements made by a coherent pulsed lidar and compared with estimates from mesoscale model simulations and measurements from an in situ sonic anemometer at the Denver International Airport and with EDR estimates from the last observation time of the trailing vortex pair. The estimates of EDR from the lidar were obtained using two different methodologies. The two methodologies show consistent estimates of the vertical profiles. Comparison of EDR derived from the Weather Research and Forecast (WRF) mesoscale model with the in situ lidar estimates show good agreement during the daytime convective boundary layer, but the WRF simulations tend to overestimate EDR during the nighttime. The EDR estimates from a sonic anemometer located at 7.3 meters above ground level are approximately one order of magnitude greater than both the WRF and lidar estimates - which are from greater heights - during the daytime convective boundary layer and substantially greater during the nighttime stable boundary layer. The consistency of the EDR estimates from different methods suggests a reasonable ability to predict the temporal evolution of a spatially averaged vertical profile of EDR in an airport terminal area using a mesoscale model during the daytime convective boundary layer. In the stable nighttime boundary layer, there may be added value to EDR estimates provided by in situ lidar measurements.

  2. Vertical profiles of pure dust and mixed smoke-dust plumes inferred from inversion of multiwavelength Raman/polarization lidar data and comparison to AERONET retrievals and in situ observations.

    PubMed

    Müller, Detlef; Veselovskii, Igor; Kolgotin, Alexei; Tesche, Matthias; Ansmann, Albert; Dubovik, Oleg

    2013-05-10

    We present for the first time vertical profiles of microphysical properties of pure mineral dust (largely unaffected by any other aerosol types) on the basis of the inversion of optical data collected with multiwavelength polarization Raman lidar. The data were taken during the Saharan Mineral Dust Experiment (SAMUM) in Morocco in 2006. We also investigated two cases of mixed dust-smoke plumes on the basis of data collected during the second SAMUM field campaign that took place in the Republic of Cape Verde in 2008. Following the experience of the Aerosol Robotic Network (AERONET), the dust is modeled as a mixture of spherical particles and randomly oriented spheroids. The retrieval is performed from the full set of lidar input data (three backscatter coefficients, two extinction coefficients, and one depolarization ratio) and from a reduced set of data in which we exclude the depolarization ratio. We find differences of the microphysical properties depending on what kind of optical data combination we use. For the case of pure mineral dust, the results from these two sets of optical data are consistent and confirm the validity of the spheroid particle model for data inversion. Our results indicate that in the case of pure mineral dust we do not need depolarization information in the inversion. For the mixture of dust and biomass burning, there seem to be more limitations in the retrieval accuracy of the various data products. The evaluation of the quality of our data products is done by comparing our lidar-derived data products (vertically resolved) to results from AERONET Sun photometer observations (column-averaged) carried out at the lidar field site. Our results for dust effective radius show agreement with the AERONET observations within the retrieval uncertainties. Regarding the complex refractive index a comparison is difficult, as AERONET provides this parameter as wavelength-dependent quantity. In contrast, our inversion algorithm provides this parameter

  3. [Daytime sleepiness and driving behaviour].

    PubMed

    Mathis, Johannes; Schreier, David

    2014-11-01

    Daytime sleepiness is reported by 10-15 % within the general population of industrialised countries. According to federal statistics in Switzerland, only ~1.5 % of motor vehicle crashes are caused by excessive daytime sleepiness, which is in sharp contrast to the scientific literature, indicating a figure of 10 to 30 %. This is most likely related to the difficulty to detect the underlying sleepiness by police officers and their low awareness of this cause in case of car accidents. As a consequence of this massively reduced figure, the real problem is underestimated and countermeasures as well as examinations of drivers at fault are inadequately realised in our country. The risk factors for sleepiness induced accidents are young age, male sex, driving at night or long distances and a number of diseases or sedative drugs. The most prevalent cause of sleepiness related accidents is the behaviourally induced sleep insufficiency syndrome or irregular sleep-wake rhythm in otherwise healthy subjects. Disease related sleepiness which may also cause motor vehicle accidents must be managed by physicians. In the diagnostic work-up sedative drugs, medical causes of sleepiness or tiredness as well as primary sleep-wake disorders must be considered. The most important duty of the treating physician, in addition to correct diagnosis and treatment, is to inform the affected patient of his or her responsibility not to drive while sleepy, about the theoretical legal consequences in case of an accident and about efficient countermeasures such as stopping in a rest area, drinking coffee, and taking a nap. For legal reasons, this information must be written in the patient's notes. Professional drivers suffering from sleep apnoea syndrome or other disorders with excessive daytime sleepiness, or private drivers who have already experienced a sleepiness induced accident, should be referred to a sleep-wake-centre for objective assessment of their sleepiness in the maintenance of

  4. Lidar Report

    SciTech Connect

    Wollpert.

    2009-04-01

    This report provides an overview of the LiDAR acquisition methodology employed by Woolpert on the 2009 USDA - Savannah River LiDAR Site Project. LiDAR system parameters and flight and equipment information is also included. The LiDAR data acquisition was executed in ten sessions from February 21 through final reflights on March 2, 2009; using two Leica ALS50-II 150kHz Multi-pulse enabled LiDAR Systems. Specific details about the ALS50-II systems are included in Section 4 of this report.

  5. Deuterium in the daytime thermosphere

    NASA Technical Reports Server (NTRS)

    Breig, E. L.; Sanatani, S.; Hanson, W. B.

    1987-01-01

    Ion concentration measurements for H(+) and D(+) from the magnetic ion mass spectrometer on the Atmosphere Explorer C satellite are used, in conjunction with other atmospheric data, to determine the concentrations of H and D in the nonpolar daytime thermosphere. The ratio of the observed D(+) to H(+) concentrations has essentially the same height dependence in the 300 to 800-km region as expected for their neutral counterparts, even in the presence of ion temperature gradients and probable large vertical ion fluxes. Rapid charge exchange with atomic oxygen ensures that D/H is about equal to D(+)/H(+) at the lower altitudes where the derived D to H concentration ratio is a factor of about 6 larger than its sea level value, for an exospheric temperature of 930 K. This relative enhancement of deuterium arises from the fact that hydrogen more readily escapes the earth, and a large vertical gradient in the H concentration relative to its diffusive equilibrium value is necessary to drive this upward flux through the lower thermosphere. If these planetary losses of hydrogen are much greater than those associated with evaporative escape, as is the current view, then correspondingly larger deuterium loss rates are also likely in order that the thermospheric D/H ratio not increase well above the observed value. The absolute winter daytime concentration of deuterium at 300 km is found to be 210 + or - 50 atoms/cu cm.

  6. Acculturation, Cultivation, and Daytime TV Talk Shows.

    ERIC Educational Resources Information Center

    Woo, Hyung-Jin; Dominick, Joseph R.

    2003-01-01

    Explores the cultivation phenomenon among international college students in the United States by examining the connection between levels of acculturation, daytime TV talk show viewing, and beliefs about social reality. Finds that students who scored low on acculturation and watched a great deal of daytime talk shows had a more negative perception…

  7. Formative Assessment Probes: The Daytime Moon

    ERIC Educational Resources Information Center

    Keeley, Page

    2012-01-01

    The familiar adage "seeing is believing" implies that children will recall a particular phenomenon if they had the experience of seeing it with their own eyes. If this were true, then most children would believe that one could see the Moon in both daytime and at night. However, when children are asked, "Can you see the Moon in the daytime?" many…

  8. Lidar measurements of airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Li, Guangkun; Philbrick, C. Russell

    2003-03-01

    Raman lidar techniques have been used in remote sensing to measure the aerosol optical extinction in the lower atmosphere, as well as water vapor, temperature and ozone profiles. Knowledge of aerosol optical properties assumes special importance in the wake of studies strongly correlating airborne particulate matter with adverse health effects. Optical extinction depends upon the concentration, composition, and size distribution of the particulate matter. Optical extinction from lidar returns provide information on particle size and density. The influence of relative humidity upon the growth and size of aerosols, particularly the sulfate aerosols along the northeast US region, has been investigated using a Raman lidar during several field measurement campaigns. A particle size distribution model is being developed and verified based on the experimental results. Optical extinction measurements from lidar in the NARSTO-NE-OPS program in Philadelphia PA, during summer of 1999 and 2001, have been analyzed and compared with other measurements such as PM sampling and particle size measurements.

  9. North-south cross sections of the vertical aerosol distribution over the Atlantic Ocean from multiwavelength Raman/polarization lidar during Polarstern cruises

    PubMed Central

    Kanitz, T; Ansmann, A; Engelmann, R; Althausen, D

    2013-01-01

    Shipborne aerosol lidar observations were performed aboard the research vessel Polarstern in 2009 and 2010 during three north-south cruises from about 50°N to 50°S. The aerosol data set provides an excellent opportunity to characterize and contrast the vertical aerosol distribution over the Atlantic Ocean in the polluted northern and relatively clean southern hemisphere. Three case studies, an observed pure Saharan dust plume, a Patagonian dust plume east of South America, and a case of a mixed dust/smoke plume west of Central Africa are exemplarily shown and discussed by means of their optical properties. The meridional transatlantic cruises were used to determine the latitudinal cross section of the aerosol optical thickness (AOT). Profiles of particle backscatter and extinction coefficients are presented as mean profiles for latitudinal belts to contrast northern- and southern-hemispheric aerosol loads and optical effects. Results of lidar observations at Punta Arenas (53°S), Chile, and Stellenbosch (34°S), South Africa, are shown and confirm the lower frequency of occurrence of free-tropospheric aerosol in the southern hemisphere than in the northern hemisphere. The maximum latitudinal mean AOT of 0.27 was found in the northern tropics (0– 15°N) in the Saharan outflow region. Marine AOT is typically 0.05 ± 0.03. Particle optical properties are presented separately for the marine boundary layer and the free troposphere. Concerning the contrast between the anthropogenically influenced midlatitudinal aerosol conditions in the 30– 60°N belt and the respective belt in the southern hemisphere over the remote Atlantic, it is found that the AOT and extinction coefficients for the vertical column from 0–5km (total aerosol column) and 1–5km height (lofted aerosol above the marine boundary layer) are a factor of 1.6 and 2 higher at northern midlatitudes than at respective southern midlatitudes, and a factor of 2.5 higher than at the clean marine southern

  10. Coherence between multi-instrument and multi-model atmospheric moisture retrievals and a ground-based Raman-lidar reference in the framework of the HyMeX SOP 1

    NASA Astrophysics Data System (ADS)

    Chazette, Patrick; Flamant, Cyrille; Totems, Julien; Shangt, Xiaoxia; Raut, Jean-Christophe; Boufies-Cloche, Sophie; Doerenbecher, Alexis; Ducrocq, Véronique

    2015-04-01

    The Mediterranean area is one of the main climate change hot spot regions where the water cycle needs to be better understood in order to make progress on the predictability of high-impact weather events and their evolution with global change. Characterizing the water vapour variability across the Mediterranean basin at hourly to synoptic timescales is of paramount importance to advance knowledge on the life cycle of heavy precipitation events and improve forecast in numerical weather prediction models. However, such a characterization based on a single instrument or model remains elusive and a multi-instrument, multi-model approach is needed to properly apprehend the water vapour variability at the relevant timescales, especially over data scarce regions such as oceans and seas. This approach has been undertaken during the Hydrological cycle in the Mediterranean eXperiment (HyMeX) in September and October 2012 during which part of observational effort has been established on Menorca to characterize the upwind marine low-level flow, essential to determine the strength, timing and precise location of the subsequent precipitation at the Mediterranean coastline. The ground-based Water vapor Raman Lidar (WALI), the airborne LEANDRE-2 DIAL water vapor lidar and boundary layer pressurized balloons were implemented during the first Special Observing Periods (SOP 1) and contributed to characterize water vapour variability in the vicinity of the Balearic Islands. Furthermore, analyses from regional and global numerical models (AROME-WMED, ECMWF and WRF) were also available over large domains encompassing part or the whole of the Western Mediterranean basin. We will present the comparisons of the water vapor mixing ratio profiles and water vapor integrated content derived from these different data sets and we will show that good agreements is found between them. This work is an essential step towards ensuring that the water vapour datasets (both measurements and simulations

  11. Gratifications of Daytime TV Serial Viewers.

    ERIC Educational Resources Information Center

    Compesi, Ronald J.

    1980-01-01

    The gratifications identified by viewers of the daytime television serial "All My Children" were (in rank order): entertainment, habit, convenience, social utility, relaxation or escape from problems, escape from boredom, and reality exploration or advice. (GT)

  12. A Daytime Aspect Camera for Balloon Altitudes

    NASA Technical Reports Server (NTRS)

    Dietz, Kurt L.; Ramsey, Brian D.; Alexander, Cheryl D.; Apple, Jeff A.; Ghosh, Kajal K.; Swift, Wesley R.; Six, N. Frank (Technical Monitor)

    2001-01-01

    We have designed, built, and flight-tested a new star camera for daytime guiding of pointed balloon-borne experiments at altitudes around 40km. The camera and lens are commercially available, off-the-shelf components, but require a custom-built baffle to reduce stray light, especially near the sunlit limb of the balloon. This new camera, which operates in the 600-1000 nm region of the spectrum, successfully provided daytime aspect information of approximately 10 arcsecond resolution for two distinct star fields near the galactic plane. The detected scattered-light backgrounds show good agreement with the Air Force MODTRAN models, but the daytime stellar magnitude limit was lower than expected due to dispersion of red light by the lens. Replacing the commercial lens with a custom-built lens should allow the system to track stars in any arbitrary area of the sky during the daytime.

  13. Daytime Aspect Camera for Balloon Altitudes

    NASA Technical Reports Server (NTRS)

    Dietz, Kurt L.; Ramsey, Brian D.; Alexander, Cheryl D.; Apple, Jeff A.; Ghosh, Kajal K.; Swift, Wesley R.

    2002-01-01

    We have designed, built, and flight-tested a new star camera for daytime guiding of pointed balloon-borne experiments at altitudes around 40 km. The camera and lens are commercially available, off-the-shelf components, but require a custom-built baffle to reduce stray light, especially near the sunlit limb of the balloon. This new camera, which operates in the 600- to 1000-nm region of the spectrum, successfully provides daytime aspect information of approx. 10 arcsec resolution for two distinct star fields near the galactic plane. The detected scattered-light backgrounds show good agreement with the Air Force MODTRAN models used to design the camera, but the daytime stellar magnitude limit was lower than expected due to longitudinal chromatic aberration in the lens. Replacing the commercial lens with a custom-built lens should allow the system to track stars in any arbitrary area of the sky during the daytime.

  14. Standard methods for analysis and interpretation of Lidar data for environmental monitoring

    NASA Technical Reports Server (NTRS)

    Melfi, S. H.

    1973-01-01

    Lidar is similar in principle to microwave radar but uses a pulsed laser as the source and an optical telescope as the receiver. Lidar observations of elastic scattering from aerosols and more recently Raman scattering from molecules have been performed in the atmosphere with favorable results. A description of the Lidar technique is provided. Lidar measurements of remote visibility are discussed together with the measurement of remote visibility and the determination of molecular concentrations.

  15. Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system.

    PubMed

    Mei, Liang; Brydegaard, Mikkel

    2015-11-30

    This work demonstrates a new approach - Scheimpflug lidar - for atmospheric aerosol monitoring. The atmospheric backscattering echo of a high-power continuous-wave laser diode is received by a Newtonian telescope and recorded by a tilted imaging sensor satisfying the Scheimpflug condition. The principles as well as the lidar equation are discussed in details. A Scheimpflug lidar system operating at around 808 nm is developed and employed for continuous atmospheric aerosol monitoring at daytime. Localized emission, atmospheric variation, as well as the changes of cloud height are observed from the recorded lidar signals. The extinction coefficient is retrieved according to the slope method for a homogeneous atmosphere. This work opens up new possibilities of using a compact and robust Scheimpflug lidar system for atmospheric aerosol remote sensing. PMID:26698808

  16. Lidar measurements of refractive propagation effects

    NASA Astrophysics Data System (ADS)

    Philbrick, C. R.; Blood, D. W.

    1995-02-01

    A multi-wavelength Raman lidar has been developed and used to measure the profiles of atmospheric properties in the troposphere under a wide range of geophysical conditions. The instrument measures the two physical properties which contribute to the refractive index at radio frequencies, water vapor concentration profiles from vibrational Raman measurements and neutral density determined from rotational Raman temperature profiles and surface pressure. The LAMP lidar instrument is transportable and has been used to make measurements at several locations in addition to our local Penn State University site, including shipboard measurements between Arctic and Antarctic and in the coastal environment at Point Mugu, CA. Lidar measurements of the atmospheric refractive environment, which are of particular interest, were made during 1993 at Point Mugu, CA, including the period of Project VOCAR (Variability of Coastal Atmospheric Refractivity). Both the lidar and balloon tropospheric measurements have been used for analyses of the propagation conditions by employing th Navy's RPO, IREPS and EREPS PC programs and comparisons have been made with the measured propagation conditions. On the short term (hour-to-hour throughout the day), the lidar derived profiles permit the examination of refractive layer stratification for guided-wave mode propagation.

  17. AUTOFOCUSING CATADIOPTRIC TELESCOPE FOR LIDAR APPLICATIONS

    SciTech Connect

    LUCY WENDER

    2000-05-17

    An eight (8) inch diameter F/2.8 autofocusing optical telescope was designed for Lidar applications such as UV Mini-Raman spectroscopy. Operational range is 2 meters to infinity with autofocusing feature for ranges within 50 meters. Test measurements using silica telescope components gave a spot size within the 0.2 mm specification.

  18. Excessive daytime sleepiness in sleep disorders

    PubMed Central

    Steier, Joerg

    2012-01-01

    Excessive daytime sleepiness is a significant public health problem, with prevalence in the community estimated to be as high as 18%. Sleepiness is caused by abnormal sleep quantity or sleep quality. Amongst others, multiple neurological, psychological, cardiac and pulmonary disorders may contribute. Risk factors for excessive sleepiness include obesity, depression, extremes of age and insufficient sleep. In the clinical setting, two of the most commonly encountered causes are obstructive sleep apnoea and periodic limb movement disorder. There is continuing discussion of the mechanisms by which these disorders cause daytime symptoms, with intermittent nocturnal hypoxia, sleep fragmentation and autonomic dysregulation identified as important factors. The increased prevalence of obstructive sleep apnoea in obese subjects does not fully account for the increased rates of daytime sleepiness in this population and there is evidence to suggest that it is caused by metabolic factors and chronic inflammation in obese individuals. Sleepiness is also more common in those reporting symptoms of depression or anxiety disorders and significantly impacts their quality of life. Clinicians should be aware of factors which put their patients at high risk of daytime sleepiness, as it is a debilitating and potentially dangerous symptom with medico-legal implications. Treatment option should address underlying contributors and promote sleep quantity and sleep quality by ensuring good sleep hygiene. However, stimulant medication may be indicated in some cases to allow for more normal daytime functioning. PMID:23205286

  19. Near Infrared Astronomical Observing During the Daytime

    NASA Astrophysics Data System (ADS)

    Tinn Chee Jim, Kevin; Pier, Edward Alan; Cognion, Rita L.

    2015-08-01

    Ground-based, near-infrared astronomy has been mostly restriced to nighttime observing with occasional, bright solar system objects observed during the daytime. But for astronomical phenomena that are time-varying on timescales of less than a day, it would be advantageous to be able to gather data during the day and night. We explore some of the limitations of observing in the J, H, and K bands during the daytime. Atmospheric radiative transfer simulations show that K is the optimal common astronomical filter for daytime observations on Mauna Kea, but the J and H filters can also be used. Observations from Mauna Kea show that it is possible to observe objects at least as faint as K=15.5 during the early afternoon, with photometric accuracies only slightly worse than those obtained at night.

  20. Daytime Celestial Navigation for the Novice

    ERIC Educational Resources Information Center

    Sadler, Philip M.; Night, Christopher

    2010-01-01

    What kinds of astronomical lab activities can high school and college astronomy students carry out easily in daytime? The most impressive is the determination of latitude and longitude from observations of the Sun. The "shooting of a noon sight" and its "reduction to a position" grew to become a daily practice at the start of the 19th century…

  1. Some Daytime Activities in Solar Astronomy

    ERIC Educational Resources Information Center

    Burin, Michael J.

    2016-01-01

    This century's transits of Venus (2004, 2012) captured significant public attention, reminding us that the wonders of astronomy need not be confined to the night. And while nighttime telescope viewing gatherings (a.k.a. "star parties") are perennially popular, astronomy classes are typically held in the daytime. The logistics of…

  2. Sleep Schedules and Daytime Functioning in Adolescents.

    ERIC Educational Resources Information Center

    Wolfson, Amy R.; Carskadon, Mary A.

    1998-01-01

    Studied relationship between adolescents' sleep/wake habits and daytime functioning. Found that self-reported total sleep times decreased from age 13 to 19 years. Struggling or failing students obtained less sleep, went to bed later, and had greater weekend delays of sleep than those with better grades. Students with inadequate sleep reported…

  3. Technique to separate lidar signal and sunlight.

    PubMed

    Sun, Wenbo; Hu, Yongxiang; MacDonnell, David G; Weimer, Carl; Baize, Rosemary R

    2016-06-13

    Sunlight contamination dominates the backscatter noise in space-based lidar measurements during daytime. The background scattered sunlight is highly variable and dependent upon the surface and atmospheric albedo. The scattered sunlight contribution to noise increases over land and snow surfaces where surface albedos are high and thus overwhelm lidar backscatter from optically thin atmospheric constituents like aerosols and thin clouds. In this work, we developed a novel lidar remote sensing concept that potentially can eliminate sunlight induced noise. The new lidar concept requires: (1) a transmitted laser light that carries orbital angular momentum (OAM); and (2) a photon sieve (PS) diffractive filter that separates scattered sunlight from laser light backscattered from the atmosphere, ocean and solid surfaces. The method is based on numerical modeling of the focusing of Laguerre-Gaussian (LG) laser beam and plane-wave light by a PS. The model results show that after passing through a PS, laser light that carries the OAM is focused on a ring (called "focal ring" here) on the focal plane of the PS filter, very little energy arrives at the center of the focal plane. However, scattered sunlight, as a plane wave without the OAM, focuses at the center of the focal plane and thus can be effectively blocked or ducted out. We also find that the radius of the "focal ring" increases with the increase of azimuthal mode (L) of LG laser light, thus increasing L can more effectively separate the lidar signal away from the sunlight noise. PMID:27410314

  4. Two-component wind fields from single scanning aerosol lidar

    NASA Astrophysics Data System (ADS)

    Mayor, Shane D.; Derian, Pierre; Mauzey, Christopher F.; Hamada, Masaki

    2015-09-01

    An overview of recent research results on the performance of two motion estimation algorithms used to deduce two-component horizontal wind fields from ground-based scanning elastic backscatter lidar is presented. One motion estimation algorithm is a traditional cross-correlation method optimized for atmospheric lidar data. The second algorithm is a recently-developed wavelet-based optical flow. An intercomparison of experimental results with measurements from an independent Doppler lidar over an agricultural area in Chico, California, during daytime convective conditions in 2013-14 are presented. Finally, early results from application of the algorithms to data collected over the ocean from a compact and portable aerosol lidar that was deployed on the northern California coast in March of 2015 are presented.

  5. Temporal consistency of lidar observations during aerosol transport events in the framework of the ChArMEx/ADRIMED campaign at Minorca in June 2013

    NASA Astrophysics Data System (ADS)

    Chazette, Patrick; Totems, Julien; Ancellet, Gérard; Pelon, Jacques; Sicard, Michaël

    2016-03-01

    We performed synergetic daytime and nighttime active and passive remote-sensing observations at Minorca (Balearic Islands, Spain), over more than 3 weeks during the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Effect in the Mediterranean (ChArMEx/ADRIMED) special observation period (SOP 1a, June-July 2013). We characterized the aerosol optical properties and type in the low and middle troposphere using an automated procedure combining Rayleigh-Mie-Raman lidar (355, 387 and 407 nm) with depolarization (355 nm) and AERONET Cimel® sun-photometer data. Results show a high variability due to varying dynamical forcing. The mean column-averaged lidar backscatter-to-extinction ratio (BER) was close to 0.024 sr-1 (lidar ratio of ˜ 41.7 sr), with a large dispersion of ±33 % over the whole observation period due to changing atmospheric transport regimes and aerosol sources. The ground-based remote-sensing measurements, coupled with satellite observations, allowed the documentation of (i) dust particles up to 5 km (above sea level) in altitude originating from Morocco and Algeria from 15 to 18 June with a peak in aerosol optical thickness (AOT) of 0.25 ± 0.05 at 355 nm, (ii) a long-range transport of biomass burning aerosol (AOT = 0.18 ± 0.16) related to North American forest fires detected from 26 to 28 June 2013 by the lidar between 2 and 7 km and (iii) mixture of local sources including marine aerosol particles and pollution from Spain. During the biomass burning event, the high value of the particle depolarization ratio (8-14 %) may imply the presence of dust-like particles mixed with the biomass burning aerosols in the mid-troposphere. For the field campaign period, we also show linearity with SEVIRI retrievals of the aerosol optical thickness despite 35 % relative bias, which is discussed as a function of aerosol type.

  6. Temporal consistency of lidar observables during aerosol transport events in the framework of the ChArMEx/ADRIMED campaign at Menorca Island in June 2013

    NASA Astrophysics Data System (ADS)

    Chazette, P.; Totems, J.; Ancellet, G.; Pelon, J.; Sicard, M.

