Science.gov

Sample records for dd neutron yield

  1. High yield neutron generators using the DD reaction

    NASA Astrophysics Data System (ADS)

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.; Gary, C. K.; Williams, D. L.; Apodaca, M. D.; Cremer, J. T.; Ji, Qing; Ludewigt, B. A.; Jones, G.

    2013-04-01

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 × 109 n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber, increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 μs have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.

  2. High yield neutron generators using the DD reaction

    SciTech Connect

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.; Gary, C. K.; Williams, D. L.; Apodaca, M. D.; Cremer, J. T.; Ji, Qing; Ludewigt, B. A.; Jones, G.

    2013-04-19

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 Multiplication-Sign 10{sup 9} n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber, increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 {mu}s have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.

  3. Measurements of DT and DD neutron yields by neutron activation on TFTR

    SciTech Connect

    Barnes, C.W.; Larson, A.R.; LeMunyan, G.; Loughlin, M.J.

    1994-05-05

    A variety of elemental foils have been activated by neutron fluence from TFTR under conditions with the DT neutron yield per shot ranging from 10{sup 12} to over 10{sup 18}, and with the DT/(DD+DT) neutron ratio varying from 0.5% (from triton burnup) to unity. Linear response over this large dynamic range is obtained by reducing the mass of the foils and increasing the cooling time, all while accepting greatly improved counting statistics. Effects on background gamma-ray lines from foil-capsule-material contaminants. and the resulting lower limits on activation foil mass, have been determined. DT neutron yields from dosimetry standard reactions on aluminum, chromium, iron, nickel, zirconium, and indium are in agreement within the {plus_minus}9% (one-sigma,) accuracy of the measurements: also agreeing are yields from silicon foils using the ACTL library cross-section. While the ENDF/B-V library has too low a cross-section. Preliminary results from a variety of other threshold reactions are presented. Use of the {sup 115}In(n,n) {sup 115m}In reaction (0.42 times as sensitive to DT neutrons as DD neutrons) in conjunction with pure-DT reactions allows a determination of the DT/(DD+DT) ratio in trace tritium or low-power tritium beam experiments.

  4. Measurements of DT and DD neutron yields by neutron activation on TFTR

    SciTech Connect

    Barnes, C.W.; Larson, A.R.; LeMunyan, G.; Loughlin, M.J.

    1995-03-01

    A variety of elemental foils have been activated by neutron fluence from TFTR under conditions with the DT neutron yield per shot ranging from 10{sup 12} to over 10{sup 18}, and with the DT/(DD+DT) neutron ratio varying from 0.5% (from triton burnup) to unity. Linear response over this large dynamic range is obtained by reducing the mass of the foils and increasing the cooling time, all while accepting greatly improved counting statistics. Effects on background gamma-ray lines from foil-capsule-material contaminants, and the resulting lower limits on activation foil mass, have been determined. DT neutron yields from dosimetry standard reactions on aluminum, chromium, iron, nickel, zirconium, and indium are in agreement within the {+-}9% (one-sigma) accuracy of the measurements; also agreeing are yields from silicon foils using the ACTL library cross-section, while the ENDF/B-V library has too low a cross-section. Preliminary results from a variety of other threshold reactions are presented. Use of the {sup 115}In(n.n{prime}) {sup 115m}In reaction (0.42 times as sensitive to DT neutrons as DD neutrons) in conjunction with pure-DT reactions allows a determination of the DT/(DD+DT) ratio in trace tritium or low-power tritium beam experiments.

  5. A practical beryllium activation detector for measuring DD neutron yield from ICF targets

    SciTech Connect

    Murphy, T.J.

    1996-06-01

    A neutron activation detector based on the reaction {sup 9}Be(n,{alpha}){sup 6}He({beta}{sup {minus}}){sup 6}Li has been designed which could potentially allow DD yield determinations within a few minutes after an ICF implosion or other pulsed neutron event with precision comparable to methods currently in use in ICF experiments. The detector is based on previous work, but has been redesigned to allow use in a reentrant tube less than six inches in diameter, and to increase detection efficiency. The detector consists of beryllium rods imbedded in plastic scintillator and coupled to a photomultiplier tube. Neutrons interact with the beryllium to produce {sup 6}He, which decays by emission of a {beta}{sup {minus}} particle with a maximum energy of 3.51 MeV with a half life of 808 ms. The {beta}{sup {minus}} particles are counted, and a neutron yield is determined for the total activity produced. The short half life of {sup 6}He will result in high specific activity and allow quick determination of the amount of {sup 6}He produced.

  6. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    SciTech Connect

    Waugh, C. J. Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Petrasso, R. D.; Rosenberg, M. J.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.

    2015-05-15

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  7. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors.

    PubMed

    Waugh, C J; Rosenberg, M J; Zylstra, A B; Frenje, J A; Séguin, F H; Petrasso, R D; Glebov, V Yu; Sangster, T C; Stoeckl, C

    2015-05-01

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule. PMID:26026524

  8. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    SciTech Connect

    Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; Petrasso, R. D.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.

    2015-05-27

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  9. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    DOE PAGESBeta

    Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; Petrasso, R. D.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.

    2015-05-27

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less

  10. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    NASA Astrophysics Data System (ADS)

    Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Petrasso, R. D.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.

    2015-05-01

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  11. Experimental Determination of DT Yield in High Current DD Dense Plasma Focii

    SciTech Connect

    Lowe, D. R.; Hagen, E. C.; Meehan, B. T.; Springs, R. K.; O'Brien, R. J.

    2013-06-18

    Dense Plasma Focii (DPF), which utilize deuterium gas to produce 2.45 MeV neutrons, may in fact also produce DT fusion neutrons at 14.1 MeV due to the triton production in the DD reaction. If beam-target fusion is the primary producer of fusion neutrons in DPFs, it is possible that ejected tritons from the first pinch will interact with the second pinch, and so forth. The 2 MJ DPF at National Security Technologies’ Losee Road Facility is able to, and has produced, over 1E12 DD neutrons per pulse, allowing an accurate measurement of the DT/DD ratio. The DT/DD ratio was experimentally verified by using the (n,2n) reaction in a large piece of praseodymium metal, which has a threshold reaction of 8 MeV, and is widely used as a DT yield measurement system1. The DT/DD ratio was experimentally determined for over 100 shots, and then compared to independent variables such as tube pressure, number of pinches per shot, total current, pinch current and charge voltage.

  12. D-D neutron generator development at LBNL.

    PubMed

    Reijonen, J; Gicquel, F; Hahto, S K; King, M; Lou, T-P; Leung, K-N

    2005-01-01

    The plasma and ion source technology group in Lawrence Berkeley National Laboratory is developing advanced, next generation D-D neutron generators. There are three distinctive developments, which are discussed in this presentation, namely, multi-stage, accelerator-based axial neutron generator, high-output co-axial neutron generator and point source neutron generator. These generators employ RF-induction discharge to produce deuterium ions. The distinctive feature of RF-discharge is its capability to generate high atomic hydrogen species, high current densities and stable and long-life operation. The axial neutron generator is designed for applications that require fast pulsing together with medium to high D-D neutron output. The co-axial neutron generator is aimed for high neutron output with cw or pulsed operation, using either the D-D or D-T fusion reaction. The point source neutron generator is a new concept, utilizing a toroidal-shaped plasma generator. The beam is extracted from multiple apertures and focus to the target tube, which is located at the middle of the generator. This will generate a point source of D-D, T-T or D-T neutrons with high output flux. The latest development together with measured data will be discussed in this article. PMID:15975804

  13. Application of deuteron-deuteron (D-D) fusion neutrons to 40Ar/39Ar geochronology.

    PubMed

    Renne, Paul R; Knight, Kim B; Nomade, Sébastien; Leung, Ka-Ngo; Lou, Tak-Pui

    2005-01-01

    Neutron irradiation of samples for 40Ar/39Ar dating in a 235U fission reactor requires error-producing corrections for the argon isotopes created from Ca, K, and, to a lesser extent, Cl. The fission spectrum includes neutrons with energies above 2-3 MeV, which are not optimal for the 39K(n,p)39Ar reaction. These higher-energy neutrons are responsible for the largest recoil displacements, which may introduce age artifacts in the case of fine-grained samples. Both interference corrections and recoil displacements would be significantly reduced by irradiation with 2.45 MeV neutrons, which are produced by the deuteron-deuteron (D-D) fusion reaction 2H(d,n)3He. A new generation of D-D reactors should yield sufficiently high neutron fluxes (>10(12) n cm(-2)s(-1)) to be useful for 40Ar/39Ar dating. Modeling indicates that irradiation with D-D neutrons would result in scientific benefits of improved accuracy and broader applicability to fine-grained materials. In addition, radiological safety would be improved, while both maintenance and operational costs would be reduced. Thus, development of high-flux D-D fusion reactors is a worthy goal for 40Ar/39Ar geochronology. PMID:15498681

  14. Relativistically correct DD and DT neutron spectra

    NASA Astrophysics Data System (ADS)

    Appelbe, B.; Chittenden, J.

    2014-06-01

    We use relativistic kinematics to derive an expression for the energy spectrum of neutrons produced by fusion reactions in deuterium and deuterium-tritium thermal plasmas. The derivation does not require approximations and the obtained expression gives the exact shape of the spectrum. It is shown that the high-energy tail of the neutron spectrum is highly sensitive to the plasma temperature. Simple expressions for the plasma temperature as a function of the neutron spectrum full width at half maximum (FWHM) are given.

  15. Measurements of {sigma}(e+e- {yields} hadrons) and B({psi}(3770) {yields} DD-bar, non-DD-bar)

    SciTech Connect

    Rong Gang

    2006-02-11

    We report measurements of the cross sections for inclusive hadronic event production in e+e- annihilation at the energies of 3.650, 3.6648, and 3.773 GeV and measurements of the branching fractions for {psi}(3770) {yields} D0D-bar0, D+D-, DD-bar, and for {psi}(3770) {yields} non-DD-bar.

  16. Study of the branching ratio of {psi}(3770){yields}DD in e{sup +}e{sup -{yields}}DD scattering

    SciTech Connect

    Li Haibo; Qin Xiaoshuai; Yang Maozhi

    2010-01-01

    Based on the data of BES and Belle, the production of DD in the e{sup +}e{sup -{yields}}DD scattering process is studied in this paper. We analyze the continuum and resonant contributions in the energy region from 3.7 to 4.4 GeV. In the {chi}{sup 2} fit to data, we obtain the resonance parameters of {psi}(3770), the branching ratio of {psi}(3770){yields}DD decay by confronting the data to the theoretical formula where both the contributions of the resonances, continuum and interference effects are included. We obtain the branching ratio of {psi}(3770){yields}DD decay is 97.2%{+-}8.9%, as well as the branching ratio of {psi}(4040), {psi}(4160){yields}DD decays.

  17. Development of a new deuterium-deuterium (D-D) neutron generator for prompt gamma-ray neutron activation analysis.

    PubMed

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    A new deuterium-deuterium (D-D) neutron generator has been developed by Adelphi Technology for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA), and fast neutron radiography. The generator makes an excellent fast, intermediate, and thermal neutron source for laboratories and industrial applications that require the safe production of neutrons, a small footprint, low cost, and small regulatory burden. The generator has three major components: a Radio Frequency Induction Ion Source, a Secondary Electron Shroud, and a Diode Accelerator Structure and Target. Monoenergetic neutrons (2.5MeV) are produced with a yield of 10(10)n/s using 25-50mA of deuterium ion beam current and 125kV of acceleration voltage. The present study characterizes the performance of the neutron generator with respect to neutron yield, neutron production efficiency, and the ionic current as a function of the acceleration voltage at various RF powers. In addition the Monte Carlo N-Particle Transport (MCNP) simulation code was used to optimize the setup with respect to thermal flux and radiation protection. PMID:25305524

  18. Nuclear Recoil Calibrations in the LUX Detector Using Direct and Backscattered D-D Neutrons

    NASA Astrophysics Data System (ADS)

    Rhyne, Casey; LUX Collaboration

    2016-03-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. I will discuss the latest calibration of the nuclear recoil (NR) response in liquid xenon (LXe), performed in-situ in the LUX detector using mono-energetic 2.45 MeV neutrons produced via the Adelphi Technologies, Inc. DD108 D-D neutron generator. The calibration measured the NR charge yield in LXe (Qy) to 0.7 keVnr recoil energy with an absolute determination of deposited energy and the NR light yield in LXe (Ly) to recoil energies of 1.1 keVnr, both of which improve upon all previous measurements. I will then focus in depth on the extension of this calibration using a new technique for generating a beam of sub-300 keV quasi-mono-energetic neutrons via the backscatter of 2.45 MeV neutrons off a deuterium-based reflector. Current simulations work optimizing the technique, its advantages, and its impact on future research will be discussed, including the extension of the NR Qy calibration down to 0.14 keVnr, an independent NR Ly calibration, and an a priori estimate of the expected 8B solar neutrino-nucleus coherent scattering signal in the upcoming LUX-ZEPLIN experiment.

  19. A Novel Nuclear Recoil Calibration in the LUX Detector Using a D-D Neutron Generator

    NASA Astrophysics Data System (ADS)

    Verbus, James; LUX Collaboration

    2015-04-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. I will describe a novel calibration of nuclear recoils (NR) in liquid xenon (LXe) performed in-situ in the LUX detector using mono-energetic 2.45 MeV neutrons produced by a D-D neutron generator. This technique was used to measure the NR charge yield in LXe (Qy) to < 1 keV recoil energy with an absolute determination of the deposited energy. The LUX Qy result is a factor of × 5 lower in energy compared to any other previous measurement in the field, and provides a significant improvement in calibration uncertainties. We also present a measurement of the NR light yield in LXe (Leff) to recoil energies as low as ~ 2 keV using the LUX D-D data. The Leff result is also lower in energy with smaller uncertainties than has been previously achieved. These absolute, ultra-low energy calibrations of the NR signal yields in LXe are a clear confirmation of the detector response used for the first LUX WIMP search analysis. Strategies for extending this calibration technique to even lower energies and smaller uncertainties will be discussed.

  20. Nucleon-nucleon charge symmetry breaking and the dd{yields}{alpha}{pi}{sup 0} reaction

    SciTech Connect

    Fonseca, A. C.; Machleidt, R.; Miller, G. A.

    2009-08-15

    We show that using parameters consistent with the charge symmetry violating difference between the strong nn and pp scattering lengths provides significant constraints on the calculated amplitude for the dd{yields}{alpha}{pi}{sup 0} reaction.

  1. Development and characterization of a D-D fast neutron generator for imaging applications.

    PubMed

    Adams, Robert; Bort, Lorenz; Zboray, Robert; Prasser, Horst-Michael

    2015-02-01

    The experimental characterization of a pulsed D-D fast neutron generator designed for fan-beam tomography applications is presented. Using Monte Carlo simulations the response of an LB6411 neutron probe was related to the neutron generator output. The yield was measured to be up to ∼10(7) neutrons/s. An aluminum block was moved stepwise between the source and a BC400 plastic scintillator detector in order to measure an edge response. This edge response was related to the neutron emitting spot size using Monte Carlo simulations and a simplified geometry-based model. The experimentally determined spot size of 2.2 mm agreed well with the simulated value of 1.5 mm. The time-dependence of pulsed output for various operating conditions was also measured. The neutron generator was found to satisfy design requirements for a planned fast neutron tomography arrangement based on a plastic scintillator detector array which is expected to be capable of producing 2D tomograms with a resolution of ∼1.5 mm. PMID:25481677

  2. Investigation of temperature dependence of neutron yield and electron screening potential for the d(d, n){sup 3}He reaction proceeding in deuterides ZrD{sub 2} and TiD{sub 2}

    SciTech Connect

    Bystritsky, V. M.; Bystritskii, Vit. M.; Dudkin, G. N.; Filipowicz, M.; Gazi, S.; Huran, J.; Kobzev, A. P.; Mesyats, G. A.; Nechaev, B. A.; Padalko, V. N.; Parzhitskii, S. S.; Pen'kov, F. M.; Philippov, A. V.; Kaminskii, V. L.; Tuleushev, Yu. Zh.; Wozniak, J.

    2012-08-15

    The temperature dependence of the enhancement factor for the dd reaction proceeding in TiD{sub 2} and ZrD{sub 2} is investigated. The experiments were carried out at the Hall pulsed ion accelerator (INP, Polytechnic University, Tomsk, Russia) in the deuteron energy interval 7.0-12.0 keV and at temperatures ranging from 20 to 200 Degree-Sign C. The values obtained for the electron screening potentials indicate that the dd reaction enhancement factor does not depend on the target temperature in the range 20-200 Degree-Sign C. This result contradicts the conclusions drawn by the LUNA Collaboration from their work.

  3. First PGAA and NAA experimental results from a compact high intensity D-D neutron generator

    SciTech Connect

    Reijonen, J.; Leung, K.-N.; Firestone, R.B.; English, J.A.; Perry, D.L.; Smith, A.; Gicquel, F.; Sun, M.; Bandong, B.; Garabedian, G.; Revay, Zs.; Szentmiklosi, L.; Molnar, G.

    2003-05-13

    Various types of neutron generator systems have been designed and tested at the Plasma and Ion Source Technology Group at Lawrence Berkeley National Laboratory. These generators are based on a D-D fusion reaction. These high power D-D neutron generators can provide neutron fluxes in excess of the current state of the art D-T neutron generators, without the use of pre-loaded targets or radioactive tritium gas. Safe and reliable long-life operations are the typical features of these D-D generators. All of the neutron generators developed in the Plasma and Ion Source Technology Group are utilizing powerful RF-induction discharge to generate the deuterium plasma. One of the advantages of using the RF-induction discharge is it's ability to generate high fraction of atomic ions from molecular gases, and the ability to generate high plasma densities for high extractable ion current from relatively small discharge volume.

  4. Monte Carlo simulation of explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator.

    PubMed

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    An explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator has been simulated using the Monte Carlo N-Particle Transport Code (MCNP5). Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma emission (10.82MeV) following radiative neutron capture by (14)N nuclei. The explosive detection system was built based on a fully high-voltage-shielded, axial D-D neutron generator with a radio frequency (RF) driven ion source and nominal yield of about 10(10) fast neutrons per second (E=2.5MeV). Polyethylene and paraffin were used as moderators with borated polyethylene and lead as neutron and gamma ray shielding, respectively. The shape and the thickness of the moderators and shields are optimized to produce the highest thermal neutron flux at the position of the explosive and the minimum total dose at the outer surfaces of the explosive detection system walls. In addition, simulation of the response functions of NaI, BGO, and LaBr3-based γ-ray detectors to different explosives is described. PMID:25154568

  5. A High Intensity Multi-Purpose D-D Neutron Generator for Nuclear Engineering Laboratories

    SciTech Connect

    Ka-Ngo Leung; Jasmina L. Vujic; Edward C. Morse; Per F. Peterson

    2005-11-29

    This NEER project involves the design, construction and testing of a low-cost high intensity D-D neutron generator for teaching nuclear engineering students in a laboratory environment without radioisotopes or a nuclear reactor. The neutron generator was designed, fabricated and tested at Lawrence Berkeley National Laboratory (LBNL).

  6. Measurement Of The Neutron Spectrum Of A DD Electronic Neutron Generator

    SciTech Connect

    Chichester, David L.; Johnson, James T.; Seabury, Edward H.

    2011-06-01

    A Cuttler-Shalev (C-S){sup 3}He proportional counter has been used to measure the energy spectrum of neutrons from a portable deuterium-deuterium electronic neutron generator. To improve the analysis of results from the C-S detector digital pulse shape analysis techniques have been used to eliminate neutron recoil artifacts in the recorded data. Data was collected using a 8-GHz, 10-bit waveform digitizer with its full scale corresponding to approximately 6-MeV neutrons. The measurements were made with the detector axis perpendicular to the direction of ions in the ENG in a plane 0.5-m to the side of the ENG, measuring neutrons emitted at an angle from 87.3 deg. to 92.7 deg. with respect to the path of ions in the ENG. The system demonstrated an energy resolution of approximately 0.040 MeV for the thermal peak and approximately 0.13 MeV at the DD neutron energy. In order to achieve the ultimate resolution capable with this type of detector it is clear that a higher-precision digitizer will be needed.

  7. Measurement Of The Neutron Spectrum Of A DD Electronic Neutron Generator

    NASA Astrophysics Data System (ADS)

    Chichester, David L.; Johnson, James T.; Seabury, Edward H.

    2011-06-01

    A Cuttler-Shalev (C-S) 3He proportional counter has been used to measure the energy spectrum of neutrons from a portable deuterium-deuterium electronic neutron generator. To improve the analysis of results from the C-S detector digital pulse shape analysis techniques have been used to eliminate neutron recoil artifacts in the recorded data. Data was collected using a 8-GHz, 10-bit waveform digitizer with its full scale corresponding to approximately 6-MeV neutrons. The measurements were made with the detector axis perpendicular to the direction of ions in the ENG in a plane 0.5-m to the side of the ENG, measuring neutrons emitted at an angle from 87.3° to 92.7° with respect to the path of ions in the ENG. The system demonstrated an energy resolution of approximately 0.040 MeV for the thermal peak and approximately 0.13 MeV at the DD neutron energy. In order to achieve the ultimate resolution capable with this type of detector it is clear that a higher-precision digitizer will be needed.

  8. Measurement of the Neutron Spectrum of a DD Electronic Neutron Generator

    SciTech Connect

    D. L. Chichester; J. T. Johnson; E. H. Seabury

    2010-08-01

    A Cuttler-Shalev (C-S) 3He proportional counter has been used to measure the energy spectrum of neutrons from a portable deuterium-deuterium electronic neutron generator. To improve the analysis of results from the C-S detector digital pulse shape analysis techniques have been used to eliminate neutron recoil artifacts in the recorded data. Data was collected using a 8-GHz, 10-bit waveform digitizer with its full scale corresponding to approximately 6-MeV neutrons. The measurements were made with the detector axis perpendicular to the direction of ions in the ENG in a plane 0.5-m to the side of the ENG, measuring neutrons emitted at an angle from 87.3? to 92.7? with respect to the path of ions in the ENG. The system demonstrated an energy resolution of approximately 0.040 MeV for the thermal peak and approximately 0.13 MeV at the DD neutron energy. In order to achieve the ultimate resolution capable with this type of detector it is clear that a higher-precision digitizer will be needed.

  9. High Intensity, Pulsed, D-D Neutron Generator

    NASA Astrophysics Data System (ADS)

    Williams, D. L.; Vainionpaa, J. H.; Jones, G.; Piestrup, M. A.; Gary, C. K.; Harris, J. L.; Fuller, M. J.; Cremer, J. T.; Ludewigt, B. A.; Kwan, J. W.; Reijonen, J.; Leung, K.-N.; Gough, R. A.

    2009-03-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1010 n/s. Previously, Adelphi and LBNL have demonstrated these generators' applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  10. High Intensity, Pulsed, D-D Neutron Generator

    SciTech Connect

    Williams, D. L.; Vainionpaa, J. H.; Jones, G.; Piestrup, M. A.; Gary, C. K.; Harris, J. L.; Fuller, M. J.; Cremer, J. T.; Ludewigt, Bernhard A.; Kwan, J. W.; Reijonen, J.; Leung, K.-N.; Gough, R. A.

    2008-08-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1E10 n/s. Previously, Adelphi and LBNL have demonstrated these generators' applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  11. Optimization of Beam-Shaping Assemblies for BNCS Using the High-Energy Neutron Sources D-D and D-T

    SciTech Connect

    Verbeke, Jerome M.; Chen, Allen S.; Vujic, Jasmina L.; Leung, Ka-Ngo

    2001-06-15

    Boron neutron capture synovectomy is a novel approach for the treatment of rheumatoid arthritis. The goal of the treatment is the ablation of diseased synovial membranes in articulating joints. The treatment of knee joints is the focus of this work. A method was developed, as discussed previously, to predict the dose distribution in a knee joint from any neutron and photon beam spectra incident on the knee. This method is validated and used to design moderators for the deuterium-deuterium (D-D) and deuterium-tritium (D-T) neutron sources. Treatment times >2 h were obtained with the D-D reaction. They could potentially be reduced if the {sup 10}B concentration in the synovium was increased. For D-T neutrons, high therapeutic ratios and treatment times <5 min were obtained for neutron yields of 10{sup 14} s{sup -1}. This treatment time makes the D-T reaction attractive for boron neutron capture synovectomy.

  12. Assessment of radiation shield integrity of DD/DT fusion neutron generator facilities by Monte Carlo and experimental methods

    NASA Astrophysics Data System (ADS)

    Srinivasan, P.; Priya, S.; Patel, Tarun; Gopalakrishnan, R. K.; Sharma, D. N.

    2015-01-01

    DD/DT fusion neutron generators are used as sources of 2.5 MeV/14.1 MeV neutrons in experimental laboratories for various applications. Detailed knowledge of the radiation dose rates around the neutron generators are essential for ensuring radiological protection of the personnel involved with the operation. This work describes the experimental and Monte Carlo studies carried out in the Purnima Neutron Generator facility of the Bhabha Atomic Research Center (BARC), Mumbai. Verification and validation of the shielding adequacy was carried out by measuring the neutron and gamma dose-rates at various locations inside and outside the neutron generator hall during different operational conditions both for 2.5-MeV and 14.1-MeV neutrons and comparing with theoretical simulations. The calculated and experimental dose rates were found to agree with a maximum deviation of 20% at certain locations. This study has served in benchmarking the Monte Carlo simulation methods adopted for shield design of such facilities. This has also helped in augmenting the existing shield thickness to reduce the neutron and associated gamma dose rates for radiological protection of personnel during operation of the generators at higher source neutron yields up to 1 × 1010 n/s.

  13. Performance characteristics of a prompt gamma-ray activation analysis (PGAA) system equipped with a new compact D-D neutron generator

    NASA Astrophysics Data System (ADS)

    Park, Yong Joon; Song, Byung Chul; Im, Hee-Jung; Kim, Jong-Yun

    2009-07-01

    A new prompt gamma-ray activation analysis (PGAA) system equipped with a compact deuterium-deuterium (D-D) neutron generator has been developed for fast detection of explosives and chemical warfare agents. The PGAA system was built based on a fully high-voltage-shielded, axial D-D neutron generator with a radio frequency (RF)-driven ion source. The ionic current of the compact neutron generator was determined as a function of the acceleration voltage at various RF powers. Monoenergetic neutrons (2.45 MeV) with a neutron yield of >1×107 n/s were obtained at a deuterium pressure of 8.0 mTorr, an acceleration voltage of 80 kV, and an RF power of 1.1 kW. The performance of the PGAA system was examined by studying the dependence of a prompt gamma-ray count rate on crucial operating parameters.

  14. D-D Neutron Generator Calibrations and Hardware in the LUX-ZEPLIN Dark Matter Search Experiment

    NASA Astrophysics Data System (ADS)

    Taylor, Will; Lux-Zeplin Collaboration

    2016-03-01

    The LUX-ZEPLIN (LZ) dark matter search experiment will be a two-phase liquid/gas xenon time projection chamber with 7 tonnes of active liquid xenon (LXe) located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. LZ will utilize an in-situ, absolute calibration of nuclear recoils (NR) in LXe using mono-energetic 2.45 MeV neutrons produced by a D-D neutron generator. This technique was used in the LUX detector to measured the NR charge yield in LXe (Qy) to 0.7 keV recoil energy and the NR light yield in LXe (Ly) to recoil energies of 1.1 keV - both of which were the lowest energy measurements achieved in the field. These absolute, ultra-low energy calibrations of the NR signal yields in LXe provide clear measurements of the detector response used for the WIMP search analysis. The improvements made for LZ will include shorter neutron pulse times, multiple neutron conduit configurations, and lower energy neutrons. The upgrades allow for even lower energy measurements of the nuclear recoil response in LXe and an independent measurement of Ly, as well as providing less uncertainty in energy reconstruction. In addition to discussing the physics of the neutron calibrations, I will describe the hardware systems used to implement them.

  15. Initial-state Coulomb interaction in the dd{yields}{alpha}{pi}{sup 0} reaction

    SciTech Connect

    Laehde, Timo A.; Miller, Gerald A.

    2007-05-15

    The effects of initial-state Coulomb interactions in the charge-symmetry-breaking reaction dd{yields}{alpha}{pi}{sup 0} are investigated within a previously published formalism. This is a leading order effect in which the Coulomb interaction between the two initial state protons leads to the breakup of the two deuterons into a continuum state that is well connected to the final {alpha}{pi}{sup 0} state by the strong emission of a pion. As a first step, we use a simplified set of d and {alpha} wave functions and a plane-wave approximation for the initial dd state. This Coulomb mechanism, by itself, yields cross sections that are much larger than the experimental ones, and which are comparable in size to the contributions from other mechanisms. Inclusion of this mechanism is therefore necessary in a realistic calculation.

  16. High-Yield D-T Neutron Generator

    SciTech Connect

    Ludewigt, B.A.; Wells, R.P.; Reijonen, J.

    2006-11-15

    A high-yield D-T neutron generator has been developed for neutron interrogation in homeland security applications such as cargo screening. The generator has been designed as a sealed tube with a performance goal of producing 5 {center_dot} 10{sup 11} n/s over a long lifetime. The key generator components developed are a radio-frequency (RF) driven ion source and a beam-loaded neutron production target that can handle a beam power of 10 kW. The ion source can provide a 100 mA D{sup +}/T{sup +} beam current with a high fraction of atomic species and can be pulsed up to frequencies of several kHz for pulsed neutron generator operation. Testing in D-D operation has been started.

  17. Pulsed D-D Neutron Generator Measurements of HEU Oxide Fuel Pins

    SciTech Connect

    McConchie, Seth; Hausladen, Paul; Mihalczo, John; Blackburn, Brandon; Chichester, David

    2009-03-10

    Pulsed neutron interrogation measurements have been performed on highly enriched uranium (HEU) oxide fuel pins and depleted uranium (DU) metal using a D-D neutron generator (2x10{sup 6} neutrons-s{sup -1}) and moderated {sup 3}He tubes at the Idaho National Laboratory Power Burst Facility. These measurements demonstrate the ability to distinguish HEU from DU by coincidence counting using a pulsed source. The amount of HEU measured was 8 kg in a sealed 55-gallon drum compared to 31 kg of DU. Neutron events were counted during and after the pulse with the Nuclear Materials Identification System (NMIS) and used to calculate the neutron coincidence time distributions. Passive measurements were also performed for comparison with the pulsed measurements. This paper presents the neutron coincidence time distribution and Feynman variance results from the measurements.

