Jean-Noel Leboeuf
2004-03-04
OAK-B135 We have made significant progress during the past grant period in several key areas of the UCLA and national Fusion Theory Program. This impressive body of work includes both fundamental and applied contributions to MHD and turbulence in DIII-D and Electric Tokamak plasmas, and also to Z-pinches, particularly with respect to the effect of flows on these phenomena. We have successfully carried out interpretive and predictive global gyrokinetic particle-in-cell calculations of DIII-D discharges. We have cemented our participation in the gyrokinetic PIC effort of the SciDAC Plasma Microturbulence Project through working membership in the Summit Gyrokinetic PIC Team. We have continued to teach advanced courses at UCLA pertaining to computational plasma physics and to foster interaction with students and junior researchers. We have in fact graduated 2 Ph. D. students during the past grant period. The research carried out during that time has resulted in many publications in the premier plasma physics and fusion energy sciences journals and in several invited oral communications at major conferences such as Sherwood, Transport Task Force (TTF), the annual meetings of the Division of Plasma Physics of the American Physical Society, of the European Physical Society, and the 2002 IAEA Fusion Energy Conference, FEC 2002. Many of these have been authored and co-authored with experimentalists at DIII-D.
Pediatric Computational Models
NASA Astrophysics Data System (ADS)
Soni, Bharat K.; Kim, Jong-Eun; Ito, Yasushi; Wagner, Christina D.; Yang, King-Hay
A computational model is a computer program that attempts to simulate a behavior of a complex system by solving mathematical equations associated with principles and laws of physics. Computational models can be used to predict the body's response to injury-producing conditions that cannot be simulated experimentally or measured in surrogate/animal experiments. Computational modeling also provides means by which valid experimental animal and cadaveric data can be extrapolated to a living person. Widely used computational models for injury biomechanics include multibody dynamics and finite element (FE) models. Both multibody and FE methods have been used extensively to study adult impact biomechanics in the past couple of decades.
Computational Modeling of Tires
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler); Tanner, John A. (Compiler)
1995-01-01
This document contains presentations and discussions from the joint UVA/NASA Workshop on Computational Modeling of Tires. The workshop attendees represented NASA, the Army and Air force, tire companies, commercial software developers, and academia. The workshop objectives were to assess the state of technology in the computational modeling of tires and to provide guidelines for future research.
NASA Technical Reports Server (NTRS)
2000-01-01
Dr. Marc Pusey (seated) and Dr. Craig Kundrot use computers to analyze x-ray maps and generate three-dimensional models of protein structures. With this information, scientists at Marshall Space Flight Center can learn how proteins are made and how they work. The computer screen depicts a proten structure as a ball-and-stick model. Other models depict the actual volume occupied by the atoms, or the ribbon-like structures that are crucial to a protein's function.
Computer Modeling and Simulation
Pronskikh, V. S.
2014-05-09
Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes
NASA Astrophysics Data System (ADS)
Grandi, C.; Bonacorsi, D.; Colling, D.; Fisk, I.; Girone, M.
2014-06-01
The CMS Computing Model was developed and documented in 2004. Since then the model has evolved to be more flexible and to take advantage of new techniques, but many of the original concepts remain and are in active use. In this presentation we will discuss the changes planned for the restart of the LHC program in 2015. We will discuss the changes planning in the use and definition of the computing tiers that were defined with the MONARC project. We will present how we intend to use new services and infrastructure to provide more efficient and transparent access to the data. We will discuss the computing plans to make better use of the computing capacity by scheduling more of the processor nodes, making better use of the disk storage, and more intelligent use of the networking.
Computationally modeling interpersonal trust
Lee, Jin Joo; Knox, W. Bradley; Wormwood, Jolie B.; Breazeal, Cynthia; DeSteno, David
2013-01-01
We present a computational model capable of predicting—above human accuracy—the degree of trust a person has toward their novel partner by observing the trust-related nonverbal cues expressed in their social interaction. We summarize our prior work, in which we identify nonverbal cues that signal untrustworthy behavior and also demonstrate the human mind's readiness to interpret those cues to assess the trustworthiness of a social robot. We demonstrate that domain knowledge gained from our prior work using human-subjects experiments, when incorporated into the feature engineering process, permits a computational model to outperform both human predictions and a baseline model built in naiveté of this domain knowledge. We then present the construction of hidden Markov models to investigate temporal relationships among the trust-related nonverbal cues. By interpreting the resulting learned structure, we observe that models built to emulate different levels of trust exhibit different sequences of nonverbal cues. From this observation, we derived sequence-based temporal features that further improve the accuracy of our computational model. Our multi-step research process presented in this paper combines the strength of experimental manipulation and machine learning to not only design a computational trust model but also to further our understanding of the dynamics of interpersonal trust. PMID:24363649
Computational models of planning.
Geffner, Hector
2013-07-01
The selection of the action to do next is one of the central problems faced by autonomous agents. Natural and artificial systems address this problem in various ways: action responses can be hardwired, they can be learned, or they can be computed from a model of the situation, the actions, and the goals. Planning is the model-based approach to action selection and a fundamental ingredient of intelligent behavior in both humans and machines. Planning, however, is computationally hard as the consideration of all possible courses of action is not computationally feasible. The problem has been addressed by research in Artificial Intelligence that in recent years has uncovered simple but powerful computational principles that make planning feasible. The principles take the form of domain-independent methods for computing heuristics or appraisals that enable the effective generation of goal-directed behavior even over huge spaces. In this paper, we look at several planning models, at methods that have been shown to scale up to large problems, and at what these methods may suggest about the human mind. WIREs Cogn Sci 2013, 4:341-356. doi: 10.1002/wcs.1233 The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. PMID:26304223
Chung, S.; McGill, M.; Preece, D.S.
1994-12-31
Cast blasting can be designed to utilize explosive energy effectively and economically for coal mining operations to remove overburden material. This paper compares two blast models known as DMC (Distinct Motion Code) and SABREX (Scientific Approach to Breaking Rock with Explosives). DMC applies discrete spherical elements interacted with the flow of explosive gases and the explicit time integration to track particle motion resulting from a blast. The input to this model includes multi-layer rock properties, and both loading geometry and explosives equation-of-state parameters. It enables the user to have a wide range of control over drill pattern and explosive loading design parameters. SABREX assumes that heave process is controlled by the explosive gases which determines the velocity and time of initial movement of blocks within the burden, and then tracks the motion of the blocks until they come to a rest. In order to reduce computing time, the in-flight collisions of blocks are not considered and the motion of the first row is made to limit the motion of subsequent rows. Although modelling a blast is a complex task, the advance in computer technology has increased the computing power of small work stations as well as PC (personal computers) to permit a much shorter turn-around time for complex computations. The DMC can perform a blast simulation in 0.5 hours on the SUN SPARC station 10-41 while the new SABREX 3.5 produces results of a cast blast in ten seconds on a 486-PC. Predicted percentage of cast and face velocities from both computer codes compare well with the measured results from a full scale cast blast.
Computer Modeling Of Atomization
NASA Technical Reports Server (NTRS)
Giridharan, M.; Ibrahim, E.; Przekwas, A.; Cheuch, S.; Krishnan, A.; Yang, H.; Lee, J.
1994-01-01
Improved mathematical models based on fundamental principles of conservation of mass, energy, and momentum developed for use in computer simulation of atomization of jets of liquid fuel in rocket engines. Models also used to study atomization in terrestrial applications; prove especially useful in designing improved industrial sprays - humidifier water sprays, chemical process sprays, and sprays of molten metal. Because present improved mathematical models based on first principles, they are minimally dependent on empirical correlations and better able to represent hot-flow conditions that prevail in rocket engines and are too severe to be accessible for detailed experimentation.
Computer modelling of minerals
NASA Astrophysics Data System (ADS)
Catlow, C. R. A.; Parker, S. C.
We review briefly the methodology and achievements of computer simulation techniques in modelling structural and defect properties of inorganic solids. Special attention is paid to the role of interatomic potentials in such studies. We discuss the extension of the techniques to the modelling of minerals, and describe recent results on the study of structural properties of silicates. In a paper of this length, it is not possible to give a comprehensive survey of this field. We shall concentrate on the recent work of our own group. The reader should consult Tossell (1977), Gibbs (1982), and Busing (1970) for examples of other computational studies of inorganic solids. The techniques we discuss are all based on the principle of energy minimization. Simpler, "bridge-buildingrdquo procedures, based on known bond-lengths, of which distance least squares (DLS) techniques are the best known are discussed, for example, in Dempsey and Strens (1974).
Understanding student computational thinking with computational modeling
NASA Astrophysics Data System (ADS)
Aiken, John M.; Caballero, Marcos D.; Douglas, Scott S.; Burk, John B.; Scanlon, Erin M.; Thoms, Brian D.; Schatz, Michael F.
2013-01-01
Recently, the National Research Council's framework for next generation science standards highlighted "computational thinking" as one of its "fundamental practices". 9th Grade students taking a physics course that employed the Arizona State University's Modeling Instruction curriculum were taught to construct computational models of physical systems. Student computational thinking was assessed using a proctored programming assignment, written essay, and a series of think-aloud interviews, where the students produced and discussed a computational model of a baseball in motion via a high-level programming environment (VPython). Roughly a third of the students in the study were successful in completing the programming assignment. Student success on this assessment was tied to how students synthesized their knowledge of physics and computation. On the essay and interview assessments, students displayed unique views of the relationship between force and motion; those who spoke of this relationship in causal (rather than observational) terms tended to have more success in the programming exercise.
NASA Technical Reports Server (NTRS)
Green, Terry J.
1988-01-01
A Polymer Molecular Analysis Display System (p-MADS) was developed for computer modeling of polymers. This method of modeling allows for the theoretical calculation of molecular properties such as equilibrium geometries, conformational energies, heats of formations, crystal packing arrangements, and other properties. Furthermore, p-MADS has the following capabilities: constructing molecules from internal coordinates (bonds length, angles, and dihedral angles), Cartesian coordinates (such as X-ray structures), or from stick drawings; manipulating molecules using graphics and making hard copy representation of the molecules on a graphics printer; and performing geometry optimization calculations on molecules using the methods of molecular mechanics or molecular orbital theory.
NASA Technical Reports Server (NTRS)
Broderick, Daniel
2010-01-01
A computational model calculates the excitation of water rotational levels and emission-line spectra in a cometary coma with applications for the Micro-wave Instrument for Rosetta Orbiter (MIRO). MIRO is a millimeter-submillimeter spectrometer that will be used to study the nature of cometary nuclei, the physical processes of outgassing, and the formation of the head region of a comet (coma). The computational model is a means to interpret the data measured by MIRO. The model is based on the accelerated Monte Carlo method, which performs a random angular, spatial, and frequency sampling of the radiation field to calculate the local average intensity of the field. With the model, the water rotational level populations in the cometary coma and the line profiles for the emission from the water molecules as a function of cometary parameters (such as outgassing rate, gas temperature, and gas and electron density) and observation parameters (such as distance to the comet and beam width) are calculated.
Computer modeling of photodegradation
NASA Technical Reports Server (NTRS)
Guillet, J.
1986-01-01
A computer program to simulate the photodegradation of materials exposed to terrestrial weathering environments is being developed. Input parameters would include the solar spectrum, the daily levels and variations of temperature and relative humidity, and materials such as EVA. A brief description of the program, its operating principles, and how it works was initially described. After that, the presentation focuses on the recent work of simulating aging in a normal, terrestrial day-night cycle. This is significant, as almost all accelerated aging schemes maintain a constant light illumination without a dark cycle, and this may be a critical factor not included in acceleration aging schemes. For outdoor aging, the computer model is indicating that the night dark cycle has a dramatic influence on the chemistry of photothermal degradation, and hints that a dark cycle may be needed in an accelerated aging scheme.
NASA Astrophysics Data System (ADS)
Kopper, Claudio; Antares Collaboration
2013-10-01
Completed in 2008, Antares is now the largest water Cherenkov neutrino telescope in the Northern Hemisphere. Its main goal is to detect neutrinos from galactic and extra-galactic sources. Due to the high background rate of atmospheric muons and the high level of bioluminescence, several on-line and off-line filtering algorithms have to be applied to the raw data taken by the instrument. To be able to handle this data stream, a dedicated computing infrastructure has been set up. The paper covers the main aspects of the current official Antares computing model. This includes an overview of on-line and off-line data handling and storage. In addition, the current usage of the “IceTray” software framework for Antares data processing is highlighted. Finally, an overview of the data storage formats used for high-level analysis is given.
Computational modelling of atherosclerosis.
Parton, Andrew; McGilligan, Victoria; O'Kane, Maurice; Baldrick, Francina R; Watterson, Steven
2016-07-01
Atherosclerosis is one of the principle pathologies of cardiovascular disease with blood cholesterol a significant risk factor. The World Health Organization estimates that approximately 2.5 million deaths occur annually because of the risk from elevated cholesterol, with 39% of adults worldwide at future risk. Atherosclerosis emerges from the combination of many dynamical factors, including haemodynamics, endothelial damage, innate immunity and sterol biochemistry. Despite its significance to public health, the dynamics that drive atherosclerosis remain poorly understood. As a disease that depends on multiple factors operating on different length scales, the natural framework to apply to atherosclerosis is mathematical and computational modelling. A computational model provides an integrated description of the disease and serves as an in silico experimental system from which we can learn about the disease and develop therapeutic hypotheses. Although the work completed in this area to date has been limited, there are clear signs that interest is growing and that a nascent field is establishing itself. This article discusses the current state of modelling in this area, bringing together many recent results for the first time. We review the work that has been done, discuss its scope and highlight the gaps in our understanding that could yield future opportunities. PMID:26438419
Chung, S.; McGill, M.; Preece, D.S.
1994-07-01
Cast blasting can be designed to utilize explosive energy effectively and economically for coal mining operations to remove overburden material. The more overburden removed by explosives, the less blasted material there is left to be transported with mechanical equipment, such as draglines and trucks. In order to optimize the percentage of rock that is cast, a higher powder factor than normal is required plus an initiation technique designed to produce a much greater degree of horizontal muck movement. This paper compares two blast models known as DMC (Distinct Motion Code) and SABREX (Scientific Approach to Breaking Rock with Explosives). DMC, applies discrete spherical elements interacted with the flow of explosive gases and the explicit time integration to track particle motion resulting from a blast. The input to this model includes multi-layer rock properties, and both loading geometry and explosives equation-of-state parameters. It enables the user to have a wide range of control over drill pattern and explosive loading design parameters. SABREX assumes that heave process is controlled by the explosive gases which determines the velocity and time of initial movement of blocks within the burden, and then tracks the motion of the blocks until they come to a rest. In order to reduce computing time, the in-flight collisions of blocks are not considered and the motion of the first row is made to limit the motion of subsequent rows. Although modelling a blast is a complex task, the DMC can perform a blast simulation in 0.5 hours on the SUN SPARCstation 10--41 while the new SABREX 3.5 produces results of a cast blast in ten seconds on a 486-PC computer. Predicted percentage of cast and face velocities from both computer codes compare well with the measured results from a full scale cast blast.
Computational modelling of polymers
NASA Technical Reports Server (NTRS)
Celarier, Edward A.
1991-01-01
Polymeric materials and polymer/graphite composites show a very diverse range of material properties, many of which make them attractive candidates for a variety of high performance engineering applications. Their properties are ultimately determined largely by their chemical structure, and the conditions under which they are processed. It is the aim of computational chemistry to be able to simulate candidate polymers on a computer, and determine what their likely material properties will be. A number of commercially available software packages purport to predict the material properties of samples, given the chemical structures of their constituent molecules. One such system, Cerius, has been in use at LaRC. It is comprised of a number of modules, each of which performs a different kind of calculation on a molecule in the programs workspace. Particularly, interest is in evaluating the suitability of this program to aid in the study of microcrystalline polymeric materials. One of the first model systems examined was benzophenone. The results of this investigation are discussed.
Workshop on Computational Turbulence Modeling
NASA Technical Reports Server (NTRS)
1993-01-01
This document contains presentations given at Workshop on Computational Turbulence Modeling held 15-16 Sep. 1993. The purpose of the meeting was to discuss the current status and future development of turbulence modeling in computational fluid dynamics for aerospace propulsion systems. Papers cover the following topics: turbulence modeling activities at the Center for Modeling of Turbulence and Transition (CMOTT); heat transfer and turbomachinery flow physics; aerothermochemistry and computational methods for space systems; computational fluid dynamics and the k-epsilon turbulence model; propulsion systems; and inlet, duct, and nozzle flow.
Workshop on Computational Turbulence Modeling
Not Available
1993-01-01
This document contains presentations given at Workshop on Computational Turbulence Modeling held 15-16 Sep. 1993. The purpose of the meeting was to discuss the current status and future development of turbulence modeling in computational fluid dynamics for aerospace propulsion systems. Papers cover the following topics: turbulence modeling activities at the Center for Modeling of Turbulence and Transition (CMOTT); heat transfer and turbomachinery flow physics; aerothermochemistry and computational methods for space systems; computational fluid dynamics and the k-epsilon turbulence model; propulsion systems; and inlet, duct, and nozzle flow. Separate abstracts have been prepared for articles from this report.
Pipe network flow analysis was among the first civil engineering applications programmed for solution on the early commercial mainframe computers in the 1960s. Since that time, advancements in analytical techniques and computing power have enabled us to solve systems with tens o...
Computational Models for Neuromuscular Function
Valero-Cuevas, Francisco J.; Hoffmann, Heiko; Kurse, Manish U.; Kutch, Jason J.; Theodorou, Evangelos A.
2011-01-01
Computational models of the neuromuscular system hold the potential to allow us to reach a deeper understanding of neuromuscular function and clinical rehabilitation by complementing experimentation. By serving as a means to distill and explore specific hypotheses, computational models emerge from prior experimental data and motivate future experimental work. Here we review computational tools used to understand neuromuscular function including musculoskeletal modeling, machine learning, control theory, and statistical model analysis. We conclude that these tools, when used in combination, have the potential to further our understanding of neuromuscular function by serving as a rigorous means to test scientific hypotheses in ways that complement and leverage experimental data. PMID:21687779
Computer-Aided Geometry Modeling
NASA Technical Reports Server (NTRS)
Shoosmith, J. N. (Compiler); Fulton, R. E. (Compiler)
1984-01-01
Techniques in computer-aided geometry modeling and their application are addressed. Mathematical modeling, solid geometry models, management of geometric data, development of geometry standards, and interactive and graphic procedures are discussed. The applications include aeronautical and aerospace structures design, fluid flow modeling, and gas turbine design.
toolkit computational mesh conceptual model.
Baur, David G.; Edwards, Harold Carter; Cochran, William K.; Williams, Alan B.; Sjaardema, Gregory D.
2010-03-01
The Sierra Toolkit computational mesh is a software library intended to support massively parallel multi-physics computations on dynamically changing unstructured meshes. This domain of intended use is inherently complex due to distributed memory parallelism, parallel scalability, heterogeneity of physics, heterogeneous discretization of an unstructured mesh, and runtime adaptation of the mesh. Management of this inherent complexity begins with a conceptual analysis and modeling of this domain of intended use; i.e., development of a domain model. The Sierra Toolkit computational mesh software library is designed and implemented based upon this domain model. Software developers using, maintaining, or extending the Sierra Toolkit computational mesh library must be familiar with the concepts/domain model presented in this report.
NASA Technical Reports Server (NTRS)
Patel, Umesh D.; DellaTorre, Edward; Day, John H. (Technical Monitor)
2001-01-01
A fast differential equation approach for the DOK model has been extented to the CMH model. Also, a cobweb technique for calculating the CMH model is also presented. The two techniques are contrasted from the point of view of flexibility and computation time.
NASA Technical Reports Server (NTRS)
Franz, J. R.
1993-01-01
Numerical calculations of the electronic properties of liquid II-VI semiconductors, particularly CdTe and ZnTe were performed. The measured conductivity of these liquid alloys were modeled by assuming that the dominant temperature effect is the increase in the number of dangling bonds with increasing temperature. For low to moderate values of electron correlation, the calculated conductivity as a function of dangling bond concentration closely follows the measured conductivity as a function of temperature. Both the temperature dependence of the chemical potential and the thermal smearing in region of the Fermi surface have a large effect on calculated values of conductivity.
Computational models of epileptiform activity.
Wendling, Fabrice; Benquet, Pascal; Bartolomei, Fabrice; Jirsa, Viktor
2016-02-15
We reviewed computer models that have been developed to reproduce and explain epileptiform activity. Unlike other already-published reviews on computer models of epilepsy, the proposed overview starts from the various types of epileptiform activity encountered during both interictal and ictal periods. Computational models proposed so far in the context of partial and generalized epilepsies are classified according to the following taxonomy: neural mass, neural field, detailed network and formal mathematical models. Insights gained about interictal epileptic spikes and high-frequency oscillations, about fast oscillations at seizure onset, about seizure initiation and propagation, about spike-wave discharges and about status epilepticus are described. This review shows the richness and complementarity of the various modeling approaches as well as the fruitful contribution of the computational neuroscience community in the field of epilepsy research. It shows that models have progressively gained acceptance and are now considered as an efficient way of integrating structural, functional and pathophysiological data about neural systems into "coherent and interpretable views". The advantages, limitations and future of modeling approaches are discussed. Perspectives in epilepsy research and clinical epileptology indicate that very promising directions are foreseen, like model-guided experiments or model-guided therapeutic strategy, among others. PMID:25843066
Computational modeling of properties
NASA Technical Reports Server (NTRS)
Franz, Judy R.
1994-01-01
A simple model was developed to calculate the electronic transport parameters in disordered semiconductors in strong scattered regime. The calculation is based on a Green function solution to Kubo equation for the energy-dependent conductivity. This solution together with a rigorous calculation of the temperature-dependent chemical potential allows the determination of the dc conductivity and the thermopower. For wise-gap semiconductors with single defect bands, these transport properties are investigated as a function of defect concentration, defect energy, Fermi level, and temperature. Under certain conditions the calculated conductivity is quite similar to the measured conductivity in liquid II-VI semiconductors in that two distinct temperature regimes are found. Under different conditions the conductivity is found to decrease with temperature; this result agrees with measurements in amorphous Si. Finally the calculated thermopower can be positive or negative and may change sign with temperature or defect concentration.
Computational modeling of properties
NASA Technical Reports Server (NTRS)
Franz, Judy R.
1994-01-01
A simple model was developed to calculate the electronic transport parameters in disordered semiconductors in strong scattered regime. The calculation is based on a Green function solution to Kubo equation for the energy-dependent conductivity. This solution together with a rigorous calculation of the temperature-dependent chemical potential allows the determination of the dc conductivity and the thermopower. For wide-gap semiconductors with single defect bands, these transport properties are investigated as a function of defect concentration, defect energy, Fermi level, and temperature. Under certain conditions the calculated conductivity is quite similar to the measured conductivity in liquid 2-6 semiconductors in that two distinct temperature regimes are found. Under different conditions the conductivity is found to decrease with temperature; this result agrees with measurements in amorphous Si. Finally the calculated thermopower can be positive or negative and may change sign with temperature or defect concentration.
Efficient Computational Model of Hysteresis
NASA Technical Reports Server (NTRS)
Shields, Joel
2005-01-01
A recently developed mathematical model of the output (displacement) versus the input (applied voltage) of a piezoelectric transducer accounts for hysteresis. For the sake of computational speed, the model is kept simple by neglecting the dynamic behavior of the transducer. Hence, the model applies to static and quasistatic displacements only. A piezoelectric transducer of the type to which the model applies is used as an actuator in a computer-based control system to effect fine position adjustments. Because the response time of the rest of such a system is usually much greater than that of a piezoelectric transducer, the model remains an acceptably close approximation for the purpose of control computations, even though the dynamics are neglected. The model (see Figure 1) represents an electrically parallel, mechanically series combination of backlash elements, each having a unique deadband width and output gain. The zeroth element in the parallel combination has zero deadband width and, hence, represents a linear component of the input/output relationship. The other elements, which have nonzero deadband widths, are used to model the nonlinear components of the hysteresis loop. The deadband widths and output gains of the elements are computed from experimental displacement-versus-voltage data. The hysteresis curve calculated by use of this model is piecewise linear beyond deadband limits.
Ch. 33 Modeling: Computational Thermodynamics
Besmann, Theodore M
2012-01-01
This chapter considers methods and techniques for computational modeling for nuclear materials with a focus on fuels. The basic concepts for chemical thermodynamics are described and various current models for complex crystalline and liquid phases are illustrated. Also included are descriptions of available databases for use in chemical thermodynamic studies and commercial codes for performing complex equilibrium calculations.
Computational Modeling of Multiphase Reactors.
Joshi, J B; Nandakumar, K
2015-01-01
Multiphase reactors are very common in chemical industry, and numerous review articles exist that are focused on types of reactors, such as bubble columns, trickle beds, fluid catalytic beds, etc. Currently, there is a high degree of empiricism in the design process of such reactors owing to the complexity of coupled flow and reaction mechanisms. Hence, we focus on synthesizing recent advances in computational and experimental techniques that will enable future designs of such reactors in a more rational manner by exploring a large design space with high-fidelity models (computational fluid dynamics and computational chemistry models) that are validated with high-fidelity measurements (tomography and other detailed spatial measurements) to provide a high degree of rigor. Understanding the spatial distributions of dispersed phases and their interaction during scale up are key challenges that were traditionally addressed through pilot scale experiments, but now can be addressed through advanced modeling. PMID:26134737
Computational models of adult neurogenesis
NASA Astrophysics Data System (ADS)
Cecchi, Guillermo A.; Magnasco, Marcelo O.
