Science.gov

Sample records for daytime raman lidar

  1. Performance modeling of ultraviolet Raman lidar systems for daytime profiling of atmospheric water vapor

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Whiteman, D. N.; Melfi, S. H.; Goldsmith, J. E. M.; Bisson, S. E.; Lapp, M.

    1991-01-01

    We describe preliminary results from a comprehensive computer model developed to guide optimization of a Raman lidar system for measuring daytime profiles of atmospheric water vapor, emphasizing an ultraviolet, solar-blind approach.

  2. Simulation of improved daytime capabilities to retrieve aerosol extinction coefficient using Rotational Raman lidars

    NASA Astrophysics Data System (ADS)

    Madonna, Fabio; Amodeo, Aldo

    2015-04-01

    So far, most of the multi-wavelength Raman lidar observations of aerosols are performed at night, because Raman signals are weak compared to daylight background. Different techniques have been developed to improve Raman lidar daytime capabilities in the past years. Indeed, the retrieval of aerosol extinction during daytime is feasible through the detection of backscattered radiation due to the pure Rotational Raman Spectrum (PRRS) of molecular nitrogen or oxygen, much brighter than the vibration-rotation spectrum. The existing techniques for the measure of PRRS are based on small-bandwidth emitter and receiver systems and on a small receiver field of view to suppress the daylight background. They have been successfully tested and implemented in a few systems which are already in operational use within EARLINET (European Aerosol research Lidar NETwork). In this work, several different configurations used as receiver for a lidar system detecting the PRRS in daytime conditions are compared by means of numerical simulations. The configurations are mainly differentiated by the design of the spectral selection unit implemented in the receiver of each lidar system, based on a narrow-bandwidth filters, broad-band filters, grating spectrometers, and hybrid solutions. The research of configurations able to be more easily implemented on a large number of lidar systems within ACTRIS are explored. To show the performances of the investigated lidar configurations, a blind test has been carried out to get the simulated performances in the retrieval of the aerosol extinction profile during night-time and daytime starting from a known scenario. The atmospheric scenario used as the reference profile is represented by one of the night-time measurements with MUSA (MUlti-wavelength system for Aerosol) lidar at CNR-IMAA Atmospheric Observatory - CIAO (15.72E, 40.60N , 760 m a.s.l., Potenza, Italy). Though all the configuration considered in the blind test proved to be solid to

  3. Daytime operation of a pure rotational Raman lidar by use of a Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Arshinov, Yuri; Bobrovnikov, Sergey; Serikov, Ilya; Ansmann, Albert; Wandinger, Ulla; Althausen, Dietrich; Mattis, Ina; Müller, Detlef

    2005-06-01

    We propose to use a Fabry-Perot interferometer (FPI) in a pure rotational Raman lidar to isolate return signals that are due to pure rotational Raman scattering from atmospheric nitrogen against the sky background. The main idea of this instrumental approach is that a FPI is applied as a frequency comb filter with the transmission peaks accurately matched to a comb of practically equidistant lines of a pure rotational Raman spectrum (PRRS) of nitrogen molecules. Thus a matched FPI transmission comb cuts out the spectrally continuous sky background light from the spectral gaps between the PRRS lines of nitrogen molecules while it is transparent to light within narrow spectral intervals about these lines. As the width of the spectral gaps between the lines of the PRRS of nitrogen molecules is ~114 times the width of an individual spectral line, cutting out of the sky background from these gaps drastically improves the signal-to-background ratio of the pure rotational Raman lidar returns. This application of the FPI enables one to achieve daytime temperature profiling in the atmosphere with a pure rotational Raman lidar in the visible and near-UV spectral regions. We present an analysis of application of the FPI to filtering out the pure rotational Raman lidar returns against the solar background. To demonstrate the feasibility of the approach proposed, we present temperature profiles acquired during a whole-day measurement session in which a Raman lidar equipped with a FPI was used. For comparison, temperature profiles acquired with Vaisala radiosondes launched from the measurement site are also presented.

  4. Daytime Raman lidar measurements of water vapor during the ARM 1997 water vapor intensive observation period

    SciTech Connect

    Turner, D.D.; Goldsmith, J.E.M.

    1998-04-01

    Because of the importance of water vapor, the ARM program initiated a series of three intensive operating periods (IOPs) at its CART (Cloud And Radiation Testbed) site. The goal of these IOPs is to improve and validate the state-of-the-art capabilities in measuring water vapor. To date, two of the planned three IOPs have occurred: the first was in September of 1996, with an emphasis on the lowest kilometer, while the second was conducted from September--October 1997 with a focus on both the upper troposphere and lowest kilometer. These IOPs provided an excellent opportunity to compare measurements from other systems with those made by the CART Raman lidar. This paper addresses primarily the daytime water vapor measurements made by the lidar system during the second of these IOPs.

  5. Evaluation of Daytime Measurements of Aerosols and Water Vapor made by an Operational Raman Lidar over the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Turner, David; Clayton, Marian; Schmid, Beat; Covert, David; Elleman, Robert; Orgren, John; Andrews, Elisabeth; Goldsmith, John E. M.; Jonsson, Hafidi

    2006-01-01

    Raman lidar water vapor and aerosol extinction profiles acquired during the daytime over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma (36.606 N, 97.50 W, 315 m) are evaluated using profiles measured by in situ and remote sensing instruments deployed during the May 2003 Aerosol Intensive Operations Period (IOP). The automated algorithms used to derive these profiles from the Raman lidar data were first modified to reduce the adverse effects associated with a general loss of sensitivity of the Raman lidar since early 2002. The Raman lidar water vapor measurements, which are calibrated to match precipitable water vapor (PWV) derived from coincident microwave radiometer (MWR) measurements were, on average, 5-10% (0.3-0.6 g/m(exp 3) higher than the other measurements. Some of this difference is due to out-of-date line parameters that were subsequently updated in the MWR PWV retrievals. The Raman lidar aerosol extinction measurements were, on average, about 0.03 km(exp -1) higher than aerosol measurements derived from airborne Sun photometer measurements of aerosol optical thickness and in situ measurements of aerosol scattering and absorption. This bias, which was about 50% of the mean aerosol extinction measured during this IOP, decreased to about 10% when aerosol extinction comparisons were restricted to aerosol extinction values larger than 0.15 km(exp -1). The lidar measurements of the aerosol extinction/backscatter ratio and airborne Sun photometer measurements of the aerosol optical thickness were used along with in situ measurements of the aerosol size distribution to retrieve estimates of the aerosol single scattering albedo (omega(sub o)) and the effective complex refractive index. Retrieved values of omega(sub o) ranged from (0.91-0.98) and were in generally good agreement with omega(sub o) derived from airborne in situ measurements of scattering and absorption. Elevated aerosol

  6. Advances in Raman Lidar Measurements of Water Vapor

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Evans, K.; Demoz, B.; DiGirolamo, P.; Mielke, B.; Stein, B.; Goldsmith, J. E. M.; Tooman, T.; Turner, D.; Starr, David OC. (Technical Monitor)

    2002-01-01

    Recent technology upgrades to the NASA/GSFC Scanning Raman Lidar have permitted significant improvements in the daytime and nighttime measurement of water vapor using Raman lidar. Numerical simulation has been used to study the temperature sensitivity of the narrow spectral band measurements presented here.

  7. Airborne Raman lidar

    NASA Astrophysics Data System (ADS)

    Heaps, Wm. S.; Burris, J.

    1996-12-01

    We designed and tested an airborne lidar system using Raman scattering to make simultaneous measurements of methane, water vapor, and temperature in a series of flights on a NASA-operated C-130 aircraft. We present the results for methane detection, which show that the instrument has the requisite sensitivity to atmospheric trace gases. Ultimately these measurements can be used to examine the transport of chemically processed air from within the polar vortex to mid-latitudinal regions and the exchange of stratospheric air between tropical and mid-latitudinal regions.

  8. Performance Modeling of an Airborne Raman Water Vapor Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Schwemmer, G.; Berkoff, T.; Plotkin, H.; Ramos-Izquierdo, L.; Pappalardo, G.

    2000-01-01

    A sophisticated Raman lidar numerical model had been developed. The model has been used to simulate the performance of two ground-based Raman water vapor lidar systems. After tuning the model using these ground-based measurements, the model is used to simulate the water vapor measurement capability of an airborne Raman lidar under both day-and night-time conditions for a wide range of water vapor conditions. The results indicate that, under many circumstances, the daytime measurements possess comparable resolution to an existing airborne differential absorption water vapor lidar while the nighttime measurement have higher resolution. In addition, a Raman lidar is capable of measurements not possible using a differential absorption system.

  9. Raman Lidar (RL) Handbook

    SciTech Connect

    Newsom, RK

    2009-03-01

    The Raman lidar at the ARM Climate Research Facility (ACRF) Southern Great Plains (SGP) Central Facility (SGPRL) is an active, ground-based laser remote sensing instrument that measures height and time resolved profiles of water vapor mixing ratio and several cloud- and aerosol-related quantities. The system is a non-commercial custom-built instrument developed by Sandia National Laboratories specifically for the ARM Program. It is fully computer automated, and will run unattended for many days following a brief (~5-minute) startup period. The self-contained system (requiring only external electrical power) is housed in a climate-controlled 8’x8’x20’ standard shipping container.

  10. Water Measurements using a Raman Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Demoz, B.; Wang, Z.; Veselovskii, I.; Evans, K.; DiGirolamo, P.

    2002-01-01

    The research record for the usefulness of Raman Lidar in addressing a broad range of important atmospheric research topics is well established. Raman lidar technology has been used to measure tropospheric aerosols, stratospheric aerosols and cirrus clouds. Arguably the most important measurements offered by Raman lidar for both dynamic and radiative studies, however, is that of water vapor. We will describe large improvements in Raman lidar measurements of water vapor made possible through recent technology upgrades. Furthermore, we will present the use of Raman lidar to study liquid water in the atmosphere and describe current research into the use of Raman lidar measurements to estimate ice water content of cirrus clouds.

  11. Improvements in Raman Lidar Measurements Using New Interference Filter Technology

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Potter, John R.; Tola, Rebecca; Veselovskii, Igor; Cadirola, Martin; Rush, Kurt; Comer, Joseph

    2006-01-01

    Narrow-band interference filters with improved transmission in the ultra-violet have been developed under NASA-funded research and used in the Raman Airborne Spectroscopic Lidar (RASL) in ground-based, upward-looking tests. Measurements were made of atmospheric water vapor, cirrus cloud optical properties and carbon dioxide that improve upon any previously demonstrated using Raman lidar. Daytime boundary and mixed layer profiling of water vapor mixing ratio up to an altitude of approximately 4 h is performed with less than 5% random error using temporal and spatial resolution of 2-minutes and 60 - 210, respectively. Daytime cirrus cloud optical depth and extinction-to-backscatter ratio measurements are made using 1 -minute average. Sufficient signal strength is demonstrated to permit the simultaneous profiling of carbon dioxide and water vapor mixing ratio into the free troposphere during the nighttime. A description of the filter technology developments is provided followed by examples of the improved Raman lidar measurements.

  12. Compact airborne Raman lidar for profiling aerosol, water vapor and clouds.

    PubMed

    Liu, Bo; Wang, Zhien; Cai, Yong; Wechsler, Perry; Kuestner, William; Burkhart, Matthew; Welch, Wayne

    2014-08-25

    A compact airborne Raman lidar system, which can perform water vapor and aerosol measurements both during nighttime and daytime is described. The system design, setup and the data processing methods are described in the paper. The Raman lidar was tested on University of Wyoming King Air research aircraft (UWKA) during the Wyoming King Air PBL Exploratory Experiment (KAPEE) in 2010. An observation showing clouds, aerosols and a dry line is presented to illustrate the lidar detection capabilities. Comparisons of the water vapor and aerosol measurements using the Raman lidar and other in situ airborne instruments show good agreement. PMID:25321266

  13. Raman LIDAR Detection of Cloud Base

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Starr, David; Whiteman, David; Evans, Keith; Hlavka, Dennis; Peravali, Ravindra

    1999-01-01

    Advantages introduced by Raman lidar systems for cloud base determination during precipitating periods are explored using two case studies of light rain and virga conditions. A combination of the Raman lidar derived profiles of water vapor mixing ratio and aerosol scattering ratio, together with the Raman scattered signals from liquid drops, can minimize or even eliminate some of the problems associated with cloud boundary detection using elastic backscatter lidars.

  14. Advanced Raman water vapor lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Melfi, S. Harvey; Ferrare, Richard A.; Evans, Keith A.; Ramos-Izquierdo, Luis; Staley, O. Glenn; Disilvestre, Raymond W.; Gorin, Inna; Kirks, Kenneth R.; Mamakos, William A.

    1992-01-01

    Water vapor and aerosols are important atmospheric constituents. Knowledge of the structure of water vapor is important in understanding convective development, atmospheric stability, the interaction of the atmosphere with the surface, and energy feedback mechanisms and how they relate to global warming calculations. The Raman Lidar group at the NASA Goddard Space Flight Center (GSFC) developed an advanced Raman Lidar for use in measuring water vapor and aerosols in the earth's atmosphere. Drawing on the experience gained through the development and use of our previous Nd:YAG based system, we have developed a completely new lidar system which uses a XeF excimer laser and a large scanning mirror. The additional power of the excimer and the considerably improved optical throughput of the system have resulted in approximately a factor of 25 improvement in system performance for nighttime measurements. Every component of the current system has new design concepts incorporated. The lidar system consists of two mobile trailers; the first (13m x 2.4m) houses the lidar instrument, the other (9.75m x 2.4m) is for system control, realtime data display, and analysis. The laser transmitter is a Lambda Physik LPX 240 iCC operating at 400 Hz with a XeF gas mixture (351 nm). The telescope is a .75m horizontally mounted Dall-Kirkham system which is bore sited with a .8m x 1.1m elliptical flat which has a full 180 degree scan capability - horizon to horizon within a plane perpendicular to the long axis of the trailer. The telescope and scan mirror assembly are mounted on a 3.65m x .9m optical table which deploys out the rear of the trailer through the use of a motor driven slide rail system. The Raman returns from water vapor (403 nm), nitrogen (383 nm) and oxygen (372 nm) are measured in addition to the direct Rayleigh/Mie backscatter (351). The signal from each of these is split at about a 5/95 ratio between two photomultiplier detectors. The 5 percent detector is used for

  15. What Good is Raman Water Vapor Lidar?

    NASA Technical Reports Server (NTRS)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  16. Pulsed remote Raman system for daytime measurements of mineral spectra.

    PubMed

    Misra, Anupam K; Sharma, Shiv K; Chio, Chi Hong; Lucey, Paul G; Lienert, Barry

    2005-08-01

    A remote Raman system has been developed utilizing a 532nm pulsed laser and gated intensified charged couple device (ICCD) detector in the oblique geometry. When the system is set for 50m sample distance it is capable of measuring Raman spectra of minerals located at distances in the range of 10-65m from the telescope. Both daytime and nighttime operations are feasible and the spectra of minerals can be measured in a short period of time, of the order of a few seconds. In oblique geometry, measured sampling depth is more than 30m, during which the system maintains very high performance without any adjustments. Much longer sampling depth (0.1-120m) has been observed when the system is configured in the coaxial geometry. Clear advantages of using a gated detection mode over the continuous (CW) mode of operation in reducing the background signal and eliminating long-lived fluorescence signals from the Raman spectra are presented. The performance of the pulsed Raman system is demonstrated by measuring spectra of Raman standards including benzene (C(6)H(6)) and naphthalene (C(10)H(8)), a low Raman cross section silicate mineral muscovite (KAl(2)(Si(3)Al)O(10)(OH)(2)), and a medium Raman cross section mineral calcite (CaCO(3)). PMID:16029850

  17. Raman lidar/AERI PBL Height Product

    DOE Data Explorer

    Ferrare, Richard

    2012-12-14

    Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.

  18. Airborne Raman Lidar and its Applications for Atmospheric Process Studies

    NASA Astrophysics Data System (ADS)

    Wang, Zhien; Wechsler, Perry J.; Mahon, Nick; Wu, Decheng; Liu, Bo; Burkhart, Matthew; Glover, Brent; Kuestner, William; Welch, Wayne; Thomson, Andrew

    2016-06-01

    Although ground-base Raman lidars are widely used for atmospheric observations, the capabilities of airborne Raman lidar is not fully explored. Here we presented two recently developed airborne Raman lidar systems for the studies of atmospheric boundary layer process, aerosols, and clouds. The systems are briefly introduced. Observation examples are presented to illustrate the unique observational capabilities of airborne Raman lidar and their applications for atmospheric process studies.

  19. Raman Lidar Retrievals of Mixed Layer Heights

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Clayton, M.; Turner, D. D.; Newsom, R. K.; Goldsmith, J.

    2012-12-01

    Accurate determination of the atmospheric mixing layer (ML) height is important for modeling the transport of aerosols and aerosol precursors and forecasting air quality. Aerosol and water vapor profiles measured by the DOE ARM SGP and the new TWP (Darwin) ground based Raman lidars provide direct measurements of the vertical structure of ML. We have developed automated algorithms to identify sharp gradients in aerosols and water vapor at the top of the ML and have used these algorithms to derive ML heights for extended periods over the last few years. During the afternoon, these ML heights generally compare favorably with ML heights derived from potential temperature profiles derived from coincident radiosondes. However, retrieving ML heights via lidar measurements of water vapor and aerosol gradients is problematic in the presence of elevated aerosol and water vapor layers which are often observed, especially at night. Consequently, we take advantage of recent modifications to these lidars that permit continuous temperature profiling, and compute ML heights using potential temperature profiles derived from Raman lidar and Atmospheric Emitted Radiance Interferometer (AERI) measurements. The resulting ML heights agree well with ML heights derived from radiosondes and provide a more realistic representation of the diurnal ML behavior. We use the Raman lidar aerosol and water vapor profiles and ML heights to derive the fractions of total column precipitable water vapor and aerosol optical thickness within and above the ML and show how the ML heights and these fractions vary with time of day and season. The SGP Raman lidar measurements show that the fraction of the aerosol optical thickness and precipitable water vapor above the ML increases from 30-60% during the day to 60-80% at night. The Darwin Raman lidar measurements reveal a shallow, moist cloud-topped ML with little diurnal variability during the austral summer and deeper ML with more diurnal variability during

  20. Raman Lidar Measurements during the International HZO Project. 1; Instrumentation and Analysis Techniques, Popular Summary

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Demoz, B.; DiGirolamo, P.; Comer, J.; Veselovskii, I.; Evans, K.; Wang, Z.; Cadirola, M.; Rush, K.; Schwemmer, G.; Gentry, B.

    2005-01-01

    The amount of water vapor in the atmosphere helps to determine the likelihood that severe storms may develop. The concentration of water vapor, though, is highly variable in space and time. And yet small changes in water vapor concentration over a short period of time or over a short spatial distance can determine whether a storm may or may not develop. Therefore, in order to improve the ability to forecast severe weather such as thunderstorms it is important to measure water vapor in the atmosphere with high spatial and temporal resolution. One of the most attractive research tools for measuring water vapor in the atmosphere with high spatial and temporal resolution is a Raman lidar. A Raman lidar consists of a laser transmitter, a telescope receiver and optics and electronics for processing opticand electronic signals. A laser pulse is emitted into the atmosphere and it interacts with molecules in the atmosphere causing them to become excited and to emit, through the Raman process, photons of different wavelength than emitted by the laser. The molecule that emitted these emitted. This is the way that a Raman lidar identifies water vapor molecules in the atmosphere. can be identified based on the wavelength of the photons One of the great challenges in Raman lidar measurements has been to make useful daytime measurements of the water vapor profile under bright daytime conditions. In this first of two papers, we describe the instrumentation and analysis of the first documented Raman lidar that is able to measure water vapor in the daytime with sufficient quality to permit the study of developing storm systems.

  1. Raman lidar characterization of PBL structure during COPS

    NASA Astrophysics Data System (ADS)

    Summa, D.; Di Girolamo, P.; Stelitano, D.; Di Iorio, T.

    2012-04-01

    The planetary boundary layer includes the portion of the atmosphere which is directly influenced by the presence of the Earth's surface. Aerosol particles trapped within the PBL can be used as tracers to study boundary-layer vertical structure and time variability. Aerosols can be dispersed out of the PBL during strong convection or temporary breaks of the capping temperature inversion. As a result of this, elastic backscatter signals collected by lidar systems can be used to determine the height and the internal structure of the PBL. Our analysis considers a method based on the first order derivative of the range-corrected elastic signal (RCS), which is a modified version of the method defined by Seibert et al. (2000) and Sicard et al. (2006). The analysis is focused on selected case studies collected by the Raman lidar system BASIL during the Convective and Orographically-induced Precipitation Study (COPS), held in Southern Germany and Eastern France in the period 01 June - 31 August 2007. Measurements were performed by the Raman lidar system BASIL, which was operational in Achern (Black Forest, Lat: 48.64 ° N, Long: 8.06 ° E, Elev.: 140 m). During COPS, BASIL collected more than 500 hours of measurements, distributed over 58 measurement days and 34 intensive observation periods (IOPs), covering both night-time and daytime and the transitions between the two. Therefore BASIL data during COPS represent a unique source of information for the study of the boundary layer structure and evolution. Potential temperature profiles obtained from the radiosonde data were used to get an additional estimate of the boundary layer height. Estimates of the PBL height and structure for specific case studies obtained from the lidar data and their comparison with estimates obtained from the radiosonde data will be illustrated and discussed at the Conference.

  2. Variation in daytime troposphereic aerosol via LIDAR and sunphotometer measurements in Penang, Malaysia

    NASA Astrophysics Data System (ADS)

    Tan, F. Y.; Hee, W. S.; Hwee, S. L.; Abdullah, K.; Tiem, L. Y.; Matjafri, M. Z.; Lolli, S.; Holben, B.; Welton, E. J.

    2014-03-01

    Aerosol is one of the important factors that will influence the air quality, visibility, clouds, and precipitation processes in the troposphere. In this work, we investigated the variation of aerosol during daytime in Penang, Malaysia in certain days within July 2013. Vertical LIDAR scattering ratio and backscattering profiles, and columnar optical properties (optical depth, Angström exponent) of aerosols were measured using Raymetrics LIDAR and a CIMEL sunphotometer respectively. Specifically, we have determined the daytime variation of intensity and distribution level of aerosol, as well as the planetary boundary layer (PBL) and cloud classification. Subsequently, the data of columnar aerosol optical depth (AOD) and size distribution in the atmospheric were used to quantify the properties of aerosol variation during daytime over Penang, Malaysia.

  3. Advances in Raman Lidar Measurements of Water Vapor, Cirrus Clouds and Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Potter, John R.; Tola, Rebecca; Rush, Kurt; Veselovskii, Igor; Cadirola, Martin; Comer, Joseph

    2006-01-01

    Narrow-band interference filters with improved transmission in the ultraviolet have been developed under NASA-funded research and used in the Raman Airborne Spectroscopic Lidar (RASL) in ground- based, upward-looking tests. RASL is an airborne Raman Lidar system designed to measure water vapor mixing ratio, and aerosol backscatter/extinction/depolarization. It also possesses the capability to make experimental measurements of cloud liquid water and carbon dioxide. It is being prepared for first flight tests during the summer of 2006. With the newly developed filters installed in RASL, measurements were made of atmospheric water vapor, cirrus cloud optical properties and carbon dioxide that improve upon any previously demonstrated using Raman lidar. Daytime boundary layer profiling of water vapor mixing ratio is performed with less than 5% random error using temporal and spatial resolution of 2-minutes and 60 - 210, respectively. Daytime cirrus cloud optical depth and extinction- to-backscatter ratio measurements are made using 1-minute average. Sufficient signal strength is demonstrated to permit the simultaneous profiling of carbon dioxide and water vapor mixing ratio into the free troposphere during the nighttime. Downward-looking from an airborne RASL should possess the same measurement statistics with approximately a factor of 5 - 10 decrease in averaging time. A description of the technology improvements are provided followed by examples of the improved Raman lidar measurements.

  4. Raman lidar observations of cloud liquid water.

    PubMed

    Rizi, Vincenzo; Iarlori, Marco; Rocci, Giuseppe; Visconti, Guido

    2004-12-10

    We report the design and the performances of a Raman lidar for long-term monitoring of tropospheric aerosol backscattering and extinction coefficients, water vapor mixing ratio, and cloud liquid water. We focus on the system's capabilities of detecting Raman backscattering from cloud liquid water. After describing the system components, along with the current limitations and options for improvement, we report examples of observations in the case of low-level cumulus clouds. The measurements of the cloud liquid water content, as well as the estimations of the cloud droplet effective radii and number densities, obtained by combining the extinction coefficient and cloud water content within the clouds, are critically discussed. PMID:15617280

  5. Atmospheric temperature measurements, using Raman lidar

    NASA Technical Reports Server (NTRS)

    Salzman, J. A.; Coney, T. A.

    1974-01-01

    The Raman-shifted return of a lidar system had been used to make atmospheric temperature measurements. The measurements were made along a horizontal path at temperatures ranging from -30 to 30 C and at ranges of about 100 meters. The temperature data were acquired by recording the intensity ratio of two portions of the rotational Raman spectrum, which were simultaneously sampled from a preset range. These tests verified that the theoretical predictions formulated in the design of the system were adequate. Measurements were made to an accuracy of + or - 4 C with 1-minute temporal resolution.

  6. LOSA-M2 aerosol Raman lidar

    SciTech Connect

    Balin, Yu S; Bairashin, G S; Kokhanenko, G P; Penner, I E; Samoilova, S V

    2011-10-31

    The scanning LOSA-M2 aerosol Raman lidar, which is aimed at probing atmosphere at wavelengths of 532 and 1064 nm, is described. The backscattered light is received simultaneously in two regimes: analogue and photon-counting. Along with the signals of elastic light scattering at the initial wavelengths, a 607-nm Raman signal from molecular nitrogen is also recorded. It is shown that the height range of atmosphere probing can be expanded from the near-Earth layer to stratosphere using two (near- and far-field) receiving telescopes, and analogue and photon-counting lidar signals can be combined into one signal. Examples of natural measurements of aerosol stratification in atmosphere along vertical and horizontal paths during the expeditions to the Gobi Desert (Mongolia) and Lake Baikal areas are presented.

  7. Raman lidar profiling of water vapor and aerosols over the ARM SGP Site

    SciTech Connect

    Ferrare, R.A.

    2000-01-09

    The authors have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. The Raman lidar sytem is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols. These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. The authors have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

  8. RAMAN LIDAR PROFILING OF WATER VAPOR AND AEROSOLS OVER THE ARM SGP SITE.

    SciTech Connect

    FERRARE,R.A.

    2000-01-09

    We have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. This Raman lidar system is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols (Goldsmith et al., 1998). These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. We have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES) (Feltz et al., 1998; Turner et al., 1999). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

  9. Daytime lidar measurements of tidal winds in the mesospheric sodium layer at Urbana, Illinois

    NASA Technical Reports Server (NTRS)

    Kwon, K. H.; Senft, D. C.; Gardner, C. S.; Voelz, D. G.; Sechrist, C. F., Jr.; Roesler, F. L.

    1986-01-01

    For more than 15 years lidar systems have been used to study the chemistry and dynamics of the mesospheric sodium layer. Because the layer is an excellent tracer of atmospheric wave motions, sodium lidar has proven to be particularly useful for studying the influence of gravity waves and tides on mesospheric dynamics. These waves, which originate in the troposphere and stratosphere, propagate through the mesosphere and dissipate their energy near the mesopause making important contributions to the momentum and turbulence budget in this region of the atmosphere. Recently, the sodium lidar was modified for daytime operation so that wave phenomena and chemical effects could be monitored throughout the complete diurnal cycle. The results of continuous 24 hour lidar observations of the sodium layer structure are presented alond with measurement of the semidiurnal tidal winds.

  10. Single-pulse standoff Raman detection of chemicals from 120 m distance during daytime.

    PubMed

    Misra, Anupam K; Sharma, Shiv K; Acosta, Tayro E; Porter, John N; Bates, David E

    2012-11-01

    The capability to analyze and detect the composition of distant samples (minerals, organics, and chemicals) in real time is of interest for various fields including detecting explosives, geological surveying, and pollution mapping. For the past 10 years, the University of Hawaii has been developing standoff Raman systems suitable for measuring Raman spectra of various chemicals in daytime or nighttime. In this article we present standoff Raman spectra of various minerals and chemicals obtained from a distance of 120 m using single laser pulse excitation during daytime. The standoff Raman system utilizes an 8-inch Meade telescope as collection optics and a frequency-doubled 532 nm Nd : YAG laser with pulse energy of 100 mJ/pulse and pulse width of 10 ns. A gated intensified charge-coupled device (ICCD) detector is used to measure time-resolved Raman spectra in daytime with detection time of 100 ns. A gate delay of 800 ns (equivalent to target placed at 120 m distance) was used to minimize interference from the atmospheric gases along the laser beam path and near-field scattering. Reproducible, good quality single-shot Raman spectra of various inorganic and organic chemicals and minerals such as ammonium nitrate, potassium perchlorate, sulfur, gypsum, calcite, benzene, nitrobenzene, etc., were obtained through sealed glass vials during daytime. The data indicate that various chemicals could easily be identified from their Raman fingerprint spectra from a far standoff distance in real time using single-shot laser excitation. PMID:23146183

  11. The Zugspitze Raman Lidar: System Testing

    NASA Astrophysics Data System (ADS)

    Höveler, Katharina; Klanner, Lisa; Trickl, Thomas; Vogelmann, Hannes

    2016-06-01

    A high-power Raman lidar system has been installed at the high-altitude research station Schneefernerhaus (Garmisch-Partenkirchen, Germany) at 2675 m a.s.l., at the side of the existing wide-range differrential-absorption lidar. An industrial XeCl laser was modified for polarized single-line operation at an average power of about 175 W. This high power and a 1.5-m-diameter receiver are expected to allow us to extend the operating range for water-vapour sounding to more than 25 km, at an accuracy level of the order of 10 %. In addition, temperature measurements in the free troposphere and to altitudes beyond 80 km are planned. The system is currently thoroughly tested and exhibits an excellent performance up to the lowermost stratosphere. We expect that results for higher altitudes can be presented at the meeting.

  12. Geometrical constraint experimental determination of Raman lidar overlap profile.

    PubMed

    Li, Jian; Li, Chengcai; Zhao, Yiming; Li, Jing; Chu, Yiqi

    2016-06-20

    A simple experimental method to determine the overlap profile of Raman lidar is presented in this paper. Based on Mie and Raman backscattering signals and a geometrically constrained condition, the overlap profile of a Raman lidar system can be determined. Our approach simultaneously retrieves the lidar ratio of aerosols, which is one of the most important sources of uncertainty in the overlap profile determination. The results indicate that the overlap factor is significantly influenced by the lidar ratio in experimental methods. A representative case study indicates that the correction of the overlap profile obtained by this method is practical and feasible. PMID:27409119

  13. Atmospheric Science Research Using Raman Lidar at NASA/GSFC

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Abshire, James B. (Technical Monitor)

    2002-01-01

    A broad overview of the research that is taking place in the Code 924 Raman Lidar group will be presented. The measurement capabilities of two instruments, the Scanning Raman Lidar (SRL) and the Raman Airborne Spectroscopic Lidar (RASL), will be discussed. Case studies to be presented include: 1) high resolution measurements of water vapor during a boundary layer bore wave event; 2) a study of the influence of thin cirrus clouds on satellite retrievals of water vapor; 3) the retrieval of warm cloud properties such as droplet radius and number density; and 4) remote aerosol characterization using multiwavelength lidar and others.

  14. Macrophysical Properties of Tropical Cirrus Clouds from the CALIPSO Satellite and from Ground-based Micropulse and Raman Lidars

    SciTech Connect

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.; Sivaraman, Chitra; Vaughan, Mark A.; Winker, D.; Turner, David D.

    2013-08-27

    Lidar observations of cirrus cloud macrophysical properties over the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program Darwin, Australia site are compared from the Cloud-Aerosol Lidar and In- frared Pathfinder Satellite Observation (CALIPSO) satellite, the ground-based ARM micropulse lidar (MPL), and the ARM Raman lidar (RL). Comparisons are made using the subset of profiles where the lidar beam is not fully attenuated. Daytime measurements using the RL are shown to be relatively unaffected by the solar background and are therefore suited for checking the validity of diurnal cycles. RL and CALIPSO cloud fraction profiles show good agreement while the MPL detects significantly less cirrus, particularly during the daytime. Both MPL and CALIPSO observations show that cirrus clouds occur less frequently during the day than at night at all altitudes. In contrast, the RL diurnal cy- cle is significantly different than zero only below about 11 km; where it is the opposite sign (i.e. more clouds during the daytime). For cirrus geomet- rical thickness, the MPL and CALIPSO observations agree well and both datasets have signficantly thinner clouds during the daytime than the RL. From the examination of hourly MPL and RL cirrus cloud thickness and through the application of daytime detection limits to all CALIPSO data we find that the decreased MPL and CALIPSO cloud thickness during the daytime is very likely a result of increased daytime noise. This study highlights the vast im- provement the RL provides (compared to the MPL) in the ARM program's ability to observe tropical cirrus clouds as well as a valuable ground-based lidar dataset for the validation of CALIPSO observations and to help im- prove our understanding of tropical cirrus clouds.

  15. Ultraviolet Rayleigh-Mie lidar for daytime-temperature profiling of the troposphere.

    PubMed

    Hua, Dengxin; Uchida, Masaru; Kobayashi, Takao

    2005-03-01

    A UV Rayleigh-Mie scattering lidar has been developed for daytime measurement of temperature and aerosol optical properties in the troposphere. The transmitter is a narrowband, injection-seeded, pulsed, third-harmonic Nd:YAG laser at an eye-safe wavelength of 355 nm. Two Fabry-Perot etalons (FPEs) with a dual-pass optical layout filter the molecular Rayleigh scattering components spectrally for retrieval of the temperature and provide a high rejection rate for aerosol Mie scattering in excess of 43 dB. The Mie signal is filtered with a third FPE filter for direct profiling of aerosol optical properties. The Mie scattering component in the Rayleigh signals, which will have influence on temperature measurements, is corrected by using a measure of aerosol scattering because of the relative insufficiency of Mie rejection of Rayleigh filters in the presence of dense aerosols or clouds, and the Mie rejection capability of system is thus improved. A narrowband interference filter is incorporated with the FPEs to block solar radiation. Also, the small field of view (0.1 mrad) of the receiver and the UV wavelength used enhance the ability of the lidar to suppress the solar background signal in daytime measurement. The system is relatively compact, with a power-aperture product of 0.18 W m(-2), and has a high sensitivity to temperature change (0.62%/K). Lidar measurements taken under different weather conditions (winter and summer) are demonstrated. Good agreement between the lidar and the radiosonde measurements was obtained in terms of lapse rates and inversions. Statistical temperature errors of less than 1 K up to a height of 2 km are obtainable, with an averaging time of approximately 12 min for daytime measurements. PMID:15765712

  16. Raman lidar characterization using a reference lamp

    NASA Astrophysics Data System (ADS)

    Landulfo, Eduardo; da Costa, Renata F.; Rodrigues, Patricia F.; da Silva Lopes, Fábio J.

    2014-10-01

    The determination of the amount of water vapor in the atmosphere using lidar is a calibration dependent technique. Different collocated instruments are used for this purpose, like radiossoundings and microwave radiometers. When there are no collocated instruments available, an independente lamp mapping calibration technique can be used. Aiming to stabilish an independ technique for the calibration of the six channels Nd-YAG Raman lidar system located at the Center for Lasers and Applications (CLA), S˜ao Paulo, Brazil, an optical characterization of the system was first performed using a reference tungsten lamp. This characterization is useful to identify any possible distortions in the interference filters, telescope mirror and stray light contamination. In this paper we show three lamp mapping caracterizations (01/16/2014, 01/22/2014, 04/09/2014). The first day is used to demostrate how the tecnique is useful to detect stray light, the second one how it is sensible to the position of the filters and the third one demostrates a well optimized optical system.

  17. High Spectral Resolution Lidar Based on a Potassium Faraday Dispersive Filter for Daytime Temperature Measurement

    NASA Astrophysics Data System (ADS)

    Abo, Makoto; Pham Le Hoai, Phong; Aruga, Kouki; Nagasawa, Chikao; Shibata, Yasukuni

    2016-06-01

    In this paper, a new high-spectral-resolution lidar technique is proposed for measuring the profiles of atmospheric temperature in daytime. Based on the theory of high resolution Rayleigh scattering, the feasibility and advantages of using potassium (K) Faraday dispersive optical filters as blocking filters for measuring atmospheric temperature are demonstrated with a numerical simulation. It was found that temperature profiles could be measured within 1K error for the height of 9 km with a 500 m range resolution in 60 min by using laser pulses with 1mJ/pulse and 1 kHz, and a 50 cm diameter telescope. Furthermore, we are developing compact pulsed laser system for temperature lidar transmitter.

  18. Raman/Rayleigh/fluorescence lidar for atmosphere measurement

    NASA Astrophysics Data System (ADS)

    Gong, Shunsheng; Zheng, Wengang; Li, Hongjun; Yang, Guotao

    1998-08-01

    A Raman/Rayleigh/Fluorescence Lidar established in the Wuhan Institute of Physics & Mathematics, China for the measurements of the atmosphere is described, and the preliminary observation results for the lower, upper atmosphere and the sodium layer over Wuhan, China obtained by this lidar are presented in this paper.

  19. Scanning Raman Lidar Measurements During the WVIOP2000 and AFWEX Field Experiments

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Evans, K. D.; Berkoff, T. B.; Demoz, B. D.; DiGirolamo, P.; Smith, David E. (Technical Monitor)

    2001-01-01

    The NASA/Goddard Space Flight Center Scanning Raman Lidar (SRL) participated in the Water Vapor IOP 2000 (WVIOP2000) and ARM FIRE Water Vapor Experiment (AFWEX) at the DOE SGP CART site in northern Oklahoma. These experiments occurred during the period of September and December, 2000. The goals of both the WVIOP2000 and AFWEX were to better characterize the water vapor measurement capability of numerous sensors in the lower atmosphere and upper troposphere, respectively. The SRL received several hardware upgrades in anticipation of these experiments that permitted improved measurements of water vapor during the daytime and in the upper troposphere (UT). The daytime SRL water vapor error statistics were demonstrated a factor of 2-3 improvement compared to the permanently stationed CART Raman lidar (CARL). The performance of the SRL in the UT showed improvements as well. The technological upgrades that permitted these improved SRL measurements could also be implemented in the CARL system. Data examples demonstrating the new daytime and upper tropospheric measurement capability of the SRL will be shown at the meeting. In addition, preliminary analysis will be presented on several topics: 1) inter comparison of the water vapor measurements for several water vapor sensors including SRL, CARL, the NASA/Langley Lidar Atmospheric Sensing Experiment (LASE) flown onboard the NASA DC-8, in-situ sensors flown on the DC-8, and the Max Planck Institute Differential Absorption Lidar 2) comparison of cirrus cloud measurements using SRL and CARL and 3) case studies of meteorological events that occurred during the IOPs such as a cold frontal passage on the night of September 23.