  18. Pulsed D-D Neutron Generator Measurements of HEU Oxide Fuel Pins

    SciTech Connect

    McConchie, Seth M; Hausladen, Paul; Mihalczo, John T; Blackburn, Brandon; Chichester, David

    2009-01-01

    Pulsed neutron interrogation measurements have been performed on highly enriched uranium (HEU) oxide fuel pins and depleted uranium (DU) metal using a D-D neutron generator (2 x 10{sup 6} neutrons-s{sup -1}) and moderated {sup 3}He tubes at the Idaho National Laboratory Power Burst Facility. These measurements demonstrate the ability to distinguish HEU from DU by coincidence counting using a pulsed source. The amount of HEU measured was 8 kg in a sealed 55-gallon drum compared to 31 kg of DU. Neutron events were counted during and after the pulse with the Nuclear Materials Identification System (NMIS) and used to calculate the neutron coincidence time distributions. Passive measurements were also performed for comparison with the pulsed measurements. This paper presents the neutron coincidence distribution and Feynman variance results from the measurements.

  19. Pulsed D-D Neutron Generator Measurements of HEU Oxide Fuel Pins

    NASA Astrophysics Data System (ADS)

    McConchie, Seth; Hausladen, Paul; Mihalczo, John; Blackburn, Brandon; Chichester, David

    2009-03-01

    Pulsed neutron interrogation measurements have been performed on highly enriched uranium (HEU) oxide fuel pins and depleted uranium (DU) metal using a D-D neutron generator (2×106 neutrons-s-1) and moderated 3He tubes at the Idaho National Laboratory Power Burst Facility. These measurements demonstrate the ability to distinguish HEU from DU by coincidence counting using a pulsed source. The amount of HEU measured was 8 kg in a sealed 55-gallon drum compared to 31 kg of DU. Neutron events were counted during and after the pulse with the Nuclear Materials Identification System (NMIS) and used to calculate the neutron coincidence time distributions. Passive measurements were also performed for comparison with the pulsed measurements. This paper presents the neutron coincidence time distribution and Feynman variance results from the measurements.

  20. Optimizing Neutron Production Rates from D-D Fusion in an Inertial Electrostatic Confinement Device

    SciTech Connect

    Wehmeyer, A.L.; Radel, R.F.; Kulcinski, G.L.

    2005-05-15

    Detection of explosives has been identified as a near term commercial opportunity for using a fusion plasma. Typical explosive compositions contain low Z material (C, N, O) which are not easily detected using conventional x-rays or metal detectors. However, 2.45 MeV neutrons produced in a D-D fusion reaction can be used for detection of explosives or other clandestine materials in suitcases, packages, or shipping containers.Steady-state D-D operation is possible using an Inertial Electrostatic Confinement (IEC) fusion device. The University of Wisconsin IEC device has produced D-D neutrons at 1.8 x 10{sup 8} neutrons/second at a true cathode voltage of 166 kV and a meter current of 68 mA. These neutron production rates are approaching the levels required for the detection of explosives. In order to increase and optimize the neutron production rate in the IEC device, experiments were performed altering the cathode's size (diameter), geometry, and material composition. Preliminary results indicate that significant differences in neutron production rates are not achieved by altering the geometry or material composition of the cathode. However, the neutron production rate was found to increase approximately 20% by doubling the cathode's diameter from 10 cm to 20 cm. In addition, increasing the cathode voltage from 34 kV to 94 kV at a meter current of 30 mA increased the neutron production rate from 1.24 x 10{sup 6} n/s to 2.83 x 10{sup 7} n/s.

  1. Development of Measurement Methods for Detection of Special Nuclear Materials using D-D Pulsed Neutron Source

    NASA Astrophysics Data System (ADS)

    Misawa, Tsuyoshi; Takahashi, Yoshiyuki; Yagi, Takahiro; Pyeon, Cheol Ho; Kimura, Masaharu; Masuda, Kai; Ohgaki, Hideaki

    2015-10-01

    For detection of hidden special nuclear materials (SNMs), we have developed an active neutron-based interrogation system combined with a D-D fusion pulsed neutron source and a neutron detection system. In the detection scheme, we have adopted new measurement techniques simultaneously; neutron noise analysis and neutron energy spectrum analysis. The validity of neutron noise analysis method has been experimentally studied in the Kyoto University Critical Assembly (KUCA), and was applied to a cargo container inspection system by simulation.

  2. Direct measurements of the non-DD cross section {sigma}{sub {psi}}{sub (3770){yields}}{sub non-DD} at E{sub cm}=3.773 GeV and the branching fraction for {psi}(3770){yields}non-DD

    SciTech Connect

    Ablikim, M.; Bai, J. Z.; Cai, X.; Chen, H. S.; Chen, H. X.; Chen, J. C.; Chen, Jin; Chen, Y. B.; Chu, Y. P.; Deng, Z. Y.; Du, S. X.; Fang, J.; Fang, S. S.; Gao, C. S.; Gu, S. D.; Guo, Y. N.; He, K. L.; Heng, Y. K.; Hu, H. M.; Hu, T.

    2007-12-15

    By analyzing the data collected at the center-of-mass energy E{sub cm}=3.773 GeV and below the DD meson pair production threshold with the BES-II detector at the BEPC Collider, we directly measured the observed non-DD cross section of {psi}(3770) decay to be {sigma}{sub {psi}}{sub (3770){yields}}{sub non-DD}{sup obs}=(0.95{+-}0.35{+-}0.29) nb at E{sub cm}=3.773 GeV, and the branching fraction BF[{psi}(3770){yields}non-DD]=(13.4{+-}5.0{+-}3.6)% for inclusive non-DD decay of {psi}(3770). We also determined the cross section for DD meson pair production to be {sigma}{sub DD}{sup obs}=(6.12{+-}0.37{+-}0.23) nb at E{sub cm}=3.773 GeV.

  3. Large area imaging of hydrogenous materials using fast neutrons from a DD fusion generator

    NASA Astrophysics Data System (ADS)

    Cremer, J. T.; Williams, D. L.; Gary, C. K.; Piestrup, M. A.; Faber, D. R.; Fuller, M. J.; Vainionpaa, J. H.; Apodaca, M.; Pantell, R. H.; Feinstein, J.

    2012-05-01

    A small-laboratory fast-neutron generator and a large area detector were used to image hydrogen-bearing materials. The overall image resolution of 2.5 mm was determined by a knife-edge measurement. Contact images of objects were obtained in 5-50 min exposures by placing them close to a plastic scintillator at distances of 1.5 to 3.2 m from the neutron source. The generator produces 109 n/s from the DD fusion reaction at a small target. The combination of the DD-fusion generator and electronic camera permits both small laboratory and field-portable imaging of hydrogen-rich materials embedded in high density materials.

  4. Preliminary measurements of neutrons from the D-D reaction in the COMPASS tokamak

    SciTech Connect

    Dankowski, J. Kurowski, A.; Twarog, D.; Janky, F.; Stockel, J.

    2014-08-21

    Recent results of measured fast neutrons created in the D-D reaction on the COMPASS tokamak during ohmic discharges are presented in this paper. Two different type detectors were used during experiment. He-3 detectors and bubble detectors as a support. The measurements are an introduction for neutron diagnostic on tokamak COMPASS and monitoring neutrons during discharges with Neutral Beam Injection (NBI). The He-3 counters and bubble detectors were located in two positions near tokamak vacuum chamber at a distance less than 40 cm to the centre of plasma. The neutrons flux was observed in ohmic discharges. However, analysis of our results does not indicate any clear source of neutrons production during ohmic discharges.

  5. Preliminary measurements of neutrons from the D-D reaction in the COMPASS tokamak

    NASA Astrophysics Data System (ADS)

    Dankowski, J.; Janky, F.; Kurowski, A.; Stockel, J.; Twarog, D.

    2014-08-01

    Recent results of measured fast neutrons created in the D-D reaction on the COMPASS tokamak during ohmic discharges are presented in this paper. Two different type detectors were used during experiment. He-3 detectors and bubble detectors as a support. The measurements are an introduction for neutron diagnostic on tokamak COMPASS and monitoring neutrons during discharges with Neutral Beam Injection (NBI). The He-3 counters and bubble detectors were located in two positions near tokamak vacuum chamber at a distance less than 40 cm to the centre of plasma. The neutrons flux was observed in ohmic discharges. However, analysis of our results does not indicate any clear source of neutrons production during ohmic discharges.

  6. Thermal analysis of titanium drive-in target for D-D neutron generation.

    PubMed

    Jung, N S; Kim, I J; Kim, S J; Choi, H D

    2010-01-01

    Thermal analysis was performed for a titanium drive-in target of a D-D neutron generator. Computational fluid dynamics code CFX-5 was used in this study. To define the heat flux term for the thermal analysis, beam current profile was measured. Temperature of the target was calculated at some of the operating conditions. The cooling performance of the target was evaluated by means of the comparison of the calculated maximum target temperature and the critical temperature of titanium. PMID:19819152

  7. Picosecond Neutron Yields from Ultra-Intense Laser-Target Interactions

    NASA Astrophysics Data System (ADS)

    Ellison, C. Leland; Fuchs, Julien

    2009-11-01

    High-flux neutron sources for neutron imaging and materials analysis applications have typically been provided by accelerator-based (Spallation Neutron Source) and reactor-based (High Flux Isotope Reactor) neutron sources. A novel approach is to use ultra-intense (> 10^18 W/cm^2) laser-target interactions to generate picosecond, collimated neutrons. Here we examine the feasibility of a source based on current (LULI) and upcoming laser facility capabilities. A Monte-Carlo code calculates angular and energy distributions of neutrons generated by D-D fusion events occurring within a deuterated target for a given incident beam of D+ ions. The parameters of the deuteron beam are well understood from laser-plasma and laser-target studies relevant to fast-ignition fusion. Expected neutron yields are presented in comparison to conventional neutron sources, previous experimental neutron yields, and within the context of neutron shielding safety requirements.

  8. Characterization of neutron yield and x-ray spectra of a High Flux Neutron Generator (HFNG)

    NASA Astrophysics Data System (ADS)

    Nnamani, Nnaemeka; HFNG Collaboration

    2015-04-01

    The High Flux Neutron Generator (HFNG) is a DD plasma-based source, with a self-loading target intended for fundamental science and engineering applications, including 40 Ar/39 Ar geochronology, neutron cross section measurements, and radiation hardness testing of electronics. Our first estimate of the neutron yield, based on the population of the 4.486 hour 115 In isomer gave a neutron yield of the order 108 n/sec; optimization is ongoing to achieve the design target of 1011 n/sec. Preliminary x-ray spectra showed prominent energy peaks which are likely due to atomic line-emission from back-streaming electrons accelerated up to 100 keV impinging on various components of the HFNG chamber. Our x-ray and neutron diagnostics will aid us as we continue to evolve the design to suppress back-streaming electrons, necessary to achieve higher plasma beam currents, and thus higher neutron flux. This talk will focus on the characterization of the neutron yield and x-ray spectra during our tests. A collimation system is being installed near one of the chamber ports for improved observation of the x-ray spectra. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and the UC Office of the President Award 12-LR-238745.

  9. Prompt-gamma neutron activation analysis system design: Effects of D-T versus D-D neutron generator source selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prompt-gamma neutron activation (PGNA) analysis is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV and D-T with...

  10. Prompt-gamma neutron activation analysis system design: effects of D-T versus D-D neutron generator source selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prompt-gamma neutron activation analysis (PGNAA) is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV, and D-T wi...

  11. Application of the coincidence counting technique to DD neutron spectrometry data at the NIF, OMEGA, and Z

    DOE PAGESBeta

    Lahmann, B.; Milanese, L. M.; Han, W.; Gatu Johnson, M.; Séguin, F. H.; Frenje, J. A.; Petrasso, R. D.; Hahn, K. D.; Jones, B.

    2016-07-20

    A compact neutron spectrometer, based on a CH foil for the production of recoil protons and CR-39 detection, is being developed for the measurements of the DD-neutron spectrum at the NIF, OMEGA, and Z facilities. As a CR-39 detector will be used in the spectrometer, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). To reject the background to the required level for measurements of the down-scattered and primary DD-neutron components in the spectrum, the Coincidence Counting Technique (CCT) must be applied to the data. Using a piece of CR-39 exposed to 2.5-MeV protonsmore » at the MIT HEDP accelerator facility and DD-neutrons at Z, a significant improvement of a DD-neutron signal-to-background level has been demonstrated for the first time using the CCT. In conclusion, these results are in excellent agreement with previous work applied to DT neutrons.« less

  12. Measurements of fusion neutron yields by neutron activation technique: Uncertainty due to the uncertainty on activation cross-sections

    NASA Astrophysics Data System (ADS)

    Stankunas, Gediminas; Batistoni, Paola; Sjöstrand, Henrik; Conroy, Sean

    2015-07-01

    The neutron activation technique is routinely used in fusion experiments to measure the neutron yields. This paper investigates the uncertainty on these measurements as due to the uncertainties on dosimetry and activation reactions. For this purpose, activation cross-sections were taken from the International Reactor Dosimetry and Fusion File (IRDFF-v1.05) in 640 groups ENDF-6 format for several reactions of interest for both 2.5 and 14 MeV neutrons. Activation coefficients (reaction rates) have been calculated using the neutron flux spectra at JET vacuum vessel, both for DD and DT plasmas, calculated by MCNP in the required 640-energy group format. The related uncertainties for the JET neutron spectra are evaluated as well using the covariance data available in the library. These uncertainties are in general small, but not negligible when high accuracy is required in the determination of the fusion neutron yields.

  13. Sensitivity of chemical vapor deposition diamonds to DD and DT neutrons at OMEGA and the National Ignition Facility

    DOE PAGESBeta

    Kabadi, N. V.; Sio, H.; Glebov, V.; Gatu Johnson, M.; MacPhee, A.; Frenje, J. A.; Li, C. K.; Seguin, F.; Petrasso, R.; Forrest, C.; et al

    2016-08-09

    The particle-time-of-flight (pTOF) detector at the National Ignition Facility (NIF) is used routinely to measure nuclear bang-times in inertial confinement fusion implosions. The active detector medium in pTOF is a chemical vapor deposition diamond. Calibration of the detectors sensitivity to neutrons and protons would allow measurement of nuclear bang times and hot spot areal density (ρR) on a single diagnostic. This study utilizes data collected at both NIF and Omega in an attempt to determine pTOF’s absolute sensitivity to neutrons. At Omega pTOF’s sensitivity to DT-n is found to be stable to within 8% at different bias voltages. At themore » NIF pTOF’s sensitivity to DD-n varies by up to 59%. This variability must be decreased substantially for pTOF to function as a neutron yield detector at the NIF. As a result, some possible causes of this variability are ruled out.« less

  14. Compact D-D Neutron Source-Driven Subcritical Multiplier and Beam-Shaping Assembly for Boron Neutron Capture Therapy

    SciTech Connect

    Francesco Ganda; Jasmina Vujic; Ehud Greenspan; Ka-Ngo Leung

    2010-12-01

    This work assesses the feasibility of using a small, safe, and inexpensive keff 0.98 subcritical fission assembly [subcritical neutron multiplier (SCM)] to amplify the treatment neutron beam intensity attainable from a compact deuterium-deuterium (D-D) fusion neutron source delivering [approximately]1012 n/s. The objective is to reduce the treatment time for deep-seated brain tumors to [approximately]1 h. The paper describes the optimal SCM design and two optimal beam-shaping assemblies (BSAs) - one designed to maximize the dose rate and the other designed to maximize the total dose that can be delivered to a deep-seated tumor. The neutron beam intensity amplification achieved with the optimized SCM and BSA results in an increase in the treatment dose rate by a factor of 18: from 0.56 Gy/h without the SCM to 10.1 Gy/h. The entire SCM is encased in an aluminum structure. The total amount of 20% enriched uranium required for the SCM is 8.5 kg, and the cost (not including fabrication) is estimated to be less than $60,000. The SCM power level is estimated at 400 W when driven by a 1012 n/s D-D neutron source. This translates into consumption of only [approximately]0.6% of the initially loaded 235U atoms during 50 years of continuous operation and implies that the SCM could operate continuously for the entire lifetime of the facility without refueling. Cooling the SCM does not pose a challenge; it may be accomplished by natural circulation as the maximum heat flux is only 0.034 W/cm2.

  15. Deuterium-tritium neutron yield measurements with the 4.5 m neutron-time-of-flight detectors at NIF

    SciTech Connect

    Moran, M. J.; Bond, E. J.; Clancy, T. J.; Eckart, M. J.; Khater, H. Y.; Glebov, V. Yu.

    2012-10-15

    The first several campaigns of laser fusion experiments at the National Ignition Facility (NIF) included a family of high-sensitivity scintillator/photodetector neutron-time-of-flight (nTOF) detectors for measuring deuterium-deuterium (DD) and DT neutron yields. The detectors provided consistent neutron yield (Y{sub n}) measurements from below 10{sup 9} (DD) to nearly 10{sup 15} (DT). The detectors initially demonstrated detector-to-detector Y{sub n} precisions better than 5%, but lacked in situ absolute calibrations. Recent experiments at NIF now have provided in situ DT yield calibration data that establish the absolute sensitivity of the 4.5 m differential tissue harmonic imaging (DTHI) detector with an accuracy of {+-}10% and precision of {+-}1%. The 4.5 m nTOF calibration measurements also have helped to establish improved detector impulse response functions and data analysis methods, which have contributed to improving the accuracy of the Y{sub n} measurements. These advances have also helped to extend the usefulness of nTOF measurements of ion temperature and downscattered neutron ratio (neutron yield 10-12 MeV divided by yield 13-15 MeV) with other nTOF detectors.

  16. Measurement of DT and DD components in neutron spectrum with a double-crystal time-of-flight spectrometer

    NASA Astrophysics Data System (ADS)

    Okada, K.; Kondo, K.; Ochiai, K.; Sato, S.; Nishitani, T.; Konno, C.; Okamoto, A.; Kitajima, S.; Sasao, M.

    2008-03-01

    To investigate the deuteron and triton density ratio in core plasmas, a new methodology with measurement of tritium (DT) and deuterium (DD) neutron count rate ratio using a double-crystal time-of-flight (TOF) spectrometer is proposed. Multi-discriminator electronic circuits for the first and second detectors are used in addition to the TOF technique. The optimum arrangement of the detectors and discrimination window were examined considering the relations between the geometrical arrangement and deposited energy using a Monte Carlo Code, PHITS (Particle and Heavy Ion Transport Code System). An experiment to verify the calculations was performed using DD neutrons from an accelerator.

  17. The e{sup +}e{sup -}{yields}J/{psi}DD-bar, J/{psi}DD-bar* reactions with dynamically generated resonances

    SciTech Connect

    Gamermann, D.; Oset, E.

    2008-08-31

    In two recent reactions by Belle producing DD-bar and DD-bar* meson pairs, peaks above threshold have been measured in the differential cross sections, possibly indicating new resonances in these channels. We want to study such reactions from the point of view that the D meson pairs are produced from already known or predicted resonances below threshold. Our study shows that the peak in the DD-bar* production is not likely to be caused by the X(3872) resonance, but the peak seen in DD-bar invariant mass can be well described if the DD-bar pair comes from the already predicted scalar X(3700) resonance.

  18. Comparison of DD, DT and Cf-252 neutron excitation of light and medium mass nuclei for field PGNAA applications

    NASA Astrophysics Data System (ADS)

    Seabury, E. H.; Blackburn, B. W.; Chichester, D. L.; Wharton, C. J.; Caffrey, A. J.

    2007-08-01

    Prompt Gamma Ray Neutron activation analysis can offer significant cost and safety advantages in the identification of explosives and toxic chemicals. As an example, the US military examined over a thousand suspect chemical munitions with Idaho National Laboratory's PINS Chemical Assay System last year. PGNAA requires, of course, a neutron source to excite the atomic nuclei of the item under test via neutron capture and inelastic neutron scattering reactions and the choice of neutron source can drastically affect PGNAA system performance. We have carried out Monte Carlo and laboratory experiments comparing DD, DT and Cf-252 neutrons incident on light and medium mass chemical elements, toward optimizing the design of future neutron-generator-based PGNAA systems for field use. We report the excitation of (n, γ) and (n, n‧) gamma rays from these elements by each type of neutron source.

  19. BNCT dose distribution in liver with epithermal D-D and D-T fusion-based neutron beams.

    PubMed

    Koivunoro, H; Bleuel, D L; Nastasi, U; Lou, T P; Reijonen, J; Leung, K-N

    2004-11-01

    Recently, a new application of boron neutron capture therapy (BNCT) treatment has been introduced. Results have indicated that liver tumors can be treated by BNCT after removal of the liver from the body. At Lawrence Berkeley National Laboratory, compact neutron generators based on (2)H(d,n)(3)He (D-D) or (3)H(t,n)(4)He (D-T) fusion reactions are being developed. Preliminary simulations of the applicability of 2.45 MeV D-D fusion and 14.1 MeV D-T fusion neutrons for in vivo liver tumor BNCT, without removing the liver from the body, have been carried out. MCNP simulations were performed in order to find a moderator configuration for creating a neutron beam of optimal neutron energy and to create a source model for dose calculations with the simulation environment for radiotherapy applications (SERA) treatment planning program. SERA dose calculations were performed in a patient model based on CT scans of the body. The BNCT dose distribution in liver and surrounding healthy organs was calculated with rectangular beam aperture sizes of 20 cm x 20 cm and 25 cm x 25 cm. Collimator thicknesses of 10 and 15 cm were used. The beam strength to obtain a practical treatment time was studied. In this paper, the beam shaping assemblies for D-D and D-T neutron generators and dose calculation results are presented. PMID:15308157

  20. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and ρR are determined in thin-shell inertial-confinement-fusion implosions.

    PubMed

    Rosenberg, M J; Zylstra, A B; Frenje, J A; Rinderknecht, H G; Johnson, M Gatu; Waugh, C J; Séguin, F H; Sio, H; Sinenian, N; Li, C K; Petrasso, R D; Glebov, V Yu; Hohenberger, M; Stoeckl, C; Sangster, T C; Yeamans, C B; LePape, S; Mackinnon, A J; Bionta, R M; Talison, B; Casey, D T; Landen, O L; Moran, M J; Zacharias, R A; Kilkenny, J D; Nikroo, A

    2014-10-01

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ∼1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF. PMID:25362390

  1. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and ρR are determined in thin-shell inertial-confinement-fusion implosions

    SciTech Connect

    Rosenberg, M. J. Zylstra, A. B.; Frenje, J. A.; Rinderknecht, H. G.; Gatu Johnson, M.; Waugh, C. J.; Séguin, F. H.; Sio, H.; Sinenian, N.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Hohenberger, M.; Stoeckl, C.; Sangster, T. C.; Yeamans, C. B.; LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Talison, B.; and others

    2014-10-01

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ~1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF.

  2. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and ρR are determined in thin-shell inertial-confinement-fusion implosions

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; Rinderknecht, H. G.; Gatu Johnson, M.; Waugh, C. J.; Séguin, F. H.; Sio, H.; Sinenian, N.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Hohenberger, M.; Stoeckl, C.; Sangster, T. C.; Yeamans, C. B.; LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Talison, B.; Casey, D. T.; Landen, O. L.; Moran, M. J.; Zacharias, R. A.; Kilkenny, J. D.; Nikroo, A.

    2014-10-01

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ˜1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF.

  3. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and pR are determined in thin-shell inertial-confinement-fusion implosions

    SciTech Connect

    Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; Rinderknecht, H. G.; Gatu Johnson, M.; Waugh, C. J.; Seguin, F. H.; Sio, H.; Sinenian, N.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Hohenberger, M.; Stoeckl, C.; Sangster, T. C.; Yeamans, C. B.; LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Talison, B.; Casey, D. T.; Landen, O. L.; Moran, M. J.; Zacharias, R. A.; Kilkenny, J. D.; Nikroo, A.

    2014-10-10

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ~1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF

  4. A fast neutron spectrometer for D-D fusion neutron measurements at the Alcator C tokamak

    NASA Astrophysics Data System (ADS)

    Fisher, W. A.; Chen, S. H.; Gwinn, D.; Parker, R. R.

    1984-01-01

    A neutron spectrometer using a high pressure 3He ionization chamber has been designed and used to measure the neutron spectrum from an ohmically heated deuterium plasma. The resolution of the spectrometer at 2.45 MeV is determine to be 46 keV full width at half-maximum (fwhm). Particular attention has been paid to optimizing the detector shielding and collimation to reject thermal and epithermal neutrons scattered from the tokamak structure. As a result, measurements indicate that the ratio of the number of counts in the 2.45 MeV peak to the total number of detected neutron events is {1}/{67}. For the 8 μs amplifier time constant used, a count rate as high as 44 counts per second has been achieved in the thermonuclear peak. The observed spectra have been compared with calculated spectra using the MCNP Monte Carlo Neutral Particle Transport code and they show good agreement. There is little evidence of neutrons produced from photoneutron reactions or electrodisintegration. It has been possible to confirm that the shape of the thermonuclear peak is consistent with the Gaussian shape predicted and that the ion temperature as determined from the line width is consistent with other Alcator C ion temperature diagnostics, and follows the trends predicted by the theory of Doppler line broadening.

  5. A compact DD neutron generator-based NAA system to quantify manganese (Mn) in bone in vivo.

    PubMed

    Liu, Yingzi; Byrne, Patrick; Wang, Haoyu; Koltick, David; Zheng, Wei; Nie, Linda H

    2014-09-01

    A deuterium-deuterium (DD) neutron generator-based neutron activation analysis (NAA) system has been developed to quantify metals, including manganese (Mn), in bone in vivo. A DD neutron generator with a flux of up to 3*10(9) neutrons s(-1) was set up in our lab for this purpose. Optimized settings, including moderator, reflector, and shielding material and thickness, were selected based on Monte Carlo (MC) simulations conducted in our previous work. Hand phantoms doped with different Mn concentrations were irradiated using the optimized DD neutron generator irradiation system. The Mn characteristic γ-rays were collected by an HPGe detector system with 100% relative efficiency. The calibration line of the Mn/calcium (Ca) count ratio versus bone Mn concentration was obtained (R(2) = 0.99) using the hand phantoms. The detection limit (DL) was calculated to be about 1.05 μg g(-1) dry bone (ppm) with an equivalent dose of 85.4 mSv to the hand. The DL can be reduced to 0.74 ppm by using two 100% HPGe detectors. The whole body effective dose delivered to the irradiated subject was calculated to be about 17 μSv. Given the average normal bone Mn concentration of 1 ppm in the general population, this system is promising for in vivo bone Mn quantification in humans. PMID:25154883

  6. A compact DD neutron generator–based NAA system to quantify manganese (Mn) in bone in vivo

    PubMed Central

    Liu, Yingzi; Byrne, Patrick; Wang, Haoyu; Koltick, David; Zheng, Wei; Nie, Linda H.

    2015-01-01

    A deuterium-deuterium (DD) neutron generator–based neutron activation analysis (NAA) system has been developed to quantify metals, including manganese (Mn), in bone in vivo. A DD neutron generator with a flux of up to 3*109 neutrons/second was set up in our lab for this purpose. Optimized settings, including moderator, reflector, and shielding material and thickness, were selected based on Monte Carlo (MC) simulations conducted in our previous work. Hand phantoms doped with different Mn concentrations were irradiated using the optimized DD neutron generator irradiation system. The Mn characteristic γ-rays were collected by an HPGe detector system with 100% relative efficiency. The calibration line of the Mn/calcium (Ca) count ratio versus bone Mn concentration was obtained (R2 = 0.99) using the hand phantoms. The detection limit (DL) was calculated to be about 1.05 μg/g dry bone (ppm) with an equivalent dose of 85.4 mSv to the hand. The DL can be reduced to 0.74 ppm by using two 100% HPGe detectors. The whole body effective dose delivered to the irradiated subject was calculated to be about 17 μSv. Given the average normal bone Mn concentration of 1 ppm in the general population, this system is promising for in vivo bone Mn quantification in humans. PMID:25154883

  7. Analytical estimation of neutron yield in a micro gas-puff X pinch

    SciTech Connect

    Derzon, M. S.; Galambos, P. C.; Hagen, E. C.

    2012-12-01

    In this paper, we present the basic concepts for developing a micro x pinch as a small-scale neutron source. For compact sources, these concepts offer repetitive function at higher yields and pulsing rates than competing methods. The uniqueness of these concepts arises from the use of microelectronic technology to reduce the size of the target plasma and to efficiently heat the target gas. The use of repetitive microelectromechanical systems (MEMs) gas puff technology, as compared to cryogenic wires or solid targets (for the beam-target alternatives), has the potential to be robust and have a long lifetime because the plasma is not created from solid surfaces. The modeling suggests that a 50 J at the wall plug pulse could provide >10{sup 5} tritium (DT) neutrons and 10{sup 3} deuterium (DD) neutrons at temperatures of a few keV. At 1 kHz, this would be >10{sup 8} and 10{sup 6} neutrons per second, DT and DD, respectively, with a 250 {mu}m anode-cathode gap. DT gas puff devices may provide >10{sup 12} neutrons/s operating at 1 kHz and requiring 100 kW. The MEMs approach offers potentially high pulse rates and yields.

  8. Fusion neutron yield from a laser-irradiated heavy-water spray

    NASA Astrophysics Data System (ADS)

    Ter-Avetisyan, S.; Schnürer, M.; Hilscher, D.; Jahnke, U.; Busch, S.; Nickles, P. V.; Sandner, W.

    2005-01-01

    The fusion neutron yield from a laser-irradiated heavy-water (D2O) spray target was studied. Heavy-water droplets of about 150nm diameter in the spray were exposed to 35fs laser pulses at an intensity of 1×1019W/cm2. Due to the 10-50 times bigger size of the spray droplets compared to usual cluster sizes, deuterons are accelerated to considerably higher kinetic energies of up to 1MeV. Neutrons are generated by the deuterons escaping from the plasma and initiating a fusion reaction within the surrounding cold plume of the spray jet. For each 0.6J of laser pulse energy, 6×103 neutrons are produced by about 1011 accelerated deuterons. This corresponds to a D(d ,n) reaction probability of about 6×10-8. Compared to cluster targets, the reaction probability in the spray target is found to be two orders of magnitude larger. This finding apparently is due to both the considerably higher deuteron energies and the larger effective target thickness in the spray target. The measured neutron yield per accelerated deuteron [i.e., the D(d ,n) reaction probability], is employed to compare and extrapolate the neutron emission characteristics from different target arrangements.

  9. High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Skalyga, V.; Izotov, I.; Golubev, S.; Sidorov, A.; Razin, S.; Strelkov, A.; Tarvainen, O.; Koivisto, H.; Kalvas, T.