2005-10-01
Experimental results in recent years have shown that adult neurogenesis is a significant phenomenon in the mammalian brain. Little is known, however, about the functional role played by the generation and destruction of neurons in the context of an adult brain. Here, we propose two models where new projection neurons are incorporated. We show that in both models, using incorporation and removal of neurons as a computational tool, it is possible to achieve a higher computational efficiency that in purely static, synapse-learning-driven networks. We also discuss the implication for understanding the role of adult neurogenesis in specific brain areas like the olfactory bulb and the dentate gyrus.
Models for computing combat risk
NASA Astrophysics Data System (ADS)
Jelinek, Jan
2002-07-01
Combat always involves uncertainty and uncertainty entails risk. To ensure that a combat task is prosecuted with the desired probability of success, the task commander has to devise an appropriate task force and then adjust it continuously in the course of battle. In order to do so, he has to evaluate how the probability of task success is related to the structure, capabilities and numerical strengths of combatants. For this purpose, predictive models of combat dynamics for combats in which the combatants fire asynchronously at random instants are developed from the first principles. Combats involving forces with both unlimited and limited ammunition supply are studied and modeled by stochastic Markov processes. In addition to the Markov models, another class of models first proposed by Brown was explored. The models compute directly the probability of win, in which we are primarily interested, without integrating the state probability equations. Experiments confirm that they produce exactly the same results at much lower computational cost.
Computational Modeling Method for Superalloys
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Noebe, Ronald D.; Gayda, John
1997-01-01
Computer modeling based on theoretical quantum techniques has been largely inefficient due to limitations on the methods or the computer needs associated with such calculations, thus perpetuating the notion that little help can be expected from computer simulations for the atomistic design of new materials. In a major effort to overcome these limitations and to provide a tool for efficiently assisting in the development of new alloys, we developed the BFS method for alloys, which together with the experimental results from previous and current research that validate its use for large-scale simulations, provide the ideal grounds for developing a computationally economical and physically sound procedure for supplementing the experimental work at great cost and time savings.
Climate Modeling Computing Needs Assessment
NASA Astrophysics Data System (ADS)
Petraska, K. E.; McCabe, J. D.
2011-12-01
This paper discusses early findings of an assessment of computing needs for NASA science, engineering and flight communities. The purpose of this assessment is to document a comprehensive set of computing needs that will allow us to better evaluate whether our computing assets are adequately structured to meet evolving demand. The early results are interesting, already pointing out improvements we can make today to get more out of the computing capacity we have, as well as potential game changing innovations for the future in how we apply information technology to science computing. Our objective is to learn how to leverage our resources in the best way possible to do more science for less money. Our approach in this assessment is threefold: Development of use case studies for science workflows; Creating a taxonomy and structure for describing science computing requirements; and characterizing agency computing, analysis, and visualization resources. As projects evolve, science data sets increase in a number of ways: in size, scope, timelines, complexity, and fidelity. Generating, processing, moving, and analyzing these data sets places distinct and discernable requirements on underlying computing, analysis, storage, and visualization systems. The initial focus group for this assessment is the Earth Science modeling community within NASA's Science Mission Directorate (SMD). As the assessment evolves, this focus will expand to other science communities across the agency. We will discuss our use cases, our framework for requirements and our characterizations, as well as our interview process, what we learned and how we plan to improve our materials after using them in the first round of interviews in the Earth Science Modeling community. We will describe our plans for how to expand this assessment, first into the Earth Science data analysis and remote sensing communities, and then throughout the full community of science, engineering and flight at NASA.
Hydronic distribution system computer model
Andrews, J.W.; Strasser, J.J.
1994-10-01
A computer model of a hot-water boiler and its associated hydronic thermal distribution loop has been developed at Brookhaven National Laboratory (BNL). It is intended to be incorporated as a submodel in a comprehensive model of residential-scale thermal distribution systems developed at Lawrence Berkeley. This will give the combined model the capability of modeling forced-air and hydronic distribution systems in the same house using the same supporting software. This report describes the development of the BNL hydronics model, initial results and internal consistency checks, and its intended relationship to the LBL model. A method of interacting with the LBL model that does not require physical integration of the two codes is described. This will provide capability now, with reduced up-front cost, as long as the number of runs required is not large.
Computational Modeling for Bedside Application
Kerckhoffs, Roy C.P.; Narayan, Sanjiv M.; Omens, Jeffrey H.; Mulligan, Lawrence J.; McCulloch, Andrew D.
2008-01-01
With growing computer power, novel diagnostic and therapeutic medical technologies, coupled with an increasing knowledge of pathophysiology from gene to organ systems, it is increasingly feasible to apply multi-scale patient-specific modeling based on proven disease mechanisms to guide and predict the response to therapy in many aspects of medicine. This is an exciting and relatively new approach, for which efficient methods and computational tools are of the utmost importance. Already, investigators have designed patient-specific models in almost all areas of human physiology. Not only will these models be useful on a large scale in the clinic to predict and optimize the outcome from surgery and non-interventional therapy, but they will also provide pathophysiologic insights from cell to tissue to organ system, and therefore help to understand why specific interventions succeed or fail. PMID:18598988
Visualizing ultrasound through computational modeling
NASA Technical Reports Server (NTRS)
Guo, Theresa W.
2004-01-01
The Doppler Ultrasound Hematocrit Project (DHP) hopes to find non-invasive methods of determining a person s blood characteristics. Because of the limits of microgravity and the space travel environment, it is important to find non-invasive methods of evaluating the health of persons in space. Presently, there is no well developed method of determining blood composition non-invasively. This projects hopes to use ultrasound and Doppler signals to evaluate the characteristic of hematocrit, the percentage by volume of red blood cells within whole blood. These non-invasive techniques may also be developed to be used on earth for trauma patients where invasive measure might be detrimental. Computational modeling is a useful tool for collecting preliminary information and predictions for the laboratory research. We hope to find and develop a computer program that will be able to simulate the ultrasound signals the project will work with. Simulated models of test conditions will more easily show what might be expected from laboratory results thus help the research group make informed decisions before and during experimentation. There are several existing Matlab based computer programs available, designed to interpret and simulate ultrasound signals. These programs will be evaluated to find which is best suited for the project needs. The criteria of evaluation that will be used are 1) the program must be able to specify transducer properties and specify transmitting and receiving signals, 2) the program must be able to simulate ultrasound signals through different attenuating mediums, 3) the program must be able to process moving targets in order to simulate the Doppler effects that are associated with blood flow, 4) the program should be user friendly and adaptable to various models. After a computer program is chosen, two simulation models will be constructed. These models will simulate and interpret an RF data signal and a Doppler signal.
Parallel computing in enterprise modeling.
Goldsby, Michael E.; Armstrong, Robert C.; Shneider, Max S.; Vanderveen, Keith; Ray, Jaideep; Heath, Zach; Allan, Benjamin A.
2008-08-01
This report presents the results of our efforts to apply high-performance computing to entity-based simulations with a multi-use plugin for parallel computing. We use the term 'Entity-based simulation' to describe a class of simulation which includes both discrete event simulation and agent based simulation. What simulations of this class share, and what differs from more traditional models, is that the result sought is emergent from a large number of contributing entities. Logistic, economic and social simulations are members of this class where things or people are organized or self-organize to produce a solution. Entity-based problems never have an a priori ergodic principle that will greatly simplify calculations. Because the results of entity-based simulations can only be realized at scale, scalable computing is de rigueur for large problems. Having said that, the absence of a spatial organizing principal makes the decomposition of the problem onto processors problematic. In addition, practitioners in this domain commonly use the Java programming language which presents its own problems in a high-performance setting. The plugin we have developed, called the Parallel Particle Data Model, overcomes both of these obstacles and is now being used by two Sandia frameworks: the Decision Analysis Center, and the Seldon social simulation facility. While the ability to engage U.S.-sized problems is now available to the Decision Analysis Center, this plugin is central to the success of Seldon. Because Seldon relies on computationally intensive cognitive sub-models, this work is necessary to achieve the scale necessary for realistic results. With the recent upheavals in the financial markets, and the inscrutability of terrorist activity, this simulation domain will likely need a capability with ever greater fidelity. High-performance computing will play an important part in enabling that greater fidelity.
Cosmic logic: a computational model
NASA Astrophysics Data System (ADS)
Vanchurin, Vitaly
2016-02-01
We initiate a formal study of logical inferences in context of the measure problem in cosmology or what we call cosmic logic. We describe a simple computational model of cosmic logic suitable for analysis of, for example, discretized cosmological systems. The construction is based on a particular model of computation, developed by Alan Turing, with cosmic observers (CO), cosmic measures (CM) and cosmic symmetries (CS) described by Turing machines. CO machines always start with a blank tape and CM machines take CO's Turing number (also known as description number or Gödel number) as input and output the corresponding probability. Similarly, CS machines take CO's Turing number as input, but output either one if the CO machines are in the same equivalence class or zero otherwise. We argue that CS machines are more fundamental than CM machines and, thus, should be used as building blocks in constructing CM machines. We prove the non-computability of a CS machine which discriminates between two classes of CO machines: mortal that halts in finite time and immortal that runs forever. In context of eternal inflation this result implies that it is impossible to construct CM machines to compute probabilities on the set of all CO machines using cut-off prescriptions. The cut-off measures can still be used if the set is reduced to include only machines which halt after a finite and predetermined number of steps.
Workshop on Computational Turbulence Modeling
NASA Technical Reports Server (NTRS)
Shabbir, A. (Compiler); Shih, T.-H. (Compiler); Povinelli, L. A. (Compiler)
1994-01-01
The purpose of this meeting was to discuss the current status and future development of turbulence modeling in computational fluid dynamics for aerospace propulsion systems. Various turbulence models have been developed and applied to different turbulent flows over the past several decades and it is becoming more and more urgent to assess their performance in various complex situations. In order to help users in selecting and implementing appropriate models in their engineering calculations, it is important to identify the capabilities as well as the deficiencies of these models. This also benefits turbulence modelers by permitting them to further improve upon the existing models. This workshop was designed for exchanging ideas and enhancing collaboration between different groups in the Lewis community who are using turbulence models in propulsion related CFD. In this respect this workshop will help the Lewis goal of excelling in propulsion related research. This meeting had seven sessions for presentations and one panel discussion over a period of two days. Each presentation session was assigned to one or two branches (or groups) to present their turbulence related research work. Each group was asked to address at least the following points: current status of turbulence model applications and developments in the research; progress and existing problems; and requests about turbulence modeling. The panel discussion session was designed for organizing committee members to answer management and technical questions from the audience and to make concluding remarks.
MODEL IDENTIFICATION AND COMPUTER ALGEBRA.
Bollen, Kenneth A; Bauldry, Shawn
2010-10-01
Multiequation models that contain observed or latent variables are common in the social sciences. To determine whether unique parameter values exist for such models, one needs to assess model identification. In practice analysts rely on empirical checks that evaluate the singularity of the information matrix evaluated at sample estimates of parameters. The discrepancy between estimates and population values, the limitations of numerical assessments of ranks, and the difference between local and global identification make this practice less than perfect. In this paper we outline how to use computer algebra systems (CAS) to determine the local and global identification of multiequation models with or without latent variables. We demonstrate a symbolic CAS approach to local identification and develop a CAS approach to obtain explicit algebraic solutions for each of the model parameters. We illustrate the procedures with several examples, including a new proof of the identification of a model for handling missing data using auxiliary variables. We present an identification procedure for Structural Equation Models that makes use of CAS and that is a useful complement to current methods. PMID:21769158
Los Alamos Center for Computer Security formal computer security model
Dreicer, J.S.; Hunteman, W.J.; Markin, J.T.
1989-01-01
This paper provides a brief presentation of the formal computer security model currently being developed at the Los Alamos Department of Energy (DOE) Center for Computer Security (CCS). The need to test and verify DOE computer security policy implementation first motivated this effort. The actual analytical model was a result of the integration of current research in computer security and previous modeling and research experiences. The model is being developed to define a generic view of the computer and network security domains, to provide a theoretical basis for the design of a security model, and to address the limitations of present formal mathematical models for computer security. The fundamental objective of computer security is to prevent the unauthorized and unaccountable access to a system. The inherent vulnerabilities of computer systems result in various threats from unauthorized access. The foundation of the Los Alamos DOE CCS model is a series of functionally dependent probability equations, relations, and expressions. The model is undergoing continued discrimination and evolution. We expect to apply the model to the discipline of the Bell and LaPadula abstract sets of objects and subjects. 6 refs.
Computer modeling of piezoresistive gauges
Nutt, G. L.; Hallquist, J. O.
1981-08-07
A computer model of a piezoresistive gauge subject to shock loading is developed. The time-dependent two-dimensional response of the gauge is calculated. The stress and strain components of the gauge are determined assuming elastic-plastic material properties. The model is compared with experiment for four cases. An ytterbium foil gauge in a PPMA medum subjected to a 0.5 Gp plane shock wave, where the gauge is presented to the shock with its flat surface both parallel and perpendicular to the front. A similar comparison is made for a manganin foil subjected to a 2.7 Gp shock. The signals are compared also with a calibration equation derived with the gauge and medium properties accounted for but with the assumption that the gauge is in stress equilibrium with the shocked medium.
A Computationally Efficient Bedrock Model
NASA Astrophysics Data System (ADS)
Fastook, J. L.
2002-05-01
Full treatments of the Earth's crust, mantle, and core for ice sheet modeling are often computationally overwhelming, in that the requirements to calculate a full self-gravitating spherical Earth model for the time-varying load history of an ice sheet are considerably greater than the computational requirements for the ice dynamics and thermodynamics combined. For this reason, we adopt a ``reasonable'' approximation for the behavior of the deforming bedrock beneath the ice sheet. This simpler model of the Earth treats the crust as an elastic plate supported from below by a hydrostatic fluid. Conservation of linear and angular momentum for an elastic plate leads to the classical Poisson-Kirchhoff fourth order differential equation in the crustal displacement. By adding a time-dependent term this treatment allows for an exponentially-decaying response of the bed to loading and unloading events. This component of the ice sheet model (along with the ice dynamics and thermodynamics) is solved using the Finite Element Method (FEM). C1 FEMs are difficult to implement in more than one dimension, and as such the engineering community has turned away from classical Poisson-Kirchhoff plate theory to treatments such as Reissner-Mindlin plate theory, which are able to accommodate transverse shear and hence require only C0 continuity of basis functions (only the function, and not the derivative, is required to be continuous at the element boundary) (Hughes 1987). This method reduces the complexity of the C1 formulation by adding additional degrees of freedom (the transverse shear in x and y) at each node. This ``reasonable'' solution is compared with two self-gravitating spherical Earth models (1. Ivins et al. (1997) and James and Ivins (1998) } and 2. Tushingham and Peltier 1991 ICE3G run by Jim Davis and Glenn Milne), as well as with preliminary results of residual rebound rates measured with GPS by the BIFROST project. Modeled responses of a simulated ice sheet experiencing a
A Model Computer Literacy Course.
ERIC Educational Resources Information Center
Orndorff, Joseph
Designed to address the varied computer skill levels of college students, this proposed computer literacy course would be modular in format, with modules tailored to address various levels of expertise and permit individualized instruction. An introductory module would present both the history and future of computers and computing, followed by an…
A Computational Theory of Modelling
NASA Astrophysics Data System (ADS)
Rossberg, Axel G.
2003-04-01
A metatheory is developed which characterizes the relationship between a modelled system, which complies with some ``basic theory'', and a model, which does not, and yet reproduces important aspects of the modelled system. A model is represented by an (in a certain sense, s.b.) optimal algorithm which generates data that describe the model's state or evolution complying with a ``reduced theory''. Theories are represented by classes of (in a similar sense, s.b.) optimal algorithms that test if their input data comply with the theory. The metatheory does not prescribe the formalisms (data structure, language) to be used for the description of states or evolutions. Transitions to other formalisms and loss of accuracy, common to theory reduction, are explicitly accounted for. The basic assumption of the theory is that resources such as the code length (~ programming time) and the computation time for modelling and testing are costly, but the relative cost of each recourse is unknown. Thus, if there is an algorithm a for which there is no other algorithm b solving the same problem but using less of each recourse, then a is considered optimal. For tests (theories), the set X of wrongly admitted inputs is treated as another resource. It is assumed that X1 is cheaper than X2 when X1 ⊂ X2 (X1 ≠ X2). Depending on the problem, the algorithmic complexity of a reduced theory can be smaller or larger than that of the basic theory. The theory might help to distinguish actual properties of complex systems from mere mental constructs. An application to complex spatio-temporal patterns is discussed.
Computational model for chromosomal instabilty
NASA Astrophysics Data System (ADS)
Zapperi, Stefano; Bertalan, Zsolt; Budrikis, Zoe; La Porta, Caterina
2015-03-01
Faithful segregation of genetic material during cell division requires alignment of the chromosomes between the spindle poles and attachment of their kinetochores to each of the poles. Failure of these complex dynamical processes leads to chromosomal instability (CIN), a characteristic feature of several diseases including cancer. While a multitude of biological factors regulating chromosome congression and bi-orientation have been identified, it is still unclear how they are integrated into a coherent picture. Here we address this issue by a three dimensional computational model of motor-driven chromosome congression and bi-orientation. Our model reveals that successful cell division requires control of the total number of microtubules: if this number is too small bi-orientation fails, while if it is too large not all the chromosomes are able to congress. The optimal number of microtubules predicted by our model compares well with early observations in mammalian cell spindles. Our results shed new light on the origin of several pathological conditions related to chromosomal instability.
Computational modeling of membrane proteins
Leman, Julia Koehler; Ulmschneider, Martin B.; Gray, Jeffrey J.
2014-01-01
The determination of membrane protein (MP) structures has always trailed that of soluble proteins due to difficulties in their overexpression, reconstitution into membrane mimetics, and subsequent structure determination. The percentage of MP structures in the protein databank (PDB) has been at a constant 1-2% for the last decade. In contrast, over half of all drugs target MPs, only highlighting how little we understand about drug-specific effects in the human body. To reduce this gap, researchers have attempted to predict structural features of MPs even before the first structure was experimentally elucidated. In this review, we present current computational methods to predict MP structure, starting with secondary structure prediction, prediction of trans-membrane spans, and topology. Even though these methods generate reliable predictions, challenges such as predicting kinks or precise beginnings and ends of secondary structure elements are still waiting to be addressed. We describe recent developments in the prediction of 3D structures of both α-helical MPs as well as β-barrels using comparative modeling techniques, de novo methods, and molecular dynamics (MD) simulations. The increase of MP structures has (1) facilitated comparative modeling due to availability of more and better templates, and (2) improved the statistics for knowledge-based scoring functions. Moreover, de novo methods have benefitted from the use of correlated mutations as restraints. Finally, we outline current advances that will likely shape the field in the forthcoming decade. PMID:25355688
Cupola Furnace Computer Process Model
Seymour Katz
2004-12-31
The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).
Predictive models and computational toxicology.
Knudsen, Thomas; Martin, Matthew; Chandler, Kelly; Kleinstreuer, Nicole; Judson, Richard; Sipes, Nisha
2013-01-01
Understanding the potential health risks posed by environmental chemicals is a significant challenge elevated by the large number of diverse chemicals with generally uncharacterized exposures, mechanisms, and toxicities. The ToxCast computational toxicology research program was launched by EPA in 2007 and is part of the federal Tox21 consortium to develop a cost-effective approach for efficiently prioritizing the toxicity testing of thousands of chemicals and the application of this information to assessing human toxicology. ToxCast addresses this problem through an integrated workflow using high-throughput screening (HTS) of chemical libraries across more than 650 in vitro assays including biochemical assays, human cells and cell lines, and alternative models such as mouse embryonic stem cells and zebrafish embryo development. The initial phase of ToxCast profiled a library of 309 environmental chemicals, mostly pesticidal actives having rich in vivo data from guideline studies that include chronic/cancer bioassays in mice and rats, multigenerational reproductive studies in rats, and prenatal developmental toxicity endpoints in rats and rabbits. The first phase of ToxCast was used to build models that aim to determine how well in vivo animal effects can be predicted solely from the in vitro data. Phase I is now complete and both the in vitro data (ToxCast) and anchoring in vivo database (ToxRefDB) have been made available to the public (http://actor.epa.gov/). As Phase II of ToxCast is now underway, the purpose of this chapter is to review progress to date with ToxCast predictive modeling, using specific examples on developmental and reproductive effects in rats and rabbits with lessons learned during Phase I. PMID:23138916
Disciplines, models, and computers: the path to computational quantum chemistry.
Lenhard, Johannes
2014-12-01
Many disciplines and scientific fields have undergone a computational turn in the past several decades. This paper analyzes this sort of turn by investigating the case of computational quantum chemistry. The main claim is that the transformation from quantum to computational quantum chemistry involved changes in three dimensions. First, on the side of instrumentation, small computers and a networked infrastructure took over the lead from centralized mainframe architecture. Second, a new conception of computational modeling became feasible and assumed a crucial role. And third, the field of computa- tional quantum chemistry became organized in a market-like fashion and this market is much bigger than the number of quantum theory experts. These claims will be substantiated by an investigation of the so-called density functional theory (DFT), the arguably pivotal theory in the turn to computational quantum chemistry around 1990. PMID:25571750
The Fermilab Central Computing Facility architectural model
Nicholls, J.
1989-05-01
The goal of the current Central Computing Upgrade at Fermilab is to create a computing environment that maximizes total productivity, particularly for high energy physics analysis. The Computing Department and the Next Computer Acquisition Committee decided upon a model which includes five components: an interactive front end, a Large-Scale Scientific Computer (LSSC, a mainframe computing engine), a microprocessor farm system, a file server, and workstations. With the exception of the file server, all segments of this model are currently in production: a VAX/VMS Cluster interactive front end, an Amdahl VM computing engine, ACP farms, and (primarily) VMS workstations. This presentation will discuss the implementation of the Fermilab Central Computing Facility Architectural Model. Implications for Code Management in such a heterogeneous environment, including issues such as modularity and centrality, will be considered. Special emphasis will be placed on connectivity and communications between the front-end, LSSC, and workstations, as practiced at Fermilab. 2 figs.
Fast Computation of the Inverse CMH Model
NASA Technical Reports Server (NTRS)
Patel, Umesh D.; Torre, Edward Della; Day, John H. (Technical Monitor)
2001-01-01
A fast computational method based on differential equation approach for inverse DOK model has been extended for the inverse CMH model. Also, a cobweb technique for calculating the inverse CMH model is also presented. The two techniques are differed from the point of view of flexibility and computation time.
Predictive Models and Computational Toxicology
Understanding the potential health risks posed by environmental chemicals is a significant challenge elevated by the large number of diverse chemicals with generally uncharacterized exposures, mechanisms, and toxicities. The ToxCast computational toxicology research program was l...
Reliability models for dataflow computer systems
NASA Technical Reports Server (NTRS)
Kavi, K. M.; Buckles, B. P.
1985-01-01
The demands for concurrent operation within a computer system and the representation of parallelism in programming languages have yielded a new form of program representation known as data flow (DENN 74, DENN 75, TREL 82a). A new model based on data flow principles for parallel computations and parallel computer systems is presented. Necessary conditions for liveness and deadlock freeness in data flow graphs are derived. The data flow graph is used as a model to represent asynchronous concurrent computer architectures including data flow computers.
Computational modeling of vascular anastomoses.
Migliavacca, Francesco; Dubini, Gabriele
2005-06-01
Recent development of computational technology allows a level of knowledge of biomechanical factors in the healthy or pathological cardiovascular system that was unthinkable a few years ago. In particular, computational fluid dynamics (CFD) and computational structural (CS) analyses have been used to evaluate specific quantities, such as fluid and wall stresses and strains, which are very difficult to measure in vivo. Indeed, CFD and CS offer much more variability and resolution than in vitro and in vivo methods, yet computations must be validated by careful comparison with experimental and clinical data. The enormous parallel development of clinical imaging such as magnetic resonance or computed tomography opens a new way toward a detailed patient-specific description of the actual hemodynamics and structural behavior of living tissues. Coupling of CFD/CS and clinical images is becoming a standard evaluation that is expected to become part of the clinical practice in the diagnosis and in the surgical planning in advanced medical centers. This review focuses on computational studies of fluid and structural dynamics of a number of vascular anastomoses: the coronary bypass graft anastomoses, the arterial peripheral anastomoses, the arterio-venous graft anastomoses and the vascular anastomoses performed in the correction of congenital heart diseases. PMID:15772842
Ellis, D; Allaire, J C
1999-09-01
We proposed a mediation model to examine the effects of age, education, computer knowledge, and computer anxiety on computer interest in older adults. We hypothesized that computer knowledge and computer anxiety would fully mediate the effects of age and education on computer interest. A sample of 330 older adults from local senior-citizen apartment buildings completed a survey that included an assessment of the constructs included in the model. Using structural equation modeling, we found that the results supported the hypothesized mediation model. In particular, the effect of computer knowledge operated on computer interest through computer anxiety. The effect of age was not fully mitigated by the other model variables, indicating the need for future research that identifies and models other correlates of age and computer interest. The most immediate application of this research is the finding that a simple 3-item instrument can be used to assess computer interest in older populations. This will help professionals plan and implement computer services in public-access settings for older adults. An additional application of this research is the information it provides for training program designers. PMID:10665203
Climate Modeling using High-Performance Computing
Mirin, A A
2007-02-05
The Center for Applied Scientific Computing (CASC) and the LLNL Climate and Carbon Science Group of Energy and Environment (E and E) are working together to improve predictions of future climate by applying the best available computational methods and computer resources to this problem. Over the last decade, researchers at the Lawrence Livermore National Laboratory (LLNL) have developed a number of climate models that provide state-of-the-art simulations on a wide variety of massively parallel computers. We are now developing and applying a second generation of high-performance climate models. Through the addition of relevant physical processes, we are developing an earth systems modeling capability as well.