    2015-11-01

    We performed synergetic daytime and night-time active and passive remote sensing observations at Menorca (Balearic Island, Spain), over more than 3 weeks during the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Effect in the Mediterranean (ChArMEx/ADRIMED) special observation period (SOP 1a, June-July 2013). We characterized the aerosol optical properties and type in the low and middle troposphere using an automated procedure combining Rayleigh-Mie-Raman lidar (355, 387 and 407 nm) with depolarization (355 nm) and AERONET Cimel® sun-photometer data. Results show a high variability due to varying dynamical forcing. The mean column-averaged lidar backscatter-to-extinction ratio (BER) was close to 0.024 sr-1 (lidar ratio of ∼ 41.7 sr), with a large dispersion of ±33 % over the whole observation period due to changing atmospheric transport regimes and aerosol sources. The ground-based remote sensing measurements, coupled with satellite observations, allowed to document (i) dust particles up to 5 km a.s.l. in altitude originating from Morocco and Algeria from 15 to 18 June with a peak in aerosol optical thickness (AOT) of 0.25 ± 0.05 at 355 nm, (ii) a long-range transport of biomass burning aerosol (AOT = 0.18 ± 0.16) related to North American forest fires detected from 26 to 28 June 2013 by the lidar between 2 and 7 km and (iii) mixture of local sources including marine aerosol particles and pollution from Spain. During the biomass burning event, the high value of the particle depolarization ratio (8-14 %) may imply the presence of dust-like particles mixed with the biomass burning aerosols in the mid troposphere. We show also linearity with SEVIRI retrievals of the aerosol optical thickness within 35 % relative bias, which is discussed as a function of aerosol type.

  7. Modeling the performance of direct-detection Doppler lidar systems including cloud and solar background variability.

    PubMed

    McGill, M J; Hart, W D; McKay, J A; Spinhirne, J D

    1999-10-20

    Previous modeling of the performance of spaceborne direct-detection Doppler lidar systems assumed extremely idealized atmospheric models. Here we develop a technique for modeling the performance of these systems in a more realistic atmosphere, based on actual airborne lidar observations. The resulting atmospheric model contains cloud and aerosol variability that is absent in other simulations of spaceborne Doppler lidar instruments. To produce a realistic simulation of daytime performance, we include solar radiance values that are based on actual measurements and are allowed to vary as the viewing scene changes. Simulations are performed for two types of direct-detection Doppler lidar system: the double-edge and the multichannel techniques. Both systems were optimized to measure winds from Rayleigh backscatter at 355 nm. Simulations show that the measurement uncertainty during daytime is degraded by only approximately 10-20% compared with nighttime performance, provided that a proper solar filter is included in the instrument design. PMID:18324169

  8. Urban Aerosol Optical Properties Measurement by Elastic Counter-Look Lidar

    NASA Astrophysics Data System (ADS)

    Wang, X.; Boselli, A.; He, Y.; Sannino, A.; Song, C.; Spinelli, N.

    2016-06-01

    The new developed elastic lidar system utilizes two identical elastic lidars, in counter-look configuration, to measure aerosol backscattering and extinction coefficients without any hypotheses. Compared to elastic-Raman lidar and high spectral resolution lidar, the proposed counter-look elastic lidar can use low power eyesafe laser and all available wavelengths. With this prototype lidar system, urban aerosol optical properties and their spatial distribution have been directly measured, including backscatter coefficient, extinction coefficient and lidar ratio. The preliminary results show that the low cost and eye-safe counter-look configured elastic lidar system can be used to measure the aerosol optical properties distribution and give the hint of aerosol type.

  9. PROBING NEAR-SURFACE ATMOSPHERIC TURBULENCE WITH LIDAR MEASUREMENTS AND HIGH-RESOLUTION HYDRODYNAMIC MODELS

    SciTech Connect

    J. KAO; D. COOPER; ET AL

    2000-11-01

    As lidar technology is able to provide fast data collection at a resolution of meters in an atmospheric volume, it is imperative to promote a modeling counterpart of the lidar capability. This paper describes an integrated capability based on data from a scanning water vapor lidar and a high-resolution hydrodynamic model (HIGRAD) equipped with a visualization routine (VIEWER) that simulates the lidar scanning. The purpose is to better understand the spatial and temporal representativeness of the lidar measurements and, in turn, to extend their utility in studying turbulence fields in the atmospheric boundary layer. Raman lidar water vapor data collected over the Pacific warm pool and the simulations with the HIGRAD code are used for identifying the underlying physics and potential aliasing effects of spatially resolved lidar measurements. This capability also helps improve the trade-off between spatial-temporal resolution and coverage of the lidar measurements.

  10. Profiling Tropospheric Winds with the Goddard Lidar Observatory for Winds (GLOW)

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huailin; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Goddard Lidar Observatory for Winds (GLOW) is a mobile direct detection Doppler lidar system designed to measure wind profiles from the surface into the lower stratosphere. Recently, the GLOW lidar has participated in several field deployments measuring tropospheric winds in a variety of conditions including both daytime and night operation. More than 50 hours of line-of-sight wind profit data were obtained in September, 2000 during a three week intercomparison experiment at the Ground Winds facility in North Glen, NH. Typical clear air lidar wind profiles extended to altitudes of 20 km with a 1 km vertical resolution and 1 minute averaging. An additional 40 hours of lidar profiles of wind speed and direction were obtained during HARGLO-2, an intercomparison experiment held at Wallops Flight Facility, VA in November, 2001. A description of the mobile system is presented along with the examples of validated lidar wind profiles obtained during these experiments.

  11. Urban daytime traffic noise prediction models.

    PubMed

    da Paz, Elaine Carvalho; Zannin, Paulo Henrique Trombetta

    2010-04-01

    An evaluation was made of the acoustic environment generated by an urban highway using in situ measurements. Based on the data collected, a mathematical model was designed for the main sound levels (L (eq), L (10), L (50), and L (90)) as a function of the correlation between sound levels and between the equivalent sound pressure level and traffic variables. Four valid groups of mathematical models were generated to calculate daytime sound levels, which were statistically validated. It was found that the new models can be considered as accurate as other models presented in the literature to assess and predict daytime traffic noise, and that they stand out and differ from the existing models described in the literature thanks to two characteristics, namely, their linearity and the application of class intervals. PMID:19353296

  12. Some Daytime Activities in Solar Astronomy

    NASA Astrophysics Data System (ADS)

    Burin, Michael J.

    2016-01-01

    This century's transits of Venus (2004, 2012) captured significant public attention, reminding us that the wonders of astronomy need not be confined to the night. And while nighttime telescope viewing gatherings (a.k.a. "star parties") are perennially popular, astronomy classes are typically held in the daytime. The logistics of coordinating students outside of class can often be problematic, leading to dark-sky activities that are relegated to extra credit for only those who can attend.

  13. Sleep schedules and daytime functioning in adolescents.

    PubMed

    Wolfson, A R; Carskadon, M A

    1998-08-01

    Sleep and waking behaviors change significantly during the adolescent years. The objective of this study was to describe the relation between adolescents' sleep/wake habits, characteristics of students (age, sex, school), and daytime functioning (mood, school performance, and behavior). A Sleep Habits Survey was administered in homeroom classes to 3,120 high school students at 4 public high schools from 3 Rhode Island school districts. Self-reported total sleep times (school and weekend nights) decreased by 40-50 min across ages 13-19, ps < .001. The sleep loss was due to increasingly later bedtimes, whereas rise times were more consistent across ages. Students who described themselves as struggling or failing school (C's, D's/F's) reported that on school nights they obtain about 25 min less sleep and go to bed an average of 40 min later than A and B students, ps < .001. In addition, students with worse grades reported greater weekend delays of sleep schedule than did those with better grades. Furthermore, this study examined a priori defined adequate sleep habit groups versus less than adequate sleep habit groups on their daytime functioning. Students in the short school-night total sleep group (< 6 hr 45 min) and/or large weekend bedtime delay group (> 120 min) reported increased daytime sleepiness, depressive mood, and sleep/wake behavior problems, ps < .05, versus those sleeping longer than 8 hr 15 min with less than 60 min weekend delay. Altogether, most of the adolescents surveyed do not get enough sleep, and their sleep loss interferes with daytime functioning. PMID:9768476

  14. 47 CFR 73.157 - Antenna testing during daytime.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Antenna testing during daytime. 73.157 Section... BROADCAST SERVICES AM Broadcast Stations § 73.157 Antenna testing during daytime. (a) The licensee of a station using a directional antenna during daytime or nighttime hours may, without further...

  15. 47 CFR 73.157 - Antenna testing during daytime.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Antenna testing during daytime. 73.157 Section... BROADCAST SERVICES AM Broadcast Stations § 73.157 Antenna testing during daytime. (a) The licensee of a station using a directional antenna during daytime or nighttime hours may, without further...

  16. 47 CFR 73.157 - Antenna testing during daytime.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Antenna testing during daytime. 73.157 Section... BROADCAST SERVICES AM Broadcast Stations § 73.157 Antenna testing during daytime. (a) The licensee of a station using a directional antenna during daytime or nighttime hours may, without further...

  17. 47 CFR 73.157 - Antenna testing during daytime.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna testing during daytime. 73.157 Section... BROADCAST SERVICES AM Broadcast Stations § 73.157 Antenna testing during daytime. (a) The licensee of a station using a directional antenna during daytime or nighttime hours may, without further...

  18. 47 CFR 73.157 - Antenna testing during daytime.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antenna testing during daytime. 73.157 Section... BROADCAST SERVICES AM Broadcast Stations § 73.157 Antenna testing during daytime. (a) The licensee of a station using a directional antenna during daytime or nighttime hours may, without further...

  19. UV Lidar Receiver Analysis for Tropospheric Sensing of Ozone

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; DeYoung, Russell J.

    2013-01-01

    A simulation of a ground based Ultra-Violet Differential Absorption Lidar (UV-DIAL) receiver system was performed under realistic daytime conditions to understand how range and lidar performance can be improved for a given UV pulse laser energy. Calculations were also performed for an aerosol channel transmitting at 3 W. The lidar receiver simulation studies were optimized for the purpose of tropospheric ozone measurements. The transmitted lidar UV measurements were from 285 to 295 nm and the aerosol channel was 527-nm. The calculations are based on atmospheric transmission given by the HITRAN database and the Modern Era Retrospective Analysis for Research and Applications (MERRA) meteorological data. The aerosol attenuation is estimated using both the BACKSCAT 4.0 code as well as data collected during the CALIPSO mission. The lidar performance is estimated for both diffuseirradiance free cases corresponding to nighttime operation as well as the daytime diffuse scattered radiation component based on previously reported experimental data. This analysis presets calculations of the UV-DIAL receiver ozone and aerosol measurement range as a function of sky irradiance, filter bandwidth and laser transmitted UV and 527-nm energy

  20. Doppler lidar measurement of profiles of turbulence and momentum flux

    NASA Technical Reports Server (NTRS)

    Eberhard, Wynn L.; Cupp, Richard E.; Healy, Kathleen R.

    1989-01-01

    A short-pulse CO2 Doppler lidar with 150-m range resolution measured vertical profiles of turbulence and momentum flux. Example measurements are reported of a daytime mixed layer with strong mechanical mixing caused by a wind speed of 15 m/sec, which exceeded the speed above the capping inversion. The lidar adapted an azimuth scanning technique previously demonstrated by radar. Scans alternating between two elevation angles allow determination of mean U-squared, V-squared, and W-squared. Expressions were derived to estimate the uncertainty in the turbulence parameters. A new processing method, partial Fourier decomposition, has less uncertainty than the filtering used earlier.

  1. Effective resolution concepts for lidar observations

    NASA Astrophysics Data System (ADS)

    Iarlori, M.; Madonna, F.; Rizi, V.; Trickl, T.; Amodeo, A.

    2015-12-01

    Since its establishment in 2000, EARLINET (European Aerosol Research Lidar NETwork) has provided, through its database, quantitative aerosol properties, such as aerosol backscatter and aerosol extinction coefficients, the latter only for stations able to retrieve it independently (from Raman or high-spectral-resolution lidars). These coefficients are stored in terms of vertical profiles, and the EARLINET database also includes the details of the range resolution of the vertical profiles. In fact, the algorithms used in the lidar data analysis often alter the spectral content of the data, mainly acting as low-pass filters to reduce the high-frequency noise. Data filtering is described by the digital signal processing (DSP) theory as a convolution sum: each filtered signal output at a given range is the result of a linear combination of several signal input data samples (relative to different ranges from the lidar receiver), and this could be seen as a loss of range resolution of the output signal. Low-pass filtering always introduces distortions in the lidar profile shape. Thus, both the removal of high frequency, i.e., the removal of details up to a certain spatial extension, and the spatial distortion produce a reduction of the range resolution. This paper discusses the determination of the effective resolution (ERes) of the vertical profiles of aerosol properties retrieved from lidar data. Large attention has been dedicated to providing an assessment of the impact of low-pass filtering on the effective range resolution in the retrieval procedure.

  2. Sleep, eating disorder symptoms, and daytime functioning

    PubMed Central

    Tromp, Marilou DP; Donners, Anouk AMT; Garssen, Johan; Verster, Joris C

    2016-01-01

    Objective To investigate the relationship between eating disorders, body mass index (BMI), sleep disorders, and daytime functioning. Design Survey. Setting The Netherlands. Participants N=574 Dutch young adults (18–35 years old). Measurements Participants completed a survey on eating and sleep habits including the Eating Disorder Screen for Primary care (ESP) and SLEEP-50 questionnaire subscales for sleep apnea, insomnia, circadian rhythm disorder (CRD), and daytime functioning. SLEEP-50 outcomes of participants who screened negative (≤2) and positive (>2) on the ESP were compared. In addition, SLEEP-50 scores of groups of participants with different ESP scores (0–4) and different BMI groups (ie, underweight, healthy weight, overweight, and obese) were compared using nonparametric statistics. Results Almost 12% (n=67) of participants screened positive for having an eating disorder. Relative to participants without eating disorders, participants who screened positive for eating disorders reported significantly higher scores on sleep apnea (3.7 versus 2.9, P=0.012), insomnia (7.7 versus 5.5, P<0.0001), CRD (2.9 versus 2.3, P=0.011), and impairment of daytime functioning (8.8 versus 5.8, P=0.0001). ESP scores were associated with insomnia (r=0.117, P=0.005), sleep apnea (r=0.118, P=0.004), sleep quality (r=−0.104, P=0.012), and daytime functioning (r=0.225, P<0.0001), but not with CRD (r=0.066, P=0.112). BMI correlated significantly with ESP scores (r=0.172, P<0.0001) and scores on sleep apnea (r=0.171, P<0.0001). When controlling for BMI, the partial correlation between ESP and sleep apnea remained significant (r=0.10, P=0.015). Conclusion Participants who score positive for eating disorders scored significantly higher on sleep disorder scales, and reported significantly more impairment of daytime functioning. PMID:26848280

  3. Long-range Transport of Dust and Smoke towards Barbados during Summer and Winter Season Measured with Three-Wavelength Polarization Lidar during SALTRACE-1, 2 and 3

    NASA Astrophysics Data System (ADS)

    Haarig, Moritz; Ansmann, Albert; Althausen, Dietrich; Klepel, André; Baars, Holger; Farrell, David; Toledano, Carlos

    2015-04-01

    The annual cycle of the north-south movement of the intertropical convergence zone has an impact on the sources and mixture of the dust transported to the Caribbean. In summer, pure Saharan dust from northern Africa dominates, while in winter the dust originates from southern West Africa and is mixed with biomass burning smoke. The island of Barbados (13°N, 59°W) is an ideal site to investigate the long-range transport of Saharan dust because it is advected more than 5000 km across the Atlantic Ocean without any disturbance by anthropogenic aerosol sources. To investigate these seasonal changes in dust transport we extended the Saharan Aerosol Long-Range Transport and Aerosol-Cloud Interaction Experiment (SALTRACE) in June-July 2013 by further two campaigns in February-March 2014 (SALTRACE-2) and June-July 2014 (SALTRACE-3). Additionally a ship cruise with a Raman polarization lidar on board from the Caribbean to the Cape Verde islands was performed in April-May 2013. Dual-polar sun photometer observations were performed continuously from June 2013 to July 2014 (see AERONET Barbados_SALTRACE site). For SALTRACE, we used a complex lidar system equipped with two Raman channels and a 532 nm high spectral resolution lidar (HSRL) channel to obtain daytime (HSRL) and nighttime (Raman) extinction profiles. For the first time the dust linear depolarization ratios at 355, 532 and 1064 nm were measured simultaneously. The linear depolarization ratio provides information about the presence and amount of dust. The spectrum yields information about the dust size distribution. Combined with the extinction-to-backscatter ratio (lidar ratio) a separation of mineral dust (fine-mode and coarse-mode fractions), biomass burning smoke and maritime aerosols is possible. The measurements are presently used for understanding of long-range transported dust and provide insight into the aerosol composition over the western Atlantic. The classification of different aerosol types will be

  4. Active Raman sounding of the earth's water vapor field.

    PubMed

    Tratt, David M; Whiteman, David N; Demoz, Belay B; Farley, Robert W; Wessel, John E

    2005-08-01

    The typically weak cross-sections characteristic of Raman processes has historically limited their use in atmospheric remote sensing to nighttime application. However, with advances in instrumentation and techniques, it is now possible to apply Raman lidar to the monitoring of atmospheric water vapor, aerosols and clouds throughout the diurnal cycle. Upper tropospheric and lower stratospheric measurements of water vapor using Raman lidar are also possible but are limited to nighttime and require long integration times. However, boundary layer studies of water vapor variability can now be performed with high temporal and spatial resolution. This paper will review the current state-of-the-art of Raman lidar for high-resolution measurements of the atmospheric water vapor, aerosol and cloud fields. In particular, we describe the use of Raman lidar for mapping the vertical distribution and variability of atmospheric water vapor, aerosols and clouds throughout the evolution of dynamic meteorological events. The ability of Raman lidar to detect and characterize water in the region of the tropopause and the importance of high-altitude water vapor for climate-related studies and meteorological satellite performance are discussed. PMID:16029854

  5. Active Raman sounding of the earth's water vapor field

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Whiteman, David N.; Demoz, Belay B.; Farley, Robert W.; Wessel, John E.

    2005-01-01

    The typically weak cross-sections characteristic of Raman processes has historically limited their use in atmospheric remote sensing to nighttime application. However, with advances in instrumentation and techniques, it is now possible to apply Raman lidar to the monitoring of atmospheric water vapor, aerosols and clouds throughout the diurnal cycle. Upper tropospheric and lower stratospheric measurements of water vapor using Raman lidar are also possible but are limited to nighttime and require long integration times. However, boundary layer studies of water vapor variability can now be performed with high temporal and spatial resolution. This paper will review the current state-of-the-art of Raman lidar for high-resolution measurements of the atmospheric water vapor, aerosol and cloud fields. In particular, we describe the use of Raman lidar for mapping the vertical distribution and variability of atmospheric water vapor, aerosols and clouds throughout the evolution of dynamic meteorological events. The ability of Raman lidar to detect and characterize water in the region of the tropopause and the importance of high-altitude water vapor for climate-related studies and meteorological satellite performance are discussed.

  6. Lidar Inter-Comparison Exercise Final Campaign Report

    SciTech Connect

    Protat, Alain; Young, S.

    2015-02-01

    The objective of this IOP was to evaluate the performances of the new Leosphere R-MAN 510 lidar procured by the Australian Bureau of Meteorology, by testing it against the MPL and Raman lidars at the Darwin ARM site. This lidar is an eye-safe (355 nm), turn-key mini Raman lidar, which allows for the detection of aerosols and cloud properties, and the retrieval of particulate extinction profiles. To do so, the R-MAN 510 lidar has been operated at the Darwin ARM site, next to the MPL, Raman lidar, and Vaisala ceilometer for three months (from 20 January 2013 to 20 April 2013) in order to collect a good sample for statistical comparisons. The comparisons with the Raman lidar were not performed, since the Raman lidar attenuated backscatter and depolarization ratio product was not available. A new product has just been delivered to the ARM archive as a value-added product, hence this study will continue. Nevertheless we have developed software to match the different space and time resolutions of the other lidars and project the data onto a common grid to permit detailed comparison of the instruments’ performance and an enhanced analysis of clouds and aerosols through the use of composite data products, like the ratios of attenuated backscatters, attenuated scattering ratios and depolarization ratios. Comparisons between the MPL and R-MAN510 lidar data exhibit large differences in total attenuated backscatter at 355 and 532 nm, attenuated scattering ratios, and aerosol volume depolarization ratios. Differences in attenuated backscatter result mainly from the different relative contributions of scattering from molecules and particles at the different wavelengths, but there are some intriguing differences that will require further investigations. The differences in volume depolarization ratios are due to the much larger contribution of molecular returns to the volume depolarization ratio (5 times larger at 355 nm than at 532 nm). The R-MAN510 lidar is also found to be

  7. Lidar postcards

    USGS Publications Warehouse

    Schreppel, Heather A.; Cimitile, Matthew J.

    2011-01-01

    The U.S. Geological Survey (USGS) Coastal and Marine Geology Program develops and uses specialized technology to build high-resolution topographic and habitat maps. High-resolution maps of topography, bathymetry, and habitat describe important features affected by coastal-management decisions. The mapped information serves as a baseline for evaluating resources and tracking the effectiveness of resource- and conservation-management decisions. These data products are critical to researchers, decision makers, resource managers, planners, and the public. To learn more about Lidar (light detection and ranging) technology visit: http://ngom.usgs.gov/dsp/.

  8. The Techniques and Progress of Wind and Temperature Lidar in WIPM

    NASA Astrophysics Data System (ADS)

    Li, Faquan; Yang, Yong; Cheng, Xuewu; Li, Yajuan; Lin, Xin; Xia, Yuan; Liu, Linmei; Song, Shalei; Chen, Zhenwei; Xiong, Jun; Wu, Kuijun; Gong, Shunsheng

    2016-06-01

    In this paper, a lidar system in Wuhan Institute of Physics and Mathematics (WIPM, 30.5°N,114.5°E) for atmospheric density, temperature and wind observation was reported. The design and techniques of this lidar were described in detail. The atmospheric temperature of the troposphere, stratosphere and lower mesosphere were measured by the Raman, Rayleigh and sodium channel of this lidar system, respectively.

  9. Stimulated Raman amplification, oscillation, and linewidth in barium nitrate

    NASA Technical Reports Server (NTRS)

    McCray, Christopher J.; Chyba, Thomas H.

    1998-01-01

    Measurements of Raman gain in a Ba(NO3)2 crystal are reported at 532 nm using a Raman oscillator/amplifier arrangement for differential absorption lidar measurements of ozone. The experimentally determined gain coefficient will be compared with theoretical results. The effect of single and multi-longitudinal mode pumping upon the amplification process will be discussed. Measurement of the Raman linewidth for 1st 2nd and 3d stokes shifts arc presented.

  10. Observation of Raman scattering by cloud droplets in the atmosphere.

    PubMed

    Melfi, S H; Evans, K D; Li, J; Whiteman, D; Ferrare, R; Schwemmer, G

    1997-05-20

    In a recent field campaign, the NASA Goddard Space Flight Center scanning Raman lidar measured, in the water vapor channel, Raman scattering from low-level clouds well in excess of 100% relative humidity. The excess scattering has been interpreted to be spontaneous Raman scattering by liquid water in the cloud droplets. A review of research on Raman scattering by microspheres indicates that the technique may provide a remote method to observe cloud liquid water. The clouds studied appear, from Mie scattering, to have two distinct layers with only the upper layer showing significant Raman scattering from liquid water in the droplets. PMID:18253375

  11. Gravity wave observations by Doppler wind and temperature lidar measurements in the strato- and mesosphere

    NASA Astrophysics Data System (ADS)

    Baumgarten, Gerd; Fiedler, Jens; Hildebrand, Jens; Lübken, Franz-Josef

    2016-04-01

    The observation of wind and temperature perturbations by gravity waves propagating throughout the strato- and mesosphere is a challenging task. Both the kinetic and potential energy density can be derived and yield information about ensemble mean properties of gravity waves. We measure temperatures and winds with the Doppler Rayleigh/Mie/Raman lidar at the ALOMAR research station in Northern Norway (69N, 16E). Using two independently steerable telescopes and lasers we are able to measure vertical profiles of two wind components and temperatures simultaneously. The observations can be performed even under sunlit conditions, which is essential for measuring atmospheric perturbations over several days and during summer at this location. We report on the first observation of persistent inertia gravity wave signatures in the horizontal wind and temperature. The measurements cover the altitude range from 20 km to about 80 km during night and to about 70 km during daytime. For one case with observations lasting more than 50 hours, we find amplitudes of 5 to 25 m/s and 1 to 8 K in wind and temperature, respectively. The measured kinetic to potential energy density ratio is about 10, indicating that the majority of variability is due to waves with intrinsic frequencies close to the inertial frequency. The entire wave field is mainly characterized by the presence of multiple waves, however quasi-monochromatic waves can be identified at limited times and allow a more detailed analysis of wave properties like propagation direction, amplitudes and the momentum flux.

  12. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Grund, Christian J.; Hardesty, R. Michael; Rye, Barry J.