    2015-09-01

    In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm2 are demonstrated. Neutron yield from D2O and TiD2 targets was measured in case of its bombardment by pulsed 300 mA D+ beam with 45 keV energy. Neutron yield density at target surface of 109 s-1 cm-2 was detected with a system of two 3He proportional counters. Estimations based on obtained experimental results show that neutron yield from a high quality TiD2 target bombarded by D+ beam demonstrated in present work accelerated to 100 keV could reach 6 × 1010 s-1 cm-2. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.

  10. High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

    SciTech Connect

    Skalyga, V.; Sidorov, A.; Izotov, I.; Golubev, S.; Razin, S.; Strelkov, A.; Tarvainen, O.; Koivisto, H.; Kalvas, T.

    2015-09-07

    In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm{sup 2} are demonstrated. Neutron yield from D{sub 2}O and TiD{sub 2} targets was measured in case of its bombardment by pulsed 300 mA D{sup +} beam with 45 keV energy. Neutron yield density at target surface of 10{sup 9} s{sup −1} cm{sup −2} was detected with a system of two {sup 3}He proportional counters. Estimations based on obtained experimental results show that neutron yield from a high quality TiD{sub 2} target bombarded by D{sup +} beam demonstrated in present work accelerated to 100 keV could reach 6 × 10{sup 10} s{sup −1} cm{sup −2}. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.

  11. Development of high-intensity D-D and D-T neutron sources and neutron filters for medical and industrial applications

    SciTech Connect

    Verbeke, J.M.

    2000-05-10

    This thesis consists of three main parts. The first one relates to boron neutron capture therapy. It summarizes the guidelines obtained by numerical simulations for the treatment of shallow and deep-seated brain tumors, as well as the results on the design of beam-shaping assemblies to moderate D-D and D-T neutrons to epithermal energies. The second part is about boron neutron capture synovectomy for the treatment of rheumatoid arthritis. Optimal neutron energy for treatment and beam-shaping assembly designs are summarized in this section. The last part is on the development of the sealed neutron generator, including experimental results on the prototype ion source and the prototype accelerator column.

  12. Measurement of the D-D fusion neutron energy spectrum and variation of the peak width with plasma ion temperature

    NASA Astrophysics Data System (ADS)

    Fisher, W. A.; Chen, S. H.; Gwinn, D.; Parker, R. R.

    1983-11-01

    We report a set of neutron spectrum measurements made at the Alcator-C tokamak under Ohmic-heating conditions. It has been found that the width of the D-D fusion neutron peak increases with the plasma ion temperature consistent with the theoretical prediction. In particular, the neutron spectra resulting from the sum of many plasma discharges with ion temperatures of 780 and 1050 eV have been obtained. The width for the 780-eV case is 64+ 9-11 keV and that of the 1050-eV case, 81+10-14 keV (full width at half maximum), corresponding to ion temperatures of 740 and 1190 eV, respectively.

  13. A 109 neutrons/pulse transportable pulsed D-D neutron source based on flexible head plasma focus unit

    NASA Astrophysics Data System (ADS)

    Niranjan, Ram; Rout, R. K.; Srivastava, R.; Kaushik, T. C.; Gupta, Satish C.

    2016-03-01

    A 17 kJ transportable plasma focus (PF) device with flexible transmission lines is developed and is characterized. Six custom made capacitors are used for the capacitor bank (CB). The common high voltage plate of the CB is fixed to a centrally triggered spark gap switch. The output of the switch is coupled to the PF head through forty-eight 5 m long RG213 cables. The CB has a quarter time-period of 4 μs and an estimated current of 506 kA is delivered to the PF device at 17 kJ (60 μF, 24 kV) energy. The average neutron yield measured using silver activation detector in the radial direction is (7.1 ± 1.4) × 108 neutrons/shot over 4π sr at 5 mbar optimum D2 pressure. The average neutron yield is more in the axial direction with an anisotropy factor of 1.33 ± 0.18. The average neutron energies estimated in the axial as well as in the radial directions are (2.90 ± 0.20) MeV and (2.58 ± 0.20) MeV, respectively. The flexibility of the PF head makes it useful for many applications where the source orientation and the location are important factors. The influence of electromagnetic interferences from the CB as well as from the spark gap on applications area can be avoided by putting a suitable barrier between the bank and the PF head.

  14. Neutron monitor yield function: New improved computations

    NASA Astrophysics Data System (ADS)

    Mishev, A. L.; Usoskin, I. G.; Kovaltsov, G. A.

    2013-06-01

    A ground-based neutron monitor (NM) is a standard tool to measure cosmic ray (CR) variability near Earth, and it is crucially important to know its yield function for primary CRs. Although there are several earlier theoretically calculated yield functions, none of them agrees with experimental data of latitude surveys of sea-level NMs, thus suggesting for an inconsistency. A newly computed yield function of the standard sea-level 6NM64 NM is presented here separately for primary CR protons and α-particles, the latter representing also heavier species of CRs. The computations have been done using the GEANT-4 PLANETOCOSMICS Monte-Carlo tool and a realistic curved atmospheric model. For the first time, an effect of the geometrical correction of the NM effective area, related to the finite lateral expansion of the CR induced atmospheric cascade, is considered, which was neglected in the previous studies. This correction slightly enhances the relative impact of higher-energy CRs (energy above 5-10 GeV/nucleon) in NM count rate. The new computation finally resolves the long-standing problem of disagreement between the theoretically calculated spatial variability of CRs over the globe and experimental latitude surveys. The newly calculated yield function, corrected for this geometrical factor, appears fully consistent with the experimental latitude surveys of NMs performed during three consecutive solar minima in 1976-1977, 1986-1987, and 1996-1997. Thus, we provide a new yield function of the standard sea-level NM 6NM64 that is validated against experimental data.

  15. Experimental search for the radiative capture reaction d + d {yields} {sup 4}He + {gamma} from the dd{mu} muonic molecule state J = 1

    SciTech Connect

    Baluev, V. V.; Bogdanova, L. N.; Bom, V. R.; Demin, D. L.; Eijk, C. W. E. van; Filchenkov, V. V.; Grafov, N. N.; Grishechkin, S. K.; Gritsaj, K. I.; Konin, A. D.; Mikhailyukov, K. L.; Rudenko, A. I.; Vinogradov, Yu. I.; Volnykh, V. P.; Yukhimchuk, A. A.; Yukhimchuk, S. A.

    2011-07-15

    A search for the muon-catalyzed fusion reaction d + d {yields} {sup 4}He + {gamma} in the dd{mu} muonic molecule was performed using the experimental installation TRITON with BGO detectors for {gamma}-quanta. A high-pressure target filled with deuterium was exposed to the negative muon beam of the JINR Phasotron to detect {gamma}-quanta with the energy 23.8 MeV. An experimental estimation for the yield of radiative deuteron capture from the dd{mu} state J = 1 was obtained at the level of {eta}{sub {gamma}} {<=} 8 Multiplication-Sign 10{sup -7} per fusion.

  16. Measuring neutron yield and ρR anisotropies with activation foils at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Bleuel, D. L.; Bernstein, L. A.; Bionta, R. M.; Cooper, G. W.; Drury, O. B.; Hagmann, C. A.; Knittel, K. M.; Leeper, R. J.; Ruiz, C. L.; Schneider, D. H. G.; Yeamans, C. B.

    2013-11-01

    Neutron yields at the National Ignition Facility (NIF) are measured with a suite of diagnostics, including activation of ˜20-200 g samples of materials undergoing a variety of energy-dependent neutron reactions. Indium samples were mounted on the end of a Diagnostic Instrument Manipulator (DIM), 25-50 cm from the implosion, to measure 2.45 MeV D-D fusion neutron yield. The 336.2 keV gamma rays from the 4.5 hour isomer of 115mIn produced by (n,n') reactions are counted in high-purity germanium detectors. For capsules producing D-T fusion reactions, zirconium and copper are activated via (n,2n) reactions at various locations around the target chamber and bay, measuring the 14 MeV neutron yield to accuracies on order of 7%. By mounting zirconium samples on ports at nine locations around the NIF chamber, anisotropies in the primary neutron emission due to fuel areal density asymmetries can be measured to a relative precision of 3%.

  17. X-ray Measurements of a Thermo Scientific P385 DD Neutron Generator

    SciTech Connect

    E.H. Seabury; D.L. Chichester; A.J. Caffrey; J. Simpson; M. Lemchak; C.J. Wharton

    2001-08-01

    Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X-rays are a normal byproduct from a neutron generator and depending on their intensity and energy they can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum was measured with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x-rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60° between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and the x-ray emission appears to be axially symmetric within the neutron generator.

  18. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and pR are determined in thin-shell inertial-confinement-fusion implosions

    DOE PAGESBeta

    Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; Rinderknecht, H. G.; Gatu Johnson, M.; Waugh, C. J.; Seguin, F. H.; Sio, H.; Sinenian, N.; Li, C. K.; et al

    2014-10-10

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ~1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in themore » filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF« less

  19. Measurement of Neutron Yields from UF4

    SciTech Connect

    Bell, Zane W; Ziock, Klaus-Peter; Ohmes, Martin F; Xu, Yunlin; Downar, Thomas J; Pozzi, Sara A

    2010-01-01

    We have performed measurements of neutron production from UF{sub 4} samples using liquid scintillator as the detector material. Neutrons and gamma rays were separated by a multichannel digital pulse shape discriminator, and the neutron pulse-height spectra were unfolded using sequential least-squares optimization with an active set strategy. The unfolded spectra were compared to estimates calculated with the SOURCES 4C code.

  20. Compact Intense Neutron Generators Based on Inertial Electrostatic Confinement of D-D Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Masuda, K.; Inoue, K.; Kajiwara, T.; Nakamatsu, R.

    2015-10-01

    A neutron generator based on inertial electrostatic confinement (IEC) of fusion plasmas is being developed for a non-destructive inspection system of special nuclear materials hidden in sea containers. The new IEC device is equipped with a multistage feedthrough which was designed aiming at both capability of a high bias voltage and enhancement of ion recirculation by modification of electric fields in the IEC device. Experimental comparison was made with a conventional single-stage IEC device developed in an earlier work. As the results, both the increase in the applied voltage and the modified field symmetry by the new multistage scheme showed significant enhancement in the neutron output. As a consequence, neutron output per input discharge current was enhanced drastically by a factor of ~30 in total. Also, the first pulsing experiments of the newly developed IEC neutron generator showed pulsed neutron output with a rapid pulse fall-off of ~ 1 μsec successfully.

  1. X-Ray Measurements Of A Thermo Scientific P385 DD Neutron Generator

    SciTech Connect

    Wharton, C. J.; Seabury, E. H.; Chichester, D. L.; Caffrey, A. J.; Simpson, J.; Lemchak, M.

    2011-06-01

    Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X rays are a normal byproduct from neutron generators, but depending on their intensity and energy, x rays can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum was measured with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60 deg. between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and its x-ray emission appears to be axially symmetric. A thin lead shield, 3.2 mm (1/8 inch) thick, reduced the 70-keV generator x rays to negligible levels.

  2. Feasibility study of prompt gamma neutron activation analysis (PGNAA) of explosives simulants and bulk material using DD/DT neutron generator

    NASA Astrophysics Data System (ADS)

    Bishnoi, S.; Sarkar, P. S.; Patel, T.; Adhikari, P. S.; Sinha, Amar

    2013-04-01

    Elemental characterization of low Z elements (C,H,Cl,Fe) inside bulk materials were performed using PGNAA technique. Samples having elemental composition similar to explosives were used for such experimentations using moderated DD neutrons as well as DT(14MeV) neutrons. We could observe characteristic prompt capture gamma rays of hydrogen (2.224MeV), nitrogen (10.83 MeV), chlorine (6.11 MeV) and Fe (6.02MeV and 7.63MeV) also (n,n'γ) prompt gamma signal (4.43MeV) of carbon. BGO detector has been used for gamma spectrum acquisition. These experimentations has been carried out for initial feasibility studies of detecting prompt gamma lines as a part of PGNAA technique based explosive detection system development. A detail description of experimental set up and procedure has been discussed in paper.

  3. Neutron Yield Measurements via Aluminum Activation

    SciTech Connect

    1999-12-08

    Neutron activation of aluminum may occur by several neutron capture reactions. Four such reactions are described here: {sup 27}Al + n = {sup 28}Al, {sup 27}Al(n,{alpha}){sup 24}Na, {sup 27}Al(n, 2n){sup 26}Al and {sup 27}Al(n,p){sup 27}Mg. The radioactive nuclei {sup 28}Al, {sup 24}Na, and {sup 27}Mg, which are produced via the {sup 27}Al + n = {sup 28}Al, {sup 27}Al(n,{alpha}){sup 24}Na and {sup 27}Al(n,p){sup 27}Mg neutron reactions, beta decay to excited states of {sup 28}Si, {sup 24}Mg and {sup 27}Al respectively. These excited states then emit gamma rays as the nuclei de-excite to their respective ground states.

  4. Absolute determination of the neutron source yield using melamine as a neutron detector

    NASA Astrophysics Data System (ADS)

    Ciechanowski, M.; Bolewski, A., Jr.; Kreft, A.

    2015-01-01

    A new approach to absolute determination of the neutron source yield is presented. It bases on the application of melamine (C3H6N6) to neutron detection combined with Monte Carlo simulations of neutron transport. Melamine has the ability to detect neutrons via 14N(n, p)14C reaction and subsequent determination of 14C content. A cross section for this reaction is relatively high for thermal neutrons (1.827 b) and much lower for fast neutrons. A concentration of 14C nuclei created in the irradiated sample of melamine can be reliably measured with the aid of the accelerator mass spectrometry (AMS). The mass of melamine sufficient for this analysis is only 10 mg. Neutron detection is supported by Monte Carlo simulations of neutron transport carried out with the use of MCNP-4C code. These simulations are aimed at computing the probability of 14C creation in the melamine sample per the source neutron. The result of AMS measurements together with results of MCNP calculations enable us to determine the number of neutrons emitted from the source during the irradiation of melamine. The proposed method was applied for determining the neutron emission from a commercial 252Cf neutron source which was independently calibrated. The measured neutron emission agreed with the certified one within uncertainty limits. The relative expanded uncertainty (k=2) of the absolute neutron source yield determination was estimated at 2.6%. Apart from calibration of radionuclide neutron sources the proposed procedure could facilitate absolute yield measurements for more complex sources. Potential applications of this methodology as it is further developed include diagnostics of inertial confinement fusion and plasma-focus experiments, calibration of neutron measurement systems at tokamaks and accelerator-based neutron sources as well as characterization of neutron fields generated in large particle detectors during collisions of hadron beams.

  5. Measurement of delayed-neutron yield from 237Np fission induced by thermal neutrons

    NASA Astrophysics Data System (ADS)

    Gundorin, N. A.; Zhdanova, K. V.; Zhuchko, V. E.; Pikelner, L. B.; Rebrova, N. V.; Salamatin, I. M.; Smirnov, V. I.; Furman, V. I.

    2007-06-01

    The delayed-neutron yield from thermal-neutron-induced fission of the 237Np nucleus was measured using a sample periodically exposed to a pulsed neutron beam with subsequent detection of neutrons during the time intervals between pulses. The experiment was realized on an Isomer-M setup mounted in the IBR-2 pulsed reactor channel equipped with a mirror neutron guide. The setup and the experimental procedure are described, the background sources are thoroughly analyzed, and the experimental data are presented. The total delayed-neutron yield from 237Np fission induced by thermal neutrons is ν d = 0.0110 ± 0.0009. This study was performed at the Frank Laboratory of Neutron Physics (JINR, Dubna).

  6. A novel fast-neutron tomography system based on a plastic scintillator array and a compact D-D neutron generator.

    PubMed

    Adams, Robert; Zboray, Robert; Prasser, Horst-Michael

    2016-01-01

    Very few experimental imaging studies using a compact neutron generator have been published, and to the knowledge of the authors none have included tomography results using multiple projection angles. Radiography results with a neutron generator, scintillator screen, and camera can be seen in Bogolubov et al. (2005), Cremer et al. (2012), and Li et al. (2014). Comparable results with a position-sensitive photomultiplier tube can be seen in Popov et al. (2011). One study using an array of individual fast neutron detectors in the context of cargo scanning for security purposes is detailed in Eberhardt et al. (2005). In that case, however, the emphasis was on very large objects with a resolution on the order of 1cm, whereas this study focuses on less massive objects and a finer spatial resolution. In Andersson et al. (2014) three fast neutron counters and a D-T generator were used to perform attenuation measurements of test phantoms. Based on the axisymmetry of the test phantoms, the single-projection information was used to calculate radial attenuation distributions of the object, which was compared with the known geometry. In this paper a fast-neutron tomography system based on an array of individual detectors and a purpose-designed compact D-D neutron generator is presented. Each of the 88 detectors consists of a plastic scintillator read out by two Silicon photomultipliers and a dedicated pulse-processing board. Data acquisition for all channels was handled by four single-board microcontrollers. Details of the individual detector design and testing are elaborated upon. Using the complete array, several fast-neutron images of test phantoms were reconstructed, one of which was compared with results using a Co-60 gamma source. The system was shown to be capable of 2mm resolution, with exposure times on the order of several hours per reconstructed tomogram. Details about these measurements and the analysis of the reconstructed images are given, along with a discussion

  7. Yield of delayed neutrons in the thermal-neutron-induced reaction 245Cm( n, f)

    NASA Astrophysics Data System (ADS)

    Andrianov, V. R.; Vyachin, V. N.; Gundorin, N. A.; Druzhinin, A. A.; Zhdanova, K. V.; Lihachev, A. N.; Pikelner, L. B.; Rebrova, N. V.; Salamatin, I. M.; Furman, V. I.

    2008-10-01

    The yield of delayed neutrons, v d , from thermal-neutron-induced fission of 245Cm is measured. Experiments aimed at studying the properties of delayed neutrons from the fission of some reactor isotopes and initiated in 1997 were continued at the upgraded Isomer-M facility by a method according to which a periodic irradiation of a sample with a pulsed neutron beam from the IBR-2 reactor was accompanied by recording emitted neutrons in the intervals between the pulses. The accuracy of the resulting total delayed-neutron yield v d = (0.64 ± 0.02)% is two times higher than that in previous measurements. This work was performed at the Frank Laboratory of Neutron Physics at the Joint Institute for Nuclear Research (JINR, Dubna).

  8. Observation of the {chi}{sub c2}(2P) meson in the reaction {gamma}{gamma}{yields}DD at BABAR

    SciTech Connect

    Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.

    2010-05-01

    A search for the Z(3930) resonance in {gamma}{gamma} production of the DD system has been performed using a data sample corresponding to an integrated luminosity of 384 fb{sup -1} recorded by the BABAR experiment at the PEP-II asymmetric-energy electron-positron collider. The DD invariant mass distribution shows clear evidence of the Z(3930) state with a significance of 5.8{sigma}. We determine mass and width values of (3926.7{+-}2.7{+-}1.1) MeV/c{sup 2} and (21.3{+-}6.8{+-}3.6) MeV, respectively. A decay angular analysis provides evidence that the Z(3930) is a tensor state with positive parity and C parity (J{sup PC}=2{sup ++}); therefore we identify the Z(3930) state as the {chi}{sub c2}(2P) meson. The value of the partial width {Gamma}{sub {gamma}{gamma}x}B(Z(3930){yields}DD) is found to be (0.24{+-}0.05{+-}0.04) keV.

  9. Monte Carlo modelling of distributions of the d-d and d-t reaction products in a dedicated measuring chamber at the fast neutron generator

    NASA Astrophysics Data System (ADS)

    Wiącek, U.; Dankowski, J.

    2015-04-01

    A fast neutron generator with a tritium target can be used to generate d-d and d-t reaction products corresponding to thermonuclear reactions in tokamaks or stellarators. In this way, convenient laboratory conditions for tests of spectrometric detectors - prior to their installation at the big fusion devices - can be achieved. Distributions of the alpha particles, protons, deuterons, and tritons generated by the fast neutron generator operating at the Institute of Nuclear Physics PAN in Cracow, Poland, were calculated by means of the Monte Carlo (MC) codes. Results of this MC modelling are presented.

  10. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    SciTech Connect

    Waldmann, Ole; Ludewigt, Bernhard

    2010-10-11

    We present recent work on the development of a microwave ion source that will be used in a high-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable of producing high neutron yields, 5x1011 n/s for D-T and ~;;1x1010 n/s for D-D reactions, while remaining transportable. We constructed a microwave ion source (2.45 GHz) with permanent magnets to provide the magnetic field strength of 87.5 mT necessary for satisfying the electron cyclotron resonance (ECR) condition. Microwave ion sources can produce high extracted beam currents at the low gas pressures required for sealed tube operation and at lower power levels than previously used RF-driven ion sources. A 100 mA deuterium/tritium beam will be extracted through a large slit (60x6 mm2) to spread the beam power over a larger target area. This paper describes the design of the permanent-magnet microwave ion source and discusses the impact of the magnetic field design on the source performance. The required equivalent proton beam current density of 40 mA/cm2 was extracted at a moderate microwave power of 400 W with an optimized magnetic field.

  11. DD fusion in crystals

    SciTech Connect

    Tsyganov, E. N.

    2010-12-15

    The article discusses the mechanism of DD {sup {yields} 4}He fusion and so-called nonradiative thermalization of the reaction in crystals. The dynamics of this process is considered. The assumption that the decay time of the compound nucleus depends on its excitation energy makes experiments in crystals compatible with the acceleration data.We consider the processes in the crystals that increase the intensity ofDD fusion in comparison to the amorphous media, and the yield of the reaction is estimated.

  12. The study of in vivo quantification of aluminum (Al) in human bone with a compact DD generator-based neutron activation analysis (NAA) system.

    PubMed

    Byrne, Patrick; Mostafaei, Farshad; Liu, Yingzi; Blake, Scott P; Koltick, David; Nie, Linda H

    2016-05-01

    The feasibility and methodology of using a compact DD generator-based neutron activation analysis system to measure aluminum in hand bone has been investigated. Monte Carlo simulations were used to simulate the moderator, reflector, and shielding assembly and to estimate the radiation dose. A high purity germanium (HPGe) detector was used to detect the Al gamma ray signals. The minimum detectable limit (MDL) was found to be 11.13 μg g(-1) dry bone (ppm). An additional HPGe detector would improve the MDL by a factor of 1.4, to 7.9 ppm. The equivalent dose delivered to the irradiated hand was calculated by Monte Carlo to be 11.9 mSv. In vivo bone aluminum measurement with the DD generator was found to be feasible among general population with an acceptable dose to the subject. PMID:27093035

  13. A high yield neutron target for cancer therapy

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Steinberg, R.

    1972-01-01

    A rotating target was developed that has the potential for providing an initial yield of 10 to the 13th power neutrons per second by the T(d,n)He-4 reaction, and a useable lifetime in excess of 600 hours. This yield and lifetime are indicated for a 300 Kv and 30 mA deuteron accelerator and a 30 microns thick titanium tritide film formed of the stoichiometric compound TiT2. The potential for extended lifetime is made possible by incorporating a sputtering electrode that permits use of titanium tritide thicknesses much greater than the deuteron range. The electrode is used to remove in situ depleted titanium layers to expose fresh tritide beneath. The utilization of the rotating target as a source of fast neutrons for cancer therapy is discussed.

  14. Neutron source capability assessment for cumulative fission yields measurements

    SciTech Connect

    Descalle, M A; Dekin, W; Kenneally, J

    2011-04-06

    A recent analysis of high-quality cumulative fission yields data for Pu-239 published in the peer-reviewed literature showed that the quoted experimental uncertainties do not allow a clear statement on how the fission yields vary as a function of energy. [Prussin2009] To make such a statement requires a set of experiments with well 'controlled' and understood sources of experimental errors to reduce uncertainties as low as possible, ideally in the 1 to 2% range. The Inter Laboratory Working Group (ILWOG) determined that Directed Stockpile Work (DSW) would benefit from an experimental program with the stated goal to reduce the measurement uncertainties significantly in order to make a definitive statement of the relationship of energy dependence to the cumulative fission yields. Following recent discussions between Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), there is a renewed interest in developing a concerted experimental program to measure fission yields in a neutron energy range from thermal energy (0.025 eV) to 14 MeV with an emphasis on discrete energies from 0.5 to 4 MeV. Ideally, fission yields would be measured at single energies, however, in practice there are only 'quasi-monoenergetic' neutrons sources of finite width. This report outlines a capability assessment as of June 2011 of available neutron sources that could be used as part of a concerted experimental program to measure cumulative fission yields. In a framework of international collaborations, capabilities available in the United States, at the Atomic Weapons Establishment (AWE) in the United Kingdom and at the Commissariat Energie Atomique (CEA) in France are listed. There is a need to develop an experimental program that will reduce the measurement uncertainties significantly in order to make a definitive statement of the relationship of energy dependence to the cumulative fission yields. Fission and monoenergetic neutron sources are available that

  15. A 10(9) neutrons/pulse transportable pulsed D-D neutron source based on flexible head plasma focus unit.

    PubMed

    Niranjan, Ram; Rout, R K; Srivastava, R; Kaushik, T C; Gupta, Satish C

    2016-03-01

    A 17 kJ transportable plasma focus (PF) device with flexible transmission lines is developed and is characterized. Six custom made capacitors are used for the capacitor bank (CB). The common high voltage plate of the CB is fixed to a centrally triggered spark gap switch. The output of the switch is coupled to the PF head through forty-eight 5 m long RG213 cables. The CB has a quarter time-period of 4 μs and an estimated current of 506 kA is delivered to the PF device at 17 kJ (60 μF, 24 kV) energy. The average neutron yield measured using silver activation detector in the radial direction is (7.1 ± 1.4) × 10(8) neutrons/shot over 4π sr at 5 mbar optimum D2 pressure. The average neutron yield is more in the axial direction with an anisotropy factor of 1.33 ± 0.18. The average neutron energies estimated in the axial as well as in the radial directions are (2.90 ± 0.20) MeV and (2.58 ± 0.20) MeV, respectively. The flexibility of the PF head makes it useful for many applications where the source orientation and the location are important factors. The influence of electromagnetic interferences from the CB as well as from the spark gap on applications area can be avoided by putting a suitable barrier between the bank and the PF head. PMID:27036774

  16. Neutron beam optimization for boron neutron capture therapy using the D-D and D-T high-energy neutron sources

    SciTech Connect

    Verbeke, J.M.; Vujic, J.L.; Leung, K.N.

    2000-02-01

    A monoenergetic neutron beam simulation study is carried out to determine the most suitable neutron energy for treatment of shallow and deep-seated brain tumors in the context of boron neutron capture therapy. Two figures-of-merit--the absorbed skin dose and the absorbed tumor dose at a given depth in the brain--are used to measure the neutron beam quality. Based on the results of this study, moderators, reflectors, and delimiters are designed and optimized to moderate the high-energy neutrons from the fusion reactions {sup 2}H(d,n){sup 3}He and {sup 3}H(d,n){sup 4}He down to a suitable energy spectrum. Two different computational models (MCNP and BNCT-RTPE) have been used to study the dose distribution in the brain. With the optimal beam-shaping assembly, a 1-A mixed deuteron/triton beam of energy 150 keV accelerated onto a titanium target leads to a treatment time of 1 h. The dose near the center of the brain obtained with this configuration is > 65% higher than the dose from a typical spectrum produced by the Brookhaven Medical Research Reactor and is comparable to the dose obtained by other accelerator-produced neutron beams.

  17. The heavy element yields of neutron capture nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1982-01-01

    Consideration of the contribution made to the abundances of the heavy element isotopes by the S- and R-processes of nucleosynthesis has led to the determination that the previous assumption concerning the exclusive alignment of isobars to one or the other of these processes is probably in error. If the relatively small odd and even mass number abundance fluctuations characterizing R-process abundances are always the case, as assumed by this study, S-process contributions to the abundances of R-process isobars are substantial, consistent with transient flashing episodes in the S-process neutron production processes. A smooth and monotonically-decreasing curve of the abundance of the S-process yields times the neutron capture cross-section versus mass number is therefore the primary tool for the separation of the abundances due to the two processes.

  18. Neutron density distributions of neutron-rich nuclei studied with the isobaric yield ratio difference

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Bai, Xiao-Man; Yu, Jiao; Wei, Hui-Ling

    2014-09-01

    The isobaric yield ratio difference (IBD) between two reactions of similar experimental setups is found to be sensitive to nuclear density differences between projectiles. In this article, the IBD probe is used to study the density variation in neutron-rich 48Ca . By adjusting diffuseness in the neutron density distribution, three different neutron density distributions of 48Ca are obtained. The yields of fragments in the 80 A MeV 40, 48Ca + 12C reactions are calculated by using a modified statistical abrasion-ablation model. It is found that the IBD results obtained from the prefragments are sensitive to the density distribution of the projectile, while the IBD results from the final fragments are less sensitive to the density distribution of the projectile.

  19. Characterization of a Pulse Neutron Source Yield under Field Conditions

    SciTech Connect

    Barzilov, Alexander; Novikov, Ivan; Womble, Phillip C.; Hopper, Lindsay

    2009-03-10

    Technique of rapid evaluation of a pulse neutron sources such as neutron generators under field conditions has been developed. The phoswich sensor and pulse-shape discrimination techniques have been used for the simultaneous measurements of fast neutrons, thermal neutrons, and photons. The sensor has been calibrated using activation neutron detectors and a pulse deuterium-tritium fusion neutron source.

  20. Neutron generator yield measurements using a phoswich detector with the digital pulse shape analysis

    NASA Astrophysics Data System (ADS)

    Barzilov, Alexander; Novikov, Ivan; Womble, Phillip; Heinze, Julian

    2012-03-01

    The phoswich detector designed as a combination of two scintillators with dissimilar pulse shape characteristics that are optically coupled to each other and to a common photomultiplier is used for the simultaneous detection of fast and thermal neutrons. The digital signal processing of detector signals is used. The pulse shape analysis distinguishes the scintillation signals produced by photons, fast neutrons, and thermal neutrons. The phoswich was tested using the photon and neutron sources. We discuss neutron yield measurements for a pulse DT neutron generator. The spatial distribution of fast neutron flux and thermal neutron flux was evaluated for the generator in presence of neutron moderating materials.

  1. Compact DD generator-based neutron activation analysis (NAA) system to determine fluorine in human bone in vivo: a feasibility study.