"Computational Modeling of Actinide Complexes"
Balasubramanian, K
2007-03-07
We will present our recent studies on computational actinide chemistry of complexes which are not only interesting from the standpoint of actinide coordination chemistry but also of relevance to environmental management of high-level nuclear wastes. We will be discussing our recent collaborative efforts with Professor Heino Nitsche of LBNL whose research group has been actively carrying out experimental studies on these species. Computations of actinide complexes are also quintessential to our understanding of the complexes found in geochemical, biochemical environments and actinide chemistry relevant to advanced nuclear systems. In particular we have been studying uranyl, plutonyl, and Cm(III) complexes are in aqueous solution. These studies are made with a variety of relativistic methods such as coupled cluster methods, DFT, and complete active space multi-configuration self-consistent-field (CASSCF) followed by large-scale CI computations and relativistic CI (RCI) computations up to 60 million configurations. Our computational studies on actinide complexes were motivated by ongoing EXAFS studies of speciated complexes in geo and biochemical environments carried out by Prof Heino Nitsche's group at Berkeley, Dr. David Clark at Los Alamos and Dr. Gibson's work on small actinide molecules at ORNL. The hydrolysis reactions of urnayl, neputyl and plutonyl complexes have received considerable attention due to their geochemical and biochemical importance but the results of free energies in solution and the mechanism of deprotonation have been topic of considerable uncertainty. We have computed deprotonating and migration of one water molecule from the first solvation shell to the second shell in UO{sub 2}(H{sub 2}O){sub 5}{sup 2+}, UO{sub 2}(H{sub 2}O){sub 5}{sup 2+}NpO{sub 2}(H{sub 2}O){sub 6}{sup +}, and PuO{sub 2}(H{sub 2}O){sub 5}{sup 2+} complexes. Our computed Gibbs free energy(7.27 kcal/m) in solution for the first time agrees with the experiment (7.1 kcal
COLD-SAT Dynamic Model Computer Code
NASA Technical Reports Server (NTRS)
Bollenbacher, G.; Adams, N. S.
1995-01-01
COLD-SAT Dynamic Model (CSDM) computer code implements six-degree-of-freedom, rigid-body mathematical model for simulation of spacecraft in orbit around Earth. Investigates flow dynamics and thermodynamics of subcritical cryogenic fluids in microgravity. Consists of three parts: translation model, rotation model, and slosh model. Written in FORTRAN 77.
Applications of computer modeling to fusion research
Dawson, J.M.
1989-01-01
Progress achieved during this report period is presented on the following topics: Development and application of gyrokinetic particle codes to tokamak transport, development of techniques to take advantage of parallel computers; model dynamo and bootstrap current drive; and in general maintain our broad-based program in basic plasma physics and computer modeling.
Leverage points in a computer model
NASA Astrophysics Data System (ADS)
Janošek, Michal
2016-06-01
This article is focused on the analysis of the leverage points (developed by D. Meadows) in a computer model. The goal is to find out if there is a possibility to find these points of leverage in a computer model (on the example of a predator-prey model) and to determine how the particular parameters, their ranges and monitored variables of the model are associated with the concept of leverage points.
Model Railroading and Computer Fundamentals
ERIC Educational Resources Information Center
McCormick, John W.
2007-01-01
Less than one half of one percent of all processors manufactured today end up in computers. The rest are embedded in other devices such as automobiles, airplanes, trains, satellites, and nearly every modern electronic device. Developing software for embedded systems requires a greater knowledge of hardware than developing for a typical desktop…
Computational modeling of peripheral pain: a commentary.
Argüello, Erick J; Silva, Ricardo J; Huerta, Mónica K; Avila, René S
2015-01-01
This commentary is intended to find possible explanations for the low impact of computational modeling on pain research. We discuss the main strategies that have been used in building computational models for the study of pain. The analysis suggests that traditional models lack biological plausibility at some levels, they do not provide clinically relevant results, and they cannot capture the stochastic character of neural dynamics. On this basis, we provide some suggestions that may be useful in building computational models of pain with a wider range of applications. PMID:26062616
Computational toxicology (CompTox) leverages the significant gains in computing power and computational techniques (e.g., numerical approaches, structure-activity relationships, bioinformatics) realized over the last few years, thereby reducing costs and increasing efficiency i...
Introducing Seismic Tomography with Computational Modeling
NASA Astrophysics Data System (ADS)
Neves, R.; Neves, M. L.; Teodoro, V.
2011-12-01
Learning seismic tomography principles and techniques involves advanced physical and computational knowledge. In depth learning of such computational skills is a difficult cognitive process that requires a strong background in physics, mathematics and computer programming. The corresponding learning environments and pedagogic methodologies should then involve sets of computational modelling activities with computer software systems which allow students the possibility to improve their mathematical or programming knowledge and simultaneously focus on the learning of seismic wave propagation and inverse theory. To reduce the level of cognitive opacity associated with mathematical or programming knowledge, several computer modelling systems have already been developed (Neves & Teodoro, 2010). Among such systems, Modellus is particularly well suited to achieve this goal because it is a domain general environment for explorative and expressive modelling with the following main advantages: 1) an easy and intuitive creation of mathematical models using just standard mathematical notation; 2) the simultaneous exploration of images, tables, graphs and object animations; 3) the attribution of mathematical properties expressed in the models to animated objects; and finally 4) the computation and display of mathematical quantities obtained from the analysis of images and graphs. Here we describe virtual simulations and educational exercises which enable students an easy grasp of the fundamental of seismic tomography. The simulations make the lecture more interactive and allow students the possibility to overcome their lack of advanced mathematical or programming knowledge and focus on the learning of seismological concepts and processes taking advantage of basic scientific computation methods and tools.
Ranked retrieval of Computational Biology models
2010-01-01
Background The study of biological systems demands computational support. If targeting a biological problem, the reuse of existing computational models can save time and effort. Deciding for potentially suitable models, however, becomes more challenging with the increasing number of computational models available, and even more when considering the models' growing complexity. Firstly, among a set of potential model candidates it is difficult to decide for the model that best suits ones needs. Secondly, it is hard to grasp the nature of an unknown model listed in a search result set, and to judge how well it fits for the particular problem one has in mind. Results Here we present an improved search approach for computational models of biological processes. It is based on existing retrieval and ranking methods from Information Retrieval. The approach incorporates annotations suggested by MIRIAM, and additional meta-information. It is now part of the search engine of BioModels Database, a standard repository for computational models. Conclusions The introduced concept and implementation are, to our knowledge, the first application of Information Retrieval techniques on model search in Computational Systems Biology. Using the example of BioModels Database, it was shown that the approach is feasible and extends the current possibilities to search for relevant models. The advantages of our system over existing solutions are that we incorporate a rich set of meta-information, and that we provide the user with a relevance ranking of the models found for a query. Better search capabilities in model databases are expected to have a positive effect on the reuse of existing models. PMID:20701772
Computational Medicine: Translating Models to Clinical Care
Winslow, Raimond L.; Trayanova, Natalia; Geman, Donald; Miller, Michael I.
2013-01-01
Because of the inherent complexity of coupled nonlinear biological systems, the development of computational models is necessary for achieving a quantitative understanding of their structure and function in health and disease. Statistical learning is applied to high-dimensional biomolecular data to create models that describe relationships between molecules and networks. Multiscale modeling links networks to cells, organs, and organ systems. Computational approaches are used to characterize anatomic shape and its variations in health and disease. In each case, the purposes of modeling are to capture all that we know about disease and to develop improved therapies tailored to the needs of individuals. We discuss advances in computational medicine, with specific examples in the fields of cancer, diabetes, cardiology, and neurology. Advances in translating these computational methods to the clinic are described, as well as challenges in applying models for improving patient health. PMID:23115356
Comprehensive computational model for thermal plasma processing
NASA Astrophysics Data System (ADS)
Chang, C. H.
A new numerical model is described for simulating thermal plasmas containing entrained particles, with emphasis on plasma spraying applications. The plasma is represented as a continuum multicomponent chemically reacting ideal gas, while the particles are tracked as discrete Lagrangian entities coupled to the plasma. The overall computational model is embodied in a new computer code called LAVA. Computational results are presented from a transient simulation of alumina spraying in a turbulent argon-helium plasma jet in air environment, including torch geometry, substrate, and multiple species with chemical reactions. Plasma-particle interactions including turbulent dispersion have been modeled in a fully self-consistent manner.
Modeling communication in cluster computing
Stoica, I.; Sultan, F.; Keyes, D.
1995-12-01
We introduce a model for communication costs in parallel processing environments, called the {open_quotes}hyperbolic model,{close_quotes} that generalizes two-parameter dedicated-link models in an analytically simple way. The communication system is modeled as a directed communication graph in which terminal nodes represent the application processes and internal nodes, called communication blocks (CBs), reflect the layered structure of the underlying communication architecture. A CB is characterized by a two-parameter hyperbolic function of the message size that represents the service time needed for processing the message. Rules are given for reducing a communication graph consisting of many CBs to an equivalent two-parameter form, while maintaining a good approximation for the service time. In [4] we demonstrate a tight fit of the estimates of the cost of communication based on our model with actual measurements of the communication and synchronization time between end processes. We, also show the compatibility of our model (to within a factor of 3/4) with the recently proposed LogP model.
Teaching Environmental Systems Modelling Using Computer Simulation.
ERIC Educational Resources Information Center
Moffatt, Ian
1986-01-01
A computer modeling course in environmental systems and dynamics is presented. The course teaches senior undergraduates to analyze a system of interest, construct a system flow chart, and write computer programs to simulate real world environmental processes. An example is presented along with a course evaluation, figures, tables, and references.…
Computer modeling of human decision making
NASA Technical Reports Server (NTRS)
Gevarter, William B.
1991-01-01
Models of human decision making are reviewed. Models which treat just the cognitive aspects of human behavior are included as well as models which include motivation. Both models which have associated computer programs, and those that do not, are considered. Since flow diagrams, that assist in constructing computer simulation of such models, were not generally available, such diagrams were constructed and are presented. The result provides a rich source of information, which can aid in construction of more realistic future simulations of human decision making.
Predictive Models and Computational Embryology
EPA’s ‘virtual embryo’ project is building an integrative systems biology framework for predictive models of developmental toxicity. One schema involves a knowledge-driven adverse outcome pathway (AOP) framework utilizing information from public databases, standardized ontologies...
Computer Model Locates Environmental Hazards
NASA Technical Reports Server (NTRS)
2008-01-01
Catherine Huybrechts Burton founded San Francisco-based Endpoint Environmental (2E) LLC in 2005 while she was a student intern and project manager at Ames Research Center with NASA's DEVELOP program. The 2E team created the Tire Identification from Reflectance model, which algorithmically processes satellite images using turnkey technology to retain only the darkest parts of an image. This model allows 2E to locate piles of rubber tires, which often are stockpiled illegally and cause hazardous environmental conditions and fires.
Enhanced absorption cycle computer model
NASA Astrophysics Data System (ADS)
Grossman, G.; Wilk, M.
1993-09-01
Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperature boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorption systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H2O triple-effect cycles, LiCl-H2O solar-powered open absorption cycles, and NH3-H2O single-effect and generator-absorber heat exchange cycles. An appendix contains the user's manual.
COSP - A computer model of cyclic oxidation
NASA Technical Reports Server (NTRS)
Lowell, Carl E.; Barrett, Charles A.; Palmer, Raymond W.; Auping, Judith V.; Probst, Hubert B.
1991-01-01
A computer model useful in predicting the cyclic oxidation behavior of alloys is presented. The model considers the oxygen uptake due to scale formation during the heating cycle and the loss of oxide due to spalling during the cooling cycle. The balance between scale formation and scale loss is modeled and used to predict weight change and metal loss kinetics. A simple uniform spalling model is compared to a more complex random spall site model. In nearly all cases, the simpler uniform spall model gave predictions as accurate as the more complex model. The model has been applied to several nickel-base alloys which, depending upon composition, form Al2O3 or Cr2O3 during oxidation. The model has been validated by several experimental approaches. Versions of the model that run on a personal computer are available.
A new epidemic model of computer viruses
NASA Astrophysics Data System (ADS)
Yang, Lu-Xing; Yang, Xiaofan
2014-06-01
This paper addresses the epidemiological modeling of computer viruses. By incorporating the effect of removable storage media, considering the possibility of connecting infected computers to the Internet, and removing the conservative restriction on the total number of computers connected to the Internet, a new epidemic model is proposed. Unlike most previous models, the proposed model has no virus-free equilibrium and has a unique endemic equilibrium. With the aid of the theory of asymptotically autonomous systems as well as the generalized Poincare-Bendixson theorem, the endemic equilibrium is shown to be globally asymptotically stable. By analyzing the influence of different system parameters on the steady number of infected computers, a collection of policies is recommended to prohibit the virus prevalence.
Computer Model Buildings Contaminated with Radioactive Material
Energy Science and Technology Software Center (ESTSC)
1998-05-19
The RESRAD-BUILD computer code is a pathway analysis model designed to evaluate the potential radiological dose incurred by an individual who works or lives in a building contaminated with radioactive material.
Applications of Computational Modeling in Cardiac Surgery
Lee, Lik Chuan; Genet, Martin; Dang, Alan B.; Ge, Liang; Guccione, Julius M.; Ratcliffe, Mark B.
2014-01-01
Although computational modeling is common in many areas of science and engineering, only recently have advances in experimental techniques and medical imaging allowed this tool to be applied in cardiac surgery. Despite its infancy in cardiac surgery, computational modeling has been useful in calculating the effects of clinical devices and surgical procedures. In this review, we present several examples that demonstrate the capabilities of computational cardiac modeling in cardiac surgery. Specifically, we demonstrate its ability to simulate surgery, predict myofiber stress and pump function, and quantify changes to regional myocardial material properties. In addition, issues that would need to be resolved in order for computational modeling to play a greater role in cardiac surgery are discussed. PMID:24708036
Computational modeling and multilevel cancer control interventions.
Morrissey, Joseph P; Lich, Kristen Hassmiller; Price, Rebecca Anhang; Mandelblatt, Jeanne
2012-05-01
This chapter presents an overview of computational modeling as a tool for multilevel cancer care and intervention research. Model-based analyses have been conducted at various "beneath the skin" or biological scales as well as at various "above the skin" or socioecological levels of cancer care delivery. We review the basic elements of computational modeling and illustrate its applications in four cancer control intervention areas: tobacco use, colorectal cancer screening, cervical cancer screening, and racial disparities in access to breast cancer care. Most of these models have examined cancer processes and outcomes at only one or two levels. We suggest ways these models can be expanded to consider interactions involving three or more levels. Looking forward, a number of methodological, structural, and communication barriers must be overcome to create useful computational models of multilevel cancer interventions and population health. PMID:22623597
Computational Methods to Model Persistence.
Vandervelde, Alexandra; Loris, Remy; Danckaert, Jan; Gelens, Lendert
2016-01-01
Bacterial persister cells are dormant cells, tolerant to multiple antibiotics, that are involved in several chronic infections. Toxin-antitoxin modules play a significant role in the generation of such persister cells. Toxin-antitoxin modules are small genetic elements, omnipresent in the genomes of bacteria, which code for an intracellular toxin and its neutralizing antitoxin. In the past decade, mathematical modeling has become an important tool to study the regulation of toxin-antitoxin modules and their relation to the emergence of persister cells. Here, we provide an overview of several numerical methods to simulate toxin-antitoxin modules. We cover both deterministic modeling using ordinary differential equations and stochastic modeling using stochastic differential equations and the Gillespie method. Several characteristics of toxin-antitoxin modules such as protein production and degradation, negative autoregulation through DNA binding, toxin-antitoxin complex formation and conditional cooperativity are gradually integrated in these models. Finally, by including growth rate modulation, we link toxin-antitoxin module expression to the generation of persister cells. PMID:26468111
Economic Analysis. Computer Simulation Models.
ERIC Educational Resources Information Center
Sterling Inst., Washington, DC. Educational Technology Center.
A multimedia course in economic analysis was developed and used in conjunction with the United States Naval Academy. (See ED 043 790 and ED 043 791 for final reports of the project evaluation and development model.) This volume of the text discusses the simulation of behavioral relationships among variable elements in an economy and presents…
Computational study of lattice models
NASA Astrophysics Data System (ADS)
Zujev, Aleksander
This dissertation is composed of the descriptions of a few projects undertook to complete my doctorate at the University of California, Davis. Different as they are, the common feature of them is that they all deal with simulations of lattice models, and physics which results from interparticle interactions. As an example, both the Feynman-Kikuchi model (Chapter 3) and Bose-Fermi mixture (Chapter 4) deal with the conditions under which superfluid transitions occur. The dissertation is divided into two parts. Part I (Chapters 1-2) is theoretical. It describes the systems we study - superfluidity and particularly superfluid helium, and optical lattices. The numerical methods of working with them are described. The use of Monte Carlo methods is another unifying theme of the different projects in this thesis. Part II (Chapters 3-6) deals with applications. It consists of 4 chapters describing different projects. Two of them, Feynman-Kikuchi model, and Bose-Fermi mixture are finished and published. The work done on t - J model, described in Chapter 5, is more preliminary, and the project is far from complete. A preliminary report on it was given on 2009 APS March meeting. The Isentropic project, described in the last chapter, is finished. A report on it was given on 2010 APS March meeting, and a paper is in preparation. The quantum simulation program used for Bose-Fermi mixture project was written by our collaborators Valery Rousseau and Peter Denteneer. I had written my own code for the other projects.
Parallel computing in atmospheric chemistry models
Rotman, D.
1996-02-01
Studies of atmospheric chemistry are of high scientific interest, involve computations that are complex and intense, and require enormous amounts of I/O. Current supercomputer computational capabilities are limiting the studies of stratospheric and tropospheric chemistry and will certainly not be able to handle the upcoming coupled chemistry/climate models. To enable such calculations, the authors have developed a computing framework that allows computations on a wide range of computational platforms, including massively parallel machines. Because of the fast paced changes in this field, the modeling framework and scientific modules have been developed to be highly portable and efficient. Here, the authors present the important features of the framework and focus on the atmospheric chemistry module, named IMPACT, and its capabilities. Applications of IMPACT to aircraft studies will be presented.
A Computational Framework for Realistic Retina Modeling.
Martínez-Cañada, Pablo; Morillas, Christian; Pino, Begoña; Ros, Eduardo; Pelayo, Francisco
2016-11-01
Computational simulations of the retina have led to valuable insights about the biophysics of its neuronal activity and processing principles. A great number of retina models have been proposed to reproduce the behavioral diversity of the different visual processing pathways. While many of these models share common computational stages, previous efforts have been more focused on fitting specific retina functions rather than generalizing them beyond a particular model. Here, we define a set of computational retinal microcircuits that can be used as basic building blocks for the modeling of different retina mechanisms. To validate the hypothesis that similar processing structures may be repeatedly found in different retina functions, we implemented a series of retina models simply by combining these computational retinal microcircuits. Accuracy of the retina models for capturing neural behavior was assessed by fitting published electrophysiological recordings that characterize some of the best-known phenomena observed in the retina: adaptation to the mean light intensity and temporal contrast, and differential motion sensitivity. The retinal microcircuits are part of a new software platform for efficient computational retina modeling from single-cell to large-scale levels. It includes an interface with spiking neural networks that allows simulation of the spiking response of ganglion cells and integration with models of higher visual areas. PMID:27354192
Computer Modeling of Direct Metal Laser Sintering
NASA Technical Reports Server (NTRS)
Cross, Matthew
2014-01-01
A computational approach to modeling direct metal laser sintering (DMLS) additive manufacturing process is presented. The primary application of the model is for determining the temperature history of parts fabricated using DMLS to evaluate residual stresses found in finished pieces and to assess manufacturing process strategies to reduce part slumping. The model utilizes MSC SINDA as a heat transfer solver with imbedded FORTRAN computer code to direct laser motion, apply laser heating as a boundary condition, and simulate the addition of metal powder layers during part fabrication. Model results are compared to available data collected during in situ DMLS part manufacture.
Computing a Comprehensible Model for Spam Filtering
NASA Astrophysics Data System (ADS)
Ruiz-Sepúlveda, Amparo; Triviño-Rodriguez, José L.; Morales-Bueno, Rafael
In this paper, we describe the application of the Desicion Tree Boosting (DTB) learning model to spam email filtering.This classification task implies the learning in a high dimensional feature space. So, it is an example of how the DTB algorithm performs in such feature space problems. In [1], it has been shown that hypotheses computed by the DTB model are more comprehensible that the ones computed by another ensemble methods. Hence, this paper tries to show that the DTB algorithm maintains the same comprehensibility of hypothesis in high dimensional feature space problems while achieving the performance of other ensemble methods. Four traditional evaluation measures (precision, recall, F1 and accuracy) have been considered for performance comparison between DTB and others models usually applied to spam email filtering. The size of the hypothesis computed by a DTB is smaller and more comprehensible than the hypothesis computed by Adaboost and Naïve Bayes.
Mechanistic models in computational social science
NASA Astrophysics Data System (ADS)
Holme, Petter; Liljeros, Fredrik
2015-09-01
Quantitative social science is not only about regression analysis or, in general, data inference. Computer simulations of social mechanisms have an over 60 years long history. They have been used for many different purposes—to test scenarios, to test the consistency of descriptive theories (proof-of-concept models), to explore emergent phenomena, for forecasting, etc. In this essay, we sketch these historical developments, the role of mechanistic models in the social sciences and the influences from the natural and formal sciences. We argue that mechanistic computational models form a natural common ground for social and natural sciences, and look forward to possible future information flow across the social-natural divide.
A computational model of the cerebellum
Travis, B.J.
1990-01-01
The need for realistic computational models of neural microarchitecture is growing increasingly apparent. While traditional neural networks have made inroads on understanding cognitive functions, more realism (in the form of structural and connectivity constraints) is required to explain processes such as vision or motor control. A highly detailed computational model of mammalian cerebellum has been developed. It is being compared to physiological recordings for validation purposes. The model is also being used to study the relative contributions of each component to cerebellar processing. 28 refs., 4 figs.
Teaching Forest Planning with Computer Models
ERIC Educational Resources Information Center
Howard, Richard A.; Magid, David
1977-01-01
This paper describes a series of FORTRAN IV computer models which are the content-oriented subject matter for a college course in forest planning. The course objectives, the planning problem, and the ten planning aid models are listed. Student comments and evaluation of the program are included. (BT)
Parallel computing for automated model calibration
Burke, John S.; Danielson, Gary R.; Schulz, Douglas A.; Vail, Lance W.
2002-07-29
Natural resources model calibration is a significant burden on computing and staff resources in modeling efforts. Most assessments must consider multiple calibration objectives (for example magnitude and timing of stream flow peak). An automated calibration process that allows real time updating of data/models, allowing scientists to focus effort on improving models is needed. We are in the process of building a fully featured multi objective calibration tool capable of processing multiple models cheaply and efficiently using null cycle computing. Our parallel processing and calibration software routines have been generically, but our focus has been on natural resources model calibration. So far, the natural resources models have been friendly to parallel calibration efforts in that they require no inter-process communication, only need a small amount of input data and only output a small amount of statistical information for each calibration run. A typical auto calibration run might involve running a model 10,000 times with a variety of input parameters and summary statistical output. In the past model calibration has been done against individual models for each data set. The individual model runs are relatively fast, ranging from seconds to minutes. The process was run on a single computer using a simple iterative process. We have completed two Auto Calibration prototypes and are currently designing a more feature rich tool. Our prototypes have focused on running the calibration in a distributed computing cross platform environment. They allow incorporation of?smart? calibration parameter generation (using artificial intelligence processing techniques). Null cycle computing similar to SETI@Home has also been a focus of our efforts. This paper details the design of the latest prototype and discusses our plans for the next revision of the software.
Computer Modeling and Visualization in Design Technology: An Instructional Model.
ERIC Educational Resources Information Center
Guidera, Stan
2002-01-01
Design visualization can increase awareness of issues related to perceptual and psychological aspects of design that computer-assisted design and computer modeling may not allow. A pilot university course developed core skills in modeling and simulation using visualization. Students were consistently able to meet course objectives. (Contains 16…
Human systems dynamics: Toward a computational model
NASA Astrophysics Data System (ADS)
Eoyang, Glenda H.
2012-09-01
A robust and reliable computational model of complex human systems dynamics could support advancements in theory and practice for social systems at all levels, from intrapersonal experience to global politics and economics. Models of human interactions have evolved from traditional, Newtonian systems assumptions, which served a variety of practical and theoretical needs of the past. Another class of models has been inspired and informed by models and methods from nonlinear dynamics, chaos, and complexity science. None of the existing models, however, is able to represent the open, high dimension, and nonlinear self-organizing dynamics of social systems. An effective model will represent interactions at multiple levels to generate emergent patterns of social and political life of individuals and groups. Existing models and modeling methods are considered and assessed against characteristic pattern-forming processes in observed and experienced phenomena of human systems. A conceptual model, CDE Model, based on the conditions for self-organizing in human systems, is explored as an alternative to existing models and methods. While the new model overcomes the limitations of previous models, it also provides an explanatory base and foundation for prospective analysis to inform real-time meaning making and action taking in response to complex conditions in the real world. An invitation is extended to readers to engage in developing a computational model that incorporates the assumptions, meta-variables, and relationships of this open, high dimension, and nonlinear conceptual model of the complex dynamics of human systems.