  20. Use of rotational Raman measurements in multiwavelength aerosol lidar for evaluation of particle backscattering and extinction

    NASA Astrophysics Data System (ADS)

    Veselovskii, I.; Whiteman, D. N.; Korenskiy, M.; Suvorina, A.; Pérez-Ramírez, D.

    2015-10-01

    Vibrational Raman scattering from nitrogen is commonly used in aerosol lidars for evaluation of particle backscattering (β) and extinction (α) coefficients. However, at mid-visible wavelengths, particularly in the daytime, previous measurements have possessed low signal-to-noise ratio. Also, vibrational scattering is characterized by a significant frequency shift of the Raman component, so for the calculation of α and β information about the extinction Ångström exponent is needed. Simulation results presented in this study demonstrate that ambiguity in the choice of Ångström exponent can be the a significant source of uncertainty in the calculation of backscattering coefficients when optically thick aerosol layers are considered. Both of these issues are addressed by the use of pure-rotational Raman (RR) scattering, which is characterized by a higher cross section compared to nitrogen vibrational scattering, and by a much smaller frequency shift, which essentially removes the sensitivity to changes in the Ångström exponent. We describe a practical implementation of rotational Raman measurements in an existing Mie-Raman lidar to obtain aerosol extinction and backscattering at 532 nm. A 2.3 nm width interference filter was used to select a spectral range characterized by low temperature sensitivity within the anti-Stokes branch of the RR spectrum. Simulations demonstrate that the temperature dependence of the scattering cross section does not exceed 1.5 % in the 230-300 K range, making correction for this dependence quite easy. With this upgrade, the NASA GSFC multiwavelength Raman lidar has demonstrated useful α532 measurements and was used for regular observations. Examples of lidar measurements and inversion of optical data to the particle microphysics are given.

  1. UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    di Girolamo, P.; Summa, D.; Lin, R.-F.; Maestri, T.; Rizzi, R.; Masiello, G.

    2009-07-01

    Raman lidar measurements performed in Potenza by the Raman lidar system BASIL in the presence of cirrus clouds are discussed. Measurements were performed on 6 September 2004 in the frame of Italian phase of the EAQUATE Experiment. The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, and consequently relative humidity, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. BASIL is also capable to provide measurements of the particle backscatter and extinction coefficient, and consequently lidar ratio (at the time of these measurements only at one wavelength), which are fundamental to infer geometrical and microphysical properties of clouds. A case study is discussed in order to assess the capability of Raman lidars to measure humidity in presence of cirrus clouds, both below and inside the cloud. While air inside the cloud layers is observed to be always under-saturated with respect to water, both ice super-saturation and under-saturation conditions are found inside these clouds. Upper tropospheric moistening is observed below the lower cloud layer. The synergic use of the data derived from the ground based Raman Lidar and of spectral radiances measured by the NAST-I Airborne Spectrometer allows to determine the temporal evolution of the atmospheric cooling/heating rates due to the presence of the cirrus cloud anvil. Lidar measurements beneath the cirrus cloud layer have been interpreted using a 1-D cirrus cloud model with explicit microphysics. The 1-D simulations indicates that sedimentation-moistening has contributed significantly to the moist anomaly, but other mechanisms are also contributing. This result supports the hypothesis that the observed mid-tropospheric humidification is a real feature which is strongly influenced by the sublimation of precipitating ice crystals. Results

  2. UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    di Girolamo, P.; Summa, D.; Lin, R.-F.; Maestri, T.; Rizzi, R.; Masiello, G.

    2009-11-01

    Raman lidar measurements performed in Potenza by the Raman lidar system BASIL in the presence of cirrus clouds are discussed. Measurements were performed on 6 September 2004 in the frame of the Italian phase of the EAQUATE Experiment. The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, and consequently relative humidity, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. BASIL is also capable to provide measurements of the particle backscatter and extinction coefficient, and consequently lidar ratio (at the time of these measurements, only at one wavelength), which are fundamental to infer geometrical and microphysical properties of clouds. A case study is discussed in order to assess the capability of Raman lidars to measure humidity in presence of cirrus clouds, both below and inside the cloud. While air inside the cloud layers is observed to be always under-saturated with respect to water, both ice super-saturation and under-saturation conditions are found inside these clouds. Upper tropospheric moistening is observed below the lower cloud layer. The synergic use of the data derived from the ground based Raman Lidar and of spectral radiances measured by the NAST-I Airborne Spectrometer allows the determination of the temporal evolution of the atmospheric cooling/heating rates due to the presence of the cirrus cloud. Lidar measurements beneath the cirrus cloud layer have been interpreted using a 1-D cirrus cloud model with explicit microphysics. The 1-D simulations indicate that sedimentation-moistening has contributed significantly to the moist anomaly, but other mechanisms are also contributing. This result supports the hypothesis that the observed mid-tropospheric humidification is a real feature which is strongly influenced by the sublimation of precipitating ice crystals. Results

  3. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China

    PubMed Central

    Wang, Wei; Gong, Wei; Mao, Feiyue; Pan, Zengxin; Liu, Boming

    2016-01-01

    We comprehensively evaluated particle lidar ratios (i.e., particle extinction to backscatter ratio) at 532 nm over Wuhan in Central China by using a Raman lidar from July 2013 to May 2015. We utilized the Raman lidar data to obtain homogeneous aerosol lidar ratios near the surface through the Raman method during no-rain nights. The lidar ratios were approximately 57 ± 7 sr, 50 ± 5 sr, and 22 ± 4 sr under the three cases with obviously different pollution levels. The haze layer below 1.8 km has a large particle extinction coefficient (from 5.4e-4 m−1 to 1.6e-4 m−1) and particle backscatter coefficient (between 1.1e-05 m−1sr−1 and 1.7e-06 m−1sr−1) in the heavily polluted case. Furthermore, the particle lidar ratios varied according to season, especially between winter (57 ± 13 sr) and summer (33 ± 10 sr). The seasonal variation in lidar ratios at Wuhan suggests that the East Asian monsoon significantly affects the primary aerosol types and aerosol optical properties in this region. The relationships between particle lidar ratios and wind indicate that large lidar ratio values correspond well with weak winds and strong northerly winds, whereas significantly low lidar ratio values are associated with prevailing southwesterly and southerly wind. PMID:27213414

  4. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China.

    PubMed

    Wang, Wei; Gong, Wei; Mao, Feiyue; Pan, Zengxin; Liu, Boming

    2016-01-01

    We comprehensively evaluated particle lidar ratios (i.e., particle extinction to backscatter ratio) at 532 nm over Wuhan in Central China by using a Raman lidar from July 2013 to May 2015. We utilized the Raman lidar data to obtain homogeneous aerosol lidar ratios near the surface through the Raman method during no-rain nights. The lidar ratios were approximately 57 ± 7 sr, 50 ± 5 sr, and 22 ± 4 sr under the three cases with obviously different pollution levels. The haze layer below 1.8 km has a large particle extinction coefficient (from 5.4e-4 m(-1) to 1.6e-4 m(-1)) and particle backscatter coefficient (between 1.1e-05 m(-1)sr(-1) and 1.7e-06 m(-1)sr(-1)) in the heavily polluted case. Furthermore, the particle lidar ratios varied according to season, especially between winter (57 ± 13 sr) and summer (33 ± 10 sr). The seasonal variation in lidar ratios at Wuhan suggests that the East Asian monsoon significantly affects the primary aerosol types and aerosol optical properties in this region. The relationships between particle lidar ratios and wind indicate that large lidar ratio values correspond well with weak winds and strong northerly winds, whereas significantly low lidar ratio values are associated with prevailing southwesterly and southerly wind. PMID:27213414

  5. Development of a 266 nm Raman lidar for profiling atmospheric water vapor

    NASA Astrophysics Data System (ADS)

    Uesugi, T.; Tsuda, T.; Yabuki, M.; Liu, Y.

    2014-12-01

    It is projected that localized extreme weather events could increase due to the effects of global warming, resulting in severe weather disasters, such as a torrential rain, floods, and so on. Understanding water vapor's behavior in the atmosphere is essen- tial to understand a fundamental mechanism of these weather events. Therefore, continuous monitoring system to measure the atmospheric water vapor with good spatio-temporal resolution is required. We have developed several water vapor Raman lidar systems employing the laser wavelengths of 355 and 532 nm. However, the signal-to-noise ratio of the Raman lidar strongly depends on the sky background because of the detection of the weak inelastic scattering of light by molecules. Therefore, these systems were mainly used during nighttime. Hence, we have newly developed a water vapor Raman lidar using a quadrupled Nd:YAG laser at a wavelength of 266 nm. This wavelength is in the ultraviolet (UV) range below 300 nm known as the "solar-blind" region, because practically all radiation at these wavelengths is absorbed by the ozone layer in the stratosphere. It has the advantage of having no daytime solar background radiation in the system. The lidar is equipped with a 25 cm receiving telescope and is used for measuring the light separated into an elastic backscatter signal and vibrational Raman signals of nitrogen and water vapor at wavelengths of 266.1, 283.6, and 294.6 nm, respectively. This system can be used for continuous water vapor measurements in the lower troposphere. This study introduces the design of the UV lidar system and shows the preliminary results of water vapor profiles.

  6. Cirrus Cloud Optical and Microphysical Property Measurements with Raman Lidar

    NASA Astrophysics Data System (ADS)

    Demoz, B.; Wang, Z.; Whiteman, D.

    2006-12-01

    To improve our understanding of the impact of cirrus clouds on the current and future climate, improved knowledge of cirrus cloud optical and microphysical properties is needed. However, long-term studies of the problem indicate that accurate cirrus cloud measurements are challenging, especially in the low ice water content regime most frequent in the tropical cirrus layers. Recent advances in Raman lidar techniques have demonstrated that Raman lidar is an excellent tool to provide reliable cirrus cloud optical and microphysical properties, which are important to study cirrus clouds as well as to validate satellite cirrus cloud measurements. Based on elastic and nitrogen Raman signals, cirrus cloud optical depth and extinction to backscatter ratio can be quantified. By utilizing the Raman scattered intensities from ice crystals, a new method to remotely sense cirrus ice water content and general effective radius profiles has been demonstrated with NASA/GSFC Scanning Raman Lidar (SRL) measurements. Since the intensity of Raman scattering is fundamentally proportional to the number of molecules involved, this method provides a more direct way of measuring the ice water content compared with other schemes. Based on the SRL measurements, these Raman lidar capabilities will be illustrated.

  7. Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols.

    PubMed

    Goldsmith, J E; Blair, F H; Bisson, S E; Turner, D D

    1998-07-20

    We describe an operational, self-contained, fully autonomous Raman lidar system that has been developed for unattended, around-the-clock atmospheric profiling of water vapor, aerosols, and clouds. During a 1996 three-week intensive observational period, the system operated during all periods of good weather (339 out of 504 h), including one continuous five-day period. The system is based on a dual-field-of-view design that provides excellent daytime capability without sacrificing nighttime performance. It is fully computer automated and runs unattended following a simple, brief (~5-min) start-up period. We discuss the theory and design of the system and present detailed analyses of the derivation of water-vapor profiles from the lidar measurements. PMID:18285967

  8. A N2-Raman lidar on board ULA for Arctic atmospheric studies

    NASA Astrophysics Data System (ADS)

    de Cacqueray, Victor; Chazette, Patrick; Totems, Julien; Raut, Jean-Christophe; Shang, Xiaoxia; Marpillat, Alexandre

    2016-04-01

    A key scientific question relative to atmospheric studies in the Arctic is the quantification and the vertical distribution of aerosols and their interactions with clouds in the lower troposphere. In May 2016, as part of the PARCS (Pollution in the ARCtic System) project, we will conduct an experiment in order to assess the optical properties and concentrations of aerosols near the North-Cape in Norway. This campaign will involve a new airborne N2-Raman lidar (355 nm) on board an Ultra Light Aircraft (ULA) and an original instrumental synergy between ground-based radar (95 GHz) and N2-H2O Raman lidar. The airborne experimental preparation for this campaign was divided in two weeks: the first week of experiments above the Rhône valley in June 2015 and the second in the Maurienne valley in the French Alps in December 2015. The capability of the N2-Raman lidar to perform measurements from the ULA during daytime has been checked. After the first campaign of tests, the laser emitted energy per pulse has been upgraded to improve the signal to noise ratio. Both the strategies and the main results of the two field campaigns will be presented. We will focus on the error budget for the retrieval of the aerosol optical thickness in the first atmospheric kilometer. We will present in addition the potential of such a lidar to monitor industrial pollution plumes in the planetary boundary layer. The airborne lidar measurements will be analysed taking into account the synergy with an in situ particle sizer (FIDAS) provided by the ADDAIR Company.

  9. A water vapor Raman lidar as part of the Swiss meteorology service

    NASA Astrophysics Data System (ADS)

    Dinoev, T.; Arshinov, Y.; Bobrovnikov, S.; Ristori, P.; Calpini, B.; van den Bergh, H.; Parlange, M. B.; Simeonov, V.

    2009-09-01

    Vertical water vapor profiles with high time resolution are necessary for improved numerical weather prediction (NWP). Meteorological services rely, in part, on NWP models for short to mid-term weather forecasting. Typically vertical water vapor profiles are acquired from twice a day radiosonde observations which have time resolution insufficient to resolve rapidly changing meteorological phenomena. New operational instruments with near real-time sampling of the water vapor field are needed. Raman LIDARs can provide vertical humidity profiles within the troposphere with time and range resolution suitable for NWP model assimilation and validation. That is why in 2004 the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL), and the Swiss National Science Foundation (SNSF), initiated a project to build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor and aerosol properties. Currently RALMO (Raman Lidar for meteorological observations) is operational at MeteoSwiss aerological station at Payerne. It is fully automated, self-contained, eye-safe instrument for day and night-time vertical profiling of water vapor mixing ratio, aerosol backscatter, and extinction within the troposphere. The lidar profiles of water vapor mixing ratio have vertical resolution from 15 m (boundary layer) to 100-450 m (free troposphere) and time resolution of 2 min (boundary layer) to 30 min (free troposphere). The range resolved aerosol extinction and backscatter coefficients are measured with similar resolution. The lidar operational range is from ~50 m to 5 km during daytime (detection limit of 0.2 g/kg), and from ~50 m to 10 km night-time. LabView based software allows continuous fully automated operation. Automated data treatment software reads the accumulated lidar data, derives vertical profiles of water vapor mixing ratio (grams per kilogram of dry air) estimates statistical error, and stores the result

  10. Gluing for Raman lidar systems using the lamp mapping technique.

    PubMed

    Walker, Monique; Venable, Demetrius; Whiteman, David N

    2014-12-20

    In the context of combined analog and photon counting (PC) data acquisition in a Lidar system, glue coefficients are defined as constants used for converting an analog signal into a virtual PC signal. The coefficients are typically calculated using Lidar profile data taken under clear, nighttime conditions since, in the presence of clouds or high solar background, it is difficult to obtain accurate glue coefficients from Lidar backscattered data. Here we introduce a new method in which we use the lamp mapping technique (LMT) to determine glue coefficients in a manner that does not require atmospheric profiles to be acquired and permits accurate glue coefficients to be calculated when adequate Lidar profile data are not available. The LMT involves scanning a halogen lamp over the aperture of a Lidar receiver telescope such that the optical efficiency of the entire detection system is characterized. The studies shown here involve two Raman lidar systems; the first from Howard University and the second from NASA/Goddard Space Flight Center. The glue coefficients determined using the LMT and the Lidar backscattered method agreed within 1.2% for the water vapor channel and within 2.5% for the nitrogen channel for both Lidar systems. We believe this to be the first instance of the use of laboratory techniques for determining the glue coefficients for Lidar data analysis. PMID:25608203

  11. Application of resonance Raman LIDAR for chemical species identification

    SciTech Connect

    Chen, C.L.; Heglund, D.L.; Ray, M.D.; Harder, D.; Dobert, R.; Leung, K.P.; Wu, M.; Sedlacek, A.

    1997-07-01

    BNL has been developing a remote sensing technique for the detection of atmospheric pollutants based on the phenomenon of resonance Raman LIDAR that has also incorporated a number of new techniques/technologies designed to extend it`s performance envelope. When the excitation frequency approaches an allowed electronic transition of the molecule, an enormous enhancement of the inelastic scattering cross-section can occur, often up to 2 to 4 orders-of-magnitude, and is referred to as resonance Raman (RR), since the excitation frequency is in resonance with an allowed electronic transition. Exploitation of this enhancement along with new techniques such as pattern recognition algorithms to take advantage of the spectral fingerprint and a new laser frequency modulation technique designed to suppress broadband fluorescence, referred to as Frequency modulated Excitation Raman Spectroscopy (FreMERS) and recent developments in liquid edge filter technology, for suppression of the elastic channel, all help increase the overall performance of Raman LIDAR.

  12. NASA/GSFC Scanning Raman Lidar Measurements of Water Vapor and Cirrus Clouds during WVIOP2000 and AFWEX

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Evans, K. D.; DiGirolamo, P.; Demoz, B. B.; Turner, D.; Comstock, J.; Ismail, S.; Ferrare, R. A.; Browell, E. V.; Goldsmith, J. E. M.; Abshire, James B. (Technical Monitor)

    2002-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was deployed to the Southern Great Plains CART site from September - December, 2000 and participated in two field campaigns devoted to comparisons of various water vapor measurement technologies and calibrations. These campaigns were the Water Vapor Intensive Operations Period 2000 (WVIOP2000) and the ARM FIRE Water Vapor Experiment (AFWEX). WVIOP2000 was devoted to validating water vapor measurements in the lower atmosphere while AFWEX had similar goals but for measurements in the upper troposphere. The SRL was significantly upgraded both optically and electronically prior to these field campaigns. These upgrades enabled the SRL to demonstrate the highest resolution lidar measurements of water vapor ever acquired during the nighttime and the highest S/N Raman lidar measurements of water vapor in the daytime; more than a factor of 2 increase in S/N versus the DOE CARL Raman Lidar. Examples of these new measurement capabilities along with comparisons of SRL and CARL, LASE, MPI-DIAL, in-situ sensors, radiosonde, and others will be presented. The profile comparisons of the SRL and CARL have revealed what appears to be an overlap correction or countrate correction problem in CARL. This may be involved in an overall dry bias in the precipitable water calibration of CARL with respect to the MWR of approx. 4%. Preliminary analysis indicates that the application of a temperature dependent correction to the narrowband Raman lidar measurements of water vapor improves the lidar/Vaisala radiosonde comparisons of upper tropospheric water vapor. Other results including the comparison of the first-ever simultaneous measurements from four water vapor lidar systems, a bore-wave event captured at high resolution by the SRL and cirrus cloud optical depth studies using the SRL and CARL will be presented at the meeting.

  13. Raman Lidar Profiles–Temperature (RLPROFTEMP) Value-Added Product

    SciTech Connect

    Newsom, RK; Sivaraman, C; McFarlane, SA

    2012-10-31

    The purpose of this document is to describe the Raman Lidar Profiles–Temperature (RLPROFTEMP) value-added product (VAP) and the procedures used to derive atmospheric temperature profiles from the raw RL measurements. Sections 2 and 4 describe the input and output variables, respectively. Section 3 discusses the theory behind the measurement and the details of the algorithm, including calibration and overlap correction.

  14. Temperature measurement error simulation of the pure rotational Raman lidar

    NASA Astrophysics Data System (ADS)

    Jia, Jingyu; Huang, Yong; Wang, Zhirui; Yi, Fan; Shen, Jianglin; Jia, Xiaoxing; Chen, Huabin; Yang, Chuan; Zhang, Mingyang

    2015-11-01

    Temperature represents the atmospheric thermodynamic state. Measure the atmospheric temperature accurately and precisely is very important to understand the physics of the atmospheric process. Lidar has some advantages in the atmospheric temperature measurement. Based on the lidar equation and the theory of pure rotational Raman (PRR), we've simulated the temperature measurement errors of the double-grating-polychromator (DGP) based PRR lidar. First of all, without considering the attenuation terms of the atmospheric transmittance and the range in the lidar equation, we've simulated the temperature measurement errors which are influenced by the beam splitting system parameters, such as the center wavelength, the receiving bandwidth and the atmospheric temperature. We analyzed three types of the temperature measurement errors in theory. We've proposed several design methods for the beam splitting system to reduce the temperature measurement errors. Secondly, we simulated the temperature measurement error profiles by the lidar equation. As the lidar power-aperture product is determined, the main target of our lidar system is to reduce the statistical and the leakage errors.

  15. Raman Lidar Measurements During the International H2O Project. 2; Instrument Comparisons and Case Studies

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Demoz, B.; DiGirolamo, P.; Corner, J.; Veselovskii, I.; Evans, K.; Wang, Z.; Sabatino, D.; Schwemmer, G.; Gentry, B.

    2005-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP) that occurred in May and June, 2002 in the midwestern part of the U. S. The SRL system configuration and methods of data analysis were described in part I of this paper. In this second part, comparisons of SRL water vapor measurements and those of chilled mirror radiosonde and LASE airborne water vapor lidar are performed. Two case studies are presented; one for daytime and one for nighttime. The daytime case study is of a convectively driven boundary layer event and is used to characterize the SRL water vapor random error characteristics. The nighttime case study is of a thunderstorm-generated cirrus cloud case that is studied in it s meteorological context. Upper tropospheric humidification due to precipitation from the cirrus cloud is quantified as is the cirrus cloud ice water content and particle depolarization ratio. These detailed cirrus cloud measurements are being used in a cirrus cloud modeling study.

  16. Progress on the Use of Combined Analog and Photon Counting Detection for Raman Lidar

    NASA Technical Reports Server (NTRS)

    Newsom, Rob; Turner, Dave; Clayton, Marian; Ferrare, Richard

    2008-01-01

    The Atmospheric Radiation Measurement (ARM) program Raman Lidar (CARL) was upgraded in 2004 with a new data system that provides simultaneous measurements of both the photomultiplier analog output voltage and photon counts. The so-called merge value added procedure (VAP) was developed to combine the analog and count-rate signals into a single signal with improved dynamic range. Earlier versions of this VAP tended to cause unacceptably large biases in the water vapor mixing ratio during the daytime as a result of improper matching between the analog and count-rate signals in the presence of elevated solar background levels. We recently identified several problems and tested a modified version of the merge VAP by comparing profiles of water vapor mixing ratio derived from CARL with simultaneous sonde data over a six month period. We show that the modified merge VAP significantly reduces the daytime bias, and results in mean differences that are within approximately 1% for both nighttime and daytime measurements.

  17. CART and GSFC raman lidar measurements of atmospheric aerosol backscattering and extinction profiles for EOS validation and ARM radiation studies

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Turner, D. D.; Melfi, S. H.; Whiteman, D. N.; Schwenner, G.; Evans, K. D.; Goldsmith, J. E. M.; Tooman, T.

    1998-01-01

    The aerosol retrieval algorithms used by the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Multi-Angle Imaging SpectroRadiometer (MISR) sensors on the Earth Observing Satellite (EOS) AM-1 platform operate by comparing measured radiances with tabulated radiances that have been computed for specific aerosol models. These aerosol models are based almost entirely on surface and/or column averaged measurements and so may not accurately represent the ambient aerosol properties. Therefore, to validate these EOS algorithms and to determine the effects of aerosols on the clear-sky radiative flux, we have begun to evaluate the vertical variability of ambient aerosol properties using the aerosol backscattering and extinction profiles measured by the Cloud and Radiation Testbed (CART) and NASA Goddard Space Flight Center (GSFC) Raman Lidars. Using the procedures developed for the GSFC Scanning Raman Lidar (SRL), we have developed and have begun to implement algorithms for the CART Raman Lidar to routinely provide profiles of aerosol extinction and backscattering during both nighttime and ,daytime operations. Aerosol backscattering and extinction profiles are computed for both lidar systems using data acquired during the 1996 and 1997 Water Vapor Intensive Operating Periods (IOPs). By integrating these aerosol extinction profiles, we derive measurements of aerosol optical thickness and compare these with coincident sun photometer measurements. We also use these measurements to measure the aerosol extinction/backscatter ratio S(sub a) (i.e. 'lidar ratio'). Furthermore, we use the simultaneous water vapor measurements acquired by these Raman lidars to investigate the effects of water vapor on aerosol optical properties.

  18. Pure rotational Raman lidar for the measurement of vertical profiles of temperature in the lower atmosphere

    NASA Astrophysics Data System (ADS)

    Satyanarayana, M.; Radhakrishnan, S. R.; Presennakumar, B.; Murty, V. S.; Bindhu, R.

    2006-12-01

    The design and development of the new Raman lidar of the Space Physics Laboratory, Vikram Sarabhai Space Centre is presented here. This station is located at 8 degrees 33 minutes N, 77 degrees E in India. This lidar can monitor atmospheric temperature (using Pure Rotational Raman Spectrum), aerosol extinction coefficient, water vapor profile and clouds. Advantages of Pure Rotational Raman method over Vibrational Raman method are presented with the result obtained using Vibrational Raman lidar. Optical layout of the lidar system, PRRS method and aerosol extinction measurements are described briefly.

  19. Water-Vapor Raman Lidar System Reaches Higher Altitude

    NASA Technical Reports Server (NTRS)

    Leblanc, Thierry; McDermid, I. Stewart

    2010-01-01

    A Raman lidar system for measuring the vertical distribution of water vapor in the atmosphere is located at the Table Mountain Facility (TMF) in California. Raman lidar systems for obtaining vertical water-vapor profiles in the troposphere have been in use for some time. The TMF system incorporates a number of improvements over prior such systems that enable extension of the altitude range of measurements through the tropopause into the lower stratosphere. One major obstacle to extension of the altitude range is the fact that the mixing ratio of water vapor in the tropopause and the lower stratosphere is so low that Raman lidar measurements in this region are limited by noise. Therefore, the design of the TMF system incorporates several features intended to maximize the signal-to-noise ratio. These features include (1) the use of 355-nm-wavelength laser pulses having an energy (0.9 J per pulse) that is high relative to the laser-pulse energy levels of prior such systems, (2) a telescope having a large aperture (91 cm in diameter) and a narrow field of view (angular width .0.6 mrad), and (3) narrow-bandpass (wavelength bandwidth 0.6 nm) filters for the water-vapor Raman spectral channels. In addition to the large-aperture telescope, three telescopes having apertures 7.5 cm in diameter are used to collect returns from low altitudes.

  20. Double-grating monochromator for a pure rotational Raman lidar

    NASA Astrophysics Data System (ADS)

    Ansmann, Albert; Arshinov, Yuri; Bobrovnikov, Sergey M.; Mattis, Ina; Serikov, Il'ya B.; Wandinger, Ulla

    1999-01-01

    We propose a new optical arrangement of the double grating monochromator (DGRM), intended for use in a pure rotational Raman-lidar. The main idea of the construction proposed is in the use of optical monofibers, to couple two chambers of the DGRM. The coupling with optical monofibers enables isolation of two pairs of spectral portions in the S and O branches of the pure rotational Raman spectra (PRRS) of nitrogen and oxygen symmetric relative to the line of exciting radiation. The use of monofibers provides for optically summing the symmetric portions of the PRRS at the exit of the second monochromator, thus increasing the power of PRRS collected for further temperature retrieval. It is important that this approach provides for better than 107 suppression of the spectral line, due to unshifted Mie+Rayleigh scattering. As calculations and laboratory experiments show the end-to-end transmission of the DGRM, with the account of optical summing mentioned, can compare with the transmission of the interference filters available. At the same time, the DGRM provides better spectral purity of the RRS portions isolated, which is a crucial point of the Raman-lidar temperature measurements. Temperature profiles of the atmosphere acquired with the combined Raman- lidar of the Institute for Tropospheric Research in Leipzig, Germany, equipped with the DGRM proposed, showed a good agreement with the profiles measured with a radiosonge.

  1. High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar

    NASA Astrophysics Data System (ADS)

    Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin

    2010-05-01

    Meteorological services rely, in part, on numerical weather prediction (NWP). Twice a day radiosonde observations of water vapor provide the required data for assimilation but this time resolution is insufficient to resolve certain meteorological phenomena. High time resolution temperature profiles from microwave radiometers are available as well but have rather low vertical resolution. The Raman LIDARs are able to provide temperature and humidity profiles with high time and range resolution, suitable for NWP model assimilation and validation. They are as well indispensible tools for continuous aerosol profiling for high resolution atmospheric boundary layer studies. To improve the database available for direct meteorological applications the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL) and the Swiss National Science Foundation (SNSF) initiated a project to design and build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor with the possibility to further upgrade it with an aerosol and temperature channels. The project was initiated in 2004 and RALMO (Raman Lidar for meteorological observations) was inaugurated in August 2008 at MeteoSwiss aerological station at Payerne. RALMO is currently operational and continuously profiles water vapor mixing ratio, aerosol backscatter ratio and aerosol extinction. The instrument is a fully automated, self-contained, eye-safe Raman lidar operated at 355 nm. Narrow field-of-view multi-telescope receiver and narrow band detection allow day and night-time vertical profiling of the atmospheric humidity. The rotational-vibrational Raman lidar responses from water vapor and nitrogen are spectrally separated by a high-throughput fiber coupled diffraction grating polychromator. The elastic backscatter and pure-rotational Raman lidar responses (PRR) from oxygen and nitrogen are spectrally isolated by a double grating polychromator and are used to

  2. Pure rotational Raman lidar based on wavelength division multiplexing technique for temperature profiling of the troposphere

    NASA Astrophysics Data System (ADS)

    Mao, Jiandong; Hua, Dengxin; Hu, Liaolin; Gao, Fei; Wu, Min

    2007-11-01

    A new high-accuracy pure rotational Raman (PRR) lidar system at a laser wavelength of 532.25 nm, based on a technique of wavelength division multiplexing (WDM), has been designed for profiling the atmospheric temperature of the low troposphere. A special WDM, which was usually used in fiber communication field, is designed to separate two PRR signals of N II and O II for temperature retrieval, and to simultaneously block Mie- and Rayleigh-scattering signals with a rejection rate of large than 10 7. A numerical calculation is simulated to verify the feasibility of the lidar system, and the results showed that the PRR lidar based on spectroscopic characteristic of the WDM is capable of measuring the atmospheric temperature vertical profiles in the low troposphere, and a statistical temperature error less then 1K was achieved up to a height of 3.3 km and 5 km for daytime and nighttime measurement, respectively, under conditions of 300 mJ laser energy, 25-cm-diameter telescope, 10 min observation time, solar radiance of 3×10 8 Wm -2sr -1nm -1 and atmospheric backscattering ratio less then 3.4.

  3. Continuous Time Series of Water Vapor Profiles from a Combination of Raman Lidar and Microwave Radiometer

    NASA Astrophysics Data System (ADS)

    Foth, Andreas; Baars, Holger; Di Girolamo, Paolo; Pospichal, Bernhard

    2016-06-01

    In this paper, we present a method to retrieve continuous water vapor profiles from a combination of a Raman lidar and a microwave radiometer. The integrated water vapor from the microwave radiometer is used to calibrate the Raman lidar operationally resulting in small biases compared to radiosondes. The height limitations for Raman lidars (cloud base and daylight contamination) can be well compensated by the application of a two-step algorithm combining the Raman lidars mass mixing ratio and the microwave radiometers brightness temperatures.

  4. Particle backscatter, extinction, and lidar ratio profiling with Raman lidar in south and north China

    SciTech Connect

    Tesche, Matthias; Ansmann, Albert; Mueller, Detlef; Althausen, Dietrich; Engelmann, Ronny; Hu Min; Zhang Yuanghang

    2007-09-01

    Aerosol Raman lidar observations of profiles of the particle extinction and backscatter coefficients and the respective extinction-to-backscatter ratio (lidar ratio) were performed under highly polluted conditions in the Pearl River Delta (PRD) in southern China in October 2004 and at Beijing during a clear period with moderately polluted to background aerosol conditions in January 2005. The anthropogenic haze in the PRD is characterized by volume light-extinction coefficients of particles ranging from approximately 200 to800 Mm-1 and lidar ratios mostly between 40 and 55 sr (average of47{+-}6 sr). Almost clean air masses were observed throughout the measurements of the Beijing campaign. These air masses originated from arid desert-steppe-like regions (greater Gobi area).Extinction values usually varied between 100 and300 Mm-1, and the lidar ratios were considerably lower (compared with PRD values) with values mostly from 30 to 45 sr (average of38{+-}7 sr). Gobi dust partly influenced the observations. Unexpectedly low lidar ratios of approximately 25 sr were found for a case of background aerosol with a low optical depth of 0.05. The low lidar ratios are consistent with Mie-scattering calculations applied to ground-based observations of particle size distributions.

  5. Raman lidar observations of particle hygroscopicity during COPS

    NASA Astrophysics Data System (ADS)

    Stelitano, D.; Di Girolamo, P.; Summa, D.

    2012-04-01

    The characterization of particle hygroscopicity has primary importance for climate monitoring and prediction. Model studies have demonstrated that relative humidity (RH) has a critical influence on aerosol climate forcing. The relationship between aerosol backscattering and relative humidity has been investigated in numerous studies (among others, Pahlow et al., 2006; Wulfmeyer and Feingold, 2000; Veselovskii et al., 2009). Hygroscopic properties of aerosols influence particle size distribution and refractive index and hence their radiative effects. Aerosol particles tend to grow at large relative humidity values as a result of their hygroscopicity. Raman lidars with aerosol, water vapour and temperature measurement capability are potentially attractive tools for studying aerosol hygroscopicity as in fact they can provide continuous altitude-resolved measurements of particle optical, size and microphysical properties, as well as relative humidity, without perturbing the aerosols or their environment. Specifically, the University of Basilicata Raman lidar system (BASIL) considered for the present study, has the capability to perform all-lidar measurements of relative humidity based on the application of both the rotational and the vibrational Raman lidar techniques in the UV. BASIL was operational in Achern (Black Forest, Lat: 48.64 ° N, Long: 8.06 ° E, Elev.: 140 m) between 25 May and 30 August 2007 in the framework of the Convective and Orographically-induced Precipitation Study (COPS). During COPS, BASIL collected more than 500 hours of measurements, distributed over 58 measurement days and 34 intensive observation periods (IOPs). The present analysis is focused on selected case studies characterized by the presence of different aerosol types with different hygroscopic behaviour. The observed behaviour, dependent upon aerosol composition, may range from hygrophobic to strongly hygroscopic. Results from the different case studies will be illustrated and

  6. Improvement of Raman lidar algorithm for quantifying aerosol extinction

    NASA Technical Reports Server (NTRS)

    Russo, Felicita; Whiteman, David; Demoz, Belay; Hoff, Raymond

    2005-01-01

    Aerosols are particles of different composition and origin and influence the formation of clouds which are important in atmospheric radiative balance. At the present there is high uncertainty on the effect of aerosols on climate and this is mainly due to the fact that aerosol presence in the atmosphere can be highly variable in space and time. Monitoring of the aerosols in the atmosphere is necessary to better understanding many of these uncertainties. A lidar (an instrument that uses light to detect the extent of atmospheric aerosol loading) can be particularly useful to monitor aerosols in the atmosphere since it is capable to record the scattered intensity as a function of altitude from molecules and aerosols. One lidar method (the Raman lidar) makes use of the different wavelength changes that occur when light interacts with the varying chemistry and structure of atmospheric aerosols. One quantity that is indicative of aerosol presence is the aerosol extinction which quantifies the amount of attenuation (removal of photons), due to scattering, that light undergoes when propagating in the atmosphere. It can be directly measured with a Raman lidar using the wavelength dependence of the received signal. In order to calculate aerosol extinction from Raman scattering data it is necessary to evaluate the rate of change (derivative) of a Raman signal with respect to altitude. Since derivatives are defined for continuous functions, they cannot be performed directly on the experimental data which are not continuous. The most popular technique to find the functional behavior of experimental data is the least-square fit. This procedure allows finding a polynomial function which better approximate the experimental data. The typical approach in the lidar community is to make an a priori assumption about the functional behavior of the data in order to calculate the derivative. It has been shown in previous work that the use of the chi-square technique to determine the most

  7. About the Potential of Lidars with Different Photodetectors Under Daytime Sky Radiation

    NASA Astrophysics Data System (ADS)

    Agishev, Ravil; Comeron, Adolfo; Gilerson, Alexander

    2016-06-01

    Results of theoretical analysis and experimental developments implemented as advanced methods and means to improve a noise-immunity of lidar systems for practical applications are discussed. A particular attention is paid to assessing the developed methods and technical solutions effectiveness and their comparison with existing lidar systems and real receivers.

  8. Light-detection electronics for a Raman lidar

    NASA Technical Reports Server (NTRS)

    Leser, R. J.; Salzman, J. A.

    1972-01-01

    A light-detection system for an optical radar, or lidar, unit to be used for remote temperature and composition measurements was designed, built, and bench tested. This detection system processes three return signal wavelengths: two Raman wavelengths, and the Rayleigh-Mie wavelength at 694.3 nanometers. Means of coping with photomultiplier tube instabilities and limitations are discussed. Circuits for gain control, ranging, and digitizing are included. The phototube gains can be switched fully on in 80 meters (450 nsec) or off in 30 meters (200 nsec) of range. The range circuit processes signals from 0.1 to 2 kilometers, with an estimated range resolution of less than 5 meters.

  9. Differential absorption and Raman lidar for water vapor profile measurements - A review

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1991-01-01

    Differential absorption lidar and Raman lidar have been applied to the range-resolved measurements of water vapor density for more than 20 years. Results have been obtained using both lidar techniques that have led to improved understanding of water vapor distributions in the atmosphere. This paper reviews the theory of the measurements, including the sources of systematic and random error; the progress in lidar technology and techniques during that period, including a brief look at some of the lidar systems in development or proposed; and the steps being taken to improve such lidar systems.

  10. Twenty-Four-Hour Raman Lidar Water Vapor Measurements During the Atmospheric Radiation Measurement Program's 1996 and 1997 Water Vapor Intensive Observation Periods

    SciTech Connect

    Turner, David D.; Goldsmith, JE M.