    PubMed

    Mostafaei, Farshad; Blake, Scott P; Liu, Yingzi; Sowers, Daniel A; Nie, Linda H

    2015-10-01

    The subject of whether fluorine (F) is detrimental to human health has been controversial for many years. Much of the discussion focuses on the known benefits and detriments to dental care and problems that F causes in bone structure at high doses. It is therefore advantageous to have the means to monitor F concentrations in the human body as a method to directly assess exposure. F accumulates in the skeleton making bone a useful biomarker to assess long term cumulative exposure to F. This study presents work in the development of a non-invasive method for the monitoring of F in human bone. The work was based on the technique of in vivo neutron activation analysis (IVNAA). A compact deuterium-deuterium (DD) generator was used to produce neutrons. A moderator/reflector/shielding assembly was designed and built for human hand irradiation. The gamma rays emitted through the (19)F(n,γ)(20)F reaction were measured using a HPGe detector. This study was undertaken to (i) find the feasibility of using DD system to determine F in human bone, (ii) estimate the F minimum detection limit (MDL), and (iii) optimize the system using the Monte Carlo N-Particle eXtended (MCNPX) code in order to improve the MDL of the system. The F MDL was found to be 0.54 g experimentally with a neutron flux of 7   ×   10(8) n s(-1) and an optimized irradiation, decay, and measurement time scheme. The numbers of F counts from the experiment were found to be close to the (MCNPX) simulation results with the same irradiation and detection parameters. The equivalent dose to the irradiated hand and the effective dose to the whole body were found to be 0.9 mSv and 0.33 μSv, respectively. Based on these results, it is feasible to develop a compact DD generator based IVNAA system to measure bone F in a population with moderate to high F exposure. PMID:26289795

  2. Thick target D-T neutron yield measurements using metal occluders of scandium, titanium, yttrium, zirconium, gadolinium, erbium, hafnium, and tantalum at energies from 25 to 200 keV

    SciTech Connect

    Malbrough, D.J.; Molloy, J.T. Jr.; Becker, R.H.

    1990-11-19

    Deuterium-Tritium (D-T) neutron yields from thick films of scandium, titanium, yttrium, zirconium, gadolinium, erbium, hafnium, and tantalum were measured by the associated particle technique using the 200-keV accelerator at the Pinellas Plant. The neutron yields were measured for all targets at energies from 25 to 200 keV in 5-keV steps with an average uncertainty of {plus_minus}6.8%. Tabulated results are presented with yield versus energy curves for each target. Yield curves for D-D neutrons from earlier measurements are also presented with the D-T neutron yield curves. Good fits to the data were found for both D-D and D-T with theoretical calculations that were adjusted by smooth functions of the form: A{sub 0} + A{sub 1}E + A{sub 2}E{sup 2}. The results of the fits strongly suggest that disagreement between measurement and theory is due mainly to inaccuracies in currently available stopping power data. Comparisons with earlier theoretical calculations for titanium and erbium are also presented. 27 refs., 10 figs., 4 tabs.

  3. Measuring the absolute DT neutron yield using the Magnetic Recoil Spectrometer at OMEGA and the NIF

    SciTech Connect

    Mackinnon, A; Casey, D; Frenje, J A; Johnson, M G; Seguin, F H; Li, C K; Petrasso, R D; Glebov, V Y; Katz, J; Knauer, J; Meyerhofer, D; Sangster, T; Bionta, R; Bleuel, D; Hachett, S P; Hartouni, E; Lepape, S; Mckernan, M; Moran, M; Yeamans, C

    2012-05-03

    A Magnetic Recoil Spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion (ICF) implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  4. Lineshape of {psi}(3770) and low-lying vector charmonium resonance parameters in e{sup +}e{sup -{yields}}DD

    SciTech Connect

    Zhang Yuanjiang; Zhao Qiang

    2010-02-01

    We investigate the DD production in e{sup +}e{sup -} annihilations near threshold in an effective Lagrangian approach. This shows that the lineshape of the cross section near threshold is sensitive to the contributions from {psi}{sup '}, though it is below the DD threshold. The recent experimental data from the BES and Belle collaborations allow us to determine the {psi}{sup '}DD coupling constant, which appears to be consistent with other theoretical studies. As a consequence, the {psi}{sup '}-{psi}(3770) mixing parameter can be extracted around the {psi}(3770) mass region. Resonance parameters for {psi}(3770), X(3900), {psi}(4040), and {psi}(4160) are also investigated. The X(3900) appears as an enhancement at around 3.9 GeV in the Belle data. In addition to treating it as a resonance, we also study the mechanism through which the enhancement is produced by the DD*+c.c. open channel effects. Our result shows that such a possibility cannot be eliminated.

  5. Neutron yield enhancement in laser-induced deuterium-deuterium fusion using a novel shaped target.

    PubMed

    Zhao, J R; Zhang, X P; Yuan, D W; Chen, L M; Li, Y T; Fu, C B; Rhee, Y J; Li, F; Zhu, B J; Li, Yan F; Liao, G Q; Zhang, K; Han, B; Liu, C; Huang, K; Ma, Y; Li, Yi F; Xiong, J; Huang, X G; Fu, S Z; Zhu, J Q; Zhao, G; Zhang, J

    2015-06-01

    Neutron yields have direct correlation with the energy of incident deuterons in experiments of laser deuterated target interaction [Roth et al., Phys. Rev. Lett. 110, 044802 (2013) and Higginson et al., Phys. Plasmas 18, 100703 (2011)], while deuterated plasma density is also an important parameter. Experiments at the Shenguang II laser facility have produced neutrons with energy of 2.45 MeV using d (d, n) He reaction. Deuterated foil target and K-shaped target were employed to study the influence of plasma density on neutron yields. Neutron yield generated by K-shaped target (nearly 10(6)) was two times higher than by foil target because the K-shaped target results in higher density plasma. Interferometry and multi hydro-dynamics simulation confirmed the importance of plasma density for enhancement of neutron yields. PMID:26133837

  6. Neutron yield enhancement in laser-induced deuterium-deuterium fusion using a novel shaped target

    SciTech Connect

    Zhao, J. R.; Chen, L. M. Li, Y. T.; Li, F.; Zhu, B. J.; Li, Yan. F.; Liao, G. Q.; Huang, K.; Ma, Y.; Li, Yi. F.; Zhang, X. P.; Fu, C. B.; Yuan, D. W.; Zhang, K.; Han, B.; Zhao, G.; Rhee, Y. J.; Liu, C.; Xiong, J.; Huang, X. G.; and others

    2015-06-15

    Neutron yields have direct correlation with the energy of incident deuterons in experiments of laser deuterated target interaction [Roth et al., Phys. Rev. Lett. 110, 044802 (2013) and Higginson et al., Phys. Plasmas 18, 100703 (2011)], while deuterated plasma density is also an important parameter. Experiments at the Shenguang II laser facility have produced neutrons with energy of 2.45 MeV using d (d, n) He reaction. Deuterated foil target and K-shaped target were employed to study the influence of plasma density on neutron yields. Neutron yield generated by K-shaped target (nearly 10{sup 6}) was two times higher than by foil target because the K-shaped target results in higher density plasma. Interferometry and multi hydro-dynamics simulation confirmed the importance of plasma density for enhancement of neutron yields.

  7. Analysis of incident-energy dependence of delayed neutron yields in actinides

    SciTech Connect

    Nasir, Mohamad Nasrun bin Mohd Metorima, Kouhei Ohsawa, Takaaki Hashimoto, Kengo

    2015-04-29

    The changes of delayed neutron yields (ν{sub d}) of Actinides have been analyzed for incident energy up to 20MeV using realized data of precursor after prompt neutron emission, from semi-empirical model, and delayed neutron emission probability data (P{sub n}) to carry out a summation method. The evaluated nuclear data of the delayed neutron yields of actinide nuclides are still uncertain at the present and the cause of the energy dependence has not been fully understood. In this study, the fission yields of precursor were calculated considering the change of the fission fragment mass yield based on the superposition of fives Gaussian distribution; and the change of the prompt neutrons number associated with the incident energy dependence. Thus, the incident energy dependent behavior of delayed neutron was analyzed.The total number of delayed neutron is expressed as ν{sub d}=∑Y{sub i} • P{sub ni} in the summation method, where Y{sub i} is the mass yields of precursor i and P{sub ni} is the delayed neutron emission probability of precursor i. The value of Y{sub i} is derived from calculation of post neutron emission mass distribution using 5 Gaussian equations with the consideration of large distribution of the fission fragments. The prompt neutron emission ν{sub p} increases at higher incident-energy but there are two different models; one model says that the fission fragment mass dependence that prompt neutron emission increases uniformly regardless of the fission fragments mass; and the other says that the major increases occur at heavy fission fragments area. In this study, the changes of delayed neutron yields by the two models have been investigated.

  8. Detailed design of ex-vessel neutron yield monitor for ITER

    NASA Astrophysics Data System (ADS)

    Asai, K.; Iguchi, T.; Watanabe, K.; Kawarabayashi, J.; Nishitani, T.; Walker, C. I.

    2004-10-01

    Taking into consideration the latest design of the International Thermonuclear Experimental Reactor (ITER) main units, we have made the detailed design consideration for an ex-vessel neutron yield monitor to meet the ITER requirements. The monitoring system is constructed of four detector modules consisting of several 235U fission chambers with different sensitivities and graphite (or beryllium) neutron moderator. We also selected possible spaces in the diagnostic ports to install them at appropriate distances and neutron shielding effects from the plasma. Through Monte Carlo neutron transport calculations, it has been confirmed that the present system can cover all the neutron yields encountered in the ITER experiments including the in situ calibrations with a time resolution around 200 μs without detector replacement over the whole ITER experiments. This system can also be calibrated with 10% of required accuracies in a realistic 50 h of accumulation time using a DT neutron generator.

  9. Calibration of neutron-yield diagnostics in attenuating and scattering environments

    SciTech Connect

    Hahn, K. D.; Ruiz, C. L.; Chandler, G. A.; Leeper, R. J.; McWatters, B. R.; Smelser, R. M.; Torres, J. A.; Cooper, G. W.; Nelson, A. J.

    2012-10-15

    We have performed absolute calibrations of a fusion-neutron-yield copper-activation diagnostic in environments that significantly attenuate and scatter neutrons. We have measured attenuation and scattering effects and have compared the measurements to Monte Carlo simulations using the Monte Carlo N-Particle code. We find that measurements and simulations are consistent within 10%.

  10. Controlling the Neutron Yield from a Small Dense Plasma Focus using Deuterium-Inert Gas Mixtures

    SciTech Connect

    Bures, B. L.; Krishnan, M.; Eshaq, Y.

    2009-01-21

    The dense plasma focus (DPF) is a well known source of neutrons when operating with deuterium. The DPF is demonstrated to scale from 10{sup 4} n/pulse at 40 kA to >10{sup 12} n/pulse at 2 MA by non-linear current scaling as described in [1], which is itself based on the simple yet elegant model developed by Lee [2]. In addition to the peak current, the gas pressure controls the neutron yield. Recent published results suggest that mixing 1-5% mass fractions of Krypton increase the neutron yield per pulse by more than 10x. In this paper we present results obtained by mixing deuterium with Helium, Neon and Argon in a 500 J dense plasma focus operating at 140 kA with a 600 ns rise time. The mass density was held constant in these experiments at the optimum (pure) deuterium mass density for producing neutrons. A typical neutron yield for a pure deuterium gas charge is 2x10{sup 6}{+-}15% n/pulse. Neutron yields in excess of 10{sup 7}{+-}10% n/pulse were observed with low mass fractions of inert gas. Time integrated optical images of the pinch, soft x-ray measurements and optical emission spectroscopy where used to examine the pinch in addition to the neutron yield monitor and the fast scintillation detector. Work supported by Domestic Nuclear Detection Office under contract HSHQDC-08-C-00020.

  11. Fission Fragment Distributions and Delayed Neutron Yields from Photon-Induced-Fission

    SciTech Connect

    David, J.-C.; Dore, D.; Giacri-Mauborgne, M.-L.; Ridikas, D.; Lauwe, A. van

    2005-05-24

    Fission fragment distributions and delayed neutron yields for 235U and 238U are provided by a complete modelization of the photofission process below 25 MeV. The absorption cross-section parameterization and the fission fragment distributions are given and compared to experimental data. The delayed neutron yields and the half-lives in terms of six groups are presented and compared to data obtained with a bremsstrahlung spectrum of 15 MeV.

  12. Calibration methodology for proportional counters applied to yield measurements of a neutron burst

    SciTech Connect

    Tarifeño-Saldivia, Ariel E-mail: atarisal@gmail.com; Pavez, Cristian; Soto, Leopoldo; Mayer, Roberto E.

    2014-01-15

    This paper introduces a methodology for the yield measurement of a neutron burst using neutron proportional counters. This methodology is to be applied when single neutron events cannot be resolved in time by nuclear standard electronics, or when a continuous current cannot be measured at the output of the counter. The methodology is based on the calibration of the counter in pulse mode, and the use of a statistical model to estimate the number of detected events from the accumulated charge resulting from the detection of the burst of neutrons. The model is developed and presented in full detail. For the measurement of fast neutron yields generated from plasma focus experiments using a moderated proportional counter, the implementation of the methodology is herein discussed. An experimental verification of the accuracy of the methodology is presented. An improvement of more than one order of magnitude in the accuracy of the detection system is obtained by using this methodology with respect to previous calibration methods.

  13. Neutron Capture and the Antineutrino Yield from Nuclear Reactors.

    PubMed

    Huber, Patrick; Jaffke, Patrick

    2016-03-25

    We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low energies below 3.2 MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach ∼0.9% of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the nonequilibrium correction. For naval reactors the nonlinear correction may reach the 5% level by the end of cycle. PMID:27058075

  14. Neutron Capture and the Antineutrino Yield from Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Huber, Patrick; Jaffke, Patrick

    2016-03-01

    We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low energies below 3.2 MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach ˜0.9 % of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the nonequilibrium correction. For naval reactors the nonlinear correction may reach the 5% level by the end of cycle.

  15. Two-dimensional simulations of the neutron yield in cryogenic deuterium-tritium implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Goncharov, V. N.; Radha, P. B.; Marozas, J. A.; Skupsky, S.; Boehly, T. R.; Sangster, T. C.; Meyerhofer, D. D.; McCrory, R. L.

    2010-10-01

    Maximizing the neutron yield to obtain energy gain is the ultimate goal for inertial confinement fusion. Nonuniformities seeded by target and laser perturbations can disrupt neutron production via the Rayleigh-Taylor instability growth. To understand the effects of perturbations on the neutron yield of cryogenic DT implosions on the Omega Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)], two-dimensional DRACO [P. B. Radha et al., Phys. Plasmas 12, 056307 (2005)] simulations have been performed to systematically investigate each perturbation source and their combined effects on the neutron-yield performance. Two sources of nonuniformity accounted for the neutron-yield reduction in DRACO simulations: target offset from the target chamber center and laser imprinting. The integrated simulations for individual shots reproduce the experimental yield-over-clean (YOC) ratio within a factor of 2 or better. The simulated neutron-averaged ion temperatures ⟨Ti⟩ is only about 10%-15% higher than measurements. By defining the temperature-over-clean, its relationship to YOC provides an indication of how much the hot-spot volume and density are perturbed with respect to the uniform situation. Typically, the YOC in OMEGA experiments is of the order of ˜5%. The simulation results suggest that YOC can be increased to the ignition hydroequivalent level of 15%-20% (with ⟨ρR⟩=200-300 mg/cm2) by maintaining a target offset of less than 10 μm and employing beam smoothing by spectral dispersion.

  16. Evaluating a Contribution of the Knock-on Deuterons to the Neutron Yield in the Experiments with Weakly Collisional Plasma Jets (Part 1)

    SciTech Connect

    Ryutov, D. D.

    2015-12-01

    Laser-generated interpenetrating plasma jets are widely used in the studies of collisionless interaction of counter-streaming plasmas in conjunction with possible formation of collisionless shocks. In a number of experiments of this type the plasma is formed on plastic targets made of CH or CD. The study of the DD neutron production from the interaction between two CD jets on the one hand and between a CD jet and a CH jet could serve as a qualitative indicator of the collisionless shock formation. The purpose of this memo is a discussion of the effect of collisions on the neutron generation in the interpenetrating CH and CD jets. First, the kinematics of the large-deflection collisions of the deuterons and carbon are discussed. Then the scattering angles are related with the corresponding Rutherford cross-section. After that expression for the number of the backscattered deuterons is provided, and their contribution to the neutron yield is evaluated. The results may be of some significance to the kinetic codes benchmarking and developing the neutron diagnostic.

  17. Compact neutron generator development at LBNL

    SciTech Connect

    Reijonen, J.; English, G.; Firestone, R.; Giquel, F.; King, M.; Leung, K-N.; Sun, M.

    2003-12-31

    A wide variety of applications ranging from medical (BNCT, Boron Neutron Capture Therapy) and basic science (neutron imaging, material studies) to homeland security (explosive detection and nuclear material non-proliferation) are in need of compact, high flux neutron generators. The Plasma and Ion Source Technology Group in the Lawrence Berkeley National Laboratory is developing various neutron generators for these applications. These neutron generators employed either the D-D or the D-T fusion reaction for the neutron production. The deuterium or deuterium-tritium gas mixture is ionized in an RF-driven plasma source. The ions are then accelerated to {approx}100 keV energy using high current, high voltage DC-power supply to a target where the 2.45 MeV (for D-D reaction) or 14 MeV (for the D-T reaction) neutrons are generated. The development of two different types of neutron tubes are being discussed in this presentation, namely compact, pulsed operation neutron generators and cw, high yield neutron generators. These generators are currently operating at D-D neutron yields of 108 n/s and 109 n/s respectively. A facility, incorporating the larger neutron generator, has been constructed for Prompt Gamma Activation Analysis (PGAA) and Neutron Activation Analysis (NAA) measurements.

  18. DD production and their interactions

    SciTech Connect

    Liu Yanrui; Oka, Makoto; Takizawa, Makoto; Liu Xiang; Deng Weizhen; Zhu Shilin

    2010-07-01

    S- and P-wave DD scatterings are studied in a meson exchange model with the coupling constants obtained in the heavy quark effective theory. With the extracted P-wave phase shifts and the separable potential approximation, we include the DD rescattering effect and investigate the production process e{sup +}e{sup -{yields}}DD. We find that it is difficult to explain the anomalous line shape observed by the BES Collaboration with this mechanism. Combining our model calculation and the experimental measurement, we estimate the upper limit of the nearly universal cutoff parameter to be around 2 GeV. With this number, the upper limits of the binding energies of the S-wave DD and BB bound states are obtained. Assuming that the S-wave and P-wave interactions rely on the same cutoff, our study provides a way of extracting the information about S-wave molecular bound states from the P-wave meson pair production.

  19. Fusion-neutron-yield, activation measurements at the Z accelerator: Design, analysis, and sensitivity

    NASA Astrophysics Data System (ADS)

    Hahn, K. D.; Cooper, G. W.; Ruiz, C. L.; Fehl, D. L.; Chandler, G. A.; Knapp, P. F.; Leeper, R. J.; Nelson, A. J.; Smelser, R. M.; Torres, J. A.

    2014-04-01

    We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r2 decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm2 and is ˜ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.

  20. Fusion-neutron-yield, activation measurements at the Z accelerator: design, analysis, and sensitivity.

    PubMed

    Hahn, K D; Cooper, G W; Ruiz, C L; Fehl, D L; Chandler, G A; Knapp, P F; Leeper, R J; Nelson, A J; Smelser, R M; Torres, J A

    2014-04-01

    We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r(2) decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm(2) and is ∼ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects. PMID:24784607

  1. Fusion-neutron-yield, activation measurements at the Z accelerator: Design, analysis, and sensitivity

    SciTech Connect

    Hahn, K. D. Ruiz, C. L.; Fehl, D. L.; Chandler, G. A.; Knapp, P. F.; Smelser, R. M.; Torres, J. A.; Cooper, G. W.; Nelson, A. J.; Leeper, R. J.

    2014-04-15

    We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r{sup 2} decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm{sup 2} and is ∼ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.

  2. Absolute calibration method for laser megajoule neutron yield measurement by activation diagnostics.

    PubMed

    Landoas, Olivier; Glebov, Vladimir Yu; Rossé, Bertrand; Briat, Michelle; Disdier, Laurent; Sangster, Thomas C; Duffy, Tim; Marmouget, Jean Gabriel; Varignon, Cyril; Ledoux, Xavier; Caillaud, Tony; Thfoin, Isabelle; Bourgade, Jean-Luc

    2011-07-01

    The laser megajoule (LMJ) and the National Ignition Facility (NIF) plan to demonstrate thermonuclear ignition using inertial confinement fusion (ICF). The neutron yield is one of the most important parameters to characterize ICF experiment performance. For decades, the activation diagnostic was chosen as a reference at ICF facilities and is now planned to be the first nuclear diagnostic on LMJ, measuring both 2.45 MeV and 14.1 MeV neutron yields. Challenges for the activation diagnostic development are absolute calibration, accuracy, range requirement, and harsh environment. At this time, copper and zirconium material are identified for 14.1 MeV neutron yield measurement and indium material for 2.45 MeV neutrons. A series of calibrations were performed at Commissariat à l'Energie Atomique (CEA) on a Van de Graff facility to determine activation diagnostics efficiencies and to compare them with results from calculations. The CEA copper activation diagnostic was tested on the OMEGA facility during DT implosion. Experiments showed that CEA and Laboratory for Laser Energetics (LLE) diagnostics agree to better than 1% on the neutron yield measurement, with an independent calibration for each system. Also, experimental sensitivities are in good agreement with simulations and allow us to scale activation diagnostics for the LMJ measurement range. PMID:21806179

  3. Study of asymmetric fission yield behavior from neutron-deficient Hg isotope

    SciTech Connect

    Perkasa, Y. S.; Waris, A. Kurniadi, R. Su'ud, Z.

    2014-09-30

    A study of asymmetric fission yield behavior from a neutron-deficient Hg isotope has been conducted. The fission yield calculation of the neutron-deficient Hg isotope using Brownian Metropolis shape had showed unusual result at decreasing energy. In this paper, this interesting feature will be validated by using nine degree of scission shapes parameterization from Brosa model that had been implemented in TALYS nuclear reaction code. This validation is intended to show agreement between both model and the experiment result. The expected result from these models considered to be different due to dynamical properties that implemented in both models.

  4. Neutron yields upon irradiation of thick targets by ions with energies below 1.75 MeV/Nucleon

    NASA Astrophysics Data System (ADS)

    Gikal, K. B.; Teterev, Yu. G.; Zdorovets, M. V.; Ivanov, I. A.; Koloberdin, M. V.; Kozin, S. G.

    2016-03-01

    The yields of neutrons produced in thick LiF, Be, C, Al, Al2O3, and Cu targets irradiated by Li, C, and N ions with energies below 1.75 MeV/nucleon are measured on the DC-60 cyclotron at the Institute of Nuclear Physics, Astana Branch, Kazakhstan. The experimental angular distributions of the neutron yields from the targets are measured and an empirical equation to describe the distributions is proposed. The measured neutron yields are compared with the figures calculated by the LISE++ program. The measured and predicted neutron yields in the reactions coincide to within a factor of 2.

  5. Two-dimensional simulations of the neutron yield in cryogenic deuterium-tritium implosions on OMEGA

    SciTech Connect

    Hu, S. X.; Goncharov, V. N.; Radha, P. B.; Marozas, J. A.; Skupsky, S.; Boehly, T. R.; Sangster, T. C.; Meyerhofer, D. D.; McCrory, R. L.

    2010-10-15

    Maximizing the neutron yield to obtain energy gain is the ultimate goal for inertial confinement fusion. Nonuniformities seeded by target and laser perturbations can disrupt neutron production via the Rayleigh-Taylor instability growth. To understand the effects of perturbations on the neutron yield of cryogenic DT implosions on the Omega Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)], two-dimensional DRACO[P. B. Radha et al., Phys. Plasmas 12, 056307 (2005)] simulations have been performed to systematically investigate each perturbation source and their combined effects on the neutron-yield performance. Two sources of nonuniformity accounted for the neutron-yield reduction in DRACO simulations: target offset from the target chamber center and laser imprinting. The integrated simulations for individual shots reproduce the experimental yield-over-clean (YOC) ratio within a factor of 2 or better. The simulated neutron-averaged ion temperatures is only about 10%-15% higher than measurements. By defining the temperature-over-clean, its relationship to YOC provides an indication of how much the hot-spot volume and density are perturbed with respect to the uniform situation. Typically, the YOC in OMEGA experiments is of the order of {approx}5%. The simulation results suggest that YOC can be increased to the ignition hydroequivalent level of 15%-20% (with <{rho}R>=200-300 mg/cm{sup 2}) by maintaining a target offset of less than 10 {mu}m and employing beam smoothing by spectral dispersion.

  6. Effect of driver impedance on dense plasma focus Z-pinch neutron yield

    SciTech Connect

    Sears, Jason E-mail: schmidt36@llnl.gov; Link, Anthony E-mail: schmidt36@llnl.gov; Schmidt, Andrea E-mail: schmidt36@llnl.gov; Welch, Dale

    2014-12-15

    The Z-pinch phase of a dense plasma focus (DPF) heats the plasma by rapid compression and accelerates ions across its intense electric fields, producing neutrons through both thermonuclear and beam-target fusion. Driver characteristics have empirically been shown to affect performance, as measured by neutron yield per unit of stored energy. We are exploring the effect of driver characteristics on DPF performance using particle-in-cell (PIC) simulations of a kJ scale DPF. In this work, our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase, capturing kinetic instabilities, anomalous resistivity, and beam formation during the pinch. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. It is known that the driver impedance plays an important role in the neutron yield: first, it sets the peak current achieved at pinch time; and second, it affects how much current continues to flow through the pinch when the pinch inductance and resistance suddenly increase. Here we show from fully kinetic simulations how total neutron yield depends on the impedance of the driver and the distributed parameters of the transmission circuit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for neutron source applications.

  7. Copper activation deuterium-tritium neutron yield measurements at the National Ignition Facility.

    PubMed

    Cooper, G W; Ruiz, C L; Leeper, R J; Chandler, G A; Hahn, K D; Nelson, A J; Torres, J A; Smelser, R M; McWatters, B R; Bleuel, D L; Yeamans, C B; Knittel, K M; Casey, D T; Frenje, J A; Gatu Johnson, M; Petrasso, R D; Styron, J D

    2012-10-01

    A DT neutron yield diagnostic based on the reactions, (63)Cu(n,2n)(62)Cu(β(+)) and (65)Cu(n,2n)( 64) Cu(β(+)), has been fielded at the National Ignition Facility (NIF). The induced copper activity is measured using a NaI γ-γ coincidence system. Uncertainties in the 14-MeV DT yield measurements are on the order of 7% to 8%. In addition to measuring yield, the ratio of activities induced in two, well-separated copper samples are used to measure the relative anisotropy of the fuel ρR to uncertainties as low as 5%. PMID:23126920

  8. Relationship between neutron yield rate of tokamak plasmas and spectrometer measured flux for different sight lines

    SciTech Connect

    Gorini, G.; Kaellne, J.; Ognissanto, F.; Tardocchi, M.

    2011-03-15

    A parametric relationship between total neutron yield rate and collimated fluxes related to the brightness (B) of plasma chords ({lambda}) is developed for different emissivity distributions of tokamak plasmas. Specifically, the brightness was expressed as a function of chord coordinates of radial position using a simple model for the emissivity profiles of width parameter w. The functional brightness dependence B({lambda},w) was calculated to examine the relationship between measured flux and deduced yield rate, and its plasma profile dependence. The results were used to determine the chord range of minimum profile sensitivity in order to identify the preferred collimator sight for the determination of yield rate from neutron emission spectroscopy (YNES) measurements. The YNES method is discussed in comparison to conventional methods to determine the total neutron yield rates and related plasma fusion power relying on uncollimated flux measurements and a different calibration base for the flux-yield relationship. The results have a special bearing for tokamaks operating with both deuterium and deuterium-tritium plasmas and future high power machines such as for ITER, DEMO, and IGNITOR.

  9. Correlation of /sup 239/Pu thermal and fast reactor fission yields with neutron energy

    SciTech Connect

    Maeck, W.J.

    1981-10-01

    The relative isotopic abundances and the fisson yields for over 40 stable and long-lived fission products from /sup 239/Pu fast fission were evaluated to determine if the data could be correlated with neutron energy. Only mass spectrometric data were used in this study. For some nuclides changes of only a few percent in the relative isotopic abundance or the fission yields over the energy range of thermal to 1 MeV are easily discernable and significant; for others the data are too sparse and scattered to obtain a good correlation. The neutron energy index usedin this study is the /sup 150/Nd//sup 143/Nd isotopic ratio. The results of this correlation study compared to the US Evaluated Nuclear Data File (ENDF) fast fission yield compilation. Several discrepancies are noted and suggestions for future work are presented.

  10. Determination the total neutron yields of several semiconductor compounds using various alpha emitters

    NASA Astrophysics Data System (ADS)

    Abdullah, Ramadhan Hayder; Sabr, Barzan Nehmat

    2016-03-01

    In the present work, the cross-sections of (α,n) reactions available in the literature as a function of α-particle energies for light and medium elements have been rearranged for α-particle energies from near threshold up to 10 MeV in steps of (0.050MeV) using the (Excel and Matlab) computer programs. The obtained data were used to calculate the neutron yields (n/106α) using the quick basic-computer program (Simpson Rules). The stopping powers of alpha particle energies from near threshold to 10 MeV for light and medium elements such as (nat.Be,10B,11B,13C,14N,nat.O,nat.F,nat.Mg,nat.Al,29Si,30Si, nat.P and 46.48Ti) have been calculated using the Zeigler formula. The kinetic energies (Tα) and the branching ratios of each α-emitters such as (211Bi, 210Po, 211Po, 215Po, 217At, 218Rn, 219Rn, 222Rn, 224Ra, 226Ra, 215Th, 228Th, 232U, 234U, 236U, 238U, 238Pu, 239Pu, 241Am, 245Es, 252Fm, 254Fm, 256Fm, 257Fm and 257Md) are taken into consideration to calculate the mean kinetic energy . The polynomial expressions were used to fitting the calculated weighted average of neutron yields (n/106α) for natural light and medium elements such as (Be, B, C, N, O, F, Mg, Al, Si, P and Ti) to determine the adopted neutron yields from the best fitting equation with minimum (CHISQ) at mean kinetic energies of various α-emitters. The total neutron yields (n/s/gx/ppmi) of the mentioned natural light and medium elements have been calculated using the adopted neutron yields (n/106α) from the fitting equations at mean kinetic energies of various α-emitters. The total neutron yields (n/s/gα-emitters/gcompounds) of semiconductor compounds such as (AlN, AlP, BN, BP, SiC, TiO2, BeSiN2, MgCN2, MgSiN2 and MgSiP2) have been calculated by mixing (1gram) of compounds with (1gram) of pure α-emitters using the quick basic computer program. The aim of the present work is to constructed and fabricate the neutron sources theoretically

  11. Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF.