    1995-04-01

    Continuous, high quality profiles of water vapor, free of systematic bias, and of moderate temporal and spatial resolution, acquired over long periods at low operational and maintenance cost, are fundamental to the success of the ARM CART program. The development and verification of realistic climate model parameterizations for clouds and net radiation balance, and the correction of other CART site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. Application of profiles acquired with current techniques, have, to date, been limited by vertical resolution and uniqueness of solution (e.g. high resolution infrared (IR) Fourier transform radiometry), poor spatial and temporal coverage and high operating cost (e.g. radiosondes), or diminished daytime performance, lack of eye-safety, and high maintenance cost (e.g. Raman lidar). Recent developments in infrared laser and detector technology make possible compact IR differential absorption lidar (DIAL) systems at eye-safe wavelengths. In the study reported here, we develop DIAL system performance models and examine the potential to solve some of the shortcomings of previous methods using parameterizations representative of current technologies. These models are also applied to diagnose and evaluate other strengths and weaknesses unique to the DIAL method for this application. This work is to continue in the direction of evaluating yet smaller and lower-cost laser diode-based systems for routine monitoring of the lower altitudes using photon counting detection methods. We regard the present report as interim in nature and will update and extend it as a final report at the end of the term of the contract.

  13. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    SciTech Connect

    Grund, C.J.; Hardesty, R.M.; Rye, B.J.

    1995-04-03

    Continuous, high quality profiles of water vapor, free of systematic bias, and of moderate temporal and spatial resolution, acquired over long periods at low operational and maintenance cost, are fundamental to the success of the ARM CART program. The development and verification of realistic climate model parameterizations for clouds and net radiation balance, and the correction of other CART site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. Application of profiles acquired with current techniques, have, to date, been limited by vertical resolution and uniqueness of solution [e.g. high resolution infrared (IR) Fourier transform radiometry], poor spatial and temporal coverage and high operating cost (e.g. radiosondes), or diminished daytime performance, lack of eye-safety, and high maintenance cost (e.g. Raman lidar). Recent developments in infrared laser and detector technology make possible compact IR differential absorption lidar (DIAL) systems at eye-safe wavelengths. In the study reported here, we develop DIAL system performance models and examine the potential of to solve some of the shortcomings of previous methods using parameterizations representative of current technologies. These models are also applied to diagnose and evaluate other strengths and weaknesses unique to the DIAL method for this application. This work is to continue in the direction of evaluating yet smaller and lower-cost laser diode-based systems for routine monitoring of the lower altitudes using photon counting detection methods. We regard the present report as interim in nature and will update and extend it as a final report at the end of the term of the contract.

  14. Lidar Analyses

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1995-01-01

    A brief description of enhancements made to the NASA MSFC coherent lidar model is provided. Notable improvements are the addition of routines to automatically determine the 3 dB misalignment loss angle and the backscatter value at which the probability of a good estimate (for a maximum likelihood estimator) falls to 50%. The ability to automatically generate energy/aperture parametrization (EAP) plots which include the effects of angular misalignment has been added. These EAP plots make it very easy to see that for any practical system where there is some degree of misalignment then there is an optimum telescope diameter for which the laser pulse energy required to achieve a particular sensitivity is minimized. Increasing the telescope diameter above this will result in a reduction of sensitivity. These parameterizations also clearly show that the alignment tolerances at shorter wavelengths are much stricter than those at longer wavelengths. A brief outline of the NASA MSFC AEOLUS program is given and a summary of the lidar designs considered during the program is presented. A discussion of some of the design trades is performed both in the text and in a conference publication attached as an appendix.

  15. Progress of research on water vapor lidar

    NASA Technical Reports Server (NTRS)

    Wilkerson, T. D.

    1990-01-01

    Research is described on several aspects of stimulated Raman scattering (SRS) of 532 nm laser light in H2, D2, and CH4. The goals of this work are to develop a more thorough understanding of nonlinear processes involving the Raman effect and four-wave mixing, and to find the best way to generate radiation at several wavelengths simultaneously, for lidar applications. Issues addressed are conversion efficiency, optimization of operating conditions (gas pressure, confocal parameter, etc.) and the distribution of output pulse energy over three Stokes components, the first anti-Stokes component, and the zeroth order (pump) wavelength. The described research and results constitute another step in the development of SRS applications for NASA's atmospheric lidar program.

  16. Daytime TV's day of compassion for AIDS.

    PubMed

    McFarlane, R

    1995-07-01

    Daytime television's national Day of Compassion programming, a Hollywood Supports-sponsored event where entire shows and storylines were devoted to HIV/AIDS topics, is highlighted. Programming successes are examined, including cable TV's contribution to the event and the general public's approval. Richard Jennings of Hollywood Supports, the entertainment industry group that works to counter workplace fears and discrimination based on HIV status and sexual orientation, states that he and his group are aiming at prime time next year. This mission is particularly important now given the tenor of hateful distortion about people with AIDS from the religious right and the current mood of Congress towards AIDS-related funding. PMID:11362727

  17. Daytime intrusive thoughts and subjective insomnia symptoms.

    PubMed

    Baker, Louise D; Baldwin, David S; Garner, Matthew

    2015-10-30

    Insomnia is increasingly recognised as a 24h complaint that is associated with an increased risk of mood and anxiety disorders. However, the effects of insomnia symptoms on maladaptive daytime patterns of thinking are poorly understood. We examined the relationship between subjective insomnia symptoms, attentional control and negative thought intrusions during daytime in a large sample of undergraduates experiencing poor sleep. A total of 109 participants completed self-report measures of sleep quality, current sleepiness, anxiety and attentional control. A behavioural measure of intrusive thought required participants to control their attention during two focus periods separated by a 5min period of self-referential worry. Thought intrusions were sampled throughout the pre- and post-worry periods. Perceived insomnia severity was associated with the reduced ability to focus attention and uniquely associated with increased negative thought intrusions in the pre-worry period. These results support suggestions that acute episodes of poor sleep can dysregulate key networks involved in attentional control and emotion regulation, and that promote negative cognitive activity. PMID:26279126

  18. Low-Pass Parabolic FFT Filter for Airborne and Satellite Lidar Signal Processing

    PubMed Central

    Jiao, Zhongke; Liu, Bo; Liu, Enhai; Yue, Yongjian

    2015-01-01

    In order to reduce random errors of the lidar signal inversion, a low-pass parabolic fast Fourier transform filter (PFFTF) was introduced for noise elimination. A compact airborne Raman lidar system was studied, which applied PFFTF to process lidar signals. Mathematics and simulations of PFFTF along with low pass filters, sliding mean filter (SMF), median filter (MF), empirical mode decomposition (EMD) and wavelet transform (WT) were studied, and the practical engineering value of PFFTF for lidar signal processing has been verified. The method has been tested on real lidar signal from Wyoming Cloud Lidar (WCL). Results show that PFFTF has advantages over the other methods. It keeps the high frequency components well and reduces much of the random noise simultaneously for lidar signal processing. PMID:26473881

  19. Low-pass parabolic FFT filter for airborne and satellite lidar signal processing.

    PubMed

    Jiao, Zhongke; Liu, Bo; Liu, Enhai; Yue, Yongjian

    2015-01-01

    In order to reduce random errors of the lidar signal inversion, a low-pass parabolic fast Fourier transform filter (PFFTF) was introduced for noise elimination. A compact airborne Raman lidar system was studied, which applied PFFTF to process lidar signals. Mathematics and simulations of PFFTF along with low pass filters, sliding mean filter (SMF), median filter (MF), empirical mode decomposition (EMD) and wavelet transform (WT) were studied, and the practical engineering value of PFFTF for lidar signal processing has been verified. The method has been tested on real lidar signal from Wyoming Cloud Lidar (WCL). Results show that PFFTF has advantages over the other methods. It keeps the high frequency components well and reduces much of the random noise simultaneously for lidar signal processing. PMID:26473881

  20. Lidar base specification

    USGS Publications Warehouse

    Heidemann, Hans Karl.

    2012-01-01

    Lidar is a fast evolving technology, and much has changed in the industry since the final draft of the “Lidar Base Specification Version 1.0” was written. Lidar data have improved in accuracy and spatial resolution, geospatial accuracy standards have been revised by the American Society for Photogrammetry and Remote Sensing (ASPRS), industry standard file formats have been expanded, additional applications for lidar have become accepted, and the need for interoperable data across collections has been realized. This revision to the “Lidar Base Specification Version 1.0” publication addresses those changes and provides continued guidance towards a nationally consistent lidar dataset.

  1. Phototransistors Development and their Applications to Lidar

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Refaat, Tamer F.; Ismail, Syed; Singh, Upendra N.

    2007-01-01

    Custom-designed two-micron phototransistors have been developed using Liquid Phase Epitaxy (LPE), Molecular Beam Epitaxy (MBE) and Metal-Organic Chemical Vapor Deposition (MOCVD) techniques under Laser Risk Reduction Program (LRRP). The devices were characterized in the Detector Characterization Laboratory at NASA Langley Research Center. It appears that the performance of LPE- and MBE-grown phototransistors such as responsivity, noise-equivalent-power, and gain, are better than MOCVD-grown devices. Lidar tests have been conducted using LPE and MBE devices under the 2-micrometer CO2 Differential Absorption Lidar (DIAL) Instrument Incubator Program (IIP) at the National Center for Atmospheric Research (NCAR), Boulder, Colorado. The main focus of these tests was to examine the phototransistors performances as compared to commercial InGaAs avalanche photodiode by integrating them into the Raman-shifted Eye-safe Aerosol Lidar (REAL) operating at 1.543 micrometers. A simultaneous measurement of the atmospheric backscatter signals using the LPE phototransistors and the commercial APD demonstrated good agreement between these two devices. On the other hand, simultaneous detection of lidar backscatter signals using MBE-grown phototransistor and InGaAs APD, showed a general agreement between these two devices with a lower performance than LPE devices. These custom-built phototransistors were optimized for detection around 2-micrometer wavelength while the lidar tests were performed at 1.543 micrometers. Phototransistor operation at 2-micron will improve the performance of a lidar system operating at that wavelength. Measurements include detecting hard targets (Rocky Mountains), atmospheric structure consisting of cirrus clouds and boundary layer. These phototransistors may have potential for high sensitivity differential absorption lidar measurements of carbon dioxide and water vapor at 2.05-micrometers and 1.9-micrometers, respectively.

  2. Cirrus cloud characteristics derived from volume imaging lidar, high spectral resolution lidar, HIS radiometer, and satellite

    NASA Technical Reports Server (NTRS)

    Grund, Christian J.; Ackerman, Steven A.; Eloranta, Edwin W.; Knutsen, Robert O.; Revercomb, Henry E.; Smith, William L.; Wylie, Donald P.

    1990-01-01

    Preliminary measurement results are presented from the Cirrus Remote Sensing Pilot Experiment which used a unique suite of instruments to simultaneously retrieve cirrus cloud visible and IR optical properties, while addressing the disparities between satellite volume averages and local point measurements. The experiment employed a ground-based high resolution interferometer sounder (HIS) and a second Fourier transform spectrometer to measure the spectral radiance in the 4-20 micron band, a correlated high spectral resolution lidar, a volume imaging lidar, a CLASS radiosonde system, the Scripps Whole Sky Imager, and multispectral VAS, HIRS, and AVHRR satellite data from polar orbiting and geostationary satellites. Data acquired during the month long experiment included continuous daytime monitoring with the Whole Sky Imager.

  3. Daytime OIO in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Stutz, J.; Pikelnaya, O.; Hurlock, S. C.; Trick, S.; Pechtl, S.; von Glasow, R.

    2007-11-01

    The potential importance of iodine for marine boundary layer (MBL) chemistry has found increasing recognition in recent years. However, observations of the key iodine species are sparse and the chemical reactions of the iodine oxides are not well understood. Here we present Differential Optical Absorption Spectroscopy observations of IO, OIO in the MBL of the Gulf of Maine, U.S., during Summer 2004. We report the first daytime observation of OIO, indicating that this compound is rather photostable. Mixing ratios of IO were similar to, and those of OIO higher than, values reported for European coastal sites. Calculations with the one-dimensional model MISTRA show that the observed simultaneous presence of elevated OIO and NOx cannot be explained by currently known iodine chemistry. Our results lead to the conclusion that thus far unknown chemical reactions of iodine oxides, probably involving iodine nitrates, might occur in the MBL.

  4. Daytime Observations with ELTs in the Thermal Infrared Using Laser Guide Star Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Beckers, J. M.

    2011-09-01

    Using Magneto-Optical Filters (MOFs; also called FADOFs = Faraday Anomalous Dispersion Optical Filters) it is possible to clearly see Sodium Laser Guide Stars in the daytime sky. This makes it possible to use ELT Adaptive Optics systems for diffraction limited observations 24 hours/day. Because of the bright daytime sky this LGS AO application is only of astronomical interest in the mid-infrared wavelength region (4 - 25 microns wavelengths) where the thermal radiation of the atmosphere-telescope system dominates the scattering of sunlight thus making the day- and night- sky background comparable. Incorporating MOFs in the LGS wavefront sensor thus would more than double the ELT observing time for mid-infrared astronomy and would make sources in almost the entire sky available for observation at any time of the year. Even though the AO would increase the brightness of point-sources, it would not compete with the James Webb Space Telescope in terms of detectability. The gain with respect to the JWST lies in the 5 to 6 times better linear angular resolution. The contrast gain in brightness at near-IR wavelengths is sufficient to give sufficient natural guide stars there for tip-tilt control. MOFs have been shown to function with Na lasers in LIDAR applications (see Beckers and Cacciani, Experimental Astronomy 11, 133, 2001). The main complication associated with incorporating MOFs in ELT AO system is likely the requirement to make the telescope and its enclosure robust in the daytime environment. I refer to SPIE Proceedings 6986 (2008) for a recent reference on this topic.

  5. 47 CFR 73.187 - Limitation on daytime radiation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Limitation on daytime radiation. 73.187 Section... BROADCAST SERVICES AM Broadcast Stations § 73.187 Limitation on daytime radiation. (a)(1) Except as..., subsequent changes of facilities which do not involve a change in frequency, an increase in radiation...

  6. 47 CFR 73.187 - Limitation on daytime radiation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Limitation on daytime radiation. 73.187 Section... BROADCAST SERVICES AM Broadcast Stations § 73.187 Limitation on daytime radiation. (a)(1) Except as..., subsequent changes of facilities which do not involve a change in frequency, an increase in radiation...

  7. 47 CFR 73.187 - Limitation on daytime radiation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Limitation on daytime radiation. 73.187 Section... BROADCAST SERVICES AM Broadcast Stations § 73.187 Limitation on daytime radiation. (a)(1) Except as..., subsequent changes of facilities which do not involve a change in frequency, an increase in radiation...

  8. 47 CFR 73.187 - Limitation on daytime radiation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Limitation on daytime radiation. 73.187 Section... BROADCAST SERVICES AM Broadcast Stations § 73.187 Limitation on daytime radiation. (a)(1) Except as..., subsequent changes of facilities which do not involve a change in frequency, an increase in radiation...

  9. 47 CFR 73.187 - Limitation on daytime radiation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Limitation on daytime radiation. 73.187 Section... BROADCAST SERVICES AM Broadcast Stations § 73.187 Limitation on daytime radiation. (a)(1) Except as..., subsequent changes of facilities which do not involve a change in frequency, an increase in radiation...

  10. New Concepts for Studying Land-Surface-Atmosphere Feedback Based on a new Lidar Synergy and Grey Zone Simulations

    NASA Astrophysics Data System (ADS)

    Wulfmeyer, Volker

    2015-04-01

    Improved understanding and simulations of land-surface-atmosphere feedback processes are essential for predicting extreme weather events and the changes of the water cycle in the era of climate change. This requires observations of the surface energy balance closure and of the structure of the atmospheric boundary layer simultaneously. In this presentation, a new strategy is introduced for studying land-surface exchange and entrainment processes in the convective boundary layer (CBL) over complex terrain combining a new generation of remote sensing and model systems. The sensor synergy consists of combination of scanning Doppler lidar (DL), water-vapor differential absorption lidar (WVDIAL), and temperature rotational Raman lidar (TRRL) systems, which are capable of measuring 2D fields of surface and entrainment fluxes, supported by surface in-situ measurements. It is demonstrated that the WVDIAL and the TRRL have currently worldwide the highest resolution and accuracy of water-vapor and temperature profiling using remote sensing systems during daytime. Based on recent and upcoming field efforts, particularly the Surface Atmospheric Boundary Layer Exchange (SABLE) campaign in August 2014, it is shown that with these active remote sensing systems, both sensible and latent heat flux profiles in the convective boundary layer can be measured, what is to our knowledge for the first time. Furthermore, by a sophisticated combination of surface scans, surface momentum, heat, and latent heat fluxes can be determined. These observations will be complemented with a hierarchy of simulations based on the WRF-NOAH-MP-HYDRO model system, which includes new dynamic parameterizations for crop roots and leaf areas as well as a consistent simulation of the water cycle through all compartments of the soil-vegetation-atmosphere continuum. For comparisons with field data, the model system is operated with a rapid update cycle using 3D variational data assimilation (3DVAR). Model

  11. Raman Spectroscopy.

    ERIC Educational Resources Information Center

    Gerrard, Donald L.

    1984-01-01

    Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…

  12. Etiologies and sequelae of excessive daytime sleepiness.

    PubMed

    Roth, T; Roehrs, T A

    1996-01-01

    Excessive daytime sleepiness (EDS), the primary complaint of patients seen in sleep clinics, affects up to 12% of the general population. The effects of EDS can be debilitating and even life threatening. Patients with EDS may exhibit psychosocial distress, decreased work or school performance, and increased risk for accidents. The differential diagnosis of EDS requires objective assessments, such as polysomnography and the Multiple Sleep Latency Test. There are four major causes of EDS: (1) central nervous system (CNS) pathologic abnormalities, such as narcolepsy and idiopathic CNS hypersomnia; (2) qualitative or quantitative sleep deficiencies, such as sleep apnea and insufficient nocturnal sleep; (3) misalignments of the body's circadian pacemaker with the environment (eg. jet lag or shift work); and (4) drugs, which can increase sleepiness either therapeutically or as a side effect. Depending on etiology, management strategies for EDS include extension of time in bed, naps, surgery, various medical devices (eg, oral appliances, continuous positive airway pressure), and pharmacotherapy. Pharmacotherapy is generally achieved with stimulants, such as amphetamine sulfate, methylphenidate, and pemoline or newer, safer compounds like modafinil. PMID:8879887

  13. Daytime Celestial Navigation for the Novice

    NASA Astrophysics Data System (ADS)

    Sadler, Philip M.; Night, Christopher

    2010-03-01

    What kinds of astronomical lab activities can high school and college astronomy students carry out easily in daytime? The most impressive is the determination of latitude and longitude from observations of the Sun. The ``shooting of a noon sight'' and its ``reduction to a position'' grew to become a daily practice at the start of the 19th century1 following the perfection of the marine chronometer by John Harrison and its mass production.2 This technique is still practiced by navigators in this age of GPS. Indeed, the U.S. Coast Guard exams for ocean-going licenses include celestial navigation.3 These techniques continue to be used by the military and by private sailors as a backup to all-too-fallible and jammable electronic navigation systems. A sextant, a nautical almanac,4 special sight reduction tables,5 and involved calculations are needed to determine position to the nearest mile using the Sun, Moon, stars, or planets. Yet, finding latitude and longitude to better than 30 miles from measurements of the Sun's altitude is easily within the capability of those taking astronomy or physics for the first time by applying certain basic principles. Moreover, it shows a practical application of astronomy in use the world over. The streamlined method described here takes advantage of the similar level of accuracy of its three components: 1.Observations using a homemade quadrant6 (instead of a sextant), 2. Student-made graphs of the altitude of the Sun over a day7 (replacing lengthy calculation using sight reduction tables), and 3. An averaged 20-year analemma used to find the Sun's navigational coordinates8,9 (rather than the 300+ page Nautical Almanac updated yearly).

  14. Raman scattering studies of pollutant systems.

    NASA Technical Reports Server (NTRS)

    Schwiesow, R. L.

    1971-01-01

    Results and techniques for laboratory measurements of Raman scattering cross sections and depolarization ratios of atmospheric gases as a function of the incident photon energy are discussed. Referred to N2, the cross section of H2O changes by a factor of 2 as the incident photon energy is changed by 5%. Less striking results are obtained for SO2, NO and other atmospheric gases. Tentative results are given for spectral features of scattering from polluted air-water interfaces. Raman lidar is assessed as a potentially useful aid in remote sensing of atmospheric and water-borne pollution distributions at least in near-source concentrations.

  15. Lidar Remote Sensing

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The laser radar, or lidar (for light detection and ranging) is an important tool for atmospheric studies. Lidar provides a unique and powerful method for unobtrusively profiling aerosols, wind, water vapor, temperature, and other atmospheric parameters. This brief overview of lidar remote sensing is focused on atmospheric applications involving pulsed lasers. The level of technical detail is aimed at the educated non-lidar expert and references are provided for further investigation of specific topics. The article is divided into three main sections. The first describes atmospheric scattering processes and the physics behind laser-atmosphere interactions. The second section highlights some of the primary lidar applications, with brief descriptions of each measurement capability. The third section describes the practical aspects of lidar operation, including the governing equation and operational considerations.

  16. Raman Spectrometry.

    ERIC Educational Resources Information Center

    Gardiner, Derek J.

    1980-01-01

    Reviews mainly quantitative analytical applications in the field of Raman spectrometry. Includes references to other reviews, new and analytically untested techniques, and novel sampling and instrument designs. Cites 184 references. (CS)

  17. Raman spectroscopy

    SciTech Connect

    Gerrard, D.L.; Bowley, H.J.

    1986-04-01

    The period of this review is from late 1983 to late 1985. During this time over 5000 papers have appeared in the scientific literature dealing with many applications of Raman spectroscopy and extending its use to several new areas of study. As in the previous review in this series most of the applications relevant to solids are covered in one or other of the ten categories, which are the same as those used previously. However, aspects relating to solids which are not covered elsewhere include general reviews and the specific field of semiconductors. This is an area of great current interest in terms of Raman spectroscopy and the characterization of semiconductor materials and surfaces has been reported. Raman scattering also provides a new probe for the elucidation of structural properties of microcrystalline silicon and resonance Raman scattering in silicon at elevated temperatures has been studied. Many studies on carbon have also appeared in the literature including that of the various types of carbon, the use of Raman scattering to investigate disorder and crystallite formation in annealed carbon, in situ studies of intercalation kinetics, structural aspects of cokes and coals, and instrumentation for coal gasification. Raman spectroscopy has been applied to such diverse systems as organic crystals, the determination of modifications in layered crystals, the detection of explosives on silica gel or carbon, diagnostics of heterogeneous chemical processes, and a study of tungsten-halogen bulbs. Laser Raman spectroscopy has also been coupled with liquid chromatography and phase-resolved background suppression has been used to enhance Raman spectra. 397 references.

  18. Statistical-uncertainty-based adaptive filtering of lidar signals

    SciTech Connect

    Fuehrer, P. L.; Friehe, C. A.; Hristov, T. S.; Cooper, D. I.; Eichinger, W. E.

    2000-02-10

    An adaptive filter signal processing technique is developed to overcome the problem of Raman lidar water-vapor mixing ratio (the ratio of the water-vapor density to the dry-air density) with a highly variable statistical uncertainty that increases with decreasing photomultiplier-tube signal strength and masks the true desired water-vapor structure. The technique, applied to horizontal scans, assumes only statistical horizontal homogeneity. The result is a variable spatial resolution water-vapor signal with a constant variance out to a range limit set by a specified signal-to-noise ratio. The technique was applied to Raman water-vapor lidar data obtained at a coastal pier site together with in situ instruments located 320 m from the lidar. The micrometerological humidity data were used to calibrate the ratio of the lidar gains of the H{sub 2}O and the N{sub 2} photomultiplier tubes and set the water-vapor mixing ratio variance for the adaptive filter. For the coastal experiment the effective limit of the lidar range was found to be approximately 200 m for a maximum noise-to-signal variance ratio of 0.1 with the implemented data-reduction procedure. The technique can be adapted to off-horizontal scans with a small reduction in the constraints and is also applicable to other remote-sensing devices that exhibit the same inherent range-dependent signal-to-noise ratio problem. (c) 2000 Optical Society of America.

  19. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The characteristics of an Airborne Oceanographic Lidar (AOL) are given. The AOL system is described and its potential for various measurement applications including bathymetry and fluorosensing is discussed.

  20. Lidar Calibration Centre

    NASA Astrophysics Data System (ADS)

    Pappalardo, Gelsomina; Freudenthaler, Volker; Nicolae, Doina; Mona, Lucia; Belegante, Livio; D'Amico, Giuseppe

    2016-06-01

    This paper presents the newly established Lidar Calibration Centre, a distributed infrastructure in Europe, whose goal is to offer services for complete characterization and calibration of lidars and ceilometers. Mobile reference lidars, laboratories for testing and characterization of optics and electronics, facilities for inspection and debugging of instruments, as well as for training in good practices are open to users from the scientific community, operational services and private sector. The Lidar Calibration Centre offers support for trans-national access through the EC HORIZON2020 project ACTRIS-2.

  1. mESY LIDAR - a new cost-effective, versatile and powerful lidar configuration for tropospheric aerosols, clouds and water vapor investigations

    NASA Astrophysics Data System (ADS)

    Cazacu, M. M.; Ristori, P.; Tudose, O.; Balanici, A.; Nicolae, D.; Ristici, V.; Balin, D.; Balin, I.