    1999-08-01

    Prior to the Atmospheric Radiation Measurement program's first water vapor intensive observation period (WVIOP) at the Cloud and Radiation Testbed site near Lamont, Oklahoma, an automated 24-h Raman lidar was delivered to the site. This instrument, which makes high-resolution measurements of water vapor both spatially and temporally, is capable of making these measurements with no operator interaction (other than initial startup) for days at a time. Water vapor measurements collected during the 1996 and 1997 WVIOPs are discussed here, illustrating both the nighttime and daytime capabilities of this system. System characteristics, calibration issues, and techniques are presented. Finally, detailed intercomparisons of the lidar's data with those from a microwave radiometer, radiosondes, an instrumented tower, a chilled mirror flown on both a tethersonde and a kite, and measurements from aircraft are shown and discussed, highlighting the accuracy and stability of this system for both nighttime and daytime measurements.

  11. Raman lidar observations at Finland, South Africa and India

    NASA Astrophysics Data System (ADS)

    Giannakaki, Elina; Filioglou, Maria; Baars, Holger; Komppula, Mika

    2016-04-01

    The Raman lidar PollyXT has participated in two long-term aerosol experimental campaigns, one close to New Delhi in India (March 2008 - March 2009) and one at Elandsfontein about 150 km from Johannesburg in South Africa (December 2009 - January 2011). Since November 2012, the lidar has performed measurement at Kuopio, Finland. PollyXT is operated automated and continuous for 24/7 observations of clouds and aerosols. The observations are processed in near-real time without manual intervention, and are presented online at http://polly.tropos.de. The three measurement sites cover a wide range of pure aerosol types (biomass burning, volcanic ash, urban, desert dust, rural aerosols); as well as a mixture of these aerosol types. We retrieve the vertical profiles of the aerosol optical properties, i.e. extinction and backscatter coefficients, Ångström exponents, lidar ratio and depolarization ratio. We also study the seasonal variability of the intensive and extensive aerosol properties. Our results reveal typical and extraordinary aerosol conditions as well as seasonal differences at the three observational sites.

  12. Spatial and temporal variation in evapotranspiration using Raman lidar

    NASA Astrophysics Data System (ADS)

    Eichinger, W. E.; Cooper, D. I.; Hipps, L. E.; Kustas, W. P.; Neale, C. M. U.; Prueger, J. H.

    2006-02-01

    The Los Alamos Raman lidar has been used to make high resolution (25 m) estimates of the evapotranspiration rate over adjacent corn and soybean canopies. The lidar makes three-dimensional measurements of the water vapor content of the atmosphere directly above the canopy that are inverted using Monin-Obukhov similarity theory. This may be used to examine the relationship between evapotranspiration and surface moisture/soil type. Lidar estimates of evapotranspiration reveal a high degree of spatial variability over corn and soybean fields that may be associated with small elevation changes in the area. The spatial structure of the variability is characterized using a structure function and correlation function approach. The power law relationship found by other investigators for soil moisture is not clear in the data for evapotranspiration, nor is the data a straight line over the measured lags. The magnitude of the structure function and the slope changes with time of day, with a probable connection to the amount of evapotranspiration and the spatial variability of the water vapor source. The data used was taken during the soil moisture-atmosphere coupling experiment (SMACEX) conducted in the Walnut Creek Watershed near Ames, Iowa in June and July 2002.

  13. New Examination of the Raman Lidar Technique for Water Vapor and Aerosols. Paper 1; Evaluating the Temperature Dependent Lidar Equations

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.

    2003-01-01

    The intent of this paper and its companion is to compile together the essential information required for the analysis of Raman lidar water vapor and aerosol data acquired using a single laser wavelength. In this first paper several details concerning the evaluation of the lidar equation when measuring Raman scattering are considered. These details include the influence of the temperature dependence of both pure rotational and vibrational-rotational Raman scattering on the lidar profile. These are evaluated for the first time using a new form of the lidar equation. The results indicate that, for the range of temperatures encountered in the troposphere, the magnitude of the temperature dependent effect can reach 10% or more for narrowband Raman water vapor measurements. Also the calculation of atmospheric transmission is examined carefully including the effects of depolarization. Different formulations of Rayleigh cross section determination commonly used in the lidar field are compared revealing differences up to 5% among the formulations. The influence of multiple scattering on the measurement of aerosol extinction using the Raman lidar technique is considered as are several photon pulse-pileup correction techniques.

  14. Stable Calibration of Raman Lidar Water-Vapor Measurements

    NASA Technical Reports Server (NTRS)

    Leblanc, Thierry; McDermid, Iain S.

    2008-01-01

    A method has been devised to ensure stable, long-term calibration of Raman lidar measurements that are used to determine the altitude-dependent mixing ratio of water vapor in the upper troposphere and lower stratosphere. Because the lidar measurements yield a quantity proportional to the mixing ratio, rather than the mixing ratio itself, calibration is necessary to obtain the factor of proportionality. The present method involves the use of calibration data from two sources: (1) absolute calibration data from in situ radiosonde measurements made during occasional campaigns and (2) partial calibration data obtained by use, on a regular schedule, of a lamp that emits in a known spectrum determined in laboratory calibration measurements. In this method, data from the first radiosonde campaign are used to calculate a campaign-averaged absolute lidar calibration factor (t(sub 1)) and the corresponding campaign-averaged ration (L(sub 1)) between lamp irradiances at the water-vapor and nitrogen wavelengths. Depending on the scenario considered, this ratio can be assumed to be either constant over a long time (L=L(sub 1)) or drifting slowly with time. The absolutely calibrated water-vapor mixing ratio (q) obtained from the ith routine off-campaign lidar measurement is given by q(sub 1)=P(sub 1)/t(sub 1)=LP(sub 1)/P(sup prime)(sub 1) where P(sub 1) is water-vapor/nitrogen measurement signal ration, t(sub 1) is the unknown and unneeded overall efficiency ratio of the lidar receiver during the ith routine off-campaign measurement run, and P(sup prime)(sub 1) is the water-vapor/nitrogen signal ratio obtained during the lamp run associated with the ith routine off-campaign measurement run. If L is assumed constant, then the lidar calibration is routinely obtained without the need for new radiosonde data. In this case, one uses L=L(sub 1) = P(sup prime)(sub 1)/t(sub 1), where P(sub 1)(sup prime) is the water-vapor/nitrogen signal ratio obtained during the lamp run associated

  15. Development of Three-Wavelength Polarization-Raman Lidar and Application to Shipborne Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Zhangjun; Du, Libin; Li, Xianxin; Zhou, Bin; Meng, Xiangqian; Chen, Chao; Liu, Qiaojun; Liu, Xingtao

    2016-06-01

    A Three-Wavelength Polarization-Raman Lidar (TWPRL) system for aerosol and clouds was developed. This lidar system provides α at 532 and 355 nm, β at 355, 532 and 1064 nm, and σ at 532 nm as well as water vapor content using Raman lidar techniques. The temporal and vertical variation of aerosols and clouds could be determined. We conducted shipborne TWPRL measurements over Yellow Sea of China from August to September in 2014. The derived aerosol optical properties indicate that the developed lidar system worked very well. 24-hour continuous measurements with the shipborne TWPRL during the cruise are presented.

  16. Temperature measurements made with a combined Rayleigh -Mie and Raman lidar.

    PubMed

    Gross, M R; McGee, T J; Ferrare, R A; Singh, U N; Kimvilakani, P

    1997-08-20

    The NASA Goddard Space Flight Center stratospheric ozone lidar system has the capability of collecting both Rayleigh -Mie and Raman backscatter data simultaneously at a number of wavelengths. Here we report on an improved method by which temperature can be derived from a combination of the Rayleigh -Mie return at 351-nm lidar channels and the Raman nitrogen return at 382-nm lidar channels. We also examine some common techniques by which temperatures are retrieved from lidar data. Finally, we show results obtained in 1995 during two Network for the Detection of Stratospheric Change intercomparison campaigns at Lauder, New Zealand and Mauna Loa, Hawaii. PMID:18259441

  17. Daytime measurements of atmospheric temperature profiles (2-15 km) by lidar utilizing Rayleigh-Brillouin scattering.

    PubMed

    Witschas, Benjamin; Lemmerz, Christian; Reitebuch, Oliver

    2014-04-01

    In this Letter, we report on a novel method for measuring atmospheric temperature profiles by lidar during daytime for heights of 2-15.3 km, with a vertical resolution of 0.3-2.2 km, using Rayleigh-Brillouin scattering. The measurements are performed by scanning a laser (λ=355 nm) over a 12 GHz range and using a Fabry-Pérot interferometer as discriminator. The temperature is derived by using a new analytical line shape model assuming standard atmospheric pressure conditions. Two exemplary temperature profiles resulting from measurements over 14 and 27 min are shown. A comparison with radiosonde temperature measurements shows reasonable agreement. In cloud-free conditions, the temperature difference reaches up to 5 K within the boundary layer, and is smaller than 2.5 K above. The statistical error of the derived temperatures is between 0.15 and 1.5 K. PMID:24686652

  18. Airborne compact rotational Raman lidar for temperature measurement.

    PubMed

    Wu, Decheng; Wang, Zhien; Wechsler, Perry; Mahon, Nick; Deng, Min; Glover, Brent; Burkhart, Matthew; Kuestner, William; Heesen, Ben

    2016-09-01

    We developed an airborne compact rotational Raman lidar (CRL) for use on the University of Wyoming King Air (UWKA) aircraft to obtain two-dimensional (2D) temperature disman tributions. It obtained fine-scale 2D temperature distributions within 3 km below the aircraft for the first time during the PECAN (Plains Elevated Convection At Night) campaign in 2015. The CRL provided nighttime temperature measurements with a random error of <0.5 K within 800 m below aircraft at 45 m vertical and 1000 m horizontal resolution. The temperatures obtained by the CRL and a radiosonde agreed. Along with water vapor and aerosol measurements, the CRL provides critical parameters on the state of the lower atmosphere for a wide range of atmospheric research. PMID:27607724

  19. Measurements of Stratospheric Pinatubo Aerosol Extinction Profiles by a Raman Lidar

    NASA Technical Reports Server (NTRS)

    Abo, Makoto; Nagasawa, Chikao

    1992-01-01

    The Raman lidar has been used for remote measurements of water vapor, ozone and atmospheric temperature in the lower troposphere because the Raman cross section is three orders smaller than the Rayleigh cross section. We estimated the extinction coefficients of the Pinatubo volcanic aerosol in the stratosphere using a Raman lidar. If the precise aerosol extinction coefficients are derived, the backscatter coefficient of a Mie scattering lidar will be more accurately estimated. The Raman lidar has performed to measure density profiles of some species using Raman scattering. Here we used a frequency-doubled Nd:YAG laser for transmitter and received nitrogen vibrational Q-branch Raman scattering signal. Ansmann et al. (1990) derived tropospherical aerosol extinction profiles with a Raman lidar. We think that this method can apply to dense stratospheric aerosols such as Pinatubo volcanic aerosols. As dense aerosols are now accumulated in the stratosphere by Pinatubo volcanic eruption, the error of Ramen lidar signal regarding the fluctuation of air density can be ignored.

  20. Design of an Autonomous Polarized Raman Lidar for Arctic Observations

    NASA Astrophysics Data System (ADS)

    Stillwell, R. A.; Neely, R. R., III; O'Neill, M.; Thayer, J. P.; Hayman, M. M.

    2014-12-01

    A dearth of high-spatial and temporal resolution measurements of atmospheric state variables in the Arctic directly inhibits scientific understanding of radiative and precipitation impacts on the changing surface environment. More reliable and frequent measurements are needed to better understand Arctic weather processes and constrain model predictions. To partially address the lack of Artic observations, a new autonomous Raman lidar system, which will measure through the troposphere water vapor mixing ratio, temperature, extinction, and cloud phase profiles, is under development for deployment to Summit Camp, Greenland (72° 36'N, 38° 25'W, 3250m). This high-altitude Arctic field site has co-located ancillary equipment such as a Doppler millimeter cloud radar, microwave radiometers, depolarization lidars, ceiliometer, an infrared interferometer and twice-daily radiosondes which are part of the Integrated Characterization of Energy, Clouds, Atmospheric State and Precipitation at Summit (ICECAPS) project and the Arctic Observing Network (AON). The current suite of instruments allows for a near comprehensive picture of the atmospheric state above Summit but increased spatial and temporal resolution of water vapor and temperature are needed to reveal detailed microphysical information. In this presentation, a system description will be provided with an emphasis on the features necessary for autonomous, full diurnal operation, and how the new system will help fill the observation gap within the already existing sensor suite.

  1. Comparison of measurements by the NASA/GSFC scanning Raman lidar and the DOE/ARM CART Raman lidar

    SciTech Connect

    Whiteman, D.; Turner, D.; Evans, K.

    1998-04-01

    Latent heat transfer through evaporation and condensation of water vapor is the most important energy transport mechanism in the atmosphere. In addition, water vapor is the most active greenhouse gas. Any global warning scenario must take accurate account of the spatial and temporal variation of water vapor in order to account for both of these effects. Due to the great importance of water vapor in atmospheric radiation studies, specific intensive operations periods (IOPs) have been hosted by the Department of Energy`s Atmospheric Radiation Measurements (ARM) program. One of the goals of these IOPs has been to determine the quality of and explain any discrepancies among a wide variety of water vapor measuring instruments. Raman lidar systems developed by NASA/Goddard Space Flight Center and DOE/Sandia National Laboratories have participated in the two Water Vapor IOPs (WVIOPs) held at the Southern Great Plains (SGP) Cloud and Radiation Testbed Site (CART) site during 1996 (WVIOP1) and 1997 (WVIOP2). Detailed comparisons of these two systems is ongoing but this effort has already resulted in numerous improvements in design and data analysis for both lidar systems.

  2. Comparison of measurements by the NASA/GSFC scanning raman lidar and the DOE/ARM CART raman lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David; Turner, David; Evans, Keith; Demoz, Belay; Melfi, Harvey; Schwemmer, Geary; Cadirola, Martin; Ferrare, Richard; Goldsmith, John; Tooman, Tim; Wise, Stacy

    1998-01-01

    Latent heat transfer through evaporation and condensation of water vapor is the most important energy transport mechanism in the atmosphere. In addition, water vapor is the most active greenhouse gas. Any global warming scenario must take accurate account of the spatial and temporal variation of water vapor in order to account for both of these effects. Due to the great importance of water vapor in atmospheric radiation studies, specific intensive operations periods (IOPs) have been hosted by the Department of Energy's Atmospheric Radiation Measurements (ARM) program. One of the goals of these IOPs has been to determine the quality of and explain any discrepancies among a wide variety of water vapor measuring instruments. Raman lidar systems developed by NASA/Goddard Space Flight Center and DOE/Sandia National Laboratories have participated in the two Water Vapor IOPs (WVIOPs) held at the Southern Great Plains (SGP) Cloud and Radiation Testbed Site (CART) site during 1996 (WVIOP1) and 1997 (WVIOP2). Detailed comparisons of these two systems is ongoing but this effort has already resulted in numerous improvements in design and data analysis for both lidar systems.

  3. Compact Raman Lidar Measurement of Liquid and Vapor Phase Water Under the Influence of Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Shiina, Tatsuo; Chigira, Tomoyuki; Saito, Hayato; Manago, Naohiro; Kuze, Hiroaki; Hanyu, Toshinori; Kanayama, Fumihiko; Fukushima, Mineo

    2016-06-01

    A compact Raman lidar has been developed for studying phase changes of water in the atmosphere under the influence of ionization radiation. The Raman lidar is operated at the wavelength of 349 nm and backscattered Raman signals of liquid and vapor phase water are detected at 396 and 400 nm, respectively. Alpha particles emitted from 241Am of 9 MBq ionize air molecules in a scattering chamber, and the resulting ions lead to the formation of liquid water droplets. From the analysis of Raman signal intensities, it has been found that the increase in the liquid water Raman channel is approximately 3 times as much as the decrease in the vapor phase water Raman channel, which is consistent with the theoretical prediction based on the Raman cross-sections. In addition, the radius of the water droplet is estimated to be 0.2 μm.

  4. Near-Range Receiver Unit of Next Generation PollyXT Used with Koldeway Aerosol Raman Lidar in Arctic

    NASA Astrophysics Data System (ADS)

    Stachlewska, Iwona S.; Markowicz, Krzysztof M.; Ritter, Christoph; Neuber, Roland; Heese, Birgit; Engelmann, Ronny; Linne, Holger

    2016-06-01

    The Near-range Aerosol Raman lidar (NARLa) receiver unit, that was designed to enhance the detection range of the NeXT generation PollyXT Aerosol-Depolarization-Raman (ADR) lidar of the University of Warsaw, was employed next the Koldeway Aerosol Raman Lidar (KARL) at the AWI-IPEV German-French station in Arctic during Spring 2015. Here we introduce shortly design of both lidars, the scheme of their installation next to each other, and preliminary results of observations aiming at arctic haze investigation by the lidars and the iCAP a set of particle counter and aethalometer installed under a tethered balloon.

  5. Water vapor variance measurements using a Raman lidar

    NASA Technical Reports Server (NTRS)

    Evans, K.; Melfi, S. H.; Ferrare, R.; Whiteman, D.

    1992-01-01

    Because of the importance of atmospheric water vapor variance, we have analyzed data from the NASA/Goddard Raman lidar to obtain temporal scales of water vapor mixing ratio as a function of altitude over observation periods extending to 12 hours. The ground-based lidar measures water vapor mixing ration from near the earth's surface to an altitude of 9-10 km. Moisture profiles are acquired once every minute with 75 m vertical resolution. Data at each 75 meter altitude level can be displayed as a function of time from the beginning to the end of an observation period. These time sequences have been spectrally analyzed using a fast Fourier transform technique. An example of such a temporal spectrum obtained between 00:22 and 10:29 UT on December 6, 1991 is shown in the figure. The curve shown on the figure represents the spectral average of data from 11 height levels centered on an altitude of 1 km (1 plus or minus .375 km). The spectra shows a decrease in energy density with frequency which generally follows a -5/3 power law over the spectral interval 3x10 (exp -5) to 4x10 (exp -3) Hz. The flattening of the spectrum for frequencies greater than 6x10 (exp -3) Hz is most likely a measure of instrumental noise. Spectra like that shown in the figure are calculated for other altitudes and show changes in spectral features with height. Spectral analysis versus height have been performed for several observation periods which demonstrate changes in water vapor mixing ratio spectral character from one observation period to the next. The combination of these temporal spectra with independent measurements of winds aloft provide an opportunity to infer spatial scales of moisture variance.

  6. Raman lidar profiling of atmospheric water vapor: Simultaneous measurements with two collocated systems

    NASA Technical Reports Server (NTRS)

    Goldsmith, J. E. M.; Bisson, Scott E.; Ferrare, Richard A.; Evans, Keith D.; Whiteman, David N.; Melfi, S. H.

    1994-01-01

    Raman lidar is a leading candidate for providing the detailed space- and time-resolved measurements of water vapor needed by a variety of atmospheric studies. Simultaneous measurements of atmospheric water vapor are described using two collocated Raman lidar systems. These lidar systems, developed at the NASA/Goddard Space Flight Center and Sandia National Laboratories, acquired approximately 12 hours of simultaneous water vapor data during three nights in November 1992 while the systems were collocated at the Goddard Space Flight Center. Although these lidar systems differ substantially in their design, measured water vapor profiles agreeed within 0.15 g/kg between altitudes of 1 and 5 km. Comparisons with coincident radiosondes showed all instruments agreed within 0.2 g/kg in this same altitude range. Both lidars also clearly showed the advection of water vapor in the middle troposphere and the pronounced increase in water vapor in the nocturnal boundary layer that occurred during one night.

  7. The Refurbishment and Upgrade of the Atmospheric Radiation Measurement Raman Lidar

    SciTech Connect

    Turner, D.D.; Goldsmith, J.E.M.

    2005-03-18

    The Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) Raman lidar (CARL) is an autonomous, turn-key system that profiles water vapor, aerosols, and clouds throughout the diurnal cycle for days without attention (Goldsmith et al. 1998). CARL was first deployed to the Southern Great Plains CRF during the summer of 1996 and participated in the 1996 and 1997 water vapor intensive operational periods (IOPs). Since February 1998, the system has collected over 38,000 hrs of data (equivalent of almost 4.4 years), with an average monthly uptime of 62% during this time period. This unprecedented performance by CARL makes it the premier operational Raman lidar in the world. Unfortunately, CARL began degrading in early 2002. This loss of sensitivity, which affected all observed variables, was very gradual and thus was not identified until the autumn of 2003. Analysis of the data suggested the problem was not associated with the laser or transmit portion of the system, but rather in the detection subsystem, as both the background values and the peak signals showed a marked decreases over this time period. The loss of sensitivity of a factor of 2-4, depending on the channel, resulted in higher random error in the retrieved products, such as the aerosol backscatter coefficient and water vapor mixing ratio. Figure 1 shows the random error at 2 km for aerosol backscatter coefficient (top) and water vapor mixing ratio (middle), in terms of percent of the signal for both average daytime (red) and nighttime (blue) data from 1998 to 2005. The seasonal variation of water vapor is easily seen in the random error in the water vapor mixing ratio data. The loss of sensitivity also affected the maximum range of the usable data, as illustrated by the dramatic decrease in the maximum height seen in the water vapor mixing ratio data (bottom). This degradation, which results in much larger random errors, greatly hinders the analysis of data sets such as the Aerosol

  8. Tropical and Midlatitude Cirrus Cloud Extinction and Backscatter From Multiyear Raman Lidar Measurements.

    NASA Astrophysics Data System (ADS)

    Thorsen, T. J.; Fu, Q.

    2014-12-01

    Lidars have the capability to provide unparalleled range-resolved observations of particulate extinction. However, lidars fundamentally measure backscattered energy, not extinction, and for widely prevalent single-channel elastic backscatter lidars extinction must be obtained by assuming a backscatter-extinction relationship. Our knowledge of this relationship, known as the lidar ratio, mainly consists values determined via the transmission-loss method: which can only provide layer-averaged values and is only applicable to a subset of all cloud layers. Directly-retrieved, vertically resolved extinction coefficients and lidar ratios are obtainable through the use of more advance high spectral resolution lidars (HSRL) or Raman lidars (RL). However, the complexity of operating a HSRL or RL has limited their use for cloud observations to very limited time periods: typical only a few months or less. In this work, we present a newly developed retrieval for the Atmospheric Radiation Measurement (ARM) program's Raman lidars for Feature detection and EXtinction retrieval (FEX). FEX improves upon existing ARM products by using multiple, complimentary quantities to identify both clouds and aerosols and retrieve their extinction and backscatter profiles. Multiple years of data are examined at both the Lamont, Oklahoma and Darwin, Australia ARM sites; providing the most comprehensive climatology to date of cirrus extinction and lidar ratios. Variations in these optical properties with classification of the synoptic state and their relationship with microphysical parameters (temperature, relative humidity and depolarization) are examined.

  9. Dual-field-of-view Raman lidar measurements for the retrieval of cloud microphysical properties.

    PubMed

    Schmidt, Jörg; Wandinger, Ulla; Malinka, Aleksey

    2013-04-10

    Dual-field-of-view Raman lidar measurements, detecting Raman-scattered light with two fields of view simultaneously, are used for the first time to retrieve cloud microphysical properties. The measurements are performed with the Multiwavelength Atmospheric Raman Lidar for Temperature, Humidity, and Aerosol Profiling (MARTHA) at the Leibniz Institute for Tropospheric Research in Leipzig, Germany. Light that is scattered in forward direction by cloud droplets and inelastically backscattered by N2 molecules is detected. A forward iterative algorithm uses the measured signals to derive profiles of the effective cloud droplet radius, extinction coefficient, and liquid-water content of the investigated clouds. The setup, algorithm, error analysis, and a measurement example are presented. The obtained liquid-water path is validated by observations with a microwave radiometer. With the capability to retrieve aerosol properties as well as cloud microphysical properties, the Raman lidar MARTHA is an ideal tool for studies of the aerosol indirect effect. PMID:23670751

  10. An evaluation of PBL parameterizations utilizing compact airborne raman Lidar

    NASA Astrophysics Data System (ADS)

    Pauly, Rebecca

    The water vapor structure within and above the planetary boundary layer (PBL) plays an essential role in many weather and climate phenomena including the water vapor feedback, thunderstorm formation and maintenance, and precipitation amounts. As a result, the accurate modeling of the PBL and its water vapor structure is critical for accurate climate and weather predictions. The University of Wyoming Compact Airborne Raman Lidar (CARL) is an ideal instrument with which to conduct model evaluation studies because of its ability to measure the fine scale water vapor mixing ratio (WVMR) on a mobile platform. A PBL scheme comparison and sensitivity study was conducted using the Weather Research and Forecasting (WRF) Model and CARL data from two days in June 2010. The three PBL schemes used were the Mellor, Yamada, Janjic (MYJ) scheme, Yonsei University (YSU) scheme, and the Asymmetric Convective Model Version 2 (ACM2) scheme. The analysis revealed that the MYJ scheme performed best on modeling the magnitude of WVMR in the PBL but that the ACM2 and YSU schemes modeled the vertical structure better. Sensitivity studies modifying the assumptions made to determine the PBL top, k-diffusivity profiles, and surface heat fluxes were conducted. The magnitude of WVMR was improved within the YSU and ACM2 schemes by modifying the vertical diffusivity as well as in the YSU scheme by decreasing the surface sensible heat flux. The convective storms, which formed in each case, were also studied, and results show that runs with higher magnitudes of WVMR modeled these storms more accurately.

  11. PollyNET: a network of multiwavelength polarization Raman lidars

    NASA Astrophysics Data System (ADS)

    Althausen, Dietrich; Engelmann, Ronny; Baars, Holger; Heese, Birgit; Kanitz, Thomas; Komppula, Mika; Giannakaki, Eleni; Pfüller, Anne; Silva, Ana Maria; Preißler, Jana; Wagner, Frank; Rascado, Juan Luis; Pereira, Sergio; Lim, Jae-Hyun; Ahn, Joon Young; Tesche, Matthias; Stachlewska, Iwona S.

    2013-10-01

    PollyNET is a growing global network of automatized multiwavelength polarization Raman lidars of type Polly (Althausen et al., 2009). The goal of this network is to conduct advanced remote measurements of aerosol profiles and clouds by the same type of instrument. Since 2006 this network assists the controlling and adjustment activities of Polly systems. A central facility receives the data from the Polly measurements. The observational data are displayed in terms of quicklooks at http://polly:tropos.de in near real time. In this way, the network serves as a central information platform for inquisitive scientists. PollyNET comprises permanent stations at Leipzig (Germany), Kuopio (Finland), Evora (Portugal), Baengnyeong Island (South Korea), Stockholm (Sweden), and Warsaw (Poland). Non-permanent stations have been used during several field experiments under both urban and very remote conditions - like the Amazon rainforest. These non-permanent stations were lasting from several weeks up to one year and have been located in Brazil, India, China, South Africa, Chile, and also aboard the German research vessels Polarstern and Meteor across the Atlantic. Within PollyNET the interaction and knowledge exchange is encouraged between the Polly operators. This includes maintenance support in system calibration procedures and distribution of latest hardware and software improvements. This presentation introduces the PollyNET. Main features of the Polly systems will be presented as well as recent instrumental developments. Some measurement highlights achieved within PollyNET are depicted.

  12. Analysis and Calibration of CRF Raman Lidar Cloud Liquid Water Measurements

    SciTech Connect

    Turner, D.D. Whiteman, D.N. Russo, F.

    2007-10-31

    The Atmospheric Radiation Measurement (ARM) Raman lidar (RL), located at the Southern Great Plains (SGP) Climate Research Facility (CRF), is a unique state-of-the-art active remote sensor that is able to measure profiles of water vapor, aerosol, and cloud properties at high temporal and vertical resolution throughout the diurnal cycle. In October 2005, the capability of the RL was extended by the addition of a new detection channel that is sensitive to the Raman scattering of liquid water. This new channel permits the system, in theory, to measure profiles of liquid water content (LWC) by the RL. To our knowledge, the ARM RL is the only operation lidar with this capability. The liquid water Raman backscattering cross-section is a relatively weak and spectrally broad feature, relative to the water vapor Raman backscatter signal. The wide bandpass required to achieve reasonable signal-to-noise in the liquid water channel essentially eliminates the ability to measure LWC profiles during the daytime in the presence of large solar background, and thus all LWC observations are nighttime only. Additionally, the wide bandpass increases the probability that other undesirable signals, such as fluorescence from aerosols, may contaminate the observation. The liquid water Raman cross-section has a small amount of overlap with the water vapor Raman cross-section, and thus there will be a small amount of ‘cross-talk’ between the two signals, with water vapor contributing a small amount of signal to the LWC observation. And finally, there is significant uncertainty in the actual strength of the liquid water Raman cross-section in the literature. The calibrated LWC profiles, together with the coincident cloud backscatter observations also made by the RL, can be used to derive profiles of cloud droplet effective radius. By combining these profiles of effective radius in the lower portion of the cloud with the aerosol extinction measurements made below the cloud by the RL, the

  13. Water Vapor Measurements by Howard University Raman Lidar during the WAVES 2006 Campaign

    NASA Technical Reports Server (NTRS)

    Adam, M.; Demoz, B. B.; Whiteman, D. N.; Venable, D. D.; Joseph E.; Gambacorta, A.; Wei, J.; Shephard, M. W.; Miloshevich, L. M.; Barnet, C. D.; Herman, R. L.; Fitzgibbon, J.; Connell, R.

    2009-01-01

    Retrieval of water vapor mixing ratio using the Howard University Raman Lidar is presented with emphasis on three aspects: i) performance of the lidar against collocated radiosondes and Raman lidar, ii) investigation of the atmospheric state variables when poor agreement between lidar and radiosondes values occurred and iii) a comparison with satellite-based measurements. The measurements were acquired during the Water Vapor Validation Experiment Sondes/Satellites 2006 field campaign. Ensemble averaging of water vapor mixing ratio data from ten night-time comparisons with Vaisala RS92 radiosondes shows on average an agreement within 10 % up to approx. 8 km. A similar analysis of lidar-to-lidar data of over 700 profiles revealed an agreement to within 20 % over the first 7 km (10 % below 4 km). A grid analysis, defined in the temperature - relative humidity space, was developed to characterize the lidar - radiosonde agreement and quantitatively localizes regions of strong and weak correlations as a function of altitude, temperature or relative humidity. Three main regions of weak correlation emerge: i) regions of low relative humidity and low temperature, ii) moderate relative humidity at low temperatures and iii) low relative humidity at moderate temperatures. Comparison of Atmospheric InfraRed Sounder and Tropospheric Emission Sounder satellites retrievals of moisture with that of Howard University Raman Lidar showed a general agreement in the trend but the formers miss a lot of the details in atmospheric structure due to their low resolution. A relative difference of about 20 % is usually found between lidar and satellites measurements.

  14. Towards quantifying mesoscale flows in the troposphere using Raman lidar and Sondes

    NASA Technical Reports Server (NTRS)

    Demoz, B.; Starr, D.; Evans, K.; Whiteman, D.; Melfi, S.; Turner, D.; Ferrare, R.; Goldsmith, J.; Schwemmer, G.; Cadirola, M.

    1998-01-01

    Water vapor plays an important role in the energetics of the boundary layer processes which in turn play a key role in regulating regional and global climate. It plays a primary role in Earth's hydrological cycle, in radiation balance as a direct absorber of infrared radiation, and in atmospheric circulation as a latent heat energy source, as well as in determining cloud development and atmospheric stability. Water vapor concentration, expressed as a mass mixing ratio (g kg(exp -l)), is conserved in all meteorological processes except condensation and evaporation. This property makes it an ideal choice for studying many of the atmosphere's dynamic features. Raman scattering measurements from lidar also allow retrieval of water vapor mixing ratio profiles at high temporal and vertical resolution. Raman lidars sense water vapor to altitudes not achievable with towers and surface systems, sample the atmosphere at much higher temporal resolution than radiosondes or satellites, and do not require strong vertical gradients or turbulent fluctuations in temperature that is required by acoustic sounders and radars. Analysis of highly-resolved water vapor profiles are used here to characterize two important mesoscale flows: thunderstorm outflows and a cold front passage. The data were obtained at the Atmospheric Radiation Measurement Site (CART) by the groundbased Department of Energy/Sandia National Laboratories lidar (CART Raman lidar or CARL) and Goddard Space Flight Center Scanning Raman Lidar (SRL). A detailed discussion of the SRL and CARL performance during the IOPs is given by others in this meeting.

  15. Optimisation of frequency-modulated characteristics of output radiation in a lidar with Raman amplification

    NASA Astrophysics Data System (ADS)

    Grigorievsky, V. I.; Tezadov, Ya A.

    2016-03-01

    The reported study is aimed at increasing the power in the transmission path of a lidar with Raman amplification for longpath sensing of methane by optimising the frequency-modulated characteristics of the output radiation. The pump current of the used distributed-feedback master laser was modulated by a linearfrequency signal with simultaneous application of a non-synchronous high-frequency signal. For such a modulation regime, the Raman amplifier provided the mean output power of 2.5 W at a wavelength of 1650 nm. The spectral broadening did not significantly decrease the lidar sensitivity at long paths.

  16. Temperature profiling in the atmosphere using lidars

    NASA Astrophysics Data System (ADS)

    Arshinov, Yuri; Bobrovnikov, Sergey M.; Serikov, Il'ya B.; Althausen, Dietrich; Mattis, Ina; Wandinger, Ulla; Ansmann, Albert

    2001-04-01

    This lecture describes the development of lidar techniques to measure the atmospheric temperature profile. Particular attention is given in the lecture to the technique that uses pure rotational Raman scattering of light by molecular nitrogen and oxygen. At present, this approach to temperature profiling in the atmosphere with lidars has received a new impulse because of recent advances in laser and optoelectronics technologies. The instrumentation aspects that determine the feasibility of one or another lidar technique to measure temperature profiles based on the pure rotational Raman spectrum (PRRS) of N2 and O2 molecules are considered. The primary instrumental problem is isolation of extremely weak Raman-lidar returns within the PRRS of N2 and O2 against the background from the much stronger line of unshifted scattering. Mie + Rayleigh, that simultaneously contributes to lidar returns. Besides, the daytime sky background is the factor that severely hampers daytime lidar measurements especially in the case with Raman lidars. So it is an important task of Raman-lidar technologists to find proper ways to overcome this difficulty that would made it possible the temperature profiling in the atmosphere to be performed whole day round. The approach to achieving this task by use of a Fabry-Perot interferometer (FPI) is discussed in the lecture.

  17. Cloud Liquid Water, Mean Droplet Radius and Number Density Measurements Using a Raman Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Melfi, S. Harvey

    1999-01-01

    A new technique for measuring cloud liquid water, mean droplet radius and droplet number density is outlined. The technique is based on simultaneously measuring Raman and Mie scattering from cloud liquid droplets using a Raman lidar. Laboratory experiments on liquid micro-spheres have shown that the intensity of Raman scattering is proportional to the amount of liquid present in the spheres. This fact is used as a constraint on calculated Mie intensity assuming a gamma function particle size distribution. The resulting retrieval technique is shown to give stable solutions with no false minima. It is tested using Raman lidar data where the liquid water signal was seen as an enhancement to the water vapor signal. The general relationship of retrieved average radius and number density is consistent with traditional cloud physics models. Sensitivity to the assumed maximum cloud liquid water amount and the water vapor mixing ratio calibration are tested. Improvements to the technique are suggested.

  18. Research on the Relationship Between Cloud Temperature and Optical Depth Using Rotational and Vibrational Raman Lidar

    NASA Astrophysics Data System (ADS)

    Su, Jia; McCormick, M. Patrick; Lei, Liqiao

    2016-06-01

    Clouds play a key role in the climate system, for they can result in a warming or a cooling effect according to their characteristics and altitudes. Raman Lidars have been proven to be a very useful remote sensing tool to characterize cloud properties and locations. In this paper, cloud temperature and optical depth are obtained using rotational Raman (RR) and vibrational Raman techniques. Results of cloud temperature and optical depth (OD) observed by the Hampton University (HU) Rotational-Vibrational Raman Lidar are presented. The paper discusses the influence of cloud OD on temperature of the cloud base and top. From these measurements, the relation of low-altitude cloud OD and temperature is summarized. These analyses are unique in that they combine simultaneous measurements of these quantities that can lead to an improvement in the understanding of cloud radiation transfer and effects.

  19. Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar

    SciTech Connect

    Whiteman, David N.; Melfi, S. Harvey

    1999-12-27

    A new technique for measuring cloud liquid water, mean droplet radius, and droplet number density is outlined. The technique is based on simultaneously measuring Raman and Mie scattering from cloud liquid droplets using a Raman lidar. Laboratory experiments on liquid microspheres have shown that the intensity of Raman scattering is proportional to the amount of liquid present in the spheres. This fact is used as a constraint on calculated Mie intensity assuming a gamma function particle size distribution. The resulting retrieval technique is shown to give stable solutions with no false minima. It is tested using Raman lidar data where the liquid water signal was seen as an enhancement to the water vapor signal. The general relationship of retrieved average radius and number density is consistent with traditional cloud physics models. Sensitivity to the assumed maximum cloud liquid water amount and the water vapor mixing ratio calibration are tested. Improvements to the technique are suggested. (c) 1999 American Geophysical Union.

  20. An accurate modeling, simulation, and analysis tool for predicting and estimating Raman LIDAR system performance

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Russo, Leonard P.; Barrett, John L.; Odhner, Jefferson E.; Egbert, Paul I.

    2007-09-01

    BAE Systems presents the results of a program to model the performance of Raman LIDAR systems for the remote detection of atmospheric gases, air polluting hydrocarbons, chemical and biological weapons, and other molecular species of interest. Our model, which integrates remote Raman spectroscopy, 2D and 3D LADAR, and USAF atmospheric propagation codes permits accurate determination of the performance of a Raman LIDAR system. The very high predictive performance accuracy of our model is due to the very accurate calculation of the differential scattering cross section for the specie of interest at user selected wavelengths. We show excellent correlation of our calculated cross section data, used in our model, with experimental data obtained from both laboratory measurements and the published literature. In addition, the use of standard USAF atmospheric models provides very accurate determination of the atmospheric extinction at both the excitation and Raman shifted wavelengths.