    PubMed

    Casey, D T; Frenje, J A; Gatu Johnson, M; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Knauer, J P; Meyerhofer, D D; Sangster, T C; Bionta, R M; Bleuel, D L; Döppner, T; Glenzer, S; Hartouni, E; Hatchett, S P; Le Pape, S; Ma, T; MacKinnon, A; McKernan, M A; Moran, M; Moses, E; Park, H-S; Ralph, J; Remington, B A; Smalyuk, V; Yeamans, C B; Kline, J; Kyrala, G; Chandler, G A; Leeper, R J; Ruiz, C L; Cooper, G W; Nelson, A J; Fletcher, K; Kilkenny, J; Farrell, M; Jasion, D; Paguio, R

    2012-10-01

    A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF. PMID:23126915

  12. Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF

    SciTech Connect

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Knauer, J. P.; Meyerhofer, D. D.; Sangster, T. C.; Bionta, R. M.; Bleuel, D. L.; Doeppner, T.; Glenzer, S.; Hartouni, E.; Hatchett, S. P.; Le Pape, S.; Ma, T.; MacKinnon, A.; and others

    2012-10-15

    A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  13. Fusion neutron yield from a laser-irradiated heavy-water spray

    SciTech Connect

    Ter-Avetisyan, S.; Schnuerer, M.; Hilscher, D.; Jahnke, U.; Busch, S.; Nickles, P.V.; Sandner, W.

    2005-01-01

    The fusion neutron yield from a laser-irradiated heavy-water (D{sub 2}O) spray target was studied. Heavy-water droplets of about 150 nm diameter in the spray were exposed to 35 fs laser pulses at an intensity of 1x10{sup 19} W/cm{sup 2}. Due to the 10-50 times bigger size of the spray droplets compared to usual cluster sizes, deuterons are accelerated to considerably higher kinetic energies of up to 1 MeV. Neutrons are generated by the deuterons escaping from the plasma and initiating a fusion reaction within the surrounding cold plume of the spray jet. For each 0.6 J of laser pulse energy, 6x10{sup 3} neutrons are produced by about 10{sup 11} accelerated deuterons. This corresponds to a D(d,n) reaction probability of about 6x10{sup -8}. Compared to cluster targets, the reaction probability in the spray target is found to be two orders of magnitude larger. This finding apparently is due to both the considerably higher deuteron energies and the larger effective target thickness in the spray target. The measured neutron yield per accelerated deuteron [i.e., the D(d,n) reaction probability], is employed to compare and extrapolate the neutron emission characteristics from different target arrangements.

  14. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    NASA Astrophysics Data System (ADS)

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Cooper, G. W.; Gomez, M. R.; Slutz, S.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Harding, E.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Torres, J. A.; Bur, J. A.; Cuneo, M. E.; Glebov, V. Yu; Harvey-Thompson, A. J.; Herrman, M. C.; Hess, M. H.; Johns, O.; Jones, B.; Lamppa, D. C.; Lash, J. S.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Reneker, J.; Robertson, G. K.; Rochau, G. A.; Savage, M. E.; Smith, I. C.; Styron, J. D.; Vesey, R. A.

    2016-05-01

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ∼2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner∼1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Plans to improve and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.

  15. Determination of pure neutron radiolysis yields for use in chemical modeling of supercritical water

    NASA Astrophysics Data System (ADS)

    Edwards, Eric J.

    This work has determined pure neutron radical yields at elevated temperature and pressure up to supercritical conditions using a reactor core radiation. The data will be necessary to provides realistic conditions for material corrosion experiments for the supercritical water reactor (SCWR) through water chemistry modeling. The work has been performed at the University of Wisconsin Nuclear Reactor using an apparatus designed to transport supercritical water near the reactor core. Low LET yield data used in the experiment was provided by a similar project at the Notre Dame Radiation Lab. Radicals formed by radiolysis were measured through chemical scavenging reactions. The aqueous electron was measured by two methods, a reaction with N2O to produce molecular nitrogen and a reaction with SF6 to produce fluoride ions. The hydrogen radical was measured through a reaction with ethanol-D6 (CD3CD2OD) to form HD. Molecular hydrogen was measured directly. Gaseous products were measured with a mass spectrometer and ions were measured with an ion selective electrode. Radiation energy deposition was calibrated for neutron and gamma radiation separately with a neutron activation analysis and a radiolysis experiment. Pure neutron yields were calculated by subtracting gamma contribution using the calibrated gamma energy deposition and yield results from work at the Notre Dame Radiation Laboratory. Pure neutron yields have been experimentally determined for aqueous electrons from 25°C to 400°C at 248 bar and for the hydrogen radical from 25°C to 350°C at 248 bar, Isothermal data has been acquired for the aqueous electron at 380°C and 400°C as a function of density. Molecular hydrogen yields were measured as a function of temperature and pressure, although there was evidence that chemical reactions with the walls of the water tubing were creating molecular hydrogen in addition to that formed through radiolysis. Critical hydrogen concentration behavior was investigated but a

  16. The Role of the Driver Circuit in the Neutron Yield of the Plasma Focus

    NASA Astrophysics Data System (ADS)

    Sears, Jason; Schmidt, Andrea; Link, Anthony; Welch, Dale

    2015-11-01

    Emperical observations have suggested that dense plasma focus (DPF) neutron yield increases with driver impedance. Using the particle-in-cell code LSP, we reproduce this trend in a kJ DPF, and demonstrate in detail how driver impedance is coupled to neutron output. We implement a 2-D model of the plasma focus including self-consistent circuit-driven boundary conditions. We show that m=0 growth is central to beam formation and is a chaotic, non-deterministic process. Neutrons are produced when high, short-lived electric fields in the low-density cavity of an m=0 mode accelerate a beam of ions into the dense downstream pinch region. Neutron yield is highest when the ion beam is generated within 50 ns of the pinch formation on axis, because at that time the pinch (target) density is highest. High driver impedance contributes to prompt beam formation in two ways. First, the high impedance driver, losing less energy to run-down, has a faster run-in velocity and hence larger Rayleigh-Taylor features that more readily seed the m=0 instability. Second, the shorter anode of the high-impedance driver retains less trailing mass in the run-down region and thus exhibits fewer and less parasitic restrikes. Prepared by LLNL under Contract DE-AC52-07NA27344.

  17. Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Stoeckl, C.; Boni, R.; Ehrne, F.; Forrest, C. J.; Glebov, V. Yu.; Katz, J.; Lonobile, D. J.; Magoon, J.; Regan, S. P.; Shoup, M. J.; Sorce, A.; Sorce, C.; Sangster, T. C.; Weiner, D.

    2016-05-01

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic deuterium-tritium (DT) implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ˜16 m to a streak camera in a well-shielded location. An ˜200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ˜40 ± 10 ps was measured in a dedicated experiment using hard x-rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. The measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.

  18. Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA

    DOE PAGESBeta

    Stoeckl, C.; Boni, R.; Ehrne, F.; Forrest, C. J.; Glebov, V. Yu.; Katz, J.; Lonobile, D. J.; Magoon, J.; Regan, S. P.; Shoup, III, M. J.; et al

    2016-05-10

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic DT implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ~16 m to a streak camera in amore » well-shielded location. An ~200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ~40±10 ps was measured in a dedicated experiment using hard x rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. Furthermore, the measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.« less

  19. Neutron yields and effective doses produced by Galactic Cosmic Ray interactions in shielded environments in space.

    PubMed

    Heilbronn, Lawrence H; Borak, Thomas B; Townsend, Lawrence W; Tsai, Pi-En; Burnham, Chelsea A; McBeth, Rafe A

    2015-11-01

    In order to define the ranges of relevant neutron energies for the purposes of measurement and dosimetry in space, we have performed a series of Monte Carlo transport model calculations that predict the neutron field created by Galactic Cosmic Ray interactions inside a variety of simple shielding configurations. These predictions indicate that a significant fraction of the neutron fluence and neutron effective dose lies in the region above 20 MeV up to several hundred MeV. These results are consistent over thicknesses of shielding that range from very thin (2.7 g/cm(2)) to thick (54 g/cm(2)), and over both shielding materials considered (aluminum and water). In addition to these results, we have also investigated whether simplified Galactic Cosmic Ray source terms can yield predictions that are equivalent to simulations run with a full GCR source term. We found that a source using a GCR proton and helium spectrum together with a scaled oxygen spectrum yielded nearly identical results to a full GCR spectrum, and that the scaling factor used for the oxygen spectrum was independent of shielding material and thickness. Good results were also obtained using a GCR proton spectrum together with a scaled helium spectrum, with the helium scaling factor also independent of shielding material and thickness. Using a proton spectrum alone was unable to reproduce the full GCR results. PMID:26553642

  20. Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA.

    PubMed

    Stoeckl, C; Boni, R; Ehrne, F; Forrest, C J; Glebov, V Yu; Katz, J; Lonobile, D J; Magoon, J; Regan, S P; Shoup, M J; Sorce, A; Sorce, C; Sangster, T C; Weiner, D

    2016-05-01

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic deuterium-tritium (DT) implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments-a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ∼16 m to a streak camera in a well-shielded location. An ∼200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ∼40 ± 10 ps was measured in a dedicated experiment using hard x-rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. The measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera. PMID:27250417

  1. The calculation of neutron capture gamma-ray yields for space shielding applications

    NASA Technical Reports Server (NTRS)

    Yost, K. J.

    1972-01-01

    The application of nuclear models to the calculation of neutron capture and inelastic scattering gamma yields is discussed. The gamma ray cascade model describes the cascade process in terms of parameters which either: (1) embody statistical assumptions regarding electric and magnetic multipole transition strengths, level densities, and spin and parity distributions or (2) are fixed by experiment such as measured energies, spin and parity values, and transition probabilities for low lying states.

  2. Effect of Driver Impedance on Dense Plasma Focus Z-Pinch Neutron Yield and Beam Acceleration

    NASA Astrophysics Data System (ADS)

    Sears, J.; Link, A.; Ellsworth, J.; Falabella, S.; Rusnak, B.; Tang, V.; Schmidt, A.; Welch, D.

    2014-10-01

    We explore the effect of driver characteristics on dense plasma focus (DPF) neutron yield and beam acceleration using particle-in-cell (PIC) simulations of a kJ-scale DPF. Our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. Simulations are benchmarked to measurements of a table top kJ DPF experiment with neutron yield measured with He3-based detectors. Simulated neutron yield scales approximately with the fourth power of peak current, I4. We also probe the accelerating fields by measuring the acceleration of a 4 MeV deuteron beam and by measuring the DPF self-generated beam energy distribution, finding gradients higher than 50 MV/m. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (11-ERD-063) at LLNL.

  3. Conceptual design and optimization of a plastic scintillator array for 2D tomography using a compact D-D fast neutron generator.

    PubMed

    Adams, Robert; Zboray, Robert; Cortesi, Marco; Prasser, Horst-Michael

    2014-04-01

    A conceptual design optimization of a fast neutron tomography system was performed. The system is based on a compact deuterium-deuterium fast neutron generator and an arc-shaped array of individual neutron detectors. The array functions as a position sensitive one-dimensional detector allowing tomographic reconstruction of a two-dimensional cross section of an object up to 10 cm across. Each individual detector is to be optically isolated and consists of a plastic scintillator and a Silicon Photomultiplier for measuring light produced by recoil protons. A deterministic geometry-based model and a series of Monte Carlo simulations were used to optimize the design geometry parameters affecting the reconstructed image resolution. From this, it is expected that with an array of 100 detectors a reconstructed image resolution of ~1.5mm can be obtained. Other simulations were performed in order to optimize the scintillator depth (length along the neutron path) such that the best ratio of direct to scattered neutron counts is achieved. This resulted in a depth of 6-8 cm and an expected detection efficiency of 33-37%. Based on current operational capabilities of a prototype neutron generator being developed at the Paul Scherrer Institute, planned implementation of this detector array design should allow reconstructed tomograms to be obtained with exposure times on the order of a few hours. PMID:24495568

  4. Improvements in Fabrication of Elastic Scattering Foils Used to Measure Neutron Yield by the Magnetic Recoil Spectrometer

    DOE PAGESBeta

    Reynolds, H. G.; Schoff, M. E.; Farrell, M. P.; Gatu Johnson, M.; Bionta, R. M.; Frenje, J. A.

    2016-08-01

    The magnetic recoil spectrometer uses a deuterated polyethylene polymer (CD2) foil to measure neutron yield in inertial confinement fusion experiments. Higher neutron yields in recent experiments have resulted in primary signal saturation in the detector CR-39 foils, necessitating the fabrication of thinner CD2 foils than established methods could provide. A novel method of fabricating deuterated polymer foils is described. The resulting foils are thinner, smoother, and more uniform in thickness than the foils produced by previous methods. Here, these new foils have successfully been deployed at the National Ignition Facility, enabling higher neutron yield measurements than previous foils, with nomore » primary signal saturation.« less

  5. Copper activation deuterium-tritium neutron yield measurements at the National Ignition Facility

    SciTech Connect

    Cooper, G. W.; Nelson, A. J.; Styron, J. D.; Ruiz, C. L.; Leeper, R. J.; Chandler, G. A.; Hahn, K. D.; Torres, J. A.; Smelser, R. M.; McWatters, B. R.; Bleuel, D. L.; Yeamans, C. B.; Knittel, K. M.; Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Petrasso, R. D.

    2012-10-15

    A DT neutron yield diagnostic based on the reactions, {sup 63}Cu(n,2n){sup 62}Cu({beta}{sup +}) and {sup 65}Cu(n,2n) {sup 64} Cu({beta}{sup +}), has been fielded at the National Ignition Facility (NIF). The induced copper activity is measured using a NaI {gamma}-{gamma} coincidence system. Uncertainties in the 14-MeV DT yield measurements are on the order of 7% to 8%. In addition to measuring yield, the ratio of activities induced in two, well-separated copper samples are used to measure the relative anisotropy of the fuel {rho}R to uncertainties as low as 5%.

  6. Polar-Drive Designs for Optimizing Neutron Yields on the National Ignition Faciltiy

    SciTech Connect

    Cok, A.M.; Craxton, R.S.; McKenty, P.W.

    2008-09-10

    Polar-drive designs are proposed for producing symmetric implosions of thin-shell, DT gas-filled targets leading to high fusion-neutron yields for neutron-diagnostic development. The designs can be implemented as soon as the National Ignition Facility (NIF) [E. M. Campbell and W. J. Hogan, Plasma Phys. Control. Fusion 41, B39 (1999)] is operational as they use indirect-drive phase plates. Two-dimensional simulations using the hydrodynamics code SAGE [R. S. Craxton and R. L. McCrory, J. Appl. Phys. 56, 108 (1984)] have shown that good low-mode uniformity can be obtained by choosing combinations of pointing and defocusing of the beams, including pointing offsets of individual beams within some of the NIF laser-beam quads. The optimizations have been carried out for total laser energies ranging from 350 kJ to 1.5 MJ, enabling the optimum pointing and defocusing parameters to be determined through interpolation for any given laser energy in this range. Neutron yields in the range of 10^15–10^16 are expected.

  7. Polar-drive designs for optimizing neutron yields on the National Ignition Facility

    SciTech Connect

    Cok, A. M.; Craxton, R. S.; McKenty, P. W.

    2008-08-15

    Polar-drive designs are proposed for producing symmetric implosions of thin-shell, DT gas-filled targets leading to high fusion-neutron yields for neutron-diagnostic development. The designs can be implemented as soon as the National Ignition Facility (NIF) [E. M. Campbell and W. J. Hogan, Plasma Phys. Control. Fusion 41, B39 (1999)] is operational as they use indirect-drive phase plates. Two-dimensional simulations using the hydrodynamics code SAGE [R. S. Craxton and R. L. McCrory, J. Appl. Phys. 56, 108 (1984)] have shown that good low-mode uniformity can be obtained by choosing combinations of pointing and defocusing of the beams, including pointing offsets of individual beams within some of the NIF laser-beam quads. The optimizations have been carried out for total laser energies ranging from 350 kJ to 1.5 MJ, enabling the optimum pointing and defocusing parameters to be determined through interpolation for any given laser energy in this range. Neutron yields in the range of 10{sup 15}-10{sup 16} are expected.

  8. Effect of cathode structure on neutron yield performance of a miniature plasma focus device

    NASA Astrophysics Data System (ADS)

    Verma, Rishi; Rawat, R. S.; Lee, P.; Lee, S.; Springham, S. V.; Tan, T. L.; Krishnan, M.

    2009-07-01

    In this Letter we report the effect of two different cathode structures - tubular and squirrel cage, on neutron output from a miniature plasma focus device. The squirrel cage cathode is typical of most DPF sources, with an outer, tubular envelope that serves as a vacuum housing, but does not carry current. The tubular cathode carries the return current and also serves as the vacuum envelope, thereby minimizing the size of the DPF head. The maximum average neutron yield of (1.82±0.52)×10 n/shot for the tubular cathode at 4 mbar was enhanced to (1.15±0.2)×10 n/shot with squirrel cage cathode at 6 mbar operation. These results are explained on the basis of a current sheath loading/mass choking effect. The penalty for using a non-transparent cathode negates the advantage of the smaller size of the DPF head.

  9. Neutron yields from 155 MeV/nucleon carbon and helium stopping in aluminum

    NASA Technical Reports Server (NTRS)

    Heilbronn, L.; Cary, R. S.; Cronqvist, M.; Deak, F.; Frankel, K.; Galonsky, A.; Holabird, K.; Horvath, A.; Kiss, A.; Kruse, J.; Ronningen, R. M.; Schelin, H.; Seres, Z.; Stronach, C. E.; Wang, J.; Zecher, P.; Zeitlin, C.; Miller, J. (Principal Investigator)

    1999-01-01

    Neutron fluences have been measured from 155 MeV/nucleon 4He and 12C ions stopping in an Al target at laboratory angles between 10 and 160 deg. The resultant spectra were integrated over angle and energy above 10 MeV to produce total neutron yields. Comparison of the two systems shows that approximately two times as many neutrons are produced from 155 MeV/nucleon 4He stopping in Al and 155 MeV/nucleon 12C stopping in Al. Using an energy-dependent geometric cross-section formula to calculate the expected number of primary nuclear interactions shows that the 12C + Al system has, within uncertainties, the same number of neutrons per interaction (0.99 +/- 0.03) as does the 4He + Al system (1.02 +/- 0.04), despite the fact that 12C has three times as many neutrons as does 4He. Energy and angular distributions for both systems are also reported. No major differences can be seen between the two systems in those distributions, except for the overall magnitude. Where possible, the 4He + Al spectra are compared with previously measured spectra from 160 and 177.5 MeV/nucleon 4He interactions in a variety of stopping targets. The reported spectra are consistent with previously measured spectra. The data were acquired to provide data applicable to problems dealing with the determination of the radiation risk to humans engaged in long-term missions in space; however, the data are also of interest for issues related to the determination of the radiation environment in high-altitude flight, with shielding at high-energy heavy-ion accelerators and with doses delivered outside tumor sites treated with high-energy hadronic beams.

  10. Determination of carrier yields for neutron activation analysis using energy dispersive X-ray spectrometry

    USGS Publications Warehouse

    Johnson, R.G.; Wandless, G.A.

    1984-01-01

    A new method is described for determining carrier yield in the radiochemical neutron activation analysis of rare-earth elements in silicate rocks by group separation. The method involves the determination of the rare-earth elements present in the carrier by means of energy-dispersive X-ray fluorescence analysis, eliminating the need to re-irradiate samples in a nuclear reactor after the gamma ray analysis is complete. Results from the analysis of USGS standards AGV-1 and BCR-1 compare favorably with those obtained using the conventional method. ?? 1984 Akade??miai Kiado??.

  11. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    DOE PAGESBeta

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Knauer, J. P.; et al

    2015-11-12

    For a long time, neutron time-of-flight diagnostics been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d+t→n+α (DT) and d+d→n+³He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, which is also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We explain such novel methodologies used to determine neutron yield, apparent Tion and DSR.

  12. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    SciTech Connect

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Knauer, J. P.; Mcnaney, J. M.; Munro, D. H.

    2015-11-12

    For a long time, neutron time-of-flight diagnostics been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d+t→n+α (DT) and d+d→n+³He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, which is also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We explain such novel methodologies used to determine neutron yield, apparent Tion and DSR.

  13. Investigation of deuterated target effects on neutron yield in plasma focus device SBUMTPF1

    NASA Astrophysics Data System (ADS)

    Shahbazi Rad, Zahra; Abbasi Davani, Fereydoun; Shirani, Babak

    2015-04-01

    In this research, the effect of inserting deuterated solid target in plasma focus device `SBUMTPF1' on neutron yield has been investigated. The deuterated target with the diameter of 2.5 cm was placed at different heights relative to the anode tip. In each height, the best place of target (where the ion density is highest) was found from observing the effects of ions struck on the aluminum samples. Also for each height, 20 shots were performed at the optimum pressure of deuterium working gas and operating voltage, which are equal to 1.5 mbar and 24 kV, respectively. The neutron production was measured with two activation counters, which placed in 0○ and 90○ relative to the anode axis. Neutron scattering from two activation counters was calculated with MCNP4C code and the results showed that this effect is negligible. In this article, the probability of implanting deuterium ions into the titanium target was also investigated. Deviation angle of the ion emission relative to the anode axis was measured experimentally in this research and it was about 3.1○.

  14. SU-E-T-602: Beryllium Seeds Implant for Photo-Neutron Yield Using External Beam Therapy

    SciTech Connect

    Koren, S; Veltchev, I; Furhang, E

    2014-06-01

    Purpose: To evaluate the Neutron yield obtained during prostate external beam irradiation. Methods: Neutrons, that are commonly a radiation safety concern for photon beams with energy above 10 MV, are induced inside a PTV from Beryllium implemented seeds. A high megavoltage photon beam delivered to a prostate will yield neutrons via the reaction Be-9(γ,n)2?. Beryllium was chosen for its low gamma,n reaction cross-section threshold (1.67 MeV) to be combined with a high feasible 25 MV photon beam. This beam spectra has a most probable photon energy of 2.5 to 3.0 MeV and an average photon energy of about 5.8 MeV. For this feasibility study we simulated a Beryllium-made common seed dimension (0.1 cm diameter and 0.5 cm height) without taking into account encapsulation. We created a 0.5 cm grid loading pattern excluding the Urethra, using Variseed (Varian inc.) A total of 156 seeds were exported to a 4cm diameter prostate sphere, created in Fluka, a particle transport Monte Carlo Code. Two opposed 25 MV beams were simulated. The evaluation of the neutron dose was done by adjusting the simulated photon dose to a common prostate delivery (e.g. 7560 cGy in 42 fractions) and finding the corresponding neutron dose yield from the simulation. A variance reduction technique was conducted for the neutrons yield and transported. Results: An effective dose of 3.65 cGy due to neutrons was found in the prostate volume. The dose to central areas of the prostate was found to be about 10 cGy. Conclusion: The neutron dose yielded does not justify a clinical implant of Beryllium seeds. Nevertheless, one should investigate the Neutron dose obtained when a larger Beryllium loading is combined with commercially available 40 MeV Linacs.

  15. A measurement of the muon-induced neutron yield in lead at a depth of 2850 m water equivalent

    SciTech Connect

    Reichhart, L.; Ghag, C.; Lindote, A.; Chepel, V.; DeViveiros, L.; Lopes, M. I.; Neves, F.; Pinto da Cunha, J.; Silva, C.; Solovov, V. N.; Akimov, D. Yu.; Belov, V. A.; Burenkov, A. A.; Kobyakin, A. S.; Kovalenko, A. G.; Stekhanov, V. N.; Araújo, H. M.; Bewick, A.; Currie, A.; Horn, M.; and others

    2013-08-08

    We present results from the measurement of the neutron production rate in lead by high energy cosmic-ray muons at a depth of 2850 m water equivalent (mean muon energy of 260 GeV). A tonne-scale highly segmented plastic scintillator detector was utilised to detect both the energy depositions from the traversing muons as well as the delayed radiative capture signals of the induced neutrons. Complementary Monte Carlo simulations reproduce well the distributions of muons and detected muon-induced neutrons. Absolute agreement between simulation and data is of the order of 25%. By comparing the measured and simulated neutron capture rates a neutron yield in pure lead of (5.78{sub −0.28}{sup +0.21})×10{sup −3} neutrons/muon/(g/cm{sup 2}) has been obtained.

  16. High flux compact neutron generators

    SciTech Connect

    Reijonen, J.; Lou, T.-P.; Tolmachoff, B.; Leung, K.-N.; Verbeke, J.; Vujic, J.

    2001-06-15

    Compact high flux neutron generators are developed at the Lawrence Berkeley National Laboratory. The neutron production is based on D-D or D-T reaction. The deuterium or tritium ions are produced from plasma using either a 2 MHz or 13.56 MHz radio frequency (RF) discharge. RF-discharge yields high fraction of atomic species in the beam which enables higher neutron output. In the first tube design, the ion beam is formed using a multiple hole accelerator column. The beam is accelerated to energy of 80 keV by means of a three-electrode extraction system. The ion beam then impinges on a titanium target where either the 2.4 MeV D-D or 14 MeV D-T neutrons are generated. The MCNP computation code has predicted a neutron flux of {approximately}10{sup 11} n/s for the D-D reaction at beam intensity of 1.5 A at 150 kV. The neutron flux measurements of this tube design will be presented. Recently new compact high flux tubes are being developed which can be used for various applications. These tubes also utilize RF-discharge for plasma generation. The design of these tubes and the first measurements will be discussed in this presentation.

  17. Measurement of fission products yields in the quasi-mono-energetic neutron-induced fission of 232Th

    NASA Astrophysics Data System (ADS)

    Naik, H.; Mukherji, Sadhana; Suryanarayana, S. V.; Jagadeesan, K. C.; Thakare, S. V.; Sharma, S. C.

    2016-08-01

    The cumulative yields of various fission products in the 232Th(n, f) reaction at average neutron energies of 5.42, 7.75, 9.35 and 12.53 MeV have been determined by using an off-line γ-ray spectrometric technique. The neutron beam was produced from the 7Li(p, n) reaction by using the proton energies of 7.8, 12, 16 and 20 MeV. The mass chain yields were obtained from the cumulative fission yields by using the charge distribution correction of medium energy fission. The fine structure in the mass yield distribution was interpreted from the point of nuclear structure effect. On the other hand, the higher yield around mass number 133-134 and 143-144 as well as their complementary products were explained based on the standard I and standard II asymmetric mode of fission. From the mass yield data, the average value of light mass (), heavy mass (), the average number of neutrons (< ν >) and the peak-to-valley (P / V) ratios at different neutron energies of present work and literature data were obtained in the 232Th(n, f) reaction. The different parameters of the mass yield distribution in the 232Th(n, f) reaction were compared with the similar data in the 232Th(γ, f) reaction at comparable excitation energy and a surprising difference was observed.

  18. 10. DD and GG breaker building and associated conveyors. DD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DD and GG breaker building and associated conveyors. DD is coke transfer hous ein foreground; GG is breaker building in center. Coal bunker is tall building to left; 2-story coke conveyor on left brought coal to powerhouse pulverizer. Looking south/southeast - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  19. Application of the new neutron monitor yield function computed for different altitudes to an analysis of GLEs

    NASA Astrophysics Data System (ADS)

    Mishev, Alexander; Usoskin, Ilya

    2016-07-01

    A precise analysis of SEP (solar energetic particle) spectral and angular characteristics using neutron monitor (NM) data requires realistic modeling of propagation of those particles in the Earth's magnetosphere and atmosphere. On the basis of the method including a sequence of consecutive steps, namely a detailed computation of the SEP assymptotic cones of acceptance, and application of a neutron monitor yield function and convenient optimization procedure, we derived the rigidity spectra and anisotropy characteristics of several major GLEs. Here we present several major GLEs of the solar cycle 23: the Bastille day event on 14 July 2000 (GLE 59), GLE 69 on 20 January 2005, and GLE 70 on 13 December 2006. The SEP spectra and pitch angle distributions were computed in their dynamical development. For the computation we use the newly computed yield function of the standard 6NM64 neutron monitor for primary proton and alpha CR nuclei. In addition, we present new computations of NM yield function for the altitudes of 3000 m and 5000 m above the sea level The computations were carried out with Planetocosmics and CORSIKA codes as standardized Monte-Carlo tools for atmospheric cascade simulations. The flux of secondary neutrons and protons was computed using the Planetocosmics code appliyng a realistic curved atmospheric. Updated information concerning the NM registration efficiency for secondary neutrons and protons was used. The derived results for spectral and angular characteristics using the newly computed NM yield function at several altitudes are compared with the previously obtained ones using the double attenuation method.

  20. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    SciTech Connect

    Hatarik, R. Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Mcnaney, J. M.; Munro, D. H.; Knauer, J. P.

    2015-11-14

    Neutron time-of-flight diagnostics have long been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d + t → n + α (DT) and d + d → n + {sup 3}He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (T{sub ion}) and cold fuel areal density. We report on novel methodologies used to determine neutron yield, apparent T{sub ion}, and DSR. These methods invoke a single temperature, static fluid model to describe the neutron peaks from DD and DT reactions and a spline description of the DT spectrum to determine the DSR. Both measurements are performed using a forward modeling technique that includes corrections for line-of-sight attenuation and impulse response of the detection system. These methods produce typical uncertainties for DT T{sub ion} of 250 eV, 7% for DSR, and 9% for the DT neutron yield. For the DD values, the uncertainties are 290 eV for T{sub ion} and 10% for the neutron yield.

  1. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    NASA Astrophysics Data System (ADS)

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Knauer, J. P.; Mcnaney, J. M.; Munro, D. H.

    2015-11-01

    Neutron time-of-flight diagnostics have long been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d + t → n + α (DT) and d + d → n + 3He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We report on novel methodologies used to determine neutron yield, apparent Tion, and DSR. These methods invoke a single temperature, static fluid model to describe the neutron peaks from DD and DT reactions and a spline description of the DT spectrum to determine the DSR. Both measurements are performed using a forward modeling technique that includes corrections for line-of-sight attenuation and impulse response of the detection system. These methods produce typical uncertainties for DT Tion of 250 eV, 7% for DSR, and 9% for the DT neutron yield. For the DD values, the uncertainties are 290 eV for Tion and 10% for the neutron yield.