Concepts to accelerate water balance model computation
NASA Astrophysics Data System (ADS)
Gronz, Oliver; Casper, Markus; Gemmar, Peter
2010-05-01
Computation time of water balance models has decreased with the increasing performance of CPUs within the last decades. Often, these advantages have been used to enhance the models, e. g. by enlarging spatial resolution or by using smaller simulation time steps. During the last few years, CPU development tended to focus on strong multi core concepts rather than 'simply being generally faster'. Additionally, computer clusters or even computer clouds have become much more commonly available. All these facts again extend our degrees of freedom in simulating water balance models - if the models are able to efficiently use the computer infrastructure. In the following, we present concepts to optimize especially repeated runs and we generally discuss concepts of parallel computing opportunities. Surveyed model In our examinations, we focused on the water balance model LARSIM. In this model, the catchment is subdivided into elements, each of which representing a certain section of a river and its contributory area. Each element is again subdivided into single compartments of homogeneous land use. During the simulation, the relevant hydrological processes are simulated individually for each compartment. The simulated runoff of all compartments leads into the river channel of the corresponding element. Finally, channel routing is simulated for all elements. Optimizing repeated runs During a typical simulation, several input files have to be read before simulation starts: the model structure, the initial model state and meteorological input files. Furthermore, some calculations have to be solved, like interpolating meteorological values. Thus, e. g. the application of Monte Carlo methods will typically use the following algorithm: 1) choose parameters, 2) set parameters in control files, 3) run model, 4) save result, 5) repeat from step 1. Obviously, the third step always includes the previously mentioned steps of reading and preprocessing. Consequently, the model can be
CDF computing and event data models
Snider, F.D.; /Fermilab
2005-12-01
The authors discuss the computing systems, usage patterns and event data models used to analyze Run II data from the CDF-II experiment at the Tevatron collider. A critical analysis of the current implementation and design reveals some of the stronger and weaker elements of the system, which serve as lessons for future experiments. They highlight a need to maintain simplicity for users in the face of an increasingly complex computing environment.
Light reflection models for computer graphics.
Greenberg, D P
1989-04-14
During the past 20 years, computer graphic techniques for simulating the reflection of light have progressed so that today images of photorealistic quality can be produced. Early algorithms considered direct lighting only, but global illumination phenomena with indirect lighting, surface interreflections, and shadows can now be modeled with ray tracing, radiosity, and Monte Carlo simulations. This article describes the historical development of computer graphic algorithms for light reflection and pictorially illustrates what will be commonly available in the near future. PMID:17835348
Computational modelling of schizophrenic symptoms: basic issues.
Tretter, F; an der Heiden, U; Rujescu, D; Pogarell, O
2012-05-01
Emerging "(computational) systems medicine" challenges neuropsychiatry regarding the development of heuristic computational brain models which help to explore symptoms and syndromes of mental disorders. This methodology of exploratory modelling of mental functions and processes and of their pathology requires a clear and operational definition of the target variable (explanandum). In the case of schizophrenia, a complex and heterogeneous disorder, single psychopathological key symptoms such as working memory deficiency, hallucination or delusion need to be defined first. Thereafter, measures of brain structures can be used in a multilevel view as biological correlates of these symptoms. Then, in order to formally "explain" the symptoms, a qualitative model can be constructed. In another step, numerical values have to be integrated into the model and exploratory computer simulations can be performed. Normal and pathological functioning is to be tested in computer experiments allowing the formulation of new hypotheses and questions for empirical research. However, the crucial challenge is to point out the appropriate degree of complexity (or simplicity) of these models, which is required in order to achieve an epistemic value that might lead to new hypothetical explanatory models and could stimulate new empirical and theoretical research. Some outlines of these methodological issues are discussed here, regarding the fact that measurements alone are not sufficient to build models. PMID:22565230
Do's and Don'ts of Computer Models for Planning
ERIC Educational Resources Information Center
Hammond, John S., III
1974-01-01
Concentrates on the managerial issues involved in computer planning models. Describes what computer planning models are and the process by which managers can increase the likelihood of computer planning models being successful in their organizations. (Author/DN)
Solving stochastic epidemiological models using computer algebra
NASA Astrophysics Data System (ADS)
Hincapie, Doracelly; Ospina, Juan
2011-06-01
Mathematical modeling in Epidemiology is an important tool to understand the ways under which the diseases are transmitted and controlled. The mathematical modeling can be implemented via deterministic or stochastic models. Deterministic models are based on short systems of non-linear ordinary differential equations and the stochastic models are based on very large systems of linear differential equations. Deterministic models admit complete, rigorous and automatic analysis of stability both local and global from which is possible to derive the algebraic expressions for the basic reproductive number and the corresponding epidemic thresholds using computer algebra software. Stochastic models are more difficult to treat and the analysis of their properties requires complicated considerations in statistical mathematics. In this work we propose to use computer algebra software with the aim to solve epidemic stochastic models such as the SIR model and the carrier-borne model. Specifically we use Maple to solve these stochastic models in the case of small groups and we obtain results that do not appear in standard textbooks or in the books updated on stochastic models in epidemiology. From our results we derive expressions which coincide with those obtained in the classical texts using advanced procedures in mathematical statistics. Our algorithms can be extended for other stochastic models in epidemiology and this shows the power of computer algebra software not only for analysis of deterministic models but also for the analysis of stochastic models. We also perform numerical simulations with our algebraic results and we made estimations for the basic parameters as the basic reproductive rate and the stochastic threshold theorem. We claim that our algorithms and results are important tools to control the diseases in a globalized world.
Aeroelastic Model Structure Computation for Envelope Expansion
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.
2007-01-01
Structure detection is a procedure for selecting a subset of candidate terms, from a full model description, that best describes the observed output. This is a necessary procedure to compute an efficient system description which may afford greater insight into the functionality of the system or a simpler controller design. Structure computation as a tool for black-box modelling may be of critical importance in the development of robust, parsimonious models for the flight-test community. Moreover, this approach may lead to efficient strategies for rapid envelope expansion which may save significant development time and costs. In this study, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of nonlinear aeroelastic systems. The LASSO minimises the residual sum of squares by the addition of an l(sub 1) penalty term on the parameter vector of the traditional 2 minimisation problem. Its use for structure detection is a natural extension of this constrained minimisation approach to pseudolinear regression problems which produces some model parameters that are exactly zero and, therefore, yields a parsimonious system description. Applicability of this technique for model structure computation for the F/A-18 Active Aeroelastic Wing using flight test data is shown for several flight conditions (Mach numbers) by identifying a parsimonious system description with a high percent fit for cross-validated data.
Aeroelastic Model Structure Computation for Envelope Expansion
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.
2007-01-01
Structure detection is a procedure for selecting a subset of candidate terms, from a full model description, that best describes the observed output. This is a necessary procedure to compute an efficient system description which may afford greater insight into the functionality of the system or a simpler controller design. Structure computation as a tool for black-box modeling may be of critical importance in the development of robust, parsimonious models for the flight-test community. Moreover, this approach may lead to efficient strategies for rapid envelope expansion that may save significant development time and costs. In this study, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of non-linear aeroelastic systems. The LASSO minimises the residual sum of squares with the addition of an l(Sub 1) penalty term on the parameter vector of the traditional l(sub 2) minimisation problem. Its use for structure detection is a natural extension of this constrained minimisation approach to pseudo-linear regression problems which produces some model parameters that are exactly zero and, therefore, yields a parsimonious system description. Applicability of this technique for model structure computation for the F/A-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Active Aeroelastic Wing project using flight test data is shown for several flight conditions (Mach numbers) by identifying a parsimonious system description with a high percent fit for cross-validated data.
Computational modeling of laser-tissue interaction
London, R.A.; Amendt, P.; Bailey, D.S.; Eder, D.C.; Maitland, D.J.; Glinsky, M.E.; Strauss, M.; Zimmerman, G.B.
1996-05-01
Computational modeling can play an important role both in designing laser-tissue interaction experiments and in understanding the underlying mechanisms. This can lead to more rapid and less expensive development if new procedures and instruments, and a better understanding of their operation. We have recently directed computer programs and associated expertise developed over many years to model high intensity laser-matter interactions for fusion research towards laser-tissue interaction problem. A program called LATIS is being developed to specifically treat laser-tissue interaction phenomena, such as highly scattering light transport, thermal coagulation, and hydrodynamic motion.
Computational algebraic geometry of epidemic models
NASA Astrophysics Data System (ADS)
Rodríguez Vega, Martín.
2014-06-01
Computational Algebraic Geometry is applied to the analysis of various epidemic models for Schistosomiasis and Dengue, both, for the case without control measures and for the case where control measures are applied. The models were analyzed using the mathematical software Maple. Explicitly the analysis is performed using Groebner basis, Hilbert dimension and Hilbert polynomials. These computational tools are included automatically in Maple. Each of these models is represented by a system of ordinary differential equations, and for each model the basic reproductive number (R0) is calculated. The effects of the control measures are observed by the changes in the algebraic structure of R0, the changes in Groebner basis, the changes in Hilbert dimension, and the changes in Hilbert polynomials. It is hoped that the results obtained in this paper become of importance for designing control measures against the epidemic diseases described. For future researches it is proposed the use of algebraic epidemiology to analyze models for airborne and waterborne diseases.
Computer modeling of commercial refrigerated warehouse facilities
Nicoulin, C.V.; Jacobs, P.C.; Tory, S.
1997-07-01
The use of computer models to simulate the energy performance of large commercial refrigeration systems typically found in food processing facilities is an area of engineering practice that has seen little development to date. Current techniques employed in predicting energy consumption by such systems have focused on temperature bin methods of analysis. Existing simulation tools such as DOE2 are designed to model commercial buildings and grocery store refrigeration systems. The HVAC and Refrigeration system performance models in these simulations tools model equipment common to commercial buildings and groceries, and respond to energy-efficiency measures likely to be applied to these building types. The applicability of traditional building energy simulation tools to model refrigerated warehouse performance and analyze energy-saving options is limited. The paper will present the results of modeling work undertaken to evaluate energy savings resulting from incentives offered by a California utility to its Refrigerated Warehouse Program participants. The TRNSYS general-purpose transient simulation model was used to predict facility performance and estimate program savings. Custom TRNSYS components were developed to address modeling issues specific to refrigerated warehouse systems, including warehouse loading door infiltration calculations, an evaporator model, single-state and multi-stage compressor models, evaporative condenser models, and defrost energy requirements. The main focus of the paper will be on the modeling approach. The results from the computer simulations, along with overall program impact evaluation results, will also be presented.
Computational Process Modeling for Additive Manufacturing
NASA Technical Reports Server (NTRS)
Bagg, Stacey; Zhang, Wei
2014-01-01
Computational Process and Material Modeling of Powder Bed additive manufacturing of IN 718. Optimize material build parameters with reduced time and cost through modeling. Increase understanding of build properties. Increase reliability of builds. Decrease time to adoption of process for critical hardware. Potential to decrease post-build heat treatments. Conduct single-track and coupon builds at various build parameters. Record build parameter information and QM Meltpool data. Refine Applied Optimization powder bed AM process model using data. Report thermal modeling results. Conduct metallography of build samples. Calibrate STK models using metallography findings. Run STK models using AO thermal profiles and report STK modeling results. Validate modeling with additional build. Photodiode Intensity measurements highly linear with power input. Melt Pool Intensity highly correlated to Melt Pool Size. Melt Pool size and intensity increase with power. Applied Optimization will use data to develop powder bed additive manufacturing process model.
Computational Spectrum of Agent Model Simulation
Perumalla, Kalyan S
2010-01-01
The study of human social behavioral systems is finding renewed interest in military, homeland security and other applications. Simulation is the most generally applied approach to studying complex scenarios in such systems. Here, we outline some of the important considerations that underlie the computational aspects of simulation-based study of human social systems. The fundamental imprecision underlying questions and answers in social science makes it necessary to carefully distinguish among different simulation problem classes and to identify the most pertinent set of computational dimensions associated with those classes. We identify a few such classes and present their computational implications. The focus is then shifted to the most challenging combinations in the computational spectrum, namely, large-scale entity counts at moderate to high levels of fidelity. Recent developments in furthering the state-of-the-art in these challenging cases are outlined. A case study of large-scale agent simulation is provided in simulating large numbers (millions) of social entities at real-time speeds on inexpensive hardware. Recent computational results are identified that highlight the potential of modern high-end computing platforms to push the envelope with respect to speed, scale and fidelity of social system simulations. Finally, the problem of shielding the modeler or domain expert from the complex computational aspects is discussed and a few potential solution approaches are identified.
Global detailed geoid computation and model analysis
NASA Technical Reports Server (NTRS)
Marsh, J. G.; Vincent, S.
1974-01-01
Comparisons and analyses were carried out through the use of detailed gravimetric geoids which we have computed by combining models with a set of 26,000 1 deg x 1 deg mean free air gravity anomalies. The accuracy of the detailed gravimetric geoid computed using the most recent Goddard earth model (GEM-6) in conjunction with the set of 1 deg x 1 deg mean free air gravity anomalies is assessed at + or - 2 meters on the continents of North America, Europe, and Australia, 2 to 5 meters in the Northeast Pacific and North Atlantic areas, and 5 to 10 meters in other areas where surface gravity data are sparse. The R.M.S. differences between this detailed geoid and the detailed geoids computed using the other satellite gravity fields in conjuction with same set of surface data range from 3 to 7 meters.
Integrating interactive computational modeling in biology curricula.
Helikar, Tomáš; Cutucache, Christine E; Dahlquist, Lauren M; Herek, Tyler A; Larson, Joshua J; Rogers, Jim A
2015-03-01
While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology. PMID:25790483
Computational modeling of dilute biomass slurries
NASA Astrophysics Data System (ADS)
Sprague, Michael; Stickel, Jonathan; Fischer, Paul; Lischeske, James
2012-11-01
The biochemical conversion of lignocellulosic biomass to liquid transportation fuels involves a multitude of physical and chemical transformations that occur in several distinct processing steps (e.g., pretreatment, enzymatic hydrolysis, and fermentation). In this work we focus on development of a computational fluid dynamics model of a dilute biomass slurry, which is a highly viscous particle-laden fluid that can exhibit yield-stress behavior. Here, we model the biomass slurry as a generalized Newtonian fluid that accommodates biomass transport due to settling and biomass-concentration-dependent viscosity. Within a typical mixing vessel, viscosity can vary over several orders of magnitude. We solve the model with the Nek5000 spectral-finite-element solver in a simple vane mixer, and validate against experimental results. This work is directed towards our goal of a fully coupled computational model of fluid dynamics and reaction kinetics for the enzymatic hydrolysis of lignocellulosic biomass.
Computing Linear Mathematical Models Of Aircraft
NASA Technical Reports Server (NTRS)
Duke, Eugene L.; Antoniewicz, Robert F.; Krambeer, Keith D.
1991-01-01
Derivation and Definition of Linear Aircraft Model (LINEAR) computer program provides user with powerful, and flexible, standard, documented, and verified software tool for linearization of mathematical models of aerodynamics of aircraft. Intended for use in software tool to drive linear analysis of stability and design of control laws for aircraft. Capable of both extracting such linearized engine effects as net thrust, torque, and gyroscopic effects, and including these effects in linear model of system. Designed to provide easy selection of state, control, and observation variables used in particular model. Also provides flexibility of allowing alternate formulations of both state and observation equations. Written in FORTRAN.
Images as a basis for computer modelling
NASA Astrophysics Data System (ADS)
Beaufils, D.; LeTouzé, J.-C.; Blondel, F.-M.
1994-03-01
New computer technologies such as the graphics data tablet, video digitization and numerical methods, can be used for measurement and mathematical modelling in physics. Two programs dealing with newtonian mechanics and some of related scientific activities for A-level students are described.
Computer Modelling of Photochemical Smog Formation
ERIC Educational Resources Information Center
Huebert, Barry J.
1974-01-01
Discusses a computer program that has been used in environmental chemistry courses as an example of modelling as a vehicle for teaching chemical dynamics, and as a demonstration of some of the factors which affect the production of smog. (Author/GS)
Applications of computational modeling in ballistics
NASA Technical Reports Server (NTRS)
Sturek, Walter B.
1987-01-01
The development of the technology of ballistics as applied to gun launched Army weapon systems is the main objective of research at the U.S. Army Ballistic Research Laboratory (BRL). The primary research programs at the BRL consist of three major ballistic disciplines: exterior, interior, and terminal. The work done at the BRL in these areas was traditionally highly dependent on experimental testing. A considerable emphasis was placed on the development of computational modeling to augment the experimental testing in the development cycle; however, the impact of the computational modeling to this date is modest. With the availability of supercomputer computational resources recently installed at the BRL, a new emphasis on the application of computational modeling to ballistics technology is taking place. The major application areas are outlined which are receiving considerable attention at the BRL at present and to indicate the modeling approaches involved. An attempt was made to give some information as to the degree of success achieved and indicate the areas of greatest need.
Informing Mechanistic Toxicology with Computational Molecular Models
Computational molecular models of chemicals interacting with biomolecular targets provides toxicologists a valuable, affordable, and sustainable source of in silico molecular level information that augments, enriches, and complements in vitro and in vivo effo...
A Computational Model of Spatial Visualization Capacity
ERIC Educational Resources Information Center
Lyon, Don R.; Gunzelmann, Glenn; Gluck, Kevin A.
2008-01-01
Visualizing spatial material is a cornerstone of human problem solving, but human visualization capacity is sharply limited. To investigate the sources of this limit, we developed a new task to measure visualization accuracy for verbally-described spatial paths (similar to street directions), and implemented a computational process model to…
Automating sensitivity analysis of computer models using computer calculus
Oblow, E.M.; Pin, F.G.
1985-01-01
An automated procedure for performing sensitivity analyses has been developed. The procedure uses a new FORTRAN compiler with computer calculus capabilities to generate the derivatives needed to set up sensitivity equations. The new compiler is called GRESS - Gradient Enhanced Software System. Application of the automated procedure with ''direct'' and ''adjoint'' sensitivity theory for the analysis of non-linear, iterative systems of equations is discussed. Calculational efficiency consideration and techniques for adjoint sensitivity analysis are emphasized. The new approach is found to preserve the traditional advantages of adjoint theory while removing the tedious human effort previously needed to apply this theoretical methodology. Conclusions are drawn about the applicability of the automated procedure in numerical analysis and large-scale modelling sensitivity studies. 24 refs., 2 figs.
Computational Modeling: From Remote Sensing to Quantum Computing
NASA Astrophysics Data System (ADS)
Healy, Dennis
2001-03-01
Recent DARPA investments have contributed to significant advances in numerically sound and computationally efficient physics-based modeling, enabling a wide variety of applications of critical interest to the DoD and Industry. Specific examples may be found in a wide variety of applications ranging from the design and operation of advanced synthetic aperture radar systems to the virtual integrated prototyping of reactors and control loops for the manufacture of thin-film functional material systems. This talk will survey the development and application of well-conditioned fast operators for particular physical problems and their critical contributions to various real world problems. We'll conclude with an indication of how these methods may contribute to exploring the revolutionary potential of quantum information theory.
Computer Model Of Fragmentation Of Atomic Nuclei
NASA Technical Reports Server (NTRS)
Wilson, John W.; Townsend, Lawrence W.; Tripathi, Ram K.; Norbury, John W.; KHAN FERDOUS; Badavi, Francis F.
1995-01-01
High Charge and Energy Semiempirical Nuclear Fragmentation Model (HZEFRG1) computer program developed to be computationally efficient, user-friendly, physics-based program for generating data bases on fragmentation of atomic nuclei. Data bases generated used in calculations pertaining to such radiation-transport applications as shielding against radiation in outer space, radiation dosimetry in outer space, cancer therapy in laboratories with beams of heavy ions, and simulation studies for designing detectors for experiments in nuclear physics. Provides cross sections for production of individual elements and isotopes in breakups of high-energy heavy ions by combined nuclear and Coulomb fields of interacting nuclei. Written in ANSI FORTRAN 77.
Computer Model Predicts the Movement of Dust
NASA Technical Reports Server (NTRS)
2002-01-01
A new computer model of the atmosphere can now actually pinpoint where global dust events come from, and can project where they're going. The model may help scientists better evaluate the impact of dust on human health, climate, ocean carbon cycles, ecosystems, and atmospheric chemistry. Also, by seeing where dust originates and where it blows people with respiratory problems can get advanced warning of approaching dust clouds. 'The model is physically more realistic than previous ones,' said Mian Chin, a co-author of the study and an Earth and atmospheric scientist at Georgia Tech and the Goddard Space Flight Center (GSFC) in Greenbelt, Md. 'It is able to reproduce the short term day-to-day variations and long term inter-annual variations of dust concentrations and distributions that are measured from field experiments and observed from satellites.' The above images show both aerosols measured from space (left) and the movement of aerosols predicted by computer model for the same date (right). For more information, read New Computer Model Tracks and Predicts Paths Of Earth's Dust Images courtesy Paul Giroux, Georgia Tech/NASA Goddard Space Flight Center
Queuing theory models for computer networks
NASA Technical Reports Server (NTRS)
Galant, David C.
1989-01-01
A set of simple queuing theory models which can model the average response of a network of computers to a given traffic load has been implemented using a spreadsheet. The impact of variations in traffic patterns and intensities, channel capacities, and message protocols can be assessed using them because of the lack of fine detail in the network traffic rates, traffic patterns, and the hardware used to implement the networks. A sample use of the models applied to a realistic problem is included in appendix A. Appendix B provides a glossary of terms used in this paper. This Ames Research Center computer communication network is an evolving network of local area networks (LANs) connected via gateways and high-speed backbone communication channels. Intelligent planning of expansion and improvement requires understanding the behavior of the individual LANs as well as the collection of networks as a whole.
Computational models of natural language processing
Bara, B.G.; Guida, G.
1984-01-01
The main concern in this work is the illustration of models for natural language processing, and the discussion of their role in the development of computational studies of language. Topics covered include the following: competence and performance in the design of natural language systems; planning and understanding speech acts by interpersonal games; a framework for integrating syntax and semantics; knowledge representation and natural language: extending the expressive power of proposition nodes; viewing parsing as word sense discrimination: a connectionist approach; a propositional language for text representation; from topic and focus of a sentence to linking in a text; language generation by computer; understanding the Chinese language; semantic primitives or meaning postulates: mental models of propositional representations; narrative complexity based on summarization algorithms; using focus to constrain language generation; and towards an integral model of language competence.
Concepts to accelerate water balance model computation
NASA Astrophysics Data System (ADS)
Gronz, Oliver; Casper, Markus; Gemmar, Peter
2010-05-01
Computation time of water balance models has decreased with the increasing performance of CPUs within the last decades. Often, these advantages have been used to enhance the models, e. g. by enlarging spatial resolution or by using smaller simulation time steps. During the last few years, CPU development tended to focus on strong multi core concepts rather than 'simply being generally faster'. Additionally, computer clusters or even computer clouds have become much more commonly available. All these facts again extend our degrees of freedom in simulating water balance models - if the models are able to efficiently use the computer infrastructure. In the following, we present concepts to optimize especially repeated runs and we generally discuss concepts of parallel computing opportunities. Surveyed model In our examinations, we focused on the water balance model LARSIM. In this model, the catchment is subdivided into elements, each of which representing a certain section of a river and its contributory area. Each element is again subdivided into single compartments of homogeneous land use. During the simulation, the relevant hydrological processes are simulated individually for each compartment. The simulated runoff of all compartments leads into the river channel of the corresponding element. Finally, channel routing is simulated for all elements. Optimizing repeated runs During a typical simulation, several input files have to be read before simulation starts: the model structure, the initial model state and meteorological input files. Furthermore, some calculations have to be solved, like interpolating meteorological values. Thus, e. g. the application of Monte Carlo methods will typically use the following algorithm: 1) choose parameters, 2) set parameters in control files, 3) run model, 4) save result, 5) repeat from step 1. Obviously, the third step always includes the previously mentioned steps of reading and preprocessing. Consequently, the model can be
Computer modeling of heat pipe performance
NASA Technical Reports Server (NTRS)
Peterson, G. P.
1983-01-01
A parametric study of the defining equations which govern the steady state operational characteristics of the Grumman monogroove dual passage heat pipe is presented. These defining equations are combined to develop a mathematical model which describes and predicts the operational and performance capabilities of a specific heat pipe given the necessary physical characteristics and working fluid. Included is a brief review of the current literature, a discussion of the governing equations, and a description of both the mathematical and computer model. Final results of preliminary test runs of the model are presented and compared with experimental tests on actual prototypes.
Molecular Sieve Bench Testing and Computer Modeling
NASA Technical Reports Server (NTRS)
Mohamadinejad, Habib; DaLee, Robert C.; Blackmon, James B.