  1. Aerosol content survey by mini N 2 -Raman lidar: Application to local and long-range transport aerosols

    NASA Astrophysics Data System (ADS)

    Royer, Philippe; Chazette, Patrick; Lardier, Melody; Sauvage, Laurent

    2011-12-01

    This study shows an aerosol content survey in the low and middle troposphere over Paris with a compact and light Nitrogen-Raman lidar which has been recently developed by the Commissariat à l'Energie Atomique (CEA) and LEOSPHERE company. This eye-safe and wide field-of-view system (full overlap between 150 and 200 m) is particularly well-adapted to air pollution survey in the vicinity of Megalopolis. Extinction-to-backscatter coefficient (so-called Lidar Ratio LR) profiles obtained with a Tikhonov regularization scheme are presented for long-range transport events of aerosols (volcanic ash plume LR = 48 ± 10 sr, and desert dust, LR = 45 ± 8 sr) which may contribute to the local load of aerosols emitted by traffic and industries in Megalopolis. Due to an insufficient signal to noise ratio (SNR < 30), a new dichotomous algorithm has been developed to perform daytime inversions every hour which is in accordance with the typical time evolution of aerosols within the planetary boundary layer. This inversion scheme is based on the constraint of the elastic channel with the aerosol optical depth (between typically 0.2 and 0.7 km) determined with the N 2-Raman channel and thus only gives access to an equivalent LR between 0.2 and 0.7 km with a relative uncertainty lower than 15%. This approach has been applied to retrieve diurnal cycle of LR for polluted continental aerosols over Paris and is compared with Tikhonov regularization applied during the night. We found a mean value of 85 ± 18 sr for polluted continental aerosols which is in agreement with other studies performed around the Paris urban area. Results for aerosol optical properties are presented and the error sources are discussed for each approach.

  2. Study of absolute detection technique with the rotational Raman lidar for atmospheric temperature

    NASA Astrophysics Data System (ADS)

    Li, Shichun; Wei, Pengpeng; Gong, Xin; Hua, Dengxin

    2015-10-01

    The rotational Raman lidar is a valid tool to profile atmospheric temperature. But the fact that its proper operation generally needs a certain collocated device for calibration seriously restricts application in the meteorology and environment fields. We propose an absolute detection technique of atmospheric temperature with the rotational Raman lidar, which is based on the dependence of rotational Raman spectral envelope on temperature. To retrieve atmospheric temperature without calibration, six rotational Raman spectra of nitrogen molecule are chosen from the anti-Strokes branch. A temperature retrieval algorithm is presented and analyzed based on the least square principle. A two-cascade Raman spectroscopic filter is constructed by one first-order diffraction grating, one convex lens, one linear fiber array and 6 groups of fiber Bragg gratings. This lidar is configured with a 300-mJ pulse energy laser and a 250-mm clear aperture telescope. Simulation results show that it can extract the nitrogen molecules rotational Raman spectral lines, and that atmospheric temperature profile obtained through absolute retrieval algorithm can be up to 3.5 km with less than 0.5-K deviation within 17 minutes interval.

  3. Assessing the temperature dependence of narrow-band Raman water vapor lidar measurements: a practical approach.

    PubMed

    Whiteman, David N; Venable, Demetrius D; Walker, Monique; Cadirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-08-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author. PMID:23913054

  4. Assessing the Temperature Dependence of Narrow-Band Raman Water Vapor Lidar Measurements: A Practical Approach

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Venable, Demetrius D.; Walker, Monique; Cardirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-01-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

  5. Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements.

    PubMed

    Leblanc, Thierry; McDermid, I Stuart

    2008-10-20

    A Raman lidar calibration method adapted to the long-term monitoring of atmospheric water vapor is proposed. The accuracy of Raman lidar water vapor profiles is limited by that of the calibration process. Typically, calibration using in situ balloon-borne measurements suffers from the nonsimultaneity and noncollocation of the lidar and in situ measurements, while calibration from passive remote sensors suffers from the lower accuracy of the retrievals and incomplete sampling of the water vapor column observed by lidar. We propose a new hybrid calibration method using a combination of absolute calibration from radiosonde campaigns and routine-basis (off-campaign) partial calibration using a standard lamp. This new method takes advantage of the stability of traceable calibrated lamps as reliable sources of known spectral irradiance combined with the best available in situ measurements. An integrated approach is formulated, which can be used for the future long-term monitoring of water vapor by Raman lidars within the international Network for the Detection of Atmospheric Composition Change and other networks. PMID:18936807

  6. On retrieval of lidar extinction profiles using Two-Stream and Raman techniques

    NASA Astrophysics Data System (ADS)

    Stachlewska, I. S.; Ritter, C.

    2010-03-01

    The Two-Stream technique employs simultaneous measurements performed by two elastic backscatter lidars pointing at each other to sample into the same atmosphere. It allows for a direct retrieval of the extinction coefficient profile from the ratio of the two involved lidar signals. During a number of Alfred-Wegener-Institute (AWI) campaigns dedicated to Arctic research, the AWI's Polar 2 aircraft with the integrated onboard nadir-pointing Airborne Mobile Aerosol Lidar (AMALi) was utilised. The aircraft flew over a vicinity of Ny Ålesund on Svalbard, where the zenith-pointing Koldewey Aerosol Raman Lidar (KARL) has been located. This experimental approach gave the unique opportunity to retrieve the extinction profiles with a rarely used Two-Stream technique against a well established Raman technique. Both methods were applied to data obtained for clean Arctic conditions during the Arctic Study of Tropospheric clouds and Radiation (ASTAR 2004) campaign, and slightly polluted Arctic conditions during the Svalbard Experiment (SvalEx 2005) campaign. Successful comparison of both evaluation tools in different measurement conditions demonstrates sensitivity and feasibility of the Two-Stream method to obtain particle extinction and backscatter coefficients profiles without assumption of their relationship (lidar ratio). The method has the potential to serve as an extinction retrieval tool for KARL or AMALi simultaneous observations with the space borne CALIPSO lidar overpasses during the ASTAR 2007.

  7. Characterization of the planetary boundary layer height and structure by Raman lidar: comparison of different approaches

    NASA Astrophysics Data System (ADS)

    Summa, D.; Di Girolamo, P.; Stelitano, D.; Cacciani, M.

    2013-06-01

    The Planetary Boundary Layer (PBL) includes the portion of the atmosphere which is directly influenced by the presence of the Earth's surface. Aerosol particles trapped within the PBL can be used as tracers to study the boundary-layer vertical structure and time variability. As a result of this, elastic backscatter signals collected by lidar systems can be used to determine the height and the internal structure of the PBL. The present analysis considers three different methods to estimate the PBL height. A first method is based on the determination of the first order derivative of the logarithm of the range-corrected elastic lidar signals. Estimates of the PBL height for specific case studies obtained from this approach are compared with simultaneous estimates from the potential temperature profiles measured by radiosondes launched simultaneously to lidar operation. Additional estimates of the boundary layer height are based on the determination of the first order derivative of the range-corrected rotational Raman lidar signals. This latter approach results to be successfully applicable also in the afternoon-evening decaying phase of the PBL, when the effectiveness of the approach based on the elastic lidar signals may be compromised or altered by the presence of the residual layer. Results from these different approaches are compared and discussed in the paper, with a specific focus on selected case studies collected by the University of Basilicata Raman lidar system BASIL during the Convective and Orographically-induced Precipitation Study (COPS).

  8. Characterization of the planetary boundary layer height and structure by Raman lidar: comparison of different approaches

    NASA Astrophysics Data System (ADS)

    Summa, D.; Di Girolamo, P.; Stelitano, D.; Cacciani, M.

    2013-12-01

    The planetary boundary layer (PBL) includes the portion of the atmosphere which is directly influenced by the presence of the earth's surface. Aerosol particles trapped within the PBL can be used as tracers to study the boundary-layer vertical structure and time variability. As a result of this, elastic backscatter signals collected by lidar systems can be used to determine the height and the internal structure of the PBL. The present analysis considers three different methods to estimate the PBL height. The first method is based on the determination of the first-order derivative of the logarithm of the range-corrected elastic lidar signals. Estimates of the PBL height for specific case studies obtained through this approach are compared with simultaneous estimates from the potential temperature profiles measured by radiosondes launched simultaneously to lidar operation. Additional estimates of the boundary layer height are based on the determination of the first-order derivative of the range-corrected rotational Raman lidar signals. This latter approach results to be successfully applicable also in the afternoon-evening decaying phase of the PBL, when the effectiveness of the approach based on the elastic lidar signals may be compromised or altered by the presence of the residual layer. Results from these different approaches are compared and discussed in the paper, with a specific focus on selected case studies collected by the University of Basilicata Raman lidar system BASIL during the Convective and Orographically-induced Precipitation Study (COPS).

  9. Laser remote sensing of tropospheric aerosol over Southern Ireland using a backscatter Raman LIDAR

    NASA Astrophysics Data System (ADS)

    Ruth, Albert A.; Acheson, Karen; Apituley, Arnoud; Chaikovsky, Anatoli; Nicolae, Doina; Ortiz-Amezcua, Pablo; Stoyanov, Dimitar; Trickl, Thomas

    2016-04-01

    Raman backscatter coefficients, extinction coefficients and lidar ratios were measured with a ground based Raman lidar system at University College Cork, Ireland, during the periods of July 2012 - August 2012, April 2013 - December 2013 and March 2014 - May 2014. Statistical analysis of these parameters in this time provided information about seasonal effects of Raman backscatter coefficients and the altitude of the top of the planetary boundary layer. The mean of the altitude of the top of the planetary boundary layer over these time periods is 950 ± 302 m. The values are larger in summer, 1206 ± 367 m, than in winter, 735 m. The altitude of the top of the planetary boundary layer measured at Cork is lower than most EARLINET stations. Raman backscatter coefficients above and altitude of 2 km are highest in summer and spring where the values are greater than 0.28 Mm‑1 sr‑1. Winter values of Raman backscatter coefficient are less than 0.06 Mm‑1 sr‑1. These seasonal effects are consistent with most EARLINET stations. Large aerosol loads were detected in July 2013 due to a Canadian forest fire event. HYSPLIT air-mass back trajectory models were used to trace the origin of the detected aerosol layers. The aerosol forecast model, MACC, was used to further investigate and verify the propagation of the smoke. The Lidar ratio values and Klett and Raman backscatter coefficients at Cork, for the 4th July, the 7th to 9th of July and the 11th July were compared with observations at Cabauw, Minsk, Granada, Bucharest, Sofia and Garmisch. Lidar ratio values for the smoke detected at Cork were determined to be between 33 sr and 62 sr. The poster will discuss the seasonal changes of Raman backscatter coefficients and the altitude of the top of the planetary boundary layer at Cork. An investigation of a Canadian forest fire event measured at Cork will be compared with other data from the EARLINET database.

  10. Design and daytime performance of laser-induced fluorescence spectrum lidar for simultaneous detection of multiple components, dissolved organic matter, phycocyanin, and chlorophyll in river water.

    PubMed

    Saito, Yasunori; Kakuda, Kei; Yokoyama, Mizuho; Kubota, Tomoki; Tomida, Takayuki; Park, Ho-Dong

    2016-08-20

    In this work, we developed mobile laser-induced fluorescence spectrum (LIFS) lidar based on preliminary experiments on the excitation emission matrix of a water sample and a method for reducing solar background light using the synchronous detection technique. The combination of a UV short-pulse laser (355 nm, 6 ns) for fluorescence excitation with a 10-100 ns short-time synchronous detection using a gated image-intensified multi-channel CCD of the fluorescence made the LIFS lidar operation possible even in daytime. The LIFS lidar with this construction demonstrated the potential of natural river/lake water quality monitoring at the Tenryu River/Lake Suwa. Three main components in the fluorescence data of the water, dissolved organic matter, phycocyanin, and chlorophyll, were extracted by spectral analysis using the standard spectral functions of these components. Their concentrations were estimated by adapting experimentally calibrated data. Results of long-term field observations using our LIFS lidar from 2010 to 2012 show the necessity of simultaneous multi-component detection to understand the natural water environment. PMID:27556995

  11. Ceilometer aerosol profiling versus Raman lidar in the frame of the INTERACT campaign of ACTRIS

    NASA Astrophysics Data System (ADS)

    Madonna, F.; Amato, F.; Vande Hey, J.; Pappalardo, G.

    2015-05-01

    Despite their differences from more advanced and more powerful lidars, the low construction and operation cost of ceilometers (originally designed for cloud base height monitoring) has fostered their use for the quantitative study of aerosol properties. The large number of ceilometers available worldwide represents a strong motivation to investigate both the extent to which they can be used to fill in the geographical gaps between advanced lidar stations and also how their continuous data flow can be linked to existing networks of the more advanced lidars, like EARLINET (European Aerosol Research Lidar Network). In this paper, multi-wavelength Raman lidar measurements are used to investigate the capability of ceilometers to provide reliable information about atmospheric aerosol properties through the INTERACT (INTERcomparison of Aerosol and Cloud Tracking) campaign carried out at the CNR-IMAA Atmospheric Observatory (760 m a.s.l., 40.60° N, 15.72° E), in the framework of the ACTRIS (Aerosol Clouds Trace gases Research InfraStructure) FP7 project. This work is the first time that three different commercial ceilometers with an advanced Raman lidar are compared over a period of 6 months. The comparison of the attenuated backscatter coefficient profiles from a multi-wavelength Raman lidar and three ceilometers (CHM15k, CS135s, CT25K) reveals differences due to the expected discrepancy in the signal to noise ratio (SNR) but also due to changes in the ambient temperature on the short and mid-term stability of ceilometer calibration. Therefore, technological improvements are needed to move ceilometers towards operational use in the monitoring of atmospheric aerosols in the low and free troposphere.

  12. Ceilometer aerosol profiling vs. Raman lidar in the frame of INTERACT campaign of ACTRIS

    NASA Astrophysics Data System (ADS)

    Madonna, F.; Amato, F.; Vande Hey, J.; Pappalardo, G.

    2014-12-01

    Despite their differences from more advanced and more powerful lidars, the low construction and operation cost of ceilometers, originally designed for cloud base height monitoring, has fostered their use for the quantitative study of aerosol properties. The large number of ceilometers available worldwide represents a strong motivation to investigate both the extent to which they can be used to fill in the geographical gaps between advanced lidar stations and also how their continuous data flow can be linked to existing networks of the more advanced lidars, like EARLINET (European Aerosol Research LIdar NETwork). In this paper, multi-wavelength Raman lidar measurements are used to investigate the capability of ceilometers to provide reliable information about atmospheric aerosol content through the INTERACT (INTERcomparison of Aerosol and Cloud Tracking) campaign carried out at the CNR-IMAA Atmospheric Observatory (760 m a.s.l., 40.60° N, 15.72° E), in the framework of ACTRIS (Aerosol Clouds Trace gases Research InfraStructure) FP7 project. This work is the first time that three different commercial ceilometers with an advanced Raman lidar are compared over a period of six months. The comparison of the attenuated backscatter profiles from a multi-wavelength Raman lidar and three ceilometers (CHM15k, CS135s, CT25K) reveals differences due to the expected discrepancy in the SNR but also due to effect of changes in the ambient temperature on the short and mid-term stability of ceilometer calibration. A large instability of ceilometers in the incomplete overlap region has also been observed, making the use of a single overlap correction function for the whole duration of the campaign critical. Therefore, technological improvements of ceilometers towards their operational use in the monitoring of the atmospheric aerosol in the low and free troposphere are needed.

  13. Application of the lamp mapping technique for overlap function for Raman lidar systems.

    PubMed

    Walker, Monique; Venable, Demetrius; Whiteman, David N; Sakai, Tetsu

    2016-04-01

    Traditionally, the lidar water vapor mixing ratio (WVMR) is corrected for overlap using data from another instrument, such as a radiosonde. Here we introduce a new experimental method to determine the overlap function using the lamp mapping technique (LMT), which relies on the lidar optics and detection system. The LMT discussed here involves a standard halogen lamp being scanned over the aperture of a Raman lidar telescope in synchronization with the lidar detection system [Appl. Opt.50, 4622 (2011)APOPAI0003-693510.1364/AO.50.004622, Appl. Opt.53, 8538 (2014)APOPAI0003-693510.1364/AO.53.008535]. In this paper, we show results for a LMT-determined overlap function for individual channels, as well as a WVMR overlap function. We found that the LMT-determined WVMR overlap functions deviate within 5% of the traditional radiosonde-determined overlap. PMID:27139656

  14. Mobile Multiwavelength Polarization Raman Lidar for Water Vapor, Cloud and Aerosol Measurement

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Song, Xiaoquan; Liu, Bingyi; Dai, Guangyao; Zhang, Kailin; Qin, Shengguang; Gao, Fei; Hua, Dengxin

    2016-06-01

    Aiming at the detection of water vapor mixing ratio, particle linear depolarization ratio, extinction coefficient and cloud information, the Water vapor, Cloud and Aerosol Lidar (WVCAL) was developed by the lidar group at Ocean University of China. The Lidar consists of transmitting subsystem, receiving subsystem, data acquisition and controlling subsystem and auxiliary subsystem. These parts were presented and described in this paper. For the measurement of various physical properties, three channels including Raman channel, polarization channel and infrared channel are integrated in this Lidar system. In this paper, the integration and working principle of these channels is introduced in details. Finally, a measurement example which was operated in coastal area-Qingdao, Shandong province, during 2014 is provided.

  15. Pure Rotational Raman Lidar for Temperature Measurements from 5-40 Km Over Wuhan, China

    NASA Astrophysics Data System (ADS)

    Li, Yajuan; Song, Shalei; Yang, Yong; Li, Faquan; Cheng, Xuewu; Chen, Zhenwei; Liu, Linmei; McCormick, M. Patrick; Gong, Shunsheng

    2016-06-01

    In this paper a pure rotational Raman lidar (PRR) was established for the atmospheric temperature measurements from 5 km to 40 km over Wuhan, China (30.5°N, 114.5°E). To extract the expected PRR signals and simultaneously suppress the elastically backscattered light, a high-spectral resolution polychromator for light splitting and filtering was designed. Observational results revealed that the temperature difference measured by PRR lidar and the local radiosonde below 30 km was less than 3.0 K. The good agreement validated the reliability of the PRR lidar. With the 1-h integration and 150-m spatial resolution, the statistical temperature error for PRR lidar increases from 0.4 K at 10 km up to 4 K at altitudes of about 30 km. In addition, the whole night temperature profiles were obtained for study of the long-term observation of atmospheric fluctuations.

  16. Collision broadening effect upon tropospheric temperature calibration functions for pure rotational Raman lidars

    NASA Astrophysics Data System (ADS)

    Gerasimov, V. V.; Zuev, V. V.; Pravdin, V. L.; Nakhtigalova, D. P.; Pavlinskiy, A. V.

    2015-11-01

    We present the general calibration function for temperature retrievals in the cloud-free troposphere using pure rotational Raman (PRR) lidars under the condition of the laser-beam receiver-field-of-view complete overlap. The function is derived within the framework of the semiclassical theory and takes account of the broadened by collision effects elastic backscattered signal leakage into the nearest (to the laser line) lidar PRR channel. The two simplest nonlinear special cases of the general calibration function are considered to be applied in the temperature retrieval algorithm. The vertical temperature profiles retrieved from nighttime lidar measurements in Tomsk (56.48°N, 85.05°E), on October 2, 2014, are given as an example. The measurements were performed using a PRR lidar designed in Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences (IMCES SB RAS) for lower-atmosphere temperature-profile retrievals.

  17. New Examination of the Traditional Raman Lidar Technique. 1; Temperature Dependence and the Calculation of Atmospheric Transmission

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Abshire, James B. (Technical Monitor)

    2002-01-01

    The intent of this paper and its companion paper is to pull together the essential information required for the traditional Raman lidar data analysis to be performed. As a part of this, complications such as the temperature dependence of the water vapor signal is evaluated through numerical simulation. A new form of the lidar equation is presented that accounts for the temperature dependence of Raman scattering. Also the calculation of atmospheric transmission is examined carefully. Several photon correction techniques are considered as is the influence of multiple scattering on the measurement of aerosol extinction using the Raman lidar technique.

  18. Development of Multi-Wavelength Raman Lidar and its Application on Aerosol and Cloud Research

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Wang, Yingjian; Wang, Zhenzhu; Tao, Zongming; Wu, Decheng; Wang, Bangxin; Zhong, Zhiqing; Xie, Chenbo

    2016-06-01

    A movable multi-wavelength Raman lidar (TMPRL) was built in Hefei, China. Emitting with three wavelengths at 1064, 532, and 355nm, receiving three above Mie scattering signals and two nitrogen Raman signals at 386 and 607nm, and depolarization signal at 532nm, TMPRL has the capacity to investigate the height resolved optical and microphysical properties of aerosol and cloud. The retrieval algorithms of optical parameters base on Mie-Raman technique and the microphysical parameters based on Bayesian optimization method were also developed and applied to observed lidar data. Designing to make unattended operation and 24/7 continuous working, TMPRL has joined several field campaigns to study on the aerosol, cloud and their interaction researches. Some observed results of aerosol and cloud optical properties and the first attempt to validate the vertical aerosol size distribution retrieved by TMPRL and in-situ measurement by airplane are presented and discussed.

  19. Calibration of a water vapour Raman lidar with a kite-based humidity sensor

    NASA Astrophysics Data System (ADS)

    Totems, Julien; Chazette, Patrick

    2016-03-01

    We present a calibration method for a water vapour Raman lidar using a meteorological probe lifted by a kite, flown steadily above the lidar site, within the framework of the Hydrological Cycle in the Mediterranean Experiment (HyMeX) and Chemistry-Aerosol Mediterranean Experiment (ChArMEx) campaigns. The experiment was carried out in Menorca (Spain) during June 2013, using the mobile water vapour and aerosol lidar WALI. Calibration using a kite demonstrated a much better degree of co-location with the lidar system than that which could be achieved with radiosondes, and it allowed us to determine the overlap function and calibration factor simultaneously. The range-dependent water vapour lidar calibration was thus determined with an uncertainty of 2 % in the 90-8000 m altitude range. Lidar water vapour measurements are further compared with radiosondes, showing very good agreement in the lower troposphere (1-5 km) and a relative difference and standard deviation of 5 and 9 % respectively. Moreover, a reasonable agreement with MODIS-integrated water vapour content is found, with a relative mean and standard deviation of 3 and 16 % respectively. However, a discrepancy is found with AERONET retrievals, showing the latter to be underestimated by 28 %. Reanalyses by the ECMWF/IFS numerical weather prediction model also agree with the temporal evolution highlighted with the lidar, with no measurable drift in integrated water vapour content over the period.

  20. A new Raman-N2 lidar dedicated to air quality survey

    NASA Astrophysics Data System (ADS)

    Royer, P.; Chazette, P.; Lardier, M.; Raut, J.-C.; Sauvage, L.

    2010-05-01

    The Commissariat à l'Energie Atomique (CEA) and the Centre National de la Recherche Scientifique (CNRS) have developed the Lidar Aérosols UltraViolet Aéroporté (LAUVA). The new version of this prototype is now commercialized with success under license by the LEOSPHERE Company with the name EZ LIDAR®. This eye-safe lidar is based on a Nd:YAG laser giving pulses of 16 mJ at 355 nm with a frequency of 20 Hz. The CEA and LEOSPHERE have recently upgraded this instrument into a three detection channels lidar measuring the two elastic cross-polarizations and the Raman-N2 backscatter signal at 387 nm. It is able to retrieve aerosol optical properties (extinction, backscatter coefficients and depolarization ratio) and atmospheric structures (boundary layer height and clouds) with a resolution of 1.5 m along the line-of-sight in analog mode and 15 m in photon-counting mode. This new lidar is particularly well-adapted to air quality survey thanks to a full overlap reached at ~150 m. This compact (90x50x20 cm) and light (less than50 kg) instrument has been integrated into the Mobile Aerosol Station (MAS) onboard a small truck and enables mobile measurements. We will here present and analyze some results obtained around Paris area with this Raman-N2 lidar.

  1. Automated retrieval of cloud and aerosol properties from the ARM Raman lidar, part 1: feature detection

    SciTech Connect

    Thorsen, Tyler J.; Fu, Qiang; Newsom, Rob K.; Turner, David D.; Comstock, Jennifer M.

    2015-11-01

    A Feature detection and EXtinction retrieval (FEX) algorithm for the Atmospheric Radiation Measurement (ARM) program’s Raman lidar (RL) has been developed. Presented here is part 1 of the FEX algorithm: the detection of features including both clouds and aerosols. The approach of FEX is to use multiple quantities— scattering ratios derived using elastic and nitro-gen channel signals from two fields of view, the scattering ratio derived using only the elastic channel, and the total volume depolarization ratio— to identify features using range-dependent detection thresholds. FEX is designed to be context-sensitive with thresholds determined for each profile by calculating the expected clear-sky signal and noise. The use of multiple quantities pro-vides complementary depictions of cloud and aerosol locations and allows for consistency checks to improve the accuracy of the feature mask. The depolarization ratio is shown to be particularly effective at detecting optically-thin features containing non-spherical particles such as cirrus clouds. Improve-ments over the existing ARM RL cloud mask are shown. The performance of FEX is validated against a collocated micropulse lidar and observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite over the ARM Darwin, Australia site. While we focus on a specific lidar system, the FEX framework presented here is suitable for other Raman or high spectral resolution lidars.

  2. Lidar investigations of atmospheric dynamics

    NASA Astrophysics Data System (ADS)

    Philbrick, C. Russell; Hallen, Hans D.

    2015-09-01

    Ground based lidar techniques using Raleigh and Raman scattering, differential absorption (DIAL), and supercontinuum sources are capable of providing unique signatures to study dynamical processes in the lower atmosphere. The most useful profile signatures of dynamics in the lower atmosphere are available in profiles of time sequences of water vapor and aerosol optical extinction obtained with Raman and DIAL lidars. Water vapor profiles are used to study the scales and motions of daytime convection cells, residual layer bursts into the planetary boundary layer (PBL), variations in height of the PBL layer, cloud formation and dissipation, scale sizes of gravity waves, turbulent eddies, as well as to study the seldom observed phenomena of Brunt-Väisälä oscillations and undular bore waves. Aerosol optical extinction profiles from Raman lidar provide another tracer of dynamics and motion using sequential profiles atmospheric aerosol extinction, where the aerosol distribution is controlled by dynamic, thermodynamic, and photochemical processes. Raman lidar profiles of temperature describe the stability of the lower atmosphere and measure structure features. Rayleigh lidar can provide backscatter profiles of aerosols in the troposphere, and temperature profiles in the stratosphere and mesosphere, where large gravity waves, stratospheric clouds, and noctilucent clouds are observed. Examples of several dynamical features are selected to illustrate interesting processes observed with Raman lidar. Lidar experiments add to our understanding of physical processes that modify atmospheric structure, initiate turbulence and waves, and describe the relationships between energy sources, atmospheric stability parameters, and the observed dynamics.

  3. Remote sensing of the atmosphere by resonance Raman LIDAR

    SciTech Connect

    Sedlacek, A.J.; Harder, D.; Leung, K.P.; Zuhoski, P.B. Jr.; Burr, D.; Chen, C.L.

    1994-12-01

    When in resonance, Raman scattering exhibits strong enhancement ranging from four to six orders of magnitude. This physical phenomenon has been applied to remote sensing of the Earth`s atmosphere. With a 16 inch Cassegrain telescope and spectrometer/ CCD-detector system, 70-150 ppm-m of SO{sub 2} in the atmosphere has been detected at a distance of 0.5 kilometer. This system can be used to detect/monitor chemical effluence in the atmosphere by their unique Raman fingerprints. Experimental result together with detailed resonance Raman and atmospheric laser propagation effects will be discussed.

  4. Central Asian Dust Experiment (CADEX): Multiwavelength Polarization Raman Lidar Observations in Tajikistan

    NASA Astrophysics Data System (ADS)

    Hofer, Julian; Althausen, Dietrich; Abdullaev, Sabur F.; Engelmann, Ronny; Baars, Holger

    2016-06-01

    For the first time lidar measurements of vertical aerosol profiles are conducted in Tajikistan/Central Asia. These measurements just started on March 17th, 2015. They are performed within the Central Asian Dust Experiment (CADEX) in Dushanbe and they will last at least one year. The deployed system for these observations is an updated version of the multiwavelength polarization Raman lidar PollyXT. Vertical profiles of the backscatter coefficient, the extinction coefficient, and the particle depolarization ratio are measured by this instrument. A first and preliminary measurement example of an aerosol layer over Dushanbe is shown.

  5. Raman Lidar Water Vapor Measurements at the DOE SGP CART Site

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Smith, David E. (Technical Monitor)

    2001-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was deployed to the Department of Energy's (DOE) Cloud and Radiation Testbed site in northern Oklahoma September - December, 2000 for two DOE sponsored field campaigns: 1) the Water Vapor Intensive Operations Experiment 2000 and 2) the Atmospheric Radiations Measurement First International Satellite Cloud Climatology Experiment Experiment (AFWEX). WvIOP2000 focussed on water vapor measurements in the lower troposphere while AFWEX focussed on upper tropospheric water vapor. For the first time ever, four water vapor lidars were operated simultaneously: one airborne and three ground-based systems. Intercomparisons of these measurements and others will be presented at the meeting.

  6. Rayleigh/raman Greenland Lidar Observations of Atmospheric Temperature During a Major Arctic Stratospheric Warming Event

    NASA Technical Reports Server (NTRS)

    Meriwether, John W.; Farley, Robert; Mcnutt, R.; Dao, Phan D.; Moskowitz, Warren P.

    1992-01-01

    Between Jan. 22 1991 to Feb. 5 1991, we made numerous observations of atmospheric temperature profiles between 10 and 70 km by using the combination of Rayleigh and Raman lidar systems contained in the PL Mobile Lidar Facility located at the National Science Foundation Incoherent Radar Facility of Sondrestrom in Greenland. The purpose of these measurements was to observe the dynamics of the winter Arctic stratosphere and mesosphere regions during a winter period from the succession of temperature profiles obtained in our campaign observations. Various aspects of this investigation are presented.

  7. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 1; Methods and Comparisons

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Leifer, R.

    1998-01-01

    This paper examines the aerosol backscattering and extinction profiles measured at night by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site in April 1994. These lidar data are used to derive aerosol profiles for altitudes between 0.0 1 5 and 5 km. Since this lidar detects Raman scattering from nitrogen and oxygen molecules as well as the elastic scattering from molecules and aerosols, it measures both aerosol backscattering and extinction simultaneously. The aerosol extinction/backscattering ratio varied between approximately 30 sr and 75 sr at 351 nm. Aerosol optical thicknesses derived by integrating the lidar profiles of aerosol extinction measured at night between 0. I and 5 km are found to be about 10-40% lower than those measured by a Sun photometer during the day. This difference is attributed to the contribution by stratospheric aerosols not included in the lidar estimates as well as to diurnal differences in aerosol properties and concentrations. Aerosol profiles close to the surface were acquired by pointing the lidar nearly horizontally. Measurements of aerosol scattering from a tower-mounted nephelometer are found to be 40% lower than lidar measurements of aerosol extinction over a wide range of relative humidities even after accounting for the difference in wavelengths. The reasons for this difference are not clear but may be due to the inability of the nephelometer to accurately measure scattering by large particles.

  8. Raman lidar measurements of aerosol extinction and backscattering: 1. Methods and comparisons

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Leifer, R.

    1998-08-01

    This paper examines the aerosol backscattering and extinction profiles measured at night by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site in April 1994. These lidar data are used to derive aerosol profiles for altitudes between 0.015 and 5 km. Since this lidar detects Raman scattering from nitrogen and oxygen molecules as well as the elastic scattering from molecules and aerosols, it measures both aerosol backscattering and extinction simultaneously. The aerosol extinction/backscattering ratio varied between approximately 30 sr and 75 sr at 351 nm. Aerosol optical thicknesses derived by integrating the lidar profiles of aerosol extinction measured at night between 0.1 and 5 km are found to be about 10-40% lower than those measured by a Sun photometer during the day. This difference is attributed to the contribution by stratospheric aerosols not included in the lidar estimates as well as to diurnal differences in aerosol properties and concentrations. Aerosol profiles close to the surface were acquired by pointing the lidar nearly horizontally. Measurements of aerosol scattering from a tower-mounted nephelometer are found to be 40% lower than lidar measurements of aerosol extinction over a wide range of relative humidities even after accounting for the difference in wavelengths. The reasons for this difference are not clear but may be due to the inability of the nephelometer to accurately measure scattering by large particles.

  9. Liquid Water Cloud Measurements Using the Raman Lidar Technique: Current Understanding and Future Research Needs

    NASA Technical Reports Server (NTRS)

    Tetsu, Sakai; Whiteman, David N.; Russo, Felicita; Turner, David D.; Veselovskii, Igor; Melfi, S. Harvey; Nagai, Tomohiro; Mano, Yuzo

    2013-01-01

    This paper describes recent work in the Raman lidar liquid water cloud measurement technique. The range-resolved spectral measurements at the National Aeronautics and Space Administration Goddard Space Flight Center indicate that the Raman backscattering spectra measured in and below low clouds agree well with theoretical spectra for vapor and liquid water. The calibration coefficients of the liquid water measurement for the Raman lidar at the Atmospheric Radiation Measurement Program Southern Great Plains site of the U.S. Department of Energy were determined by comparison with the liquid water path (LWP) obtained with Atmospheric Emitted Radiance Interferometer (AERI) and the liquid water content (LWC) obtained with the millimeter wavelength cloud radar and water vapor radiometer (MMCR-WVR) together. These comparisons were used to estimate the Raman liquid water cross-sectional value. The results indicate a bias consistent with an effective liquid water Raman cross-sectional value that is 28%-46% lower than published, which may be explained by the fact that the difference in the detectors' sensitivity has not been accounted for. The LWP of a thin altostratus cloud showed good qualitative agreement between lidar retrievals and AERI. However, the overall ensemble of comparisons of LWP showed considerable scatter, possibly because of the different fields of view of the instruments, the 350-m distance between the instruments, and the horizontal inhomogeneity of the clouds. The LWC profiles for a thick stratus cloud showed agreement between lidar retrievals andMMCR-WVR between the cloud base and 150m above that where the optical depth was less than 3. Areas requiring further research in this technique are discussed.

  10. Study and mitigation of calibration error sources in a water vapour Raman lidar

    NASA Astrophysics Data System (ADS)

    David, Leslie; Bock, Olivier; Bosser, Pierre; Thom, Christian; Pelon, Jacques

    2014-05-01

    The monitoring of water vapour throughout the atmosphere is important for many scientific applications (weather forecasting, climate research, calibration of GNSS altimetry measurements). Measuring water vapour remains a technical challenge because of its high variability in space and time. The major issues are achieving long-term stability (e.g., for climate trends monitoring) and high accuracy (e.g. for calibration/validation applications). LAREG and LOEMI at Institut National de l'Information Géographique et Forestière (IGN) have developed a mobile scanning water vapour Raman lidar in collaboration with LATMOS at CNRS. This system aims at providing high accuracy water vapour measurements throughout the troposphere for calibrating GNSS wet delay signals and thus improving vertical positioning. Current developments aim at improving the calibration method and long term stability of the system to allow the Raman lidar to be used as a reference instrument. The IGN-LATMOS lidar was deployed in the DEMEVAP (Development of Methodologies for Water Vapour Measurement) campaign that took place in 2011 at the Observatoire de Haute Provence. The goals of DEMEVAP were to inter-compare different water vapour sounding techniques (lidars, operational and research radiosondes, GPS,…) and to study various calibration methods for the Raman lidar. A significant decrease of the signals and of the calibration constants of the IGN-LATMOS Raman lidar has been noticed all along the campaign. This led us to study the likely sources of uncertainty and drifts in each part of the instrument: emission, reception and detection. We inventoried several error sources as well as instability sources. The impact of the temperature dependence of the Raman lines on the filter transmission or the fluorescence in the fibre, are examples of the error sources. We investigated each error source and each instability source (uncontrolled laser beam jitter, temporal fluctuations of the photomultiplier

  11. New Examination of the Traditional Raman Lidar Technique II: Temperature Dependence Aerosol Scattering Ratio and Water Vapor Mixing Ratio Equations

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Abshire, James B. (Technical Monitor)

    2002-01-01

    In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman water vapor signal and the lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here we use those results to derive the temperature dependent forms of the equations for the aerosol scattering ratio, aerosol backscatter coefficient, extinction to backscatter ratio and water vapor mixing ratio. Pertinent analysis examples are presented to illustrate each calculation.

  12. Development and applications of tunable, narrow band lasers and stimulated Raman scattering devices for atmospheric lidar

    NASA Technical Reports Server (NTRS)

    Wilkerson, Thomas D.

    1993-01-01

    The main thrust of the program was the study of stimulated Raman processes for application to atmospheric lidar measurements. This has involved the development of tunable lasers, the detailed study of stimulated Raman scattering, and the use of the Raman-shifted light for new measurements of molecular line strengths and line widths. The principal spectral region explored in this work was the visible and near-IR wavelengths between 500 nm and 1.5 microns. Recent alexandrite ring laser experiments are reported. The experiments involved diode injection-locking, Raman shifting, and frequency-doubling. The experiments succeeded in producing tunable light at 577 and 937 nm with line widths in the range 80-160 MHz.

  13. Rotational Raman lidar with a multispectral detector for temperature profiling in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Yoshikawa, K.; Yabuki, M.; Tsuda, T.

    2013-12-01

    Temperature profiling in the atmospheric boundary layer is essential for studying atmospheric processes such as dynamics, thermodynamics, and cloud physics. The rotational Raman (RR) lidar has the ability to conduct continuous observation of the spatial distributions of atmospheric temperature. In this study, a combination of the temperature lidar with a multispectral detector is proposed, in order to construct a system that is compact, robust, and easy to align for the detection of RR signals. The multispectral detector enables simultaneous acquisition of multi-channel photon counts and provides spectral and range-resolved data by applying lidar techniques. Conventional temperature lidar detects the ratio of two RR lidar signals of opposite temperature dependence in combination with several edge- and interference-filters. Conversely, the multispectral detector can define the shape of the RR spectrum. Therefore, the proposed system with a multispectral detector detects the variation of the lidar signals by temperature as well as that of the wavelength shift of the emitted laser. It is suggested that this technique can reduce uncertainties in the optical alignment of the polychromator and in the stability of laser wavelength. The statistical temperature-error derived from the proposed method depends on both the spectral resolution and the spectral range of the multispectral detector. The ideal settings for multispectral observation were estimated by the theoretical simulation of the effect of both spectral resolution and spectral range on the accuracy of temperature estimation. Further, we construct the temperature lidar by employing the multispectral detector with the ideal spectral resolution derived from the simulation. In this presentation, we introduce our proposed system and the preliminary results of the temperature observation from RR lidar with a multi spectral detector.