    2009-04-01

    In the context of remote sensing tools development for the monitoring of relevant atmospheric parameters triggering crucial processes in troposphere this work is presenting a new mini lidar system i.e mESY LIDAR. The basic configuration of this lidar is dedicated for tropospheric (100m to 12-15 Km ASL) aerosols and clouds high temporal (minutes) and spatial resolution (meters) investigation. Based on powerful Nd:YAG 30 Hz pulsed laser (35 mJ at 355 nm, 100 mJ at 532 nm, 200 mJ at 1064 nm), a 16" Newtonian telescope and a new easy up-gradable opto-mechanics the mESY LIDAR is a cost-effective and powerful equipment useful both for atmospherically researches and didactic - educational - lidar training activities also. The basic configuration (two detection channels) may be used either for depolarization studies (at 532, 355 or 1064nm) or the choice of two elastic and is ideal for continuous monitoring of planetary boundary layer dynamic i.e. PBL. The Raman Nitrogen at 387 nm and water vapor channels at 408 nm may be upgraded easily. The design of this lidar, developed within the research partnership between Switzerland and Romanian academic - private partnership institutions, is the standard lidar proposed for ROLINET (ROmanian LIdar NETwork) project with the final aim to be integrated in the EARLINET (European Aerosol Research LIdar NETwork) in 2010.

  2. Demonstration of Aerosol Property Profiling by Multi-wavelength Lidar Under Varying Relative Humidity Conditions

    NASA Technical Reports Server (NTRS)

    Whiteman, D.N.; Veselovskii, I.; Kolgotin, A.; Korenskii, M.; Andrews, E.

    2008-01-01

    The feasibility of using a multi-wavelength Mie-Raman lidar based on a tripled Nd:YAG laser for profiling aerosol physical parameters in the planetary boundary layer (PBL) under varying conditions of relative humidity (RH) is studied. The lidar quantifies three aerosol backscattering and two extinction coefficients and from these optical data the particle parameters such as concentration, size and complex refractive index are retrieved through inversion with regularization. The column-integrated, lidar-derived parameters are compared with results from the AERONET sun photometer. The lidar and sun photometer agree well in the characterization of the fine mode parameters, however the lidar shows less sensitivity to coarse mode. The lidar results reveal a strong dependence of particle properties on RH. The height regions with enhanced RH are characterized by an increase of backscattering and extinction coefficient and a decrease in the Angstrom exponent coinciding with an increase in the particle size. We present data selection techniques useful for selecting cases that can support the calculation of hygroscopic growth parameters using lidar. Hygroscopic growth factors calculated using these techniques agree with expectations despite the lack of co-located radiosonde data. Despite this limitation, the results demonstrate the potential of multi-wavelength Raman lidar technique for study of aerosol humidification process.

  3. Daytime sleepiness and sleep quality among Malaysian medical students.

    PubMed

    Zailinawati, A H; Teng, C L; Chung, Y C; Teow, T L; Lee, P N; Jagmohni, K S

    2009-06-01

    Poor sleep quality and daytime somnolence is reported to be associated with cardiovascular events, road traffic accident, poor academic performance and psychological distress. Some studies documented that it is prevalent in most populations but its frequency among medical students has not been documented in Malaysia. This is a self-administered questionnaire survey of medical students from International Medical University, Malaysia. Daytime sleepiness of medical students was assessed using Epworth Sleepiness Scale (ESS). Student scoring ESS > 11 was regarded as having excessive daytime sleepiness. Psychological distress was measured using 12-item General Health Questionnaire (GHQ-12). A total of 799 medical students participated in this survey (response rate 69.5%). Daytime sleepiness occurred in 35.5%, psychological distress was present in 41.8% and 16.1% reported bad sleep quality. Daytime sleepiness was significantly more common among the clinical students, those with self-reported bad sleep quality and psychological distress; but unrelated to the number of hours sleep at night. We have documented high prevalence of daytime sleepiness, poor sleep quality and psychological distress. Higher frequency among clinical students and the significant relationship with psychological distress suggest possible link to the stressful clinical training. PMID:20058567

  4. Lidar for monitoring methane hydrate in the arctic permafrost

    NASA Astrophysics Data System (ADS)

    Grishkanich, A. S.; Bespalov, V. G.; Sidorov, I. S.; Gusarov, A. S.; Kascheev, S. V.; Elizarov, V. V.; Zhevlakov, A. P.

    2005-05-01

    Over the past 100 years, the rate of temperature in the Arctic increases almost twice higher than the average rate of warming of the planet. Identifying methane anomalies responsible for the temperature increase, by hiking trails in the Arctic requires great human labor. It is necessary to use lidar methods for search and identification of methane from permafrost. Necessary to create a Raman lidar for monitoring of emissions of methane hydrate from the permafrost. Hyperspectral resolution would resolve the isotope shifts in the Stokes spectra, thereby to determine the isotopic composition of methane ratio C14/C12 CH4 carbon emissions and identify the source for study (permafrost or oil deposits)

  5. Effective resolution concepts for lidar observations

    NASA Astrophysics Data System (ADS)

    Iarlori, M.; Madonna, F.; Rizi, V.; Trickl, T.; Amodeo, A.

    2015-05-01

    Since its first establishment in 2000, EARLINET (European Aerosol Research Lidar NETwork) has been devoted to providing, through its database, exclusively quantitative aerosol properties, such as aerosol backscatter and aerosol extinction coefficients, the latter only for stations able to retrieve it independently (from Raman or High Spectral Resolution Lidars). As these coefficients are provided in terms of vertical profiles, EARLINET database must also include the details on the range resolution of the submitted data. In fact, the algorithms used in the lidar data analysis often alter the spectral content of the data, mainly working as low pass filters with the purpose of noise damping. Low pass filters are mathematically described by the Digital Signal Processing (DSP) theory as a convolution sum. As a consequence, this implies that each filter's output, at a given range (or time) in our case, will be the result of a linear combination of several lidar input data relative to different ranges (times) before and after the given range (time): a first hint of loss of resolution of the output signal. The application of filtering processes will also always distort the underlying true profile whose relevant features, like aerosol layers, will then be affected both in magnitude and in spatial extension. Thus, both the removal of noise and the spatial distortion of the true profile produce a reduction of the range resolution. This paper provides the determination of the effective resolution (ERes) of the vertical profiles of aerosol properties retrieved starting from lidar data. Large attention has been addressed to provide an assessment of the impact of low-pass filtering on the effective range resolution in the retrieval procedure.

  6. Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites”

    SciTech Connect

    Ferrare, Richard; Turner, David

    2015-01-13

    Project goals; Characterize the aerosol and ice vertical distributions over the ARM NSA site, and in particular to discriminate between elevated aerosol layers and ice clouds in optically thin scattering layers; Characterize the water vapor and aerosol vertical distributions over the ARM Darwin site, how these distributions vary seasonally, and quantify the amount of water vapor and aerosol that is above the boundary layer; Use the high temporal resolution Raman lidar data to examine how aerosol properties vary near clouds; Use the high temporal resolution Raman lidar and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds; and Use the high temporal Raman lidar data to continue to characterize the turbulence within the convective boundary layer and how the turbulence statistics (e.g., variance, skewness) is correlated with larger scale variables predicted by models.

  7. Advances in Diode-Laser-Based Water Vapor Differential Absorption Lidar

    NASA Astrophysics Data System (ADS)

    Spuler, Scott; Repasky, Kevin; Morley, Bruce; Moen, Drew; Weckwerth, Tammy; Hayman, Matt; Nehrir, Amin

    2016-06-01

    An advanced diode-laser-based water vapor differential absorption lidar (WV-DIAL) has been developed. The next generation design was built on the success of previous diode-laser-based prototypes and enables accurate measurement of water vapor closer to the ground surface, in rapidly changing atmospheric conditions, and in daytime cloudy conditions up to cloud base. The lidar provides up to 1 min resolution, 150 m range resolved measurements of water vapor in a broad range of atmospheric conditions. A description of the instrument and results from its initial field test in 2014 are discussed.

  8. Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign

    NASA Astrophysics Data System (ADS)

    Banks, Robert F.; Tiana-Alsina, Jordi; Baldasano, José María; Rocadenbosch, Francesc; Papayannis, Alexandros; Solomos, Stavros; Tzanis, Chris G.

    2016-07-01

    Air quality forecast systems need reliable and accurate representations of the planetary boundary layer (PBL) to perform well. An important question is how accurately numerical weather prediction models can reproduce conditions in diverse synoptic flow types. Here, observations from the summer 2014 HygrA-CD (Hygroscopic Aerosols to Cloud Droplets) experimental campaign are used to validate simulations from the Weather Research and Forecasting (WRF) model over the complex, urban terrain of the Greater Athens Area. Three typical atmospheric flow types were identified during the 39-day campaign based on 2-day backward trajectories: Continental, Etesians, and Saharan. It is shown that the numerical model simulations differ dramatically depending on the PBL scheme, atmospheric dynamics, and meteorological parameter (e.g., 2-m air temperature). Eight PBL schemes from WRF version 3.4 are tested with daily simulations on an inner domain at 1-km grid spacing. Near-surface observations of 2-m air temperature and relative humidity and 10-m wind speed are collected from multiple meteorological stations. Estimates of the PBL height come from measurements using a multiwavelength Raman lidar, with an adaptive extended Kalman filter technique. Vertical profiles of atmospheric variables are obtained from radiosonde launches, along with PBL heights calculated using bulk Richardson number. Daytime maximum PBL heights ranged from 2.57 km during Etesian flows, to as low as 0.37 km during Saharan flows. The largest differences between model and observations are found with simulated PBL height during Saharan synoptic flows. During the daytime, campaign-averaged near-surface variables show WRF tended to have a cool, moist bias with higher simulated wind speeds than the observations, especially near the coast. It is determined that non-local PBL schemes give the most agreeable solutions when compared with observations.

  9. New Mobile Lidar Systems Aboard Ultra-Light Aircrafts

    NASA Astrophysics Data System (ADS)

    Chazette, Patrick; Shang, Xiaoxia; Totems, Julien; Marnas, Fabien; Sanak, Joseph

    2013-04-01

    Two lidar systems embedded on ultra light aircraft (ULA) flew over the Rhone valley, south-east of France, to characterize the vertical extend of pollution aerosols in this area influenced by large industrial sites. The main industrial source is the Etang de Berre (43°28' N, 5°01' E), close to Marseille city. The emissions are mainly due to metallurgy and petrochemical factories. Traffic related to Marseille's area contribute to pollution with its ~1500000 inhabitants. Note that the maritime traffic close to Marseille may play an important role due to its position as the leading French harbor . For the previous scientific purpose and for the first time on ULA, we flew a mini-N2 Raman lidar system to help the assessment of the aerosol optical properties. Another Ultra-Violet Rayleigh-Mie lidar has been integrated aboard a second ULA. The lidars are compact and eye safe instruments. They operate at the wavelength of 355 nm with a sampling along the line-of-sight of 0.75 m. Different flights plans were tested to use the two lidars in synergy. We will present the different approaches and discuss both their advantages and limitations. Acknowledgements: the lidar systems have been developed by CEA. They have been deployed with the support of FERRING France. We acknowledge the ULA pilots Franck Toussaint, François Bernard and José Coutet, and the Air Creation ULA Company for logistical help during the ULA campaign.

  10. Raman Spectroscopic Measurements of Co2 Dissolved in Seawater for Laser Remote Sensing in Water

    NASA Astrophysics Data System (ADS)

    Somekawa, Toshihiro; Fujita, Masayuki

    2016-06-01

    We examined the applicability of Raman lidar technique as a laser remote sensing tool in water. The Raman technique has already been used successfully for measurements of CO2 gas dissolved in water and bubbles. Here, the effect of seawater on CO2 Raman spectra has been evaluated. A frequency doubled Q-switched Nd:YAG laser (532 nm) was irradiated to CO2 gas dissolved in a standard seawater. In seawater, the Raman signals at 984 and 1060-1180 cm-1 from SO42- were detected, which shows no spectral interference caused by Raman signals derived from CO2.

  11. Raman Imaging

    NASA Astrophysics Data System (ADS)

    Stewart, Shona; Priore, Ryan J.; Nelson, Matthew P.; Treado, Patrick J.

    2012-07-01

    The past decade has seen an enormous increase in the number and breadth of imaging techniques developed for analysis in many industries, including pharmaceuticals, food, and especially biomedicine. Rather than accept single-dimensional forms of information, users now demand multidimensional assessment of samples. High specificity and the need for little or no sample preparation make Raman imaging a highly attractive analytical technique and provide motivation for continuing advances in its supporting technology and utilization. This review discusses the current tools employed in Raman imaging, the recent advances, and the major applications in this ever-growing analytical field.

  12. Preliminary Lidar Experiment to Study the Backscatter Amplification

    NASA Astrophysics Data System (ADS)

    Razenkov, Igor A.; Banakh, Victor A.

    2016-06-01

    Long-term continuous measurements for detection relative backscatter amplification on a horizontal path of 2 km long are performed by using a specific micro pulse lidar. The laser beam path is limited by a solid obstacle. The lidar is located next to an ultrasonic anemometer that measures 3D wind velocity and temperature; the laser spot on the obstacle is observed by using a telephoto lens. The results showed that the backscatter amplification has a clear diurnal variation. Moreover, the backscatter amplification was completely absent in the morning and evening under neutral stratification in the atmospheric surface layer. At night and in the daytime there was a significant increase of the backscatter amplification coefficient.

  13. BACKSCAT lidar simulation version 3.0: Technical documentation and users guide

    NASA Astrophysics Data System (ADS)

    Hummel, John R.; Longtin, David R.; Depiero, Nanette L.; Grasso, Robert J.

    1992-12-01

    The Geophysics Directorate of Phillips Laboratory is developing a number of lidar systems for use in probing the atmosphere. These systems include backscatter lidars to study atmospheric aerosols, Doppler lidar systems to measure wind fields, and Raman lidars to study the distributions of different molecular species. To aid in the design and use of such lidar systems, SPARTA has developed a lidar simulation program, BACKSCAT. Originally developed to include only the backscattered return from aerosols, the simulation package has evolved to include Raman scattering processes. BACKSCAT Version 3.0 includes two significant improvements. The first is the inclusion of user-defined aerosol layers and the second is the consideration of Raman scattering processes. In BACKSCAT Version 3.0, a user-defined aerosol layer is defined by a number density profile, a size distribution shape, and an index of refraction. Aerosol attenuation properties are computed using an efficient Mie scattering program that is coupled to the BACKSCAT simulation system. Users can select from a library of aerosol indices of refraction for common aerosols or they can input specific values.

  14. Daytime Sleep and Parenting Interactions in Infants Born Preterm

    PubMed Central

    Schwichtenberg, A. J.; Anders, Thomas F.; Vollbrecht, Melissa; Poehlmann, Julie

    2010-01-01

    Objective Following a transactional perspective, this longitudinal study assessed concurrent and time-lagged associations between infant daytime sleep behaviors and maternal play interactions within a sample of infants born preterm. Method Data were collected from 134 families recruited from 3 Wisconsin NICUs. Multiple methods were used to collect data at infant NICU discharge and when infants were 4, 9, and 24 months postterm, including parent-report infant sleep logs, family sociodemographic assets and a 15 minute video-taped play session. Results Within time points, infants who napped more had mothers who were rated as more positive and communicative or less negative during play interactions at 4, 9 and 24 months compared to infants who napped less. Time-lagged findings indicated that infants who took more naps experienced more optimal maternal interactive behaviors later in development than infants who took fewer naps. Additionally, mothers who expressed more negative affect at 4 months or 9 months predicted more infant daytime sleep later in development. Conclusion Previous studies document that nighttime parent-child interactions influence nighttime sleep. This study presents the natural extension that daytime sleep influences daytime interactions. The present study draws attention to the understudied area of daytime naps in young children and provides support for the longitudinal bi-directional processes between sleep and parenting interactions. PMID:20978444

  15. Preliminary tropospheric ozone DIAL, water vapour, and aerosol lidar measurements during ARC-IONS

    NASA Astrophysics Data System (ADS)

    Strawbridge, Kevin B.; Firanski, Bernard J.

    2009-09-01

    A new lidar instrument, dubbed AeRO (Aerosol Raman Ozone) Lidar, is being developed at Environment Canada's Centre For Atmospheric Research Experiments (CARE). The new system will use three lasers to simultaneously measure ozone, water vapour and aerosol profiles (including extinction) from near ground to the tropopause. The main thrust will focus on understanding Air Quality within the airshed with the capability of looking at Stratospheric Tropospheric Exchange (STE) processes to determine the magnitude and frequency of such events leading to elevated levels of tropospheric ozone. In addition a wind profiler through a partnership with University of Western Ontario will soon be deployed to CARE to provide complementary observations of the tropopause. The lidar participated in the ARC-IONS field campaign during April and July of 2008. During the field campaign, daily ozonesondes were released to further compliment the lidar measurements. Details of the system design and preliminary results from the lidar measurements will be presented.

  16. Improved retrievals of the optical properties of cirrus clouds by a combination of lidar methods.

    PubMed

    Cadet, Bertrand; Giraud, Vincent; Haeffelin, Martial; Keckhut, Philippe; Rechou, Anne; Baldy, Serge

    2005-03-20

    We focus on improvement of the retrieval of optical properties of cirrus clouds by combining two lidar methods. We retrieve the cloud's optical depth by using independently the molecular backscattering profile below and above the cloud [molecular integration (MI) method] and the backscattering profile inside the cloud with an a priori effective lidar ratio [particle integration (PI) method]. When the MI method is reliable, the combined MI-PI method allows us to retrieve the optimal effective lidar ratio. We compare these results with Raman lidar retrievals. We then use the derived optimal effective lidar ratio for retrieval with the PI method for situations in which the MI method cannot be applied. PMID:15818860

  17. Direct Estimation of Fine and Coarse Mode Particle Parameters from Multiwavelength Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Kolgotin, Alexei; Korenskiy, Mikhail; Veselovskii, Igor; Whiteman, David N.

    2016-06-01

    An approach for the direct estimation (DE) of particle parameters in the fine and coarse mode from multiwavelength lidar measurements is presented. Particle size distributions in both modes are approximated by rectangular functions, so the particle density is estimated directly without solving the inverse problem. The numerical simulation demonstrates that the particle volume in both modes can be estimated from 3β+2α lidar measurements with uncertainty of ~25% for a wide range of size distributions. The technique developed was applied to the observations of NASA GSFC Raman lidar. Comparison of the results obtained with DE and regularization approach applied to the same set of data demonstrates agreement between these two techniques.

  18. Validation of aerosol and cloud layer structures from the space-borne lidar CALIOP using a ground-based lidar in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Kim, S.-W.; Berthier, S.; Raut, J.-C.; Chazette, P.; Dulac, F.; Yoon, S.-C.

    2008-07-01

    We present initial validation results of the space-borne lidar CALIOP onboard CALIPSO satellite using coincidental observations from a ground-based lidar in Seoul National University (SNU), Seoul, Korea (37.46° N, 126.95° E). We analyze six selected cases between September 2006 and February 2007, including 3 daytime and 3 night-time observations and covering different types of clear and cloudy atmospheric conditions. Apparent scattering ratios calculated from the two lidar measurements of total attenuated backscatter at 532 nm show similar aerosol and cloud layer structures both under cloud-free conditions and in cases of multiple aerosol layers underlying semi-transparent cirrus clouds. Agreement on top and base heights of cloud and aerosol layers is generally within 0.10 km, particularly during night-time. This result confirms that the CALIPSO science team algorithms for the discrimination of cloud and aerosol as well as for the detection of layer top and base altitude provide reliable information in such atmospheric conditions. This accuracy of the planetary boundary layer top height under cirrus cloud appears, however, limited during daytime. Under thick cloud conditions, however, information on the cloud top (bottom) height only is reliable from CALIOP (ground-based lidar) due to strong signal attenuations. However, simultaneous space-borne CALIOP and ground-based SNU lidar (SNU-L) measurements complement each other and can be combined to provide full information on the vertical distribution of aerosols and clouds. An aerosol backscatter-to-extinction ratio (BER) estimated from lidar and sunphotometer synergy at the SNU site during the CALIOP overpass is assessed to be 0.023±0.004 sr-1 (i.e. a lidar ratio of 43.2±6.2 sr) from CALIOP and 0.027±0.006 sr-1 (37.4±7.2 sr) from SNU-L. For aerosols within the planetary boundary layer under cloud-free conditions, the aerosol extinction profiles from both lidars are in agreement within about 0.02 km-1. Under semi

  19. Combining OPAC and lidar

    NASA Astrophysics Data System (ADS)

    Nicolae, Doina; Talianu, Camelia; Radu, Cristian; Stefan, Sabina

    2007-10-01

    The properties of aerosol particles are highly variable, both in time and space. This refers to the number density, the microphysical properties (size distribution, refractive index, effective radius), and to the height distribution. In most cases the actual properties are not known. Using lidar data together with models can help improve the knowledge regarding the particulate atmospheric constituents which affect local radiative forcing, the radiation balance of the earth, and thus climate. This paper presents an attempt to integrate elastic backscatter lidar data in OPAC software package in order to find the most realistic aerosol vertical distribution and their optical and microphysical characteristics. The necessity to reduce the variability of naturally occurring aerosols to typical cases, but without neglecting possible fluctuations, is achieved in OPAC by the use of a dataset of typical internally mixed aerosol components. In addition, any mixtures of the basic components can be used to calculate the overall optical parameters. Experimental or modeled meteorological profiles (temperature, pressure, relative humidity) in complementary to experimental lidar data are used to calculate the solutions of lidar equation that fits, in an iterative manner, to the output of the model. Two type of uncertainties are diminished in this way: first, the modeled profiles of lidar ratio are used in lidar data processing instead of a constant value; second, aerosol height profiles are no longer being assumed in the model, but directly measured. This procedure was applied to synthetic lidar signals in order to test its advantages and limitation.

  20. Development of Fluorescence Imaging Lidar for Boat-Based Coral Observation

    NASA Astrophysics Data System (ADS)

    Sasano, Masahiko; Imasato, Motonobu; Yamano, Hiroya; Oguma, Hiroyuki

    2016-06-01

    A fluorescence imaging lidar system installed in a boat-towable buoy has been developed for the observation of reef-building corals. Long-range fluorescent images of the sea bed can be recorded in the daytime with this system. The viability of corals is clear in these fluorescent images because of the innate fluorescent proteins. In this study, the specifications and performance of the system are shown.

  1. Cirrus cloud properties measurement using lidar in Beijing

    NASA Astrophysics Data System (ADS)

    Ji, Chengli; Tao, Zongming; Hu, Shunxing; Che, Huizheng; Yu, Jie; Feng, Caiyun; Xie, Chenbo; Liu, Dong; Zhong, Zhiqing; Yuan, Ke'e.; Cao, Kaifa; Huang, Jian; Zhou, Jun; Wang, Yingjian; Chen, Zhenyi

    2016-01-01

    Cirrus cloud has an important effect on the radiation balance between the earth's surface and the atmosphere. The vertical structures, optical depth and effective lidar ratio of cirrus cloud detected by Mie scattering-polarization-Raman lidar system in Beijing from April 11 to December 31, 2012 are analyzed. The results show that the cloud height in Beijing is lower in spring and higher in autumn, with a mean value of about 8km. The mean of cloud thickness is 0.74km. The mean of optical depth is 0.092, and most observed cirrus cloud is thin while optical depth is less than 0.3. The effective lidar ratio of cirrus is lower in summer and higher in winter, inversely related to local temperature, with a mean value of 32.29Sr.

  2. OASIS 1.0: Very Large-Aperture High-Power Lidar for Exploring Geospace

    NASA Astrophysics Data System (ADS)

    Chu, X.; Smith, J. A.; Chen, C.; Zhao, J.; Yu, Z.; Gardner, C. S.

    2015-12-01

    A new initiative, namely OASIS (the Observatory for Atmosphere Space Interaction Studies), has called for a very large-aperture high-power (VLAHP) lidar as its first step forward to acquire the unprecedented measurement capabilities for exploring the space-atmosphere interaction region (SAIR). Currently, there exists a serious observational gap of the Earth's neutral atmosphere above 100 km. Information on neutral winds and temperatures and on the plasma-neutral coupling in the SAIR, especially between 100 and 200 km, is either sparse or nonexistent. Fully exploring the SAIR requires measurements of the neutral atmosphere to complement radar observations of the plasma. Lidar measurements of neutral winds, temperatures and species can enable these explorations. Many of these topics will be addressed with the VLAHP lidar. Discoveries of thermospheric neutral Fe, Na and K layers up to nearly 200 km at McMurdo, Antarctica and other locations on Earth, have opened a new door to observing the neutral thermosphere with ground-based instruments. These neutral metal layers provide the tracers for resonance Doppler lidars to directly measure the neutral temperatures and winds in the thermosphere, thus enabling the VLAHP lidar dream! Because the thermospheric densities of these metal atoms are many times smaller than the layer peak densities near 90 km, high power-aperture product lidars, like the VLAHP lidar, are required to derive scientifically useful measurements. Furthermore, several key technical challenges for VLAHP lidar have been largely resolved in the last a few years through the successful development of Fe and Na Doppler lidars at Boulder. By combining Rayleigh and Raman with resonance lidar techniques and strategically operating the VLAHP lidar next to incoherent scatter radar and other complementary instruments, the VLAHP lidar will enable new cutting-edge exploration of the geospace. These new concepts and progresses will be introduced in this paper.