1995-01-01
The design of an efficient four-bed molecular sieve (4BMS) CO2 removal system for the International Space Station depends on many mission parameters, such as duration, crew size, cost of power, volume, fluid interface properties, etc. A need for space vehicle CO2 removal system models capable of accurately performing extrapolated hardware predictions is inevitable due to the change of the parameters which influences the CO2 removal system capacity. The purpose is to investigate the mathematical techniques required for a model capable of accurate extrapolated performance predictions and to obtain test data required to estimate mass transfer coefficients and verify the computer model. Models have been developed to demonstrate that the finite difference technique can be successfully applied to sorbents and conditions used in spacecraft CO2 removal systems. The nonisothermal, axially dispersed, plug flow model with linear driving force for 5X sorbent and pore diffusion for silica gel are then applied to test data. A more complex model, a non-darcian model (two dimensional), has also been developed for simulation of the test data. This model takes into account the channeling effect on column breakthrough. Four FORTRAN computer programs are presented: a two-dimensional model of flow adsorption/desorption in a packed bed; a one-dimensional model of flow adsorption/desorption in a packed bed; a model of thermal vacuum desorption; and a model of a tri-sectional packed bed with two different sorbent materials. The programs are capable of simulating up to four gas constituents for each process, which can be increased with a few minor changes.
GPU Computing in Space Weather Modeling
NASA Astrophysics Data System (ADS)
Feng, X.; Zhong, D.; Xiang, C.; Zhang, Y.
2013-04-01
Space weather refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that affect human life or health. In order to make the real- or faster than real-time numerical prediction of adverse space weather events and their influence on the geospace environment, high-performance computational models are required. The main objective in this article is to explore the application of programmable graphic processing units (GPUs) to the numerical space weather modeling for the study of solar wind background that is a crucial part in the numerical space weather modeling. GPU programming is realized for our Solar-Interplanetary-CESE MHD model (SIP-CESE MHD model) by numerically studying the solar corona/interplanetary solar wind. The global solar wind structures is obtained by the established GPU model with the magnetic field synoptic data as input. The simulated global structures for Carrington rotation 2060 agrees well with solar observations and solar wind measurements from spacecraft near the Earth. The model's implementation of the adaptive-mesh-refinement (AMR) and message passing interface (MPI) enables the full exploitation of the computing power in a heterogeneous CPU/GPU cluster and significantly improves the overall performance. Our initial tests with available hardware show speedups of roughly 5x compared to traditional software implementation. This work presents a novel application of GPU to the space weather study.
Computational Modeling of Pollution Transmission in Rivers
NASA Astrophysics Data System (ADS)
Parsaie, Abbas; Haghiabi, Amir Hamzeh
2015-08-01
Modeling of river pollution contributes to better management of water quality and this will lead to the improvement of human health. The advection dispersion equation (ADE) is the government equation on pollutant transmission in the river. Modeling the pollution transmission includes numerical solution of the ADE and estimating the longitudinal dispersion coefficient (LDC). In this paper, a novel approach is proposed for numerical modeling of the pollution transmission in rivers. It is related to use both finite volume method as numerical method and artificial neural network (ANN) as soft computing technique together in simulation. In this approach, the result of the ANN for predicting the LDC was considered as input parameter for the numerical solution of the ADE. To validate the model performance in real engineering problems, the pollutant transmission in Severn River has been simulated. Comparison of the final model results with measured data of the Severn River showed that the model has good performance. Predicting the LDC by ANN model significantly improved the accuracy of computer simulation of the pollution transmission in river.
Validation of Computational Models in Biomechanics
Henninger, Heath B.; Reese, Shawn P.; Anderson, Andrew E.; Weiss, Jeffrey A.
2010-01-01
The topics of verification and validation (V&V) have increasingly been discussed in the field of computational biomechanics, and many recent articles have applied these concepts in an attempt to build credibility for models of complex biological systems. V&V are evolving techniques that, if used improperly, can lead to false conclusions about a system under study. In basic science these erroneous conclusions may lead to failure of a subsequent hypothesis, but they can have more profound effects if the model is designed to predict patient outcomes. While several authors have reviewed V&V as they pertain to traditional solid and fluid mechanics, it is the intent of this manuscript to present them in the context of computational biomechanics. Specifically, the task of model validation will be discussed with a focus on current techniques. It is hoped that this review will encourage investigators to engage and adopt the V&V process in an effort to increase peer acceptance of computational biomechanics models. PMID:20839648
Modelling amorphous computations with transcription networks
Simpson, Zack Booth; Tsai, Timothy L.; Nguyen, Nam; Chen, Xi; Ellington, Andrew D.
2009-01-01
The power of electronic computation is due in part to the development of modular gate structures that can be coupled to carry out sophisticated logical operations and whose performance can be readily modelled. However, the equivalences between electronic and biochemical operations are far from obvious. In order to help cross between these disciplines, we develop an analogy between complementary metal oxide semiconductor and transcriptional logic gates. We surmise that these transcriptional logic gates might prove to be useful in amorphous computations and model the abilities of immobilized gates to form patterns. Finally, to begin to implement these computations, we design unique hairpin transcriptional gates and then characterize these gates in a binary latch similar to that already demonstrated by Kim et al. (Kim, White & Winfree 2006 Mol. Syst. Biol. 2, 68 (doi:10.1038/msb4100099)). The hairpin transcriptional gates are uniquely suited to the design of a complementary NAND gate that can serve as an underlying basis of molecular computing that can output matter rather than electronic information. PMID:19474083
Computational Modeling of Mammalian Signaling Networks
Hughey, Jacob J; Lee, Timothy K; Covert, Markus W
2011-01-01
One of the most exciting developments in signal transduction research has been the proliferation of studies in which a biological discovery was initiated by computational modeling. Here we review the major efforts that enable such studies. First, we describe the experimental technologies that are generally used to identify the molecular components and interactions in, and dynamic behavior exhibited by, a network of interest. Next, we review the mathematical approaches that are used to model signaling network behavior. Finally, we focus on three specific instances of “model-driven discovery”: cases in which computational modeling of a signaling network has led to new insights which have been verified experimentally. Signal transduction networks are the bridge between the extraordinarily complex extracellular environment and a carefully orchestrated cellular response. These networks are largely composed of proteins which can interact, move to specific cellular locations, or be modified or degraded. The integration of these events often leads to the activation or inactivation of transcription factors, which then induce or repress the expression of thousands of genes. Because of this critical role in translating environmental cues to cellular behaviors, malfunctioning signaling networks can lead to a variety of pathologies. One example is cancer, in which many of the key genes found to be involved in cancer onset and development are components of signaling pathways [1, 2]. A detailed understanding of the cellular signaling networks underlying such diseases would likely be extremely useful in developing new treatments. However, the complexity of signaling networks is such that their integrated functions cannot be determined without computational simulation. In recent years, mathematical modeling of signal transduction has led to some exciting new findings and biological discoveries. Here, we review the work that has enabled computational modeling of mammalian
Multiscale Computational Models of Complex Biological Systems
Walpole, Joseph; Papin, Jason A.; Peirce, Shayn M.
2014-01-01
Integration of data across spatial, temporal, and functional scales is a primary focus of biomedical engineering efforts. The advent of powerful computing platforms, coupled with quantitative data from high-throughput experimental platforms, has allowed multiscale modeling to expand as a means to more comprehensively investigate biological phenomena in experimentally relevant ways. This review aims to highlight recently published multiscale models of biological systems while using their successes to propose the best practices for future model development. We demonstrate that coupling continuous and discrete systems best captures biological information across spatial scales by selecting modeling techniques that are suited to the task. Further, we suggest how to best leverage these multiscale models to gain insight into biological systems using quantitative, biomedical engineering methods to analyze data in non-intuitive ways. These topics are discussed with a focus on the future of the field, the current challenges encountered, and opportunities yet to be realized. PMID:23642247
Geometric modeling for computer aided design
NASA Technical Reports Server (NTRS)
Schwing, James L.
1993-01-01
Over the past several years, it has been the primary goal of this grant to design and implement software to be used in the conceptual design of aerospace vehicles. The work carried out under this grant was performed jointly with members of the Vehicle Analysis Branch (VAB) of NASA LaRC, Computer Sciences Corp., and Vigyan Corp. This has resulted in the development of several packages and design studies. Primary among these are the interactive geometric modeling tool, the Solid Modeling Aerospace Research Tool (smart), and the integration and execution tools provided by the Environment for Application Software Integration and Execution (EASIE). In addition, it is the purpose of the personnel of this grant to provide consultation in the areas of structural design, algorithm development, and software development and implementation, particularly in the areas of computer aided design, geometric surface representation, and parallel algorithms.
Computer modeling of a compact isochronous cyclotron
NASA Astrophysics Data System (ADS)
Smirnov, V. L.
2015-11-01
The computer modeling methods of a compact isochronous cyclotron are described. The main stages of analysis of accelerator facilities systems are considered. The described methods are based on theoretical fundamentals of cyclotron physics and mention highlights of creation of the physical project of a compact cyclotron. The main attention is paid to the analysis of the beam dynamics, formation of a magnetic field, stability of the movement, and a realistic assessment of intensity of the generated bunch of particles. In the article, the stages of development of the accelerator computer model, analytical ways of assessment of the accelerator parameters, and the basic technique of the numerical analysis of dynamics of the particles are described.
Computational fluid dynamics modelling in cardiovascular medicine.
Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P
2016-01-01
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. PMID:26512019
Computational fluid dynamics modelling in cardiovascular medicine
Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P
2016-01-01
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards ‘digital patient’ or ‘virtual physiological human’ representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. PMID:26512019
Wild Fire Computer Model Helps Firefighters
Canfield, Jesse
2012-09-04
A high-tech computer model called HIGRAD/FIRETEC, the cornerstone of a collaborative effort between U.S. Forest Service Rocky Mountain Research Station and Los Alamos National Laboratory, provides insights that are essential for front-line fire fighters. The science team is looking into levels of bark beetle-induced conditions that lead to drastic changes in fire behavior and how variable or erratic the behavior is likely to be.
Computed structures of polyimides model compounds
NASA Technical Reports Server (NTRS)
Tai, H.; Phillips, D. H.
1990-01-01
Using a semi-empirical approach, a computer study was made of 8 model compounds of polyimides. The compounds represent subunits from which NASA Langley Research Center has successfully synthesized polymers for aerospace high performance material application, including one of the most promising, LARC-TPI polymer. Three-dimensional graphic display as well as important molecular structure data pertaining to these 8 compounds are obtained.
Wild Fire Computer Model Helps Firefighters
Canfield, Jesse
2014-06-02
A high-tech computer model called HIGRAD/FIRETEC, the cornerstone of a collaborative effort between U.S. Forest Service Rocky Mountain Research Station and Los Alamos National Laboratory, provides insights that are essential for front-line fire fighters. The science team is looking into levels of bark beetle-induced conditions that lead to drastic changes in fire behavior and how variable or erratic the behavior is likely to be.
Computational models of human vision with applications
NASA Technical Reports Server (NTRS)
Wandell, B. A.
1985-01-01
Perceptual problems in aeronautics were studied. The mechanism by which color constancy is achieved in human vision was examined. A computable algorithm was developed to model the arrangement of retinal cones in spatial vision. The spatial frequency spectra are similar to the spectra of actual cone mosaics. The Hartley transform as a tool of image processing was evaluated and it is suggested that it could be used in signal processing applications, GR image processing.
COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS
Ibrahim, Essam A
2013-01-09
Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations to study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.
Mathematical and computational models of plasma flows
NASA Astrophysics Data System (ADS)
Brushlinsky, K. V.
Investigations of plasma flows are of interest, firstly, due to numerous applications, and secondly, because of their general principles, which form a special branch of physics: the plasma dynamics. Numerical simulation and computation, together with theoretic and experimental methods, play an important part in these investigations. Speaking on flows, a relatively dense plasma is mentioned, so its mathematical models appertain to the fluid mechanics, i.e., they are based on the magnetohydrodynamic description of plasma. Time dependent two dimensional models of plasma flows of two wide-spread types are considered: the flows across the magnetic field and those in the magnetic field plane.
ADGEN: ADjoint GENerator for computer models
Worley, B.A.; Pin, F.G.; Horwedel, J.E.; Oblow, E.M.
1989-05-01
This paper presents the development of a FORTRAN compiler and an associated supporting software library called ADGEN. ADGEN reads FORTRAN models as input and produces and enhanced version of the input model. The enhanced version reproduces the original model calculations but also has the capability to calculate derivatives of model results of interest with respect to any and all of the model data and input parameters. The method for calculating the derivatives and sensitivities is the adjoint method. Partial derivatives are calculated analytically using computer calculus and saved as elements of an adjoint matrix on direct assess storage. The total derivatives are calculated by solving an appropriate adjoint equation. ADGEN is applied to a major computer model of interest to the Low-Level Waste Community, the PRESTO-II model. PRESTO-II sample problem results reveal that ADGEN correctly calculates derivatives of response of interest with respect to 300 parameters. The execution time to create the adjoint matrix is a factor of 45 times the execution time of the reference sample problem. Once this matrix is determined, the derivatives with respect to 3000 parameters are calculated in a factor of 6.8 that of the reference model for each response of interest. For a single 3000 for determining these derivatives by parameter perturbations. The automation of the implementation of the adjoint technique for calculating derivatives and sensitivities eliminates the costly and manpower-intensive task of direct hand-implementation by reprogramming and thus makes the powerful adjoint technique more amenable for use in sensitivity analysis of existing models. 20 refs., 1 fig., 5 tabs.
Computational fire modeling for aircraft fire research
Nicolette, V.F.
1996-11-01
This report summarizes work performed by Sandia National Laboratories for the Federal Aviation Administration. The technical issues involved in fire modeling for aircraft fire research are identified, as well as computational fire tools for addressing those issues, and the research which is needed to advance those tools in order to address long-range needs. Fire field models are briefly reviewed, and the VULCAN model is selected for further evaluation. Calculations are performed with VULCAN to demonstrate its applicability to aircraft fire problems, and also to gain insight into the complex problem of fires involving aircraft. Simulations are conducted to investigate the influence of fire on an aircraft in a cross-wind. The interaction of the fuselage, wind, fire, and ground plane is investigated. Calculations are also performed utilizing a large eddy simulation (LES) capability to describe the large- scale turbulence instead of the more common k-{epsilon} turbulence model. Additional simulations are performed to investigate the static pressure and velocity distributions around a fuselage in a cross-wind, with and without fire. The results of these simulations provide qualitative insight into the complex interaction of a fuselage, fire, wind, and ground plane. Reasonable quantitative agreement is obtained in the few cases for which data or other modeling results exist Finally, VULCAN is used to quantify the impact of simplifying assumptions inherent in a risk assessment compatible fire model developed for open pool fire environments. The assumptions are seen to be of minor importance for the particular problem analyzed. This work demonstrates the utility of using a fire field model for assessing the limitations of simplified fire models. In conclusion, the application of computational fire modeling tools herein provides both qualitative and quantitative insights into the complex problem of aircraft in fires.
Computational acoustic modeling of cetacean vocalizations
NASA Astrophysics Data System (ADS)
Gurevich, Michael Dixon
A framework for computational acoustic modeling of hypothetical vocal production mechanisms in cetaceans is presented. As a specific example, a model of a proposed source in the larynx of odontocetes is developed. Whales and dolphins generate a broad range of vocal sounds, but the exact mechanisms they use are not conclusively understood. In the fifty years since it has become widely accepted that whales can and do make sound, how they do so has remained particularly confounding. Cetaceans' highly divergent respiratory anatomy, along with the difficulty of internal observation during vocalization have contributed to this uncertainty. A variety of acoustical, morphological, ethological and physiological evidence has led to conflicting and often disputed theories of the locations and mechanisms of cetaceans' sound sources. Computational acoustic modeling has been used to create real-time parametric models of musical instruments and the human voice. These techniques can be applied to cetacean vocalizations to help better understand the nature and function of these sounds. Extensive studies of odontocete laryngeal morphology have revealed vocal folds that are consistently similar to a known but poorly understood acoustic source, the ribbon reed. A parametric computational model of the ribbon reed is developed, based on simplified geometrical, mechanical and fluid models drawn from the human voice literature. The physical parameters of the ribbon reed model are then adapted to those of the odontocete larynx. With reasonable estimates of real physical parameters, both the ribbon reed and odontocete larynx models produce sounds that are perceptually similar to their real-world counterparts, and both respond realistically under varying control conditions. Comparisons of acoustic features of the real-world and synthetic systems show a number of consistencies. While this does not on its own prove that either model is conclusively an accurate description of the source, it
Computational Modeling in Structural Materials Processing
NASA Technical Reports Server (NTRS)
Meyyappan, Meyya; Arnold, James O. (Technical Monitor)
1997-01-01
High temperature materials such as silicon carbide, a variety of nitrides, and ceramic matrix composites find use in aerospace, automotive, machine tool industries and in high speed civil transport applications. Chemical vapor deposition (CVD) is widely used in processing such structural materials. Variations of CVD include deposition on substrates, coating of fibers, inside cavities and on complex objects, and infiltration within preforms called chemical vapor infiltration (CVI). Our current knowledge of the process mechanisms, ability to optimize processes, and scale-up for large scale manufacturing is limited. In this regard, computational modeling of the processes is valuable since a validated model can be used as a design tool. The effort is similar to traditional chemically reacting flow modeling with emphasis on multicomponent diffusion, thermal diffusion, large sets of homogeneous reactions, and surface chemistry. In the case of CVI, models for pore infiltration are needed. In the present talk, examples of SiC nitride, and Boron deposition from the author's past work will be used to illustrate the utility of computational process modeling.
Ferrofluids: Modeling, numerical analysis, and scientific computation
NASA Astrophysics Data System (ADS)
Tomas, Ignacio
This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a
Computational Statistical Methods for Social Network Models
Hunter, David R.; Krivitsky, Pavel N.; Schweinberger, Michael
2013-01-01
We review the broad range of recent statistical work in social network models, with emphasis on computational aspects of these methods. Particular focus is applied to exponential-family random graph models (ERGM) and latent variable models for data on complete networks observed at a single time point, though we also briefly review many methods for incompletely observed networks and networks observed at multiple time points. Although we mention far more modeling techniques than we can possibly cover in depth, we provide numerous citations to current literature. We illustrate several of the methods on a small, well-known network dataset, Sampson’s monks, providing code where possible so that these analyses may be duplicated. PMID:23828720
A Neural Computational Model of Incentive Salience
Zhang, Jun; Berridge, Kent C.; Tindell, Amy J.; Smith, Kyle S.; Aldridge, J. Wayne
2009-01-01
Incentive salience is a motivational property with ‘magnet-like’ qualities. When attributed to reward-predicting stimuli (cues), incentive salience triggers a pulse of ‘wanting’ and an individual is pulled toward the cues and reward. A key computational question is how incentive salience is generated during a cue re-encounter, which combines both learning and the state of limbic brain mechanisms. Learning processes, such as temporal-difference models, provide one way for stimuli to acquire cached predictive values of rewards. However, empirical data show that subsequent incentive values are also modulated on the fly by dynamic fluctuation in physiological states, altering cached values in ways requiring additional motivation mechanisms. Dynamic modulation of incentive salience for a Pavlovian conditioned stimulus (CS or cue) occurs during certain states, without necessarily requiring (re)learning about the cue. In some cases, dynamic modulation of cue value occurs during states that are quite novel, never having been experienced before, and even prior to experience of the associated unconditioned reward in the new state. Such cases can include novel drug-induced mesolimbic activation and addictive incentive-sensitization, as well as natural appetite states such as salt appetite. Dynamic enhancement specifically raises the incentive salience of an appropriate CS, without necessarily changing that of other CSs. Here we suggest a new computational model that modulates incentive salience by integrating changing physiological states with prior learning. We support the model with behavioral and neurobiological data from empirical tests that demonstrate dynamic elevations in cue-triggered motivation (involving natural salt appetite, and drug-induced intoxication and sensitization). Our data call for a dynamic model of incentive salience, such as presented here. Computational models can adequately capture fluctuations in cue-triggered ‘wanting’ only by
Computational Model of Fluorine-20 Experiment
NASA Astrophysics Data System (ADS)
Chuna, Thomas; Voytas, Paul; George, Elizabeth; Naviliat-Cuncic, Oscar; Gade, Alexandra; Hughes, Max; Huyan, Xueying; Liddick, Sean; Minamisono, Kei; Weisshaar, Dirk; Paulauskas, Stanley; Ban, Gilles; Flechard, Xavier; Lienard, Etienne
2015-10-01
The Conserved Vector Current (CVC) hypothesis of the standard model of the electroweak interaction predicts there is a contribution to the shape of the spectrum in the beta-minus decay of 20F related to a property of the analogous gamma decay of excited 20Ne. To provide a strong test of the CVC hypothesis, a precise measurement of the 20F beta decay spectrum will be taken at the National Superconducting Cyclotron Laboratory. This measurement uses unconventional measurement techniques in that 20F will be implanted directly into a scintillator. As the emitted electrons interact with the detector material, bremsstrahlung interactions occur and the escape of the resultant photons will distort the measured spectrum. Thus, a Monte Carlo simulation has been constructed using EGSnrc radiation transport software. This computational model's intended use is to quantify and correct for distortion in the observed beta spectrum due, primarily, to the aforementioned bremsstrahlung. The focus of this presentation is twofold: the analysis of the computational model itself and the results produced by the model. Wittenberg University.
Computational fluid dynamic modelling of cavitation
NASA Technical Reports Server (NTRS)
Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.
1993-01-01
Models in sheet cavitation in cryogenic fluids are developed for use in Euler and Navier-Stokes codes. The models are based upon earlier potential-flow models but enable the cavity inception point, length, and shape to be determined as part of the computation. In the present paper, numerical solutions are compared with experimental measurements for both pressure distribution and cavity length. Comparisons between models are also presented. The CFD model provides a relatively simple modification to an existing code to enable cavitation performance predictions to be included. The analysis also has the added ability of incorporating thermodynamic effects of cryogenic fluids into the analysis. Extensions of the current two-dimensional steady state analysis to three-dimensions and/or time-dependent flows are, in principle, straightforward although geometrical issues become more complicated. Linearized models, however offer promise of providing effective cavitation modeling in three-dimensions. This analysis presents good potential for improved understanding of many phenomena associated with cavity flows.
Modeling Reality - How Computers Mirror Life
NASA Astrophysics Data System (ADS)
Bialynicki-Birula, Iwo; Bialynicka-Birula, Iwona
2005-01-01
The bookModeling Reality covers a wide range of fascinating subjects, accessible to anyone who wants to learn about the use of computer modeling to solve a diverse range of problems, but who does not possess a specialized training in mathematics or computer science. The material presented is pitched at the level of high-school graduates, even though it covers some advanced topics (cellular automata, Shannon's measure of information, deterministic chaos, fractals, game theory, neural networks, genetic algorithms, and Turing machines). These advanced topics are explained in terms of well known simple concepts: Cellular automata - Game of Life, Shannon's formula - Game of twenty questions, Game theory - Television quiz, etc. The book is unique in explaining in a straightforward, yet complete, fashion many important ideas, related to various models of reality and their applications. Twenty-five programs, written especially for this book, are provided on an accompanying CD. They greatly enhance its pedagogical value and make learning of even the more complex topics an enjoyable pleasure.
Computer Model Used to Help Customize Medicine
NASA Technical Reports Server (NTRS)
Stauber, Laurel J.; Veris, Jenise
2001-01-01
Dr. Radhakrishnan, a researcher at the NASA Glenn Research Center, in collaboration with biomedical researchers at the Case Western Reserve University School of Medicine and Rainbow Babies and Children's Hospital, is developing computational models of human physiology that quantitate metabolism and its regulation, in both healthy and pathological states. These models can help predict the effects of stresses or interventions, such as drug therapies, and contribute to the development of customized medicine. Customized medical treatment protocols can give more comprehensive evaluations and lead to more specific and effective treatments for patients, reducing treatment time and cost. Commercial applications of this research may help the pharmaceutical industry identify therapeutic needs and predict drug-drug interactions. Researchers will be able to study human metabolic reactions to particular treatments while in different environments as well as establish more definite blood metabolite concentration ranges in normal and pathological states. These computational models may help NASA provide the background for developing strategies to monitor and safeguard the health of astronauts and civilians in space stations and colonies. They may also help to develop countermeasures that ameliorate the effects of both acute and chronic space exposure.
Databases for Computational Thermodynamics and Diffusion Modeling
NASA Astrophysics Data System (ADS)
Kattner, U. R.; Boettinger, W. J.; Morral, J. E.
2002-11-01
Databases for computational thermodynamics and diffusion modeling can be applied to predict phase diagrams for alloy design and alloy behavior during processing and service. Databases that are currently available to scientists, engineers and students need to be expanded and improved. The approach of the workshop was to first identify the database and information delivery tool needs of industry and education. The workshop format was a series of invited talks given to the group as a whole followed by general discussions of needs and benefits to provide a roadmap of future activities.
Some queuing network models of computer systems
NASA Technical Reports Server (NTRS)
Herndon, E. S.
1980-01-01
Queuing network models of a computer system operating with a single workload type are presented. Program algorithms are adapted for use on the Texas Instruments SR-52 programmable calculator. By slightly altering the algorithm to process the G and H matrices row by row instead of column by column, six devices and an unlimited job/terminal population could be handled on the SR-52. Techniques are also introduced for handling a simple load dependent server and for studying interactive systems with fixed multiprogramming limits.