  14. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Rush, Kurt; Rabenhorst, Scott; Welch, Wayne; Cadirola, Martin; McIntire, Gerry; Russo, Felicita; Adam, Mariana; Venable, Demetrius; Connell, Rasheen; Veselovskii, Igor; Forno, Ricardo; Mielke, Bernd; Stein, Bernhard; Leblanc, Thierry; McDermid, Stuart; Voemel, Holger

    2010-01-01

    A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire, for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, aerosol depolarization and research mode measurements of cloud liquid water, cloud droplet radius, and number density. The Raman Airborne Spectroscopic Lidar (RASL) system was installed in a Beechcraft King Air B200 aircraft and was flown over the mid-Atlantic United States during July August 2007 at altitudes ranging between 5 and 8 km. During these flights, despite suboptimal laser performance and subaperture use of the telescope, all RASL measurement expectations were met, except that of aerosol extinction. Following the Water Vapor Validation Experiment Satellite/Sondes (WAVES_2007) field campaign in the summer of 2007, RASL was installed in a mobile trailer for groundbased use during the Measurements of Humidity and Validation Experiment (MOHAVE-II) field campaign held during October 2007 at the Jet Propulsion Laboratory s Table Mountain Facility in southern California. This ground-based configuration of the lidar hardware is called Atmospheric Lidar for Validation, Interagency Collaboration and Education (ALVICE). During theMOHAVE-II field campaign, during which only nighttime measurements were made, ALVICE demonstrated significant sensitivity to lower-stratospheric water vapor. Numerical simulation and comparisons with a cryogenic frost-point hygrometer are used to demonstrate that a system with the performance characteristics of RASL ALVICE should indeed be able to quantify water vapor well into the lower stratosphere with extended averaging from an elevated location like Table Mountain. The same design considerations that optimize Raman lidar for airborne use on a small research aircraft are, therefore, shown to yield significant dividends in the quantification of lower-stratospheric water vapor. The MOHAVE

  15. Evidence of High Ice Supersaturation in Cirrus Clouds Using ARM Raman Lidar Measurements

    SciTech Connect

    Comstock, Jennifer M.; Ackerman, Thomas P.; Turner, David D.

    2004-06-05

    Water vapor amounts in the upper troposphere are crucial to understanding the radiative feedback of cirrus clouds on the Earth’s climate. We use a unique, year-long dataset of water vapor mixing ratio inferred from ground-based Raman lidar measurements to study the role of ice supersaturation in ice nucleation processes. We find that ice supersaturation occurs 31% of the time in over 300,000 data points. We also examine the distribution of ice supersaturation with height and find that in the uppermost portion of a cloud layer, the air is ice supersaturated 43% of the time. These measurements show that large ice supersaturation is common in cirrus clouds, which supports the theory of ice forming homogeneously. Given the continuous nature of these Raman lidar measurements, our results have important implications for studying ice nucleation processes using cloud microphysical models.

  16. ARM Raman Lidar Measurements of High Ice Supersaturation in Cirrus Clouds

    SciTech Connect

    Comstock, Jennifer M.; Ackerman, Thomas P.; Turner, David D.

    2004-09-01

    Water vapor amounts in the upper troposphere are crucial to understanding the radiative feedback of cirrus clouds on the Earth's climate. We use a unique, year-long dataset of water vapor mixing ratio inferred from ground-based Raman lidar measurements to study the role of ice supersaturation in ice nucleation processes. We find that ice supersaturation occurs 31% of the time in over 300,000 data points. We also examine the distribution of ice supersaturation with height and find that in the uppermost portion of a cloud layer, the air is ice supersaturated 43% of the time. These measurements show that large ice supersaturation is common in cirrus clouds, which supports the theory of ice forming homogeneously. Given the continuous nature of these Raman lidar measurements, our results have important implications for studying ice nucleation processes using cloud microphysical models.

  17. Aerosol Properties over Southeastern China from Multi-Wavelength Raman and Depolarization Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Heese, Birgit; Althausen, Dietrich; Baars, Holger; Bohlmann, Stephanie; Deng, Ruru

    2016-06-01

    A dataset of particle optical properties of highly polluted urban aerosol over the Pearl River Delta, Guangzhou, China is presented. The data were derived from multi-wavelengths Raman and depolarization lidar PollyXT and AERONET sun photometer measurements. The measurement campaign was conducted from Nov 2011 to June 2012. High aerosol optical depth was observed in the polluted atmosphere over this megacity, with a mean value of 0.54 ± 0.33 and a peak value of even 1.9. For the particle characterization the lidar ratio and the linear particle depolarization ratio, both at 532 nm, were used. The mean values of these properties are 48.0 sr ± 10.7 sr for the lidar ratio and 4%+-4% for the particle depolarization ratio, which means most depolarization measurements stayed below 10%. So far, most of these results indicate urban pollution particles mixed with particles arisen from biomass and industrial burning.

  18. Observations of water vapor by ground-based micro-wave radiometers and Raman lidar

    NASA Astrophysics Data System (ADS)

    Han, Yong; Snider, J. B.; Westwater, E. R.; Melfi, S. H.; Ferrare, R. A.

    1994-09-01

    In November to December 1991, a substantial number of remote sensors and in situ instruments were operated together in Coffeyville, Kansas, during the climate experiment FIRE II. Included in the suite of instruments were (1) the NOAA Environmental Technology Laboratory (ETL) three-channel microwave radiometer, (2) the NASA GSFC Raman lidar, (3) ETL radio acoustic sounding system (RASS), and (4) frequent, research-quality radiosondes. The Raman lidar operated only at night and the focus of this portion of the experiment concentrated on clear conditions. The lidar data, together with frequent radiosondes and measurements of temperature profiles (every 15 min) by RASS allowed profiles of temperature and absolute humidity to be estimated every minute. We compared 2-min measurements of brightness temperature (Tb) with calculations of Tb that were based on the Liebe and Lay ton (1987) and Liebe et al. (1993) microwave propagation models, as well as the Waters (1976) model. The comparisons showed the best agreement at 20.6 GHz with the Waters model, with the Liebe et al. (1993) model being best at 31.65 GHz. The results at 90 GHz gave about equal success with the Liebe and Layton (1987) and Liebe et al. (1993) models. Comparisons of precipitable water vapor derived independently from the two instruments also showed excellent agreement, even for averages as short as 2 min. The rms difference between Raman and radiometric determinations of precipitable water vapor was 0.03 cm which is roughly 2%. The experiments clearly demonstrate the potential of simultaneous operation of radiometers and Raman lidars for fundamental physical studies of water vapor.

  19. Observations of water vapor by ground-based microwave radiometers and Raman lidar

    NASA Technical Reports Server (NTRS)

    Han, Yong; Snider, J. B.; Westwater, E. R.; Melfi, S. H.; Ferrare, R. A.

    1994-01-01

    In November to December 1991, a substantial number of remote sensors and in situ instruments were operated together in Coffeyville, Kansas, during the climate experiment First ISCCP Regional Experiment Phase 2 (FIRE 2). Includede in the suite of instruments were (1) the NOAA Environmental Technology Laboratory (ETL) three-channel microwave radiometer, (2) the NASA GSFC Raman lidar, (3) ETL radio acoustic sounding system (RASS), and (4) frequent, research-quality radiosondes. The Raman lidar operated only at night and the focus of this portion of the experiment concentrated on clear conditions. The lidar data, together with frequent radiosondes and measurements of temperature profiles (every 15 min) by RASS allowed profiles of temperature and absolute humidity to be estimated every minute. We compared 20 min measurements of brightness temperature (T(sub b) with calculations of T(sub b) that were based on the Liebe and Layton (1987) and Liebe et al. (1993) microwave propagation models, as well as the Waters (1976) model. The comparisons showed the best agreement at 20.6 GHz with the Waters model, with the Liebe et al. (1993) model being best at 31.65 GHz. The results at 90 GHz gave about equal success with the Liebe and Layton (1987) and Liebe et al. (1993) models. Comparisons of precipitable water vapor derived independently from the two instruments also showed excellent agreement, even for averages as short as 2 min. The rms difference between Raman and radiometric determinations of precipitable water vapor was 0.03 cm which is roughly 2%. The experiments clearly demonstrate the potential of simultaneous operation of radiometers and Raman lidars for fundamental physical studies of water vapor.

  20. Lidar-measured atmospheric N₂ vibrational-rotational Raman spectra and consequent temperature retrieval.

    PubMed

    Liu, Fuchao; Yi, Fan

    2014-11-17

    We have built a spectrally resolved Raman lidar to measure atmospheric N₂ Stokes vibrational-rotational Raman spectra. The lidar applies a double-grating polychromator with a reciprocal linear dispersion of ~0.12 nm mm(-1) for the wavelength separation and a 32-channel linear-array photomultiplier tube for sampling the spectral signals. The lidar can together measure the individual S- and O-branch line signals from J = 0 (2) through 14 (16). A comparison shows an excellent agreement between the lidar-measured and theoretically-calculated spectra. Based on the signal ratio of two individual lines (e.g., S-branch J = 6 and 12), the atmospheric temperature profiles are derived without requiring a calibration from another reference temperature. In terms of the envelope shape of an even-J section of the measured S-branch lines, we have also developed a new temperature retrieval approach without needing a calibration from reference temperature data. Both the approaches can give rise to reasonable temperature profiles comparable to that from local radiosonde. PMID:25402026

  1. Remote sensing of seawater and drifting ice in Svalbard fjords by compact Raman lidar.

    PubMed

    Bunkin, Alexey F; Klinkov, Vladimir K; Lednev, Vasily N; Lushnikov, Dmitry L; Marchenko, Aleksey V; Morozov, Eugene G; Pershin, Sergey M; Yulmetov, Renat N

    2012-08-01

    A compact Raman lidar system for remote sensing of sea and drifting ice was developed at the Wave Research Center at the Prokhorov General Physics Institute of the Russian Academy of Sciences. The developed system is based on a diode-pumped solid-state YVO(4):Nd laser combined with a compact spectrograph equipped with a gated detector. The system exhibits high sensitivity and can be used for mapping or depth profiling of different parameters within many oceanographic problems. Light weight (∼20 kg) and low power consumption (300 W) make it possible to install the device on any vehicle, including unmanned aircraft or submarine systems. The Raman lidar presented was used for study and analysis of the different influence of the open sea and glaciers on water properties in Svalbard fjords. Temperature, phytoplankton, and dissolved organic matter distributions in the seawater were studied in the Ice Fjord, Van Mijen Fjord, and Rinders Fjord. Drifting ice and seawater in the Rinders Fjord were characterized by the Raman spectroscopy and fluorescence. It was found that the Paula Glacier strongly influences the water temperature and chlorophyll distributions in the Van Mijen Fjord and Rinders Fjord. Possible applications of compact lidar systems for express monitoring of seawater in places with high concentrations of floating ice or near cold streams in the Arctic Ocean are discussed. PMID:22859038

  2. Raman Lidar Profiles Best Estimate Value-Added Product Technical Report

    SciTech Connect

    Newson, R

    2012-01-18

    The ARM Raman lidars are semi-autonomous ground-based systems that transmit at a wavelength of 355 nm with 300 mJ, {approx}5 ns pulses, and a pulse repetition frequency of 30Hz. Signals from the various detection channels are processed to produce time- and height-resolved estimates of several geophysical quantities, such as water vapor mixing ratio, relative humidity, aerosol scattering ratio, backscatter, optical depth, extinction, and depolarization ratio. Data processing is currently handled by a suite of six value-added product (VAP) processes. Collectively, these processes are known as the Raman Lidar Profiles VAP (RLPROF). The top-level best-estimate (BE) VAP process was introduced in order to bring together the most relevant information from the intermediate-level VAPs. As such, the BE process represents the final stage in data processing for the Raman lidar. Its principal function is to extract the primary variables from each of the intermediate-level VAPs, perform additional quality control, and combine all of this information into a single output file for the end-user. The focus of this document is to describe the processing performed by the BE VAP process.

  3. Ceilometer Aerosol Profiling versus Raman Lidar in the Frame of Interact Campaign of Actris

    NASA Astrophysics Data System (ADS)

    Madonna, F.; Amato, F.; Rosoldi, M.; Vande Hey, J.; Pappalardo, G.

    2016-06-01

    In this paper, multi-wavelength Raman lidar measurements are used to investigate the capability of ceilometers to provide reliable information about atmospheric aerosol properties through the INTERACT (INTERcomparison of Aerosol and Cloud Tracking) campaign carried out at the CNR-IMAA Atmospheric Observatory (760 m a.s.l., 40.60 N, 15.72 E), in the framework of ACTRIS (Aerosol Clouds Trace gases Research InfraStructure) FP7 project. This work is the first time that three different commercial ceilometers with an advanced Raman lidar are compared over a period of six month. The comparison of the attenuated backscatter coefficient profiles from a multi-wavelength Raman lidar and three ceilometers (CHM15k, CS135s, CT25K) reveals differences due to the expected discrepancy in the SNR but also due to effect of changes in the ambient temperature on the stability of ceilometer calibration over short and mid-term. Technological improvements of ceilometers towards their operational use in the monitoring of the atmospheric aerosol in the low and free troposphere are likely needed.

  4. Atmospheric aerosol characterization combining multi-wavelength Raman lidar and MAX-DOAS measurements in Gwanjgu

    NASA Astrophysics Data System (ADS)

    Chong, Jihyo; Shin, Dong Ho; Kim, Kwang Chul; Lee, Kwon-Ho; Shin, Sungkyun; Noh, Young M.; Müller, Detlef; Kim, Young J.

    2011-11-01

    Integrated approach has been adopted at the ADvanced Environmental Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST), Korea for effective monitoring of atmospheric aerosol. Various active and passive optical remote sensing techniques such as multi-wavelength (3β+2α+1δ) Raman LIDAR, sun-photometry, MAX-DOAS, and satellite retrieval have been utilized. This integrated monitoring system approach combined with in-situ surface measurement is to allow better characterization of physical and optical properties of atmospheric aerosol. Information on the vertical distribution and microphysical properties of atmospheric aerosol is important for understanding its transport characteristics as well as radiative effect. The GIST multi-wavelength (3β + 2α+1δ) Raman lidar system can measure vertical profiles of optical properties of atmospheric aerosols such as extinction coefficients at 355 and 532nm, particle backscatter coefficients at 355, 532 and 1064 nm, and depolarization ratio at 532nm. The incomplete overlap between the telescope field-of-view and beam divergence of the transmitting laser significantly affects lidar measurement, resulting in higher uncertainty near the surface where atmospheric aerosols of interest are concentrated. Differential Optical Absorption Spectroscopy (DOAS) technique is applied as a complementary tool for the detection of atmospheric aerosols near the surface. The passive Multi-Axis DOAS (MAX-DOAS) technique uses scattered sunlight as a light source from several viewing directions. Recently developed aerosol retrieval algorithm based on O4 slant column densities (SCDs) measured at UV and visible wavelengths has been utilized to derive aerosol information (e.g., aerosol optical depth (AOD) and aerosol extinction coefficients (AECs)) in the lower troposphere. The aerosol extinction coefficient at 356 nm was retrieved for the 0-1 and 1-2 km layers based on the MAX-DOAS measurements using the retrieval algorithm

  5. A New Way to Measure Cirrus Ice Water Content by Using Ice Raman Scatter with Raman Lidar

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Whiteman, David N.; Demoz, Belay; Veselovskii, Igor

    2004-01-01

    High and cold cirrus clouds mainly contain irregular ice crystals, such as, columns, hexagonal plates, bullet rosettes, and dendrites, and have different impacts on the climate system than low-level clouds, such as stratus, stratocumulus, and cumulus. The radiative effects of cirrus clouds on the current and future climate depend strongly on cirrus cloud microphysical properties including ice water content (IWC) and ice crystal sizes, which are mostly an unknown aspect of cinus clouds. Because of the natural complexity of cirrus clouds and their high locations, it is a challenging task to get them accurately by both remote sensing and in situ sampling. This study presents a new method to remotely sense cirrus microphysical properties by using ice Raman scatter with a Raman lidar. The intensity of Raman scattering is fundamentally proportional to the number of molecules involved. Therefore, ice Raman scattering signal provides a more direct way to measure IWC than other remote sensing methods. Case studies show that this method has the potential to provide essential information of cirrus microphysical properties to study cloud physical processes in cirrus clouds.

  6. Gas dispersion measurements using a mobile Raman lidar system

    NASA Technical Reports Server (NTRS)

    Houston, J. D.; Brown, D. R.

    1986-01-01

    The exploitation of natural gas resources to supply energy demands has resulted in the need to engineer pipelines and plants capable of handling extremely high pressures and throughputs. Consequently, more attention has been directed to evaluating the consequences of releases of material whether accidental or deliberate in nature. An important aspect of assessing the consequences of a release is an understanding of how gas disperses in the atmosphere over a wide range of release and atmospheric conditions. The most cost effective way of providing such information is through the development and use of reliable theoretical prediction methods. The need for some form of remote sensing device was identified. The various possibilities studied led to the conclusion that LIDAR (Light Detection And Ranging) offered the most suitable method. The system designed and built is described, and its recent use in monitoring operational ventings from a high pressure transmission system is discussed.

  7. Estimation of black carbon content for biomass burning aerosols from multi-channel Raman lidar data

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Marmureanu, Luminita; Nicolae, Doina

    2015-04-01

    Biomass burning due to natural processes (forest fires) or anthropical activities (agriculture, thermal power stations, domestic heating) is an important source of aerosols with a high content of carbon components (black carbon and organic carbon). Multi-channel Raman lidars provide information on the spectral dependence of the backscatter and extinction coefficients, embedding information on the black carbon content. Aerosols with a high content of black carbon have large extinction coefficients and small backscatter coefficients (strong absorption), while aerosols with high content of organic carbon have large backscatter coefficients (weak absorption). This paper presents a method based on radiative calculations to estimate the black carbon content of biomass burning aerosols from 3b+2a+1d lidar signals. Data is collected at Magurele, Romania, at the cross-road of air masses coming from Ukraine, Russia and Greece, where burning events are frequent during both cold and hot seasons. Aerosols are transported in the free troposphere, generally in the 2-4 km altitude range, and reaches the lidar location after 2-3 days. Optical data are collected between 2011-2012 by a multi-channel Raman lidar and follows the quality assurance program of EARLINET. Radiative calculations are made with libRadTran, an open source radiative model developed by ESA. Validation of the retrievals is made by comparison to a co-located C-ToF Aerosol Mass Spectrometer. Keywords: Lidar, aerosols, biomass burning, radiative model, black carbon Acknowledgment: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project no. 39/2012 - SIAFIM, and by Romanian Partnerships in priority areas PNII implemented with MEN-UEFISCDI support, project no. 309/2014 - MOBBE

  8. Comments on: Accuracy of Raman Lidar Water Vapor Calibration and its Applicability to Long-Term Measurements

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Venable, Demetrius; Landulfo, Eduardo

    2012-01-01

    In a recent publication, LeBlanc and McDermid proposed a hybrid calibration technique for Raman water vapor lidar involving a tungsten lamp and radiosondes. Measurements made with the lidar telescope viewing the calibration lamp were used to stabilize the lidar calibration determined by comparison with radiosonde. The technique provided a significantly more stable calibration constant than radiosondes used alone. The technique involves the use of a calibration lamp in a fixed position in front of the lidar receiver aperture. We examine this configuration and find that such a configuration likely does not properly sample the full lidar system optical efficiency. While the technique is a useful addition to the use of radiosondes alone for lidar calibration, it is important to understand the scenarios under which it will not provide an accurate quantification of system optical efficiency changes. We offer examples of these scenarios.

  9. Progress report of FY 1999 activities: The application of Kalman filtering to derive water vapor profiles from combined ground-based sensors: Raman lidar, microwave radiometers, GPS, and radiosondes

    SciTech Connect

    Edgeworth R. Westwater; Yong Han

    1999-09-10

    Previously, the proposers have delivered to ARM a documented algorithm, that is now applied operationally, and which derives water vapor profiles from combined remote sensor measurements of water vapor radiometers, cloud-base ceilometers, and radio acoustic sounding systems (RASS). With the expanded deployment of a Raman lidar at the CART Central Facility, high quality, high vertical-resolution, water vapor profiles will be provided during nighttime clear conditions, and during clear daytime conditions, to somewhat lower altitudes. The object of this effort is to use Kalman Filtering, previously applied to the combination of nighttime Raman lidar and microwave radiometer data, to derive high-quality water vapor profiles, during non-precipitating conditions, from data routinely available at the CART site. Input data to the algorithm would include: Raman lidar data, highly quality-controlled data of integrated moisture from microwave radiometers and GPS, RASS, and radiosondes. While analyzing data obtained during the Water Vapor Intensive Operating Period'97 at the SGP CART site in central Oklahoma, several questions arose about the calibration of the ARM microwave radiometers (MWR). A large portion of this years effort was a thorough analysis of the many factors that are important for the calibration of this instrument through the tip calibration method and the development of algorithms to correct this procedure. An open literature publication describing this analysis has been accepted.

  10. Progress report of FY 1998 activities: The application of Kalman filtering to derive water vapor profiles from combined ground-based sensors: Raman lidar, microwave radiometers, GPS, and radiosondes

    SciTech Connect

    Edgeworth R. Westwater; Yong Han

    1999-10-01

    Previously, the proposers have delivered to ARM a documented algorithm, that is now applied operationally, and which derives water vapor profiles from combined remote sensor measurements of water vapor radiometers, cloud-base ceilometers, and radio acoustic sounding systems (RASS). With the expanded deployment of a Raman lidar at the CART Central Facility, high quality, high vertical-resolution, water vapor profiles will be provided during nighttime clear conditions, and during clear daytime conditions, to somewhat lower altitudes. The object of this effort is to use Kalman Filtering, previously applied to the combination of nighttime Raman lidar and microwave radiometer data, to derive high-quality water vapor profiles, during non-precipitating conditions, from data routinely available at the CART site. Input data to the algorithm would include: Raman lidar data, highly quality-controlled data of integrated moisture from microwave radiometers and GPS, RASS, and radiosondes. The focus of this years activities has been on the intercomparison of data obtained during the Water Vapor Intensive Operating Period'97 at the SGP CART site in central Oklahoma.

  11. Progress report of FY 1997 activities: The application of Kalman filtering to derive water vapor profiles from combined ground-based sensors: Raman lidar, microwave radiometers, GPS, and radiosondes

    SciTech Connect

    Edgeworth R. Westwater; Yong Han

    1997-10-05

    Previously, the proposers have delivered to ARM a documented algorithm, that is now applied operationally, and which derives water vapor profiles from combined remote sensor measurements of water vapor radiometers, cloud-base ceilometers, and radio acoustic sounding systems (RASS). With the expanded deployment of a Raman lidar at the CART Central Facility, high quality, high vertical-resolution, water vapor profiles will be provided during nighttime clear conditions, and during clear daytime conditions, to somewhat lower altitudes. The object of this proposal was to use Kalman Filtering, previously applied to the combination of nighttime Raman lidar and microwave radiometer data, to derive high-quality water vapor profiles, during non-precipitating conditions, from data routinely available at the CART site. Input data to the algorithm would include: Raman lidar data, highly quality-controlled data of integrated moisture from microwave radiometers and GPS, RASS, and radiosondes. The algorithm will include recently-developed quality control procedures for radiometers. The focus of this years activities has been on the intercomparison of data obtained during an intensive operating period at the SGP CART site in central Oklahoma.

  12. EARLINET Raman Lidar PollyXT: the neXT generation

    NASA Astrophysics Data System (ADS)

    Engelmann, R.; Kanitz, T.; Baars, H.; Heese, B.; Althausen, D.; Skupin, A.; Wandinger, U.; Komppula, M.; Stachlewska, I. S.; Amiridis, V.; Marinou, E.; Mattis, I.; Linné, H.; Ansmann, A.

    2015-07-01

    The atmospheric science community demands for autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. For this purpose, a portable lidar called Polly was developed at TROPOS in 2003. The lidar system was continuously improved with gained experience from EARLINET, worldwide field campaigns and institute collaborations within the last 10 years. Here we present recent changes of the setup of our portable multiwavelength Raman and polarization lidar PollyXT and the improved capabilities of the system by means of a case study. Our latest developed system includes an additional near-range receiver unit for Raman measurements of the backscatter and extinction coefficient down to 120 m above ground, a water-vapor channel, and channels for simultaneous measurements of the particle linear depolarization at 355 and 532 nm. Quality improvements were achieved by following consequently the EARLINET guidelines and own developments. A modified ship radar ensures measurements in agreement with air-traffic safety regulations and allows 24/7 monitoring of the atmospheric state with PollyXT.

  13. Raman Lidar Measurements of Water Vapor and Cirrus Clouds During the Passage of Hurricane Bonnie

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Evans, K. D.; Demoz, B.; Starr, D. OC; Tobin, D.; Feltz, W.; Jedlovec, G. J.; Gutman, S. I.; Schwemmer, G. K.; Cardirola, M.; Melfi, S. H.; Schmidlin, F. J.

    2000-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island in the Bahamas during August - September, 1998 as a part of the third Convection and Moisture Experiment (CAMEX-3) which focussed on hurricane development and tracking. During the period August 21 - 24, hurricane Bonnie passed near Andros Island and influenced the water vapor and cirrus cloud measurements acquired by the SRL. Two drying signatures related to the hurricane were recorded by the SRL (Scanning Raman Lidar) and other sensors. Cirrus cloud optical depths (at 351 nm) were also measured during this period. Optical depth values ranged from approximately 0.01 to 1.4. The influence of multiple scattering on these optical depth measurements was studied with the conclusion that the measured values of optical depth are less than the actual value by up to 20% . The UV/IR cirrus cloud optical depth ratio was estimated based on a comparison of lidar and GOES measurements. Simple radiative transfer model calculations compared with GOES satellite brightness temperatures indicate that satellite radiances are significantly affected by the presence of cirrus clouds if IR optical depths are approximately 0.02 or greater. This has implications for satellite cirrus detection requirements.

  14. Lidar Observations of Raman Scattering from S02 in a Power Plant Stack Plume

    NASA Technical Reports Server (NTRS)

    Melfi, S. H.; Storey, R. W., Jr.; Brumfield, M. L.

    1973-01-01

    LIDAR techniques have been successfully applied to the detection of the Raman backscatter from S02 in the plume of a 200 megawatt coal-burning electrical- generating plant from a distance of 210 meters. The LIDAR system used consists of a 61-centimeter-diameter, f /4 Newtonian telescope and a 1.0-1.5-joules per pulse, 1-pulse-per-second ruby laser. Narrow band interference filters are used to select the 7546-angstrom v (sub 1) vibrational line of S02. The signal from a photomultiplier tube was sequentially applied to each 254-nanosecond-wide channel of a 15-cihannel photon counting system, resulting in a direct correlation between channel number and range increment. Photon counts were accumulated from the backscatter of a number of laser pulses (typically 50 or 100), and the accumulated counts per channel printed on paper tape. One sequence of measurements was made during a two-hour period while the plant electrical output was being reduced by approximately 50 percent. Although the Raman system had not been quantitatively calibrated, the LIDAR data correlated well with the varying plant electrical output. N2 scattering observations were also made and an approximate quantitative S02 concentration obtained by ratioing the S02 data to N2 data. This ratio compared well to the in-situ measurements made during the same period by Environmental Protection Agency sampling instruments.

  15. A permanent Raman lidar station in the Amazon: description, characterization, and first results

    NASA Astrophysics Data System (ADS)

    Barbosa, H. M. J.; Barja, B.; Pauliquevis, T.; Gouveia, D. A.; Artaxo, P.; Cirino, G. G.; Santos, R. M. N.; Oliveira, A. B.

    2014-06-01

    A permanent UV Raman lidar station, designed to perform continuous measurements of aerosols and water vapor and aiming to study and monitor the atmosphere from weather to climatic time scales, became operational in the central Amazon in July 2011. The automated data acquisition and internet monitoring enabled extended hours of daily measurements when compared to a manually operated instrument. This paper gives a technical description of the system, presents its experimental characterization and the algorithms used for obtaining the aerosol optical properties and identifying the cloud layers. Data from one week of measurements during the dry season of 2011 were analyzed as a mean to assess the overall system capability and performance. Both Klett and Raman inversions were successfully applied. A comparison of the aerosol optical depth from the lidar and from a co-located Aerosol Robotic Network (AERONET) sun photometer showed a correlation coefficient of 0.86. By combining nighttime measurements of the aerosol lidar ratio (50-65 sr), back-trajectory calculations and fire spots observed from satellites, we showed that observed particles originated from biomass burning. Cirrus clouds were observed in 60% of our measurements. Most of the time they were distributed into three layers between 11.5 and 13.4 km a.g.l. The systematic and long-term measurements being made by this new scientific facility have the potential to significantly improve our understanding of the climatic implications of the anthropogenic changes in aerosol concentrations over the pristine Amazonia.

  16. CALIPSO-inferred aerosol direct radiative effects: Bias estimates using ground-based Raman lidars

    NASA Astrophysics Data System (ADS)

    Thorsen, T. J.; Fu, Q.

    2015-12-01

    Observational constraints on the change in radiative energy budget caused by the presence of aerosols, i.e. the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically-resolved aerosol retrievals over all surface types and over cloud. In this study we estimate the uncertainties in CALIPSO-inferred aerosol DRE using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars (RL) at midlatitude and tropical sites. Examined are assumptions about the ratio of extinction-to-backscatter (i.e. the lidar ratio) made by the CALIPSO retrievals, which are needed to retrieve the aerosol extinction profile. The lidar ratio is shown to introduce minimal error in the mean aerosol DRE at the top-of-atmosphere and surface. It is also shown that CALIPSO is unable to detection all radiatively-significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE. Therefore, global estimates of the aerosol DRE inferred from CALIPSO are likely too weak.

  17. Mobile multi-wavelength polarization Raman lidar for water vapor, cloud and aerosol measurement.

    PubMed

    Wu, Songhua; Song, Xiaoquan; Liu, Bingyi; Dai, Guangyao; Liu, Jintao; Zhang, Kailin; Qin, Shengguang; Hua, Dengxin; Gao, Fei; Liu, Liping

    2015-12-28

    Aiming at the detection of atmospheric water vapor mixing ratio, depolarization ratio, backscatter coefficient, extinction coefficient and cloud information, the Water vapor, Cloud and Aerosol Lidar (WACAL) is developed by the lidar group at Ocean University of China. The lidar consists of transmitter, receiver, data acquisition and auxiliary system. For the measurement of various atmospheric physical properties, three channels including Raman channel, polarization channel and infrared channel are integrated in WACAL. The integration and working principle of these channels are introduced in details. The optical setup, the housekeeping of the system and the data retrieval routines are also presented. After the completion of the construction of the lidar, the WACAL system was installed in Ocean University of China (36.165°N, 120.5°E), Qingdao for the measurement of atmosphere during 2013 and 2014. The measurement principles and some case studies corresponding to various atmospheric physical properties are provided. Finally, the result of one continuous measurement example operated on 13 June 2014 is presented. The WACAL can measure the aerosol and cloud optical properties as well as the water vapor mixing ratio. It is useful for studying the direct and indirect effects of the aerosol on the climate change. PMID:26832047

  18. CALIPSO-inferred aerosol direct radiative effects: Bias estimates using ground-based Raman lidars

    NASA Astrophysics Data System (ADS)

    Thorsen, Tyler J.; Fu, Qiang

    2015-12-01

    Observational constraints on the change in the radiative energy budget caused by the presence of aerosols, i.e., the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically resolved aerosol retrievals over all surface types and over cloud. In this study, uncertainties in CALIPSO-inferred aerosol DRE are estimated using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars at midlatitude and tropical sites. We find that CALIPSO is unable to detect all radiatively significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE by 30-50% at the two ARM sites. The undetected aerosol is likely the consequence of random noise in CALIPSO measurements and therefore will affect global observations as well. This suggests that the global aerosol DRE inferred from CALIPSO observations are likely too weak. Also examined is the impact of the ratio of extinction-to-backscatter (i.e., the lidar ratio) whose value CALIPSO retrievals must assume to obtain the aerosol extinction profile. It is shown that if CALIPSO can reproduce the climatological value of the lidar ratio at a given location, then the aerosol DRE there can be accurately calculated (within about 3%).

  19. Lidar Observations of Tropical High-altitude Cirrus Clouds: Results form Dual Wavelength Raman Lidar Measurements During the ALBATROSS Campaign 1996

    NASA Technical Reports Server (NTRS)

    Neuber, R.; Wegener, Alfred; Schrems, O.; McDermid, I. S.

    1997-01-01

    Results from dual wavelength Raman Lidar Observations of tropical high-altitude cirrus clouds are reported. Based on 107 hours of night-time measurements cirrus cloud were present in more than 50% of the observations at latitudes between 23.5 degress S and 23.5 degrees N and altitudes between 11 and 16km.

  20. Lidar measurements of Raman scattering at ultraviolet wavelength from mineral dust over East Asia.

    PubMed

    Tatarov, Boyan; Müller, Detlef; Shin, Dong Ho; Shin, Sung Kyun; Mattis, Ina; Seifert, Patric; Noh, Young Min; Kim, Y J; Sugimoto, Nobuo

    2011-01-17

    We developed a novel measurement channel that utilizes Raman scattering from silicon dioxide (SiO2) quartz at an ultraviolet wavelength (361 nm). The excitation of the Raman signals is done at the primary wavelength of 355 nm emitted from a lidar instrument. In combination with Raman signals from scattering from nitrogen molecules, we may infer the mineral-quartz-related backscatter coefficient. This technique thus allows us to identify in a comparably direct way the mineral quartz content in mixed pollution plumes that consist, e.g., of a mix of desert dust and urban pollution. We tested the channel for the complex situation of East Asian pollution. We find good agreement of the inferred mineral-quartz-related backscatter coefficient to results obtained with another mineral quartz channel which was operated at 546 nm (primary emission wavelength at 532 nm), the functionality of which has already been shown for a lidar system in Tsukuba (Japan). The advantage of the novel channel is that it provides a better signal-to-noise ratio because of the shorter measurement wavelength. PMID:21263697

  1. RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements.

    PubMed

    Reichardt, Jens; Wandinger, Ulla; Klein, Volker; Mattis, Ina; Hilber, Bernhard; Begbie, Robert

    2012-12-01

    The Raman lidar for atmospheric moisture sensing (RAMSES) for unattended, continuous multiparameter atmospheric profiling is presented. A seeded frequency-tripled Nd:YAG laser serves as the light source. A nine-channel polychromator, nonfiber coupled to the main telescope (790 mm diameter), is used for far-range measurements. Near-range observations are performed with a three-channel polychromator, fiber coupled to a secondary telescope (200 mm diameter). Measurement parameters are water-vapor mixing ratio (MR), temperature, and the optical particle parameters, which are extinction coefficient, backscatter coefficient, lidar ratio, and depolarization ratio at 355 nm. Profiles of water-vapor MR are measured from close to the surface up to 14 km at night and 5 km during the day under favorable atmospheric conditions in 20 min. Temperature profiles of the troposphere and lower stratosphere are determined with the rotational-Raman technique. For the detection of the rotational Raman signals, a new beamsplitter/interference-filter experimental setup is implemented that is compact, robust, and easy to align. Furthermore, the polychromator design allows two independent methods for calibrating measurements of depolarization ratio. RAMSES optical design concept and experimental setup are detailed, and a description of the operational near-real-time data evaluation software is given. A multiday observation is discussed to illustrate the measurement capabilities of RAMSES. PMID:23207381

  2. Scanning Raman lidar measurements of atmospheric water vapor during a cold frontal passage

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Melfi, S. H.; Starr, D. O. C.; Ferrare, R. A.; Evans, K. D.; Lare, A. R.

    1995-01-01

    The NASA/Goddard Space Flight Center Scanning Raman Lidar (SRL) had a highly successful deployment at the Department of Energy Cloud and Radiation Testbed (CART) Site in Billings, OK during April, 1994 for the first Intensive Operation Period (IOP) hosted there. During the IOP, the SRL operated from just after sundown to just before sunrise for all declared evenings of operation. The lidar acquired more than 123 hours of data over 15 nights with less than 1 hour of data lost due to minor system malfunction. The SRL acquired data both on the vertical and in scanning mode toward an instrumented 60 m tower during various meteorological conditions such as an intense cold frontal passage on April 15 which is the focus of this presentation.

  3. PollyNET: a global network of automated Raman-polarization lidars for continuous aerosol profiling

    NASA Astrophysics Data System (ADS)

    Baars, H.; Kanitz, T.; Engelmann, R.; Althausen, D.; Heese, B.; Komppula, M.; Preißler, J.; Tesche, M.; Ansmann, A.; Wandinger, U.; Lim, J.-H.; Ahn, J. Y.; Stachlewska, I. S.; Amiridis, V.; Marinou, E.; Seifert, P.; Hofer, J.; Skupin, A.; Schneider, F.; Bohlmann, S.; Foth, A.; Bley, S.; Pfüller, A.; Giannakaki, E.; Lihavainen, H.; Viisanen, Y.; Hooda, R. K.; Pereira, S.; Bortoli, D.; Wagner, F.; Mattis, I.; Janicka, L.; Markowicz, K. M.; Achtert, P.; Artaxo, P.; Pauliquevis, T.; Souza, R. A. F.; Sharma, V. P.; van Zyl, P. G.; Beukes, J. P.; Sun, J. Y.; Rohwer, E. G.; Deng, R.; Mamouri, R. E.; Zamorano, F.

    2015-10-01

    A global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63° N to 52° S and 72° W to 124° E has been achieved within the Raman and polarization lidar network PollyNET. This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols. PollyNET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design and apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at http://polly.tropos.de. The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash) are identified by their Ångström exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the PollyNET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of PollyNET to support the establishment of a global aerosol climatology that covers the entire troposphere.

  4. Midlatitude cirrus classification at Rome Tor Vergata through a multichannel Raman-Mie-Rayleigh lidar

    NASA Astrophysics Data System (ADS)

    Dionisi, D.; Keckhut, P.; Liberti, G. L.; Cardillo, F.; Congeduti, F.