  3. Recommended treatment strategies for patients with excessive daytime sleepiness.

    PubMed

    Rosenberg, Russell P

    2015-10-01

    Excessive daytime sleepiness (EDS) is a common and bothersome phenomenon. It can be associated with insufficient sleep syndrome, narcolepsy, idiopathic hypersomnia, obstructive sleep apnea, shift work disorder, Kleine-Levin syndrome, or Parkinson's disease. Once the underlying cause of the excessive sleepiness is determined, clinicians must select the most appropriate behavioral and pharmacologic interventions to reduce daytime sleepiness, alleviate other symptoms, improve functioning, and ensure the safety of patients and those around them. Patient history, adverse effects, and efficacy in specific conditions should be considered in pharmacologic treatment options for patients with EDS. PMID:26528660

  4. Options for daytime monitoring of atmospheric visibility in optical communications

    NASA Technical Reports Server (NTRS)

    Erickson, D.; Cowles, K.

    1989-01-01

    Techniques for daytime detection of atmospheric transmission and cloud cover to determine the capabilities of future deep-space optical communications links are considered. A modification of the planned nighttime photometry program will provide the best data while minimizing the need for further equipment. Greater degrees of modification will provide increased detection capabilities. Future testing of the equipment will better define the improvement offered by each level of modification. Daytime photometry is favored at certain wavelengths because of higher transmission and lower background noise, thus giving an increased signal-to-noise ratio. A literature search has provided a list of stars brighter than second magnitude at these wavelengths.

  5. Phoenix Lidar Operation Animation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This is an animation of the Canadian-built meteorological station's lidar, which was successfully activated on Sol 2. The animation shows how the lidar is activated by first opening its dust cover, then emitting rapid pulses of light (resembling a brilliant green laser) into the Martian atmosphere. Some of the light then bounces off particles in the atmosphere, and is reflected back down to the lidar's telescope. This allows the lidar to detect dust, clouds and fog.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. Space Lidar and Applications

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Smith, David E. (Technical Monitor)

    2001-01-01

    With advances in lasers and electro-optic technology, lidar is becoming an established technique for remote sensing of the Earth and planets from space. Some of the earliest space-based lidar measurements were made in the early 1970s from lunar orbit using the laser altimeter on the Apollo 15 mission. Space lidar instruments in active use today include the MOLA instrument aboard the Mars Global Surveyor mission and the Near Laser Rangefinder on the Near Earth Asteroid Rendezvous (NEAR) Mission. This talk will review laser remote sensing techniques, critical technologies, and some results from past and present NASA missions. It will also review near term plans for NASA's ICESat and Picasso missions and summarize some concepts for lidar on future missions.

  7. Aerosol lidar ``M4``

    SciTech Connect

    Shelevoy, C.D.; Andreev, Y.M. |

    1994-12-31

    Small carrying aerosol lidar in which is used small copper vapor laser ``Malachite`` as source of sounding optical pulses is described. The advantages of metal vapor laser and photon counting mode in acquisition system of lidar gave ability to get record results: when lidar has dimensions (1 x .6 x .3 m) and weight (65 kg), it provides the sounding of air industrial pollutions at up to 20 km range in scanning sector 90{degree}. Power feed is less than 800 Wt. Lidar can be disposed as stationary so on the car, helicopter, light plane. Results of location of smoke tails and city smog in situ experiments are cited. Showed advantages of work of acquisition system in photon counting mode when dynamic range of a signal is up to six orders.

  8. Sensitivity Analysis on Fu-Liou-Gu Radiative Transfer Model for different lidar aerosol and cloud profiles

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Madonna, Fabio; Rosoldi, Marco; Pappalardo, Gelsomina; Welton, Ellsworth J.

    2016-04-01

    The aerosol and cloud impact on climate change is evaluated in terms of enhancement or reduction of the radiative energy, or heat, available in the atmosphere and at the Earth's surface, from the surface (SFC) to the Top Of the Atmosphere (TOA) covering a spectral range from the UV (extraterrestrial shortwave solar radiation) to the far-IR (outgoing terrestrial longwave radiation). Systematic Lidar network measurements from permanent observational sites across the globe are available from the beginning of this current millennium. From the retrieved lidar atmospheric extinction profiles, inputted in the Fu-Liou-Gu (FLG) Radiative Transfer code, it is possible to evaluate the net radiative effect and heating rate of the different aerosol species and clouds. Nevertheless, the lidar instruments may use different techniques (elastic lidar, Raman lidar, multi-wavelength lidar, etc) that translate into uncertainty of the lidar extinction retrieval. The goal of this study is to assess, applying a MonteCarlo technique and the FLG Radiative Transfer model, the sensitivity in calculating the net radiative effect and heating rate of aerosols and clouds for the different lidar techniques, using both synthetic and real lidar data. This sensitivity study is the first step to implement an automatic algorithm to retrieve the net radiative forcing effect of aerosols and clouds from the long records of aerosol measurements available in the frame of EARLINET and MPLNET lidar networks.

  9. An Analysis of Sex Role Stereotyping in Daytime Television Serials.

    ERIC Educational Resources Information Center

    Finz, Sherry D.; Waters, Judith

    The verbal behavior of the characters of three daytime serials was analyzed over a period of two weeks of continual viewing, and coded into 19 previously developed categories. It was found that despite the recent introduction of new and controversial subject matter into the plot lines of these programs, male and female characters were responding…

  10. Daytime plasma drifts in the equatorial lower ionosphere

    NASA Astrophysics Data System (ADS)

    Hui, Debrup; Fejer, Bela G.

    2015-11-01

    We have used extensive radar measurements from the Jicamarca Observatory during low solar flux periods to study the quiet time variability and altitudinal dependence of equatorial daytime vertical and zonal plasma drifts. The daytime vertical drifts are upward and have largest values during September-October. The day-to-day variability of these drifts does not change with height between 150 and 600 km, but the bimonthly variability is much larger in the F region than below about 200 km. These drifts vary linearly with height generally increasing in the morning and decreasing in the afternoon. The zonal drifts are westward during the day and have largest values during July-October. The 150 km region zonal drifts have much larger day-to-day, but much smaller bimonthly variability than the F region drifts. The daytime zonal drifts strongly increase with height up to about 300 km from March through October, and more weakly at higher altitudes. The December solstice zonal drifts have generally weaker altitudinal dependence, except perhaps below 200 km. Current theoretical and general circulation models do not reproduce the observed altitudinal variation of the daytime equatorial zonal drifts.

  11. Adaptive optics for daytime deep space laser communications to Mars

    NASA Technical Reports Server (NTRS)

    Wilson, Keith E.; Wright, Malcolm; Lee, Shinkhak; Troy, Mitchell

    2005-01-01

    This paper describes JPL research in adaptive optics (AO) to reduce the daytime background noise on a Mars-to-Earth optical communications link. AO can reduce atmosphere-induced wavefront aberrations, and enable single mode receiver operation thereby buying back margin in the deep space optical communications link.

  12. Accuracy of estimating wolf summer territories by daytime locations

    USGS Publications Warehouse

    Demma, D.J.; Mech, L.D.

    2011-01-01

    We used locations of 6 wolves (Canis lupus) in Minnesota from Global Positioning System (GPS) collars to compare day-versus-night locations to estimate territory size and location during summer. We employed both minimum convex polygon (MCP) and fixed kernel (FK) methods. We used two methods to partition GPS locations for day-versus-night home-range comparisons: (1) daytime = 0800-2000 Ah; nighttime = 2000-0800 Ah; and (2) sunup versus sundown. Regardless of location-partitioning method, mean area of daytime MCPs did not differ significantly from nighttime MCPs. Similarly, mean area of daytime FKs (95% probability contour) were not significantly different from nightime FKs. FK core use areas (50% probability contour) did not differ between daytime and nighttime nor between sunup and sundown locations. We conclude that in areas similar to our study area day-only locations are adequate for describing the location, extent and core use areas of summer wolf territories by both MCP and FK methods. ?? 2011 American Midland Naturalist.

  13. Accuracy of estimating wolf summer territories by daytime locations

    USGS Publications Warehouse

    Demma, Dominic J.; Mech, L. David

    2011-01-01

    We used locations of 6 wolves (Canis lupus) in Minnesota from Global Positioning System (GPS) collars to compare day-versus-night locations to estimate territory size and location during summer. We employed both minimum convex polygon (MCP) and fixed kernel (FK) methods. We used two methods to partition GPS locations for day-versus-night home-range comparisons: (1) daytime = 0800–2000 h; nighttime = 2000–0800 h; and (2) sunup versus sundown. Regardless of location-partitioning method, mean area of daytime MCPs did not differ significantly from nighttime MCPs. Similarly, mean area of daytime FKs (95% probability contour) were not significantly different from nightime FKs. FK core use areas (50% probability contour) did not differ between daytime and nighttime nor between sunup and sundown locations. We conclude that in areas similar to our study area day-only locations are adequate for describing the location, extent and core use areas of summer wolf territories by both MCP and FK methods.

  14. Daytime School Guided Visits to an Astronomical Observatory in Brazil

    ERIC Educational Resources Information Center

    Colombo, Pedro Donizete, Jr.; Silva, Cibelle Celestino; Aroca, Silvia Calbo

    2010-01-01

    This article analyzes the activity "Daytime School Guided Visits" at an astronomical observatory in Brazil with pupils from primary school. The adopted research methodology relied on questionnaire applications and semistructured interviews. The objectives were to identify the influences of the visits on learning of astronomical concepts and on…

  15. Space-Based Lidar Systems

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli

    2012-01-01

    An overview of space-based lidar systems is presented. from the first laser altimeter on APOLLO 15 mission in 1971 to the Mercury Laser Altimeter on MESSENGER mission currently in orbit, and those currently under development. Lidar, which stands for Light Detection And Ranging, is a powerful tool in remote sensing from space. Compared to radars, lidars operate at a much shorter wavelength with a much narrower beam and much smaller transmitter and receiver. Compared to passive remote sensing instruments. lidars carry their own light sources and can continue measuring day and night. and over polar regions. There are mainly two types of lidars depending on the types of measurements. lidars that are designed to measure the distance and properties of hard targets are often called laser rangers or laser altimeters. They are used to obtain the surface elevation and global shape of a planet from the laser pulse time-of-night and the spacecraft orbit position. lidars that are designed to measure the backscattering and absorption of a volume scatter, such as clouds and aerosols, are often just called lidars and categorized by their measurements. such as cloud and aerosol lidar, wind lidar, CO2 lidar, and so on. The advantages of space-based lidar systems over ground based lidars are the abilities of global coverage and continuous measurements.

  16. AMALi - the Airborne Mobile Aerosol Lidar for Arctic research

    NASA Astrophysics Data System (ADS)

    Stachlewska, I. S.; Neuber, R.; Lampert, A.; Ritter, C.; Wehrle, G.

    2010-03-01

    The Airborne Mobile Aerosol Lidar (AMALi) is an instrument developed at the Alfred Wegener Institute for Polar and Marine Research for reliable operation under the challenging weather conditions at the Earth's polar regions. Since 2003 the AMALi has been successfully deployed for measurements in ground-based installation and zenith- or nadir-pointing airborne configurations during several scientific campaigns in the Arctic. The lidar provides backscatter profiles at two wavelengths (355/532 nm or 1064/532 nm) together with the linear depolarization at 532 nm, from which aerosol and cloud properties can be derived. This paper presents the characteristics and capabilities of the AMALi system and gives examples of its usage for airborne and ground-based operations in the Arctic. As this backscatter lidar normally does not operate in aerosol-free layers special evaluation schemes are discussed, the nadir-pointing iterative inversion for the case of an unknown boundary condition and the two-stream approach for the extinction profile calculation if a second lidar system probes the same air mass. Also an intercomparison of the AMALi system with an established ground-based Koldewey Aerosol Raman Lidar (KARL) is given.

  17. Autonomous Ozone and Aerosol Lidar Platform: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Strawbridge, K. B.

    2014-12-01

    Environment Canada is developing an autonomous tropospheric ozone and aerosol lidar system for deployment in support of short-term field studies. Tropospheric ozone and aerosols (PM10 and PM2.5) are important atmospheric constituents in low altitude pollution affecting human health and vegetation. Ozone is photo-chemically active with nitrogen oxides and can have a distinct diurnal variability. Aerosols contribute to the radiative budget, are a tracer for pollution transport, undergo complex mixing, and contribute to visibility and cloud formation. This particular instrument will employ two separate lidar transmitter and receiver assemblies. The tropospheric ozone lidar, based on the differential absorption lidar (DIAL) technique, uses the fourth harmonics of a Nd:YAG laser directed into a CO2 Raman cell to produce 276 nm, 287nm and 299 nm (first to third Stokes lines) output wavelengths. The aerosol lidar is based on the 3+2 design using a tripled Nd:YAG to output 355 nm, 532 nm and 1064nm wavelengths. Both lidars will be housed in a modified cargo trailer allowing for easy deployment to remote areas. The unit can be operated and monitored 24 hours a day via an internet link and requires an external power source. Simultaneous ozone and aerosol lidar measurements will provide the vertical context necessary to understand the complex mixing and transformation of pollutants - particularly when deployed near other ground-based in-situ sensors. Preliminary results will be shown from a summer field study at the Centre For Atmospheric Research Experiments (CARE).

  18. Observation of dust aerosol profile and atmospheric visibility of Xi'an with Mie scattering lidar

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Hua, Dengxin

    2008-10-01

    Dust aerosol or sand storm has become the popular attention topic of the world currently. In order to understand and study the aerosol optical properties, particularly for dust aerosol produced in the spring weather condition, and to investigate their effects on atmospheric pollution status, a Mie scattering lidar was developed to detect the time and spatial distribution of the aerosol and the atmospheric visibility at Xi'an, China. The lidar system employs a Nd:YAG pulsed laser at a eye-safe wavelength of 355nm as a transmitter, and a Schmidt-Cassegrain telescope as a receiver. A spectroscope filter combined with a high-resolution grating was used to separate the main lidar returns and to block the solar background simultaneously for daytime measurement. The observation experiments with lidar have been carried out from the spring of 2007. The data of the extinction coefficients of aerosol and atmospheric visibility taken under the different atmospheric conditions are demonstrated. The comparison results of visibility measurement using lidar and other tool show that the lidar system is feasible, and the aerosol observation results show that the main aerosol pollution of Xi'an is from the floating dust aerosol, which is usually suspended at a height of near 1km.

  19. Bistatic imaging lidar measurements of aerosols, fogs, and clouds in the lower atmosphere

    NASA Astrophysics Data System (ADS)

    Lin, Jinming; Mishima, Hidetsugu; Kawahara, Takuya D.; Saito, Yasunori; Nomura, Akio; Yamaguchi, Kenji; Morikawa, Kimio

    1998-08-01

    We have been developing a bistatic imaging lidar using a high sensitive CCD camera with an image intensifier as a high speed shutter for measuring spatial distributions of aerosols, fogs and clouds in the lower atmosphere at daytime as well as at nighttime. The bistatic imaging lidar was applied to two field observation campaigns. One was made cooperatively with a wind profiler and a radiosonde at Moriya (36 km north of Tokyo) for five days from May 26 to 30, 1997 and another cooperatively with a monostatic lidar at Hakuba alpine ski area of Nagano for 10 days from February 7 to 16, 1998 during the period of the 18th Winter Olympic Games in Japan. We report the results obtained at both campaigns and discuss the ability of this system in measuring the meteorological features of the local lower atmosphere under different conditions.

  20. Differential Absorption Lidar to Measure Sub-Hourly Variation of Tropospheric Ozone Profiles

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephanie

    2009-01-01

    A tropospheric ozone Differential Absorption Lidar (DIAL) system, developed jointly by the University of Alabama at Huntsville and NASA, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min temporal integration

  1. Differential Absorption Lidar to Measure Subhourly Variation of Tropospheric Ozone Profiles

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephania

    2011-01-01

    A tropospheric ozone Differential Absorption Lidar system, developed jointly by The University of Alabama in Huntsville and the National Aeronautics and Space Administration, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min 17 temporal integration.

  2. Raman spectroscopy

    SciTech Connect

    Gerrard, D.L.; Bowley, H.J.

    1988-06-15

    The period of this review is from late 1985 to late 1987. During this time over 6000 papers have been published in the scientific literature dealing with many applications of Raman spectroscopy and extending its use to new areas of study. This article covers only those papers that are relevant to the analytical chemist and this necessitates a highly selective approach. There are some areas that have been the subject of many papers with relatively few being of analytical interest. In such cases the reader is referred to appropriate reviews which are detailed in this section.

  3. Exploitation of Multi-Band Lidar for the Classification of Free-Flying Migratory Birds: A Pilot Study Over Athens, Greece

    NASA Astrophysics Data System (ADS)

    Jansson, Samuel; Papayannis, Alexandros; Åkesson, Susanne; Tsaknakis, Georgios; Brydegaard, Mikkel

    2016-06-01

    A multi-wavelength lidar system was used to detect free-flying birds passing over Athens, Greece. The location is strategically located in one of the important migratory corridors for birds migrating between Europe and Africa. Multiwavelength aerosol lidars are operated regularly across Europe in the frame of EARLINET. Here, the feasibility of using this existing infrastructure for assessing fluxes of migratory birds is explored. The backscattered lidar signals were detected at three elastic bands and one Raman band. The monitoring was extended over a period of three months covering predominantly the summer and early autumn period during which approximately 100 hours of lidar data was gathered.

  4. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  5. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  6. Solid state Raman image amplification

    NASA Astrophysics Data System (ADS)

    Calmes, Lonnie K.; Murray, James T.; Austin, William L.; Powell, Richard C.

    1998-07-01

    Lite Cycles has developed a new type of eye-safe, range-gated, lidar sensing element based on Solid-state Raman Image Amplification (SSRIA) in a solid-state optical crystal. SSRIA can amplify low-level infrared images with gains greater than 106 with the addition of only quantum-limited noise. The high gains from SSRIA can compensate for low quantum efficiency detectors and can reduce the need for detector cooling. The range-gate of SSRIA is controlled by the pulsewidth of the pump laser and can be as short as 30 - 100 cm for nanosecond pulses and less than 5 mm if picosecond pulses are used. SSRIA results in higher SNR images throughout a broad range of incident light levels, in contrast to the increasing noise factor with reduced gain in image intensified CCDs. A theoretical framework for the optical resolution of SSRIA is presented and it is shown that SSRIA can produce higher resolution than ICCDs. SSRIA is also superior in rejecting unwanted sunlight background, further increasing image SNR, and can be used for real-time optical signal processing. Applications for military use include eye-safe imaging lidars that can be used for autonomous vehicle identification and targeting.

  7. Optimization of a Raman shifted dye laser system for DIAL applications

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Chu, Zhiping; Mahon, Rita; Wilkerson, Thomas D.

    1990-01-01

    An efficient Raman shifted dye laser system that generates tunable radiation at 765 and 940 nm with a bandwidth of 0.03/cm is described. Operating a Raman cell at hydrogen pressure below 14 atm, optimum first Stokes energy conversions of 45 percent and of 37 percent at 765 and 940 nm, respectively, were recorded. Optical depth measurements made at the centers of twenty-five absorption lines in the P branch of the oxygen A band imply a high spectral purity for both the laser and the Raman shifted radiation, and thus indicate the feasibility of using the stimulated Raman scattered radiation for differential absorption lidar (DIAL) measurements.

  8. Lidar performance analysis

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1994-01-01

    Section 1 details the theory used to build the lidar model, provides results of using the model to evaluate AEOLUS design instrument designs, and provides snapshots of the visual appearance of the coded model. Appendix A contains a Fortran program to calculate various forms of the refractive index structure function. This program was used to determine the refractive index structure function used in the main lidar simulation code. Appendix B contains a memo on the optimization of the lidar telescope geometry for a line-scan geometry. Appendix C contains the code for the main lidar simulation and brief instruction on running the code. Appendix D contains a Fortran code to calculate the maximum permissible exposure for the eye from the ANSI Z136.1-1992 eye safety standards. Appendix E contains a paper on the eye safety analysis of a space-based coherent lidar presented at the 7th Coherent Laser Radar Applications and Technology Conference, Paris, France, 19-23 July 1993.

  9. Assessment of the CALIPSO Lidar 532 nm Attenuated Backscatter Calibration Using the NASA LaRC Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Rogers, Raymond R.; Hostetler, Chris A.; Hair, Johnathan W.; Ferrare, Richard A.; Liu, Zhaoyan; Obland, Michael D.; Harper, David B.; Cook, Anthony L.; Powell, Kathleen A.; Vaughan, Mark A.; Winker, David M.

    2011-01-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft has provided global, high-resolution vertical profiles of aerosols and clouds since it became operational on 13 June 2006. On 14 June 2006, the NASA Langley Research Center (LaRC) High Spectral Resolution Lidar (HSRL) was deployed aboard the NASA Langley B-200 aircraft for the first of a series of 86 underflights of the CALIPSO satellite to provide validation measurements for the CALIOP data products. To better assess the range of conditions under which CALIOP data products are produced, these validation flights were conducted under both daytime and nighttime lighting conditions, in multiple seasons, and over a large range of latitudes and aerosol and cloud conditions. This paper presents a quantitative assessment of the CALIOP 532 nm calibration (through the 532 nm total attenuated backscatter) using an internally calibrated airborne HSRL underflight data and is the most extensive study of CALIOP 532 nm calibration. Results show that average HSRL and CALIOP 532 nm total attenuated backscatter agree on average within 2.7% +/- 2.1% (CALIOP lower) at night and within 2.9 % +/- 3.9% (CALIOP lower) during the day., demonstrating the accuracy of the CALIOP 532 nm calibration algorithms. Additionally, comparisons with HSRL show consistency of the CALIOP calibration before and after the laser switch in 2009 as well as improvements in the daytime version 3 calibration scheme compared with the version 2 calibration scheme. Potential systematic uncertainties in the methodology relevant to validating satellite lidar measurements with an airborne lidar system are discussed and found to be less than 3.7% for this validation effort with HSRL. Results from this study are also compared to those from prior assessments of CALIOP calibration and attenuated backscatter.

  10. High resolution Doppler lidar

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.; Hays, Paul B.; Barnes, John E.

    1989-01-01

    A high resolution lidar system was implemented to measure winds in the lower atmosphere. The wind speed along the line of sight was determined by measuring the Doppler shift of the aerosol backscattered laser signal. The system in its present configuration is stable, and behaves as indicated by theoretical simulations. This system was built to demonstrate the capabilities of the detector system as a prototype for a spaceborne lidar. The detector system investigated consisted of a plane Fabry-Perot etalon, and a 12-ring anode detector. This system is generically similar to the Fabry-Perot interferometer developed for passive wind measurements on board the Dynamics Explorer satellite. That this detector system performs well in a lidar configuration was demonstrated.

  11. Daytime Sky Brightness Modeling of Haleakala along the GEO Belt

    NASA Astrophysics Data System (ADS)

    Jim, K.,; Gibson, B.; Pier, E.

    2012-09-01

    We model the brightness of the daytime sky along the GEO belt, as seen from Haleakala, from 0.3 to 5 microns using MODTRAN. A model near summer solstice and near vernal equinox will illustrate how the sky brightness changes with season. Our goal is to determine the sky background radiance and transmission as a function of wavelength for imaging applications during the daytime. The sky brightness varies throughout a modeled day, and this is shown using a set of look angles toward the geosynchronous belt. We compare our results using radiosonde and real weather data recorded at the summit on two dates, one near the vernal equinox and one near the summer solstice.

  12. Does Excessive Daytime Sleepiness Affect Children's Pedestrian Safety?

    PubMed Central

    Avis, Kristin T.; Gamble, Karen L.; Schwebel, David C.

    2014-01-01

    Study Objectives: Many cognitive factors contribute to unintentional pedestrian injury, including reaction time, impulsivity, risk-taking, attention, and decision-making. These same factors are negatively influenced by excessive daytime sleepiness (EDS), which may place children with EDS at greater risk for pedestrian injury. Design, Participants, and Methods: Using a case-control design, 33 children age 8 to 16 y with EDS from an established diagnosis of narcolepsy or idiopathic hypersomnia (IHS) engaged in a virtual reality pedestrian environment while unmedicated. Thirty-three healthy children matched by age, race, sex, and household income served as controls. Results: Children with EDS were riskier pedestrians than healthy children. They were twice as likely to be struck by a virtual vehicle in the virtual pedestrian environment than healthy controls. Attentional skills of looking at oncoming traffic were not impaired among children with EDS, but decision-making for when to cross the street safely was significantly impaired. Conclusions: Results suggest excessive daytime sleepiness (EDS) from the clinical sleep disorders known as the hypersomnias of central origin may have significant consequences on children's daytime functioning in a critical domain of personal safety, pedestrian skills. Cognitive processes involved in safe pedestrian crossings may be impaired in children with EDS. In the pedestrian simulation, children with EDS appeared to show a pattern consistent with inattentional blindness, in that they “looked but did not process” information in their pedestrian environment. Results highlight the need for heightened awareness of potentially irreversible consequences of untreated sleep disorders and identify a possible target for pediatric injury prevention. Citation: Avis KT; Gamble KL; Schwebel DC. Does excessive daytime sleepiness affect children's pedestrian safety? SLEEP 2014;37(2):283-287. PMID:24497656

  13. Daytime Utilization of a University Observatory for Laboratory Instruction

    NASA Astrophysics Data System (ADS)

    Mattox, J. R.