A Computational Model of Multidimensional Shape
Liu, Xiuwen; Shi, Yonggang; Dinov, Ivo
2010-01-01
We develop a computational model of shape that extends existing Riemannian models of curves to multidimensional objects of general topological type. We construct shape spaces equipped with geodesic metrics that measure how costly it is to interpolate two shapes through elastic deformations. The model employs a representation of shape based on the discrete exterior derivative of parametrizations over a finite simplicial complex. We develop algorithms to calculate geodesics and geodesic distances, as well as tools to quantify local shape similarities and contrasts, thus obtaining a formulation that accounts for regional differences and integrates them into a global measure of dissimilarity. The Riemannian shape spaces provide a common framework to treat numerous problems such as the statistical modeling of shapes, the comparison of shapes associated with different individuals or groups, and modeling and simulation of shape dynamics. We give multiple examples of geodesic interpolations and illustrations of the use of the models in brain mapping, particularly, the analysis of anatomical variation based on neuroimaging data. PMID:21057668
Computational social dynamic modeling of group recruitment.
Berry, Nina M.; Lee, Marinna; Pickett, Marc; Turnley, Jessica Glicken; Smrcka, Julianne D.; Ko, Teresa H.; Moy, Timothy David; Wu, Benjamin C.
2004-01-01
The Seldon software toolkit combines concepts from agent-based modeling and social science to create a computationally social dynamic model for group recruitment. The underlying recruitment model is based on a unique three-level hybrid agent-based architecture that contains simple agents (level one), abstract agents (level two), and cognitive agents (level three). This uniqueness of this architecture begins with abstract agents that permit the model to include social concepts (gang) or institutional concepts (school) into a typical software simulation environment. The future addition of cognitive agents to the recruitment model will provide a unique entity that does not exist in any agent-based modeling toolkits to date. We use social networks to provide an integrated mesh within and between the different levels. This Java based toolkit is used to analyze different social concepts based on initialization input from the user. The input alters a set of parameters used to influence the values associated with the simple agents, abstract agents, and the interactions (simple agent-simple agent or simple agent-abstract agent) between these entities. The results of phase-1 Seldon toolkit provide insight into how certain social concepts apply to different scenario development for inner city gang recruitment.
Modelling the penumbra in Computed Tomography1
Kueh, Audrey; Warnett, Jason M.; Gibbons, Gregory J.; Brettschneider, Julia; Nichols, Thomas E.; Williams, Mark A.; Kendall, Wilfrid S.
2016-01-01
BACKGROUND: In computed tomography (CT), the spot geometry is one of the main sources of error in CT images. Since X-rays do not arise from a point source, artefacts are produced. In particular there is a penumbra effect, leading to poorly defined edges within a reconstructed volume. Penumbra models can be simulated given a fixed spot geometry and the known experimental setup. OBJECTIVE: This paper proposes to use a penumbra model, derived from Beer’s law, both to confirm spot geometry from penumbra data, and to quantify blurring in the image. METHODS: Two models for the spot geometry are considered; one consists of a single Gaussian spot, the other is a mixture model consisting of a Gaussian spot together with a larger uniform spot. RESULTS: The model consisting of a single Gaussian spot has a poor fit at the boundary. The mixture model (which adds a larger uniform spot) exhibits a much improved fit. The parameters corresponding to the uniform spot are similar across all powers, and further experiments suggest that the uniform spot produces only soft X-rays of relatively low-energy. CONCLUSIONS: Thus, the precision of radiographs can be estimated from the penumbra effect in the image. The use of a thin copper filter reduces the size of the effective penumbra. PMID:27232198
Computational models of intergroup competition and warfare.
Letendre, Kenneth; Abbott, Robert G.
2011-11-01
This document reports on the research of Kenneth Letendre, the recipient of a Sandia Graduate Research Fellowship at the University of New Mexico. Warfare is an extreme form of intergroup competition in which individuals make extreme sacrifices for the benefit of their nation or other group to which they belong. Among animals, limited, non-lethal competition is the norm. It is not fully understood what factors lead to warfare. We studied the global variation in the frequency of civil conflict among countries of the world, and its positive association with variation in the intensity of infectious disease. We demonstrated that the burden of human infectious disease importantly predicts the frequency of civil conflict and tested a causal model for this association based on the parasite-stress theory of sociality. We also investigated the organization of social foraging by colonies of harvester ants in the genus Pogonomyrmex, using both field studies and computer models.
A COMPUTATIONAL MODEL OF MOTOR NEURON DEGENERATION
Le Masson, Gwendal; Przedborski, Serge; Abbott, L.F.
2014-01-01
SUMMARY To explore the link between bioenergetics and motor neuron degeneration, we used a computational model in which detailed morphology and ion conductance are paired with intracellular ATP production and consumption. We found that reduced ATP availability increases the metabolic cost of a single action potential and disrupts K+/Na+ homeostasis, resulting in a chronic depolarization. The magnitude of the ATP shortage at which this ionic instability occurs depends on the morphology and intrinsic conductance characteristic of the neuron. If ATP shortage is confined to the distal part of the axon, the ensuing local ionic instability eventually spreads to the whole neuron and involves fasciculation-like spiking events. A shortage of ATP also causes a rise in intracellular calcium. Our modeling work supports the notion that mitochondrial dysfunction can account for salient features of the paralytic disorder amyotrophic lateral sclerosis, including motor neuron hyperexcitability, fasciculation, and differential vulnerability of motor neuron subpopulations. PMID:25088365
Computer modeling of thermoelectric generator performance
NASA Technical Reports Server (NTRS)
Chmielewski, A. B.; Shields, V.
1982-01-01
Features of the DEGRA 2 computer code for simulating the operations of a spacecraft thermoelectric generator are described. The code models the physical processes occurring during operation. Input variables include the thermoelectric couple geometry and composition, the thermoelectric materials' properties, interfaces and insulation in the thermopile, the heat source characteristics, mission trajectory, and generator electrical requirements. Time steps can be specified and sublimation of the leg and hot shoe is accounted for, as are shorts between legs. Calculations are performed for conduction, Peltier, Thomson, and Joule heating, the cold junction can be adjusted for solar radition, and the legs of the thermoelectric couple are segmented to enhance the approximation accuracy. A trial run covering 18 couple modules yielded data with 0.3% accuracy with regard to test data. The model has been successful with selenide materials, SiGe, and SiN4, with output of all critical operational variables.
Computational modeling approaches in gonadotropin signaling.
Ayoub, Mohammed Akli; Yvinec, Romain; Crépieux, Pascale; Poupon, Anne
2016-07-01
Follicle-stimulating hormone and LH play essential roles in animal reproduction. They exert their function through binding to their cognate receptors, which belong to the large family of G protein-coupled receptors. This recognition at the plasma membrane triggers a plethora of cellular events, whose processing and integration ultimately lead to an adapted biological response. Understanding the nature and the kinetics of these events is essential for innovative approaches in drug discovery. The study and manipulation of such complex systems requires the use of computational modeling approaches combined with robust in vitro functional assays for calibration and validation. Modeling brings a detailed understanding of the system and can also be used to understand why existing drugs do not work as well as expected, and how to design more efficient ones. PMID:27165991
Direct modeling for computational fluid dynamics
NASA Astrophysics Data System (ADS)
Xu, Kun
2015-06-01
All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct
Computer Modeling of Non-Isothermal Crystallization
NASA Technical Reports Server (NTRS)
Kelton, K. F.; Narayan, K. Lakshmi; Levine, L. E.; Cull, T. C.; Ray, C. S.
1996-01-01
A realistic computer model for simulating isothermal and non-isothermal phase transformations proceeding by homogeneous and heterogeneous nucleation and interface-limited growth is presented. A new treatment for particle size effects on the crystallization kinetics is developed and is incorporated into the numerical model. Time-dependent nucleation rates, size-dependent growth rates, and surface crystallization are also included. Model predictions are compared with experimental measurements of DSC/DTA peak parameters for the crystallization of lithium disilicate glass as a function of particle size, Pt doping levels, and water content. The quantitative agreement that is demonstrated indicates that the numerical model can be used to extract key kinetic data from easily obtained calorimetric data. The model can also be used to probe nucleation and growth behavior in regimes that are otherwise inaccessible. Based on a fit to data, an earlier prediction that the time-dependent nucleation rate in a DSC/DTA scan can rise above the steady-state value at a temperature higher than the peak in the steady-state rate is demonstrated.
Electrode Models for Electric Current Computed Tomography
CHENG, KUO-SHENG; ISAACSON, DAVID; NEWELL, J. C.; GISSER, DAVID G.
2016-01-01
This paper develops a mathematical model for the physical properties of electrodes suitable for use in electric current computed tomography (ECCT). The model includes the effects of discretization, shunt, and contact impedance. The complete model was validated by experiment. Bath resistivities of 284.0, 139.7, 62.3, 29.5 Ω · cm were studied. Values of “effective” contact impedance z used in the numerical approximations were 58.0, 35.0, 15.0, and 7.5 Ω · cm2, respectively. Agreement between the calculated and experimentally measured values was excellent throughout the range of bath conductivities studied. It is desirable in electrical impedance imaging systems to model the observed voltages to the same precision as they are measured in order to be able to make the highest resolution reconstructions of the internal conductivity that the measurement precision allows. The complete electrode model, which includes the effects of discretization of the current pattern, the shunt effect due to the highly conductive electrode material, and the effect of an “effective” contact impedance, allows calculation of the voltages due to any current pattern applied to a homogeneous resistivity field. PMID:2777280
Multiscale computational modelling of the heart
NASA Astrophysics Data System (ADS)
Smith, N. P.; Nickerson, D. P.; Crampin, E. J.; Hunter, P. J.
A computational framework is presented for integrating the electrical, mechanical and biochemical functions of the heart. Finite element techniques are used to solve the large-deformation soft tissue mechanics using orthotropic constitutive laws based in the measured fibre-sheet structure of myocardial (heart muscle) tissue. The reaction-diffusion equations governing electrical current flow in the heart are solved on a grid of deforming material points which access systems of ODEs representing the cellular processes underlying the cardiac action potential. Navier-Stokes equations are solved for coronary blood flow in a system of branching blood vessels embedded in the deforming myocardium and the delivery of oxygen and metabolites is coupled to the energy-dependent cellular processes. The framework presented here for modelling coupled physical conservation laws at the tissue and organ levels is also appropriate for other organ systems in the body and we briefly discuss applications to the lungs and the musculo-skeletal system. The computational framework is also designed to reach down to subcellular processes, including signal transduction cascades and metabolic pathways as well as ion channel electrophysiology, and we discuss the development of ontologies and markup language standards that will help link the tissue and organ level models to the vast array of gene and protein data that are now available in web-accessible databases.
Efficient gradient computation for dynamical models
Sengupta, B.; Friston, K.J.; Penny, W.D.
2014-01-01
Data assimilation is a fundamental issue that arises across many scales in neuroscience — ranging from the study of single neurons using single electrode recordings to the interaction of thousands of neurons using fMRI. Data assimilation involves inverting a generative model that can not only explain observed data but also generate predictions. Typically, the model is inverted or fitted using conventional tools of (convex) optimization that invariably extremise some functional — norms, minimum descriptive length, variational free energy, etc. Generally, optimisation rests on evaluating the local gradients of the functional to be optimized. In this paper, we compare three different gradient estimation techniques that could be used for extremising any functional in time — (i) finite differences, (ii) forward sensitivities and a method based on (iii) the adjoint of the dynamical system. We demonstrate that the first-order gradients of a dynamical system, linear or non-linear, can be computed most efficiently using the adjoint method. This is particularly true for systems where the number of parameters is greater than the number of states. For such systems, integrating several sensitivity equations – as required with forward sensitivities – proves to be most expensive, while finite-difference approximations have an intermediate efficiency. In the context of neuroimaging, adjoint based inversion of dynamical causal models (DCMs) can, in principle, enable the study of models with large numbers of nodes and parameters. PMID:24769182
Computational modeling of intraocular gas dynamics.
Noohi, P; Abdekhodaie, M J; Cheng, Y L
2015-01-01
The purpose of this study was to develop a computational model to simulate the dynamics of intraocular gas behavior in pneumatic retinopexy (PR) procedure. The presented model predicted intraocular gas volume at any time and determined the tolerance angle within which a patient can maneuver and still gas completely covers the tear(s). Computational fluid dynamics calculations were conducted to describe PR procedure. The geometrical model was constructed based on the rabbit and human eye dimensions. SF6 in the form of pure and diluted with air was considered as the injected gas. The presented results indicated that the composition of the injected gas affected the gas absorption rate and gas volume. After injection of pure SF6, the bubble expanded to 2.3 times of its initial volume during the first 23 h, but when diluted SF6 was used, no significant expansion was observed. Also, head positioning for the treatment of retinal tear influenced the rate of gas absorption. Moreover, the determined tolerance angle depended on the bubble and tear size. More bubble expansion and smaller retinal tear caused greater tolerance angle. For example, after 23 h, for the tear size of 2 mm the tolerance angle of using pure SF6 is 1.4 times more than that of using diluted SF6 with 80% air. Composition of the injected gas and conditions of the tear in PR may dramatically affect the gas absorption rate and gas volume. Quantifying these effects helps to predict the tolerance angle and improve treatment efficiency. PMID:26682529
Computational modeling of intraocular gas dynamics
NASA Astrophysics Data System (ADS)
Noohi, P.; Abdekhodaie, M. J.; Cheng, Y. L.
2015-12-01
The purpose of this study was to develop a computational model to simulate the dynamics of intraocular gas behavior in pneumatic retinopexy (PR) procedure. The presented model predicted intraocular gas volume at any time and determined the tolerance angle within which a patient can maneuver and still gas completely covers the tear(s). Computational fluid dynamics calculations were conducted to describe PR procedure. The geometrical model was constructed based on the rabbit and human eye dimensions. SF6 in the form of pure and diluted with air was considered as the injected gas. The presented results indicated that the composition of the injected gas affected the gas absorption rate and gas volume. After injection of pure SF6, the bubble expanded to 2.3 times of its initial volume during the first 23 h, but when diluted SF6 was used, no significant expansion was observed. Also, head positioning for the treatment of retinal tear influenced the rate of gas absorption. Moreover, the determined tolerance angle depended on the bubble and tear size. More bubble expansion and smaller retinal tear caused greater tolerance angle. For example, after 23 h, for the tear size of 2 mm the tolerance angle of using pure SF6 is 1.4 times more than that of using diluted SF6 with 80% air. Composition of the injected gas and conditions of the tear in PR may dramatically affect the gas absorption rate and gas volume. Quantifying these effects helps to predict the tolerance angle and improve treatment efficiency.
Preliminary Phase Field Computational Model Development
Li, Yulan; Hu, Shenyang Y.; Xu, Ke; Suter, Jonathan D.; McCloy, John S.; Johnson, Bradley R.; Ramuhalli, Pradeep
2014-12-15
This interim report presents progress towards the development of meso-scale models of magnetic behavior that incorporate microstructural information. Modeling magnetic signatures in irradiated materials with complex microstructures (such as structural steels) is a significant challenge. The complexity is addressed incrementally, using the monocrystalline Fe (i.e., ferrite) film as model systems to develop and validate initial models, followed by polycrystalline Fe films, and by more complicated and representative alloys. In addition, the modeling incrementally addresses inclusion of other major phases (e.g., martensite, austenite), minor magnetic phases (e.g., carbides, FeCr precipitates), and minor nonmagnetic phases (e.g., Cu precipitates, voids). The focus of the magnetic modeling is on phase-field models. The models are based on the numerical solution to the Landau-Lifshitz-Gilbert equation. From the computational standpoint, phase-field modeling allows the simulation of large enough systems that relevant defect structures and their effects on functional properties like magnetism can be simulated. To date, two phase-field models have been generated in support of this work. First, a bulk iron model with periodic boundary conditions was generated as a proof-of-concept to investigate major loop effects of single versus polycrystalline bulk iron and effects of single non-magnetic defects. More recently, to support the experimental program herein using iron thin films, a new model was generated that uses finite boundary conditions representing surfaces and edges. This model has provided key insights into the domain structures observed in magnetic force microscopy (MFM) measurements. Simulation results for single crystal thin-film iron indicate the feasibility of the model for determining magnetic domain wall thickness and mobility in an externally applied field. Because the phase-field model dimensions are limited relative to the size of most specimens used in
Methodical Approaches to Teaching of Computer Modeling in Computer Science Course
ERIC Educational Resources Information Center
Rakhimzhanova, B. Lyazzat; Issabayeva, N. Darazha; Khakimova, Tiyshtik; Bolyskhanova, J. Madina
2015-01-01
The purpose of this study was to justify of the formation technique of representation of modeling methodology at computer science lessons. The necessity of studying computer modeling is that the current trends of strengthening of general education and worldview functions of computer science define the necessity of additional research of the…
Modeling groundwater flow on massively parallel computers
Ashby, S.F.; Falgout, R.D.; Fogwell, T.W.; Tompson, A.F.B.
1994-12-31
The authors will explore the numerical simulation of groundwater flow in three-dimensional heterogeneous porous media. An interdisciplinary team of mathematicians, computer scientists, hydrologists, and environmental engineers is developing a sophisticated simulation code for use on workstation clusters and MPPs. To date, they have concentrated on modeling flow in the saturated zone (single phase), which requires the solution of a large linear system. they will discuss their implementation of preconditioned conjugate gradient solvers. The preconditioners under consideration include simple diagonal scaling, s-step Jacobi, adaptive Chebyshev polynomial preconditioning, and multigrid. They will present some preliminary numerical results, including simulations of groundwater flow at the LLNL site. They also will demonstrate the code`s scalability.
Geometric modeling for computer aided design
NASA Technical Reports Server (NTRS)
Schwing, James L.
1992-01-01
The goal was the design and implementation of software to be used in the conceptual design of aerospace vehicles. Several packages and design studies were completed, including two software tools currently used in the conceptual level design of aerospace vehicles. These tools are the Solid Modeling Aerospace Research Tool (SMART) and the Environment for Software Integration and Execution (EASIE). SMART provides conceptual designers with a rapid prototyping capability and additionally provides initial mass property analysis. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand alone analysis codes that result in the streamlining of the exchange of data between programs, reducing errors and improving efficiency.
A computational model for dynamic vision
NASA Technical Reports Server (NTRS)
Moezzi, Saied; Weymouth, Terry E.
1990-01-01
This paper describes a novel computational model for dynamic vision which promises to be both powerful and robust. Furthermore the paradigm is ideal for an active vision system where camera vergence changes dynamically. Its basis is the retinotopically indexed object-centered encoding of the early visual information. Specifically, the relative distances of objects to a set of referents is encoded in image registered maps. To illustrate the efficacy of the method, it is applied to the problem of dynamic stereo vision. Integration of depth information over multiple frames obtained by a moving robot generally requires precise information about the relative camera position from frame to frame. Usually, this information can only be approximated. The method facilitates the integration of depth information without direct use or knowledge of camera motion.
Comprehensive silicon solar cell computer modeling
NASA Technical Reports Server (NTRS)
Lamorte, M. F.
1984-01-01
The development of an efficient, comprehensive Si solar cell modeling program that has the capability of simulation accuracy of 5 percent or less is examined. A general investigation of computerized simulation is provided. Computer simulation programs are subdivided into a number of major tasks: (1) analytical method used to represent the physical system; (2) phenomena submodels that comprise the simulation of the system; (3) coding of the analysis and the phenomena submodels; (4) coding scheme that results in efficient use of the CPU so that CPU costs are low; and (5) modularized simulation program with respect to structures that may be analyzed, addition and/or modification of phenomena submodels as new experimental data become available, and the addition of other photovoltaic materials.
Accurate modeling of parallel scientific computations
NASA Technical Reports Server (NTRS)
Nicol, David M.; Townsend, James C.
1988-01-01
Scientific codes are usually parallelized by partitioning a grid among processors. To achieve top performance it is necessary to partition the grid so as to balance workload and minimize communication/synchronization costs. This problem is particularly acute when the grid is irregular, changes over the course of the computation, and is not known until load time. Critical mapping and remapping decisions rest on the ability to accurately predict performance, given a description of a grid and its partition. This paper discusses one approach to this problem, and illustrates its use on a one-dimensional fluids code. The models constructed are shown to be accurate, and are used to find optimal remapping schedules.
Computational model for protein unfolding simulation
NASA Astrophysics Data System (ADS)
Tian, Xu-Hong; Zheng, Ye-Han; Jiao, Xiong; Liu, Cai-Xing; Chang, Shan
2011-06-01
The protein folding problem is one of the fundamental and important questions in molecular biology. However, the all-atom molecular dynamics studies of protein folding and unfolding are still computationally expensive and severely limited by the time scale of simulation. In this paper, a simple and fast protein unfolding method is proposed based on the conformational stability analyses and structure modeling. In this method, two structure-based conditions are considered to identify the unstable regions of proteins during the unfolding processes. The protein unfolding trajectories are mimicked through iterative structure modeling according to conformational stability analyses. Two proteins, chymotrypsin inhibitor 2 (CI2) and α -spectrin SH3 domain (SH3) were simulated by this method. Their unfolding pathways are consistent with the previous molecular dynamics simulations. Furthermore, the transition states of the two proteins were identified in unfolding processes and the theoretical Φ values of these transition states showed significant correlations with the experimental data (the correlation coefficients are >0.8). The results indicate that this method is effective in studying protein unfolding. Moreover, we analyzed and discussed the influence of parameters on the unfolding simulation. This simple coarse-grained model may provide a general and fast approach for the mechanism studies of protein folding.
Computational model of heterogeneous heating in melanin
NASA Astrophysics Data System (ADS)
Kellicker, Jason; DiMarzio, Charles A.; Kowalski, Gregory J.
2015-03-01
Melanin particles often present as an aggregate of smaller melanin pigment granules and have a heterogeneous surface morphology. When irradiated with light within the absorption spectrum of melanin, these heterogeneities produce measurable concentrations of the electric field that result in temperature gradients from thermal effects that are not seen with spherical or ellipsoidal modeling of melanin. Modeling melanin without taking into consideration the heterogeneous surface morphology yields results that underestimate the strongest signals or over{estimate their spatial extent. We present a new technique to image phase changes induced by heating using a computational model of melanin that exhibits these surface heterogeneities. From this analysis, we demonstrate the heterogeneous energy absorption and resulting heating that occurs at the surface of the melanin granule that is consistent with three{photon absorption. Using the three{photon dluorescence as a beacon, we propose a method for detecting the extents of the melanin granule using photothermal microscopy to measure the phase changes resulting from the heating of the melanin.
Computational modelling of microfluidic capillary breakup phenomena
NASA Astrophysics Data System (ADS)
Li, Yuan; Sprittles, James; Oliver, Jim
2013-11-01
Capillary breakup phenomena occur in microfluidic flows when liquid volumes divide. The fundamental process of breakup is a key factor in the functioning of a number of microfluidic devices such as 3D-Printers or Lab-on-Chip biomedical technologies. It is well known that the conventional model of breakup is singular as pinch-off is approached, but, despite this, theoretical predictions of the global flow on the millimetre-scale appear to agree well with experimental data, at least until the topological change. However, as one approaches smaller scales, where interfacial effects become more dominant, it is likely that such unphysical singularities will influence the global dynamics of the drop formation process. In this talk we develop a computational framework based on the finite element method capable of resolving diverse spatio-temporal scales for the axisymmetric breakup of a liquid jet, so that the pinch-off dynamics can be accurately captured. As well as the conventional model, we discuss the application of the interface formation model to this problem, which allows the pinch-off to be resolved singularity-free, and has already been shown to produce improved flow predictions for related ``singular'' capillary flows.
Computational Process Modeling for Additive Manufacturing (OSU)
NASA Technical Reports Server (NTRS)
Bagg, Stacey; Zhang, Wei
2015-01-01
Powder-Bed Additive Manufacturing (AM) through Direct Metal Laser Sintering (DMLS) or Selective Laser Melting (SLM) is being used by NASA and the Aerospace industry to "print" parts that traditionally are very complex, high cost, or long schedule lead items. The process spreads a thin layer of metal powder over a build platform, then melts the powder in a series of welds in a desired shape. The next layer of powder is applied, and the process is repeated until layer-by-layer, a very complex part can be built. This reduces cost and schedule by eliminating very complex tooling and processes traditionally used in aerospace component manufacturing. To use the process to print end-use items, NASA seeks to understand SLM material well enough to develop a method of qualifying parts for space flight operation. Traditionally, a new material process takes many years and high investment to generate statistical databases and experiential knowledge, but computational modeling can truncate the schedule and cost -many experiments can be run quickly in a model, which would take years and a high material cost to run empirically. This project seeks to optimize material build parameters with reduced time and cost through modeling.