    2013-12-01

    A methodology to identify and characterize cirrus clouds has been developed and applied to the multichannel-multiwavelength Rayleigh-Mie-Raman (RMR) lidar in Rome Tor Vergata (RTV). A set of 167 cirrus cases, defined on the basis of quasi-stationary temporal period conditions, has been selected in a data set consisting of about 500 h of nighttime lidar sessions acquired between February 2007 and April 2010. The derived lidar parameters (effective height, geometrical and optical thickness and mean back-scattering ratio) and the cirrus mid-height temperature (estimated from the radiosonde data of Pratica di Mare, WMO, World Meteorological Organization, site no. 16245) of this sample have been analyzed by the means of a clustering multivariate analysis. This approach identified four cirrus classes above the RTV site: two thin cirrus clusters in mid- and upper troposphere and two thick cirrus clusters in mid-upper troposphere. These results, which are very similar to those derived through the same approach at the lidar site of the Observatoire de Haute-Provence (OHP), allows characterization of cirrus clouds over the RTV site and attests to the robustness of such classification. To acquire some indications about the cirrus generation methods for the different classes, analyses of the extinction-to-backscatter ratio (lidar ratio, LReff, in terms of frequency distribution functions and dependencies on the mid-height cirrus temperature, have been performed. A preliminary study relating some meteorological parameters (e.g., relative humidity, wind components) to cirrus clusters has also been conducted. The RTV cirrus results, recomputed through the cirrus classification by Sassen and Cho (1992), show good agreement with other midlatitude lidar cirrus observations for the relative occurrence of subvisible (SVC), thin and opaque cirrus classes (10%, 49% and 41%, respectively). The overall mean value of cirrus optical depth is 0.37 ± 0.18, while most retrieved LReff values

  5. Characterization of convection-related parameters by Raman lidar: Selected case studies from the convective and orographically-induced precipitation study

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario

    2013-05-01

    An approach to determine the convective available potential energy (CAPE) and the convective inhibition (CIN) based on the use of data from a Raman lidar system is illustrated in this work. The use of Raman lidar data allows to provide high temporal resolution measurements (5 min) of CAPE and CIN and follow their evolution over extended time periods covering the full cycle of convective activity. Lidar-based measurements of CAPE and CIN are obtained from Raman lidar measurements of the temperature and water vapor mixing ratio profiles and the surface measurements of temperature, pressure and dew point temperature provided by a surface weather station. The approach is applied to the data collected by the Raman lidar system BASIL in the frame of COPS. Attention was focused on 15 July and 25-26 July 2007. Lidar-based measurements are in good agreement with simultaneous measurements from radiosondes and with estimates from different mesoscale models.

  6. An innovative rotational Raman lidar to measure the temperature profile from the surface to 30 km altitude

    NASA Astrophysics Data System (ADS)

    Hauchecorne, Alain; Keckhut, Philippe; Mariscal, Jean-François; d'Almeida, Eric; Dahoo, Pierre-Richard; Porteneuve, Jacques

    2016-06-01

    A concept of innovative rotational Raman lidar with daylight measurement capability is proposed to measure the vertical profile of temperature from the ground to the middle stratosphere. The optical filtering is made using a Fabry-Pérot Interferometer with line spacing equal to the line spacing of the Raman spectrum. The detection is made using a linear PMT array operated in photon counting mode. We plan to build a prototype and to test it at the Haute-Provence Observatory lidar facility. to achieve a time resolution permitting the observation of small-scale atmospheric processes playing a role in the troposphere-stratosphere interaction as gravity waves. If successful, this project will open the possibility to consider a Raman space lidar for the global observation of atmospheric temperature profiles.

  7. Implementation of Rotational Raman Channel in Multiwavelength Aerosol Lidar to Improve Measurements of Particle Extinction and Backscattering at 532 NM

    NASA Astrophysics Data System (ADS)

    Veselovskii, Igor; Whiteman, David N.; Korenskiy, Michael; Suvorina, A.; Perez-Ramirez, Daniel

    2016-06-01

    We describe a practical implementation of rotational Raman (RR) measurements in an existing Mie-Raman lidar to obtain measurements of aerosol extinction and backscattering at 532 nm. A 2.3 nm width interference filter was used to select a spectral range characterized by low temperature sensitivity within the anti-Stokes branch of the RR spectrum. Simulations demonstrate that the temperature dependence of the scattering cross section does not exceed 1.0% in the 230-300K range making accurate correction for this dependence quite easy. With this upgrade, the NASA/GSFC multiwavelength Raman lidar has demonstrated useful α532 measurements and was used for regular observations. Examples of lidar measurements and inversion of optical data to the particle microphysics will be given in presentation.

  8. High resolution Raman lidar measurements for the characterization of the water vapour inflow in the frame of the Hydrological Cycle in the Mediterranean Experiment

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Cacciani, Marco; Stelitano, Dario; Summa, Donato

    2013-04-01

    The University of BASILicata Raman Lidar system (BASIL) was deployed in Candillargues (Southern France, Lat: 43°37' N, Long: 4° 4' E) in the frame of the Hydrological Cycle in the Mediterranean Experiment - HyMeX. Within this experiment a major field campaign (Special Observation Period 1-SOP1, September to November 2012) took place over the Northwestern Mediterranean Sea and its surrounding coastal regions in France, Italy and Spain, with a specific focus on the study of heavy precipitation and flash-flood events. During HyMeX-SOP1, BASIL operated between 5 September and 5 November 2012, collecting more than 600 hours of measurements, distributed over 51 measurement days and 19 intensive observation periods (IOPs). The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV (Di Girolamo et al., 2004, 2006, 2009). This makes it an ideal tool for the characterization of the water vapour inflow in Southern France, which is important piece of information to improve the comprehension and forecasting capabilities of heavy precipitations in the Northwestern Mediterranean basin. Preliminary measurements from this field deployment will be illustrated and discussed at the Conference. These measurements allow to monitor and characterize the marine atmospheric flow that transport moist and conditionaly unstable air towards the coasts, which is feeding into the HPE events in Southern France. Measurements from BASIL can also be used to better characterize Planetary Boundary Layer moisture transport mechanisms from the surface to deep-convection systems. Besides temperature and water vapour, BASIL also provides measurements of the particle (aerosol/cloud) backscattering coefficient at 355, 532 and 1064 nm, of the particle extinction coefficient at 355 and 532

  9. Water vapor measurements by Raman lidar during the ARM 1997 water vapor intensive observation period

    SciTech Connect

    Turner, D.D.; Whiteman, D.N.; Schwemmer, G.K.; Evans, K.D. |; Melfi, S.H.; Goldsmith, J.E.

    1998-04-01

    Water vapor is the most important greenhouse gas in the atmosphere, as it is the most active infrared absorber and emitter of radiation, and it also plays an important role in energy transport and cloud formation. Accurate, high resolution measurements of this variable are critical in order to improve the understanding of these processes and thus their ability to model them. Because of the importance of water vapor, the Department of Energy`s Atmospheric Radiation Measurement (ARM) program initiated a series of three intensive operating periods (IOPs) at its Cloud and Radiation Testbed (CART) site in northern Oklahoma. The goal of these IOPs is to improve and validate the state-of-the-art capabilities in measuring water vapor. To date, two of the planned three IOPs have occurred: the first was in September of 1996, with an emphasis on the lowest kilometer, while the second was conducted from September--October 1997 with a focus on both the upper troposphere and lowest kilometer. The ARM CART site is the home of several different water vapor measurement systems. These systems include a Raman lidar, a microwave radiometer, a radiosonde launch site, and an instrumented tower. During these IOPs, additional instrumentation was brought to the site to augment the normal measurements in the attempt to characterize the CART instruments and to address the need to improve water vapor measurement capabilities. Some of the instruments brought to the CART site include a scanning Raman lidar system from NASA/GSFC, additional microwave radiometers from NOAA/ETL, a chilled mirror that was flown on a tethersonde and kite system, and dewpoint hygrometer instruments flow on the North Dakota Citation. This paper will focus on the Raman lidar intercomparisons from the second IOP.

  10. CART Raman Lidar Aerosol and Water Vapor Measurements in the Vicinity of Clouds

    NASA Technical Reports Server (NTRS)

    Clayton, Marian B.; Ferrare, Richard A.; Turner, David; Newsom, Rob; Sivaraman, Chitra

    2008-01-01

    Aerosol and water vapor profiles acquired by the Raman lidar instrument located at the Climate Research Facility (CRF) at Southern Great Plains (SGP) provide data necessary to investigate the atmospheric variability in the vicinity of clouds near the top of the planetary boundary layer (PBL). Recent CARL upgrades and modifications to the routine processing algorithms afforded the necessarily high temporal and vertical data resolutions for these investigations. CARL measurements are used to investigate the behavior of aerosol backscattering and extinction and their correlation with water vapor and relative humidity.

  11. NASA/GSFC Scanning Raman Lidar Measurements of Water Vapor and Clouds During IHOP

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Demoz, Belay; DiGirolamo, Paolo; Comer, Joe; Wang, Zhien; Lin, Rei-Fong; Evans, Keith; Veselovskii, Igor

    2004-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP) that occurred in May and June, 2002 in the midwestern part of the U.S. The SRL acquired measurements of water vapor, aerosols, cloud liquid and ice water, and temperature for more than 200 hours during IHOP. Here we report on the SRL water vapor and cirrus cloud measurements with particular emphasis being given to the measurements of June 19-20, 2002, which are motivating cirrus cloud model comparison studies.

  12. Overlap determination for temperature measurements from a pure rotational Raman lidar

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Chen, Siying; Zhang, Yinchao; Guo, Pan; Chen, He; Chen, Binglong

    2016-03-01

    We propose a new method to calibrate the effect of overlap for temperature measurements made with a pure rotational Raman lidar. This method is based on the construction of a factor in the signal intensity ratio, which has an approximately linear relationship with altitude within the troposphere and can be obtained from radiosonde temperature measurements. Using this relationship, the effect of overlap on the signal intensity ratio can be calibrated. The method has been verified by simulations and an experiment. Comparisons with results obtained from using the existing calibration method show that the overlap determined using the new method is more accurate.

  13. Importance of Raman Lidar Aerosol Extinction Measurements for Aerosol-Cloud Interaction Studies

    NASA Astrophysics Data System (ADS)

    Han, Zaw; Wu, Yonghua; Moshary, Fred; Gross, Barry; Gilerson, Alex

    2016-06-01

    Using a UV Raman Lidar for aerosol extinction, and combining Microwave Radiometer derived Liquid Water Path (LWP) with Multifilter Rotating Shadowband Radiometer derived Cloud Optical depth, to get cloud effective radius (Reff), we observe under certain specialized conditions, clear signatures of the Twomey Aerosol Indirect effect on cloud droplet properties which are consistent with the theoretical bounds. We also show that the measurement is very sensitive to how far the aerosol layer is from the cloud base and demonstrate that surface PM25 is far less useful. Measurements from both the DOE ARM site and new results at CCNY are presented.

  14. Characterization of fresh and aged biomass burning events using multiwavelength Raman lidar and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Nicolae, D.; Nemuc, A.; Müller, D.; Talianu, C.; Vasilescu, J.; Belegante, L.; Kolgotin, A.

    2013-04-01

    This paper focuses on optical and microphysical properties of long-range transported biomass burning (BB) aerosols and their variation with atmospheric evolution (ageing), as observed by a multiwavelength Raman lidar, part of EARLINET (European Aerosol LIdar NETwork). Chemical analysis of the atmospheric aerosol was done using a colocated aerosol mass spectrometer (AMS). One relevant optical parameter for the ageing process is the Ångström exponent. In our study, we find that it decreases from 2 for fresh to 1.4-0.5 for aged smoke particles. The ratio of lidar (extinction-to-backscatter) ratios (LR532/LR355) changes rapidly from values <1 for fresh to >1 for aged particles. The imaginary part of the refractive index is the most sensitive microphysical parameter. It decreases sharply from 0.05 to less than 0.01 for fresh and aged smoke particles, respectively. Single-scattering albedo (SSA) varies from 0.74 to 0.98 depending on aerosol age and source. The AMS was used to measure the marker ions of wood-burning particles during 2 days of measurements when the meteorological conditions favored the downward mixing of aerosols from lofted layers. Particle size distribution and particle effective radius from both AMS and lidar are similar, i.e., particle effective radii were approximately 0.27 µm for fresh BB aerosol particles. Microphysical aerosol properties from inversion of the lidar data agree with similar studies carried out in different regions on the globe. Our study shows that the Ångström exponent LR532/LR355 and the imaginary part of the refractive index can be used to clearly distinguish between fresh and aged smoke particles.

  15. Calibration of the Purple Crow Lidar vibrational Raman water-vapour mixing ratio and temperature measurements

    NASA Astrophysics Data System (ADS)

    Argall, P. S.; Sica, R. J.; Bryant, C. R.; Algara-Siller, M.; Schijns, H.

    2007-02-01

    Purple Crow Lidar (PCL) measurements of the vibrational Raman-shifted backscatter from water vapour and nitrogen molecules allows height profiles of the water-vapour mixing ratio to be measured from 500 m up into the lower stratosphere. In addition, the Raman nitrogen measurements allow the determination of temperature profiles from about 10 to 40 km altitude. However, external calibration of these measurements is necessary to compensate for instrumental effects, uncertainties in our knowledge of the relevant molecular cross sections, and atmospheric transmission. A comparison of the PCL-derived water-vapour concentration and temperature profiles with routine radiosonde measurements from Detroit and Buffalo on 37 and 141 nights, respectively, was undertaken to provide this calibration. The calibration is then applied to the measurements and monthly mean-temperature and water-vapour profiles are determined.

  16. Comparing Water Vapor Mixing Ratio Profiles and Cloud Vertical Structure from Multiwavelength Raman Lidar Retrievals and Radiosounding Measurements

    NASA Astrophysics Data System (ADS)

    Costa-Surós, Montserrat; Stachlewska, Iwona S.; Markowicz, Krzysztof

    2016-06-01

    A study of comparison of water vapor mixing ratio profiles, relative humidity profiles, and cloud vertical structures using two different instruments, a multiwavelength Aerosol-Depolarization-Raman lidar and radiosoundings, is presented. The observations were taken by the lidar located in Warsaw center and the radiosoundings located about 30km to the North in Legionowo (Poland). We compared the ground-based remote sensing technology with in-situ method in order to improve knowledge about water content thought the atmosphere and cloud formation. The method used for retrieving the cloud vertical structure can be improved comparing the radiosonde results with the lidar observations, which show promising results.

  17. Measurement of tropospheric aerosol in São Paulo area using a new upgraded Raman LIDAR system

    NASA Astrophysics Data System (ADS)

    Landulfo, Eduardo; Rodrigues, Patrícia F.; da Silva Lopes, Fábio Juliano; Bourayou, Riad

    2012-11-01

    Elastic backscatter LIDAR systems have been used to determine aerosol profile concentration in several areas such as weather, pollution and air quality monitoring. In order to determine the aerosol extinction and backscattering profiles, the Klett inversion method is largely used, but this method suffers from lack of information since there are two unknown variables to be determined using only one measured LIDAR signal, and assumption of the LIDAR ratio (the relation between the extinction and backscattering coefficients) is needed. When a Raman LIDAR system is used, the inelastic backscattering signal is affected by aerosol extinction but not by aerosol backscatter, which allows this LIDAR to uniquely determine extinction and backscattering coefficients without any assumptions or any collocated instruments. The MSP-LIDAR system, set-up in a highly dense suburban area in the city of São Paulo, has been upgraded to a Raman LIDAR, and in its actual 6-channel configuration allows it to monitor elastic backscatter at 355 and 532 nm together with nitrogen and water vapor Raman backscatters at 387nm and 608 nm and 408nm and 660 nm, respectively. Thus, the measurements of aerosol backscattering, extinction coefficients and water vapor mixing ratio in the Planetary Boundary Layer (PBL) are becoming available. The system will provide the important meteorological parameters such as Aerosol Optical Depth (AOD) and will be used for the study of aerosol variations in lower troposphere over the city of São Paulo, air quality monitoring and for estimation of humidity impact on the aerosol optical properties, without any a priori assumption. This study will present the first results obtained with this upgraded LIDAR system, demonstrating the high quality of obtained aerosol and water vapor data. For that purpose, we compared the data obtained with the new MSP-Raman LIDAR with a mobile Raman LIDAR collocated at the Center for Lasers and Applications, Nuclear and Energy Research

  18. Towards quantifying mesoscale flows in the troposphere using Raman lidar and sondes

    SciTech Connect

    Demoz, B.; Evans, K.; Starr, D.

    1998-03-01

    Water vapor plays an important role in the energetics of the boundary layer processes which in turn play a key role in regulating regional and global climate. It plays a primary role in Earth`s hydrological cycle, in radiation balance as a direct absorber of infrared radiation, and in atmospheric circulation as a latent heat energy source as well as in determining cloud development and atmospheric stability. Water vapor concentration, expressed as a mass mixing ratio, is conserved in all meteorological processes except condensation and evaporation. This property makes it an ideal choice for studying many of the atmosphere`s dynamic features. Raman scattering measurements from lidar also allow retrieval of water vapor mixing ratio profiles at high temporal and vertical resolution. Raman lidars sense water vapor to altitudes not achievable with towers and surface systems, sample the atmosphere at much higher temporal resolution than radiosondes or satellites, and do not require strong vertical gradients or turbulent fluctuations in temperature that is required by acoustic sounders and radars. Analysis of highly resolved water vapor profiles are used here to characterize two important mesoscale flows: thunderstorm outflows and a cold front passage.

  19. Study of African Dust with Multi-Wavelength Raman Lidar During "Shadow" Campaign in Senegal

    NASA Astrophysics Data System (ADS)

    Veselovskii, Igor; Goloub, Philippe; Podvin, Thierry; Bovchaliuk, Valentyn; Tanre, Didier; Derimian, Yevgeny; Korenskiy, Mikhail; Dubovik, Oleg

    2016-06-01

    West Africa and the adjacent oceanic regions are very important locations for studying dust properties and their influence on weather and climate. The SHADOW (Study of SaHAran Dust Over West Africa) campaign is performing a multi-scale and multi-laboratory study of aerosol properties and dynamics using a set of in situ and remote sensing instruments at an observation site located at IRD (Institute for Research and Development) Center, Mbour, Senegal (14°N, 17°W). In this paper, we present the results of lidar measurements performed during the first phase of SHADOW which occurred in March-April, 2015. The multiwavelength Mie-Raman lidar acquired 3β+2α+1δ measurements during this period. This set of measurements has permitted particle intensive properties such as extinction and backscattering Ångström exponents (BAE) for 355/532 nm wavelengths corresponding lidar ratios and depolarization ratio at 532 nm to be determined. The backscattering Ångström exponent during the dust episodes decreased to ~-0.7, while the extinction Ångström exponent though being negative, was greater than -0.2. Low values of BAE can likely be explained by an increase in the imaginary part of the dust refractive index at 355 nm compared to 532 nm.

  20. Error analysis of Raman differential absorption lidar ozone measurements in ice clouds.

    PubMed

    Reichardt, J

    2000-11-20

    A formalism for the error treatment of lidar ozone measurements with the Raman differential absorption lidar technique is presented. In the presence of clouds wavelength-dependent multiple scattering and cloud-particle extinction are the main sources of systematic errors in ozone measurements and necessitate a correction of the measured ozone profiles. Model calculations are performed to describe the influence of cirrus and polar stratospheric clouds on the ozone. It is found that it is sufficient to account for cloud-particle scattering and Rayleigh scattering in and above the cloud; boundary-layer aerosols and the atmospheric column below the cloud can be neglected for the ozone correction. Furthermore, if the extinction coefficient of the cloud is ?0.1 km(-1), the effect in the cloud is proportional to the effective particle extinction and to a particle correction function determined in the limit of negligible molecular scattering. The particle correction function depends on the scattering behavior of the cloud particles, the cloud geometric structure, and the lidar system parameters. Because of the differential extinction of light that has undergone one or more small-angle scattering processes within the cloud, the cloud effect on ozone extends to altitudes above the cloud. The various influencing parameters imply that the particle-related ozone correction has to be calculated for each individual measurement. Examples of ozone measurements in cirrus clouds are discussed. PMID:18354611

  1. Temporal evolution of aerosol derived from N2-Raman lidar at a Mediterranean coastal site

    NASA Astrophysics Data System (ADS)

    Shang, Xiaoxia; Chazette, Patrick; Totems, Julien

    2016-04-01

    Following the temporal variability of the aerosols in the atmospheric column on coastal areas is challenging. In situ ground-based or integrated column properties are not enough to understand the sea-continent exchange processes and identify the sources of particles. Now classical approach using the synergy between passive (e.g. sunphotometer) and active (e.g. backscatter lidar) instruments gives only a partial view of the aerosol properties, because they could be highly heterogeneous in the lower and middle troposphere. On June-July 2014, an automatic N2-Raman lidar (355 nm) was installed at a coastal site close to Toulon in the South of France. Using the coupling between cross-polarized elastic and N2-Raman channels, various aerosol natures are identified all along the time and against the altitude. Specific regularization algorithms have been tested to improve the aerosol classification. The results of these tests will be presented in terms of sensitivity studies based on the Monte Carlo approach. Selecting the most appropriate inversion method of the lidar profiles, the aerosol types encountered during the field campaign will be presented. We will also discuss their origin and the sea-continent exchanges including the sea breeze effect. We will see that a proper identification of particles passes through analyses coupling satellite observations and air mass trajectory studies. Acknowledgments: The experiments have been funded by the Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), the Centre National d'Etudes Spatiales (CNES), and the Centre national de la recherchescientifique (CNRS). We thank Université de Toulon (SeaTech Engineering School) for their hosts. The Institut Pierre Simon Laplace (IPSL), Labex IPSL, is also acknowledged for its support in the data simulations and analyses.

  2. Raman Lidar Measurements of Aerosol Optical Properties Performed at CNR- IMAA

    NASA Astrophysics Data System (ADS)

    Mona, L.; Amodeo, A.; Cornacchia, C.; D'Amico, G.; Madonna, F.; Pandolfi, M.; Pappalardo, G.

    2005-12-01

    The lidar system for tropospheric aerosol study, located at CNR-IMAA in Tito Scalo, Potenza (40 °36'N, 15°44' E, 760 m above sea level), is a Raman/elastic lidar system operational since May 2000 in the framework of EARLINET (European Aerosol Research LIdar NETwork), the first lidar network for tropospheric aerosol study on continental scale. It provides independent measurements of aerosol extinction and backscatter coefficient profiles at 355 nm and aerosol backscatter profiles at 532 nm. Both the IMAA aerosol lidar system and the used algorithms for the retrieval of aerosol optical parameters have been successfully tested with different intercomparison exercises in the frame of the EARLINET quality assurance program. In the frame of EARLINET, regular measurements are performed three times per week, allowing to study the aerosol content typically present in the planetary boundary layer over Potenza. Particular attention is devoted to Saharan dust intrusions in Europe, and Saharan dust forecasts are distributed to all EARLINET stations. The large dataset of Saharan dust optical properties profiles collected at IMAA allowed to study the contribution of dust particles to the aerosol load typically present in our area as well as to investigate transformations of aerosol optical properties during the transport. Several intensive measurement campaigns have been performed at IMAA with this system to study optical properties of different types of aerosol, and how the transport and modification mechanisms and the water content affect these optical properties. In particular, direct transport of volcanic aerosol emitted in 2002 during the Etna eruptions was observed, and in summer 2004, aerosol layers related to forest fires smoke or pollution plume transported from Alaska, Canada and North America were observed at IMAA during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) field campaign. Moreover, this system has been used

  3. Raman Lidar Profiling of Aerosols Over the Central US; Diurnal Variability and Comparisons with the GOCART Model

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Chin, M.; Clayton, M.; Turner, D.

    2002-01-01

    We use profiles of aerosol extinction, water vapor mixing ratio, and relative humidity measured by the ARM SGP Raman lidar in northern Oklahoma to show how the vertical distributions of aerosol extinction and water vapor vary throughout the diurnal cycle. While significant (20-30%) variations in aerosol extinction occurred near the surface as well as aloft, smaller (approximately 10%) variations were observed in the diurnal variability of aerosol optical thickness (AOT). The diurnal variations in aerosol extinction profiles are well correlated with corresponding variations in the average relative humidity profiles. The water vapor mixing ratio profiles and integrated water vapor amounts generally show less diurnal variability. The Raman lidar profiles are also used to evaluate the aerosol optical thickness and aerosol extinction profiles simulated by the GOCART global aerosol model. Initial comparisons show that the AOT simulated by GOCART was in closer agreement with the AOT derived from the Raman lidar and Sun photometer measurements during November 2000 than during September 2000. For both months, the vertical variability in average aerosol extinction profiles simulated by GOCART is less than the variability in the corresponding Raman lidar profiles.

  4. Retrieval of water vapor mixing ratio from a multiple channel Raman-scatter lidar using an optimal estimation method.

    PubMed

    Sica, R J; Haefele, A

    2016-02-01

    Lidar measurements of the atmospheric water vapor mixing ratio provide an excellent complement to radiosoundings and passive, ground-based remote sensors. Lidars are now routinely used that can make high spatial-temporal resolution measurements of water vapor from the surface to the stratosphere. Many of these systems can operate during the day and night, with operation only limited by clouds thick enough to significantly attenuate the laser beam. To enhance the value of these measurements for weather and climate studies, this paper presents an optimal estimation method (OEM) to retrieve the water vapor mixing ratio, aerosol optical depth profile, Ångstrom exponent, lidar constants, detector dead times, and measurement backgrounds from multichannel vibrational Raman-scatter lidars. The OEM retrieval provides the systematic uncertainties due to the overlap function, calibration factor, air density and Rayleigh-scatter cross sections, in addition to the random uncertainties of the retrieval due to measurement noise. The OEM also gives the vertical resolution of the retrieval as a function of height, as well as the height to which the contribution of the a priori is small. The OEM is applied to measurements made by the Meteoswiss Raman Lidar for Meteorological Observations (RALMO) in the day and night for clear and cloudy conditions. The retrieved water vapor mixing ratio is in excellent agreement with both the traditional lidar retrieval method and coincident radiosoundings. PMID:26836078

  5. Correlation Study of Water Vapor and Aerosol Distributions in Troposphere Using Scanning Raman Lidar

    NASA Astrophysics Data System (ADS)

    Gao, F.; Stanic, S.; Bergant, K.; He, T.-Y.

    2012-04-01

    Aiming at the study of water vapor and aerosol distributions in the lower atmosphere from the Otlica observatory, Slovenia (45.93°N, 13.91°E, elevation 945 m above sea level), we have built a new Raman lidar in parallel to the existing Mie lidar. The new system is oriented towards the Adriatic coast with a fixed azimuth angle of 235.1° and shares the transmitter (tripled Nd:YAG pulsed laser at 355 nm with pulse energy of 100 mJ and repetition rate of 20 Hz) and mechanical support with scanning functionality in zenith angle with the Mie lidar. The receiver part of the Raman lidar employs custom optics using a low f-number aspheric lens, designed to maximize the coupling of lidar returns collected by a parabolic mirror with a diameter of 800 mm and focal length of 410 mm and the 1000 μm core multi-mode optical fiber used to transport the light to the polychromator for spectral analysis. In the polychromator, 5-nm bandwidth interference filters combined with dichroic beam splitters were used to separate the vibrational Raman signals of nitrogen and water wapor molecules. The three return signals were detected by photo-multiplier tubes and sampled by transient recorders in photon-counting mode. System functionality was assessed in a number of preliminary experiments, where water vapor concentrations were calibrated using radiosonde data. During the nights of 24-25 August 2011 a series of measurements of water vapor and aerosol distributions along the lidar line of sight were performed at various elevation angles. In the vertical measurements, two layers with larger water vapor content were visible at altitudes of 1.5 km and 4.0 km with relative humidity in both cases exceeding 75%. Aerosol extinction decreased linearly between the altitudes of 2 km and 4.5 km, with aerosol layers appearing at 4.0 km, 4.7 km and 5.6 km. In horizontal measurements, the water vapor mixing ratio and the relative humidity were found to be almost constant in the range of 1.5 km to 4.5 km

  6. Instrumental correction of the uneven PMT aging effect on the calibration constant of a water vapor Raman lidar

    NASA Astrophysics Data System (ADS)

    Simeonov, Valentin; Fastig, Shlomo; Haefele, Alexander; Martucci, Giovanni; Calpini, Bertrand

    2015-04-01

    The water vapor profile derived from Raman lidar measurements is obtained from the ratio of water vapor to nitrogen Raman-shifted returns. The proportionality factor converting the signal ratio to water vapor/air mixing ratio is referred to as lidar calibration constant. The calibration constant is a function of the water vapor and nitrogen Raman cross sections and the efficiencies of the respective Raman channels including the photomultiplier tubes (PMT) efficiencies. Unequal, gradual changes in the water vapor and nitrogen channels PMT efficiencies due to aging effects lead to steady alteration of the calibration constant. This effect has been observed during the seven- year continuous operation of the RAman Lidar for Meteorological Observations (RALMO)1. A more detailed research2, has shown that the calibration constant change is more pronounced during summer time, which is explained by the higher daylight exposure of the PMTs during this period. Periodical recalibration of the lidar with radiosonde measurements is used to correct the calibration constant. This approach, however, induces additional systematic errors due to the nature of the calibration procedure and because of sonde-to-sonde accuracy variations. The systematic errors could induce artefacts leading to an incorrect interpretation of certain data points in the framework of climatological studies. To resolve this problem we developed a new, instrumental method for automated correction of the lidar calibration constant. By this method, the change in the water vapor and the nitrogen PMTs efficiencies are estimated from the PMTs responses measured when they are illuminated simultaneously by a single stabilized LED light source. A correction factor is deduced from the ratio of the signals of the two photomultipliers. The correction measurements are taken automatically once daily before midnight. The correction is applied when the correction factor exceeds a predefined threshold for several days. The

  7. Daytime rapid detection of minerals and organics from 50 and 100 m distances using a remote Raman system

    NASA Astrophysics Data System (ADS)

    Misra, Anupam K.; Sharma, Shiv K.; Lucey, Paul G.; Lentz, Rachel C. F.; Chio, Chi Hong

    2007-09-01

    We have developed a remote Raman system, using an 8-in telescope and a 532-nm pulse laser (20 Hz and 20 mJ/pulse), which is capable of operating in daylight. From distances of 50 and 100 m and with an integration time of just 1 second (equivalent to 20 laser pulses at 20 Hz), good quality Raman spectra with high signal-to-noise ratios were readily obtained. The Raman system was also tested using only single-laser-pulse excitation (8 ns pulse width) with an integration time of 2 μs. The spectra obtained from single-laser-pulse excitation also show clear Raman features and can be used for rapid, unambiguous identification of various chemical substances. We successfully identified a number of substances, including organic chemicals (acetone, naphthalene, nitro-methane, nitro-benzene and cyclohexane); inorganic chemicals and minerals (nitric acids, sulfuric acid, potassium perchlorate, gypsum, ammonium nitrate, epsomite, melanterite, calcite and sulfur); and amino acids. The remote Raman system has a range of applications, such as environmental monitoring (e.g., detection of hazardous chemicals and chemical spills from a safe distance in real time) or homeland security (e.g., rapid identification of chemicals on a conveyor belt or from a fast-moving object).

  8. Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations.

    PubMed

    Di Girolamo, Paolo; Behrendt, Andreas; Wulfmeyer, Volker

    2006-04-10

    The performance of a spaceborne temperature lidar based on the pure rotational Raman (RR) technique in the UV has been simulated. Results show that such a system deployed onboard a low-Earth-orbit satellite would provide global-scale clear-sky temperature measurements in the troposphere and lower stratosphere with precisions that satisfy World Meteorological Organization (WMO) threshold observational requirements for numerical weather prediction and climate research applications. Furthermore, nighttime temperature measurements would still be within the WMO threshold observational requirements in the presence of several cloud structures. The performance of aerosol extinction measurements from space, which can be carried out simultaneously with temperature measurements by RR lidar, is also assessed. Furthermore, we discuss simulations of relative humidity measurements from space obtained from RR temperature measurements and water-vapor data measured with the differential absorption lidar (DIAL) technique. PMID:16623245

  9. Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations

    SciTech Connect

    Di Girolamo, Paolo; Behrendt, Andreas; Wulfmeyer, Volker

    2006-04-10

    The performance of a spaceborne temperature lidar based on the pure rotational Raman (RR) technique in the UV has been simulated. Results show that such a system deployed onboard a low-Earth-orbit satellite would provide global-scale clear-sky temperature measurements in the troposphere and lower stratosphere with precisions that satisfy World Meteorological Organization (WMO) threshold observational requirements for numerical weather prediction and climate research applications. Furthermore, nighttime temperature measurements would still be within the WMO threshold observational requirements in the presence of several cloud structures. The performance of aerosol extinction measurements from space, which can be carried out simultaneously with temperature measurements by RR lidar, is also assessed. Furthermore, we discuss simulations of relative humidity measurements from space obtained from RR temperature measurements and water-vapor data measured with the differential absorption lidar (DIAL) technique.

  10. Observation of Arabian and Saharan Dust in Cyprus with a New Generation of the Smart Raman Lidar Polly

    NASA Astrophysics Data System (ADS)

    Engelmann, Ronny; Ansmann, Albert; Bühl, Johannes; Heese, Birgit; Baars, Holger; Althausen, Dietrich; Marinou, Eleni; Amiridis, Vassilis; Mamouri, Rodanthi-Elisavet; Vrekoussis, Mihalis

    2016-06-01

    The atmospheric science community demands for autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. Aiming this goal, TROPOS developed the fully automated multiwavelength polarization Raman lidar Polly since over 10 years [1, 2]. In cooperation with different partner research institutes the system was improved continuously. Our latest lidar developments include aside the "3+2" measurements also a near-range receiver to measure aerosol extinction and backscatter down to 120 m above the lidar, a water-vapor channel, and measurements of the linear depolarization at two wavelengths. The latest system was built in cooperation with the National Observatory of Athens (NOA). Its first campaign however was performed at the Cyprus Institute of Nicosia from March to April 2015, aiming specifically at the observation of ice nuclei with in-situ and lidar remote sensing techniques in the framework of BACCHUS [3, 4].

  11. Upper tropospheric water vapor: A field campaign of two Raman lidars, Airborne hygrometers, and Radiosondes

    NASA Technical Reports Server (NTRS)

    Melfi, S. Harvey; Turner, Dave; Evans, Keith; Whiteman, Dave; Schwemmer, Geary; Ferrare, Richard

    1998-01-01

    from: two Raman Lidars, the NASA Goddard Scanning Raman Lidar (SRL) and the CART Raman Lidar (CARL), a number of Vaisala radiosondes launched during the IOP campaign, and a dew point hygrometer flown on the University of North Dakota Cessna Citation Aircraft.

  12. LABVIEW graphical user interface for precision multichannel alignment of Raman lidar at Jet Propulsion Laboratory, Table Mountain Facility.

    PubMed

    Aspey, R A; McDermid, I S; Leblanc, T; Howe, J W; Walsh, T D

    2008-09-01

    The Jet Propulsion Laboratory operates lidar systems at Table Mountain Facility (TMF), California (34.4 degrees N, 117.7 degrees W) and Mauna Loa Observatory, Hawaii (19.5 degrees N, 155.6 degrees W) under the framework of the Network for the Detection of Atmospheric Composition Change. To complement these systems a new Raman lidar has been developed at TMF with particular attention given to optimizing water vapor profile measurements up to the tropopause and lower stratosphere. The lidar has been designed for accuracies of 5% up to 12 km in the free troposphere and a detection capability of <5 ppmv. One important feature of the lidar is a precision alignment system using range resolved data from eight Licel transient recorders, allowing fully configurable alignment via a LABVIEW/C++ graphical user interface (GUI). This allows the lidar to be aligned on any channel while simultaneously displaying signals from other channels at configurable altitude/bin combinations. The general lidar instrumental setup and the details of the alignment control system, data acquisition, and GUI alignment software are described. Preliminary validation results using radiosonde and lidar intercomparisons are briefly presented. PMID:19044439

  13. Experimental Evaluation of the UV Raman Lidar Sensitivity in Detection of Traces of Chemical Compounds

    NASA Astrophysics Data System (ADS)

    Bobrovnikov, Sergey; Gorlov, Evgeny; Zharkov, Viktor

    2016-06-01

    Experimental results are presented on the remote detection of traces of some chemical compounds on the surface with the help of Raman lidar built on the basis of an excimer KrF laser with a narrow line emission and multi-channel spectrum analyzer based on the diffraction spectrograph and a time gated ICCD camera. The sensitivity of the system is evaluated for the sensing range of 10 m. At the accumulation of the signal over 1000 laser pulses, the detection threshold of the nitrogencontaining chemical compounds of about of units of μg/cm2 has been reached. The effect of the substrate material on the sensitivity of the Ramanlidar method for detecting traces of chemicals on the surface is analyzed.

  14. Femtosecond Coherent Anti-Stokes Raman Spectroscopy (CARS) As Next Generation Nonlinear LIDAR Spectroscopy and Microscopy

    SciTech Connect

    Ooi, C. H. Raymond

    2009-07-10

    Nonlinear spectroscopy using coherent anti-Stokes Raman scattering and femtosecond laser pulses has been successfully developed as powerful tools for chemical analysis and biological imaging. Recent developments show promising possibilities of incorporating CARS into LIDAR system for remote detection of molecular species in airborne particles. The corresponding theory is being developed to describe nonlinear scattering of a mesoscopic particle composed of complex molecules by laser pulses with arbitrary shape and spectral content. Microscopic many-body transform theory is used to compute the third order susceptibility for CARS in molecules with known absorption spectrum and vibrational modes. The theory is combined with an integral scattering formula and Mie-Lorentz formulae, giving a rigorous formalism which provides powerful numerical experimentation of CARS spectra, particularly on the variations with the laser parameters and the direction of detection.

  15. Recent improvements to the Raman-shifted eye-safe aerosol lidar (REAL)

    NASA Astrophysics Data System (ADS)

    Mayor, Shane D.; Petrova-Mayor, Anna; Morley, Bruce; Spuler, Scott

    2013-09-01

    Improvements to the original NCAR/NSF Raman-shifted Eye-safe Aerosol Lidar (REAL) made between 2008 and 2013 are described. They are aimed mainly at optimizing and stabilizing the performance of the system for long-term, unattended, network-controlled, remote monitoring of the horizontal vector wind field and boundary layer height, and observing atmospheric boundary layer phenomena such as fine-scale waves and density current fronts. In addition, we have improved the polarization purity of the transmitted laser radiation and studied in the laboratory the effect of the beam-steering unit mirrors on the transmitted polarization as part of a longer-term effort to make absolute polarization measurements of aerosols and clouds.