    2006-08-01

    Scheduling convenience provides a strong incentive to fully explore effective utilization of educational observatories during daylight hours. I present two compelling daytime student activities that I developed at the Observatory at Fayetteville State University. My Introductory Astronomy Laboratory classes pursue these as separate investigations. My Physical Science classes complete both in a single lab period of 110 minutes duration. Both of these activities are also appropriate for High School student investigators, and could be used as demonstrations for younger students. Daylight Observation of Venus. With a clear sky, and when its elongation exceeds ~20˚, Venus is readily apparent in the daytime sky once a telescope is pointed at it. This is accomplished either with a digital pointing system, or with setting circles on a polar-aligned mount using the Sun to initialize the RA circle. Using the telescope pointing as a reference, it is also possible under optimal circumstances for students to see Venus in the daytime sky with naked eyes. Students are asked to write about the circumstances that made it possible to see Venus. Educational utilization of daytime observations of the Moon, Jupiter, Saturn, and the brightest stars are also discussed. Using a CCD Camera to Determine the Temperature of a Sunspot. After my students view the Sun with Eclipse Glasses and in projection using a 3-inch refractor, they analyze a CCD image of a sunspot (which they obtain if possible) to determine the ratio of its surface intensity relative to the normal solar surface. They then use the Stefan-Boltzmann law (usually with some coaching) to determine the sunspot temperature given the nominal surface temperature of the Sun. Appropriate safety precautions are presented given the hazards of magnified sunlight. Mitigation of dome seeing during daylight hours is discussed.

  14. Micropulse Lidar (MPL) Handbook

    SciTech Connect

    Mendoza, A; Flynn, C

    2006-05-01

    The micropulse lidar (MPL) is a ground-based optical remote sensing system designed primarily to determine the altitude of clouds overhead. The physical principle is the same as for radar. Pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is infered. Besides real-time detection of clouds, post-processing of the lidar return can also characterize the extent and properties of aerosol or other particle-laden regions.

  15. Modeling Lidar Multiple Scattering

    NASA Astrophysics Data System (ADS)

    Sato, Kaori; Okamoto, Hajime; Ishimoto, Hiroshi

    2016-06-01

    A practical model to simulate multiply scattered lidar returns from inhomogeneous cloud layers are developed based on Backward Monte Carlo (BMC) simulations. The estimated time delay of the backscattered intensities returning from different vertical grids by the developed model agreed well with that directly obtained from BMC calculations. The method was applied to the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite data to improve the synergetic retrieval of cloud microphysics with CloudSat radar data at optically thick cloud grids. Preliminary results for retrieving mass fraction of co-existing cloud particles and drizzle size particles within lowlevel clouds are demonstrated.

  16. Characterization of aerosols in East Asia with the Asian Dust and Aerosol Lidar Observation Network (AD-Net)

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Nishizawa, Tomoaki; Shimizu, Atsushi; Matsui, Ichiro; Jin, Yoshitaka

    2014-11-01

    Continuous observations of aerosols are being conducted with the Asian Dust and aerosol lidar observation Network (AD-Net). Currently, two-wavelength (1064 nm and 532 nm) polarization-sensitive (532 nm) lidars are operated at 20 stations in East Asia. At the primary stations (6 stations), nitrogen vibrational Raman scattering is also measured to obtain the extinction coefficient at 532 nm. Recently, continuous observations with a three-wavelength (1064 nm, 532 nm and 355 nm) lidar having a high-spectral-resolution receiver at 532 nm and a Raman receiver at 355 nm and polarization-sensitive receivers at 532 nm and 355 nm) was started in Tsukuba. Also, continuous observations with multi-wavelength Raman lidars are being prepared in Fukuoka, Okinawa Hedo, and Toyama. A data analysis method for deriving distributions of aerosol components (weak absorption fine (such as sulfate), weak absorption coarse (sea salt), strong absorption fine (black carbon), non-spherical (dust)) has been developed for these multi-parameter lidars. Major subjects of the current studies with AD-Net include data assimilation of multi-parameter lidars, mixing states of Asian dust with air pollution particulate matter, and validation of EarthCARE ATLID based on the aerosol component analysis method.

  17. Daytime sleepiness and insomnia as correlates of depression.

    PubMed

    Fava, Maurizio

    2004-01-01

    Insomnia and daytime sleepiness are often associated with depression. The possible relationships between sleep difficulties and depression are numerous. Insomnia and other sleep disturbances can be precursors to the onset of major depressive disorder, so they may act as risk factors for or predictors of depression. The symptomatology of depression also prominently includes insomnia, and sleep disturbances may be residual symptoms after response to antidepressant treatment. Insomnia and the resultant daytime sleepiness may be short-term or long-term side effects of antidepressant treatment as well. Whether insomnia is a precursor, symptom, residual symptom, or side effect of depression or its treatment, clinicians must give serious attention to and attempt to resolve sleep disturbances because of the risk of depression onset, worsening of depressive symptoms, and relapse of depression after response to antidepressant treatment. Remission of depression cannot be fully achieved until the associated insomnia and daytime sleepiness are resolved. This article describes the relationships between insomnia and depression and discusses the effects of various antidepressants on sleep. Finally, several different treatment options, including antidepressant monotherapy and augmentation of antidepressants with other medications, are explored. PMID:15575802

  18. Daytime and Nighttime Vertical Gradients of HONO in Houston, TX.

    NASA Astrophysics Data System (ADS)

    Wong, K.; Stutz, J.; Oh, H.

    2008-12-01

    Nitrous acid (HONO) plays an important role in tropospheric photochemistry as a precursor of the hydroxyl radical (OH), the primary oxidizing agent in the atmosphere. Nevertheless, the sources of HONO have not yet been fully understood. Recently, daytime HONO concentrations higher than expected have been observed in various field experiments. The cause of these elevated HONO levels is currently unclear. The vertical distribution of HONO at night and during the day, which can have a considerable impact on the importance of HONO for ozone formation, is also currently poorly characterized by observations and models. Measurements of daytime and nighttime HONO vertical profiles were made in Houston in Summer 2006 during the TexAQS II Radical and Aerosol Measurement Project (TRAMP) using long path DOAS. HONO developed negative concentration gradients during the night, due to inefficient vertical mixing, and a combination of ground deposition of NO2 and HONO and heterogeneous conversion of NO2 to HONO on surfaces. Despite the efficient vertical mixing during the day, boundary layer HONO gradients were also observed, indicating possible unknown source of HONO near the ground. Here we present and discuss the field observations of HONO and other traces gases during TRAMP and the modeling of daytime and nighttime HONO gradients using a one dimensional (1-D) chemistry and transport model.

  19. Studying Taklamakan aerosol properties with lidar (STAPL)

    NASA Astrophysics Data System (ADS)

    Cottle, Paul; Mueller, Detlef; Shin, Dong-Ho; Zhang, Xiao Xiao; Feng, Guanglong; McKendry, Ian; Strawbridge, Kevin

    2013-10-01

    By now, the global impacts of atmospheric dust have been well-established. Nevertheless, relevant properties such as size distribution, depolarization ratio, and even single-scattering albedo have been shown to vary substantially between dust producing regions and are also strongly dependant on the conditions under which the dust is emitted. Even greater variations have been documented during the process of long-range transport. With continued improvement of detection technologies, research focus is increasingly turning to refinement of our knowledge of these properties of dust in order to better account for the presence of dust in models and data analysis. The purpose of this study is to use a combination of lidar data and models to directly observe the changing properties of dust layers as they are transported from their origin in the Taklamakan Desert of western China. With the co-operation of the Xinjiang Institute of Ecology and Geography, a portable micropulse lidar system was installed at Aksu National Field on the northern edge of the Tarim Basin in late April 2013, during the Spring dust storm season. Over six days, data were collected on the optical properties of dust emissions passing over this location. The measurements of this lidar have shown the dust over Aksu on these days to have a significantly higher depolarization ratio than has been previously reported for the region. Model results show this dust was then transported across the region at least as far as Korea and Japan. Models from the Naval Aerosol Analysis and Prediction System (NAAPS) show that during transport the dust layers became intermixed with sulfate emissions from industrial sources in China as well as smoke from wildfires burning in south-east Asia and Siberia. The multi-wavelength raman-elastic lidar located in Gwangju South Korea was used to observe the vertical structure of the layers as well as optical properties such as colour ratio, depolarization ratio and extinction

  20. Direct Detection Doppler Lidar Wind Measurements Obtained During the 2002 International H2O Project (IHOP)

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; Li, Steven; Chen, Huai-Lin; Comer, Joseph; Mathur, Savyasachee; Bobler, Jeremy

    2005-01-01

    The Goddard Lidar Observatory for Winds (GLOW) is a mobile Doppler lidar system that uses direct detection techniques for profiling winds in the troposphere and lower stratosphere. In May and June of 2002 GLOW was deployed to the Southern Great Plains of the US to participate in the International H2O Project (IHOP). GLOW was located at the Homestead profiling site in the Oklahoma panhandle about 15 km east of the SPOL radar. Several other Goddard lidars, the Scanning Raman Lidar (SRL) and HARLIE, as well as radars and passive instruments were permanently operated from the Homestead site during the IHOP campaign providing a unique cluster of observations. During the IHOP observation period (May 14, 2002 to June 25, 2002) over 240 hours of wind profile measurements were obtained with GLOW. In this paper we will describe the GLOW instrument as it was configured for the IHOP campaign and we will present examples of wind profiles obtained.

  1. Lidar and Radar Measurements of the melting layer in the frame of the Convective and Orographically-induced Precipitation Study

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Summa, Donato; Bhawar, Rohini; Di Iorio, Tatiana; Vaughan, Geraint; Norton, Emily; Peters, Gerhard

    2009-03-01

    During the Convective and Orographically-induced Precipitation Study (COPS), lidar dark bands were observed by the Univ. of BASILicata Raman lidar system (BASIL) on several IOPs and SOPs (among others, 23 July, 15 August, 17 August). Dark band signatures appear in the lidar measurements of particle backscattering at 355, 532 and 1064 nm and particle extinction at 355 and 532 nm, as well as in particle depolarization measurements. Lidar data are supported by measurements from the University of Hamburg cloud radar MIRA 36 (36 GHz), the University of Hamburg dual-polarization micro rain radars (24.1 GHz) and the University of Manchester Radio UHF clear air wind profiler (1.29 GHz). Results from BASIL and the radars are illustrated and discussed to support in the comprehension of the microphysical and scattering processes responsible for the appearance of the lidar dark band and radar bright band.

  2. Remote sensing of subsurface water temperature by laser Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    Leonard, D. A.; Caputo, B.; Guagliardo, J. L.; Hoge, F. E.

    1980-01-01

    This paper describes experimental remote sensing of subsurface water temperature using the Raman spectroscopic technique. By the use of a pulsed laser and range gating detection techniques, Raman scattering is analyzed as a function of depth in a radar-like echo mode, and thus subsurface profiles of temperature and transmission are obtained. Experiments are described in which Raman data using polarization spectroscopy has been obtained from a ship as a function of depth in ocean water near Grand Bahama Island. A spectral temperature accuracy of + or - 1 C has been obtained from this data in the first two optical attenuation lengths. Raman data obtained from ocean water using the NASA airborne oceanographic lidar is also presented.

  3. Modular lidar systems for high-resolution 4-dimensional measurements of water vapor, temperature, and aerosols

    NASA Astrophysics Data System (ADS)

    Behrendt, Andreas; Wagner, Gerd; Petrova, Anna; Shiler, Max; Pal, Sandip; Schaberl, Thorsten; Wulfmeyer, Volker

    2005-01-01

    Three lidar systems are currently in development at University of Hohenheim. A water vapor lidar based on the differential absorption lidar (DIAL) technology working near 815 or 935 nm, a temperature and aerosol lidar employing the rotational Raman technique at 355 nm, and an aerosol lidar working with eye-safe laser radiation near 1.5 μm. The transmitters of these three systems are based on an injection-seeded, diode laser pumped Nd:YAG laser with an average power of 100 W at 1064 nm and a repetition rate of 250 Hz. This laser emits a nearly Gaussian-shaped beam which permits frequency-doubling and tripling with high efficiencies. The frequency-doubled 532-nm radiation is employed for pumping a Ti:Sapphire ring-resonator which will be used for DIAL water vapor measurements. In a second branch, a Cr4+:YAG crystal is pumped with the 1064-nm radiation to reach 1400 to 1500 nm for eye-safe monitoring of aerosol particles and clouds. The 532 and 1064 nm radiation are also used for backscatter lidar observations. Frequency tripling gives 355-nm radiation for measurements of temperature with the rotational Raman technique and particle extinction and particle backscattering coefficients in the UV. High transmitter power and effective use of the received signals will allow scanning operation of these three lidar systems. The lidar transmitters and detectors are designed as modules which can be combined for simultaneous measurements with one scanning telescope unit in a ground-based mobile container. Alternatively, they can be connected to different Nd:YAG pump lasers and to telescope units on separate platforms.

  4. Measurement of Water Vapor in the Lower Troposphere Using LIDAR

    NASA Astrophysics Data System (ADS)

    Mensah, Francis; Instiful, Peter; Thorpe, Arthur

    Water vapor is an important atmospheric variable which plays a key role in air quality, global warming, and climate change. It is known as a highly variable atmospheric constituent. Moreover, water vapor remains one of the most poorly characterized meteorological parameters. For example, water vapor measurements have proven to be difficult below 500 m in the lower troposphere. The overlap which exists between the incident laser beam and the receiver FOV is a factor affecting the lidar observation in the near field range. Because of its particular importance in tropospheric processes and the extraordinary ability of Raman Lidar through the SOLEX systemto sense accurately its high temporal and spatial structure in the atmosphere, we present here some particular details about the use of Raman Lidar SOLEX system to measure water vapor at lower atmosphere at several fixed ranges. A comparison is made between data obtained from the laser system and the ones obtained from calibrated temperature and relative humidity's sensors at the same location. Department of Natural and Physical Sciences.

  5. YAG aerosol lidar

    NASA Technical Reports Server (NTRS)

    Sullivan, R.

    1988-01-01

    The Global Atmospheric Backscatter Experiment (GLOBE) Mission, using the NASA DC-8 aircraft platform, is designed to provide the magnitude and statistical distribution of atmospheric backscatter cross section at lidar operating wavelengths. This is a fundamental parameter required for the Doppler lidar proposed to be used on a spacecraft platform for global wind field measurements. The prime measurements will be made by a CO2 lidar instrument in the 9 to 10 micron range. These measurements will be complemented with the Goddard YAG Aerosol Lidar (YAL) data in two wavelengths, 0.532 and 1.06 micron, in the visible and near-infrared. The YAL, is being designed to utilize as much existing hardware, as feasible, to minimize cost and reduce implementation time. The laser, energy monitor, telescope and detector package will be mounted on an optical breadboard. The optical breadboard is mounted through isolation mounts between two low boy racks. The detector package will utilize a photomultiplier tube for the 0.532 micron channel and a silicon avalanche photo detector (APD) for the 1.06 micron channel.

  6. Water vapor lidar

    NASA Technical Reports Server (NTRS)

    Ellingson, R.; Mcilrath, T.; Schwemmer, G.; Wilkerson, T. D.

    1976-01-01

    The feasibility was studied of measuring atmospheric water vapor by means of a tunable lidar operated from the space shuttle. The specific method evaluated was differential absorption, a two-color method in which the atmospheric path of interest is traversed by two laser pulses. Results are reported.

  7. Lidar measurements carried out during the 28 February 2013 lava fountain event at Mt. Etna, in Italy

    NASA Astrophysics Data System (ADS)

    Scollo, Simona; Boselli, Antonella; Coltelli, Mauro; Leto, Giuseppe; Pisani, Gianluca; Spinelli, Nicola; Wang, Xuan; Zanmar Sanchez, Ricardo

    2015-04-01

    Mt. Etna, in Italy, is one of the most active volcanoes in the world. Since 2011, the New South East Crater produced lava fountains that formed eruption columns rising up to several kilometers above sea level and fine ash dispersed hundreds kilometers away from the central craters. One of these events occurred during the 28 February 2013. The volcanic plume was directed toward the E and reached, during the climax phase, an height greater than 9 km above sea level. Lidar measurements were performed immediately after the lava fountain activity by a new portable Raman scanning Lidar system that is operating in Catania since 2013. The Lidar is operated at the Serra La Nave station, only 7 km away far from the Etna summits, and, during the winter seasons, at the INAF-Astrophysical Observatory in Catania. The Lidar named AMPLE is a portable multiwavelength scanning lidar system with depolarization measurement capability, able to carry out high quality 3D map of particle optical and microphysical properties. The laser source is a doubled and tripled diode pumped Nd:YAG laser, with a repetition rate of 1KHz. The Lidar system detects the elastic Lidar returns at 355nm and the N2 Raman Lidar echoes at 386nm. Each signal is acquired with a raw spatial resolution varying from 30cm to 30m. Results of the measurements performed on 28 February 2013 show different layers: the first layer below 1.5 km corresponds to smaller not depolarizing particles of local origin while the layer up to 7 km, is related to volcanic ash coming from Etna. A discrimination between spherical and non-spherical particles in the volcanic plume is clear from the aerosol depolarization values in the atmospheric column interested by the volcanic plume. Some differences in the aerosol size and typology are also highlighted by the Lidar Ratio values. Lidar measurements presented here show new insights on the plume dynamics during Etna lava fountain events.

  8. A new mobile and portable scanning lidar for profiling the lower troposphere

    NASA Astrophysics Data System (ADS)

    Chiang, C.-W.; Das, S. K.; Chiang, H.-W.; Nee, J.-B.; Sun, S.-H.; Chen, S.-W.; Lin, P.-H.; Chu, J.-C.; Su, C.-S.; Su, L.-S.

    2015-02-01

    An in-house developed mobile and portable three-dimensional scanning lidar system is discussed in this work. The system uses a stimulated Raman-scattering technique for the continuous observation of atmospheric aerosols, clouds and trace gases. This system has a fast scanning technique with a high-speed data acquisition, and permits the real-time measurement of atmospheric pollutants with the temporal resolution of 1 min. This scanning lidar system provides typical horizontal coverage of about 8-10 km while scanning; however, in zenith mode, good quality backscattered signals can be from 20 km, depending upon the laser power and sky conditions. This versatile lidar system has also overcome the drawbacks which are popular in the traditional scanning lidar systems such as complicated operation, overlap height between laser beam and telescope field of view In this system, the optical damage is reduced by using an integral coaxial transmitter and receiver. Some of the initial results obtained from the scanning lidar system are also presented. This study shows that boundary-layer structure and land-sea breeze circulation can be resolved from the developed scanning lidar system. The application of this lidar system to measure the pollutants over an industrial area is also discussed.

  9. A new mobile and portable scanning lidar for profiling lower troposphere

    NASA Astrophysics Data System (ADS)

    Chiang, C.-W.; Das, S. K.; Chiang, H.-W.; Nee, J.-B.; Sun, S.-H.; Chen, S.-W.; Lin, P.-H.; Chu, J.-C.; Su, C.-S.; Su, L.-S.

    2014-04-01

    We present and discuss on an indigenously developed mobile and portable 3-D scanning lidar system. The system utilizes a stimulated Raman-scattering technique for the continuous observation of atmospheric aerosols, clouds and trace gases. The system provides fast scanning technique with a high speed data acquisition, which permits the real-time measurement of air pollutant mobility. The temporal resolution of data retrieval is every one min. The scanning lidar system provides typical horizontal coverage of about 8-10 km when scanning, while the vertical range can be up to 20 km depending upon the laser power and sky conditions. This versatile lidar system has also overcome the drawbacks which are popular in the other scanning lidar system such as complicated operation; overlapping height between laser beam and telescope field of view; and damage of optic detectors for long duration measurement by using an integral coaxial transmitter and receiver. Some of the initial results obtained from the scanning lidar system are also presented. We have shown that the developed 3-D scanning lidar system can resolve the boundary layer structure and land-sea breeze circulation. Discussion is also made on the application of scanning lidar system to measure pollutant over industrial areas.

  10. Ground Based Operational Testing Of Holographic Scanning Lidars : The HOLO Experiments

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Wilkerson, Thomas D.; Sanders, Jason A.; Guerra, David V.; Miller, David O.; Moody, Stephen E.

    2000-01-01

    Two aerosol backscatter lidar measurement campaigns were conducted using two holographic scanning lidars and one zenith staring lidar for the purposes of reliability testing under field conditions three new lidar systems and to develop new scanning measurement techniques and applications. The first campaign took place near the campus of Utah State University in Logan Utah in March of 1999 and is called HOLO-1. HOLO-2 was conducted in June of 1999 on the campus of Saint Anselm College, near the city of Manchester, New Hampshire. Each campaign covered a period of approximately one week of nearly continuous observation of cloud and aerosol backscatter in the visible and near infrared by lidar, and wide field visible sky images by video camera in the daytime. The scanning capability coupled with a high rep-rate, high average power laser enables both high spatial and high temporal resolution observations that Particularly intriguing is the possibility of deriving atmospheric wind profiles from temporal analysis of aerosol backscatter spatial structure obtained by conical scan without the use of Doppler techniques.

  11. DAYTIME SCHOOL FOR ADULTS, A NEW PROGRAM DIMENSION AT UNIVERSITY OF CALIFORNIA/BERKELEY, WITH A REACTION BY VIRGINIA BULLARD, DIRECTOR OF DAYTIME PROGRAMS FOR ADULTS, NORTHEASTERN UNIVERSITY.

    ERIC Educational Resources Information Center

    GORDON, MORTON

    IN 1964, THE UNIVERSITY OF CALIFORNIA EXTENSION SET UP AN AUTONOMOUS DAYTIME PROGRAM WHICH NOW OFFERS 100 CLASSES, CONFERENCES, AND LECTURE PROGRAMS IN FOUR LOCATIONS IN THE SAN FRANCISCO BAY AREA. HOW THE DAYTIME STAFF FACED PROBLEMS OF ACADEMIC CREDIT, NEED FOR RISK CAPITAL IN AN INNOVATIVE EFFORT, AND MANAGEMENT OF FACULTY RELATIONS AND USE OF…

  12. Sleep complaints and daytime sleepiness among pharmaceutical students in Tripoli

    PubMed Central

    Taher, Yousef A.; Samud, Awatef M.; Ratimy, Aya H.; Seabe, Areeje M.

    2012-01-01

    Background The effect of sleep difficulties has achieved a great deal of attention recently, with university students considered as a homogenized population, particularly affected by sleep habits. Aim The objective of this study was to investigate whether Libyan college students experience sleep disturbance during their academic programmes. Methods A cross-sectional survey was conducted in the college of Pharmacy, Tripoli University, during February 2010. A total of 201 students, including 179 females (89.05%) and 22 males (10.95%), were recruited from different academic levels. Data were collected using a structured questionnaire and included a number of life-style variables. Epworth Sleepiness Scale (ESS) was used for the assessment of daytime sleepiness. Results This study showed that the total sleep time (TST) on a weeknight was 6.40 h and 67 students reported napping during daytime. The TST plus naps totalled 7.39 h. Out of eight possible dozing situations, we found that the mean score for ESS was 8.78. In addition, 79 students showed an ESS score of >10. Furthermore, our results showed that the majority of students (>92%) reported poor sleep satisfaction with quality and duration of sleep hours. Thinking about difficulty of study but not increasing education programs or tea/coffee consumption is associated with sleep difficulties reported. Moreover, 77.6% of students reported an irregular sleep–wake schedule. Conclusion These findings indicate that students experienced excessive daytime sleepiness. The TST of pharmaceutical students in Libya, as in other developing countries, is less than those reported by Western students. Students experienced various environmental demands during their college years and, their quality of sleep was negatively affected. PMID:23118811

  13. PERIOD1 coordinates hippocampal rhythms and memory processing with daytime.

    PubMed

    Rawashdeh, Oliver; Jilg, Antje; Jedlicka, Peter; Slawska, Jolanta; Thomas, Lukas; Saade, Anastasia; Schwarzacher, Stephan W; Stehle, Jörg H

    2014-06-01

    In species ranging from flies to mammals, parameters of memory processing, like acquisition, consolidation, and retrieval are clearly molded by time of day. However, mechanisms that regulate and adapt these temporal differences are elusive, with an involvement of clock genes and their protein products suggestive. Therefore, we analyzed initially in mouse hippocampus the daytime-dependent dynamics of parameters, known to be important for proper memory formation, like phosphorylation of the "memory molecule" cyclic adenosine monophosphate (cAMP) responsive element binding protein (CREB) and chromatin remodeling. Next, in an effort to characterize the mechanistic role of clock genes within hippocampal molecular dynamics, we compared the results obtained from wildtype (WT) -mice and mice deficient for the archetypical clock gene Period1 (Per1(-/-) -mice). We detected that the circadian rhythm of CREB phosphorylation in the hippocampus of WT mice disappeared completely in mice lacking Per1. Furthermore, we found that the here for the first time described profound endogenous day/night rhythms in histone modifications in the hippocampus of WT-mice are markedly perturbed in Per1(-/-) -mice. Concomitantly, both, in vivo recorded LTP, a cellular correlate for long-term memory, and hippocampal gene expression were significantly altered in the absence of Per1. Notably, these molecular perturbations in Per1(-/-) -mice were accompanied by the loss of daytime-dependent differences in spatial working memory performance. Our data provide a molecular blueprint for a novel role of PER1 in temporally shaping the daytime-dependency of memory performance, likely, by gating CREB signaling, and by coupling to downstream chromatin remodeling. PMID:24550127

  14. Effect of Daytime Exercise on Sleep Eeg and Subjective Sleep

    NASA Astrophysics Data System (ADS)

    Sasazawa, Y.; Kawada, T.; Kiryu, Y.