Computational Aspects of N-Mixture Models
Dennis, Emily B; Morgan, Byron JT; Ridout, Martin S
2015-01-01
The N-mixture model is widely used to estimate the abundance of a population in the presence of unknown detection probability from only a set of counts subject to spatial and temporal replication (Royle, 2004, Biometrics 60, 105–115). We explain and exploit the equivalence of N-mixture and multivariate Poisson and negative-binomial models, which provides powerful new approaches for fitting these models. We show that particularly when detection probability and the number of sampling occasions are small, infinite estimates of abundance can arise. We propose a sample covariance as a diagnostic for this event, and demonstrate its good performance in the Poisson case. Infinite estimates may be missed in practice, due to numerical optimization procedures terminating at arbitrarily large values. It is shown that the use of a bound, K, for an infinite summation in the N-mixture likelihood can result in underestimation of abundance, so that default values of K in computer packages should be avoided. Instead we propose a simple automatic way to choose K. The methods are illustrated by analysis of data on Hermann's tortoise Testudo hermanni. PMID:25314629
Gravothermal Star Clusters - Theory and Computer Modelling
NASA Astrophysics Data System (ADS)
Spurzem, Rainer
2010-11-01
In the George Darwin lecture, delivered to the British Royal Astronomical Society in 1960 by Viktor A. Ambartsumian he wrote on the evolution of stellar systems that it can be described by the "dynamic evolution of a gravitating gas" complemented by "a statistical description of the changes in the physical states of stars". This talk will show how this physical concept has inspired theoretical modeling of star clusters in the following decades up to the present day. The application of principles of thermodynamics shows, as Ambartsumian argued in his 1960 lecture, that there is no stable state of equilibrium of a gravitating star cluster. The trend to local thermodynamic equilibrium is always disturbed by escaping stars (Ambartsumian), as well as by gravothermal and gravogyro instabilities, as it was detected later. Here the state-of-the-art of modeling the evolution of dense stellar systems based on principles of thermodynamics and statistical mechanics (Fokker-Planck approximation) will be reviewed. Recent progress including rotation and internal correlations (primordial binaries) is presented. The models have also very successfully been used to study dense star clusters around massive black holes in galactic nuclei and even (in a few cases) relativistic supermassive dense objects in centres of galaxies (here again briefly touching one of the many research fields of V.A. Ambartsumian). For the modern present time of high-speed supercomputing, where we are tackling direct N-body simulations of star clusters, we will show that such direct modeling supports and proves the concept of the statistical models based on the Fokker-Planck theory, and that both theoretical concepts and direct computer simulations are necessary to support each other and make scientific progress in the study of star cluster evolution.
Cummings, P. T.
2010-02-08
This document reports the outcomes of the Computational Nanoscience Project, "Integrated Multiscale Modeling of Molecular Computing Devices". It includes a list of participants and publications arising from the research supported.
Getting Mental Models and Computer Models to Cooperate
NASA Technical Reports Server (NTRS)
Sheridan, T. B.; Roseborough, J.; Charney, L.; Mendel, M.
1984-01-01
A qualitative theory of supervisory control is outlined wherein the mental models of one or more human operators are related to the knowledge representations within automatic controllers (observers, estimators) and operator decision aids (expert systems, advice-givers). Methods of quantifying knowledge and the calibration of one knowledge representation to another (human, computer, or objective truth) are discussed. Ongoing experiments in the use of decision aids for exploring one's own objective function or exploring system constraints and control strategies are described.
Computational modeling of acute myocardial infarction.
Sáez, P; Kuhl, E
2016-01-01
Myocardial infarction, commonly known as heart attack, is caused by reduced blood supply and damages the heart muscle because of a lack of oxygen. Myocardial infarction initiates a cascade of biochemical and mechanical events. In the early stages, cardiomyocytes death, wall thinning, collagen degradation, and ventricular dilation are the immediate consequences of myocardial infarction. In the later stages, collagenous scar formation in the infarcted zone and hypertrophy of the non-infarcted zone are auto-regulatory mechanisms to partly correct for these events. Here we propose a computational model for the short-term adaptation after myocardial infarction using the continuum theory of multiplicative growth. Our model captures the effects of cell death initiating wall thinning, and collagen degradation initiating ventricular dilation. Our simulations agree well with clinical observations in early myocardial infarction. They represent a first step toward simulating the progression of myocardial infarction with the ultimate goal to predict the propensity toward heart failure as a function of infarct intensity, location, and size. PMID:26583449
Random matrix model of adiabatic quantum computing
Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.
2005-05-15
We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of random matrix theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances - i.e., those having a critical ratio of clauses to variables - the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size.
Computational and Modeling Strategies for Cell Motility
NASA Astrophysics Data System (ADS)
Wang, Qi; Yang, Xiaofeng; Adalsteinsson, David; Elston, Timothy C.; Jacobson, Ken; Kapustina, Maryna; Forest, M. Gregory
A predictive simulation of the dynamics of a living cell remains a fundamental modeling and computational challenge. The challenge does not even make sense unless one specifies the level of detail and the phenomena of interest, whether the focus is on near-equilibrium or strongly nonequilibrium behavior, and on localized, subcellular, or global cell behavior. Therefore, choices have to be made clear at the outset, ranging from distinguishing between prokaryotic and eukaryotic cells, specificity within each of these types, whether the cell is "normal," whether one wants to model mitosis, blebs, migration, division, deformation due to confined flow as with red blood cells, and the level of microscopic detail for any of these processes. The review article by Hoffman and Crocker [48] is both an excellent overview of cell mechanics and an inspiration for our approach. One might be interested, for example, in duplicating the intricate experimental details reported in [43]: "actin polymerization periodically builds a mechanical link, the lamellipodium, connecting myosin motors with the initiation of adhesion sites, suggesting that the major functions driving motility are coordinated by a biomechanical process," or to duplicate experimental evidence of traveling waves in cells recovering from actin depolymerization [42, 35]. Modeling studies of lamellipodial structure, protrusion, and retraction behavior range from early mechanistic models [84] to more recent deterministic [112, 97] and stochastic [51] approaches with significant biochemical and structural detail. Recent microscopic-macroscopic models and algorithms for cell blebbing have been developed by Young and Mitran [116], which update cytoskeletal microstructure via statistical sampling techniques together with fluid variables. Alternatively, whole cell compartment models (without spatial details) of oscillations in spreading cells have been proposed [35, 92, 109] which show positive and negative feedback
Computational modeling of composite material fires.
Brown, Alexander L.; Erickson, Kenneth L.; Hubbard, Joshua Allen; Dodd, Amanda B.
2010-10-01
condition is examined to study the propagation of decomposition fronts of the epoxy and carbon fiber and their dependence on the ambient conditions such as oxygen concentration, surface flow velocity, and radiant heat flux. In addition to the computational effort, small scaled experimental efforts to attain adequate data used to validate model predictions is ongoing. The goal of this paper is to demonstrate the progress of the capability for a typical composite material and emphasize the path forward.
AIR INGRESS ANALYSIS: COMPUTATIONAL FLUID DYNAMIC MODELS
Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang
2010-08-01
The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.
COMPUTATIONAL FLUID DYNAMICS MODELING ANALYSIS OF COMBUSTORS
Mathur, M.P.; Freeman, Mark; Gera, Dinesh
2001-11-06
In the current fiscal year FY01, several CFD simulations were conducted to investigate the effects of moisture in biomass/coal, particle injection locations, and flow parameters on carbon burnout and NO{sub x} inside a 150 MW GEEZER industrial boiler. Various simulations were designed to predict the suitability of biomass cofiring in coal combustors, and to explore the possibility of using biomass as a reburning fuel to reduce NO{sub x}. Some additional CFD simulations were also conducted on CERF combustor to examine the combustion characteristics of pulverized coal in enriched O{sub 2}/CO{sub 2} environments. Most of the CFD models available in the literature treat particles to be point masses with uniform temperature inside the particles. This isothermal condition may not be suitable for larger biomass particles. To this end, a stand alone program was developed from the first principles to account for heat conduction from the surface of the particle to its center. It is envisaged that the recently developed non-isothermal stand alone module will be integrated with the Fluent solver during next fiscal year to accurately predict the carbon burnout from larger biomass particles. Anisotropy in heat transfer in radial and axial will be explored using different conductivities in radial and axial directions. The above models will be validated/tested on various fullscale industrial boilers. The current NO{sub x} modules will be modified to account for local CH, CH{sub 2}, and CH{sub 3} radicals chemistry, currently it is based on global chemistry. It may also be worth exploring the effect of enriched O{sub 2}/CO{sub 2} environment on carbon burnout and NO{sub x} concentration. The research objective of this study is to develop a 3-Dimensional Combustor Model for Biomass Co-firing and reburning applications using the Fluent Computational Fluid Dynamics Code.
Computational modeling of solid oxide fuel cell
NASA Astrophysics Data System (ADS)
Penmetsa, Satish Kumar
In the ongoing search for alternative and environmentally friendly power generation facilities, the solid oxide fuel cell (SOFC) is considered one of the prime candidates for the next generation of energy conversion devices due to its capability to provide environmentally friendly and highly efficient power generation. Moreover, SOFCs are less sensitive to composition of fuel as compared to other types of fuel cells, and internal reforming of the hydrocarbon fuel cell can be performed because of higher operating temperature range of 700°C--1000°C. This allows us to use different types of hydrocarbon fuels in SOFCs. The objective of this study is to develop a three-dimensional computational model for the simulation of a solid oxide fuel cell unit to analyze the complex internal transport mechanisms and sensitivity of the cell with different operating conditions, and also to develop SOFC with higher operating current density with a more uniform gas distributions in the electrodes and with lower ohmic losses. This model includes mass transfer processes due to convection and diffusion in the gas flow channels based on the Navier-Stokes equations as well as combined diffusion and advection in electrodes using Brinkman's hydrodynamic equation and associated electrochemical reactions in the trilayer of the SOFC. Gas transport characteristics in terms of three-dimensional spatial distributions of reactant gases and their effects on electrochemical reactions at the electrode-electrolyte interface, and in the resulting polarizations, are evaluated for varying pressure conditions. Results show the significance of the Brinkman's hydrodynamic model in electrodes to achieve more uniform gas concentration distributions while using a higher operating pressure and over a higher range of operating current densities.
Biocellion: accelerating computer simulation of multicellular biological system models
Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya
2014-01-01
Motivation: Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. Results: We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Availability and implementation: Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. Contact: seunghwa.kang@pnnl.gov PMID:25064572
Methodology for Uncertainty Analysis of Dynamic Computational Toxicology Models
The task of quantifying the uncertainty in both parameter estimates and model predictions has become more important with the increased use of dynamic computational toxicology models by the EPA. Dynamic toxicological models include physiologically-based pharmacokinetic (PBPK) mode...
Predictive Capability Maturity Model for computational modeling and simulation.
Oberkampf, William Louis; Trucano, Timothy Guy; Pilch, Martin M.
2007-10-01
The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts. The development of the model is based on both the authors experience and their analysis of similar investigations in the past. The perspective taken in this report is one of judging the usefulness of a predictive capability that relies on the numerical solution to partial differential equations to better inform and improve decision making. The review of past investigations, such as the Software Engineering Institute's Capability Maturity Model Integration and the National Aeronautics and Space Administration and Department of Defense Technology Readiness Levels, indicates that a more restricted, more interpretable method is needed to assess the maturity of an M&S effort. The PCMM addresses six contributing elements to M&S: (1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and sensitivity analysis. For each of these elements, attributes are identified that characterize four increasing levels of maturity. Importantly, the PCMM is a structured method for assessing the maturity of an M&S effort that is directed toward an engineering application of interest. The PCMM does not assess whether the M&S effort, the accuracy of the predictions, or the performance of the engineering system satisfies or does not satisfy specified application requirements.
Structural computational modeling of RNA aptamers.
Xu, Xiaojun; Dickey, David D; Chen, Shi-Jie; Giangrande, Paloma H
2016-07-01
RNA aptamers represent an emerging class of biologics that can be easily adapted for personalized and precision medicine. Several therapeutic aptamers with desirable binding and functional properties have been developed and evaluated in preclinical studies over the past 25years. However, for the majority of these aptamers, their clinical potential has yet to be realized. A significant hurdle to the clinical adoption of this novel class of biologicals is the limited information on their secondary and tertiary structure. Knowledge of the RNA's structure would greatly facilitate and expedite the post-selection optimization steps required for translation, including truncation (to reduce costs of manufacturing), chemical modification (to enhance stability and improve safety) and chemical conjugation (to improve drug properties for combinatorial therapy). Here we describe a structural computational modeling methodology that when coupled to a standard functional assay, can be used to determine key sequence and structural motifs of an RNA aptamer. We applied this methodology to enable the truncation of an aptamer to prostate specific membrane antigen (PSMA) with great potential for targeted therapy that had failed previous truncation attempts. This methodology can be easily applied to optimize other aptamers with therapeutic potential. PMID:26972787
Structural computational modeling of RNA aptamers
Xu, Xiaojun; Dickey, David D.; Chen, Shi-Jie; Giangrande, Paloma H.
2016-01-01
RNA aptamers represent an emerging class of biologics that can be easily adapted for personalized and precision medicine. Several therapeutic aptamers with desirable binding and functional properties have been developed and evaluated in preclinical studies over the past 25 years. However, for the majority of these aptamers, their clinical potential has yet to be realized. A significant hurdle to the clinical adoption of this novel class of biologicals is the limited information on their secondary and tertiary structure. Knowledge of the RNA’s structure would greatly facilitate and expedite the post-selection optimization steps required for translation, including truncation (to reduce costs of manufacturing), chemical modification (to enhance stability and improve safety) and chemical conjugation (to improve drug properties for combinatorial therapy). Here we describe a structural computational modeling methodology that when coupled to a standard functional assay, can be used to determine key sequence and structural motifs of an RNA aptamer. We applied this methodology to enable the truncation of an aptamer to prostate specific membrane antigen (PSMA) with great potential for targeted therapy that had failed previous truncation attempts. This methodology can be easily applied to optimize other aptamers with therapeutic potential. PMID:26972787
Geometric modeling for computer aided design
NASA Technical Reports Server (NTRS)
Schwing, James L.; Olariu, Stephen
1995-01-01
The primary goal of this grant has been the design and implementation of software to be used in the conceptual design of aerospace vehicles particularly focused on the elements of geometric design, graphical user interfaces, and the interaction of the multitude of software typically used in this engineering environment. This has resulted in the development of several analysis packages and design studies. These include two major software systems currently used in the conceptual level design of aerospace vehicles. These tools are SMART, the Solid Modeling Aerospace Research Tool, and EASIE, the Environment for Software Integration and Execution. Additional software tools were designed and implemented to address the needs of the engineer working in the conceptual design environment. SMART provides conceptual designers with a rapid prototyping capability and several engineering analysis capabilities. In addition, SMART has a carefully engineered user interface that makes it easy to learn and use. Finally, a number of specialty characteristics have been built into SMART which allow it to be used efficiently as a front end geometry processor for other analysis packages. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand-alone, analysis codes. Resulting in a streamlining of the exchange of data between programs reducing errors and improving the efficiency. EASIE provides both a methodology and a collection of software tools to ease the task of coordinating engineering design and analysis codes.
Precise orbit computation and sea surface modeling
NASA Technical Reports Server (NTRS)
Wakker, Karel F.; Ambrosius, B. A. C.; Rummel, R.; Vermaat, E.; Deruijter, W. P. M.; Vandermade, J. W.; Zimmerman, J. T. F.
1991-01-01
The research project described below is part of a long-term program at Delft University of Technology aiming at the application of European Remote Sensing satellite (ERS-1) and TOPEX/POSEIDON altimeter measurements for geophysical purposes. This program started in 1980 with the processing of Seasat laser range and altimeter height measurements and concentrates today on the analysis of Geosat altimeter data. The objectives of the TOPEX/POSEIDON research project are the tracking of the satellite by the Dutch mobile laser tracking system MTLRS-2, the computation of precise TOPEX/POSEIDON orbits, the analysis of the spatial and temporal distribution of the orbit errors, the improvement of ERS-1 orbits through the information obtained from the altimeter crossover difference residuals for crossing ERS-1 and TOPEX/POSEIDON tracks, the combination of ERS-1 and TOPEX/POSEIDON altimeter data into a single high-precision data set, and the application of this data set to model the sea surface. The latter application will focus on the determination of detailed regional mean sea surfaces, sea surface variability, ocean topography, and ocean currents in the North Atlantic, the North Sea, the seas around Indonesia, the West Pacific, and the oceans around South Africa.
Computational modeling of epidural cortical stimulation
NASA Astrophysics Data System (ADS)
Wongsarnpigoon, Amorn; Grill, Warren M.
2008-12-01
Epidural cortical stimulation (ECS) is a developing therapy to treat neurological disorders. However, it is not clear how the cortical anatomy or the polarity and position of the electrode affects current flow and neural activation in the cortex. We developed a 3D computational model simulating ECS over the precentral gyrus. With the electrode placed directly above the gyrus, about half of the stimulus current flowed through the crown of the gyrus while current density was low along the banks deep in the sulci. Beneath the electrode, neurons oriented perpendicular to the cortical surface were depolarized by anodic stimulation, and neurons oriented parallel to the boundary were depolarized by cathodic stimulation. Activation was localized to the crown of the gyrus, and neurons on the banks deep in the sulci were not polarized. During regulated voltage stimulation, the magnitude of the activating function was inversely proportional to the thickness of the CSF and dura. During regulated current stimulation, the activating function was not sensitive to the thickness of the dura but was slightly more sensitive than during regulated voltage stimulation to the thickness of the CSF. Varying the width of the gyrus and the position of the electrode altered the distribution of the activating function due to changes in the orientation of the neurons beneath the electrode. Bipolar stimulation, although often used in clinical practice, reduced spatial selectivity as well as selectivity for neuron orientation.
Learning Anatomy: Do New Computer Models Improve Spatial Understanding?
ERIC Educational Resources Information Center
Garg, Amit; Norman, Geoff; Spero, Lawrence; Taylor, Ian
1999-01-01
Assesses desktop-computer models that rotate in virtual three-dimensional space. Compares spatial learning with a computer carpal-bone model horizontally rotating at 10-degree views with the same model rotating at 90-degree views. (Author/CCM)
ADVANCED COMPUTATIONAL METHODS IN DOSE MODELING
The overall goal of the EPA-ORD NERL research program on Computational Toxicology (CompTox) is to provide the Agency with the tools of modern chemistry, biology, and computing to improve quantitative risk assessments and reduce uncertainties in the source-to-adverse outcome conti...
Computational Modeling of Magnetically Actuated Propellant Orientation
NASA Technical Reports Server (NTRS)
Hochstein, John I.
1996-01-01
sufficient performance to support cryogenic propellant management tasks. In late 1992, NASA MSFC began a new investigation in this technology commencing with the design of the Magnetically-Actuated Propellant Orientation (MAPO) experiment. A mixture of ferrofluid and water is used to simulate the paramagnetic properties of LOX and the experiment is being flown on the KC-135 aircraft to provide a reduced gravity environment. The influence of a 0.4 Tesla ring magnet on flow into and out of a subscale Plexiglas tank is being recorded on video tape. The most efficient approach to evaluating the feasibility of MAPO is to compliment the experimental program with development of a computational tool to model the process of interest. The goal of the present research is to develop such a tool. Once confidence in its fidelity is established by comparison to data from the MAPO experiment, it can be used to assist in the design of future experiments and to study the parameter space of the process. Ultimately, it is hoped that the computational model can serve as a design tool for full-scale spacecraft applications.
Ablative Rocket Deflector Testing and Computational Modeling
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.; Lott, Jeffrey W.; Raines, Nickey
2010-01-01
A deflector risk mitigation program was recently conducted at the NASA Stennis Space Center. The primary objective was to develop a database that characterizes the behavior of industry-grade refractory materials subjected to rocket plume impingement conditions commonly experienced on static test stands. The program consisted of short and long duration engine tests where the supersonic exhaust flow from the engine impinged on an ablative panel. Quasi time-dependent erosion depths and patterns generated by the plume impingement were recorded for a variety of different ablative materials. The erosion behavior was found to be highly dependent on the material s composition and corresponding thermal properties. For example, in the case of the HP CAST 93Z ablative material, the erosion rate actually decreased under continued thermal heating conditions due to the formation of a low thermal conductivity "crystallization" layer. The "crystallization" layer produced near the surface of the material provided an effective insulation from the hot rocket exhaust plume. To gain further insight into the complex interaction of the plume with the ablative deflector, computational fluid dynamic modeling was performed in parallel to the ablative panel testing. The results from the current study demonstrated that locally high heating occurred due to shock reflections. These localized regions of shock-induced heat flux resulted in non-uniform erosion of the ablative panels. In turn, it was observed that the non-uniform erosion exacerbated the localized shock heating causing eventual plume separation and reversed flow for long duration tests under certain conditions. Overall, the flow simulations compared very well with the available experimental data obtained during this project.
Computer modeling of a convective steam superheater
NASA Astrophysics Data System (ADS)
Trojan, Marcin
2015-03-01
Superheater is for generating superheated steam from the saturated steam from the evaporator outlet. In the case of pulverized coal fired boiler, a relatively small amount of ash causes problems with ash fouling on the heating surfaces, including the superheaters. In the convection pass of the boiler, the flue gas temperature is lower and ash deposits can be loose or sintered. Ash fouling not only reduces heat transfer from the flue gas to the steam, but also is the cause of a higher pressure drop on the flue gas flow path. In the case the pressure drop is greater than the power consumed by the fan increases. If the superheater surfaces are covered with ash than the steam temperature at the outlet of the superheater stages falls, and the flow rates of the water injected into attemperator should be reduced. There is also an increase in flue gas temperature after the different stages of the superheater. Consequently, this leads to a reduction in boiler efficiency. The paper presents the results of computational fluid dynamics simulations of the first stage superheater of both the boiler OP-210M using the commercial software. The temperature distributions of the steam and flue gas along the way they flow together with temperature of the tube walls and temperature of the ash deposits will be determined. The calculated steam temperature is compared with measurement results. Knowledge of these temperatures is of great practical importance because it allows to choose the grade of steel for a given superheater stage. Using the developed model of the superheater to determine its degree of ash fouling in the on-line mode one can control the activation frequency of steam sootblowers.
Idealized Computational Models for Auditory Receptive Fields
Lindeberg, Tony; Friberg, Anders
2015-01-01
We present a theory by which idealized models of auditory receptive fields can be derived in a principled axiomatic manner, from a set of structural properties to (i) enable invariance of receptive field responses under natural sound transformations and (ii) ensure internal consistency between spectro-temporal receptive fields at different temporal and spectral scales. For defining a time-frequency transformation of a purely temporal sound signal, it is shown that the framework allows for a new way of deriving the Gabor and Gammatone filters as well as a novel family of generalized Gammatone filters, with additional degrees of freedom to obtain different trade-offs between the spectral selectivity and the temporal delay of time-causal temporal window functions. When applied to the definition of a second-layer of receptive fields from a spectrogram, it is shown that the framework leads to two canonical families of spectro-temporal receptive fields, in terms of spectro-temporal derivatives of either spectro-temporal Gaussian kernels for non-causal time or a cascade of time-causal first-order integrators over the temporal domain and a Gaussian filter over the logspectral domain. For each filter family, the spectro-temporal receptive fields can be either separable over the time-frequency domain or be adapted to local glissando transformations that represent variations in logarithmic frequencies over time. Within each domain of either non-causal or time-causal time, these receptive field families are derived by uniqueness from the assumptions. It is demonstrated how the presented framework allows for computation of basic auditory features for audio processing and that it leads to predictions about auditory receptive fields with good qualitative similarity to biological receptive fields measured in the inferior colliculus (ICC) and primary auditory cortex (A1) of mammals. PMID:25822973
Idealized computational models for auditory receptive fields.
Lindeberg, Tony; Friberg, Anders
2015-01-01
We present a theory by which idealized models of auditory receptive fields can be derived in a principled axiomatic manner, from a set of structural properties to (i) enable invariance of receptive field responses under natural sound transformations and (ii) ensure internal consistency between spectro-temporal receptive fields at different temporal and spectral scales. For defining a time-frequency transformation of a purely temporal sound signal, it is shown that the framework allows for a new way of deriving the Gabor and Gammatone filters as well as a novel family of generalized Gammatone filters, with additional degrees of freedom to obtain different trade-offs between the spectral selectivity and the temporal delay of time-causal temporal window functions. When applied to the definition of a second-layer of receptive fields from a spectrogram, it is shown that the framework leads to two canonical families of spectro-temporal receptive fields, in terms of spectro-temporal derivatives of either spectro-temporal Gaussian kernels for non-causal time or a cascade of time-causal first-order integrators over the temporal domain and a Gaussian filter over the logspectral domain. For each filter family, the spectro-temporal receptive fields can be either separable over the time-frequency domain or be adapted to local glissando transformations that represent variations in logarithmic frequencies over time. Within each domain of either non-causal or time-causal time, these receptive field families are derived by uniqueness from the assumptions. It is demonstrated how the presented framework allows for computation of basic auditory features for audio processing and that it leads to predictions about auditory receptive fields with good qualitative similarity to biological receptive fields measured in the inferior colliculus (ICC) and primary auditory cortex (A1) of mammals. PMID:25822973
Performance Models for Split-execution Computing Systems
Humble, Travis S; McCaskey, Alex; Schrock, Jonathan; Seddiqi, Hadayat; Britt, Keith A; Imam, Neena
2016-01-01
Split-execution computing leverages the capabilities of multiple computational models to solve problems, but splitting program execution across different computational models incurs costs associated with the translation between domains. We analyze the performance of a split-execution computing system developed from conventional and quantum processing units (QPUs) by using behavioral models that track resource usage. We focus on asymmetric processing models built using conventional CPUs and a family of special-purpose QPUs that employ quantum computing principles. Our performance models account for the translation of a classical optimization problem into the physical representation required by the quantum processor while also accounting for hardware limitations and conventional processor speed and memory. We conclude that the bottleneck in this split-execution computing system lies at the quantum-classical interface and that the primary time cost is independent of quantum processor behavior.
An Integrative Model of Factors Related to Computing Course Performance.
ERIC Educational Resources Information Center
Charlton, John P.; Birkett, Paul E.