  16. A New Raman Water Vapor Lidar Calibration Technique and Measurements in the Vicinity of Hurricane Bonnie

    NASA Technical Reports Server (NTRS)

    Evans, Keith D.; Demoz, Belay B.; Cadirola, Martin P.; Melfi, S. H.; Whiteman, David N.; Schwemmer, Geary K.; Starr, David OC.; Schmidlin, F. J.; Feltz, Wayne

    2000-01-01

    The NAcA/Goddard Space Flight Center Scanning Raman Lidar has made measurements of water vapor and aerosols for almost ten years. Calibration of the water vapor data has typically been performed by comparison with another water vapor sensor such as radiosondes. We present a new method for water vapor calibration that only requires low clouds, and surface pressure and temperature measurements. A sensitivity study was performed and the cloud base algorithm agrees with the radiosonde calibration to within 10- 15%. Knowledge of the true atmospheric lapse rate is required to obtain more accurate cloud base temperatures. Analysis of water vapor and aerosol measurements made in the vicinity of Hurricane Bonnie are discussed.

  17. Femtosecond Coherent Anti-Stokes Raman Spectroscopy (CARS) As Next Generation Nonlinear LIDAR Spectroscopy and Microscopy

    NASA Astrophysics Data System (ADS)

    Ooi, C. H. Raymond

    2009-07-01

    Nonlinear spectroscopy using coherent anti-Stokes Raman scattering and femtosecond laser pulses has been successfully developed as powerful tools for chemical analysis and biological imaging. Recent developments show promising possibilities of incorporating CARS into LIDAR system for remote detection of molecular species in airborne particles. The corresponding theory is being developed to describe nonlinear scattering of a mesoscopic particle composed of complex molecules by laser pulses with arbitrary shape and spectral content. Microscopic many-body transform theory is used to compute the third order susceptibility for CARS in molecules with known absorption spectrum and vibrational modes. The theory is combined with an integral scattering formula and Mie-Lorentz formulae, giving a rigorous formalism which provides powerful numerical experimentation of CARS spectra, particularly on the variations with the laser parameters and the direction of detection.

  18. Temperature Variability in the Stratosphere Obtained from 7 years of Vibrational-Raman- lidar Measurements

    NASA Astrophysics Data System (ADS)

    Iserhienrhien, B.; Sica, R. J.; Argall, P. S.

    2009-05-01

    The Purple Crow Lidar (PCL) is a large power-aperture product monostatic laser radar located at the Delaware Observatory (42° 52' N, 81° 23' W, 225 m elevation above sea level) near the campus of The University of Western Ontario. It is capable of measuring temperature and wave parameters from 10 to 110 km altitude, as well as water vapor in the troposphere and stratosphere. We use upper tropospheric and stratospheric vibrational Raman N2 backscatter-derived temperatures to form a climatology for the years 1999 to 2007 from 10 to 30 km altitude. The lidar temperatures are validated using coincident radiosondes measurements from Detroit and Buffalo. The measured temperatures show good agreement with the radiosonde soundings. An agreement of ±1 K is found during summer months and ±2.5 K during the winter months, validating the calibration of the lidar to within the geophysical variability of the measurements. Comparison between the PCL measurements and atmospheric models shows the PCL measurements are 5 K or less colder than CIRA-86 below 25 km and 2.5 K warmer above during the summer months. Below 16 km the PCL measurements are 5 K or less colder than the MSIS-90 model, while above this region, the PCL agrees to about ±3.5 K or less. The temperature differences between the PCL measurements and the models are consistent with the differences between the atmospheric models and the Detroit and Buffalo radiosonde measurements. The temperature differences compared to the models are consistent with previous comparisons between other radiosondes and satellite data sets, confirming that these differences with the models are real. We will highlight nights which show significant variations from the long-term averages, and when possible, the evolution of the variations.

  19. A permanent raman lidar station in the Amazon: description, characterization and first results

    NASA Astrophysics Data System (ADS)

    Barbosa, H. M. J.; Barja, B.; Pauliquevis, T.; Gouveia, D. A.; Artaxo, P.; Cirino, G. G.; Santos, R. M. N.; Oliveira, A. B.

    2014-01-01

    A permanent UV Raman Lidar station, designed to perform continuous measurements of aerosols and water vapor and aiming to study and monitor the atmosphere on the weather to climatic time scales, became operational in central Amazon in July 2011. The automated data acquisition and internet monitoring enabled extended hours of daily measurements when compared to a manually operated instrument. This paper gives a technical description of the system, presents its experimental characterization and the algorithms used for obtaining the aerosol optical properties and identifying the cloud layers. Data from one week of measurements during the dry season of 2011 were analyzed as a mean to assess the overall system capability and performance. A comparison of the aerosol optical depth from the Lidar and a co-located AERONET sun photometer showed a root mean square error of about 0.06, small compared to the range of observed AOD values (0.1 to 0.75) and to the typical AERONET AOD uncertainty (0.02). By combining nighttime measurements of the aerosol lidar ratio (50-65 sr), backtrajectories calculations and fire spots observed from satellites we showed that observed particles originated from biomass burning. Cirrus clouds were observed in 60% of our measurements. Most of the time they were distributed into three layers between 11.5 and 13.4 km a.g.l. The systematic and long-term measurements being made by this new scientific facility have the potential to significantly improve our understanding of the climatic implications of the anthropogenic changes in aerosol concentrations over the pristine Amazônia.

  20. Optimization of spectral filtering parameters of acousto-optic pure rotational Raman lidar for atmospheric temperature profiling

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhua; Wan, Lei; Nie, Guosheng; Guo, Xiaowei

    2003-12-01

    In this paper, as far as we know, it is the first time that a novel acousto-optic pure rotational Raman lidar based on acousto-optic tunable filter (AOTF) is put forward for the application of atmospheric temperature measurements. AOTF is employed in the novel lidar system as narrow band-pass filter and high-speed single-channel wavelength scanner. This new acousto-optic filtering technique can solve the problems of conventional pure rotational Raman lidar, e.g., low temperature detection sensitivity, untunability of filtering parameters, and signal interference between different detection channels. This paper will focus on the PRRS physical model calculation and simulation optimization of system parameters such as the central wavelengths and the bandwidths of filtering operation, and the required sensitivity. The theoretical calculations and optimization of AOTF spectral filtering parameters are conducted to achieve high temperature dependence and sensitivity, high signal intensities, high temperature of filtered spectral passbands, and adequate blocking of elastic Mie and Rayleigh scattering signals. The simulation results can provide suitable proposal and theroetical evaluation before the integration of a practical Raman lidar system.

  1. Characterization of particle hygroscopicity by Raman lidar: Selected case studies from the convective and orographically-induced precipitation study

    NASA Astrophysics Data System (ADS)

    Stelitano, Dario; Di Girolamo, Paolo; Summa, Donato

    2013-05-01

    The characterization of particle hygroscopicity has primary importance for climate monitoring and prediction. Model studies have demonstrated that relative humidity (RH) has a critical influence on aerosol climate forcing. Hygroscopic properties of aerosols influence particle size distribution and refractive index and hence their radiative effects. Aerosol particles tend to grow at large relative humidity values as a result of their hygroscopicity. Raman lidars with aerosol, water vapor and temperature measurement capability are potentially attractive tools for studying aerosol hygroscopicity as in fact they can provide continuous altitude-resolved measurements of particle optical, size and microphysical properties, as well as relative humidity, without perturbing the aerosols or their environment. Specifically, the University of Basilicata Raman lidar system (BASIL) considered for the present study, has the capability to perform all-lidar measurements of relative humidity based on the application of both the rotational and the vibrational Raman lidar techniques in the UV. BASIL was operational in Achern (Black Forest, Lat: 48.64° N, Long: 8.06° E, Elev.: 140 m) between 25 May and 30 August 2007 in the framework of the Convective and Orographically-induced Precipitation Study (COPS). The present analysis is focused on selected case studies characterized by the presence of different aerosol types with different hygroscopic behavior. The observed behavior, dependent upon aerosol composition, may range from hygrophobic to strongly hygroscopic.

  2. Raman Lidar Measurements of Water Vapor and Cirrus Clouds During the Passage of Hurricane Bonnie

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Evans, K. D.; Demoz, B.; Starr, O C.; Tobin, D.; Feltz, W.; Jedlovec, G. J.; Gutman, S. I.; Schwemmer, G. K.; Cadirola, M.; Melfi, S. H.; Schmidlin, F.

    2000-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island in the Bahamas during August - September, 1998 as a part of the third Convection and Moisture Experiment (CAMEX-3) which focussed on hurricane development and tracking. During the period August 21 - 24, hurricane Bonnie passed near Andros Island and influenced the water vapor and cirrus cloud measurements acquired by the SRL. Two drying signatures related to the hurricane were recorded by the SRL and other sensors. Cirrus cloud optical depths (at 351 nm) were also measured during this period. Optical depth values ranged from approximately 0.01 to 1.4. The influence of multiple scattering on these optical depth measurements was studied with the conclusion that the measured values of optical depth are less than the actual value by up to 20%. The UV/lR cirrus cloud optical depth ratio was estimated based on a comparison of lidar and GOES measurements. Simple radiative transfer model calculations compared with GOES satellite brightness temperatures indicate that satellite radiances are significantly affected by the presence of cirrus clouds if IR optical depths are approximately 0.02 or greater. This has implications for satellite cirrus detection requirements.

  3. Raman Lidar Measurements of Water Vapor and Cirrus Clouds During The Passage of Hurricane Bonnie

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Evans, K. D.; Demoz, B.; Starr, D OC.; Eloranta, E. W.; Tobin, D.; Feltz, W.; Jedlovec, G. J.; Gutman, S. I.; Schwemmer, G. K.; Smith, David E. (Technical Monitor)

    2000-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island in the Bahamas during August - September, 1998 as a part of the third Convection and Moisture Experiment (CAMEX-3) which focussed on hurricane development and tracking. During the period August 21 - 24, hurricane Bonnie passed near Andros Island and influenced the water vapor and cirrus cloud measurements acquired by the SRL. Two drying signatures related to the hurricane were recorded by the SRL and other sensors. Cirrus cloud optical depths (at 351 nm) were also measured during this period. Optical depth values ranged from less than 0.01 to 1.5. The influence of multiple scattering on these optical depth measurements was studied. A correction technique is presented which minimizes the influences of multiple scattering and derives information about cirrus cloud optical and physical properties. The UV/IR cirrus cloud optical depth ratio was estimated based on a comparison of lidar and GOES measurements. Simple radiative transfer model calculations compared with GOES satellite brightness temperatures indicate that satellite radiances are significantly affected by the presence of cirrus clouds if IR optical depths are approximately 0.005 or greater. Using the ISCCP detection threshold for cirrus clouds on the GOES data presented here, a high bias of up to 40% in the GOES precipitable water retrieval was found.

  4. Subtropical Cirrus Properties Derived from GSFC Scanning Raman Lidar Measurements during CAMEX 3

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Wang, Z.; Demoz, B.

    2004-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island, Bahamas for the third Convection and Moisture Experiment (CAMEX 3) held in August - September, 1998 and acquired an extensive set of water vapor and cirrus cloud measurements (Whiteman et al., 2001). The cirrus data studied here have been segmented by generating mechanism. Distinct differences in the optical properties of the clouds are found when the cirrus are hurricane-induced versus thunderstom-induced. Relationships of cirrus cloud optical depth, mean cloud temperature, and layer mean extinction-to-backscatter ratio (S) are presented and compared with mid-latitude and tropical results. Hurricane-induced cirrus clouds are found to generally possess lower values of S than thunderstorm induced clouds. Comparison of these measurements of S are made with other studies revealing at times large differences in the measurements. Given that S is a required parameter for spacebased retrievals of cloud optical depth using backscatter lidar, these large diffaences in S measurements present difficulties for space-based retrievals of cirrus cloud extinction and optical depth.

  5. Raman lidar and sun photometer measurements of aerosols and water vapor during the ARM RCS experiment

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Whiteman, D. N.; Melfi, S. H.; Evans, K. D.; Holben, B. N.

    1995-01-01

    The first Atmospheric Radiation Measurement (ARM) Remote Cloud Study (RCS) Intensive Operations Period (IOP) was held during April 1994 at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site near Lamont, Oklahoma. This experiment was conducted to evaluate and calibrate state-of-the-art, ground based remote sensing instruments and to use the data acquired by these instruments to validate retrieval algorithms developed under the ARM program. These activities are part of an overall plan to assess general circulation model (GCM) parameterization research. Since radiation processes are one of the key areas included in this parameterization research, measurements of water vapor and aerosols are required because of the important roles these atmospheric constituents play in radiative transfer. Two instruments were deployed during this IOP to measure water vapor and aerosols and study their relationship. The NASA/Goddard Space Flight Center (GSFC) Scanning Raman Lidar (SRL) acquired water vapor and aerosol profile data during 15 nights of operations. The lidar acquired vertical profiles as well as nearly horizontal profiles directed near an instrumented 60 meter tower. Aerosol optical thickness, phase function, size distribution, and integrated water vapor were derived from measurements with a multiband automatic sun and sky scanning radiometer deployed at this site.

  6. An Autonomous Polarized Raman Lidar System Designed for Summit Camp, Greenland

    NASA Astrophysics Data System (ADS)

    Stillwell, Robert A.; Neely, Ryan R.; Pilewskie, Peter; O'Neill, Michael; Thayer, Jeffrey P.; Hayman, Matthew

    2016-06-01

    A dearth of high-spatial and temporal resolution measurements of atmospheric state variables in the Arctic directly inhibits scientific understanding of radiative and precipitation impacts on the changing surface environment. More reliable and frequent measurements are needed to better understand Arctic weather processes and constrain model predictions. To partially address the lack of Artic observations, a new autonomous Raman lidar system, which will measure water vapor mixing ratio, temperature, extinction, and cloud phase profiles through the troposphere, is designed for deployment to Summit Camp, Greenland (72° 36' N, 38° 25' W, 3250 [m]). This high-altitude Arctic field site has co-located ancillary equipment such as a Doppler millimeter cloud radar, microwave radiometers, depolarization lidars, ceiliometer, an infrared interferometer and twice-daily radiosondes. The current suite of instruments allows for a near comprehensive picture of the atmospheric state above Summit but increased spatial and temporal resolution of water vapor and temperature will reveal detailed microphysical information. A system description will be provided with an emphasis on the Monte Carlo safety analysis done to ensure eye safety in all relevant weather conditions.

  7. Validation of Temperature Measurements from the Airborne Raman Ozone Temperature and Aerosol Lidar During SOLVE

    NASA Technical Reports Server (NTRS)

    Burris, John; McGee, Thomas; Hoegy, Walter; Lait, Leslie; Twigg, Laurence; Sumnicht, Grant; Heaps, William; Hostetler, Chris; Bui, T. Paul; Neuber, Roland; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    The Airborne Raman Ozone, Temperature and Aerosol Lidar (AROTEL) participated in the recent Sage III Ozone Loss and Validation Experiment (SOLVE) by providing profiles of aerosols, polar stratospheric clouds (PSCs), ozone and temperature with high vertical and horizontal resolution. Temperatures were derived from just above the aircraft to approximately 60 kilometers geometric altitude with a reported vertical resolution of between 0.5 and 1.5 km. The horizontal footprint varied from 4 to 70 km. This paper explores the measurement uncertainties associated with the temperature retrievals and makes comparisons with independent, coincident, measurements of temperature. Measurement uncertainties range from 0.1 K to approximately 4 K depending on altitude and integration time. Comparisons between AROTEL and balloon sonde temperatures retrieved under clear sky conditions using both Rayleigh and Raman scattered data showed AROTEL approximately 1 K colder than sonde values. Comparisons between AROTEL and the Meteorological Measurement System (MMS) on NASA's ER-2 show AROTEL being from 2-3 K colder for altitudes ranging from 14 to 18 km. Temperature comparisons between AROTEL and the United Kingdom Meteorological Office's model showed differences of approximately 1 K below approximately 25 km and a very strong cold bias of approximately 12 K at altitudes between 30 and 35 km.

  8. Comments on "Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements".

    PubMed

    Whiteman, David N; Venable, Demetrius; Landulfo, Eduardo

    2011-05-20

    In a recent publication, Leblanc and McDermid [Appl. Opt., 47, 5592 (2008)]APOPAI0003-693510.1364/AO.47.005592 proposed a hybrid calibration technique for Raman water vapor lidar involving a tungsten lamp and radiosondes. Measurements made with the lidar telescope viewing the calibration lamp were used to stabilize the lidar calibration determined by comparison with radiosonde. The technique provided a significantly more stable calibration constant than radiosondes used alone. The technique involves the use of a calibration lamp in a fixed position in front of the lidar receiver aperture. We examine this configuration and find that such a configuration likely does not properly sample the full lidar system optical efficiency. While the technique is a useful addition to the use of radiosondes alone for lidar calibration, it is important to understand the scenarios under which it will not provide an accurate quantification of system optical efficiency changes. We offer examples of these scenarios. Scanning of the full telescope aperture with the calibration lamp can circumvent most of these limitations. Based on the work done to date, it seems likely that the use of multiple calibration lamps in different fixed positions in front of the telescope may provide sufficient redundancy for long-term calibration needs. Further full-aperture scanning experiments, performed over an extended period of time, are needed to determine a "best practice" for the use of multiple calibration lamps in the hybrid technique. PMID:21614108

  9. Comments on ''Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements''

    SciTech Connect

    Whiteman, David N.; Venable, Demetrius; Landulfo, Eduardo

    2011-05-20

    In a recent publication, Leblanc and McDermid [Appl. Opt., 47, 5592 (2008)]APOPAI0003-693510.1364/AO.47.005592 proposed a hybrid calibration technique for Raman water vapor lidar involving a tungsten lamp and radiosondes. Measurements made with the lidar telescope viewing the calibration lamp were used to stabilize the lidar calibration determined by comparison with radiosonde. The technique provided a significantly more stable calibration constant than radiosondes used alone. The technique involves the use of a calibration lamp in a fixed position in front of the lidar receiver aperture. We examine this configuration and find that such a configuration likely does not properly sample the full lidar system optical efficiency. While the technique is a useful addition to the use of radiosondes alone for lidar calibration, it is important to understand the scenarios under which it will not provide an accurate quantification of system optical efficiency changes. We offer examples of these scenarios. Scanning of the full telescope aperture with the calibration lamp can circumvent most of these limitations. Based on the work done to date, it seems likely that the use of multiple calibration lamps in different fixed positions in front of the telescope may provide sufficient redundancy for long-term calibration needs. Further full-aperture scanning experiments, performed over an extended period of time, are needed to determine a ''best practice'' for the use of multiple calibration lamps in the hybrid technique.

  10. Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide.

    PubMed

    Nakazato, Masahisa; Nagai, Tomohiro; Sakai, Tetsu; Hirose, Yasuo

    2007-04-20

    A UV ozone differential-absorption lidar (DIAL) utilizing a Nd:YAG laser and a single Raman cell filled with carbon dioxide (CO(2)) is designed, developed, and evaluated. The generated wavelengths are 276, 287, and 299 nm, comprising the first to third Stokes lines of the stimulated Raman scattering technique. The correction terms originated from the aerosol extinction, the backscatter, and the absorption by other gases are estimated using a model atmosphere. The experimental results demonstrate that the emitted output energies were 13 mJ/pulse at 276 nm and 287 nm and 5 mJ/pulse at 299 nm, with pump energy of 91 mJ/pulse and a CO(2) pressure of 0.7 MPa. The three Stokes lines account for 44.0% of the available energy. The use of argon or helium as a buffer gas in the Raman cell was also investigated, but this leads to a dramatic decrease in the third Stokes line, which makes this wavelength practically unusable. Our observations confirmed that 30 min of integration were sufficient to observe ozone concentration profiles up to 10 km. Aerosol extinction and backscatter correction are estimated and applied. The aerosol backscatter correction profile using 287 and 299 nm as reference wavelengths is compared with that using 355 nm. The estimated statistical error is less than 5% at 1.5 km and 10% at 2.6 km. Comparisons with the operational carbon-iodine type chemical ozonesondes demonstrate 20% overestimation of the ozone profiles by the DIAL technique. PMID:17415396

  11. New Examination of the Traditional Raman Lidar Technique II: Evaluating the Ratios for Water Vapor and Aerosols

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.

    2003-01-01

    In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman and Rayleigh-Mie lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here those results are used to derive the temperature dependent forms of the equations for the water vapor mixing ratio, aerosol scattering ratio, aerosol backscatter coefficient, and extinction to backscatter ratio (Sa). The error equations are developed, the influence of differential transmission is studied and different laser sources are considered in the analysis. The results indicate that the temperature functions become significant when using narrowband detection. Errors of 5% and more can be introduced in the water vapor mixing ratio calculation at high altitudes and errors larger than 10% are possible for calculations of aerosol scattering ratio and thus aerosol backscatter coefficient and extinction to backscatter ratio.

  12. Intercomparisons of high-resolution solar blind Raman lidar atmospheric profiles of water vapor with radiosondes and kytoon

    NASA Technical Reports Server (NTRS)

    Petri, K.; Salik, A.; Cooney, J.

    1986-01-01

    A report is given of measurements of atmospheric profiles of water vapor in the boundary layer by use of solar blind Raman lidar. These measurement episodes, occuring twice a day over a two week period, were accompanied by a dense net of supporting measurements. The support included two radiosonde launches per measurement episodes as well as a kytoon support measurement of water vapor using a wet bulb-dry bulb instrument. The kytoon strategy included ten minute stops at strategic altitudes. Additional kytoon measurements included ozone profiles and nephelometric extinction profiles in the visible. Typically, six or seven 1000 shot lidar profile averages were collected during a measurement episode. Overall performance comparisons are provided and intercomparisons between auxiliary measurement devices are presented. Data on the accuracy of the lidar water vapor profiles are presented.

  13. An investigation of Raman lidar aerosol measurements and their application to the study of the aerosol indirect effect

    NASA Astrophysics Data System (ADS)

    Russo, Felicita

    The problem of the increasing global atmospheric temperature has motivated a large interest in studying the mechanisms that can influence the radiative balance of the planet. Aerosols are responsible for several radiative effects in the atmosphere: an increase of aerosol loading in the atmosphere increases the reflectivity of the atmosphere and has an estimated cooling effect and is called the aerosol direct effect. Another process involving aerosols is the effect that an increase in their concentration in the atmosphere has on the formation of clouds and is called the aerosol indirect effect. In the latest IPCC report, the aerosol indirect effect was estimated to be responsible for a radiative forcing ranging between -0.3 W/m2 to -1.8 W/m2, which can be as large as, but opposite in sign to, the radiative forcing due to greenhouse gases. The main goal of this dissertation is to study the Raman lidar measurements of quantities relevant for the investigation of the aerosol indirect effect and ultimately to apply these measurements to a quantification of the aerosol indirect effect. In particular we explore measurements of the aerosol extinction from both the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) and the US Department of Energy (DOE) ARM Climate Research Facility Raman Lidar (CARL). An algorithm based on the chi-squared technique to calculate the aerosol extinction, which was introduced first by Whiteman (1999), is here validated using both simulated and experimental data. It has been found as part of this validation that the aerosol extinction uncertainty retrieved with this technique is on average smaller that the uncertainty calculated with the technique traditionally used. This algorithm was then used to assess the performance of the CARL aerosol extinction retrieval for low altitudes. Additionally, since CARL has been upgraded with a channel for measuring Raman liquid water scattering, measurements of cloud liquid water content, droplet

  14. Multiple-Scattering Influence on Extinction-and Backscatter-Coefficient Measurements with Raman and High-Spectral-Resolution Lidars.

    PubMed

    Wandinger, U

    1998-01-20

    A formalism describing the influence of multiple scattering on cloud measurements with Raman and high-spectral-resolution lidars is presented. Model calculations including both particulate and molecular scattering processes are performed to describe the general effects of multiple scattering on both particulate and molecular lidar backscatter signals. It is found that, for typical measurement geometries of ground-based lidars, as many as five scattering orders contribute significantly to the backscattered light. The relative intensity of multiple-scattered light is generally larger in signals backscattered from molecules than in signals backscattered from particles. The multiple-scattering formalism is applied to measurements of water and ice clouds taken with a Raman lidar. Multiple-scattering errors of measured extinction coefficients are typically of the order of 50% at the bases of both water and ice clouds and decrease with increasing penetration depth to below 20%. In contrast, the multiple-scattering errors of backscatter coefficients are negligible in ice clouds and below 20% in water clouds. PMID:18268599

  15. Polar stratospheric clouds over Finland in the 2012/2013 Arctic winter measured by two Raman lidars

    NASA Astrophysics Data System (ADS)

    Hoffmann, Anne; Giannakaki, Eleni; Kivi, Rigel; Schrems, Otto; Immler, Franz; Komppula, Mika

    2013-04-01

    Already in December 2012, the Arctic stratospheric vortex reached temperatures sufficiently low for polar stratospheric cloud (PSC) formation over wide areas of Northern Europe and whole Finland. Within Finland, stratospheric aerosol lidar measurements have been and are performed with two Raman lidar systems, the PollyXT, owned by the Finnish Meteorological Institute (FMI) and situated well below the Arctic circle close to Kuopio (63 N, 27 E) and the MARL lidar owned by the Alfred-Wegener-Institute for Polar and Marine Research (AWI), and situated at the FMI Arctic Research Centre in Sodankylä (67 N, 26 E). The PollyXT has been designed as an autonomous tropospheric lidar system, but it has proven to be able to detect aerosol backscatter and depolarization at least as high up as 25 km. Measurements are ongoing as far as low clouds allow for stratospheric analysis with both lidars until the end of PSC season in February. For the winter 2012/2013, PSC occurrence frequency, types and characteristics will be determined. Comparative analysis with Calipso lidar profiles covering Finland will be performed. Preliminary results from December 17-24 show PSCs detected in Kuopio during seven days with the PollyXT lidar. The altitude of the clouds varied in the range of 17-25 km. In Sodankylä the measurements were running on one day during the period and PSCs were observed between altitudes 17-25 km. For the same time period (December 17-24, 2012) CALIPSO has observed stratospheric layers at all overpasses over Finland (9 tracks on five days). The clouds were observed between 18.5 and 26 km, with varying geometric and optical thickness.

  16. Sensitivity of Particle Extinction and Backscattering Calculation from Mie-Raman Lidar Measurements to the Choice of Ångström Exponent

    NASA Astrophysics Data System (ADS)

    Suvorina, Anastasia; Veselovskii, Igor; Whiteman, David N.; Korenskiy, Michael

    2016-06-01

    Vibrational Raman scattering from nitrogen is commonly used in Mie-Raman lidars for evaluation of particle backscattering (β) and extinction (α) coefficients. However, vibrational scattering is characterized by significant frequency shift of the Raman component, so for the calculation of α and β the assumption about the extinction Ångström exponent is needed. Simulation results presented in this study demonstrate that ambiguity in the choice of this exponent can be the significant source of uncertainty in the calculation of backscattering coefficients when optically thick aerosol layers are considered. Examples of lidar measurements and optical data calculated for different values of Ångström exponent are given.

  17. Elastic and Raman Lidar Temperature Measurements from Poker Flat, Alaska During February 1992

    NASA Technical Reports Server (NTRS)

    Burka, Michael; Dao, Phan; Davidson, Gilbert; Farley, Robert; Meriwether, John; Wilson, Alex

    1992-01-01

    Ground-based lidar observations are increasingly used to elucidate the dynamical structure of the stratosphere and mesosphere. Observations made from Poker Flat, Alaska during Feb. 1992 using the Phillips Laboratory Mobile Lidar Facility are reported.

  18. Investigation of aerosol and cloud properties using multiwavelength Raman lidar measurements

    NASA Astrophysics Data System (ADS)

    Verghese, Sachin John

    Lidar measurements obtained during several field campaigns have provided an extensive dataset for investigating aerosol characteristics and cloud properties. In this thesis we use measurements of multi-wavelength optical extinction measured with a Raman lidar to infer aerosol and cloud particle size variations. Aerosol extinction depends on both size and number density of the scatterers. The optical extinction at different wavelengths depends on the sixth power of the size parameter for aerosols much smaller than the scattering wavelength, and on the second power of the size parameter for aerosols much larger than the wavelength. Changes in the density of a particular size aerosol lead to a proportional response. The extinction profiles at several wavelengths are simultaneously examined to study changes in the aerosol size distribution over an interesting range of sizes corresponding to accumulation-mode particles. Model calculations based on Mie scattering theory are compared with extinction profiles at different wavelengths, water vapor profiles, and other simultaneous measurements, to investigate the formation and dissipation of cloud structures. The optical scattering measurements from aerosols and cloud particles demonstrate that various characteristics of aerosols and visibility can be determined. We demonstrate the capability of the new technique using the multi-wavelength extinction ratios to profile information about changes in CCN particle size in the range of 50 nm to 0.5 mum. Examples taken from three different field campaigns demonstrate that changes in the size of the cloud particles during the different stages of growth and dissipation are observed in the multi-wavelength aerosol extinction using this technique. We also show the relationship that exists between particle size increase or decrease in cloud regions, based on the extinction coefficients and changes in relative humidity. The deliquescence relative humidity (DRH) is found to exert a strong

  19. Oceanic Lidar

    NASA Technical Reports Server (NTRS)

    Carder, K. L. (Editor)

    1981-01-01

    Instrument concepts which measure ocean temperature, chlorophyll, sediment and Gelbstoffe concentrations in three dimensions on a quantitative, quasi-synoptic basis were considered. Coastal zone color scanner chlorophyll imagery, laser stimulated Raman temperaure and fluorescence spectroscopy, existing airborne Lidar and laser fluorosensing instruments, and their accuracies in quantifying concentrations of chlorophyll, suspended sediments and Gelbstoffe are presented. Lidar applications to phytoplankton dynamics and photochemistry, Lidar radiative transfer and signal interpretation, and Lidar technology are discussed.

  20. Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 observational prototype experiment

    NASA Astrophysics Data System (ADS)

    Hammann, E.; Behrendt, A.; Le Mounier, F.; Wulfmeyer, V.

    2014-11-01

    The temperature measurements of the Rotational Raman Lidar of the University of Hohenheim (UHOH RRL) during the High Definition of Clouds and Precipitation for advancing Climate Prediction (HD(CP)2 Prototype Experiment (HOPE) in April and May 2013 are discussed. The lidar consists of a frequency-tripled Nd:YAG laser at 355 nm with 10 W average power at 50 Hz, a two-mirror scanner, a 40 cm receiving telescope and a highly efficient polychromator with cascading interference filters for separating four signals: the elastic backscatter signal, two rotational Raman signals with different temperature dependence, and the vibrational Raman signal of water vapor. The main measurement variable of the UHOH RRL is temperature. For the HOPE campaign, the lidar receiver was optimized for high and low background levels, respectively, with a novel switch for the passband of the second rotational Raman channel. The instrument delivers atmospheric profiles of water vapor mixing ratio as well as particle backscatter coefficient and particle extinction coefficient as further products. As examples for the measurement performance, measurements of the temperature gradient and water vapor mixing ratio revealing the development of the atmospheric boundary layer within 25 h are presented. As expected from simulations, a significant advance during nighttime was achieved with the new low-background setting. A two-mirror scanner allows for measurements in different directions. When pointing the scanner to low elevation, measurements close to the ground become possible which are otherwise impossible due to the non-total overlap of laser beam and receiving telescope field-of-view in the near range. We present an example of a low-level temperature measurement which resolves the temperature gradient at the top of the stable nighttime boundary layer a hundred meters above the ground.

  1. Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 Observational Prototype Experiment

    NASA Astrophysics Data System (ADS)

    Hammann, E.; Behrendt, A.; Le Mounier, F.; Wulfmeyer, V.

    2015-03-01

    The temperature measurements of the rotational Raman lidar of the University of Hohenheim (UHOH RRL) during the High Definition of Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observation Prototype Experiment (HOPE) in April and May 2013 are discussed. The lidar consists of a frequency-tripled Nd:YAG laser at 355 nm with 10 W average power at 50 Hz, a two-mirror scanner, a 40 cm receiving telescope, and a highly efficient polychromator with cascading interference filters for separating four signals: the elastic backscatter signal, two rotational Raman signals with different temperature dependence, and the vibrational Raman signal of water vapor. The main measurement variable of the UHOH RRL is temperature. For the HOPE campaign, the lidar receiver was optimized for high and low background levels, with a novel switch for the passband of the second rotational Raman channel. The instrument delivers atmospheric profiles of water vapor mixing ratio as well as particle backscatter coefficient and particle extinction coefficient as further products. As examples for the measurement performance, measurements of the temperature gradient and water vapor mixing ratio revealing the development of the atmospheric boundary layer within 25 h are presented. As expected from simulations, a reduction of the measurement uncertainty of 70% during nighttime was achieved with the new low-background setting. A two-mirror scanner allows for measurements in different directions. When pointing the scanner to low elevation, measurements close to the ground become possible which are otherwise impossible due to the non-total overlap of laser beam and receiving telescope field of view in the near range. An example of a low-level temperature measurement is presented which resolves the temperature gradient at the top of the stable nighttime boundary layer 100 m above the ground.

  2. The mobile Water vapor Aerosol Raman LIdar and its implication in the framework of the HyMeX and ChArMEx programs: application to a dust transport process

    NASA Astrophysics Data System (ADS)

    Chazette, P.; Marnas, F.; Totems, J.

    2014-06-01

    The increasing importance of the coupling of water and aerosol cycles in environmental applications requires observation tools that allow simultaneous measurements of these two fundamental processes for climatological and meteorological studies. For this purpose, a new mobile Raman lidar, WALI (Water vapor and Aerosol LIdar), has been developed and implemented within the framework of the international HyMeX and ChArMEx programs. This paper presents the key properties of this new device and its first applications to scientific studies. The lidar uses an eye-safe emission in the ultraviolet range at 354.7 nm and a set of compact refractive receiving telescopes. Cross-comparisons between rawinsoundings performed from balloon or aircraft and lidar measurements have shown a good agreement in the derived water vapor mixing ratio (WVMR). The discrepancies are generally less than 0.5 g kg-1 and therefore within the error bars of the respective instruments. A detailed study of the uncertainty of the WVMR retrieval was conducted and shows values between 7 and 11%, which is largely constrained by the quality of the lidar calibration. It also proves that the lidar is able to measure the WVMR during daytime over a range of about 1 km. In addition the WALI system provides measurements of aerosol optical properties such as the lidar ratio (LR) or the particulate depolarization ratio (PDR). An important example of scientific application addressing the main objectives of the HyMeX and ChArMEx programs is then presented, following an event of desert dust aerosols over the Balearic Islands in October 2012. This dust intrusion may have had a significant impact on the intense precipitations that occurred over southwestern France and the Spanish Mediterranean coasts. During this event, the LR and PDR values obtained are in the ranges of ~45-63 ± 6 and 0.10-0.19 ± 0.01 sr, respectively, which is representative of dust aerosols. The dust layers are also shown to be associated with

  3. Analysis of Raman Lidar and Radiosonde Measurements from the AWEX-G Field Campaign and Its Relation to Aqua Validation

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Russo, F.; Demoz, B.; Miloshevich, L. M.; Veselovskii, I.; Hannon, S.; Wang, Z.; Vomel, H.; Schmidlin, F.; Lesht, B.; Moore, P. J.; Beebe, A. S.; Gambacorta, A.; Barnet, C.

    2006-01-01

    Early work within the Aqua validation activity revealed there to be large differences in water vapor measurement accuracy among the various technologies in use for providing validation data. The validation measurements were made at globally distributed sites making it difficult to isolate the sources of the apparent measurement differences among the various sensors, which included both Raman lidar and radiosonde. Because of this, the AIRS Water Vapor Experiment-Ground (AWEX-G) was held in October-November 2003 with the goal of bringing validation technologies to a common site for intercomparison and resolving the measurement discrepancies. Using the University of Colorado Cryogenic Frostpoint Hygrometer (CFH) as the water vapor reference, the AWEX-G field campaign permitted correction techniques to be validated for Raman lidar, Vaisala RS80-H and RS90/92 that significantly improve the absolute accuracy of water vapor measurements from these systems particularly in the upper troposphere. Mean comparisons of radiosondes and lidar are performed demonstrating agreement between corrected sensors and the CFH to generally within 5% thereby providing data of sufficient accuracy for Aqua validation purposes. Examples of the use of the correction techniques in radiance and retrieval comparisons are provided and discussed.

  4. The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: the neXT generation

    NASA Astrophysics Data System (ADS)

    Engelmann, Ronny; Kanitz, Thomas; Baars, Holger; Heese, Birgit; Althausen, Dietrich; Skupin, Annett; Wandinger, Ulla; Komppula, Mika; Stachlewska, Iwona S.; Amiridis, Vassilis; Marinou, Eleni; Mattis, Ina; Linné, Holger; Ansmann, Albert

    2016-04-01

    The atmospheric science community demands autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. For this purpose, a portable lidar called Polly was developed at TROPOS in 2003. The lidar system was continuously improved with gained experience from the EARLINET community, involvement in worldwide field campaigns, and international institute collaborations within the last 10 years. Here we present recent changes of the setup of the portable multiwavelength Raman and polarization lidar PollyXT and discuss the improved capabilities of the system by means of a case study. The latest system developments include an additional near-range receiver unit for Raman measurements of the backscatter and extinction coefficient down to 120 m above ground, a water-vapor channel, and channels for simultaneous measurements of the particle linear depolarization ratio at 355 and 532 nm. Quality improvements were achieved by systematically following the EARLINET guidelines and the international PollyNET quality assurance developments. A modified ship radar ensures measurements in agreement with air-traffic safety regulations and allows for 24/7 monitoring of the atmospheric state with PollyXT.

  5. Analysis of Raman Lidar and radiosonde measurements from the AWEX-G field campaign and its relation to Aqua validation

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Russo, F.; Demoz, B.; Miloshevich, L. M.; Veselovskii, I.; Hannon, S.; Wang, Z.; Vomel, H.; Schmidlin, F.; Lesht, B.

    2005-01-01

    Early work within the Aqua validation activity revealed there to be large differences in water vapor measurement accuracy among the various technologies in use for providing validation data. The validation measurements were made at globally distributed sites making it difficult to isolate the sources of the apparent measurement differences among the various sensors, which included both Raman lidar and radiosonde. Because of this, the AIRS Water Vapor Experiment-Ground (AWEX-G) was held in October - November, 2003 with the goal of bringing validation technologies to a common site for intercomparison and resolution of the measurement discrepancies. Using the University of Colorado Cryogenic Frostpoint Hygrometer (CFH) as the water vapor reference, the AWEX-G field campaign resulted in new correction techniques for both Raman lidar, Vaisala RS80-H and RS90/92 measurements that significantly improve the absolute accuracy of those measurement systems particularly in the upper troposphere. Mean comparisons of radiosondes and lidar are performed demonstrating agreement between corrected sensors and the CFH to generally within 5% thereby providing data of sufficient accuracy for Aqua validation purposes. Examples of the use of the correction techniques in radiance and retrieval comparisons are provided and discussed.