    1997-08-01

    This study was designed to assess the effects of daytime physical exercise on the quality of objective and subjective sleep by examining all-night sleep EEGs. The subjects were five male students, aged 19 to 20 years, who were in the habit of performing regular daytime exercise. The sleep polygraphic parameters in this study were sleep stage time as a percentage of total sleep time (%S1, %S2, %S(3+4), %SREM, %MT), time in bed (TIB), sleep time (ST), total sleep time (TST), sleep onset latency (SOL), waking from sleep, sleep efficiency, number of awakenings, number of stage shifts, number of spindles, and percentages of α and δ waves, all of which were determined by an automatic computer analysis system. The OSA questionnaire was used to investigate subjective sleep. The five scales of the OSA used were sleepiness, sleep maintenance, worry, integrated sleep feeling, and sleep initiation. Each sleep parameter was compared in the exercise and the non-exercise groups. Two-way analysis of variance was applied using subject factor and exercise factor. The main effect of the subject was significant in all parameters and the main effect of exercise in %S(3+4), SOL and sleep efficiency, among the objective sleep parameters. The main effects of the subject, except sleepiness, were significant, as was the main effect of exercise on sleep initiation, among the subjective sleep parameters. These findings suggest that daytime exercise shortened sleep latency and prolonged slow-wave sleep, and that the subjects fell asleep more easily on exercise days. There were also significant individual differences in both the objective and subjective sleep parameters.

  15. Seasonality of temperate forest photosynthesis and daytime respiration

    NASA Astrophysics Data System (ADS)

    Wehr, R.; Munger, J. W.; McManus, J. B.; Nelson, D. D.; Zahniser, M. S.; Davidson, E. A.; Wofsy, S. C.; Saleska, S. R.

    2016-06-01

    Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (CO2) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration. Understanding what controls these two biological fluxes is therefore crucial to predicting climate change. Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem–atmosphere CO2 exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important CO2 sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines, presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction and of remote sensing indices of global biosphere productivity. Here, we use new isotopic instrumentation to determine ecosystem photosynthesis and daytime respiration in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night—the first robust evidence of the inhibition of leaf respiration by light at the ecosystem scale. Because they do not capture this effect, standard approaches overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest–atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems.

  16. Seasonality of temperate forest photosynthesis and daytime respiration.

    PubMed

    Wehr, R; Munger, J W; McManus, J B; Nelson, D D; Zahniser, M S; Davidson, E A; Wofsy, S C; Saleska, S R

    2016-06-30

    Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (CO2) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration. Understanding what controls these two biological fluxes is therefore crucial to predicting climate change. Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem-atmosphere CO2 exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important CO2 sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines, presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction and of remote sensing indices of global biosphere productivity. Here, we use new isotopic instrumentation to determine ecosystem photosynthesis and daytime respiration in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night-the first robust evidence of the inhibition of leaf respiration by light at the ecosystem scale. Because they do not capture this effect, standard approaches overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest-atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems. PMID:27357794

  17. Nomogram for the Height of the Daytime Mixed Layer

    NASA Astrophysics Data System (ADS)

    Nyrén, Kenneth; Gryning, Sven-Erik

    A method to construct a nomogram of the daytime mixed-layer-height evolution is presented. The nomogram will be specific for a given location and land surface type and is intended to be an easy tool to achieve a general understanding of mixed-layer behaviour. Also it is a pedagogical graphical one-pager that displays the bulk of data that controls the evolution of the mixed layer. Nomograms from northern, central and southern Europe are presented and discussed. Comparison with data from two sites shows good agreement although the nomograms overestimated the mixing height when it was low.

  18. LIDAR Thomson scattering for ITER core plasma revisited

    NASA Astrophysics Data System (ADS)

    Gowers, C.; Nielsen, P.; Salzmann, H.

    2016-02-01

    The authors have become aware that the development of the hitherto planned time-of-flight Thomson scattering system for the ITER core plasma is not proceeding and that conventional Thomson scattering set-ups are being discussed as an alternative. In this paper, we want to point out the advantages of LIDAR and show how criticized details of the original design can be improved. We present a design of the front optics, which in neutronics terms closely resembles a layout already previously accepted. The presented design does not require Raman scattering calibration for the density measurement. Comparison with the JET Core LIDAR system and simulations at higher temperatures both show that with the new design the specified accuracy can be met with a 1-2 J laser. Current laser and detector technology is reviewed. A strategy for how to proceed is presented.

  19. Using CO2 Lidar for Standoff Detection of a Perfluorocarbon Tracer in Air

    SciTech Connect

    Heiser,J.H.; Smith, S.; Sedlacek, A.

    2008-02-06

    The Tag, Track and Location System Program (TTL) is investigating the use of PFTs as tracers for tagging and tracking items of interest or fallen soldiers. In order for the tagging and tracking to be valuable there must be a location system that can detect the PFTs. This report details the development of an infrared lidar platform for standoff detection of PFTs released into the air from a tagged object or person. Furthering work performed using a table top lidar system in an indoor environment; a mobile mini lidar platform was assembled using an existing Raman lidar platform, a grating tunable CO{sub 2} IR laser, Judson HgCdTe detector and miscellaneous folding optics and electronics. The lidar achieved {approx}200 ppb-m sensitivity in laboratory and indoor testing and was then successfully demonstrated at an outdoor test. The lidar system was able to detect PFTs released into a vehicle from a distance of 100 meters. In its final, fully optimized configuration the lidar was capable of repeatedly detecting PFTs in the air released from tagged vehicles. Responses were immediate and clear. This report details the results of a proof-of-concept demonstration for standoff detection of a perfluorocarbon tracer (PFT) using infrared lidar. The project is part of the Tag, Track and Location System Program and was performed under a contract with Tracer Detection Technology Corp. with funding from the Office of Naval Research. A lidar capable of detecting PFT releases at distance was assembled by modifying an existing Raman lidar platform by incorporating a grating tunable CO{sub 2} IR laser, Judson HgCdTe detector and miscellaneous folding optics and electronics. The lidar achieved {approx}200 ppb-m sensitivity in laboratory and indoor testing and was successfully demonstrated at an outdoor test. The demonstration test (scripted by the sponsor) consisted of three parked cars, two of which were tagged with the PFT. The cars were located 70 (closest) to 100 meters (farthest

  20. A comparison of Doppler lidar wind sensors for Earth-orbit global measurement applications

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1985-01-01

    Now, there are four Doppler lidar configurations which are being promoted for the measurement of tropospheric winds: (1) the coherent CO2 Lidar, operating in the 9 micrometer region using a pulsed, atmospheric pressure CO2 gas discharge laser transmitter, and heterodyne detection; (2) the coherent Neodymium doped YAG or Glass Lidar, operating at 1.06 micrometers, using flashlamp or diode laser optical pumping of the solid state laser medium, and heterodyne detection; (3) the Neodymium doped YAG/Glass Lidar, operating at the doubled frequency (at 530 nm wavelength), again using flashlamp or diode laser pumping of the laser transmitter, and using a high resolution tandem Fabry-Perot filter and direct detection; and (4) the Raman shifted Xenon Chloride Lidar, operating at 350 nm wavelength, using a pulsed, atmospheric pressure XeCl gas discharge laser transmitter at 308 nm, Raman shifted in a high pressure hydrogen cell to 350 nm in order to avoid strong stratospheric ozone absorption, also using a high resolution tandem Fabry-Perot filter and direct detection. Comparisons of these four systems can include many factors and tradeoffs. The major portion of this comparison is devoted to efficiency. Efficiency comparisons are made by estimating the number of transmitted photons required for a single pulse wind velocity estimate of + or - 1 m/s accuracy in the middle troposphere, from an altitude of 800 km, which is assured to be reasonable for a polar orbiting platform.

  1. Lidar instruments proposed for Eos

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Browell, Edward V.

    1990-01-01

    Lidar, an acronym for light detection and ranging, represents a class of instruments that utilize lasers to send probe beams into the atmosphere or onto the surface of the Earth and detect the backscattered return in order to measure properties of the atmosphere or surface. The associated technology has matured to the point where two lidar facilities, Geodynamics Laser Ranging System (GLRS), and Laser Atmospheric Wind Sensor (LAWS) were accepted for Phase 2 studies for Eos. A third lidar facility Laser Atmospheric Sounder and Altimeter (LASA), with the lidar experiment EAGLE (Eos Atmospheric Global Lidar Experiment) was proposed for Eos. The generic lidar system has a number of components. They include controlling electronics, laser transmitters, collimating optics, a receiving telescope, spectral filters, detectors, signal chain electronics, and a data system. Lidar systems that measure atmospheric constituents or meteorological parameters record the signal versus time as the beam propagates through the atmosphere. The backscatter arises from molecular (Rayleigh) and aerosol (Mie) scattering, while attenuation arises from molecular and aerosol scattering and absorption. Lidar systems that measure distance to the Earth's surface or retroreflectors in a ranging mode record signals with high temporal resolution over a short time period. The overall characteristics and measurements objectives of the three lidar systems proposed for Eos are given.

  2. Advanced Photodetectors for Space Lidar

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Krainak, Michael A.; Abshire, James B.

    2014-01-01

    The detector in a space lidar plays a key role in the instrument characteristics and performance, especially in direct detection lidar. The sensitivity of the detector is usually the limiting factor when determining the laser power and the receiver aperture size, which in turn determines the instrument complexity and cost. The availability of a suitable detector is often a deciding factor in the choice of lidar wavelengths. A direct detection lidar can achieve the highest receiver performance, or the quantum limit, when its detector can detect signals at the single photon

  3. Lidar Ratios for Dust Aerosols Derived From Retrievals of CALIPSO Visible Extinction Profiles Constrained by Optical Depths from MODIS-Aqua and CALIPSO/CloudSat Ocean Surface Reflectance Measurements

    NASA Technical Reports Server (NTRS)

    Young, Stuart A.; Josset, Damien B.; Vaughan, Mark A.

    2010-01-01

    CALIPSO's (Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations) analysis algorithms generally require the use of tabulated values of the lidar ratio in order to retrieve aerosol extinction and optical depth from measured profiles of attenuated backscatter. However, for any given time or location, the lidar ratio for a given aerosol type can differ from the tabulated value. To gain some insight as to the extent of the variability, we here calculate the lidar ratio for dust aerosols using aerosol optical depth constraints from two sources. Daytime measurements are constrained using Level 2, Collection 5, 550-nm aerosol optical depth measurements made over the ocean by the MODIS (Moderate Resolution Imaging Spectroradiometer) on board the Aqua satellite, which flies in formation with CALIPSO. We also retrieve lidar ratios from night-time profiles constrained by aerosol column optical depths obtained by analysis of CALIPSO and CloudSat backscatter signals from the ocean surface.

  4. Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements

    NASA Astrophysics Data System (ADS)

    Veselovskii, I.; Dubovik, O.; Kolgotin, A.; Lapyonok, T.; di Girolamo, P.; Summa, D.; Whiteman, D. N.; Mishchenko, M.; Tanré, D.

    2010-11-01

    Multiwavelength (MW) Raman lidars have demonstrated their potential to profile particle parameters; however, until now, the physical models used in retrieval algorithms for processing MW lidar data have been predominantly based on the Mie theory. This approach is applicable to the modeling of light scattering by spherically symmetric particles only and does not adequately reproduce the scattering by generally nonspherical desert dust particles. Here we present an algorithm based on a model of randomly oriented spheroids for the inversion of multiwavelength lidar data. The aerosols are modeled as a mixture of two aerosol components: one composed only of spherical and the second composed of nonspherical particles. The nonspherical component is an ensemble of randomly oriented spheroids with size-independent shape distribution. This approach has been integrated into an algorithm retrieving aerosol properties from the observations with a Raman lidar based on a tripled Nd:YAG laser. Such a lidar provides three backscattering coefficients, two extinction coefficients, and the particle depolarization ratio at a single or multiple wavelengths. Simulations were performed for a bimodal particle size distribution typical of desert dust particles. The uncertainty of the retrieved particle surface, volume concentration, and effective radius for 10% measurement errors is estimated to be below 30%. We show that if the effect of particle nonsphericity is not accounted for, the errors in the retrieved aerosol parameters increase notably. The algorithm was tested with experimental data from a Saharan dust outbreak episode, measured with the BASIL multiwavelength Raman lidar in August 2007. The vertical profiles of particle parameters as well as the particle size distributions at different heights were retrieved. It was shown that the algorithm developed provided substantially reasonable results consistent with the available independent information about the observed aerosol event.

  5. What is the Best Measure of Daytime Sleepiness in Adults with Heart Failure?

    PubMed Central

    Riegel, Barbara; Hanlon, Alexandra L.; Zhang, Xuemei; Fleck, Desiree; Sayers, Steven L.; Goldberg, Lee R.; Weintraub, William S.

    2014-01-01

    Purpose To identify the best screening measure of daytime sleepiness in adults with heart failure (HF). Data sources 280 adults with HF completed the Epworth Sleepiness Scale, the Stanford Sleepiness Scale, and a single Likert item measuring daytime sleepiness. The sensitivity and specificity of these self-report measures were assessed in relation to a measure of daytime dysfunction from poor sleep quality. Conclusions Only 16% of the sample reported significant daytime dysfunction due to poor sleep quality. Those reporting daytime dysfunction were likely to be younger (p<0.001), to be unmarried (p=0.002), to have New York Heart Association (NYHA) functional class IV HF (p=0.015), and to report low income (p=0.006) and fewer hours of sleep (p=0.015). The measure of daytime sleepiness that was most sensitive to daytime dysfunction was a single Likert item measured on a 10-point (1–10) scale. Patients with a score ≥ 4 were 2.4 times more likely to have daytime dysfunction than those with a score <4. Implications for practice Complaints of daytime dysfunction due to poor sleep are not common in adults with HF. Routine use of a single question about daytime sleepiness can help nurse practitioners to identify those HF patients with significant sleep issues that may require further screening. PMID:24170569

  6. Towards an operational lidar network across the UK

    NASA Astrophysics Data System (ADS)

    Adam, Mariana; Horseman, Andrew; Turp, Myles; Buxmann, Joelle; Sugier, Jacqueline

    2015-04-01

    The Met Office has been operating a ceilometer network since 2012. This network consists of 11 Jenoptik Nimbus ceilometers (operating at 1064 nm) and 32 Vaisala ceilometers (25 CL31, operating at 910 nm and 7 CT25 operating at 905 nm). The data are available in near real time (NRT) (15 min for Jenoptik and 1 h for Vaisala). In 2014, six additional stations from Met Éireann (Ireland) were added to the network (5 CL31 and 1 CT25). Visualisation of attenuated backscatter and cloud base height are available from http://www.metoffice.gov.uk/public/lidarnet/lcbr-network.html. The main customers are the Met Office Hazard Centre which provides a quick response to customers requiring forecast information to manage a wide variety of environmental incidents and the London Volcanic Ash Advisory Centre (VAAC), also based at the Met Office, which monitor volcanic ash events. As a response to the strong impact of the Eyjafjallajökull eruption in 2010, the UK Civil Aviation Authority (CAA) financed a lidar - sunphotometer network for NRT monitoring of the volcanic ash. This new network will consist of nine fixed sites and one mobile unit, each equipped with a lidar and a sunphotometer. The sunphotometers were acquired from Cimel Electronique (CE318-NE DPS9). The lidars were acquired from Raymetrics. They operate at 355 nm and have receiving channels at 355 nm (parallel and perpendicular polarization) and 387 nm (N2 Raman). The first two lidar systems were deployed in November 2014 at Camborne (SW England) and the data are under evaluation. The network is planned to be operational in 2016. Initially, the NRT data will consist of quick look plots of the total range corrected signal and volume depolarization ratio from lidar and aerosol optical depth from sunphotometer (including 355nm, through interpolation). During EGU presentation, the following features will be emphasized: IT considerations for the operational network, data quality assurance (including error estimates) for the

  7. Optical design and development of the Near Range Lidar system for aerosol investigation at Belsk

    NASA Astrophysics Data System (ADS)

    Posyniak, Michal; Piatruczuk, Aleksander; Szkop, Artur

    2015-04-01

    The development of the lidar system in the Central Geophysics Observatory at Belsk (Poland) is presented. Belsk is an aerosol background site located in a rural area about 50 km south from Warsaw. A new near range (NR) lidar was added to the existing far range (FR) lidar system to enable the acquisition of lidar signals at the distance of a few hundred meters from the device. In the existing design of the FR lidar a 600 mm diameter mirror was used which resultedin anoverlap over 1500 mmaking this device suitable for observations of aerosols in free troposphere and lower stratosphere but not in the Planetary Boundary Layer (PBL).To enable measurements in the PBL the near range detection systemwas designed as a complement of the existing FR lidar. A secondtelescope with a set of detectors was used with the same laser as in the FR system as a light source. The Nd:YAGpulselasergenerates three wavelengths (1064, 532 and 355 nm).Energies of light pulses are about 320 mJ while their repetition rate is 15 Hz. In the optical receiver of the NR lidar a telescope with a 150 mm diameter parabolic mirror with optical fiber (1 mm core diameter) as a field stop was used. Our analysis shows that full overlap of the laser beam and the NR telescope field of view is expected at about 150 m. A polichromator based on dichroic beam splitters and a set of narrow band pass filters were used to separate wavelengths. The design of the NR lidar easily allows to add Raman channels to the system. The acquisition of the analog lidar echoes was done by photomultipliers (at 355 and 532 nm) and the avalanche photodiode (at 1064 nm). 14 bit analog to digital converters coupled with PC computer by USB 2.0 were also used.

  8. Flash Lidar Data Processing

    NASA Astrophysics Data System (ADS)

    Bergkoetter, M. D.; Ruppert, L.; Weimer, C. S.; Ramond, T.; Lefsky, M. A.; Burke, I. C.; Hu, Y.

    2009-12-01

    Late last year, a prototype Flash LIDAR instrument flew on a series of airborne tests to demonstrate its potential for improved vegetation measurements. The prototype is a precursor to the Electronically Steerable Flash LIDAR (ESFL) currently under development at Ball Aerospace and Technology Corp. with funding from the NASA Earth Science Technology Office. ESFL may soon significantly expand our ability to measure vegetation and forests and better understand the extent of their role in global climate change and the carbon cycle - all critical science questions relating to the upcoming NASA DESDynI and ESA BIOMASS missions. In order to more efficiently exploit data returned from the experimental Flash Lidar system and plan for data exploitation from future flights, Ball funded a graduate student project (through the Ball Summer Intern Program, summer 2009) to develop and implement algorithms for post-processing of the 3-Dimensional Flash Lidar data. This effort included developing autonomous algorithms to resample the data to a uniform rectangular grid, geolocation of the data, and visual display of large swaths of data. The resampling, geolocation, surface hit detection, and aggregation of frame data are implemented with new MATLAB code, and the efficient visual display is achieved with free commercial viewing software. These efforts directly support additional tests flights planned as early as October 2009, including possible flights over Niwot Ridge, CO, for which there is ICESat data, and a sea-level coastal area in California to test the effect of higher altitude (above ground level) on the divergence of the beams and the beam spot sizes.

  9. [Daytime consequences of insomnia complaints in the French general population].

    PubMed

    Ohayon, M M; Lemoine, P

    2004-01-01

    Insomnia is a frequent symptom in the general population; numerous studies have proven this. In the past years, classifications have gradually given more emphasis to daytime repercussions of insomnia and to their consequences on social and cognitive functioning. They are now integrated in the definition of insomnia and are used to quantify its severity. If the daytime consequences of insomnia are well known at the clinical level, there are few epidemiological data on this matter. The aim of this study was to assess the daytime repercussions of insomnia complaints in the general population of France. A representative sample (n=5,622) aged 15 or older was surveyed by telephone with the help of the sleep-EVAL expert system, a computer program specially designed to evaluate sleep disorders and to manage epidemiological investigations. Interviews have been completed for 80.8% of the solicited subjects (n=5,622). The variables considered comprised insomnia and its daytime repercussions on cognitive functioning, affective tone, daytime sleepiness and diurnal fatigue. Insomnia was found in 18.6% of the sample. The prevalence was higher in women (22.4%) than in men (14.5%, p<0.001) with a relative risk of 1.7 (95% confidence interval 1.5 to 2) and was twice more frequent for subjects 65 years of age or older compared to subjects younger than 45 years. Approximately 30% of subjects reporting insomnia had difficulties initiating sleep. Nearly 75% of insomnia complainers reported having a disrupted sleep or waking up too early in the morning and about 40% said they had a non-restorative sleep. Repercussions on daytime functioning were reported by most insomnia subjects (67%). Repercussions on cognitive functioning changed according age, number of insomnia symptoms and the use of a psychotropic medication. A decreased efficiency was more likely to be reported by subjects between 15 and 44 years of age (OR: 2.9), those using a psychotropic (OR: 1.5), those reporting at least

  10. Near-surface daytime thermal conductivity in the lunar regolith

    NASA Technical Reports Server (NTRS)

    Reed, G. W., Jr.; Jovanovic, S.

    1979-01-01

    If mass and heat transport properties in the top few cm of the lunar surface correspond, estimates of the daytime thermal conductivity based on the diffusivity calculated from in situ concentration gradients of low temperature volatile elements should be possible. Concentration gradients of Hg and Br in response to the diurnal heat pulse have been measured in samples from cores. The conductivity estimated is either approximately 10 to the -3rd or approximately 2 x 10 to the -4th W/cm-degrees K depending on the assumptions made. The latter value is in agreement with near-surface daytime thermal properties calculated by Keihm et al. (1973) to explain the mean surface temperature. An activation energy for diffusion of Hg in the top few cm of the lunar surface is estimated to be approximately 8 kcal/mole and suggests either vapor or surface migration. Fixation of the concentration gradient after the cores were extracted may be due to lack of a temperature gradient to act as a driving force or to disruption of grain contacts or their corrosion on exposure to air.

  11. Nonequilibrium Behavior of the Daytime Atmospheric Boundary Layer, from LES

    NASA Astrophysics Data System (ADS)

    Jayaraman, Balaji; Brasseur, James; McCandless, Tyler; Haupt, Sue

    2014-11-01

    LES of the daytime atmospheric boundary layer (ABL) over flat topography is universally developed as an equilibrium ABL with steady surface heat flux Q0 and steady unidirectional ``geostrophic'' wind vector Vg above a capping inversion, where Vg also defines a spatially uniform transverse mean pressure gradient. The LES approaches a quasiequilibrium state characterized statistically by the ratio of boundary layer depth to Obukhov length scale. In contrast, the true daytime ABL is driven by surface heat flux increases to peak mid-day and drops in the afternoon, and by mesoscale wind vectors Ug that change in magnitude and direction during the day. We study the consequences of mesoscale weather on ABL dynamics by forcing ABL LES with a WRF simulation of the Midwest during 3 days of frontal passage over Kansas. Assuming horizontal homogeneity, we derive the relationship between Ug and Vg and study ABL response with systematic variation in Q0 and the magnitude and direction of Ug. Interesting results include: (1) asymmetry nonequilibrium diurnal response of the ABL; (2) directional changes in surface layer winds relevant to wind turbine function; and (3) changes in ABL stability state arising solely from changes in the direction of Ug. Supported by DOE. Computer resources by NSF/XSEDE.