1999-01-01
A path-modeling approach is adopted to examine interrelationships between factors influencing computing behavior and computer course performance. Factors considered are gender, personality, intellect and computer attitudes, ownership, and experience. Intrinsic motivation is suggested as a major factor which can explain many variables' relationship…
Los Alamos CCS (Center for Computer Security) formal computer security model
Dreicer, J.S.; Hunteman, W.J. )
1989-01-01
This paper provides a brief presentation of the formal computer security model currently being developed at the Los Alamos Department of Energy (DOE) Center for Computer Security (CCS). The initial motivation for this effort was the need to provide a method by which DOE computer security policy implementation could be tested and verified. The actual analytical model was a result of the integration of current research in computer security and previous modeling and research experiences. The model is being developed to define a generic view of the computer and network security domains, to provide a theoretical basis for the design of a security model, and to address the limitations of present models. Formal mathematical models for computer security have been designed and developed in conjunction with attempts to build secure computer systems since the early 70's. The foundation of the Los Alamos DOE CCS model is a series of functionally dependent probability equations, relations, and expressions. The mathematical basis appears to be justified and is undergoing continued discrimination and evolution. We expect to apply the model to the discipline of the Bell-Lapadula abstract sets of objects and subjects. 5 refs.
Integrated Multiscale Modeling of Molecular Computing Devices
Jerzy Bernholc
2011-02-03
will some day reach a miniaturization limit, forcing designers of Si-based electronics to pursue increased performance by other means. Any other alternative approach would have the unenviable task of matching the ability of Si technology to pack more than a billion interconnected and addressable devices on a chip the size of a thumbnail. Nevertheless, the prospects of developing alternative approaches to fabricate electronic devices have spurred an ever-increasing pace of fundamental research. One of the promising possibilities is molecular electronics (ME), self-assembled molecular-based electronic systems composed of single-molecule devices in ultra dense, ultra fast molecular-sized components. This project focused on developing accurate, reliable theoretical modeling capabilities for describing molecular electronics devices. The participants in the project are given in Table 1. The primary outcomes of this fundamental computational science grant are publications in the open scientific literature. As listed below, 62 papers have been published from this project. In addition, the research has also been the subject of more than 100 invited talks at conferences, including several plenary or keynote lectures. Many of the goals of the original proposal were completed. Specifically, the multi-disciplinary group developed a unique set of capabilities and tools for investigating electron transport in fabricated and self-assembled nanostructures at multiple length and time scales.
Simulating complex intracellular processes using object-oriented computational modelling.
Johnson, Colin G; Goldman, Jacki P; Gullick, William J
2004-11-01
The aim of this paper is to give an overview of computer modelling and simulation in cellular biology, in particular as applied to complex biochemical processes within the cell. This is illustrated by the use of the techniques of object-oriented modelling, where the computer is used to construct abstractions of objects in the domain being modelled, and these objects then interact within the computer to simulate the system and allow emergent properties to be observed. The paper also discusses the role of computer simulation in understanding complexity in biological systems, and the kinds of information which can be obtained about biology via simulation. PMID:15302205
Computer Center: BASIC String Models of Genetic Information Transfer.
ERIC Educational Resources Information Center
Spain, James D., Ed.
1984-01-01
Discusses some of the major genetic information processes which may be modeled by computer program string manipulation, focusing on replication and transcription. Also discusses instructional applications of using string models. (JN)
PC BEEPOP - A PERSONAL COMPUTER HONEY BEE POPULATION DYNAMICS MODEL
PC BEEPOP is a computer model that simulates honey bee (Apis mellifera L.) colony population dynamics. he model consists of a system of interdependent elements, including colony condition, environmental variability, colony energetics, and contaminant exposure. t includes a mortal...
On the capabilities and computational costs of neuron models.
Skocik, Michael J; Long, Lyle N
2014-08-01
We review the Hodgkin-Huxley, Izhikevich, and leaky integrate-and-fire neuron models in regular spiking modes solved with the forward Euler, fourth-order Runge-Kutta, and exponential Euler methods and determine the necessary time steps and corresponding computational costs required to make the solutions accurate. We conclude that the leaky integrate-and-fire needs the least number of computations, and that the Hodgkin-Huxley and Izhikevich models are comparable in computational cost. PMID:25050945
Using Computational Simulations to Confront Students' Mental Models
ERIC Educational Resources Information Center
Rodrigues, R.; Carvalho, P. Simeão
2014-01-01
In this paper we show an example of how to use a computational simulation to obtain visual feedback for students' mental models, and compare their predictions with the simulated system's behaviour. Additionally, we use the computational simulation to incrementally modify the students' mental models in order to accommodate new data,…
Overview of ASC Capability Computing System Governance Model
Doebling, Scott W.
2012-07-11
This document contains a description of the Advanced Simulation and Computing Program's Capability Computing System Governance Model. Objectives of the Governance Model are to ensure that the capability system resources are allocated on a priority-driven basis according to the Program requirements; and to utilize ASC Capability Systems for the large capability jobs for which they were designed and procured.
Computer Simulation Models of Economic Systems in Higher Education.
ERIC Educational Resources Information Center
Smith, Lester Sanford
The increasing complexity of educational operations make analytical tools, such as computer simulation models, especially desirable for educational administrators. This MA thesis examined the feasibility of developing computer simulation models of economic systems in higher education to assist decision makers in allocating resources. The report…
Computers, Modeling and Management Education. Technical Report No. 6.
ERIC Educational Resources Information Center
Bonini, Charles P.
The report begins with a brief examination of the role of computer modeling in management decision-making. Then, some of the difficulties of implementing computer modeling are examined, and finally, the educational implications of these issues are raised, and a comparison is made between what is currently being done and what might be done to…
A Model for Guiding Undergraduates to Success in Computational Science
ERIC Educational Resources Information Center
Olagunju, Amos O.; Fisher, Paul; Adeyeye, John
2007-01-01
This paper presents a model for guiding undergraduates to success in computational science. A set of integrated, interdisciplinary training and research activities is outlined for use as a vehicle to increase and produce graduates with research experiences in computational and mathematical sciences. The model is responsive to the development of…
World Knowledge in Computational Models of Discourse Comprehension
ERIC Educational Resources Information Center
Frank, Stefan L.; Koppen, Mathieu; Noordman, Leo G. M.; Vonk, Wietske
2008-01-01
Because higher level cognitive processes generally involve the use of world knowledge, computational models of these processes require the implementation of a knowledge base. This article identifies and discusses 4 strategies for dealing with world knowledge in computational models: disregarding world knowledge, "ad hoc" selection, extraction from…
40 CFR 194.23 - Models and computer codes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS Compliance Certification and Re-certification General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Models and computer codes....
40 CFR 194.23 - Models and computer codes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS Compliance Certification and Re-certification General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Models and computer codes....
40 CFR 194.23 - Models and computer codes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS Compliance Certification and Re-certification General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Models and computer codes....
40 CFR 194.23 - Models and computer codes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS Compliance Certification and Re-certification General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Models and computer codes....
40 CFR 194.23 - Models and computer codes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS Compliance Certification and Re-certification General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Models and computer codes....
Computational Modeling for Language Acquisition: A Tutorial with Syntactic Islands
ERIC Educational Resources Information Center
Pearl, Lisa S.; Sprouse, Jon
2015-01-01
Purpose: Given the growing prominence of computational modeling in the acquisition research community, we present a tutorial on how to use computational modeling to investigate learning strategies that underlie the acquisition process. This is useful for understanding both typical and atypical linguistic development. Method: We provide a general…
Generate rigorous pyrolysis models for olefins production by computer
Klein, M.T.; Broadbelt, L.J.; Grittman, D.H.
1997-04-01
With recent advances in the automation of the model-building process for large networks of kinetic equations, it may become feasible to generate computer pyrolysis models for naphthas and gas oil feedstocks. The potential benefit of a rigorous mechanistic model for these relatively complex liquid feedstocks is great, due to diverse characterizations and yield spectrums. An ethane pyrolysis example is used to illustrate the computer generation of reaction mechanism models.
Ambient temperature modelling with soft computing techniques
Bertini, Ilaria; Ceravolo, Francesco; Citterio, Marco; Di Pietra, Biagio; Margiotta, Francesca; Pizzuti, Stefano; Puglisi, Giovanni; De Felice, Matteo
2010-07-15
This paper proposes a hybrid approach based on soft computing techniques in order to estimate monthly and daily ambient temperature. Indeed, we combine the back-propagation (BP) algorithm and the simple Genetic Algorithm (GA) in order to effectively train artificial neural networks (ANN) in such a way that the BP algorithm initialises a few individuals of the GA's population. Experiments concerned monthly temperature estimation of unknown places and daily temperature estimation for thermal load computation. Results have shown remarkable improvements in accuracy compared to traditional methods. (author)
A computational model of the human hand 93-ERI-053
Hollerbach, K.; Axelrod, T.
1996-03-01
The objectives of the Computational Hand Modeling project were to prove the feasibility of the Laboratory`s NIKE3D finite element code to orthopaedic problems. Because of the great complexity of anatomical structures and the nonlinearity of their behavior, we have focused on a subset of joints of the hand and lower extremity and have developed algorithms to model their behavior. The algorithms developed here solve fundamental problems in computational biomechanics and can be expanded to describe any other joints of the human body. This kind of computational modeling has never successfully been attempted before, due in part to a lack of biomaterials data and a lack of computational resources. With the computational resources available at the National Laboratories and the collaborative relationships we have established with experimental and other modeling laboratories, we have been in a position to pursue our innovative approach to biomechanical and orthopedic modeling.
Computer Modeling and Research in the Classroom
ERIC Educational Resources Information Center
Ramos, Maria Joao; Fernandes, Pedro Alexandrino
2005-01-01
We report on a computational chemistry course for undergraduate students that successfully incorporated a research project on the design of new contrast agents for magnetic resonance imaging and shift reagents for in vivo NMR. Course outcomes were positive: students were quite motivated during the whole year--they learned what was required of…
Computational and mathematical models of microstructural evolution
Bullard, J.W.; Chen, L.Q.; Kalia, R.K.; Stoneham, A.M.
1998-12-31
This symposium was designed to bring together the foremost materials theorists and applied mathematicians from around the world to share and discuss some of the newest and most promising mathematical and computational tools for simulating, understanding, and predicting the various complex processes that occur during the evolution of microstructures. Separate abstracts were prepared for 25 papers.
Computer modeling of ORNL storage tank sludge mobilization and mixing
Terrones, G.; Eyler, L.L.
1993-09-01
This report presents and analyzes the results of the computer modeling of mixing and mobilization of sludge in horizontal, cylindrical storage tanks using submerged liquid jets. The computer modeling uses the TEMPEST computational fluid dynamics computer program. The horizontal, cylindrical storage tank configuration is similar to the Melton Valley Storage Tanks (MVST) at Oak Ridge National (ORNL). The MVST tank contents exhibit non-homogeneous, non-Newtonian rheology characteristics. The eventual goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents of the tanks.
Operation of the computer model for microenvironment atomic oxygen exposure
NASA Technical Reports Server (NTRS)
Bourassa, R. J.; Gillis, J. R.; Gruenbaum, P. E.
1995-01-01
A computer model for microenvironment atomic oxygen exposure has been developed to extend atomic oxygen modeling capability to include shadowing and reflections. The model uses average exposure conditions established by the direct exposure model and extends the application of these conditions to treat surfaces of arbitrary shape and orientation.
A stirling engine computer model for performance calculations
NASA Technical Reports Server (NTRS)
Tew, R.; Jefferies, K.; Miao, D.
1978-01-01
To support the development of the Stirling engine as a possible alternative to the automobile spark-ignition engine, the thermodynamic characteristics of the Stirling engine were analyzed and modeled on a computer. The modeling techniques used are presented. The performance of an existing rhombic-drive Stirling engine was simulated by use of this computer program, and some typical results are presented. Engine tests are planned in order to evaluate this model.
Computational neurorehabilitation: modeling plasticity and learning to predict recovery.
Reinkensmeyer, David J; Burdet, Etienne; Casadio, Maura; Krakauer, John W; Kwakkel, Gert; Lang, Catherine E; Swinnen, Stephan P; Ward, Nick S; Schweighofer, Nicolas
2016-01-01
Despite progress in using computational approaches to inform medicine and neuroscience in the last 30 years, there have been few attempts to model the mechanisms underlying sensorimotor rehabilitation. We argue that a fundamental understanding of neurologic recovery, and as a result accurate predictions at the individual level, will be facilitated by developing computational models of the salient neural processes, including plasticity and learning systems of the brain, and integrating them into a context specific to rehabilitation. Here, we therefore discuss Computational Neurorehabilitation, a newly emerging field aimed at modeling plasticity and motor learning to understand and improve movement recovery of individuals with neurologic impairment. We first explain how the emergence of robotics and wearable sensors for rehabilitation is providing data that make development and testing of such models increasingly feasible. We then review key aspects of plasticity and motor learning that such models will incorporate. We proceed by discussing how computational neurorehabilitation models relate to the current benchmark in rehabilitation modeling - regression-based, prognostic modeling. We then critically discuss the first computational neurorehabilitation models, which have primarily focused on modeling rehabilitation of the upper extremity after stroke, and show how even simple models have produced novel ideas for future investigation. Finally, we conclude with key directions for future research, anticipating that soon we will see the emergence of mechanistic models of motor recovery that are informed by clinical imaging results and driven by the actual movement content of rehabilitation therapy as well as wearable sensor-based records of daily activity. PMID:27130577
Ku-Band rendezvous radar performance computer simulation model
NASA Technical Reports Server (NTRS)
Magnusson, H. G.; Goff, M. F.
1984-01-01
All work performed on the Ku-band rendezvous radar performance computer simulation model program since the release of the preliminary final report is summarized. Developments on the program fall into three distinct categories: (1) modifications to the existing Ku-band radar tracking performance computer model; (2) the addition of a highly accurate, nonrealtime search and acquisition performance computer model to the total software package developed on this program; and (3) development of radar cross section (RCS) computation models for three additional satellites. All changes in the tracking model involved improvements in the automatic gain control (AGC) and the radar signal strength (RSS) computer models. Although the search and acquisition computer models were developed under the auspices of the Hughes Aircraft Company Ku-Band Integrated Radar and Communications Subsystem program office, they have been supplied to NASA as part of the Ku-band radar performance comuter model package. Their purpose is to predict Ku-band acquisition performance for specific satellite targets on specific missions. The RCS models were developed for three satellites: the Long Duration Exposure Facility (LDEF) spacecraft, the Solar Maximum Mission (SMM) spacecraft, and the Space Telescopes.
Computational Modeling of NEXT 2000-Hour Wear Test Results
NASA Technical Reports Server (NTRS)
Malone, Shane P.
2004-01-01
Ion optics computational models are invaluable tools for the design of ion optics systems. In this study, a new computational model developed by an outside vendor for NASA Glenn Research Center (GRC) is presented. This model is a gun code which has been modified to model the plasma sheaths both upstream and downstream of the ion optics. The model handles multiple species (e.g. singly and doubly-charged ions) and includes a charge-exchange model for erosion estimates. The model uses commercially available solid design and meshing software, allowing high flexibility in ion optics geometric configurations. This computational model is compared to experimental results from the NASA Evolutionary Xenon Thruster (NEXT) 2000-hour wear test, including over-focusing along the edge apertures, pit-and-groove erosion due to charge exchange, and beamlet distortion at the edge of the hole pattern.
Transient upset models in computer systems
NASA Technical Reports Server (NTRS)
Mason, G. M.
1983-01-01
Essential factors for the design of transient upset monitors for computers are discussed. The upset is a system level event that is software dependent. It can occur in the program flow, the opcode set, the opcode address domain, the read address domain, and the write address domain. Most upsets are in the program flow. It is shown that simple, external monitors functioning transparently relative to the system operations can be built if a detailed accounting is made of the characteristics of the faults that can happen. Sample applications are provided for different states of the Z-80 and 8085 based system.
Recent developments in multiphysics computational models of physiological flows
NASA Astrophysics Data System (ADS)
Eldredge, Jeff D.; Mittal, Rajat
2016-04-01
A mini-symposium on computational modeling of fluid-structure interactions and other multiphysics in physiological flows was held at the 11th World Congress on Computational Mechanics in July 2014 in Barcelona, Spain. This special issue of Theoretical and Computational Fluid Dynamics contains papers from among the participants of the mini-symposium. The present paper provides an overview of the mini-symposium and the special issue.
Computational Electromagnetic Modeling of SansEC(Trade Mark) Sensors
NASA Technical Reports Server (NTRS)
Smith, Laura J.; Dudley, Kenneth L.; Szatkowski, George N.
2011-01-01
This paper describes the preliminary effort to apply computational design tools to aid in the development of an electromagnetic SansEC resonant sensor composite materials damage detection system. The computational methods and models employed on this research problem will evolve in complexity over time and will lead to the development of new computational methods and experimental sensor systems that demonstrate the capability to detect, diagnose, and monitor the damage of composite materials and structures on aerospace vehicles.
Cancer Evolution: Mathematical Models and Computational Inference
Beerenwinkel, Niko; Schwarz, Roland F.; Gerstung, Moritz; Markowetz, Florian
2015-01-01
Cancer is a somatic evolutionary process characterized by the accumulation of mutations, which contribute to tumor growth, clinical progression, immune escape, and drug resistance development. Evolutionary theory can be used to analyze the dynamics of tumor cell populations and to make inference about the evolutionary history of a tumor from molecular data. We review recent approaches to modeling the evolution of cancer, including population dynamics models of tumor initiation and progression, phylogenetic methods to model the evolutionary relationship between tumor subclones, and probabilistic graphical models to describe dependencies among mutations. Evolutionary modeling helps to understand how tumors arise and will also play an increasingly important prognostic role in predicting disease progression and the outcome of medical interventions, such as targeted therapy. PMID:25293804
Three-dimensional cardiac computational modelling: methods, features and applications.
Lopez-Perez, Alejandro; Sebastian, Rafael; Ferrero, Jose M
2015-01-01
The combination of computational models and biophysical simulations can help to interpret an array of experimental data and contribute to the understanding, diagnosis and treatment of complex diseases such as cardiac arrhythmias. For this reason, three-dimensional (3D) cardiac computational modelling is currently a rising field of research. The advance of medical imaging technology over the last decades has allowed the evolution from generic to patient-specific 3D cardiac models that faithfully represent the anatomy and different cardiac features of a given alive subject. Here we analyse sixty representative 3D cardiac computational models developed and published during the last fifty years, describing their information sources, features, development methods and online availability. This paper also reviews the necessary components to build a 3D computational model of the heart aimed at biophysical simulation, paying especial attention to cardiac electrophysiology (EP), and the existing approaches to incorporate those components. We assess the challenges associated to the different steps of the building process, from the processing of raw clinical or biological data to the final application, including image segmentation, inclusion of substructures and meshing among others. We briefly outline the personalisation approaches that are currently available in 3D cardiac computational modelling. Finally, we present examples of several specific applications, mainly related to cardiac EP simulation and model-based image analysis, showing the potential usefulness of 3D cardiac computational modelling into clinical environments as a tool to aid in the prevention, diagnosis and treatment of cardiac diseases. PMID:25928297
Tawhai, Merryn; Bischoff, Jeff; Einstein, Daniel R.; Erdemir, Ahmet; Guess, Trent; Reinbolt, Jeff
2009-05-01
Abstract In this article, we describe some current multiscale modeling issues in computational biomechanics from the perspective of the musculoskeletal and respiratory systems and mechanotransduction. First, we outline the necessity of multiscale simulations in these biological systems. Then we summarize challenges inherent to multiscale biomechanics modeling, regardless of the subdiscipline, followed by computational challenges that are system-specific. We discuss some of the current tools that have been utilized to aid research in multiscale mechanics simulations, and the priorities to further the field of multiscale biomechanics computation.
Computational model for Halorhodopsin photocurrent kinetics
NASA Astrophysics Data System (ADS)
Bravo, Jaime; Stefanescu, Roxana; Talathi, Sachin
2013-03-01
Optogenetics is a rapidly developing novel optical stimulation technique that employs light activated ion channels to excite (using channelrhodopsin (ChR)) or suppress (using halorhodopsin (HR)) impulse activity in neurons with high temporal and spatial resolution. This technique holds enormous potential to externally control activity states in neuronal networks. The channel kinetics of ChR and HR are well understood and amenable for mathematical modeling. Significant progress has been made in recent years to develop models for ChR channel kinetics. To date however, there is no model to mimic photocurrents produced by HR. Here, we report the first model developed for HR photocurrents based on a four-state model of the HR photocurrent kinetics. The model provides an excellent fit (root-mean-square error of 3.1862x10-4, to an empirical profile of experimentally measured HR photocurrents. In combination, mathematical models for ChR and HR photocurrents can provide effective means to design test light based control systems to regulate neural activity, which in turn may have implications for the development of novel light based stimulation paradigms for brain disease control. I would like to thank the University of Florida and the Physics Research Experience for Undergraduates (REU) program, funded through NSF DMR-1156737. This research was also supported through start-up funds provided to Dr. Sachin Talathi
A computationally tractable version of the collective model
NASA Astrophysics Data System (ADS)
Rowe, D. J.
2004-05-01
A computationally tractable version of the Bohr-Mottelson collective model is presented which makes it possible to diagonalize realistic collective models and obtain convergent results in relatively small appropriately chosen subspaces of the collective model Hilbert space. Special features of the proposed model are that it makes use of the beta wave functions given analytically by the softened-beta version of the Wilets-Jean model, proposed by Elliott et al., and a simple algorithm for computing SO(5)⊃SO(3) spherical harmonics. The latter has much in common with the methods of Chacon, Moshinsky, and Sharp but is conceptually and computationally simpler. Results are presented for collective models ranging from the spherical vibrator to the Wilets-Jean and axially symmetric rotor-vibrator models.
Several Computational Opportunities and Challenges Associated with Climate Change Modeling
Wang, Dali; Post, Wilfred M; Wilson, Bruce E
2010-01-01
One of the key factors in the improved understanding of climate science is the development and improvement of high fidelity climate models. These models are critical for projections of future climate scenarios, as well as for highlighting the areas where further measurement and experimentation are needed for knowledge improvement. In this paper, we focus on several computing issues associated with climate change modeling. First, we review a fully coupled global simulation and a nested regional climate model to demonstrate key design components, and then we explain the underlying restrictions associated with the temporal and spatial scale for climate change modeling. We then discuss the role of high-end computers in climate change sciences. Finally, we explain the importance of fostering regional, integrated climate impact analysis. Although we discuss the computational challenges associated with climate change modeling, and we hope those considerations can also be beneficial to many other modeling research programs involving multiscale system dynamics.
Advances in Computationally Modeling Human Oral Bioavailability
Wang, Junmei; Hou, Tingjun
2015-01-01
Although significant progress has been made in experimental high throughput screening (HTS) of ADME (absorption, distribution, metabolism, excretion) and pharmacokinetic properties, the ADME and Toxicity (ADME-Tox) in silico modeling is still indispensable in drug discovery as it can guide us to wisely select drug candidates prior to expensive ADME screenings and clinical trials. Compared to other ADME-Tox properties, human oral bioavailability (HOBA) is particularly important but extremely difficult to predict. In this paper, the advances in human oral bioavailability modeling will be reviewed. Moreover, our deep insight on how to construct more accurate and reliable HOBA QSAR and classification models will also discussed. PMID:25582307
Advances in computationally modeling human oral bioavailability.
Wang, Junmei; Hou, Tingjun
2015-06-23
Although significant progress has been made in experimental high throughput screening (HTS) of ADME (absorption, distribution, metabolism, excretion) and pharmacokinetic properties, the ADME and Toxicity (ADME-Tox) in silico modeling is still indispensable in drug discovery as it can guide us to wisely select drug candidates prior to expensive ADME screenings and clinical trials. Compared to other ADME-Tox properties, human oral bioavailability (HOBA) is particularly important but extremely difficult to predict. In this paper, the advances in human oral bioavailability modeling will be reviewed. Moreover, our deep insight on how to construct more accurate and reliable HOBA QSAR and classification models will also discussed. PMID:25582307
Utilizing Cloud Computing to Improve Climate Modeling and Studies
NASA Astrophysics Data System (ADS)
Li, Z.; Yang, C.; Liu, K.; Sun, M.; XIA, J.; Huang, Q.
2013-12-01
Climate studies have become increasingly important due to the global climate change, one of the biggest challenges for the human in the 21st century. Climate data, not only observations data collected from various sensors but also simulated data generated from diverse climate models, are essential for scientists to explore the potential climate change patterns and analyze the complex climate dynamics. Climate modeling and simulation, a critical methodology for simulating the past and predicting the future climate conditions, can produce huge amount of data that contains potentially valuable information for climate studies. However, using modeling method in climate studies poses at least two challenges for scientists. First, running climate models is a computing intensive process, which requires large amounts of computation resources. Second, running climate models is also a data intensive process generating Big geospatial Data (model output), which demands large storage for managing the data and large computing power to process and analyze these data. This presentation introduces a novel framework to tackle the two challenges by 1) running climate models in a cloud environment in an automated fashion, and 2) managing and parallel processing Big model output Data by leveraging cloud computing technologies. A prototype system is developed based on the framework using ModelE as the climate model. Experiment results show that this framework can improve climate modeling in the research cycle by accelerating big data generation (model simulation), big data management (storage and processing) and on demand big data analytics.