  2. An intrinsically safe facility for forefront research and training on nuclear technologies —Neutron yield from Be

    NASA Astrophysics Data System (ADS)

    Osipenko, M.; Ripani, M.; Ricco, G.; Celentano, A.; Viberti, C. M.; Alba, R.; Schillaci, M.; Cosentino, G.; Del Zoppo, A.; Di Pietro, A.; Figuera, P.; Finocchiaro, P.; Maiolino, C.; Santonocito, D.; Barbagallo, M.; Colonna, N.; Boccaccio, P.; Esposito, J.; Kostyukov, A.

    2014-04-01

    We describe a dedicated experiment to measure the neutron yield produced by a 62MeV proton beam impinging on a beryllium thick target. The energy was chosen as close as possible to the 70MeV considered for the ADS layout described in this Focus Point. The neutron yield and energy spectra were measured at several angles with respect to the beam direction. The experiment was performed at the INFN Laboratori Nazionali del Sud in Catania, Italy, using the proton beam delivered by the Superconducting Cyclotron (CS).

  3. Determination of uranium at trace levels by radiochemical neutron-activation analysis employing radioisotopic yield evaluation.

    PubMed

    Byrne, A R; Benedik, L

    1988-03-01

    Nanogram and picogram quantities of uranium were determined in biological materials by radiochemical neutron-activation analysis. Two different approaches using either (239)U or (239)Np were employed for cross-checking, and the question of negative errors due to incomplete acid dissolution of any possible inorganic (siliceous) fraction was studied. In the first and main approach, radiochemical separation of the short-lived (239)U (23.5 min) nuclide was based on TBP extraction following rapid conventional wet-ashing. Addition of large amounts of uranium carrier (ca. 50 mg) allowed the chemical yield to be evaluated from the gamma spectrum of the isolated fraction by means of the 186 keV peak of (235)U. In the second approach, the longer-lived (239)Np (56.5 hr) daughter was separated by anion-exchange; this nuclide allowed use of lengthier dissolution procedures employing total decomposition with hydrofluoric acid. Nanogram quantities of (237)Np were irradiated simultaneously with the sample and an aliquot of the resulting solution containing (237)Np and (238)Np (51 hr) was added prior to sample destruction, these isotopes serving as carrier and yield tracer, respectively. Results are presented for a series of reference materials. The methodologies and results from the two approaches are discussed and evaluated. PMID:18964488

  4. Calibration of the neutron detectors for the cluster fusion experiment on the Texas Petawatt Laser

    SciTech Connect

    Bang, W.; Quevedo, H. J.; Dyer, G.; Rougk, J.; Kim, I.; McCormick, M.; Bernstein, A. C.; Ditmire, T.

    2012-06-15

    Three types of neutron detectors (plastic scintillation detectors, indium activation detectors, and CR-39 track detectors) were calibrated for the measurement of 2.45 MeV DD fusion neutron yields from the deuterium cluster fusion experiment on the Texas Petawatt Laser. A Cf-252 neutron source and 2.45 MeV fusion neutrons generated from laser-cluster interaction were used as neutron sources. The scintillation detectors were calibrated such that they can detect up to 10{sup 8} DD fusion neutrons per shot in current mode under high electromagnetic pulse environments. Indium activation detectors successfully measured neutron yields as low as 10{sup 4} per shot and up to 10{sup 11} neutrons. The use of a Cf-252 neutron source allowed cross calibration of CR-39 and indium activation detectors at high neutron yields ({approx}10{sup 11}). The CR-39 detectors provided consistent measurements of the total neutron yield of Cf-252 when a modified detection efficiency of 4.6 Multiplication-Sign 10{sup -4} was used. The combined use of all three detectors allowed for a detection range of 10{sup 4} to 10{sup 11} neutrons per shot.

  5. Measurement of neutron spectra generated from bombardment of 4 to 24 MeV protons on a thick {sup 9}Be target and estimation of neutron yields

    SciTech Connect

    Paul, Sabyasachi; Sahoo, G. S.; Tripathy, S. P. E-mail: tripathy@barc.gov.in; Sunil, C.; Bandyopadhyay, T.; Sharma, S. C.; Ramjilal,; Ninawe, N. G.; Gupta, A. K.

    2014-06-15

    A systematic study on the measurement of neutron spectra emitted from the interaction of protons of various energies with a thick beryllium target has been carried out. The measurements were carried out in the forward direction (at 0° with respect to the direction of protons) using CR-39 detectors. The doses were estimated using the in-house image analyzing program autoTRAK-n, which works on the principle of luminosity variation in and around the track boundaries. A total of six different proton energies starting from 4 MeV to 24 MeV with an energy gap of 4 MeV were chosen for the study of the neutron yields and the estimation of doses. Nearly, 92% of the recoil tracks developed after chemical etching were circular in nature, but the size distributions of the recoil tracks were not found to be linearly dependent on the projectile energy. The neutron yield and dose values were found to be increasing linearly with increasing projectile energies. The response of CR-39 detector was also investigated at different beam currents at two different proton energies. A linear increase of neutron yield with beam current was observed.

  6. Effect of long term target changes on the neutron yield from a low intensity (d, t) neutron generator

    NASA Astrophysics Data System (ADS)

    Dalton, A. W.

    1987-12-01

    Experimental and theoretical techniques have been developed to determine the accuracy with which the integrated neutron output from a low-intensity (d, t) neutron source can be measured during a prolonged irradiation. The experiments involved a neutron generator in which a fixed solid titanium-tritium target and an unanalysed beam of deuterium ions was used. The analysis was based on differential and integral measurements of both the deuterium beam current and the energy spectra of the charged particles emitted from the multiple nuclear interactions in the target during beam bombardment. The overlapping signals produced by the latter are interpreted using an iterative analysis developed at the Lucas Heights Laboratories.

  7. Development of high flux thermal neutron generator for neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  8. Measurements of fusion neutrons from Magnetized Liner Inertial Fusion Experiments on the Z accelerator

    NASA Astrophysics Data System (ADS)

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Harding, E. C.; Awe, T. J.; Torres, J. A.; Jones, B.; Bur, J. A.; Cooper, G. W.; Styron, J. D.; Glebov, V. Yu.

    2015-11-01

    Strong evidence of thermonuclear neutron production has been observed during Magnetized Liner Inertial Fusion (MagLIF) experiments on the Z accelerator. So far, these experiments have utilized deuterium fuel and produced primary DD fusion neutron yields up to 2e12 with electron and ion stagnation temperatures in the 2-3 keV range. We present MagLIF neutron measurements and compare to other data and implosion simulations. In addition to primary DD and secondary DT yields and ion temperatures, other complex physics regarding the degree of fuel magnetization and liner density are elucidated by the neutron measurements. Neutron diagnostic development for deuterium and future deuterium-tritium fuel experiments are also discussed. Sandia is sponsored by the U.S. DOE's NNSA under contract DE-AC04-94AL85000.

  9. Optimizing Laser-accelerated Ion Beams for a Collimated Neutron Source

    SciTech Connect

    C.L. Ellison and J. Fuchs

    2010-09-23

    High-flux neutrons for imaging and materials analysis applications have typically been provided by accelerator- and reactor-based neutron sources. A novel approach is to use ultraintense (>1018W/cm2) lasers to generate picosecond, collimated neutrons from a dual target configuration. In this article, the production capabilities of present and upcoming laser facilities are estimated while independently maximizing neutron yields and minimizing beam divergence. A Monte-Carlo code calculates angular and energy distributions of neutrons generated by D-D fusion events occurring within a deuterated target for a given incident beam of D+ ions. Tailoring of the incident distribution via laser parameters and microlens focusing modifies the emerging neutrons. Projected neutron yields and distributions are compared to conventional sources, yielding comparable on-target fluxes per discharge, shorter time resolution, larger neutron energies and greater collimation.

  10. Testing JEFF-3.1.1 and ENDF/B-VII.1 Decay and Fission Yield Nuclear Data Libraries with Fission Pulse Neutron Emission and Decay Heat Experiments

    NASA Astrophysics Data System (ADS)

    Cabellos, O.; de Fusco, V.; Diez de la Obra, C. J.; Martinez, J. S.; Gonzalez, E.; Cano-Ott, D.; Alvarez-Velarde, F.

    2014-04-01

    The aim of this work is to test the present status of Evaluated Nuclear Decay and Fission Yield Data Libraries to predict decay heat and delayed neutron emission rate, average neutron energy and neutron delayed spectra after a neutron fission pulse. Calculations are performed with JEFF-3.1.1 and ENDF/B-VII.1, and these are compared with experimental values. An uncertainty propagation assessment of the current nuclear data uncertainties is performed.

  11. Efficient neutron generation from solid-nanoparticle explosions driven by DPSSL-pumped high-repetition rate femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Watari, T.; Matsukado, K.; Sekine, T.; Takeuchi, Y.; Hatano, Y.; Yoshimura, R.; Satoh, N.; Nishihara, K.; Takagi, M.; Kawashima, T.

    2016-03-01

    We propose novel neutron source using high-intensity laser based on the cluster fusion scheme. We developed DPSSL-pumped high-repetition-rate 20-TW laser system and solid nanoparticle target for neutron generation demonstration. In our neutron generation experiment, high-energy deuterons were generated from coulomb explosion of CD solid- nanoparticles and neutrons were generated by DD fusion reaction. Efficient and stable neutron generation was obtained by irradiating an intense femtosecond laser pulse of >2×1018 W/cm2. A yield of ∼105 neutrons per shot was stably observed during 0.1-1 Hz continuous operation.

  12. A consistent, differential versus integral, method for measuring the delayed neutron yield in fissions

    SciTech Connect

    Flip, A.; Pang, H.F.; D`Angelo, A.

    1995-12-31

    Due to the persistent uncertainties: {approximately} 5 % (the uncertainty, here and there after, is at 1{sigma}) in the prediction of the `reactivity scale` ({beta}{sub eff}) for a fast power reactor, an international project was recently initiated in the framework of the OECD/NEA activities for reevaluation, new measurements and integral benchmarking of delayed neutron (DN) data and related kinetic parameters (principally {beta}{sub eff}). Considering that the major part of this uncertainty is due to uncertainties in the DN yields (v{sub d}) and the difficulty for further improvement of the precision in differential (e.g. Keepin`s method) measurements, an international cooperative strategy was adopted aiming at extracting and consistently interpreting information from both differential (nuclear) and integral (in reactor) measurements. The main problem arises from the integral side; thus the idea was to realize {beta}{sub eff} like measurements (both deterministic and noise) in `clean` assemblies. The `clean` calculational context permitted the authors to develop a theory allowing to link explicitly this integral experimental level with the differential one, via a unified `Master Model` which relates v{sub d} and measurables quantities (on both levels) linearly. The combined error analysis is consequently largely simplified and the final uncertainty drastically reduced (theoretically, by a factor {radical}3). On the other hand the same theoretical development leading to the `Master Model`, also resulted in a structured scheme of approximations of the general (stochastic) Boltzmann equation allowing a consistent analysis of the large range of measurements concerned (stochastic, dynamic, static ... ). This paper is focused on the main results of this theoretical development and its application to the analysis of the Preliminary results of the BERENICE program ({beta}{sub eff} measurements in MASURCA, the first assembly in CADARACHE-FRANCE).

  13. Cumulative fission yields of short-lived isotopes under natural-abundance-boron-carbide-moderated neutron spectrum

    SciTech Connect

    Finn, Erin C.; Metz, Lori A.; Greenwood, Lawrence R.; Pierson, Bruce; Wittman, Richard S.; Friese, Judah I.; Kephart, Rosara F.

    2015-04-09

    The availability of gamma spectroscopy data on samples containing mixed fission products at short times after irradiation is limited. Due to this limitation, data interpretation methods for gamma spectra of mixed fission product samples, where the individual fission products have not been chemically isolated from interferences, are not well-developed. The limitation is particularly pronounced for fast pooled neutron spectra because of the lack of available fast reactors in the United States. Samples containing the actinide isotopes 233, 235, 238U, 237Np, and 239Pu individually were subjected to a 2$ pulse in the Washington State University 1 MW TRIGA reactor. To achieve a fission-energy neutron spectrum, the spectrum was tailored using a natural abundance boron carbide capsule to absorb neutrons in the thermal and epithermal region of the spectrum. Our tailored neutron spectrum is unique to the WSU reactor facility, consisting of a soft fission spectrum that contains some measurable flux in the resonance region. This results in a neutron spectrum at greater than 0.1 keV with an average energy of 70 keV, similar to fast reactor spectra and approaching that of 235U fission. Unique fission product gamma spectra were collected from 4 minutes to 1 week after fission using single-crystal high purity germanium detectors. Cumulative fission product yields measured in the current work generally agree with published fast pooled fission product yield values from ENDF/B-VII, though a bias was noted for 239Pu. The present work contributes to the compilation of energy-resolved fission product yield nuclear data for nuclear forensic purposes.

  14. Neutron yields from 435 MeV/nucleon Nb stopping in Nb and 272 MeV/nucleon Nb stopping in Nb and Al

    NASA Technical Reports Server (NTRS)

    Heilbronn, L.; Madey, R.; Elaasar, M.; Htun, M.; Frankel, K.; Gong, W. G.; Anderson, B. D.; Baldwin, A. R.; Jiang, J.; Keane, D.; McMahan, M. A.; Rathbun, W. H.; Scott, A.; Shao, Y.; Watson, J. W.; Westfall, G. D.; Yennello, S.; Zhang, W. M.; Miller, J. (Principal Investigator)

    1998-01-01

    Neutron fluences were measured from 435 MeV/nucleon Nb ions stopping in a Nb target and 272 MeV/nucleon Nb ions stopping in targets of Nb and Al for neutrons above 20 MeV and at laboratory angles between 3 degrees and 80 degrees. The resultant spectra were integrated over angles to produce neutron energy distributions and over energy to produce neutron angular distributions. The total neutron yields for each system were obtained by integrating over the angular distributions. The angular distributions from all three systems are peaked forward, and the energy distributions from all three systems show an appreciable yield of neutrons with velocities greater than the beam velocity. Comparison of the total neutron yields from the two Nb + Nb systems suggests that the average neutron multiplicity decreases with decreasing projectile energy. Comparison of the total yields from the two 272 MeV/nucleon systems suggests that the total yields show the same dependence on projectile and target mass number as do total inclusive neutron cross sections. The data are compared with Boltzmann-Uehling-Uhlenbeck model calculations.

  15. Measurement of the muon-induced neutron yield in liquid scintillator and stainless steel at LNGS with the LVD experiment

    SciTech Connect

    Persiani, R.; Garbini, M.; Sartorelli, G.; Selvi, M.; Collaboration: LVD Collaboration

    2013-08-08

    We describe the measurement of the muon-induced neutron yield in liquid scintillator and stainless steel (SS) at the Gran Sasso National Laboratory (LNGS), with the LVD experiment. The Large Volume Detector (LVD) is located in Hall A of the LNGS and is made of 1000 t of liquid scintillator and 1000 t of SS. Using an independent measurement to evaluate the background and with the support of a full Monte Carlo simulation based on Geant4, we measured a neutron yield of (2.9±0.6)×10{sup −4} and (1.5±0.3)×10{sup −3} in liquid scintillator and in stainless steel, respectively.

  16. Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators.

    PubMed

    Hsu, Yung-Cheng; Lai, Bo-Lun; Sheu, Rong-Jiun

    2016-01-01

    This study evaluated the magnitude of potential neutron yield and induced radioactivity of two new accelerators in Taiwan: a 235-MeV proton cyclotron for radiation therapy and a 3-GeV electron synchrotron serving as the injector for the Taiwan Photon Source. From a nuclear interaction point of view, neutron production from targets bombarded with high-energy particles is intrinsically related to the resulting target activation. Two multi-particle interaction and transport codes, FLUKA and MCNPX, were used in this study. To ensure prediction quality, much effort was devoted to the associated benchmark calculations. Comparisons of the accelerators' results for three target materials (copper, stainless steel and tissue) are presented. Although the proton-induced neutron yields were higher than those induced by electrons, the maximal neutron production rates of both accelerators were comparable according to their respective beam outputs during typical operation. Activation products in the targets of the two accelerators were unexpectedly similar because the primary reaction channels for proton- and electron-induced activation are (p,pn) and (γ,n), respectively. The resulting residual activities and remnant dose rates as a function of time were examined and discussed. PMID:25628454

  17. Annular shape silver lined proportional counter for on-line pulsed neutron yield measurement

    NASA Astrophysics Data System (ADS)

    Dighe, P. M.; Das, D.

    2015-04-01

    An annular shape silver lined proportional counter is developed to measure pulsed neutron radiation. The detector has 314 mm overall length and 235 mm overall diameter. The central cavity of 150 mm diameter and 200 mm length is used for placing the neutron source. Because of annular shape the detector covers >3π solid angle of the source. The detector has all welded construction. The detector is developed in two halves for easy mounting and demounting. Each half is an independent detector. Both the halves together give single neutron pulse calibration constant of 4.5×104 neutrons/shot count. The detector operates in proportional mode which gives enhanced working conditions in terms of dead time and operating range compared to Geiger Muller based neutron detectors.

  18. 48 CFR 53.303-DD-441 - Department of Defense DD Form 441, Security Agreement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Department of Defense DD Form 441, Security Agreement. 53.303-DD-441 Section 53.303-DD-441 Federal Acquisition Regulations...-DD-441 Department of Defense DD Form 441, Security Agreement. EC01MY91.163 EC01MY91.164...

  19. 48 CFR 53.303-DD-441 - Department of Defense DD Form 441, Security Agreement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Department of Defense DD Form 441, Security Agreement. 53.303-DD-441 Section 53.303-DD-441 Federal Acquisition Regulations...-DD-441 Department of Defense DD Form 441, Security Agreement. EC01MY91.163 EC01MY91.164...

  20. 48 CFR 53.303-DD-441 - Department of Defense DD Form 441, Security Agreement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Department of Defense DD Form 441, Security Agreement. 53.303-DD-441 Section 53.303-DD-441 Federal Acquisition Regulations...-DD-441 Department of Defense DD Form 441, Security Agreement. EC01MY91.163 EC01MY91.164...

  1. 48 CFR 53.303-DD-441 - Department of Defense DD Form 441, Security Agreement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Department of Defense DD Form 441, Security Agreement. 53.303-DD-441 Section 53.303-DD-441 Federal Acquisition Regulations...-DD-441 Department of Defense DD Form 441, Security Agreement. EC01MY91.163 EC01MY91.164...

  2. 48 CFR 53.303-DD-441 - Department of Defense DD Form 441, Security Agreement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Department of Defense DD Form 441, Security Agreement. 53.303-DD-441 Section 53.303-DD-441 Federal Acquisition Regulations...-DD-441 Department of Defense DD Form 441, Security Agreement. EC01MY91.163 EC01MY91.164...

  3. EVALUATION OF PROMPT DOSE ENVIRONMENT IN THE NATIONAL IGNITION FACILITY DURING D-D AND THD SHOTS

    SciTech Connect

    Khater, H; Dauffy, L; Sitaraman, S; Brereton, S

    2009-04-28

    Evaluation of the prompt dose environment expected in the National Ignition Facility (NIF) during Deuterium-Deuterium (D-D) and Tritium-Hydrogen-Deuterium (THD) shots have been completed. D-D shots resulting in the production of an annual fusion yield of up to 2.4 kJ (200 shots with 10{sup 13} neutrons per shot) are considered. During the THD shot campaign, shots generating a total of 2 x 10{sup 14} neutrons per shot are also planned. Monte Carlo simulations have been performed to estimate prompt dose values inside the facility as well as at different locations outside the facility shield walls. The Target Chamber shielding, along with Target Bay and Switchyard walls, roofs, and shield doors (when needed) will reduce dose levels in occupied areas to acceptable values during these shot campaigns. The calculated dose values inside occupied areas are small, estimated at 25 and 85 {micro}rem per shot during the D-D and THD shots, respectively. Dose values outside the facility are insignificant. The nearest building to the NIF facility where co-located workers may reside is at a distance of about 100 m from the Target Chamber Center (TCC). The dose in such a building is estimated at a fraction of a ?rem during a D-D or a THD shot. Dose at the nearest site boundary location (350 m from TCC), is caused by skyshine and to a lesser extent by direct radiation. The maximum off-site dose during any of the shots considered is less than 10 nano rem.

  4. Catalyzed D-D stellarator reactor

    DOE PAGESBeta

    Sheffield, John; Spong, Donald A.

    2016-05-12

    The advantages of using the catalyzed deuterium-deuterium (D-D) approach for a fusion reactor—lower and less energetic neutron flux and no need for a tritium breeding blanket—have been evaluated in previous papers, giving examples of both tokamak and stellarator reactors. This paper presents an update for the stellarator example, taking account of more recent empirical transport scaling results and design studies of lower-aspect-ratio stellarators. We use a modified version of the Generic Magnetic Fusion Reactor model to cost a stellarator-type reactor. Recently, this model has been updated to reflect the improved science and technology base and costs in the magnetic fusionmore » program. Furthermore, it is shown that an interesting catalyzed D-D, stellarator power plant might be possible if the following parameters could be achieved: R/ ≈ 4, required improvement factor to ISS04 scaling, FR = 0.9 to 1.15, <β> ≈ 8.0% to 11.5%, Zeff ≈ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ≈ 0.07, Bm ≈ 14 to 16 T, and R ≈ 18 to 24 m.« less

  5. Neutron Energy Spectra and Yields from the 7Li(p,n) Reaction for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Tessler, M.; Friedman, M.; Schmidt, S.; Shor, A.; Berkovits, D.; Cohen, D.; Feinberg, G.; Fiebiger, S.; Krása, A.; Paul, M.; Plag, R.; Plompen, A.; Reifarth, R.

    2016-01-01

    Neutrons produced by the 7Li(p, n)7Be reaction close to threshold are widely used to measure the cross section of s-process nucleosynthesis reactions. While experiments have been performed so far with Van de Graaff accelerators, the use of RF accelerators with higher intensities is planned to enable investigations on radioactive isotopes. In parallel, high-power Li targets for the production of high-intensity neutrons at stellar energies are developed at Goethe University (Frankfurt, Germany) and SARAF (Soreq NRC, Israel). However, such setups pose severe challenges for the measurement of the proton beam intensity or the neutron fluence. In order to develop appropriate methods, we studied in detail the neutron energy distribution and intensity produced by the thick-target 7Li(p,n)7Be reaction and compared them to state-of- the-art simulation codes. Measurements were performed with the bunched and chopped proton beam at the Van de Graaff facility of the Institute for Reference Materials and Measurements (IRMM) using the time-of-flight (TOF) technique with thin (1/8") and thick (1") detectors. The importance of detailed simulations of the detector structure and geometry for the conversion of TOF to a neutron energy is stressed. The measured neutron spectra are consistent with those previously reported and agree well with Monte Carlo simulations that include experimentally determined 7Li(p,n) cross sections, two-body kinematics and proton energy loss in the Li-target.

  6. Experimental and theoretical evaluation of accelerator based epithermal neutron yields for BNCT

    NASA Astrophysics Data System (ADS)

    Wielopolski, L.; Ludewig, H.; Powell, J. R.; Raparia, D.; Alessi, J. G.; Alburger, D. E.; Zucker, M. S.; Lowenstein, D. I.

    1999-06-01

    At BNL, we have evaluated the beam current required to produce a clinical neutron beam for Boron Neutron Capture Therapy (BNCT) with an epithermal neutron flux of 1012n/cm2/hr. Experiments were carried out on a Van de Graaff accelerator at the Radiological Research Accelerator Facility (RARAF) at Columbia University. A thick Li target was irradiated by protons with energies from 1.8 to 2.5 MeV. The neutron spectra resulting from the 7Li(p,n)7Be reaction, followed by various filter configurations, were determined by measuring pulse height distributions with a gas filled proton recoil spectrometer. These distributions were unfolded into neutron energy spectra using the PSNS code, from which the required beam currents were estimated to be about 5 mA. Results are in good agreement with calculations using the MCNP-4A transport code. In addition comparison was also made between the neutron flux obtained at the Brookhaven Medical Research Reactor (where clinical trials of BNCT are ongoing), and measurements at RARAF, using a 10BF3 detector in a phantom. These results also support the requirement for about 5 mA beam current.

  7. Neutron Yield Study of Direct-Drive, Low-Adiabat Cryogenic D2 Implosions on OMEGA Laser System

    SciTech Connect

    Hu, S.X.; Radha, P.B.; Marozas, J.A.; Betti, R.; Collins, T.J.B.; Craxton, R.S.; Delettrez, J.A.; Edgell, D.H.; Epstein, R.; Goncharov, V.N.; Igumenshchev, I.V.; Marshall, F.J.; McCrory, R.L.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.; Skupsky, S.; Smalyuk, V.A.; Elbaz, Y.; Shvarts, D.

    2009-11-17

    Neutron yields of direct-drive, low-adiabat (alpha ~~ 2 to 3) cryogenic D2 target implosions on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have been systematically investigated using the two-dimensional (2D) radiation hydrodynamics code DRACO [P. B. Radha et al., Phys. Plasmas 12, 056307 (2005)]. Low-mode (ell <- 12) perturbations, including initial target offset, ice-layer roughness, and laser-beam power imbalance, were found to be the primary source of yield reduction for thin-shell (5 um), low-alpha, cryogenic targets. The 2D simulations of thin-shell implosions track experimental measurements for different target conditions and peak laser intensities ranging from 2.5 x 10^14–6 x 10^14 W/cm^2. Simulations indicate that the fusion yield is sensitive to the relative phases between the target offset and the ice-layer perturbations. The results provide a reasonable good guide to understanding the yield degradation in direct-drive, low-adiabat, cryogenic, thin-shell-target implosions. Thick-shell (10 um) implosions generally give lower yield over clean than low-ell-mode DRACO simulation predictions. Simulations including the effect of laser-beam nonuniformities indicate that high-ell-mode perturbations caused by laser imprinting further degrade the neutron yield of thick-shell implosions. To study ICF compression physics, these results suggest a target specification with a <-30 um offset and ice-roughness of sigma_rms < 3 um are required.

  8. Neutron yield study of direct-drive, low-adiabat cryogenic D{sub 2} implosions on OMEGA laser system

    SciTech Connect

    Hu, S. X.; Radha, P. B.; Marozas, J. A.; Betti, R.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Goncharov, V. N.; Igumenshchev, I. V.; Marshall, F. J.; McCrory, R. L.; Meyerhofer, D. D.; Regan, S. P.; Sangster, T. C.; Skupsky, S.; Smalyuk, V. A.; Elbaz, Y.; Shvarts, D.

    2009-11-15

    Neutron yields of direct-drive, low-adiabat ({alpha}{approx_equal}2 to 3) cryogenic D{sub 2} target implosions on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have been systematically investigated using the two-dimensional (2D) radiation hydrodynamics code DRACO[P. B. Radha et al., Phys. Plasmas 12, 056307 (2005)]. Low-mode (l{<=}12) perturbations, including initial target offset, ice-layer roughness, and laser-beam power imbalance, were found to be the primary source of yield reduction for thin-shell (5 {mu}m), low-{alpha}, cryogenic targets. The 2D simulations of thin-shell implosions track experimental measurements for different target conditions and peak laser intensities ranging from 2.5x10{sup 14}-6x10{sup 14} W/cm{sup 2}. Simulations indicate that the fusion yield is sensitive to the relative phases between the target offset and the ice-layer perturbations. The results provide a reasonable good guide to understanding the yield degradation in direct-drive, low-adiabat, cryogenic, thin-shell-target implosions. Thick-shell (10 {mu}m) implosions generally give lower yield over clean than low-l-mode DRACO simulation predictions. Simulations including the effect of laser-beam nonuniformities indicate that high-l-mode perturbations caused by laser imprinting further degrade the neutron yield of thick-shell implosions. To study ICF compression physics, these results suggest a target specification with a {<=}30 {mu}m offset and ice-roughness of {sigma}{sub rms}<3 {mu}m are required.

  9. Neutron yields for reactions induced by 120 GeV protons on thick copper target

    SciTech Connect

    Kajimoto, Tsuyoshi; Sanami, Toshiya; Iwamoto, Yosuke; Shigyo, Nobuhiro; Hagiwara, Masayuki; Saitoh, Kiwamu; Nakashima, Hiroshi; Ishibashi, Kenji; Lee, Hee-Seock; Ramberg, Eric; Coleman, Richard; /Fermilab

    2011-02-01

    We developed an experimental method to measure neutron energy spectrum for 120-GeV protons on a thick copper target at Fermilab Test Beam Facility (FTBF). The spectrum in the energy range from 16 to 1600 MeV was obtained for 60-cm long copper target by time-of-flight technique with an NE213 scintillator and 5.5-m flight path. Energy spectra of neutrons generated from an interaction with beam and materials are important to design shielding structure of high energy accelerators. Until now, the energy spectra for the incident energy up to 3 GeV have been measured by several groups, Ishibashi et al., Amian et al., and Leray et al. In the energy region above 3 GeV, few experimental data are available because of small number of facilities for neutron experiment. On the other hand, concerning simulation codes, theoretical models for particle generation and transportation are switched from intermediate to high energy one around this energy. The spectra calculated by the codes have not been examined using experimental data. In shielding experiments using 120 GeV hadron beam, experimental data shows systematic differences from calculations. Hagiwara et al. have measured leakage neutron spectra behind iron and concrete shield from 120 GeV proton on target at anti-proton target station in Fermilab by using Bonner Spheres with unfolding technique. In CERN, Nakao et al reported experimental results of neutron spectra behind iron and concrete wall from 120 GeV/c proton and pion mixed beam on copper by using NE213 liquid scintillators with unfolding technique. Both of the results reported systematic discrepancies between experimental and calculation results. Therefore, experimental data are highly required to verify neutron production part of calculations. In this study, we developed an experimental method to measure neutron energy spectrum for 120 GeV proton on target. The neutron energy was determined using time-of-flight technique. We used the Fermilab Test Beam Facility (FTBF

  10. Reliability of Monte Carlo simulations in modeling neutron yields from a shielded fission source

    NASA Astrophysics Data System (ADS)

    McArthur, Matthew S.; Rees, Lawrence B.; Czirr, J. Bart

    2016-08-01

    Using the combination of a neutron-sensitive 6Li glass scintillator detector with a neutron-insensitive 7Li glass scintillator detector, we are able to make an accurate measurement of the capture rate of fission neutrons on 6Li. We used this detector with a 252Cf neutron source to measure the effects of both non-borated polyethylene and 5% borated polyethylene shielding on detection rates over a range of shielding thicknesses. Both of these measurements were compared with MCNP calculations to determine how well the calculations reproduced the measurements. When the source is highly shielded, the number of interactions experienced by each neutron prior to arriving at the detector is large, so it is important to compare Monte Carlo modeling with actual experimental measurements. MCNP reproduces the data fairly well, but it does generally underestimate detector efficiency both with and without polyethylene shielding. For non-borated polyethylene it underestimates the measured value by an average of 8%. This increases to an average of 11% for borated polyethylene.