  6. Improved method for retrieving the aerosol optical properties without the numerical derivative for Raman-Mie lidar

    NASA Astrophysics Data System (ADS)

    Gong, Wei; Wang, Wei; Mao, Feiyue; Zhang, Jinye

    2015-08-01

    Raman-Mie light detection and ranging (lidar) is a very useful tool for research on atmospheric aerosol optical properties with high spatial-temporal resolution. However, many uncertainties still exist in data retrieval because traditional retrieval methods need to calculate the numerical derivative for aerosol extinction coefficient (AEC), which may cause large errors, particularly with low signal-to-noise ratios. Thus, we present an improved method for retrieving aerosol optical properties. We re-formulate the N2-Raman lidar equation to obtain an unknown term which contains the AEC at the Mie wavelength. We replace the unknown term of the equation in traditional method for retrieving aerosol backscatter coefficient (ABC). Then, AEC can be retrieved by the accurate ABC and Mie lidar signal without calculating the numerical derivative. Tests on the simulated and measured signals show that results of our method and those of the traditional method have similar tendencies. However, our method is more accurate and robust, and the significant errors of AEC caused by the numerical derivative can be reduced.

  7. Self-Raman Nd:YVO4 laser and electro-optic technology for space-based sodium lidar instrument

    NASA Astrophysics Data System (ADS)

    Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2014-02-01

    We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nm. A CW External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nm. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nm. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9W @ 532 nm wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.

  8. Water vapor observations up to the lower stratosphere through the Raman lidar during the MAïdo LIdar Calibration Campaign

    NASA Astrophysics Data System (ADS)

    Dionisi, D.; Keckhut, P.; Courcoux, Y.; Hauchecorne, A.; Porteneuve, J.; Baray, J. L.; Leclair de Bellevue, J.; Vérèmes, H.; Gabarrot, F.; Payen, G.; Decoupes, R.; Cammas, J. P.

    2014-10-01

    A new lidar system devoted to tropospheric and lower stratospheric water vapor measurements has been installed at the Maïdo altitude station facility of La Reunion Island, in the southern subtropics. The main objectives of the MAïdo LIdar Calibration Campaign (MALICCA), performed in April 2013, were to validate the system, to set up a calibration methodology, to compare the acquired water profiles with radiosonde measurements and to evaluate its performances and capabilities with a particular focus on the UTLS measurements. Varying the characteristics of the transmitter and the receiver components, different system configuration scenarios were tested and possible parasite signals (fluorescent contamination, rejection) were investigated. A hybrid calibration methodology has been set up and validated to insure optimal lidar calibration stability with time. In particular, the receiver transmittance is monitored through the calibration lamp method that, at the moment, can detect transmittance variations greater than 10-15%. Calibration coefficients are then calculated through the hourly values of IWV provided by the co-located GPS. The comparison between the constants derived by GPS and Vaisala RS92 radiosondes launched at Maïdo during MALICCA, points out an acceptable agreement in terms of accuracy of the mean calibration value (with a difference of approximately 2-3%), but a significant difference in terms of variability (14 vs. 7-9%, for GPS and RS92 calibration procedures, respectively). We obtained a relatively good agreement between the lidar measurements and 15 co-located and simultaneous RS92 radiosondes. A relative difference below 10% is measured in low and middle troposphere (2-10 km). The upper troposphere (up to 15 km) is characterized by a larger spread (approximately 20%), because of the increasing distance between the two sensors. To measure water vapor in the UTLS region, nighttime and monthly water vapor profiles are presented and compared. The

  9. Observation and analysis of the temperature inversion layer by Raman lidar up to the lower stratosphere.

    PubMed

    Wang, Yufeng; Cao, Xiaoming; He, Tingyao; Gao, Fei; Hua, Dengxin; Zhao, Meina

    2015-12-01

    The vibration-rotational Raman lidar system built in Xi'an, China (34.233°N, 108.911°E) was used to simultaneously detect atmospheric temperature, water vapor, and aerosols under different weather conditions. Temperature measurement examples showed good agreement with radiosonde data in terms of the lapse rates and heights of the inversion layer under the lower stratosphere. The statistical temperature error due to the signal-to-noise ratio is less than 1 K up to a height of 15 km, and is estimated to be less than 3 K below a height of 22 km. High-quality temperature data were collected from 70 nighttime observations from October 2013 to May 2014, and were used to analyze the temperature inversion characteristics at Xi'an, which is a typical city in the northwest of China. The tropopause height over the Xi'an area was almost 17-18 km, and the inversion layer often formed above the cloud layer. In the winter at night, inversions within the boundary layer can easily form with a high occurrence of ∼60% based on 47 nights from 01 November 2013 to 21 January 2014. Continuous observation of atmospheric temperature, water vapor (relative humidity), and aerosols was carried out during one night, and the relevant changes were analyzed in the boundary layer via the joint observation of atmospheric visibility, PM2.5 and PM10 from a ground visibility meter and from a monitoring site, which revealed that the temperature inversion layer has a great influence on the formation of fog and haze during the winter night and early morning. PMID:26836664

  10. Study Case of Air-Mass Modification over Poland and Romania Observed by the Means of Multiwavelength Raman Depolarization Lidars

    NASA Astrophysics Data System (ADS)

    Costa-Surós, Montserrat; Janicka, Lucja; Stachlewska, Iwona S.; Nemuc, Anca; Talianu, Camelia; Heese, Birgit; Engelmann, Ronny

    2016-06-01

    An air-mass modification, on its way from Poland to Romania, observed between 19-21 July 2014 is discussed. The air-mass was investigated using data of two multi-wavelength lidars capable of performing regular elastic, depolarization and Raman measurements in Warsaw, Poland, and in Magurele, Romania. The analysis was focused on evaluating optical properties of aerosol in order to search for similarities and differences in the vertical profiles describing the atmospheric layers above the two stations within given period.

  11. Mid-latitude cirrus classification at Rome Tor Vergata through a multi-channel Raman-Mie-Rayleigh lidar

    NASA Astrophysics Data System (ADS)

    Dionisi, D.; Keckhut, P.; Liberti, G. L.; Cardillo, F.; Congeduti, F.

    2013-04-01

    A methodology to identify and characterize cirrus clouds has been developed and applied to the multichannel-multiwavelength Rayleigh-Mie-Raman (RMR) lidar in Rome-Tor Vergata (RTV). A set of 167 cirrus cases, defined on the basis of quasi-stationary temporal period conditions, has been selected in a dataset consisting of about 500 h of nighttime lidar sessions acquired between February 2007 and April 2010. The derived lidar parameters (effective height, geometrical and optical thickness and mean back-scattering ratio) and the cirrus mid-height temperature (estimated from the radiosoundings of Pratica di Mare, WMO site #16245) of this sample have been analyzed by the means of a clustering multivariate analysis. This approach identified four cirrus classes above the RTV site: two thin cirrus clusters in mid and upper troposphere and two thick cirrus clusters in mid-upper troposphere. These results, which are very similar to those derived through the same approach in the lidar site of the Observatoire of Haute Provence (OHP), allows characterizing cirrus clouds over RTV site and attests the robustness of such classification. To have some indications about the cirrus generation methods for the different classes, the analyses of the extinction-to-backscatter ratio (lidar ratio, LReff), in terms of the frequency distribution functions and depending on the mid-height cirrus temperature have been performed. This study suggests that smaller (larger) ice crystals compose thin (thick) cirrus classes. This information, together with the value of relative humidity over ice (110 ± 30%), calculated through the simultaneous WV Raman measurements for the mid-tropospheric thin class, indicates that this class could be formed by an heterogeneous nucleation mechanism. The RTV cirrus results, re-computed through the cirrus classification by Sassen and Cho (1992), shows good agreement to other mid-latitude lidar cirrus observation for the relative occurrence of subvisible (SVC), thin

  12. Intercomparison of aerosol optical parameters from WALI and R-MAN510 aerosol Raman lidars in the framework of HyMeX campaign

    NASA Astrophysics Data System (ADS)

    Boytard, Mai-Lan; Royer, Philippe; Chazette, Patrick; Shang, Xiaoxia; Marnas, Fabien; Totems, Julien; Bizard, Anthony; Bennai, Baya; Sauvage, Laurent

    2013-04-01

    The HyMeX program (Hydrological cycle in Mediterranean eXperiment) aims at improving our understanding of hydrological cycle in the Mediterranen and at a better quantification and forecast of high-impact weather events in numerical weather prediction models. The first Special Observation Period (SOP1) took place in September/October 2012. During this period two aerosol Raman lidars have been deployed at Menorca Island (Spain) : one Water-vapor and Aerosol Raman LIdar (WALI) operated by LSCE/CEA (Laboratoire des Sciences du Climat et de l'Environnement/Commissariat à l'Energie Atomique) and one aerosol Raman and dual-polarization lidar (R-Man510) developed and commercialized by LEOSPHERE company. Both lidars have been continuously running during the campaign and have provided information on aerosol and cloud optical properties under various atmospheric conditions (maritime background aerosols, dust events, cirrus clouds...). We will present here the results of intercomparisons between R-Man510, and WALI aerosol lidar systems and collocated sunphotometer measurements. Limitations and uncertainties on the retrieval of extinction coefficients, depolarization ratio, aerosol optical depths and detection of atmospheric structures (planetary boundary layer height, aerosol/cloud layers) will be discussed according atmospheric conditions. The results will also be compared with theoretical uncertainty assessed with direct/inverse model of lidar profiles.

  13. Vertical profiles of microphysical particle properties derived from inversion with two-dimensional regularization of multiwavelength Raman lidar data: experiment.

    PubMed

    Müller, Detlef; Kolgotin, Alexei; Mattis, Ina; Petzold, Andreas; Stohl, Andreas

    2011-05-10

    Inversion with two-dimensional (2-D) regularization is a new methodology that can be used for the retrieval of profiles of microphysical properties, e.g., effective radius and complex refractive index of atmospheric particles from complete (or sections) of profiles of optical particle properties. The optical profiles are acquired with multiwavelength Raman lidar. Previous simulations with synthetic data have shown advantages in terms of retrieval accuracy compared to our so-called classical one-dimensional (1-D) regularization, which is a method mostly used in the European Aerosol Research Lidar Network (EARLINET). The 1-D regularization suffers from flaws such as retrieval accuracy, speed, and ability for error analysis. In this contribution, we test for the first time the performance of the new 2-D regularization algorithm on the basis of experimental data. We measured with lidar an aged biomass-burning plume over West/Central Europe. For comparison, we use particle in situ data taken in the smoke plume during research aircraft flights upwind of the lidar. We find good agreement for effective radius and volume, surface-area, and number concentrations. The retrieved complex refractive index on average is lower than what we find from the in situ observations. Accordingly, the single-scattering albedo that we obtain from the inversion is higher than what we obtain from the aircraft data. In view of the difficult measurement situation, i.e., the large spatial and temporal distances between aircraft and lidar measurements, this test of our new inversion methodology is satisfactory. PMID:21556108

  14. Characterization of convection-related parameters by Raman lidar: Analysis of selected case studies from the Convective and Orographically-induced Precipitation Study

    NASA Astrophysics Data System (ADS)

    Di Girolamo, P.; Summa, D.; Stelitano, D.

    2012-04-01

    This paper illustrates an approach to determine the convective available potential energy (CAPE) and the convective inhibition (CIN) based on the use of data from a Raman lidar system. The use of Raman lidar data allows to provide high temporal resolution (5 min) measurements of CAPE and CIN and follow their evolution over extended time period covering the full cycle of convective activity. Lidar-based measurements of CAPE and CIN are obtained from Raman lidar measurements of the temperature profile and the surface measurements of temperature, pressure and dew point temperature provided from a surface weather station. The approach is tested and applied to the data collected by the Raman lidar system BASIL, which was operational in Achern (Black Forest, Lat: 48.64 ° N, Long: 8.06 ° E, Elev.: 140 m) in the period 01 June - 31 August 2007 in the frame of the Convective and Orographically-induced Precipitation Study (COPS), held in Southern Germany and Eastern France. Reported measurements are found to be in good agreement with simultaneous measurements obtained from the radiosondes launched in Achern and with estimates from different mesoscale models. An estimate of the different random error sources affecting the measurements of CAPE and CIN has also been performed, together with a detail sensitivity study to quantify the different systematic error sources. Preliminary results from this study will be illustrated and discussed at the Conference.

  15. A Case Study on Observed and Simulated CO2 Concentration Profiles in Hefei based on Raman Lidar and GEOS-Chem Model

    NASA Astrophysics Data System (ADS)

    Wang, Yinan; Lü, Daren; Pan, Weilin; Yuan, Kee

    2016-06-01

    Observations of atmospheric CO2 concentration profiles provide significative constraints on the global/regional inversions of carbon sources and sinks. Anhui Institute of Optics and Fine Mechanics of Chinese Academy of Sciences developed a Raman Lidar system to detect the vertical distribution of atmospheric CO2. This paper compared the observations with the modeled results from a three-dimensional global chemistry transport model-GEOS-Chem, which showed a good agreement in the trend of change with lidar measurements. The case study indicated a potential for better simulating vertical distribution of atmospheric CO2 by combining with lidar measurements.

  16. Vertical Resolved Dust Mass Concentration and Backscatter Coefficient Retrieval of Asian Dust Plume Using Quartz Raman Channel in Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Noh, Young M.; Mueller, Detlef; Shin, Sungkyun

    2016-06-01

    In this work, we present a method for estimating vertical resolved mass concentration of dust immersed in Asian dust plume using Raman scattering of quartz (silicon dioxide, silica). During the Asian dust period of March 15, 16, and 21 in 2010, Raman lidar measurements detected the presence of quartz, and successfully showed the vertical profiles of the quartz backscatter coefficient. Since the Raman backscatter coefficient was connected with the Raman backscatter differential cross section and the number density of quartz molecules, the mass concentration of quartz in the atmosphere can be estimated from the quartz backscatter coefficient. The weight percentage from 40 to 70 % for quartz in the Asian dust was estimated from references. The vertical resolved mass concentration of dust was estimated by quartz mass concentration and weight percentage. We also present a retrieval method to obtain dust backscatter coefficient from the mixed Asian dust and pollutant layer. OPAC (Optical Properties of Aerosol and Clouds) simulations were conducted to calculate dust backscatter coefficient. The retrieved dust mass concentration was used as an input parameter for the OPAC calculations. These approaches in the study will be useful for characterizing the quartz dominated in the atmospheric aerosols and estimating vertical resolved mass concentration of dust. It will be especially applicable for optically distinguishing the dust and non-dust aerosols in studies on the mixing state of Asian dust plume. Additionally, the presented method combined with satellite observations is enable qualitative and quantitative monitoring for Asian dust.

  17. Correction Technique for Raman Water Vapor Lidar Signal-Dependent Bias and Suitability for Water Wapor Trend Monitoring in the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Cadirola, M.; Venable, D.; Calhoun, M.; Miloshevich, L; Vermeesch, K.; Twigg, L.; Dirisu, A.; Hurst, D.; Hall, E.; Jordan, A.; Voemel, H.

    2012-01-01

    The MOHAVE-2009 campaign brought together diverse instrumentation for measuring atmospheric water vapor. We report on the participation of the ALVICE (Atmospheric Laboratory for Validation, Interagency Collaboration and Education) mobile laboratory in the MOHAVE-2009 campaign. In appendices we also report on the performance of the corrected Vaisala RS92 radiosonde measurements during the campaign, on a new radiosonde based calibration algorithm that reduces the influence of atmospheric variability on the derived calibration constant, and on other results of the ALVICE deployment. The MOHAVE-2009 campaign permitted the Raman lidar systems participating to discover and address measurement biases in the upper troposphere and lower stratosphere. The ALVICE lidar system was found to possess a wet bias which was attributed to fluorescence of insect material that was deposited on the telescope early in the mission. Other sources of wet biases are discussed and data from other Raman lidar systems are investigated, revealing that wet biases in upper tropospheric (UT) and lower stratospheric (LS) water vapor measurements appear to be quite common in Raman lidar systems. Lower stratospheric climatology of water vapor is investigated both as a means to check for the existence of these wet biases in Raman lidar data and as a source of correction for the bias. A correction technique is derived and applied to the ALVICE lidar water vapor profiles. Good agreement is found between corrected ALVICE lidar measurments and those of RS92, frost point hygrometer and total column water. The correction is offered as a general method to both quality control Raman water vapor lidar data and to correct those data that have signal-dependent bias. The influence of the correction is shown to be small at regions in the upper troposphere where recent work indicates detection of trends in atmospheric water vapor may be most robust. The correction shown here holds promise for permitting useful upper

  18. Remote sensing of water vapour from the synergy of Raman lidar, GPS and in-situ observations during the DEMEVAP 2011 campaign

    NASA Astrophysics Data System (ADS)

    Bock, Olivier; David, Leslie; Bosser, Pierre; Thom, Christian; Pelon, Jacques; Keckhut, Philippe; Sarkissian, Alain; Bourcy, Thomas; Tzanos, Diane; Tournois, Guy

    2013-04-01

    The DEMEVAP (DEvelopment of MEthods for remote sensing of water VAPor) project aims at developing improved reference humidity sounding methods based on the combined used of scanning Raman lidars, ground-based sensors and GPS. The goal is to achieve absolute accuracy better than 3% on the column integrated water vapour (IWV). An intensive observing period was conducted in September-October 2011 at Observatoire de Haute Provence (OHP), France, with the aim of intercomparing several different techniques and instruments. It involved two Raman lidars, four radiosonde measurement systems, five GPS stations, a stellar spectrometer, and several ground-based capacitive and dew-point sensors. Observations were collected over 17 nights during which 26 balloons were released which carried a total of 79 radiosondes. Most of the balloons carried 3 or 4 different sonde types simultaneously (Vaisala RS92, MODEM M2K2-DC and M10, and Meteolabor Snow-White). The comparison of IWV measurements from the four radiosonde types to GPS reveals biases of -11% to +7%. Comparison of water vapour profiles from the radiosondes to the IGN scanning Raman lidar profiles reveals mostly dry and wet biases in the radiosondes data in dry layers in the middle and upper troposphere. Several Raman lidar calibration methods are evaluated which adjust the lidar measurements either on ground-based capacitive or dew-point sensors measurements, on radiosonde data or on GPS PWV data. Another method adjusts the lidar calibration constant as an extra parameter during GPS processing. All these methods show a good degree of consistency and yield a repeatability of 2 to 5% during the first 3-week period of the experiment. A drift in the calibration constant is observed throughout the full time of the experiment which is partly explained by a temperature-dependent bias in the lidar measurements induced by the progressive cooling of the atmosphere. Modelling and correcting this effect or modifying the Raman lidar

  19. Correction technique for Raman water vapor lidar signal-dependent bias and suitability for water vapor trend monitoring in the upper troposphere

    NASA Astrophysics Data System (ADS)

    Whiteman, D. N.; Cadirola, M.; Venable, D.; Calhoun, M.; Miloshevich, L.; Vermeesch, K.; Twigg, L.; Dirisu, A.; Hurst, D.; Hall, E.; Jordan, A.; Vömel, H.

    2012-11-01

    The MOHAVE-2009 campaign brought together diverse instrumentation for measuring atmospheric water vapor. We report on the participation of the ALVICE (Atmospheric Laboratory for Validation, Interagency Collaboration and Education) mobile laboratory in the MOHAVE-2009 campaign. In appendices we also report on the performance of the corrected Vaisala RS92 radiosonde measurements during the campaign, on a new radiosonde based calibration algorithm that reduces the influence of atmospheric variability on the derived calibration constant, and on other results of the ALVICE deployment. The MOHAVE-2009 campaign permitted the Raman lidar systems participating to discover and address measurement biases in the upper troposphere and lower stratosphere. The ALVICE lidar system was found to possess a wet bias which was attributed to fluorescence of insect material that was deposited on the telescope early in the mission. Other sources of wet biases are discussed and data from other Raman lidar systems are investigated, revealing that wet biases in upper tropospheric (UT) and lower stratospheric (LS) water vapor measurements appear to be quite common in Raman lidar systems. Lower stratospheric climatology of water vapor is investigated both as a means to check for the existence of these wet biases in Raman lidar data and as a source of correction for the bias. A correction technique is derived and applied to the ALVICE lidar water vapor profiles. Good agreement is found between corrected ALVICE lidar measurments and those of RS92, frost point hygrometer and total column water. The correction is offered as a general method to both quality control Raman water vapor lidar data and to correct those data that have signal-dependent bias. The influence of the correction is shown to be small at regions in the upper troposphere where recent work indicates detection of trends in atmospheric water vapor may be most robust. The correction shown here holds promise for permitting useful upper

  20. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 2; Derivation of Aerosol Real Refractive Index, Single-Scattering Albedo, and Humidification Factor using Raman Lidar and Aircraft Size Distribution

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Poellot, M.; Kaufman, Y. J.

    1998-01-01

    Aerosol backscattering and extinction profiles measured by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site during two nights in April 1994 are discussed. These profiles are shown to be consistent with the simultaneous aerosol size distribution measurements made by a PCASP (Passive Cavity Aerosol Spectrometer Probe) optical particle counter flown on the University of North Dakota Citation aircraft. We describe a technique which uses both lidar and PCASP measurements to derive the dependence of particle size on relative humidity, the aerosol real refractive index n, and estimate the effective single-scattering albedo Omega(sub 0). Values of n ranged between 1.4-1.5 (dry) and 1.37-1.47 (wet); Omega(sub 0) varied between 0.7 and 1.0. The single-scattering albedo derived from this technique is sensitive to the manner in which absorbing particles are represented in the aerosol mixture; representing the absorbing particles as an internal mixture rather than the external mixture assumed here results in generally higher values of Omega(sub 0). The lidar measurements indicate that the change in particle size with relative humidity as measured by the PCASP can be represented in the form discussed by Hattel with the exponent gamma = 0.3 + or - 0.05. The variations in aerosol optical and physical characteristics captured in the lidar and aircraft size distribution measurements are discussed in the context of the meteorological conditions observed during the experiment.

  1. Study of Droplet Activation in Thin Clouds Using Ground-Based Raman Lidar and Ancillary Remote Sensors

    NASA Astrophysics Data System (ADS)

    Rosoldi, Marco; Madonna, Fabio; Gumà Claramunt, Pilar; Pappalardo, Gelsomina

    2016-06-01

    A methodology for the study of cloud droplet activation based on the measurements performed with ground-based multi-wavelength Raman lidars and ancillary remote sensors collected at CNR-IMAA observatory, Potenza, South Italy, is presented. The study is focused on the observation of thin warm clouds. Thin clouds are often also optically thin: this allows the cloud top detection and the full profiling of cloud layers using ground-based Raman lidar. Moreover, broken clouds are inspected to take advantage of their discontinuous structure in order to study the variability of optical properties and water vapor content in the transition from cloudy regions to cloudless regions close to the cloud boundaries. A statistical study of this variability leads to identify threshold values for the optical properties, enabling the discrimination between clouds and cloudless regions. These values can be used to evaluate and improve parameterizations of droplet activation within numerical models. A statistical study of the co-located Doppler radar moments allows to retrieve droplet size and vertical velocities close to the cloud base. First evidences of a correlation between droplet vertical velocities measured at the cloud base and the aerosol effective radius observed in the cloud-free regions of the broken clouds are found.

  2. Use of In Situ Data to Test a Raman Lidar-Based Cloud Condensation Nuclei Remote Sensing Method

    SciTech Connect

    Ghan, Steven J.; Collins, Donald R.

    2004-02-01

    A method of retrieving vertical profiles of cloud condensation nuclei (CCN) concentration from surface measurements is proposed. Surface measurements of the CCN concentration are scaled by the ratio of the backscatter (or extinction) vertical profile to the backscatter (or extinction) at or near the surface. The backscatter (or extinction) profile is measured by Raman lidar, and is corrected to dry conditions using the vertical profile of relative humidity (also measured by Raman lidar) and surface measurements of the dependence of backscatter (or extinction) on relative humidity. The method assumes the surface aerosol size distribution and composition are representative of the vertical column. Aircraft measurements of aerosol size distribution are used to test the dependence of the retrieval on the uniformity of aerosol size distribution. The retrieval is found to be robust for supersaturations less than 0.02%, but breaks down at higher supersaturations if the vertical profile of aerosol size distribution differs markedly from the distribution at the surface. Such conditions can be detected from the extinction/backscatter ratio.

  3. Forest fire smoke layers observed in the free troposphere over Portugal with a multiwavelength Raman lidar: optical and microphysical properties.

    PubMed

    Nepomuceno Pereira, Sérgio; Preißler, Jana; Guerrero-Rascado, Juan Luis; Silva, Ana Maria; Wagner, Frank

    2014-01-01

    Vertically resolved optical and microphysical properties of biomass burning aerosols, measured in 2011 with a multiwavelength Raman lidar, are presented. The transportation time, within 1-2 days (or less), pointed towards the presence of relatively fresh smoke particles over the site. Some strong layers aloft were observed with particle backscatter and extinction coefficients (at 355 nm) greater than 5 Mm(-1)sr(-1) and close to 300 Mm(-1), respectively. The particle intensive optical properties showed features different from the ones reported for aged smoke, but rather consistent with fresh smoke. The Ångström exponents were generally high, mainly above 1.4, indicating a dominating accumulation mode. Weak depolarization values, as shown by the small depolarization ratio of 5% or lower, were measured. Furthermore, the lidar ratio presented no clear wavelength dependency. The inversion of the lidar signals provided a set of microphysical properties including particle effective radius below 0.2 μm, which is less than values previously observed for aged smoke particles. Real and imaginary parts of refractive index of about 1.5-1.6 and 0.02i, respectively, were derived. The single scattering albedo was in the range between 0.85 and 0.93; these last two quantities indicate the nonnegligible absorbing characteristics of the observed particles. PMID:25114964

  4. Forest Fire Smoke Layers Observed in the Free Troposphere over Portugal with a Multiwavelength Raman Lidar: Optical and Microphysical Properties

    PubMed Central

    Nepomuceno Pereira, Sérgio; Guerrero-Rascado, Juan Luis; Silva, Ana Maria; Wagner, Frank

    2014-01-01

    Vertically resolved optical and microphysical properties of biomass burning aerosols, measured in 2011 with a multiwavelength Raman lidar, are presented. The transportation time, within 1-2 days (or less), pointed towards the presence of relatively fresh smoke particles over the site. Some strong layers aloft were observed with particle backscatter and extinction coefficients (at 355 nm) greater than 5 Mm−1 sr−1 and close to 300 Mm−1, respectively. The particle intensive optical properties showed features different from the ones reported for aged smoke, but rather consistent with fresh smoke. The Ångström exponents were generally high, mainly above 1.4, indicating a dominating accumulation mode. Weak depolarization values, as shown by the small depolarization ratio of 5% or lower, were measured. Furthermore, the lidar ratio presented no clear wavelength dependency. The inversion of the lidar signals provided a set of microphysical properties including particle effective radius below 0.2 μm, which is less than values previously observed for aged smoke particles. Real and imaginary parts of refractive index of about 1.5-1.6 and 0.02i, respectively, were derived. The single scattering albedo was in the range between 0.85 and 0.93; these last two quantities indicate the nonnegligible absorbing characteristics of the observed particles. PMID:25114964

  5. Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data.

    PubMed

    Chemyakin, Eduard; Müller, Detlef; Burton, Sharon; Kolgotin, Alexei; Hostetler, Chris; Ferrare, Richard

    2014-11-01

    We present the results of a feasibility study in which a simple, automated, and unsupervised algorithm, which we call the arrange and average algorithm, is used to infer microphysical parameters (complex refractive index, effective radius, total number, surface area, and volume concentrations) of atmospheric aerosol particles. The algorithm uses backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm as input information. Testing of the algorithm is based on synthetic optical data that are computed from prescribed monomodal particle size distributions and complex refractive indices that describe spherical, primarily fine mode pollution particles. We tested the performance of the algorithm for the "3 backscatter (β)+2 extinction (α)" configuration of a multiwavelength aerosol high-spectral-resolution lidar (HSRL) or Raman lidar. We investigated the degree to which the microphysical results retrieved by this algorithm depends on the number of input backscatter and extinction coefficients. For example, we tested "3β+1α," "2β+1α," and "3β" lidar configurations. This arrange and average algorithm can be used in two ways. First, it can be applied for quick data processing of experimental data acquired with lidar. Fast automated retrievals of microphysical particle properties are needed in view of the enormous amount of data that can be acquired by the NASA Langley Research Center's airborne "3β+2α" High-Spectral-Resolution Lidar (HSRL-2). It would prove useful for the growing number of ground-based multiwavelength lidar networks, and it would provide an option for analyzing the vast amount of optical data acquired with a future spaceborne multiwavelength lidar. The second potential application is to improve the microphysical particle characterization with our existing inversion algorithm that uses Tikhonov's inversion with regularization. This advanced algorithm has recently undergone development to allow automated and

  6. Comparison of aerosol properties retrieved using GARRLiC, LIRIC, and Raman algorithms applied to multi-wavelength lidar and sun/sky-photometer data

    NASA Astrophysics Data System (ADS)

    Bovchaliuk, Valentyn; Goloub, Philippe; Podvin, Thierry; Veselovskii, Igor; Tanre, Didier; Chaikovsky, Anatoli; Dubovik, Oleg; Mortier, Augustin; Lopatin, Anton; Korenskiy, Mikhail; Victori, Stephane

    2016-07-01

    Aerosol particles are important and highly variable components of the terrestrial atmosphere, and they affect both air quality and climate. In order to evaluate their multiple impacts, the most important requirement is to precisely measure their characteristics. Remote sensing technologies such as lidar (light detection and ranging) and sun/sky photometers are powerful tools for determining aerosol optical and microphysical properties. In our work, we applied several methods to joint or separate lidar and sun/sky-photometer data to retrieve aerosol properties. The Raman technique and inversion with regularization use only lidar data. The LIRIC (LIdar-Radiometer Inversion Code) and recently developed GARRLiC (Generalized Aerosol Retrieval from Radiometer and Lidar Combined data) inversion methods use joint lidar and sun/sky-photometer data. This paper presents a comparison and discussion of aerosol optical properties (extinction coefficient profiles and lidar ratios) and microphysical properties (volume concentrations, complex refractive index values, and effective radius values) retrieved using the aforementioned methods. The comparison showed inconsistencies in the retrieved lidar ratios. However, other aerosol properties were found to be generally in close agreement with the AERONET (AErosol RObotic NETwork) products. In future studies, more cases should be analysed in order to clearly define the peculiarities in our results.

  7. Comparison of Riparian Evapotranspiration Estimated Using Raman LIDAR and Water Balance Based Estimates from a Soil Moisture Sensor Network

    NASA Astrophysics Data System (ADS)

    Solis, J. A.; Rajaram, H.; Whittemore, D. O.; Butler, J. J.; Eichinger, W. E.; Reboulet, E. C.

    2013-12-01

    Riparian evapotranspiration (RET) is an important component of basin-wide evapotranspiration (ET), especially in subhumid to semi-arid regions, with significant impacts on water management and conservation. A common method of measuring ET is using the eddy correlation technique. However, since most riparian zones are narrow, eddy correlation techniques are not applicable because of limited fetch distance. Techniques based on surface-subsurface water balance are applicable in these situations, but their accuracy is not well constrained. In this study, we estimated RET within a 100 meter long and 40 meter wide riparian zone along Rock Creek in the Whitewater Basin in central Kansas using a water balance approach and Raman LIDAR measurements. A total of six soil moisture profiles (with six soil moisture sensors in each profile) and water-table measurements were used to estimate subsurface water storage (total soil moisture, TSM). The Los Alamos National Laboratory (LANL)-University of Iowa (UI) Raman LIDAR was used to measure the water vapor concentrations in three dimensions where the Monin-Obukhov similarity theory was used to obtain the spatially resolved fluxes. The LIDAR system included a 1.064 micron Nd:YAG laser with a Cassagrain telescope with a laser pulse of 50Hz with 25mJ of energy per pulse. Estimates of RET obtained from TSM changes were compared to LIDAR estimates obtained from three-dimensional water vapor concentrations of the atmosphere directly above and downwind of the riparian vegetation. The LIDAR measurements help to validate the TSM based estimates of RET and constrain their accuracy. RET estimates obtained from TSM changes in individual soil moisture profiles exhibited a large variability (up to a factor 8). This variability results from the highly heterogeneous soils in the vadose zone (2-3 m thick), where soil moisture (rather than groundwater) is the major source of water for riparian vegetation. Variable vegetation density and species also

  8. New lidar facility at Lindenberg Meteorological Observatory, Germany

    NASA Astrophysics Data System (ADS)

    Reichardt, J.; Begbie, R.; Wolf, V.; Reigert, Andrew; Wandinger, U.; Engelmann, R.; Hilber, B.

    2014-10-01

    Since 2005, the high-performance multiparameter Raman lidar RAMSES (Raman lidar for atmospheric moisture sensing) for water vapor, temperature, cloud and aerosol measurements is part of the broad suite of active and passive remote-sensing instruments monitoring the atmosphere at the German Meteorological Services observatory in Lindenberg. Initially housed in a 20-foot container, continued expansion of RAMSES made accommodation of the instrument increasingly difficult, and caused problems in air-conditioning. For these reasons, a new lidar facility was built on site in 2013. It is now home to RAMSES, and it also provides extra laboratory space for (lidar) experiments. The Lindenberg lidar facility is described in detail. One of its features is the precision air-conditioning system which is designed to keep the temperature field of the RAMSES room stable within 1 K at all times. Migration from the container to the new building offered an opportunity to make changes to the RAMSES instrument itself. For instance, stray light suppression was further improved, selection of photomultiplier tubes was optimized, and the near-range receiver was redesigned to enhance its daytime capabilities. Further, in addition to the water spectrometer for calibrated measurements of cloud Raman backscatter-coefficient spectra, a second spectrometer was implemented for studies of the fluorescence spectra of atmospheric aerosols. At the conference, these technical modifications are discussed, and first measurement examples with the improved lidar are presented.

  9. In-situ, sunphotometer and Raman lidar observations of aerosol transport events in the western Mediterranean during the June 2013 ChArMEx campaign

    NASA Astrophysics Data System (ADS)

    Totems, Julien; Sicard, Michael; Bertolin, Santi; Boytard, Mai-Lan; Chazette, Patrick; Comeron, Adolfo; Dulac, Francois; Hassanzadeh, Sahar; Lange, Diego; Marnas, Fabien; Munoz, Constantino; Shang, Xiaoxia

    2014-05-01

    We present a preliminary analysis of aerosol observations performed in June 2013 in the western Mediterranean at two stations set up in Barcelona and Menorca (Spain) in the framework of the ChArMEx (Chemistry Aerosol Mediterranean Experiment) project. The Barcelona station was equipped with the following fixed instruments belonging to the Universitat Politècnica de Catalunya (UPC): an AERONET (Aerosol Robotic Network) sun-photometer, an MPL (Micro Pulse Lidar) lidar and the UPC multi-wavelength lidar. The MPL lidar works at 532 nm and has a depolarization channel, while the UPC lidar works at 355, 532 and 1064 nm, and also includes two N2- (at 387 and 607 nm) and one H2O-Raman (at 407 nm) channels. The MPL system works continuously 24 hour/day. The UPC system was operated on alert in coordination with the research aircrafts plans involved in the campaign. In Cap d'en Font, Menorca, the mobile laboratory of the Laboratoire des Sciences du Climat et de l'Environnement hosted an automated (AERONET) and a manual (Microtops) 5-lambda sunphotometer, a 3-lambda nephelometer, a 7-lambda aethalometer, as well as the LSCE Water vapor Aerosol LIdar (WALI). This mini Raman lidar, first developed and validated for the HyMEX (Hydrological cycle in the Mediterranean eXperiment) campaign in 2012, works at 355 nm for eye safety and is designed with a short overlap distance (<300m) to probe the lower troposphere. It includes depolarization, N2- and H2O-Raman channels. H2O observations have been calibrated on-site by different methods and show good agreement with balloon measurements. Observations at Cap d'en Font were quasi-continuous from June 10th to July 3rd, 2013. The lidar data at both stations helped direct the research aircrafts and balloon launches to interesting plumes of particles in real time for in-situ measurements. Among some light pollution background from the European continent, a typical Saharan dust event and an unusual American dust/biomass burning event are

  10. Study of Droplet Activation in Thin Clouds Using Ground-based Raman Lidar and Ancillary Remote Sensors

    NASA Astrophysics Data System (ADS)

    Rosoldi, Marco; Madonna, Fabio; Gumà Claramunt, Pilar; Pappalardo, Gelsomina

    2015-04-01

    Studies on global climate change show that the effects of aerosol-cloud interactions (ACI) on the Earth's radiation balance and climate, also known as indirect aerosol effects, are the most uncertain among all the effects involving the atmospheric constituents and processes (Stocker et al., IPCC, 2013). Droplet activation is the most important and challenging process in the understanding of ACI. It represents the direct microphysical link between aerosols and clouds and it is probably the largest source of uncertainty in estimating indirect aerosol effects. An accurate estimation of aerosol-clouds microphysical and optical properties in proximity and within the cloud boundaries represents a good frame for the study of droplet activation. This can be obtained by using ground-based profiling remote sensing techniques. In this work, a methodology for the experimental investigation of droplet activation, based on ground-based multi-wavelength Raman lidar and Doppler radar technique, is presented. The study is focused on the observation of thin liquid water clouds, which are low or midlevel super-cooled clouds characterized by a liquid water path (LWP) lower than about 100 gm-2(Turner et al., 2007). These clouds are often optically thin, which means that ground-based Raman lidar allows the detection of the cloud top and of the cloud structure above. Broken clouds are primarily inspected to take advantage of their discontinuous structure using ground based remote sensing. Observations are performed simultaneously with multi-wavelength Raman lidars, a cloud Doppler radar and a microwave radiometer at CIAO (CNR-IMAA Atmospheric Observatory: www.ciao.imaa.cnr.it), in Potenza, Southern Italy (40.60N, 15.72E, 760 m a.s.l.). A statistical study of the variability of optical properties and humidity in the transition from cloudy regions to cloud-free regions surrounding the clouds leads to the identification of threshold values for the optical properties, enabling the