  12. Leaf onset in the northern hemisphere triggered by daytime temperature.

    PubMed

    Piao, Shilong; Tan, Jianguang; Chen, Anping; Fu, Yongshuo H; Ciais, Philippe; Liu, Qiang; Janssens, Ivan A; Vicca, Sara; Zeng, Zhenzhong; Jeong, Su-Jong; Li, Yue; Myneni, Ranga B; Peng, Shushi; Shen, Miaogen; Peñuelas, Josep

    2015-01-01

    Recent warming significantly advanced leaf onset in the northern hemisphere. This signal cannot be accurately reproduced by current models parameterized by daily mean temperature (T(mean)). Here using in situ observations of leaf unfolding dates (LUDs) in Europe and the United States, we show that the interannual anomalies of LUD during 1982-2011 are triggered by daytime (Tmax) more than by nighttime temperature (T(min)). Furthermore, an increase of 1 °C in Tmax would advance LUD by 4.7 days in Europe and 4.3 days in the United States, more than the conventional temperature sensitivity estimated from T(mean). The triggering role of Tmax, rather than the T(min) or T(mean) variable, is also supported by analysis of the large-scale patterns of satellite-derived vegetation green-up in spring in the northern hemisphere (>30 °N). Our results suggest a new conceptual framework of leaf onset using daytime temperature to improve the performance of phenology modules in current Earth system models. PMID:25903224

  13. Leaf onset in the northern hemisphere triggered by daytime temperature

    PubMed Central

    Piao, Shilong; Tan, Jianguang; Chen, Anping; Fu, Yongshuo H.; Ciais, Philippe; Liu, Qiang; Janssens, Ivan A.; Vicca, Sara; Zeng, Zhenzhong; Jeong, Su-Jong; Li, Yue; Myneni, Ranga B.; Peng, Shushi; Shen, Miaogen; Peñuelas, Josep

    2015-01-01

    Recent warming significantly advanced leaf onset in the northern hemisphere. This signal cannot be accurately reproduced by current models parameterized by daily mean temperature (Tmean). Here using in situ observations of leaf unfolding dates (LUDs) in Europe and the United States, we show that the interannual anomalies of LUD during 1982–2011 are triggered by daytime (Tmax) more than by nighttime temperature (Tmin). Furthermore, an increase of 1 °C in Tmax would advance LUD by 4.7 days in Europe and 4.3 days in the United States, more than the conventional temperature sensitivity estimated from Tmean. The triggering role of Tmax, rather than the Tmin or Tmean variable, is also supported by analysis of the large-scale patterns of satellite-derived vegetation green-up in spring in the northern hemisphere (>30°N). Our results suggest a new conceptual framework of leaf onset using daytime temperature to improve the performance of phenology modules in current Earth system models. PMID:25903224

  14. Excessive Daytime Sleepiness in Stroke Survivors: An Integrative Review.

    PubMed

    Ding, Qinglan; Whittemore, Robin; Redeker, Nancy

    2016-07-01

    Excessive daytime sleepiness (EDS) is a prevalent symptom among stroke survivors. This symptom is an independent risk factor for stroke and may reduce stroke survivors' quality of life, cognitive functioning, and daytime functional performance. The lack of a universally accepted definition of EDS makes it difficult to measure EDS and synthesize research. The purpose of this integrative review is to describe poststroke EDS, ascertain conceptual and operational definitions of EDS, identify factors that contribute to EDS in stroke survivors, and explore outcomes associated with EDS in stroke survivors. We searched the following databases: PubMed and MEDLINE (OvidSP 1946-April; Week 2, 2015), Embase (OvidSP 1974-March; Week 1, 2015), and PsycINFO (OvidSP 1967-April; Week 2, 2015). Our search yielded 340 articles, 27 of which met inclusion criteria. The literature reveals EDS to be a multidimensional construct that is operationalized with both subjective and objective measures. Choosing measures that can quantify both the objective and subjective components is useful for gaining a comprehensive understanding of EDS. The antecedents of EDS are stroke, sleep-disordered breathing, reversed Robin Hood syndrome, and depression. The outcomes associated with EDS in stroke patients are serious and negative. Via synthesis of this research, we propose a possible framework for poststroke EDS, which may be of use in clinical practice and in research to identify valid quantifying methods for EDS as well as to prevent harmful outcomes in stroke survivors. PMID:26792913

  15. Daytime Solar Heating of Photovoltaic Arrays in Low Density Plasmas

    NASA Technical Reports Server (NTRS)

    Galofaro, J.; Vayner, B.; Ferguson, D.

    2003-01-01

    The purpose of the current work is to determine the out-gassing rate of H2O molecules for a solar array placed under daytime solar heating (full sunlight) conditions typically encountered in a Low Earth Orbital (LEO) environment. Arc rates are established for individual arrays held at 14 C and are used as a baseline for future comparisons. Radiated thermal solar flux incident to the array is simulated by mounting a stainless steel panel equipped with resistive heating elements several centimeters behind the array. A thermal plot of the heater plate temperature and the array temperature as a function of heating time is then obtained. A mass spectrometer is used to record the levels of partial pressure of water vapor in the test chamber after each of the 5 heating/cooling cycles. Each of the heating cycles was set to time duration of 40 minutes to simulate the daytime solar heat flux to the array over a single orbit. Finally the array is cooled back to ambient temperature after 5 complete cycles and the arc rates of the solar arrays is retested. A comparison of the various data is presented with rather some unexpected results.

  16. [The effects of self-awakening on daytime sleepiness].

    PubMed

    Ikeda, Hiroki; Hayashi, Mitsuo

    2012-04-01

    This study investigated the effects of self-awakening on daytime sleepiness. Eleven undergraduate and graduate students without the habit of self-awakening participated. They were instructed to follow their usual sleep-wake schedule at home during the experimental weeks and were required to awaken at their usual time by themselves every morning for one week without the aid of an alarm (self-awakening condition) or in response to a telephone call from the experimenter every morning for another one week (forced-awakening condition). On the last day of each week, daytime tests were conducted in the laboratory. The participants would arrive at the laboratory 2 h after awakening, and 1 h later, they performed the auditory simple reaction time task, the digit-symbol substitution task, the letter cancellation test, and the multiple sleep latency test, and assessment of sleepiness, fatigue, comfort, and work motivation every 2 h. In the week when the participants underwent the self-awakening condition, self-awakening had a higher success rate (82%) than failure rate (18%) on the seventh day. In comparison with forced-awakening, self-awakening resulted in an improvement in subjective fatigue; however, sleepiness did not deteriorate. PMID:22715533

  17. Anti-diuresis in the management of daytime urinary incontinence

    PubMed Central

    Robinson, D.; Cardozo, L.

    2009-01-01

    Urinary incontinence and lower urinary tract dysfunction, whilst not life threatening conditions, remain an important cause of morbidity in women and are responsible for significant impairment of quality of life. Drug therapy is often used to treat women who complain of urgency and urge incontinence and has an emerging role in the management of stress urinary incontinence. However, bothersome side effects are known to affect compliance and therefore compromise efficacy, making longterm drug therapy unpopular. The principle aim of this thesis is to assess the role of antidiuresis in women complaining of daytime urinary incontinence and also to examine its role as a ‘designer therapy’ which women can choose to use as, or when, required. In addition both the patients’ and clinicians’ attitudes towards treatment have been studied to clarify the meaning of ‘cure’, and to determine treatment acceptability, overall outcome and patient satisfaction. In the first study the patients’ concept of cure is explored as well as their expectations regarding treatment and outcome. The second study examines cure from the clinician’s perspective in addition to reviewing outcome measures in the clinical and research settings. Finally in the third study the use of desmopressin in women complaining of daytime urinary incontinence is reported. PMID:25478070

  18. Lidar measurements of Aeolian dust: Mars and Earth

    NASA Astrophysics Data System (ADS)

    Dickinson, C. S.; Davy, R.; Komguem, L.; Junkermann, W.; Whiteway, J. A.

    2009-12-01

    The Phoenix Lidar system was operated in 2008, beginning in Martian northern spring (L_s = 78) through mid summer (L_s = 147). During this period, nighttime observations of dust indicate both persistent background dust up to heights of approximately 15 km, and enhanced dust loading in the Boundary Layer up to heights of approximately 4 km. The magnitude of the optical extinction was observed to decrease within the Boundary Layer with time following summer solstice. This situation is similar to that observed in the Australian desert: a persistent dust layer up to heights of 6 km, with a daytime Convective Boundary Layer increasing up to heights of 4 km during local dust storm activity, and then decreasing during night. A comparative study was undertaken, with the results being augmented by both in situ measurements of the Australian desert dust, as made by over-flying aircraft, and modeled results of Aeolian dust in both environments.

  19. Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.

    2000-01-01

    We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and sun photometers during the Tropospheric Aerosol Radiative Forcing Observational Experiment. Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA Goddard Space Flight Center scanning Raman lidar system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W); are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and root-mean-square differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a) = 60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements. The lidar measurements of AOT are found to be generally within 25% of the AOT measured by the NASA Ames Airborne Tracking Sun Photometer (AATS-6). However, during certain periods the lidar and Sun photometer measurements of AOT differed significantly, possibly because of variations in the aerosol physical characteristics (e.g., size, composition) which affect S(sub a). Estimates of PWV, derived from water vapor mixing ratio profiles measured by LASE, are within 5-10% of PWV derived from the airborne Sun photometer. Aerosol extinction profiles measured by both lidars show that aerosols were generally concentrated in the lowest 2-3 km.

  20. Requirements For Lidar Aerosol and Ozone Measurements

    NASA Astrophysics Data System (ADS)

    Frey, S.; Woeste, L.

    Laser remote sensing is the preferable method, when spatial-temporal resolved data is required. Data from stationary laser remote sensing devices at the earth surface give a very good impression about daily, annual and in general time trends of a measurand and can be compared sometimes to airborne instruments to get a direct link between optical and other methods. Space borne measurements on the other hand are the only possibility for obtaining as much data, as modeller wish to have to initialise, compare or validate there computation. But in this case it is very difficult to get the input in- formation, which is necessary for good quantitative analysis as well as to find points for comparison. In outer space and other harsh field environments only the simplest and most robust equipment for the respective purpose should be applied, to ensure a long-term stable operation. The first question is: what do we have to know about the properties of the atmosphere to get reliable data from instruments, which are just simple enough?, and secondly: how to set-up the instruments? Even for the evaluation of backscatter coefficients a density profile and the so-called Lidar-ratio, the ratio of backscatter to total volume scatter intensity, is necessary. Raman Lidar is a possibility to handle this problem by measuring aerosol extinction profiles. But again a density profile and in addition a guess about the wavelength dependence of the aerosol extinc- tion between the Raman and laser wavelength are required. Unfortunately the tech- nique for Raman measurements is much more sensible and less suited for space borne measurements, because of the much smaller back scatter cross sections and the result- ing weak signals. It becomes worth, when we will have to maintain special laser with colours at molecular absorption bands in outer space, to measure gas concentration. I want to present simulation of optical systems for laser remote sensing, experimental experiences and compare air

  1. High-resolution measurements of humidity and temperature with lidar

    NASA Astrophysics Data System (ADS)

    Behrendt, Andreas; Wulfmeyer, Volker; Spaeth, Florian; Hammann, Eva; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea

    2015-04-01

    3-dimensional thermodynamic fields of temperature and moisture including their turbulent fluctuations have been observed with the two scanning lidar systems of University of Hohenheim in three field campaigns in 2013 and 2014. In this contribution, we will introduce these two self-developed instruments and illustrate their performance with measurement examples. Finally, an outlook to envisioned future research activities with the new data sets of the instruments is given. Our temperature lidar is based on the rotational Raman technique. The scanning rotational Raman lidar (RRL) uses a seeded frequency-doubled Nd:YAG laser at a wavelength of 355 nm. A two-mirror scanner with a 40-cm telescope collects the atmospheric backscatter signals. Humidity measurements are made with a scanning water vapor differential absorption lidar (DIAL) which uses a titanium sapphire laser at 820 nm as transmitter. This laser is pumped with a frequency-doubled Nd:YAG laser and injection-seeded for switching between the online and offline wavelengths. The DIAL receiver consists of a scanning 80-cm telescope. The measured temperature and humidity profiles of both instruments have typical resolutions of only a few seconds and 100 m in the atmospheric boundary layer both in day- and night-time. Recent field experiments with the RRL and the DIAL of University of Hohenheim were (1) the HD(CP)2 Prototype Experiment (HOPE) in spring 2013 in western Germany - this activity is embedded in the project HD(CP)2 (High-definition clouds and precipitation for advancing climate prediction); (2) a measurement campaign in Hohenheim in autumn 2013; (3) the campaign SABLE (Surface Atmospheric Boundary Layer Exchange) in south-western Germany in summer 2014. The collected moisture and temperature data will serve as initial thermodynamic fields for forecast experiments related to the formation of clouds and precipitation. Due to their high resolution and high precision, the systems are capable of resolving

  2. Specifics of processing SRS lidar signals in GHz frequency range

    NASA Astrophysics Data System (ADS)

    Grishkanich, A. S.; Elizarov, V. V.; Kascheev, S. V.; Zhevlakov, A. P.; Sidorov, I. S.

    2015-12-01

    One of the highly effective methods of operative remote environmental monitoring on land and water surfaces is laser sensing. It knew that the Raman scattering cross section is very small (10-25-10-27), so in some cases radiation back into captivity to the target could be a few tens of photons. For high-speed sensing, speed of processing and ease of use lidar units required for the use of appropriate hardware and software systems used for the decision of tasks of collecting, processing, storing, organizing large amounts of data.

  3. Lidar for monitoring methane emission in Siberian permafrost

    NASA Astrophysics Data System (ADS)

    Grishkanich, A. S.; Zhevlakov, A. P.; Sidorov, I.; Elizarov, V. V.; Mak, A. A.; Kascheev, S. V.

    2016-03-01

    Identifying methane anomalies responsible for the temperature increase, by hiking trails in the Arctic requires great human labor .According to the tentative forecast by the year 2100 Arctic permafrost will greatly deteriorate, which will have numerous consequences. Indeed, release of less than 0.1% of the organic carbon stored in the upper 100-meter permafrost level (approximately 10000 ppm of carbon in the CH4 form) can double concentration of atmospheric methane, which is roughly 20 times more potent greenhouse gas than the CO2. Necessary to create a Raman lidar for monitoring of emissions of methane hydrate from the permafrost.

  4. Intracavity Raman lasers

    SciTech Connect

    Band, Y.B.; Ackerhalt, J.R.; Krasinski, J.S.; Heller, D.F.

    1989-02-01

    Experimental and theoretical studies of intracavity Raman lasers are presented. Advantages of intracavity Raman lasers, particularly for low-emission cross section and broadly tunable vibronic gain media, are described. Experimental studies of a hydrogen gas Raman laser pumped inside the cavity of an alexandrite laser are presented. A theoretical model of the dynamics of a unidirectional intracavity Raman ring laser is developed and solved analytically. This model is adapted to simulate experiments.

  5. Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.; Russell, P.; Livingston, J.; Schmid, B.; Holben, B.; Remer, L.; Smirnov, A.; Hobbs, P. V.

    2000-01-01

    We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and Sun photometers during TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment). Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA/GSFC Scanning Raman Lidar (SRL) system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W), are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and rms differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a)=60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements.

  6. Automatic Weather Station (AWS) Lidar

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.; Campbell, James; Abshire, James B.; Spinhirne, James D.; Smith, David E. (Technical Monitor)

    2001-01-01

    A ground based, autonomous, low power atmospheric lidar instrument is being developed at NASA Goddard Space Flight Center. We report on the design and anticipated performance of the proposed instrument and show data from two prototype lidar instruments previously deployed to Antarctica.

  7. FLASH LIDAR Based Relative Navigation

    NASA Technical Reports Server (NTRS)

    Brazzel, Jack; Clark, Fred; Milenkovic, Zoran

    2014-01-01

    Relative navigation remains the most challenging part of spacecraft rendezvous and docking. In recent years, flash LIDARs, have been increasingly selected as the go-to sensors for proximity operations and docking. Flash LIDARS are generally lighter and require less power that scanning Lidars. Flash LIDARs do not have moving parts, and they are capable of tracking multiple targets as well as generating a 3D map of a given target. However, there are some significant drawbacks of Flash Lidars that must be resolved if their use is to be of long-term significance. Overcoming the challenges of Flash LIDARs for navigation-namely, low technology readiness level, lack of historical performance data, target identification, existence of false positives, and performance of vision processing algorithms as intermediaries between the raw sensor data and the Kalman filter-requires a world-class testing facility, such as the Lockheed Martin Space Operations Simulation Center (SOSC). Ground-based testing is a critical step for maturing the next-generation flash LIDAR-based spacecraft relative navigation. This paper will focus on the tests of an integrated relative navigation system conducted at the SOSC in January 2014. The intent of the tests was to characterize and then improve the performance of relative navigation, while addressing many of the flash LIDAR challenges mentioned above. A section on navigation performance and future recommendation completes the discussion.

  8. Correntropy measures to detect daytime sleepiness from EEG signals.

    PubMed

    Melia, Umberto; Guaita, Marc; Vallverdú, Montserrat; Montserrat, Josep M; Vilaseca, Isabel; Salamero, Manel; Gaig, Carles; Caminal, Pere; Santamaria, Joan

    2014-10-01

    Excessive daytime sleepiness (EDS) is one of the main symptoms of several sleep related disorders and has a great impact on patients' lives. While many studies have been carried out in order to assess daytime sleepiness, automatic EDS detection still remains an open problem. In this work, a novel approach to this issue based on correntropy function analysis of EEG signals was proposed in order to detect patients suffering from EDS. Multichannel EEG signals were recorded during five Maintenance of Wakefulness Tests (MWT) and Multiple Sleep Latency Tests (MSLT) alternated throughout the day for patients suffering from sleep disordered breathing (SDB). A group of 20 patients with EDS was compared with a group of 20 patients without daytime sleepiness (WDS), by analyzing 60 s EEG windows in a waking state. Measures obtained from the cross-correntropy function (CCORR) and auto-correntropy function (ACORR) were calculated in the EEG frequency bands: δ, 0.1-4 Hz; θ, 4-8 Hz; α, 8-12 Hz; β, 12-30 Hz; total band TB, 0.1-45 Hz. These functions permitted the quantification of complex signal properties and the non-linear couplings between different areas of the scalp. Statistical differences between EDS and WDS groups were mainly found in the β band during MSLT events (p-value < 0.0001). The WDS group presented more complexity in the occipital zone than the EDS group, while a stronger nonlinear coupling between the occipital and frontal regions was detected in EDS patients than in the WDS group. At best, ACORR and CCORR measures yielded sensitivity and specificity above 80% and the area under ROC curve (AUC) was above 0.85 in classifying EDS and WDS patients. These performances represent an improvement with respect to classical EEG indices applied in the same database (sensitivity and specificity were never above 80% and AUC was under 0.75). PMID:25237837

  9. Cognition and daytime functioning in sleep-related breathing disorders.

    PubMed

    Jackson, Melinda L; Howard, Mark E; Barnes, Maree

    2011-01-01

    Sleep-related breathing disorders encompass a range of disorders in which abnormal ventilation occurs during sleep as a result of partial or complete obstruction of the upper airway, altered respiratory drive, abnormal chest wall movement, or respiratory muscle function. The most common of these is obstructive sleep apnea (OSA), occurring in both adults and children, and causing significant cognitive and daytime dysfunction and reduced quality of life. OSA patients experience repetitive brief cessation of breathing throughout the night, which causes intermittent hypoxemia (reductions in hemoglobin oxygen levels) and fragmented sleep patterns. These nocturnal events result in excessive daytime sleepiness, and changes in mood and cognition. Chronic excessive sleepiness during the day is a common symptom of sleep-related breathing disorders, which is assessed in sleep clinics both subjectively (questionnaire) and objectively (sleep latency tests). Mood changes are often reported by patients, including irritability, fatigue, depression, and anxiety. A wide range of cognitive deficits have been identified in untreated OSA patients, from attentional and vigilance, to memory and executive functions, and more complex tasks such as simulated driving. These changes are reflected in patient reports of difficulty in concentrating, increased forgetfulness, an inability to make decisions, and falling asleep at the wheel of a motor vehicle. These cognitive changes can also have significant downstream effects on daily functioning. Moderate to severe cases of the disorder are at a higher risk of having a motor vehicle accident, and may also have difficulties at work or school. A number of comorbidities may also influence the cognitive changes in OSA patients, including hypertension, diabetes, and stroke. These diseases can cause changes to neural vasculature and result in neural damage, leading to cognitive impairments. Examination of OSA patients using neuroimaging techniques such

  10. Fluorescence LiDAR UFL-9 investigations of chlorophyll a, CDOM and TSM spatial distribution on the Lake Issyk-Kul

    NASA Astrophysics Data System (ADS)

    Pelevin, Vadim; Zavialov, Peter; Kremenetskiy, Vyacheslav; Osokina, Varya

    2016-04-01

    Results of two field surveys on the Lake Issyk-Kul made by Shirshov scientific group in 2014, 2015 are presented, obtained with the help of fluorescence LiDAR UFL-9. High resolution maps of spatial distribution of chlorophyll a, colored dissolved organic material (CDOM) and total suspended matter (TSM) concentrations in the upper water layer are shown and discussed. Issyk-Kul Lake is the ultra oligotrophic water body in which the concentrations of the conctituents mentioned above are fairly low, but well distinguishable by fluorescence lidar. Explorations were conducted onbord the moving medium-size research vessels in various weather and daytime conditions in continuous mode.

  11. Determination of cloud effective particle size from the multiple-scattering effect on lidar integration-method temperature measurements.

    PubMed

    Reichardt, Jens; Reichardt, Susanne

    2006-04-20

    A method is presented that permits the determination of the cloud effective particle size from Raman- or Rayleigh-integration temperature measurements that exploits the dependence of the multiple-scattering contributions to the lidar signals from heights above the cloud on the particle size of the cloud. Independent temperature information is needed for the determination of size. By use of Raman-integration temperatures, the technique is applied to cirrus measurements. The magnitude of the multiple-scattering effect and the above-cloud lidar signal strength limit the method's range of applicability to cirrus optical depths from 0.1 to 0.5. Our work implies that records of stratosphere temperature obtained with lidar may be affected by multiple scattering in clouds up to heights of 30 km and beyond. PMID:16633433

  12. Fluorescence lidar measurements at the archaeological site House of Augustus at Palatino, Rome

    NASA Astrophysics Data System (ADS)

    Raimondi, Valentina; Alisi, Chiara; Barup, Kerstin; Bracciale, Maria Paola; Broggi, Alessandra; Conti, Cinzia; Hällström, Jenny; Lognoli, David; Palombi, Lorenzo; Santarelli, Maria Laura; Sprocati, Anna Rosa

    2013-10-01

    Early diagnostics and documentation fulfill an essential role for an effective planning of conservation and restoration of cultural heritage assets. In particular, remote sensing techniques that do not require the use of scaffolds or lifts, such as fluoresence lidar, can provide useful information to obtain an overall assessment of the status of the investigated surfaces and can be exploited to address analytical studies in selected areas. Here we present the results of a joint Italian-Swedish project focused on documenting and recording the status of some sections of the part closed to the public by using fluorescence hyperspectral imaging lidar. The lidar used a tripled-frequency Nd:YAG laser emitting at 355 nm as excitation source and an intensified, gated 512x512-pixel CCD as detector. The lidar had imaging capabilities thanks to a computer-controlled scanning mirror. The fluorescence characteristics of fresco wall paintings were compared to those of fresco fragments found at the same archaeological site and separately examined in the lab using FT-IR and Raman techniques for the identification of pigments. The fluorescence lidar was also used to remotely detect the growth of phototrophic biodeteriogens on the walls. The fluorescence lidar data were compared with results from biological sampling, cultivation and laboratory analysis by molecular techniques.

  13. Hydrologic enforcement of lidar DEMs

    USGS Publications Warehouse

    Poppenga, Sandra K.; Worstell, Bruce B.; Danielson, Jeffrey J.; Brock, John C.; Evans, Gayla A.; Heidemann, H. Karl

    2014-01-01

    Hydrologic-enforcement (hydro-enforcement) of light detection and ranging (lidar)-derived digital elevation models (DEMs) modifies the elevations of artificial impediments (such as road fills or railroad grades) to simulate how man-made drainage structures such as culverts or bridges allow continuous downslope flow. Lidar-derived DEMs contain an extremely high level of topographic detail; thus, hydro-enforced lidar-derived DEMs are essential to the U.S. Geological Survey (USGS) for complex modeling of riverine flow. The USGS Coastal and Marine Geology Program (CMGP) is integrating hydro-enforced lidar-derived DEMs (land elevation) and lidar-derived bathymetry (water depth) to enhance storm surge modeling in vulnerable coastal zones.

  14. Clinical assessment of excessive daytime sleepiness in the diagnosis of sleep disorders.

    PubMed

    Rosenberg, Russell P

    2015-12-01

    Daytime sleepiness is common, but, in some individuals, it can be excessive and lead to distress and impairment. For many of these individuals, excessive daytime sleepiness is simply caused by poor sleep habits or self-imposed sleep times that are not sufficient to maintain alertness throughout the day. For others, daytime sleepiness may be related to a more serious disorder or condition such as narcolepsy, idiopathic hypersomnia, or obstructive sleep apnea. Clinicians must be familiar with the disorders associated with excessive daytime sleepiness and the assessment methods used to diagnose these disorders in order to identify patients who need treatment. PMID:26717537

  15. Four-year study of Middle East and Sahara dust intrusions in terms of particle lidar ratio: Observations with lidar and sun/sky photometer over Limassol, Cyprus

    NASA Astrophysics Data System (ADS)

    Nisantzi, Argyro; Elisavet Mamouri, Rodanthi; Hadjimitsis, Diofantos; Ansmann, Albert

    2015-04-01

    The remote sensing station of the Cyprus University of Technology (CUT) at Limassol (34.7oN, 33oE, 50m above sea level a.s.l.) is located in the southeast part of the Mediterranean (150km south of Turkey and 250km west of Syria) and dust aerosol components from Sahara and Middle East deserts comprise the major sources of dust layers in the study area. The CUT station is equipped with a European Aerosol Research Lidar Network (EARLINET) lidar and Aerosol Robotic Network (AERONET) sun/sky photometer. The combined database of four years (2010 -2013) of observations was used to compare extinction-to-backscatter ratios (lidar ratios) for dust from Middle East and Sahara deserts. For the first time, a long-term lidar study on the lidar ratio of Middle East desert dust is presented. The results are compared with respective findings for Saharan dust outbreaks. The Limassol lidar station at the island of Cyprus in the eastern Mediterranean Sea is unique because it is the only site of the EARLINET which is influenced by a statistically significant number (5-7) of Middle East dust outbreaks each year as well as by numerous Saharan dust outbreaks (>10 per year). For this analysis we considered 17 major dust outbreaks from the Middle East and 32 dust outbreaks from North Africa. Simultaneous EARLINET lidar and AERONET photometer observations were conducted at Limassol almost day by day over the four year period from April 2010 to December 2013. The quality of the retrieval is checked within a case study by comparing the results with respective Raman lidar solutions for particle backscatter, extinction, and lidar ratio. The applied combined lidar/photometer retrievals corroborate recent findings regarding the difference between Middle East and Saharan desert dust lidar ratios. We found values from 44-65 sr with a mean value of 52.7 sr for Saharan dust and from 35-46 sr with a mean value of 41.1 sr for Middle East dust. The presented data analysis, however, also demonstrates the

  16. Standards - An Important Step for the (Public) Use of Lidars