  11. The effect of turbulent kinetic energy on inferred ion temperature from neutron spectra

    NASA Astrophysics Data System (ADS)

    Murphy, T. J.

    2014-07-01

    Measuring the width of the energy spectrum of fusion-produced neutrons from deuterium (DD) or deuterium-tritium (DT) plasmas is a commonly used method for determining the ion temperature in inertial confinement fusion (ICF) implosions. In a plasma with a Maxwellian distribution of ion energies, the spread in neutron energy arises from the thermal spread in the center-of-mass velocities of reacting pairs of ions. Fluid velocities in ICF are of a similar magnitude as the center-of-mass velocities and can lead to further broadening of the neutron spectrum, leading to erroneous inference of ion temperature. Motion of the reacting plasma will affect DD and DT neutrons differently, leading to disagreement between ion temperatures inferred from the two reactions. This effect may be a contributor to observations over the past decades of ion temperatures higher than expected from simulations, ion temperatures in disagreement with observed yields, and different temperatures measured in the same implosion from DD and DT neutrons. This difference in broadening of DD and DT neutrons also provides a measure of turbulent motion in a fusion plasma.

  12. The effect of turbulent kinetic energy on inferred ion temperature from neutron spectra

    SciTech Connect

    Murphy, T. J.

    2014-07-15

    Measuring the width of the energy spectrum of fusion-produced neutrons from deuterium (DD) or deuterium-tritium (DT) plasmas is a commonly used method for determining the ion temperature in inertial confinement fusion (ICF) implosions. In a plasma with a Maxwellian distribution of ion energies, the spread in neutron energy arises from the thermal spread in the center-of-mass velocities of reacting pairs of ions. Fluid velocities in ICF are of a similar magnitude as the center-of-mass velocities and can lead to further broadening of the neutron spectrum, leading to erroneous inference of ion temperature. Motion of the reacting plasma will affect DD and DT neutrons differently, leading to disagreement between ion temperatures inferred from the two reactions. This effect may be a contributor to observations over the past decades of ion temperatures higher than expected from simulations, ion temperatures in disagreement with observed yields, and different temperatures measured in the same implosion from DD and DT neutrons. This difference in broadening of DD and DT neutrons also provides a measure of turbulent motion in a fusion plasma.

  13. Efficient neutron production from a novel configuration of deuterium gas-puff z-pinch.

    PubMed

    Klir, D; Kubes, P; Rezac, K; Cikhardt, J; Kravarik, J; Sila, O; Shishlov, A V; Kovalchuk, B M; Ratakhin, N A; Kokshenev, V A; Labetsky, A Yu; Cherdizov, R K; Fursov, F I; Kurmaev, N E; Dudkin, G N; Nechaev, B A; Padalko, V N; Orcikova, H; Turek, K

    2014-03-01

    A novel configuration of a deuterium z pinch has been used to generate fusion neutrons. Injecting an outer hollow cylindrical plasma shell around an inner deuterium gas puff, neutron yields from DD reactions reached Y(n)=(2.9 ± 0.3) × 10(12) at 700 ns implosion time and 2.7 MA current. Such a neutron yield means a tenfold increase in comparison with previous deuterium gas puff experiments at the same current generator. The increase of beam-target yields was obtained by a larger amount of current assembled on the z-pinch axis, and subsequently by higher induced voltage and higher energies of deuterons. A stack of CR-39 track detectors on the z-pinch axis showed hydrogen ions up to 38 MeV. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial time-of-flight detectors, respectively. The number of DD neutrons per one joule of stored plasma energy approached 5 × 10(7). This implies that deuterium gas puff z pinches belong to the most efficient plasma-based sources of DD neutrons. PMID:24655260

  14. Dependence of TLD thermoluminescence yield on absorbed dose in a thermal neutron field.

    PubMed

    Gambarini, G; Roy, M S

    1997-01-01

    The emission from 6LiF and 7LiF thermoluminescence dosimeters (TLDs) exposed to the mixed field of thermal neutrons and gamma-rays of the thermal facility of a TRIGA MARK II nuclear reactor has been investigated for various thermal neutron fluences of the order of magnitude of those utilised in radiotherapy, with the purpose of investigating the reliability of TLD readouts in such radiation fields and of giving some information for better obtainment of the absorbed dose values. The emission after exposure in this mixed field is compared with the emission after gamma-rays only. The glow curves have been deconvoluted into gaussian peaks, and the differences in the characteristics of the peaks observed for the two radiation fields, having different linear energy transfers, and for different doses are shown. Irreversible radiation damage in dosimeters having high sensitivity to thermal neutrons is also reported, showing a memory effect of the previous thermal neutron irradiation history which is not restored by anneal treatment. PMID:9463872

  15. D-D fusion experiments using fast z pinches

    SciTech Connect

    Spielman, R.B.; Baldwin, G.T.; Cooper, G.

    1994-04-01

    The development of high current (I > 10 MA) drivers provides us with a new tool for the study of neutron-producing plasmas in the thermal regime. The imploded deuterium mass (or collisionality) increases as I{sup 2} and the ability of the driver to heat the plasma to relevant fusion temperatures improves as the power of the driver increases. Additionally, fast (< 100 ns) implosions are more stable to the usual MHD instabilities that plagued the traditional slower implosions. We describe experiments in which deuterium gas puffs or CD{sub 2} fiber arrays were imploded in a fast z-pinch configuration on Sandia`s Saturn facility generating up to 3 {times} 10{sup 12} D-D neutrons. These experiments were designed to explore the physics of neutron-generating plasmas in a z-pinch geometry. Specifically, we intended to produce neutrons from a nearly thermal plasma where the electrons and ions have a nearly Maxwellian distribution. This is to be clearly differentiated from the more usual D-D beam-target neutrons generated in many dense plasma focus (DPF) devices.

  16. D-D fusion experiments using fast Z pinches

    SciTech Connect

    Spielman, R.B.; Baldwin, G.T.; Cooper, G.

    1998-03-01

    The development of high current (I > 10 MA) drivers provides the authors with a new tool for the study of neutron-producing plasmas in the thermal regime. The imploded deuterium mass (or collisionality) increases as I{sup 2} and the ability of the driver to heat the plasma to relevant fusion temperatures improves as the power of the driver increases. Additionally, fast (<100 ns) implosions are more stable to the usual MHD instabilities that plagued the traditional slower implosions. The authors describe experiments in which deuterium gas puffs or CD{sub 2} fiber arrays were imploded in a fast z-pinch configuration on Sandia`s Saturn facility generating up to 3 {times} 10{sup 12} D-D neutrons. These experiments were designed to explore the physics of neutron-generating plasmas in a z-pinch geometry. Specifically, the authors intended to produce neutrons from a nearly thermal plasma where the electrons and ions have a nearly Maxwellian distribution. This is to be clearly differentiated from the more usual D-D beam-target neutrons generated in many dense plasma focus (DPF) devices.

  17. Relative light yield and temporal response of a stilbene-doped bibenzyl organic scintillator for neutron detection

    SciTech Connect

    Brown, J. A.; Goldblum, B. L. Brickner, N. M.; Daub, B. H.; Kaufman, G. S.; Bibber, K. van; Vujic, J.; Bernstein, L. A.; Bleuel, D. L.; Caggiano, J. A.; Hatarik, R.; Phillips, T. W.; Zaitseva, N. P.; Wender, S. A.

    2014-05-21

    The neutron time-of-flight (nTOF) diagnostics used to characterize implosions at the National Ignition Facility (NIF) has necessitated the development of novel scintillators that exhibit a rapid temporal response and high light yield. One such material, a bibenzyl-stilbene mixed single-crystal organic scintillator grown in a 99.5:0.5 ratio in solution, has become the standard scintillator used for nTOF diagnostics at NIF. The prompt fluorescence lifetime and relative light yield as a function of proton energy were determined to calibrate this material as a neutron detector. The temporal evolution of the intensity of the prompt fluorescent response was modeled using first-order reaction kinetics and the prompt fluorescence decay constant was determined to be 2.46 ± 0.01 (fit) ± 0.13 (systematic) ns. The relative response of the bibenzyl-stilbene mixed crystal generated by recoiling protons was measured, and results were analyzed using Birks' relation to quantify the non-radiative quenching of excitation energy in the scintillator.

  18. Relative light yield and temporal response of a stilbene-doped bibenzyl organic scintillator for neutron detection

    NASA Astrophysics Data System (ADS)

    Brown, J. A.; Goldblum, B. L.; Bernstein, L. A.; Bleuel, D. L.; Brickner, N. M.; Caggiano, J. A.; Daub, B. H.; Kaufman, G. S.; Hatarik, R.; Phillips, T. W.; Wender, S. A.; van Bibber, K.; Vujic, J.; Zaitseva, N. P.

    2014-05-01

    The neutron time-of-flight (nTOF) diagnostics used to characterize implosions at the National Ignition Facility (NIF) has necessitated the development of novel scintillators that exhibit a rapid temporal response and high light yield. One such material, a bibenzyl-stilbene mixed single-crystal organic scintillator grown in a 99.5:0.5 ratio in solution, has become the standard scintillator used for nTOF diagnostics at NIF. The prompt fluorescence lifetime and relative light yield as a function of proton energy were determined to calibrate this material as a neutron detector. The temporal evolution of the intensity of the prompt fluorescent response was modeled using first-order reaction kinetics and the prompt fluorescence decay constant was determined to be 2.46 ± 0.01 (fit) ± 0.13 (systematic) ns. The relative response of the bibenzyl-stilbene mixed crystal generated by recoiling protons was measured, and results were analyzed using Birks' relation to quantify the non-radiative quenching of excitation energy in the scintillator.

  19. Radiolytic yield of ozone in air for low dose neutron and x-ray/gamma-ray radiation

    NASA Astrophysics Data System (ADS)

    Cole, J.; Su, S.; Blakeley, R. E.; Koonath, P.; Hecht, A. A.

    2015-01-01

    Radiation ionizes surrounding air and produces molecular species, and these localized effects may be used as a signature of, and for quantification of, radiation. Low-level ozone production measurements from radioactive sources have been performed in this work to understand radiation chemical yields at low doses. The University of New Mexico AGN-201 M reactor was used as a tunable radiation source. Ozone levels were compared between reactor-on and reactor-off conditions, and differences (0.61 to 0.73 ppb) well below background levels were measured. Simulations were performed to determine the dose rate distribution and average dose rate to the air sample within the reactor, giving 35 mGy of mixed photon and neutron dose. A radiation chemical yield for ozone of 6.5±0.8 molecules/100 eV was found by a variance weighted average of the data. The different contributions of photons and neutrons to radiolytic ozone production are discussed.

  20. Diagnostic of fusion neutrons on JET tokamak using diamond detector

    SciTech Connect

    Nemtsev, G.; Amosov, V.; Marchenko, N.; Meshchaninov, S.; Rodionov, R.; Popovichev, S.; Collaboration: JET EFDA Conbributors

    2014-08-21

    In 2011-2012, an experimental campaign with a significant yield of fusion neutrons was carried out on the JET tokamak. During this campaign the facility was equipped with two diamond detectors based on natural and artificial CVD diamond. These detectors were designed and manufactured in State Research Center of Russian Federation TRINITI. The detectors measure the flux of fast neutrons with energies above 0.2 MeV. They have been installed in the torus hall and the distance from the center of plasma was about 3 m. For some of the JET pulses in this experiment, the neutron flux density corresponded to the operational conditions in collimator channels of ITER Vertical Neutron Camera. The main objective of diamond monitors was the measurement of total fast neutron flux at the detector location and the estimation of the JET total neutron yield. The detectors operate as threshold counters. Additionally a spectrometric measurement channel has been configured that allowed us to distinguish various energy components of the neutron spectrum. In this paper we describe the neutron signal measuring and calibration procedure of the diamond detector. Fluxes of DD and DT neutrons at the detector location were measured. It is shown that the signals of total neutron yield measured by the diamond detector correlate with signals measured by the main JET neutron diagnostic based on fission chambers with high accuracy. This experiment can be considered as a successful test of diamond detectors in ITER-like conditions.

  1. A New Neutron Time-of-Flight Detector for DT Yield and Ion-Temperature Measurements on OMEGA

    NASA Astrophysics Data System (ADS)

    Glebov, V. Yu.; Forrest, C. J.; Knauer, J. P.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.

    2015-11-01

    A new neutron time-of-flight (nTOF) detector for DT yield and ion-temperature measurements in DT implosions on the OMEGA Laser System was designed, fabricated, tested, and calibrated. The goal of this detector is to provide a second line of sight for DT yield and ion-temperature measurements in the 1 ×1012 to 1014 yield range. The nTOF detector consists of a 40-mm-diam, 20-mm-thick BC-422Q(1%) scintillator coupled with a one-stage Photek PMT-140 photomultiplier tube. To avoid PMT saturation at high yields a neutral density filter ND1 is inserted between the scintillator and PMT. Both the scintillator and PMT are shielded from hard x rays by 5 mm of lead on all sides and 10 mm in the direction of the target. The nTOF detector is located at 15.8 m from target chamber center in the OMEGA Target Bay. The design details and calibration results of this nTOF detector in DT implosions on OMEGA will be presented. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. The tokamak as a neutron source

    SciTech Connect

    Hendel, H.W.; Jassby, D.L.

    1989-11-01

    This paper describes the tokamak in its role as a neutron source, with emphasis on experimental results for D-D neutron production. The sections summarize tokamak operation, sources of fusion and non-fusion neutrons, principal neutron detection methods and their calibration, neutron energy spectra and fluxes outside the tokamak plasma chamber, history of neutron production in tokamaks, neutron emission and fusion power gain from JET and TFTR (the largest present-day tokamaks), and D-T neutron production from burnup of D-D tritons. This paper also discusses the prospects for future tokamak neutron production and potential applications of tokamak neutron sources. 100 refs., 16 figs., 4 tabs.

  3. A Monte Carlo comparison of PGNAA system performance using 252Cf neutrons, 2.8-MeV neutrons and 14-MeV neutrons

    NASA Astrophysics Data System (ADS)

    Naqvi, A. A.

    2003-10-01

    Monte Carlo simulations were carried out to compare performance of a 252Cf neutron and a 14-MeV neutron-based prompt γ-ray neutron activation analysis (PGNAA) system with that of the 2.8-MeV neutron-based PGNAA system at King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia. Since the energy of neutron beam used in the KFUPM PGNAA system is very close to that produced by a DD neutron generator, performance comparison between a DD and a DT neutron generator-based PGNAA system is highly desired. For the sake of comparison, the calculations were carried out for the PGNAA system with geometry similar to the KFUPM PGNAA system. These calculations were required to determine improvement in performance of the KFUPM PGNAA system if its 2.8-MeV neutron source is replaced by a 252Cf neutron source or a 14-MeV neutron source. Results of the calculations revealed that the geometry of the 252Cf neutron and the 2.8-MeV neutron-based PGNAA system are not significantly different but the geometry of the 14-MeV neutron-based system is significantly different from that of the 2.8-MeV neutron-based PGNAA system. Accordingly, the prompt γ-ray yields from the 252Cf neutron and the 2.8-MeV neutron-based PGNAA system is comparable but prompt γ-ray yields from 14-MeV neutron-based PGNAA system are about three times smaller than that from the 2.8-MeV neutron-based PGNAA system. This study has shown that performance of the 252Cf neutron-based PGNAA system is comparable with that of the 2.8-MeV neutron-based PGNAA system but the performance of the 14-MeV neutron-based PGNAA system is poorer than that of the 2.8-MeV neutron-based PGNAA system.

  4. Study of the exclusive initial-state-radiation production of the DD system

    SciTech Connect

    Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.; Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G. S.; Battaglia, M.; Brown, D. N.

    2007-12-01

    A search for charmonium and other new states is performed in a study of exclusive initial-state-radiation production of DD events from electron-positron annihilations at a center-of-mass energy of 10.58 GeV. The data sample corresponds to an integrated luminosity of 384 fb{sup -1} and was recorded by the BABAR experiment at the PEP-II storage ring. The DD mass spectrum shows clear evidence of the {psi}(3770) plus other structures near 3.9, 4.1, and 4.4 GeV/c{sup 2}. No evidence for Y(4260){yields}DD is observed, leading to an upper limit of B(Y(4260){yields}DD)/B(Y(4260){yields}J/{psi}{pi}{sup +}{pi}{sup -})<1.0 at 90% confidence level.

  5. Limiting temperatures of neutron rich nuclei: A possible interpretation of data from isotope yield ratios

    SciTech Connect

    Natowitz, J.B.; Hagel, K.; Wada, R.; Majka, Z.; Gonthier, P.; Li, J.; Mdeiwayeh, N.; Xiao, B.; Zhao, Y.

    1995-11-01

    The recent ALADIN report of limiting temperatures for nuclear disassembly, derived from measurements of isotopic ratios for He and Li nuclei, is discussed. It is suggested that the entire excitation energy dependence which is observed may result from the fact that limiting temperatures for the onset of Coulomb instability are being measured for progressively lighter neutron rich nuclei as the excitation energy per nucleon increases. While the basic observation of plateauing in the intermediate excitation energy range remains valid, the higher excitation results may not signal entry into the vapor phase. The ALADIN result for {ital A}{approx}125, when combined with lower energy data, indicates a plateau temperature near 6.5 MeV over the range of 3--11 MeV/nucleon initial excitation energy.

  6. Acceleration of Hydrogen Ions up to 30 MeV and Generation of 3 × 1012 Neutrons in Megaampere Deuterium Gas-Puff Z-Pinch

    NASA Astrophysics Data System (ADS)

    Klir, D.; Cikhardt, J.; Kravarik, J.; Kubes, P.; Rezac, K.; Sila, O.; Shishlov, A.; Cherdizov, R.; Fursov, F.; Kokshenev, V.; Kovalchuk, B.; Kurmaev, N.; Labetsky, A.; Ratakhin, N.; Orcikova, H.; Turek, K.

    2013-10-01

    Fusion neutrons were produced with a deuterium gas-puff z-pinch on the GIT-12 generator at the Institute of High Current Electronics in Tomsk. The peak neutron yield from DD reactions reached Yn = (2 . 9 +/- 0 . 3) ×1012 at 100 μg/cm linear mass density of deuterium, 700 ns implosion time and 2.7 MA current. Such a neutron yield means that the scaling law of deuterium z-pinches Yn ~I4 was extended to 3 MA currents. The further increase of neutron yields up to (3 . 7 +/- 0 . 4) ×1012 was achieved by placing a deuterated polyethylene catcher onto the axis. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial nToF detectors, respectively. A stack of CR-39 track detectors showed up to 40 MeV deuterons (or 30 MeV protons) on the z-pinch axis. Since the energy input into plasmas was 70 kJ, the number of DD neutrons per one joule of stored plasma energy exceeded the value of 5 ×107 . This value implies that deuterium gas-puff z-pinches belong to the most efficient plasma-based sources of DD neutrons. This work was partially supported by the GACR grant No. P205/12/0454 and by the RFBR research project No. 13-08-00479-a.

  7. Isotopic yield measurement in the heavy mass region for 239Pu thermal neutron induced fission

    NASA Astrophysics Data System (ADS)

    Bail, A.; Serot, O.; Mathieu, L.; Litaize, O.; Materna, T.; Köster, U.; Faust, H.; Letourneau, A.; Panebianco, S.

    2011-09-01

    Despite the huge number of fission yield data available in the different evaluated nuclear data libraries, such as JEFF-3.1.1, ENDF/B-VII.0, and JENDL-4.0, more accurate data are still needed both for nuclear energy applications and for our understanding of the fission process itself. It is within the framework of this that measurements on the recoil mass spectrometer Lohengrin (at the Institut Laue-Langevin, Grenoble, France) was undertaken, to determine isotopic yields for the heavy fission products from the 239Pu(nth,f) reaction. In order to do this, a new experimental method based on γ-ray spectrometry was developed and validated by comparing our results with those performed in the light mass region with completely different setups. Hence, about 65 fission product yields were measured with an uncertainty that has been reduced on average by a factor of 2 compared to that previously available in the nuclear data libraries. In addition, for some fission products, a strongly deformed ionic charge distribution compared to a normal Gaussian shape was found, which was interpreted as being caused by the presence of a nanosecond isomeric state. Finally, a nuclear charge polarization has been observed in agreement, with the one described on other close fissioning systems.

  8. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    DOE PAGESBeta

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Cooper, G. W.; Gomez, M. R.; Slutz, S.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; et al

    2016-05-01

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ~2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner ~ 1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Furthermore, plans to improve and expandmore » the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.« less

  9. The JET Neutron Activation System

    NASA Astrophysics Data System (ADS)

    Roquemore, A. L.; Bertalot, L.; Esposito, B.; Jarvis, O. N.; Loughlin, M. J.; Sadler, G.; van Belle, P.

    1997-11-01

    The JET activation system provides the absolute value of the neutron yields as well as a check on the linearity of other neutron detector systems. The total neutron yield is standardized to one irradiation end reentrant in the top of the vessel, while the results from the other seven irradiation ends are normalized to this standard end and provide redundancy as well as information on the plasma position. A pneumatic transfer system is used to transfer up to five capsules containing elemental foils for a single discharge on JET. Eleven different elemental foils have been utilized to determine the yields from both DD and DT plasmas. By placing several different foils with different activation energy thresholds in a single capsule for one DT discharge, neutron spectral information has been obtained by use of the SAND-II unfolding code. A description of the activation system hardware and calibration of the activation detector system will be presented along with the results from the DT neutron calibration campaign.

  10. Measurement of Fragment Mass Yields in Neutron-Induced Fission of 232TH and 238U at 33, 45 and 60 Mev

    NASA Astrophysics Data System (ADS)

    Simutkin, V. D.; Pomp, S.; Blomgren, J.; Österlund, M.; Andersson, P.; Bevilacqua, R.; Ryzhov, I. V.; Tutin, G. A.; Khlopin, V. G.; Onegin, M. S.; Vaishnene, L. A.; Meulders, J. P.; Prieels, R.

    2011-10-01

    Over the past years, a significant effort has been devoted to measurements of neutron-induced fission cross-sections at intermediate energies but there is a lack of experimental data on fission yields. Here we describe recent measurements of pre-neutron emission fragment mass distributions from intermediate energy neutron-induced fission of 232Th and 238U. The measurements have been done at the quasi-monoenergetic neutron beam of the Louvain-la-Neuve cyclotron facility CYCLONE and neutron peak energies at 32.8, 45.3 and 59.9 MeV. A multi-section Frisch-gridded ionization chamber was used as a fission fragment detector. The measurement results are compared with available experimental data. Some TALYS code modifications done to describe the experimental results are discussed.

  11. Compact neutron generator developement and applications

    SciTech Connect

    Leung, Ka-Ngo; Reijonen, Jani; Gicquel, Frederic; Hahto, Sami; Lou, Tak-Pui

    2004-01-18

    The Plasma and Ion Source Technology Group at the Lawrence Berkeley National Laboratory has been engaging in the development of high yield compact neutron generators for the last ten years. Because neutrons in these generators are formed by using either D-D, T-T or D-T fusion reaction, one can produce either mono-energetic (2.4 MeV or 14 MeV) or white neutrons. All the neutron generators being developed by our group utilize 13.5 MHz RF induction discharge to produce a pure deuterium or a mixture of deuterium-tritium plasma. As a result, ion beams with high current density and almost pure atomic ions can be extracted from the plasma source. The ion beams are accelerated to {approx}100 keV and neutrons are produced when the beams impinge on a titanium target. Neutron generators with different configurations and sizes have been designed and tested at LBNL. Their applications include neutron activation analysis, oil-well logging, boron neutron capture therapy, brachytherapy, cargo and luggage screening. A novel small point neutron source has recently been developed for radiography application. The source size can be 2 mm or less, making it possible to examine objects with sharper images. The performance of these neutron generators will be described in this paper.

  12. Neutron tube design study for boron neutron capture therapy application

    SciTech Connect

    Verbeke, J.M.; Lee, Y.; Leung, K.N.; Vujic, J.; Williams, M.D.; Wu, L.K.; Zahir, N.

    1999-05-06

    Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator application. By using a 5-cm-diameter RF-driven multicusp source H{sup +} yields over 95% have been achieved. These experimental findings will enable one to develop compact neutron generators based on the D-D or D-T fusion reactions. In this new neutron generator, the ion source, the accelerator and the target are all housed in a sealed metal container without external pumping. Recent moderator design simulation studies have shown that 14 MeV neutrons could be moderated to therapeutically useful energy ranges for boron neutron capture therapy (BNCT). The dose near the center of the brain with optimized moderators is about 65% higher than the dose obtained from a typical neutron spectrum produced by the Brookhaven Medical Research Reactor (BMRR), and is comparable to the dose obtained by other accelerator-based neutron sources. With a 120 keV and 1 A deuteron beam, a treatment time of {approx}35 minutes is estimated for BNCT.

  13. DD-bar production and their interactions

    SciTech Connect

    Liu Yanrui; Oka, Makoto; Takizawa, Makoto; Liu Xiang

    2011-05-23

    We have explored the bound state problem and the scattering problem of the DD-bar pair in a meson exchange model. When considering their production in the e{sup +}e{sup -} process, we included the DD-bar rescattering effect. Although it is difficult to answer whether the S-wave DD-bar bound state exists or not from the binding energies and the phase shifts, one may get an upper limit of the binding energy from the production of the BB-bar, the bottom analog of DD-bar.

  14. M-ARIANE (Mirror-assisted Active Readout In A Neutron Environment): an x-ray imaging system for implosion experiments on the National Ignition Facility at ignition neutron yields

    NASA Astrophysics Data System (ADS)

    Smalyuk, V. A.; Ayers, J.; Bell, P. M.; Benedetti, L. R.; Bradley, D. K.; Cerjan, C.; Emig, J.; Felker, B.; Glenn, S. M.; Hagmann, C.; Holder, J.; Izumi, N.; Kilkenny, J. D.; Koch, J. A.; Landen, O. L.; Moody, J.; Piston, K.; Simanovskaia, N.; Walton, C.

    2013-09-01

    X-ray imaging diagnostics instruments will operate in a harsh ionizing radiation background environment during ignition experiments at the National Ignition Facility (NIF). This background consists of mostly neutrons and gamma rays produced by inelastic scattering of neutrons. An imaging system, M-ARIANE (Mirror-assisted Active Readout In A Neutron Environment), based on an x-ray framing camera with film, has been designed to operate in such a harsh neutron-induced background environment. Multilayer x-ray mirrors and a shielding enclosure are the key components of this imaging system which is designed to operate at ignition neutron yields of ~1e18 on NIF. Modeling of the neutronand gamma-induced backgrounds along with the signal and noise of the x-ray imaging system is presented that display the effectiveness of this design.

  15. Observed Multi-Decade DD and DT Z-Pinch Fusion Rate Scaling in 5 Dense Plasma Focus Fusion Machines

    SciTech Connect

    Hagen, E. C.; Lowe, D. R.; O'Brien, R.; Meehan, B. T.

    2013-06-18

    Dense Plasma Focus (DPF) machines are in use worldwide or a wide variety of applications; one of these is to produce intense, short bursts of fusion via r-Z pinch heating and compression of a working gas. We have designed and constructed a series of these, ranging from portable to a maximum energy storage capacity of 2 MJ. Fusion rates from 5 DPF pulsed fusion generators have been measured in a single laboratory using calibrated activation detectors. Measured rates range from ~ 1015 to more than 1019 fusions per second have been measured. Fusion rates from the intense short (20 – 50 ns) periods of production were inferred from measurement of neutron production using both calibrated activation detectors and scintillator-PMT neutron time of flight (NTOF) detectors. The NTOF detectors are arranged to measure neutrons versus time over flight paths of 30 Meters. Fusion rate scaling versus energy and current will be discussed. Data showing observed fusion cutoff at D-D fusion yield levels of approximately 1*1012, and corresponding tube currents of ~ 3 MA will be shown. Energy asymmetry of product neutrons will also be discussed. Data from the NTOF lines of sight have been used to measure energy asymmetries of the fusion neutrons. From this, center of mass energies for the D(d,n)3He reaction are inferred. A novel re-entrant chamber that allows extremely high single pulse neutron doses (> 109 neutrons/cm2 in 50 ns) to be supplied to samples will be described. Machine characteristics and detector types will be discussed.

  16. Effect of pd and dd reactions enhancement in deuterides TiD2, ZrD2 and Ta2D in the astrophysical energy range

    NASA Astrophysics Data System (ADS)

    Bystritskii, V. M.; Dudkin, G. N.; Filipowicz, M.; Huran, J.; Krylov, A. R.; Nechayev, B. A.; Padalko, V. N.; Pen'kov, F. M.; Philippov, A. V.; Tuleushev, Yu. Zh.

    2016-01-01

    Investigation of the pd-and dd-reactions in the ultralow energy (~keV) range is of great interest in the aspect of nuclear physics and astrophysics for developing of correct models of burning and evolution of stars. This report presents compendium of experimental results obtained at the pulsed plasma Hall accelerator (TPU, Tomsk). Most of those results are new, such as • temperature dependence of the neutron yield in the D( d, n)3He reaction in the ZrD2, Ta2D, TiD2 • potentials of electron screening and respective dependence of astrophysical S-factors in the dd-reaction for the deuteron collision energy in the range of 3-6 keV, with ZrD2, Ta2D temperature in the range of 20-200°C [1] • characteristics of the reaction d( p, γ)3He in the ultralow collision proton-deuterons energy range of 4-13 keV [2, 3] in ZrD2, Ta2D and TiD2 • observation of the neutron yield enhancement in the reaction D( d, n)3He at the ultralow deuteron collision energy due to channeling of deuterons in microscopic TiD2 with a face-centered cubic lattice type TiD1.73, oriented in the [100] direction [4]. The report includes discussion and comparison of the collected experimental results with the global data and calculations.

  17. Beam-plasma instabilities and their impact on D-D reactivity

    NASA Astrophysics Data System (ADS)

    Necas, Ales; Magee, R.; Tajima, T.; Nicks, B.; Seggebruch, M.; Garate, E.; Allfrey, I.; Valentine, T.; entire TAE Team

    2015-11-01

    The goal of the C-2U program is to achieve 5 +ms steady state FRC sustainment via beam injection. In support, we simulate possible beam driven instabilities that are non-destructive, but transfer energy from fast ions to the plasma, causing phase space bunching. Such a mechanism may explain an experimentally observed anomalous neutron signal (10-100 × greater than the predicted thermonuclear component and peaking between 1-2 ms, correlated with a 1 ms beam slowing down time), as other explanations have been eliminated (D in the beams, fast-thermal ion head-on collisions, and miscalculation of Ti). We propose that the hydrogen beam generates an energetic ion population that then drives collective modes in the plasma, giving rise to an instability and increased fusion rate. A two-body correlation function is employed to determine DD reactivity enhancements. The instability changes character from electrostatic (ES; phase velocity is 70% of the beam velocity) in the low beta edge to fully electromagnetic (EM; at magnetosonic speeds) in the core, with an associated reduction in growth rates. A 1D ES analytical dispersion relation will be compared with a 1D3V PIC code (full EM study only performed with PIC code). Results from simulations are consistent with the observed neutron yield.

  18. DPSSL pumped 20-TW Ti:sapphire laser system for DD fusion experiment

    NASA Astrophysics Data System (ADS)

    Sekine, T.; Hatano, Y.; Takeuchi, Y.; Kawashima, T.

    2016-03-01

    A diode-pumped solid-state laser (DPSSL) pumped 20-TW output Ti:sapphire laser system has been developed. A diode-pumped Nd:glass laser with output energy of 12.7 J in 527 nm was used as a pump source for a 20-TW Ti:sapphire amplifier. A CeLiB6O10 nonlinear optical crystal was used as a frequency doubler of the Nd:glass DPSSL[1]. Figure 1 shows typical output pulse energy of the 20-TW amplifier as a function of pumping energy and a near field pattern. A 1.65 J pulse energy was obtained by 4.5 J pump energy. The amplified seed pulse is compressed to typically 60 fs as shown in Fig. 1 by a vacuumed pulse compressor with 80% of transmissivity. Encircled energy ratio, into a circled with 8 μm diameter area, of far field pattern focused by off-axis parabolic mirror with F# of 3 is numerically evaluated to 40% at TW class output condition. Then focal intensity would reach to 1018W/cm2. This all- DPSSL system contributes for stable and continual investigation of laser induced plasma experiment. We have succeeded continual and high efficient generation of DD fusion neutron from CD nano-particles by cluster fusion scheme using the 20-TW laser. A yield of ∼105 neutrons per shot was stably observed during continuous 100 shots with repetition rate of 0.1Hz.

  19. Gold nanoparticles production using reactor and cyclotron based methods in assessment of (196,198)Au production yields by (197)Au neutron absorption for therapeutic purposes.

    PubMed

    Khorshidi, Abdollah

    2016-11-01

    Medical nano-gold radioisotopes is produced regularly using high-flux nuclear reactors, and an accelerator-driven neutron activator can turn out higher yield of (197)Au(n,γ)(196,198)Au reactions. Here, nano-gold production via radiative/neutron capture was investigated using irradiated Tehran Research Reactor flux and also simulated proton beam of Karaj cyclotron in Iran. (197)Au nano-solution, including 20nm shaped spherical gold and water, was irradiated under Tehran reactor flux at 2.5E+13n/cm(2)/s for (196,198)Au activity and production yield estimations. Meanwhile, the yield was examined using 30MeV proton beam of Karaj cyclotron via simulated new neutron activator containing beryllium target, bismuth moderator around the target, and also PbF2 reflector enclosed the moderator region. Transmutation in (197)Au nano-solution samples were explored at 15 and 25cm distances from the target. The neutron flux behavior inside the water and bismuth moderators was investigated for nano-gold particles transmutation. The transport of fast neutrons inside bismuth material as heavy nuclei with a lesser lethargy can be contributed in enhanced nano-gold transmutation with long duration time than the water moderator in reactor-based method. Cyclotron-driven production of βeta-emitting radioisotopes for brachytherapy applications can complete the nano-gold production technology as a safer approach as compared to the reactor-based method. PMID:27524041

  20. Experimental Neutron-induced Fission Fragment Mass Yields of 232Th and 238U at Energies from 10 to 33 Me

    NASA Astrophysics Data System (ADS)

    Simutkin, V. D.; Pomp, S.; Blomgren, J.; Österlund, M.; Bevilacqua, R.; Andersson, P.; Ryzhov, I. V.; Tutin, G. A.; Yavshits, S. G.; Vaishnene, L. A.; Onegin, M. S.; Meulders, J. P.; Prieels, R.

    2014-05-01

    Development of nuclear energy applications requires data for neutron-induced reactions for actinides in a wide neutron energy range. Here we describe measurements of pre-neutron emission fission fragment mass yields of 232Th and 238U at incident neutron energies from 10 to 33 MeV. The measurements were done at the quasi-monoenergetic neutron beam of the Louvain-la-Neuve cyclotron facility CYCLONE; a multi-section twin Frisch-gridded ionization chamber was used to detect fission fragments. For the peak neutron energies at 33, 45 and 60 MeV, the details of the data analysis and the experimental results were published in Ref. [I.V. Ryzhov, S.G. Yavshits, G.A. Tutin et al., Phys. Rev. C 83, 054603 (2011)]. In this work we present data analysis in the low-energy tail of the neutron energy spectra. The preliminary measurement results are compared with available experimental data and theoretical predictions.

  1. 48 CFR 53.303-DD-254 - Department of Defense DD Form 254, Contract Security Classification Specification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Department of Defense DD Form 254, Contract Security Classification Specification. 53.303-DD-254 Section 53.303-DD-254 Federal... Illustrations of Forms 53.303-DD-254 Department of Defense DD Form 254, Contract Security...

  2. 48 CFR 53.303-DD-254 - Department of Defense DD Form 254, Contract Security Classification Specification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Department of Defense DD Form 254, Contract Security Classification Specification. 53.303-DD-254 Section 53.303-DD-254 Federal... Illustrations of Forms 53.303-DD-254 Department of Defense DD Form 254, Contract Security...

  3. 48 CFR 53.303-DD-254 - Department of Defense DD Form 254, Contract Security Classification Specification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Department of Defense DD Form 254, Contract Security Classification Specification. 53.303-DD-254 Section 53.303-DD-254 Federal... Illustrations of Forms 53.303-DD-254 Department of Defense DD Form 254, Contract Security...

  4. 48 CFR 53.303-DD-254 - Department of Defense DD Form 254, Contract Security Classification Specification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Department of Defense DD Form 254, Contract Security Classification Specification. 53.303-DD-254 Section 53.303-DD-254 Federal... Illustrations of Forms 53.303-DD-254 Department of Defense DD Form 254, Contract Security...

  5. 48 CFR 53.303-DD-254 - Department of Defense DD Form 254, Contract Security Classification Specification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Department of Defense DD Form 254, Contract Security Classification Specification. 53.303-DD-254 Section 53.303-DD-254 Federal... Illustrations of Forms 53.303-DD-254 Department of Defense DD Form 254, Contract Security...

  6. 48 CFR 53.204-1 - Safeguarding classified information within industry (DD Form 254, DD Form 441).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... information within industry (DD Form 254, DD Form 441). 53.204-1 Section 53.204-1 Federal Acquisition....204-1 Safeguarding classified information within industry (DD Form 254, DD Form 441). The following... specified in subpart 4.4 and the clause at 52.204-2: (a) DD Form 254 (Department of Defense (DOD)),...

  7. 48 CFR 53.204-1 - Safeguarding classified information within industry (DD Form 254, DD Form 441).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... information within industry (DD Form 254, DD Form 441). 53.204-1 Section 53.204-1 Federal Acquisition....204-1 Safeguarding classified information within industry (DD Form 254, DD Form 441). The following... specified in subpart 4.4 and the clause at 52.204-2: (a) DD Form 254 (Department of Defense (DOD)),...

  8. 48 CFR 53.204-1 - Safeguarding classified information within industry (DD Form 254, DD Form 441).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... information within industry (DD Form 254, DD Form 441). 53.204-1 Section 53.204-1 Federal Acquisition....204-1 Safeguarding classified information within industry (DD Form 254, DD Form 441). The following... specified in subpart 4.4 and the clause at 52.204-2: (a) DD Form 254 (Department of Defense (DOD)),...

  9. 48 CFR 53.204-1 - Safeguarding classified information within industry (DD Form 254, DD Form 441).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... information within industry (DD Form 254, DD Form 441). 53.204-1 Section 53.204-1 Federal Acquisition....204-1 Safeguarding classified information within industry (DD Form 254, DD Form 441). The following... specified in subpart 4.4 and the clause at 52.204-2: (a) DD Form 254 (Department of Defense (DOD)),...

  10. A MASS-DEPENDENT YIELD ORIGIN OF NEUTRON-CAPTURE ELEMENT ABUNDANCE DISTRIBUTIONS IN ULTRA-FAINT DWARFS

    SciTech Connect

    Lee, Duane M.; Johnston, Kathryn V.; Tumlinson, Jason; Sen, Bodhisattva; Simon, Joshua D.

    2013-09-10

    One way to constrain the nature of the high-redshift progenitors of the Milky Way (MW) is to look at the low-metallicity stellar populations of the different Galactic components today. For example, high-resolution spectroscopy of very metal poor (VMP) stars demonstrates remarkable agreement between the distribution of [Ti/Fe] in the stellar populations of the MW halo and ultra-faint dwarf (UFD) galaxies. In contrast, for the neutron-capture (nc) abundance ratio distributions [(Sr, Ba)/Fe], the peak of the small UFD sample (6 stars) exhibits a significant under-abundance relative to the VMP stars in the larger MW halo sample ({approx}300 stars). We present a simple scenario that can simultaneously explain these similarities and differences by assuming: (1) that the MW VMP stars were predominately enriched by a prior generation of stars which possessed a higher total mass than the prior generation of stars that enriched the UFD VMP stars; and (2) a much stronger mass-dependent yield (MDY) for nc-elements than for the (known) MDY for Ti. Simple statistical tests demonstrate that conditions (1) and (2) are consistent with the observed abundance distributions, albeit without strong constraints on model parameters. A comparison of the broad constraints for these nc-MDY with those derived in the literature seems to rule out Ba production from low-mass supernovae (SNe) and affirms models that primarily generate yields from high-mass SNe. Our scenario can be confirmed by a relatively modest (factor of {approx}3-4) increase in the number of high-resolution spectra of VMP stars in UFDs.

  11. Effect of Beam Smoothing and Pulse Shape on the Implosion of DD-Filled CH Shell Targets on OMEGA

    NASA Astrophysics Data System (ADS)

    Delettrez, J. A.; Glebov, V. Yu.; Marshall, F. J.; Stoeckl, C.; Yaakobi, B.; Meyerhofer, D. D.

    1999-11-01

    Over the past two years several implosion experiments were carried out on the 60-beam OMEGA laser in which DD-filled CH shells (some with a CHTi layer imbedded) were irradiated with various laser pulse shapes and smoothing conditions. Target CH shell thicknesses varied from 20 μm to 27 μm with DD-fill variations from 3 to 20 atm, sometimes mixed with ^3He. Two pulse shapes---a 1-ns square pulse and a 2.5-ns pulse with a 10%, 1-ns foot, with and without SSD---provide several levels of laser imprint. Diagnostics include measured neutron yields, fuel ion temperatures, fuel ρR, and shell ρR. Simulations for these experimental conditions were carried out with the 2-D hydrocode ORCHID. The results are compared with the experimental results. The degradation of target performance due to laser nonuniformity is analyzed by comparing the 2-D results with those of 1-D simulations. The effects of pulse shape, target thickness, convergence ratio, and smoothing are presented. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority.

  12. Experimental Data of Neutron Yields from Thick Targets Bombarded by 100 to 800 MeV / Nucleon Heavy Ions.

    Energy Science and Technology Software Center (ESTSC)

    2001-05-15

    Version 02 The recent experimental data by the authors listed above are summarized in this paper on differential neutron yields in energy and angle produced by 100, 155 and 180 MeV/nucleon He, 100, 155, 180 and 400 MeV/nucleon C, 100, 180, 400 MeV/nucleon Ne, 400MeV/nucleon Ar, Xe and Fe, 272 and 435MeV/nucleon Nb and 800 MeV/nucleon Si ions stopping in thick targets of C, Al, Cu, Pb and Nb. The paper referenced above is availablemore » on the RSICC web site. The numerical values of the data, which were used to plot figures in References 3, 4, 5, 6 and 8 of this paper, are available for download at no charge. To get access to the data, complete a RSICC registration form and order form. Both are available by clicking on "Ordering" from the RSICC web pages. You will be contacted with details about how to proceed.« less

  13. Fission Product Yields for 14 MeV Neutrons on 235U, 238U and 239Pu

    NASA Astrophysics Data System (ADS)

    Mac Innes, M.; Chadwick, M. B.; Kawano, T.

    2011-12-01

    We report cumulative fission product yields (FPY) measured at Los Alamos for 14 MeV neutrons on 235U, 238U and 239Pu. The results are from historical measurements made in the 1950s-1970s, not previously available in the peer reviewed literature, although an early version of the data was reported in the Ford and Norris review. The results are compared with other measurements and with the ENDF/B-VI England and Rider evaluation. Compared to the Laurec (CEA) data and to ENDF/B-VI evaluation, good agreement is seen for 235U and 238U, but our FPYs are generally higher for 239Pu. The reason for the higher plutonium FPYs compared to earlier Los Alamos assessments reported by Ford and Norris is that we update the measured values to use modern nuclear data, and in particular the 14 MeV 239Pu fission cross section is now known to be 15-20% lower than the value assumed in the 1950s, and therefore our assessed number of fissions in the plutonium sample is correspondingly lower. Our results are in excellent agreement with absolute FPY measurements by Nethaway (1971), although Nethaway later renormalized his data down by 9% having hypothesized that he had a normalization error. The new ENDF/B-VII.1 14 MeV FPY evaluation is in good agreement with our data.

  14. 100% DD Energy Model Update

    SciTech Connect

    None, None

    2011-06-30

    The Miami Science Museum energy model has been used during DD to test the building's potential for energy savings as measured by ASHRAE 90.1-2007 Appendix G. This standard compares the designed building's yearly energy cost with that of a code-compliant building. The building is currently on track show 20% or better improvement over the ASHRAE 90.1-2007 Appendix G baseline; this performance would ensure minimum compliance with both LEED 2.2 and current Florida Energy Code, which both reference a less strict version of ASHRAE 90.1. In addition to being an exercise in energy code compliance, the energy model has been used as a design tool to show the relative performance benefit of individual energy conservation measures (ECMs). These ECMs are areas where the design team has improved upon code-minimum design paths to improve the energy performance of the building. By adding ECMs one a time to a code-compliant baseline building, the current analysis identifies which ECMs are most effective in helping the building meet its energy performance goals.

  15. Effects of Fission Yield Data in the Calculation of Antineutrino Spectra for ^{235}U(n,fission) at Thermal and Fast Neutron Energies.

    PubMed

    Sonzogni, A A; McCutchan, E A; Johnson, T D; Dimitriou, P

    2016-04-01

    Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 ^{235}U fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of ^{86}Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel. PMID:27081973

  16. Effects of Fission Yield Data in the Calculation of Antineutrino Spectra for 235U (n ,fission) at Thermal and Fast Neutron Energies

    NASA Astrophysics Data System (ADS)

    Sonzogni, A. A.; McCutchan, E. A.; Johnson, T. D.; Dimitriou, P.

    2016-04-01

    Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 235U 235 fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of 86Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel.

  17. LOW VOLTAGE 14 Mev NEUTRON SOURCE

    DOEpatents

    Little, R.N. Jr.; Graves, E.R.

    1959-09-29

    An apparatus yielding high-energy neutrons at the rate of 10/sup 8/ or more per second by the D,T or D,D reactions is described. The deuterium gas filling is ionized by electrons emitted from a filament, and the resulting ions are focused into a beam and accelerated against a fixed target. The apparatus is built in accordance with the relationship V/sub s/ = A--B log pd, where V/sub s/ is the sparking voltage, p the gas pressure, and d the gap length between the high voltage electrodes. Typical parameters to obtain the high neutron yields are 55 to 80 kv, 0.5 to 7.0 ma beam current, 5 to 12 microns D/sub 2/, and a gap length of 1 centimeter.

  18. Modeling the radiolysis of supercritical water by fast neutrons: density dependence of the yields of primary species at 400°c.

    PubMed

    Butarbutar, Sofia Loren; Meesungnoen, Jintana; Guzonas, David A; Stuart, Craig R; Jay-Gerin, Jean-Paul

    2014-12-01

    A reliable understanding of radiolysis processes in supercritical water (SCW)-cooled reactors is crucial to developing chemistry control strategies that minimize the corrosion and degradation of materials. However, directly measuring the chemistry in reactor cores is difficult due to the extreme conditions of high temperature and pressure and mixed neutron and gamma-radiation fields, which are incompatible with normal chemical instrumentation. Thus, chemical models and computer simulations are an important route of investigation for predicting the detailed radiation chemistry of the coolant in a SCW reactor and the consequences for materials. Surprisingly, information on the fast neutron radiolysis of water at high temperatures is limited, and even more so for fast neutron irradiation of SCW. In this work, Monte Carlo simulations were used to predict the G values for the primary species e(-)aq, H(•), H2, (•)OH and H2O2 formed from the radiolysis of pure, deaerated SCW (H2O) by 2 MeV monoenergetic neutrons at 400°C as a function of water density in the range of ∼0.15-0.6 g/cm(3). The 2 MeV neutron was taken as representative of a fast neutron flux in a reactor. For light water, the moderation of these neutrons after knock-on collisions with water molecules generated mostly recoil protons of 1.264, 0.465, 0.171 and 0.063 MeV. Neglecting oxygen ion recoils and assuming that the most significant contribution to the radiolysis came from these first four recoil protons, the fast neutron yields were estimated as the sum of the G values for these protons after appropriate weightings were applied according to their energy. Calculated yields were compared with available experimental data and with data obtained for low-LET radiation. Most interestingly, the reaction of H(•) atoms with water was found to play a critical role in the formation yields of H2 and (•)OH at 400°C. Recent work has underscored the potential importance of this reaction above 200°C, but its

  19. Neutron tubes

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  20. Neutron production in deuterium gas-puff z-pinch with outer plasma shell at current of 3 MA

    NASA Astrophysics Data System (ADS)

    Cikhardt, J.; Klir, D.; Rezac, K.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A. V.; Cherdizov, R. K.; Frusov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu.; Ratakhin, N. A.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.; Turek, K.; Krasa, J.

    2015-11-01

    Z-pinch experiments at the current of about 3 MA were carried out on the GIT-12 generator. The outer plasma shell of deuterium gas-puff was generated by the system of 48 plasma guns. This configuration exhibits a high efficiency of the production of DD fusion neutrons with the yield of above 1012 neutrons produced in a single shot with the duration of about 20 ns. The maximum energy of the neutrons produced in this pulse exceeded 30 MeV. The neutron radiation was measured using scintillation TOF detectors, CR-39 nuclear track detectors, bubble detectors BD-PND and BDS-10000 and by several types of nuclear activation detectors. These diagnostic tools were used to measure the anisotropy of neutron fluence and neutron energy spectra. It allows us to estimate the total number of DD neutrons, the contribution of other nuclear reactions, the amount of scattered neutrons, and other parameters of neutron production. This work was supported by the MSMT grants LH13283, LD14089.

  1. Neutron Spectroscopy on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Knauer, J. P.

    2012-10-01

    The performance of cryogenic fuel implosion experiments in progress at the National Ignition Facility (NIF) is measured by an experimental threshold factorfootnotetextM. J. Edwards et al., Phys. Plasmas 18, 051003 (2011). (ITFX) and a generalized Lawson Criterion.footnotetextC. D. Zhou and R. Betti, Phys. Plasmas 15, 102707 (2008); P. Y. Chang et al., Phys. Rev. Lett. 104, 135002 (2010); and R. Betti et al., Phys. Plasmas 17, 058102 (2010). The ITFX metric is determined by the fusion yield and the areal density of an assembled deuterium-tritium (DT) fuel mass. Typical neutron yields from NIF implosions are greater than 10^14 allowing the neutron energy spectrum to be measured with unprecedented precision. A NIF spectrum is composed of neutrons created by fusion (DT, DD, and TT reactions) and neutrons scattered by the dense, cold fuel layer. Neutron scattering is used to determine the areal density of a NIF implosion and is measured along four lines of sight by two neutron time-of-flight detectors, a neutron imaging system, and the magnetic recoil spectrometer. An accurate measurement of the instrument response function for these detectors allows for the routine production of neutron spectra showing DT fuel areal densities up to 1.3 g/cm^2. Spectra over neutron energies of 10 to 17 MeV show areal-density asymmetries of 20% that are inconsistent with simulations. New calibrations and analyses have expended the spectral coverage down to energies less than the deuterium backscatter edge (1.5 MeV for 14 MeV neutrons). These data and analyses are presented along with a compilation of other nuclear diagnostic data that show a larger-than-expected variation in the areal density over the cold fuel mass. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No DE-FC52-08NA28302. In collaboration with NIC.

  2. 48 CFR 53.204-1 - Safeguarding classified information within industry (DD Form 254, DD Form 441).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... information within industry (DD Form 254, DD Form 441). 53.204-1 Section 53.204-1 Federal Acquisition....204-1 Safeguarding classified information within industry (DD Form 254, DD Form 441). The following... Defense Industrial Security Program if contractor access to classified information is required,...

  3. The ratio R{sub dp} of the quasielastic nd {yields} p(nn) to the elastic np {yields} pn charge-exchange-process yields at the proton emitting angle {theta}{sub p,lab} = 0 deg. over 0.55-2.0 GeV neutron beam energy region. Experimental results

    SciTech Connect

    Sharov, V. I. Morozov, A. A.; Shindin, R. A.; Antonenko, V. G.; Borzakov, S. B.; Borzunov, Yu. T.; Chernykh, E. V.; Chumakov, V. F.; Dolgii, S. A.; Finger, M.; Finger, M.; Golovanov, L. B.; Guriev, D. K.; Janata, A.; Kirillov, A. D.; Kovalenko, A. D.; Krasnov, V. A.; Kuzmin, N. A.; Kurilkin, A. K.; Kurilkin, P. K.

    2009-06-15

    New experimental results on ratio R{sub dp} of the quasielastic charge-exchange yield at the outgoing proton angle {theta}{sub p,lab} = 0 deg. for the nd {yields} p(nn) reaction to the elastic np {yields} pn charge-exchange yield, are presented. The measurements were carried out at the Nuclotron of the Veksler and Baldin Laboratory of High Energies of the JINR (Dubna) at the neutron-beam kinetic energies of 0.55, 0.8, 1.0, 1.2, 1.4, 1.8, and 2.0 GeV. The intense neutron beam with small momentum spread was produced by breakup of deuterons which were accelerated and extracted to the experimental hall. In both reactions mentioned above the outgoing protons with the momenta p{sub p} approximately equal to the neutron-beam momentum p{sub n,beam} were detected in the directions close to the direction of incident neutrons, i.e., in the vicinity of the scattering angle {theta}{sub p,lab} = 0 deg. Measured in the same data-taking runs, the angular distributions of the charge-exchange-reaction products were corrected for the well-known instrumental effects and averaged in the vicinity of the incident-neutron-beam direction. These corrected angular distributions for every of nd {yields} p(nn) and np {yields} pn charge-exchange processes were proportional to the differential cross sections of the corresponding reactions. The data were accumulated by Delta-Sigma setup magnetic spectrometer with two sets of multiwire proportional chambers located upstream and downstream of the momentum analyzing magnet. Inelastic processes were considerably reduced by the additional detectors surrounding the hydrogen and deuterium targets. The time-of-flight system was applied to identify the detected particles. The accumulated data treatment and analysis, as well as possible sources of the systematic errors are discussed.

  4. Predicted neutron yield and radioactivity for laser-induced (p,n) reactions in LiF

    SciTech Connect

    Swift, D C; McNaney, J M

    2009-01-30

    Design calculations are presented for a pulsed neutron source comprising polychromatic protons accelerated from a metal foil by a short-pulse laser, and a LiF converter in which (p,n) reactions occur. Although the proton pulse is directional, neutrons are predicted to be emitted relatively isotropically. The neutron spectrum was predicted to be similar to the proton spectrum, but with more neutrons of low energy in the opposite direction to the incident protons. The angular dependence of spectrum and intensity was predicted. The (p,n) reactions generate unstable nuclei which decay predominantly by positron emission to the original {sup 7}Li and {sup 19}F isotopes. For the initial planned experiments using a converter 1mm thick, we predict that 0.1% of the protons will undergo a (p,n) reaction, producing 10{sup 9} neutrons. Ignoring the unreacted protons, neutrons, and prompt gamma emission as excited nuclear states decay, residual positron radioactivity (and production of pairs of 511 keV annihilation photons) is initially 4.2MBq decaying with a half-life of 17.22 s for 6 mins ({sup 19}Ne decays), then 135Bq decaying with a half-life of 53.22 days ({sup 7}Be decays).

  5. Signatures of asymmetry in neutron spectra and images predicted by three-dimensional radiation hydrodynamics simulations of indirect drive implosions

    NASA Astrophysics Data System (ADS)

    Chittenden, J. P.; Appelbe, B. D.; Manke, F.; McGlinchey, K.; Niasse, N. P. L.

    2016-05-01

    We present the results of 3D simulations of indirect drive inertial confinement fusion capsules driven by the "high-foot" radiation pulse on the National Ignition Facility. The results are post-processed using a semi-deterministic ray tracing model to generate synthetic deuterium-tritium (DT) and deuterium-deuterium (DD) neutron spectra as well as primary and down scattered neutron images. Results with low-mode asymmetries are used to estimate the magnitude of anisotropy in the neutron spectra shift, width, and shape. Comparisons of primary and down scattered images highlight the lack of alignment between the neutron sources, scatter sites, and detector plane, which limits the ability to infer the ρr of the fuel from a down scattered ratio. Further calculations use high bandwidth multi-mode perturbations to induce multiple short scale length flows in the hotspot. The results indicate that the effect of fluid velocity is to produce a DT neutron spectrum with an apparently higher temperature than that inferred from the DD spectrum and which is also higher than the temperature implied by the DT to DD yield ratio.

  6. The DD Cold Fusion-Transmutation Connection

    NASA Astrophysics Data System (ADS)

    Chubb, Talbot A.

    2005-12-01

    LENR theory must explain dd fusion, alpha-addition transmutations, radiationless nuclear reactions, and three-body nuclear particle reactions. Reaction without radiation requires many-body D Bloch+ periodicity in both location and internal structure dependencies. Electron scattering leads to mixed quantum states. The radiationless dd fusion reaction is 2-D Bloch+ -> {}4 He Bloch2+. Overlap between {}4 He Bloch2+ and surface Cs leads to alpha absorption. In the Iwamura et al. studies active deuterium is created by scattering at diffusion barriers.

  7. Evaluating a Contribution of the Knock-on Deuterons to the Neutron Yield in the Experiments with Weakly Collisional Plasma Jets (Part 2)

    SciTech Connect

    Ryutov, D. D.

    2015-12-08

    Part 1 of this note considered the kinematics of large-angle scattering (LAS) of the deuterons on the counter-streaming carbon ions, with both flows having the same velocity V. Due to a large mass ratio mC/mD, the backscattered deuterons have high velocity of up to (24/7)V. This significantly increases the cross-section for the neutron production in the collisions between the back-scattered and incoming deuterons and may provide significant contribution to the total neutron yield, despite the smallness of a large-angle Coulomb cross-section. This effect becomes particularly important when only one of the colliding streams is made of CD, whereas the other stream is made of CH. Part 1 evaluated the neutron yield produced by this mechanism and have found that its relative role increases for higher plasma densities and lower velocities. Part 2 discusses signatures of this effect which can be used to identify it experimentally and also discusses in some more detail its spatio-temporal characteristics. It goes without saying that a complete quantitative assessment should be based on numerical simulations accounting for the large-angle scattering.

  8. Testing a new NIF neutron time-of-flight detector with a bibenzyl scintillator on OMEGA

    SciTech Connect

    Glebov, V. Yu.; Forrest, C.; Knauer, J. P.; Pruyne, A.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J. III; Stoeckl, C.; Caggiano, J. A.; Carman, M. L.; Clancy, T. J.; Hatarik, R.; McNaney, J.; Zaitseva, N. P.

    2012-10-15

    A new neutron time-of-flight (nTOF) detector with a bibenzyl crystal as a scintillator has been designed and manufactured for the National Ignition Facility (NIF). This detector will replace a nTOF20-Spec detector with an oxygenated xylene scintillator currently operational on the NIF to improve the areal-density measurements. In addition to areal density, the bibenzyl detector will measure the D-D and D-T neutron yield and the ion temperature of indirect- and direct-drive-implosion experiments. The design of the bibenzyl detector and results of tests on the OMEGA Laser System are presented.

  9. Testing a new NIF neutron time-of-flight detector with a bibenzyl scintillator on OMEGAa)

    NASA Astrophysics Data System (ADS)

    Glebov, V. Yu.; Forrest, C.; Knauer, J. P.; Pruyne, A.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J.; Stoeckl, C.; Caggiano, J. A.; Carman, M. L.; Clancy, T. J.; Hatarik, R.; McNaney, J.; Zaitseva, N. P.

    2012-10-01

    A new neutron time-of-flight (nTOF) detector with a bibenzyl crystal as a scintillator has been designed and manufactured for the National Ignition Facility (NIF). This detector will replace a nTOF20-Spec detector with an oxygenated xylene scintillator currently operational on the NIF to improve the areal-density measurements. In addition to areal density, the bibenzyl detector will measure the D-D and D-T neutron yield and the ion temperature of indirect- and direct-drive-implosion experiments. The design of the bibenzyl detector and results of tests on the OMEGA Laser System are presented.

  10. Testing a new NIF neutron time-of-flight detector with a bibenzyl scintillator on OMEGA.

    PubMed

    Glebov, V Yu; Forrest, C; Knauer, J P; Pruyne, A; Romanofsky, M; Sangster, T C; Shoup, M J; Stoeckl, C; Caggiano, J A; Carman, M L; Clancy, T J; Hatarik, R; McNaney, J; Zaitseva, N P

    2012-10-01

    A new neutron time-of-flight (nTOF) detector with a bibenzyl crystal as a scintillator has been designed and manufactured for the National Ignition Facility (NIF). This detector will replace a nTOF20-Spec detector with an oxygenated xylene scintillator currently operational on the NIF to improve the areal-density measurements. In addition to areal density, the bibenzyl detector will measure the D-D and D-T neutron yield and the ion temperature of indirect- and direct-drive-implosion experiments. The design of the bibenzyl detector and results of tests on the OMEGA Laser System are presented. PMID:23126836